
ERROR-CORRECTING CODES FOR

COMPUTER MEMORIES

Thesis by

Mario Blaum

In Pa.rtia.l Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California. Institute of Technology

Pa.sa.dena., California.

1985

(Submitted December 10, 1984)

-ii-

ACKNOWLEDGMENT

I am deeply indebted to my advisor, Prof. Bob McEliece, for his guidance

and encouragement. The results in chapter III were obtained during a two

week stay at the University of Manchester, England, under a kind invitation

of Prof. Paddy Farrell. Other professors that had a great influence in my

mathematical training during my stay at Caltech were R. Wilson, J. van

Lint, H. van Tilborg, R. Goodman and G. Lorden, just to mention a few.

Special thanks to Jeffrey Pugh for his help in the numerical integration

at the end of chapter II, and to Phil Merkey and Li-Fung for their patience

while teaching me TEX.

The secretaries in the Departments of Mathematics and Electrical Engi

neering have always been very helpful and patient with me.

The friends with whom I have shared these years are many. We have

had fun together and they have made my stay at Caltech a most enjoyable

experience.

My dear wife Batia constantly supported me with her love and care,

stoically putting up with my absent-mindness.

My mother-in-law always encouraged me. In our last conversation, she

told me how much she wanted to be present at my graduation ceremony.

It couldn't be. She died two months before this thesis was submitted. I

remember her with deep affection.

My family in Los Angeles and in Argentina gave me always great support.

In particular, I want to thank my father for more things than can be listed

here. With all my love and affection, this thesis is dedicated to him.

- iii-

ABSTRACT

This thesis is divided into four independent chapters and two appendices.

Chapter I deals with the following generalization of the birthday surprise

problem: how many people we need to interview on the average until either

r birthdays occur k times each or one birthday occurs k + 1 times. If r = 1,

we obtain the usual "birthday surprise" number. We verify that our formula

generalizes previous known results. We give asymptotic estimates for the

birthday surprise number using a theorem proved in appendix I.

In chapter II, we present accurate and easily evaluated estimates for

the average lifetime of a semiconductor RAM memory protected by a single

error correcting, doubly error detecting (SEC-DED) code. This problem

is somehow related to the one in chapter I. As an application, we give an

analysis of the benefits of soft error "scrubbing" when both hard and soft

errors are present. We also discuss two methods for increasing the lifetime of

a computer memory: adding s rows of spare chips and implementing 2-ECC.

We close the chapter by comparing the two methods.

In chapter III, we describe a class of burst error correcting array codes.

We prove the fundamental properties of these codes.

Patel and Hong have constructed a code that can correct any track error

or two track erasures in a 9-track magnetic tape. In chapter IV, we extend

the construction to codes that can correct higher numbers of track errors

and erasures. The result is a new family of codes, the B(n, m)-codes.

In appendix I, we prove an important theorem used for asymptotic esti

mates of integrals. This theorem is used in chapters I and II.

- iv-

In appendix II, we give a discussion of the Poisson approximation used

in chapter II assuming a simplified situation.

Each chapter is an independent entity with introduction and references.

Being conscious of the logical contradictions of the term, let's point out

that this thesis is self-contained.

-v-

CONTENTS

Acknowledgment . .. ii

Abstract .. iii

Chapter I: Extensions of the Birthday

Surprise Problem 1

1. Introduction 1

2. A generalization of the "birthday surprise" problem 2

3. Asymptotic estimates ... 4

References 16

Chapter ll: Average Lifetimes of

Computer Memories 17

1. Introduction ... 17

2. Models. Formula for MT BF 21

3. The case of large M. Asymptotic approximations 24

4. Numerical examples .. 26

5. Error protection when s rows of spare chips are added 28

6. Doubly error protection 31

7. Comparison between the two methods 33

References .. 37

-vi-

Chapter ill: A Class of Burst-Error

Correcting Codes 38

1. Introduction ... 38

2. Basic properties of the code 39

3. The main result .. 43

References .. 55

Chapter IV: A Class of Error-Correcting Codes

for Magnetic Tapes 56

1. Introduction ... 56

2. Construction and basic properties of B(n, m)-codes 58

3. Encoding and decoding .. 62

4. Examples .. 65

References .. 72

Appendix 1: Asymptotic Estimates

of Integrals .. 78.

Appendix II: How Good is the Poisson

Approximation? 79

-I

CHAPTER I

EXTENSIONS OF THE BIRTHDAY SURPRISE PROBLEM

1. Introduction

The classical birthday surprise problem deals with the following question:

Suppose you interview a sequence of randomly selected people, making a note

of their birthdays, until some birthday has occurred twice. How many people

will you interview on the average? This number turns out to be 24.62, and

if you wait until the same birthday has occurred three times, the number is

88.74 (not "about 83," as reported in [4]).

In this chapter we solve the following generalization: given r ~ 1, k ~ 2,

how many people do we have to interview on the average until r birthdays

occur k times each. However, there is a small problem that has to be taken

into account. It might happen that r birthdays k times each will never

occur. In effect, suppose that some birthday occurs k + 1 times before r

birthdays occur k times each. In that case, we have two options: either stop,

or continue until r birthdays occur at least k times each. We adopt the first

point of view. However, both averages are very close. Moreover, it can be

proved that, for planets with a very large number of days in the year, the

two averages are asymptotically equal (see [1]).

In particular, when r = 1, k = 2, we obtain the usual birthday surprise.

Our asymptotic estimates will be more precise than the ones given in [4].

-2 -

2. A generalization of the "birthday surprise" problem

Let us formulate the birthday problem in the following way: suppose we

place randomly and independently balls in M cells. We wish to compute the

average number of balls we have to place until either r cells contain k balls

each, or one cell contains k+ 1 balls. To solve this problem, we shall introduce

an apparent artificiality: We make the times between the placing of the balls

independent exponentially distributed random variables. However, we shall

see that this artifice actually simplifies the calculation of the expectations

(the key is Wald's identity).

2.1. Definition

Assume at each of the arrivals Wi, i ~ 1, of a Poisson process of rate

1, a ball is placed at random into one of M cells. Then, Tr(M, k) denotes

the first time that, either r cells contain k balls each, or one cell contains

k + 1 balls. Nr (M, k) denotes the number of balls placed by time Tr (M, k),

and Br(M, k) is t11e expected number of balls placed by time Tr(M, k), i.e.,

B,(M, k) = E(N,(M, k)) (r ~ 1, k ~ 2).

2.2. Theorem

Let r ~ 0, k ~ 2, and T0 (M, k) = 0. Then,

where
k-1 xi

S~:(x) = L l
f=O J•

-3-

Proof: The arrival of balls in each cell is a Poisson process of intensity ;1 .

Whenever either r cells contain k balls each or one cell contains k + 1 balls,

we shall say that an (M, r, k)-success has occurred. Let R,(M, k, t) denote

the probability that, by timet, an (M, r, k)-success has not occurred. Hence,

an (M, r + 1, k)-success will not occur, if either an (M, r, k)-success has not

occurred, or exactly r cells contain k balls each. Thus,

M k-1 t j e-1/M t k e-1/M r

()

,\i-r

R,+t(M,k,t) = R,(M,k,t) + (r) Eo (M))! ((M) k!)
so,

(M) e-
1

[(t)]M-r (t)kr R,+1(M, k, t) = R,(M, k, t) + r (k!)' Sk M M (2)

From (2), by induction and the fact that we have a polynomial times a

decaying exponential,

lim tR,(M, k, t) = 0
t-oo

(3)

for all r.

The mean time until an (M, r, k)-success occurs is then given by

E(T,(M, k)) = -loco tl(,(M, k, t) dt =~a= R, (M, k, t) dt (4)

The last equality is obtained integrating by parts and using (3). From (2)

and (4), making the change of variable ~ = x, we obtain (1). 1

2.3. Corollary

Let B0(M, k) = O, then

-(-

Proof: Call Ti the time between the (i- 1)-th and the i-th arrival, i 2:: 1.

Then T1, T2 , •••••• are independent random variables with common distribu

tion 1- e-t and Tr(M, k) = T1 + T2 + + TN,(M,k)·

According to Wald's identity ([3], page 217), we have

E(Tr(M, k)) = E(TI)E(Nr(M, k)) = E(TdBr(M, k)

But E(TI) = 1, hence,

E(Tr(M, k)) = Br(M, k) (6)

From (1) and (6), (5) follows. 1

Notice that in the particular case r = O, (5) gives

(7)

Formula (7) is the usual birthday surprise number ([2],[4]).

3.Asymptotie estimates

The next theorem will be proved in appendix I. We shall use it to obtain

asymptotic estimates for Br(M, k), M a large number.

3.1. Theorem

Let F(M) = go g(x)~h(z) dx, where g is continuous and positive when

x > 0, h is infinitely differentiable for x 2:: 0, h(x) < h(O) for all x >

01 h'(O) = h"(O) = · · · = h(k-l)(O) = 0 for some k 2:: 1, h(k) (0) < 0,

-5-

limz-oo h(x) = -oo, f0
00 g(x)eh(z) dx converges, and let h(x) = a0 + L~k aixi,

g(x) = 2::::~0 bixi for 0 ~ x ~ o for some o > O, then,

F(M) ,.._ (~ d,M-4l) ~h(o) (8)

where

(9)

and

(10)

3.2. Corollary

B1(M, k) = t Rj(k)(k!)jfkr (1 + L)Ml-f + o (M-i) (11)
J=l k

where the terms Ri(k) are ratior~al functions of k.

Proof: Equation (7) can be written as

where h~;(x) = log(S~:(x))- x.

We are in the conditions of theorem 3.1., with

Hence, from equation (8), we obtain

1:-1

Bt(M,k) = L d,M1-~ + 0 (M-i) (12)
v=O

-6-

where, using (9), (10), and the fact that a&= (-k!)-1
,

(k')~ Jl 1
dv= ·k I:c,,v_,(k!)'r(s+v;)

•=0
(13)

and

exp (u f ak+H•tl) = ~ ciiuit;i
1=0 IJ

(14)

Notice that d0 = (k!)tr (1 + l), so R1(k) = 1.

Now let II > 1. Since Co,v = 0 from (14), by properties of the r function,

(13) becomes

- (k!) ~ (v + 1) Jl ' ' •-l (. v + 1)
dv - k r 1 + -k- ~ c, ,v-•(k.) }1 s + -k- (15)

where rr?=1 (i + llf) = 1.

Replacing d0 and (15) in (12), we obtain (11), where, calling j = 11 + 1,

R1(k) = 1 and for j 2:: 2,

i-1 •-1
Ri(k) = L C,J-1-•[(k- 1)!]' II (ik + j) (16)

•=1 i=1
This completes the proof. 1

Approximating by the first term in (11), since R1 (k) = 1, as M -+ oo,

we obtain

(17)

Estimate (17) was first obtained by Klamkin and Newman ([4]). Using

this estimate in the case M = 365 and k = 3, they concluded that the

-7-

triple birthday surprise number (ie., B1 (365, 3)) is "about 83." However, the

correct value is 88.739 ([1]). The problem is that the asymptotic estimate

(17) does not contain enough terms. A more precise estimate is given by (11) .

Thus, we need to calculate the coefficients Ri(k) for 2 :::; j :::; k, which are

given by (16) . Using (14), the problem is reduced to evaluate the numbers

ail where hk(x) = 'L'f=o aixi. An explicit formula for the relevant numbers

ai is given by the following lemma.

3.3. Lemma

For 0 :::; i :::; k - 1 ,

a,= 0
(-1)i+l

and ak+i = i!(k + i)(k _ l)!

