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ABSTRACT

In this thesis we bring discrete differential geometry to bear on model reduction,
both in the context of data analysis and numerical simulation of physical phenomena.

First, we present a novel controllable as-isometric-as-possible embedding method
for low- and high-dimensional geometric datasets through sparse matrix eigenanal-
ysis. This approach is equally suitable for performing nonlinear dimensionality
reduction on big data and nonlinear shape editing of 3D meshes and pointsets. At
the core of our approach is the construction of a “multi-Laplacian” quadratic form
that is assembled from local operators whose kernels only contain locally affine func-
tions. Minimizing this quadratic form produces an embedding that best preserves
all relative coordinates of points within their local neighborhoods. We demonstrate
the improvements that our approach brings over existing nonlinear local manifold
learning methods on a number of datasets, and formulate the first eigen-based
as-rigid-as-possible shape deformation technique by applying our affine-kernel em-
bedding approach to 3D data augmented with user-imposed constraints on select
vertices.

Second, we introduce a new global manifold learning approach based on met-
ric connection for generating a quasi-isometric, low-dimensional mapping from a
sparse and irregular sampling of an arbitrary low-dimensional manifold embedded
in a high-dimensional space. Our geometric procedure computes a low-dimensional
embedding that best preserves all pairwise geodesic distances over the input pointset
similarly to one of the staples of manifold learning, the Isomap algorithm, and ex-
hibits the same strong resilience to noise. While Isomap relies on Dijkstra’s shortest
path algorithm to approximate geodesic distances over the input pointset, we instead
propose to compute them through “parallel transport unfolding”, a discrete form
of Cartan’s development, to offer robustness to poor sampling and arbitrary topol-
ogy. Our novel approach to evaluating geodesic distances using discrete differential
geometry results in a markedly improved robustness to irregularities and sampling
voids. In particular, it does not suffer from Isomap’s limitation to geodesically
convex sampled domains. Moreover, it involves only simple linear algebra, sig-
nificantly improves the accuracy of all pairwise geodesic distance approximations,
and has the same computational complexity as Isomap. We also show that our
connection-based distance estimation can be used for faster variants of Isomap such
as Landmark-Isomap.
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Finally, we introduce an operator-adapted multiresolution analysis for finite-element
differential forms. From a given continuous, linear, bijective, and self-adjoint
positive-definite operator L, a hierarchy of basis functions and associated wavelets
for discrete differential forms is constructed in a fine-to-coarse fashion and in quasi-
linear time. The resulting wavelets are L-orthogonal across all scales, and can
be used to obtain a Galerkin discretization of the operator with a block diagonal
stiffness matrix composed of uniformly well-conditioned and sparse blocks. Be-
cause our approach applies to arbitrary differential p-forms, we can derive both
scalar-valued and vector-valued wavelets that block diagonalize a prescribed op-
erator. Our construction applies to various types of computational grids, offers
arbitrary smoothness orders of basis functions and wavelets, and can accommodate
linear differential constraints such as divergence-freeness. We also demonstrate the
benefits of the operator-adapted multiresolution decomposition for coarse-graining
and model reduction of linear and nonlinear partial differential equations.

We conclude with a short discussion on how future work in geometric model reduc-
tion may impact other related topics such as semi-supervised learning.
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map or a fish: using the finest grid of 256× 256 elements, two result-
ing coarse (4 × 4 level) operator-adapted basis functions ϕk

i (one in
red, one in blue) are displayed in (a-b), and all the basis functions at
the level for which the grid is 8 × 8 are shown using different colors
in (c-d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.10 Operator-adapted Divergence-free Bases. We visualize vector
fields corresponding to divergence-free 1-form basis functions ϕk

i

adapted to various operators and associated to several spatial lo-
cations on three different resolution levels. Divergence-free basis
functions retain a characteristic vortical appearance; however, the
differences in their shapes reflect their ability to capture representa-
tive features of the associated solution spaces: they are smooth for
the 1-form Laplacian (top), have high frequency oscillations for the
modified 1-form Laplacian (middle, see Eq. (5.28)), and are stretched
along the advecting velocity field for the advection-diffusion operator
(bottom; see advecting field in Fig. 5.6(left)). . . . . . . . . . . . . . 103

5.11 Divergence-free Adapted Basis Functions onGrid-embeddedDo-
mains. Using the same setup as Fig. 5.9, we now show the divergence-
free basis function adapted to the 1-form Laplacian restricted to com-
plex embedded domains. Various basis functions on a coarse (4 × 4)
and a finer (8 × 8) level are shown using different colors in: three
coarse and four dine basis functions for the US map, and three coarse
and one fine basis functions for the fish. . . . . . . . . . . . . . . . 104
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5.12 Operator-adapted Multiresolution Decomposition. Given a 1-
form differential operator, an element of its solution space 1-form u

defined via edge values on a 128×128 grid (left, LIC-visualized as its
equivalent vector field) can be efficiently decomposed into a sum of a
coarse 1-form u1 described via edge values on a 2×2 grid, and all the
wavelet contributions ω1, ω2, ω3, ω4, ω5, ω6 of the mesh hierarchy.
Since our vector visualization does not convey relative magnitude,
we also indicate the energy content (as a percentage) of each compo-
nent. All operator-adapted bases exhibit homogenization properties
with most of the energy concentrating on coarser resolution levels;
however, this effect is significantly more pronounced for the Whit-
ney refinement rule. We omitted operator-adapted divergence-free
decomposition in (b), because advection-diffusion solution element
u used in this figure is not divergence-free. . . . . . . . . . . . . . . 106

5.13 Homogenization Effect. We demonstrate decay of the homoge-
nization error — i.e., the energy norm of the approximation error
between the fine FEM solution u and its level-k operator-adapted
approximation uk (see Eq. (D.1)) — as a function of k; for each
of the test operators (1-form Laplacian, modified 1-form Laplacian
and advection-diffusion), the solution u is visualized in Fig. 5.1,
to which the uk approximant is compared. The slope of red line
depicts the theoretical bound on typical numerical homogenization
error behavior, assuming a regular 2D grid is used. Our operator-
adapted Dirac-Whitney (top left) and original Whitney (top right)
wavelets lead to exponential decay of the error for the three opera-
tors, demonstrating the expected numerical homogenization effect.
In contrast, operator-independent wavelets based on Dirac-Whitney
(bottom left) and original Whitney (bottom right) refinement rules
fare significantly worse, leading to growing energy norm errors and
unconvincing decay respectively (here we use wavelets that are L2-
orthogonal between the scales, i.e., adapted to Identity operator; see
Figs. 5.4 & 5.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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5.14 Approximation Errors. Using the same setup as Fig. 5.13, we
now measure the approximation error using the L2 norm instead of
the energy norm. With this norm, it is known that non adapted
bases may also exhibit convergence, but their rate of convergence
can be arbitrarily bad [14]. While the decay rate is improved for
all curves compared to Fig. 5.13, operator-adapted wavelets (top
row) still perform significantly better than non-adapted ones (bottom
row); Dirac refinement rules (left column) lead to slower decay than
Whitney (right column), as expected due to smaller stencil. Note that
the red curve representing the theoretical rate of convergence here is
two times steeper than before. . . . . . . . . . . . . . . . . . . . . . 108

5.15 Condition Numbers. We compare the condition numbers (in log
scale) of stiffness matrices Ak of 1-form basis functions (in blue)
and their associated wavelets Bk (in orange) for our operator-adapted
multiresolution decomposition with q = 7 resolution levels (finest
grid is 128 × 128 cells) for three operators: 1-form Laplacian (top
row), modified 1-form Laplacian (middle row, see Eq. (5.28)), and
advection-diffusion (right row). The Dirac-Whitney refinement rule
(left column) tends to produce slightly better condition numbers for
matrices Bk compared to the original Whitney rule (right column)
as expected, but in both cases they remain bounded and often peak
on intermediate resolution levels. In particular, condition numbers
of the wavelet stiffness matrices Bk are up to 3 orders of magnitude
smaller than those of Ak for large k (i.e., on finer scales). . . . . . . . 110
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5.16 Eigenranges. We show that the eigenvalue ranges of 1-form wavelet
stiffness matrices Bk are (overlapping) subbands of the eigenvalue
range of the input stiffness matrix Aq = Aq (evaluated with non-
adapted basis on the finest resolution) for three test operators: 1-
form Laplacian (top row), modified 1-form Laplacian (middle row,
see Eq. (5.28)) and advection-diffusion (bottom row); each horizon-
tal segment covers the spectrum of the associated stiffness matrix
(A1,B1,B2,B3,B4,B5,B6, and A7.). Both Dirac-Whitney (left col-
umn) andWhitney (right column) refinement rules produce operator-
adapted wavelets that capture frequencies associated with respective
resolution levels; the degree of overlap generally depends on the op-
erator and tends to be smaller for Dirac-Whitney refinement due to
its small spatial support. . . . . . . . . . . . . . . . . . . . . . . . . 111

5.17 Eigenanalysis of Operator-adapted Divergence-free Basis. We
demonstrate spectral properties of stiffness matrices corresponding
to the 1-form divergence-free wavelets and basis functions adapted
to 1-form Laplacian (left colum), modified 1-form Laplacian (mid-
dle column, see Eq. (5.28)) and advection-diffusion (right column):
condition numbers (top row) and eigenrange subband structure (bot-
tom row) have the same qualitative properties as for unconstrained
operator-adaptedmultiresolution constructions (see Figs. 5.15&5.16).
Note that the range of eigenvalues for the top level is degenerate
(hence the short orange bar): since there’s only one vertex at the
coarsest level, the stiffness matrix becomes just a scalar. . . . . . . . 112

5.18 Localization of Laplacian-adapted Bases. We demonstrate the
exponential decay of basis functions ϕk

i adapted to the 1-form Lapla-
cian using Dirac-Whitney (top), original Whitney (middle), and
divergence-free (bottom) refinements, normalized to have unit max-
imum value, using log-scale contour plots. Examples of edge-based
basis functions from five different levels of the mesh hierarchy are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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5.19 Localization of Advection-diffusion-adapted Bases. We demon-
strate the exponential decay of basis functions ϕk

i adapted to the
advection-diffusion (discretized through first-order upwind approxi-
mation) using Dirac-Whitney (top), original Whitney (middle), and
divergence-free (bottom) refinements, normalized to have unit max-
imum value, using log-scale contour plots. Examples of edge-based
basis functions from five different levels of the mesh hierarchy are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.20 Sparsity. We visualize the sparsity pattern of the block diagonal
stiffness matrix diag[A1,B1, ...,B6] obtained via Alg. 5.1 when a sim-
ple linear solver with threshold-based (<1e−15) pruning (left) vs. fast
localized solve (right) is used, for a 1-form Laplace operator adapted
decomposition using Dirac-Whitney (top) and original Whitney (bot-
tom) refinement rules. Using fast localized solves allows to decrease
sparsity (proportion of non-zeros) from 6.58% to 0.51% for Dirac-
Whitney, and from 10.96% to 3.63% for original Whitney refinement. 113

5.21 Base-detail decomposition. For an input image of 512 × 512 pixels
(left) we perform amultiresolution decomposition adapted to Perona-
Malik operator acting on 2-forms using q=9 resolution levels. This
complete decomposition can be directly leveraged in image process-
ing tasks, but it can also be used to obtain a reduced base-detail
representation. In particular, the base layer can be computed as a
projection of the original image onto the k-th resolution level V k

(top row); observe the strong preservation of edges even for k = 4.
The detail level, obtained as the difference between the original image
and the base level (bottom row), can also be seen as a projection of
the original image onto the wavelet spaceWk⊕L . . .⊕LW

q. . . . . 117
B.1 Unfolding Petals. From a 3D sampling of 4-petal shaped portion of

a sphere (middle), Isomap (a staple of manifold learning) fails to find
a near isometric 2D parameterization (left) due to the non-convexity
of the intrinsic geometry. Our parallel transport approach, instead,
deals with this case perfectly (right). Lifting the pointset to 100D and
applying random rotations and reflections does not change our result. 144
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B.2 Local Methods for Noiseless Petals. From a 3D sampling of 4-
petal shaped portion of a sphere (see Fig. 4.1), local methods such as
Modified LLE [203], Hessian LLE [71], or SAKE have no issue with
the non-convexity of the intrinsic geometry (unlike Isomap), and give
results nearly equivalent to PTU. A notable exception is LLE [155],
which returns a near degenerate solution. . . . . . . . . . . . . . . . 144

B.3 Noisy Petals. Given a 3D sampling of a 4-petal shaped portion
of a sphere (see Fig.B.1) with added Gaussian noise in the normal
direction (σ: 3% of sphere radius), PTU recovers an almost perfect
quasi-isometric 2D parametrization, while Isomap still fails (bottom).
Local methods, not exploiting large geodesic distances, fail even
worse, with the notable exception of SAKE that performs better than
Isomap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.4 Effects of Noise on Local and Global Methods. Using the Swiss
Roll dataset, Gaussian noise with standard deviation given as a per-
centage of the bounding box of the original noiseless swiss roll is
added along the normal. We use the same number of neighbors (10)
for local methods to provide a fair comparison (it prevents shortcut-
ting as much as possible; using larger values would make the local
methods fail earlier). Local methods all failed around σ = 1.3%,
while global methods (Isomap and our approach) fare well until
2.7%. At 2.8%, the neighbors of a datapoint may belong to sev-
eral different branches of the roll, which makes it impossible even for
global methods to handle. . . . . . . . . . . . . . . . . . . . . . . . 146

B.5 Landmark-PTU. Landmarks are colored red for clarity. (Left) the
use of 9 landmarks (left) or 19 landmarks (right) is enough to recon-
struct the petals in the noiseless example of Fig. 1 of the submission.
(Right) using 10 landmarks (top) vs. 20 landmarks (bottom) is visu-
ally very similar on this 2000-point datasets, although one can notice
a slight distortion as indicated by the color of themapped points using
the color ramp based on distortion error compared to the expected
perfect embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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C h a p t e r 1

INTRODUCTION

With the prevalence of big data and the exponentially growing amount of available
information, the demand for numerical tools to analyze high-dimensional data sets
and phenomena has become paramount in recent years. Despite significant theoret-
ical and technological advancements, most analytical tools struggle with processing
high-dimensional datasets due to the sheer amount of computations involved, an
issue often referred to as the “curse of dimensionality”. Broadly construed, model
reduction tackles the issue of how to reduce the computational complexity (in time
and/or in storage space) of common numerical tasks, be they in machine learning
or computational physics. It aims to obtain a computationally efficient approx-
imation of the original data or phenomenon by reducing its degrees of freedom
without introducing significant numerical errors. For instance, model reduction
can uncover a lower-dimensional representation of a given dataset while preserving
relevant structural and statistical features (known as dimensionality reduction in ma-
chine learning), or filter out irrelevant high-frequency effects to simplify the model
(called homogenization or coarse graining in numerical simulation). In this thesis,
we show that discrete differential geometry can impact these two very different cases
of model reduction.

Manifold learning approaches to dimensionality reduction assume that the input data
samples, possiblywith added noise, a low-dimensionalmanifold embedded in a high-
dimensional space, and they seek to construct a structure-revealing parametrization
of that manifold in low-dimensional Euclidean space. We introduce two novel
geometric manifold learning methods: Spectral Affine-Kernel Embedding (SAKE),
and Parallel Transport Unfolding (PTU). SAKE relies on local information extracted
from overlapping neighborhood patches and uses sparse matrix eigenanalysis to
produce an embedding that best preserves all relative point positions within that
manifold; in contrast, PTU first estimates all pairwise geodesic distances between
input points using parallel transport and then uses this global description of the data
to construct a quasi-isometric embedding through eigenanalysis of a dense matrix.
Hence, the main qualitative difference between these two proposed methods is the
amount of geometric information they use, which manifests itself in the trade-off
between computational complexity and stability with respect to noise and irregular
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sampling. SAKE, which typically requires only O(n1.5) number of operations, is
ultimately faster, but less resilient than PTU, which has a complexity of O(n3) in
its original form. We present the improvements that both our methods introduce
compared to existingmanifold learning algorithms and also formulate the first eigen-
based 3D mesh and point set editing technique, built upon SAKE framework.

In the context of partial differential equations and dynamical systems, model reduc-
tion aims to simplify the problem with negligible or limited impact on the solution.
In general, it is beneficial to express a differential equation in the language of
differential geometry and exterior calculus, as it produces a concise and coordinate-
independent formulation of the problem, often revealing important properties of
the simulated phenomenon. While traditional discretizations of differential equa-
tions often fail to preserve crucial geometric structures, Discrete Exterior Calculus
(DEC [68, 101]), Subdivision Exterior Calculus (SEC [62, 190]), and Finite Element
Exterior Calculus (FEEC [9, 11]) are designed to preserve as many structural proper-
ties of differential operators as possible by working with carefully constructed finite
element spaces of differential forms. We introduce the first construction of operator-
adapted wavelets for spaces of differential forms as a tool for computational model
reduction in DEC and SEC framework, extending the notion of “gamblets” ([140],
[139]). Given a continuous, linear, bijective, self-adjoint, and positive-definite exte-
rior operator mapping p-forms to p-forms, we describe a computational procedure to
obtain adapted wavelets that are operator-orthogonal across all resolution levels, in
quasilinear time. In particular, the resulting adaptivity manifests itself in numerical
homogenization effect, which allows for a high quality approximation of the solution
space with just a subset of wavelets associated with coarser resolution levels. In ad-
dition, a Galerkin discretization of the operator in the resulting wavelet space leads
to a block diagonal stiffness matrix with sparse and well-conditioned blocks, allow-
ing for efficient and independent linear solves for different scales. We also show
that our framework can be modified to incorporate physically relevant constraints
by detailing the construction of divergence-free operator-adapted wavelets.

1.1 Organization

• In Chapter 2, we review existing local and global manifold learning ap-
proaches, providing the necessary background for our contributions.

• In Chapter 3, we describe a local approach to manifold learning that we called
Spectral Affine-Kernel Embeddings. We demonstrate the advantages that
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this technique brings over existing local nonlinear dimensionality reduction
methods on a number of datasets and also present a novel framework for
nonlinear shape editing of 3D data as a straightforward modification of SAKE
approach.

• In Chapter 4, we introduce Parallel Transport Unfolding, a global approach
to manifold learning based on discrete metric connections. We discuss the
theoretical foundations and benefits of our approach compared to the tradi-
tional Dijkstra-based geodesic estimation employed in the Isomap algorithm,
and validate them in practice on a number of datasets.

• In Chapter 5, we present a new axiomatic derivation of the construction of
operator-adapted wavelets, recently introduced in [140], that uses only simple
linear algebra. We then extend this construction to offer operator-adapted
wavelets for differential forms by leveraging the framework of Subdivision
Exterior Calculus (SEC). We demonstrate numerical properties of the pro-
posed approach, including homogenization effect, fast wavelet decay, and
well-conditioning of wavelet stiffness matrices, for several differential equa-
tions acting on 1-forms (or equivalently, vector fields) in 2D.

• In Chapter 6, we provide a summary of our contributions and point out
potential directions for future research.
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C h a p t e r 2

PREVIOUS WORK

We begin our exposition with a brief review of previous works in the two main
applications we target in this thesis: manifold learning and multiresolution analysis.

2.1 Manifold Learning
The manifold assumption, which posits that high-dimensional datasets tend to con-
centrate on much lower dimensional curved spaces (manifolds), has been proven
surprisingly useful in a variety of contexts. Manifold learning algorithms extract
reduced dimensional representations of data, producing a low count of “intrinsic
variables” to describe the high-dimensional input—withwhichmarkedly faster com-
putations can be performed in the context of physical simulation, machine learning
(to address the “curse of dimensionality”), facial animation [111], skeletal ani-
mation [13], video editing [149], and mesh parameterization [160], to mention a
few.

Perhaps the most popular algorithm for dimensionality reduction is Principal Com-
ponent Analysis (PCA), which uses eigenanalysis to find the most significant low-
dimensional coordinates in which to express high-dimensional data in the most
informative way; yet it is only useful when data lie on or close to a linear subspace
of the high-dimensional space. Manifold learning algorithms can be viewed as
nonlinear extensions to PCA: since data points are assumed to be samples from
a low-dimensional (and, in general, curved) manifold that is embedded in a high-
dimensional space, nonlinear dimensionality reduction algorithms attempt to un-
cover a structure-revealing parametrization of this manifold.

In this chapter we will present an overview of several popular manifold learning
approaches, separating them into two classes: localmethods, that rely on information
extracted from small overlapping neighborhoods of the input points; and global
methods, that take into account the geometry of the whole dataset.

While we focus on graph-basedmanifoldmethods that aim to preserve geometrically
relevant information (in particular, relative positioning of points with respect to
their neighbors, or pairwise distances), we briefly mention that many alternative
nonlinear dimensionality reduction approaches exist: some are designed purely
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for visualization purposes and actually introduce distortions to emphasize some
properties of the data (e.g., tSNE [123]), while others aim to produce efficient
representations of the input without preserving geometric features directly (e.g.
dictionary learning, tensor factorizations, autoencoders, etc; see [2–4, 8, 12, 16, 98,
137, 169, 188]).

2.1.1 Problem Statement
Throughout our exposition, we consider an input data set S = {xi}

n
i=1 of n points

that irregularly sample (possibly with noise) a connected compact orientable d-
dimensional manifold M embedded in �D, with d � D. We only assume that
M possesses an atlas with a single chart, so that an injective d-dimensional
parametrization of the manifold exists. The goal of manifold learning is to con-
struct d-dimensional embedding of the input S as a pointset {zi}

n
i=1⊂�

d . Finally,
to simplify further expressions, we assemble a D× n matrix X= (x1, ..., xn) from the
input points and denote the final embedding as a d × n matrix Z= (z1, ..., zn).

