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ABSTRACT

This thesis is divided into four independent chapters and two appendices.

Chapter I deals with the following generalization of the birthday surprise
problem: how many people we need to interview on the average until either
r birthdays occur k times each or one birthday occurs k + 1 times. If r = 1,
we obtain the usual “birthday surprise” number. We verify that our formula
generalizes previous known results. We give asymptotic estimates for the
birthday surprise number using a theorem proved in appendix 1.

In chapter II, we present accurate and easily evaluated estimates for
the average lifetime of a semiconductor RAM memory protected by a single
error correcting, doubly error detecting (SEC-DED) code. This problem
is somehow related to the one in chapter I. As an application, we give an
analysis of the benefits of soft error “scrubbing” when both hard and soft
errors are present. We also discuss two methods for increasing the lifetime of
a computer memory: adding s rows of spare chips and implementing 2-ECC.
We close the chapter by comparing the two methods.

In chapter III, we describe a class of burst error correcting array codes.
We prove the fundamental properties of these codes.

Patel and Hong have constructed a code that can correct any track error
or two track erasures in a 9-track magnetic tape. In chapter IV, we extend
the construction to codes that can correct higher numbers of track errors
and erasures. The result is a new family of codes, the B(n, m)-codes.

In appendix I, we prove an important theorem used for asymptotic esti-

mates of integrals. This theorem is used in chapters I and II.
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In appendix II, we give a discussion of the Poisson approximation used
in chapter II assuming a simplified situation.
Each chapter is an independent entity with introduction and references.
Being conscious of the logical contradictions of the term, let’s point out

that this thesis is self-contained.
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CHAPTER I

EXTENSIONS OF THE BIRTHDAY SURPRISE PROBLEM

1. Introduction

The classical birthday surprise problem deals with the following question:
Suppose you interview a sequence of randomly selected people, making a note
of their birthdays, until some birthday has occurred twice. How many people
will you interview on the average? This number turns out to be 24.62, and
if you wait until the same birthday has occurred three times, the number is

88.74 (not “about 83,” as reported in [4]).

In this chapter we solve the following generalization: given r > 1,k > 2,
how many people do we have to interview on the average until r birthdays
occur k times each. However, there is a small problem that has to be taken
into account. It might happen that r birthdays k times each will never
occur. In effect, suppose that some birthday occurs k + 1 times before r
birthdays occur k times each. In that case, we have two options: either stop,
or continue until r birthdays occur at least k times each. We adopt the first
point of view. However, both averages are very close. Moreover, it can be
proved that, for planets with a very large number of days in the year, the

two averages are asymptotically equal (see [1]).
In particular, when r = 1,k = 2, we obtain the usual birthday surprise.

Our asymptotic estimates will be more precise than the ones given in [4].



_9_
2. A generalization of the “birthday surprise” problem

Let us formulate the birthday problem in the following way: suppose we
place randomly and independently balls in M cells. We wish to compute the
average number of balls we have to place until either r cells contain k balls
each, or one cell contains k+1 balls. To solve this problem, we shall introduce
an apparent artificiality: We make the times between the placing of the balls
independent exponentially distributed random variables. However, we shall
see that this artifice actually simplifies the calculation of the expectations

(the key is Wald’s identity).

2.1. Definition

Assume at each of the arrivals W;, 1 > 1, of a Poisson process of rate
1, a ball is placed at random into one of M cells. Then, T,(M, k) denotes
the first time that, either r cells contain k£ balls each, or one cell contains
k + 1 balls. N,(M,k) denotes the number of balls placed by time T,(M, k),
and B,(M,k) is tae expected number of balls placed by time T,(M, k), i.e.,
B.(M,k) = E(N,(M,k)) (r > 1,k > 2).

2.2. Theorem
Let r > 0,k > 2, and Ty(M, k) = 0. Then,

BT (M, k) = B M, B) + () 2 [~ e (suta)prat e )
where
k-1
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Proof: The arrival of balls in each cell is a Poisson process of intensity ;.
Whenever either r cells contain k balls each or one cell contains k + 1 balls,
we shall say that an (M, r, k)-success has occurred. Let R,(M,k,t) denote
the probability that, by time £, an (M, r, k)-success has not occurred. Hence,
an (M, r + 1, k)-success will not occur, if either an (M, r, k)-success has not

occurred, or ezactly r cells contain k balls each. Thus,

rana-xonsns (1) (EG) 57 (G 5)

80,

Ro(M, k,8) = B, (M, k,0) + (M)(;—}[sk (D7) @

r

From (2), by induction and the fact that we have a polynomial times a

decaying exponential,

‘l_igloth(M: k,t) =0 (3)

for all r.

The mean time until an (M, r, k)-success occurs is then given by
E(T.(M,k)) = — jo tR (M, k,t)dt = /0 ~ R.(M,k,t) dt (4)

The last equality is obtained integrating by parts and using (3). From (2)

and (4), making the change of variable 3; = z, we obtain (1). i

2.3. Corollary
Let Bo(M,k) =0, then

Bos4,0) = B, + (V) 3 [T st )



Proof: Call T; the time between the (i — 1)-th and the i-th arrival, ¢ > 1.
Then T}, T, ...... are independent random variables with common distribu-
tion 1 —e* and T,(M, k) =Ty + T2 + ... + T, (arp) -

According to Wald’s identity ([3], page 217), we have

E(T,(M, k)) = E(T,)E(N,(M, k)) = E(T,)B,(M, k)
But E(T}) = 1, hence,
E(T.(M, k)) = B,(M, k) (6)
From (1) and (6), (5) follows. 4
Notice that in the particular case r = 0, (5) gives
B,(M,k) =M /0 e Me (5, ()] dz (7)

Formula (7) is the usual birthday surprise number ([2],[4]).

3.Asymptotic estimates
The next theorem will be proved in appendix I. We shall use it to obtain

asymptotic estimates for B,(M, k), M a large number.

3.1. Theorem

Let F(M) = [ g(z)eM*) dz, where g is continuous and positive when
z > 0, h i3 infinitely differentiable for z > 0, h(z) < h(0) for all z >
0, h'(0) = A"(0) = --- = h-1(0) = 0 for some k > 1, R} (0) < 0,



N

lim;—o h(z) = —00, [5° g(z)e*® dz converges, and let h(z) = ag+ T2, ajz’,

g9(z) = TR bz’ for 0 <z < 6 for some 6 > 0, then,

(z; 4, M- ) A0

v=0
where
(o) ™% & e
R .. G, 5, PR )'1‘( )
k J=0 ! ! k
and

g(v) exp (“ E ak+1+.v'> = E Cijuivj
8

=0

3.2. Corollary

k
Bi(M, k) = ) R;(k)(k)/*T (1+ k)M* f+o(MH)
j=1

where the terms R;(k) are rational functions of k.

Proof: Equation (7) can be written as
B.(M, k) = M/°° Mhi() g
0

where hi(z) = log(Sk(z)) -

We are in the conditions of theorem 3.1., with
m(0) = B (0) =+ = b =0 , H(0)=
Hence, from equation (8), we obtain

B,(M,k) = kz—jl d,M"~% + 0 (M%)

v=0

]

(8)

()

(10)

(11)

(12)
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where, using (9), (10), and the fact that a; = (—k!)~?,

et 2
g, =8 S0 yT (s+ 25 1) (13)
k =0 k
and
exp (u. > ak+1+,v') = ciju'v! (14)
=0 (%)

Notice that do = (K!)iT (1+ 1), so Ry(k) = 1.
Now let v > 1. Since ¢y, = 0 from (14), by properties of the I' function,
(13) becomes

i, = (k!fé T (1 +7 : 1) S k) I (i +Y : 1) (15)

=1 =1
where []7_, (i 3 "—:‘—1) =1.
Replacing dy and (15) in (12), we obtain (11), where, calling j = v + 1,
R,(k) =1 and for j > 2,

e—1

Ri(k) = 3" cujaal(k — 11 TL (6K + 5) (16)

=1 =1

This completes the proof. 8

Approximating by the first term in (11), since R;(k) = 1, as M — oo,
we obtain
1

k
Estimate (17) was first obtained by Klamkin and Newman ([4]). Using

Bi(M, k) ~ (K)iT (1 + )Ml-% (17)

this estimate in the case M = 365 and k = 3, they concluded that the
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triple birthday surprise number (ie., B;(365,3)) is “about 83.” However, the

correct value is 88.739 ([1]). The problem is that the asymptotic estimate

(17) does not contain enough terms. A more precise estimate is given by (11).

Thus, we need to calculate the coefficients R;(k) for 2 < j < k, which are

given by (16). Using (14), the problem is reduced to evaluate the numbers

aj, where h(z) = T2, a;27. An explicit formula for the relevant numbers

J

a; is given by the following lemma.

3.3. Lemma
For0<i1<k-1,

(=1
Nk +1)(k—1)!

a;=0 and apy=

Proof: We had hi(z) = —z + log Si(z) = L2 a,;z".
Let

z.’ co zl
then,
oo (_l)i-H ‘.
hi(z) = —z+log(l+zys) = -z + %%
) =1
Notice,

(18)

(19)
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= —z+ log(l + Ty + z"zk)

] )|+1
=-z+ E (zye + z* )’

=1

( 1 41 ¢ : i ;
—z+ Z > j (zyx) 7 (z* 1)

=1 J=0

( ;+1 oo (_ 1)+ ' tY 5w 5 o o
P o e i zyk+z g (J) iy b
=1 =1 j=1

go, using (19), we obtain

The smallest power of z in the right-hand side of (20) is k, hence a; =0

2( st (20)

for 0 <1 < k — 1, proving the first part of the lemma.
Cousider now the function pe(z) = Tl (-1) 2yl 2.
Notice that, for0 < j < k-1,
J

arj = coef; (pi(z)) = Y_(=1)"coef;_i(yiz:) (21)

=0

and

s =t ; I coef, (yi .
coef;_i(yr2x) = Vgcoefu(yk)coef i Zh) = ; Y, —(i k—)u)! (22)
Let b;, = coef,(y}), then, by (21) and (22),

J i+1 = biy
i g__:o(‘l) .,{:o (k+j—i-v)
] 1 v
= Z Y (- 1%, (23)

v=0 (k +-7 — V)! 1=0



Claim:

m . o (_1)m+1

1) i = (24)
Induction on m. If m = 0, then —byp = —1, 80 (24) is true.

