Crystallographic Order and Disorder in Quasi-One-Dimensional Conductors

Thesis by

Roger Macauley Williams

.

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology

Pasadena, California

1979

(Submitted December 18, 1978)

Acknowledgements

I would most like to thank the friends I have met at Caltech and in Southern California in the past four years. The time I have spent with them has made these years enjoyable.

My advisor, Dr. Sten Samson, has provided me with guidance and encouragement, and has shown great patience with my assorted wild theories.

Dr. Joseph Gordon has continued his interest in my work. The success of the work reported in Chapter 2 of this thesis was very much dependent on his advice and encouragement.

Most of this research has been performed in collaboration with the organic metals group at JPL. They performed the electrical measurements (Appendix 2) and the photoaccoustic spectroscopic measurements (Chapter 2). I would like to thank Dr. Robert Somoano for many interesting discussions.

Dr. Richard Marsh provided much assistance at several stages of crystal structure determination and refinement. Jean Westphal aided me in the use of the crystallographic computing system. CRYM does pay.

Discussions with Charlotte Ma were extremely useful in understanding the unusual structural features of crystals I've worked on. Her careful analysis of diffraction experiments and her computing skills helped immeasurably.

ii

Hamil Ma prepared some of the more complicated figures.

The shops and other support facilities at Caltech are excellent. I would especially like to thank Erich Segal in the glass shop and Jan Mitchell in the analytical lab.

I would like to thank Beth Cooper for typing this thesis. Pat Anderson and Allison Kimball have also helped me many times over the past four years.

The organic donors, TTF and TSF, were provided by the JPL organic metals group. TMTSF and HMTSF were kindly provided by Dr. D. Cowan and Dr. P. Shu at John Hopkins.

Funding for this research came from a variety of sources, including NSF (Grant No. DMR 74-19029A1), NASA-JPL, and the President's Fund (Caltech). I would especially like to thank Eastman Kodak for support under an Eastman Fellowship.

Finally, I would like to thank my parents for their support and understanding.

Abstract

Stacked, conducting isocyanide complexes of rhodium(I) were synthesized and characterized by x-ray diffraction and electrical measurements. Good crystals of orthorhombic $[Rh(CNCHCH_2)_4]ClO_4$, with $a_0 = 8.81$ Å, $b_0 = 22.85$ Å, $c_0 = 12.70$ Å, were obtained and a structural refinement was carried out in space group Immm. The rhodium chain is nearly uniform (Rh-Rh = 2.94 Å) and ligands and anions show considerable disorder. The room temperature conductivity is $\sim 2 \Omega^{-1}$ cm⁻¹ and conductivity is activated. The moderately high conductivity of $[Rh(CNCHCH_2)_4]ClO_4$ is due to the presence of a lowlying conduction band rather than a non-integral rhodium oxidation state.

The disorder, tetragonal phase of $(TTF)Cl_x$, $a_0 = 11.19$ Å, $c_0 = 3.60$ Å, was studied for compositions x = 0.67, x = 0.70. A room temperature structural refinement in space group P4₂/mnm revealed eclipsed stacking of TTF cations and extremely high disorder of chlorides in channels. Low temperature studies revealed ordering of chloride ions for both compositions. $(TTF)Cl_{0.67}$ undergoes an incomplete structural transition to a monoclinic symmetry phase at ~250° K. Ordering of chloride ions occurs at the same temperature. Fast cooling (>1° K/hr) results in peak broadening which is apparently due to the very small size of diffracting domains within the crystal. Both small domain size and the inequivalent environments of TTF

cations following chloride ordering may contribute to the drop in conductivity observed at the phase transition.

Structural refinements of both the subcell (space group Cmca, $a_0 = 18.47$ Å, $b_0 = 4.95$ Å, $c_0 = 18.30$ Å) and full cell (space group Pmc2₁, $a_0 = 18.47$ Å, $b_0 = 9.90$ Å, $c_0 = 18.30$ Å) of a low disorder cyrstal of TTT₂I₃ were carried out. The iodine chain is highly disordered and all sites have less than full occupancy. The presence of I₃ and I₂ species in the chain is likely. The resulting aperiodic potential due to the iodide chain may be expected to be retained at low temperature and inhibit a metal-to-insulator transition.

Electrochemical crystal-growth experiments involving TTF, TMTSF, and HMTSF gave successful results with the first two donors. Crystals of (TMTSF)Br_{0.8} and (TMTSF)(SCN)_{0.5} are isostructural, although the latter exhibits satellite reflections (period = 4.6 x c₀) in diffraction patterns. Both structures were refined in space group Cmcm, and the satellite data of (TMTSF)(SCN)_{0.5} was modeled in space group Cmc2₁. Unit cell parameters are $a_0 = 9.798$ Å, $b_0 = 23.837$ Å, $c_0 = 7.095$ Å, for the bromide and $a_0 = 9.919$ Å, $b_0 = 24.124$ Å, $c_0 =$ 7.220 Å, for the thiocyanate. The planes of these cations are perpendicular to the z-axis and consecutive cations slip back and forth by ~1.3 Å to reduce methyl group steric repulsion.

All of the systems studied are single carrier conductors with conduction along the cation stack and high disorder of anions. The nature of the disorder and its relationsihp to phase transitions, as well as interchain coupling and stacking in the cation chain, were evaluated in these compounds. Comparison of $(TTF)Cl_{0.67}$ and $(TTT)_2I_3$ were especially useful, as both exhibit comparably very short range order of halide ions at room temperature, but different cation stacking arrangements (eclipsed and slipped, respectively) and hence different interchain coupling and electronic bandwidth. Structural studies at room temperature and low temperature provided an opportunity to understand the important differences in the electrical properties of these two materials.

vi

Table of Contents

	Page
Acknowledgements	ii
Abstract	iv
Chapter 1 - Introduction	٦
Chapter 2 - Conducting Rhodium(I) Isocyanide Complexes	10
Chapter 3 - Structural Phase Transition and Disorder in (TTF)(Cl) _x	49
Chapter 4 - The Structure of Low-Disorder Bis- Tetrathiatetracene Triiodide	83
Chapter 5 - Tetramethyltetraselenofulvalene Bromide and Thiocyanate; Electrochemical Preparation of Conducting Organic	
Crystals	9 9
Appendix 1- Structure Factors Tables	126
Appendix 2- Electrical Measurements	169
Appendix 3- Notes on Structure Refinement	177

.

CHAPTER 1

Introduction

During the past few years there has been considerable interest in highly anisotropic conductors (1-2). From a theoretical viewpoint, one-dimensional metals are much simpler than two- or three-dimensional metal, and they are predicted to have interesting properties such as a Peierl's distortion -- an instability with respect to a metal-toinsulator transition (3-4). Also, a great deal of controversy has originated from theories predicting high temperature superconductivity in highly anisotropic conductors (5-7).

Quasi-one-dimensional conductors, which have high conductivity along one crystal axis and much lower conductivity along the other two axes (8), may approach the behavior of a true one-dimensional metal in some respects, but consideration of the three-dimensional structure and electronic properties of these real materials is necessary for more complete understanding of their properties.

There are two major classes of quasi-one-dimensional conductors. Organic charge-transfer (Figure 1) salts may have two kinds of conducting chains, as in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) (9), or only one conducting chain, as in the partially oxidized halide salts of TTF (10-13). These materials generally exhibit metallic conductivity down to a temperature, $T_{\rm MI}$ ~50-200° K,

tetrathiafulvalene TTF

tetramethyltetraselenofulvalene TMTSF

hexamethylenetetraselenofulvalene HMTSF

tetrathiatetracene TTT

tetracyanoquinodimethane TCNQ

Figure 1. Donors, and the acceptor, TCNQ, in organic conductors.

where a metal-to-insulator transition takes place. The nature of this transition is affected by the presence of disorder, the degree of interchain coupling, and the nature of the molecular stacking along the chain (i.e., eclipsed <u>vs</u>. slipped stacking).

The second major class of quasi-one-dimensional conductors, stacked square planar d^8 transition metal complexes, include various iridium carbonyl halides and partially oxidized platinum cyanide and oxalate salts (14-18). Disorder and interchain coupling are very important in understanding these compounds; stacking may be quite complicated in these materials. The electronic description of the stacked d^8 complexes is somewhat simpler, since metal-metal bonds are the only strong interactions between adjacent monomer units (19-21).

The materials which will be described here include members of both classes. Rhodium(I) isocyanide complexes are electronically similar to the other d⁸ metal complexes mentioned above. Since a variety of isocyanide ligands may be employed, systematic alteration of the electrical properties within the series of complexes may be achieved. Conducting salts of organic donors with simple anions were also studied. The donors include TTF, tetramethyltetraselenofulvalene (TMTSF), and tetrathiatetracene (TTT) (see Figure 1). Disorder, especially that associated with the anions, is an important structural feature of all of the compounds. The results of detailed structure determinations of tetrakis(vinylisocyanide)rhodium(I)

perchlorate, TTF Cl_{.67}, TTT₂^I, TMTSF(Br)_{.8}, and TMTSF(SCN)_{.5} are reported. Less detailed crystallographic studies of other materials are described.

This work has three specific goals. First, the synthesis and crystallization of new quasi-one-dimensional conductors is important, since the few materials which have received intense study are not sufficient for a good understanding of nearly one-dimensional conductivity. The newer materials have often had more exciting properties, such as retention of high conductivity at very low temperature (22,23).

Second, structural investigations, chemical analysis, and physical measurements carried out concurrently on crystals of the same origin allow extremely useful correlation of subtle structural features with physical properties.

Finally, these materials are of significant crystallographic and chemical interest because of their unique structural characteristics. TTT₂I₃ and TTF Cl_{.67} have disordered halide lattices with periods two and three times the stacking axis length of the organic sublattice. Tetrakis(vinylisocyanide)rhodium(I) perchlorate has a rhodium atom sublattice with $a_{rh} = a_{o/3}$; the ligands and perchlorate anion have extremely high disorder. TMTSF(Br)_{~.8} and TMTSF(SCN)_{~.5} are nearly isostructural. In the latter, however, the thiocyanate positions are modulated with a period C⁻ \simeq 4.5 c_o. Important parts of the structural work on TTF Cl_{.67} and tetrakis(vinylisocyanide)rhodium(I) perchlorate are the low temperature investigations. A structural phase transition of TTF Cl_{.67} at ~250° K was studied in detail, and the symmetry of the low temperature phase was determined. A partial structure refinement was carried out on diffraction data of tetrakis (vinylisocyanide)rhodium(I) perchlorate at 22° K.

The structural and electrical characterization of $[Rh(CNCHCH_2)_A]C10_A$ provides an example of a second way of obtaining high conductivity in d^8 metal complexes, and provides evidence for the importance of interchain coupling in quasi-one-dimensional materials. The importance of disorder in allowing retention of conductivity in single-carrier quasi-one-dimensional materials was revealed in $(TTT)_2I_3$ and $(TTF)Cl_x$, which exhibit comparable halide chain disorder at room temperature. Ordering of chloride was in $(TTF)Cl_x$ occurs with a simultaneous drop in conductivity at ~250° K. In contrast, disorder and moderate conductivity are retained at low temperature in (TTT)₂I₃. It appears that the Peierls' transition is incomplete because of the aperiodic potential due to the iodine chain, which produces states within the energy gap. The metal-to-insulator transition is complete in (TTF)Cl,, although the effect of chloride ordering on the transition is not thoroughly understood. Since the superperiod of the chloride lattice has reciprocal lattice period $\frac{1}{3}c^* = 2k_F^*$, a favorable interaction between chloride ordering and commensurate charge density formation is expected.

The effect of disorder on conductivity of single-carrier systems was further explored in $(TMTSF)(SCN)_{0.5}$ and $(TMTSF)Br_{0.8}$. Moderate

disorder associated with the anion lattice is seen in both cases, and an incommensurate superperiod which may result from a $2k_F$ distortion is seen in the thiocyanate.

Structure factor lists are collected in Appendix 1. Electrical properties are described briefly in the text, and plots of the temperature dependence of electrical conductivity and thermoelectric power are collected in Appendix 2. A few remarks concerning structure and refinement for these crystals are given in Appendix 3.

References

- Annals of the New York Academy of Sciences, 313, Ed., J. S. Miller and A. J. Epstein, The New York Academy of Sciences, New York, New York (1978).
- J. S. Miller and A. J. Epstein, Chapter in <u>Progress in Inorganic</u> <u>Chemistry</u>, Vol. <u>20</u>. Ed. S. J. Lippard, John Wiley and Sons, Inc., New York (1976).
- 3. R. L. Peierls, <u>Quantum Theory of Solids</u>, Ch. IV, Oxford University Press, London (1955).
- 4. G. Beni, Solid State Communications, 15, 269 (1974).
- David Allender, James Brag, and John Bardeen, <u>Phys. Rev.</u>, <u>B17</u>, 1020 (1973).
- 6. W. A. Little, Phys. Rev., A13, 1416 (1964).
- 7. V. L. Ginzburg, Soviet Physics Uspekki, 13, 335 (1970).
- 8. Conductivities for $K_2^{Pt}(CN)_4 Br_{0.30} \cdot 3H_2^0$ are ~300 and ~0.001 Ω^{-1} cm⁻¹ in the directions parallel and perpendicular to the stacking axis, respectively. H. R. Zeller and H. Beck, <u>J</u>. <u>Phys. Chem. Solids</u>, <u>35</u>, 77 (1974). Conductivities for (TTF)(TCNQ) are ~500 and ~5 Ω^{-1} cm⁻¹ in directions parallel and perpendicular to the stacking axis, respectively (9).
- M. J. Cohen, L. B. Coleman, A. F. Garito, and A. J. Heeger, Phys. Rev., B10, 1298 (1974).

- R. B. Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones, T. Datta,
 R. Deck, and A. M. Hermann, <u>J. Chem. Phys.</u>, <u>63</u>, 4970 (1973);
 R. B. Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones, T.
 Datta, R. Deck, and A. M. Hermann, Phys. Rev., B15, 595 (1977).
- 11. F. Wudl, D. E. Schafer, W. M. Walsh, Jr., L. W. Rupp, Jr., F. J. DiSalvo, J. V. Waszczak, M. L. Kaplan, and G. A. Thomas, J. Chem. Phys., 66, 377 (1977).
- R. J. Warmack, T. A. Callcott, and C. R. Watson, <u>Phys. Rev. B12</u>, 3336 (1975).
- 13. B. A. Scott, S. J. LaPlaca, J. B. Torrance, B. D. Silverman, and B. Welber, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 6631 (1977).
- 14. K. Krogmann, Angew. Chem. Int. Ed., 8, 35 (1969).
- 15. H. R. Zeller, Adv. Solid State Phys., 13, 31 (1973).
- 16. T. W. Thomas and A. E. Underhill, <u>Chem. Soc. Rev.</u>, <u>1</u>, 99 (1972).
- 17. H. J. Keller in <u>Low Dimensional Cooperative Phenomena</u>, Ed. H. J. Keller. Nato Advanced Studies Institute Series, 7B, Plenum Press, p. 315.
- 18. A. P. Ginsberg, J. W. Koepke, J. J. Hansen, K. W. West, F. J. DiSalvo, C. R. Sprinkle, and R. L. Cohen, <u>J. Inorg. Chem.</u>, <u>15</u>, 514 (1976).
- K. R. Mann, N. S. Lewis, R. M. Williams, H. B. Gray, and J. G. Gordon II, <u>Inorg. Chem.</u>, <u>17</u>, 829 (1978).
- 20. K. R. Mann, J. G. Gordon II, and H. B. Gray, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 3553 (1975).

- 21. J. G. Gordon II, R. Williams, C. ~H Hsu, E. Cuellar, S. Samson,
 K. Mann, H. B. Gray, V. Hadek, and R. Somoano, <u>Annals of the New</u>
 York Academy of Sciences, 313, 580 (1978).
- L. C. Isett and E. A. Perez-Albuerne, <u>Solid State Comm.</u>, <u>21</u>,
 433 (1977); L. C. Isett, to be published in <u>Phys. Rev.</u>, <u>B</u>.
- 23. A. N. Black, D. O. Cowan, K. Bechgaard, R. P. Pyle, R. H. Banks, and T. O. Poehler, Phys. Rev. Lett., 34, 1561 (1975).

CHAPTER 2

Conducting Rhodium(I) Isocyanide Complexes

The unusual properties of quasi-one-dimensional conductors have stimulated much interest in the synthesis of new examples of these compounds. While a great variety of organic conductors have been prepared, fewer examples of conducting stacked square planar d^8 metal complexes are known. All of the highly conducting members of the latter group are either iridium carbonyl halides or partially oxidized platinum cyanide and oxalate salts (1-6). The rhodium isocyanide complexes (7-9) reported here are electronically similar to the iridium and platinum compounds.

The intense colors of crystalline rhodium isocyanide complexes indicate that there are significant interactions between monomeric units in the solid state. In addition, the electronic spectra of solutions of these complexes have intense bands in the visible region which show a non-Beers law dependence on concentration (8,10). These bands indicate the presence of oligomers of the tetrakis(isocyanide)rhodium(I) cations. The presence of a mixture of oxidation states is not necessary for oligomerization in solution.

An investigation of several rhodium isocyanide complexes was undertaken in order to determine if highly conducting solids could be prepared. High conductivity could result in these compounds in

two ways. The essential feature of these d^8 compounds is that square-planar complex ions stack along an axis perpendicular to the coordination plane to form linear chains of metal atoms (Figure 1). Electrons are delocalized along this chain in a band formed by overlapping dz^2 metal orbitals, as shown in Figure 2. Since this is a filled band, partial oxidation is required to generate the free carriers needed for metallic conductivity. A simple molecular orbital approach predicts that there will be a low-lying unoccupied band derived from metal Pz and ligand π^* orbitals. If the gap between this band and the filled dz^2 band is sufficiently small. thermally activated conduction will result without partial oxidation (11). The shorter the metal-metal bond, the greater the interaction between monomeric units which give rise to both the dz² and Pz- π * bands will be. The gap will consequently be smaller (Figure 2). Crystalline disorder may also be expected to increase conductivity in this type of material, due to band broadening or creation of states within the gap. In order to understand the electrical behavior of conducting d⁸ complexes, it is necessary to evaluate such parameters as the metal-metal bond length, the degree and nature of crystalline disorder, and the oxidation state of the metal.

Figure 1. Stacking in square planar d^8 complexes.

Figure 2. Molecular Orbital diagram of monomer, dimer, and infinite chain of $Rh(CN-R)_4^+$.

Experimental

Synthesis

Bis(1,5-cyclooctadiene)- μ -dichlororhodium, [Rh(1,5-C₈H₁₂)Cl]₂, was prepared by the method of Chatt and Venanzi (12), except that recrystallization from acetic acid was omitted.

Bis(1,5-cyclooctadiene)-bis(acetonitrile)rhodium perchlorate and tetrafluoroborate, $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+C10_4^-$ and $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+BF_4^-$, were prepared by reacting $[Rh(1,5-C_8H_{12})C1]$ with AgC10₄ and AgBF₄ respectively, in 1:2 molar ratio in acetonitrile. AgC1 was removed by filtration. Addition of diethyl ether yielded the yellow crystalline products. Both $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+C10_4^$ and $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+BF_4$ were extremely soluble in acetonitrile and other highly polar solvents, and quite insoluble in diethyl ether and hydrocarbons. If not stored in sealed vials, discoloration of the solids occurred, presumably due to loss of acetonitrile. (Caution: All organometallic perchlorates are potentially explosive.)

All isocyanides were prepared by standard methods described in the literature (13-17). Vinylisocyanide was synthesized and used as 30 to 60 mole percent solution in ethanol, rather than in pure form, and was identified by NMR. (Caution: Some isocyanides are explosive. An intermediate in the preparation of vinylisocyanide is reported to be explosive.)

Rhodium(I) isocyanide complexes were obtained by reacting each isocyanide with $[Rh(1,5-C_8H_{12})C1]_2$, $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+C10_4$, or $[Rh(1,5-C_8H_{12})(CH_3CN)_2]^+BF_4^-$. Since the chloride salts were invariably the most soluble, anion exchange reactions in acetonitrile were also useful in the preparation of the other salts. Growth of crystals was inhibited by the presence of water or cyclooctadiene, among other impurities. Multiple recrystallization of the complexes from acetonitrile solutions containing excess isocyanide was necessary if good single crystals were desired. Acetonitrile was degassed on the vacuum line and distilled from molecular sieves; diethyl ether was distilled from sodium benzophenone ketal. Single crystals of several complexes could be obtained by layering diethyl ether onto an acetonitrile solution of the purified complex; or by slow cooling an acetonitrile-diethyl ether solution of the complex. All syntheses were carried out on the vacuum line. Analytical data are reported in Table 1.

<u>Rh(CNCH_3)_3.38</u><u>BF_4</u>: 0.33 g [Rh(1,5-C₈H₁₂)(CH₃CN)₂]⁺BF₄⁻ was dissolved in about 5 ml acetonitrile in a flask with attached Schlenk fritted filters. About 0.5 ml methyl isocyanide was distilled into the reaction flask. The solution became brown, and addition of 10 ml diethyl ether precipitated the complex. The solid was collected on the frit and then recrystallized twice by addition of 1) 5 ml acetonitrile and 0.5 ml methylisocyanide followed by 2) 10 ml diethyl

Table 1. Analytical Data for Rhodium Isocyanide Complexes

	· · · · · · · · · · · · · · · · · · ·	<u>%C</u>	%N	<u>%H</u>	<u>%C1</u>	%Rh	%0
$Rh(CNC_{6}H_{5})_{4}C10_{4}$	calc	54.70	9.11	3.27	5.77	16.74	10.41
614.85	found	54.52	9.01	3.54	5.6	15.7	(11.63)
		С, Н,	N_avera	age of	six anal	yses	
$Rh(CNC_{H_{5}})_{3,67}(C10_{4})_{1,33}$	calc	50.28	8.38	3.01	7.68	16.77	13.87
61 3.65	found	50.76	7.77	3.85	7.14	(Rn+0)=3 ∆=3	0.64 0.58
		С, Н,	N, Cl a	verage	<u>of two a</u>	nalyses	
Rh(CNC ₆ H ₅) ₄ C1	calc	61.05	10.17	3.66	6.44	1 8.68	
550.86	found	60.83	10.61	4.11	6.17	(18.28)	
		Cl av	erage of	two an	alyses		
Rh(CNC ₆ H ₅)BF ₄	calc	55.85	9.30	3.35	%F=12.6	2;%R=17.	09;%B=1.
602.20	found	56.69	9.58	3.80			
		С, Н,	N avera	ge of t	wo analy	ses	+
Rh(CNCHCH ₂) ₄ C1	calc	41.11	15.98	3.45	10.11	29.35	
350.4	found	41.06	16.04	3.74	10.14	29.12	
		С, Н,	<u>N avera</u>	ge of t	wo analy	ses	
$Rh(CNCHCH_2)_4C10_4$	calc	34.76	13.51	2.92	8.55	24.82	15.44
414.6	found	34.96	13.70	3.08	8.80	24.60	(14.86)
		<u>С, Н,</u>	<u>N avera</u>	<u>ge of f</u>	our anal	yses	
Rh(CNCH) C104	calc	23.82	13.95	3.00	10.39	30.16	18.75
341.24	found	24.41	13.37	2.92			
Rh(CNCHCH ₂) _{2.7} C1	calc	34.54	13.42	2.90	12.59	36.54	
281.5	found	35.16	12.48	3.18			

•

.

ether. Crystals suitable for x-ray photographic work were obtained by layering 15 ml diethyl ether onto a solution of the complex in 20 ml acetonitrile and 1.0 ml methylisocyanide.

<u>Rh(CNCHCH</u>₂)₄C<u>1</u>: 2.0 g [Rh(1,5-C₈H₁₂)Cl]₂ was reacted with ~3.0 g vinyl isocyanide in 8 ml diethyl ether. The black precipitate was collected on a fritted filter and washed several times with additional ether. Yield after drying was 2.7 g. The infrared C=M stretching frequency was 2170 cm⁻¹ (KCl pellet).

 $\frac{\text{Rh}(\text{CNCHCH}_2)_{2.7}\text{C1}: 2.0 \text{ g} (.008 \text{ mole}) [\text{Rh}(1,5-\text{C}_8\text{H}_12)\text{C1}]_2 \text{ was}}{\text{reacted with 1.26 g} (.024 \text{ mole}) \text{ vinylisocyanide in diethyl ether.}}$ The solid product was extracted with acetonitrile and dried.

<u>Rh(CNCHCH₂)₄ClO₄: 0.77 g [Rh(1,5-C₈H₁₂)(CH₃CN)₂]⁺ClO₄⁻ was dissolved in 40 ml acetonitrile. About l g of vinylisocyanide was added. Solution was warmed to dissolve all of the complex, then cooled to -15° C and filtered. The red-brown microcrystalline residue was redissolved in 30 ml acetonitrile and ~.5 g vinyl isocyanide. 40 ml diethyl ether was added and product was again collected on the frit. The red-brown mat of hair-like microcrystals was dried by pumping. Failure to recrystallize the initial product apparently results in incorporation of 1,5-cyclooctadiene, which, if present, seems to inhibit formation of good single crystals in later experiments.</u> Microcrystalline tetrakis(vinylisocyanide)rhodium(I) could also be obtained by Soxhlet extraction of 1.0 g of $Rh(CNCHCH_2)_4$ Cl with 100 ml dry, degassed acetonitrile containing 10.0 g tetraethylammonium perchlorate under a pressure of ~100 torr dry, oxygen-free nitrogen. After completion of the extraction, the flask was allowed to cool slowly and was left undisturbed for about a day. The yield after filtration was 0.5 g. (Caution: The dry complex will detonate on heating to about 270° C.)

 $\frac{Rh(CNCHCH_2)_4BF_4}{P}$ could be prepared in an analogous manner, but was very hygroscopic.

<u>Rh(CNC_6H_5)_4C1</u>: 4.0 g [Rh(1,5-C_8H_12)C1]₂ was dissolved in a 1:1 mixture of acetonitrile and diethyl ether. 12 ml (~9.6 g) phenyl isocyanide was added to the reaction flask. Solid Rh(CNC₆H₅)₄C1 was collected in two fractions totalling 8.25 g. The first fraction consisted of brown microcrystals.

<u>Rh(CNC₆H₅)₄BF₄: 3.0 g [Rh(1,5-C₈H₁₂)Cl]₂ and 1.5 g NaBF₄ were dissolved in 40 ml acetonitrile. After filtration to remove NaCl, 8.0 g phenylisocyanide was added. Addition of ether gave 6.15 g coppery-brown microcrystals. The infrared C=N stretching frequency of a sample in dichloromethane was 2160 cm⁻¹.</u>

<u>Rh(CNC H)</u> $_{654}^{C10}$: 0.5 g [Rh(1,5-C₈H₁₂)(CH₃CN)₂]⁺C10₄⁻ was dissolved in 13 ml acetonitrile. About 1 ml phenylisocyanide was distilled into the reaction flask, giving a blue solution. About 20 ml diethyl ether was added to precipitate product, which was collected on a fritted filter and washed with an additional 10 ml of ether. Layering of the additional ether over the filtrate in the receiving flask resulted in crystals up to 0.05 x 0.05 x 0.5 ml.

 $\frac{Rh(CNC}{6}H_5)_{3.67}(\underline{C10}_4)_{1.33}$: 0.5 g $Rh(CNC_6H_5)_4C1$, somewhat oxidized by several months exposure to air, was extracted with about 10 ml acetonitrile. 0.11 g $NaCl0_4$ was added and after stirring, the solution was filtered to remove the fine precipitate of NaCl. Addition of diethyl ether gave the complex as fine hair-like crystals.

<u>Rh(CNC</u>₆H₅)_{3.67}(<u>C10</u>₄)_{1.33} <u>crystals</u>: 0.05 g Rh(CNC₆H₅)_{3.67}(C10₄)_{1.33} was placed in a solvent diffusion cell (Figure 3). About 3 ml acetonitrile were distilled onto the complex and about 5 ml diethyl ether were distilled into the other leg of the cell. After sealing and allowing the solvent to reach room temperature, the diethyl ether was slowly distilled onto the acetonitrile solution of the complex. Crystals ~1 mm long appeared after about 5 days.

 $\frac{Rh(CNCHCH_2)_4ClO_4}{2}$ single crystals: 0.40 g Rh(CNCHCH_2)_4ClO_4 was placed in a solvent diffusion cell and degassed. 4 ml acetonitrile

Figure 3. Solvent diffusion crystallization apparatus.

.

and 15 ml diethyl ether were distilled onto the complex and into the second leg of the cell, respectively. After warming to room temperature, the ether was distilled onto the acetonitrile solution. Coppery crystals, ~10 mm x 0.08 mm x 0.04 mm, were harvested after four days.

Electrical measurements

The electrical conductivity was measured on each complex with the use of two probes applied to a pressed powder of thickness 0.25-0.6 mm. Single crystals of tetrakis(vinylisocyanide)rhodium(I) perchlorate were large enough for four probe conductivity measurements with silver paint contacts. Both kinds of conductivity data obtained at room temperature are given in Table 2. The temperature dependence of the conductivity of tetrakis(vinylisocyanide)rhodium(I) perchlorate is given in Appendix 2.

X-ray and density measurements

The sharp extinction of transmitted polarized light was used as the criterion for selecting crystals for x-ray diffraction work. Most crystals were fibrous and twinned; however, this resulted in misalignment of the diffracting domains (within the crystal) only in the directions perpendicular to the stacking axis. Axis lengths and strong repeats along the stacking (needle) axis could be identified, although the other unit cell parameters could not be determined for most crystals. Tetrakis(vinylisocyanide)rhodium(I) perchlorate formed good single crystals and oscillation and Weissenberg

<u>Table 2</u> .	Room Temperature	Conductivities	of	Stacked	Rhodium
	Isocyanide Comple	exes			

Complex	Source	Conductivity Ω^{-1} cm ⁻¹
$Rh(CNCHCH_2)_4^{C10}_4$	single crystal powder	5.6×10^{-3}
Rh(CNCHCH ₂) ₄ C1	powder	2.9×10^{-4}
Rh(CNCHCH ₂) _{2.7} C1	powder	2 x 10 ⁻⁴
Rh(CNC ₆ H ₅) ₄ C1	powder	6 x 10 ⁻⁷
$Rh(CNC_{6}H_{5})_{4}BF_{4}$	powder	2×10^{-5}
Rh(CNC ₆ H ₅) _{3.67} (C10 ₄) _{1.33}	powder	1.7×10^{-4}
$Rh(CNCH_3) = BF_4$	powder	2.2×10^{-2}

photographs were used to determine its space group and unit cell dimensions. Table 3 gives stacking axis lengths and strong repeats for the complexes studied. The axis length of tetrakis(phenyl isocyanide)rhodium(I) chloride was determined from a tentative indexing of a Guinier-Hägg powder photograph.

More accurate unit cell parameters (Table 3) were determined for tetrakis(vinylisocyanide)rhodium(I) perchlorate by least-squares refinement based on 20, ϕ , and X of 12 accurately centered reflections, measured on the guarter circle General Electric diffractometer. The crystal used measured 0.05 x 0.1 x 0.5 mm. The intensities of 1199 unique reflections were measured using $2\theta - \theta$ at rates of $1^{\circ}/\text{min}$ or 2°/min. Intensities were corrected for Lorentz, polarization, background, absorption and decay; atomic scattering factors of rhodium and chloride were corrected for anomalous dispersion (real part) (18). Initial atom positions were assigned on the basis of Patterson maps. Oxygen atoms and vinyl carbon atoms (as well as hydrogen atoms) could not be seen on Pattersons and were added at calculated 2- or 4-fold disordered positions. After refinement reached $R \simeq 0.09$, the vinyl carbon atoms were removed from the model and their positions were reassigned on the basis of difference Fourier maps. Refinement in space group Immm proceeded to R = 0.084, wR = 0.02567 for 1199 reflections; R = 0.058, wR = 0.02462 for 676 reflections with $F^2 > 3\sigma$. The real goodness-of-fit reached 4.37 for 1199 reflections. Difference maps were essentially flat after

<u>Table</u>	3.	Unit	Cell	Parameters	of	Rhodium	Isocyanide	Complexes	
a) S	tack	ing Re	epeat	s					

Complex	ā (Å)	<u>n</u>	<u>ā /n (Å)</u>	Source	
[Rh(CNCHCH ₂) ₄]C10 ₄	8.78	3	2.93	oscillation	
[Rh(CNCH ₃) _{3,38}]BF ₄	5.87	2	2.93	oscillation	
[Rh(CNC ₆ H ₅) ₄]BF ₄			3.03	oscillation	
[Rh(CNC6H5)4]C1	23.54	8	2.94	powder	
$[Rh(CNC_{6}H_{5})_{3,67}](C1C_{6}H_{5})_{3,67}]$	(23.79)	8	2.98	oscillation	
[Rh(CNC ₆ H ₅) ₄] C10 ₄			3.20	oscillation	
b) Unit Cell Parame	eters of [Rh(CNCH	сн ₂) ₄]с1	04		
Room Temperature 22° K	a (Å) b (8.810 22.8 8.671 22.1	Å) 51 1 14 1	c (Å) 2.696 2.391	v (Å ³) 2556 2376	
Space Group, Immm Absorbtion Coefficient 99.6 cm ⁻¹ CuKa; 11.56 cm ⁻¹ MoKa Density, calc. 1.623 g/cm ³ (6 Formula Units/cell) Major Crystal Faces [010], [011], [001]					

c) Indexing of [Rh(CNC₆H₅)₄]Cl Powder Patterns

θ(obs)	hKl	
5.63 7.25 8.625 11.33 11.685 13.61 16.96 17.39 18.67 19.10 31.36	003 222 400 006 520 620 650 652 654 00 ¹ 0 00 ¹ 6	$\overline{a}_0 = \overline{b}_0$ \overline{c}_0

~	=	<u>Б</u>	=	20.64

$$\bar{c}_{a} = 23.54 \text{ Å}$$

Å

refinement, except for small residual peaks (~le⁻/Å³) at rhodium and chloride positions.

The intensities of 1506 unique reflections were measured at 21.4 - 22.4° K using 20- ω scans on the locally designed low temperature diffractometer (19). Graphite monochromatized MoK $\overline{\alpha}$ radiation was used. The crystal used measured 0.036 x 0.081 x 0.36 mm³. The scan rate used was 1°(20)/minute, and backgrounds were measured at both ends of the scan range for a total of 1 minute. The same kind of corrections applied to room temperature data were applied (18). Because of the small size of the crystal, and the low intensity of diffraction with MoK $\overline{\alpha}$, only 1032 reflections had observed intensities greater than zero after correction for background. Only 282 reflections had F² > 3 σ . Moreover, the rapid drop-off in intensity with increasing 20 is nearly unchanged between 300° K and 22° K.

The low temperature structure of $[Rh(CNCHCH_2)_4]ClO_4$ was partially refined by least-squares. Only the coordinates and temperature factors of the rhodium atoms and the atoms of one of the three independent vinylisocyanide ligands could be refined, due to the poor quality of the data. The coordinates of the atoms of the other two ligands were determined from Fourier maps. Spurious (noise) peaks on the Fourier map had a magnitude of up to $\pm 3e^{-}/Å^{3}$, while the isocyanide carbon and nitrogen peaks had a magnitude about twice as great. Vinyl carbon peaks were of about the same intensity as the larger noise peaks, and were assigned on the basis of both Fourier maps and geometrical considerations. The partly refined model gave R = 0.342 for 1032 reflections with F > 0, and R = 0.132 for 282 reflections with F^2 > 3 σ . Weighted residuals, wR were 0.0729 and 0.0613 for all 1506 reflections, and 282 reflections having F^2 > 3 σ , respectively. The weighted goodness-of-fit was 2.58 for the full data set.

Electronic Spectra

Electronic absorption spectra of tetrakis(vinylisocyanide) rhodium(I) chloride and tetrafluoroborate in a variety of polar solvents were obtained from 10,000 to 50,000 cm⁻¹. The observed bands and intensities are tabulated in Table 4. The absorption spectra of the chloride salt at different concentrations are shown in Figure 4. Photoaccoustic spectra of $[Rh(CNCHCH_2)_4]Cl0_4$ and the partially oxidized $[Rh(CNC_6H_5)_{3.67}](Cl0_4)_{1.33}$ were obtained using powder samples, and are shown in Figure 5 (9).

Results

Characterization and composition

The complexes are black or coppery-brown, hygroscopic (especially with smaller ligands and anions), and difficult to crystallize. The chloride salts are soluble in water and polar organic solvents, while salts of larger anions are nearly insoluble in water. Complexes <u>Table 4</u>. Solution Spectroscopic Data – $[Rh(CNCHCH_2)_4]C1$ and $[Rh(CHCHCH_2)_4]BF_4$

Monomer Spectra Rh(CNCHCH₂)₄BF Rh(CNCHCH₂)₄C1[‡] Absorbtion band λ ε λ ε 233 (34,000) not measured intraligand absorbtion $^{1}A_{1g} \rightarrow ^{1}E_{u}$ 329 (19,000) 324 (17,000) $1_{A_{1g}} \rightarrow 1_{A_{2u}}$ 409 (5,000) 395 (3,000) $^{1}A_{1g} \rightarrow ^{3}A_{2u}$ 457 (700) 450 (550)

$$^{+}$$
 in CH₃CN $^{+}$ in H₂O
5 x 10⁻⁵ and 3 x 10⁻⁴ M 9 x 10⁻⁵ M

Positions of lowest intense band in the spectra of $[Rh_n(CNCHCH_2)_{4n}]^{n+1}$

	bf ₄ _ ^{_‡}	c1- ‡
n = 1	403	395
n = 2	555	550
n = 3	715	715
n = 4		962

[‡]in H₂0 9 x 10⁻⁴ M

Figure 4. Absorbtion spectra of $Rh(CNCHCH_2)_4$ C1

Figure 5. Photoaccoustic spectra of solid $[Rh(CNCHCH_2)_4]Clo_4$ and $Rh(CNCH_5)_{6,5,3,67}](Clo_4)_{1.33}$
decrease in solubility with decrease in size of ligand, reflecting stronger crystal-binding forces.

The analytical data in Table 1 indicate that deviations from the expected stoichiometry of tetrakis(isocyanide)rhodium(I) salts may occur. $Rh(CNC_6H_5)_{3.67}(ClO_4)_{1.33}$ clearly demonstrates both non-integral ligand-to-rhodium and anion-to-rhodium ratios, although the C, H, N analyses of " $Rh(CNCH_3)_{3.38}BF_4$ " and " $Rh(CNCHCH_2)_{2.7}CI$ " suggest similar non-integral stoichiometry. Careful preparation of tetrakis(phenylisocyanide)rhodium(I) perchlorate in the absence of oxygen results in a material without partial oxidation. Tetrakis(phenylisocyanide)rhodium(I) chloride, tetrakis(vinylisocyanide)rhodium(I) chloride and perchlorate all appear to have little or no partial oxidation. Deliberate attempts to produce high degrees of partial oxidation by addition of Rh(III) complexes to the rhodium(I) vinylisocyanide complexes have not been successful.

The stoichiometry of $Rh(CNC_6H_5)_{3.67}(ClO_4)_{1.33}$ may reflect its structural details. Extra perchlorate anions may occupy ligand positions within the structure. Partial oxidation may account for the increase in conductivity of this complex with respect to tetrakis(phenylisocyanide)rhodium(I) chloride (Table 2).

Optical properties and crystal structures

Well formed needle-shaped crystals of $[Rh(CNCHCH_2)_4]C10_4$, $[Rh(CNC_6H_5)_{3.67}(C10_4)_{1.33}$, $[Rh(CNC_6H_5)_4]C10_4$, $[Rh(CNC_6H_5)_4]BF_4$, and $[Rh(CNCH_3)_{3.38}]BF_4$ exhibit strong optical dichroism in plane

polarized light. Maximum extinction occurs when the electric vector is parallel to the needle axis, which in all cases coincides with a unique crystallographic direction $(\overline{a_0})$. All crystals transmit when the electric vector is perpendicular to $\overline{a_0}$, if the crystal is not extremely thick. Crystals of $[Rh(CNCHCH_2)_4]ClO_4$ transmit red light in the b₀ direction.

The rotation photographs of each of the crystals (rotation axis = $\overline{a_0}$) showed the same typical set of intense layer lines corresponding to a d spacing of about 2.95 Å, except that the extremely fibrous crystal of $[Rh(CNC_{6}H_{5})_{4}]Clo_{4}$ showed a significantly larger "strong repeat" of 3.20 Å. In contrast, the partially oxidized $[Rh(CNC_{6}H_{5})_{3.67}](Clo_{4})_{1.33}$ showed a well defined pattern of seven pairs of weak layer lines and one pair of strong layer lines corresponding to d = $a_0/8 = 2.98$ Å.