2.1.2 Local Manifold Learning Methods
Local embedding methods, including Laplacian Eigenmaps [17], Locally Linear
Embeddings (LLE [155]), Modified Locally Linear Embeddings (MLLE [203]),
Local Tangent Space Alignment (LTSA [204]), and their many variants, infer the
global structure of a nonlinear manifold by a careful analysis of the interactions
between overlapping local neighborhoods. While these methods differ in how they
approach the dimensionality reduction problem, they all encourage nearby points in
the original space to be mapped to nearby points in the reduced space, relying on
a sparse matrix eigenanalysis to deduce a global low-dimensional embedding that
best aligns all local neighborhoods. In particular, the aforementioned approaches
compute the final embedding as a collection of eigenvectors corresponding to the
smallest eigenvalues of a method-dependent sparse matrix. While this procedure
does not preserve the notion of scale or orientation (scaled eigenvectors remain
eigenvectors), the output of spectral local methods can be interpreted as “nearly-
isometric parametrization of input data up to a linear transformation”. The local
nature of this family of methods typically implies a computational complexity of
O(n1.5) [165] due to the sparsity of the matrix involved in the eigenanalysis. How-
ever, this sparsity is also a source of brittleness: while such methods try to preserve
the local features of data as much as possible, they do not penalize global, large-scale
distortions. This shortcoming gives rise to very warped and degenerate embeddings
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in practice [63, 184], an issue that can be partially reduced by reinjecting global
information (through distances between far away points) [107] at the expense of
computational cost. Hessian-based Locally Linear Embedding (Hessian-LLE [71],
[199]) may provide much improved results through the construction of approxi-
mate Hessian operators in local tangent spaces, thus enforcing local linear precision
and avoiding spurious (harmonic) warping that Laplacian-based methods, including
LLE and Laplacian Eigenmaps, suffer from. However, in the presence of noise
and irregular sampling, the approximation of Hessians becomes unreliable, and
this technique can end up with even worse warping than LLE (see Fig. 3.8): au-
tomatically “stitching” local flattened neighborhoods into a non-degenerate global
unfolding that is as isometric as possible to the original high-dimensional manifold
is inherently difficult. Local manifold learningmethods are thus general and efficient
enough to handle arbitrary inputs, but are rarely robust enough to offer a reliable
global embedding. The motivation behind our Spectral Affine-Kernel Embeddings
(Ch. 3) was to develop a fast local method with improved resilience to noise and
irregular sampling.

2.1.3 Global Manifold Learning Methods
The geometry of an input dataset S can be fully characterized in multiple ways.
One particularly convenient description is given by a set of all pairwise distances
between its points, as it uniquely defines S up to an isometric transformation.
As a result, it is often incorporated as a key component of global dimensionality
reduction methods. In particular, Multidimensional Scaling (MDS) [54, 182] relies
on all pairwise distances evaluated in the original input space �D and poses a
variational problem that aims to preserve those distances in the embedding. The
Isomap technique [180] is a variant of MDS that attempts to reduce distortion in
the mapping by preserving pairwise geodesic distances between all data points as
well as possible. After forming a k-nearest neighbor graph of the data points as a
representation of the input manifold, Isomap first solves the all-pairs shortest path
problem (using Dijkstra’s or Floyd-Warshall algorithm) to approximate geodesic
distances between every pair of points in the graph. Finally, a low-dimensional
embedding that best preserves these pairwise distances is then constructed with
MDS through eigenanalysis of the corresponding Gram matrix [24]. The high
computational complexity due to the eigenanalysis of a dense Gram matrix (in
O(n3)) can be further improved through probabilistic linear algebra [91], variants
such as Landmark-Isomap [63], or by exploiting various numerical improvements
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of MDS [32, 93, 110] that approximate its solution in near linear time. Since all
pairwise geodesic distances are used, Isomap is particularly robust to noise, and for
this reason it remains one of the most popular algorithms used for manifold learning.

In the remainder of this chapter, we will review MDS and Isomap in more detail, as
they will be leveraged in Ch. 3 and Ch. 4.

Multidimensional Scaling Algorithm

The goal of classical MDS is to recover an �d embedding of n points given a
symmetric n×n matrix D of pairwise squared distances between them (with n ≥ d).
First, an n × n Gram matrix G is constructed from D via “double-centering” [24],
using the relationship between a norm and associated inner product; that is, denoting
identity matrix by I and the n-vector of ones by e,

G=−
1
2
(I−

1
n

e eT )D (I−
1
n

e eT ).

This Gram matrix may be further altered to represent a proper kernel, see [45]. The
final embedding Z is found as the product of square roots of the d largest eigenvalues
and corresponding eigenvectors of G:

Z =
√

Λd QT
d,

whereG=QΛQT is the eigendecomposition ofG, and (Λd,Qd) denote the truncated
matrices containing only the d largest eigenvalues of G and corresponding eigen-
vectors respectively. Consequently, the embedding is found by computing partial
eigendecomposition (Λd,Qd), a numerical task of expected complexity O(n3) since
the Gram matrix is dense.

MDS is, in fact, a variational approach, since Z can be interpreted as a square root
of a matrix given by the minimizer of the following optimization problem:

min
Gd∈�

n×n
| |G−Gd | |2

s.t. rank(Gd) ≤ d.

In other words, MDS recovers a d-dimensional embedding of n points whose Gram
matrix is as close to G as possible (in 2-norm). Notice that a natural alternative
approach would be to construct an embedding whose pairwise squared distances
approximateD directly. However, since both formulations achieve zero error (perfect
approximation) simultaneously [64], the first one is preferable due to its closed form
solution. Despite the technical difference between these two formulations, MDS is
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often interpreted as an embedding procedure that preserves pairwise distances as
well as possible.

Proposition 2.1. MDS is “linearly precise”: assuming the pointset S = {xi}
n
i=1

samples a linear d-dimensional subspace R of �D (with n> d), its MDS embedding
Z ∈ �d×n preserves all pairwise distances of the input data and can be expressed
as composition of a projection and a rigid body transformation of X ∈ �D×n .

Proof. Without loss of generality, assume thatX is centered around origin; otherwise
it can be translated first (and translation is an isometric transformation). Because
S samples a d-dimensional linear subspace R of �D, the rank of X is at most d.
Since G = XT X by construction, we also have rank G ≤ d. Therefore, the MDS
embedding Z =

√
Λd QT

d (using the notations from above) satisfies G = ZT Z. As
pointsets X and Z have the same Gram matrix G, they also have the same pairwise
distance matrix; in particular, Z can be seen as a composition of a projection and an
orthogonal transformation of X. �

However, when the data S lie on a curved d-dimensional manifold in �D, its MDS
embedding is rarely informative (in particular, it may be not injective) due to the
fact that Euclidean distances between data points completely ignore the manifold
structure.

Isomap Algorithm

The Isomap algorithm [180] for finding a low-dimensional, quasi-isometric embed-
ding of a point set S consists of three steps:

1. Construct a proximity graph G over the point set S;

2. Evaluate pairwise geodesic distances between elements of S via Dijkstra’s
algorithm on G;

3. PerformMDSon the resulting distances to find a quasi-isometric d-dimensional
embedding.

Proximity Graph. A graph is first constructed by creating undirected edges be-
tween neighboring input points. Two simple ways have been proposed to define
whether two points should be connected by an edge of the neighborhood graph: the
first (k-nearest neighbor, or k-NN) approach declares two points neighbors iff one is
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among the k nearest neighbors of the other based on Euclidean distances in�D; the
second (ε-ball) approach declares two points neighbors iff the Euclidean distance
between them is smaller than a user-defined threshold ε . Both constructions can
be done efficiently (typically, in O(n log n)) using a locality sensitive hashing data
structure for instance [59].

Geodesic Distances. After setting edge weights to the Euclidean distances be-
tween corresponding pairs of points, the next step is to run Dijkstra’s algorithm on
the resulting weighted graph G to compute approximations of all pairwise geodesic
distances between points ofS inO(n2 log n). The squares of these pairwise geodesic
distances are then assembled into an n×n symmetric matrix D.

Multidimensional Scaling Embedding. Finally, the (classical) MDS procedure
is performed on D to obtain the low-dimensional embedding that preserves these
squared distances as well as possible in O(n3).

In spite of the higher computational complexity compared to local methods reviewed
earlier, Isomap remains one of the most popular nonlinear dimensionality reduction
approaches. Its reliance on a proximity graph to measure disparity between points
allows it to handle data sampling curved manifolds, and the use of all pairwise
approximate geodesic distances makes it particularly stable in the presence of noise.

However, Isomap can produce severely distorted embeddings in the case of irregular
sampling and large sampling voids. These issues are associated with the errors aris-
ing from the use of Dijkstra-based shortest polylines to approximate true geodesics:
this approximation retains good quality only if the point set S forms a fairly dense
sampling of a geodesically convex manifold patch [180].

This problem will be addressed in Ch. 4 with our construction of Parallel Transport
Unfolding, a global quasi-isometric manifold learning method inspired by Isomap,
where geodesic distances are approximated through parallel transport.

2.1.4 Geometry processing perspective
Computing embeddings of discrete manifolds is one of the most general geometry
processing tasks. Surface parameterization, for instance, seeks to embed a three-
dimensional triangulated surface into the plane while minimizing some form of
distortion (see [66, 103, 130, 160]); mesh deformation is another example where
a different embedding of a surface or volume is sought after through minimizing
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distortion while satisfying user-specified constraints (see [29, 97, 104, 170, 173,
205]). While geometry processing has been mostly focusing on 3D datasets, its
techniques can be leveraged in the context of manifold learning, as the latter seeks to
find a low-distortion parametrization of the low-dimensional manifold embedded in
high-dimensional space. This link between geometry processing and dimensionality
reduction has even been exploited for parameterization [43, 160, 206] and other
graphics applications [201].

In Ch. 3 and 4, we bring discrete differential geometry concepts to bear on the
the inherently geometrical problem of manifold learning and demonstrate that our
approaches offer significant improvements over existing local and global methods.

2.2 Multiresolution Analysis
The relevance of wavelets to the representation of integral and differential operators
emerged very early on in the development of multiresolution analysis (MRA), a
framework for analyzing a given space through a construction of a hierarchy of
nested subspaces and their complements [15, 19, 21, 44, 49, 55–57, 75, 127, 185].
Wavelets have not only been used for fast inversion of a given operator [81, 177]
and analysis of corresponding solutions [80, 163], but also for denoising [70, 72]
and operator compression [20, 58, 85].

2.2.1 First and Second Generation Wavelets
While first generation adaptive wavelets (such as bi-orthogonal wavelets [48]) can
be constructed with arbitrarily high regularity, their shift and scale invariance pre-
vents their adaptation to irregular domains or non-homogeneous coefficients. This
problem has stimulated the emergence of second generation wavelets [39, 122, 178,
179, 187] offering stronger adaptability. While much more versatile, these wavelets
have found greater adoption in signal processing than in other computational fields.

2.2.2 Wavelets and Finite Element Method
Multiresolution analysis consists in considering a family of nested spaces {V k}

q
k=1

(such that V k−1 ⊂V k for k = 2, . . . , q) that approximate the solution space of a
given operator, together with their L2-orthogonal complements {Wk}

q−1
k=1 (defined

throughV k+1=V k ⊕Wk for k =1, . . . , q − 1), in order to construct the following
decomposition:

Vq = V1 ⊕W1 ⊕W2 ⊕ ...Wq−2 ⊕Wq−1. (2.1)
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Compactly supported basis elements of the spaces {Wk}
q−1
k=1 and {V k}

q
k=1 are

referred to as wavelets and basis (or scaling) functions respectively. While the L2-
orthogonal decomposition in Eq. 2.1 has been proven particularly useful for signal
processing and data compression, using such wavelet basis in FEM framework to
solve differential equations is not substantially better than the classical Galerkin
method: indeed, the wavelet-Galerkin stiffness matrix (defined as the Gram matrix
of all wavelets and coarsest scaling functions with respect to the energy scalar
product) is polluted with cross-terms from different resolution levels and becomes
ill-conditioned for fine meshes. Consequently, the FEM linear system represented
in the wavelet basis is difficult to solve efficiently and reliably in practice. We will
review the wavelet-Galerkin approach more thoroughly in Ch. 5 to illustrate the
issues with L2-orthogonal decomposition in detail, and show how these problems
can be remediated with an operator-adapted multiresoltion decomposition.

2.2.3 The Need for Operator-adapted Wavelets
In the context of numerical simulation, a consensus has now emerged that the ideal
notion of “operator-adapted wavelets” should have three properties: they should
be scale orthogonal with respect to the energy scalar product of the operator, the
operator should bewell-conditionedwithin each sub-band defined by thosewavelets,
and they should be localized in space. These properties are particularly desirable
when wavelets are used as a basis of finite elements for the Galerkin discretization of
the operator as the resulting stiffness matrix becomes block diagonal, with uniformly
well-conditioned and sparse blocks. Furthermore, these properties also imply that
the wavelets can be used as Wannier functions as well [112, 125, 193] given their
dual localization in space and eigenspace. Recently, scalar-valued operator-adapted
wavelets satisfying these three properties for linear symmetric positive definite
scalar differential operators have been formulated in [138, 140, 141, 158]. These
so-called “gamblets” were derived from a game theoretic approach to numerical
approximation [139], and were shown to be efficiently computable in a fine-to-
coarse fashion in quasilinear complexity. Gamblets have been successfully applied
to develop fast solvers for parabolic and hyperbolic PDEs [141], and fast solvers for
dense kernel matrices through modified Cholesky decomposition [158], as well as
to perform efficient PDE denoising [200] and eigenpairs computation [197].

In Ch. 5, the framework of operator-adapted multiresolution analysis will be ex-
tended to incorporate spaces of discrete differential forms, leading to efficient and
practical construction of vector-valued operator-adapted wavelets.
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C h a p t e r 3

SPECTRAL AFFINE-KERNEL EMBEDDING

3.1 Contributions at a Glance
In this chapter, we propose a controllable embedding method for high- and low-
dimensional geometry processing. Our spectral approach leverages simple and
efficient geometry processing techniques and can not only perform nonlinear di-
mensionality reduction on big data, but also offers a nonlinear shape editing tool for
3D meshes and pointsets when applied to 3D data.

Our method is formulated through minimization of a positive semidefinite “multi-
Laplacian” quadratic form that is assembled from local linear operators whose
kernels only contain affine functions. This optimization problem has a closed
form solution based on partial eigendecomposition of the sparse matrix associated
with the quadratic form. The optimal solution provides an embedding that best
preserves all relative positions of points with respect to each other within their local
neighborhoods.

We propose a three-step approach to the embedding problem: a) we first param-
eterize each local neighborhood from �D into �d as isometrically as possible via
Isomap, using an additional geometric correction of geodesics to improve robustness
to irregular sampling; b) we then compute an exhaustive set of relative coordinates
that captures the position of every point with respect to its local neighborhood;
c) lastly, a global embedding is found as the new point positions in �d that best
preserve all the relative coordinates from all the neighborhoods. Each of these three
steps is efficiently formulated as a spectral problem: (a) requires independent (thus,
trivially parallelizable) partial eigendecompositions of dense, but small matrices;
(b) is done via independent partial SVDs; and (c) is achieved via a partial eigende-
composition of a sparse, positive semidefinite symmetric matrix. Our approach can
be understood in geometric terms as constructing the global embedding coordinates
that are as linear as possible in the local most-isometric parameterization of each
small neighborhood of the original input. Note that this is in marked contrast with
most previous methods which fail to properly unfurl even flat or developable mani-
folds (see Figs. 3.2 and 3.3). Finally, we explore applications of manifold learning
to 3D geometry processing by formulating a spectral, as-rigid-as-possible shape
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deformation technique that computes the most-isometric embedding of an original
shape based on user-defined position constraints.

Besides our novel embedding approach, we also provide along the way a series of
contributions covering various aspects of manifold learning and shape deformation:

• We introduce a local geodesic curvature correction to the distances used in
Isomap [180] that adds much improved stability to this staple of nonlinear di-
mensionality reduction in the case of irregular and sparse sampling, without
affecting its computational complexity or adding new parameters;

• We add robustness to Locally-Linear Embeddings [155] and Laplacian Eigen-
maps [17] by using an exhaustive set of relative coordinates to guarantee the
absence of spurious harmonic deformation in the final embedding. Our ex-
tension is much simpler and more robust to irregular sampling and noise than
Hessian-LLE [71], which unnecessarily requires quadratic accuracy of their local
Hessian operators;

• We introduce a simple approach for user-guided deformation of meshes and
pointsets which, unlike previous nonlinear editing approaches [29, 173], can be
efficiently and reliably computed through eigenanalysis of a sparse matrix.

3.2 SAKE Algorithm
Using the notation and assumptions of Sec. 2.1.1, we introduce a procedure to map
input pointset S sampling a d-manifold M from �D into �d , where D > d. As
before, we assume S to be arbitrarily indexed, and use a D×n matrix X= (x1, ..., xn)

and a d × n matrix Z= (z1, ..., zn) to denote the coordinates of input points and the
final embedding respectively.

Our dimensionality reduction proceeds in four distinct steps:

• We first form a proximity graph G by linking nearby input points; we then
assemble a local geodesic neighborhoodN(i) of each input point xi based on the
proximity graph.

• We compute for each xi an as-isometric-as-possible embedding of its neighbor-
hood in �d .

• For each of these resulting embeddings, we assemble a sparse matrix Li rep-
resenting a linear operator (“multi-Laplacian”) whose kernel is restricted to
constant and linear functions.
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Figure 3.1: SAKE: High- and Low-dimensional Geometry Processing. We
introduce a new technique to perform controllable embedding through eigenanalysis.
Our approach allows us to find structure in high dimensional datasets: (Top) from
221 RGB images (with 608×456 pixels; 10 are shown on the right) of an actor
in a knight costume captured from different lighting directions covering a large
sphere of illumination [117], a 2D embedding is computed solely based on local
pixel differences (left). Our Spectral Affine-Kernel Embedding method finds a 2D
parameterization of the images corresponding to the direction and the intensity of
the lighting (the knight images correspond to red dots). (Bottom) The same spectral
embedding approach can also be used for user-guided shape editing of 3D meshes
and pointsets, where a few handles are moved to precisely control the deformation
of an initial object through a simple sparse matrix eigenanalysis.

• We then assemble a quadratic form Q derived from the affine-kernel matrices
Li, and find the final embedding {zi}

n
i=1 in �d by computing the lowest (d+1)

eigenvectors of Q.

We now review each step in order to provide both algorithmic details and mathe-
matical justification for our embedding approach.
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3.2.1 Proximity Graph and Geodesic Neighborhoods
We begin by forming a proximity graph G by linking every point of S with its k

nearest neighbors based of the Euclidean distance in �D, found efficiently through
a kd-tree, cover tree, or locality sensitive hashing data structure. The value of k

must be small to make sure the edges of the graph are short enough to offer reliable
approximations of geodesics. Knowing that we will approximate a d-dimensional
manifold, we typically choose k = 4d, i.e., a valence proportional to d like for a
regular grid. We then assign to each point xi the set of indices N(i) corresponding
to the K nearest neighbors of the ith point in the proximity graph—hence, defining
a geodesic neighborhood—for K larger than k. By default, we pick K in the interval
[k; 2d k] to account for the dimensionality of the data and the amount of noise. These
K-neighborhoods define n overlapping patches that will be unfolded into �d , and
then glued together into a global d-dimensional embedding.

Note that our choice of a small value k for the proximity graph and a distinct, larger
value K to define neighborhoods prevents the traditional issue of “shortcutting” the
manifold: existing methods do not make the distinction between these two values,
and pick a neighborhood based on either an ε-ball around the point or its k-nearest-
neighbors in�D. However, robustness to noise requires a large number of neighbors,
which creates graph edges that are far from being geodesics. Instead, our simple
alternative allows the use of large neighborhoods (to be robust to noise), while still
keeping a sparse edge graph to better approximate geodesic distances. Of course,
any additional knowledge on the sampling (such as noise level) can be used to adjust
the two parameters k and K . These parameters can even vary from point to point
if needed to better deal with varying sampling density for instance, although our

Figure 3.2: Affine Precision. Laplacian Eigenmap (middle) is not linearly precise,
as it fails to properly capture a uniformly sampled flat patch in 3D (left). SAKE
(right) does not suffer from this common limitation.
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Figure 3.3: Non-simply Connected Manifold. For points uniformly distributed
over a 2-dimensional S-shapedmanifold containing a hole (left), Isomap (topmiddle)
overestimates the size of the hole, while Laplacian Eigenmaps result (bottommiddle)
is severely distorted. Note thatHLLEwith k=12 (top right) and Sakewith k=K=12
(bottom right) recover close to perfect embeddings in this noiseless case.

strategy can already handle large density variations (see Fig. 3.10).

3.2.2 Mapping Neighborhoods into Reduced Space
Each geodesic neighborhood is then mapped as isometrically as possible into di-
mension d. Given that these neighborhoods are small and contractible, we use
Isomap [180] to achieve the mapping reliably: using PCA-based projection onto lo-
cal tangent space instead would be significantly less isometric if the input manifold
is curved.

Geodesic Distances via Dijkstra’s Algorithm. Each edge of the proximity graph
G is considered an intrinsic geodesic curve, and its Euclidean length in �D is
assumed to be an accurate estimate of the intrinsic distance between its end points.
For every pair of points in the geodesic neighborhood of point i that are not directly
connected by an edge, we compute its approximate geodesic distance by solving the
all-pairs-shortest-path problem, which Dijkstra’s algorithm [69] achieves optimally
in O(K2 log K).