Assume (24) is true for t < m — 1, m > 1. Note that, for ¢t > 1,
bo,s = coefi(yp) = 0,

o (24) can also be written as 1 (—1)"+1b;,,_; = EU™

Eors 2 1,
bimei = 3 coefi(yi)coetm_ii(yi ) = 3 hmeict (25)
=0 =0 (1 + 1)'
Thus
m—ip, ;
t+lb‘ m—t = 1 $+1 i—1,m—i—|
m m—1 b .
= 1 i+1 t—1lm—i—|
ml T ?;;( ,Z: T+ 1)
m— ll m—I|
+ E T Z l ym—I—y (26)
m! =1 " =1

m=1

By induction, Y7 (=1)'b; mei—s = %;?T, 80, replacing in (26), we get

‘z:%(——l)"ﬂb;'m_'_ .+El( 1)"'" 21‘(%1_)_1)‘

hence,

() 351/ bt (-1 = S-1() 11" =0

=0 =0



and solving for ¥ (—1)"*+'b; ,,_; we obtain (24).

Replacing (24) in (23), we have

) ) P 5t 1(k)!
MLy = 2’: (=1)"* = v=o(-1)"" (v!’)(k+f’—x')!
T = k+5 —v)! 71k + 1)
Calling
. J = )u+1 . . .
A= |-1+ ) —r—le+ile+i=1]{g 42+ 1)
v=1 E

this becomes

_ TR
4 TR+ 1 e
Claim: (—1)*'f(z)=z(z+1)---(z+7 — 1).

Since (—1)/*! f(z) is monic, suffices to show that 0,—1,---,—(j — 1) are

roots of f(z). Notice,for0<1 <5 -1,

_f(;) =1+I: (_uls)v(f—i)(j—i—1)~--(J'—i—V+1)
= :2;:;(—1)" (j ; i) =(1-1)y" =0

In particular, (—1)*'f(k) = k(k+1)---(k+7 - 1).

Replacing in (27), we obtain

k+1)---(k+j5-1) (—1)/+
ik + ) Wk + 7)) (k= 1)

G4 = (“U‘Hlk(

This completes the proof. 8
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Using (14),(16) and (18), we can now calculate R;(k). The first four

values of R;(k) are:

Ryk) =1

Rfk) =

Bs(k) = 3% f’f)j(z +2)

B(k) = 5 fﬁ;s?ksikzﬂf 2+ 3)

For example, we obtain

M 2 ,
Bi(M,2) ==+ +0(M}) (28)

L /4\ .1 6F_/5\ ... 21 w

With M = 365, (28) yields B,(365,2) = 24.611, whereas the right an-
swer obtained by exact integration is 24.617 ([2],[5]). Similarly, (29) yields
B,(365,3) = 88.725 instead of the correct value 88.739 ([1]).

We give next asymptotic estimates for B,(M, k) when r > 2.

3.4. Theorem

Forr2>1,

B,1(M, k) = B,(M,k) + A; (Af) if,-(k)l' (1 + J;)

=1

(k)EM-E+0 (M) (30)
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and

B.41(M, k) ~ B,(M, k) + (k!) (H(’ k“)r(u%)MP% (31)

=1

Proof: We need an asymptotic estimate for the integral in (1) when r > 1.

Let us write

P / ~Mz(g, (Z)|Mrzh dr = /0 g(z)MM @) gz (32)

where ¢(z) = (_—S:’%)r and hx(z) = —z + log Si(z).
We satisfy the conditions of theorem 3.1. Applying it to (32) and replac-
ing in (1), we obtain (30). If we approximate the sum in (30) by its first

term, since limas_.oo A%(Af) =5, weget (31).

Using (17) and (31) repeatedly, we obtain

=0 =1

Bys1(M; k) ~ (ZH "“)(k!)%r(w%)w-% (33)

where [I2_, (=24t — g

When k = 2, (31) gives the aesthetic formula

1.3.5---(2r —
24.6---(2r)

B,4a(M,2) ~ B,(M,2) + Up,m2 (34

Estimate (33) gives a good idea of the size of B,,,(M, k), but has to be
handled with care since the error also tends to infinity in general. In order

to obtain a more precise estimate, we need to use (30). For example,
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(M-1)(M=2)---(M-r+1)
Mr

(1_32;..4.‘(.2; 1) \/x_é\? et 2) +o(M3) ()

Br+1(M, 2) = B,(M, 2) +

and

B [0 = B B S = MR BD e P 1)
11.4.7-“(37'—-2) 4 3 15.8”-(37'-—1)
[63 369 (3r) © <§)Ma 369 (3r)

—pd 2 5 1 572 — 33r 4 42 1
( 4 )F<E)M * 80 ]+O(M :)(30)

When r = 1, (34) gives B,(M,2) ~ $B;(M,2). Surprisingly, we have

in fact that B,(M,2) = 3By(M,2) for all values of M. We conclude this

chapter by proving this result.

3.56. Theorem

BZ(M,2)=SBI(M,2) for all M1 (37)

Proof: From (5) we have

B;(M,2) = B;(M,2) + —A2£ fooo eM2(1 4 )M 122 dz (38)

Let I = [{° e”™M*(1 + z)M~1z2dz. I can be written as

I == —210 + Il + I_1 (39)
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where

I = /w e™M(1+z)Mdz
0
£ = /°° e™M2(1 4 )M+ 4z
0
Ly= / e M (1 + )M dz
0

Integrating by parts,

1 M+1
Ix—H-i- o I, (40)
and
el 41
T M o

Replacing (40) and (41) in (39), we obtain

I
I= M (42)
g8u (38) becomes
B;(M,2) = B;(M,2) + A2—'I /Ow e™™M* (14 z)Mdz (43)

Since M [ eM=(1 + z)M dz = B,(M, 2) by (5), (43) yields (37).

For instance, B,(365,2) = 3B;(365,2) = 36.93, i.e., we need to inter-
view around 37 people on the average in order to obtain either two double
birthdays or one triple birthday.

Theorem 3.5. is too good to be true in general. In fact, we would like to

have equality in (34), but that does not occur.
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In effect, consider B;(M, 2). From (5),

MM —1)

Ba(M, 2) = Bg(M, 2) + 8

/ e-—Mz(l o Z)M—ZI4 dx
0

Now, let I = [;° e~™M?(1 + z)M~2z4 dz.

Since z* = (z+1)* —4(z +1)* +6(z+ 1) —4(z + 1) + 1,

I= Ig —411 +6I0—4I_1 +I_2

where [; = [P e ™M (1 + z)MHidz, —-2<j<2.

Integrating by parts and using (40),

1 M+ 2 1 M+2 M+2)(M+1

Mt M "Tut e M?
Similarly, using (41),
1 M 2 M
e o |
n=—g gt~ w1 Tu=ih

Replacing (46), (47), (40) and (41) in (45), we obtain

2 + 3M -2
M (M—1) " M*M-1)

and replacing (48) in (44),

I= Io

1 3
B3(M, 2) = Bg(M, 2) == Z + gMIo e 2.[0

= By(M,2) + gBl(M, 2) — % Py

(44)

(45)

(46)

(47)

(48)

(49)

Clearly, as M — oo in (49), (34) holds, but we do not have equality. Life

is hard!
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CHAPTER II

AVERAGE LIFETIMES OF COMPUTER MEMORIES

1. Introduction

All modern computers have memories built from VLSI RAM chips. In-
dividually these devices are highly reliable; any single chip can be expected
to function for decades before failing. However, when many of these chips
are combined into a single large computer memory, the expected waiting
time until one of the component chips fails can be as small as a few hours.
For this reason, almost all large computer memories are protected by single-
error-correcting and double-error-detecting (SEC-DED) codes. Mathemati-
cally, these codes are just shortened d = 4 Hamming codes; the shortening
is usually done in a hardware-efficient manner devised by Hsiao ([5]). The
recent survey article by Chen and Hsiao ([4]) gives a very good cverview of
SEC-DED memory coding; but we shall summarize the important {catures
of the coding architecture here.

Normally the memory is organized into an M X n rectangular array of
chips (figure 1).

The first k chips in each row are information-carrying chips, while the
remaining r = n — k chips are parity-check chips. A typical example is a one
megabyte memory board used by the VAX 11/750, which consists of M = 4
rows of 64K RAM chips, each row containing & = 32 data chips and 7 parity

chips, corresponding to a (39,32)d = 4 SEC-DED code.

We assume that each chip is organized internally as an I X | square array
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Figure 1
of bits as shown in figure 2 (for standard 4164 n-MOS 64K RAM chips,

[ = 256). Each n-bit codeword consists of one bit from each of the n chips

in one row (figure 3).

j
l/\__/\__./\
([ ’!
Iz |
) ! |
P |
Figure 2

Figure 3: The (4, 7)th codeword in one row of chips

In the following discussion, a chip faslure will be taken to mean a situ-
ation in which one or more of the bits written on a chip cannot be reliably

recovered.

These failures are traditionally classified as either “hard” (meaning that
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the memory cells involved are permanently damaged, e.g., “stuck at” faults),
or “soft” (meaning that a given bit has been somehow complemented but that
the chip itself has suffered no structural damage). |
Observation of real memories ([6]) shows that the single most common
type of cell failure is a soft error affecting only one cell in one chip. These
errors are caused by stray alpha-particles which can, under the right circum-
stances, change a logical “1” to a logical “0” without damaging the chip.
However, several kinds of hard failures are observed to occur. A stngle-cell
faslure, which, as we have seen, can occur as a soft error, can also occur as
a hard error. There are also several kinds or hard chip failures which cause
bursts of errors in a chip. A row- faslure occurs when all { cells in one row fail
(this can be caused by a failure of one of the chip’s row drivers). A column-
faslure occurs when all { cells in one column fail (this can be caused by a
failure of one of the chip’s column amplifiers). A short-circuit at a memory
cell can cause a row-column fatlure, in which all the cells in either the same
row or the same column as the affected cell fail. All four of these errors are

illustrated in figure 4.

i
| |

| |
| i
‘; t

sing?e-ceﬂ row failure column failure row-column
failure failure

a

| -
|
L

D

Figure 4

Also, a catastrophic chip-faslure may occur, in which all cells in a chip
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fail. This kind of failure, being very unusual, will be ignored in this work.