Gunier powder photographs of $[Rh(CNC_6H_5)_4]Cl$ showed a simple pattern of 11 lines which could be indexed to a tetragonal cell having $c_0/8 = d(Rh-Rh)$ as in $[Rh(CNC_6H_5)_{3.67}](ClO_4)_{1.33}$. All of the lines could be indexed to a tetragonal cell with $\overline{a_0} = 20.64$; $c_0 = 23.54$ Å (Table 3c). Since the cell is large, the indexing is questionable, but the four strong $OO\ell$ reflections (especially, very strong, broad $OO^{1}6$ at $2\theta = 62.72$) lend strong support to a Rh-Rh repeat of 2.94 Å.

The Rh-Rh bond lengths in these crystals are considerably shorter than in dimeric rhodium isocyanide complexes (3.19 Å); longer than in rhodium metal (2.69 Å) (20) or in rhodium(0) complexes such as

 $[Rh(CO)(PPh_3)_2]_2$ (2.63 Å) (21); and similar to the bond lengths in rhdoium(II) complexes as $Rh_2(DMG)_2(PPh_3)_2 H_2 O C_3 H_7 OH$ (2.936 Å) (22). Only $[Rh(CNCHCH_2)_4]ClO_4$ crystals showed the diffraction patterns, on oscillation and Weissenberg photographs, of non-fibrous single crystals. The strong layer lines of this crystal were interspaced with two additional, very weak layer lines, indicating that $\overline{a}_0 = 3 \times 2.93$ Å for this compound.

Weissenberg photographs indicate that $[Rh(CNCHCH_2)_4]ClO_4$ forms body centered orthorhombic crystals. All reflections are of the kind h + k + & = 2n, and there are no other systematic absences. Thus, the probable space group was determined to be Immm, Imm2 $I2_12_12_1$, or I222.

Crystal structure of [Rh(CNCHCH₂)₄]C10₄

A three-dimensional Patterson map, calculated with all of the available room temperature diffractometer data, revealed that six rhodium atoms occupy two point sets: 2 Rh in ($\underline{000}, \underline{1222}$) and 4 Rh in ($\underline{000}, \underline{1222}$) + ($\underline{x00}, \underline{x00}$), where x = 0.33272(27). Six perchlorate chlorines also occupy two point sets: 2 Cl in ($\underline{012}, \underline{122}$) and 4 Cl in ($\underline{002}, \underline{122}$) + ($\underline{0x0}, \underline{0x0}$), where x = $\frac{1}{2}$. There are twenty-four ligands of three independent kinds, four of each of two kinds bonded to Rh at ($\underline{000}, \underline{1222}$) and sixteen of one kind bonded to the other set of Rh atoms. The former two ligands have vinyl carbons exhibiting high thermal motion and disorder. Ligand 1 lies along the ($\underline{0}, \underline{y}, \underline{0}$)

axis and both vinyl carbons have very high thermal motion, indicating that the electron density maximum along the (0y0) axis is the result of an average of multi-fold disorder of atoms about this axis. Since the root-mean-squared amplitude of vibration of these atoms is so high, ~0.4 Å, the required geometry of the ligand (a C = C-Nbond angle of $\sim 120^{\circ}$) is not contradicted. Ligand 2 lies along the (00z) axis. Its end vinyl carbon atom is disordered across the mirror plane at y = 0, and has extremely high thermal motion in the x direction, perhaps reflecting torsional motion of the ligand. This (Figure 6) and its atom was revealed in Fourier maps position was not refined due to proximity to the z = 0 mirror plane. Ligand 3 is not disordered, but has fairly high thermal motion. It is bent significantly out of the x = 1/3 plane, allowing mirror related ligands on Rh atoms at $(\pm 0.33272, 0.0, 0.0)$ to minimize their steric interactions. The only close ligand-ligand interatomic distances involve isocyanide carbon atoms. Atom positions and temperature factors are collected in Table 5. Bond lengths and angles, as well as some non-bonding contact distances, are shown in Table 6. An ORTEP diagram of the structure is shown in Figure 7. Note that all light atom bond lengths have fairly high standard deviations, due to the dominance of rhodium scattering. Bond lengths and angles associated with the vinyl carbon atoms have especially high standard deviations.

The low intensity of the low temperature data set impeded refinement of the structure. A rapid drop-off in intensity with

Figure 6. Fourier map of ligand 2, $[Rh(CNCHCH_2)_4]C10_4$. Contours at $.2e^{-7/4}$ intervals.

	<u> </u>	у	Ζ
Rh 1 Rh 2 Cl 1 Cl 2 C 1 N 1 C 2 C 3 C 4 N 2 C 5 C 6 C 7 N 3 C 8 C 9	0 33272 (27) 0 0 0 0 0 0 0 0 0 0 0 32687 (199) 31173 (176) 28888 (360) 27718 (537)	$\begin{array}{c} 0\\ 0\\ 50000\\ 25000\\ 8954\ (134)\\ 13490\ (113)\\ 20425\ (286)\\ 25026\ (354)\\ 0\\ 0\\ 0\\ 5000\\ 5936\ (67)\\ 9442\ (60)\\ 13990\ (160)\\ 13591\ (267) \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 50000\\ 0\\ 0\\ 0\\ 0\\ 16582 (373)\\ 25189 (326)\\ 36326 (282)\\ 41651 (635)\\ 11363 (107)\\ 18026 (110)\\ 25897 (242)\\ 34075 (413) \end{array}$
	X	у	Z
01 02 03 04 05 06 07 08 09	0 0 1348 0 0 1348 0 0 -1347	5639 4787 4788 3139 2287 2288 1861 2713 2712	0 1084 -539 5000 6084 4460 5000 3916 5540

Table 5a.	Refined Atomic Coordinates for $Rh(CNCHCH_2)_4C10_4$ at Room
	Temperature

Oxygen coordinates have been multiplied by 10^4 . All others have been multiplied by 10^5 .

Table 5b. Refined Temperature Factors for $Rh(CNCHCH_2)_4C10_4$ at Room Temperature.

	ווט	U22	U33	U12	U13	U23
Rh 1	592 (22)	962 (33)	974 (40)	0	0	0
Rh 2	568 ([°] 11)	798 (14)	859 (* 18)	0	0	Ō
C1 1	2590 (298)	4070 (363)	4126 (394)	Õ	0	Õ
C1 2	1480 (102)	1736 (103)	4853 (246)	0	Ō	õ
C 1	943 (215)	899 (190)	1767 (349)	0	0	õ
NI	1105 (217)	837 (163)	2865 (434)	õ	Ō	õ
C 2	4082	1738 (539)	4203	Õ	Õ	õ
C 3	3063 (938)	4837	1901 (563)	Ő	Ō	õ
C 4	312 (118)	1175 (241)	2456 (500)	Õ	Õ	Õ
N 2	1468 (314)	3076 (529)	1886 (427)	Ó	Ó	0
C 5	3814 (879)	4256 (937)	508 (188)	Ō	0	Õ
C 6	6184	3085 (960)	3048	Ō	0	-1887 (751
C 7	653 (68)	1530 (114)	1196 (95)	238 (132)	-48 (134)	-49 (90
N 3	844 (98)	1795 (117)	1705 (115)	-57 (93)	-35 (95)	-770 (103
C 8	1726 (270)	3598 (355)	2630 (296)	-273 (237)	-184 (230)	-2235 (290
C 9	4301 (554)	5815 (780)	5313 (783)	-599 (457)	1714 (533)	-4321 (746

.

.

B

01	16,00
02	16.00
03	16.00
04	16.00
05	16.00
06	16.00
07	16.00
08	16.00
09	16.00

<u>Table 6</u>

.

.

 $Rh(CNCHCH_2)_4ClO_4$ Room Temperature Structure, Bond Lengths, Angles, and Contact Distances

Rh 1 - Rh 2	2.9314 (24) Å
Rh 2 - Rh 2´	2.9475 (48) Å
Rh 1 - C 1	2.05 (3) Å
Rh 1 - C 4	2.11 (4) Å
Rh 2 - C 7	1.93 (2) Å
C 1 - N 1	1.04 (4) Å
C 4 - N 2	1.09 (5) Å
C 7 - N 3	1.17 (3) Å
N 1 - C 2	1.58 (6) Å
N 2 - C 5	1.41 (4) Å
N 3 - C 8	1.46 (6) Å
C 2 - C 3	1.05 (12) Å
C 5 - C 6	1.33 (10) Å
C 8 - C 9	1.05 (12) Å
< N 2 - C 5 - C 6	120 (7)°
< Rh2 - C 7 - N 3	175 (2)°
< C 7 - N 3 - C 8	177 (4)°
< N 3 - C 8 - C 9	129 (8)°
C 7 C 7'	3.05 (4) Å
C 7 C 7''	2.71 (2) Å
C 1 C 4	2.94 (3) Å

Figure 7. [Rh(CNCHCH₂)₄]C10₄ structure.

increasing k and ℓ remained at low temperature, indicating retention of disorder in y and z parameters. However, h = 9 and 12 reflections were observed, reflecting a precisely defined Rh-Rh distance in the x direction. The "high thermal motion" of several atoms at room temperature is resolved into two-fold disorder at 22° K. However, only the rhodium atom coordinates, anisotropic temperature factors, and coordinates of the atoms of ligand 3, may be refined by leastsquares. Other atom positions were obtained from Fourier maps. Atom positions and temperature factors are shown in Table 7; bond lengths, and bond angles are collected in Table 8. There is no structural phase transition between 22° K and 300° K in [Rh(CNCHCH₂)₄]ClO₄. There is some reduction in thermal motion, but disorder is retained. There is no crystallographic evidence for partial oxidation in Rh(CNCHCH₂)₄ClO₄.

Electronic Structure

The electronic properties of crystalline $[Rh(CNR)_4]^+X^-$ may be rationalized from simple molecular orbital arguments and a knowledge of the properties of oligomeric species in the solid state and solution (1,2,10). Figure 2 shows a molecular orbital diagram for $[Rh(CNR)_4]_n^{n+}$ where n = 1,2, and 3, as well as a simple band diagram for the polymeric solid. The dimer and trimer are assumed to have staggered configurations, resulting in D_{4d} and D_{4h} symmetry, respectively. The highest occupied orbital of the monomer is $a_{1g}(dz^2)$; the lowest empty orbital is an a_{2u} orbital with Rh Pz and ligand π^* character.

Fable 7a. Atomic coordinates	of R	h(CNCHCH)	4 ^{C10} 4	at	22°	К.
------------------------------	------	-----------	--------------------	----	-----	----

	x	У	Z
Rh 1	0	0	0
Rh 2	33333	Ō	ō
C 1	0	9700	0
C 2	4000	21000	2000
C 3	0	2 4000	9000
C 4	0	1000	14300
C 5	0	1000	· 33000
C 6	6000	5000	37000
C 7	32761	6109	12042
C 8	2955 2	14164	25196
C 9	25326	12772	34295
N 1	0	15700	0
N 2	0	1000	22500
N 3	31422	9248	18062
C1 1	0	50000	0
C1 2	0	25000	46000
01	0	56390	0
02	0	47870	10840
03	13480	47880	5400
04	0	31790	46000
05	0	23270	56840
06	13480	23280	40600

All coordinates have been multipled by 10^5 .

Table 7b.	Temperature I	Factors	of	Rh(CNCHCH 2) ₄ CIC) ₄	at	22°	К.
-----------	---------------	---------	----	-----	----------	--------------------	----------------	----	-----	----

	U11	U22	U33	U12	U13	U23
Rh 1 Rh 2 C 1 C 2 C 3	743 632 464 B = 10.0 B = 10.0	1179 616 791	746 1189 3047	0 0 0	0 0 0	0 0 0
C 4 C 5 C 6	1063 B = 10.0 B = 10.0	1090	1786	0	0	0
C 7 C 8 C 9 N 1 N 2 N 3 C1 1 C1 2 O1 O2 O3 O4 O5 O6	793 1266 4468 746 712 563 1746 1287 B = 16.0 B = 16.0 B = 16.0 B = 16.0 B = 16.0 B = 16.0 B = 16.0	2005 5911 4744 1409 3126 2294 8654 1666	1620 3337 4748 3202 1638 1920 8334 6200	584 -423 -801 0 -225 0 0	564 61 2386 0 0 -14 0 0	136 -3084 -3794 0 0 -685 0 0

All Uij's have been multiplied by 10⁴.

<u>Table 8</u>

~ ~ ~ ~ ~ ~ ~

[Rh(CNCHCH₂)₄]C10₄ Low Temperature Structure, Bond Lengths, and Angles

.

Rh 1 – C 1 Rh 1 – C 4 Rh 2 _ C 7	2.14* 1.78* 2.01 (3)	Rh 1 - Rh 2 Rh 2 - Rh 2 ⁻¹	2.890 (10) 2.890 (10)
C 1 - N 1 C 4 - N 2 C 7 - N 3	1.26* 1.02* 1.03 (4)		
N 1 - C 2 N 2 - C 5 N 3 - C 8	1.29* 1.30* 1.41 (5)		
C 2 - C 3 C 5 - C 6 C 8 - C 9	1.05* 1.14* 1.22 (6)		·
C 1 - N 1 - C 2 N 1 - C 2 - C 3 N 2 - C 5 - C 6 Rh2 - C 7 - N 3 C 7 - N 3 - C 8 N 3 - C 8 - C 9	164°* 145°* 116°* 175 (3)° 172 (4)° 115 (5)°		

*At least one atom position estimated from Fourier map, and not refined by least-squares.

On dimerization, in symmetry D_{4d} , two sets of a and b_2 orbitals result, each of which is primarily associated with either the $a_{1q}(dz^2)$ or $a_{2u}(Pz\pi^*)$ orbitals of the monomer. The low energy transition at 550 nm in water or acetonitrile solutions of $[Rh(CNCHCH_2)_4]C10_4$ is assigned to the $1b_2 \rightarrow 2a_1$ transition of $[Rh(CNCHCH_2)_4]_2^{2+}$. Likewise, the 715 nm band is assigned to the $2a_{1g} \rightarrow 2a_{2u}$ transition of [Rh(CNCHCH₂)₄]₃³⁺. Oligomerization is allowed because of significant mixing of the $a_{1\sigma}(dz^2)$ and $a_{2u}(P_2\pi^*)$ derived levels of the monomer, stabilizing the lower, filled orbitals of the oligomer, and destabilizing the higher, empty orbitals. If the Rh-Rh interaction in the stacked crystalline modifications is similar in strength to that in the oligomers, a band gap between the dz² and Pz- π * bands might be expected to be significantly smaller than lowest energy band of the tetramer at 962 nm (10,400 cm⁻¹ = 1.3 eV). Furthermore, the Rh-Rh bond length in the polymer is apparently significantly shorter than in the oligomers. Photoaccoustic spectroscopy of $[Rh_2(CNC_6H_5)_8][B(C_6H_5)_4]_2$ in the solid state reveals absorbtion at about the same wavelength as the $lb_2 \rightarrow 2a_1$ band in solution. The Rh-Rh bond length in $[Rh_2(CNC_6H_5)_8][B(C_6H_5)_4]_2$, from refinement of the crystal structure, is 3.19 Å. The significant shortening of the Rh-Rh bond in $[Rh(CNCHCH_2)_4]ClO_4$ must lead to a much stronger overlap of dz^2 and $Pz\pi^*$ orbitals in the adjacent monomeric units, and a much lower band gap than would be predicted from the oligomer spectra.

The photoaccoustic spectra of $[Rh(CNC_{45})_{3.67}](C10_{4})_{1.33}$ and $[Rh(CNCHCH_{2})_{4}]C10_{4}$ have strong absorbtion throughout the visible

region. This is consistent with strong interactions resulting in a band structure, with activation energy <1 eV for excitation into the conduction band.

The room temperature conductivity of $[Rh(CNCHCH_2)_4]ClO_4$ is ~2 Ω^{-1} cm⁻¹ as measured on single crystals. The plot of $\ln \sigma$ vs. 1/T (Appendix 2) reveals that the conductivity is activated, $\Delta E \sim 0.10$ eV in the linear low temperature region. This electrical behavior is consistent with a small band gap between the dz² and Pz- π * bands, and conduction via thermal population of Pz\pi* band. Disorder may play a role in increasing the conductivity.

The transmission of polarized light, with electric vector perpendicular to \overline{a}_0 , through single crystals of $[Rh(CNCHCH_2)_4]ClO_4$ in the \overline{b}_0 direction, indicates that the activation energy for hopping between chains is very high ($\geq 1.5 \text{ eV}$). Although crystals are far too thin for conductivity measurements with the Montgomery configuration, it is certain that these complexes are among the most anisotropic of known quasi-one-dimensional conductors.

Powder conductivities increase with decrease in ligand size. This is presumably due to greater interchain coupling when rhodium chains are close together. Conclusions

Tetrakis(isocyanide)rhodium(I) salts crystallize in conducting, stacked modifications if ligands and anions are reasonably small (CN-R: R = methyl, vinyl or phenyl; x⁻: Cl^{-} , BF_4^{-} , $Cl0_4^{-}$). Partial oxidation of the rhodium chain is likely in some of the complexes, for example $[Rh(CNC_{6}H_{5})_{3.67}](C10_{4})_{1.33}$. However, a non-integral average oxidation state does not seem to be a necessary condition for moderately high conductivity (11). Chemical analysis and refinement of the room temperature crystal structure of $[Rh(CNCHCH_2)_4]C10_4$ indicate that this complex has one perchlorate anion per rhodium atom. If a very low level of partial oxidation exists, it may effect the magnitude of the conductivity, but would be present as a crystallographic impurity and no metallic state would exist. A minor difference in two Rh-Rh bond lengths occurs at room temperature and probably at low temperature. This inequality, along with the differences in the chemical environments of the two crystallographically inequivalent rhodium atoms, seems to be due to steric interactions (i.e., steric repulsion, between the eclipsed sets of ligands on the equivalent Rh atoms at $x \approx 1/3$ and $x \approx 2/3$, results in displacement from the ideal positions and lengthening of the Rh2-Rh2⁻ bond). Both integral oxidation state and crystallographic inequivalence of metal atoms have been observed separately in conducting, stacked d⁸ metal complexes (11,23). The conditions for conductivity in these materials seem to be less restrictive than previously thought.

Non-integral oxidation has been described as a necessary condition for high conductivity in d^8 metal complexes (5). The conductivities of complexes exhibiting both integral and non-integral oxidation states have similar dependence on temperature. Magnitudes of the room temperature conductivities of the rhodium isocyanide complexes are ~100 times less than the partially oxidized platinum complexes, while the activation energies are similar. The decrease of room temperature conductivities in the sequence:

 $K_2Pt(CN)_4Br_{0.33} \cdot H_20 > Ir(CO)_3C1 - K_{0.6}[Ir(CO)_2C1_2] \cdot 0.5H_20 \gtrsim$

[Rh(CNCHCH₂)₄]C10₄

follows the increase in interchain distances.

References

- 1. K. Krogmann, Angew. Chem. Int. Ed., 8, 35 (1969).
- 2. H. R. Zeller, Adv. Solid State Phys., 13, 31 (1973).
- 3. T. W. Thomas and A. E. Underhill, <u>Chem. Soc</u>. Rev., 1, 99 (1972).
- H. J. Keller in Low Dimensional Cooperative Phenomena, Ed., H. J. Keller. Nato Advanced Studies Institute Series, 7B, Plenum Press, p. 315.
- 5. J. S. Miller and A. J. Epstein, Chapter in <u>Progress in Inorganic</u> <u>Chemistry</u>, Vol. 20. Ed. S. J. Lippard. John Wiley and Sons, Inc., New York (1976).
- A. P. Ginsberg, J. W. Koepke, J. J. Hansen, K. W. West, F. J.
 DiSalvo, C. R. Sprinkle, and R. L. Cohen, <u>J. Inorg. Chem.</u>, <u>15</u>, 514 (1976).
- J. G. Gordon II, R. Williams, C. -H. Hsu, E. Cuellar, S. Samson,
 K. Mann, H. B. Gray, V. Hadek, and R. Somoano, <u>Annals of New York</u>
 <u>Academy of Sciences</u>, <u>313</u>, 580 (1978).
- K. R. Mann, N. S. Lewis, R. M. Williams, H. B. Gray, and J. G.
 Gordon II, Inorg. Chem., 17, 829 (1978).
- R. B. Somoano, A. Gupta, W. Voksen, A. Rembaum, and R. Williams,
 Organometallic Polymers, Academic Press (1978).
- K. R. Mann, J. G. Gordon II, and H. B. Gray, <u>J. Am. Chem. Soc</u>.,
 97, 3553 (1975).
- A. H. Reis, Jr., and S. W. Peterson, <u>Annals of New York Academy</u> of <u>Sciences</u>, <u>313</u>, 560 (1978).

- 12. J. Chatt and L. M. Venanzi, <u>J. Chem. Soc. A.</u>, 4735 (1957).
- 13. D. S. Matteson and R. A. Bailey, J. Am. Chem. Soc., 90, 3761 (1968).
- 14. D. S. Matteson and R. A. Bailey, Chemistry and Industry, 191 (1969).
- 15. W. P. Weber, G. W. Gokel, and I. K. Ugi, <u>Angew. Chem. Int. Ed.</u>, <u>11</u>, 530 (1972).
- 16. Methyl was prepared by dehydration of methyl formamide with p-toluene sylfonyl chloride in quinoline.
- I. Ugi, U. Fetzer, U. Enholzer, H. Knupfer, and K. Offermann, Angew. Chem. Int. Ed., 4, 472 (1965).
- 18. Absorption corrections were performed using the absorption coefficients from: <u>International Tables for X-Ray Crystallography</u> Vol. I, Kynoch Press, Birmingham (1952). Atomic scattering factors, including the corrections for the real part of anomalous dispersion for Rh and Cl⁻ were obtained from: <u>International Tables for X-Ray Crystallography</u> Vol. III., Kynoch Press, Birmingham (1962). Atomic scattering factors for Rh were obtained from: D. T. Cromer and J. T. Waber, <u>Acta. Cryst.</u>, <u>18</u>, 104 (1975).
- 19. S. Samson, E. Goldish, and J. Dick, to be published.
- 20. J. Donohue, <u>The Structure of the Elements</u>, Wiley, New York (1974) p. 216.
- P. Singh, C. B. Dammann, and D. J. Hodgson, <u>Inorg. Chem.</u>, <u>12</u>, 1335 (1973).
- 22. K. G. Caulton and F. A. Cotton, <u>J. Am. Chem. Soc.</u>, <u>93</u>, 1914 (1971).
- 23. J. M. Williams and A. J. Schultz, <u>Annals of the New York Academy</u> of Sciences, 313,509 (1978).

CHAPTER 3

Structural Phase Transition and Disorder in (TTF)(C1)

R. Williams, C. Lowe Ma, and S. Samson**

A. A. Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena, California 91125

and

S. K. Khanna and R. B. Somoano[†] Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91125

*The x-ray crystallographic studies, especially the development of the low temperature x-ray goniometer, were sponsored by the National Science Foundation under Grant No. DMR-74-19029A1. Contribution No. 0000 from the Division of Chemistry and Chemical Engineering, California Institute of Technology.

[†]This paper represents one phase of research performed by the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration, Contract No. NAS7-100.

Abstract

 $(TTF)Cl_x$, x = 0.67 and 0.70, is a quasi-one-dimensional organic conductor with a room temperature conductivity of ~ 150 Ω^{-1} cm⁻¹. At room temperature the structure is tetragonal and consists of chains of uniformly spaced, eclipsed TTF molecules surrounding channels occupied by chloride ions, which form a disordered lattice. The chloride sublattice becomes ordered and the TTF sublattice undergoes a structural phase transition from tetragonal to monoclinic symmetry at ~ 250° K. The angle β of the monoclinic crystal increases continuously as the temperature is decreased from 245° K to 19° K. The electrical conductivity shows a sharp decrease at the phase transition which is suggestive of the formation of commensurate charge density waves in the monoclinic crystal.

Introduction

The stabilization of the metallic state in quasi-one-dimensional organic metals has been a goal of researchers for many years. These materials exhibit metallic behavior down to a temperature, $T_{\rm MI} \sim 50$ -200° K, where a metal-to-nonmetal (M-NM) transition takes place, resulting in non-metallic behavior at low temperature. It is important to understand the nature of the forces that drive this transition in order that it may be controlled, and eventually suppressed, so as to stabilize the metallic state. Some of the experimentally controllable parameters which should influence the phase transition are the interchain coupling, the degree of disorder, and the nature of the molecular stacking along the chain (i.e., slipped versus eclipsed stacking).

There have been numerous studies of the M-NM phase transition in organic metals in which the cation and anion radicals stack in a slipped fashion.¹ However, very little work has been done on systems such as the halides and pseudohalides, (i.e., thiocyanate, SCN and selenocyanate SeCN) of tetrathiafulvalene (TTF)^{2,3,4}, in which the TTF molecules in the chain are eclipsed. In these materials the metallic state appears to be less stable (i.e., higher T_{MT}). Recent X-ray diffuse scattering studies of $(\text{TTF})_{12}(\text{SCN})_7$ reveal a tetragonal-to-monoclinic structural phase transition at ~ 340° K and the presence of one-dimensional incommensurate charge density waves (CDW) below this temperature.⁵ In this paper, we report the results of our single-crystal X-ray study of the crystal structure of (TTF)Cl_x (x = 0.67 and 0.70) at various temperatures down to 19° K. Here, the TTF molecules are eclipsed and uniformly stacked and the chloride lattice exhibits considerable structural disorder at room temperature.⁶ The electrical conductivity and thermoelectric power undergo changes at 200-250° K, which are suggestive of a M-NM transition. Similar changes are observed in all of the halides and pseudohalides of TTF.

Experimental

Crystals of $(TTF)Cl_x$ were grown by co-diffusion of solutions of (TTF) $(ClO_4)_{0.7}$, and tetraethylammonium chloride in acetonitrile. The crystal structure was studied by a variety of X-ray diffraction techniques. Oscillation and Weissenberg photographs were obtained at room temperature. In addition, oscillation photographs were obtained at $120 \pm 10^{\circ}$ K by cooling with a stream of cold N₂ gas.

The room-temperature structure of (TTF)Cl_{0.67} was determined and refined with the use of a three-dimensional data set that was obtained

with nickel-filtered CuK_{α} radiation ($\lambda = 1.54178$ Å) and a Datex automated, locally modified General Electric quarter-circle diffractometer. The crystal used was a tetragonal prism of the size 0.11 x 0.11 x 0.63 mm³, the prism axis being $\underline{c_0}$. A total of about 800 reflections were measured up to $20 = 155^{\circ}$, using 20 - 0 scans. These were corrected for Lorentz, polarization, and absorption ($\mu = 104$ cm⁻¹), and merged to a set of 303 unique reflections.

For the study of structural changes at temperatures ranging from 300° K to 19° K we used a locally designed and built low-temperature diffractometer⁷ consisting of a CTI model 21 closed-cycle "Cryocooler", an E & A full-circle and base goniometer, a Syntex PI interface (and software package), a graphite monochromator of our own design, and a molybdenum-target X-ray tube. The temperature can be varied in steps of 0.1° K and kept constant for long periods of time. The crystal used for this study $[(TTF)Cl_{0.67}]$ was from the same batch as that used for the room-temperature work and had the dimensions 0.17 x 0.20 x 0.27 mm³. It was mounted with the $\underline{c_0}$ -axis approximately parallel to the rotation axis.

The electrical conductivities were measured by the standard four-probe technique using aquadag contacts.

Results

General Features of the Layer Lines and Stoichiometry

A number of batches of good crystals were obtained by the co-diffusion method. The two kinds of crystals studied in detail represent the extremes of the short range of stoichiometry exhibited by disordered tetragonal (TTF) Cl_{x} .

Figure 1 shows an oscillation photograph taken at room temperature of a crystal from one of the batches, which we label $(TTF)Cl_{0.70}$. The rotation axis is <u>c</u>₀. It is seen that there are two sets of diffuse layer lines

Figure 1. Oscillation photograph of (TTF)C1_{0.67}.

marked hkl and hk2. Single crystals from the other batch which we label (TTF)Cl_{0.67} (again, rotation axis is \underline{c}_0) gave rise to two similar sets of diffuse lines, which, however, differ somewhat in the spacings. In each case the hkl set corresponds to the d-spacing $d_{001} \sim 3.0 \ge c_0$ and the hk2 set to $d_{002} \sim 1.5 \text{ x} \underline{c}_o$, where \underline{c}_o is the length of the cell edge that corresponds to d_{003} or the (non-diffuse) hk3 set (TTF sublattice). Each hk2 set is due solely to the chloride ions in the channels (Cl-sublattice) and the weaker hkl set results from both the Cl-sublattice and the TTF-sublattice. If the assumption is made that d_{002} is the same as the average C1-C1 distance along z and that dong represents the average TTF-TTF distance, the stoichiometry should correspond to the ratio d_{003}/d_{002} . In the absence of chemical analyses of sufficient accuracy to determine the minute differences in composition of the two batches, each label used above was assigned so as to represent the d_{003}/d_{002} ratio as determined from the corresponding oscillation photograph; see Table 1. The nominal camera radius was used for the determination of each d-spacing without applying a correction for film shrinkage. Thus, each d-spacing by itself may lack accuracy, but for the practical purpose considered here errors due to film shrinkage cancel out in the ratios. The stoichiometries 1:0.70 and 1:0.67 are consistent with the composition range previously reported⁶ for the disordered tetragonal (TTF) Cl_v .

In $(TTF)Cl_{0.67}$ the chloride sublattice is commensurate with the TTF lattice whereas in $(TTF)Cl_{0.70}$ the two lattices are incommensurate with each other. The diffuseness of the hkl and hk2 layer lines indicates that there is a considerable degree of disorder in the chloride

Phase	Temperature (°K)	d _{TTF} (Å)		dCl (Å)	d _{TTF} /d _{Cl}
TTF Clo. 67	298	3.57		5.32	0.671
TTF Clo.67	120	3.54		5.36	0. 660
TTF CL0.70	298	3. 58		5.08	0.705
TTF CLO.70	120	3.57		5.36;	0.666;
			、	4.97	0.718

Table 1. Repeat distances in the TTF and Cl Stacks

sublattices of each compound at room temperature. The diffuse nature of the spots which make up the hkl and hk2 layer lines, indicates that only very short-range order exists in the chloride sublattice.

The features of the oscillation photographs just discussed are in general similar to those that we have observed on photographs of $(TTF)Br_{0.74}$, $(TTF)_{12}(SCN)_7$, and $(TTF)_{12}(SeCN)_7$, except that in the case of $(TTF)Cl_x$, the diffuseness of the anion-sublattice reflections is considerably enhanced. <u>Refinement of the Room-Temperature Structure of $(TTF)Cl_0.67$ </u>

Weissenberg photographs of $(TTF)Cl_{0.67}$ showed that the structure is tetragonal with Laue symmetry 4/mmm. All $Ok\ell$ reflections were of the type $k + \ell = 2n$ and no other conditions for reflection were detectable. Thus, the probable space groups are $P4_2/nm$, P4n2, and $P4_2$ mnm, of which the last one has all the necessary properties to incorporate the flat TTF molecules in columns parallel to the <u>c</u>-axis and leaving channels parallel to these for the chlorides. The lengths of the edges of the smallest unit cell (TTF-lattice) are $\underline{a_O} = \underline{b_O} = 11.1931(7)$ Å and $\underline{c_O} = 3.6002(2)$ Å, as determined by a least-squares fit of 20 values for 14 reflections measured with a diffractometer which was carefully calibrated for $2\theta_O$.

The trial structure consisted of two TTF molecules, with mmm symmetry, which are centered at (0,0,0; etc.), with \overline{c}_0 perpendicular to the molecular plane. The chloride ion and hydrogen atom were left out at this stage. A nearly uniform column of electron density at x = 1/2, y = 0 was observed on Fourier maps, and was ascribed to the highly disordered chloride ion. A chloride was included in the model structure; it was placed corresponding to the maximum in electron density of the column, at (1/2,0,1/4).

This trial structure was refined first isotropically and then anisotropically by full-matrix least-squares minimization of $\Sigma w(F_0^2 - F_c^2)$ and weights equal to $1/\sigma^2(F_0^2+t)$, where t is a term accounting for errors other than counting statistics (CRYM program). The scattering factors of sulfur and chloride were corrected for the real part of anomalous dispersion; the imaginary component was ignored for this centrosymmetric space group.

Inclusion of a population factor for chloride as refinable parameter in the full matrix in some of the refinement cycles led to inconclusive results because of the high standard deviation of that parameter. Also, the chloride anisotropic temperature factor in the z direction, U_{33} , could not be refined. The Fourier section through the chloride channels ranging from z = 0 to z = 1/2 showed a variation in electron density of merely about 20% over that range, the minima being at z = 0 and z = 1/2 and the maximum at z = 1/4; see Fig. 3. Thus, the refinement was continued with 1.34 chlorides distributed over the two point sets 4d(1/2,0,1/4; etc.) and 4c(1/2,0,0; etc.) and with the inclusion of population factors P_d and P_c as refinable parameters that were constrained to $P_c = 1 - P_d$. These population parameters could be refined adequately. The anisotropic temperature factor of the chloride ions still showed high standard deviations and oscillated after partial refinement. The chloride temperature factors were held constant in the final stages of refinement, when the hydrogen atom, positioned by geometrical considerations, and an additional parameter to account for secondary extinction and counting losses, were included in the least-squares calculation. The final

agreement index obtained was R = 0.062 for all 299 reflections with $F_0 > 0$ and R = 0.057 for 271 reflections with $F_0 \ge 3\sigma$. The goodness-offit $[\Sigma w(F_0^2 - F_c^2)/n-p]^{1/2}$ for n = 299 observations and p = 30 refinable parameters (extinction included) was 4.39. This agreement is very satisfactory in view of the complications caused by the disorder of the chloride ions.

Room-Temperature Structure of (TTF)C10.67

The refined atomic coordinates and the occupancies of the two point sets 4c and 4d by the 1.34 chloride ions are given in Table 2. The anisotropic temperature factors are listed in Table 3 together with the isotropic one for hydrogen.

Table 4 gives the molecular dimensions of the TTF species found in four refined structures including that of (TTF)C1. All distances and angles (column headings <u>a</u>, <u>b</u>...etc. and α , β ,... etc.) as identified in the drawing at the bottom of that table are averaged over the <u>mmm</u> molecular symmetry observed for (TTF)C1_{0.67}. Our estimated standard deviations for (TTF)C1_{0.67} are in the range of 0.009 = 0.011 Å (C-C), 0.005 - 0.006 Å (C-S) and 0.4 - 0.8 degrees (bond angles).

An interesting trend exhibited in Table 4 is the gradual elongation of the C=C bond labeled <u>a</u> and the shortening of the C-S bonds labeled <u>b</u> as the anticipated charge transfer (column <u>e</u>) increases. It is seen that the central C=C bond length (column <u>a</u>) is most sensitive to charge transfer. Some reservation seems appropriate as regards the degree of charge transfer in (TTF)HgCl₃ because HgCl₃ species are not clearly identifiable in

Table 2.	The	refined	positional	parameters
----------	-----	---------	------------	------------

Kind of Atom	Occu- pancy	Point Set	x	у	z
C(1)	4	4f	0.04367(42)	0.04367(42)	0
C(2)	8	8i	0.24007(48)	0.15649(49)	0
S	8	8i	0.19364(12)	0.01008(11)	0
Н	8	8i	0.3147(44)	0.1759(45)	0
Cl(l)	0.73(2)	4a	1/2 、	0	1/4
Cl(2)	0.61(2)	4e	1/2	0	0

•

Table 3. Refined anisotropic temperature factors for (TTF)Cl_{0.67}

Kind of Atom	ULL	U22	U33	UL2
C(1)	0.0653(10)	0.0653(10)	0.0468(32)	0.0012
C(2)	0.0781(31)	0.0987(36)	0.0736(35)	-0.0224(30)
S	0.0644(8)	0.0824(9)	0.0657(9)	0.0015(5)
Cl(l)	0.1051	0.1012	0.1069	-0.0051
Cl(2)	0.1153	0.1183	0.0678	0.0079
Н	B(isotrop	ic) = 6.00 Å^2	•	

Table 4. Dimensions of TTF cations in four refined structures

Type of Compound	Ref.	a	Ъ	с	d	α	β	γ	δ	e
(TTF)°	10	1.349	1.757	1.726	1.314	122.7	114.5	94.3	118.6	0.
(TTF)(TCNQ)	11,24	1.369	1.743	1.736	1.323	122.6	114.7	94.9	117.7	~0.
(TTF)C1 _{0.67}	present paper	1.383	1.720	1.719	1.323	122.4	115.3	95.0	117.4	~0.
(TTF)HgCl3	<u>11</u> *	(1.40 1.41 1.40	1.71 1.72 1.72	1.72 1.72 1.70	1.33 1.30 1.28	122.3 122.2 122.5	115.5 115.7 115.0	94.7 94.4 94.1	117.5) 117.8, 118.4)	~1.

*Bond lengths and angles from Kistenmacher, private communication.

that structure. Nevertheless, the overall trend in the data is indicative of a charge transfer of nearly one electron.

Figure 2 shows a projection of the structure onto the (001) plane. The TTF cations stack in an eclipsed fashion with a uniform spacing of 3.6002 Å and form segregated columns along [002] and [1/2,1/2,z]. The chloride ions reside in channels along [0,1/2,z] and [1/2,0,z] between the TTF chains. The electron-density map, through such a channel parallel to the channel axis as shown in Fig. 3, clearly exhibits the high disorder of the chloride ions as do the diffuse layer lines shown in Fig. 1.

Effect of Lowered Temperature on the Chloride Sublattice

1. $(\text{TTF})_{cl_{0.67}}^{cl}$: Oscillation photographs taken at ~120° K revealed considerable sharpening of the diffuse layer lines and the emergence of weak but sharp Bragg reflections superimposed on these. A more detailed study at various temperatures and a cooling rate of 1° K/hour with the use of our low-temperature diffractometer⁷ revealed distinct effects close to 250° K. Here, the reflections with & = 1, 2, and 4, associated with the chloride sublattice, increased substantially in sharpness and integrated intensity as is shown in the graph, Fig. 5a; the increase occurs over a relatively narrow temperature range ($\Delta T \sim 20^{\circ}$ K). All of these reflections remain weak in comparison to the TTF-sublattice reflections (& = 3n). Throughout this temperature range the chloride sublattice remains commensurate with the TTF sublattice. Below about 250° K the changes in the integrated intensities of the chloride-sublattice reflections (& = 1, 2, and 4) are less distinct (and

Figure 2. Projection of the (TTF)Cl_{0.67} room temperature structure onto the (001) plane.

•

!

Figure 4. Temperature dependence of: a) Integrated intensity of 114 reflection; b) Peak intensity of 330 reflection; c) Full width at half-height of 330 reflection of TTF Cl₀ 67. a) at 1° K/hr, b) and c) at 10° K/hr.

Figure 5. Peak profiles of 330 reflections (w scan) at various temperatures. Profiles a) - d) taken with cooling rate of 1° K/hour.

there is a smooth increase in the region between about 90° K and 150° K; Fig. 4a).

The relatively sharp increase in integrated intensity close to 250° K reflects ordering in the chloride sublattice, which occurs over a relatively narrow temperature range. The extremely high disorder of the chloride lattice at room temperature, together with low-temperature ordering, suggests that dynamic disorder is present at room temperature, and disappears at the phase transition.

2. (TTF)Cl_{0.70}: These crystals behave in a different manner on cooling. Each of the diffuse layer lines corresponding to hkl and hk2 on the room-temperature photograph splits at low temperature into a pair of closely-spaced sharper layer lines on which weak diffuse spots are superimposed. The temperature at which this splitting occurs is somewhere above 120° K. (The low-temperature diffractometer was not used for this study.) Thus, there are now two chloride sublattices, one corresponding to $(TTF)_3Cl_2$ [or $(TTF)Cl_{0.667}$] and the other to $(TTF)_7Cl_5$ [or $(TTF)Cl_{0.714}$], and each one is commensurate with the same TTF sublattice. The stoichiometries as determined from the oscillation photographs are (TTF)Cl_{0.666} and (TTF)Cl_{0.718} respectively. Thus, upon cooling through 250° K, the highly disordered (TTF)Cl_{0.70} crystal incorporates two kinds of domains, one representing (TTF)3Cl2 and the other (TTF)7Cl5. Within each domain the chloride lattice is commensurate with the TTF lattice. A phase of stoichiometry 7/5 is also observed in the TTF-iodide system, (TTF)715.2,13

Effect of Lowered Temperature on the TTF Sublattice of (TTF)Cl0.67

All studies of (TTF)Cl_{0.67} at low temperature were carried out using the same crystal. Anneal ing was rapid and complete at room temperature, and there was no permanent damage to the room-temperature single crystal, even after repeated thermal cycling.