Geodesic Curvature Correction. Shortest paths computed on the neighborhood
graph suffer from non-zero geodesic curvatures: Dijkstra’s algorithm will return
shortest paths that are polylines made of graph edges, which are very unlikely
to be the actual geodesics. To improve geodesic distance estimates, we correct for
these graph-induced errors by post-processing each shortest path to remove spurious
geodesic curvatures; more precisely, we construct an improved shortest path by shift-
ing its vertices parallel to the neighborhood’s local tangent space so as to eliminate its
geodesic curvature. To this end, we first compute an estimate of the local tangent d-
dimensional space of the neighborhood through PCA,which returns a d-dimensional
basis of orthonormal vectors t1, ...td in �D. Then for each “geodesic” polyline be-
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tween two points xp and xq (representing their shortest connecting path in graph G),
we displace the intermediate vertices of the polyline parallel to the d-dimensional
tangent space and orthogonal to the line (xpxq) to project out any “zigzagging”, thus
straightening the geodesic. This is easily achieved numerically: if xr is a vertex of the
polyline, first project the�D vectors vr = xr−xp onto the tangent d-dimensional space
to obtain v̂r =

∑
j(t j · vr) t j ; from

the resulting vectors v̂r , further extract
their projection along the direction v̂q

through

ṽr = v̂r −
[
v̂r · v̂q

]
v̂q/|v̂q |

2.

These final (tangent) vectors ṽr of the points along the path between xp and xq

are then subtracted from their corresponding original vertices xr to determine their
improved locations. The length of the resulting polyline (see inset), which has now
close to zero geodesic curvature, is a more accurate geodesic distance lpq between
xp and xq. Note that this correction guarantees exact distance evaluations when the
neighborhood is flat, and provides a robust and consistent estimate of distances in the
general case of a curved manifold—even applied on a well-shaped triangle surface
(where the graph is now formed by the edges of the mesh), our simple projection
reduces the relative geodesic length errors fivefold as shown in Fig. 3.4. The only
assumption our approach makes is that the PCA-based estimate of the local tangent

Figure 3.4: GeodesicDistanceCorrection. From a triangulated patch of a spherical
cap with good aspect ratio elements (left, top, and side views), the average relative
error of pairwise distances computed based on Dijkstra’s shortest paths is 5.6%; our
simple post-processing reduces the error to 0.8%. If we bin all the distances based
on the number of edges in the edge-based connecting paths, we see that aside from
the case of a single edge (where the geodesic distance cannot be improved), our
geodesic distance correction reduces errors by a factor of five or more.
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Figure 3.5: Geodesic Curvature Correction. Our geometric correction improves
geodesic approximations for coarse and irregularly sampled data; without it, extreme
distortion can happen on imperfectly sampled datasets. We set k =K = 12 for this
noiseless Swiss Roll example (left).

Figure 3.6: Gaussian Landscape. For a regularly-sampled “two-bump” surface
(left), LLE creates foldovers; HLLE/LTSA both significantly distort areas around the
bumps in a non-isometric way; MLLE recovers an almost regular grid, completely
ignoring the local curvature of the original data; k =24 neighbors were used for all
the methods. Instead, SAKE (k=8,K=24) finds a most-isometric embedding.

space on a neighborhood of size K is of reasonable quality. As a result, if the
neighborhoods are chosen to be too small relative to the noise present in the data or
too large compared to data features, the quality of the correction may deteriorate.

From Distances to a d-dimensional Embedding. For all the pairwise geodesic
distances lpq (for p and q in i∪N(i)) of the local neighborhood of point xi, we apply
MDS (see Sec.2.1.3) to obtain a lower dimensional flat embedding of a neighborhood
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that best preserves the geodesic distances. Note that if the points are lying on a flat
manifold, no distortion occurs in this process thanks to our correction step—a
property that regular Isomap fails to enforce due to the zigzagging of Dijkstra’s
shortest paths.

Discussion. Pairwise distances on triangle or tetrahedral meshes can of course be
computed faster and better through fast marching [206] or heat-based distances [53].
Diffusion distances have also been proposed to offer approximate geodesic distances
through truncation of the graph Laplacian spectrum and tuning of a diffusion time
t [50]. However, our approach applies to pointsets in arbitrary dimensions, and
its simplicity makes it particularly convenient: improvements over original Dijkstra
distances are already significant with only a small computational overhead.

3.2.3 Relative Coordinates
Now that we have unfurled all geodesic neighborhoods in d-dimensions, we assem-
ble for each of these mapped neighborhoods a set of linear equations that represent
all possible relative coordinates of a point with respect to its neighbors. Equiva-
lently, we will show that these equations enforce harmonicity in all constant metrics.
Since the neighborhood of point xi ∈�

D has been nearly-isometrically mapped to
points y j ∈�

d for each j in the index set {i}∪N(i), we will denote by Yi the (K+1)×d

matrix containing all the coordinates of the neighborhood points, i.e.,

Yi =
(
yi y j1 y j2 . . . y jK

)T
.

Affine-precise Linear Combinations. Define the d×K matrix

Ei=
(
y j1−yi; y j2−yi; . . . ; y jK−yi

)
containing in the m-th column the d coordinates of the edge vector y jm−yi. This
matrix can be thought of as a redundant basis of the d-dimensional tangent space,
and its kernel is formed by the space of all linear combinations of edges summing to
zero. Because we picked K > d (i.e., more neighbors than the dimensionality), the
rank-nullity theorem directly implies that the size of this kernel is K−d, as the edges
span the entire d dimensions in practice. The basis of this kernel can be constructed
efficiently through a Singular Value Decomposition (SVD) of Ei = UΛΛΛVT, where
U is a d×d orthogonal matrix, ΛΛΛ is a d×K rectangular diagonal matrix with the d

singular values in decreasing magnitude on the diagonal, and V is a K×K orthogonal
matrix. We simply select the last K− d right singular vectors {wp ∈�K}p=1..K−d
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of unit length as the basis vectors of the kernel. Now yi can be written as a linear
combination of its neighbors y j for each of these vectors wp since, by construction,

∀p ∈ [1..K−d],
( ∑

j∈N(i)

[wp] j

)
yi =

∑
j∈N(i)

[wp] j y j, (3.1)

where [wp] j denotes the j-th coordinate of wp. Consequently, the matrix Li of size
(K−d)×(K+1) defined as

Li =
©«

∑
j∈N(i)

[w1] j
∑

j∈N(i)

[w2] j . . .
∑

j∈N(i)

[wK−d] j

−w1 −w2 . . . −wK−d

ª®¬
T

satisfies Li Yi = 0. Note that the set of weights wp can be seen as a linearly-
independent basis of all relative coordinates, describing the position of yi in terms
of its neighbors y j for j ∈ N(i). Using the whole space of relative coordinates
instead of picking just one results in a more complete encoding of the data, allowing
us to capture the geometry of a patch in a reliable way.

Affine Kernel. Note that matrix Li has an important property: its kernel consists
of all (discrete) affine functions. Indeed, consider a scalar function f : �d → �

and call f the (K+1)-dimensional column vector representing the sampling of f

in the neighborhood, i.e. f j = f (y j) for j ∈ {i}∪N(i). Due to our construction of
Li, any constant function will satisfy Lif = 0. The same property holds for linear
functions as well because the weights form a basis of the kernel of Ei (Eq. (3.1)).
Thus, Ker Li contains all sampled affine functions. Furthermore, the rows of Li are
(K− d) independent vectors (by construction via the SVD), so by the rank-nullity
theorem the kernel of Li is of dimension (K+1)−(K−d)=d+1. However, the space
of affine functions f (y) = aT y + b (a ∈ �d, b ∈ �) also has dimension d+1. This
implies that sampled affine functions are the only elements of Ker Li.

Multi-Laplacian Interpretation. Note that our construction can be understood
as an extension of Laplacian eigenmaps [17]: while their approach uses a single
linear equation per neighborhood corresponding to a local condition of harmonicity,
we have instead a whole set of linear equations. Each row of our local operator Li

can be interpreted as a discrete harmonicity condition in a different metric—hence
our use of the term “multi-Laplacian.” Indeed, the action of a row of Li on a
discrete function f is of the form d? d f in the DEC notation [68], and equating it to
zero corresponds to a harmonic condition in a possibly non-Euclidean metric. The
matrixLi, in fact, encodes harmonicity conditions for all constant metricsσ over the
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unfolded neighborhood. The anisotropic Laplacian operator ∆σ f =∇·(σ∇ f ) returns
zero for affine functions as discussed in [60, 61], since constant metrics σ satisfy
∇ · (σ∇ f ) = Tr(σHess f ). (Linear accuracy is actually valid for all divergence-free
metrics, but the restricted case of constant metrics is sufficient for our purpose.)
Therefore, our construction can be thought of as identifying the intersection of
the spaces of σ-harmonic functions for all constant σ: these “multi-harmonicity
conditions” restrict the kernel to be sampled affine functions only—while the normal
Laplacian is blind to any non-zero off-diagonal term of the Hessian. Note that the
multi-Laplacian Li we end up with is less difficult to assemble than a Hessian
operator on which Hessian-LLE is based, since it requires no specific behavior
when applied to sampled quadratic functions; yet the two operators have the exact
same kernel, bringing robustness to the process as the authors of [71] argued.

3.2.4 Quadratic Form
In order to find the final embedding {zi}

n
i=1 in �d of the pointset S, we assemble a

sparse, symmetric, and positive semidefinite n×n matrix Q. Let Si be the (K+1)×n

selection matrix of neighborhood i, i.e., the sparse matrix such that each component
(p, q) is 1 if q∈N(p), and 0 otherwise—so that SiZT is themapped neighborhood of i

in the final d-dimensional embedding. We then define our global quadratic formQ as

Q =
n∑

i=1
ST

i LT
i Li Si .

Given our interpretation of the matrices Li as storing harmonicity conditions for
all constant metrics, one can understand the global quadratic form as the sum
of local Dirichlet energies computed in all locally constant metrics. The resulting
quadratic form thus penalizes any nonσ-harmonic functions—that is, any non-affine
functions— in any given neighborhood: it is therefore much more “discerning” than
a simple Laplacian.

3.2.5 Final Embedding
From the sparse SPD matrix Q, we extract the final, global embedding of the input
pointset as a set of positions {zi}

n
i=1 in �d by computing the first (d+1) smallest

eigenvectors qm of Q (satisfying Q qm = λmqm). Note that the first eigenvector is
constant and corresponds to zero eigenvalue by construction. The d coordinates of
points zi simply correspond to the second, third, ..., and (d+1)st smallest d eigen-
vectors:
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Figure 3.7: Swiss Roll with Sparse Noise. Flexibility in the size of geodesic neigh-
borhoods renders SAKE stable to noise. We use points sampled from an intrinsically
2D Swiss roll embedded in 3D with sparse, uniformly-distributed noise in the nor-
mal direction (left, 2 views). Results of nonlinear 2D embeddings (right column,
from top to bottom): LLE (k = 15), HLLE/LTSA (k = 15), MLLE (k = 15), and
SAKE (k = 15,K = 30). Results of LTSA and HLLE are visually indistinguishable
on this example.

zi =
(
[q2]i [q3]i . . . [qd+1]i

)T
.

Indeed, these are the positions that make every local neighborhood satisfy the multi-
harmonic conditions as closely as possible, in a least squares sense, since the matrix
Z= (z1 z2 . . . zn) is the solution of the following minimization:

arg min
Z∈�d×n

Tr
[
ZQZT ]

s.t. ZZT = Id, Z1 = 0

,where the constraints are used to prevent degenerate solutions (similar to the use
of Fiedler vectors in [130]). The final embedding thus preserves the local relative
coordinates as well as possible since, by construction of wp, we have LiYi = 0 over
all the isometrically parametrized patches of the original manifold.

Proposition 3.1. SAKE is “linearly precise” up to a linear transformation: as-
suming the pointset S samples a linear d-dimensional subspace R of �D, and the
proximity graph G is such that each sample point has enough neighbors to span a
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d-dimensional subspace, the SAKE embedding Z ∈ �d×n is a linear transformation
of input data X ∈ �D×n.

Proof. Because input data sample a linear subspace, our corrected estimates of
pairwise geodesic distances are exact. Consequently, applying Isomap to local
geodesic neighborhoods is equivalent to using classical MDS. By Prop. 2.1, the
produced mapping Yi is a linear distance preserving transformation of i-th geodesic
neighborhoodSiXT for any 1≤ i≤n; as a result, it also preserves all relative positions.
This implies that the input data X ∈Ker Q by construction (LiYi =LiSiXT = 0 for
any 1≤ i≤n). Since SAKE embedding procedure extracts (d+1) eigenvectors of Q
corresponding to smallest eigenvalues, it parametrizes its null space and effectively
introduces an orthogonal coordinate frame for d-dimensional linear subspace R
of �D that contains X (the first eigenvector is ignored). Therefore, Z represents
X projected onto a different orthogonal coordinate frame and is formally a linear
transformation of the latter. �

Notice that if the input pointset is finely sampling a developable manifold, we
recover a high quality intrinsic discretization, up to an affine transformation, of the
manifold isometrically unfolded in �d (the inaccuracies are incurred during local
neighborhood unfolding through Isomap); the first (d+1) eigenvalues of Q are close
zero in that case. If the original manifold is not developable, this extraction picks the
unfolding which is as affine as possible in each locally isometric coordinates—and
the eigenvalues of Q inform us on how non-developable the initial manifold was,
and how much metric distortion we can expect from our optimal low-dimensional
embedding.

3.3 Analysis and Results
We provide an extensive analysis to clearly identify the properties of SAKE, before
presenting numerical tests to confirm our claims. We used the SciKit Learn [162]
manifold learning implementation of Isomap, LLE, HLLE, LTSA, and Laplacian
Eigenmaps.

3.3.1 Computational Complexity
Once the initial proximity graph is computed (a task that is common to all mani-
fold learning methods), our approach involves four distinct stages. First, we com-
pute an all-pair-shortest-path algorithm per neighborhood so that each approximate
geodesic distance between point pairs can be evaluated; this step has a complexity
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of O(K2 log K) for each of the n neighborhoods. Second, we compute an as-
isometric-as-possible parameterization of each neighborhood, which requires the
O(K3) eigenanalysis of a dense (K+1) ×(K+1)matrix of distances. Third, we com-
pute a SVD in O(K3) to find the affine-kernel matrix Li in each neighborhood. Note
that these three first steps can be done in a massively parallel way, as they proceed
independently on each neighborhood. Finally, finding the (d+1) bottom eigenvec-
tors of the sparse matrix Q requires an expected O(n1.5) number of operations (as
already experimentally found in [165] and confirmed in our tests). Assuming that
K is small compared to the number of input points, the SAKE embedding algorithm
scales much better than Isomap, and does not suffer from any restriction on the
geometric nature of the manifold.

3.3.2 Comparison to Prior Methods
Before delving into numerical comparisons, we first detail how our approach
markedly differs from previous work. In particular, we explicitly describe the key
differences between SAKE and the two most closely related approaches, HLLE and
MLLE. In our discussion of the computational complexity of the various existing
methods, we will denote by k the average number of neighbors for each input point
xi to be consistent with our notation.

Figure 3.8: Swiss Roll with Gaussian Noise. SAKE can handle strong noise in the
input. Here, points are sampled from a 2D Swiss roll embedded in 3D with added
Gaussian noise along the normal (left, profile view). Results of 2D embeddings
(right, top to bottom): LLE (k = 15), HLLE/LTSA (k = 15), MLLE (k = 15),
and SAKE (k = 15,K = 75). Again, LTSA and HLLE return visually identical
results, significantly deformed due to the instability of PCA-based tangent plane
approximation in the presence of strong noise.
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Figure 3.9: Embedding Errors. For the SAKE results shown in Fig. 3.8 (top)
and Fig. 3.7 (bottom), we show the local reconstruction errors in pairwise distances
(MDS errors, left) and in relative l2 position errors (right).

SAKE vs. Isomap. Besides its issues of computational complexity and stringent
limitation to simply connected patches, Isomap is not robust to low sampling:
shortest-path geodesic approximations can become quite poor. Despite the existence
of proofs of convergence to the proper geodesic distances [63], the local differences
between local geodesic distances are often very inaccurate. Our improvement
through geodesic curvature correction allows for much more robust results; see
Figs. 3.4 & 3.5. While we use this distance correction only for local neighborhoods
in the context of SAKE, the same simple geometric insight can also enhance the
approximation of geodesic distances used in Isomap algorithm by performing this
correction over long geodesics through local corrections. Proper testing of this
local/global correction of Dijkstra’s shortest paths in Isomap is left as future work.

SAKE vs. Laplacian Eigenmaps. The approach of Belkin and Niyogi [17] relies
on an eigenanalysis of the Laplacian operator. However, the null space of this
operator may contain much more than linear functions: it includes all harmonic
functions such as f (x, y) = xy for instance. The final embedding is thus often
polluted by harmonic deformations, as observed in practice in Fig. 3.3. SAKE,
instead, reduces the kernel of its quadratic form by enforcing more than a single
linear equation per vertex, in order to guarantee a better isometry of the final
embedding. Moreover, the approximation of the Laplacian in high dimension by a
matrix L with entries Li j proportional to exp(−‖xi−x j ‖

2) as proposed in Laplacian
Eigenmaps does not satisfy linear precision. Consequently, a flat manifold would not
even be properly mapped without distortion (Fig. 3.2), while our approach returns
perfect parametrization free of nonlinear pollution in this case.

SAKE vs. Locally Linear Embedding. While LLE [155] does not rely on the
Laplacian operator, its foundations are quite similar to Laplacian Eigenmaps. The
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only difference in practice is that the linear equation assembled per point xi is not
derived from a local Laplace estimate, but determined by solving a constrained
least squares problem to best capture the local linear structure: it computes the
linear combination of neighborhood points {x j} j∈N(i) that best reconstructs xi. The
first advantage of this modification is that in the case of a flat manifold, this linear
equation is exactly satisfied by the input, so the result will be perfect. However,
as soon as the input manifold is curved, the lack of isometric unfolding of each
neighborhood and the reliance on a single linear equation per point to find the final
embedding renders the approach extremely brittle: different samplings of a same
manifold may result in dramatically different embeddings; see Figs. 3.7 and 3.8.
A follow-up work [87] proposes to first project the neighborhood in d-dimensions
through PCA. While this tends to reduce the sensitivity to noise since regularization
is no longer needed, this approach remains quite brittle due to the reliance on a
single linear equation per point.

SAKE vs. LTSA. Local Tangent Space Alignment [204] proceeds by first con-
structing an approximation for the tangent space at each data point, before aligning
these tangent spaces to form global coordinates. In essence, this approach is similar
to ours; but they instead directly enforce that transitions between neighborhood
charts be as affine as possible, and the initial construction of the tangent space relies
on PCA, which does not handle curved manifolds well. As a consequence, LTSA
is quite successful at unfolding nearly flat manifolds (Fig. 3.6) because it also relies
on more than a single linear equation per neighborhood (in fact, in many cases,
LTSA and HLLE have identical results); but LTSA systematically fails on more
challenging examples, as demonstrated in Fig. 3.8.

SAKE vs. Multiple-weights LLE. A variant of the original LLE method, named
Multiple-weights LLE [203], is worth discussing further: the authors were the first
to notice that the brittleness of LLE-type methods is mostly due to their reliance
on the enforcement of a single linear equation per neighborhood. Consequently,
they added to the regularized set of weights that LLE uses all the sets of weights
corresponding to singular values close enough to zero (requiring a user-specified
threshold), which offered much improved stability. However, just like LLE, the
authors do not use a local, as-isometric-as-possible embedding, so the kernel of their
operator is “polluted” by the way the manifold is embedded in higher dimension.
Consequently, the result of their dimensionality reduction is far frombeing isometric,
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Figure 3.10: S-shaped Manifold with Variable Density and Gaussian Noise.
SAKE is also robust to variable density in the input. A non-uniformly sampled
‘S’ shape is embedded in 3D with Gaussian noise added (left, profile views). We
compare our results with other existing approaches, for various parameters.

even if the input is nearly developable. Additionally, consider the example in Fig. 3.6:
while the result of MLLE may at first glance look best, close inspection reveals that
the mapped points are simply ignoring the curvature of the initial manifold. This
non-isometric behavior thus obscures the nature of the input data, and is hardly
useful in concrete applications.

SAKE vs. Hessian-LLE. Hessian-LLE [71], shares also a close relationship to
our approach: the authors recognized the value of reproducing affine functions
on each chart of the manifold to find a reliable embedding. Consequently, they
propose to construct local Hessian operators since their theoretical null space is
restricted to affine functions. They proceed by first unfolding each neighborhood
via PCA, which fails to be robust as soon as the input data is a bit noisy; see Fig. 3.8.
From the neighborhood projected onto a low-dimensional tangent embedding, they
construct a discrete basis of constant, linear, and quadratic functions (this last
subspace is constructed through pointwise product of linear functions). They finally
orthonormalize these bases through Gram-Schmidt. Thus, their method requires
O(ds2)more operations [88], where s=d(d+1)/2 is the dimensionality of the space
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Figure 3.11: Faces Dataset. From 698 images representing the same 3D face from
different viewpoints (each image is a point in �4096, see [180]), we compute the 2D
SAKE (k = 6,K = 36) embedding purely based on local pixel-per-pixel distances
of the images. The result parameterizes the camera angle quite accurately, with no
a-priori knowledge. Examples of the original face images are given for the 20 red
dots (image backgrounds removed for clarity). Other methods give markedly more
distorted results (bottom).

of quadratic functions. Additionally, we note that HLLE uses tangent planes at the
center of their local PCA as noticed in [198]; however, this means that, for very
irregular sampling, two vertices may lead to nearly identical Hessian estimates, thus
not providing added information. In sharp contrast, our approach does not try to
construct an approximate Hessian, but an operator whose kernel contains only affine
functions—which can be done faster and is significantly less sensitive to noise in
the data; see Figs. 3.7 and 3.8 for example.

3.3.3 Experimental Results
Synthetic 3D datasets. For the past decades, manifold learning approaches have used
a number of synthetic examples to demonstrate their results. We provide our results
on a number of classical examples for comparison purposes, with and without noise,
for regular and irregular sampling, and for low and high-dimensional datasets.