Of course the organization of the SEC-DED éode guarantees that no
failure, however catastrophic, which is confined to a single chip can cause
two errors in any codeword, and so the code will correct any single chip
failure. In fact, there are many combinations of chip failures that can be
corrected by the code. Eventually, however, it is to be expected that enough
chip failures will have occurred so that some codeword will have suffered two
errors, at which point we have a memory faslure. It is our object in this
chapter to give accurate and easily evaluated estimates for the mean time
between (memory) failures (MTBF) for memories protected by SEC-DED
coding. In the next section we will present a model for the occurrences of
the various types of chip failure, and use it to derive an estimate, based on
the Poisson approximation, of the MTBF. In section 3, we shall give a simple
asymptotic approximation to MTBF, when the number M of rows is large
(e.g., which is the case in the CRAY-1 computer). In section 4, we shall
give several numerical examples, using data typical for real chips. There we
shall show that for one representative set of data, soft error “scrubbing,” a
technique which can be used to periodically purge the memory of soft errors,
can increase the MTBF in a SEC-DED protected memory by as much as 40%.
In the next two sections, we discuss two methods to extend the lifetime of a
computer memory. The first method, to be discussed in section 5, consists
of adding s additional rows of spare chips. Each time a chip fails, it is
replaced by a spare chip. We give an estimate of the increment in MTBF.

In section 6 we estimate MTBF when 2-ECC is implemented, that is, a
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doubly-error- correcting triply-error-detecting (DEC-TED) code. Although
a hardware implementation of the methods in sections 5 and 6 is possible, we
are not aware of any application for commercial use. We close the chapter

by comparing the two methods.

2. Models. Formula for MTBF

The relsabslsty of a given chip (probability of no failure of any kind after
t hours) is given by e™*, where A is a constant found experimentally ([6]).
We have to distinguish between the four types of errors in figure 4, and so
for future reference, we use the following notation:

A: row failure

B: column failure

C: single-cell failure

D: row-column failure

Let a, b, ¢, d be the relative frequencies of these four events. We assume
that in a given chip, these four events occur independently, and that failures |
in one chip are independent from failures in all other chips. Thus, for exam-
ple, the probability that after ¢ hours a given row in chip has not yet failed is
e~2¢*/!, The key to finding the MTBF is the calculation of the row reliabslity
function R(t), which is defined as follows:

R(t) = Pr{an uncorrectable pattern of chip failures has
not occurred in row ¢ at time t}
Since rows fail independently, the reliability of the entire array of M rows

is R(t)™, and so
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MTBF = /0 ® (—%(R(t))M) dt = /;o(R(t))M dt (1)

All of our results are based on equation (1).
Consider now a row of chips protected by SEC-DED coding. An uncor-

rectable failure will not occur in each of the following events:

I. Only row or single cell failures occur such that there is no more than one
failure in a codeword.
II. The same thing applies to column and single-cell failures.
III. Exactly one row-column failure and corresponding single-cell failures oc-

Cur.

Notice that a row and a column failure will make the whole system fail.
Some thought shows that the system will survive only under events I, II and
II. Let us call Ry(t), R;(t), Rs(t) the probabilities of events I, IT and III,
respectively.

In order to find R, (t), we focus on a single row, say row ¢. The probability
that no two cells (1, 7) will fail, if we assume only events A or C are occurring,

is then, assuming the Poisson approximation,

l
e—aAnt/I [e—ca\n!/l’ (1 + _lt_:z_/\nt>] + e‘C'\"‘/l (e""’\"‘/l %,\nt) (*)

But we have [ rows, each one failing independently, so we must take
expression (*) to the power ! and multiply this power by e~ (4927 the prob-
ability that neither column nor row-column errors occur. Notice that we are

assuming that each row fails according to a Poisson process, i.e., the prob-
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(Ant) —Ant

ability of exactly ; failures in any row is “5~¢~*"'. This approximation is

very good for typical values of n (see [3]). After some easy manipulations,

Ri(t) = e [(1 + lzz\nt>l + —;Ant]l (2)

Similarly, we get

I
Ry(t) = e~ [(1 + 7 Ant) -+ ?,\nt] (3)
In order to find R;(t), observe that when a row-column failure occurs,

single-cell failures may occur in the corresponding (! — 1)? cells left, thus,

(i-1)
R3(t) — e—(d+5)a\nl [(C—dkn-t d,\nt)e—-u\nf (1 4 (1 _Cl) /\nt) ]

or,

R3(t) = C_Ant

(-1)?
¢
Ant
(1 + =) n ) d/\nt] (4)
Putting (2), (3) and (4) together, we get the intimidating expression

{ l
—-An a b ¢
R(t) = e '{ [( +12/\nt> +7Ant] + [<1+12Ant) +7Ant] 4

c (l—l)’ ¢ 3
+ (1 + (=17 )\nt) dint — (1 + I—zAnt) } (5)

The last term kas to be substracted since events I and II are not disjoint,
event C lies in the intersection.

Before proceeding further, we can see that formula (5) generalizes pre-
viously known results. If we take ¢ = 0 as in [3], example 3, we get (now

a+b+d=1)
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| I
R(t) = e (1 + ;-/\nt) + (1 + ;z\nt) + dAnt — 1] (6)
Making | — oo,
R(t) = e7 2 (e®*™ 4 P 1 dant — 1) (7)

which is exactly the formula obtained in [3], example 3. (7) is a good ap-
proximation of (6), since ! is in general a large number.
Finally, replacing (5) in (1) and making the change of variable Ant = z,

we obtain

MTBF—i/‘”e-M’ (1+iaa)'+E o (1+° )'+b l
N o 2 1z 2% TrE T
c (1-1)2 . p\M

Although the integral in (8) is somewhat complicated, if M is small it
can be easily evaluated using numerical methods. On the other hand, if M

is large, we can use asymptotic methods to estimate it.

3. The case of large M. Asymptotic approximations.
Let

9(z) = [(1+%z)l+%x]l+ [<1+%z>l+?x]'+

p (I-1)2 & 13
+d(1+(—1_—1)22) I—(1+I—22)

and h(z) = —z + log g(z), then (8) can be written as
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=1 [® )
MTBF =+ fo M) g 9)

We are interested in finding the coding gain (CG) with respect to the
unprotected memory. As the MT BF of the unprotected memory is 1/ kM,

dividing the expression in (9) by this value, we obtain

CG = SM / = Mha) g (10)
0

In many applications, M is very large. From now on, we shall assume
that. We have to estimate the integral [;° %) dz. Applying theorem 3.1.
of chapter I, and approximating by the first term, since k(0) = 0, A'(0) =0
and A"(0) < 0, then |

L

/0°°th(=) dz ~ (EM(——Wh(ﬁ)_)) (M = o) (11)

Hence, from (10),

k ™™ :

Finding A"(0) is arduous although straightforward. Doing the evaluation

and some algebraic manipulations, we get h(0) = 0, A'(0) = 0 and

2 b2 2b 2
R'(0) = —(d? + 2ab + 2ad + 2bd) — * +12“°+ -5 m)

Notice, A"(0) < 0 as required. Replacing in (12), we get
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1

k ™ ?
C8 =~ = (2( ) (14)

n \2(d? + 2ab + 2ad + 2bd 4 EiH20ctbe 4 )

If we make | — 00, an approximation is

k ™ :
G~ (2(d2+2ab+2ad+2bd) (15)

Assume only events A, B and D occur, then c =0 anda+b+d = 1.

Hence, (15) becomes

cG~ g (2(1 —Wg— b'*’))% (16)

This is exactly formula (15) in [3].

4. Numerical examples

In this section, we shall provz one of the assertions made at the beginning,
that is, that “scrubbing” soft errors is useful when ECC is present.

Let us assume that a = b and d = 0. This is not totally unrealistic since
in general d is significantly smaller than a, b and ¢ (see [6]).

Denote by (MTBF'), the mean time between failure if only row and
column errors are taken into account, (MT BF )¢ if only single-cell errors are

cG

considered. As in general MTBF = y337, using (14) with 2a) instead of A,

a? = =3, c=d=0, we get

1 r | )’
T B s = 2ain (XI— l+1) LET)

Similarly, taking e = b = d = 0 in (14), we obtain
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(MTBF); ~ ;% (;H) (18)

Taking the ratio,

(MTBF), c( ! )% (19)

(MTBF): ~ al \2(l + 1)
Referring to example 4 in (3], we have, 2a = .01, ¢ = .99, [ = 256. Thus,

replacing these values in (19),

(MTBF),
(MTBF);

.5

That is, row and column failures, although a lot less frequent than single
cell failures, are roughly respoxisible twice as often for failures of the whole
gystem in typical cases (observe that in example 4 of (3], M = 4 while here
M is a big number).

However, we are interested in MT BF, the formula combining all kinds

of errors (recall that we are assuming a = b, d =0, 2a + ¢ = 1). Using (14)

and MTBF = ££, we get

=

MTBF ~ - ( =4 ) (20)

An \ 2M[2a?? + (2a% + 4ac)l + ¢?
As (MTBF), is smaller than (MTBF)c in general, it is a better ap-

proximation for MT BF. But how good an approximation? Taking the ratio,

MTBF [1+M+< c )2]“% (l_+_1) (21)

(MTBF), (2a)21 2al I
Keeping the other variables fixed,
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lim I 1
i~ (MTBF),
That is, if | is a very large number, the approximation is good. As a

check, observe that

lim ot Pr 0 and lm el DE
a—0 (MTBF), o1 (MTBF),

as expected.
In our example, replacing 2a = .01, | = 256 and ¢ = .99 in (21), we

obtain

MTBF
(MTBF),

.6

Hence the actual MTBF is roughly 40% smaller than the one obtained
ignoring single-cell errors. As most single-cell errors are soft errors (see
[6]), techniques like scrubbing soft errors, combined with ECC, are useful in

extending the lifetime of the system. The degree of usefulness is given by

formula (21).

5. Error protection when s rows of spare chips are added

As usual, our memory is an M X n array of chips, the first k columns are
information chips, but at the bottom s rows of spare chips are added (see
figure 5).

The spare chips act as follows: each time a chip fails, a connection to a

spare chip in the corresponding column is made. In practice, this means that
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Figure 6: A computer memory with s rows of spare chips
the chip is replaced by one of the s spare chips in the corresponding column.
Hence, s failures per column are tolerated before the code starts acting.