Changes in peak intensity and profile of the TTF sublattice reflections were monitored at various temperatures at cooling rates of ~ 1° K/hour, ~ 10° K/hour, and ~ 100° K/hour. In the temperature range ~ 295° K to ~ 250° K all changes were independent of cooling rate.

Figure 4b shows the temperature dependence of the peak intensity of the 330 reflections and Fig. 4c the change in full width at half maximum observed in omega scans of the same reflection. The cooling rate was 10° K/hour in both cases. Faster cooling (~ 100° K/hour) results in a greater decrease in peak intensity, and a greater increase in the width of the profile. Slower cooling (~ 1° K/hour) results in resolution of several components of the peak profile. Figure 5 shows omega-scan profiles of the same reflection at: (a) 265° K, (b) 256° K, (c) 134° K, and (d) 19° K. Figure 5e shows the effect of faster cooling (10° K/hour) on the scan profile [compare with Fig. 5c].

It is seen (Fig. 5) that peak splitting occurs as the temperature is lowered, the onset being at about 256° K (Fig. 5b). From here on the two smaller peaks in each profile increase in intensity at the expense of the larger central one. Also, the separation between the individual peaks of each profile increases as the temperature is lowered. At 153° K each component was resolved sufficiently to be measured individually with the diffractometer.

A least-squares fit of the 20 values of the central peak of 14 profiles gave the unit-cell parameters of the tetragonal phase at 153° K; $\underline{a}_{\underline{O}} = 11.126(2)$ Å and $\underline{c}_{\underline{O}} = 3.5768(4)$ Å. An analysis and least-squares fit of the 20, ω , φ , and X values of 13 sufficiently strong and well resolved "side peaks" revealed that they originate from a monoclinic structure with unit-cell parameters $\underline{a}_{\underline{O}} = 15.742(56)$ Å, $\underline{b}_{\underline{O}} = 15.721(38)$ Å, $\underline{c}_{\underline{O}} = 10.744(21)$ Å, and $\beta = 92.98(23)$ degrees. Seven of the 13 side peaks could be ascribed to one of four possible orientations of the cell of the monoclinic phase with respect to the tetragonal cell; the remaining six corresponded to a second orientation. Within experimental error, the cells of the two phases are related to each other by $a_{mono} = a_{tetr} \cdot \sqrt{2}$ and $c_{mono} = 3 c_{tetr}$.

The four directions [110], [110], [110], and [110] of the tetragonal cell are equivalent. Increasing the angle, between one of these directions and $\underline{c_{\text{Otetr}}}$, from 90° to β , results in a monoclinic cell. Since the four directions are equivalent, four orientations of the monoclinic cell with respect to the tetragonal cell (and crystal) can result with equal probability. Because part of the crystal retains the tetragonal structure, the result of the phase transition is a quintuple twin containing domains of the tetragonal phase and domains of the monoclinic phase having four possible orientations.

The relationship between the monoclinic $\underline{a}, \underline{b}$ plane and the tetragonal (001) plane is shown in Fig. 6. The monoclinic angle β increases as the temperature is lowered and reaches 93.6 degrees at 19° K. At 247° K, β is 91.8 degrees. Figure 7 shows a plot of β versus temperature.

Figure 6. Relative orientations of monoclinic and tetragonal a, b planes. The dashed line shows the tetragonal cell.

Figure 7. Monoclinic angle β vs. T for the low temperature phase of (TTF)Cl_0.67.

The arrangement of the TIF cations in the monoclinic cell cannot be determined with certainty because of the considerable overlap of reflections caused by the quintuple twinning. One interpretation of the monoclinic distortion is presented in Fig. 8, which assumes that the TTF molecules retain 2/m symmetry in space group C2/m; the eclipsed stacking is retained and the monoclinic <u>c</u>-axis remains perpendicular to the TTF molecular plains. This interpretation implies that the individual TTF columns are translated slightly relative to each other in the [OO1] direction. This slipping of parallel TTF columns is seen in the structures of several monoclinic partially oxidized TTF halides and pseudohalides. 5,6

The location of the chloride ions in this structure cannot be determined from the present diffraction data. Nevertheless, it is tempting to attribute the tripling of the monoclinic <u>c</u>-axis (TTF-stacking period) to ordering of the chloride ions in each channel inasmuch as $3d_{TTF} = 2d_{Cl}$. (or $d_{OO3}/d_{OO2} = 0.67$ as was discussed earlier in this paper; see also Table 1). In the absence of refinable structure data (because of quintuple twinning) we cannot, of course, exclude the possibility of a very slight Peierls distortion that would tend to drive the TTF entities toward dimerization or trimerization. However, a large Feierls distortion seems unlikely because the reflections with $l \neq 3n$ remain weak.

The phenomenon of increasing β -angle with decreasing temperature was also observed in X-ray studies by Thomas <u>et al.</u>⁵ of $(TTF)_5(SCN)_7$, where it is believed to reflect coupling of charge-density waves with lattice strains. We cannot rule out the possibility that the TTF stacks are undergoing a dynamic transition such as was measured in that compound and in (TTF)(TCNQ)by X-ray diffuse scattering.^{1,5}

Figure 8. Interpretation of monoclinic distortion. Long and short thick lines represent side- and end-on TTF cations, respectively.

The peak broadening occurring on fast cooling of $(TTF)Cl_{0.67}$ completely obscures peak splitting when a cooling rate of ~ 100° K/hour is employed. Furthermore, while there is little peak broadening and no observable peak splitting in 20 scans after slow cooling (~ 1° K/hour), the full width at half maximum, $W_{1/2}$, of these profiles increases dramatically with fast cooling. For example, $W_{1/2}$ corresponds to ~ 0.6° (20) at 300° K and ~ 3.0° (20) at 19° K after cooling at a rate of ~ 100° K/hour. After cooling this quickly, a very slow increase in peak intensity may occur.¹⁴

This peak broadening is most likely due to formation of extremely small diffracting domains within the crystal. Since there are five kinds of diffracting domains below the phase transition, it is likely that individual domains of any one kind are very small. The dependence of peak profiles on the size of diffracting domains is well understood.¹⁵ We have not investigated this phenomenon in great detail. A calculation based on Wilson's treatment indicates that domains in (TTF)Cl_{0.67} may be ≤ 300 Å in diameter after cooling to 19° K at a rate of ~ 100° K/hour.

Electrical Properties

The electrical properties of $(TTF)Cl_{0.67}$ are identical to those of $(TTF)Cl_{0.70}$ as determined by measurements on single crystals from the same batches that were used in the crystallographic work. However, the properties differ from those of the other halides of $TTF.^{2,3,4}$ The room-temperature conductivity is $\sigma \sim 150 \ \Omega^{-1} \text{cm}^{-1}$, the lowest in this series of compounds. As the temperature is lowered the conductivity decreases and

drops off sharply at the phase transition (~ 250° K), and then continues to decrease less rapidly as shown in Fig. 9. The plot of log σ versus 1/T is linear only over the narrow temperature range from 125° K to 200° K and yields an activation energy, Δ , of ~ 0.13 eV. Assumption of a disordered model, ¹⁶ where $\ln \sigma \sim 1/T^{\gamma}$ and $\gamma = 1/3$ or 1/4, did not lead to a significant improvement in the fit of the data. This was expected because the results obtained from the crystallographic work provided evidence for ordering in the chloride lattice.

The thermoelectric power (TEP) is small and positive at room temperature, and is relatively constant down to 260° K. At 250° K there occurs a sharp upturn and then the TEP continues to increase with decreasing temperature.

Thus, both the electrical conductivity and the TEP change dramatically at the phase transition. Below the transition nonmetallic behavior is observed. In view of the disorder in the chloride lattice one might expect (TTF)Cl_x to behave as a disordered 1-D metal in which all the states of the conduction electrons are localized. The finite conductivity would then be due to the strong electron-phonon interaction such that electron transport takes place by phonon-assisted hopping.¹⁸ Thus, the conductivity would be diffusive in nature and would decrease as the temperature is lowered, as was observed experimentally. However, the mere presence of disorder is not sufficient to guarantee such behavior because of the competing factors such as the disorder potential, δ , the interchain coupling, and the electronic bandwidth. For example, in an anisotropic conductor with nearest-neighbor transfer integrals, the critical value of

Figure 9. Temperature dependence of the conductivity of (TTF)Cl_{0.67}. $\sigma_{\rm RT} \sim 100 \ \Omega^{-1} \ {\rm cm}^{-1}.$

the disorder potential is $\delta_c \sim (t_{\parallel} t_{\perp})^{1/2}$, where t_{\parallel} is the longitudinal transfer integral (proportional to the electronic bandwidth) and t_{\perp} is transverse transfer integral (interchain coupling).¹⁹ All of the conduction-electron states will be localized only if $\delta > \delta_c$. The electronic bandwidth is expected to be large in (TTF)Cl_x because of the eclipsed stacking of TTF molecules.^{2,20} Similarly, the occurrence of ordering and a structural phase transition near 250° K indicates that interchain forces are not weak. Therefore, we believe that the conductivity in the high temperature state is not dominated by disorder, but reflects the presence of fluctuations, or precursors, of the phase transition.

Another example of this interaction between disorder and interchain coupling is $(tetrathiatetracene)_2(iodide)_3$, $(TTT)_2I_3$. This is a singlecarrier, quasi-one-dimensional organic metal in which the TTT molecules stack uniformly in a slipped fashion, in contrast to the eclipsed stacking of the TTF molecules in (TTF)₃Cl₂.¹⁴ The iodine chains exhibit considerable disorder. Unlike (TTF)3Cl2, the temperature dependence of the conductivity of $(TTT)_2I_3$ is metal-like, even in the presence of observable disorder. The conductivity exhibits a broad maximum near 100° K and slowly decreases as the temperature is lowered. A possible phase transition occurs at 20-25° K. X-ray diffraction studies do not reveal any significant ordering of the iodine ions, nor is there any evidence of a structural transition in the TTT lattice upon cooling to 27° K.¹⁶ We believe that this is another example of structural disorder disrupting interchain correlations such that the phase transition is smeared and suppressed to low temperatures. Two other interesting points emerge from the comparison of (TTF)3Cl2 and

(TTT)₂I₃: (a) the temperature dependence of the structural disorder may vary significantly among different quasi-lD organic metals; and (b) the disorder observed at room temperature may be quite different at low temperatures.

Below the transition, the conductivity exhibits a nonmetallic temperature dependence even though the chloride sublattice is now ordered. In view of the recent work on $(TTF)_{12}(SCN)_7$, which is electronically and structurally analogous to $(TTF)Cl_x$, we feel that a dynamic distortion occurs along the chains and that charge density waves are present in the monoclinic phase. However, an important difference between the monoclinic phases of the two materials should be noted. $(TTF)_{12}(SCN)_7$ exhibits structural disorder corresponding to the two possible orientations of the SCN anions in the chains,¹⁶ while the chloride lattice is ordered in the monoclinic phase. We feel that the effect of the disorder in the SCN lattice is to favor the formation of incommensurate CDW. The influence is absent in (TTF)3Cl2 and should lead to commensurate CDW and semiconducting behavior. A similar situation is found in TaS_3 where a Peierls transition occurs along with the formation of commensurate CDW. 17 The temperature dependence of the conductivity of $(TTF)_3Cl_2$ and TaS_3 are quite similar. Obviously, (TTF)Cl_x needs be studied by X-ray diffuse scattering experiments to verify or disprove our predictions.

Conclusions

The chloride sublattice in $(TTF)Cl_x$, x = 0.67 and 0.70, is disordered at room temperature. The disorder diminishes over a narrow temperature range at about 250° K. For $(TTF)Cl_{0.70}$, in which the disordered chloride

sublattice is incommensurate with the TTF sublattice at room temperature, the chloride chains order into two different configurations, resulting in the formation of the commensurate structures (TTF)₃Cl₂ and (TTF)₇Cl₅. In $(TTF)Cl_{0.67}$, the chloride sublattice is ordered and remains commensurate below the transition temperature. The TTF sublattice undergoes a static structural phase transition from tetragonal to monoclinic symmetry at ~ 250° K. This transition is incomplete in the sense that domains of both tetragonal and monoclinic symmetry are present. No evidence of a static Peierls transition is observed. The ordering of the chloride sublattice is important for the development of the structural phase transition of the TTF sublattice. Comparison of the electrical conductivity of (TTF)C1, with other quasi-1D conductors [i.e., $(TTF)_{12}(SCN)_7$ and TaS_3] suggests that a dynamic distortion occurs along the TTF chains, resulting in the formation of commensurate CDW and semiconducting behavior. The monoclinic cell of (TTF)Cl_{0.67} is similar to the room temperature cells of (TTF)Br_{0.74-0.78} and $(TTF)I_{0.71}$ except that the <u>co</u>-axis periods are different. We would expect to observe a high temperature tetragonal phase for the two latter materials.

Acknowledgements

We wish to thank Drs. R. Marsh, A. M. Hermann, T. Datta, and A. Rembaum for useful discussions and Professor T. J. Kistenmacher for generously providing us with his data on bond lengths and angles for (TTF)HgCl₃ prior to publication.

References

- F. Denoyer, R. Comes, A. F. Garito, and A. J. Heeger, Phys. Rev. Ltr., 35, 445 (1978); C. Weyl, E. M. Engler, K. Bechgaard, G. Jenanno, and S. Etamad, Solid State Comm., 19, 925 (1976); and Galen D. Stucky, Arthur J. Schultz, and Jack M. Williams, <u>Ann. Rev. Mater. Sci.</u>, 7, 301 (1977).
- R. B. Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones, T. Datta,
 R. Deck, and A. M. Hermann, <u>J. Chem. Phys.</u>, <u>63</u>, 4970 (1973); R. B.
 Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones, T. Datta, R.Deck,
 and A. M. Hermann, <u>Phys. Rev.</u>, B15, 595 (1977).
- 3. F. Wudl, D. E. Schafer, W. M. Walsh, Jr., L. W. Rupp, Jr., F. J. DiSalvo, J. V. Waszczak, M. L. Kaplan, and G. A. Thomas, <u>J. Chem. Phys.</u>, <u>66</u>, 377, (1977).
- 4. R. J. Warmack, T. A. Callcott, and C. R. Watson, Phys. Rev. <u>B12</u>, 3336 (1975).
- G. A. Thomas, D. E. Moncton, M. Kaplan, P. Lee, T. M. Rice, and
 F. Wudl, <u>Bull. Amer. Phys. Soc.</u>, 23, 381 (1978).
- B. A. Scott, S. J. LaPlaca, J. B. Torrance, B. D. Silverman, and
 B. Welber, <u>J. Amer. Chem. Soc.</u>, <u>99</u>, 6631 (1977).
- 7. S. Samson, E. Goldish, and J. Dick, to be published.
- International Tables for X-Ray Crystallography Vol. III. Birmingham: Kynoch Press (1962).
- 9. <u>International Tables for X-Ray Crystallography</u> Vol. I. Birmingham: Kynoch Press (1952).

References (continued)

- 10. W. F. Cooper, N. C. Kenney, J. W. Edmonds, A. Nagel, F. Wudl, and P. Coppens, Chem. Commun. p. 889 (1971).
- 11. T. J. Kistenmacher, T. E. Phillips, and D. O. Cowan, <u>Acta Cryst</u>., B30, 763 (1974).
- 12. T. J. Kistenmacher, M. Rossi, C. C. Chiang, R. P. van Duyne, T. Cape, and A. R. Siedle, <u>J. Amer. Chem. Soc.</u>, <u>100</u>, 1958 (1978) and private communication.
- C. K. Johnson and Charles R. Watson, Jr., J. Chem. Phys., 64, 2271 (1976).
- 14. C. Lowe Ma, R. Williams, and S. Samson. To be published.
- 15. A. J. C. Wilson, X-Ray Optics. Methuen, London (1949), pp. 55-75.
- 16. A. N. Bloch, R. B. Weisman, and C. M. Varma, Phys. Rev. Ltr., 28, 753 (1972).
- T. Datta, R. J. Deck, A. M. Hermann, R. B. Somoano, and Roger Williams, <u>Bull. Amer. Phys. Soc.</u>, 23, 381 (1978).
- A. A. Gogolin, V. I. Melnikov, and E. I. Rashba, <u>Sov. Phys. JETP</u>, 42, 168 (1976).
- V. K. S. Shante and M. H. Cohen, <u>Bull. Amer. Phys. Soc.</u>, <u>21</u>, 401 (1976).
- D. R. Salahub, R. P. Messmer, and F. Hermann, Phys. Rev., B13, 4252 (1976).
- 21. R. B. Somoano, S. P. S. Yen, V. Hadek, S. K. Khanna, M. Novotny,
 T. Datta, A. M. Hermann, and John A. Woollam, Phys. Rev., B17,
 2853 (1978) and references therein.

References (continued)

- 22. S. K. Khanna, S. P. S. Yen, R. B. Somoano, P. M. Chaikin,
 C. Lowe Ma, R. Williams, and S. Samson, <u>Phys. Rev.</u>, <u>B19</u>, (1979).
- 23. T. Sambongi, K. Tsutsumi, Y. Shiozaki, M. Yamamoto, K. Yamaya, and Y. Abe, Solid State Commun., 22, 729 (1977).
- 24. P. Coppens and T. N. Guru Row, <u>Ann. New York Acad. Sci.</u>, <u>313</u>, 244 (1978).

•

÷,

CHAPTER 4

The Structure of Low-Disorder Bis-Tetrathiatetracene Triiodide

Introduction

The tetrathiatetracene (TTT) iodide system is of great current interest because it contains two quasi-one-dimensionally conducting phases, $(TTT)_2I_3$ and (TTT)I, both of which have unusual structural and electrical properties (1,2). Furthermore, the highly conducting phase, $(TTT)_2I_3$, exists in several modifications which show a systematic variation in iodide-associated disorder and a concurrent variation in temperature dependent electrical properties (3). A room temperature x-ray diffraction study of low-disorder (1.d.) $(TTT)_2I_3$ was undertaken in order to learn more about the nature of the iodide chain (2,4).

Experimental

Long, flat, needle-like crystals of l.d. $(TTT)_2I_3$, grown by slow cooling of a nitrobenzene solution of TTT and I_2 from 95° C to room temperature, were supplied by Dr. R. B. Somoano. Crystals were six-sided prisms with [001] and [101] faces predominating and a metallic-gold luster. Crystals were initially characterized by

x-ray diffraction photography using oscillation and Weissenberg photographs. Unit cell parameters were obtained from a leastsquares fit to the 2 θ , ϕ , and χ values of 9 reflections manually centered on the diffractometer with the use of beam splitter and peak profiles. Crystal data are listed in Table 1. The crystals were all very small; therefore, intensity data were collected using Ni-filtered CuK $\overline{\alpha}$ radiation. A crystal measuring 0.383 x 0.043 x 0.008 mm was used for intensity data collection at room temperature on a guarter-circle G.E. diffractometer. A total of 1276 unique reflections, 915 due to the sublattice and 361 from the diffuse third layer, were measured using $2\theta-\theta$ scans and scan rates of $1^{\circ}/min$ and 1/2°/min, and background intensities were measured at the beginning and end of each scan for periods totaling 1 min or 1 min, 20 sec. Three standard reflections, 224, 002, and 606 were measured every 40 reflections for purposes of scaling. They did not show (>1%) significant crystal decay, although oscillation photographs taken after data collection revealed that sharpness and intensity of the diffuse h31 reflections of the supercell had decreased substantially. The intensities and their standard deviations were scaled (including minor decay correction), and corrected for absorption ($\mu = 272.9 \text{ cm}^{-1}$), Lorentz, and polarization effects (5). The atomic scattering factors of S and I were corrected for the real contribution to anomalous dispersion (6). $2\theta - \theta$ scans of several reflections of the subcell and third diffuse layer were recorded with a strip-chart recorder in order to compare profiles.

Table 1. Crystal Data (1.d.) TTT213

Volume = 3329.0 Å^3

Space Group = Cmca (subcell)
 Pmc21 (full cell)

F.W. $(C_{36}H_{16}S_8I_3) = 1085.75$

z = 4 formula units per cell d_{calc} = 2.166 g/cm³

 μ (absorption coefficient) = 272.87 cm⁻¹ CuKa rad.

•

Electrical measurements of TTT_2I_3 crystals were performed using standard 2 and 4 probe techniques and aquadag contacts. Conductivity vs. temperature and thermoelectric power vs. temperature are shown as plots in Appendix 2.

Photographic results

Oscillation photographs of 1.d. $(TTT)_2I_3$, revealed a set of sharp diffraction lines corresponding to a spacing of 4.92 Å. Diffuse layer lines corresponding to a spacing of 9.86 Å were also seen, with spots superimposed on the third diffuse line. These diffuse spots correspond to a doubled unit cell, within the limits of the measurement. The photograph is shown in Figure 1. Weissenberg photographs of subcell layers indicated conditions for reflections, h02: h = 2n, l = 2n and hkl: h + l = 2n, consistent with Cmca symmetry. A Weissenberg photograph of the third diffuse line revealed spots with slight extension in ω and not significantly broadened in the 20 direction. No systematic absences were seen in this Weissenberg photograph, implying that the iodide lattice and TTT lattice have different symmetry.

Structure determination and refinement

Atomic coordinates for C, S, and I atoms were obtained from previous work (7), and provided sufficient phasing to make refinement of C and S in the subcell possible. Positions of I atoms could

Figure 1. Oscillation photograph of (l.d.) TTT₂₁₃.

not be refined. After C and S atoms were refined, I atom coordinates, populations, and anisotropic temperature factors were adjusted in order to obtain a flat difference Fourier map. H atom positions were calculated, and the final stage of refinement consisted of refining H atom coordinates and isotropic temperature factors, and I atom populations and anisotropic temperature factors. C and S atom parameters were fully refined at this level. The converged structure gave R = 0.111, wR = .037 for all 915 subcell reflections; R = 0.085, wR = .034 for 548 reflections with $F^2 > 3\sigma$. The distribution of iodine obtained from subcell data is a smoothly varying column of electron density along $(\frac{1}{4}, y, \frac{1}{4})$ with a minimum of 5.15 and a maximum of 26.2 $e/Å^3$. This is similar to the results obtained by Smith and Luss (4), except that they see a variation from 16 to 37 e/A^3 . Comparison of relative maxima and minima imply a greater degree of registry between the I chain and TTT lattice in (l.d.) TIT_2I_3 , as is also suggested by the differences in diffuse layer line spacings observed photographically. The differences in absolute value of electron density maxima is not significant, or grid size on Fourier maps may have been different. As there is only one I-chain maximum in electron density in the asymmetric unit, interpretation is subject to question. For this reason, a structural refinement was carried out on 1276 unique data, including 915 subcell data, and 361 h32 data. Since there are no systematic absences in the h3l data set, the symmetry of the

full cell is lower than Cmca. Space group Pmc21 is consistent with the arrangement of the TTT molecules, and with the lack of systematic absences for h3l reflections. The most important effect of adding k = 3 data is to add electron density to two of the four now independent electron density maxima along $(\frac{1}{4}, y, \frac{1}{4})$ and to subtract electron density from, and smear out, the other two maxima. The presence of weak h3l, h odd, reflections requires a small displacement from $x = \frac{1}{4}$ for some of the iodine atoms. The phase of h3l, h even, reflections is determined by the arbitrary selection of two of the four equivalent electron density maxima for reinforcement. The phasing of the h3l, h odd, reflections cannot be determined as they are all very weak, and do not interact with other data. These reflections would have zero intensity if the iodine atoms were located precisely at $x = \frac{1}{4}$. The magnitude of the displacement can be determined from the h3^ℓ, h odd, reflections, but the direction of the displacement cannot be determined. Refinement of the model was performed by adjustment of populations, temperature factors, and coordinates of iodine atoms until the difference Fourier map was nearly flat. The R factor reached 0.137 for all 1276 data, and 0.091 for 623 data with F^2 > 36. The weighted residuals were 0.055 and 0.050, respectively. The residual, R, for third level reflections alone was 0.297. Fourier maps of $(\frac{1}{4}, y, z)$ and $(x, y, \frac{1}{4})$ reflections are shown in Figure 2. Note that there is significant electron density at three of the four minima; that all maxima

Figure 2. Bond lengths and angles in the TTT cation of (l.d.)(TTT)₂I₃. Estimated standard deviations are in parenthesis. Thermal ellipsoids are at the 50% probability level.

represent less than full iodide occupancy, and that the distance between the strongest maxima is 2.68 Å, just 0.02 Å longer than the I_2 bond length. Although minor diffracted intensity in diffuse lines, corresponding to one-dimensional order, could not be included in the structural refinement, this additional diffracted intensity is fairly weak. The diffraction pattern, with third level data included, is clearly inconsistent with discrete triiodide ions. The electron density map is consistent with the presence of species such as I, I_2 , and I_3 , which may be in dynamic equilibrium.

The atomic coordinates and temperature factors of the TTT cation were not refined in the lower symmetry space group of the complete cell. Patterson maps of the h3& reflections show significant intensity only at (0,y,0); (0.5,y,0); (0.5,y,0.5); and (0,y,0.5). Thus only iodine-iodine vectors are necessary for interpretation of the Patterson map, and contributions from C and S atoms of TTT molecules are negligible.

The atomic coordinates and temperature factors of C, S, and H atoms in the subcell are given in Table 2. Figure 2 shows the molecule and its bond lengths and angles. Coordinates and temperature factors of the iodine atoms used to model the I chain structure in the subcell and full cell are given in Table 3. It should be understood that these parameters model a continuous distribution of iodide species and, individually, have little significance.

<u>Table 2</u>. Refined Atomic Coordinates and Temperature Factors of the TTT Cation in $(TTT)_2I_3$ (1.d.)

	x	У	Z	11U	U22	U33	U12	U13	U23
C 1	96094(52)	0	0	419(55)	315(66)	373(48)	0	0	-58(57)
C 2	92395(37)	17964(176)	4441(46)	370(36)	424(59)	481(42)	11(41)	11(33)	25(47)
C 3	96052(37)	36659(178)	8951(38)	484(43)	337(45)	356(34)	-20(42)	60(34)	27(39)
C 4	92279(48)	55312(184)	13493(46)	728(57)	396(60)	420(41)	25(50)	80(41)	44(46)
C 5	96146(46)	73247(202)	17678(46)	798(58)	488(59)	416(38)	-20(50)	26(43)	-17(48)
S 1	82910(11)	15187(55)	3861(14)	362(9)	640(15)	724(14)	45(12)	39(10)	-100(15)

•	x	У	Z	
Н 1	8473	5561	1161	B = 7.48
Н 2	9135	8661	2109	B = 8,25

Atomic coordinates of C and S are multiplied by 10^5 . Uij's and atomic coordinates of H atoms are multiplied by 10^4 .

SECTION X = .250003

SECTION Z = .250003

Figure 3. Electron density maps through iodine chain in (1.d.) (TTT)₂I₃. Scale is about 0.8 Å/cm; contours at 2e/Å³ intervals.

<u>Subcell</u> - Cmca										
	x	У	Z	רדט	U22	U33	U12	U13	U23	Population
Il	250	125	250	852	2306	1667	0	772	0	0.224
I 2	250	285	250	414	2624	505	0	-14	0	1.014
I 3	250	405	250	2233	435	4125	0	-683	0	0.121
Full Ce	11 - P			<u></u>	<u></u>					
I l	254	25	246	380	2483	560	93	171	9	0.657
I 2	253	420	248	380	12910	560	0	171	0	0.153
I 3	253	758	254	380	2483	560	93	171	9	0.693
I 4	247	278	250	380	2483	560	93	-171	92	0.351
I 5	245	499	254	380	2483	560	93	171	92	0.369
I 6	251	9 2	250	518	12910	679	0	171	0	0.050
I 7	248	580	250	518	12910	679	0	171	0	0.020
I 8	253	680	250	518	12910	679	0	171	0	0.060
I 9	242	194	250	518	12910	679	0	171	0	0.065
I 10	255	340	250	B=6.0						0.030
I 11	240	840	250	B=6.0						0.040
I 12	256	940	250	B≖6.0						0.040

<u>Table 3</u>. Coordinates and Temperature Factors used to Model I-Chain in TTT_2I_3

All coordinates have been multiplied by 10^3 . All Uij's have been multiplied by 10^4 .

Discussion

Figure 4 shows a model which adequately explains the observed electron density of the iodine chain in (1.d.) $TTT_{2}I_{3}$. It is likely that I_{3} is the dominant species. Two-fold disorder between the crystallographically distinct configurations shown in 4a and 4b accounts for the fractional occupancy (~.6) of two of the iodine positions (y = .28; y = .50), and the "smearing out" of electron density in the y direction. The fractional occupancy (~.8) of the other positions may be explained by additional configurations. However, the very significant electron density between maxima suggests that there is exchange of iodine atoms between sites. Intermediate configurations such as Figure 4c and 4d may be involved in transitions from 4a to 4b. These would occasionally leave the higher occupancy sites empty. Species such as I_2 , I^- , I_5^- , and perhaps others would be present, although they would be much less likely than I_3^- , in agreement with the observation of I_3^- in TTT_2I_3 by Raman spectroscopy (8).

The presence of disorder in the iodide chains of TTT_2I_3 has been invoked to explain the retention of conductivity at low temperature, although the nature of the disorder and its behavior with cooling have not been understood (1-4,7). The iodide chains in (1.d.) TTT_2I_3 contain partially occupied sites which are statistically filled by several species in several possible configurations. Microscopically, these chains result in an aperiodic potential around the TTT stacks.

It is unlikely that there are important changes in the iodide chain at low temperature (3,7). This aperiodic potential may suppress a complete Peierls' transition by creating states within the gap and suppressing "locking" of charge density waves on adjacent stacks. This qualitatively explains the retention of moderate conductivity at low temperature in TTT_2I_3 , although a complete explanation must await completion of low-temperature structure refinement.

•

Possible configurations of iodine species contributing to Figure 4. chain in (TTT)₂I₃

References

- L. C. Isett and E. A. Perez-Albuerne, <u>Solid State Comm.</u>, <u>21</u>, 433 (1977); L. C. Isett, to be published in Phys. Rev., B.
- V. F. Kaminskii, M. L. Khidekel, R. B. Ljubovskii, I. F. Schegelov, R. P. Shibaeva, E. B. Yagubskii, A. V. Zvargkina, and G. L. Zverena, <u>Phys. Stat. Sol</u>. (a), <u>44</u>, 77 (1977);
 L. I. Buravov, G. I. Zvereva, V. F. Kaminskii, L. P. Rosenberg, M. L. Khidekel, R. P. Shibaeva, I. F. Schegelov, and E. B. Yagubskii, <u>J. Chem. Soc. Chem. Comm.</u>, 720 (1976).
- S. K. Khanna, S. P. S. Yen, R. B. Somoano, P. M. Chaikin,
 C. L. Ma, R. Williams, and S. Samson, <u>Phys. Rev.</u>, <u>B19</u> (1979).
- 4. D. L. Smith and H. R. Luss, <u>Acta Crystallogr.</u>, <u>B33</u>, 1744 (1977).
- 5. <u>International Tables for X-Ray Crystallography</u>, Vol. III, Kynoch Press, Birmingham (1962).
- <u>International Tables for X-Ray Crystallography</u>, Vol I, Kynoch Press, Birmingham (1952).
- 7. C. L. Ma, private communication.
- L. C. Isett and E. A. Perez-Albuerne, <u>Annals of the New York</u> <u>Academy of Sciences</u>, <u>313</u>, 395 (1978).

CHAPTER 5

Tetramethyltetraselenofulvalene Bromide and Thiocyanate; Electrochemical Preparation of Conducting Organic Crystals

Tetrathiafulvalene (TTF) forms highly conducting stacked chargetransfer salts with both organic acceptors such as tetracyanoquinodimethane (TCNQ) and simpler anions such as halides and pseudohalides (1,2). Derivatives of TTF and its selenium analog, tetraselenofulvalene (TSF), also form highly conducting TCNQ complexes (3,4), but their halide and pseudohalide salts have been studied less thoroughly (5). I have prepared crystals of tetramethyltetraselenofulvalene bromide and thiocyanate (TMTSF)Br_{0.82} and (TMTSF)(SCN)_{0.50} in order to explore further the relation between structure and physical properties in quasi-one-dimensional conductors.

Preparation of good single crystals of organic conductors is often the most serious obstacle to study of these materials. Electrochemical crystal growth techniques have successfully exploited the conducting properties of a variety of inorganic materials (6,7) and a few organic materials (8). The crystal formed by electrolysis must be quite insoluble in the solution or melt in which the precurser is dissolved. As the conducting crystal grows, it acts as an extension of the electrode. Defects inhibit crystal growth, because of conductivity decrease. Large crystals are, therefore, well formed single crystals. Insulating phases, which are often formed in other kinds of crystallization experiments, are avoided by this technique. Electrochemical crystal growth experiments involving oxidation of TTF, TSF, TMTSF, and HMTSF (hexamethylenetetraselenofulvalene) in the presence of Cl⁻, Br⁻, I⁻, SCN⁻, and SeCN⁻ were carried out at a variety of oxidation potentials and temperatures in several solvents. This investigation was not exhaustive, but some conclusions about the suitability of electrochemical crystal growth to these systems can be drawn.

Experimental

Synthesis

 $(\underline{\text{TMTSF}})(\underline{\text{Br}})_{0.82}$: 0.01 g TMTSF was dissolved in 1.5 ml. benzonitrile containing 0.1 Molar tetraethylammonium bromide. This solution was placed in the working electrode cell (Figure 1) and oxidized, at 0.02 Volt vs. Ag[°]/AgCl0₄ (sat), with a Pt wire electrode, at 69-70° C. Well formed black crystals up to 1 mm long were recovered after eight minutes.

 $(\text{TMTSF})(\text{SCN})_{0.50}$: 0.006 g TMTSF was dissolved in 1 ml benzonitrile containing 0.02 Molar tetraethylammonium thiocyanate. Oxidation, at 0.00 Volt vs. Ag/AgCLO₄ (sat), at a Pt wire electrode, for fifteen minutes at 56-64° C, gave good crystals up to ~1 mm long.

Figure 1. Electrochemical crystallization cell.
The conditions, and results, of these and other electrochemical crystallization experiments, are collected in Table 1.

The oxidizing potential was controlled using a Wenking 68 FR 0.5 potentiostat. Crystals of both of the TMTSF salts were flat needles exhibiting well formed {110} and {010} faces. Oxidation at temperatures greater than ~80° C resulted in little crystallization because of solubility of the products. Near room temperature, TMTSF is only slightly soluble in benzonitrile and oxidation gives crystals << .01 mm in thickness.

HMTSF is very insoluble in all common solvents at room temperature; a benzonitrile solution at 100° C is less than 0.02 Molar when saturated. Unfortunately, at this temperature, the oxidation product seems to be quite soluble also, even in the presence of fairly high concentrations of bromide or thiocyanate.

Oxidation of solutions containing I or SeCN resulted in oxidation of the anion, and formation of no solid product. Crystals of (TMTSF)I_x can be prepared by co-diffusion of (TMTSF)ClO₄ and NBu₄I in acetonitrile.

Electrical measurements

Conductivity and thermoelectric power were measured for both kinds of crystals at room temperature and at lower temperatures. The results are shown in Appendix 2.

Donor, <u>Concentration</u>	Electrolyte, Concentration, Working Electrode Cell	Solvent	Oxidation Potential, vs. <u>Ag°/AgClO₄(sat)</u>	Temperature	Results
TTF	NH ₄ SCN,4x10 ⁻² M	acetonitrile	0.0-0.5 Volt	Room	(TTF) ₁₂ (SCN) ₇ [*] good
1x10 ⁻³ -6x10 ⁻² M	NEt ₄ Br,1x10 ⁻¹ M			Temperature	(TTF)(Br) _{0.74} crystals,
	NEt ₄ C1,5-20x10 ⁻² M				(TTF)(C1) 0.67 10x.1x.1 mm ³
TMTSF	NEt ₄ Br,1x10 ⁻¹ M	benzonitrile	~0.0 Volt	60-80° C	(TMTSF)(Br) _{0.82} good
1-2x10 ⁻² M	NEt ₄ SCN,2x10 ⁻¹ M				(TMTSF)(SCN) _{0.50} crystals
	NBu ₄ I,1x10 ⁻¹ M				oxidation of I ⁻ , no solid
				Room Temperature	extremely thin crystals of bromide and thiocyanate
				100-120° C	no crystals, some coating of electrode
HMTSF 7x10 ⁻³ M	NEt ₄ Br,1x10 ⁻¹ M NEt ₄ SCN,2x10 ⁻² M	benzonitrile	0.0-0.2 Volt	100-120° C	no crystals, some coating of electrode
TSF	NEt ₄ C1,5x10 ⁻² M	acetonitrile	0.1-0.4 Volt	Room	(TSF)Cl _x ,tiny hairlike
3x10 ⁻³ M	KSeCN,1.5x10 ⁻² M		0.0-0.4 Volt	Temperature	crystals no solid produced in oxidation in presence of KSeCN
					* %C %H %N calc 33.19 1.69 3.43 found 33.01 1.94 3.39

Table 1. Conditions, Results of Electrochemical Crystallization Experiments

X-ray diffraction photographs

Oscillation photographs of $(TMTSF)(Br)_{0.82}$ and $(TMTSF)(SCN)_{0.50}$ mounted with the rotation axis parallel to the C axis were taken. The C axis is ~7 Å long for both compounds, but photographs of $TMTSF(SCN)_{0.50}$ show additional weak layer lines. An oscillation photograph of $TMTSF(SCN)_{0.50}$ is shown in Figure 2. Accurate measurement of this film gave the lattice spacings listed in Table 2. The satellite reflections are due to a superperiod C' = 32.815 = 4.56 C. The presence of strong satellites of the hk0 layer indicates that the superperiod is due to a structure factor modulation rather than a C axis length modulation, since the latter would give hk0 satellites of vanishingly small intensity (9). Systematic absences (hk2, h + k = 2n + 1; h02, & = 2n + 1) were determined from Weissenberg photographs prior to data collection and indicated that the space group of both compounds was Cmcm.

Data Collection

Both data sets were obtained with Ni-filtered CuK α radiation ($\lambda \alpha$ + 1.54178 Å) using 20-0 scans at rates of 0.5 or 1.0 degrees per minute on a locally assembled, Datex automated, General Electric quarter circle diffractometer. Background intensities were measured at both ends of the scans for a total of 60, 80, or 120 seconds. Two TMTSF(SCN)_{0.50} crystals were used for data collection. An entire hemisphere of data was collected, and merged, in order to

<u>ل</u>الار الالار Figure 2. Oscillation photograph of (TMTSF)(SCN)_{0.5}.

Table 2. Layer Line Spacings of (TMTSF)(SCN) 0.50

d (Å)*	l	٤'	$d/\ell = C_0$ (Å)	c' ₀ †
32.8146	0	יו		32.8146
9.1088	1	-1'		34.2313
7.1893	1	0	7.189	
5.8934	1	+]'	•	32,5899
4.0242	2	-1'		33,9013
3.5983	2	0	7.197	
3.2363	2	+1'		32.2572
2.5774	3	-1'		34.4791
2.3970	3	0	7.191	
2.2268	3	+1'		31.1683
1.8000	4	0	7.200	

*

Very weak & = n ± 2' satellite reflections were observed but could not be accurately measured.

⁺Calculated assuming that $d = (\ell/C_0 + \ell'/C_0')^{-1}$. $< C_0 > = 7.1944;$ $<C_0'> = 33.063; C_0'_{hkl}' = 32.815; <C_0'>/<C_0> = 4.60.$

average errors in data collection. A crystal measuring 0.070 x 0.033 x 0.533 mm³ was used for intensity measurement of 1052 reflections due to the 9.919 x 24.124 x 7.220 Å³ cell; satellite reflections could not be well resolved on the diffractometer with this crystal which required a 1 mm collimator. A smaller crystal measuring 0.073 x 0.027 x 0.193 mm³ was used for measurement of satellite reflection intensities. Using a 0.25 mm collimator, 197 unique hkl' and hk2' satellite reflections were measured, as well as several hundred combination reflections (hk $\ell \pm \ell'$).