Proof: We had hk(x) = -x +log Sk(x) = L~o aix' .

Let

k-2 xi
Yk(x) = ~ (j + 1)!

then,

Notice,

0 =-X+ logez

(

oo xi) = -x +log 2:.: ~
i=O J •

oo xi
Zk = I: (k .)I 1

i=O + J .

(18)

-8-

so, using (19), we obtain

(20)

The smallest power of x in the right-hand side of (20) is k, hence ai = 0

for 0 ~ i ~ k - 1, proving the first part of the lemma.

Consider now the function Pk(x) = 2:::~~(-1)i+1xiy1zk.

Notice that, for 0 ~ j ~ k- 1,

j

ak+i = coefi (Pk(x)) = 2::) -l)i+1coefj-i(ylzk) (21)
i=O

and

Let bi,v = coefv(Y£), then, by (21) and (22),

j ,_, b
"'(1)i+l "' i,v ak+i = L.., - L.., (k . .)'
i=O v=O + J - I - Zl •

~ 1 ~ i+l = L.., (k + . _)' L..,(-1) bi,v-i
v=O J Zl • i=O

(23)

-9 -

Claim:

m (1)m+l 2) -1)i+
1
bi,m-i = -

1
(24)

i=O r.n.

Induction on r.n . If r.n = 0, then -b0,0 = -1, so (24) is true.

Assume (24) is true fort ~ r.n- 1, r.n ~ 1. Note that, fort ~ 1,

bo,t = coef,(y~) = 0,

(24) ls b 'tt "m ()i+1b (-1)m+l so can a. o e wn en as L-i=1 -1 i,m-i = m! .

Fori~ 1,

m-i m-i b
b ""' f () f (i-1) ""' i-l,m-i-1

i ,m-i = L...J coe 1 Yk coe m-i-1 Yk = L...J (l)'
1=0 1=0 + 1 .

(25)

Thus

t(-1)i+lbi,m-l = t(-1)i+l E' bi-1,m-i~l
i=O i=l 1=0 (f + 1)'

1 m m-i b
= _ + L(- 1)i+1 L i-l ,m-i-1

r.n! i=2 1=0 (l + 1)!
1 m-1 1 m-1 .

= -
1
+ L -11 L(-1)'bi,m-l-i

r.n. 1=1 . i=1
(26)

B ' d t' "m-/(1)'b· · - (-l)m-l l ' ' (26) t y In uc IOn, l..Ji=l - s,m-1-s - (m-1)! I so, rep acmg In I we ge

m i 1 m-1 (-l)m-1 m-1 (- 1)1

~(-1) +1bi,m-i = r.n! + ~ l!(m -l)! = t; l!(m -l)!

hence,

-10-

and solving for 2:?:::0 (-1)i+Ibi,m-i we obtain (24).

Replacing (24) in (23), we have

i (1)v+l "\'j (-1)v+l j!(Hj) !
. _ ~ - _ L....v=O (v!)(k+j-v) !

ai:+J - ~ '(k ·)' - "'(k ")'
v=O 11 • + 1 - V • J · + J •

Calling

[

j (-1)"+1 l
f(x) = j! -1 + J; v! (x + j)(x + j- 1) .. · (x + j- 11 + 1)

this becomes

f(k)
al:+i = j!(k + j)!

Claim: (-1)i+1 f(x) = x(x + 1) · · · (x + j- 1).

(27)

Since (-1)i+1 f(x) is monic, suffices to show that 0, -1, · · · , -(j- 1) are

roots of f(x) . Notice, for 0 ~ i ~ j- 1,

!(-i) 1 8(-1)"(. ')(..) (. . 1) - - .,- = + L....,; -,- 1 - 'l 1 - ' - 1 .. . J - ' - v +
J• v=l 11 •

= ~(-1)"(j- i) = (1- 1)j-i = 0
v=O V

In particular, (-1)i+1 f(k) = k(k + 1) · .. (k + j - 1).

Replacing in (27), we obtain

. lk(k+1)···(k+j-1) (-1)i+1

al:+i = (- 1)
1
+ j!(k + j)! = j!(k + j)(k- 1)!

This completes the proof. 1

-11-

Using (14),(16) and (18), we can now calculate Rj(k). The first four

values of Rj(k) are:

R1(k) = 1

D(k)- _1_
.tt-z - k+ 1

3k+5
R3 (k) = 2(k + 1)2(k + 2)

k _ 16P + 66k + 62
R,() - 6(k + 1)3 {k + 2)(k + 3)

For example, we obtain

{28)

(29)

With M = 365, (28) yields B1 (365, 2) ~ 24.611, whereas the ri'Sht an

swer obtained by exact integration is 24.617 ([2],[5]). Similarly, {29) yields

B1 (365,3) ~ 88.725 instead of the correct value 88.739 ([1]).

We give next asymptotic estimates for Br(M, k) when r;:::: 2.

3.4. Theorem

For r;:::: 1;

1 (M) k (j) Br+l(M, k) = Br(M, k) + Mr r :; /j(k)f 1 + k

(k!)~ M 1-f + 0 (M-f) {30)

-12-

and

I (rr' (i-1)k+1) (1) 1 I B,+1(M, k)'""' B,(M, k) + (k!)I i=
1

ik r 1 + k M -I (31)

Proof: We need an asymptotic estimate for the integral in (1) when r 2:: 1.

Let us write

I= fooo e-Mz[S~:(x)]M-r xkr dx = fooo g(x)c"fhk(z) dx (32)

where g(x) = (s:tzl)' and h~:(x) = -x +log S~:(x).

We satisfy the conditions of theorem 3.1. Applying it to (32) and replac

ing in (1), we obtain (30). If we approximate the sum in (30) by its first

term, since limM-oo ~' (~) = ~' we get (31). 1

Using (17) a.nd (31) repeatedly, we obtain

B (M k) (~ ITj (i- 1)k + 1) (k')~r (~) M 1-t
r+l 1 ~ • ·k . k 1 + k

J=O s=1 1
(33)

h no (i-1)1:+1 _ 1 w ere i=1 iic - •

When k = 2, (31) gives the aesthetic formula

1.3.5 · · · (2r- 1)
B,+t(M, 2) "'B,(M, 2) + 2.4.6 ... (2r) B1 (M, 2) (34)

Estimate (33) gives a good idea of the size of B,+1(M, k), but has to be

handled with care since the error also tends to infinity in general. In order

to obtain a more precise estimate, we need to use (30). For example,

-13-

B (M 2) = B (M 2) (M- 1)(M- 2) · · · (M- r + 1)
r+1 1 r 1 + Mr-1

(
1.3 · ··(2r-1)r;Ai + -r+2) +O(M-i)

2.4 · · · 2r V 2 3 (
35

)

and

B (M) _ B (M 3) (M - 1) (M - 2) · · · (M - r + 1)
r+1 1 3 - r ' + Mr-1

[6 ~ 1.4.7 · · · (3r- 2) r (~) M~ + 36 ~ _5._8 ·_· ----'. (_3r--,---_1__:_)
3.6.9 · · · (3r) 3 3.6.9 · · · (3r)

(-r4+ 2) r (~) M~ + 5r2- :~r + 42] + 0 (M-~)(36)

When r = 1, (34) gives B2 (M, 2) I'J ~B1 (M, 2). Surprisingly, we have

in fact that B2 (M, 2) = ~B1 (M, 2) for all values of M. We conclude this

chapter by proving this result.

3.5. Theorem

for all M ~ 1

Proof: From (5) we have

B2(M, 2) = B1(M, 2) + M2 {':o e-Mz(l + x)M- 1x2 dx
2 lo

Let I= go e-Mz(1 + x)M- 1 x2 dx. I can be written as

(37)

(38)

(39)

- 14-

where

and

Io = fooo e-Mz(l + x)M dx

11 = fooo e-Mz(l + x)M+l dx

[_1 = fooo e-Mz(l + x)M-1 dx

Integrating by parts,

1 M+ 1
!1 = M + M Io

Replacing (40) and (41) in (39), we obtain

I= Io
M

so (38) becomes

Since M f0
00 e-Mz(l + x)M dx = B1(M, 2) by (5), (43) yields (37).

(40)

(41)

(42)

(43)

I

For instance, B2 (365,2) = ~B1 (365,2) = 36.93, i.e., we need to inter

view around 37 people on the average in order to obtain either two double

birthdays or one triple birthday.

Theorem 3.5. is too good to be true in general. In fact, we would like to

have equality in (34), but that does not occur.

-15 -

In effect, consider B3 (M, 2). From (5),

(44)

Now, let I= f0
00 e-Mz(l + x)M-2:z;4 dx.

Since x" = (x + 1)4
- 4(x + 1)3 + 6(x + 1)2

- 4(x + 1) + 1,

(45)

where Ii = f0
00 e-Mz(l + x)M+i dx, -2 ~ i S 2.

Integrating by parts and using (40),

I _ _!_ M + 2 I _ __!_ M + 2 (M + 2)(M + 1) l
2 -M+M 1 -M+M2+ M2 0 {46)

Similarly, using (41),

1 M 2 M
L 2 = - M- 1 + lvf- 1 I_1 = - M- 1 + M- 1 Io (47)

Replacing (46), (47), {40) and (41) in (45), we obtain

2 3M-2
I= - M 2(M- 1) + W(M- 1) Io

and replacing (48) in (44),

1 3
B3 (M, 2) = B2(M, 2)- - + -M Io- 2Io

4 8
3 1

= B 2 (M, 2) + BB1(M, 2)- 4- 2Io

{48)

(49)

Clearly, as M-+ oo in (49), (34) holds, but we do not have equality. Life

is hard!

-16-

References

[1] M. Blaum, I. Eisenberger, G. Lorden and R. J. McEliece, "More about

the birthday surprise," to appear.

[2] R. M. F. Goodman and R. J. McEliece, "Hamming Codes, Computer

Memories and the Birthday Surprise," Proc. 20th Allerton Conference

on Communication, Control and Computing, pp. 672-679.

[3] P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability

Theory," Boston, Houghton-Miffiin,l971.

[4] M.S. Klamkin and D. J. Newman, "Extensions of the Birthday Surprise,"

J. Combinatorial Theory 3(1967), pp. 279-282.

[5] D. E. Knuth, "Sorting and Searching" (Vol. 3 in "The Art of Computer

Programming"), Reading, Mass. Addison- Wesley, 1973.

- 17-

CHAPTER II

AVERAGE LIFETIMES OF COMPUTER MEI\10RIES

1. Introduction

All modern computers have memories built from VLSI RAM chips. In

dividually these devices are highly reliable; any single chip can be expected

to function for decades before failing. However, when many of these chips

are combined into a single large computer memory, the expected waiting

time until one of the component chips fails can be as small as a few hours.

For this reason, almost all large computer memories are protected by single

error-correcting and double-error-detecting (SEC-DED) codes. Mathemati

cally, these codes are just shortened d = 4 Hamming codes; the shortening

is usually done in a hardware-efficient manner devised by Hsiao ([5]). The

recent survey article by Chen and Hsiao ([4]) gives a very good c.verview of

SEC-DED memory coding; but we shall summarize the important Lcatures

of the coding architecture here.

Normally the memory is organized into an M x n rectangular array of

chips (figure 1).

The first k chips in each row are information-carrying chips, while the

remaining r = n - k chips are parity-check chips. A typical example is a one

megabyte memory board used by the VAX 11/750, which consists of M = 4

rows of 64K RAM chips, each row containing k = 32 data chips and 7 parity

chips, corresponding to a (39, 32)d = 4 SEC-DED code.