29

Figure 3.12: Knights. Examples of results for the knights images (see Fig. 3.1
for comparison). Other methods give markedly more distorted results; HLLE, in
particular, fails to return a valid parameterization.

3D-to-2D Datasets. Fig. 3.5 shows that SAKE can handle the usual “Swiss roll”
example that all other methods use in their tests, even with highly irregular sampling.
Note that our geodesic curvature correction makes a big difference on such an
example: if the regular, non-corrected Isomap is used to unfold every neighborhood,
trying tomake the final coordinates affine in these distorted local coordinates induces
a large global distortion, confirming that our correction is crucial in our approach.
Fig. 3.3 shows the noise-free ‘S-shape’, with a uniform sampling and a hole in
the middle. As expected, Isomap cannot unfold this non-simply connected domain
without distortion. The Laplacian eigenmap is surprisingly deformed, most likely
due to the presence of harmonic functions. In sharp contrast, HLLE andLTSA return
very similar (and correct) results, and SAKEmatches these results. Fig. 3.6 shows as-
isometric-as-possible flattenings of a noise-free two-bump height function sampled
on a regular grid. On this example, LLE creates foldovers on the bumps. HLLE and
LTSA are once again visually indistinguishable, but exhibit shrinkage on the two
corners near the bumps. MLLE keeps the symmetry of the domain perfectly, but
the curvature of the bumps is totally ignored, amounting to a orthogonal projection
onto the support plane—hence creating significant metric distortion between the
original manifold and its 2D parameterization. SAKE captures the domain and its
symmetries, with the expected metric-preserving parameterization of the bumps.
Fig. 3.2 exhibits how even an irregularly sampled simple plane fails to be correctly
captured by a Laplacian eigenmap, while SAKE guarantees perfect projection. Note
that Isomap would also fail to keep the original sampling since shortest distances
are computed on a graph, which creates zigzagging (and thus inaccurate) geodesics.

Noisy Datasets. Testing robustness to noise is also informative. We tried the
well-known ‘Swiss roll’ with noise “peppered” around: only 10% of the points are
being displaced with a uniform noise distribution along the surface normal of the
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roll to simulate inaccurate samples (see Fig. 3.7). LLE already suffers from this
noise (other values of k result in worse deformation), and so are HLLE and LTSA to
a lesser extent. MLLE and SAKE return very similar and visually plausible results.
If we now try the Swiss roll with Gaussian noise (standard deviation of 0.28) as
shown in Fig. 3.8, HLLE and LTSA fail entirely, while LLE is still quite deformed.
MLLE appears relatively good, although the right end of the strip is squeezed in a
way similar to LLE, but with a less pronounced effect. SAKE remains best among
all the methods. We analyze two types of error, arising from the MDS and the
global embedding construction steps of SAKE, respectively: one corresponds to
local distance preservation computed pointwise as the relative 2-norm of the rank d

approximation of the Gram matrix Gi, while the other measures the quality of the
local relative position preservation as the 2-norm of the changes in relative positions
| |LiSiZ| |2. Looking at Fig. 3.9, we see that Gaussian noise results in small, uniform
reconstruction and distance errors, while sparse outliers do not disrupt the non-noisy
parts of the domain, proving robustness to various types of noise.

Handling Large Density Variations. We also tried significant variations in sam-
pling density (in addition to noise) to test the robustness of variousmanifold learning
approaches in Fig. 3.10. Here again, SAKEmatches or surpasses other results, which
prove to be extremely dependent on the number of neighbors used. Note that we
did not try to adapt the value of k and K based on density (which would improve
accuracy) to offer a fair comparison.

Handling Large Noise and Outliers. While previous methods rarely discuss the
issue of outliers and large amounts of noise, SAKE offers a number of opportunities
to derive more robust strategies to noise and outliers. As we discussed in Sec. 3.2.1,
one can tweak our use of k closest neighbors to remove obvious outliers and noise:
for instance, the authors of [145] propose a weighted local linear smoothing and
one-ring minimum spanning trees (to detect significantly large edge size in the
neighborhood, a tell-tale for outliers) for noise reduction and outlier handling. The
choice of K geodesic neighbors may also be made adaptive by using iterative robust
PCA [198] instead, to select the number of neighbors based on a local noise level
estimate. Finally, our curvature corrected approach to intrinsic distances can also
be extended to “smooth out” (through a curve straightening flow) the geodesic
curves obtained by our process if noise is significant. These add-ons are trivial to
incorporate, but a full assessment of how they fare on real defect-ladden data is out
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Figure 3.13: Choice of Dimensionality. For a 2D S-shaped pointset (left), its
reduction to 1D provides the expected parameterization (middle); a 2D embedding
would return the exact same input shape as the original; a 3D embedding, instead,
exhibits unexpected distortions in the extra dimension (right); and of course, a 0D
embedding would lose injectivity.

of the scope of this chapter. We favored instead a parameter-free SAKE, which is
already more noise-resilient than the existing methods we tested.

High-dimensional Datasets. We also ran our SAKE algorithm on the classical
‘Faces’ datasets, where grayscale pictures with 64×64 pixels capture the same face
from different viewpoints [180]. From this set of 698 images, each represented as a
point in �4096 (one dimension per pixel), we can ask SAKE to reduce the dataset to
a 2D projection purely based on pixel-per-pixel differences between pairs of images.
Fig. 3.11 shows the result, where the points are clearly embedded in a position
dependent on the left-right, up-down angle of view. For comparison purposes, we
also show the results of a few other methods for this dataset on the same figure.

We also tried our approach on a dataset of reflectance fields captured using the Light
Stage apparatus [117]. A static character (in a knight costume) was captured under
221 individual lighting directions covering a large sphere of illumination. Once
again, we use all 608×456 RGB images (given in random order) stored as points in
�831744 and try to learn a flat 2Dmanifold that best fits this high dimensional dataset.
The result, shown in Fig. 3.1(top), recovers positions related to light angles without
any knowledge of the setup, while other approaches lead to (sometimes severely)
distorted embeddings; see Fig. 3.12. Note that the black background of each image
was removed for clarity of the figure.
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3.4 Mesh and Pointset Deformation using SAKE
3.4.1 Nonlinear Deformation as an Embedding Problem
Mesh deformation has a long history in geometry processing as it is one of the
most important tools in practical graphics applications [171]. One can understand
mesh editing methods as also being embedding methods, but for D = d = 3 (the
term reduction becomes hardly appropriate in this case) and with added embedding
constraints in the form of user-specified handles to control how to deform the
shape—see, e.g., [97, 105, 166]. In fact, a simple nonlinear 3D modeling approach
known as ARAP [173] (for as-rigid-as-possible) is precisely a special case of Local
Tangent Space Alignment (LTSA) restricted to special orthogonal transformations:
both the local alignment from the original shape to the final embedding through
SVD and the alternating optimization between fixed rotations and positions were
already spelled out in the Appendix of [204]. The only differences in the mesh case
of ARAP reside in the choice of local neighborhoods (mesh one-rings for ARAP
vs. K nearest neighbors in LTSA) and the additional constraints controlling the
coordinates of the few handles. Based on these similarities, it is clear that we can
leverage our new SAKE embedding approach to provide an alternative mesh (or
pointset) deformation technique, where a standard off-the-shelf eigensolver can be
used to solve the resulting nonlinear optimization.

Conceptually, mesh deformation techniques are embedding methods as well, al-
though they do not map onto a reduced space: given an input simplicial 2- or
3-manifold in �3 and a few select displacements of handle vertices in space, they
compute a deformed embedding that interpolates constrained vertices while pre-
serving the local neighborhoods of the original mesh as closely as possible. In fact,
differential coordinates based on the Laplace-Beltrami operator (see a review of
existing methods in [171, 172]) can be seen as a close relative of Laplacian Eigen-
maps, where a particular embedding is found based on the initial Laplacian operator
through a linear solve instead of an eigenvalue problem. Nonlinear approaches
to mesh deformation have been introduced as well to prevent visual artifacts of
previous linear methods [29, 97, 104, 205]. One of the simplest nonlinear meth-
ods is the as-rigid-as-possible (ARAP) modeling approach [173], which extends
the Laplacian editing paradigm to better enforce surface rigidity—at the price of a
slow-converging alternate minimization instead of a simple linear solve. We will
show that our spectral approach, when used on low-dimensional data and with a few
added terms to accommodate position constraints, provides a nonlinear alternative
to surface deformation which applies to meshes as well as pointsets and for which
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off-the-shelf libraries can be used for fast and robust results.

3.4.2 Geometry Deformation through Eigenanalysis
We propose to use the SAKE framework to achieve mesh deformation with han-
dle position constraints. Notably, we aim at formulating a nonlinear deformation
approach that only requires a sparse matrix eigenanalysis—instead of relying on cus-
tomized nonlinear solvers with often slow convergence properties. This is trivially
achieved (and without the need for as-isometric-as-possible unfolding of neigh-
borhoods in this pure 3D case) by leveraging and extending our multi-Laplacian
operator and its affine kernel: we accumulate constraints for the 3D points to stay
close to their original positions with respect to their neighbors, and treat user-
provided absolute handle positions by systematically replacing them by positions
relative to other handle positions. We bypass the use of absolute position constraints
or local rotations, and can thus invoke a regular eigensolver instead. This allows us
to efficiently accommodate deformation properties of the 3D volume defined by the
input geometry that are typically desirable in surface editing tools such as low local
stretching and low volume dilation.

Surface and Volume Neighborhoods. In order to make our explanations valid
for meshes and pointsets alike, we will use the term “point” to refer either to a
point within a pointset, or to a vertex of an input mesh. For each point xi of the
input, we fix a set of K neighbors x j for indices j in N(i) just like in Sec. 3.2.1—
if we are dealing with an input mesh, the neighbors can also be defined via a
fixed number of rings around the vertex in-
stead. We also add a few internal points that
are coarsely sampling the skeleton (also called
medial axis) of the input geometry; this is eas-
ily achieved by, e.g., computing a Voronoi tes-
sellation of the input points and extracting a
subset of the inside poles [7] that form a dis-
crete approximation of the skeleton. Each of
these sparsely inserted skeletal points are then
given a neighborhood which consists of their
immediate skeletal neighbors and the few clos-
est input points (i.e., on the medial ball [7]) along with their associated neighbor-
hoods: these neighborhood can be understood as forming an internal set of radial
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original [170] [27] [119] [29]
SAKE, no

medial points SAKE

Figure 3.14: Bending Bars. We compare our approach (with and without added
medial points for clarity) with a number of existing deformationmethods on the 120◦
bend example with handles (marked in red on the original mesh) taken from [28].
Note the absence of artifacts near the pinned extremities for SAKE.

trusses (see inset) for which we will also impose isometry preservation during the
deformation—thus avoiding local collapses of the initial volume as much as pos-
sible. This is very much in the spirit of the volumetric graph Laplacian approach
in [205] where a sparse sampling of the interior of a mesh is also used to prevent
local volume loss. Finally, the user picks a subset of input points {xh} as “handles”
for which she assigns target positions x̄h to guide the deformation. For clarity there-
after, we denote by X the set of indices of the input points that are not handles, V
the set of indices of the added inner skeletal points, andH the set of indices of the
handles.

Multi-Laplacian Assembly. For every point xi (be it a handle, regular, or skeletal
point) and its associated set {x j} j∈N(i) of neighbors, we assemble themulti-Laplacian
matrix Li as described in Sec. 3.2.3. Moreover, we also assemble an additional
multi-Laplacian, denoted Hh, per handle point as follows: first we create virtual
neighborhoods by assigning for each handle xh(h ∈ H) the set of indices N(h) =
H \{h} containing all the other handles (or only the K nearest handles when the
number of handles is large); the matrix Hh is then defined as a regular multi-
Laplacian, but for this virtual neighborhood made of handles only, and for the
user-prescribed target positions x̄h instead of the original positions xh. The linear
equations encoded by this matrix will force the handle positions to be placed, relative
to each other, the way the user asked for.

Quadratic Form to Enforce Constraints. We can now formulate our geometry
deformation approach as a special instance of SAKE where we look for the vertices
Z satisfying

Z = arg min
Z∈�3×n

Tr
[
ZQZT ]

s.t. ZZT = Id, Z1 = 0

,
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where the quadratic form Q is defined through

Q =
∑
i∈X

ST
i LT

i Li Si

+
∑
h∈H

ST
h

(
wHLT

h Lh + wCHT
h Hh

)
Sh

+ wV
∑
i∈V

ST
i LT

i Li Si .

(3.2)

The formQ thus enforces the linear constraints of not only the surface neighborhoods
(first term and part of the second term, where handle neighborhoods are scaled
by wH to strengthen the local rigidity around handles), but also of the volume
neighborhoods (third term, with a specific volume control coefficient wV), and of
the handles with respect to each other (final part of the second term, using a strength
wC for these constraints).

Final Shape Extraction. Finding the final deformed shape is achieved by extract-
ing the first four eigenvectors qm corresponding to the lowest eigenvalues of the
sparse SPD matrix Q (the first one being constant and corresponding to the zero
eigenvalue; see Sec. 3.2.5). Because the eigensolver returns the positions up to
a rigid transform and up to scale, we must compute a global affine transform to
map these resulting positions where they need to be. Denoting the resulting handle
positions ph= (1, (q2)h, (q3)h, (q4)h)

T for h∈H , we find through a least squares solve
the affine transformation encoded by a 3×4 matrix A such that Aph best fits the
user-prescribed x̄h. Then the final, deformed geometric positions are simply set via

zi = A
(
1 (q2)i (q3)i (q4)i

)T
.

3.4.3 Implementation Details
Our approach is rather simple as it only requires the assembly a large, sparse, and
symmetric matrix Q and the use of sparse matrix eigenanalysis tool—we use the
Spectra library [150] in our implementation. Aside from themodeling parameters to
influence theway a shape deforms (we usewH=5, andwC=wV=1 in all 3D examples
in this chapter, but other choices including geometry-dependent coefficients can
be used to achieve desired effects), there is no need for a customized numerical
technique to solve for our nonlinear deformation. Note that if the total number of
handles is 4 or less, we cannot express their target 3D locations as linear combinations
of the others as we did in Eq. (3.1) since their edge matrices Eh will have trivial
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Figure 3.15: Zoo. We use our SAKE editing approach on a few basic 3D models.
Light blue markers indicate handle vertices (held fixed or displaced). All models
use the same editing parameters; a subsampled medial axis was only added to the
octopus model (20 added points) to increase the volume rigidity of the long and thin
tentacles.

kernels. We thus create weaker constraints by enforcing that only one or two of the
handle coordinates are linear combinations of the other handles’ coordinates.

Possible Variants. More specific deformation behavior of the input geometry can
be also easily added; for instance, a shell-like behavior can be incorporated by adding
offset points along the positive and/or negative normal direction to the surface to
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mimic the way PriMo [29] was adding bending rigidity. While we described how
to apply SAKE to surfaces, discrete volumes (given as meshes or pointsets) are
handled in exactly the same way. Additionally, notice that our multi-Laplacian
based quadratic form can also be used to achieve realtime deformation using handle
constraints as in [192]: substituting the modified natural boundary Laplacian used in
their approachwith ourmulti-Laplacian constructionwill add rigidity as ourmultiple
relative coordinates capture the original geometry more tightly. However, requiring
every handle position to be exactly satisfied can inherently lead to a loss of local
smoothness (see, for instance, artifacts near pinned extremities [192] compared
to our results in Fig. 3.14), an issue that our spectral approach avoids—without
significant computational overhead. Finally, we note that our treatment of handles
through relative coordinates can also turn their work into a spectral approach.

Computational Efficiency. Once an input geometry is given, one can compute
the local multi-Laplacian operator for each neighborhood as a preprocessing step.
When the handles have been selected and positioned as desired, the small matrices
Hh can be computed on the fly and the corresponding terms added to the quadratic
form according to Eq. (3.2). Assembling Q is done in O(n) as in any other mesh
deformation method. An eigensolver can then be used on Q to find its lowest
eigenvectors, and the undeformed positions can be used as a good initialization.
On a Intel dual-core Core i7 powered laptop, creating and Choleski-factorizing the
quadratic form takes 5 seconds on a 10kVmesh like the bunnywith a straightforward
non-optimized code, while the eigensolver returns the proper embedding in 0.2
seconds. Note that the result of the deformation could be updated quite efficiently as
the handles are moved if realtime editing is needed: low-rank update of the partial
eigendecomposition of our symmetric matrix Q can be leveraged [31, 37] since only
the matrices Hh are changing—although we did not need to implement this variant
given the current timings. Finally, note that control over rigidity could have been
achieved by changing the locality of the neighborhoods: the larger they are, the more
rigid the local volumes become. Our addition of a few points along the skeleton
was preferred to offer rigidity control by only marginally increasing the size of the
matrix, but without impacting its sparsity. The user can easily add more constraints
by inserting extra rows and columns in Q.

Numerics. Our approach uses an eigensolve to handle fully nonlinear mesh de-
formation. Compared to other nonlinear methods, solving an eigenvalue problem
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is simple and efficient: many off-the-shelf libraries exist as well, offering efficient
eigensolvers on multi-core architectures with convergence guarantees (often lack-
ing both in theory and in practice for other nonlinear methods) even for significant
deformations.

3.4.4 Experimental Results
We present examples of deformation in Fig. 3.15 on the bunny, armadillo, and
octopus meshes. In each example, the same default values for the weights in
Eq. 3.2 are used. We only used inside poles on the octopus (20 virtual points)
to add volume rigidity to the tentacles. We also provide comparisons with previ-
ous deformation techniques on a simple cylinder mesh (Fig. 3.14) based on handle
constraints provided in [28]; without inside poles, the surface deformation is iso-
metric but the resulting shape exhibits local volume change (it behaves like an
inextensible shell). With just 10 inside poles added as virtual points, the bar
keeps its round section through the whole cylinder length. Contrary to the re-
sults of [29, 119, 192] in Fig. 3.14, our approach does not exhibit smoothness
artifacts near the pinned extremities of the tube. We also tested twisting the bar
from [28] without poles — see inset; note that the resulting shape does not de-
pend on the quality of the triangulation: both the mesh and a refined version
with nearly degenerate elements (closeups) lead to the same twisted shape. With
our eigensolver, user-defined handle positions were al-
ways matched within 10−3 by the reconstruction for
normalized bounding boxes, and further reduced to
10−5 if the handle weight wH is raised to 50. Finally,
we note that one can think of our SAKE deforming tool
for 3D shapes as a multi-cage approach: every point is
considered as part of a local cage, as it is expressed as a
linear combination of neighbors like in a conventional
cage-based deformation method. The only difference
is that the final embedding is found via a nonlinear solve involving a global, sparse
eigenvalue problem to satisfy all cage constraints as well as possible.

3.5 Conclusion
In this chapter, we introduced an approach for finding a low dimensional embedding
of a d-manifold originally embedded in a high dimension. A global embedding
in �d is found such that its coordinates are as affine as possible within the local
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isometric parameterization of each small neighborhood, enforcing a most-isometric
map (up to a global linear transformation). In the process, we revisited a variety of
well-established manifold learning approaches, providing geometric improvements
such as local linear precision to these nonlinear reduction methods. We formulated
a spectral affine-kernel embedding framework, based on local eigenanalysis of each
neighborhood followed by a global, sparse spectral solve to find the best low-
dimensional embedding, which is significantly more robust to irregular sampling
and to reasonable amounts of noise than previous methods. We also proposed a
spectral as-rigid-as-possible deformation tool for 3D datawhich leverages our SAKE
approach to offer nonlinear shape editing without having to resort to dedicated
nonlinear solvers.
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C h a p t e r 4

PARALLEL TRANSPORT UNFOLDING

4.1 Contributions at a Glance
Manifold learning through Isomap is one of the most used nonlinear dimensionality
reduction methods, even if its use of a dense Gram matrix implies a higher compu-
tational complexity than local methods: Isomap offers a remarkable robustness to
noise. Its entire reliance on graph-based shortest paths has, however, far-reaching
calamitous consequences. First, spurious geodesic curvature (i.e., zigzags) in the
Dijkstra shortest paths (seen as a piecewise linear curves in �D) between two nodes
of the graph introduces inaccuracies in the estimation of geodesic distances. This
issue impacts irregular sampling in general: unlike PCA, Isomap fails to produce
a non-distorted embedding for a dataset lying precisely on a linear subspace of the
ambient high-dimensional space; see Fig. 4.2. In practice, this shortcoming is exac-
erbated by the sparse sampling that real applications often have to deal with, even if
short paths can be locally rectified through a straightening correction described in
Sec. 3.2.2. Worse, some computational accelerations of Isomap rely on a subsam-
pling of the initial data [64], making this inaccuracy issue all themore limiting. More
importantly, Isomap can only provide a quasi-isometric low-dimensional mapping
for geodesically convex sets: the presence of holes or non-convex boundaries in the
input sampling brings significant overestimations of geodesic distances, as Dijkstra
shortest paths are forced to go around sampling voids, thus distorting the results (see
Fig. 4.3 and Fig. 4.5). There have been attempts to alleviate this limitation, such as
the Topologically Constrained Isometric Embedding (TCIE) approach [154] which
first tries to detect the boundaries of holes and the geodesic paths that go through
these boundaries, before constructing a map that ignores such paths. However,
detecting boundaries in a reliable way is a complex problem as voids can have a
variety of sizes and shapes in the case of noisy and irregular sampling. Moreover,
the subsequent minimization is significantly more difficult to perform as it no longer
relies on a simple partial eigendecomposition. Consequently Isomap is often used
in practice, even when the topology and geometry of the sampled manifold are not
known, because of the lack of another available robust learning approach.