The $(TMTSF)(Br)_{0.82}$ crystal used for data collection measured 0.05 x 0.017 x 0.40 mm³. All 1029 reflections of $TMTSF(Br)_{0.82}$ in one octant, having 20 <155° were collected. The data from both crystals were corrected for Lorentz, polarization, absorption, and decay effects (10). The scattering factors of selenium, sulfur, and bromide were corrected for the real part of anomalous dispersion (11). Crystal data for both crystals are given in Table 3.

Structure determination and refinement - $TMTSF(Br)_{0.82}$

Symmetry, stacking, and steric considerations indicated that the TMTSF molecules were oriented perpendicularly to \overline{C} , lay on mirror planes at Z = 1/4 and 3/4, and that successive molecules were slipped along b by ~1.0-1.5 Å. This initial model provided adequate phasing for refinement and location of other atoms in Fourier maps. The structure was refined to R = 0.071, wR = 0.023 for 1029 data; for

Table 3. Crystal Data, (TMTSF)Br0.82 and (TMTSF)(SCN)0.50

 $(TMTSF)(Br)_{0.82}$ a = 9.798 (2) b = 23.837 (5) c = 7.095 (1) v = 1657.1 Å³ Space Group = Cmcm F.W. (C₁₀Se₄H₁₂Br_{0.82}) = 513.6 z = 4 formula units per cell d_{calc} = 2.058 g/cm³ µ (absorption coefficient) = 145.2 cm⁻¹ (CuKa)

 $\frac{(\text{TMTSF})(\text{SCN})_{0.50}}{a = 9.919 (3)}$ b = 24.124 (14) c = 7.220 (6) $v = 1729.3 \text{ Å}^{3}$ Space Group = Cmcm F.W. (C_{10.5}Se₄H₁₂N_{0.5}S_{0.5}) = 494.5 z = 4 formula units per cell $d_{calc} = 1.899 \text{ g/cm}^{3}$ $\mu \text{ (absorption coefficient)} = 122.3 \text{ cm}^{-1} \text{ (CuKa)}$

Space Group of modulation Cmc21

755 reflections having $F^2 > 3\sigma$, R = .061, wR = .023. During refinement, four peaks on the Fourier map of the x=0 plane indicated the incorporation of a disordered small molecule in the structure. These were refined as partially occupied carbons and nitrogens. Figure 3 shows the structure in the z = 1/4 plane. Figure 4 shows a projection showing overlap of consecutive TMTSF molecules view down z; and Table 4 shows bond angles and lengths in the molecule. Table 5 contains atom coordinates and temperature factors. Most shifts were less than $\sigma/2$, all other shifts were less than σ at refinement, except for the coordinates of Br ion, which has very high thermal motion in the z direction, and can be fit equally well by constraining it to the z = 1/4 plane or placing it in two-fold positions above and below this plane. Hydrogen positions refined satisfactorily but their isotropic temperature factors could not be refined. The deviation of C-H bond lengths and angles from expected values may be due to torsional motion of the methyl groups. A difference map, based on refined coordinates of non-hydrogen atoms, through the plane of the hydrogen atoms, is shown in Figure 5.

Structure determination and refinement - TMTSF(SCN)0.50

The TMTSF(SCN)_{0.50} data were phased by placing TMTSF molecules at positions equivalent to those in the refined TMTSF(Br)_{0.82} structure. After several least squares refinement cycles, the thiocynates could be seen in difference Fourier maps. They lie

Table 4.	Bond Lengths	and	Angles	in	(TMTSF)Br _{0.8}

	C1 - C2 C1 - Sel C2 - Se2 Se1 - C3 Se2 - C4 C3 - C5 C4 - C6 C3 - C3' C4 - C4' C5 - H1 C5 - H2 C6 - H3' C6 - H4	1.406 1.861 1.845 1.871 1.889 1.519 1.542 1.340 1.320 1.24 1.12 1.11 1.11	(22) (13) (17) (16) (24) (24) (24) (24) (24) (24) (24) (36) (18) (18) (18) (18)
·	<pre><c1 -="" 3="" <c="" <c1="" <c2="" <c3="" <c4="" <se1="" <se2="" c1="" c2="" c3="" c3'="" c4="" c4'="" c5="" c6="" h1="" h2="" h4<="" pre="" se1="" se2=""></c1></pre>	121.9 122.2 115.6 116.0 93.3 93.2 118.9 118.7 115.5 114.2 94 122 109	(.1) (.2) (.2) (1.0) (1.0) (1.0) (1.0) (1.0) (10) (10) (10)

•

'n

Table 5. Refined Atomic Coordinates and Temperature Factors of (TMTSF)(Br)0.8

	х	У	Z	ווט	U22	U33	U1 2	U13	U23	
Se 1 Se 2 C 1 C 2 C 3 C 4 C 5 C 6 H 1 H 2 H 3 H 4	16068 (14) 15994 (13) 0 6759 (126) 6689 (131) 15622 (157) 16145 (150) 26450 (1000) 14380 (910) 2535 (910) 1485 (1000)	9935 (5) -4216 (5) 5763 (56) -130 (73) 16826 (44) -11167 (45) 22005 (45) -16310 (49) 19750 (560) 24880 (370) 34320 (350) -18640 (560)	25000 25000 25000 25000 25000 25000 25000 25000 13610 (1000) 11820 (1000) 25000	313 (7) 324 (7) 286 (83) 214 (76) 435 (72) 494 (78) 673 (92) 523 (78) B = 6.00 B = 6.00 B = 6.00 B = 6.00	359 (6) 359 (6) 248 (64) 391 (78) 376 (55) 376 (55) 238 (49) 380 (56) 0 0	538 (9) 540 (9) 369 (102) 460 (112) 527 (84) 444 (80) 1076 (131) 628 (91)	-20 (6) 36 (5) 0 -52 (51) 9 (55) -178 (64) 68 (60)	000000000000000000000000000000000000000		113
Br ⁻	50000	17573 (20)	23600	589 (23)	755 (24)	5269 (148)	0	0	3996	(382)
Solvent										
C7 C8 C9 C10	0 0 0 0	41050 (80) 45730 (140) 50670 (170) 51960 (170)	17800 (290) 5240 (550) 10530 (590) 25000	B = 4.50 B = 4.50 B = 4.50 B = 4.50	0 0 0 0					

All coordinates have been multiplied by 10⁵; all Uij's by 10⁴.

Figure 5. Difference map through hydrogens of methyl carbon (5). $F_{(calc)}$ based on refined positions of all non-hydrogen atoms. Contours are in steps of .1 e/Å³, with outermost contour at .3 e/Å³. Scale is 4.9 cm/Å

across mirror planes at 1/4 and 3/4, and there is two-fold disorder between sulfur and nitrogen. Electron density in the difference map also shows the presence of a disordered small molecule similar to that seen in TMTSF(Br)_{0.82}. Hydrogen atom positions in TMTSF(SCN)_{0.50} are even less satisfactory than in the bromide. The structural refinement proceeded to R = 0.054, wR = 0.0124 for all data; R = 0.042, wR = 0.0118 for reflections with $F^2 \ge 3\sigma$. The temperature factors of the thiocyanate are fairly large, reflecting disorder and perhaps the modulation of the thiocyanate position. At the level of refinement achieved, all non-hydrogen coordinate and temperature factor shifts are less than $\sigma/4$; hydrogen coordinate shifts are less than σ and hydrogen isotropic temperature factors could not be refined.

Atom coordinates and temperature factors of the refined structure of $(TMTSF)(SCN)_{0,50}$ are given in Table 5. Bond angles and lengths of the TMTSF cation are shown on an ORTEP plot (Figure 6).

Analysis of the satellite reflections

Only the hkl' and hk2' (C' = 33.815 Å) reflections were used in the analysis of the structure modulation. The pattern of intensity, with respect to indices h and k, is about the same for the hkl' and hk2' and the combination reflections resulting from both latices. A Patterson map based on hkl' and hk2' data shows a number of peaks with interatomic vectors having x-component = 0. Only one (independent) relatively weak peak lies off of the x = 0

		x	У	z	U11	U22	U33	U12	U13	U23
ç	Se 1	15849(13)	9724(4)	25000	470(6)	521(6)	644(8)	-38(5)	0	0
Ş	Se 2	15855(12)	-4293(4)	25000	413(5)	519(6)	628(7)	33(4)	0	0
(C 1	0	5617(55)	25000	468(73)	529(70)	434(79)	0	0	0
(C 2	0	-139(57)	25000	384(58)	506(64)	509(83)	0	0	0
(C 3	6744(107)	16531(40)	25000	626(62)	510(46)	631(68)	-21(45)	0	0
(C 4	6595(100)	-11165(37)	25000	528(56)	470(43)	609(63)	51(41)	0	0
(C 5	15512(233)	21669(63)	25000	1097(106)	651(69)	858(98)	-271(82)	0	0
(C 6	15495(134)	-16238(45)	25000	556(55)	545(51)	748(76)	117(55)	0	0
ł	4 1	2829	1794(47)	2500		B = 6.00				
ł	H 2	1609(92)	2204(34)	1531		B = 6.00				
ł	4 3	2205(70)	-1508(28)	1567		B = 6.00				
ł	H 4	748(98)	-1902(46)	2500		B = 6.00				
			SCN							
(C 7	0	32400(131)	75000	310(141)	526(150)	1159(334)	0	0	0
(S/N	0	33333(88)	58084 (2	99484(57)	2421(207)	18 03(1 70)	0	0	-711(169)
			Solvent	<u>;</u>						
(C 8	0	4623(19)	4607(6	9)	B = 10.15(1)	75)			
(C 9	0	4798(22)	7500		B = 10.68(2)	17)			
(C 10	0	4119(11)	1775(4	0)	B = 9.28(0)	97)			
(C 11	0	5111(19)	1000(8	8)	B = 8.91(1.	94)			

Table 6. Refined Atomic Coordinates and Temperature Factors for TMTSF(SCN)0.50

Figure 6. Bond angles and distances of the tetramethyltetraselenofulvalene cation in $(TMTSF)(SCN)_{0.5}$. Thermal ellipsoids are drawn at the 50% probability level.

Т

plane of the Patterson. The strongest vector is (0.0, 0.025, 0.5) which was interpreted as a vector between the extreme positions of a modulated thiocyanate chain. It appears that a slight displacement in the y coordinates of the thiocyanate anions occurs with a period of 32.815 Å. This model of the modulation, in Space Group Cmc2, along with fitting of several smaller peaks, results in R = .397for 54 reflections with $F^2 > 3\sigma$. A Fourier map based on this unrefined model is shown in Figure 7. Larger peaks (.5 e/A^3) at (0.0, 0.333, 0.0), (0.0, 0.307, 0.5), and (0.0, 0.353, 0.5) are associated with the thiocyanate ions. A smaller peak (.2 $\ensuremath{\text{e}}\xspace/\ensuremath{^3}\xspace)$ at (0.0, 0.463, 0.0) is associated with an atom in the disordered solvent molecule. Small peaks are associated with the TMTSF cations, in the region of the C=C bonds and methyl groups, but these cannot be identified with particular atoms. The atomic coordinates and temperature factors used to model the satellite data are given in Table 7.

Discussion

The TMTSF cations in $(TMTSF)(Br)_{0.82}$ and $(TMTSF)(SCN)_{0.50}$ are slip-stacked and have their molecular planes perpendicular to \tilde{c}_0 , as shown in Figure 8a. This method of stacking is quite different than the stacking of TTF cations in TTF halides (8b) and (TTF)(TCNQ) (8c). The stacking is rather similar to that observed in tetra-

Figure 7. Electron density map of satellite reflection data (z=0). Contour intervals are at ~.05 e/Å³. Scale is ~3.44 cm/Å. Dotted contours represent positive electron density at z = 0.5; solid contours at z = 0.0. Strong peaks at and near y = 0.33 are due to the thiocyanate ion; peak at y = 0.46 is an atom in the solvent molecule.

<u>Table 7</u> .	Atomic	Coordinates	and Tempera	ture Factor	s used to m	odel (TMTSF)	(SCN) _{0.5} Structu	re Modulation
	x	У	z	U11	U22	U33	Population	
S 1	0	3333	0	498	443	321948	1.9	
S 2	0	3066	5000	498	443	321948	0.9	
S 3	0	3528	5000	498	443	321948	1.5	
C 1	0	4628	0	498	443	321948	2.0	
C 2	0	1580	5000	498	443	321948	1.4	
C 3	0	150	5000	498	443	321948	1.5	
C 4	1850	1600	5000	498	443	321948	0.7	12

.

Uij = 0 for $i \neq j$.

All parameters have been multiplied by 10⁴.

,

Figure 8. Stacking in some organic conductors.

methyltetrathiafulvalene bromide, (TMTTF)(Br)_{0.5}; where only a slight tilt away from perpendicularity to the stacking axis is observed (5).

Interchain coupling should be quite low in $(TMTSF)(Br)_{0.82}$ and $(TMTSF)(SCN)_{0.50}$. There are no short contacts between stacks, and van der Waals contacts (3.77 Å in the bromide) only occur between methyl groups (see Figure 3). TMTSF salts, including those with TCNQ, generally have longer interchain contacts than are observed for TTF and HMTSF, for example (4).

High disorder exists in both $(TMTSF)(Br)_{0.82}$ and $(TMTSF)(SCN)_{0.50}$. In the former, the bromide ion exhibits very high thermal parameters in the z direction. In the latter, the orientation of the thiocyanates is two-fold disordered. In both compounds, anion sites are not fully occupied, and a partially occupied small molecule (solvent) site exists in the x=0 plane.

The period of the modulation of the $(TMTSF)(SCN)_{0.50}$ structure is similar to the periods of incommensurate charge density waves observed in $K_2Pt(CN)_4Br_{0.30} \cdot xH_20$, (TTF)(TCNQ), (TSeF)(TCNQ), (HMTSF)(TCNQ), and (HMTTF)(TCNQ) (12). It is not unreasonable to interpret the modulation of the SCN⁻ chain as a response to a charge density wave on the cation column.

While the electronic transport properties of $(TMTSF)(Br)_{0.82}$ and $(TMTSF)(SCN)_{0.50}$ are still being investigated, several predictions may be made on the basis of the structural properties. Exchange of anions between sites cannot occur, so that some disorder will be retained at low temperature. Thiocyanate orientational disorder will also be retained, while the high thermal motion of the bromide ions should decrease. Disorder in $(TMTSF)(SCN)_{0.50}$ may be expected to result in retention of moderate conductivity to lower temperatures than in the bromide.

The 32.8 Å superperiod in $(TMTSF)(SCN)_{0.50}$ may be tentatively identified as a distortion resulting from an incommensurate charge density wave. If this is true, then $2k_F = .215 \text{ c}^*$, which implies that the average charge on each TMTSF is +0.43. This is reasonable in view of the uncertainty in the stoichiometry of this material, and the possibility of back-charge transfer (SCN⁻ + TMTSF⁺ \rightarrow SCN⁰ + TMTSF⁰).

References

- M. J. Cohen, L. B. Coleman, A. F. Garita, and A. J. Heeger, Phys. Rev., B10, 1298 (1974).
- R. B. Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones,
 T. Datta, R. Deck, and A. M. Hermann, <u>J. Chem. Phys.</u>, <u>63</u>, 4970 (1973); R. B. Somoano, A. Gupta, V. Hadek, M. Novotny, M. Jones, T. Datta, R. Deck, and A. M. Hermann, <u>Phys. Rev.</u>, <u>B15</u>, 595 (1977).
- P. Delhaes, S. Flandrois, J. Amiell, G. Keryer, E. Toreilles, J. M. Fabre, L. Giral, C. S. Jacobsen, K. Bechgaard, <u>Annals</u> of the New York Academy of Sciences, <u>313</u>, 467 (1978); K. Bechgaard, D. O. Cowan, and A. N. Bloch, <u>J. Chem. Soc. Chem.</u> <u>Commun.</u>, 671 (1975); A. N. Bloch, D. O. Cowan, R. E. Pyle and R. H. Banks, <u>Phys. Rev. Lett.</u>, <u>34</u>, 1561 (1975).
- T. J. Kistenmacher, <u>Annals of the New York Academy of Sciences</u>, <u>313</u>, 333 (1978); K. Bechgaard, D. O. Cowan, and A. N. Bloch, <u>Mol. Cryst. and Liq. Cryst.</u>, <u>32</u>, 227 (1976).
- P. J. L. Galigne, B. Liautaro, S. Peytavin, G. Brun, J. M. Fabre, E. Torreilles, and L. Giral, <u>Acta. Cryst.</u>, <u>B34</u>, 620 (1978).
- 6. J. S. Miller, <u>Science</u>, <u>194</u>, 189 (1976).
- J. M. Williams and A. J. Schultz, <u>Annals of the New York</u> Academy of Sciences, 313, 509 (1978).

- R. C. Wheland and J. L. Gillson, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 3916
 3926 (1976).
- 9. A. J. C. Wilson, X-ray Optics, Methuen, London (1949).
- 10. International Tables for X-Ray Crystallography, Vol. I, Kynoch Press, Birmingham, England (1952).
- 11. International Tables for X-ray Crystallography, Vol. III, Kynoch Press, Birmingham, England (1962) p. 202.
- 12. S. Megtert, J. P. Pouget, and R. Comes, <u>Annals of the New York</u> Academy of Sciences, 313, 234 (1978).

APPENDIX 1

Structure Factors Tables

The following tables contain the observed and calculated structure factors for refined and partly refined structures reported in this thesis. The heading above each group gives the indices for that group of reflections, with one index indicated by a letter. That index varies and is given in the first column. F_{obs} is given in the second column, F_{calc} in the third, and the standard deviation in the fourth. A negative sign on F_{obs} means that the observed intensity, I ~ F_{obs}^2 , was negative.

A. $[Rh(CNCHCH_2)_4]C10_4$ - Structure factors, room temperature data obtained with Ni-filtered CuKa radiation. Space group Immm.

.

	ок	0		26 28	139 84	126 91	8 8	23 25	193 130	205 131	8 8	22 24	147 46	127 91	7 15	4 6	285 281	244 259	777
								27	55	8.+	11					8	275	248	7
2	2992 31	618	16		0 1	к З							0 К	9		10	216	206	8
- 4	3069 21	963	33						0	к 6						12	189	174	8
6	1479 1	253	11	1	1657	1520	12					1	749	121	7	14	147	142	8
8	2505 23	591	20	3	1303	1246	9	0	1717	1600	13	3	725	716	7	16	107	97	9
10	1529 14	422	11	5	2131	2009	15	2	1300	1 32 3	9	5	674	667	7	18	51	80	12
12	1534 1	517	11	7	2173	2187	15	- 4	1153	1054	9	7	541	493	6				
14	989 L	024	8	9	1502	1509	11	6	930	991	8	9	380	352	7		0 K	13	
10	876	826	8	11	914	890	7	8	1166	1115	9.	11	347	380	7				
19	494	520	6	13	9 5 L	864	8	10	1096	1101	9	13	369	395	7	1	202	183	8
20	453 4	461	6	15	806	82.5	7	12	803	787	7	15	333	301	7	3	226	151	7
22	310	330	7	17	613	524	6	14	487	49B	6	17	234	218	7	5	230	2C 2	7
24	199 2	215	8	19	288	365	1	16	353	427	7	19	169	169	8	7	223	194	7
26	129	127	9	21	320	305	- 7	18	312	323	7	21	114	121	9	9	172	168	8
28	65	9 6	11	23	205	237	8	20	271	217	7	23	56	90	12	11	157	144	8
				25	163	157	8	22	207	204	7					13	130	110	В
	0-к	1		27	86	102	10	24	123	140	9		0 K	10		15	80	78	9
								26	82	89	8								
1	1710 2	542	13		0 1	K . 4						0	536	563	6		о к	14	
3	1716 10	695	11						0	к 7		2	538	533	6				
5	2005 1	520	16	0	2345	2363	16					4	466	467	6	0	163	150	8
7	1223 12	251	9	2	1029	1062	8	1	1091	1163	9	6	368	359	7	2	142	152	9
9	1625 19	515	12	4	1828	1843	13	3	979	99+	7	8	277	312	8	4	171	157	7
11	1446 1	383	11	6	2024	1965	16	5	866	690	7	LO	329	362	7	6	156	149	8
13	1212 1	122	9	8	1661	1590	12	7	941	914	8	12	344	326	7	8	142	131	ម
15	903	510	8	10	1131	1112	8	9	843	835	7	14	285	236	7	10	105	112	9
17	736 (627	7	12	1026	1110	8	11	649	604	6	16	188	201	8	12	56	87	13
19	426	490	6	14	798	787	7	13	487	467	6	18	156	156	8				
21	395	3.85	6	16	559	56.6	6	15	394	429	7	20	109	109	9		0 K	15	
23	214	267	Ä	18	302	331	7	17	363	350	7	22	53	86	11				
25	164	165	ä	20	287	323	7	19	282	263	7					1	105	68	9
27	89	108	10	22	253	259	7	21	1.80	196	ġ		0 8	: 11		3	99	89	9
				24	178	188	8	23	135	136	8		-			5	96	67	9
	ОК	2		26	117	115	B	25	88	91	8	1	445	465	6	7	79	62	9
	0 11	-					-				-	3	396	408	6	9	56	75	11
0	2977 3	388	17		0 1	К 5			0	к 8		5	314	343	7				
- 2	1593 1	432	12						-			7	314	336	7		1 K	0	
4	4008 3	95	25	1	1594	1723	12	0	1066	1079	9	9	316	334	7				
6	1315 12	291	10	3	1403	1447	10	2	973	952	8	11	277	263	7	ì	459	448	4
	17.1 1	770	14	5	1355	1312	10	- 4	886	879	7	13	195	200	9	3	75	135	8
цň	1320 1	192	in	7	1285	1244	Ĩ	6	835	853	7	15	151	175	10	5	482	470	4
12	1154 1	101	č	ģ	1234	1366	10	Ă	700	649	7	17	144	127	8	7	279	280	5
14	872	825	ŕ	тí	1167	1201	Ĩ	10	524	460	6	19	91	90	9	9	211	219	5
16	817	793	7	13	836	800	7	12	392	428	7					11	62	1	15
18	49.8	472		15	503	503	Å	14	408	440	6		0 8	12		13	53	7	19
20	373	288	6	17	349	362	7	1.	366	367	7					15	-29	42	32
22	274	285	7	10	287	322	7	1 A	271	245	ż	0	345	271	7	17	112	67	14
24	165	2 0 3	ò	21	295	278	ż	20	181	181	8	ž	313	256	7	19	69	49	21
£	107			~ *		2.0					-	•	210		•				

21	+ I	2	29		1 K	. 4		8	-31	31	32	- 4	13	15	46	17	25	89	37
23	45	7	24					10	42	65	28	6	-18	2	41	19	140	72	12
				1	101	190	7	12	38	8	31	8	-42	7	28	21	17	12	42
	1 *	< 1		3	203	193	6	14	-39	15	32	10	46	22	25	23	47	0	- 24
				5	222	210	5	16	-18	46	42	12	72	10	17				
0	464	+33	4	7	176	129	6	81	-46	37	27	14	-34	13	28		2 K	. 2	
2	1347	1292	10	9	39	13	22	20	-50	21	23								
- 4	647	656	5	11	77	60	15						11	K 12		0	2159	2128	15
6	926	627	7	13	28	61	33		1 K	8						2	781	727	6
8	120	64	8	15	49	25	26					1	27	21	34	- 4	556	460	5
10	30 B	335	5	17	54	51	26	1	44	30	26	3	64	21	21	6	381	362	+
12	101	172	8	19	-38	37	30	3	- 55	1	- 21 (5	59	26	21	ы	162	156	7
14	100	140	13	21	38	15	29	5	-25	15	35	7	46	32	25	10	143	188	6
16	12+	97	12	23	41	15	25	7	-66	6	20	9	-10	27	44	12	92	83	13
18	81	70	19					9	28	39	37	11	39	17	26	14	97	8 C	14
20	23	45	39		1 к	5		11	-16	49	46					16	-34.	32	33
22	- + 2	6	28					13	-44	11	29		1 1	(13		18	134	134	13
24	35	12	27	0	347	335	5	15	49	54	26					20	-30	16	- 34
				2	358	159	5	17	86	44	17	0	28	3	32	22	-54	9	23
	1 K	2		- 4	-15	60	34	19	50	25	23	2	-56	11	21	24	31	13	28
				6	39	131	22					- 4	-31	17	30				
E	228	211	4	8	76	49	14		Ιĸ	9		6	-54	29	20		2 K	. 3	
3	1054	1069	8	10	97	54	13					đ	82	22	14				
5	694	677	6	12	93	94	15	0	50	34	25					1	334	251	- 5
7	263	265	5	14	- 70	61	20	2	80	56	18		2 8	(0		3	278	159	5
Ģ	-14	46	33	16	55	6	25	4	33	61	33					- 5	353	382	5
11	93	102	11	18	51	7	25	6	51	63	26	0	575	579	5	7	479	419	5
13	18	68	35	20	-49	28	25	8	-57	30	24	2	4 4D	422	5	. 9	4 L	45	22
15	36	42	29	22	11	10	43	10	74	12	20	- 4	2355	2094	16	11	-59	68	19
17	143	114	11					12	-7	37	51	6	84	207	12	13	56	46	21
19	47	65	28		1 K	6		14	80	45	18	8	528	467	5	15	71	56	21
21	-71	7	20					16	59	د3	21	10	-50	2	19	17	52	58	26
23	75	4	17	1	29	23	27	18	-31	25	30	12	110	142	11	19	49	42	26
				3	102	50	11					14	89	30	15	21	-64	7	21
	1 К	3		5	38	3	24		ìΚ	10		16	-38	73	30	23	-19	13	37
				7	52	19	20					18	136	112	13				
0	656	617	5	9	23	18	34	1	88	77	17	20	46	25	27		2 K	. 4	
2	744	777	6	11	88	61	16	3	92	76	17	22	-26	10	35				
4	503	417	5	13	- 20	10	41	5	89	45	17	24	-44	2	23	0	608	629	5
6	218	215	5	15	78	12	20	7	45	7	29					2	100	77	11
8	193	183	6	17	18	32	43	9	- ÷5	14	28		2 #	(I		4	-35	23	22
10	49	98	19	19	69	38	20	11	42	36	28					6	405	379	5
12	94	99	13	21	65	17	19	13	59	25	22	1	458	454	4	8	93	51	12
14	56	70	22					15	38	19	28	3	915	773	7	10	26	7	30
16	97	107	16		і к	7		17	25	25	31	5	161	166	7	12	54	57	22
18	35	53	18									7	196	220	6	14	102	111	15
20	-31	39	34	0	16	9	37		ιк	11		9	224	178	5	16	52	23	26
22	46	5	25	2	56	82	19					11	103	55	11	18	-61	43	23
24	- 74	24	16	4	50	50	22	0	48	11	28	13	39	21	26	20	-17	7	42
				6	65	105	19	2	67	3	21	15	45	15	26	22	-34	17	30

.

,

128

-

				12	71	32	2,Z	1	-54	2	22	19	388	359	6	18	250	294	9
	2 K	5		14	-57	46	24	3	59	12	19	21	257	283	7	20	249	252	1
				16	£1	49	18	5	-53	24	21	23	191	209	8	22	192	208	7
1	20.2	138	6	18	54	3.8	22	7	-26	25	31	25	123	136	9	24	139	141	8
5	. 7 0	1.55		10		50		•				27	80	91	P.	26	58	50	10
2	- 30	4.2	2.2		, , , , , , , , , , , , , , , , , , ,	~							0.7		~				
2	58	34	10		2 1	9							•				.		
7	-22	- 94	32										2 1				2 M	. 0	
9	94	84	13	1	- 58	55	24	1	3349	3692	26								
11	159	204	10	3	-45	97	28	3	2006	1758	16	0	1230	1243	9	1	1119	1124	- 9
13	-56	59	24	5	46	97	28	- 5	1151	1143	9	2	1424	1436	10	3	945	\$55	8
15	72	43	20	7	91	З	17	7	1+44	1389	11	4	1521	1550	11	5	843	658	7
17	- 6	5	54	à	70	57	21	ģ	1375	1 4 7 4	10	. 6	1691	1659	11	7	888	670	8
10		- 20	24		_ 20	1	34	- 1 í	1366	1185	ĩõ	È R	1222	1354	50	à	802	502	ğ
14	23	27	2.4	11	-20		20	1.1	000	674	20	١Ň	1016	004	10	тí	797	772	ž
21	41	11	20	15	52	24			700	310			776	700	-		6.01	530	;
				15	86	40	17	12	864	104		12	750	705		15	221	529	
	2 K	6		17	40	31	26	17	509	535	ь	14	154	181		15	328	368	<u> </u>
								19	444	419	6	16	532	513	6	17	280	303	r
0	159	182	8		2 K	10		- 21	283	334	7	18	353	387	7	19	250	258	8
2	40	112	24					23	208	231	8	20	257	270	7	21	192	204	6
4	63	57	18	0	79	36	20	25	133	141	8	22	224	236	8	23	141	146	8
	ឆា	70	15	2	71	94	22	27	80	94	9	24	1.52	163	8	25	96	S 5	7
		ου ου		2	100	61	16				-	26	95	108	9				
		100	10		100 E4	10	25		2 1	, ,				100			2 4	(7	
10	151	140	10		20	10	29		2 1	`			. .	, ,					
12	27	3	31	в	56	4	24	-					2 6	4		~			
14	70	27	21	10	33	40	33	0	2855	200+	- 17					0	973	548	4
16	50	6	27	12	78	37	18	- 2	2807	2635	18	1	1234	1257	10	2	902	994	8
18	-45	45	26	14	-47	13	25	4	1573	1457	11	3	1232	1198	10	÷.	792	781	- 7
20	55	23	21	16	56	22	20	6	1549	1409	11	- 5	1405	1409	10	- 6	740	729	7
								8	1245	1194	10	7	1469	1418	11	8	741	723	7
	2 K	7			2 K	11		10	1333	1291	10	9	1115	1148	9	10	636	623	7
	-	•						12	947	916	8	11	904	885		12	458	442	7
,	20	••	20	,	- 17	13	33	14	927	943	Ā	13	724	734	7	14	345	378	7
-	67	0.0	24	-	-71	11	20	14	5 20	696	7	15	604	545	À	16	317	335	7
د	40	82	20	2	-11	1	20	10		403	ż	17	212	361	ž	10	254	24.2	÷
5	83	52	1.6	2	42	16	28	10	401	493	0	11	212	376	<u>_</u>	10	100	202	
7	59	79	22	7	80	6	17	20	347	.346	0	19	203	212		20	148	Fat	8
9	81	54	18	9	44	32	27	22	248	279	1	21	225	246	B	22	120	139	A
11	-55	11	26	11	44	15	26	- 24	153	173	9	23	185	192	7	24	79	96	9
13	60	11	25	13	-34	6	28	- 26	96	114	9	25	115	126	8				
15	34	34	33														3 K	С В	
17	83	50	17		2 K	12			3 (K 2			3 F	ί 5					
10	-31	23	12		•											1	808	78C	7
17	-31		22	•	21	14	38	1	1419	1385	10	0	1341	1427	15	- a	741	718	7
	• <i>u</i>	~		ž	17	1		-	17/6	1441	12	ž	1227	1207	10	5	404	475	ż
	2 8	ð		<u> </u>	12	10	77	2	1477	1450	12	<u> </u>	1021	1040	-0	ź	427	410	-
_				4	-28	12	54	2	1027	1020	12	- *	1021	1047	с С		404	CIO	1 4
0	93	136	15	6	-34	33	30	Ţ	1441	1 34/	11	0	1042	11042	3		490	100	9
2	45	17	27	6	-51	37	23	9	1093	1140	6	8	1064	1101	8	11	369	346	<u> </u>
4	-31	5	33	10	-30	18	30	11	1014	894	8	10	990	1008	8	13	342	363	7
6	71	81	20					13	808	771	7	12	770	782	7	15	348	348	7
8	66	4	21		2 K	13		15	795	682	7	14	554	580	6	17	257	251	7
10	54	75	27					17	505	494	6	16	326	347	7	19	182	176	8
	- /																		

•.

.

21	134	131	8	9	213	200	<u> </u>	د ا	100	123		10	- 20		24	10	~ 3 2	10	23
23	81	93	8	11	176	161	7	5	89	3	12	18	13	22	19	12	53	- 6	25
				13	140	134	8	7	49	106	20	20	65	18	19	14	39	21	30
	3 K	9		15	97	102	9	9	149	93	9					16	45	33	26
				17	51	74	11	11	61	2	21		-4 K	5					
0	6+t	604	7					13	58	24	24						4 K	9	
2	558	645	7		3 K	13		15	12	28	49	1	99	94	14				
4	585	560	7					17	70	57	21	3	66	16	19	1	-36	54	34
6	473	492	7	0	172	157	9	19	60	35	23	5	78	47	17	3	-23	41	41
8	379	344	7	2	194	159	8	21	44	0	26	7	69	85	20	5	Z 8	20	37
10	28Z	297	7	4	190	108	8					9	43	26	29	7	-40	14	30
12	324	338	7	6	187	169	7		4 K	2		11	27	21	38	9	~75	10	19
14	305	303	7	8	167	156	8				•	13	30	5	37	11	- 53	0	24
16	242	216	7	10	145	131	8	0	104	123	11	15	-6	11	52	13	64	23	20
18	167	163	8	12	114	108	8	2	152	217	8	17	-77	21	19	15	37	31	26
20	112	124	ģ	14	87	81	7	4	34	18	25	19	49	21	24				
22	7)	8.	ģ		•••		•	6	245	251	6						4 K	10	
	••	50	•		зк	14		Â	58	15	19		4 K	6					
	зк	10			<i></i>	• •		ιŏ	112	77	12					0	47	10	27
	2 1			1	128	122	А	12	41	ii	28	0	119	157	13	2	-13	39	45
1	467	459	7	3	124	127	, o	14	112	74	14	ž	74	- 4	18	4	42	14	28
à		12.H		5	174	127	Â	16	20	2	43	4	21	Ó	40	Ł	25	28	37
5	356	357	ż	7	112	117	Ř	18	1.05	\tilde{n}	14	6	-38	82	31	8	68	10	20
7	265	299	ż	ġ	97	102	Ř	20	-27	15	34	Ā	-8	4	51	10	57	5	22
ò	27.4	298	;	11	80	85	ž	22	57	- ii	20	١Ň	-47	5	29	12	-46	18	25
11	214	200			00	05					- •	12	- 69	12	23				
13	246	247	Å		зк	15			4 K	3		14	42	17	29		4 K	11	
15	145	191	ě		- n	• -				-		16	40		29				
17	166	163	្ព	~	71	£ 1	10	1	¢5	119	14	1.8	- 7	22	4.1	1	59	5	22
10	117	113	0 0	2	97	61	10	2	174	1.63		20	~ 17	16	37	-	-27	12	35
17	112	11.7	D	2	20		0	5	124	187	ă	20	A (5		16	49
				-+	00	01	,	2	100	40	12		6 K	7		7	66	~~~	10
	2 1	11			ь x	0			- 36	30	30		-			ė	-64	÷	10
0	367	272	7		7 N	0		11	106	 A1	14	1	44	21	29	- 11	64	16	17
2	267	363		~	474	637	7	1.2	41	20	23	1	38	60	31	•••	00	10	• •
2	103	204		ž	610	732	16	16	70	11	10	1	67	43	28		6 K	12	
7	292	207		2	101	127	1.5	1.2	- 67	55	20	ź	-01	С. Г .	18		4 A	"~	
0	247	275	7		41	152	17	10	- 72	50	23	á	34	š	35	n	32	3	30
10	209	212		0	402	261	11	21	- 77	10	2.2	11	50	32	28	2	16	12	30
10	2+1	200			30	351		£ 1	-21	1.2	24	1.2	43	12	20	<u>,</u>	-41	14	26
14	175	150		10	- 38	- 4	15					15	~7	12	50	~	-71	15	20
14	1/5	129		12	44	33	12		4 K	-		17	_ 67	22	20	0	.14	17	C 1
10	135	130	18	14	48	40	21	~	311	-	¢	17	-27	21	22		с <i>и</i>	~	
18	89	91	9	10	- 29	17	36	0	344	318	2			•			2 K	U	
	.			18	48	68	10	2	42	29	24		-4 K	8		,	375	263	c
	3 K	12		20	-44	8	21	4	-41	88	20	~			24	1	303	372	12
			-	22	-26	5	د د	0	59	65	21	0	- >>	01	20	د	77	74	- 13
1	287	230						6	. 12	58	1.4	- <u>-</u>	20	41	20	2	2.70	302	ę
3	25 L	219	7		4 K	1		10	112	97	14	4	-28	22	38 77	, r	200	201	
5	233	217	6					12	49	34	21	6	-53	4	21	. 4	-88	10	10
7	236	221	7	1	85	13	12	14	-24	1	40	8	16	ы	21	11	00	u	23

13	6.6	14	22	1	127	120	13	1	64	20	24	24	74	113	9	2	671	677	7
15	62	18	23	3	48	16	26	3	63	42	24					4	786	757	7
17	56	36	25	5	145	164	12	5	-32	64	37		6 K	(1		6	709	722	7
10	12	50	44	ź	122	107	13	7	41	45	31					8	729	709	7
21	20	19	26	ģ	94	4	19	Ġ	-65	24	22	1	1228	1221	9	10	552	568	7
21		10	20	тí	- 80	53	19	- 11	32	46	34	3	1013	960	8	12	498	469	6
	5 K	1		13	57	72	26	13	11	12	46	5	823	773	7	14	366	349	7
				15	94	3.4	16	15	23	47	35	7	731	731	7	10	244	272	8
n	1.57	212	9	17	- 7	15	49					9	742	685	7	18	182	189	8
5	144	212	27	10	14	11	41		5 K	9		11	585	604	10	20	152	164	8
~	106	134	12	17	1.4	• •						13	578	529	6	22	111	125	8
7	261	170	7		5 ×	5		0	- 37	33	32	15	425	436	6				
0	241	110	10		2 1			ž	- 52	31	27	17	352	326	6		6 K	5	
0	- /	70	1 2	<u>^</u>	02	12	17	Ā	20	20	37	19	2 11	246	7		-	-	
10	11.2	70	10	2	72	42 6.J	20	- 7	33	7.9	34	21	179	191	ż	1	675	699	7
12	87	23	10	2	12	17	20		20	25	30	23		136	ġ	5	626	626	7
14	~51	54	20		20	12	20	10	73	27	10	23		4.70		5	616	614	7
16	81	51	18	0	~ 30	33	20	10		21	10		6 K			÷	610	645	7
18	15	44	18	8	04	33	20	12	- 22	25	21		0 1	· •		ġ	610	Sec	7
20	76	41	17	10	- 31	94	52		εv	10		~	1019	1071	12	11	494	492	6
	- ··	-		12	70	105	11		2 4	10		2	870	707	10	13	385	3.60	7
	5 K	2		14	60		23		10	1.6	4.9	~ ~	027	031	11	15	259	272	ż
				10	-49	12	20		10	40	70	7	75/	7.36	10	17	101	ICA	, s
1	126	133	11	18	- 53	1	23	2	44	4/	20	0	010	7/0	10	10	144	165	8
3	279	298	6					2	22	21	23		610	677	10	27	136	143	
5	355	308	6		5 K	6		1	52	8	24	10	272	537	7	~ 1	120	142	0
7	-43	68	27						-42	0	20	12	227	222			. v	4	
9	61	1	22	1	69	26	22	11	20	30	20	14	4.57	410	0		0 1		
11	57	13	24	3	56	17	25		.			16	369	300	<u></u>	~	444	440	7
13	42	17	- 31	5	60	23	25		5 K	11		18	251	240	<u>_</u>	2	540	501	
15	75	51	20	7	61	13	24		_			20	186	199	<u> </u>	2	204	221	
17	77	77	19	9	17	76	21	0	42	24	27	22	150	149	ſ	4	535	538	
19	-53	47	23	11	71	82	22	2	31	15	16					0	517	521	
21	-45	11	23	13	- 39	0	31	- 4	57	ف	21		6 K	C 3		8	530	511	
				15	35	19	32	6	47	1	23					10	475	461	<u> </u>
	5 K	3		17	20	16	38	8	- 34	21	27	1	695	691	10	12	379	383	
												3	745	770	10	14	271	273	
0	274	247	7		5 K	7			6 K	0		5	824	837	10	16	192	209	8
2	145	151	10									7	769	778	10	13	156	170	8
4	302	277	6	0	7+	22	21	0	1714	1726	13	9	677	633	7	20	137	144	7
6	176	227	9	2	- 35	0	35	2	1325	1191	10	11	512	504	7				
8	148	133	11	4	77	28	21	- 4	1084	1043	9	13	491	423	6		-6 K	. 7	
10	71	18	21	6	52	19	28	6	683	650	7	15	356	348	7				
12	-22	42	41	8	56	47	26	8	835	792	8	17	254	258	8	1	550	541	7
14	~ 25	27	40	10	71	22	20	10	643	660	7	19	175	194	8	3	493	455	7
16	71	84	20	12	- 53	22	25	12	676	647	7	21	162	158	7	5	461	451	7
18	-41	32	2.8	14	38	6	30	14	453	490	6	23	105	122	7	7	437	417	7
20	-68	16	18	16	~50	38	24	10	406	410	6					9	390	386	7
20							_ •	18	288	284	7		6 K	(4		11	314	325	7
	5 K	4			5 K	8		20	226	230	7					13	264	256	7
					2 1	5		22	147	166	7	0	738	741	7	15	209	214	8
								_			-	-				-			