We assume that each chip is organized internally as an l x l square array

-18-

k
~

M{~ ~
n -~
~ ;.,.._; ~ -

.
'---------..........-------./

n

Figure 1

of bits a..s shown in figure 2 (for standard 4164 n-MOS 64K RAM chips,

l = 256). Each n-bit codeword consists of one bit from each of the n chips

in one row (figure 3).

I I I

I
' I I

I
'
!
i
I
i

! I

Figure 2

j i-o o . . . D
Figure 3: The (i,j)th codeword in one row of chips

In the following discussion, a chip failure will be taken to mean a situ

ation in which one or more of the bits written on a chip cannot be reliably

recovered.

These failures are traditionally classified a..s either "hard" (meaning that

-19-

the memory cells involved are permanently damaged, e.g., "stuck at" faults),

or "soft" (meaning that a given bit has been somehow complemented but that

the chip itself has suffered no structural damage).

Observation of real memories ([6]) shows that the single most common

type of cell failure is a soft error affecting only one cell in one chip. These

errors are caused by stray alpha-particles which can, under the right circum

stances, change a logical "1" to a logical "0" without damaging the chip.

However, several kinds of hard failures are observed to occur. A single-cell

failure, which, as we have seen, can occur as a soft error, can also occur as

a hard error. There are also several kinds or hard chip failures which cause

bursts of errors in a chip. A row- failure occurs when alll cells in one row fail

(this can be caused by a failure of one of the chip's row drivers). A column

failure occurs when all l cells in one column fail (this can be caused by a

failure of one of the chip's column amplifiers). A short-circuit at a memory

cell can cause a row-column failure, in which all the cells in either the same

row or the same column as the affected cell fail. All four of these errors are

illustrated in figure 4.

J . I

LJ
single-cell

fa i1 ure

I

r------1

LJ
rov1 fa i 1 u re co umn failure

Figure 4

I !
I

I

I
I

I
r01·1- co 1 umn

fa i 1 ure

Also, a catastrophic chip-failure may occur, in which all cells in a chip

-20-

fail. This kind of failure, being very unusual, will be ignored in this work.

Of course the organization of the SEC-DED code guarantees that no

failure, however catastrophic, which is confined to a single chip can cause

two errors in any codeword, and so the code will correct any single chip

failure. In fact, there are many combinations of chip failures that can be

corrected by the code. Eventually, however, it is to be expected that enough

chip failures will have occurred so that some codeword will have suffered two

errors, at which point we have a memory failure. It is our object in this

chapter to give accurate and easily evaluated estimates for the mean time

between (memory) failures (MTBF) for memories protected by SEC-DED

coding. In the next section we will present a model for the occurrences of

the various types of chip failure, and use it to derive an estimate, based on

the Poisson approximation, of the MTBF. In section 3, we shall give a simple

asymptotic approximation to MTBF, when the number M of rows is large

(e.g., which is the case in the CRAY-1 computer). In section 4, we shall

give several numerical examples, using data typical for real chips. There we

shall show that for one representative set of data, soft error "scrubbing," a

technique which can be used to periodically purge the memory of soft errors,

can increase the MTBF in a SEC-DED protected memory by as much as 40%.

In the next two sections, we discuss two methods to extend the lifetime of a

computer memory. The first method, to be discussed in section 5, consists

of adding s additional rows of spare chips. Each time a chip fails, it is

replaced by a spare chip. We give an estimate of the increment in MTBF.

In section 6 we estimate MTBF when 2-ECC is implemented, that 1s, a

-21-

doubly-error- correcting triply-error-detecting (DEC-TED) code. Although

a hardware implementation of the methods in sections 5 and 6 is possible, we

are not aware of any application for commercial use. We close the chapter

by comparing the two methods.

2. Models. Formula for MTBF

The reliability of a given chip (probability of no failure of any kind after

t hours) is given by e-.\t, where). is a constant found experimentally ([6]).

We have to distinguish between the four types of errors in figure 4, and so

for future reference, we use the following notation:

A: row failure

B: column failure

C: single-cell failure

D: row-column failure

Let a, b, c, d be the relative frequencies of these four events. We assume

that in a given chip, these four events occur independently, and that failures

in one chip are independent from failures in all other chips. Thus, for exam

ple, the probability that after t hours a given row in chip has not yet failed is

e-.\at/l. The key to finding the MTBF is the calculation of the row reliability

function R(t), which is defined as follows:

R(t) = Pr{ an uncorrectable pattern of chip failures has

not occurred in row i at time t}

Since rows fail independently, the reliability of the entire array of M rows

is R(t)M, and so

-22-

MT BF = fooo t (-! (R(t))M) dt = /ooo (R(t))M dt (1)

All of our results a.re based on equation (1).

Consider now a. row of chips protected by SEC-DED coding. An uncor

recta.ble failure will not occur in ea.ch of the following events:

I. Only row or single cell failures occur such tha.t there is no more than one

failure in a. codeword.

II. The sa.me thing applies to column a.nd single-cell failures.

ill. Exactly one row-column failure a.nd corresponding single-cell failures oc-

cur.

Notice tha.t a. row a.nd a column failure will make the whole system fail.

Some thought shows that the system will survive only under events I, II and

ill. Let us call R1(t), ~(t), R3(t) the probabilities of events I, IT and ill,

respectively.

In order to find R1(t), we focus on a single row, say row i. The probability

that no two cells (i, i) will fa.il, if we assume only events A or C are occurring,

is then, assuming the Poisson approximation,

e-o).nt/1 [e-c).ntf/
2

(1 + ~~ >.nt) r + e-c).ntfl (e-o).ntfl y>.nt) (*)

But we have l rows, each one failing independently, so we must take

expression (*) to the power l and multiply this power by e-(b+d)).nt, the prob

ability that neither column nor row-column errors occur. Notice that we are

assuming that each row fails according to a Poisson process, i.e., the prob-

-23-

ability of exactly j failures in any row is P.·~:)i e-.Ant. This approximation is
J .

very good for typical values of n (see [3]) . After some easy manipulations,

R1(t) = .-lnl [(1 + ~~Ant)'+ J).nt]' (2)

Similarly, we get

[

I b]I ~(t) = e-ht (1 + ~~ >.nt) + 1>.nt (3)

In order to find R3 (t), observe that when a row-column failure occurs,

single-cell failures may occur in the corresponding (l - 1) 2 cells left, thus,

[()

(/-1)2]
R3(t) = e-(a+6)-Ant (e-d.Ant d>.nt)e-c-Ant 1 + (l ~ 1)2 >.nt

or,

[()

(1-1)' l
R3 (t) = e-.Ant 1 + (l ~

1
)2 >.nt d).nt (4)

Putting (2), (::s) and (4) together, we get the intimidating expression

(5)

The last term has to be substracted since events I and IT are not disjoint,

event C lies in the intersection.

Before proceeding further, we can see that formula (5) generalizes pre

viously known results. If we take c = 0 as in [3], example 3, we get (now

a+ b + d = 1)

-24-

R(t) = .-lnt [(I+ 'j>.nt)' + (I+ ~>.nt)' + d>.nt- 1] (6)

Making l --+ oo,

(7)

which is exactly the formula obtained in [3], example 3. (7) is a good ap

proximation of (6), since l is in general a large number.

Finally, replacing (5) in (1) and making the change of variable .Ant= x,

we obtain

(8)

Although the integral in (8) is somewhat complicated, if M is small it

can be easily evaluated using numerical methods. On the other hand, if M

is large, we can use asymptotic methods to estimate it.

3. The case of large M. Asymptotic approximations.

Let

g(X) = [(I+ ~ X)' + HI + [(I+ ~ X)' + HI+
()

(1-1)2 (2

+ d 1 + (/ ~ 1)2 X X- (1 + ~~X)
and h(x) = -x +log g(x), then (8) can be written as

-25-

MT BF = _!__ roo ~h(z) dx
>.n lo (9)

We are interested in finding the coding gain (CG) with respect to the

unprotected memory. As the MT BF of the unprotected memory is 1/ >.kM,

dividing the expression in (9) by this value, we obtain

CG = '5_M (X) e"fh(z) dx
n lo (10)

In many applications, M is very large. From now on, we shall assume

that. We have to estimate the integral f0
00 ~lh(z) dx. Applying theorem 3.1.

of chapter I, and approximating by the first term, since h(O) = 0, h'(O) = 0

and h"(O) < 0, then

roo ~h(z) d (11") !
lo x- · 2M(-h"(O)) (M ~ oo) (11)

Hence, from (10),

k (11"M)k
CG'"'"' ~ 2(-h"(O)) (12)

Finding h"(O) is arduous although straightforward. Doing the evaluation

and some algebraic manipulations, we get h(O) = 0, h'(O) = 0 and

h"() (d2 b 2 d bd) a2 + b2 + 2ac + 2bc c2 0 = - + 2a + a + 2 - - -l [2
(13)

Notice, h"(O) < 0 as required. Replacing in (12), we get

-26-

CG- ~ (2 (d' + 2ab + 2ad + ;~ + •'+''+;>"±"' + ~)) l (l
4

)

If we make l -+ oo, an approximation is

CG k (7rM) 4
'""' ~ 2(d2 + 2ab + 2ad + 2bd

(15)

Assume only events A, B and D occur, then c = 0 and a+ b + d = 1.

Hence, (15) becomes

CG k (7rM) ~
"' ~ 2(1 - a2 - b2)

(16)

This is exactly formula (15) in [3].

4. Numerical examples

In this section, we shall prove one of the assertions made at the beginning,

that is, that "scrubbing" soft erroi~ is useful when ECC is present.

Let us assume that a = b and d = 0. This is not totally unrealistic since

in general d is significantly smaller than a, b and c (see [6]).

Denote by (MT BF)A the mean time between failure if only row and

column errors are taken into account, (MT BF)c if only single-cell errors are

considered. As in general MTBF =>.~~'using (14) with 2aA instead of A,

a2 = b2 = h c = d = O, we get

(MT BF)A '""' -
1
- (~ - 1

-) ~
2aAn M l + 1 1

Similarly, taking a= b = d = 0 in (14), we obtain

(17)

-27-

l (1r)l (MTBF)c-- - ~
c>.n 2M

(18)

Taking the ratio,

I

(MT BF)A c (1) 2

(MT BF)c - a1 2(1 + 1) 1

(19)

Referring to example 4 in [3], we have, 2a = .01, c = .99, l = 256. Thus,

replacing these values in (19),

(MTBF)A
(MTBF)c "'.

5

That is, row and column failures, although a lot less frequent than single

cell failures, are roughly responsible twice as often for failures of the whole

system in typical cases (observe that in example 4 of [3], M = 4 while here

M is a big number).

However, we are interested in MT BF, the formula combining all kinds

of errors (recall that we are assuming a= b, d = 0, 2a + c = 1). Using (14)

and MT BF = >.~~, we get

I

MTBF"' -
1

(1r .)

2

()
>.n 2M[2a212 + (2a 2 + 4ac)1 + c2]

20

As (MT BF)A is smaller than (MT BF)c in general, it is a better ap

proximation for MTBF. But how good an approximation? Taking the ratio,

MT BF "' [(2a)
2

+Sac (~)2]-~ (!__±__!_)!
(MT BF)A

1 + (2a)2l + 2a1 l
(21)

Keeping the other variables fixed,

-28-

li
MTBF

m =1
1-oo (MT B F)_~

That is, if l is a very large number, the approximation is good. As a

check, observe that

. MTBF
~~ (MTBF)A = 0 and li

MTBF
m =1

a-! (MTBF)A

a.s expected.