From (1) and the fact that the mean time between failure of the unpro-

tected memory is 1/AMk, we have

CG = AMk /0 “(RE)M dt (22)

Denote by (MTBF), the mean time between failure of a memory with
error-coding-correction when s spare rows of chips are added. (MTBF),
denotes the usual case. Similarly, N, is the number of failures that will make

the whole memory fail and (CG), is the coding gain with respect to the
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unprotected M X k memory. (CG), is given by equation (22) and was found
in the previous sections when an SEC-DED code is implemented. We shall
give upper and lower bounds on (MTBF), and (CQG),.

If we assume that spare chips do not fail when they are disconnected, by

Wald’s identity, we obtain

(MTBF), = ﬁ E(N,) (23)

Since the best case occurs when all spare chips are used, and the worst
case when a memory failure occurs when the first two nonreplaceable chips

fail, we have

E(Ny) + Bz(n,s + 1) < E(N,) < E(N,) + ns (24)

For a definition of B,(n,s + 1), see chapter I, definition 2.1. Using (23),

we have

B;(n,s + 1)
AnM

8

(MTBF), + i

< (MTBF), < (MTBF), + (25)

Multiplying by AkM, we obtain the following bounds for the coding gain:

&

E B0)+ £ Byn, 1) < (06 < £ BN + ks (26)

n

Since £ E(N,) = (CG)o, (26) becomes

(CG)o+ & By(n,s+1) < (CG), < (CC)o+ ks (27)
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We shall further discuss these bounds in section 7.

6. Doubly error protection

In section 2, we found the reliability R(t) of a row of chips when a SEC-
DED is implemented (equation (5)). This expression considers the general
case in which events A, B, C and D occur.

Call RO (t) the reliability of a row of chips when a DEC-TED code is
implemented. R(t) has a complicated expression but R(?)(¢) is even worse,
since many patterns causing a triple error have to be considered. So, we
shall assume that only events A and B occur, ie, c=d=0,a+b=1. If
most single-cell failures are soft errors and “scrubbing” is implemented, this
is not an unrealistic assumptioﬁ.

Denote by (MTBF')', (CG)' and n' the mean time between failure, coding
gain and number of chips per row, respectively, for the memory with a DEC-
TED code. An accurate model for the number of failures per row is a Poisson
process of rate An', as it was done in section 2.

A failure of the whole memory will occur if and only if in any row of -

chips one of the following four events occurs:

(i) Two A-failures in position 4 and a B-failure in position j, for some 1, 7,
1<i,5 <.
(ii) Two B-failures in position ¢ and an A-failure in position j for some 1, j.
(iii) Three A-failures in some position 3.

(iv) Three B-failures in some position 3.

However, we shall assume that two A-failures in some position % or two B-
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failures in some position j are enough to make the whole memory fail. The
value of (MTBF')' found under these assumptions is very slightly smaller
than the real one when a and b are close, as is the case in general.

Fix a position ¢ for an A-failure. Then, the number of A-failures in
this position ¢ is a Poisson process of rate aAn'/l, and as, at most, one
failure is tolerated per position 1, the reliability with respect to A-failures
is [exp(—aAn't/1)(1 + aAn't/l)]'. Similarly for B-failures and, since events A

and B are independent, we obtain

R(2) (t) = e-)m'l

{
An't An't)?
1+—?—+ab(’;)] (28)

By (1) and an adequate change of variables,

(MTBF) = :\-’n— [T M1 4 5+ aba?)M d (29)

Applying asymptotics (theorem 3.1., chapter I), as Ml — oo, we obtain

1 ml 3
MTBEFY wo — e e
( ) An'! (2M(1 - 2ab)) )
and hence
k( M1\
GY v e | e 3
(&) n' (2(1—206)) )
If a =b=1 as in most cases,
€y ~ E (e (32)

n'
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Notice that the asymptotic estimates (11), (12) and (13) are valid even
for small M, since the estimates are made on M which in general is a number
large enough.
Now, what is the increment in coding gain with respect to the memory

with SEC-DED? Using (16) and taking the quotient, we get (as M — o0)

(CGY n( 2ab 3
CG ~ n' \1-2ab vi (35)
If a = b=}, this becomes |
(CGY n
- Vi (34)

Example: | = 256, k = 32, n = 39, n' = 45, M a large number and only
failures of type A or B occur with the same frequency. Then, the increment
in coding gain when DEC-TED is implemented with respect to the memory
with SEC-DED, applying (34), is roughly 14.

7. Comparison between the two methods

In this section, we shall give a discussion of the methods described in
sections 5 and 6 to increase the lifetime of a computer memory. Of course,
we cannot give a conclusive answer about which method is better, since the
manufacturer must take into account hardware considerations.

Assume, as usual, that soft errors are “scrubbed,” a = b= 7, and M is

1
2
a sufficiently large number such that we can use asymptotics.

Suppose we implement a DEC-TED code. How many spare rows do we

need to add such that (CG), > (CG)' ?
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From (27), in particular, if

(CG)o+ & By(n,s +1) 2 (CG) (35)

then (CG), > (CG)'.
Replacing (34) in (35), we have,

(CC)+ % Byfm,s+1) 2 2 VI (GG),

nl
or,

n

(2vi-1)(0G) < £ By(n,s +1) (36)

nl

By (16), (CG)o ~ £\/mVM, so (36) becomes, as M is large enough,

(.’l\fl_1>\/}\/ﬂng(n,s+1) (37)

nl
Using our typical example with k = 32, n = 39, n' = 45, and [ = 256, we

obtain

(22.8) VM < B,(39,s + 1) (38)

Using equation (38) and fixing M (big enough so that the asymptotic
approximation. of (CG), makes sense), we can find the minimum s that
verifies the inequality. Let us call s(M) this minimum s. If we add s(M)
spare rows, we are adding 39 s(M) chips, while if we implement a DEC-TED
code, we have to add 6M chips. If 39 s(M) < 6M, or , s(M) < Z M, we

conclude that adding spare rows is better than implementing a DEC-TED
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code. The matter will be settled if we find B;(39, s + 1) for various values of
&.

From formula (5) of chapter I, we have

o ¢ 5\ 39
B,(39,5+1) = 39/ gl (Z %) dz+
0

=0 "°

!
i=0 **

Performing numerical integration in (39), we obtain the following table

for By(39, s + 1):

8 B,(39,s+ 1)
1 12.8
2 29.0
3 48.3
4 69.6
5 92.4
6 116.3
i 141.2
8 166.8
9 193.1
10 219.9
11 247.2
12 275.0
13 303.1
14 331.6
15 360.4
16 389.5
17 418.9
18 448.5
19 478.4
20 508.4
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Using these values, we obtain s(M) for several values of M, and then we

can compare s(M) with ZM, as shown in the following table:

M | (228)VM | (M) | IM
50 161.2 8 T3

60 176.6 9 9.2

80 203.9 10 12.8
100 228 11 15.4
150 279.2 13 23.1
200 322.4 14 30.8
400 456 19 61.5

The table shows that s(M) is a function that grows very slowly. For M
around 50, the result is inconclusive, but for M > 60, clearly s(M) < 1%M 3

showing that sparing is better than implementing 2-ECC.
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CHAPTER III
A CLASS OF BURST-ERROR CORRECTING CODES

1. Introduction

Figure 1 shows a simple array-code in which the last row and the last

column are parity-check bits.
!
o
!
I

!
I

fa:

kj column checks
checks

Figure 1: Two-dimensional code with single parity checks

This code has block length (k; +1)(k; +1) and rate k ko /(k; + 1)(k2 +1).
It is well known that it can correct a single random error.

It was recently shown that burst-error correction is possible if the digits
are read diagonally ([1], (2], [3])-

An efficient way of diagonally reading the array is shown in figure 2.

Let us call b the burst-error correcting capability of the code. It has been
conjectured ([1]) that, if k; > 2(k; —1), then b = k; (i.e., the code can correct
any burst of length smaller or equal than k).

Our goal in this chapter is precisely proving this conjecture.

There exist efficient encoding and decoding algorithms for the code ([1],
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0|17 |14 11 |p,
4|1|18/15|p, Kk =3
852|109, k=4
12/ 9| 6| 3 |,
16 13|10 | 7 |h,

Yo Vi3 YUy Vs

16, 13, 10, 11, 15, 19, 3, 7: checks
read-out order: 0 -1 -2 —-3— .- — 19

Figure 2: (20,12) b =3 array-code

[2]). These algorithms are based on the calculation of the horizontal and
vertical syndromes.

The horizontal syndrome is represented by a vector (hg, hy, - - - hg,), where
h; is the sum of the received bits in row 4. Similarly, the vertical syndrome
is represented by vector (vg,v;,- - ¥, ), where v; is the sum of the received
bits in column j.

We shall prove that, when the right conditions on k; and k, are met,
then for each burst of length smaller or equal than k; corresponds a unique

syndrome (vertical and horizontal).

2. Basic properties of the code
We need a precise mathematical description for the diagonal read-out.
Consider a codeword (a;;)o<i<k,. The read-out starts at entry (0,0). The
0<j<k,

set of pairs of indices (¢,7) , 0 <1 < k; , 0 < 7 < k;, will be considered

as labels of vertices in a directed graph, where 1 is taken modulo (k; + 1).
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Every vertex has exactly one outgoing arrow, defined by the following law:

(7)) = (GE+1L,7+1) if j<k
(1)

(4,k1) = (1 — k1 + 1,0
The diagonal read-out of the entries a,; starts at ay and proceeds with
the next entries in a directed path defined by law (1). For this read-out to
make sense, we need the directed graph to be a directed cycle. Let us prove

this result.

2.1. Lemmaea

The directed graph defined by (1) is a directed cycle.

Proof: Consider the set of integers modulo (k; + 1)(k,+ 1). Of course, they
can be considered as the vertices of a directed cycle under the law | — [ +1.
It is routinely verified that the following assigmment f, from our directed-

graph to the integers modulo (k; + 1)(k, + 1), is a graph isomorphism:

fG)=0-k+1)+7 (2) .

The lemma is proved. 5

The diagonal read-out (1) and assignment (2) are illustrated in figure 3,
with k;, = 4 and k; = 6.