17	178	181	7									10	53	4	23	- 5	116	120	15
10	130	139	7	0	160	146	7	0	68	58	26					7	105	83	16
1.3	100	133		ž	154	143	7	ž	21	8	46		7 K	8		9	-95	35	17
		•			144	140	ė	4	86	73	20					11	9	24	49
	0 1	a			1.17	134	7		- 40	16	26	1	36	18	3.1		-	_	
	_		_	0	1.27	100		0	-60	10	20	;	67	10	22			4	
0	467	467	<u> </u>	в	125	134		. 8	01	22	22	2	57	13	22		0 1	-	
- 2	454	4+0	7	10	S 2	115	8	10	61	35	- 24	2	+51	. 4	25	~	~		
4	432	405	6					12	58	41	24	ſ	-94	10	12	ő	91	C I	1.9
6	384	354	7		6 K	13		14	24	6	37	9	(+	13	17	2	-40	8	16
អ	307	336	7					16	- 32	17	30					- 4	-93	27	19
10	278	253	7	1	101	100	8						7 K	9		6	59	61	25
15	222	221	8	3	1.06	103	7		7 K	+						8	-69	44	- 22
16	2.1.2	210	7	5	87	105	а					. 0	-26	24	34	10	40	48	30
14	157	1 4 2		-			-	1	71	38	25	2	13	18	43				
10	1.72	1 3 2	ט ד		7 2	a			- 37	3/.	36		47	4	24		8 K	5	
19	121	1 22	,		1 1	U		ר. ב	14	50	40	•	••	•					
				-		.		2	14	30	49		a <i>v</i>	0			-10	G	52
	υΚ	9		1	160	124	12	<u> </u>	39	30	32		OK	U		-	- 40		34
				3	- 49	20	29	9	61	33	24	_			• •	3	-00	14	20
1	371	364	- 7	5	-37	12	34	11	50	13	26	0	92	48	18	2	20	8	- 43
3	145	339	7	7	79	80	21	13	68	13	20	2	46	82	31	7	51	15	- 21
5	315	298	7	9	80	76	19	15	-42	2	26	- 4	86	93	19	9	-57	41	24
7	25.8	249	7	11	46	24	26					6	73	78	21				
	224	2.05		1 3	70	5	20		7 K	5		8	96	86	17		8 h	6	
	107	100		15	~ 77	ιú	20		• ••	-		10	20	3	40				
11	171	1.70	0	1.7	- 51	20	22	~	56	64	29	12	-46	19	27	0	39	7	32
13	111	190	3	17	20	20	23	2	47	30	20	* ~	10			ž	65		23
15	171	1.63	6					4	01	20	24		~ ~			2	40	12	16
17	113	119	7		- 7 - K	1		- 4	64	30	22		0 r	1			70	12	10
								6	19	43	44	_			<u> </u>	0	13		20
	6 K	10		0	32	10	40	8	69	30	22	1	65	62	26	8	-62	19	22
				2	110	120	16	10	36	13	33	3	77	33	21				
э	218	291	7	4	58	61	18	12	20	20	40	5	40	13	32		-6 K	7	
ž	21.6	274	7	6	24	12	42	14	53	10	22	7	36	37	33				
	222	245	a	Ř	32	16	37					9	26	22	37	1	-37	12	- 51
	26 7	200	ă	١Ň	_ 16	47	22		7 K	6		11	-48	5	27	3	49	14	26
0	201	209	0 0	12	- 10	34	29		1 1			î â	-20	5	38	5	54	13	23
d	188	130	0	12	-47	24	20	,	4.1	25	35	* -		•		-	•••		
10	118	171		14			20	1	01		20		. v	2			0 r	•	
12	152	104	8	10	55	30	22	و	82	1	20		0 1	2			2 1		
14	115	135	8					- 5	25	32	40	-				· .	5 3 3	F 3 3	~
					7 K	2		7	53	21	34	Ð	101	10	19	1	232	232	
	6 K	11						9	51	14	26	2	-11	47	52	3	459	454	<u> </u>
				1	87	74	21	11	-39	15	30	4	39	67	34	5	360	362	- 7
1	21.5	211	7	3	- 50	35	31	13	39	5	28	6	96	98	18	7	320	315	7
â	107	196	. 7	5	- 59	28	27					8	-28	10	38	9	282	297	7
2	15.0	174		2	67	24	54		7 K	7		10	16	14	43	11	264	278	7
	100	110	0		4.2	25	21		1 1	-		12	-40	Ĩ	29	13	213	250	7
ſ	125	102			- 42	23	21	~	20		3.2	44	70	•	. /	15	175	209	, A
4	150	155	8	11	49	22	21	U	- 37		22		0 P	2		12	1.7	207	0
11	140	139	7	13	-77	26	14	2	67	1	22		σΛ	2			n 4		
13	104	110	7	15	-59	16	22	4	45	14	29	_					A V		
								6	81	6	19	1	91	54	20	_			_
	6 K	12			7 K	3		8	34	11	32	3	-8	58	55	0	429	485	,

•

2	463	476	7	11	226	235	8					10	22+	235	7	4	194	210	7
÷	356	370	7	13	195	205	8	1	27ь	285	8	12	173	185	8	6	186	192	7
6	332	341	7	15	152	170	в	3	301	300	7					8	162	174	7
8	296	294	7					5	292	310	7		9 K	(6)		10	140	157	7
10	274	282	7		9 K	3		7	289	304	7								
12	229	244	7					9	249	273	7	1	242	268	7		9 K	8	
14	188	222	8	Q	290	301	8	11	211	222	8	3	228	251	8				
16	135	172	8	2	334	321	7	13	175	172	8	5	229	243	7	1	181	200	7
				4	293	315	8					7	223	236	7	3	180	165	7
	9 K	2		6	312	329	7		9 K	5		9	184	214	8	5	156	161	7
				8	285	289	7				•	11	150	182	8	7	130	141	8
1	376	386	7	10	245	250	8	0	273	282	7								
3	359	353	7	12	202	199	8	2	267	284	7		9 K	(7			9 K	9	
5	319	334	7	14	150	166	9	4	256	276	7							-	
7	313	315	7					6	274	283	7	o	227	238	7	0	145	165	6
9	279	274	7		9 K	4		8	255	271	1	2	232	230	6	2	139	156	7
																-			

.

.

B. $[Rh(CNCHCH_2)_4]ClO_4$ - Structure factors 22° K data obtained with graphite-monochromatized MoK $\overline{\alpha}$ radiation. Space group Immm.

				3	1396	1231	17	10	933	938	27	17	-205	173	1 05				
	οκ	0		- 5	1701	2080	18	12	466	617	54	19	274	122	81		0 K	13	
				7	2051	2066	20	14	444	533	51	21	-252	98	136				
2	3230 3	426	25	9	1324	1464	19	16	-102	389	153	23	-212	75	159	1	80	144	208
4	3.178 2	669	23	11	851	934	23	18	31+	310	12					3	96	144	206
Å	1179 1	161	17	13	223	836	26	20	58	242	1 83		0 8	10		5	63	141	232
ā	2256 2	363	20	15	127	706	34	22	140	178	1 3 3		• •			7	237	129	133
10	1478 1	300	10	17	676	521	49	26	124	170	1.3	0	497	630	47	ġ	125	100	101
10	1430 1	570	21	10	222	272		2.4	120	127	143	ž	410	201	54		245	C 1	173
12	1250 1	006	21	21	110	1410			0 V	7			710	401	90	12	242	71	110
14	885	271	27	21	300	320	24		UK			` ~	207	301	00	12	201		1/30
10	102	113	22	23	2.90	230	01		0.24	000	26	0	177	304	30	12	-204	24	103
18	525	224	47		. .			1	830	AAA	22	. 0	222	200	63	11	-200		121
20	481	485	49		0 1	4		3	823	881	25	10	201	200	65	19	20+	38	100
22	39 C	308	- 29	_				2	109	849	29	15	452	248	53		.	• •	
24	168	230	117	0	1755	1552	18	- 7	823	757	27	14	246	180	88		φκ	14	
				2	1071	1224	17	- 9	541	712	43	16	152	130	121	_			
	οк	1		- 4	1583	1430	17	11	442	563	52	18	-358	109	71	0	242	59	129
				- 6	1772	1982	19	13	310	478	72	20	-139	- 91	201	2	-156	101	172
Ł	3054 2	567	23	8	1295	1278	19	15	436	354	53	22	-446	64	104	4	326	\$7	105
3	1797 1	610	15	10	1054	1084	21	17	358	265	58	24	227	45	160	6	284	SO	119
5	2224 1	793	19	12	880	972	26	19	212	231	102					8	245	78	136
7	1268 1	448	17	1+	754	738	32	21	-226	164	-99		0 K	: 11		10	256	67	128
9	1620 1	376	18	16	412	480	61	23	-235	119	99					12	147	55	197
11	1339 1	511	20	18	359	393	68					1	303	298	70	14	287	43	132
13	1239 1	106	21	20	233	326	92		0 К	8		3	56	275	1 82	16	385	37	109
15	84.8	803	30	22	317	236	74					5	178	243	110	18	-246	29	156
17	725	6.04	39	24	417	178	56	0	717	813	41	ž	255	226	79	•			
19	356	516	67					2	744	787	30	ģ	218	226	ġź.		зк	0	
21	524	371	41.		0 6	5		2	681	602	42	- 11	100	175	100			v	
22	245	260	90		• •				680	642	34	13	307	132	73	1	259	437	31
23	245	200		,	14 20	1 4 4 4	1.0		6.20	600	47	16	122	110	120	- 1	-197	212	26
		2			1217	1 764	10		340	114		17	317	110	1 27	2	-101	726	
	UK	2		2	1004	1 1 2 4	10	12	200	340	67	10	312	77	12		221	174	
~	3073 3				1030	1 3 3 0	10	12	222	2140	56	17	220		114		251	114	
<u> </u>	2412 2	419	22		1004	1019	19	1.4	423	210	22	21	340		110		204	250	24
2	1676 1	341	15			11//	23	10	340	213	67	23	147	39	203	11	-147	213	12
4	3578 3	403	21	11	982	1013	26	18	286	222			•			13	180	100	10
6	1326 1	442	£7	13	(15	617	34	20	233	151	97		0 8	. 12		15	173	190	89
8	1641 1	631	18	15	488	458	52	22	334	106	73					16	182	109	98
10	1339 1	161	19	17	325	374	77	24	58	82	249	0	212	212	99	19	-277	£4	- 77
12	979 1	148	23	19	400	334	64					2	330	193	69	21	-95	63	150
14	826	771	29	21	291	242	77		о к	9		- 4	475	201	48	23	191	77	104
16	706	681	40	23	177	184	116					6	189	188	1 02				
18	426	512	58					1	549	610	40	8	280	188	79		Ιĸ	1	
20	355	423	70		0 1	6		3	591	596	39	10	-86	145	156				
22	400	231	60					5	429	584	51	12	132	119	131	0	245	104	25
24	-144	214	132	0	1213	1364	19	7	503	465	45	14	-230	99	99	2	1229	ES4	12
	• • •			2	1152	1409	19	9	261	354	81	16	187	75	1 62	4	665	323	18
	ο κ	3		4	846	867	23	11	159	305	113	18	-230	52	1 59	6	605	694	23
		-		6	867	979	23	13	264	300	80	20	467	43	91	a	178	111	56
1	1662 1	514	17	Ä	9.67	895	24	15	-135	250	130	22	341	35	134	10	73	203	107
•			•••	5			L (2.20	1.50								

12	245	198	53	19 -252	59	86					2	-231	53	82	15	252	7	145
14	116	32	109	21 149	76	116		1 K	8		- 4	150	61	115	17	262	4	143
16	135	2+5	115	23 341	59	67					6	+1	35	170				
15	59	92	143				1	178	109	91	8	129	23	119		2 1	L O	
20	-73	95	152	I K	5		3	-169	77	86	10	116	11	128		_		
22	402	31	52				5	125	83	109	12	-358	21	74	0	702	524	16
24	-295	16	78	0 273	233	37	7	-66	31	149	14	158	2	115	2	500	371	- 22
				2 200	76	51	. 9	147	31	105	16	~195	0	105	4	1966	2015	15
	1 K	2		4 150	55	60	11	110	47	139	18	126	1	204	6	-231	178	44
				6 -133	24	63	13	-137		127	20	300	U U	130	10	337	302	10
1	236	215	31	8 163	144	10	15	-271	34	40	- 44	200		127	10	229	140	56
3	500	593	17	10 -244	01	120	17	- 355	34	100	24	200	•	111	14	-174	172	112
<u>ל</u>	452	503	24	12 80	24	130	21	24	20	670		1 4	12		16	-124	79	168
	63	\$11	90	14 39	21	130	22	244	20	154		4 1	12		18	L A Q	127	107
	-150	10	60 80	10 200	64	104	23	510	20	1.74	1	-150	67	1.1.1	20	276	51	71
12	-100	140	6 P	20 - 210	50	46		1 K	9		3	164	61	106	22	87	88	145
15	-161	180	20	20 -210	52	115		• •			5	179	59	1 03	24	-322	63	17
17	100	153	44	24 - 328	45	74	0	-269	147	68	7	- 363	41	62				
iq	-2.4	74	90			••	2	-126	91	122	9	102	39	139		2 1	(1	
21	-168	76	103	1 K	6		4	182	90	93	11	112	26	133				
23	-163	14	112	- ··			6	225	68	85	13	181	18	1 05	1	482	344	24
				1 153	143	69	8	182	90	97	15	-266	9	87	3	764	£30	18
	1 К	3		3 102	115	92	10	289	73	71	17	323	9	109	5	-213	14	44
				5 -107	137	94	12	197	14	43	19	133	2	2 05	7	205	165	50
0	695	911	19	7 -182	167	74	14	108	9	127	21	276	4	145	9	27	107	141
2	399	536	29	571 0	29	79	16	266	4	77			_		11	-242	19	55
4	352	372	33	11 274	15	63	19	304	9	70		IΚ	13		13	-43	n	148
6	293	200	34	13 -130	54	120	20	278	16	78					12	198	167	85
8	-49	350	107	15 124	17	134	22	228	16	142	0	-130	60	1/8	11	-60	148	159
10	-195	8	57	17 52	58	154	24	504	13	90	2	-114	23	181	14	250	70	151
12	-144	108	91	19 -215	28	. 84			10			~208	40	110	41	00	76	153
14	-26	32	182	21 170	41	111		1 0	10		0	-310	20	112	23	01	10	195
16	141	[66	113	23 -117	55	138			47	184		-366	22	112		2 4	· 2	
13	-166	3/	7.2		7		2	-61	47	104	12	152	18	174		~ '	` -	
20	~202	01 67	12	1 1	'		5	167	69	104	14	-193	13	165	0	1823	1864	17
24	234	63	127	0 251	62	52	7	168	54	100	16	246	์ ลิ	143	2	644	734	19
24	130		12 .	2 120	44	90	9	-281	43	75	18	187	ō	178	- 4	520	450	21
	1 К	4		4 99	33	104	11	233	6	81	20	160	õ	195	6	379	359	28
	1 1	•		6 - 71	86	129	ī3	-179	16	102					8	-110	43	84
1	169	165	51	8 232	29	70	15	102	5	141		IΚ	14		10	-157	230	76
	190	121	50	10 -246	15	75	17	-96	8	148					12	-161	40	85
ŝ	-17	129	132	12 103	Ō	140	19	311	13	74	1	234	42	1 32	14	237	170	73
7	187	42	53	14 148	8	118	21	123	7	207	3	-132	39	182	16	-200	142	93
9	111	40	91	16 160	43	104	23	278	9	144	5	-196	34	151	18	-222	126	98
11	-152	9	85	18 167	39	107					7	183	29	157	20	320	58	61
13	175	83	67	20 -102	35	144		1 К	11		9	- 506	23	87	22	184	80	102
15	93	92	136	22 304	31	77			_		11	-107	18	207	24	259	61	85
17	- a 8	127	149	24 -178	27	171	0	84	78	141	13	144	13	189				

,

	·	2		× 33	103	1.20	11 940	10	10	10	101	7	1 3 0		1344 1401	
	4 1	2		4 03	102	100	11 503	60	00	10	و ب و		128	0	1340 1401	10
				6 - 95	170	105	13 -197	5	103	20	168	0	206	8	887 1 C45	30
- 1	197	380	44	B -123	95	103	15 171	30	105	- 22	134	6	214	10	1128 1230	21
3	- 5	160	140	10 194	28	82	17 -246	13	85					12	825 930	29
5	207	83	49	12 - 205	2	89	19 -104	4	147		2 K	13		14	771 F11	37
7	315	3.0	20	1. 210	1	96	21 - 107	1	210					16	673 616	20
Å	21.2	121	14.7	14	د ع	100	21 202	17	143	1	_ 202	E (112	1.5	305 443	40
	с 	144	103	10-110	20	100	23 - 203	11	102	1	-203	20	113	10	242 461	00
11	-110	24	- EL	18 - 257	29	80				3	-172	50	158	20	407 353	57
د ا	-61	82	145	20-343	36	66	2 K	10		5	52	38	231	22	67 261	- 171
15	- 384	155	56	22 -159	40	120				7	177	29	151	24	-43 179	200
17	229	123	86	24 210	34	153	0 -101	60	134	۰9	-483	27	82			
19	120	50	122				2 - 42	37	169	11	-409	17	95		3 8 2	
21	375	1.7	57	2 8	7		4 66	55	147	13	-552	11				
2.2	- 231	61	20		•		A 40	R G	150	15	222	12	1 20	,	1 2 4 1 1 1 4 4	17
.,	- 351	U		1 0/	10		U 03	70	170		322	13	120		1201 1400	
				1 04	40	114	0 229	10		17	200	0	138	د ا	1042 1400	18
	2 6	- 4		3 - 79		101	10 80	21	123	14	176	2	111	2	1448 1622	18
				5 - 296	52	56	12 203	6	99					7	1308 1335	- 19
0	456	420	23	7 162	29	91	14 -175	1	109		2 K	14		9	999 1133	20
2	64	120	83	9 -87	46	145	16 323	11	70					11	940 877	25
+	76	104	50	11-24+	27	79	18 210	5	99	0	-471	42	87	13	691 769	38
6	301	280	39	13-157	18	107	20 -81	15	230	2	-207	40	146	15	762 580	37
'n	76	113	110	15 - 256	19	84	22 - 555	11	90	ä	128	33	184	17	439 447	60
10	110	10	ion	17 214	36	ня 1	24 44		271	Å	+124	27	1 84	10	409 367	61
12	- 232	111		10 125	24	124	27 77	'	211	8	251	21	1 1 2 2	- 21	315 367	72
44	202	107	21			124	-				2.21	23	123	21	212 201	12
19	299	107	11	21-211	20	90	ζ Ν	11		10	398	11	95	23	325 265	13
10	254	93	86	23 - 268	25	137				15	83	15	224			
15	-210	64	95				i 195	43	89	-14	-127	12	214		3 K 3	
20	72	55	156	2 K	â		3 -177	46	96	16	373	4	108			
22	101	63	113				5 165	60	100	18	-224	0	171	0	1086 941	17
24	166	52	115	0 240	120	69	7 -72	37	154					2	1245 1360	17
				2 100	1 18	120	9 94	13	134		3 K	0		4	1307 1355	18
	2 1	5		4 - 2 11	49	74	11 214		51			-		i.	1367 1680	20
		-		4 - 1 - 1 - 1	27	0.0	12 120	26	177		25.24	2500	27		1110 1170	27
•	211	177	5 7	0 210	31	00	15 120	25	121	-	1720		21	10	1110 1110	22
+	211	112		0 - 2 10	15	72	13 217		34	2	1129	1 7 20	- 11	10	401 510	24
2	6C	21	87	10 131	40	129	17 441	1	81	2	1021		11	12	689 105	وو
5	57	141	116	12 170	14	98	19 -154	5	186	T	1330	1261	18	14	642 671	43
1	146	102	78	L 4 60	ь	167	21 - 433	0	111	- 9	1200	1369	20	16	470 464	57
9	-73	111	124	16-146	35	117	23 490	5	87	11	1113	1190	23	16	248 408	92
11	228	165	66	18-138	34	122				13	930	984	27	20	490 307	49
13	- 63	17	148	20 -178	17	110	2 K	12		15	805	655	36	22	309 227	77
15	276	33	79	22 221	17	138				17	452	518	59	24	153 163	130
12	110	12	106	24 242	10	145	0 -157	66	105	10	460	636	55		199 109	
10	101	20	.03	£ 4 £ 42	1.2	147	2 - 152	50	110	27	367	3 3 1	22		.	
1.5	1.41	20	23				2 -102	20	110	21	341	321			3 N 4	
21	211	22	~)	2 K	9		4 180	63	44	23	10	514	1.13	_		
23	~ 345	-+ -+	# 1				6 -214	39	87					1	1097 1137	19
				1 - 70	84	143	8 -139	34	120		3 K	1		3	1055 1686	18
	2 К	6		3 88	65	1+0	10 201	30	93					- 5	1200 1336	20
				5 95	62	134	12 139	26	120	0	2751 2	2685	22	1	1099 1268	22
0	152	114	65	7 -115	65	136	14 307	5	71	2	2488 2	2425	21	9	890 1 0 36	25
2	- 122	153	85	9-243	108	87	16 398	4	100	4	1326	1330	17	11	762 E08	33

.

.

•

13	613	6++	4 ¥		3 K	3		14	-283	107	87	6	304	311	49	15 182	76	98
15	481	464	55					16	341	96	71	10	223	118	69	17 94	52	136
17	228	344	95	1	585	622	43	18	285	61	86	12	135	30	109	19 -146	58	122
19	227	306	92	3	6C6	55ช	42	20	267	46	145	14	86	182	143	21 -262	57	83
21	-288	229	94	5	482	534	55					16	-298	90	72	23 - 344	51	71
25	257	175	89	7	485	500	53		3 K	12		18	-281	89	71			
		_		. 9	404	382	61					20	217	31	90	4 1	. 4	
	3 1	5		11	373	279	61	1	301	166	12	22	285	63	60			
_				13	261	271	65	د	233	160	89	24	271	52	85	0 2/3	303	49
0	1134	1290	20	15	344	268	68	2	365	163	63		,			2 168	30	. 68
2	991	11/0	21	10	120	199	140		285	100	124		4 P	, L		4 - 30	87	140
*	853	623	22	19	- 5 54	145	10	.,	143	130	124	• .	4.2		1.05	6 -120	10	43
2	951	67.7	20		,	0		1.2	-190	104	110		30/	7/2	105	8 110	120	110
.0	16.2	37.7	20		3 1	А		15	340	90	104	נ 5	- 03	292	41	10 -133	10	113
10	122	635	2.2	0	201	633	99	17	-247	44	101	7	- 93	101	14	14 = 255	40	102
14	455	592	57	2	2 0 X	680	57	10	-205	43	190	à	-203	10	73	16 133	60	114
1.6	20.4	372	83	Č.	505	495	50	21	415	3.8	114	ú	253	72	66	18 205	63	41.4 01
1.4	203	202	80		218	417	104	21	415		114	13	-200	90	90	20 123	50	120
20	220	236	9.4	Ř	266	303	84		3 к	13		15	308	162	64	22 -167	50	116
22	3.1	177	64	10	150	246	123					17	-207	104	90	21 101	20	
				12	1050	274	31	0-	282	117	77	19	237	61	82	4 •	5	
	З н	ς 6		14	- 55	234	150	2	395	115	57	21	297	52	17	• •		
	-			16	202	158	106	- 4	- 34	118	200	23	61	59	171	1 178	71	74
1	869	1057	24	18	277	120	84	6	47	111	187					3 141	11	87
3	81 J	594	27	20	283	98	130	8	163	100	119		4 K	2		5 -163	17	84
5	705	619	29					10	119	84	148					7 -161	19	93
7	568	736	38		ЭK	10		12	-283	68	90	0	200	250	57	9 192	17	88
9	737	716	33					14	-197	46	117	2	-90	272	57	11 -128	31	118
11	545	650	45	1	412	33 s	58	16	-313	42	40	4	-122	1	85	13 -234	5 C	84
13	4+0	477	59	3	113	317	145	18	320	40	91	6	162	345	75	15 -154	58	104
15	419	349	57	5	233	266	91					8	-154	106	85	17 238	65	78
17	-79	266	162	7	283	230	77		ЗК	. 14		10	149	170	97	19 -187	37	106
13	-65	236	174	9	3 3+	232	63	_				12	204	11	81	21 308	45	71
21	203	172	105	11	318	225	73	1	212	82	100	14	217	129	86			
	.	-		13	-173	163	119	3	97	8Z	157	16	297	93	69	4 K	. 6	
	3 K			15	- 62	118	117	5	231	78	99	18	-207	90	89			
-				17	16	112	167		-302	$-\eta$	87	20	121	48	129	0 -138	65	99
0	143	630	30	19	290	86	89		105	60	160	22	298	62	74	2 -276	38	61
2	640	600		21	-124	24	118	11	- 349	49	84	24	226	50	97	4~134	1	100
4	604	670	00		ъ и			13	311	40	100			•		6 -151	65	98
0	292	260	42		2 1	11		15	229	30	100		- 14 - N	د <u>،</u>		8 -90	00	134
10	610	524	43	0	47	76 7	147	11	-212	28	124	,		336	100	10 298	38	00
12	205	242	41	2	-112	222	134			•			-141	220	102	12 222	22	18
14	221	316	00	4	-112	221	1.16		4 6			2	125	140	07	14 171	22	99
16	282	261	77		-156	185	115	n	761	1018	20	7	169	295	67 82	18 260	30	86
Î.S	-207	220	102	я	215	167	93	2	201	173	51	6	-240	87	69	20 - 311	32	76
20	-154	162	130	ιõ	- 85	162	1 59	4	1.62	262	66	ní	-105	35	126	20 511		
		•		12	1 6 9	125	108	6	135	10+	79	13	-229	36	86	4 K	7	
				_													-	

.

•
						16	125	130	117	0	165	12	89	5	K 9	
1 -121	30	124	1 164	52	99	18	-38	67	181	2	215	92	74			
3 125	ذ	121	3 112	39	127	20 -	-243	61	90	4	326	29	55	0 -264	56	71
5 49	52	136	5 204	23	92	22	269	48	81	6	100	32	120	2 -234	35	- 77
7 151	60	118	7 -385	11	61					6	-63	69	148	4 188	26	90
9 - 255	13	50	9 -102	24	137		5 K	2		10	-+1	83	169	6 -133	27	117
11 -286	Ŭ	72	11 257	11	18					12	165	87	95	8 -101	74	133
13 -306	11	67	13 -175	0	115	1	121	119	92	14	145	31	113	10 63	58	163
15 -202	24	77				3	~ 52	351	138	16	100	34	145	12 -257	C	84
17 30	39	191	4 K	12		5	210	283	73	16	66	25	167	14 146	18	119
19 -247	21	91				7	199	88	73	20	-291	32	77	16 245	8	89
			0 236	56	83	9	135	22	105							
4 К	8		2 - 3 25	46	69	11 -	-216	24	81		5 K	6		5	K 10	
• •	•		4 1/8	40	127	13	151	51	114							
0 213	51	83	6 -276	28	78	15 -	-248	128	76	1	-290	58	64	1 286	9	66
2 136	61	123	8 -160	27	111	17	148	101	110	3	-112	37	117	3 333	13	59
4 175	49	103	10 -216	11	99	19	54	54	174	5	134	53	110	5 275	41	73
1. 2	55	84			••	21 -	-213	44	99	7	-140	35	1.06	7 -265	56	75
6 197	37	ÂQ	4 K	1.4					• •	9	-185	52	88	9 160	27	101
10 - 207	30	87					5 K	4		ŧi	-240	42	73	11 -200	7	94
12 - 61	5	140	1 - 470	36	89		<i>-</i> 1.			13	-173	10	101	13 -247	ż	86
16 307	25	6.4	3 250	34	130	0	1.80	205	74	15	259	4	81		-	••
16 251	23	H2	5 -160	30	174	2	222	136	67	17	239	28	88	5	K 11	
14 -17	1.6	166	7 147	24	170	2	204	265	75	19	-156	26	117	•		
10 17	1.4	100	1 6.41	7.4		- X	+63	129	1 3 7				•••	0 114	20	133
4 K	Q		5 6	0		2	1 04	125	78		5 K	7		2 243	16	87
1 N			2 1	0		10	310	10	67			•		4 -100	40	102
1 - 175	77	106	1 314	380	47	12	142	44	110	n	- 299	63	67	6 -6)	22	187
2 6.	6.5	175	3 1.04	200	43	14 -	142	74	110	2	-145	13	111	8 142	14	110
5 140	14	107	5 1 34	204	60	14 -	160	100	110	2	154	4	106	10 119	5	135
2 - 104	51	107	7 7 7 7	171	40	10	104	109	150	-	-56	20	160	12 - 405	1.5	2011
0 210	21	11 7	7 90	111	110	10	-02	40	104	9	134	20	115	12 -405	17	05
9 133	21	112	9 - 51	49	144	20	121	51	104	10	62	12	142	6		
11 66	ć,	120	11 -298	20	101	4 Z	214	40	49	12	-120	17	110	,	n 12	
13 - 155	4	112	13 ~107	10	132			,		14	-130	12	110	1	20	105
15 211	2	91	10 - 290	94	12		5 K	4		14	226	26	00	2 120	27	192
17 - 302	9	18	17 - 253	40	82			134	1 6 1	10	-153	20	1 2 2	5 137	30	122
			19 238	68	86	L	42	130	151	10	-100	29	125	5 -103	32	140
4 K	10		21 -177	54	114	3	170	40			εv	•		7 -102	19	144
	70		23 290	52		2	121	52	113		2 ~	0			. n	
0 - 335	12	66	.			1	185	84	81			25		0		
2 -338	58	10	5 K	1			219	65		1	140	22	115	A 1537		
4 - 273	52	82				11	80	67	142	د	18	11	1.40	0 1034	1652	- 22
6 - 180	23	97	G -185	141	66	13	36	88	184	2	185	L	93	2 1124	1071	23
8 -141	9	112	2 -161	40	76	15 -	224	76	84		127	2	110	4 898	839	Z6
10 52	9	175	4 -205	133	67	17	162	52	110	. 9	-147	36	109	6 571	517	36
12 288	21	71	6 206	141	71	19 -	-163	26	116	11	-165	60	106	8 688	706	34
14 -252	2	86	8 -189	47	76	21 -	-203	36	105	13	100	6	140	10 495	582	45
16 117	12	139	10 -206	14	78			_		15	-90	29	151	12 529	638	43
			12 255	69	70		5 K	5		17	133	28	129	14 432	411	51
4 K	11		14 -159	45	109									16 418	33 E	53

·

18	397	254	58	8	633	577	38	o	331	344	67	- 4	330	92	109	14	-203	13	96
20	227	216	93	10	468	463	48	2	347	334	64					16	-312	46	76
				12	501	380	44	4	363	300	60		7 K	0		18	223	32	- 91
	6 K	. 1		14	337	267	64	6	386	272	57				_		_		
				16	263	2 20	75	6	364	222	58	1	298	104	59		7 K	4	
1	1085	1091	23	18	154	186	117	10	365	182	59	3	215	98	- 77	_			
3	883	774	26	20	162	157	119	12	182	166	102	5	280	32	64	1	-30	62	171
- 5	6 84	644	31					14	189	158	103	7	-282	53	66	3	183	44	89
7	661	613	34		6 K	5		16	271	129	84	9	144	34	57	5	-221	12	81
9	6+1	581	38					18	359	99	86	11	229	29	- 74		58	45	151
11	525	563	43	1	634	601	35	20	-147	73	174	~13	113	63	1 32	. 9	191	54	89
13	45 t	476	50	3	5 26	518	42			_		15	-244	101	86	11	214	6	85
15	499	346	44	5	499	504	44		6 K	9		17	265	56	82	13	320	3	67
17	314	285	68	7	577	510	40	-			- /	19	232	26	92	15	215	32	96
19	197	235	103	- 9	471	454	4 B	1	296	272	14			_		17	283	44	80
21	220	179	103	11	489	395	48	3	251	258	82		7 K	1				_	
				13	277	301	17	5	230	228	92	-					I K	5	
	6 K	2		15	225	215	87	7	220	183	89	0	-301	48	61	_			
				17	181	167	105	9	234	155	86	2	265	71	66	0	-174	33	90
O	853	٤67	26	19	368	151	64	11	336	147	63	- 4	222	96	80	2	103	5	123
2	77e	635	28					13	266	138	83	6	-125	21	1 09	- 4	166	16	94
4	757	803	30		6 K	6		15	215	110	135	8	-221	47	78	6	-149	25	103
6	614	692	36				_	17	258	8 6	117	10	-179	21	92		250	15	- 14
e	732	669	32	0	* +8	547	48	19	124	65	190	12	-160	12	101	10	-331	20	59
10	566	483	40	2	512	5 ∠ ∘	42					14	-115	74	135	12	130	5	118
12	496	484	46	- 4	390	418	58		6 K	10		16	-88	82	152	14	274	c4	78
14	410	345	52	6	417	475	48	_				18	-136	33	132	10	-143	44	127
16	392	297	54	8	408	366	54	0	306	193	73						_		
18	245	237	85	10	+33	361	51	2	229	179	90		7 K	2			ТК	6	
20	238	1 97	11	12	412	293	52	4	230	166	92								
				14	166	214	109	- 6	159	142	107	1	190	70	85	1	-159	13	97
	6 K	3		16	223	166	92	8	302	136	67	3	-247	53	70	3	100	15	121
				18	260	146	83	10	186	122	163	- 5	212	69	80	2	296	11	59
1	695	551	30	20	249	118	128	12	322	108	13	1	159	87	58		-236	23	76
3	703	635	31			_		14	-270	89	119	. 9	200	80	83	. 9	-160	33	103
5	706	776	33		6 K	1		16	-400	72	94	11	-130	59	109	11	104	20	103
7	662	736	37					18	0	52	289	13	-171	41	103	13	233	24	89
9	63 5	577	38	1	446	442	50	20	445	39	85	15	-164	61	113	15	283	ود	80
11	458	468	49	3	426	384	51					17	236	48	88		-	_	
13	475	371	47	5	+27	332	53		6 K	11		19	283	34	- 11		7 K		
15	277	286	74	7	319	306	66							_		_			
17	202	234	98	9	428	277	49	1	195	121	100		I K	3		0	~289	27	69
19	384	198	76	11	381	230	57	3	-236	116	92	_		-		2	99	14	135
				13	14	189	207	5	204	115	105	o o	-144	Z	104	- 4	-205	1	91
	6 K	4		15	-199	165	104	7	-293	111	80	2	207	24	83	6	231	26	80
_				17	-131	140	131					4	219	14	80	8	338	32	62
0	594	624	35	19	462	112	78		6 K	12		6	63	50	144	10	286		15
2	657	599	34					-				8	86	85	1.39	12	192	21	103
4	668	612	35		6 K	8		Ŭ	-107	90	151	10	123	44	114	14	122	20	143
6	643	645	38					2	240	87	90	12	- 329	18	65				

139

•

7 1	9						10	- 271	27	3.4	10	- 150	106	171	10 202	140	1.0
r n	0				105		10	-211	21		10	-100	100	111	10 362	100	1.7.4
			0	- 56	10.5	130	12	-95	13	145	20	100	84	211	12 -165	158	1.55
1 -114	2	134	2	100	47	120									14 429	56	86
3 -171	11	105	- 4	-103	104	121		В К	7			9 K	2		16 -405	73	93
5 252	3.+	82	6	187	107	87									18 -326	66	110
7 144	10	118	Â	-193	14	89	1	-179	13	104	1	400	279	54			
0 - 101		102	10	174	2,	100	- 1	P 1		155		4.26	320	62	o v	4	
9 - 191		103	10	110	21	100	2	10		100	2	423	230	20	7 5	Ŷ	
L1 -242	14	92	12	-209	د	93	2	130	14	125	5	450	250	52			
13 -346	13	73	14	163	60	117	7	191	20	102	7	349	259	72	1 277	205	88
			16	126	58	141	9	103	16	149	•9	400	225	60	3 423	179	59
7 K	9						11	-369	7	69	11	344	199	71	5 299	159	83
-				я к	3						13	278	163	89	7 300	151	84
0 264	35	9.0		0 1	-			8 V	0		16	264	121	1 2 2	0 262	120	00
0 256	10	30						0 4	0			204	121	122	7 292	130	27
2 - 309	33	12	1	118	62	114	_				11	228	104	141	11 0	115	288
4 -45	36	113	- 3	82	57	130	0	-249	11	88	19	-268	89	137	13 393	55	90
6 -195	2+	100	- 5	382	109	50	- 2	349	2	60					15 -281	74	124
8 231	0	86	7	2 30	53	75	4	-246	14	88		9 K	3		17 -182	63	173
10 -257	9	89	9	2 32	22	81	6	93	9	153							
•• •••			11	-179		98	8	339	- 11	70	0	459	218	53	9 x	7	
7 V	10		12	1 4 1	33	110			••		ž	276	220	64	2	•	
1 1	10		15	101	26	110		. .			£.,	310	230	0.7	· · · ·		1.0.0
	_		15	- 3 4 6	58	62		8 N	9		- 4	254	239	84	0 -218	111	100
1 -173	39	139									6	354	282	69	2 344	165	73
3 -268	27	80		8 K	4		1	-258	3	SO	8	366	250	65	4 195	138	112
5 175	10	111					3	-149	0	125	10	257	211	93	6 295	120	87
7 -114	6	142	0	-114	73	122					12	279	163	89	8 -221	100	109
• •• •	Ŭ		Š	1.00	2.	10		o #	•		12	372	122	04	10 54	67	226
	~		ç	1.72	50	107		3 1	0		1.4	212	144		10 94	74	113
8 6	0		- 4	+150	21	105	_				10	-233	42	140	12 318	23	112
			- 6	-221	40	86	1	565	438	42	18	496	86	90	14 179	71	165
0 -99	78	121	8	222	46	84	3	440	331	51	20	-201	72	165	16 -306	63	122
2 217	115	76	10	383	46	57	5	307	233	67							
4 151	38	97	12	-146	43	112	7	357	210	63		9 K	4		9 K	8	
1 44	56	133	14	-202	46	102	à	391	223	56						-	
9 - 166	50	70	• •	202	40		тí	101	225	107		3 20	210	60	1 772	140	116
10 200					-			2/1	200	1	-	337	217		1 223	1.26	110
10 244	3.3	14		8 K	2		12	303	208	64	2	340	228	12	3 - 28	122	194
12 53	5	169					15	604	149	62	5	4 Z I	238	57	5 -232	1 G 3	133
1+ 3+6	÷7	66	1	144	14	105	17	213	118	156	- 7	337	241	75	7 201	63	142
16 -195	47	109	3	23	16	182	19	-80	96	223	9	398	207	65	9 -122	75	189
			5	-148	8	109	21	280	74	124	11	356	168	72	11 176	70	157
а ч	1		7	65	12	155					13	3.82	124	67	13 267	65	124
0 4				251	13	177		~ ~			10	302	124	1 1 7	15 201		110
	-			2.21	20			AV			1.2	207	72	111	13 364	60	77.3
1 - 304	73	52	11	156	49	111					17	203	78	154			
3 -147	68	99	13	335	31	72	0	545	395	46	19	327	71	111	9 K	9	
5 -232	15	73					2	496	366	50							
7 -265	9	6.8		8 K	6		4	366	246	65		9 K	5		0 -119	111	187
9 246	16	75			2		6	458	238	51			-		2 432	104	80
11 210	1.5	84	C	1 8 4	2	9/	p	304	212	76	0	260	21.6	63	4 -54	88	234
12 43	27	172	2	100	31	80	10	311	776		2	31.7	217	70	4 319	72	124
13 03	24	115	2	192	12	07	10	311	222	11	e e	243	211	12	0 210	14	100
15 345	28	64	4	91	4	135	12	415	206	63	4	262	194	84	6 419	60	
			ь	106	4	129	14	- 266	167	S 8	6	243	199	100	10 -239	59	138
в к	2		8	168	32	106	16	211	123	142	8	415	185	65	12 222	59	146