In this chapter we introduce Parallel Transport Unfolding (PTU), a manifold learn-
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Figure 4.1: Correctly Unfolding Petals. For a 3D sampling of a 4-petal shaped
portion of a sphere (left), Isomap (a staple of manifold learning) fails to find a
near isometric 2D parameterization (middle) due to geodesic non-convexity of the
intrinsic geometry. Our parallel transport approach instead handles this case as
expected (right). Lifting the pointset to much higher dimensions and applying
random rotations and reflections would not change these results.

ing technique that performs nonlinear dimensionality reduction to produce a quasi-
isometric, low-dimensional embedding of an arbitrary set of high-dimensional data
points. By simply replacing the Dijkstra-based geodesic distance estimates with
parallel transport based approximations instead, our approach removes the geo-
metric limitations of Isomap: it can reliably handle arbitrary data with strongly
irregular sampling while retaining its resilience to noise. We show that this new
geometric procedure no longer requires geodesic convexity of the domain sampled
by the input data, only involves simple linear algebra, significantly improves the
accuracy of all pairwise geodesic distance approximations, and does not change the
overall computational complexity of the original Isomap procedure. Moreover, our
approach exploits the low dimensionality of the manifold by using a connection
on the d-dimensional tangent bundle for efficiency purposes: this markedly differs
from previous parallel transport based geodesic computations on 2-manifolds in
3D, where the codimension is 1 and thus, where either the normal field or 2D polar
coordinates can be leveraged to derive fast geodesic approximations [126, 159, 161].
Finally, we also demonstrate that our connection-based distance estimation applies
equally well to the Landmark-Isomap approach [63], a variant of Isomap offer-
ing significant improvements in computational time but suffering from the same
convexity limitation as Isomap.

4.2 Parallel Transport Unfolding Algorithm
Throughout our exposition, we use the notations and assumptions of Sec. 2.1.1.
Our global parallel transport based manifold learning algorithm seeks to find an
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as-isometric-as-possible d-dimensional embedding of the input data S = {xi}
n
i=1

sampling a d-dimensional manifoldM ∈ �D as a pointset {zi}
n
i=1⊂�

d .

We now present our Parallel Transport Unfolding (PTU) algorithm, which has a
very similar structure to Isomap since it comprises the following steps:

• Construct a proximity graph G of the pointset S and compute local tangent
spaces at each point;

• Approximate all pairwise geodesic distances using parallel transport along
shortest paths on G;

• Perform MDS to find a d-dimensional embedding that best preserves all the
geodesic distances.

We detail each step next, stressing the key differences with Isomap in the first
two steps of the algorithm, i.e., the use of approximate tangent spaces and of the
Levi-Civita connection to better approximate intrinsic geodesic distances.

4.2.1 Proximity Graph
The construction of a proximity graph G on S proceeds similarly to the original
Isomap algorithm: one can link each point to its neighbors contained in an ε-ball,
or to its k nearest neighbors—both based on Euclidean distances in �D. Variants
such as a mix of the two [189] or the mutual k nearest neighbors approach [34] can
also be used to naturally discard outliers. For clarity of presentation, we will use
a vanilla k-NN graph in our exposition and all of our tests. The value k should
be chosen such that the edges of the resulting graph are good approximations of
geodesics between corresponding points; we will typically set k around 4d to induce
a valence greater than the usual connectivity of a regular grid of the d-dimensional
embedding (k=2d), yet less than the number of 1-ring neighbors on that same grid
(k=3d−1); but knowledge about noise levels in the input pointset can be employed
to improve the graph quality by varying the number of neighbors from point to point.
Once the graph connectivity is defined, each edge is assigned a weight equal to its
Euclidean length in �D as an approximation of its geodesic length on the manifold
M.

4.2.2 Tangent Spaces and Orthonormal Bases
For each input point xi, its K nearest neighbors on the proximity weighted graph (for
K ≥ k) are used to define a geodesic neighborhood. The matrix, whose rows are the
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Figure 4.2: Linear Precision. Due to its reliance on graph-based paths, Isomap
distorts a flat 2D pointset embedded in 3D; instead, our connection-based approach
(right) flattens it exactly. A linear color ramp from blue (0% `2-error in position
relative to bbox size) to red (> 1% error) is used in the visualization of the two
embeddings.

data points in this neighborhood (centered by subtracting xi), induces, through its d

left singular vectors corresponding to the d largest singular values, an orthonormal
basis Ti of d vectors in �D spanning the approximate tangent space:

Ti =
(
ti
1 · · · ti

d

)
∈ �D×d . (4.1)

While choosing K = k often suffices to provide a good estimate of local tangent
spaces, using a value of K distinct from k allows the definition of arbitrarily large
geodesic neighborhoods (useful in the presence of strong noise) around each point
of S, while alleviating the traditional issue of “manifold shortcutting” associated
with increasing k (as leveraged in Ch. 3). As a substitute to this frame construction
via partial SVD, note that an improved approximation of the local tangent spaces in
the presence of strong noise and outliers can also be computed via `1-based robust
PCA (see, e.g., [202]).

With these orthonormal frames of tangent spaces in place, we can now discuss
how to approach discrete parallel transport and how to use it for geodesic length
estimation.

4.2.3 Dicrete Parallel Transport
We now cover the core of our approach, i.e., exploiting parallel transport in high
dimension to better evaluate geodesic distances.

Parallel Transport in Differential Geometry. The notion of parallel transport
plays a central role in differential geometry. It induces a way to connect the geome-
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Figure 4.3: Holey S. Isomap (top right) fails to find a quasi-isometric embedding
of a uniformly sampled developable S-shaped 2-manifold with a sampling void in
the middle (left) in 3D. Our approach (bottom right) unfolds it almost perfectly. A
linear color ramp (blue: 0% error, to red: 15% error) is used in the visualization of
the two embeddings.

tries of nearby points, thus prescribing how a basis of the tangent space at one point
of a manifold should be adjusted to produce a “parallel” basis of another tangent
space at a nearby point. While this procedure is straightforward for flat spaces (it
corresponds to a simple translation), it becomes more involved for manifolds with
non-trivial curvature. Its differential geometric treatment involves the definition of
a connection on the tangent bundle [79, 174], which represents an infinitesimal ana-
logue of parallel transport. Most relevant to our work are metric connections, i.e.,
connections such that the parallel transport they define preserves the intrinsic metric
of the manifold. The well-known Christoffel symbols are, in fact, the components of
a particularly canonical metric connection called the Levi-Civita connection, which
we will leverage in our application. Another geometric property we will exploit
is the fact that geodesics, usually described through variational analysis as locally
shortest curves, can also be defined through parallel transport: a geodesic is a curve
that parallel transports its own tangent vector, as directly implied by the geodesic
equation [79, 174]. This simple property will guide our evaluation of geodesic
distances.

Discrete Parallel Transport. Given points xi and x j sharing an edge in the prox-
imity graph G, we define the discrete metric connection between xi and x j as the
orthogonal d×d matrixR j,i inO(d) representing the change of basis that best aligns,
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in the Frobenius norm, the frames Ti and T j , i.e.,

R j,i = arg min
R∈O(d)

| |Ti − T jR| |2F . (4.2)

By definition, Ri, j is the inverse of R j,i: Ri, j =R j,i
T . Note that we use the group O(d)

of orthogonal matrices because the SVD used in tangent space extraction produces
arbitrarily-oriented tangent frames. A pre-processing of these tangent bases could
be performed (e.g., via a minimum spanning tree) if one wants to ensure that their
orientations are consistent, enforcing that the discrete connections are pure rotations
(in SO(d)) as in the continuous case. The transformation R j,i can thus be understood
as a discrete equivalent to the Levi-Civita connection induced by the metric on S
inherited from the Euclidean space �D. It is also a high-dimensional extension of
previous discretization of metric connections on triangle meshes [52, 121].

Computing this discrete connection is easily achieved via singular value decompo-
sition:

Proposition 4.1. Let Ti
TTj = UΣVT be the SVD. The discrete connection is ex-

pressed as
R j,i = VUT. (4.3)

Proof. Expanding the objective function in Eq. (4.2), we conclude that Ri, j is the
maximizer ofTr

[
Ti

TTjR
]
overR∈O(d) as the other terms do not depend onR. Since

Ti
TTjR=UΣVT R and given the invariance of the trace under cyclic permutations,

the objective function equals to Tr
[ (

VT RU
)

Σ
]
where VT RU ∈O(d). The optimal

solution is achieved for VT R j,iU = Id; so R j,i must be VUT . One recognizes the
Procrustes superimposition of two nearby frames [108], just extended to handle
arbitrary choices of frame orientation for tangent spaces. �

4.2.4 Path Unfolding
With a discrete metric connection, we can now “unfold” a polyline path on S (made
out of a series of adjacent proximity graph edges) into �d , i.e., we seek to map
a polyline of graph edges into a flat d-dimensional space while best preserving
its metric properties such as length, intrinsic curvatures, etc. This process of
“unrolling” a curve onto a tangent space through parallel transport is known as
Cartan’s development [136, 164] in differential geometry. Since geodesic curve
parallel transports its tangent vector, its associated Cartan’s developement is simply
a (segment of) straight line.
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Two-edge Unfolding. Let us define how to unfold in �d a three-point (xi, x j, xk)
polyline path onM, i.e., a path made of two adjacent edges of the proximity graph
on S. Its extensions to arbitrary paths will be straightforward. Without loss of
generality, we can consider the unfolding to be happening in the tangent space at xi,
equipped with its orthonormal frame Ti. The first point yi of the unfolded polyline
can be chosen to be at the origin of this subspace, or coinciding with xi. The first
edge, represented by the vector ei = x j−xi, is projected (in the `2 sense) onto the
tangent space at xi to form a d-dimensional tangent vector vi through:

vi = T
T
i ei .

This vector vi is then added to yi to form the point y j , thus defining the first unfolded
edge. The second edge, e j =xk−x j is similarly projected onto the local tangent space
defined by frame T j at x j . The resulting vector can then be parallel transported onto
the tangent space at xi to become

v j = Ri, j

[
TT

j e j

]
,

where the term in brackets is the `2 projection of e j onto T j . From this vector, now
represented in the original tangent frame at xi, we construct the final point of the
unfolded polyline as: yk =y j + v j .

Preservation of Geodesic Curvature. Due to our use of a discrete metric con-
nection, the unfolding procedure we described has an important property: it nearly
preserves the geodesic curvature of the initial curve. Indeed, we used a discretiza-
tion of the metric-preserving Levi-Civita connection, so the intrinsic angle between
vectors ei and e j (meaning, the angle measured on the manifold S) is preserved
by parallel transport, and corresponds to the angle between (yi, y j) and (y j, yk) in
�d—up to discretization errors. This means that if the two-edge polyline were a
good approximation of a geodesic on S, the unfolded polyline would be (nearly)
straight in �d since a geodesic curve parallel transports its tangent vector. As a
corollary, the Euclidean distance ‖vi + v j ‖2 between yi and yk is a good approxima-
tion of the geodesic distance between xi and xk along S—whether the polyline is an
approximate geodesic or not.

Length Rescaling. In the case of highly-irregular samples with small or no noise,
it can be beneficial to preserve the length of each edge ei once it is projected onto
the corresponding frame, as the projection vi on the tangent space can be shortened
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Figure 4.4: Geodesic Distances. For a graph based on a triangulated spherical
cap (left, 2 views), the average relative error of pairwise Dijkstra-based geodesic
distances is 5.6%; SAKE already reduces the error to 0.8%, but PTU brings it down
to 0.046%. Plots (right) show relative errors of pairwise distances as a function of
their number of edges.

if the manifold is curved. This adjustment is easily achieved by, for instance, setting

vi = T
T
i ei
‖ei‖2

‖TT
i ei‖2

.

If strong noise and/or outliers are present, this modification should be avoided as it
tends to overestimate local distances around noisy points. We only used this length
rescaling procedure in Figs. 4.5 and 4.13 to slightly improve the results in these
extreme cases.

4.2.5 Distance Approximation
The unfolding procedure we just introduced can be used to evaluate pairwise
geodesic distances without the traditional shortcomings of Dijkstra’s algorithm for
graphs over an irregular sampling.

Correcting Shortest Paths. Consider a Dijkstra shortest polyline
(
xi1, ..., xim

)
.

Using the unfolding procedure intoTi1 , we iteratively project the edges eis =xis+1−xis

onto the tangent space spanned by Tis , before parallel transporting the resulting
vector back to the original tangent space, i.e.,

vis =

( ∏
j=1..r−1

Rij,ij+1

) [
T t

ir eis

]
. (4.4)

After accumulating the results into a single vector v =
∑

s=1..m vis , we set the ap-
proximate geodesic distance between xi1 and xim to be its length | |v| |2: as discussed
above, the span of the unfolded path is a better approximation of the geodesic dis-
tance between the end points of the initial path, as it ignores the intrinsic twists and
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Figure 4.5: Letter A. From 888 images (120×120 pixels) of rotated and resized
letters ‘A’, both Isomap (red) and PTU (blue) produce similar 2D embeddings
(left, each dot indicating an image; insets show a subset of the images and their
embedding). However, if a part of these input images is removed (rendering the set
non-geodesically-convex), Isomap dramatically changes the embedding, while PTU
properly reflects the missing images (right).

turns that the path went through. Since our estimate of the geodesic distance from
xp to xq is in general not the same as the estimate from xq to xp due to the asymmetry
of the unfolding process, we average the two spans in a final post-processing step
to determine all the pairwise geodesic lengths. Fig. 4.4 demonstrates an improve-
ment of over two orders of magnitude compared to Dijkstra’s approach to estimating
geodesic distances.

Leveraging Unfolded Paths. While we only need the Euclidean distance between
the two end points of the unfolded path in�d to perform nonlinearmanifold learning,
the unfolded path can also be useful for gathering additional information. For
instance, the largest distance between the straight line between the two end points
and the actual unfolded path indicates how far off the path is from being a geodesic.
A large value is a typical telltale of the presence of a large void in the data within the
manifold, which can be exploited to suggest where to insert new samples in order
to improve the results. Similarly, a large difference between the distance estimates
computed from one end point to the other and in the opposite direction implies
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Figure 4.6: Noisy Petals. Given a 3D sampling of a 4-petal shaped portion of a
sphere (see Fig.4.1) with added Gaussian noise in the normal direction (σ: 3%
of sphere radius, middle), PTU recovers an almost perfect quasi-isometric 2D
parametrization, while Isomap still fails (right). Local methods, not exploiting
large geodesic distances, fail even worse (left) with the notable exception of SAKE
that performs better than Isomap.

potential issues with sampling density of the data compared to the local curvature
of the manifold.

Connection-based Dijkstra’s Algorithm. Finally, we point out that our par-
allel transport approach to estimating geodesic distances could be done along
approximately-shortest polyline between a given pair of points: fast approxima-
tions of shortest paths could thus be used to lower this O(n2 log n) step without
significant effects on the results. However, the longer the polyline, the more likely
numerical inaccuracies induced by repeated alignment of frame fields will accumu-
late. Since Dijkstra’s algorithm is not the computational bottleneck in Isomap, we
decided to utilize graph-based shortest paths: in fact, our construction can be neatly
incorporated within the dynamic programming approach that Dijkstra’s algorithm
uses—i.e., storing the predecessor to each point in the shortest path found thus far.
Parallel transport unfolding only requires the insertion of six lines in the original
Dijkstra’s algorithm in order to reduce the unnecessarily repeated calculations that
result from the fact that sub-paths of shortest paths are also shortest paths. Specif-
ically, every time a point is removed from the priority queue (i.e., every time the
algorithm finds a shorter path to a point), we can compute the corresponding vector
vi, before storing the cumulative connection (i.e., the product of connection matrices
along the path) to be the cumulative connection of the predecessor multiplied by the
local discrete connection. Proceeding in this way guarantees that the calculations
are performed without redundancies, adding a negligible amount of computational
time to the traditional Dijkstra’s algorithm. Pseudocode is given in Alg. 4.2.
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4.2.6 Final Embedding
Finally, once we evaluated all pairwise geodesic distances, the results can be pro-
cessed through MDS: double-centering the matrix of squared distances produces
the Gram matrix, whose partial eigendecomposition returns the final embedding as
described in Sec. 2.1.3. Numerical improvements (see [32, 91, 93, 110]) can be
applied to reduce the cubic complexity order of this stage. Note that robust alterna-
tives to classical MDS could also be used here (e.g., [41, 114]) to offer resilience to
outliers, but at higher computational cost.

4.3 Theoretical Analysis
We conclude this section with a few properties worth mentioning.

Proposition 4.2. Unlike Isomap, PTU is “linearly precise”: assuming the pointset
S samples a linear d-dimensional subspace R of RD, and the proximity graph
G is such that each sample point has enough neighbors to span a d-dimensional
subspace, the PTU embedding Z is a composition of a projection and a rigid body
transformation of X.

Proof. When the sampled data lie on a linear subspace of dimension d, each or-
thonormal frame Ti, computed using SVD as described in Sec.4.2.2, forms a basis
forR. Moreover, every pairTi andT j are perfectly aligned by the discrete connection
R j,i (Eq.(4.2)). As a result, unfolding a polyline

(
xi1, ..., xim

)
reduces to rewriting it

in the basis Ti1 and our geodesic length estimation recovers the exact (Euclidean)
distance between xi1 and xim , independent of the sampling irregularities or of the
geodesic convexity of the domain. PTU thus becomes equivalent to classical MDS,
and produces a d-dimensional embedding Z that is isometric to X by Prop. 2.1. �

Proposition 4.3. Under mild assumptions on the regularity of a manifoldM and
assuming that the input pointsetS samplesM finely enough with potential sampling
voids over regions of small (sectional) curvature of the manifold, the PTU estimate
dPTU(xi, x j) of the geodesic distance between points xi and x j based on a Dijkstra
(shortest) polyline (xi, ..., x j) computed on the proximity graph G of S approximates
the real geodesic distance dg(xi, x j).
Discussion: We quantify this proposition more rigorously in App. A by providing
a concrete error bound (and its proof) between dPTU and dg. Our bound relies on
three key components: 1) if the pointset S is dense enough, then for appropriate
choice of parameters k and K the discrete tangent spaces approximate their contin-
uous equivalents, and the resulting discrete connection converges to the Levi-Civita
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connection in the sampling limit as proved in [168], where the authors used an
equivalent notion of parallel transport to define and study a discrete connection
Laplacian; 2) sampling voids in S are allowed as long as the integral of the intrinsic
sectional curvature ofM over the regions of the underlying manifold corresponding
to these voids is small—in other words, we will assume that a Dijkstra polyline lies
within a tubular neighborhood of its corresponding geodesic, for a tubular diameter
less than O(1/√κs) where κs is the local maximum absolute value of the sectional
curvature of M; and 3) for a dense enough sampling of M, a straight �D vector
between two nearby points xi and x j onM has approximately the same length as
the Cartan development of the geodesic between them on the tangent space TiM at
xi. Note that our statement involves no geodesic convexity requirement.

The benefit of using parallel transport over regular Dijkstra geodesic length approx-
imation is thus clear: our construction eliminates spurious geodesic curvature that
graph approximations inevitably suffer from, bringing significant improvement even
for well sampled domains (see Fig. 4.4). It also allows for almost perfect recovery
of pairwise geodesic distances for developable manifolds (κs = 0) with arbitrary
topology in the sampling limit, even if the sampled manifold is not geodesically
convex. When voids are present in pointsets that sample non-developable mani-
folds, PTU computes approximate geodesic distances without having to explicitly
fill in the voids. Instead, it extracts geometric information from paths surrounding
each hole to recover high accuracy geodesic estimates on the manifold, provided
that the voids were not over regions with large curvature.

Proposition 4.4. Just like Isomap, the complexity of PTU is O(n3).

Proof. Our approach does not change the computational complexity of the various
steps compared to Isomap: the proximity graph construction is still O(n log n), the
construction of tangent planes takes O(n D K2), our Parallel Transport Unfolding
using Dijkstra shortest paths is in O(n2 log n) (the unfolding process part itself
requires O(n2(Dd2 + d3) to perform matrix multiplications and SVDs), while the
partial eigendecomposition of a dense matrix is expected to take O(n3) operations.

�

Additional Control. Compared to Isomap, our parallel transport based approach
has a few extra parameters that can be exploited to offer more control over the
manifold learning process:
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• Because we compute local tangent spaces at each input point, the neighbor-
hood size K used in Isomap can be adapted (either globally or locally) to the
input. While using K= k is sufficient in most cases (as we prove in our exam-
ples), raising this value can help deal with very noisy inputs as mentioned in
Sec. 4.2.1.

• Similarly, local PCA of these neighborhoods may not lead to the best estima-
tions of tangent spaces in extreme cases: robust PCA, or even local averaging
of the PCA estimates1 can help manage large amounts of noise and outliers.
Again, we did not have recourse to these variants to prove the robustness of
PTU in its default form; but they can be easily incorporated in a practical
implementation of our approach to add flexibility.

• Finally, our parallel transport estimation of geodesic lengths assumes the
knowledge of the dimension d of the data, just like Isomap requires as well—
and many approaches have been proposed to estimate this dimension directly
from the data, see, e.g., [115, 148]. Yet, this intrinsic dimension can, in fact,
differ from the dimensionality of the visualization one wishes to produce.
Fig. 4.7 illustrates this point: dimensionality reduction approaches applied on
the MNIST dataset of digits often use a 2D illustration of their results for easy
visual display; however, local analysis of the dimensionality of the zero digit
image set indicates an intrinsic dimension of d = 4, reflecting the variety of
ways to pen a zero (slant, thickness, smoothness, ...). While this information
cannot be exploited in Isomap if a 2D depiction is desired, PTU can exploit
this estimate of d for its parallel transport procedure, but use only the first two
eigenvectors of the Gram matrix—essentially showing a 2D projection of a
4D parameterization of the dataset. Fig. 4.11 shows another example of a 2D
visualization of an intrinsic parameterization for d=3.