The directed cycle interpretation of the read-out allows us to associate
with a burst of length b, a directed path of length (i.e., number of edges)
b — 1, where the first and last bits of the burst correspond, respectively, to

the first and last vertices of the path.
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(0,0) | (0,1) | (0,2) | (0,3) | (0,4) 0 | 31 | 27 | 23 |19
(1,0) | (1,1) | (1,2) | (1,3) | (1,4) 5 | 1 | 32 | 28 | 24
(2,0) | (2,1) | (2,2) | (2,3) | (2,4) 10 6 | 2 |3 | 29
(3,0) | (3,1) | (3,2) | (3,3) | (3,4) 15 | 11 | 7 | 3 | 34
(4,0) | (4,1) | (4,2) | (4,3) | (4,4) 20 | 16 | 12 | 8 | 4
(5,0) | (5,1) | (5,2) | (5,3) | (5,4) 25 | 21 | 17 | 13 | 9
(6,0) | (6,1) | (6,2) | (6,3) | (6,4) 30 | 26 | 22 | 18 | 14

Figure 3: The (35,24), b = 4 code _
We also have a distance between two vertices (i.e., length of the shortest

path connecting them). From (2),

d((51,71)s (32, 72)) = min { f (31, 51) = f(32,52) , =[f (31, 71) — fi2,52)]}  (B)

Of course, equation (3) is taken modulo (k; + 1)(k; + 1).
Further properties are then easy to obtain. The next lemma is immediate

using assignment (2).
2.2. Lemma

fE+1,7) =700+ ki+1 (4)

fGi+)=f(G75)-k , 0<5<k ()
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Equation (4) tells us that there is a path of length k; + 1 from vertex
(3,7) to vertex (i + 1,7) (see figure 3). Asindex 1 is taken modulo (k; + 1),
this means, we have a cyclic structure on the rows of the array.
Equation (5) shows that there are bursts of length k; + 1 that are un-
correctable. In effect, the burst with 1’s in entries (1,5) and (3,7 + 1), 0 in
all the other entries, has the same syndrome that a burst with 1’s in entries

(1,7) and (I,7 + 1), O in all other entries, where 1 # [.

From now on, let k; > k;. Consider a path

(i)j)—’(i'*'l)j"'l)_'({'*'27.7."}'2)_’"'

Whenever 7 +t < k;, the path visits then the next row. However, when

i+t =k, from (1), we have

(£+ts.7.+t)=(i+k1_j)kl) _'(i_'j+110)

and we shall say that rows

t+k—7+1, s+k—3542, ---,1—7 mod(k,+1)

are skipped by the path.

2.3 Lemma
Consider a path of length at most ky — 1 in the cycle defined by (1), with
ko > ky. Then any row and column are visited at most once by the path. If

a row 13 skipped, then st usll not be vissted at all.
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Proof: In each step we move cyclically to the right. Hence, a path of length
at most k; — 1 will visit at most k; different columns. Since there are exactly
ki + 1 columns, no column can be visited more than once.

Consider now rows. Without loss, assume the path has length b = k; — 1.
Let (¢,7) be the initial vertex. Given the cyclic structure on rows, also
without loss, we may take 1 = 0.

Assume j = Oor 7 = 1. After k;—1 steps, the final vertex is (k; —1,k;—1)
or (k; — 1,k;). Since k; < k,, the path visits exactly k; consecutive rows.

Assume j > 2. The path is (using (1))

(03.7.)*(1sj+1)_’°"_’(k1_j+2’0)—*"'_'(k2).7"—2)

Since k; < k,, no row is visited more than once. Rows

kl—'j+lykl—j+21"' 1k2_.7'+1

are skipped and the path never visits them. 8

We can now prove our main result relating the burst-error capability of

the code with conditions on k; and k,. We shall do that in the next section.

3. The Main Result

3.1. Theorem
The code defined by the diagonal read-out (1) can correct any burst of
length at most k, sf and only if
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ky > 2(ky — 1) (6)

Proof: k; =1 is a trivial case, so we are going to assume k; > 2.

=>) Assume the burst of length k; whose associated path is

(0,0) = (1,1) = --- — (k; — 1,k; — 1)

occurs, where entries (0,0) and (k; — 1, k; — 1) correspond to 1’s and the rest

of the entries are 0’s (figure 4).

01 ... kb—1 Kk

L | R 0 0
1 04 ... 0 0
ki—1|90 1 0
kt (00 0
k, |00 . 0 0

Figure 4

There is exactly one other vector having the same syndrome: the vector

with 1’s in entries (0, k; — 1) and (k; — 1,0), O elsewhere. Since the code can

correct any burst of length k;,

d((0, ks — 1), (ky —1,0)) > ki (7)

From (3), in particular,
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f(oykl"l)—f(kl_l)o)Zkl (8)

Applying (2) and taking into account that inequality (8) is taken modulo
(ky +1)(k2 + 1) , we have

=2k +ky+ 1+ (ki + 1) (ko +1) > kg (9)

After some easy manipulations, (9) becomes

ki

kzZZ(kx-l)-k 1
1

(10)

Since all the involved numbers are integers, (6) follows from (10).

<) Assume a burst @ of length b < k; occurs. We shall show that no other
burst of length smaller or equal than k; has the same syndrome. Distiﬁgﬁish'
two cases:
(i) The path of length b — 1 associated with the burst does not skip rows.
(if) The path associated with the burst does skip rows.

Assume there is another burst & of length at most k; with the same
syndrome that @ and @ # b. By considering cases (i) and (ii) separately, we

ghall show that each leads to a contradiction.

Case (i)
The path of length b — 1 associated with the burst has the form

() = +Li+ )= s (+E-1,7+0-1)



.

where 7 + b — 1 < k;. Without loss, 1+ = 0. Thus, the burst is a vector

@=(0,--,0,80,4,G1,j+1y "y Bb-1+b=15"**,0, -+, 0)
where ag; = ap—; j+5-1 = 1. The case is illustrated in figure 5.

k

01 joj+1 j+b-1 1
0 P —— )
1 g gezrmeeery
b-1 & bme-e-malf
b
Ry
Ky

Figure 6: Case (i): The path (black points) does not skip rows

Let

B=(0-"0,ba,j18) batrjtprns )
such that b, ;45 = 1 and (a, 7 + ) is the initial vertex in the associated path.
As we are assuming that @ and b have the same syndrome and @ # b, the
following conditions hold:
0Lagb-1, 0<B<b-1 , (a,p)#(0,0)

(11)
byy=0 for s>b—-1 , 0<t<j or j+b<t<k
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Consider the path associated with g, say,

(7 +B)— (@+L,i+B+1)— -
This path has length at most k; — 1.
There are three possibilities for a and £, each one leading to contradic-

tion.

(a) @ = B: Assume j = 0, then (0,0) is the initial vertex in the path
associated with @ and (a, ) is the initial vertex in the path associated with
b. Since (0,0) # (a,a), @ > 1. Then the path associated with 3 has the

form

(a,a)—»(a+1,a+1)_+...—+(k1,k1)—>(1,0)_....

Notice that row 0 is skipped, then, by lemma 3.3., it will never be visited.

Hence, by, = O for all ¢, but agy = 1, thus, @ and b cannot have the same

gsyndrome.

Let 7 > 0, then, the path is

(qya+j) = (a+la+j+1)— - — (ky— 5, k) —

— (k=7 +2,0)— - — (0,7 - 1)

Since ag; = 1 and @ and b have the same syndrome, then by ;_; = 1. But

this contradicts (11).

(b) a > B: The path associated with b is
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(@f+i)=(a+lj+p+1) = - =(a=f+b-17+b-1) -

Notice that b—1 < a—-F+b-1<2(b—1) < 2(k; — 1) < k; , by (6).

Since a4—y j+4-1 = 1, then by_pgis—146—1 = 1, but this contradicts (11).

(¢) a < f: Distinguish two cases:

f—a<k—(j+b—1) and f—a>k —-(j+b-1).

Assume B —a < k; — (j + b —1). The path is then

(a,ﬁ+j)—>(a+1,ﬂ+j+1)—v---—»(afﬁ+b—1,]'+b—1)—>

—*(a—ﬁ+b;1'+b)_’"'—’(b_l)].+b—1+ﬂ—a)_'"'

Our conditions imply 7+b—1 < j+b—1+8—a < k;. Since ay_y j44-1 = 1
then by—1 ;4+6-1+8-o = 1. But this contradicts (11).

So, assume 8 — a > k; — (§ + b — 1). Therefore, the path is

(f+j)—(at+tl,f+5+1) > = (a=f+b-1,j+b-1)—

— (a=f+b,j+b) == (a—=B+ki—j k1) = (ko+a—B—37+2,0) — - -

Our condition implies a—f +k; —j < b—1. Observe that j +f—a < k;.
Thus, from (6),
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k2>2ki—1)>2(b—-1)+(ki=1)>(b—1)+ (k; — 2)
>(b-1)+(+6-a-2) |
go,k+a—-F—7+2>b-1.
This means, row b — 1 is skipped by the path. This is a contradiction,
since @j—yj44-1 = 1.
From (a), (b) and (c), the result is true for bursts whose associated path

does not skip rows.

Case (ii)

Now the path associated with @ has the form

(i’j)_’(i""laj'*‘l)—’"'_’(i'{:kl_jskl)—"

—»(—-7+1L,0) > - o (E—7+t+1,t)

where 7 — ¢t > 2. Without loss, 1 — 5 + 1 = 0 (see figure 6).
So,

a= (0)"',O)Gj—l,j;""a‘l,hoy"',0)

where a;_; ; = a;y = 1 ; the associated path has endpoints (5 —1, 5) and (¢,¢)
and rows ky,k; + 1,--- k, are skipped.
Let (o, ) be the initial point of the path associated with b. Since @ and

b have the same syndrome, the following conditions hold:
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. k
0 t J !
0leo O o o
oe O o ©
tloo e o 0
; o ©
3'18 s Se o
1
Ko
. Figure 6:

The path with endpoints (7 — 1,7) and (¢, ¢) skips rows ky, k; + 1,--- k;

0<a<t or j—1<a<k -1 )
0<pB<t or j<PB<Lk
(a’ﬁ)sé(]‘—lyj) ’ ba,ﬂzl

byy =0 for t<u<jyj—1 , kk<u<k, or t<v<j)

As in case (i), we distinguish three subcases:
(a) B = a+ 1: Assume first 0 < a < t. Then the path associated with b is

(gya+1) > (a+la+2)— - = (t,t+1)— -

Since a;y = 1, then b; 44y = 1, but this contradicts (12).