In our example, replacing 2a = .01, l = 256 and c = .99 in (21), we

obtain

MTBF
(MTBF)A,., '6

Hence the actual MT BF is roughly 40% smaller than the one obtained

ignoring single-cell errors. As most single-cell errors are soft errors (see

[6]), techniques like scrubbing soft errors, combined with ECC, are useful in

extending the lifetime of the system. The degree of usefulness is given by

formula. (21).

5. Error protection when s rows of spare chips are added

As usual, our memory is an M x n a.rra.y of chips, the first k columns are

information chips, but at the bottom s rows of spare chips are added (see

figure 5).

The spare chips act a.s follows: each time a. chip fails, a connection to a.

spare chip in the corresponding column is made. In practice, this means that

-29-

(" ./ '-----~ { n- k

M

Figure 5: A computer memory with s rows of spare chips

the chip is replaced by one of the s spare chips in the corresponding column.

Hence, s failures per column are tolerated before the code starts acting.

From (1) and the fact that the mean time between failure of the unpro

tected memory is 1/).Mk, we have

CG = AMk ~a= (R(t))M dt (22)

Denote by (MT BF), the mean time between failure of a memory with

error-coding-correction when s spare rows of chips are added. (MT BF)o

denotes the usual case. Similarly, N, is the number of failures that will make

the whole memory fail and (CG), is the coding gain with respect to the

-30-

unprotected M x k memory. (CG) 0 is given by equation (22) and was found

in the previous sections when an SEC-DED code is implemented. We shall

give upper and lower bounds on (MTBF), and (CG),.

If we assume that spare chips do not fail when they are disconnected, by

Wald's identity, we obtain

1
(MT BF), = >.nM E(N,) (23)

Since the best case occurs when all spare chips are used, and the worst

case when a memory failure occurs when the first two nonreplaceable chips

fail, we have

E(N0) + B2 (n, s + 1) ::; E(N,) ::; E(No) + ns (24)

For a definition of B2(n, s + 1), see chapter I, definition 2.1. Using (23),

we have

(MT BF) + B2 (n, 8 + 1) < (MT BF) < (MT BF) + - 8
-

0 >.nM - ' - 0 >.M (25)

Multiplying by >.kM, we obtain the following bounds for the coding gain:

k k k
- E(No) +- B2 (n, 8 + 1) ::; (CG), ::; - E(No) + k8 (26)
n n n

Since ~ E(N0) = (CG)0 , (26) becomes

k
(CG)o +- B2(n, 8 + 1)::; (CG),::; (CG)0 + k8 (27)

n

-31-

We shall further discuss these bounds in section 7.

6. Doubly error protection

In section 2, we found the reliability R(t) of a row of chips when a SEC

DED is implemented (equation (5)). This expression considers the general

case in which events A, B, C and D occur.

Call R(2l(t) the reliability of a row of chips when a DEC-TED code is

implemented. R(t) has a complicated expression but R(2l(t) is even worse,

since many patterns causing a triple error have to be considered. So, we

shall assume that only events A and B occur, i.e., c = d = 0, a+ b = 1. If

most single-cell failures are soft errors and "scrubbing" is implemented, this

is not an unrealistic assumption.

Denote by (MT B F)' , (CG)' and n' the mean time between failure, coding

gain and number of chips per row, respectively, for the memory with a DEC

TED code. An accurate model for the number of failures per row is a Poisson

process of rate >.n', as it was done in section 2.

A failure of the whole memory will occur if and only if in any row of ·

chips one of the following four events occurs:

(i) Two A-failures in position i and a B-failure in position j, for some i, j,

l~i,j~l.

(ii) Two B-failures in position i and an A-failure in position j for some i, j.

(iii) Three A-failures in some position i.

(iv) Three B-failures in some position i.

However, we shall assume that two A-failures in some position i or two B-

-32-

failures in some position j are enough to make the whole memory fail. The

value of (MT BF)' found under these assumptions is very slightly smaller

than the real one when a and b are close, as is the case in general.

Fix a position i for an A-failure. Then, the number of A-failures in

this position i is a Poisson process of rate a>.n' / l, and as, at most, one

failure is tolerated per position i, the reliability with respect to A-failures

is [exp(-a>.n't/1)(1 + a>.n't/1)]1
• Similarly forB-failures and, since events A

and B are independent, we obtain

R('l(t) = e-An'J [1 +)..7't + ab ()..7't) ']'

By (1) and an adequate change of variables,

(28)

{29)

Applying asymptotics (theorem 3.1., chapter I), as Ml- oo, we obtain

I

(MT B F)' 1
(1r l)

2

"" >.n' 2M(1- 2ab)
(30)

and hence

I

(CG)' k (TrMl) '
"" n' 2{1- 2ab)

(31)

If a = b = ~ as in most cases,

k I
(CG)',..,.- (1rMl)2

n'
(32)

-33-

Notice that the asymptotic estimates (11), (12) and (13) are valid even

for small M, since the estimates are made on Ml which in general is a number

large enough.

Now, what is the increment in coding gain with respect to the memory

with SEC-DED? Using (16) and taking the quotient, we get (as M-+ oo)

1

(CG)' _ _!: (2ab) 2 ..fi
CG n' 1- 2ab

(33)

H a= b = !, this becomes

(CG)' - .!:.jj
CG n'

(34)

Example: l = 256, k = 32, n = 39, n' = 45, M a large number and only

failures of type A or B occur with the same frequency. Then, the increment

in coding gain when DEC-TED is implemented with respect to the memory

with SEC-DED, applying (34), is roughly 14.

7. Comparison between the two methode

In this section, we shall give a discussion of the methods described in

sections 5 and 6 to increase the lifetime of a computer memory. Of course,

we cannot give a conclusive answer about which method is better, since the

manufacturer must take into account hardware considerations.

Assume, as usual, that soft errors are "scrubbed," a = b = ~~ and M is

a sufficiently large number such that we can use asymptotics.

Suppose we implement a DEC-TED code. How many spare rows do we

need to add such that (CG), ~ (CG)' ?

-34-

From (27), in particular, if

k
(CG)o +- B2(n, s + 1) > (CG)'

n

then (CG), ~ (CG)'.

Replacing (34) in (35), we have,

k n r.
(CG)o +- B2 (n, s + 1) 2::- v l (CG) 0 n n'

or,

(~ v'i- 1) (CG)o < ~ B2(n, s + 1)
n' n

By (16), (CG)0 ,..., ~ft-/M, so (36) becomes, as M is large enough,

(:, v'i- 1) ..(i VM :S B2 (n, s + 1)

(35)

(36)

(37)

Using our typical example with k = 32, n = 39, "1.
1 = 45, and I= 256, we

obtain ·

(22.8) VM :S B2(39, s + 1) (38)

Using equation (38) and fixing M (big enough so that the asymptotic

approximation . of (CG)0 makes sense), we can find the minimum s that

verifies the inequality. Let us call s(M) this minimum s. If we add s(M)

spare rows, we are adding 39 s(M) chips, while if we implement a DEC-TED

code, we ha.ve to a.dd 6M chips. If 39 s(M) :::; 6M, or , s(M) :::;
1
2
3

M, we

conclude that adding spare rows is better than implementing a DEC-TED

-35-

code. The matter will be settled if we find B2 (39, s + 1) for various values of

s.

From formula (5) of chapter I, we have

OO (I j) 39
B2 (39, s + 1) = 39 fo e-3

llz ~ ~! dx+

(39)2 looo (, xi) 38 + I e-39z L l x•+I dx
(S + 1). 0 i=O ~.

(39)

Performing numerical integration in (39), we obtain the following table

for B2 (39,s + 1):

s B2(39, s + 1)
1 12.8
2 29.0
3 48.3
4 69.6
5 92.4
6 116.3
7 141.2
8 166.8
9 193.1
10 219.9
11 247.2
12 275.0
13 303.1
14 331.6
15 360.4
16 389.5
17 418.9
18 448.5
19 478.4
20 508.4

-36-

Using these values, we obtain s(M) for several values of M, and then we

can compare s(M) with
1
2
3
M, as shown in the following table:

M (22.8)VM s(M) 123M
50 161.2 8

I
7.7

60 176.6 9 9.2
80 203.9 10

I
12.3

100 228 11 15.4
150 279.2 13 23.1
200 322.4 14 30.8
400 456 19 61.5

The table shows that s(M) is a function that grows very slowly. For M

around 50, the result is inconclusive, but for M ;::: 60, clearly s(M) <
1
2
3
M ,

showing that sparing is better than implementing 2-ECC.

-37-

References

[1] M. Blaum and R. J. McEliece, "Single-Error Protected Semiconductor

RAM Memories," to appear.

[2] R. M. F. Goodman and R. J. McEliece, "Lifetime Analyses of Error

Control Coded Semiconductor RAM Systems," Proc. lEE, vol. 129,

part E, No. 3, May 1982, pp. 81-85.

[3] R. M. F. Goodman and R. J. McEliece, "Hamming Codes, Computer

Memories and the Birthday Surprise," Pro c. 20th Allerton Conference

on Communication, Control and Computing, pp. 672-679.

[4] C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for Semiconductor

Memory Applications: A State-of-the-Art review," IBM J. Res. Develop.

28, 124-134 (March 1984).

[5] M. Y. Hsiao, "A Class of Optimal Minimum Odd-Weight-Column SEC

DED Codes," IBM J. Res. Develop. 14, 395-401 (July 1970).

[6] Intel Corp., "Memory System Reliability with ECC," in Intel Memory

Applications Handbook, 1980.

-38-

CHAPTER ill

A CLASS OF BURST-ERROR CORRECTING CODES

1. Introduction

Figure 1 shows a simple array-code in which the last row and the last

column are parity-check bits.

k 1 column
ChHio:S

Figure 1: Two-dimensional code with single parity checks

This code ha.s block length (k1 + 1)(k2 + 1) and rate k1k2 /(k 1 + 1)(k2 + 1).

It is well known that it can correct a single random error.

It wa.s recently shown that burst-error correction is possible if the digits

are read diagonally ([1], [2], [3]).

An efficient way of diagonally reading the array is shown in figure 2.

Let us call b the burst-error correcting capability of the code. It ha.s been

conjectured ([1]) that, if k2 ~ 2(k1 -1), then b = k1 (i.e., the code can correct

any burst of length smaller or equal than kl).

Our goal in this chapter is precisely proving this conjecture.

There exist efficient encoding and decoding algorithms for the code ([1],

-39-

0 17 14 11 ho
4 1 18 15 hl kl = 3

8 5 2 19 hz k2 = 4

12 9 6 3 h3

16 13 10 7 h.

16, 13, 10, 11, 15, 19, 3, 7: checks
read-out order: 0-+ 1 -+ 2-+ 3-+ · · · -+ 19

Figure 2: (20, 12) b = 3 array-code

[2]). These algorithms are based on the calculation of the horizontal and

vertical syndromes.

The horizontal syndrome is represented by a vector (h0 , h1 , · · · h~:,), where

hi is the sum of the received bits in row i. Similarly, the vertical syndrome

is represented by vector (v0 , vl! · · · v~; 1), where Vj is the sum of the received

bits in column i.

We shall prove that, when the right conditions on k1 and k2 are met,

then for each burst of length smaller or equal than k1 corresponds a unique

syndrome (vertical and horizontal).
'

2. Basic properties of the code

We need a precise mathematical description for the diagonal read-out.