•

				2 182	27	101				51	87 11	144	11 K	5	
	9 K	10		4 - 343	14	73	0 +153	9	167	7 -	95 16	202			
				6 -339	28	91	2 - 539	15	72	9 - 2	23 1	134	0 329	1	104
1	134	71	174	8 - 2 0 3	32	134	4 - 475	23	85	11 -1	50 8	172	2 139	2	180
ڌ .	416	58	92	10 322	39	100	6 214	5	141	13 -	82 13	226	4 323	1	106
7	232	5+	132	12 - 251	19	112	8 262	14	119				6 - 295	4	120
9	374	52	96	14 - 79	23	218	10 289	17	116	11	к 1		8 266	18	119
11	323	50	114	16 404	19	91	12 335	1	104				10 - 144	23	189
							14 336	18	108	0 2	00 27	142			
	9 K	11		10 K	3			_		2 -	92 23	190	11 K	6	
							10 K	7		× 4 1	32 22	169		-	
0	-218	++	147	1 2 82	15	81		_		6 - 4	02 0	90	1 -302	2	123
2	159	43	167	3 2 0 3	16	103	1 - 144	19	170	8 - 3	76 3	99	3 - 58	1	244
4	-264	45	127	5 260	21	115	3 -258	10	121	10 -2	83 4	122	5 -452	5	94
Ó	-385	46	100	7 339	31	90	5 -176	4	153	12 3	05 9	111	7 -186	13	157
5	323	46	106	9 1 94	39	142	7 238	17	126					_	
				11 - 55	16	229	9 -220	10	141	11	қ 2		нк	7	
	10 K	0		13 -158	2	165	11 317	6	167						
				15 344	9	105	13 - 59	18	247	1 -1	87 7	151	0 -164	0	174
0	241	79	67	17 241	lύ	137				3 -	76 26	211	2 165	2	175
2	-75		160				10 K	ы		5 3	14 43	1 02	4 420	10	93
4	316	39	65	10 N	4					74	15 25	88			
6	-227	31	¥2				0 -146	10	169	9 1	87 7	1 50	12 K	0	
- 8	-52	12	214	0 137	15	159	2 381	2	89	11 2	30 2	138			
10	193	7	142	2 156	4	150	4 280	11	123	13 -3	52 14	1 10	0 259	121	100
12	- 297	19	114	4 1 75	30	149	6 -300	18	116				2 -147	103	143
14	-166	49	158	6 - 342	31	98	8 269	6	127	11	К 3		4 258	81	101
16	-328	36	105	8 -476	2+	81	10 240	10	135				6 515	59	83
13	-411	15	102	10 151	8	144				0 -3	68 32	96			
				12 327	7	107	10 K	9		2 -30	04 7	109	12 K	_ 1	
	10 K	1		14 205	3	143				4 4	40 38	83			
		_		16 - 5ð	16	235	1 149	10	173	6 1	24 36	181	1 467	105	63
1	181	17	108		_		3 ~ 205	13	146	8 ~10	6 <u>0</u> 19	172	3 324	E 1	80
3	-119	28	137	10 K	5		5 140	11	172	10 2:	37 6	133	5 356	65	106
5	-248	35	87		-		7 - 192	Q	164	12 ~2	03 11	158		_	
7	365	15	85	1 -239	5	118							12 K	2	
9	-415	14	84	3 -170	25	151	10 K	10		11	К 4				
11	252	21	121	5 330	34	. 99							0 322	89	85
13	280	33	114	7 134	د ا	181	0 -365	18	108	1 1.	99 18	149	2 235	73	103
15	240	39	132	9 - 3 5 9	7	99	2 -81	14	224	3 -41	89 5	80	4 352	62	- 77
17	-339	22	110	11 79	10	231				5 20	64 18	126			
				13-646	0	72	11 K	0		7 -4	11 17	91	12 K	Э	
	10 K	2		15 -254	10	138			_	9 -2	16 19	151			
							1 53	42	227	11 -2	12 18	148	1 545	69	71
0	234	16	93	10 K	6		3 -274	21	116						

C. $(TTF)Cl_{0.67}$ - Structure factors, room temperature P4₂/mnm phase. Ni-filtered CuKā radiation.

				3	710	629	5	5	68	57	2	3	46	25	2	6	36	31	- 2
		<u> </u>			40	2.	5	Ä	1 20	116	5	Ĺ.	140	137	E I	7	12	14	1.0
	H	J U			40	100	2	,	127	110		Ē	1 2 2	147	.		407	465	• •
				5	131	693	2	<u> </u>	80	Ð í	6	2	113	103		0	471	772	2
2	515	372	- 3	6	237	232	1	8	دا	91	2	- 6	78	- 11	1	9	16	14	1
4	1334	1256	10	7	3C4	308	2	- 9	61	54	1	7	87	79	2	10	66	62	1
Å	980	887	5	8	170	178	1	10	58	59	1	6	362	341	3	11	24	с	3
2	2000		ĩ	ē	10	28	ō			• •	-	Q	65	62	2	12	122	120	1
8	27				1.7				1. 1			10	55	E 1	2	12	27	76	ī
10	282	213	2	10	105	105	1		n 1						÷.	15		67	•
12	24	19	- 3	11	86	- 77	L					11	30	21	1			_	
14	8	3	3	12	42	38	2	1	103	90	2	12	89	88	1		н 3	- 2	
				13	101	104	1	2	41	42	2								
	н (n 1		1.4	29	34	1	3	33	51	2		н 2	, ,		3	625	586	5
	••	•			•	2.	-	ĩ	21	7	. 5					Ā	29	14	3
			~		1			2	140			2	<u> </u>	67	2	5	43		
1	1909	1551	6		41 T	- -		2	140	20		<u></u>	277	200	-		70		- í
3	4 C	35	2					0	49	22	2	•	211	203	2	Q	17	66	
5	1135	1108	12	1	709	690	6					- 4	24	26	6	- C	303	253	2
7	54	59	1	2	212	281	2		н 2	0		5	52	49	3	8	55	51	- 2
ġ	115	1.02	1	3	-8	5	7					6	104	85	2	9	136	131	- 2
1í	136	132	2	4	505	490	3	2	528	596	4	7	207	186	2	10	24	21	3
	4.50				143	167	ĩ	- 1	111	105	i	Å	42	32	3	11	17	11	2
F D	46		+		210	31.7	-			10		ŏ	45	63	ī	15	17	1	2
				0	314	312	<u> </u>	4	21	10	2		20			12		•	
	H	02		7	165	170	2	2	347	331	2	IJ	30	21	1			-	
				8	2 27	228	2	6	31	18	2						н 3	3	
0	1441	1437	5	9	145	143	1	7	126	122	1		H 2	2 4					
2	44	44	2	10	176	163	2	8	508	482	4					2	281	263	Ž
2	60A	512	-	11	44	38	2	9	56	101	1	2	78	87	1	3	25	21	6
7	440	415		12	50	47	ī	10	121	127	ī	3	29	2	4	4	163	141	2
0	422	413	-	14	50						-	ž			, i	5	67		
8	59	52	2	13	39	42	1	11	44	42			42	13		د.		- 77	,
10	151	141	2					12	131	175	1	2	52	39	د	0	32	10	<u>'</u>
12	14	- 2	3		ні	2		13	29	31	1	6	32	5	2	- 7	15	2	
								14	43	39	1					6	191	150	1
	н	n 1		1	462	484	٦						н 3	3 0		9	29	26	2
					2 2 9	221	2		ы 2	1						10	21	20	2
		453			161	150				•		2	1446	1330	0				_
1	421	400	0	2	102	150						2	1440	1.0.0.5					
3	- 49	12	- 2	-4	22	ъ	4	- 4	514	201	1	4	8+	04	1		n 3	-	
- 5	403	384	- 4	- 5	482	475	3	3	763	756	6	5	76	- 74	1				-
7	34	17	- 4	6	138	132	1	- 4	92	88	1	- 6	139	123	1	3	136	147	2
9	38	35	2	7	124	117	1	5	138	128	1	7	556	572	4	+	25	5	6
+			_	A	113	106	1	6	749	229	2	8	87	91	2	5	16	1	5
		n 4			24	7		7	616	400		ő	249	262	5		-16	20	6
	H 1	•			20				10			16	247	202	5		• •		•
			-	10		63	4				~ ~	10		30				~	
0	296	333	3	11	65	62	T	. 4	156	124	2		23	0	3		n 4	v	
2	- 30	50	2	12	24	24	2	10	71	72	3	12	15	1	4				_
4	131	130	1					11	26	21	3	13	144	149	1	- 4	152	156	2
6	131	128	1		H L	3		12	34	31	2					5	93	100	1
~		• • •	•			-		13	137	13-	ī		н 3	3 1		6	488	498	3
	ы				1 26	132	2				•			-		1	37	3)	4
	n	r 0			120	10	2			2		7	00	07	,		221	221	, ,
-			_	2	62	ru			n 2	2		د		50	-	0	124	1.7	2
1	671	745	5	ڌ	39	14	3	-				4	404	++4	د		120	143	
2	642	610	4	4	153	150	2	2	482	4 16	3	5	151	146	1	10	192	195	

.

.

	11	26	19	3					10	18	ļĢ	2	10	99	101	1				
	12	42	40	1		H 4	. 4		11	85	85	1	11	50	51	1		н з	0	
	13	55	53	1															-	
					4	35	22	4		Н 5	3			Н 6	3		e	179	174	2
		н 4	• 1		5	-8	5	7									9	39	3.6	2
		• •			-	-	-	•	5	30	19	۲ ۲	6	99	ับค	1	10	20	15	ĩ
	4	121	93	1		н 5	n		6	161	162	2	7	20	26	2	ĩĩ	15	ić	•
	, K	466	463	3		••• •	· ·		7	72	67	ī	Å	30	40	1	••	• -	••	-
		200	17	É		63	100	7		20	14	;	~	50	40	•		ы. a	1	
	7	102	0.2			701	476		ő	20	17	2		u 7	-			n a	T	
	ŕ	102	43			110	112	, e	7	25		4		n 1	U		а	3.0	20	-
		29	10	د ،	5	110	112	Ļ					-				8	38	52	2
		35	40	?	ſ	12				н б	0		1	200	267	2	9	85	23	1
	10	16	82	1	8	65	65	1				_	8	27	22	3	10	- 2	2	
	11	80	19	I	- 5	101	50	1	6	251	260	2	. 9	63	62	1	11	17	5	1
	12	18	15	2	10	36	34	2	7	253	259	2	10	55	53	1				
	13	64	66	1	11	125	118	1	8	36	29	2	11	16	9	2		H 8	2	
					12	24	15	1	9	16	15	•	12	48	+5	1				
		H 4	2		13	32	36	1	10	182 -	183	2					8	120	123	1
									11	81	81	1		H 7	1		9	25	23	1
	4	17	14	5		H 5	- L		12	13	4	2								
	5	58	52	z									7	130	135	1		ti 9	0	
	ć	233	224	2	5	92	68	1		H 6	1		8	163	162	1				
	7	2+	19	4	6	435	431	3					9	21	3	3	9	26	29	1
	B	172	171	1	7	171	165	2	6	243	242	2	10	35	36	ĩ	10	45	45	ī
	, , , , , , , , , , , , , , , , , , ,	93	86	ī	8	47	43	4	7	17	74	3	11	63	63	ĩ	•	• -		-
	10	97	63	- î	Ğ	52	51	2	Ř	<u>60</u>	94	5	• •			•		ы с	,	
	11	í.	12		10	206	198	2	ŏ	86	97	ī		н 7	,				•	
	12	20	34	1	11	2.00	20	2	10	38	۲0 د د	5			2		6	67	62	,
•	12	20	54	4	1 2				11	20	01		7	127	127		10	22	23	
		ы и			16	0		4	11	40	10			121	127	2	10	60	21	1
		н ч	1 3				-		12	49	49	1		25	17	د			-	
	,					H 5	2				-			30	23	1		H 9	2	
	4	39	21	4	_			_		H 6	2		10	51	33	1		_	_	
	5	177	168	2	5	472	465	3				-					9	8	7	6
	6	36	11	3	6	62	73	L	6	119	121	2		Н 7	3					
	7	40	39	3	7	36	36	3	7	164	161	2						н 10	0	
	8	30	20	1	8	48	40	2	8	45	43	2	7	54	56	1				
	9	23	16	2	S	76	76	1	9	15	11	4	8	58	62	1	10	117	169	1

,

D. $(1.d.)(TTT)_2I_3$ - Structure factors Cmca subcell. Ni-filtered CuKā radiation.

	н	0 0		10 12	105 924	81	063 865	12 11	0	1408	1335	15	6	188	183	ć	9 11	695 278	788 319	9 9
				14	71	1	665	10	2	1008	950	12		н	1 0		13	-34	68	29
2	1105	667	8	16	64	4 (609	10	- 4	588	560	10					15	225	260	13
- 4	1849	1670	19	18	534	4	494	8	6	192	90	16	1	23	0	20	17	152	117	15
- 6	1346	1147	14	20	44	7	432	8	8	318	279	12	3	46	0	25	19	87	80	21
8	317	390	7	22	29	1.	292	7	10	678	642	10	5	41	0	21	21	201	167	9
10	218/	2183	22						12	867	577	11	1	28	0	24				
12	1808	1976	20		н	0	8		14	699	657	9	9	33	0	22		н	1 4	
14	1607	1631	18						16	292	277	8	11	27	0	26				
16	545	+33	11	0	105	7 (93 L	12	18	\$7	90	<u></u> , 11	13	62	0	18	1	1761	1574	18
18	264	242	12	2	146	0 1	394	16			.		15	42	<u>o</u>	25	3	320	415	7
20	160	138	12	4	1410	8 I.	313	15		н	0 16		17	- 26	0	30	5	432	454	
22	262	254	8	0	1/30	6 14	660	18	~		205		19	65	0	24		158	130	10
	,	• •			1420		201	12	- 0	200	240	12	21	10	U	20		1045	2122	12
	m (12	47	כ ג ג	475	10	2	507	676	10					12	210	50	40
2	261	472	c	14	5.0		490	10	4	957	800	10		11			15	467	460	- T 7 G
Ň	2840	2836	28	16	6.2		57~	10		671	629	10	1	274	326	7	17	198	163	15
Å	2600	2648	27	18	614	4	5:2	Ĩğ	10	361	355	Ř	â	937	1095	10	19	-19	66	46
10	1059	966	12	20	430	6	447	8	12	195	181	11	5	608	689	7	21	279	267	8
12	351	215	ē			-	•••	-	14	127	131	13	7	265	275	i				
14	413	335	9		н	0	10		16	245	253	6	9	568	617	8		н 1	5	
16	815	775	11										11	415	455	ម				
18	947	915	12	С	1949	9 1 9	902	21		h	0 18		13	87	12	23	1	947	1070	11
20	886	845	10	2	1750	0 1	708	18					15	383	384	10	3	112	73	- 15
22	346	331	7	4	560	D 4	42+	9	0	579	593	10	17	294	310	11	5	144	167	11
				6	864	4	750	11	2	462	447	10	19	-63	36	26	7	200	208	9
	н (0 4		- 8	- 500	6	360	10	4	355	333	9	21	221	201	8	9	372	374	8
-				10	790	6	746	11	6	374	35+	6					11	100	74	14
Q	2396	2349	25	12	1527	2 1 2	535	17		256	227	9		H	1 2		13	29	20	48
4	2882	2113	28	19	220	+ :	502	11	10	305	314	8		* •• 7		10	12	233	258	13
- 4	1094	1228	10	10	2.94		20C	14	16	377	360	°,		283	140	10	17	- 2 2	21	21
о с	1106	1100	12	20	1.45	ן ק ר	7	21	14	200	200	0	2	300	222	<u>د</u>	19	76	' i	24
10	1741	1207	14	20	• • •		•	<i>4</i> 1		ы	0 20		7	100	972	13	e 1	20	7	50
12	1543	1538	16		ы	n	12				0 20		ģ	415	479	7		н	1 A	
14	1227	1201	14		• ·	0	•••		a	382	372	7	тí	259	282	ģ		•• •		
ie.	692	670	10	0	40	7	271	10	2	329	296	ż	13	125	108	ιź	1	733	EC2	9
18	234	217	11	2	419	,	286	- 9	4	254	279	8	15	254	257	12	- 5	1121	1301	12
20	191	158	11	4	1660	6 10	601	18	6	267	287	8	17	182	176	15	5	179	251	10
22	282	276	8	6	1102	2 10	095	13	8	222	218	8	19	36	23	37	7	78	40	20
				8	1272	2 1 2	206	15	10	248	259	7	21	161	148	11	9	757	826	9
	н с) 6		10	831	1 1	795	12	12	213	236	6					11	644	650	9
				12	374	4 3	359	13						н	13		13	40 o	436	9
0	1358	1218	15	14	563	3 5	523	9		н	0 22						15	330	329	11
2	1966	1917	20	16	289	9 3	302	10					1	1255	1450	14	17	377	358	8
4	1710	1621	17	18	552	2 5	522	8	0	251	175	7	3	357	417	7	19	105	85	18
6	1623	1593	12						- 2	411	426	6	5	63	150	18	21	354	311	7
8	1518	1500	16		н	0	14		4	197	195	7	7	176	173	9				

.

	H L	7		13 80	34	31	11	116	140	26					n	167	2 C E	9
				15 257	268	13	13	99	145	22	1	197	180	10	4	499	5 I C	7
I	108	143	17	17 158	182	12	15	54	41	27	3	46	63	32	6	261	286	8
3	40.4	4+6	8	19 60	44	25	17	47	32	23	5	79	65	20	8	394	413	7
5	302	326	8								7	89	87	17	10	187	139	12
7	250	245	9	н	1 11			н 1	15		9	94	79	16	12	215	223	12
4	34	18	38								11	75	10	14	14	87	121	28
11	2.2	293	12	1 160	153	13	1	83	110	29					16	-113	35	10
14	34.1	399	10	3 379	382	9	3	355	341	10		н ц	20		18	167	135	12
15	65	76	33	5 3.86	372	10	5	- 36	34	27					20	213	171	9
17	106	74	20	7 125	146	24	7	\$4	80	· 27	1	185	137	10				
16	100	72	20	9 246	286	16	ġ	103	126	23	3	147	119	12		H 2	2	
21	111	คือ	14	11 34	121	57	- 1 Í	251	264	īõ	5	104	91	15			-	
21		00	• •	13 83	•	32	12	258	213	10	7	10 i	26	72	0	388	312	7
	ы I	9		15 134	261	10	15	17	15	30	ġ	1 ต.วั	156	7	4	961	1006	Å
	п I	0		17 214	137	11	17	161	122	, j, j	πí	36	61	21	i.	592	579	ā
	1.20	145	12	10 23	101	22	••	101		•	••	30	0.	••	Ř	684	646	ŏ
	110	100	12	17 52	14	36		ц 1	17			u 1	21		- iă	475	444	Ŕ
2	1005	1103	14					n 1	10						12	13	207	10
2	147	101	10	ri i	1 12				06	74	1	41		20	14	271	360	10
	140	144	14					240	201	1.3	2	01	5.	16	14	181	166	14
- 4	50.9	548		1 - 35	26.	22	د	349	301	1.7	2	40	24	14	10	224	100	14
11	283	11+	10	3 102	205	10	2	-12	44	17	2	-21	22	24	40	364	273	2
13	330	341	11	5 - 20	28	28		101	44	24		- 34	20	32	20	324	201	9
15	211	209	14	/ 95	41	21		162	130	14	4	-35	20	24				
17	313	309	10	9 127	102	25	11	266	235	9						н 2	د :	
19	-32	29	33	11 151	140	22	13	253	215			H I	22			1010		
21	312	265	7	13 67	1	37	15	56	13	19	_	_			U	1013	1053	11
				15 -26	53	44					1	-56	16	22	- 4	439	518	
	н 1	9		17 26	53	40		H I	17		- 3	141	114	8	6	132	185	12
				15 -26	11	27					5	52	37	17	8	319	354	8
ł	203	211	11				1	142	142	17			_		10	110	65	19
3	384	429	5	н	1 13		Э	187	207	15		н 1	. 23		12	886	509	11
5	51	37	36				- 5	-35	24	20					14	184	141	14
7	67	71	30	1 201	195	13	7	90	85	21	1	-20	10	32	16	104	133	23
9	298	310	11	3 341	347	10	9	38	10	35					18	180	159	12
11	358	322	11	5 104	116	25	11	230	163	8		н 2	, 0		20	280	238	9
13	123	129	23	7 -21	33	35	13	67	56	18								
15	62	68	37	9 361	323	12	15	53	19	17	0	1141	1189	12		11 2	4	
17	59	83	33	11 319	263	12					- 4	561	519	7				
19	5 E	6	29	13 -51	74	36		н 1	16		6	147	21	11	0	933	\$34	11
21	160	139	8	15 77	87	24					8	220	163	9	2	765	740	10
				17 51	132	19	1	376	359	8	10	563	54l	9	- 4	133	13	14
	н 1	10					3	108	68	17	12	555	530	9	6	61+	532	8
	-			н	1 14		5	102	115	18	14	489	447	9	8	Z30	159	10
1	361	392	8				7	91	20	1,8	16	164	157	17	10	301	270	9
3	378	367	9	1 43	11	42	9	315	259	8	18	31	35	40	12	746	746	10
5	335	374	10	3 142	156	19	11	103	53	15	20	-55	1	23	14	141	119	18
7	92	106	28	5 - 58	56	20	13	18	5	34					16	294	254	11
9	3+4	393	11	7 -42	6	26						н 2	: 1		18	127	59	17
11	20 9	206	17	9 119	56	22		н 1	19						20	-26	11	33

				10	173	106	17	2	185	177	15	12	24	29	38	0	78	74	10
	н 2	5		12	271	263	13	4	400	382	11	14	82	54	13	2	60	56	11
				14	1.83	170	17	6	44C	408	11		-						
0	61 6	730	۵	16	274	26.6	10	Ř	353	749	12		н 2	17			н з	0	
2	110	503		10	75	200	25	цŏ	220	161	15		2	•••				•	
ć	420	203	~	20	100	16.		12	70	51	10	~	376	207	A	1	43	c	14
- 1	014	024		20	190	1.50	7	12	144	114	14		323	207	11	2	-67	ň	16
6	42.2	975	11					1.4	1.2.0	1/0	10	<i>с</i> ,	101	207	10	5	- 77	Ň	16
8	694	686	9		H Z	9		10	112	141	11	*	101	24	19				1.2
10	100	21	21					18	111	112	· · /	6	158	116	13	1	-35	0	22
12	600	613	13	0	969	1039	12		_			8	136	87	13	9	-66	0	- 22
1+	255	2+4	11	2	188	155	13		H 2	13		10	121	96	13	11	19	C C	16
16	82	67	25	4	373	353	10					12	255	218	7	13	-66	0	19
18	409	353	8	6	459	451	11	2	-28	98	31	14	109	102	9	15	66	C	- 26
20	405	362	7	8	681	684	11	4	60	102	40					17	-57	0	26
				10	113	109	26	6	153	175	19		н 2	18		19	-35	0	27
	н 2	6		12	300	302	12	8	50	52	4 4								
				14	230	214	12	10	152	1 72	21	0	118	154	17		н 3	1	
•	6 4 2	610	•	1.6	85	Č. k	26	12	107	77	21	2	228	210	Ģ			-	
5	102	417	ä	10	227	1	10	14	77	41	2.	4	172	169	12	1	346	362	ĸ
2	400	405	,	20	201	346	7	16	17	17	42	Å	81		10		985	1088	- i i
7	424	500	7	20	201	247	r	10	• •		76	8	147	132	12	5	01	1000	21
D	605	244	9							• /		10	120	144	12		74	16	25
9	403	311	5		n 2	IU			n z	14		10	129	140	12		644	572	25
10	330	297	10	-						• •	~ •	12	15	00	10		200	212	10
12	285	268	12	0	613	613	10	2	111	33	22					11	131	126	10
14	178	154	17	2	311	356	. 9	4	259	24.1			H 2	14		13	480	464	
16	20 E	198	12	4	341	303	11	- 6	162	176	18					15	221	160	10
18	215	209	11	6	235	221	15	8	108	33	23	0	1+9	99	12	17	372	321	ь
20	136	130	13	8	159	172	23	10	320	326	10	2	141	95	12	19	75	66	21
				10	357	3 50	13	12	240	218	10	- 4	209	214	9				
	H 2	7		12	312	295	13	14	2+0	223	9	6	182	135	9		н 3	2	
				14	289	240	11	16	47	35	22	8	194	175	8				
0	1463	1559	15	16	55	106	38					10	58	70	17	1	141	149	16
ž	310	301	10	1.8	58	82	18		H 2	15						3	121	117	17
2	66	86	3.6							• •			н 2	20		5	339	36.2	9
7	521	554	10			11		2	129	156	20			•• •		7	177	164	14
0	525	547	с С		n 2	11		~	124	114	20	0	- 75	30	22	à	161	158	16
0	221	207	10	~	4.21	270		- 7	210	106	12	2	193	177	ε <u>ς</u>	1	00	147	26
10	242	515	10		431	2017	1 2		210	170	10	<u>.</u>	- 1.7	20	16	12	271	260	11
12	601	561	10	2	202	280	12		212	200	10	*	-11	20	47	13	212	227	
14	561	505	10	4	- 33		21	10	65	DI	22	0	202	101	1	12	232	262	
16	53	19	33	6	174	128	17	12	57	30	28	8	107	114	10	17	80	28	21
18	221	192	11	8	-44	77	26	14	84	68	17					19	12	27	20
20	271	261	8	10	177	110	19	16	\$3	94	10		H 2	21					
				12	267	226	15										н 3	1 3	
	нz	6		14	222	185	14		H 2	16		0	188	174	8				
				16	73	60	26					2	120	113	10	1	313	290	11
0	332	401	10	18	-49	52	21	2	197	184	15	4	79	36	13	3	593	621	10
2	90.9	928	ī ī	+				4	249	255	13	6	44	22	18	5	288	316	10
4	385	341	io		Н 2	12		6	225	230	10					7	147	141	15
Å	281	224	Ā		-			8	294	256	9		н 2	22		9	492	481	9
Å	628	601	าดั	0	188	191	16	10	120	113	15					11	400	377	10
0	020	0.01		~	100			••											

'.

8 4 -48 -64 - 33 ė -25 - 54 н н З H €2 н З L -42 . 27 L н Q 71 S -32 ŧ 75 -96 н \$5 -27 н £ч ł 22G н З 22.0 7 н Э - 52 -56 З ь 25 33 н 20+ Q - 36 -71 -44 З н 7 в L н Ъ н -21 н 77 -80 н -32 н -38 н З 3C 50 81 35 77 \$5 -14 L -9 11 \$6 5 ÷7 -29 H З £1 н -54 н 93 43 33 7 21 н H o ŝ ž -26

6	27	23	57	12	174	114	15	6	176	133	10	7	-34	82	48	11	50	C	31
8	321	323	11	1 **	134	109	14	10	47	105	21	11	200	220	10		H 5	٥	
10	19	250	ور		h A	10		10	-02	U	~ •	13	40	1	27			0	
14	-75	53	22			10			н 4	15		A .4	77				175	123	1.6
14	- 7 - 7	14	44	0	2.20	212	16			.,			н 5	2		2	307	248	iõ
10	- •	10		2	205	127	15	0	1.62	136	12			-		รี	103	45	21
	н 4	6		4	139	រំតំទ	17	2	108	91	15	1	177	168	15	7	-34	Ģ	41
		Ũ		6	246	200	12	4	50	26	24	3	68	51	58	9	220	173	12
0	354	388	15	8	146	144	19	6	73	35	18	5	89	11	25	11	225	153	8
2	317	347	15	10	63	24	32	8	108	82	12	7	64	27	29				
4	192	196	23	12	212	161	10					9	41	84	39		h 5	9	
6	109	23	28	14	125	63	12		н 4	16		11	55	36	28				
8	125	103	22									13	+3	3	30	1	37	62	43
10	202	202	13		H 4	11		0	215	283	7					3	58	47	32
12	235	213	10					2	74	111	18		н 5	4		5	87	104	22
14	18C	153	12	0	91	147	26	4	74	62	17					7	90	45	20
16	133	120	14	2	76	95	27	6	100	49	12	1	176	149	18	9	41	50	31
				- 4	72	35	28	8	88	107	11	3	300	237	15				
	Н 4	7		6	160	102	15					5	150	116	20		н 5	10	
				8	139	68	15		H 4	17		7	114	42	19				
0	565	570	14	10	- 55	41	33				-	. 9	271	Z 10	10	1	-63	20	27
2	-41	0	26	12	120	100	13	0	216	186	7	11	196	135	11	3	260	209	
4	185	121	20	14	57	12	17	2	-11	27	14	13	75	40	20	2	14	14	22
6	156	114	25					- 4	84	62	و ا			~			30	18	30
8	311	248	11		н 4	12			. E	~			н 5	2		9	102	68	15
10	73	112	32	~			10		н 2	U				,	21				
12	30 1	261	10	0	288	253	10	,	0.7	•	20	1	-113	51	21		- 2	11	
14	-24	80	39	Ś	123	109	10		- 02	0	29	נ 2	10	20	75		20		30
10	10	42	20	7	100	100	20	ر ء	-27	. U	20	2	-07	10	24		_24	34	4.2
		e		0	247	121	10	2	-51	Ň	29		27	21	41	5	107	20	14
	rs 4	0		10	100	123	30	11	-54	õ	רג דו	11	- 46	36	28	7	23	74	31
^	2.0	215	17	12	173	141	94	14	- 54	ő	21	• •	-40	20	20	•			2.
2	-70	50	10	16		141	,			U	25		н 5	6			н 5	12	
~	-10	- F 1	36		на	14			н 5	1				Ū.				•-	
7	148	82	26		• •					•		1	124	105	35	1	54	47	24
Å	16.6	112	18	c	131	104	16	1	216	2.04	12		-27	257	49	3	20	22	38
າດັ	97	47	26	ž	66	30	27	à	20	65	64	Š	219	181	15	ŝ	81	94	17
12	147	112	15	4	-41	43	36	Š	38	30	39	7	119	93	24	7	-63	45	21
14	91	73	23	6	57	12	27	7	47	75	35	9	269	214	11	•			
• •				8	61	78	25	9	109	122	18	11	201	131	12		н 5	13	
	н 4	9		10	56	6	22	11	-44	49	30								
				12	46	26	19	13	-52	21	21		Н 5	7		1	45	36	23
0	213	159	17													3	59	58	19
2	151	122	22		H 4	14			Н 5	Z		1	91	28	32	5	55	39	17
4	145	81	19									3	55	20	37				
6	257	269	13	0	193	148	11	1	403	380	8	5	43	51	43		H 6	0	
8	114	110	26	2	114	82	15	3	80	1	35	7	27	25	56				
10	-45	43	40	4	119	77	15	5	28	45	43	9	63	32	35	0	167	159	5+
																-		101	22

2 117 28 87 H 6 2 O 259 181 23 2 66 113 109 H 6 4 H 6 1 O 309 289 38

E. $(1.d.)(TTT)_2I_3$ - Structure factors Pmc2₁, full cell. Ni-filtered CuKa radiation.

			10 2191 2267	25			6 376	362	13	9 828 576	14
	н) С		12 1844 1801	23	0 2809 2786	31				10 70 50	45
			14 1420 1461	21	2 2012 2034	24	н	2 0		11 518 557	19
2	2212 1745	16	16 1286 1331	20	4 1176 1247	20	••			12 71 54	47
5	2212 1107	27	10 1044 1072	17	4 707 414	22	1 47			12 353 100	34
- +	3090 3222	21			0 304 410	2.2	1 47	1	41	13 233 169	24
6	2665 2369	29	20 892 937	16	8 635 657	23	3 92	3	50	14 -27 35	62
8	o34 9++	15	22 581 643	- 15	10 1353 1375	21	5 82	4	43	15 507 487	25
10	4365 4412	44			12 1730 1562	22	6 46	25	56	16 -111 35	40
12	3727 4071	40	н С В		14 1396 1352	.18	7 56	4	49	17 304 355	30
14	32.18 5339	35			16 584 581	17	8 -99	26	36	19 73 8	74
1.	1097 1053	25	0 2109 2116	24	18 193 183	22	9 65		45	21 321 301	22
10	E. 7 417	3.2	3 2014 2022	2.7	10 175 105	~ ~	10 -104	22	26	EI JEI JOI	
10	201 611	2.5	2 2914 2911	22			10 -100	~ ~ !			
20	301 200	24	4 2830 2945	31	H U 16		11 53	1	53	H 2 3	
22	523 598	16	6 3465 3488	37			12 98	27	39		
			8 2845 2865	31	0 661 697	25	13 ~12+	• •	36	1 2504 2832	2 č
	H 0 2		10 1702 1749	22	2 777 829	21	14 119	26	38	3 713 904	14
			12 1344 1422	20	4 1331 1325	20	15 84	2	50	5 127 370	37
а	521 1066	1.8	14 958 1023	20	6 1710 1651	22	16 46	27	65	6 60 68	3.4
ž	561 1000	2.7	14 12/2 12/4	20	8 17/0 1204	21	17 .67	· • • •	40	7 351 444	10
0	5000 5410	57	10 1243 1200	20	0 1340 1298	21	17 -33		00	1 331 444	19
8	5187 5169	53	18 1225 1234	18	10 /22 /55	17	14 130	4	48	8 9+ 80	57
10	2112 2077	ê+	20 671 925	16	12 390 407	23	21 35	4	77	9 1387 1513	16
12	701 641	17			14 253 285	26				10 10 63	83
14	325 855	18	н о 10		16 490 51+	13	н	2 1		11 555 570	16
16	1627 1669	22				-				12 23 48	7 5
1.9	1641 1645	22	0 3840 3040	41	H 0 18		1 546	636	16	13	57
10	13.6 177	2.4	2 2402 2544	71	11 0 10		2 1070	2121		15 00 241	
20	1104 1114	21	2 3493 3366	21			3 1871	2171	21	1+ 80 56	22
22	671 741	15	4 1118 1164	18	0 1157 1199	20	5 1214	1358	15	15 449 560	21
			6 1725 1732	23	2 922 931	20	6 90	101	35	16 -75 27	50
	H 0 4		8 1010 1023	20	4 710 719	17	7 528	617	14	17 304 253	31
			10 1589 1629	∠3	6 746 719	17	6 -64	81	46	19 173 205	42
0	4761 4466	51	12 3037 3121	35	8 511 500	18	9 1134	1261	16.	21 401 322	19
5	5750 5091	56	14 1107 1127	27	10 618 635	16	10 -33	64	1.2		
	3790 2071	24		10	10 010 055	13	11 030	010	14		
7	3360 3103	20		47	12 110 110	1.5	11 020	707	10	n 2 4	
0	1712 1659	20	TR 241 301	32	14 535 526	12	12 119	4-15	34		
8	2383 2394	25	20 139 126	42			13 174	106	46	1 3515 3604	37
10	2676 2706	20			H O 20		14 80	35	49	3 639 666	15
12	3080 3164	33	н 012				15 764	766	20	5 863 1020	14
14	2448 2548	28			0 763 737	15	16 -83	26	49	6 46 112	41
16	1381 1458	20	0 813 801	20	2 656 605	15	17 586	618	23	7 315 311	20
1.0	467 547	23	2 837. 857	1.4	- 508 550	17	10 -126	41	57	H 27 CR	12
20	301 542	23	4 3325 3304	34	4 533 566	16	21 661	401	17	0 2084 2210	26
20	301 440	22	4 3323 3306	30	0 335 300	10	ET 441	401	11	9 2068 2210	24
22	564 625	10	6 2199 2359	26	8 444 431	10				10 81 84	+2
			8 2538 2527	30	10 495 502	14	н	22		11 555 573	.18
	H 0 6		10 1659 1668	25	12 425 464	13				12 38 71	71
			12 747 707	26			1 566	683	20	13 52 127	98
0	2710 2045	30	14 1123 1093	19	H 0 22		3 1306	1457	16	14 106 59	41
2	3422 3879	41	16 578 649	21			5 576	659	13	15 913 1032	P 1
ž	4413 3347	36	18 1102 104	1.6	0 502 378	14	6 49	64	40	16 -82 50	50
7	100 2001	24	10 1102 1004		2 821 770	17	7 201	231	24	17 305 639	30
	5257 53UL	24			4 30/ 370	10	1 201	2 2 1	20	10 - 242 428	50
8	3030 3134	32	н о 14		4 594 319	12	e 14	21	16	19 -39 152	92

21	556	498	17	9	68	91	76		Н 2	2 10		15	+52	139	68	17	321	196	- 15
				10	-156	60	31					17	52	157	79				
	н	2 5		11	484	702	24	1	720	753	17	19	-53	59	54		H <u>2</u>	16	
				12	-1.05	4 d	49	3	755	752	18								
1	1890	2087	22	13	760	712	20	5	668	695	20		н 2	13		1	176	167	- 52
3	223	203	30	14	24	37	89	6	58	177	49					3	696	552	21
5	288	246	21	15	139	255	67	7	184	263	57	1	402	391	27	4	-144	148	33
6	-75	93	35	16	-13	29	52	8	95	157	39	3	680	720	21	- 5	-143	53	35
7	400	519	19	17	212	84	41	9	686	853	23	4	27	66	74	6	-85	138	+ Ú
- Å	95	77	34	19	196	111	40	10	51	136	,69	5	208	295	50	7	201	70	47
ā	742	877	16	21	222	217	28	11	417	454	34	6	34	60	76	8	-59	125	59
лó	-112	62	40					12	-104	115	52	7	= ÷3	55	71	9	32+	306	28
11	201	44	39		н 2	. 8		13	161	20	62	8	77	53	53	11	530	484	19
12	-100	4.9	45					14	-158	95	34	9	720	569	24	13	506	354	17
12	5.9	206	96	1	340	359	24	15	512	488	26	10	101	46	45	15	113	7	96
1.4	~100	200	45	2	2121	2376	25	17	395	315	24	11	637	465	24				
15	-109	415	26	5	204	432	31	19	120	33	50	12	- 37	39	81		н г	17	
12	400	70	55		43	17.3	51	.,	.20		20	13	-103	191	72			• ·	
10	-10	£0 50	66	,	201	74.7	28		ы 3	. 11		15	154	256	49	T	284	207	35
11	-00	20	22	1	-167	16.0	20					17	1.61	300	3.9	3	474	416	29
19	121	43	4.7	0	-142	1020	10	•	3 7 0	205		A 1	101	200	20	ĩ	-133	45	3.
21	53	08			1010	1020	10		320	202	10		ы э	1.6		- T - K	-71	77	41
				10	-43	12.9	10		7.76	125	17		n 2	. 14		7	100	143	10
	H Z	2 6		11	1310	1301	20	2	114	080	20			37			100	53	70
		_		12	10	109	104	0	21		10	1	00		60		100	- 70	10
1	1463	1598	19	13	660	744	22		250	314	48	و	285	332	39	11	439	217	- 11
3	2236	2541	25	14	73	90	59	8		61	67	4	-111	170	42	13	134	134	- 31
- 5	35 T	481	21	15	422	487	29	9	491	643	2د	5	-115	70	41	15	105	1	34
6	125	148	24	17	624	671	20	10	-11	52	98	6	67	158	50				
7	157	53	+0	19	-64	102	66	11	78	319	113	7	-84	23	51		H S	18	
8	-90	130	37	21	624	493	14	12	- 86	43	56	B	157	142	29				
9	1510	1723	19					13	166	91	64	9	237	76	45	1	751	704	10
10	-149	112	31		н 2	9		14	112	35	40	10	-86	124	52	3	217	158	- 35
11	1286	1451	19					15	665	475	20	11	232	240	52	- 5	205	225	- 37
12	103	94	45	1	÷05	447	22	17	+27	316	22	13	199	305	44	7	183	62	57
13	815	817	19	3	767	901	18	19	64	46	53	15	108	41	54	9	630	·521	lo
14	-89	77	51	5	102	153	71					17	93	98	46	11	206	68	30
15	658	606	22	6	-1 C3	7.7	31		н а	2 12						13	36	- 27	67
16	-133	63	36	7	133	56	60						H 2	15					
17	754	669	17	8	156	68	25	1	-70	29	45						н 2	19	
19	218	1+1	37	Ğ	5 95	538	22	3	324	417	32	1	167	208	59				
21	707	665	15	10	- 23	56	84	4	14	186	81	3	709	650	21	L	394	349	21
		002	• •	11	714	536	22	5	-53	147	56	4	18	55	87	3	Υż	122	64
	ы 3			12	- 58	46	69	6	-29	1.72	14	5	-73	74	55	5	158	108	41
		- r		12	241	355	46	ž	189	48	55	6	106	51	40	7	178	181	34
,	217	754	32	16	112	27	42		- 44	154	70	7	188	99	54	9	187	136	32
- 1	211	2 JO 6 JH	33	1.4	1 2/	212	74	Ğ	253	154	51	Å	-94	45	47	11	150	40	29
3	600	020	17	17	117	24.2	66	10	77	134	57	õ	205	297	47	••		• •	
2	200	141	2 6	10	112	2.42	50	11	302	224	. 2	- 11	502	557	21		н 🤊	20	
ь,	E00	201	30	1.7	3 20	776	16	12	- 902	116	55	13	515	36.0	20			5.0	
	500	394	10	21	020	230	10	12	175	114	22	15	7/	208	20 ⁰		360	260	20
8	-20	13	13					13	133	00	14	10	14	21	01		307	200	2.0