So, assume «a > j. Then, the path is
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(qya+1) = (a+1,a+2) = = (k= 1,k) —

— [0,0) — (1,1) — voo 3 {J = 1,5 = 1} % oo
Since a;_;; =1, then b;_, ;_; =1, again contradicting (12).

(b) B < a+ 1: Since aj_;; = 1, the path associated with b visits column j

at a point ({,7) , iy =1landl=a—-fF+jorl=a-F+5+1.
From (6), s +1 <1 < k,. If | > k;, we would contradict (12), hence

J<I<k - L

Define a finite subset T of nonnegative integers as follows:

T={i: I+il-7+1) <k and biip=jtn) (-1 0-j+1)+1 = 1}

Since by; =1 . 0€ T , hence, T is not empty.

Let g = max T, then, as in particular, 10 € T,

bl+i0(l—j+1),l+(io—1)(l—j+1)+1 =1L

Since @ and b have the same syndrome,

Blyio(I-j+1) o (I-j+1)+1 = 1,

and by the same token,

bit(io+1) (1= +1) J+io(-j+1)+1 = 1
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By the maximality of io , | + (io + 1)(I = j + 1) > ku.

Also, since I +4(I — 7+ 1) < k; — 1, then

I+ G+ D)(I-g+1)<k-14+(0-7+1)<2(k;—-1)<k,
by (6). Thus, (13) contradicts (12).

(¢) B > a+ 1: We claim, the path associated with b visits the rectangle of
entries (u,v) where 7 —1 < u < k;—1and 7 < v < k; (in figure 6, this
corresponds to the lower right rectangle). If § — 1 < « then the initial point

(a, B) is in the rectangle, so assume a < j — 1. Distinguish two cases:

f—a>k—j7j+1 and f—-a<k —-5+1.

If 8—a>k; —j+1 the path associated with b is

i ) =% [ 1y B e L) et o s [ e o By B}t = B B S B 0 5 5vs

Since f—a—2<k;—1and j—1<k; —1 then

B-a=2)+(G-1)<2(ki-1) <k,

by (6). Therefore, sincea—f+ ki <j—landa—-fB+k+2>7—1row
7 — 1 is skipped. This is a contradiction because a;_;; = 1.

B —a<k, —j+1 the pathis
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(a,ﬁ)—»(a+1,ﬂ+1)—+-'~-—*(j—1,,8—'a+j—1)—>---

and point (§ — 1,8 —a+ 7 —1) lies in the rectangle. So, the claim is true, and
without loss, we may assume that the initial point (a, £) lies in the rectangle,

ie.,

ba,ﬁ':l ) J'—lﬁaﬁkx—l 3 JSﬁSh

Define a finite subset W of nonnegative integers as follows:

W={i: B+if-—a-1)<k and bsii-1)s-a-1)-1,8+i(8-a-1) = 1}
Notice that W is nonempty since 0 € W. Let 1 = max W. In particu-

lar, bg(io—1)(8—a—1)-1,8+is(f—a—1) = 1. Since @ and b have the same syndrome,

then agio(s-a—1)-1,8+is(8-a-1) = 1.
If B+ (i + 1)(6 —a—1) < ki then bgiig(s-a—1)-1,8+(i0+1)(B-a-1) = 1
contradicting the maximality of ¢o. Therefore, f + (1o + 1)(8 — @ — 1) > k.

So, the path associated with b after vertex

(B+Go-DB-a-1)=1,p+ic(f - a—1))

is

oo (BB a1 =1, fi(f-a=1)) —
= (B+lo=1(B-a=1), f+i(f-a=1)+1) -

oo (a=—PB+ki, k)2 (a—-B+k+2,0)—> -
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As before, by (6),

a—B+k+2>k-12F+4(f-a—-1)-1,

and since k; < B + (o + 1)(8 — a — 1) we have,

a—ﬁ+k1<ﬂ+to(ﬁ—a——1)—l.

This means that row § + (8 — a — 1) — 1 is skipped by the path, a
contradiction since ag4iy(8-a—1)-1,8+is(8—a-1) = 1.
Subcases (a), (b) and (c) show that any burst @ of type (ii) has a unique

syndrome. This completes the proof.
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CHAPTER IV

A CLASS OF ERROR-CORRECTING CODES
FOR MAGNETIC TAPES

1. Introduction

Patel and Hong ([2],[4]) devised an error-correcting scheme that was suc-
cessfully used in the IBM 3420 series tape units with a recording density of
6250 bits per inch. This error-correcting scheme is capable of correcting any
error pattern on a single track or any error patterns on two tracks provided
that the erroneous tracks ¢+ and j are identified by some external pointers

(that is, two track erasures).

Here, we shall describe in detail a family of codes that can correct higher
numbers of track errors and erasures and contains previously known codes
as particular cases ([1],{4]). These codes are mazimum distance separable or
MDS ([3]).

An IBM 3420 series tape unit writes characters in parallel across 9 tracks
on a ;-inch tape as shown in figure 1.

Each character consists of 8 information bits and one overall parity-
check bit. The rows and the first 8 bits in each column will be considered as
elements of the Galois field of order 2% , GF(2%).

Although GF(2%) can be defined using any irreducible polynomial of
degree 8 over GF(2), Patel and Hong used ¢g(z) = 1+ z°* + z* + z° + 2°
which is the irreducible polynomial of degree 8 with minimum exponent.

This choice of g(z) simplifies the decoding (see [2]).
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Characters
A

boolbo1lboz|bo3|boa Pas|boslbo7
biglb11|b12|P13|b14[P15|P16[P17

Track No.

Bp [B1 (B2 |B3 | B4 |B5|Bg |B7 BO B.|B,|B

5
6

Overall  -|byq|b71|b72|b73|b74/b75/b76D77
8

)
)

parity
check qo| 91| 92/93[94]95/96 147
¥ N
— Sy
Code array Code array
Figure 1

The construction can be generalized to an (n+ 1) X n array. Consider an
(n+1)-track tape. Let GF(2") be defined by g(z) , aa irreducible polynomial
of degree n over GF(2). Denote by B; the first n bits in each column,
0<1<n-1,and by Z; each row, 0 < 7 < n. Z, is a parity-check row (also

denoted Q in literature). B; and Z; are considered as elements in GF(2").

The type of errors that occur are track-errors. In other words, since rows
are elements in GF(2") these are byte-errors. There are efficient byte-error-
correcting codes, like Reed-Solomon codes. However, they do not work well
for magnetic tapes, since the input and the output are read vertically. So,
we need a procedure that permutes the action of rows and columns. This

will be achieved by the family of codes B(n,m) to be described in the next
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section.

2. Constructior and basic properties of B(n,m)-codes

Consider an (n + 1) x n array (bi;) o<icn , bij € GF(2). Let GF(2")
0<sj<n-1
be defined by g(z), where g(z) is an irreducible polynomial of degree n over

GF(2). Let a be a root of g(z), a € GF(2"), i.e., g(a) = 0.

As stated in the introduction, we consider the rows and the first n bits

in each column as elements of GF(2"). Therefore,

n—1
Z.-=Zb.-ka" ’ OSiSn
k=0 ' (1)

n—1
Bij=) bja* , 0<j<n—-1
k=0

Let 0 < m < n—1. A B(n, m)-code is the set of vectors (Zy, 2;,- -, Zp—1)

gatisfying the following equations in GF(2"):

n—1 .
Y aZF =0 , 0<i<m-1 (2)

j=0

We see immediately that the m equations (2) define a linear code of
length n over GF(2"). We want to prove that the code is an MDS-code and

its minimum distance is m + 1. We need first a technical lemma.

2.1. Lemma

Let ag , a1 , -+, Q-1 be elements tn GF(2") and let
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R
o
L
R
»
R

: m-—1

3 5 2 2
Gy ajy az a1

4 4 4 4
D(ao; Ay 0y am-—-l) = det Qo a; a, (o St
gm=l 2m—1 sm—1 gm=1
&y aj 2 A1

Then
D(ao,al’-.»,am—l) = H (a” +a'2 +...+a‘.k)

{¢1,93, 9k} C{0,1,,\m—1}
t.e., D(ag,ay, -+ ,am—1) 83 the product of the sum of the elements of all
possible subsets of {ag, 1, ,am_1}.
Proof: Induction on m. If m = 0 the result is trivial. Assume it is true
for m > 1. Consider the polynomial f(z) = D(z, 01,02, -+, am—y) of degree

2™-1, Since our field has characteristic 2, all possible sums

oo bt (i} C (L2, m 1)

are roots of f(z). Since there are exactly 2™~! — 1 nonempty subsets of

{a1,02, - am—1} and O is also a root, f(z) admits a factorization

f(z):C:z: H (z+a‘1+ai2+"'+aik) (3)
{il1"21'"7‘.k}(_:{1,27"'vm—1}

. . -1 .
where C is the coefficient of 22", i.e.,

C= D(auaz, t )am—l)-

By induction,
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C= I1 (i, + ey + - + @)

{$1.93, 8k} C{1,2,ym~1}
80, replacing in (3) and making z = a, , the result follows. "

We can now prove our main result.

2.2. Theorem

A B(n,m)-code is @ linear (n,n — m,d = m + 1) code. In particular, st
ts an MDS-code.
Proof: Taking the 2'-th root in equation ¢ of (2), observe that the parity
check matrix of the code is given by ('\")%%,%:_11 where ()% = o. Thus,

the code will be MDS and will have dimension n — m if and only if any m

columns are linearly independeﬁt ([3], chapter 11), i.e.,

det ((A.-,-k)og.'gm_l) #0 for any 0<j<n<- " <Jn-1<n-—1
0<k<m-1

But

= fyom=a-i s otk "
M) = ()] = PTTT for any 0<i<m-1,
hence, it is equivalent to prove that D(a’,a’t,- -, a/™-1) # 0, where
a’° alt . alm-1
(a}O)z (a’l)z o (a’m-—l)2

D(e®, o, -, i) = det

(ajojzm" (ai.)'z"’" (aim_;)z"‘—'
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But the result follows from lemma 2.1., since D{a’, !, -, a'™-1) is a

product of polynomials in a of degree smaller than n. '

From B(n,m)-codes, we can obtain extended B(n,m)-codes denoted
B(n,m), by adding a parity check byte Z, = E;‘;OI Z;, where
(Zo, 21, yZ,—y) is in B(n,m).