Related Geometric Methods. Note finally that two related works have proposed
using parallel transport for data analysis, albeit for different purposes. Vector
diffusion maps (VDM [168]) also exploit parallel transport, but focus instead on
computing a low-dimensional embedding that preserves vector diffusion distances
derived from a connection Laplacian, not true geodesics (see their Figs. 6.2 &

1As a side note, having a discrete connection makes the local averaging of vectors or frames
particularly simple, as neighboring values can be parallel transported to a common point, where a
pointwise average is computed.
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Figure 4.7: Digit Zero. The 3000 images of handwritten zeros (with a resolution of
28x28 pixels) from the MNIST dataset are mapped quite similarly by both Isomap
and PTU for the first two most significant coordinates (here, d = 4 was used). A
few images are displayed next to their corresponding 2D point for visualization
purposes.

6.3). Parallel vector field embedding (PVF [118]) proposes a different discretiza-
tion of the connection-Laplacian relying on an extrinsic definition of the covariant
derivative. Coordinates of an embedding are constructed via Poisson solves, so that
the coordinate lines in �d are mapped to parallel vector fields on the original data.
Just like our approach, PVF perfectly recovers an isometric parametrization if the
manifold is developable, since it is then isometric to a subset of �d . However, for
non-developable manifolds, coordinate lines of the resulting parameterization do
not correspond to geodesic curves on the original manifold. While they provide a
valid definition of an embedding, PVF look for a low-dimensional “quasi-parallel”
embedding. PTU, instead, targets the same goal as Isomap, i.e., a quasi-isometric
mapping for arbitrary sampled manifolds.

4.4 Acceleration via Landmarks
Aparticularly simpleway to accelerate Isomap is through the use of “landmarks” [63],
a small fraction of samples of the original pointset: the MDS procedure is applied
just to the landmarks to find their quasi-isometric embedding Z in �d , before po-
sitioning all other points relative to those landmarks in linear time, significantly
reducing computational complexity. This approach, however, often fails in practice:
the sensitivity of the original Isomap method to poor sampling quality makes the
low-dimensional embedding of a few landmarks very brittle.

Given itsmuch greater robustness to irregular sampling, PTU is particularly amenable
to this landmark-based acceleration without any other alteration than replacing dis-
tance estimation by our parallel transport approach. If ` landmarks are used, the
amount of computations can decrease quite dramatically: the MDS complexity
(which was the bottleneck for Isomap and PTU) changes from O(n3) to O(`3). Let
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(a) 9 and 19 landmarks on Petals (b) 5, 10, and 15 landmarks on letter A

Figure 4.8: Landmark-PTU. Combining parallel transport unfolding with the
landmark-based approach of Landmark-Isomap [63] drastically reduces computa-
tional times, with only small differences in the embedding: (top) for 9 (left) and 19
(right) landmarks, results on the Noisy Petals dataset are visually indistinguishable
from the full treatment (see Fig. 4.6); (bottom) for the Letter A dataset, 5 land-
marks (left) already capture the proper embedding, but 10 (middle) and 15 (right)
landmarks result in a better approximation of the full treatment found in Fig. 4.5
(landmarks are in red).

us briefly discuss the implementation of such Landmark-PTU variant.

Setup. From the n original points, we extract ` landmarks with `� n, used as a
coarse approximation of the input geometry. Landmark selection is not a sensitive
part of our approach as long as the landmarks provide a good spatial coverage
of the initial pointset. Note also that we compute our discrete connection for the
entire pointset, since 1) it is not the computational bottleneck of the original PTU
treatment, and 2) we need the distance from every data point to every landmark in
order to compute the final embedding anyway. The choice of computing a “full
resolution” connection guarantees accurate estimation of geodesic distances even if
very few landmarks are used.

From Landmark Embedding to Pointset Embedding. After computing a low-
dimensional embedding of the ` landmarks using PTU as described in Sec. 4.2
through

Z =
√
�d Q

T
d,

(where now �d andQd are the d largest eigenvalues stored in a diagonal matrix and
corresponding eigenvectors of the Gram matrix derived from the ` × ` matrix D
of the squared geodesic distances between landmarks only), the embedding of the
remaining points can be performed using its pseudoinverseZ† and the knowledge of
geodesic distances between input points and landmarks. Note that the pseudoinverse
of Z has a simple explicit formulation due to its basic form, thus requiring no
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(a) 3D torus in 4D (b) Curved torus in 4D

Figure 4.9: Tori Embedded in 4D. (a) From a 3D pointset filling up a toroidal
domain that we trivially embedded in 4D by adding an extra constant coordinate,
the 3D embedding computed via Isomap leads to an unexpected global distortion
due to the manifold being not convex. Instead, PTU is nearly perfect: Isomap
has a normalized average relative error of 40.6%, while PTU is 0.06%. (b) A
mildly curved torus in 4D is obtained by mapping a set of points (x, y, z) ∈ T2 to
(x, y, z, (x2 + y2)/2). Now it has non-zero curvature as a manifold in 4D. 3D Isomap
embedding still suffers from similar global distortion (left); PTU recovers the torus
very well (right) despite the non-trivial curvature.

additional computations since

Z† = Qd
√
�d
−1

. Denote by d the columnwise mean of D (i.e., dp=
1
`

∑
qDpq). Then as described

in Landmark-Isomap [63], the position of a non-landmark point xi ∈ S in the low-
dimensional embedding can be directly computed using a vector di of squared
geodesic distances from xi to the ` landmarks through:

zi =
(
Z†

)T
(d − di) .

That is, knowing how distant a point is from the landmarks originally, we deduce its
final position based on the low-dimensional embedding of the landmarks in O(`2).
Consequently, the proposed Landmark-PTU procedure (consisting of computing all
pairwise geodesic distances between ` landmarks and all input points, constructing
embedding of the landmarks via MDS, and enriching it with non-landmarks through
matrix-vectormultiplications) brings the complexity down toO(`n log(n)+`n(Dd2+

d3) + `3 + `2n). As Fig. 4.8 demonstrates, this simple variant returns nearly the
same embeddings as full PTU with as little as 0.1% to 0.5% of the points used as
landmarks. More results using Landmark-PTU are available in App. B.
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Algorithm 4.1 Dimensionality Reduction via Parallel Unfolding

Input: Pointset S = {xi ∈ �
D}ni=1

1: Construct proximity graph G of S (Sec. 4.2.1)
2: Compute tangent frames {Ti}

n
i=1 (Sec. 4.2.2)

3: Compute geodesic distances D via parallel transport (Sec. 4.2.5)
4: Perform MDS on D to obtain Z (Sec. 2.1.3)

Output: Low-dimensional embedding Z = {zi ∈ �
d}ni=1

4.5 Results
We now discuss implementation details and provide a series of tests, on synthetic
and real datasets, to compare our parallel transport approach to the original Isomap
and other nonlinear dinensionality reduction methods.

4.5.1 Implementation details
Our implementation follows the steps described in the previous sections as sum-
marized in Alg. 4.1. We use a modified Dijkstra’s algorithm to compute shortest
paths and find geodesic distances concurrently, as detailed in Alg. 4.2 (the only
new lines of code to handle connections are in blue). The final partial eigensolve
was implemented using the Spectra C++ library [150]. If the dimension D is high
(i.e., larger than 100), vectorizing matrix-matrix and matrix-vector multiplications
is crucial for efficiency.

4.5.2 Simulated Datasets
We first test the performance of PTU on artificial datasets (embedded in 3D or
higher) to quantifiably evaluate its behavior.

Linear Precision. A nonlinear extension to PCA should, at the very least, be
linear-precise, i.e., input data lying on a flat d-manifold in �D should be isometri-
cally mapped to �d . From an input pointset densely sampling a flat square shape
embedded in 3D space, we compare the performance of Isomap and PTU (with
k=K=10) in Fig. 4.2: we visualize the error for each point based on the normalized
distance between ground truth and its embedding location. As expected PTU recov-
ers the data exactly (to numerical precision), while Isomap introduces distortions
due to its use of graph-based distances. We also use a 4D pointset that randomly
samples a 3D torus in Fig. 4.9a, with the embedding space being 3-dimensional.
Unlike Isomap, which introduces severe distortion because of the non-convexity of
the sampled domain, PTU (k = K = 10) perfectly reproduces the torus. This last
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Algorithm 4.2 Parallel Transport Dijkstra
1: Create minimum priority queue P
2: for i ∈ [1, n] do
3: R[i] ← identity matrix, v[i] ← 0
4: for all x j adjacent to xi in G do
5: Pred[ j] ← i
6: dist[ j] ← |x j − xi |

7: P.push(dist[ j], j)
8: end for
9: while not P.isEmpty() do
10: xr ← P. pop_min()
11: q← Pred[r]
12: USVT ← SVD(Tq

TTr)
13: R[r] = R[q] · UVT

14: v[r] = v[q] + R[q] · TT
q (xr − xq) (Eq. (4.4))

15: geo_dist[r] = |v[r]|
16: for all x j adjacent to xr do
17: temp_dist ← dist[r] + |x j − xr |

18: if temp_dist < dist[ j] then
19: dist[ j] = temp_dist
20: Pred[ j] = r
21: P.update(dist[ j], j) . update() inserts j < P
22: end if
23: end for
24: end while
25: D[i, 1 : n] ← geo_dist[1 : n]
26: end for
27: Symmetrize distance matrix D← (D + DT )/2
Output: Pairwise geodesic distance matrix D ∈ �n×n

example also proves that Isomap can significantly distort data (in unexpected ways)
in higher dimensions.

Non-geodesically-convex Domains. An S-shaped manifold with a rectangular
void (see Fig. 4.3) is well parameterized by PTU, while Isomap introduces spurious
distortion associated with biased geodesic distance estimations around the void.
Since this S-shaped manifold is isometrically developable, we can compare errors in
parameterization on a per-point basis: Isomap reaches 15% of relative error, while
PTU (still using k=K=10) stays below0.2%. The effect of non-geodesically-convex
domains is evenmore pronounced in higher dimensions: Fig. 4.1 shows a 3Dpointset
sampling four petals from a surface of a sphere in 3D; this pointset is then lifted
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Figure 4.10: Gaussian Landscape. For a noise-free dense sampling of a non-
developable height field (left), Isomap and PTU return comparable quasi-isometric
2D parameterizations. Using K = 8 or K = 24 neighbors (right) does not visually
affect the result of the PTU embedding.

to D = 100 dimensions and rotated by a random orthogonal transformation. The
resulting non-developable and non-convex 100D dataset is then embedded in 2D by
Isomap, clearly demonstrating that graph-based distances bias results dramatically.
Our algorithm, run with k=K=10, correctly unfurls the petal-like set.

Non-developable Manifolds. We also demonstrate our results on highly non-
developable manifolds. Fig. 4.10 shows a dense, noise-free pointset that is sampling
a 2D height field with two Gaussian bumps. The differences between Isomap and
PTU (k = 8) are small with such a dense dataset. This example also demonstrates
that the size of the geodesic neighborhood used for tangent space estimation does
not dramatically affect the quality of results: PTU outputs for K =8 and K =24 are
visually indistinguishable. We also test an input pointset sampling a slightly curved
3D torus in 4D: from the 3D torus in Fig. 4.9a, each point (x, y, z) is mapped in 4D
to (x, y, z, (x2 + y2)/2). While Isomap gets even more distorted, PTU (k =K = 10)
still produces a toroidal 3D embedding, see Fig. 4.9b.

Geodesic Distance Estimation. We also compare the accuracy of Dijkstra, PTU,
and SAKE-corrected (Ch. 3) estimations of geodesic distances, by applying these
3 methods to a low-density, regular sampling of a spherical cap in Fig. 4.4 so that
geodesic distances are known analytically. PTU geodesics are over 120 times more
accurate than Dijkstra’s, and more than 20 times better than the local geodesic
correction method used in SAKE (where the whole cap is treated as a single neigh-
borhood).

Sensitivity to Irregular Sampling. For a highly irregular sampling of a simple S
shape, the robustness of PTU is shown in Fig. 4.13. Observe that Isomap completely
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Figure 4.11: Faces Dataset. For the classical Faces dataset (known to be, by
construction, of intrinsic dimension 3), the first two coordinates of both Isomap and
PTU are quite similar. Left: 2D parameterization; right: a few of the face images
are shown at their actual positions to better understand the parameterization.

collapses a section of the data in the right bottom corner, while PTU correctly
captures the features of the input data even for a non-adapted choice of neighborhood
parameters (k=K=10), introducing only small distortion throughout the domain.
These two behaviors are visualized by the error plots using a linear color ramp from
blue (0% error) to red (10% error).

Sensitivity to Noise. Figs. 4.12a and 4.12b verify that PTU (with k = 10) is
as resilient to strong noise and outliers as Isomap even without locally adapting
neighborhood sizes (K = 25 was used in the Gaussian noise case, and K = 10 in
the case of sparse noise). Local methods such as LLE [155], Hessian LLE [71],
LTSA [204], MLLE [203] or SAKE (with k=10 for fairness of comparison) fail to
unwrap noisy datasets (see Fig. 4.14) as they do not exploit the geodesic distance
estimates between pairs of points that are far apart. Fig. 4.6 shows that adding noise to
the petals dataset from Fig. 4.1 does not alter the result of our approach significantly
(we used k=10,K=30); yet Isomap remain unable to unfurl the petals properly, and
all local methods fail on this seemingly simple data, at times spectacularly. Please
refer to the Supplemental Material in App. B for more systematic testing of the effect
of noise levels on both local and global methods; as expected, PTU is systematically
as good or better than all other methods.

Timing. A performance analysis of our algorithm shows perfect agreement with
the expected time complexity orders: the eigensolve dominates the computational
time and scales as O(n3), parallel transport Dijkstra scales as O(n2 log n), and graph
construction as O(n log n), while tangent estimates are linear in n. Examples of
timings on an Intel i7 2GHz, 8GBRAM laptop are 6.4s for the petals parametrization
in Fig.4.1,10.9s for the irregular sampling of S-shaped manifold in Fig. 4.13, and
9.8s for the noisy Swiss roll in Fig. 4.12b (with n = 2000). Note that these timings
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(a) Sparse noise

(b) Gaussian noise

Figure 4.12: Noisy Swiss Rolls. (a) If one adds noise to the Swiss Roll dataset
in the normal direction by displacing 10% of points with a uniform distribution of
amplitude equal to 8% of the max bounding box size and adding a Gaussian noise to
the other points with standard deviation equal to 0.4% of the bounding box (see two
views of the 3D dataset on the left), Isomap accentuates a few low sampled regions
compared to PTU. (b) For a strong Gaussian noise (standard deviation equal to 2%
of the max bounding box size), Isomap suffers from clear visual artifacts while PTU
returns a good parameterization without the need for robust estimations.
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Figure 4.13: Varying Density S. For a widely varying density of points (left),
Isomap (top right) introduces large spurious distortions, unlike PTU (middle right).

Figure 4.14: Failure of Local Methods. For the very noisy Swiss Roll exam-
ple of Fig. 4.12b, none of the local manifold learning methods returns a decent
parameterization, as no large intrinsic distances are exploited.

are for the full-blown MDS procedure, with roughly half of time spent on the other
steps. Using the Landmark-PTU variant with 0.1%-0.5% of the points as landmarks
improved the efficiency of the MDS step by 500 to 5000 times on tested datasets,
with virtually no visual difference compared to the full treatment; see Fig. 4.8 and
App. B.

4.5.3 High-dimensional Datasets
We also present results on a number of real and/or high-dimensional datasets. While
no ground truth is available for these examples, they allow us to compare PTU and
Isomap on inputs that may not even satisfy the (single-chart) manifold assumption.
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Figure 4.15: Knights. From 221 RGB images of 608×456 pixels (10 examples
shown on the right) of an actor captured in full costume from different lighting
directions, a 2D embedding is computed solely based on local pixel differences
using Isomap and PTU (left). Both methods find a parameterization of the images
corresponding to lighting direction and intensity (the knight images correspond to
black dots).

Faces Dataset. On this classic set of 698 images of 64x64 pixels, PTU and Isomap
recover the same two characteristic features of the data: Fig. 4.11 shows that both
arrange the images based on the azimuth and elevation of the camera, with a fairly
similar global structure (2D visualization, d=3, k=6, and K=18).

Digit zero. When applied to 3000 digit zero images (28x28 pixels) from the
MNIST dataset, both PTU and Isomap create a parameterization of the different
ways people write a zero, separating left-leaning from right-leaning and circular
from oval zeros as shown in Fig. 4.7 (2D visualization, d=4, k=K=10).

Knights. We tried our approach on the dataset from Ch. 3 of reflectance fields
captured using the Light Stage apparatus [117]. A static character (in a knight
costume) was captured in 608×456 RGB images under 221 individual lighting
directions covering a large sphere of illumination. From this pointset in �831744,
Isomap and PTU learn a flat 2Dmanifold that best fits this high-dimensional dataset.
The result for d =2 and k =K =8, shown in Fig. 4.15, recovers positions related to
light angles without any knowledge of the setup; the highly distorted results of local
approaches on this dataset can be found in Ch. 3. The black background of each
image was removed for clarity.

Letter A. From an input set of 888 images with 120x120 pixels of a rotated
and resized letter ‘A’ , the structure of this intrinsically 2-dimensional manifold in
14400 dimensional space revealed in PTU (k=8, K=32) and Isomap embeddings in
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Fig. 4.5 (left) is very intuitive. However, when a section of the data is removed (right),
Isomap suffers from its characteristic global distortion, caused by the presence of
the hole; instead, the structure of PTU embedding remains basically the same.

4.6 Conclusion
The use of parallel transport on high-dimensional datasets remedies an important
limitation of the Isomap approach: unfolding paths between pairs of points based
on the Levi-Civita connection significantly improves the estimation of geodesic dis-
tances and removes the restriction for geodesic convexity of the input data. We
demonstrated on a series of examples that our approach does indeed recover similar
unfolding to Isomap for geodesically convex inputs of low- and high-dimensional
data, but neither overestimates geodesic distances if large voids are present, nor suf-
fers from large deformation in the case of non-geodesically convex inputs. This prop-
erty is particularly crucial to the success of our landmark-based variant, Landmark-
PTU, which can efficiently approximate the low-dimensional embedding of large
datasets in O(n2 log n), even in the presence of noise.
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C h a p t e r 5

OPERATOR-ADAPTED WAVELETS FOR DISCRETE
DIFFERENTIAL FORMS

5.1 Contributions at a Glance
In this chapter, we adopt a finite-element perspective to the development of an
operator-adapted multiresolution analysis. After formulating a series of axiomatic
properties to ensure a proper Galerkin discretization tailored to a given continuous,
linear, bijective, and self-adjoint positive-definite operator, we introduce a con-
struction of operator-adapted basis functions and associated wavelets that matches
the recent construction of gamblets introduced in [140]. However, our resolutely
finite-element-based approach extends seamlessly from scalar-valued functions to
differential forms, the building blocks of Cartan’s Exterior Calculus [40] that ex-
tends differential and integral calculus to differentiable manifolds in coordinate-free
matter. While Finite Element Exterior Calculus [11] and its underlying structure-
preserving de Rham complex have been a recent topic of interest in practical com-
putations, the construction of form-based wavelets in this context has received little
to no attention, even if wavelets for discrete differential forms could be crucial to
the discretization of nonlinear partial differential equations (PDEs) arising in, for
instance, fluid dynamics. We thus propose a constructive approach to multiresolu-
tion analysis of finite-element differential p-forms adapted to an exterior operator.
As a result, we introduce the first construction of vector-valued wavelets that block
diagonalize a given operator. We also show how to derive operator-adapted wavelets
restricted to a linear subspace satisfying a differential constraint, such as divergence-
free wavelets. We demonstrate that for time-dependent nonlinear systems (involving
complex interactions between multiple scales and domain geometry), our wavelets
can be computed on the fly in quasilinear complexity through linearization of the
dynamics. In addition to our algorithmic presentation of the general construction
of operator-adapted wavelets, we discuss how an operator-adapted multiresolution
analysis provides many opportunities to construct reduced models or perform fast
numerical integration.
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5.2 From Classical to Operator-adapted Wavelet-Based Finite Elements
Before delving into our contributions, we provide background for our work by
briefly discussing the usual wavelet-Galarkin approach, and recent proposals on
how to improve upon its foundations.

5.2.1 Wavelet-Galerkin Approach
Let H be a subspace of the Sobolev space Hs (defined as the closure of smooth
functions compactly supported in an open bounded domain Ω, with respect to the
L2 norm and of total derivatives of order s ∈N∗), and let L : H→H∗ ⊂ H−s be a
continuous, linear, bijective, and self-adjoint positive-definite operator giving rise
to a differential equation of the form

L u = g. (5.1)

A standard procedure to analyze and solve Eq. (5.1) involves expressing it in a
weak form through the introduction of a bilinear form (often called “energy scalar
product”) L : H2 → R with L(u, v)B 〈u, v〉L =

∫
Ω

u ·L v (where product operation
represents pointwise inner product) and a linear operator G : H → R as G(v)B

〈g, v〉L2 =
∫
Ω
g · v. Since 〈u, v〉L defines an inner product on H, the bilinear

form is both continuous (i.e., L(u, v) ≤ C | |u| |L | |v | |L) and coercive (i.e., L(u, u) ≥

C−1 | |u| |2
L
). As a result, the celebrated Lax-Milgram theorem implies that the weak

problem
L(u, v) = G(v), ∀v ∈ H (5.2)

has a unique solution for any right-hand side g ∈ H∗ of Eq. (5.1).

The classical wavelet-Galerkin approach uses a compactly supported L2-orthogonal
functional basis [6] to solve Eq. (5.2). It proceeds by approximating the subspace
H with a finite-dimensional solution space Vq and applying the multiresolution
construction as follows. First, a nested sequence of lower-dimensional (coarser)
functional spaces {V k}

q−1
k=1 ⊂ H are defined such that

V k ⊂ V k+1 for k = 1 . . . q − 1.