3	294	230	24	2	504	739	18	10	485	45a	24					9	78	129	101
5	238	179	31	3	206	80	3Z	11	104	190	17		н 3	ó		10	199	202	60
7	0	58	144	4	549	693	17	12	404	387	30					11	192	134	61
9	374	316	15	5	S 1	132	63	1+	416	321	30	0	265	307	41	12	101	177	99
11	72	130	41	6	566	623	17	16	255	260	47	1	192	23	52	13	116	132	15
				7	236	166	31	17	146	167	63	2	214	302	53	14	264	152	43
	н 2	21		8	557	553	18	18	275	2:06	39	Э	85	67	94	15	260	124	42
				9	233	187	35	19	101	149	72	4	293	287	36	16	114	126	30
1	123	14	41	10	534	477	21					5	83	104	83	17	72	111	97
З	190	131	28	12	437	403	25		H 3	4		6	304	267	32	18	41	106	115
5	-113	54	49	13	219	195	46				•	7	166	130	52				
7	-68	56	65	14	443	333	28	Q	299	325	34	8	236	241	43		н з	9	
9	-15	64	48	15	119	186	78	2	256	319	38	10	298	214	36				
				16	308	269	39	3	197	75	42	12	258	186	44	0	364	46 E	29
	н 2	22		17	165	171	56	4	302	305	27	13	247	146	45	1	215	2 Ç	45
				18	260	214	41	5	175	114	43	14	162	158	66	2	461	461	27
1	-111	30	45					6	298	279	28	15	209	136	50	3	35	58	127
3	282	220	17		н 3	2		7	11	142	124	16	168	133	56	- 4	450	439	30
5	105	83	34					8	231	251	39					6	425	406	34
				0	266	338	30	9	82	158	80		н 3	7		7	193	117	u 3
	н 2	23		1	237	28	58	10	238	221	40	-				6	345	366	44
				2	298	331	29	11	231	162	42	0	507	559	22	10	341	321	43
1	4 C	20	64	3	156	80	43	12	210	191	52	1	256	23	39	12	505	215	50
				4	2 10	312	28	13	176	157	60	2	479	549	26	13	127	145	54
	н 3	0		5	158	122	43	14	232	162	49	Э	12	67	1.05	14	216	230	υL
				6	3+0	250	22	16	221	135	+8	4	517	571	25	16	148	192	75
0	237	342	30	7	178	150	42	17	106	131	11	5	170	105	57				
1	122	28	101	8	264	25u	32	19	124	114	64	6	429	480	29		н з	10	
2	293	335	26	9	67	166	74					8	436	429	25		• •		
3	183	82	37	10	303	224	31		н 3	5		. 9	62	153	107	0	192	255	53
4	326	316	22	11	116	170	69					10	391	315	33	1	132	17	10
5	21 ĉ	124	31	12	235	193	44	0	495	645	26	11	141	162	13		272	252	40
6	300	246	26	14	237	164	47	1	140	20	68	12	410	320	32	د	144	50	24
7	198	153	37	15	18	153	139	2	525	633	26	1.1	302	103	99	4	276	242	+ 3
8	297	257	28	16	181	136	55	د .	62	10		14	201	207	44	2	112	10	70
. 9	142	169	53	18	87	111	85	4	500	294	21	10	235	211	52	0	102	221	1.4
10	326	225	28	15	191	118	45	2	142		22	11	75	142	100	10	246	208	27
11	191	173	46			.,		- C - 7	222	247	19	19	241	112	43	10	100	107	102
12	20.6	154	51		н э	د			194	149	42			а		77	- 40 - 50	114	130
1.4	220	164	21	~	E 31		20		309	460	21		כ ה	•		1.5	220	142	47
15	184	155	20		221	110	20	10	142	107	20	~	220	202	12	14	121	192	00
16	231	136	44	, i	100	20	20	10	470	422	140	, U	229	205	52	12	27 770	109	125
17	0	138	143	2	513	101	22	11	44.0	110	100		121	20	60	11	210	34	50
18	831	111	21	د	141	450	21	12	145	170	71	2	175	617	42		ы a	1.1	
14	53	120	98	4	540	029	11	15	140	200	27	2	262	24	60 60		ri 🤉	11	
				2	102	127	92 10	14	337	2 70	51	5	299	207		0	36.0	3.60	34
	н <u>з</u>	1		5	200	244	10	17	124	247	23	7 人	102	240	ອະ ຄວ	1	-120	17	24 72
~	100	767	1.0		E 10	100	71	17	113	159	77	7	101	116	50	2	437	375	10
U 1	470	120	10	0	219	101	20	1.8	195	107	51		247	227	47	2	147	212	
	< L D	טכ	10	7	120	101	02	T O				~					4 7 7		

4	349	358	39	10	136	145	75	0	145	124	59	8	637	62+	17		н 4	• 7	
5	89	78	99	12	122	129	77	1	- 95	6	12	10	219	232	38				
6	194	333	39	14	164	113	51	2	121	122	64	12	1767	1891	23	0	2919	3140	32
7	267	100	÷ 8					4	1+7	118	52	14	369	365	29	2	619	767	2Ŭ
8	218	301	74		н з	15		6	148	111	49	16	209	307	46	4	110	89	73
9	347	115	44									18	360	283	24	6	1044	1061	18
10	283	266	55	0	320	230	40		н	4 0		20	559	464	16	8	1040	1037	19
12	301	229	49	ź	261	227	47								•	10	788	637	Z 1
13	152	125	80	4	299	218	40	0	2278	2554	25		н	4 4		12	1199	1221	21
14	166	193	17	Ĥ	247	186	45	4	1120	1218	15					14	1121	1051	20
16	175	158	62	Ģ	40	79	119	6	294	270	22	0	1863	2012	22	16	106	24	66
•••				11	0	8.9	153	ล	- 39	4.85	1.0	2	1527	1.620	21	18	4441	364	22
	н з	12		13	170	86	47	10	1123	1221	18	4	266	289	28	20	552	474	17
		• -		• •	1.10	00		12	1108	1122	18		1225	1186	17	•••		••••	
n	151	724	70		н з	16		14	975	1017	19	â	460	459	21		14 4		
ĭ	218	14	51					16	127	378	34	17	602	651	10				
5	147	222	76	n	159	159	62	18	6.2	114	ด้า	12	1490	1569	21	0	663	730	20
2 2	17	- 19	1.4.4	ĭ	178	- á	56	20	-110	86	46	14	רגל י	318	27	ž	1814	1 5 4 6	22
	156	214	71	-	97	27	80			00	40	16	586	559	22	4	769	773	21
5	190	, ,	43	4	167	16.2	54		ы	6 1		1.4	255	268	34	i.	560	546	17
5	150	0.2	25	2	1 4 0	11.4	67			· ·		20	~ 57	71	4.6	6	1252	1 2 6 7	21
6	147	125	04	7	164	177	۰۰ ۵	~	333	333	10	20	- 22		00	10	366	260	34
6	141	101	60		211	19.4		6	305	1106	16		ы.	å 5		12	54.7	550	26
10	204	167	ר ב בי ב	10	211	100	1/0	7	521	677	1.6		п	• •		14	344	201	20
10	14.2	107	107	10	100	122	140	0	704	011	10	~	1 7 2 6	1346	10	14	500	227	27
11	102	99	101	11	1.44	εu	40		222	910	1.2	2	1233	1307	19	10	240	240	21
14	30	1 7 3	104					10	212	201	24	~	0.30	920	19	10	120	202	50
14	203	120	44		n 5	17		12	425	337	2.4		1005	1412	18	20	213	300	19
13	67	94	103	~		1 5 1		14	112	301	20	0	1905	2300	~~~			~	
		1.5			1 80	111	20	10	-222	120	20		1300	1402	19		п '		
	n 3	13		I I	110		10	10	334	295	27	10	200	120	43	~	1027	1.050	
	2.2	5.3.0		<u> </u>	202	104	43	20	427	319	19	12	1149	1141	1.4	<u> </u>	1422	1535	24
0	22+	300	56	د	141	22	63					14	204	403	23		3/0	322	21
4	319	290	33	4	51 8	162	48		H 4	+ 2		10	164	189	50	4	144	189	20
5	145	40	12	2	133	40	66	-			• •	18	817	116	16	6	915	1014	22
4	34.3	283	3.8	6	257	152	40	0	115	819	14	20	816	731	12	8	1360	1423	22
2	108	64	93	<u> </u>	19	52	128	4	1956	2157	15					10	225	156	52
- 6	290	265	+8	8	1 39	140	63	6	1181	1339	16		н	• 6		12	598	560	25
7	183	83	66	9	160	10	51	- 8	1366	1430	18	-				14	459	378	24
8	199	240	61	10	97	125	72	10	949	1006	17	0	962	961	18	16	170	232	53
.9	196	96	6 Z					12	267	349	37	2	971	968	18	13	453	405	21
10	243	213	53		н з	19		14	741	763	21	4	846	920	19	20	561	5 3 C	14
12	284	184	45					16	362	399	29	6	1216	1280	18				
15	150	102	56	1	173	1	51	18	647	632	17	8	804	844	18		H 4	10	
		-		4	23	123	122	20	647	609	16	10	659	668	21				
	н з	1 🕯		5	121	33	63					12	576	623	24	0	1342	1250	20
				E	175	117	49		н 4	÷ 3		14	357	355	34	2	752	759	19
1	117	11	84	7	121	42	60					16	415	439	24	4	680	653	22
3	36	34	133					0	2021	228+	23	18	429	436	22	6	469	459	31
4	20 5	183	56		Н 3	19		4	876	936	15	20	271	290	26	8	318	393	46
9	67	78	107					6	270	306	25					10	712	718	27

.

12 14	623 577	617 511	27 22	14 479 434 16 54 97	18 45	6 8	364 388	290 316	19 16		H 6	2		19	167	Z0	35
16	110	242	76	ы д 16		10	116	125	35	1	282	279	32		н 6	6	
10	170	110	50	11 4 12		ы	4	20		5	677	7200	18	1	436	460	35
	ы 4	2.1		2 259 314	61		-	20		ź	363	320	28	3	272	365	5.2
	n 7			- 269 241	40	0 -	151	вa	.5	ģ	323	304	22	5	-65	161	55
0	861	829	19	6 435 394	25	2	366	300	19	ъź	105	303	53	ĩ	105	85	82
2	523	612	24	8 544 523	20	4	-22	81	ůó	12	546	519	23		365	267	36
<u>د</u>	-67	81	5	10 170 126	44		474	303	15	16	463	473	21	- ní	30.5	222	37
Ā	347	210	34	12 114 5.5	56	8	214	165	20	17	150	85	41	13	61	67	ាំព័
Å		106	53	14 148 125	25	0				10	144	64	40	15	130	1.60	7.1
10	363	267	3.8	16 187 193	21	н	4	21		1,	1 4 4	00	40	11	161	166	44
12	532	409	30	10 10 100	21	••	-	~			н А	2		19	104	100	51
14	464	4 10	20	H 4 16		0	376	319	16		. 0			1,	104	104	2.
14	147	146	52	11 4 10		2	241	209	21	1	625	591	22		H K	7	
18		172	43	2 394 350	30	4	158	- 90	27	- 1	1184	1276	20		••••••		
10		12	47	4 4CB 47.	26	~	20		36	5	576	672	20	1	49	28	122
	н 4	12		6 450 424	20		0,	00	50	7	293	293	31	2	120	129	
				9 587 493	10	н	4	22		ė	981	063	14	5	187	71	66
0	217	777	32	10 240 207	21	· ·	-	21		11	705	120	20	ź	-53	76	1.4
2	360	202	21	10 240 201	77	n	167	112	21	- 1 1	201	241	24		-172	100	
- <u>-</u>	700	769	22		27	2	161	15.	22	15	523	520	20	11	-120	51	4.7
4	070	6.00	22	14 105 125	21	2	tat	1.74	62	17	512	6.31	16	13	104	52	74
0	705	609	24	H 4 17		н	6	0		10	137	431	47	15	4.5	72	00
10	440	250	29	11 - F I I		FI	Ų	•		1.2	121	44	42	17	-102	27	
1.2	167	550	3.0	D CEL ENT	17	,	84		20					10	-100	26	50
14	127	133	20		17	۱ ٦	60	4	30		n 0	4		14	00	22	50
14	201	230	24	2 442 470	20	9 - 6	166	20	22		0.0	27	60		ы	10	
10	363	271	2.2	4 201 04	30	7		20	51	1	514	540	20		n 9	C	
LO	222	201	15	9 372 14.1	21	- í	- 7 1	20	44	2	20%	175	67	,	14.7	143	L. (.
	ы а	1 3			24	- -	157	20	- 14 H 14 H	7	116	70	46		37.	362	20
	п ч	13		10 241 161	20	11	132	2.2	20		244	26.1	65	2 5	315	214	50
2	. 67	175	6 2	16 210 220	10	15	133	20		11	274	220	27	- 7	246	266	50
2 /	120	226	02 90	14 215 250	12	17 -	116	22	52	12	104	320	47	ć	102	200	54
7	120	224	20			11-	. 7 1	10	22	10	1/7	140	5 Y	11	172	207	20
0	100	000	24	H 4 18		19	- 11	17	22	17	243	147	22	12	-101	107	47
10	200	271	67	0 316 364	34	ы		1		10	~ 55	190	67	15	101	142	45
10	214	177	40	2 4 5 5 7 7	10		Ų			4.9	- 10	20	51	17	221	161	
12	214	111	4 3	2 433 311	1.4			720	17		,	-		11	221	121	20
14	100		418	4 344 292	29	1,	042	129	10		n 6	2				~	
10	34	Ð	84	6 162 83	39	31	90 2 .	2112	23			n o 7			71 O	4	
		• •		8 280 229	24	2	167	301	+2	1	231	297	63			330	
	H 4	14		10 259 250	23	<u></u>	148	98	21	3	530	517	31	1	667	120	24
-				12 150 137	21		129 1		19	2	231	321	40	د	402	403	50
2	222	173	45			11 1	471 1	L 49U	21	1	152	1+1	28	2	283	272	21
4	>16	461	19	H 4 19		13	767	881	1.4		440	442	28	- <u>f</u>	-15	21	28
6	323	351	37	0 300 201	24	15	454	426	21	11	311	284	34		125	683	20
8	216	151	41	U 296 201	24	17	142	030	10	1.5	-88	21	22	11	373	215	- 41
10	639	639	20	2 283 217	24	19	150	128	42	15	362	284	24	13	1/4	107	54
12	475	432	21	4 418 392	19					11	267	212	31	15	405	352	26

-

17	235	149	32	1	324	235	34					12	456	404	22	16	1.40	78	39
				3	308	284	38		Н 6	20		14	56	107	82				
	н /	6 10		5	244	139	35			-		16	-43	- 4	71		н в	8	
				7	2 37	19.	36	1	86	43	30				••			-	
	500	1.6.1	~ 7		201	7	47	2	- 141	17	21			a .		6	1 70	463	71
1	293	651	21		30		61	3	-101	14	21		n (, 4		Š	41.3	4,2,5	2.4
د	420	418	22	11		140	67			~		~				ć	-140	130	28
- 5	165	136	64	-13	152	23	- 33		H 8	C		0	267	168	47	- 4	165	132	- 72
- 7	275	239	52									2	521	463	45	- 6	296	173	48
9	-76	206	60		н 6	15		0	839	783	20	4	298	415	50	3	352	204	- 37
11	268	213	45					2	655	553	25	6	266	326	42	10	193	105	52
13	-2H	41	109	1	2 50	180	35	4	386	435	29	8	178	230	57	12	294	241	32
15	136	17	46		501	520	19	6	775	AIG	20	10	52	196	0.	1.4	183	156	<u></u> 7
12	1.5	16.4	27	5	612	301			512	577	20	10	475	400	10	1.4	103	1 30	
Ψf.	142	10.4	51		912	301	22		214	211	24	12	033	490	10			~	
				<u>_</u>	122	123	24	10	- 29	04	69	14	60	12	16		н в	Y	
	Ηt	5 11		9	420	395	21	12	691	575	17	16	187	80	35				
				11	272	282	26	14	479	389	50					0	425	346	35
1	1366	1313	22	13	120	54	34	16	-108	5	46		H I	8 5		2	302	266	44
3	476	389	28													-	291	156	39
5	323	318	42		hi 6	16			н 8	1		0	1139	1051	23	6	513	526	21
7	285	148	43						•	=		2	164	56	G 2	8	229	215	52
ò	1016	0.00	22	1	277	27)	30	a	122	ų	60	Ā	6.20	511	3.9	10	-51	Jeé	50
	1050	544	22	-	- 07	71	 ∡ o		140		40	7	5.	117	114	12	3.6.5	222	20
4.1	207	203	39	2	-91	12	00	4	140	99	202			411	114	14	340	232	30
13	10:	84	11	2	107	16	50	4	251	11	31	8	041	630		1+	208	234	28
15	663	503	16		147	40	42	6	260	302	40	10	38	87	107				
17	200	139	22	- 9	213	180	اذ	8	203	44	43	12	903	687	17		н н	10	
				11	122	76	37	10	-49	53	72	14	-150	72	45				
	н 6	5 12						12	141	13	49	16	-14	39	85	0	435	406	31
					H 6	17		14	124	113	55					2	410	274	30
1	306	319	35					16	- 65	51	52		н.	3 6		- 4	275	233	35
â	225	285	53	1	1 90	105	35	••								Å	401	437	24
5	202	10	61	-	205	250	20		ы a	7		•	7.10	- 05	21	š	201	250	27
2	202	500	10	2	205	209	30		n a	2		2	100	2072	21		271	209	21
	1 30	200	01	2	14(140	42	_				2	633	0.21	50	10	120	30	03
9	102	110	75	ſ	153	23	35	0	910	987	20	4	384	322	47	12	423	323	<u>_i</u>
11	238	103	8 t	- 9	307	177	17	- 2	297	343	41	- 6	218	40	57	14	250	173	- 2 i
13	94	73	64	11	2 0 2	168	20	- 4	319	187	35	6	250	231	45				
15	-64	23	61					6	744	647	21	10	404	358	26		Н 5	11	
					н 6	13		8	595	492	22	12	470	408	21				
	н е	5 13						10	178	195	49	14	359	254	25	0	182	268	53
				1	+12	19	48	12	524	470	20	16	266	229	26	2	152	177	55
,	857	764	20		222	164	24	1.2	620	420	25		200			-	14.	64	57
-	120	F 4 4	2.0	Ē	2.15	5.0	20	1.4	117	727	20					7	3-10	200	20
5	0.55	240	22	2	64	50	01	10	114	11	49		н :	s /		0	520	225	20
5	283	351	30		-105	28	52					_				6	211	135	01
7	-112	37	65	5	61	75	48		H 6	3		0	1128	1108	28	10	-109	66	66
9	937	750	17									2	-82	34	52	12	241	193	27
11	432	310	22		H 6	19		0	348	407	36	4	370	258	41	1+	114	139	35
13	~1+3	81	45					2	223	307	14	6	312	267	50				
15	457	413	14	L	63	35	59	4	330	219	39	8	622	512	23		н ч	12	
	•			3	63	37	58	6	416	303	29	10	146	234	65			. –	
	н 4	14		- É	122	51	34	Ř	248	221	45	12	612	508	20	0	575	510	21
		. 14			61	1 5	54	10	61	106	80	14	- 48	177	79	ž	247	245	37
					71			10	7.2	100	00	T 4				4	4 7 1	* * *	

.

ាពខ 16 10 н Ь H 10 - 4 d З н 7 48 З i. 1.83 ί1 0 431 н 5 7 2 -153 ti L) С 4 109 -82 н IJ 1 -165 J H 10 н 10 7 -126 н + E 1 3 - 58 Q. 5 160 Ð н 9-101 0 11 -108 н 13 109 £ -68 н 10 t С н 12 +1 ri 10 H 10 - 3 10 -123 4 I 1 -227 н θ 21ó н -176 - 88 نء lύ 13 -104 -93 н 10 н н 1 -126 H Э Ħ e н ~69 14+ - 55 Ô 45 ð

F. $(TMTSF)Br_{0.8}$ - Structure factors, Ni-filtered CuKa radiation. Space group Cmcm.

				22	311	Z31	8	15	314	251	9	16	363	373	8	2	1368	1372	10
	0	K O		24	- 39	5 3	37	17	423	404	Å	18	39	29	33	- 4	1889	1761	13
	• •	· ·		26	53	57	24	- 19	426	414	7	20	134	128	11	6	2271	2168	16
2	2274	2290	24	28	13	5.8	27	21	441	353	7	22	-64	58	16	Ā	3369	3030	25
1	1300	1110	10	20		20		23	63	20	20		•••		10	10	1405	1318	11
7	1000	440	4		2 4			25	A 4	7,	21		•	× ٥		12	1529	1615	12
0	1120	1144	0		3 6	. 0		27	40	12	10					14	1747	1420	12
.0	1168	1104	7	,	1202	6.04.2	33	21	40	12	ro		1400	1600	17	14	1142	1020	1.5
10	210	4/4	-	1	4282	4022	24						1000	1204	12	10	194	220	10
12	213	151		3	421	271	2		6	K U		3	-65	96	28	18	347	365	
14	2828	2734	19	2	642	656	2	-			• •	- 2	454	401	8	20	622	672	
16	1666	16.03	13	. !	11/1	1230		0	3485	3519	24	· [341	419		- 22	912	698	9
18	940	934	9	. 9	390	298	6	2	1537	1482	11		n	88	27	- 24	692	676	8
20	1192	1166	10	11	135	233	10	- 4	Z48	237	<u>7</u>	11	104	118	19	26	648	686	7
22	1071	1132	9	13	1577	1584	12	6	648	635	7	13	750	731	8	28	811	655	7
24	256	263	10	15	2522	2377	19	8	608	657	7	15	1112	1086	9				
26	101	110	17	-17	556	522	7	10	119	212	16	17	2 5 7	228	7		1 1	K 1	
28	329	341	6	19	861	806	8	12	398	364	8	19	401	385	5				
30	252	302	5	21	1166	1107	9	14	1550	1487	12					1	36	35	19
				23	665	717	7	16	1090	1004	9		10 1	K 0		3	320	351	5
	1 🕴	K 0		25	132	122	14	18	330	316	9					5	200	305	7
				27	143	146	10	20	945	866	8	0	869	876	8	7	2584	2387	19
Ł	1994	2161	14	29	264	289	5	22	855	852	8	2	532	568	7	9	1153	1202	9
3	652	581	5					24	135	133	11	4	201	217	11	11	119	92	11
5	1318	1396	10		4 K	. o		26	44	79	16	6	563	570	7	13	546	458	6
7	709	559	6			-						8	53	18	30	15	927	513	н
à	427	535	6	0	1111	1322	А		7	κ n		10	51	12	29	17	50	çç	20
чí.	675	767	6	ž	6 14	1074	ž		• •			12	377	370	٦.	10	77	í.	22
13	767	714	~ ~	<u>د</u>	263	407	5		1131	1 2 3 5	0	14	474	574	ž	21	6.7	5 2 7	
10	1177	1076		4	1 5 0 5	1419	ี่กั		700	731	7	14	6.00	52.2	4	21	230	221	
17	320	220	7		207	105	• • •	5	707	740		10	220	222	U	23	57	- 10 C	20
10	000	1004		10	201	127	20	- 7	4 3 0	670	·		11	<i>_</i>		27	415	417	20
17	777	1000	7	10	0.02	614	20		2020	2570			E T			21	41.5	414	0
21	1047	552	. :	12	924	910	0		204	292	4			40		29	344	441	2
23	192	123	11	14	991	092		11	474	499		1	39	49	34		<u> </u>		
25	94	21	18	10	1130	1128	10	13	613	238	11	و	114	124	15		2 1		
21			19	19	178	203	12	15	748	679	9	2	60	49	26	_		-	
29	185	173	6	20	875	194	8	17	362	350	8	7	42	1	31	0	-32	0	22
		_		22	430	345	- 9	19	644	620	8	9	66	95	21	2	180	137	6
	2 ¥	κ ο		24	76	78	21	21	721	644	7	11	25	50	32	- 4	755	735	- 6
				26	46	58	23	23	225	195	7	13	-40	28	19	- 6	1755	1792	12
0	464	215	5	28	98	92	10									8	2486	2289	18
2	684	824	6						8 1	к о			12 (к о		10	465	376	6
4	-3C	85	24		5 K	O										12	490	430	6
6	1572	1519	11					0	71	57	30	0	1096	1027	9	14	536	578	6
8	322	336	5	1	361	489	5	2	186	192	11	2	498	451	6	16	490	452	7
10	109	209	13	3	843	823	7	4	207	208	10	4	117	127	11	18	244	257	9
12	969	939	8	5	605	628	6	6	344	357	7	6	209	194	7	20	282	237	8
14	446	409	6	7	3 3 3	316	6	8	157	180	13	-				22	533	485	- ž
16	1093	1030	Š	9	381	356	6	10	99	6	20		0 1	< 1		24	56	66	21
18	167	121	12	11	433	486	6	12	196	208	14			•		26	238	235	7
20	76.1	680	Ā	11	267	200	á	14	255	194	10	0	-40	0	13	29	227	220	
- V		000			201	200		4 7	2.33	1 17	10		-07	~	A -1	20		227	0

•

·

				23	263	242	8					12	546	481	6	5	874	935	7
	3 (к 1		25	43	17	26		9 K	1		14	2316	2191	17	7	1102	1063	9
				27	147	170	6					16	1469	1475	11	. 9	50	50	14
L	1068	1109	8					1	382	400	9	18	736	754	8	11	54	5	24
- 3	165	102	6		- 6 H	(L		3	-30	26	46	20	1160	1094	9	13	1444	1322	- 11
- 5	1815	1903	13					5	803	78+	8	22	921	874	8	15	2087	1555	15
7	3066	2960	21	0	55	0	21	7	1176	1116	10	24	182	193	12	17	620	555	7
9	2275	2223	16	2	795	816	7	9	957	939	9	26	66	89	22	19	761	754	8
11	756	793	7	4	496	517	6	11	172	192	15	28	278	264	5	21	1051	549	- 9
13	1902	1741	14	6	1693	1668	13	13	823	803	8					23	507	531	7
15	786	781	8	9	2154	2160	16	15	396	378	7	•	1	К 2		25	70	92	20
17	91	133	20	10	544	529	7	17	22	43	39					27	121	105	9
19	433	464	8	12	1149	1091	10	19	164	178	8	1	2410	2423	18				
21	700	676	7	14	936	848	8					3	368	440	5		- 4 F	(2	
23	882	852	11	16	116	159	22		10 K	1		5	783	778	7				
25	153	160	11	18	151	183	17					7	402	456	5	0	1795	1739	13
27	773	808	7	20	483	466	7	0	62	0	26	9	217	196	7	2	942	1012	7
29	385	43 L	4	22	764	724	7	2	123	95	17	11	396	389	6	- 4	329	305	- 5
				24	365	370	6	4	113	59	18	13	680	736	7	6	902	547	7
	-4 i	K 1		26	491	529	4	6	825	825	8	15	1126	1058	9	8	-14	51	+1
								8	975	956	9	17	188	134	11	10	107	76	14
0	10	0	36		7 1	(1		10	95	81	21	19	891	844	8	12	6 62	678	7
- 2	-24	17	27					12	360	355	8	21	551	544	7	14	987	573	9
- 4	185	167	6	1	56	13	25	14	476	478	6	23	228	250	10	16	1020	944	- 9
6	1780	1799	13	- 3	343	372	7	16	163	188	8	25	90	53	19	18	225	222	11
8	2214	2213	16	5	362	377	7					27	53	69	20	20	729	672	7
10	102	54	13	7	1901	1941	14		11 K	1		29	160	176	6	22	392	408	8
12	556	543	7	9	812	816	8									24	110	104	15
14	924	916	9	11	475	446	8	1	43	52	32		2	К 2		26	37	45	24
16	464	458	8	13	501	444	8	3	119	108	13								
19	144	199	16	15	537	517	7	5	76	78	21	0	870	793	7		5 K	ζ 2	
20	352	309	8	17	~14	12	55	7	124	171	13	2	820	863	6				
22	562	513	8	19	87	48	21	- 9	101	68	14	- 4	- 36	1	22	1	774	762	7
2+	122	123	14	21	515	494	7	11	59	24	19	6	881	909	7	3	591	594	6
26	334	329	6	23	383	369	5	13	-12	65	33	8	-22	13	34	- 5	342	317	6
28	344	374	4									10	190	£21	8	7	209	26 C	8
					B K	: 1			12 K	1		12	633	655	1	9	133	145	13
	5 F			_							_	14	559	588	7	11	282	254	8
				0	-79	0	22	0	-42	0	25	16	938	834	8	13	221	244	11
1	216	202	6	2	84	84	21	2	224	233	7	18	96	55	19	15	348	303	8
3	476	479	5	4	98	119	19	6	523	480	5	20	601	559	7	17	293	253	11
5	91	82	13	6	331	331	7		_			22	314	330	9	19	357	334	9
7	1403	1459	11	8	417	417	7		ок	2		24	103	87	16	21	361	352	8
9	553	513	6	10	131	60	17					26	- 22	43	37	23	136	125	13
11	301	257	7	12	25	10	50	0	5371	5302	40	26	73	88	13	25	61	23	16
13	91	24	20	14	197	213	13	2	1949	1943	14								
15	355	348	9	16	139	146	17	4	1012	1021	8		3	К 2			6 K	: 2	
17	74	51	24	18	97	133	17	6	1092	999	8								
19	72	94	28	20	65	34	18	8	762	681	7	1	2865	3085	21	0	2563	2726	19
21	385	372	7	22	74	82	12	10	403	344	6	3	-31	47	24	2	1264	1308	10

·.

	222	237	8	13	670	627	8						- 4 1	κ 3					
6	768	759	7	15	945	940	9	1	204	248	6					Ł	149	150	14
, A	427	4.22	7	17	255	249	6	3	52	32	18	0	52	0	20	3	202	209	10
10	121	150	16	10	360	364	6	5	1.72	A 4 0		ž	145	178	9	5	459	453	7
10	134	1 2 2	12	14	202	300	,		1 1 12	1/ 20			202	270	7	7	1351	1365	1.1
15	460	408							1430	1422	11	. 7	290	3 20	10		401	714	· •
1+	1283	1198	10		10 K	. 2		9	972	1011	8	- 6	1580	1304	10		330	2.24	16
16	962	534	9					11	-49	29	27	8	1470	1929	11	11	320	324	10
13	249	24 L	11	0	957	917	9	15	556	553	7	10	179	176	11	13	488	462	9
20	864	806	8	2	502	5C+	8	17	110	16	17	12	56 t	591	7	15	354	335	9
22	723	686	9	4	199	190	12	19	175	166	12	14	785	736	8	17	36	33	39
24	101	94	10	6	434	434	8	21	403	376	7	16	255	282	10	19	131	115	13
••••			••	Ā	61	25	28	23	345	385	8	18	60	7	30	21	397	380	5
	7 V	/ J		10	- 40		21	25	76	13	17	20	325	264	ģ				
	1 1	~ ~		10	- 40	20		27	340	374		53	404	209	7		8 K	3	
				12	307	300		21	347	210		24	1/2	167	30		• •	. –	
1	1310	1582	11	14	583	266	0					24	1.42	141	10	•	5 .5	^	22
3	546	604	7	16	504	459	5		21	د ٢		20	272	209		2	22	10	12
5	493	501	7															14	
1	478	491	7		11 K	2		0	45	0	19		51	К З		- 4	98	85	- 22
9	129	105	15					2	112	107	10					6	260	223	11
11	340	324	8	1	120	111	15	- 4	68	23	16	1	49	53	24	8	220	261	12
13	540	528	9	3	61	109	25	6	1218	1209	9	3	199	215	9	10	187	146	- 14
15	723	656	ģ	5	63	35	20	8	1425	1464	11	5	207	173	9	12	-16	82	58
17	274	250	10	7	16		43	10	59	ค	24	7	824	A 79	8	14	220	187	11
10	64.0	633			26	47	25	12	486	521	- 7	à	450	490	7	16	14	75	51
19	207	152	4		- 20	71	20	10	634	1.74	7	тí	1 20	155	16	1.6	76	24	15
21	019	004			-20		67	17	205	710		12	214	175	11	20	55	35	14
23	220	231	D					10	203	205	24	15	201	171	12	20			• •
		_			12 1	× 2		10	13	21	20	19	201	1 7	75		0 r	2	
	8 1	K Z		_			-	50	213	212	~ ~	11	- 29	11	20		2 1		
				0	874	849	7	22	372	374	(19	-66	39	30				
0	310	292	8	2	437	406	5	24	92	110	17	21	300	266	r	1	230	224	11
2	217	164	10					26	191	222	7	23	195	234	. 8	3	113	10	19
4	186	176	11		0 1	. 3		28	130	186	7	25	- 34	5	20	- 5	532	538	8
6	178	190	12													7	100+	S 86	9
6	82	60	2.	0	~85	0	19		3 /	K 3			6 1	(3		9	732	764	8
10	-57	22	35	2	849	785	7									11	172	167	13
12	111	128	18	Ā	674	609	Å	1	45.8	530	5	0	-60	0	26	13	579	582	7
	176	263	10		1020	1074	14		1.60	202	, P	2	509	517	7	15	332	343	6
17	210	202	10		1320	3440	10	2	1002	1140	ŏ	~	112	117	16	17	43	11	19
10	213	204			2070	2400	13	2	1093	3540	10	7	1330	1 2 9 2	1. 1.				
18	- 41	~ ~ ~	30	10	001	109		-	2301	2 340	1.7	0	1015	1 300	12		10 4	а	
20	81	95	10	12	10.91	994			1011	1 289	13	. 6	1815	1103	14		10 1		
22	37	1	16	14	1236	1232	10	11	676	625		10	306	282	, y	~		•	30
				16	331	283	8	13	1276	1228	10	12	837	755	8	0	35		50
	-9 K	< 2		18	160	73	13	15	768	726	6	14	684	652	8	- 2	115	122	17
				20	438	496	8	17	124	40	17	16	237	183	10	4	170	150	12
1	1267	1298	10	22	789	728	6	19	219	210	12	18	79	24	25	6	650	639	8
3	57	29	32	24	504	466	7	21	603	586	7	20	351	353	7	8	722	723	8
5	460	459	8	26	501	501	6	23	679	627	7	22	639	597	6	10	128	125	12
7	341	378	Ä	28	593	691	5	25	150	143	9	24	241	252	5	12	327	332	6
	10	, o	40	2.0			-	27	547	608	5		- • •			14	441	391	5
- 7	11	20	27			(2			2.44	000	-		7 1	ંગ					
11	31	20	21																
														-					

	11	∧ 3		14	497	489	7	17	161	125	13	5	366	366	7	23	231	241	6
		-		10	252	228		19	211	199	7		269	205	26			/ E	
1	-21		26	10	20	42	42	21	240	201			20	10	22		2 1	` >	
د	و و	58	29	20	340	345	8	23	125	117	8	11		39	18	-		_	
2	-26	14	31	22	241	283	8					13	484	462	0	0	-30		31
1	45	83	21	24	46	61	23		6 H	(4		15	679	668	6	2	139	111	13
9	60	78	15	26	- 49	6	16									- 4	-47	61	31
								0	1701	1736	13		10 1	κ 4		6	665	628	8
	0	К 4			3 H	κ 4		- 2	970	591	8					8	7 67	744	8
								- 4	126	120	15	0	696	705	8	10	69	13	31
0	3139	3273	22	1	1813	1939	13	6	613	608	7	2	324	333	7	12	361	335	8
2	1548	1430	12	3	201	233	9	8	199	226	12	× 4	145	161	11	- 14	321	241	9
- 4	554	523	7	5	697	741	7	10	87	35	23	6	272	278	7	16	50	62	39
6	882	818	8	7	704	683	7	12	429	390	8	8	- 74	79	17	18	49	20	38
8	345	323	8	9	-41	2	36	14	846	809	8	10	-64	27	16	20	153	113	11
10	179	82	12	11	220	211	11	16	670	677	7					22	223	221	7
12	611	534	7	13	1061	960	9	18	113	159	16		11	K 4		24	42	62	18
14	1509	1463	12	15	1380	1361	11	20	653	618	6								
16	1046	1046	9	17	516	484	8	22	452	463	5	1	68	105	15		3 1	ς 5	
18	493	510	7	19	604	572	7					3	46	46	17				
20	934	846	5	21	762	680	7		1 1	(4						1	251	259	9
22	615	563	7	23	311	333	6						0	K 5		3	106	164	18
24	115	139	12	25	75	28	12	1	968	\$72	9					5	741	743	8
26	44	34	18		-			3	288	329	9	n	-56	0	38	7	1671	1675	13
			• •		4 H	4		5	318	307	ģ	2	438	419	7	ģ	1070	1011	- 9
		< +			• •			7	338	336	ค	4	386	284	8	- 11	376	379	
	• •	• •		0	1328	1363	10	ġ	94	34	21	6	1335	1255	ň	13	802	754	Ř
1	1529	1607	11	ž	602	629	7	πí	114	106	19	Ä	1703	1584	13	15	500	527	Ř
1	165	113	10	2	267	288	, 7	11	364	364	â	10	6.63	480	н.	17	56	66	
5	485	454	6		508	530	÷	15	527	477	7	12	646	.10	7	10	124	122	1.3
ź	216	204	L	8	1 80	120		17	148	127	- 11	1.5	630	971		21	205	467	
ó	11	20	34	10	- 67	55	40	10	354	255	5	14	241	267	Š	21	100	402	5
11	70		21	12	- 62	216		1 2	390	222	,	10	201	201	20	23	204	462	
1.7	47	4 0 0	* L	1.5	780	761			ند د			20	310	227	20			/ E	
15	402	763	0	14	700	474	U		0 1	· · ·		20	210	221			4 7	· .	
17	- 22	203	20	10	170	153	13	0	190	202	•	22	350	307	10 E	~	- 2.2	~	
10		£.4		20	670	177	13	2	207	202	20	24	234	291	2		120		40
13	372	204		20	700	420	',	2	154	142	20		• •	, E		2	139	141	14
21	3/4	2744		22	290	323	16	2	1 20	102	14		1 1	~ >		7	760	234	13
23	141	213		24	60	10	15	0	00	02	22			1.70	10		150	077	
22	42	3	22		e				-40		38	1	108	1/2	10		883	833	
	• •				2 1	4		10	81	63	22	د	(1)	ز ز	24	10	122	125	18
	2 1	(-			-	12	-21	19	+5	2	403	383	8	12	414	585	y y
			_	1	584	615		14	212	222	9	7	792	701	8	14	468	415	8
0	735	828		3	281	252	8	16	205	203		9	603	558	8	16	140	119	15
2	495	473	6	5	181	158	11	18	-69	2	13	11	49	6	35	18	36	1	34
-4	132	123	11	1	169	178	13		_			13	438	373	7	20	163	149	9
6	478	466	6	9	-72	54	25		9 K	. 4		15	322	243	10	22	233	239	5
8	104	59	17	11	-49	4	34					17	56	18	30				
10	43	56	35	13	147	153	17	1	868	883	8	19	127	99	14		5 F	ς 5	
12	267	251	10	15	282	239	10	3	49	40	31	21	221	216	8				