Consider a codeword (aii) o:99:,. The read-out starts at entry (0,0). The
0:5i9:1

set of pairs of indices (i, j) , 0 :::; i :::; k2 , 0 :::; j :::; k1 , will be considered

as labels of vertices in a directed graph, where i is taken modulo (k2 + 1).

- (0-

Every vertex has exactly one outgoing arrow, defined by the following law:

(i,j)-+(i+l,j+l) if j<kl}

(i,ki)-+ (i- kl + 1,0)
(1)

The diagonal read-out of the entries ai.J starts at a0 ,0 and proceeds with

the next entries in a directed path defined by law (1). For this read-out to

make sense, we need the directed graph to be a directed cycle. Let us prove

this result.

2.1. Lemma

The directed graph defined by {1} is a directed cycle.

Proof: Consider the set of integers modulo (k1 + 1)(k2 + 1). Of course, they

can be considered as the vertices of a directed cycle under the law l -+ l + 1.

It is routinely verified that the following assignment f, from our directed

graph to the integers modulo (k1 + 1)(k2 + 1), is a graph isomorphism:

f(i,j) = (i- j)(k1 + 1) + j (2)

The lemma is proved. 1

The diagonal read-out (1) and assignment (2) are illustrated in figure 3,

with k1 = 4 and k2 = 6.

The directed cycle interpretation of the read-out allows us to associate

with a burst of length b, a directed path of length (i.e., number of edges)

b - 1, where the first and last bits of the burst correspond, respectively, to

the first and last vertices of the path.

-.u-

(0,0) (0,1) (0,2) (0,3) (0,4) 0 31 27 23 19 I
(1,0) (1,1) (1,2) (1,3) (1,4) 5 1 I 32 28 24

(2,0) (2,1) (2,2) (2,3) (2,4) 1
I

l
10 6 I 2 33 29 I

I
I

(3,0) (3,1) (3,2) (3,3) (3,4) 15 11 7 3 34
I

(4,0) (4,1) (4,2) {4,3) (4,4) 20 16 12 8 4 I
I

(5,0) (5,1) (5,2) (5,3) (5,4) 25 21 I 17 13 9 I
!

{6,0) (6,1) (6,2) (6,3) (6,4) 30 26 22 18 14

Figure 3: The (35,24), b = 4 code
- -

We also have a distance between two vertices (i.e., length of the shortest

path connecting them). From (2),

Of course, equation (3) is taken modulo (k1 + 1)(k2 + 1).

Further properties are then easy to obtain. The next lemma is immediate

using assignment (2).

2.2. Lemma

f(i + 1,j) = f(i,j) + kl + 1

f(i,j+1)=f(i,j)-kl , O~j<k1

(4)

(5)

-42-

Equation (4) tells us that there is a path of length k1 + 1 from vertex

(i,j) to vertex (i + 1,i) (see figure 3). As index i is taken modulo (k2 + 1),

this means, we have a cyclic structure on the rows of the array.

Equation (5) shows that there are bursts of length k1 + 1 that are un

correctable. In effect, the burst with 1's in entries (i,i) and (i,j + 1), 0 in

all the other entries, has the same syndrome that a burst with 1 's in entries

(l,j) and (l,j + 1), 0 in all other entries, where i =/= l.

From now on, let k2 ~ k1 • Consider a path

(i,j)- (i + 1,j + 1)- (i + 2,j + 2)- ...

Whenever j + t < k1 , the path visits then the next row. However, when

j + t = k1 , from (1), we have

(i + t,j + t) = (i + kl- j, kr) - (i- i + 1, 0)

and we shall say that rows

i + k1 - j + 1, i + k1 - j + 2, · · ·, 1- J mod(k2 + 1)

are skipped by the path.

2.3 Lemma

Consider a path of length at most k1 - 1 in the cycle defined by {1}, with

k2 ~ k1 • Then any row and column are visited at most once by the path. If

a row is skipped, then it will not be visited at all.

-43-

Proof: In each step we move cyclically to the right. Hence, a path of length

at most k1 - 1 will visit at most k1 different columns. Since there are exactly

k1 + 1 columne, no column can be visited more than once.

Consider now rows. Without loss, assume the path has length b = k1 - 1.

Let (i, j) be the initial vertex. Given the cyclic structure on rows, also

without loss, we may take i = 0.

Assume j = 0 or j = 1. After k1 -1 steps, the final vertex is (k1 -1, k1 -1)

or (k1 - 1, ki). Since k1 ~ k2, the path visits exactly k1 consecutive rows.

Assume j ~ 2. The path is (using (1))

(0, j) -+ (1 , j + 1) --+ . . . --+ (k 1 - j + 2 , 0) --+ . . . --+ (k2 , j - 2)

Since k1 ~ k2 , no row is visited more than once. Rows

kl - j + 1 , kl - j + 2 , . .. , k2 - j + 1

are skipped and the path never visits them. 1

We can now prove our main result relating the burst-error capability of

the code with conditions on k1 and k2 • We shall do that in the next section.

3. The Main Result

3.1. Theorem

The code defined by the diagonal read-out {1) can correct any burst of

length at most k1 if and only if

-44-

(6)

Proof: k1 = 1 is a trivial case, so we are going to assume k1 ~ 2.

=>) Assume the burst of length k1 whose associated path is

(0,0)-+ (1, 1)-+ ... --+ (kl -1,kl -1)

occurs, where entries (0,0) and (k1 -1, k1 -1) correspond to 1's and the rest

of the entries are O's (figure 4).

0 1 kl- 1 kl
0 1 0 0 0
1 0 0 0 0

kl- 1 0 0 1 0
kl 0 0 0 0

k2 0 0 0 0

Figure 4

There is exactly one other vector having the same syndrome: the vector

with 1 's in entries (0, k1 - 1) and (k1 - 1, 0), 0 elsewhere. Since the code can

correct any burst of length k1 ,

d((O, k1 - 1), (k1 - 1, 0)) ~ k1 (7)

From (3), in particular,

-45-

f(O,kl -1)- j(k1 -1,0) ~ k1 (8)

Applying (2) and taking into account that inequality (8) is taken modulo

(k1 + 1)(k2 + 1) , we have

(9)

After some easy manipulations, (9) becomes

(10)

Since all the involved numbers are integers, (6) follows from (10).

<=) Assume a burst a of length b ~ k1 occurs. We shall show that no other

burst of length smaller or equal than k1 has the same syndrome. Distinguish-

two cases:

(i) The path of length b - 1 associated with the burst does not skip rows.

(ii) The path associated with the burst does skip rows.

Assume there is another burst b of length at most k1 with the same

syndrome that a and a =fi b. By considering cases (i) and (ii) separately, we

shall show that each leads to a contradiction.

Case (i)

The path of length b- 1 associated with the burst has the form

(i,i)--+ (i + 1,i + 1)--+ .. · --+ (i + b- I,j + b- 1)

-46-

where j + b- 1 ::; k1 • Without loss, i = 0. Thus, the burst is a vector

a= (0, . .. '0, ao.j, al,i+l' . . . 'ai-lJ+II-11 ... '0, . . . '0)

where a0J = all-lJ+II-l = 1. The case is illustrated in figure 5.

0
1

b-1

b

k2

0 1 j j+1 j+b-1
• 0·-·---· · 0

9 • -- - - - -- - 0 I', t
I ' I

' '
I

' I
' : ' \ ~ o o-------- o

~----------------------~

Figure 6: Case (i) : The path (black points) does not skip rows

Let

b = (0 · · · O, baJ+/h ba+lJ+.B+l, · · ·)

such that baJ+P = 1 and (a, j + {3) is the initial vertex in the associated path.

As we are assuming that a and b have the same syndrome and a i= b, the

following conditions hold:

b,,, = 0 for s > b - 1 0 ::; t < i

(a, /3)#(0,0) }

or i + b ::; t ~ k1
(11)

-41-

Consider the path associated with b, say,

(o:,j +/3)-+ (a:+ l,j + /3 + 1)-+ . . .

This path has length at most k1 - 1.

There are three possibilities for a: and /3, each one leading to contradic-

tion.

(a) a: = /3: Assume j = 0 , then (0,0) is the initial vertex in the path

associated with a and (a:, a:) is the initial vertex in the path associated with

b. Since (0, 0) =/= (a:, a:) , a: 2: 1. Then the path associated with f3 has the

form

(a, a:) -+(a:+ 1, a+ 1)-+ · · · -+ (k1 , kl)-+ (1, 0)-+ · · ·

Notice that row 0 is skipped, then, by lemma 3.3., it will never be visited .
..

Hence, b0,1 = 0 for all t, but a0,0 = 1, thus, a and b cannot have the same

syndrome.

Let j > 0, then, the path is

(a, a +j)-+ (a:+ 1,o: +j + 1)-+ · · ·-+ (k1 - j,kl)-+

-+ (k2 - j + 2, 0) -+ · · · -+ (0, j - 1)

Since ao,j = 1 and a and b have the same syndrome, then boJ-l = 1. But

this contradicts (11).

..
(b) a:> /3: The path associated with b is

-48-

(a,{3 + j)---~> (a+ 1,j + {3 + 1)---~> ···---~>(a- {3 + b- 1,j + b- 1)- .. ·

Notice that b- 1 < a- {3 + b- 1 ~ 2(b- 1) ~ 2(k1 - 1) ~ k2 , by (6).

Since ab-1JH- 1 = 1 , then ba-/Hb-l,jH-l = 1 , but this contradicts (11).

(c) a < {3: Distinguish two cases:

{3 - a ~ k1 - (j + b - 1) and f3 - a > k1 - (j + b - 1).

Assume {3- a~ k1 - (j + b- 1). The path is then

(a,{3 + j)---~> (a+ 1,{3 +j + 1)--+ · .. --+(a- {3 + b -1,j + b -1) -""7t

-I> (a - {3 + b, j + b) -I> ... --+ (b - 1, j + b - 1 + {3 - a) -I> ...

Our conditions imply j +b-1 < j +b-1+{3 -a~ k1 • Since ab- 1,j+o-1 = 1

then bi-lJH-l+P-a = 1. But this contradicts (11).

So, assume {3- a> k1 - (j + b- 1). Therefore, the path is

(a,{3 + j)---~> (a+ 1,{3 + j + 1)--+ .. ·--+(a- {3 + b- 1,j + b- 1)--+

-I> (a-{3+b,j+b) -I> .•• -I> (a-{3+k1-j,kt) -I> (k2+a-{3-j+2,0) -I> ...

Our condition implies a- {3 + k1 - j < b- 1. Observe that j + f3- a ~ k1 •

Thus, from (6),

-49-

k2 ~ 2(kl - 1) ~ (b- I)+ (k1 - I) > (b- I)+ (k1 - 2)

~ (b- I)+ (j + f'- a- 2)

so, k2 + Q - !' - i + 2 > b - 1.

This means, row b - I is skipped by the path. This is a contradiction,

From (a), (b) and (c), the result is true for bursts whose associated path

does not skip rows.

Case (ii)

Now the path associated with a has the form

(i,j)--+ (i + I,j + 1)--+ ... --+ (i-f kl- j, kl)--+

--+ (i- j + I, 0) --+ · · · --+ (i- j + t +I, t)

where j - t ~ 2. Without loss, i- j + 1 = 0 (see figure 6).

So,

a - (0 . . . 0 a . 1 at t 0 . .. 0) - I I l J- 1)1 l 1 l I I

where ai-lJ = at,t = I ; the associated path has endpoints (i -I, j) and (t, t)

and rows k1 , k1 + I, · · · k2 are skipped.