Complementary wavelet spaces {Wk}
q−1
k=1 ⊂ H are then derived by enforcing

V k+1 = V k ⊕Wk for k = 1 . . . q − 1, (5.3)

where ⊕ denotes the direct sum of L2-orthogonal subspaces. Consequently, Vq

admits a multiresolution decomposition:

H ≈ Vq = V1 ⊕W1 ⊕W2 ⊕ ...Wq−2 ⊕Wq−1
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On each resolution level k (corresponding to V k), suppose we have nk functions
{ϕk

i }
nk
i=1 forming a basis of V k and Nk (pre-)wavelets {ψk

j }
Nk

j=1 forming a basis of
the wavelet space Wk , with Nk B nk+1−nk due to Eq. (5.3). (Throughout this
chapter, we will not require the wavelet basis elements of a fixed resolution k to be
orthonormal; thus formally, {ψk

i }
Nk

i=1 are only pre-wavelets, although we will refer to
them as wavelets for simplicity). The solution of Eq. (5.2) can now be approximated
by a function uq of the form:

uq =

n1∑
i=1

v1
i ϕ

1
i +

q−1∑
k=1

Nk∑
j=1

w k
j ψ

k
j . (5.4)

Let N B n1+
∑q−1

k=1 Nk = nq be the total number of degrees of freedom associated
with the wavelet decomposition of Vq, and let w be the vector of coefficients
(v1,w1, . . . ,w q−1) of uq of size N . The finite-dimensional weak problem can be
formulated as a linear equation:

Lw = g, (5.5)

where L is the global N×N stiffness matrix

L =


A1 M (1,2) . . . M (1,q)

M (2,1) B1 . . . M (2,q)
...

...
. . .

...

M (q−1,1) M (q,2) . . . Bq−1


composed of an n1×n1 submatrix A1

i jB L(ϕ1
i , ϕ

1
j ) encoding the stiffness matrix of the

coarsest basis functions, of a series of Nk×Nk submatrices Bk
i jB L(ψk

i , ψ
k
j ) that are

the stiffness submatrices of wavelets for each resolution level, and the off-diagonal
block matrices M (r,s) describing interactions between bases of different resolution
levels r and s:

M (1,s)i j B L(ϕ1
i , ψ

s
j ) = M (s,1)ji for s > 1,

M (r,s)i j B L(ψr
i , ψ

s
j ) for r, s > 1.

The N-dimensional right-hand side vector g is defined in a similar fashion: if
g1

i B G(ϕ1
i ) and bk

j B G(ψk
j ) for k = 1 . . . q − 1, then

g =


g1

b1
...

bq−1


.



67

This problem also admits a unique solution, inheriting this property from the con-
tinuous formulation since Vq ⊂ H. Solving the linear system in Eq. (5.5), one
obtains the set of coefficients w from which the approximate solution uq is con-
structed through Eq. (5.4). This approach provides the same solution as if one had
used a Galerkin approach at the finest resolution Vq, just expressed in a different
basis. The use of different resolutions brings, however, several advantages over
the single-resolution system of equations: applications such as preconditioning and
adaptive mesh refinement can selectively adapt the number of wavelet coefficients to
utilize. Yet the matrix L is difficult to deal with in practice. It is a large matrix with
typically deteriorating condition numbers for large values of q (i.e., fine meshes).
This issue renders the wavelet-Galerkin discretization not substantially better than
the classical Galerkin discretization: in essence, many of the core properties of
wavelets that make them extremely useful in signal processing are not as relevant in
the FEM context. In other words, the performance of wavelet-based methods based
on a multiresolution L2-orthogonal decomposition of the solution space [22, 33, 73]
is affected by the regularity of wavelet coefficients because the decomposition is not
inherently adapted to the underlying PDE.

5.2.2 Towards Operator-adapted Wavelets
Shortcomings of the wavelet-Galerkin approach have generated a large body of work
aimed at alleviating the issues in solving Eq. (5.5) through the use of preconditioning,
specific choices of wavelets to ease evaluation, small subsets/subbands of wavelets,
etc. However, despite a series efforts to link wavelets to operators [56, 127], the
foundations remained mostly unchanged in practical applications.

Operator-based Multiresolution Decomposition. In a sharp departure from the
various palliative measures, Sudarshan [178] proposed to alter the nature of the
multiresolution decomposition itself. He argued for what he called scale-orthogonal
wavelets, i.e., FEM wavelets that should:

1. be operator-orthogonal to block diagonalize the operator at play;

2. produce well-conditioned stiffness matrices (i.e., A1 and Bk for k = 1. . . q−1
in the previous example);

3. be localized or have fast decay for computational efficiency.
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Property (a) implies a new multiresolution decomposition, no longer based on L2

orthogonality, but on an operator-dependent notion of orthogonality: wavelets in
Wk should be L-orthogonal to the basis functions of their own resolution and to
all other wavelets. This implies that we now need to enforce:

V k+1 = V k ⊕LW
k,

where ⊕L denotes direct sum of L-orthogonal subspaces; the induced multiresolu-
tion decomposition becomes:

H ≈ Vq = V1 ⊕LW
1 ⊕L . . .W

q−2 ⊕LW
q−1.

Numerical Consequence of an Operator-adapted Decomposition. A wavelet-
Galerkin treatment using such a decompositionwould result in a significantly simpler
linear solve: discretizing the weak problem in Eq. (5.2) now produces a linear
system with the same structure as shown in Eq. (5.5), but the off-diagonal “inter-
level” stiffness matrices all vanish, i.e. M (r,s) = 0 for r , s. In other words, the
matrix L of the final linear system becomes block diagonal. Consequently, the full
linear system reduces to a set of q small independent linear equations Bkwk = bk

for k = 1 . . . q−1 and A1ν1 = g1, each corresponding to its own resolution level.
Property (b) additionally guarantees that each of these linear systems can be solved
easily and reliably (Riesz stability). Finally, the last property (c) ensures that within
a given resolution level, only nearby basis elements have non-zero contributions,
rendering the matrices Bk sparse, and allowing for highly efficient storage as well
as fast computations. As with classical wavelets, one obtains a frequency-based
decomposition of the solution uq, except that now this representation is truly adapted
to the operator: the coarser basis functions derive from finer scales, changing their
shapes accordingly to capture the eigenspaces of the corresponding operator as well
as possible while staying spatially localized.

Wavelet Construction. However, scale-orthogonal wavelets are not nearly as sim-
ple to construct as their use is desirable. A construction enforcing only (a) and (b)
was proposed in [178]. A second construction was also offered in the same publi-
cation, this time by relaxing the exact L-orthogonality of the decomposition, thus
violating (a). However, this looser definition of wavelets leads to a construction in-
volving Gram-Schmidt orthogonalizations of dense matrices, failing to deliver a fast
algorithm except in restricted cases such as when the solution has very few non-zero
wavelets coefficients. Recently, Owhadi [140] presented the first practical technique
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to achieve all three properties (a)-(b)-(c), introducing operator adapted wavelets
referred to as gamblets (due to their Bayesian and game theoretic interpretation).
Gamblets have been used over the last year for alleviating the complexity bottleneck
associated with parabolic and hyperbolic PDEs [141], dense kernel matrices [158],
denoising PDEs [200] and eigenpairs computation [197].

5.2.3 Outline
In this paper, we revisit the recent work of Owhadi [140] and rederive his approach
through an axiomatic derivation from a Finite Element Analysis point of view. We
then demonstrate that this construction is general enough to handle functional spaces
of differential forms based on Whitney basis functions [10, 25, 67] as well, thus
offering a multiresolution analysis of arbitrary p-forms adapted to a given exterior
operator. With this framework, one can construct novel computational tools such
as vector-valued wavelets and divergence-free vector-valued basis functions adapted
to any continuous, linear, bijective, and symmetric positive-definite operator. We
also provide a detailed algorithmic description of our resulting construction of
operator-adapted basis functions and wavelets of differential forms, and review how
to use them for multiresolution analysis by leveraging the fact that each sub-band
of the decomposition can be handled independently. Finally, we demonstrate the
effectiveness of this fast computational procedure for numerical tasks such as coarse
graining and model reduction of linear and nonlinear partial differential equations.

5.3 Axiomatic Construction of Operator-adapted Wavelets
We present an algorithmic construction of operator-adapted wavelets through an
axiomatic derivation formulated from a finite element perspective. The approach
proceeds in a fine-to-coarse fashion, with locality and operator-orthogonality im-
posed directly based on simple linear algebra. For completeness as well as to offer
a deeper insight into the optimality properties of our construction, we also provide
(in the Appendix) a short summary of the alternative interpretation from [140]
derived from a game-theoretical view of functional approximation and conditional
generalized Gaussian processes.

5.3.1 Canonical Multiresolution Analysis
Our approach starts from an existing set of refinable basis functions whose spans
form multiscale approximation spaces. Each basis function in this sequence of q

nested approximation spaces is associatedwith an element of ameshM k (1≤ k ≤ q),
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where meshesM1,M2, ...,Mq provide increasingly finer spatial discretizations of
the domain Ω.

Refinable Basis Functions. Let {V k}
q
k=1 ⊂ H∗ be a nested sequence of q func-

tional spaces, where each space V k is spanned by nk compactly supported basis
functions ϕk

i , i.e., V
k = span {ϕk

i }
nk
i=1. Each basis function ϕk

i is refinable for
1≤ k <q, that is to say, ϕk

i can be written as a weighted sum of finer basis functions
{ϕk+1

j }
nk+1
j=1 :

ϕk
i =

nk+1∑
j=1

Ck
i j ϕ

k+1
j . (5.6)

Note that this relation between basis functions of two successive levels implies a
specific topological refinement of the meshM k at level k into a finer meshMk+1.
We do not make any special assumption on how these meshes are related (for in-
stance, nested or not) as our construction is very general; as a consequence, we
will rarely refer to these meshes, even if the definition of the basis functions are
often expressed, explicitly or implicitly, in terms of barycentric coordinates over the
elements of these meshes in practice. We do assume, however, that the refinement
matrices Ck defining the basis functions are sparse—and as we are about to see,
we also require that there exists a sparse parametrization of their kernels. To dis-
tinguish these (user-specified) canonical basis functions from the operator-adapted
basis functions we will construct at each level of resolution, we refer to {ϕk

i }
nk
i=1

as test (or measurement) functions in the remainder of this paper: they will only
be used to integrate against at the finest level to kickstart our construction of an
operator-adapted multiresolution analysis.

Remark 1: Such a nested, or hierarchical, representation of the functional spaceVq

is typical ofMultiresolutionAnalysis (MRA) andwavelet-based adaptive solvers to
allow for efficient handling of local refinements of the solution: our test functions
are simply their ‘scaling functions’ (or ‘father wavelets’) — and any existing such
function can be used in our construction. In practice, the finest functional space
Vq giving rise to the hierarchy is formed by the span of nq linearly independent
functions in L2. The L2-orthogonal complement ofV k inV k+1 is typically called
Wk , which is spanned by Nk wavelets {ψk

i }
Nk

i=1, with Nk B nk+1−nk to capture
the details at level k, i.e., the functions that are contained in V k+1, but not in
V k . Note that only the test functions are needed in our construction, although
their associated wavelets are implicitly present as well, as we will discuss when
relevant.
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Refinement Kernel. From a refinement matrix Ck , we define a sparse, Nk × nk+1

refinement kernel matrix Wk satisfying:

Ck Wk,T =0nk×Nk
.

In other words, the Nk rows of Wk form a basis for Ker Ck , hence our naming con-
vention. This matrix should only have a few non-zero entries per row, corresponding
to nearby test functions in the physical domain. In addition, the condition number
of Wk should be as close to 1 as possible to achieve lower condition numbers for
the operator-adapted stiffness matrices we will construct (corresponding to the Bk

matrices in the previous section).

Remark 2: If the test (scaling) functions ϕk
i were L2-orthonormal, the matrix

Wk would correspond to the refinement relation of the wavelets associated to the
scaling functions, i.e.,

ψk
i =

nk+1∑
j=1

Wk
i j ϕ

k+1
j .

Indeed, for a typical pair of mother and father wavelets, one has 〈ϕk
i , ψ

k
j 〉L2 =∑

r,s Ck
ir 〈ϕ

k+1
r , ϕk+1

s 〉L2 Wk,T
s j . So if the mass matrix at level k + 1 of the test

functions is the identity, the wavelets form precisely the L2-orthogonal subspace
Wk mentioned in Rmk. 1. However, our construction does not require L2-
orthonormality of the test functions, so the refinement kernel matrices Wk do
not directly define L2-orthogonal wavelets: these matrices will be used instead
to parameterize the kernel of Ck in order to construct our operator-adapted basis
functions and wavelets.

5.3.2 Setup for Operator-adapted Basis Functions and Wavelets
From the refinement equations of the user-selected test functions and a choice of
refinement kernel matrices, we wish to bootstrap a fine-to-coarse construction of
operator-adapted basis functions and associated wavelets. We begin by listing a
minimal set of basic, desirable axiomatic properties that are formulated to enforce
that the new basis functions and wavelets define an operator-adapted multiresolution
analysis of the solution space, and are easy to construct via linear algebra.

Cardinality of Degrees of Freedom. Our first requirement is that our operator-
adapted multiscale decomposition must share the same cardinality as the canonical
multiresolution analysis based on the test functions ϕk

i . Consequently, for each level
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Table 5.1: Summary of the main symbols used in our paper and their definitions.

Symbols Meaning

Vk Space of test functions on resolution level k, dimVk = nk .

{ϕki }
nk
i=1 Basis of the space of test functionsVk .

Ck
Refinement nk×nk+1 matrix for test functions,
with ϕki =

∑nk
j=1 Ck

i j ϕ
k+1
j .

Vk Operator-adapted solution space on resolution level k, dimVk = nk .

{ϕki }
nk
i=1 Operator-adapted basis functions spanning solution spaceVk .

Ck Refinement nk×nk+1 matrix for operator-adapted basis functions,
with ϕki =

∑nk
j=1 Ck

i j ϕ
k+1
j .

Wk Operator-adapted wavelet space on level k, withVk+1= Vk ⊕LW
k ,

where dimWk =NkBnk+1− nk .

{ψk
i }

Nk

i=1 Operator-adapted wavelet basis spanning wavelet spaceWk .

Wk Refinement kernel Nk×nk+1 matrices with Ck Wk,T =0, defining operator-adapted
wavelets as ψk

i =
∑Nk

j=1 Wk
i j ϕ

k+1
j .

Ak Stiffness matrix of size nk×nk for operator-adapted basis functions on level k,
defined as Ak

i j = L(ϕki , ϕ
k
j ).

Bk Stiffness matrix of size Nk×Nk for operator-adapted wavelet basis on level k,
defined as Bk

i j = L(ψk
i , ψ

k
j ).

uq
Finite-element solution of Lu=g (Eq.(5.1)) using finest solution spaceVq:
uq =

∑n1
i=1 v

1
i ϕ

1
i +

∑q−1
p=1

∑Np

i=1 w
p
i ψ

p
i

uk Level-k approximation of uq: uk ∈ Vk and uk =
∑n1

i=1 v
1
i ϕ

1
i +

∑k−1
p=1

∑Np

i=1 w
p
i ψ

p
i

ωk Contribution to FEM solution from level-k wavelets: ωk ∈ Wk

and ωk = uk+1−uk =
∑Nk

i=1 w
k
i ψ

k
i

k = 1... q, we need to construct nk operator-adapted basis functions, which we will
refer to as {ϕk

i }
nk
i=1, spanning a functional space that we will denoteV

k .

Collocation of Degrees of Freedom. One of the key properties of MRA is spatial
localization: unlike operator eigenfunctions that are not attached to any particular
spatial location, basis functions are always associated with a particular element
(which, consequently, makes the wavelets localized as well). We exploit the ex-
istence of the spatially-localized canonical test functions ϕk

j by imposing a weak
collocation of the operator-adapted basis functions (we use δi j to denote the Kro-
necker delta):

〈ϕk
i , ϕ

k
j 〉L2 = δi j for all i = 1...nk, j = 1...nk, k = 1..q, (5.7)

which will ensure that our operator-adapted basis functions ϕk
i are similarly located

in the domain.
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Operator-adapted Refinability. The new basis functions ϕk
i should be refinable

to induce a hierarchy of nested functional spaces. We denote byC the corresponding
(unknown) refinement matrices in order to impose the following refinement relation
between levels:

ϕk
i =

nk+1∑
j=1

Ck
i j ϕ

k+1
j . (5.8)

Operator-adapted Wavelets. We wish to construct wavelets as well, associated
with the operator-adapted basis functions. Let {ψk

i }
Nk

i=1 be the Nk B nk+1−nk (pre-
)wavelets defined at each level k, and letWk the corresponding functional spaces
they span. These wavelets should be L-orthogonal to the operator-adapted basis
functions of the same level, to enforce that V k+1 =V k ⊕LW

k ; consequently, one
must have

〈ϕk
i , ψ

k
j 〉L = 0 for all i = 1... nk, j = 1... Nk, k = 1... q − 1. (5.9)

Wavelet Refinability. Since we assumed thatWk ⊂V k+1, our adapted wavelets
at level k must also be a linear combinations of adapted basis functions at level
k+1. We require that the corresponding wavelet refinement matrices are, in fact,
the refinement kernel matrices Wk , that is,

ψk
i =

nk+1∑
j=1

Wk
i j ϕ

k+1
j . (5.10)

This particular choice of refinement matrix for our wavelets allows us to leverage
the kernel of the canonical refinement on which we derive the operator-adapted
decomposition.

Stiffness Matrices. By analogy to the L2-orthogonal case described earlier, we
denote by Ak the stiffness matrix of our new basis functions, and by Bk the stiffness
matrix of the new wavelets. That is,

Ak
i j = L(ϕk

i , ϕ
k
j ) , Bk

i j = L(ψk
i , ψ

k
j ) . (5.11)

Note finally that our notational conventions were selected such that bold letters
denote user-selected entities, while outlined letters refer to entitieswemust construct.
In particular, the operator-adapted refinement matrices Ck are the key ingredients:
computing them allows for the construction of adapted basis functions, which in turn
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leads to the construction of their adapted wavelets, and thus of the induced stiffness
matrices; see Table 5.1 for a review of the various symbols and their definitions.

5.3.3 Resulting Linear Algebraic Conditions
From the axiomatic characterization of our L-adapted multiresolution analysis,
we can easily derive linear algebra conditions on the matrices involved in our
construction so that Properties (a)-(c) from Section 5.2.2 are satisfied. Indeed,

• the collocation conditions expressed in Eq. (5.7) directly imply that

Ck Ck,T = �nk ; (5.12)

• due to Eq. (5.10), the L-orthogonality conditions expressed in Eq. (5.9) can
be rewritten as

Ck Ak+1 Wk,T = 0nk×Nk
; (5.13)

• finally, the stiffness matrices defined in Eq. (5.11) are linked through Wk due
to Eq. (5.10):

Bk =Wk Ak+1 Wk,T . (5.14)

From these conditions, we can establish a closed-form expression for Ck satisfying
all of our requirements:

Proposition 5.1. To enforce Eqs. (5.12), (5.13), and (5.14), one must have

Ck = Ck,†
[
�nk+1 − Ak+1 Wk,T

(
Bk

)−1
Wk

]
, (5.15)

where Ck,† = (CkCk,T )−1Ck is the pseudoinverse of Ck .

Proof. Given that Ck Ck,T = �nk (Eq. (5.12)), the refinement matrices Ck must be
of the form

Ck = Ck,† + ZWk,

where Ck,† denotes the pseudoinverse of Ck and Z is an arbitrary nk×Nk matrix:
indeed, we saw in Section 5.3.1 that the rows of Wk form a basis for Ker Ck so that
WkCk,T = 0. Additionally, we must have Ck Ak+1 Wk,T = 0 (Eq. (5.13)), implying
that

(Ck,† + ZWk)Ak+1 Wk,T = 0 =⇒ Z = −Ck,†Ak+1Wk,T
(
WkAk+1Wk,T

)−1
.

Substituting Bk for WkAk+1Wk,T (Eq. (5.14)) and plugging Z back into the expres-
sion of Ck leads to Eq. (5.15). �
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5.3.4 Computational Procedure for Operator-adapted Approach
Based on the closed-form expression of the refinement matrices Ck , we can now
derive the computational procedure to turn the weak form in Eq. (5.5) on the finest
level Vq into q independent and well-conditioned linear systems through our L-
adapted MRA.

Bootstrapping the Finest Scale. In order to start our construction, we need to
select the basis functions {ϕq

i }
nq
i=1 at the finest level. We pick

ϕ
q
i =ϕ

q
i (5.16)

for simplicity, as it trivially enforces that these initial fine basis functions are attached
to the same mesh elements as their canonical equivalents. Note that this choice
implicitly amounts to rescaling the test functions at the finest scale through the
inverse of their mass matrix; using such rescaled test functions as finest level basis
functions is also a valid alternative as it formally enforces Eq. (5.7), but we follow
the former approach because it does not involve the mass matrix inverse and is
more straightforward to implement; one can also see our choice as a simple way to
ensure that the finest basis functions are collocated with the test functions without
actually having to enforce Eq. (5.7) explicitly. The resulting stiffness matrix Aq is
then trivially evaluated as it is precisely the usual finite-element stiffness matrix Aq,
and the right hand side of the original problem is represented as a vector gq obtained
by integrating g against these finest basis functions, i.e., gq

i =G(ϕq
i ).

Fine-to-coarse Evaluation. Given our setup and the closed-form expression of
the key refinement matrix, we can now describe a transition to a coarser level k

(from k = q, to k = 2) by evaluating relevant matrices and vectors in the following
order:



Bk−1 =Wk−1AkWk−1,T

Ck−1 = Ck−1,†
[
�nk − AkWk−1,T

(
Bk−1

)−1
Wk−1

]
Ak−1 = Ck−1AkCk−1,T

gk−1 = Ck−1gk

bk−1 =Wk−1gk .