L	74	69	23					10	-72	24	32	2	553	596	8	5	191	226	18
3	145 1	27	14	1	133	122	12	12	172	134	15	- 4	31	29	45	7	459	364	10
5	114 1	R4	17	3	36	52	32	14	303	304	9	6	310	312	9	9	322	257	11
7	441 4	¥1	8	- 5	366	351	6	16	312	331	8	8	120	104	19	11	75	19	26
9	262 2	75	10	7	658	672	7	18	-26	60	36	10	66	19	29	13	210	183	11
11	114	88	22	9	462	46 2	6	20	187	1 82	7	12	205	217	11	15	137	121	13
13	1+3 1	ət	L 7	11	1 1 0	106	11					14	466	444	9	17	28	4	- 30
15	61	36	29						3 K	. 6		16	314	361	6				
17	-74	13	22		10 K	. 5											2 K	7	
19	63	25	19					1	1089	1068	9		7 K	6					
21	151 1	55	7	0	42	0	22	3	123	194	18	-				0	46	0	38
				2	58	85	18	5	410	375	9	` 1	535	543	8	2	71	31	30
	6 K	5		- 4	105	107	12	7	362	319	9	3	185	168	12	- 4	53	68	38
								9	-47	20	40	5	187	201	12	6	364	353	10
υ	17	0	52		0 14	κ 6		11	89	111	27	7	195	215	12	8	442	351	10
2	296 3	21	9					13	575	538	8	9	45	1	32	10	14	18	60
- 4	-29	36	45	0	1760	1739	13	15	793	746	8	11	80	54	20	12	177	172	13
6	903 9	32	9	2	819	842	8	17	254	2.62	8	13	197	213	6	14	116	123	16
8	1194 11	83	10	4	3 09	224	10	19	316	334	6					10	84	48	15
10	210 1	83	12	6	4 E 7	401	6	21	322	399	5		-8 K	. 6		18	-32	1	23
12	493 4	80	8	8	1 66	127	14												
14	445 4	40	7	10	103	52	23		4 K	6		0	139	167	13		3 K	, 7	
16	150 1	59	11	12	313	294	9					2	31	16	36				
18	-10	19	42	14	878	801	8	0	682	729	8	4	85	125	19	1	125	132	19
20	215 2	37	5	16	601	546	7	2	339	319	9	6	52	67	26	3	-20	118	55
				18	303	31+	7	÷	142	216	18	8	-71	13	20	5	422	345	8
	7 K	5		20	479	508	6	6	337	334	10	10	25	35	31	7	641	620	9
				22	284	315	5	8	114	105	22					9	530	451	9
1	110 1	16	18					10	- 52	28	40		9 K	. 6		11	213	203	12
3	143 1	38	15		1 1	6		12	202	173	15					13	408	421	7
5	293 2	85	8					14	464	455	8	1	534	508	6	15	199	263	5
1	802 7	97	8	1	825	832	8	16	356	311	7	3	-44	36	Z 3	17	-38	29	21
9	417 4	34	8	3	84	13	25	16	80	58	16								
11	21£ 2	52	10	5	297	315	10	20	209	240	5		0 К	7			_4 K	. 7	
13	310 2	87	8	7	194	213	15												
15	182 1	58	9	9	75	4	30		5 K	6		0	-67	0	37	0	-53	0	34
17	-5+	6	20	11	- 12	17	28					2	207	230	13	2	- 71	47	28
				13	339	294	6	1	315	332	10	4	188	91	18	4	77	130	27
	8 K	5		15	464	456	7	3	130	106	19	6	696	593	9	6	414	402	- 9
				17	59	2+	25	5	147	126	16	8	846	153	9	8	466	431	8
0	34	0	37	19	297	297	7	7	148	134	17	10	271	247	11	10	63	78	- 31
2	32	20	39	21	201	222	6	9	81	6	27	12	336	317	8	12	196	198	10
-+	66	76	25					11	-43	2	40	14	403	413	7	14	201	Z 1 3	8
6	125 1	05	15		2 F	6		13	66	91	29	16	86	124	17	16	69	69	13
8	111 1	19	16					15	131	149	14	18	30	14	26				
10	76	97	21	0	398	433	7	17	58	82	13						5 K	. 7	
12	-58	55	23	2	265	232	9						LK	7					
14	105 1	03	11	4	79	131	25		6 K	6						1	-43	27	36
				6	318	299	8					<u> </u>	40	69	43	3	-67	47	27
	9 K	5		8	63	96	35	0	952	975	9	3	64	9	35	5	110	75	18

•

129 -83 -52 132 49 0 71 9 11 13 151 35 44 15 31 17 20 25 29 27 6 8 κ 63 162 18 12 6 -46 73 80 128 3 5 7 ĸ 147 -33 118 45 57 150 51 40 44 25 35 42 - 88 96 9 6 K к ĸ -110 -45 100 2 4 6 8 10 -41 12 29 7 7 75 181 137 16 35 1 1 1 3 2 4 6 8 10 22 20 45 40 3 5 7 9 5 K 133 206 96 124 119 183 50 36 201 203 -36 -15 12 11 37 41 460 1 149 3 -107 5 -42 590 87 2 K 37 109 ς. 51 19 0 170 7 K

G. $(TMTSF)(SCN)_{0.5}$ - Structure factors, Ni-filtered CuK $\overline{\alpha}$ radiation. Space group Cmcm.

				24	92	97	14	15	239	227	10	14	162	169	10				
	0 1	к о		26	39	52	23	17	186	197	12	16	178	169	9		0 1	(1	
				28	-33	8	22	19	182	147	9	18	35	46	27				
2	2729	2290	19	30	41	43	11	21	268	284	7	20	27	5	27	2	102+	852	8
-	1271	1066	10					23	149	167	9	22	50	6	14	- 4	1279	790	10
6	989	1377	8		3 H	(O		25	29	22	26					6	2245	2262	17
8	954	812	8					27	26	13	20		91	< 0		8	3480	3514	26
15	147	128	16	1	4343	3391	30									10	1085	1011	9
12	40.9	586	9	3	87	285	16		6 1	(O		1	1314	1144	10	12	1123	1099	10
14	1575	1833	15	5	912	1174	8					3	107	122	18	14	1698	1694	13
16	1618	1601	12	7	1306	1425	10	0	3076	2597	22	5	417	438	6	16	642	657	6
18	537	571	- 8	Ś	210	75	- ii	2	1577	1513	11	7	372	387	6	18	54	22	27
20	1157	1195	9	11	118	292	20	4	132	72	19	` 9	77	73	19	20	316	316	8
22	844	851	8	13	1057	1091	11	6	751	960	7	11	19	68	40	22	555	581	6
24	335	316	ÿ	15	1823	1768	13	8	507	465	6	13	440	453	6	24	445	440	6
26	105	75	11	17	755	779	7	10	32	8	34	15	687	675	6	26	309	311	5
28	-21	36	30	19	679	719	7	12	363	428	7	17	259	255	6	28	616	603	5
32	141	155	5	21	8 80	956	8	14	957	900	8	19	262	263	5	30	352	351	4
			-	23	530	544	6	16	890	862	8	21	298	319	4				
	1 1	K O		25	53	4	19	18	88	97	18						2 1	(1	
				27	71	51	13	20	695	736	6		10 1	()					
1	2260	3317	16	29	89	89	7	22	625	633	6					1	307	543	5
3	361	168	5	-				24	197	190	6	0	862	993	7	3	1 89	41	8
5	982	628	8		4 1	ເປ		26	80	61	8	2	466	483	6	5	484	712	6
7	857	682	8									4	165	190	9	7	2039	1618	15
9	113	19	17	0	1515	2492	12		7 1	(0		6	418	362	6	9	1362	1318	11
11	172	18	14	2	810	579	7			-		8	186	175	8	11	68	14	29
13	674	647	6	4	344	433	7	1	1224	1515	9	10	36	28	27	13	791	825	8
17	163	157	11	6	1221	982	10	3	550	479	6	12	238	200	7	17	56	30	25
19	699	658	7	8	316	420	- 9	5	499	422	6	14	481	481	5	19	48	70	30
21	533	540	7	10	61	39	33	7	644	598	7	16	385	378	4	21	238	247	9
23	30.2	322	6	12	504	428	9	9	-25	75	42	18	85	84	7	23	310	325	6
25	37	39	26	14	1001	1033	9	- 11	200	131	10					25	69	60	17
27	44	27	21	16	907	928	8	13	498	469	7		11 8	κ ο		27	309	303	5
29	74	69	11	Ī B	121	153	16	15	643	665	6					29	314	259	4
-				20	577	576	6	17	239	229	8	1	69	8	17				
	2 1	(0		22	437	463	6	19	401	396	6	3	55	56	19		2 1	(I	
		-		24	115	128	11	21	540	543	5	5	-21	42	34				
0	Z6 4	1482	£	26	73	60	14	23	290	290	5	7	-45	14	22	2	64	238	20
2	442	612	5	28	-18	15	25	25	37	20	13	9	-50	5	19	4	290	154	7
4	49	173	26									11	-112	21	8	6	1436	1222	11
É	1202	758	- 9		5 F	0			6 H	(0		13	29	42	20	8	2125	1768	16
8	293	393	8													10	74	\$5	27
10	76	44	25	1	322	83.8	8	0	92	256	22		12 1	c o		12	669	733	8
12	497	346	8	3	554	410	ž	2	33	36	36					14	529	542	9
14	547	610	9	5	268	149	LÓ	4	146	160	12	0	687	596	6	16	3+7	294	7
16	751	743	,	7	335	271	9	6	163	63	11	2	368	347	5	18	-22	29	43
18	110	141	16	ġ	-10	25	64	8	11	24	54	4	72	36	12	20	90	102	20
20	472	397	- 7	- 11	134	62	12	10	-27	23	42	6	170	173	5	22	256	256	7
22	340	391	6	11	171	150	11	12	65	27	21	8	89	99	8	24	104	127	13
			-												~				

.

.

26	152	160	8	21	125	131	12					8	692	687	8	1	2726	2661	19
28	161	174	6	23	143	150	9		9 K	1		10	229	126	12	- 3	365	343	7
				25	38	29	22		•			12	477	. ,508	9	5	1070	1050	9
	3 +	< 1		27	99	100	7	1	175	144	9	14	1651	1623	14	7	1259	1181	~-10
								3	12	12	45	16	1373	1364	11	9	103	89	21
1	702	567	7		61	(1)		5	579	531	6	18	460	489	7	- 11	168	218	17
3	27	124	.35					7	982	975	8	20	1029	1052	8	- 13	988	\$77	8
5	1439	1290	11	2	489	460	8	9	734	719	6	22	768	750	7	15	1573	1540	12
7	3265	3398	24	- 4	250	128	11	11	87	77	16	24	286	282	6	17	578	678	9
- 9	2107	Z1 26	15	6	1520	1554	12	13	567	537	6	26	81	66	13	19	605	624	7
11	699	730	8	8	2015	2099	15	15	437	437	5	28	70	31	11	21	849	845	8
13	1476	1419	12	10	404	386	6	17	98	103	11					23	490	483	6
15	1085	1115	9	12	818	780	7	19	46	34	17	•	14	κ 2		25	43	2	21
17	211	196	10	14	834	803	8	21	135	147	- 4					27	39	51	19
19	112	79	17	16	368	390	8					1	2789	2736	21				
21	421	434	6	18	9	23	48		10 K	1		3	118	14	14		4 1	< 2	
23	524	526	6	20	212	200	7					5	491	580	7				
25	14	31	38	22	425	434	5	2	117	99	12	7	454	562	7	0	2163	2109	- 16
27	505	479	5	24	254	225	5	-4	154	173	10	9	94	38	23	2	823	878	8
29	363	363	4	26	248	247	4	6	665	634	6	11	54	3	36	4	433	359	8
		_						8	793	737	7	13	573	578	9	6	723	619	-6
	4 K	(1			7 4	(L		10	181	179	8	15	985	987	8	8	322	356	10
_			_	_			_	12	330	325	6	-17	170	135	11	10	94	_16	25
- 2	254	341	8	1	198	245	9	14	428	409	5	19	623	610	7	12	388	364	7
- 4	171	399	12	3	267	216	<u> </u>	16	182	189	6	21	476	479	6	14	885	906	8
6	1639	1520	13	5	489	539	6	18	-31	21	15	23	288	283		16	815	812	7
8	2011	1894	15		1582	1495	12					25	62	36	17	18	101	127	13
10	271	211	11		891	890	8		II K	1		27	32	24	23	20	523	511	6
12	690	738	0	11	335	352	4			• •	5.4	29	00	62	9	22	412	407	
14	933	931		13	584	594	. !	1	- 22	12	32					24	811	113	10
16	410	392	f	15	445	467		د	50	26	20		2 '	2		20	59	52	1.4
18	57		28	17	68	89	20	2	د د	23	28	•	1.0/1		••	28	- 17	13	20
20	136	197	12	19	45	24	22		36	40	22	U n	1201	E170	10		<i>с</i> .		
22	323	320	0	21	202	203	Č,		40	14	~~~	4	242	397	10		5 7	2	
24	109	104	- C	23	209	213	2	11	61	21		4	134	132	12		744	707	
20	445	220	0	20	40	63	'	13	02	43	11	0	242	22(104	247	0
20	293	201	- 4		<u>م</u> م	· ,			1.2 V	,		10	212	334	37	2	323	127	10
	5 V				0 1				12 N			12	707	. 205	21	2	143	2/2	17
	7 1			,	40	,	22	2	01	76	10	14	514	270		6	103	243	11
•	- 74	107	45	4	-40	121	57	~ ~	92	70	10	1.4	459	636	7	11	95	42	10
2	214	101		7	127	43	15	- 7	312	222	4	1.0	115	128	14	12	155	142	12
ŝ	247	130	22	6	146	50	15		360	406	7	20	367	246	7	15	217	192	11
, j	878	725	<u> </u>	10	174	186	12	•	200	400	-	22	340	345		17	150	147	1
	562	537		12		7	53		0 K	2		24	99	27J 87	12	10	160	129	10
11	150	121	11	14	157	157	10		ψĸ	£.		26	74	47	14	21	253	252	.0
13	178	212	11	16	66	86	20	0	5174	5443	38	28	3.8	7	17	21	141	140	A
15	187	155	12	18	-15	2	36	ž	2294	2101	17	2.0		•	••	25	40	19	19
17	80	60	23	20	47	3	19	4	814	827	ē		з,	7		27	30	12	14
19	-71	12	20	22	- 31	4	18	6	1484	1227	12					- '		• -	- •
						-		-											

•

	6 F	< 2		5	395	389	6	22	445	462	6	19	55	54	24	22	341	342	5
				7	370	3 36	6	24	358	337	5	- 21	328	343	6	- 24	176	175	5
0	2170	22 + 8	16	9	69	69	20	26	249	240	5	23	407	407	5				
2	1320	1333	10	11	5	60	50	28	480	474	4	25	4	27	42		7 K	3	
4	85	94	16	13	398	401	6					27	380	374	- 4				
6	850	826	7	15	620	598	6		1	к з						1	20.6	165	10
6	426	407	7	17	228	227	6						4	К 3		з	164	172	12
10	65	0	24	19	225	232	4	1	454	319	7					5	447	412	7
12	352	370	8					3	-9	63	55	2	273	224	11	7	1151	1152	10
14	834	795	8		10 /	ĸ 2		5	698	583	8	- 4	351	262	9	- 9	693	651	7
10	773	753	7					7	1102	1184	10	- 6	1145	1149	9	11	264	272	7
18	88	83	17	0	904	874	7	9	1044	952	10	8	1398	1406	11	13	466	464	6
20	662	654	7	2	432	427	6	11	- 52	11	45	10	290	239	7	15	329	308	- 6
22	58C	500	6	- 4	163	170	9	13	669	6 +2	7	- 12	589	589	7	17	72	73	17
24	154	168	6	6	325	318	6	15	555	557	7	14	723	706	8	19	13	43	39
				8	148	155	9	17	-48	33	32	16	292	30 L	9	21	211	200	5
	7 K	(2)		10	-54	26	22	19	58	49	28	18	-40	8	30	23	208	214	4
				12	188	177	7	21	197	196	8	20	132	119	11				
1	1366	1330	11	14	429	427	5	23	254	252	6	22	250	248	6		8 K	. 3	
3	401	417	6	16	333	335	4	25	43	48	21	- 24	143	129	8				
5	367	376	7					27	239	237	5	26	176	177	5	2	42	4	33
7	490	511	7		11 1	K 2										4	120	103	13
9	55	76	29		•				21	K 3			51	К З		- 6	117	66	13
11	160	115	13	1	52	9	20									8	84	64	17
13	42.8	412	6	Э	79	49	14	2	280	221	8	1	141	90	- 10	10	149	145	11
15	594	563	6	5	36	38	25	4	223	129	10	3	152	155	10	12	-57	7	23
17	217	203	8	7	15	13	35	6	938	933	9	- 5	185	133	9	14	-65	124	20
19	365	350	5	9	40	4	19	ម	1229	1200	11	7	518	534	6	16	68	68	- 17
21	494	483	5	11	19	19	26	10	146	112	20	- 9	414	393	7	13	-25	2	27
23	256	256	4	13	37	38	13	12	525	523	6	11	72	74	24	20	9	3	- 30
								14	451	428	7	13	180	163	12				
	8 K	2			12 1	ζ 2		16	250	233	- 9	15	100	121	21		9 K	3	
	_					_	_	18	-50	15	32	17	45	46	28				
0	236	221	. 9	0	525	529	5	20	65	78	21	19	39	8	29	1	94	102	16
2	~15	31	49	2	289	309		22	209	203	8	21	105	106	12	3	24	8	37
4	149	1+2	13	- 4	44	32	14	24	101	93	11	23	120	119	9	5	403	415	6
6	32	55	39	6	145	153	5	26	129	126	8	25	36	21	16	7	780	759	7
8	22	20	44					28	L 3 0	134	5					9	569	561	6
10	- 25	19	31		0 14	(3							6 8	3		11	95	59	13
12	-30	24	33	_			_		3 K	6		_			_	13	435	423	6
14	149	151	ro	2	532	646	8	-				2	322	349	7	15	338	341	. 5
16	156	150	9	- 4	380	499	. 9	1	285	370	9	- 4	78	85	20	17	65	84	12
18	-19	41	35	6	1865	1822	14	3	197	111	11	6	1195	1205	10		_	_	
20	50	3	16	8	2548	2445	19	5	934	1042	. 9	8	1594	1593	13		10 K	3	
22	-31	(16	10	755	191	9		2493	2413	19	10	286	314	8				
		-		12	847	839		. 9	1552	1 563	13	12	625	609	<u> </u>	2	81	74	15
	9 K	2		14	1259	1284	10	11	524	495	6	14	632	616	7	4	167	137	8
				16	512	512	1	13	1121	1107	9	16	298	301	7	6	509	498	6
1	1002	1009		16	18	21	22	12	849	847	. 8	19		22	48	.8	593	5/3	6
3	130	100	11	20	222	243	8	11	116	103	15	20	154	120	8	10	138	142	9

• .

12	- 256	256	- 5	6	458	435	10	9	-52	17	32					3	-26	59	- 41
14	313	322	4	8	214	211	9	11	80	21	24		9 K	. 4		- 5	325	352	7
				10	51	13	30	13	74	104	22					7	713	681	7
	11	К З		12	186	198	13	15	135	131	13	1	693	690	7	9	548	549	8
				14	367	390	8	17	113	106	13	3	80	70	16	11	- 8	10	62
1	-37	9	23	16	433	417	7	19	90	87	14	5	270	272	6	13	360	382	9
3	-47	21	19	18	118	95	13	21	186	177	7	7	228	225	7	15	324	325	7
5	53	28	16	20	234	231	7	23	94	105	9	9	64	51	19	17	12	24	46
7	60	36	14	22	229	237	6					11	56	42	20	19	52	30	22
9	20	12	24	24	27	61	27		6 K	4		13	288	280	5	21	117	122	10
				26	39	32	15					15	405	417	5	23	161	154	7
	0	к 4						0	1511	1 501	12				_	25	42	31	13
	-				3 (4		2	889	912	8		10 K	4					•••
0	3087	3189	32		•				100	67	18	•		•			21	(5	
ž	1525	1428	13	1	1763	1821	14	6	543	546	7	0	607	598	6				
4	544	464	10	3	253	299	12	8	277	277	ģ	2	301	294	6	2	87	127	18
6	890	844	10	5	715	719	7	10	54	- 9	25	4	109	120	11	4	82	28	19
н	396	435	12	7	727	74.1	7	12	262	250	Â		228	219		Å	537	= 47	7
101	102	86	1 R	ċ	63	78	26	12	568	546	Ă	a a	100	107	11	Ă	690	665	2
12	380	342	7	ъí	145	120	14	16	243	508	14	ាភ័	-4	19	40	10	26	74	48
16	1114	1118	á	13	205	6.81	Â	19	72	55	16	12	120	124	40	12	201	302	10
16	000	939	é	15	1057	1 03 7	Ö	20	460	457	5	• -	120	164	v	14	268	263	7
19	333	225	6	17	470	450	ź	22	380	201	4		11 4	4		16	162	143	- 11
20	726	125	7	10	4 2 8	416	4		507	371	•		44 1	•		1.8	-74		18
20	51 2	615		21	507	603	6		7 4			1	20	10	1.0	20	-17	46	30
22	207	107	4	21	3 37	221	5		· ^				50	36	10	20	120	124	ەر بو
24	207	44	17	25	- 27	331	22	,	C15	007	0	5	43	27	14	26	130	127	22
20	30		17	23	-21	-	22	2	300	204	0			21	14	27	23		~ ~ ~
	• •							2	250	200	7		_0 V	5			3 6	- 5	
		. 4				· 7			254	227	, L		-, v				2		
	1614	16.70	1.2	~	1250	1261	16	5		337	10	E	373	967	0		37.7	202	
-	1216	1010	12	2	1320	1351	12			02	29	2	212	231	0	- 1	247	263	
2	122	47	19	2	272	007	0	11	204	200	24		• v	E		2	114	474	12
2	401	910	10	7	603	210		13	407	202	°,		UN	2			1200	620	
	310	224	11	c	232	219		1.2	407	374	0	-		340	~		1240	1424	+ 1
	- 50	41	30		111	231	12	17	101	139	8	ź	410	308			941	360	
11	23	2	42	10	34	2	39	19	200	244	2	÷.	330	204	ÿ	44	211	212	10
13	346	348	5	12	249	239	10	21	321	340	4	6	1100	1089		13	690	072	
12	651	653		14	613	619	8		- ··	,		. 8	1412	1372	11	12	497	507	
11	114	85	18	16	560	552	6		8 K	. 4		10	526	478		11	103	112	14
19	426	417	6	18	- 14	. 11	19	_				12	510	493	8	19	36	32	20
21	331	332	6	20	358	352	6	0	142	146	11	14	765	759	8	21	209	209	6
23	196	194		22	282	278	6	2	16	19	42	16	285	308		23	240	246	2
25	3 8	28	20	24	83	78	10	- 4	83	101	18	18	-42	10	27			_	
27	43	17	12					6	58	38	22	20	153	148	9		-4 H	5	
					5 M	(4)		8	-37	12	30	22	274	285	6	_			
	2)	(4						10	-21	13	37	24	209	204	5	Z	95	126	19
				1	442	459	6	12	51	16	22			_		4	135	154	15
0	651	706	8	3	248	251	8	14	103	108	13		IK	5		6	681	681	1
2	407	440	9	5	64	95	25	16	107	107	10				• /	8	843	919	8
4	65	78	33	1	184	168	11	18	-10	29	27	1	120	108	14	10	122	105	15

12	365	360	7	4	63	67	19	19	228	230	6	5	32	45	34				
14	416	425	7	6	52	42	22	21	170	1 61	6	7	84	89	18	2	179	164	12
16	195	184	4	8	46	37	23					9	48	12	26	4	152	120	15
18	-35	9	27	10	79	89	16		2 K	6		11	46	12	26	6	508	458	7
20	83	71	14	12	38	5	24					13	76	53	17	8	666	639	7
22	159	150	6	14	76	80	12	0	308	361	9	15	54	65	21	10	2+1	228	8
				16	46	44	13	2	234	226	10	17	44	52	19	12	235	226	8
	5 K	5						- 4	27	44	45	19	49	50	12	14	343	356	6
					9 K	5		6	243	223	11					16	126	145	10
1	33	56	38					8	90	106	20		6 K	6		18	-6	1	35
з	84	95	21	1	72	57	17	10	71	4	23								
- 5	71	84	26	3	47	0	22	12	108	1 06	16	0	812	799	7		-1 K	. 7	
- 7	338	312	8	- 5	263	257	6	14	201	209	9	` 2	476	492	6				
9	212	230	9	7	466	46 1	5	16	235	227	7	- 4	-44	27	28	1	73	79	20
11	41	37	32	9	344	343	5	18	65	59	18	6	278	289	7	3	4Z	27	31
13	72	96	21	11	46	35	17	20	130	121	8	8	157	151	10	5	169	161	- 15
15	44	70	27	13	232	2 63	4	22	118	129	6	10	32	9	31	7	334	310	8
17	40	27	24									12	137	135	11	9	272	257	8
19	- 6	5	43		10 K	5			3 K	6		14	291	291	6	11	58	12	23
21	57	67	13									16	270	267	5	13	190	177	ម
				2	65	41	13	1	921	933	8					15	141	151	10
	6 K	5		4	88	88	10	3	96	161	22		7 K	6		17	25	12	27
				6	300	308	5	5	356	374	8					19	49	16	12
2	102	204	14					7	386	382	7	1	488	486	6				
4	73	47	19		0 K	6		9	31	44	38	3	177	163	8		2 K	. 7	
6	724	726	7					11	-41	65	33	5	166	135	8				
8	957	949	8	0	1590	1579	12	13	380	367	6	7	179	182	9	2	66	48	17
10	196	195	9	2	755	747	8	15	569	556	6	9	-11	37	43	4	48	27	28
12	382	367	6	- 4	274	223	12	17	253	251	7	11	83	45	14	6	261	258	8
14	381	369	6	- 6	450	443	9	19	222	216	6	13	154	151	7	8	316	315	8
16	167	181	9	8	234	218	12	21	301	315	- 4	15	201	207	4	10	-19	30	- 44
18	38	17	22	10	-23	33	44									12	155	147	10
20	95	98	8	12	186	184	10		-4 K	6			8 K	. 6		14	139	127	FO
				14	596	585	9									16	49	70	19
	7 K	5		16	476	465	6	0	670	688	6	0	- 4	75	48	19	-16	6	26
				18	181	161	8	2	343	318	6	2	-48	5	22				
1	96	93	15	20	395	395	5	4	148	144	11	4	83	59	14		3 K	. 7	
З	121	107	12	22	258	279	6	6	293	27 2	7	6	34	21	26				
5	241	247	8					8	123	121	14	8	-38	4	23	1	79	92	19
7	718	696	7		1 K	6		10	78	2	19	10	54	7	15	3	70	45	21
9	418	418	6					12	116	1 30	15	12	-8	9	30	5	296	303	7
11	172	163	9	1	741	761	8	14	342	336	6					7	683	669	- 7
13	285	280	6	3	75	73	27	16	302	298	6		9 K	6		9	440	426	6
15	199	182	7	- 5	241	214	11	18	21	35	30					11	144	131	11
17	34	46	21	7	222	183	17	20	179	187	5	1	356	370	5	13	319	323	6
19	-10	28	25	9	39	25	36					3	33	35	22	15	220	244	6
				11	22	2	44		5 K	6		5	132	149	7	17	49	54	14
	8 K	5		13	209	211	9					7	108	121	7				
				15	348	343	6	1	228	248	8						4 K	7	
2	57	5	21	17	24	37	33	3	138	134	12		0 К	7					

- 2	- 7	58	50	4	14	21	41	6	195	182	11	10	-35	0	28	1	89	111	- 14
4	46	83	28	6	338	344	6	8	- 53	90	28	12	70	46	13	3	44	61	22
n	336	325	7	8	448	451	6	10	-70	7	18					5	-42	15	22
હ	400	395	6	10	9 5	93	11	12	89	78	12		3 K	8		7	-20	38	30
10	83	72	19	12	163	172	6	14	230	246	5			•					
12	179	173	9									1	380	382	6		6 K	8	
14	196	207	7		7 К	7			1 К	8		3	81	64	18				
16	75	91	10									5	150	155	11	0	306	342	- 5
				1	26	45	29	L	333	333	6	7	152	159	11	2	181	215	6
	5 K	7		3	52	54	20	3	47	35	28	9	-27	19	33				
				5	121	117	9	5	96	88	19	11	42	31	20		0 K	9	
1	22	26	36	7	330	333	5	7	61	75	27								
З	ÚÛ	41	20	9	179	199	6	9	-30	12	34		4 K	8		2	-85	60	74
5	45	34	24					11	-20	3	33					4	-144	44	- 49
1	145	1 47	11		8 K	7		13	99	66	9	d	294	279	6				
9	107	110	14									2	132	128	11		1 K	9	
11	49	16	22	2	22	5	23		2 К	8		- 4	103	61	12				
13	33	42	23									6	102	115	13	1	-96	30	52
15	16	29	24		0 κ	6		0	138	142	12	8	-42	50	25	3	-61	11	82
								2	42	87	31	10	-40	0	19				
	6 K	7		0	688	666	10	4	-58	20	25								
				2	343	310	8	6	97	92	17		5 K	8					
2	112	98	13	4	109	89	19	8	23	43	40								

H. $(TMTSF)(SCN)_{0.5}$ - Structure factors, Ni-filtered CuK $\bar{\alpha}$ radiation, satellite reflections, Space group Pmc2₁.

1	0	11 13 15 17 19 21 23 25 27	1 3 5 7	2 4 8 10 12 14 16 20 22 24 26 - 28
. I K	2 K -36 194 -28 1359 1359 1854 57 1854 57	14 169 351 290 256 168 30 -47	1 K 61 29 149 129 57	155 203 ~22 333 537 203 519 405 161 -68 -50
2 [′]	1 95 153 298 172 183 369 264 322 51	1 01 3 32 2 60 3 4 6 3 1 7 2 0 6 2 4 3 2 1 2 6 2	1 271 36 294 172 112	79 284 550 230 170 443 450 74 304 304 342 38 184 124
	16 17 25 12 13 25 13 14 28	39 8 19 10 11 13 38 24	10 21 7 9	12 8 7 33 16 7 8 11 9 14 24 22
13	1 3 5 7 9 11 13 15 17 19 21 23	8 10 12 14 16 18 20 22 24 26	0 2 4 6	1 3 5 7 9 11 13 15 17 19 21 23 27 27
67 -62	5 K 45 46 - 16 50 39 60 35 89 77 67 1 37 42	21 29 122 285 312 -24 273 218 37 52	4 K 25 45 60 1 93	L 37 58 L 19 2 44 43 32 2 87 562 2 67 2 56 4 36 2 63 39 58
15 27	138 9 146 89 72 100 221 181 241 233 154 175	305 154 137 312 350 73 234 277 39 144	لا 0 70 78 175	128 32 147 179 73 184 309 207 332 292 171 232 191 48
30 30	20 20 36 21 28 24 35 22 25 29 16 33	33 30 14 9 10 48 11 12 34 21	25 18 15 7	7 13 9 6 23 31 9 9 11 14 9 11 31 20
57	24 6 8 10 12 14 16 18 20 1 3	11 13 15 17 19 21	1 3 5 7 9	0 2 4 6 8 10 12 14 18 20 22 24
88 28	- 331 - 82 38 107 28 54 - 59 - 2 104 - 46 28 9 K 81 - 24	-31 132 185 85 179 255 8 K -331	7 K 48 74 91 95 35	-39 105 -26 129 75 66 58 271 311 22 316 310 67
10	5 40 74 118 76 153 185 121 1 39 4	92 175 122 189 174 107 1	1 66 7 67 76 43	0 57 30 105 219 127 93 247 274 50 189 216 25
21 47	29 325 44 31 68 30 31 26 46	44 18 16 26 13 10	27 20 18 19 38	42 13 33 21 22 30 11 11 50 10 9 19
9	10 12 14 16 1 3 5 7 9 11 13 15	9 0 2 4 6 8	1 3 5 7	13 15 17 24 6 8 10 12 14
45	- 48 146 100 1 K 30 18 45 -19 -36 -37 99	26 0 K 71 -36 40 -26 63 -47	11 K -27 -28 -36	107 227 91 10 K 69 21 71 45 61 -36 72 140
17	56 3 46 2' 116 192 69 45 107 6 5 24	20 2' 386 69 91 231 45 83	1' 33 1 33 24	117 80 128 1' 0 16 13 42 87 56 41 108
33	22 17 11 16 18 27 19 34 18 27 29 16	35 10 22 23 30 18 22	28 37 35 31	21 10 17 27 47 25 37 27 36 22 13
	1 3 5 7 9 11 0 2 4 6 8	0 2 4 6 8 10 12	9 11 13 15	+ 6 8 10 12 14 16 1 3 5 7
	-13 33 46 25 65 -28 6 K 55 -14 31 55 28	-13 21 37 40 35 -56 -4 5 K	10 -11 91 82 4 K	49 46 38 -48 44 -51 60 3 K 42 -21 39 87
	58 101 38 28 63 2 2 140 33 40 97 22	212 43 54 138 30 53 37 2	56 4 11 25 2	68 166 38 66 43 37 2 56 162 58 45
	36 26 22 32 19 37 23 40 30 30 38	33 29 22 24 26 21 54	41 42 17 23	16 19 23 24 27 25 18 27 21

Electrical properties of crystals. Conductivities were measured using the standard 4 probe technique. Silver paint contacts were used with $[Rh(CNCHCH_2)_4]C10_4$; aquadag contacts were used with all other crystals.

.

÷

A. Conductivity of [Rh(CNCHCH₂)₄]ClO₄

B. Conductivity of (TTF)C10.67.

C. Conductivity of high, medium, and low disorder $(TTT)_2I_3$ crystals.

D. Conductivity of high, medium, and low disorder $(TTT)_2I_3$ crystals. This 1/T plot emphasizes low temperature region.

E. Thermoelectric power of high, medium, and low disorder $\text{TTT}_2^I{}_3$ crystals. The peak at ~20° K may represent a phase transition.

F. Thermoelectric power of (TMTSF)Br_{0.8}.

G. Thermoelectric power of (TMTSF)(SCN)_{0.5}.

APPENDIX 3

Notes on Structure Refinement

All structure refinement was carried out using CRYM system programs and the Institute's IBM 370/3032 computer. Least-squares refinement proceeds by minimization of the quantity $\Sigma w (F_{obs}^2 - F_{cacl}^2)$. The weighted residual, wR, is $\Sigma w^2 (F_{obs}^2 - F_{calc}^2)^2 / \Sigma w^2 |F_{obs}|^4$. The residual, R, is $\Sigma ||F_{obs}| - |F_{calc}|| / \Sigma |F_{obs}$. The real goodness of fit is $[\Sigma w (F_{obs}^2 - F_{calc}^2)^2 / n - p]^{1/2}$. Weights are determined from counting statistics:

$$w = 1/(\sigma^2 F_{obs}^2 + t)$$

where t is a term which accounts for errors other than counting statistics.

In the refinement of structures with considerable disorder, refinement of some parameters is difficult or impossible. There are three important cases.

1) Atoms are located close to, but not on, symmetry elements such as mirror planes or rotation axes. Terms in matrices blow up if refinement places the atom very close to the symmetry elements.

2) The fitting function is incorrect. If thermal motion is high, approximation with thermal ellipsoids may be far from correct.

Compare, for example, the electron density map and ORTEP of carbon 6 in the room temperature structure of $[Rh(CNCHCH_2)_4]ClO_4$.

3) The fitting function is not unique. Fitting very "smeared out" electron density such as that observed for halide chains in $(TTT)_2I_3$ and $(TTF)Cl_{0.67}$ or the disordered perchlorates in $[Rh(CNCHCH_2)_4]ClO_4$, can be done in many ways which are equally valid.

In all cases, the observed electron density is far more informative than the parameters used to fit it. Some parameters were not refined by least squares. A fit which provided a flat difference map, low residuals, and convergence of refinable parameters was considered satisfactory.

The kinds of structure disorder and distortion which give rise to diffuse spots in the diffraction patterns of $(TTF)Cl_{0.67}$ and $(TTT)_2I_3$, and satellite reflections in the diffraction pattern of $(TMTSF)(SCN)_{0.5}$, are fairly well understood.

Disorder which appears as "mistakes" with respect to an ideal lattice gives rise to broadening of diffraction peaks (1,2,3). This phenomenon arises for the same reason that peak broadening in powder diffraction occurs. Diffraction peaks are infinitely sharp only for infinite lattices. As the number of repeating units in a diffracting domain (a single particle in powder diffraction or a mosaic block in single crystal diffraction) decreases, the resulting diffraction spots will increase in width. According to Wilson's treatment, the probability of mistakes (α) will determine the average size of the diffracting domains and the intensity (I) as a function of a normalized coordinate (w) in reciprocal space will be given by:

$$I(w) \sim \frac{\alpha}{\alpha^2 + \pi^2 w^2}$$

This expression was used to determine the size of diffracting domains in $(TTF)Cl_{0.67}$ after fast cooling. It also might be used to determine the range of order of the chloride sublattice in $(TTF)Cl_{0.67}$ at room temperature, and the iodide lattice in $(TTTF)Cl_{0.67}$ at room temperature for the following reasons.

- a) Accurate profiles must be obtained using a very small or narrow aperture for the x-ray beam.
- b) Chloride sublattice reflections were extremely weak and very diffuse at room temperature.
- c) The diffuse third layer reflections were only ~50% wider than sublattice reflections in (1.d.)(TTT)₂I₃, and w scans could not be obtained on the quarter-circle diffractometer.

Qualitatively, the range of order of chlorides in $(TTF)Cl_{0.67}$ might be ≤ 100 Å. The range of order of iodide ions in $(1.d.)(TTT)_2I_3$ is hard to estimate, as part of the diffracted intensity indicates only one-dimensional order, while the spots on the diffuse third layer indicate quite long three-dimensional order (≥ 1000 Å).

Modulation of structures results in superperiods and leads to the observation of satellite reflections on diffraction patterns. Early treatments of this effect distinguished between modulation of unit cell parameters and structure factor amplitude (4). In the first case, for modulation in, say, the x direction of the crystal, satellites with index h = 0 will have very small intensity. If the structure factor amplitude is modulated, these satellites will have significant intensity. Later treatments describe satellite intensity for specific kinds of structure modulation (5). A number of structures have been solved in which refinement of satellite, or study of its significance, played an important role (6,7).

The modulation of the $(TMTSF)(SCN)_{0.5}$ structure clearly involved structure factor amplitude modulation rather than unit cell parameter modulation. Patterson maps showed that most of the modulation was associated with the x = 0 plane. Further details of the model are given in Chapter 5. In general, satellites of order greater than one are not observed or are very weak. No attempt was made to fit the great decrease in intensity on going from firstto second-order satellites, which could be observed for $(TMTSF)(SCN)_{0.5}$.

The space groups used to fit the full cell data of $(1.d.)(TTT)_2I_3$ and the satellite data of $(TMTSF)(SCN)_{0.5}$ were picked to be consistent with the basic structures of the crystals. Symmetry elements which the superperiod necessarily destroyed were removed, and lower symmetry space groups were then picked which contained the remaining symmetry of the structure. Likewise, the space group of the low temperature monoclinic phase of $(TTF)Cl_{0.67}$ has the most symmetry that

180

•

can remain after the distortion of the tetragonal cell. A good treatment of derivative crystal structures exists (8).

References

- 1. A. J. C. Wilson, X-Ray Optics, Chapter V, London, Methuen (1949).
- 2. B. T. M. Willis, Proc. Roy. Soc., A248, 183 (1958).
- 3. K. Dornberger-Schiff, Acta Cryst., 9, 593 (1956).
- 4. A. J. C. Wilson, X-Ray Optics, Chapter VIII, London, Methuen (1949).
- 5. H. Böhm, <u>Zeitschrift fur Kristallographie</u>, <u>143</u>, 56-66 (1976);
 H. Bölm, Acta Cryst., A31, 622 (1975).
- 6. H. Kobayashi, <u>Acta Cryst.</u>, <u>B30</u>, 1010 (1974).
- P. B. Jamieson, D. deFontaine, and S. C. Abrahams, <u>J. Appl.</u>
 <u>Cryst.</u>, <u>2</u>, 24 (1969).
- 8. M. J. Buerger, J. Chem. Phys., 15, 1 (1947).