A E(n, m)-code is still MDS. We prove this fact in the following theorem.

2.3. Theorem
A B(n, m)-code 13 a linear (n+1,n —m,d = m + 2) code. In particular,
it 13 an MDS-code.

Proof: By theorem 2.2., the minimum distance of a B(n,m)-code is at
least m + 1. This minimum distance will be exactly m + 1 if and only if

there is a codeword of weight m + 1 in B(n,m), say (Zy, 2y, - -, Zn_1), and

n—1

i=0 Z; = 0. So, assume this is the case and let

Ziovzjnzjﬂ"'azjm 3 OSJ.0<.7'1<"'<J'mSn_1

be the nonzero entries. Then, from (2), these entries satisfy the following set

of equations:

szk=0
“ . (4)
Y o (Z;) =0 , 0<i<m-1
k=0

Replacing Z;,, = Lo Z;, in the last m equations, we obtain:



- 62 -

m—1 X . ;
(* +™)(Z2,) =0 , 0<i<m-1 (5)
k=0

Taking the tth equation to the power 2™~ the system becomes

"‘Zil(a"* +a™)¥(2,)" =0 , 0<i<m-1 (6)
k=0
Let ¢ = o +a» , 0 <1 < m-—1. Then, system (6) admits a
nontrivial solution if and only if D(agp,a;, -+ ,am-;1) = 0. But lemma 2.1.
assures that D(ag, @, ,@m—y) is a product of polynomials in a of degree
smaller than n. Hence D(ag, a1, *,apm-1) # 0 and (5) is not satisfied.
Therefore, the minimum distance is m + 2. 1

Theorem 2.3. assures that, whenever 25+t < m+1 a B(n,m)-code can
correct s track errors together with ¢ track erasures. In the next section, we

discuss encoding and decoding procedures.

3. Encoding and Decoding

Our code is an array (b;;) o<i<n , Where the rows Z;, 0 <1< n-—-1
0<5<n-1

gatisfy (2) and Z, is a parity-check row. The input and output are read

vertically, an (n + 1)-bit column at a time. However, the errors occur in the

horizontal tracks. Hence, we need a procedure to permute the action of rows

and columns. The key property is given by the following lemma:

3.1. Lemma
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Ea’(Z E(af'-" , 0<i<m-—1 (7)

5=0

Proof:

gaj(zj ¥ = i of (f b,‘ga")2i
“ngm
=§WV§m&
= g(a")"s,, .

If we consider a B(n,m)-code as an array code (b;;) 0<i<n OVer GF(2),
0<5<n-1

by lemma 3.1., an equivalent definition is

ZZ,'=0

J=0
n—1 o (8)
Y ()¥B;j=0 , 0<i<m-1
j=0

Let the parity-check bits be contained in columns By, By, -, B,,—; and
in the parity-check row Z,,. Thus, the information symbols are contained in
B,.,Bni1,:+,Ba_1. Notice that a B(n, m)-code has rate n — m/n + 1.

The encoding proceeds as follows: first B,,_; is received, then B,,_,, etc.,
up to B,,. For each By, b,j = Y i2; by, is immediately obtained. From (8),
we have

m-—1

Z(M)Z‘sz'f(af)fz;, , 0<i<m-—1 (9)

=0
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Circuits to obtain T7=} ()% B; are easy to implement ([2]). We finally
need to solve the linear system (9) in order to obtain By, By,- -+, By—;. Once
the encoding is completed, the bytes Z,,2;, Z,,---,Z, are sent. However,

assume bytes Zy, 2, --,Z, are received. We have to retrieve the original

information. The syndrome (S, So,Si,"*,Sm—1) is given by
S, =32
1=0

n—1 . . (10)
Si=) o(Z;)* , 0<i<m-1
=

However, (10) is an inefficient way to calculate the syndrome, since the
information is read vertically. As in the case of the encoding, using lemma

3.1., we obtain

n

S, =% 2

=0
n—1 VIR (11)
Si=Y ()B; , 0<i<m-1

j=0

S, is easily obtained, one bit at a time, while circuits that find S; for
0 <t < m—1 are also implemented without difficulties ([2]). If the syndrome
is the zero vector, we conclude that the codeword has been transmitted
without errors.

Now, suppose s errors occur — say €;,, €;,," - -, &, at locations 1;,15,---,4,~-
together with ¢ erasures -say e;,, ¢, - - ,¢j, at locations 1,72, -, ji— where
25+t < m+ 1. Hence, Z;, = Z;, + ¢, for 1 <k <s, Zj = Z, +e¢, for

1< k<t, and Z; = Z; in all other locations. System (10) then becomes
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s ¢
Sp = Ze‘k +Zeik
k=1 k=1

(12)

[} t

Si=Y a(e;) + Y af*(e;)” , 0<i<m—1
k=1 k=1

System (12) is a system of m+ 1 equations with 2s+¢ unknowns, 2s+1¢ <
m + 1. We are assuming that no error or erasure occurs in track n. If it
does, system (12) has to be slightly modified. The unknowns are the errors
€13 €iy* " " 4 Ci,, their locations #;,1z,---,4, and the erasures e;,, e, -+, e¢;.
Since a B(n, m)-code has minimum distance m + 2, a solution to system (12)
exists and is unique. So, it is necessary to build circuits that will solve system
(12) in order to complete the decoding. The decoder will have ['—"%J + 1
decoding modes, according to the number s = C,1,2,---, lﬂzﬂj of track
errors that B(n, m) can correct. The strategy for choosing a decoding mode
is then as follows: count the number ¢ of erasures that have occurre;d, and
then choose the maximum s such that 2s+¢ < m + 1. Assume then that s

errors have occurred, and this choice of s will determine the decoding mode.

The examples in the next section will help to clarify this matter.

4. Examples
In all the examples we take n = 8, as in the IBM 3420 series tape unit
with 9 tracks.

Example (i): B(8,0)
This is a code defined by the parity check equation Y%, 2Z; = 0. Its

minimum distance is 2, so it can correct only one track-erasure.
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Example (ii): B(8,1)

This is the well known Patel-Hong code ([2],(4]). The minimum distance
of B(8,1) is 3, so it can correct either one track-error or two track-erasures.

According to (2) and lemma 3.1., this code is defined by

" " (13)
Y oZ; =% oB;=0
=0 j=0

where « is a root of the irreducible polynomial over GF(2) g¢(z) =1+2z+

z* + z° + z®. The redundant bits are in B, and in Z; (see figure 1). For

the encoding, Zs is readily obtained, while By = Z;’-:l o’ B;. The circuits

are described in [2]. For the deﬁoding, we have two decoding modes. Let us
treat them separately.

Mode I: Correction of one track-error

Assume row k is in error, that is, Z, = Z; + e; and Z,- = Z; for j # k.

Assume first that k # 8. According to (11) and (13), the syndrome is

8

S, =2
=0

: (14)
So=Y o' B
o

S, and Sy are calculated immediately from the received bits. According

to (12),if0< k<7

Sp=ek

So = aFe;
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So, S, gives us the error e;, while o = S;/S, tells us which track is in
error. Adding e; to 2;;, we obtain Zj, recovering the information. If the
error occurs in track 8, then Sy = 0 and we do not need to bother to recover
the information.
Mode II: Correction of two erasures
Assume that the information in tracks ¢+ and j is erased. We have to find
Z; and Z;. So, assume Z; = Zj = 0 in order to compute the syndrome S,

and Sp. Hence ¢, = Z; and ¢; = Z;. Let 0 <1 < 5 < 8. If 7 =8, then

Sp=¢€;+ ¢
. (16)
So = a'e.-

So, e; = a™'S, and we are not interested in eg.

If j < 8, we have

Sp =e + €
. . (17)
S =a'e; + a’e,-
Solving this system,
‘_C!jsp‘*'So e._a"Sp+So
Uo7 7T a4l

The encoding and decoding circuits are discussed in detail in [2].

Example (iii): B(8,2)
This code has rate 2/3 and was first reported in [1]. According to (2)

and lemma 3.1., the code is defined by
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8 )
Y Z;=0
7::0' , |
EQ'Z.‘= Za'B;:O > (18)
=0 £=0
7 . 7 .
Y o'(Z)*=) o¥B;=0
=0 =0

Now the parity check bits are contained in By, B; and Zs. Let us describe

in detail the encoding and the decoding.
Encoding
Zs is obtained as in example (ii). Bz, Bs, By, Bs, B and By are given,

since they contain the information symbols. From (18),

7
By + aB; = Z o' B;
=2 =

- (19)
By + C!2B1 = Z az'B.-
=2
Solving system (19), we obtain
7 . . .
BO — Za:-i-l (as—2+ as—3+ enads l)B,
= | (20)
B, =) oo T+ a4+ +1) B
=2
Circuits performing (20) are easily constructed.
Decoding
Assume rows 2y, Z,,- -+, Zy are received (resp., columns Bo,B,, -, By).

The decoder’s first step is to calculate the syndrome
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8
S,=3.2
=0
7 . n
So = Z Q'B; (21)
=0
7 o
SJ_ = E amB.‘
=0 /

If no errors occur, we have S, = Sy = §; = 0. Since B(8,2) has minimum
distance 4, it can correct either a track-error together with a track-erasure,
or three track-erasures. Hence, we need two decoding modes.

Mode I: Correction of a track-error and a track-erasure

Assume that an error pattern e; occurs in track ¢ and e; occurs in track
7, but j is known, and all the other tracks are correctly transmitted. Assume
first that § < 7. The decoder has to determine first if 1+ = 8. Notice that,
if 1 = 8, then S; = &’¢; and §; = a’el. Thus, a™/S; = 5,/5, = ¢j, or
(So)? = o’ ;. We see that if i < 7, then (So)? # a’S;. So, when i = 8, this
fact is easily determined and we correct track j after finding e;.

So, assume o’ S; # (S;)?, then ¢ < 7 and the syndrome is given by

Sp =€+ ¢
So = a'e; + e, (22)
5 = o'(&)* + o (e})?

Solving system (22), we obtain

o (8 + o¥(5,)?) = (50)? + o S (ﬁ)

Hence, we have to construct circuits that find S; + o/(S,)? and (S;)? +

o’ S;, then we multiply S; + a’(S,)? by a until we obtain (S,)? + ’S,.
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Counting how many times we had to multiply by a, we obtain 1. Once we

know §, we are in the case of B(8, 1) with two erasures, i.e., we have to solve

system (17).