Let (a,!') be the initial point of the path associated with b. Since a and

b have the same syndrome, the following conditions hold:

0
0 • 0

0.

t 00

j-1 0
0

k -1
1 0

k 2

-50-

t j

0 0 0

0 0 0

• 0 0

0 • 0 0
0 0 • 0

0 oo •

. Figure 6:

The path with endpoints (j- 1,j) and (t, t) skips rows k1 , k 1 + 1, · · · k2

0 ::; a ::; t or j - 1 ::; a ::; k1 - 1

0 ::; f3 ::; t or j ::; f3 ::; k

(a, f3) ¥: (j - 1, j) , ba,,B = 1

bu,v = 0 for t < u < j - 1 , k1 ::; u ::; k2 or t < tJ < j

As in case (i), we distinguish three subcases:

(12)

(a) f3 = a+ 1: Assume first 0 ::; a ::; t. Then the path associated with b is

(a, a+ 1)-+ (a+ 1, a+ 2)-+ · · · -+ (t, t + 1)-+ · · ·

Since a1,1 = 1 , then b1,1+1 = 1 , but this contradicts (12).

So, assume a ~ j. Then, the path is

-51-

(a,a+ 1)--+ (a+ 1,a+2)--+ · ·· --+ (k1 -1,ki)--+

--+ (0,0)--+ (1, 1)--+ ... --+ u- 1,j- 1)--+ ...

Since aj- 1J = 1 , then bj- 1,j- 1 = 1 , again contradicting (12).

(b) {3 < a + 1: Since aj-1,j = 1, the path associated with b visits column j

at a point (l, i) , b1J = 1 and l = a - {3 + j or l = a - {3 + j + 1.

From (6), j + 1 ~ l ~ k2. If l ~ k1 , we would contradict (12), hence

j ~ l ~ kl- 1.

Define a finite subset T of nonnegative integers as follows:

T = { i: l + i(l- j + 1) < k1 and bt+i(l-=·i+l) ,l+(i-1)(/-i+I)+I = 1}

Since b1J = 1 : 0 E T , hence, T is not empty.

Let i 0 =max T, then, as in particular, i0 E T ,

bl+i0 (1-j+I),l+(i0 -1)(1-j+I)+l = 1.

Since a and b have the same syndrome,

al+io(l-j+1),l+io(l-j+l)+l = 1,

and by the same token,

bl+(io+I)(I-j+1),l+i0 (l-j+I)+l = 1 (13)

- 52-

By the maximality of i0 , l + (io + 1)(1- j + 1) ~ k1 .

Also, since l + i0(l- j + 1) $ k1 - 1 , then

l + (io + 1)(1- j + 1) $ k1 - 1 + (1- j + 1) $ 2(k1 - 1) $ k 2

by (6). Thus, (13) contradicts {12).

(c) {3 > a+ 1: We claim, the path associated with b visits the rectangle of

entries (u, tJ) where j - 1 $ u $ k1 - 1 and j $ v $ k1 (in figure 6, this

corresponds to the lower right rectangle). If j- 1 $ a then the initial point

(a, {3) is in the rectangle, so assume a < j - 1. Distinguish two cases:

{3 - a > k1 - j + 1 and {3 - a $ k1 - j + 1.

If {3 - a > k1 - j + 1 the path associated with b is

(a,{3)-+ (a+1,{3+ 1)-+ ·· · -+ (a-f3+k 1 ,k1)-+ (a-{3+k2 +2,0)-+ .. .

Since {3 - a - 2 < k1 - 1 and j - 1 $ k1 - 1 then

({3- a- 2) + (j- 1) < 2(k1 - 1) $ k2

by (6). Therefore, since a- {3 + k1 < j - 1 and a- {3 + k2 + 2 > j - 1 row

j - 1 is skipped. This is a contradiction because ai-l,i = 1.

If {3 - a $ k1 - j + 1 the path is

-53-

(a,,B)--+ (a+ 1,,8+ 1)--+ ···--+ (i -1,,8- a+j -1)--+ ·· ·

and point (i- 1, ,B- a+ j- 1) lies in the rectangle. So, the claim is true, and

without loss, we may assume that the initial point (a, ,B) lies in the rectangle,

I.e.,

Define a finite subset W of nonnegative integers as follows:

W = { i : (3 + i(,B - a- 1) ~ k1 and b~+(i-1)(~-o-1)-1,8+i(~-o-1) = 1}

Notice that W is nonempty since 0 E W. Let i0 = max W. In particu

lar, b~+(io- 1)(~-a- 1J- 1 ,.B+io(~-o- 1 J = 1. Since a and b have the same syndrome,

then a~+io(~-a-1)-1,~+io(~-o-1) = 1.

If {3 + (io + 1)({3 - a- 1) ~ k1 then b~+io(~-a-1)-l,~+(io+l)(~-a-1) = 1

contradicting the maximality of i0 . Therefore, (3 + (i0 + 1) ([3 - a - 1) > k1 •

...
So, the path associated with b after vertex

18

(f3 + (i0 - 1)([3- a- 1)- 1, (3 + i 0 ({3- a- 1))

· .. --+ (f3 + (i0 - 1) ([3 - a - 1) - 1 , (3 + i0 ([3 - a - 1)) --+

--+ (f3 + (i0 - 1)((3- a- 1), {3 + i0 ({3- a- 1) + 1) --+

· .. --+ (a- (3 + k1 , kt)--+ (a- (3 + k2 + 2, 0)--+ · · ·

-54-

As before, by (6),

a- {3 + k2 + 2 > k1 - 1 ~ {3 + i 0 ({3- a- 1) - 1,

and since k1 < {3 + (i0 + 1)({3- a- 1) we have,

a- {3 + k1 < {3 + io(/3- a- I)- 1.

This means that row {3 + i0 ({3 - a - 1) - 1 is skipped by the path, a

contradiction since a.B+io(.B-a-1)-l,.B+io(.B-a-1) = 1.

Subcases (a), (b) and (c) show that any burst a of type (ii) has a unique

syndrome. This completes the proof. 1

- 55-

References

[1] P. G. Farrell and S. J. Hopkins, "Burst-error-correcting Array Codes,"

The Radio and Electronic Engineer, Vol. 52, No 4, April 1982, pp. 182-

192.

[2] P. G. Farrell and S. J. Hopkins, "Decoding Algorithms for a Class of

Burst-error-correcting Array Codes," IEEE Int. Symp. on Information

Theory, Les Arcs, France, June 21-25, 1982.

[3] J. S. Daniel, "Array Codes for Error Control," M. Sc. Thesis, University

of Manchester, 1983.

-56-

CHAPTER IV

A CLASS OF ERROR-CORRECTING CODES

FOR MAGNETIC TAPES

1. Introduction

Patel and Hong ([2],[4]) devised an error-correcting scheme that was suc

cessfully used in the IBM 3420 series tape units with a recording density of

6250 bits per inch. This error-correcting scheme is capable of correcting any

error pattern on a single track or any error patterns on two tracks provided

that the erroneous tracks i and j are identified by some external pointers

(that is, two track erasures).

Here, we shall describe in detail a family of codes that can correct higher

numbers of track errors and erasures and contains previously known codes

as particular cases ([1],[4]). These codes are maximum distance separable or

MDS ([3]) .

An IBM 3420 series tape unit writes characters in parallel across 9 tracks

on a ~-inch tape as shown in figure 1.

Each character consists of 8 information bits and one overall parity

check bit. The rows and the first 8 bits in each column will be considered as

elements of the Galois field of order 28 , GF(28
).

Although GF(28
) can be defined using any irreducible polynomial of

degree 8 over GF(2), Patel and Hong used g(x) = 1 + x3 + x4 + x5 + x8

which is the irreducible polynomial of degree 8 with minimum exponent.

This choice of g(x) simplifies the decoding (see [2]).

I Track No.

)

-57-

Characters
___..A

o boo 'bollbo2 bo3 bo4 bos

1 blQ bn b12 b13 b14 b15

2

3

4 Bo B1 B2 B3 B4 Bs

.,

bo6 bo7 \

b16 b17

B6 B7 Bo Bl B2 B3

I \ 5

~
6 \ I

Overall 7 b?Q bn b72 b73 b74 b7 5 b7 6 bn (
parity I

check s qo ql q2 q3 q4 qs q6 q7 J

\ _.) \
v y

Code array Code array

Figure 1

The construction can be generalized to an (n + 1) x n array. Consider an

(n+l)-track tape. Let GF(2") be defined by g(x), a:1 irreducible polynomial

of degree n over GF(2). Denote by Bi the first n bits in each column,

0 ~ i ~ n- 1, and by Zi each row, 0 ~ j:::; n. Zn is a parity-check row (also

denoted Q in literature). Bi and Zi are considered as elements in GF(2").

The type of errors that occur are track-errors. In other words, since rows

are elements in · G F(2") these are byte-errors. There are efficient byte-error

correcting codes, like Reed-Solomon codes. However, they do not work well

for magnetic tapes, since the input and the output are read vertically. So,

we need a procedure that permutes the action of rows and columns. This

will be achieved by the family of codes B(n, m) to be described in the next

-58-

section.

2. Construction and basic properties of B(n,m)-codes

Consider an (n + 1) X n array (b,J) o~i~n , b;,j E GF(2). Let GF(2")
O~j~n-1

be defined by g(x), where g(x) is an irreducible polynomial of degree n over

GF(2). Let a be a root of g(x), et E GF(2"), i.e., g(a) = 0.

As stated in the introduction, we consider the rows and the first n bits

in each column as elements of GF(2"). Therefore,

n-1

z, = L b;~:etk , 0 =::; i :=;; n
k=O
n-1

Bj = L b~:jCtk , 0 =::; j ::;; n - 1
k=O

(I)

Let 0::;; m::;; n-1. A B(n, m)-code is the set of vectors (Z0 , Z1 , · · ·, Zn-d

ntisfying the following equations in GF{2"):

n-1

I: ai zt = 0 ' 0 :::; i ::;; m - 1 (2)
j=O

We see immediately that the m equations (2) define a linear code of

length n over GF(2"). We want to prove that the code is an MDS-code and

its minimum distance is m + 1. We need first a technical lemma.

2.1. Lemma

Let eto 1 et1 1 • • • 1 Ctm-1 be elements in GF(2") and let

-59-

ao a1 a2 am-1
a2 a2 a2 2

0 1 2 am-1

D(ao, a 1, · · ·, am-d = det a• a• a• 4
0 1 2 am-1

2m- I
ao

2m-1
a1

2m-I
a2

2m-1
am-1

Then

II (a · +a· +···+a·) 11 ll lk
{ i1 ,il ,·· ·,ik }~{0,1,· ·· ,m-1}

s.e., D(a 0 , a 1 , • · • , am-d is the product of the sum of the elements of all

possible subsets of { ao, a1, · · · , am-1}.

Proof: Induction on m. If m = 0 the result is trivial. Assume it is true

form~ 1. Consider the polynomial f(x) = D(x, a 1 , a 2 , · · ·, am-d of degree

2m-1 • Since our field has characteristic 2, all possible sums

are roots of f(x). Since there are exactly 2m- 1 - 1 nonempty subsets of

{ a 1 , a 2 , · · · am-d and 0 is also a root, f (x) admits a factorization

f(x) = Cx II (3)
{i1 ,il,···,ik }~{1,2,···,m-1}

where C is the coefficient of x2
m-l, i.e.,

By induction,

-60-

C= II (a · +a· +···+a ·) ,, ·~ '-"
{ i 1 ,i,,.· ·ik} s;; { 1 ,2,···,m-1}

so, replacing in (3) and making x = a 0 , the result follows. 1

We can now prove our main result.