If j = 8, since we are not interested in eg, we have to solve

So = a'e;
. (24)
Sy = a*(e;)?
We obtain a'S; = (S,)?, so 1 is easily calculated, and then e; = a™'S,

gives us e;.

The decoder’s final step is to add e; and e; to the corresponding tracks.

Mode II: Correction of a triple track-erasure

Assume erasure patterns e;, ¢; and ¢; occur in tracks 1, 7 and k where

0<1<j<k<8. k<8, wehave

Sp =¢€ + € + €
So=a'e; + oe; + atey (25)
B o= a"(e,-)2 + cr"(e,-)2 + o¥(e)?

The solution of this system is given by the following:

(e)? = o t*(S,) + (So)* + (o + )8, )

v ) (& + of)(a* + aF) k

N2 _ @FE(S,)? + (So)® + (af + o),
(51) - (a"+ai)(af+ak) > (26)
(et = LTS+ (S0 + (o + o),

k) — (ai+ak)(aj £ ak)

Circuits solving (26) are more complicated than in the case of two era-

sures, but still perfectly feasible. In order to find e;, e; and e, we need
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to take the square root, but this is easily done, since square root is a 1-1

operation.

Finally, if £k = 8, we have to solve the system

Sy =a'e; + e,

. . (27)
S = o'(e&)® + o (¢)?
and the solution is given by
(e = B + 25y
affe’ +at] (28)
(50)2 + a'S'1

()" =

af(af + o)
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APPENDIX I
ASYMPTOTIC ESTIMATES OF INTEGRALS

We want to prove theorem 3.1. of chapter 1. We need some lemmas first.

1. Lemma

Let I, = [&° €Mz dz where ax < 0, M > 0 and t and k are positive

sntegers. Then,

p- M (151)

In particular,

Proof: Make the substitution M(—a;)z* = u. Then,

u \1/k p ui~! P
‘“‘(—Ma,) v T R Ma )t 5O

t+1

1 o
Iy = ————,—,—/ eu* du
© k(~Ma)F o

- ML P (LY g )

Proved. i

2. Lemma
Let 3550550 cijz'w’ be a double series convergent for 0 < z < 2R, 0 <

w< 2S. Then, sf0<2< R/3,0 < w < §/3, A 1s a positive snteger,



s

Z c,-,-z"w" = ) (ZA+1) +0 (w‘“) (3)

Proof: ¢;j= O (R“S el ) since the terms of a convergent series are bounded.

Now, if 0 < z< R/3, 0 < w < R/3, we estimate

=0| 3}

=0 _(—z_ oo e AH] = [(z 4 w)AH]

But

(2 4+ w)** < Pmax{s, w)})** = 2P max{ AT, Wt}
< pAH (AT | At

Hence (3) holds. i

Notice that estimate (3) is not uniform with respect to A.

We can now prove theorem 3.1. of chapter I. Let us state it again.
3. Theorem

Let F(M) = [ g(z)eM") dz, where g is continuous and positive when
z >0, h is infinstely differentiable for z > 0, h(z) < h(0) for all z > 0,

() =h"(0)=---=hFED0)=0 , RP0O)<O

for some k > 1, lim, . h(z) = —00, [5° g(z)e*) dz converges, and let
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@ =0+ Lar , o)=Yb

ik

for0< z <6 for some 6 > 0. Then

F(M) ~ (f: d,,M-%ﬂ) H0 (4)
v=0
where
d, = (=ax)™" ic (—a )wr( +”+1> (5)
v = k - fw—j k J k
and

g(v) exp ( (E B g1pe )) =) cu'vy in [0,6) (6)

=0 t,f

Proof: Assume A(0) = g = 0. Claim: for any 7 > 0 and ! a positive integer,

/oo g(z)M@ dz = 0 (M“) (7)

as M — oo. In effect, since lim, ., = —o0 and A is continuous, there exists

a constant ¢ > 0 such that h(z) < —c for all z > 7. Thus,

/oo g(z)eM*) dz = /oo g(z)eM-1rGE) kG gg
£ goin-1) /:o 9(z)e"? dz = O (e"‘M) =0 (M")

as claimed. Now, consider %" as the main factor in the integrand. The

remaining factor g(z)exp (Mz*¥*(ar4y + G142 + agy3z? +-++)) can be ex-
+ +

k+1

panded as a double power series in the two arguments M z**! and z, conver-
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gent for 0 < z < § and for all values of Mz*+!. We denote this double series

by

P(M:L'k'H,I) = Z Ci5 (Mzk'*'l)i.’rj
W

The coefficients ¢;; are independent of M and z. We want to approximate
P uniformly by its partial sums. Therefore, we restrict Mz**! to some
finite interval. Take for instance 0 < MzF*! < 1. Then, we use the power
series only if 0 < z < M~V¥+1, Call 1 = M~'/*+!, We may assume that
M > 6~ +1) whence 7 < 6.

Choose a positive integer A and write

Then, we have

Aw g(z)th(“) dz — /Ooo PAeM"""‘lt dz =
- /of(P — Py)eMer*" dz 4 /fw g(z)eM*® dz — /roo Py dz =
= [[(P~ Py dz .0 (M) +0 ([T Mo 2 ds) (8)

this last step by (7). Notice that [* Mo z4 dz = O (M") as M — oo by
(7), with z# in place of g(z) and a;z* in place of h(z). From (3),

for z small enough, thus,
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/r(P - PA)C'M""’* = (/’00 MA+ICA“”*$(&+1)(A+1) dz)
0 0
+ O (/w Marat pA+1 dz)
0
8o, replacing in (8) and using the definition of I; in lemma 1, by (2), we

obtain

/oo g9(z)eM* @ dz — /c’° PyeMo 4z =
0 0

= MA*10 (I(k+1)(,4+1)) +O0(lat1) + O (M—,) =

A+32

-0 (M) + 0 (M) + 0 (M) = 0 ()

gince [ is arbitrary. But

/w PAeM""’h dr= ) ¢; /’w(l\'fﬂ:"“)"1:"6"“““"'t dz
0 0

$20,520
i+j<A
= Y M Ly
i+5<A
E = = _iteansien o (H(k+1)+7+ 1
= ; .+.E< C",'M iF-_(_ak) +lk+ ¥ I‘( ( )k J )
1+)<A
So,
[7 o) dz = - T c,.,M—w;-ﬂ(_ak)-w;tmr(a(k+1)+;+1)
‘ k 1+<A k
-0 (b-2%)

Hence, we have

/0 " o(2)M dp = 3 d, M- 40 (M=)

v=0
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where

o & E c.-,u--;(—ak)""'i?t'l r (i LN : 1)

= Sanit-ar e i+ 5)

=0

(—a,,

If h(0) = ao # 0, we simply have an extra factor "),
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APPENDIX IT

HOW GOOD IS THE POISSON APPROXIMATION?

In chapter II, we found the MTBF and CG of singly and doubly error-
protected computer memories. In particular, the singly error-protected case
allowed all kinds of errors to occur. An important assumption when we found
the reliability R(t) of a row of chips was, failures in the row are distributed
according to a Poisson process. Without this assumption, the formulae would
become hopelessly complicated. The question is, how good is this Poisson
approximation?

In order to answer this, we are going to find MTBF and CG for both
gingly and doubly error-protected computer memories in a simplified situa-
tion: We assume that all the chip failures are catastrophic. We shall consider
the asymptotic case of M rows of chips, where M is a large number. The

notation will be the same as the one used in chapter II.

When k failures occur in a row, the Poisson approximation we used in

chapter II was

k
(:) (1 _ e-AI)"e—At(n—k) - (/\:f) g~ Ant (1)

We consider the two cases separately.

Case (i): Single-error protection

The reliability of a row when 1-ECC is implemented is
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R(t) - e—Anl ES n(l o e—A‘)e—A(n-'l)‘

= e (14 n(e" - 1))

Thus,

MTBF = /0 T (RE)™ dt

= /Ow grAnit (1 + n(eM - 1))M dt

Making the change of variable Ant = z, we obtain

MTBF = ;1; /0°° e M (14 n(e/ — 1)) dz

s —}—/w eMh() gz
An Jo

where

h(z) = log (1 +n(e” — 1)) -z

Hence, dividing by (AMk)™!,

co="Eum / = M) gz
n 0

We need to estimate I = [;° M) dz. We easily verify

n—1

h(0) = A'(0) =0 and A"(0)=— -

Using (11), chapter II, we have

(5)

(6)



- 81 -

I T _ nm (8)
2M (—h"(0)) \/2(n -1)M
Replacing in (4) and (6), we obtain
1 n T
MTBF~,\—n n—l\/m (9)
and
CG ~ E n ﬂ (10)

nyn—1V 2
Using the Poisson approximation, Goodman and McEliece found (([3],

chapter II),

G ~ E‘ / LA{
ny 2
(This approximation is also obtained taking a = b=c¢ =0, d = 1 in (14),
chapter II). So, the two values differ by a factor /7.

In our typical examples, n = 39. Hence /%y = 1.01. This means, the

Poisson approximation is very good in this case.

Case (ii): Doubly error protection

Now the reliability of each row is given by

R(t) = e (1 — ety ML) (3 pary? pmatoea

(@ - 17) (11)

= g™t (1 +n(eM —1)+

thus, making the change of variable Ant = z,



- 82 -

MTBF =L / TeMe 14 n(e*/” — 1) + nn 1) (e/n 1)} dz (12
An Jo 2 (1) ¥ 2
We can also write (12) as

_ L [® M)
MTBF = ,\n/o € dz (13)

where

k(z) = log (1 +n(e™ —1) + E—(nz;l)(e’/" - 1)2) -z (14)
Differentiating, we obtain

n? —3n+2
6n?

h(0) = K'(0) = K"(0) =0 , K"(0)=—

Applying the theorem proved in appendix I to (13), and taking first

approximation, we get

1 6 3 4 1
and
k 6 T4y,
CG ~ ; (*:%—_*_;:2;) T (g) M (16)

a8 M — oo. (15) and (16) differ from the corresponding results that use the
_1

Poisson approximation by the factor (1 -4 ;"’,) e

In typical cases, when we have doubly error protection, n = 45. In this

case (1 - % + %)—i = 1.02. Hence, the Poisson approximation is also very

good in this case.