2.2. Theorem

A B(n, m)-code is a linear (n, n- m, d = m + 1) code. In particular, it

is an MDS-code.

Proof: Taking the 2(th root in equation i of (2), observe that the parity

check matrix of the code is given by ().ij) o~i~m- 1 where ().ij) 2; = ai. Thus,
O~j~n-1

the code will be MDS and will have dimension n- m if and only if any m

columns are linearly independent ([3], chapter 11), i.e.,

det ((>.ij-") O$i~m-1) =/= 0 for any 0 ~ io < i1 < · · · < im-1 ~ n- 1.
O~k~m-1

But

hence, it is equivalent to prove that D (cxio, a:h , · · · , aim- 1) =/= 0, where

(
·)2m-1 a:''

aim-1 l
(ai~-1)2 .

(aim-1)2m-l

-61-

But the result follows from lemma 2.1., since D(a'\ ah, 0 0 0

, aim- I) is a

product of polynomials in CL of degree smaller than n. 1

From B(n, m)-codes, we can obtain extended B(n, m)-codes denoted

B(n,m), by adding a parity check byte Zn

(Z0 , Z1 , 0 0

· , Zn- 1) is in B(n, m).

A B(n, m)-code is still MDS. We prove this fact in the following theorem.

2.3. Theorem

A B(n, m)-code is a linear (n + 1, n- m, d = m + 2) code. In particular,

it is an MDS-code.

Proof: By theorem 2.2., the minimum distance of a B(n, m)-code is at

least m + 1. This minimum distance will be exactly m + 1 if and only if

there is a codeword of weight m + 1 in B(n, m), say (Z0 , Z1 , 0 0 0

, Zn-d, and

L:j~~ Z; = 0. So, assume this is the case and let

0 ~ io < i1 < 0 0 0 < im ~ n - 1

be the nonzero entries. Then, from (2), these entries satisfy the following set

of equations:

m
(4)

L aik(Z;J2i = 0 O~i~m-1
k=O

Replacing Z;m = I:k;-01 Z;k in the last m equations, we obtain:

-62-

m-1

L (af~< + afm)(ZjJ2
; = 0 1 0 ~ i ~ m- 1 (5)

1:=0

Taking the ith equation to the power zm-1-i, the system becomes

m-1

L (af~< + afm)2
i (Zilr)2m-l = 0 ' 0 ~ i ~ m- 1 (6)

1:=0

0 ~ i ~ m - 1. Then, system (6) admits a

nontrivial solution if and only if D(a0 ,a1 ,oo 0 ,am-d = 0. But lemma 2.1.

assures that D(a 0 , a 1 , 0
•

0
, am-d is a product of polynomials in a of degree

smaller than n. Hence D(a0 , a 1 , 0 o o, am-d =I 0 and (5) is not satisfied.

Therefore, the minimum distance is m + 2. 1

Theorem 2.3. assures that, whenever 2s + t ~ m + 1 a B(n, m)-code can

correct s track errors together with t track erasures. In the next section, we

discuss encoding and decoding procedures.

3. Encoding and Decoding

Our code is an array (bii) o9~n , where the rows Zi, 0 ~ i ~ n - 1
O~j~n-1

satisfy (2) and Zn is a parity-check row. The input and output are read

vertically, an (n +I)-bit column at a time. However, the errors occur in the

horizontal tracks. Hence, we need a procedure to permute the action of rows

and columns. The key property is given by the following lemma:

3.1. Lemma

-63-

n-1 n-1

L cr"(Zj)2; = L(cr")2;Bj o::;i::;m-1 (7)
j=O j=O

Proof:

n-1 n-1

= I: c~ 2:: bj~:(o:1:)zi
j=O 1:=0
n-1 n-1

= l:(o:1:)2i 2::: bj1:0:j
1:=0 j=O
n-1

= 2:(o:~:)zi B~: I
1:=0

If we consider a B(n, m)-code as an array code (bij) o:5i:5n over GF(2),
O:$j:$n-1

by lemma 3.1., an equivalent definition is

n-1 (8)
j=O

L(cr")zi Bi = 0
j=O

Let the parity-check bits be contained in columns B 0 , B1 , 0 0 0
, Bm-l and

in the parity-check row Zn. Thus, the information symbols are contained in

Bm, Bm+1 , • 0

·, Bn_1 • Notice that a B(n, m)-code has rate n- m/n + 1.

The encoding proceeds as follows: first Bn-1 is received, then Bn_2 , etc.,

up to Bm. For each Bh bnj = L:i:~~ bkj is immediately obtained. From (8),

we have

m-1 n-1

L (cr")2i Bj = L (cr")2i Bj (9)
j=O j=m

-64-

Circuits to obtain L:j~~(ai)2j Bi are easy to implement ([2]). We finally

need to solve the linear system (9) in order to obtain B0 , B1 , · · ·, Bm_1 • Once

the encoding is completed, the bytes Z0 , Z1 , Z2 , · · ·, Zn are sent. However,

assume bytes Zo, zlJ ... 'Zn are received. We have to retrieve the original

information. The syndrome (SP, 80 , 81 , • · · , Sm_1) is given by

n-1 (10)
i=O

si = 2: ai(ij)2
j

j=O

However, (10) is an inefficient way to calculate the syndrome, since the

information is read vertically. As in the case of the encoding, using lemma

3.1., we obtain

n-1 (11)
i=O

si = l:(ai)2
j iJi o:::;i:::;m-1

j=O

SP is easily obtained, one bit at a time, while circuits that find Si for

0 ~ i ~ m-1 a.re also implemented without difficulties ([2]). If the syndrome

is the zero vector, we conclude that the codeword has been transmitted

without errors.

Now, supposes errors occur- say ei,, ei,, · · · , ei. at locations i 1 , i 2 , · · ·, i,-

together with t erasures -say ej11 ei, · · · , ej, a.t locations j 1 , j 2 , · · · , j 1- where

2s + t :::; m + 1. Hence, Zi, = Zi, + eik for 1 :::; k ~ s, Zik = Zik + eiJ, for

1 ~ k ~ t, and Zi = Zi in all other locations. System (10) then becomes

-65-

' t

SP = L ei~r + L ei~r
k=l k=l

' t
(12)

sj = I: ai~<(eik)2' +I: ai~<(ejk)zl O~l~m-1
k=l k=l

System (12) is a system of m+ 1 equations with 2s+t unknowns, 2s+t ~

m + 1. We are assuming that no error or erasure occurs in track n. If it

does, system (12) has to be slightly modified. The unknowns are the errors

Since a B(n,m)-code has minimum distance m+2, a solution to system (12)

exists and is unique. So, it is necessary to build circuits that will solve system

(12) in order to complete the decoding. The decoder will have l mt J + 1

decoding modes, according to the number s = 01 11 2, · · · , l mil J of track

errors that B(n, m) can correct. The strategy for choosing a decoding mode

is then as follows: count the number t of erasures that have occurred, and

then choose the maximum s such that 2s + t ~ m + 1. Assume then that s

errors have occurred, and this choice of s will determine the decoding mode.

The examples in the next section will help to clarify this matter.

4. Examples

In all the examples we take n = 8, as in the IBM 3420 series tape unit

with 9 tracks.

Example (i): B(8, 0)

This is a code defined by the parity check equation L::~=O zi = 0. Its

minimum distance is 2, so it can correct only one track-erasure.

-66-

Example (ii): B(8, 1)

This is the well known Patel-Hong code ([2],[4]). The minimum distance

of B(B, 1) is 3, so it can correct either one track-error or two track-erasures.

According to (2) and lemma 3.1., this code is defined by

8

LZj=O
j=O

7 7 (13)

2.: a1·zj = L cJ Bj = o
j=O j=O

where a is a root of the irreducible polynomial over GF(2) g(x) = 1 + x3 +

x4 + x5 + x8• The redundant bits are in B0 and in Z8 (see figure 1). For

the encoding, Z8 is readily obtained, while B0 = 2:j=1 ai Bi. The circuits

are described in [2]. For the decoding, we have two decoding modes. Let us

treat them separately.

Mode I: Correction of one track-error

Assume row k is in error, that is, Z~: = Z~: + e~; and Zi = Zj for j i= k.

Assume first that k i= 8. According to (11) and (13), the syndrome is

i=O (14)
7

So= 2".: ciBi
j=O

SP and 80 are calculated immediately from the received bits. According

to (12), if 0 ~ k ~ 7

(15)

-67-

So, SP gives us the error e1" while ak = S0 / SP tells us which track is in

error. Adding ek to Zk, we obtain Zk, recovering . the information. If the

error occurs in track 8, then S0 = 0 and we do not need to bother to recover

the information.

Mode II: Correction of two erasures

Assume that the information in tracks i and i is erased. We have to find

zi and Zj. So, assume zi = Zj = 0 in order to compute the syndrome sp

and S0 • Hence ei = Zi and ei = Zi. Let 0::; i < i ::; 8. If i = 8, then

(16)

So, ei = a-i S 0 and we are not interested in e8 •

If j < 8, we have

(17)

Solving this system,

The encoding and decoding circuits are discussed in detail in [2].

Example (iii): B(8, 2)

This code has rate 2/3 and was first reported in [1]. According to (2)

and lemma 3.1., the code is defined by

-68-

i=O
7 7

2: a' z, = 2: a' B, = 0 (18)
i=O i=O

7 7

L ai(z,)2 = 2: a2' B; = o
i=O i=O

Now the parity check bits are contained in B0 , B1 and Z8 • Let us describe

in detail the encoding and the decoding.

Encoding

Z8 is obtained as in example (ii). B2 , B~, B4 , B5 , B6 and B7 are given,

since they contain the information symbols. From (18),

7

Bo + aB1 = l:a'Bi
i=2

7
2 """' 2 ° Bo + a B1 = L...., a 'B,

i=2

Solving system (19), we obtain

7

Bo = L ai+1 (ai-2 + a'-3 + .. 0 + 1) Bi
i=2

7

B1 = Z:::ai-1 (a'-1 + a'-2 + · 0
• + 1) B,

i=2

Circuits performing (20) are easily constructed.

Decoding

(19t

(20)

Assume rows Z0 , Z1 , 0
• ·, Z8 are received (resp., columns B0 , B1 , 0

• ·, B1).

The decoder's first step is to calculate the syndrome

-69-

i=O

(21)
i=O

i=O

If no errors occur, we have SP = S0 = S1 = 0. Since B(8, 2) has minimum

distance 4, it can correct either a track-error together with a track-erasure,

or three track-erasures. Hence, we need two decoding modes.

Mode I: Correction of a track-error and a track-erasure

Assume that an error pattern ei occurs in track i and ei occurs in track

j, but j is known, and all the other tracks are correctly transmitted. Assume

first that j ~ 7. The decoder has to determine first if i = 8. Notice that,

if i = 8, then S0 = aiei and S1 = aieJ. Thus, a-iso = SI/S0 =_ei, or

(S0) 2 = ai S1• We see that if i ~ 7, then (S0) 2 =I= ai S1 • So, when i = 8, this

fact is easily determined and we correct track j after finding ei.

So, assume ai S1 =/= (S0)
2

, then i ~ 7 and the syndrome is given by

sl = eti(ei) 2 + ai (ei)2

Solving system (22), we obtain

(22)

(23)

Hence, we have to construct circuits that find S1 + ai(Sp)2 and (S0)
2 +

ai S1 , then we multiply S1 + ai(Sp)2 by a until we obtain (S0)2 + ai S1 •

-10-

Counting how many times we had to multiply by a, we obtain i. Once we

know i, we are in the case of B(S, 1) with two erasures, i.e., we have to solve

system (17).

If i = 8, since we are not interested in e8 , we have to solve

gives us e;.

So= aie; }

i 2 sl =a (e;)
(24)

The decoder's final step is to add e; and ej to the corresponding tracks.

Mode II: Correction of a triple track-erasure

Assume erasure patterns e;, ej and ek occur in tracks i, i and k where

0 ~ i < i < k ~ 8. If k < 8, we have

(25)

The solution of this system is given by the following:

2 ai+k(Sp)2 + (So)2 + (ai + ak)Sl
(e;) = (ai + ai)(ai + ak)

2 ai+k(Sp)2 + (So)2 +(a;+ ak)Sl
(e;) = (ai + ai)(ai + ak) (26)

2 ai+i(Sp)2 + (So)2 + (ai + ai)S1

(ek) = (ai + ak)(ai + ak)

Circuits solving (26) are more complicated than in the case of two era

sures, but still perfectly feasible. In order to find e;, e; and ek, we need

-11-

to ta.ke the square root, but this is easily done, since square root is a. 1-1

operation.

Finally, if k = 8, we ha.ve to solve the system

80 = ai ei + cr! ei }

sl = ai(ei) 2 + a.i(ej) 2

a.nd the solution is given by

(27)

(28)

-72-

References

[1] M. Blaum and R. J. McEliece, "Coding Protection for Magnetic Tapes:

a Generalization of the Patel-Hong Code," to appear.

[2] S. Lin and D. J. Costello, "Error Control Coding," Prentice-Hall, 1983,

16.2.

[3] F. J. MacWilliams and N.J. A. Sloane, "The Theory of Error-Correcting

Codes," North Holland, Amsterdam, 1978.

[4] A.M. Patel and S. J. Hong, "Optimal Rectangular Code for High Density

Magnetic Tapes," IBM J. Res. Dev., 18, pp.579-588, November f974.

- 73-

APPENDIX I

ASYMPTOTIC ESTIM:ATES OF INTEGRALS

We want to prove theorem 3.1. of chapter 1. We need some lemmas first.

1. Lemma

Let I1 = f0
00 ~a~c:z~< x1 dx where a~c < 0, M > 0 and t and k are positive

integers. Then,

!±.!
I= (M(-a~c))- 1c r (t + 1)

I k k

In particular,

It= 0 (M-!.¥)

Proof: Make the substitution M(-a~c)xlc = u. Then,

X= (U)1/k
-Ma~c

1 looo -u t+l_l It= !±.! e u-"k du
k(-Ma~c) 1c o

= (-M~)==1fl r (t: 1) = 0 (M-~)
Proved. 1

2. Lemma

(1)

(2)

80

Let Li~oJ~o Ciiziwi be a double series convergent for 0 :::; z < 2R, 0 :::;

w < 2S. Then, if 0 :::; z < R/3, 0 :::; w < S /3, A is a positive integer,

-74-

L Cijz'wi = 0 (z-A+l) + 0 (urHl)
i2:0,j2:0
i+j>A

(3)

Proof: Cij = 0 (R-i s-i) since the terms of a convergent series are bounded.

Now, if 0 ~ z < R/3, 0 ~ w < R/3, we estimate

But

'"" . . (""" (z)i (w)i) L- c .. z'vJ- 0 L.., - -
;;~o;~~o 'I - i+j>.A. R S

-o I: -+-
(

00

(z w)I)
- I=.A.+l R S

[(
z w)A+ll , =0 R+ S =O[(z+w)A+lJ

(z+ w)A+l ~ (2max{z,w}t+l = z··Hlmax{z-A+l,w.A.+l}

~ zA+l (z-A+l + W.A.+l)

Hence (3) holds. 1

Notice that estimate (3) is not uniform with respect to A.

We can now prove theorem 3.1. of chapter I. Let us state it again.

3. Theorem

Let F(M) =]0
00 g(x)eA'h(:z:) dx, where g is continuous and positive when

x ~ O, h is infinitely differentiable for x ~ 0, h(x) < h(O) for all x > 0,

h'(o) = h"(o) = . .. = h(k-ll(o) = o , h(kl(o) < o

for some k ~ 1, limz-oo h(x) = -oo,]0
00 g(x)eh(z) dx converges, and let

-75-

h(x) = a0 +I: aixi
j?:_k

for 0 ~ x ~ 8 for some 8 > 0. Then

00

g(x) = I: bixi
j=O

F(MJ- (f. d.u-"t') e'f•l'l

where

and

(4)

(5)

Proof: Assume h(O) = a0 = 0. Claim: for any T > 0 and l a positive integer,

1oo g(x)~h(z) dx = 0 (M-l) (7)

as M---+ oo. In effect, since limz oo = -oo and h is continuous, there exists

a constant c > 0 such that h(x) < -c for all x ~ T. Thus,

1oo g(x)~h(z) dx = 1oo g(x)e(M-l)h(z)eh(z) dx

~ e-c(M-1) hoo g(x)eh(z) dx = 0 (e-cM) = 0 (M-1)

as claimed. Now, consider ~o~cz" as the main factor in the integrand. The

remaining factor g(x) exp (Mxk+1(aH1 + aH2x + a1:+3x2 + · · ·)) can be ex

panded as a double power series in the two arguments M xH1 and x, conver-

-76-

gent for 0 ~ x < 5 and for all values of M xk+1 • We denote this double series

by

P(Mx"+l,x) = LCij (Mxk+1)i xi
iJ

The coefficients Cij are independent of M and x. We want to approximate

P uniformly by its partial sums. Therefore, we restrict M xk+1 to some

finite interval. Take for instance 0 ~ M xk+1 < 1. Then, we use the power

series only if 0 ~ x ~ M-1/kH. Call r = M-1/kH. We may assume that

M > 5-(Hl), whence T < 5.

Choose a positive integer A and write

Then, we have

PA (Mx"+~,x) = L cii (Mx"+I)i xi
i~OJ~O
i+j$A

hoo g(x)~h(z) dx- hoo PA~a~:zk dx =

= fo' (P- PA)~a~:zk dx + /,oo g(x)~h(z.) dx- ioo PA~a~:zk dx =

= fo' (P- PA)t?Ja~:zk dx + 0 (M-1) + 0 (100

t?Ja~:zk ~ dx) (8)

this last step by (7) . Notice that J,00 ~a~:zk xA dx = 0 (M-1) as M---+ oo by

(7), with xA in place of g(x) and a~cx" in place of h(x). From (3),

for x small enough, thus,

- 77-

for (P- P.A.)~o~c~k = 0 (fooo M.A.+l~o~c~k x(l:+l)(.A.+l) dx)

+ 0 (fooo ~o~c:zk z-Hl dx)

so, replacing in (8) and using the definition of 11 in lemma 1, by (2), we

obtain

~o= g(x)~h(~) dx- fooo P.A.~o~c:z~< dx =

= M.A.+to (I(k+t)(.A.+ll) + 0 (I.A.+d + 0 (M-1
) =

= 0 (M-4-!) + 0 (M-~) + 0 (M-1
) = 0 (M-¥)

since I is arbitrary. But

looo p.A.~o~c~" dx = L Cij ~o=(Mxk+l)izie-'Wo~c:zlc dx
O i~Oj~O O

So,

i+JSA

- I: CjjM Ji(k+l)+j
i+j$A.

= ! L CjjM- i+£+1 (-ak)- i(I<+Il+J+I f (i(k + 1) + j + 1)
k~~ k

Hence, we have

-78-

where

If h(O) = a0 f. O, we simply have an extra factor eMh(o). 1

-79-

APPENDIX II

HOW GOOD IS THE POISSON APPROXIM:ATION?

In chapter II, we found the MT BF and CG of singly and doubly error

protected computer memories. In particular, the singly error-protected case

allowed all kinds of errors to occur. An important assumption when we found

the reliability R(t) of a row of chips was, failures in the row are distributed

according to a Poisson process. Without this assumption, the formulae would

become hopelessly complicated. The question is, how good is this Poisson

approximation?

In order to answer this, we are going to find MT BF and CG for both

singly and doubly error-protected computer memories in a simplified situa

tion: We assume that all the chip failures are catastrophic. We shall consider

the asymptotic case of M rows of chips, where M is a large number. The

notation will be the same as the one used in chapter II.

When k failures occur in a row, the Poisson approximation we used in

chapter II was

(1)

We consider the two cases separately.

Case (i): Single-error protection

The reliability of a row when 1-ECC is implemented is

Thus,

-80-

R(t) = e-.\nt + n(l - e-.\ 1)e-.\(n~l)t

= e-.\nt (1 + n(e.\1
- 1))

MT BF = fooo (R(t))M dt

roo M
= lo e-.\nMt (1 + n(e.\1

- 1)) dt

Making the change of variable >.nt = x, we obtain

where

h(x) =log (1 + n(ezfn -1))- x

Hence, dividing by (>..Mk)-1,

CG = ~M roo ~h(zl dx
n lo

We need to estimate I = f0
00

eMh(z) dx. We easily verify

h(O) = h'(O) = 0 and h"(O) = - n-
1

n

Using (11), chapter II, we have

(2)

(3)

(4)

(5)

{6)

(7)

-81-

] 1r ./ n1r

2M (-h"(O)) = Y 2(n- 1)M
(8)

Replacing in (4) and (6), we obtain

MTBF-- -- -1 J7;Fill >.n n- 1 2M
(9)

and

CG- ~v n {J.i
n n-1V2 (10)

Using the Poisson approximation, Goodman and McEliece found ([3],

chapter IT),

(This approximation is also obtained taking a = b = c = 0, d = 1 in (14),

chapter II). So, the two values differ by a factor M·
In our typical example~, n = 39. Hence ff,""' 1.01. This means, the

Poisson approximation is very good in this case.

Case (ii): Doubly error protection

Now the reliability of each row is given by

R(t) = e-~nt + n(l- e-~')e-.\(n-l)t + n(n2- 1) (1- e~~r e-.\(n-2)t

= e-ht (1 + n(e.\t -1) + n(n 2-1) (e~t- 1)2) (11)

thus, making the change of variable >.nt = x,

-82-

MT BF = _!_ roo e-M:. [1 + n(e:.fn- 1) + n(n- l) (ezfn- 1)2] M dx (12)
Anlo 2

We can also write (12) as

where

MT BF = _!_ roo e-Mh(z) dx
An lo

(13)

h(x) =log (1 + n(e•fn- 1) + n(n
2
-

1) (e•fn- 1)2) - x (14)

Differentiating, we obtain

h(O) = h'(O) = h"(O) = 0 , h"'(O) = _ n
2

- 3n + 2
6n2

Applying the theorem proved in appendix I to (13), and takirig first

approximation, we get

1

MTBF,.., _!_ (
3

6
2

) a r (~) M-!
An 1- - +- 3 n n2

(15)

and

(16)

as M-+ oo. (15) and (16) differ from the corresponding results that use the
I

Poisson approximation by the factor (1 - ~ + ~)- 3
•

In typical cases, when we have doubly error protection, n = 45. In this
I

case (1 - ~ + ,;,) - 3 ~ 1.02. Hence, the Poisson approximation is also very

good in this case.