(5.17)
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ResultingWeak Form. Once these evaluations have been done all the way to level
1, the weak form in Eq. (5.5) is, by construction, equivalent to q independent (and,
as detailed later, well-conditioned) linear systems:{

A1 v1 = g1

Bk wk = bk for k = 1... q − 1
(5.18)

from which the level-k FEM solution uk ∈ V k for k = 2... q can then be evaluated
via

uk =

n1∑
i=1

v1
i ϕ

1
i +

k−1∑
p=1

Np∑
i=1

w
p
i ψ

p
i , (5.19)

for k = 2...q; compare to the large linear system in Eq. (5.5) using the usual L2-
orthogonal MRA. In particular, due to the independence of the linear systems in
Eq. (5.18), one can easily compute approximations of the fine solution uq by solving
only the first k linear systems (instead of the full q linear systems) and returning uk

using Eq. (5.19). Observe also, that formally uk is the L-orthogonal projection of
uq ontoV k .

5.3.5 Properties of the Construction
As mentioned earlier, the fine-to-coarse construction we derived above from basic
desirable axioms is, in fact, equivalent to the work of [140], originally developed
from a game-theoretical approach to optimal functional approximation. They ar-
gued that the optimal operator-adapted basis functions should satisfy a variational
definition, formulated as

ϕk
i = arg min

φ∈H
| |φ| |2L s. t. 〈φ, ϕk

j 〉L2 = δi j for j = 1 . . . nk . (5.20)

This variational formulation implies that the basis functions ϕk
i can also be identified

as optimal recovery splines in the sense of [128], and viewed as a generalization of
energy minimizing splines in the sense of [186], variational multiscale (or LOD)
basis functions in the sense of [106, 124] and polyharmonic splines in the sense of
[74, 92, 142]. For completeness we provide a short summary of their arguments
leading to this definition in App. C. From this variational definition, they derive
a construction for operator-adapted basis functions and wavelets that mirrors ours,
reinforcing the fact that our axiomatic characterizations are quite natural. As a
consequence, we inherit the properties of the operator-adapted functions derived
from Eq. (5.20). These properties include in particular:
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• the condition numbers of stiffness matrices A1 and Bk are uniformly bounded
for all k = 1 . . . q − 1;

• the resulting basis functions ϕk
i decay exponentially fast under reasonably

mild assumptions on the interactions between test functions and operator;

• operator-adapted basis functions allow for small approximation errors even
if high frequencies (i.e., fine levels) are ignored, confirming their coarse-
graining properties.

We provide a summary of the analysis leading to these conditions in App. C too, in
order to make the underlying conditions and the actual properties more explicit, but
interested readers should refer to the original paper [140] and to [139] for rigorous
proofs. Note that we will numerically verify these properties in our context, and
will explain the practical implications of their assumptions.

5.3.6 Practical Implementation
While the fine-to-coarse construction described in Sec. 5.3.4 is simple, it fails
to be efficient to implement as is since many of the matrices involved are not
sparse in general. Yet, the fact that operator-adapted basis functions are decaying
exponentially fast can be leveraged to enforce sparsity throughout the construction.
Additionally, we did not explicitly describe how the L-adapted basis functions and
wavelets are constructed in practice to recover the solution from Eq. (5.19), so we
now go over implementation details of the fine-to-coarse construction procedure.

Basis Functions andWavelets. Once the finestL-adapted basis functions {ϕq
i }

nq
i=1

have been defined (Eq. (5.16)), it is clear from Eq. (5.8) and Eq. (5.10) that all other
basis functions and wavelets are simply linear combinations of these fine functions.
Therefore, we can store them as just the coefficients of the fine basis functions they
are made of. To simplify the notation, we assemble a (sparse) vectorΦk of operator-
adapted basis functions (with nk rows) and a (sparse) vector Ψk of pre-wavelets
(with Nk rows) for each resolution level k to keep track of these linear combinations:

Φ
k =

[
ϕk

1 ϕk
2 . . . ϕk

nk

]T
, Ψ

k =
[
ψk

1 ψk
2 . . . ψk

Nk

]T
,

where each ϕk
i and ψk

j is discretized as coefficients associated to all the nq basis
functions of the fine mesh. During the fine-to-coarse construction, these vectors
are trivially assembled starting from the finest level basis {ϕq

i }
nq
i=1 and onto coarser

resolutions via the refinement relations of Eqs. (5.8) and (5.10). The pseudocode for
computing adapted basis functions and corresponding wavelets is given in Alg. 5.1.
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Algorithm 5.1 Operator-adapted Basis and Wavelet Construction
Input: Basis matrixΦq and associated stiffness matrix Aq on finest resolution level,

refinement matrices {Ck,Wk}
q−1
k=1.

for k = q to 2 do
Φk−1,Ψk−1,Ak−1,Bk−1 ← Per-level Coarsening Step (Φk,Ak,Ck−1,Wk−1)

end for
Output: Operator-adapted bases {Φk}

q
k=1, pre-wavelets {Ψ

k}
q−1
k=1, and their stiffness

matrices {Ak}
q
k=1 and {B

k}
q−1
k=1.

Algorithm 5.2 Per-level Coarsening Step

Input: Basis matrix Φk and its stiffness matrix Ak on k-th resolution level, refine-
ment matrices Ck−1, Wk−1.

1: Compute wavelet stiffness: Bk−1 ←Wk−1AkWk−1,T

2: Compute pseudoinverse Ck−1,† ← (Ck−1Ck−1,T )−1Ck−1

3: Compute intermediate matrix Z throughBk−1ZT = −Wk−1AkCk−1,†T (fast solve
through localization)

4: Compute adapted basis refinement matrix: Ck−1 ← Ck−1,† + ZWk−1

5: Compute adapted wavelets on level (k − 1): Ψk−1 ←Wk−1Φk

6: Compute adapted basis on level (k − 1): Φk−1 ← Ck−1Φk

7: Assemble stiffness matrix for lower resolution level: Ak−1 ← Ck−1AkCk−1,T

(sparsified through truncation)
Output: Operator-adapted basis matrixΦk−1, pre-waveletsΨk−1, stiffness matrices

Ak−1, Bk−1 and refinement Ck−1.

Sparsification. As a consequence of the exponential decay of operator-adapted
basis functions discussed in Sec. 5.3.5, we can reduce computational complexity
without sacrificing numerical precision by working with sparse matrices throughout
the fine-to-coarse construction. Thresholding near-zero values will have no signif-
icant numerical effects, and will allow for efficient sparse computations; we refer
the reader to [139, 140] for a thorough discussion of accuracy and error propagation
across scales induced by this procedure. In the coarsening algorithm from level k to
level k−1, we sparsify both matrix Ck−1 and matrix Ak−1 through simple truncation.

Fast Evaluation of Ck−1. Seemingly, the most tedious part of the coarsening
procedure is the computation of theL-adapted refinementmatrixCk fromEq. (5.15).
Evaluation is done in two stages: one linear solve to derive an intermediate matrix
Z (used in the proof of the Prop. 5.1), then the final expression based on Z, Ck−1,†,
Ak and Wk−1; see Alg. 5.2. In [140], Z is evaluated efficiently through localization,
and we adopt the same approach here: in order to efficiently solve the linear system
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Bk−1ZT = −Wk−1AkCk−1,†T , we localize both Bk−1 and the right hand side by
exploiting the sparsity of Wk−1. We compute each i-th column Zi of ZT by solving a
small linear system as follows. Since the column Zi corresponds to the i-th element
of the coarser mesh, consider all mesh elements that are less than three element
away1, inducing a small region R of the domain. We first assemble a set of indices S

such that ` ∈ S iff the `-th row of Wk−1 has at least one non-zero coefficient on one
of the finer mesh elements in R. We then assemble a matrix B which is a submatrix
of the stiffness Bk−1 using only the rows and columns whose indices are in S (this
is a reduced stiffness matrix of the wavelets around i whose support intersects R).
We also assemble a vector zi by subsampling the i-th column of Wk−1AkCk−1,†T

using the indices from S. Now entries of Zi with indices from S, assembled in a
vector zi, are evaluated by solving the small linear system: B zi = −zi, while all
other entries of Zi are set to zero. This procedure to compute Z is significantly
faster than a full-blown SparseLU or Preconditioned Conjugate Gradient solve, as
it only involves linear solves of small size, and is less prone to inaccuracies than a
hard truncation-based sparsification of the various matrices involved. In addition,
it promotes sparsity of Z and of all subsequent operations, e.g., for the refinement
matrix Ck−1 and the basis functions stored as Φk−1.

Complexity. Exploiting sparsity makes the construction extremely efficient: in
dimension d, it has computational complexity of O(nq log2d+1 nq) [139, 140] if
one uses a fine grid with nq degrees of freedom. Our timing tests confirm this
expected complexity of our algorithm with fast evaluation of Ck . However, we
observed that our python implementation can produce slightly worse timings for
nq < 103 compared to regular sparse solvers combined with naive threshold-based
sparsification: our fast evaluation only pays off for large enough problems.

5.3.7 Discussion
Pseudocode of the numerical procedure to compute an operator-adapted decompo-
sition is given in Algs. 5.1 and 5.2. Notice that since the operator-adapted basis
functions and wavelets are stored as linear combinations of the original test func-
tions on the finest levelMq, their evaluation at any point of the domain is fast as it
only involves a few local evaluations of test functions. Consequently, all the regular
finite-element approaches used to solve partial differential equations can be applied

1Note that this spatial extent can be adapted on a per-level basis to tailor the sparsity vs. accuracy
balance of the decomposition.
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Algorithm 5.3 Linear Solve
Input: Basis matrix Φq and its stiffness matrix Aq on finest resolution level, refine-
ment matrices {Ck,Wk}

q−1
k=1, right-hand side g

q in basis Φq.
for k = q to 2 do

Φk−1,Ψk−1,Ak−1,Bk−1,Ck−1 ← Per-level Coarsening step (Φk,Ak,Ck−1,Wk−1)

Find wavelet coefficients wk−1 by solving Bk−1wk−1 =Wk−1gk

Assemble level (k−1) wavelet solution ωk−1 ← Ψk−1,Twk−1

Coarsen right hand side gk−1 ← Ck−1gk

end for
Final coefficient solve A1v1 = g1

Assemble final solution uq ← Φ1,Tv1 + ω1 + ... + ωq−1

Output: Solution to finite element problem uq.

Algorithm 5.4 Nonlinear Solve

Input: Basis matrix Φq, refinement matrices {Ck,Wk}
q−1
k=1, stopping time MaxIter

and basis recomputation rate m.
for s = 0 to MaxIter do

Compute stiffness Aq of linearized operator at current time step in basis Φq

Compute right hand side gq at current time step in basis Φq

if (s modm == 0) then
Compute operator-adapted bases/wavelets Φ1, {Ψk}

q−1
k=1 and stiffness ma-

trices A1, {Bk}
q−1
k=1.

Optional: perform model reduction by selecting a subset of operator-
adapted wavelets as active.

end if
Find solution uq(s) at current time step using most recent active operator-

adapted wavelets.
s← s + 1

end for
Output: Solution to finite element problem uq(s).

at any level of approximation—except that our “operator-aware” basis functions are
used in lieu of the usual polynomial basis functions, just like in other works which
derive tailored shape functions to improve accuracy on coarse grids [42]. The whole
decomposition (or, for a fast approximation, part of the decomposition) can also be
used to solve a linear differential equation like Eq. 5.1 by adapting the wavelet-
Galerkin approach to our framework, as explicitly described in Alg. 5.3. Finally,
nonlinear differential equations such as L(u)=g can also be solved efficiently with
our approach: by linearizing the nonlinear operator at the current estimate of u

and using the associated adapted basis functions and wavelets, one can iteratively
improve the approximation of the solution as described in Alg. 5.4.
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While we implicitly assumed that our test functions are traditional node-based and
scalar-valued functions, we next describe how all the expressions given thus far
actually apply to a much larger class of finite elements: our decomposition applies
to differential forms and linear self-adjoint positive-definite exterior operators.

5.4 Operator-adapted Wavelets for k-forms
Finite element formulations have most commonly used node-based basis functions
to discretize both scalar functions and the coordinates of vector fields. A growing
trend in recent years consists in employing mixed finite element methods, where
basis functions are associated with arbitrary mesh elements (vertices, edges, faces,
and cells for 3D grids). These methods have been instrumental in promoting the use
of finite dimensional spaces of differential forms for coordinate-free computations
with scalar and vector fields. We demonstrate in this section that our wavelet
construction extends to the multiresolution analysis of differential p-forms adapted
to a given continuous, linear, bijective, and self-adjoint positive-definite exterior
operator (see three examples in Fig. 5.1). We also exhibit basis functions and
wavelets of p-forms adapted to common operators.

Figure 5.1: Characteristic Solutions. Elements of the solution spaces of the 1-
form Laplacian (left), the modified 1-form Laplacian (middle, see Eq. (5.28)) and
the advection-diffusion (right, see vector field of the advection in Fig. 5.6(top))
operators, computed by solving Lu = g for the same right-hand side 1-form g

(depicted far left).

5.4.1 Finite Element Differential Forms
In Cartan’s “Exterior Calculus” [40], differential forms are used as the building
blocks of differential and integral calculus in arbitrary dimension. For computational
purposes, a number of efforts have been dedicated to derive a discrete version of
this coordinate-free calculus through the use of finite dimensional approximation of
differential forms.
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Differential Forms for Computations. Mixed finite elements were introduced in
the mid-1970s as an effort to build mixed discrete formulations for second order
elliptic operators [133, 152]. The realization that they, in fact, were finite element
spaces of differential forms came only later in [26]. At the root of these discrete
differential forms is algebraic topology: cochains (resp., chains) provide a natural
discretization of differential forms (resp., domain of integration) [132, 195]. Since
a set of scalar values on vertices, edges, faces, and cells are proper discrete counter-
parts of respectively pointwise function evaluations, line integrals, surface integrals,
and volume integrals [25], one can emulate exterior calculus on finite grids through
the construction of finite-element differential forms [9]. This point of view naturally
encompasses the use of volume integrals in finite volume methods and scalar func-
tions in finite element methods, and also includes non-conforming “edge elements”
and “facet elements” which are conforming in the spaces Hdiv and Hcurl [133, 134].
Generalized basis functions that span the spaces of differential forms are particularly
attractive, as many important scalar and vector calculus properties and invariants of
the continuous setting directly carry over to the discrete world in a coordinate-free
manner, culminating in a discrete Hodge theory [9, 11, 67]. The resulting finite-
element framework for differential forms provides a powerful tool for solving a wide
range of partial differential equations, which has been proven useful in a variety
of applications such as computational electromagnetism [25, 176], fluid simula-
tion [82, 102, 120, 129, 133], quadrangle meshing of curved manifolds [181], and
computer vision [89] to mention a few.

Whitney Forms as Basis Functions of Differential Forms. The simplest basis
of finite-element differential forms happen to correspond to a construct in algebraic
topology known as Whitney forms [26]. Their initial purpose was to relate the
de Rham sequence of smooth differential forms to simplicial cochain sequences in
order to prove deRham’s theorem, which states that these sequences have isomorphic
cohomology groups [194, 196]. But in a computational setting, they can be seen
as low-order “basis functions” that turn values on mesh elements into differential
forms: given a vector U = (u1, ..., un)

T of real values on all the n p-dimensional
elements {σi}

n
i=1 of a mesh, one can construct a p-form u as a linear combination

of the Whitney forms (φ[p]1 , ..., φ
[p]
n ) associated with these mesh elements through

∀x ∈Ω, u(x) =
∑n

i=1 ui φ
[p]
i (x) = Φ

[p]U, (5.21)

where Φ[p] stores all the Whitney p-forms as a row vector. In other words, there
is one Whitney p-form for each p-dimensional element of a given mesh M, and
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their span generates a finite-dimensional space of differential p-forms. A Whitney
p-form φ

[p]
i is expressed in terms of the barycentric coordinates of the associated

p-element σi, and its integration over this (oriented) p-element is∫
σj

φ
[p]
i = δi j, (5.22)

making it “histopolating”—an extension of the notion of pointwise interpolation;
see, e.g., [153]. When a metric is introduced on the ambient space, Whitney forms
can be expressed as either scalar-valued (for p = 0 and 3 in �3) or, via musical
isomorphisms, vector-valued (for p=1 and 2 in �3) functions with local support.

From Low-order to High-order Whitney Forms. While Whitney forms provide
low-order interpolation of cochains (in particular, 0-forms are piecewise linear on
a triangulation and trilinear on a cubical grid), a number of higher-order variants
of these bases of differential forms have since then been proposed over simplicial
or polytopal meshes [11, 35, 46, 84, 99, 100, 151, 191], some even with spectral
accuracy [83, 157]. Their constructions vary greatly: a few are derived from tensor
products of Whitney forms, while others follow the traditional approach of using
higher “moments” to define various degrees of freedom associated to mesh elements
in order to raise the order of the bases of differential forms while enforcing proper
continuity across elements. Such high-order basis functions are carefully designed to
span finite-dimensional differential p-form spacesΛp that form a de Rham complex,

Λ0(M)
d
−−→
(∇)

Λ1(M)
d
−−−→
(∇×)

Λ2(M)
d
−−→
(∇·)

Λ3(M) → 0, (5.23)

in which the fundamental differential operators gradient, curl, and divergence are
unified as the exterior derivative d (which satisfies d◦d = 0) [1], to offer structure-
preserving finite element computations.

5.4.2 Refinable Test Functions for Differential Forms
The notion of refinability of basis functions [90] is crucial to the generation of
wavelets, and even our multiresolution analysis requires an existing set of refin-
able test functions to bootstrap the bottom-up construction of our operator-adapted
wavelets. Alas, refinability is a property rarely sought after or even discussed in
the context of basis functions of differential p-forms: while the original Whitney
forms are in fact refinable as pointed out in [191], most higher-order extensions are
not known to have this property. As a consequence, the construction of wavelets
for differential forms remains a challenge despite obvious applications for efficient
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numerical computations in electromagnetism and other computational fields. To
the authors’ knowledge, the only arbitrary-order Whitney bases that are refinable
by construction on both simplicial and polytopal meshes are the subdivision-based
forms defined in [191] and extended in [62]. We thus review their construction,
usage, and properties, as this particular family of refinable basis functions of differ-
ential forms and their associated mesh hierarchy will be used as test functions for
differential forms in our multiresolution analysis.

Mesh Hierarchy

Due to the large body of known sudivision schemes for simplicial or polytopal
meshes of arbitrary manifold domains [207], any (nested or non-nested) hierarchy
of meshes for which subdivision schemes exist could be used for our construction in
theory. However, regular (Cartesian) grids are undeniably simpler due to their tensor
product nature, and oftenmore amenable to efficient implementation. Consequently,
for simplicity of presentation, we will only consider Cartesian meshes of simply
connected domains in our explanations.

M1

M2

...

Mq

We thus assume that the computational domain
is a d-dimensional cube in�d (for d=1, 2, or 3),
over which a nested hierarchy of regular grids
{M k}

q
k=1 is defined, withMk+1 being twice as

fine asM k such that each p-dimensional mesh
element ofM k is the union of 2p p-dimensional
mesh element ofMk+1 for p=1, 2, or 3 (see inset
for a 2D example of such a hierarchy). Each mesh element is given an arbitrary ori-
entation, so that the boundary of any element is a linear combination of its faces with
coefficients ±1 based on whether the relative orientations match [101]. Considering
only a simple d-dimensional cube domain is not a very restrictive assumption: we
will show that our construction can not only homogenize operators, but also the spa-
tial domain over which they are applied, making this simpler case sufficient to deal
with complex domains (see Figs. 5.9 & 5.11)—but for accurate boundary handling,
meshes conforming to curved boundaries (e.g., [78]) are obviously preferable.

(Low-order) Whitney Forms φ as Test Functions

Whitney bases for p-forms on cubical grids have been known for decades [134]:
Whitney 0-forms φ[0] associated to vertex values are the standard trilinear functions
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over each hexahedral element, Whitney 1-forms φ[1] associated with integrals over
edges span the Hcurl-conforming space, while Whitney 2-forms φ[2] associated with
integrals over faces span the Hdiv-conforming space. Finally, Whitney 3-forms
φ[3] associated with integrals over cells are equal to the indicator function of their
associated cell. As noted in [190], these low-order Whitney forms are in fact
refinable. Therefore, the Whitney forms φ[p] for p = 0, ..., 3 can be used as test
functions at any level of the mesh hierarchy, with one Whitney test function φ[p]i for
each i-th p-element: the finite-dimensional differential p-form space Λp plays the
role of the functional space of test functions at any level.

Design of Higher-order Whitney Forms through Subdivision

From these low-order originalWhitney forms, higher-order refinableWhitney forms
can be constructed as well using the concept of “subdivision” [190]. A subdivision
scheme for p-forms maps scalar coefficients on p-elements from a coarse mesh
Mk to the p-elements of a refined meshMk+1 through a subdivision matrix R[p],k ,
converging to a p-form in the limit of refinement. The original Whitney forms
on cubical grids correspond to a particular choice of subdivision matrix R[p],k be-
tween two consecutive mesh levels Mk and Mk+1 [190], as illustrated in 2D in
Fig. 5.3(middle). Since a given subdivision scheme can be turned into a subdivi-
sion scheme of higher regularity through convolution along grid directions [191],
subdivision-based high-order Whitney forms can be derived from the original low-
order Whitney forms, as long as the associated p- and (p+1)-form subdivision
schemes are treated in pairs to enforce that their subdivision matrices commute with
the discrete exterior derivatives—thus ensuring a proper de Rham complex for the
resulting finite element spaces spanned by these higher-order Whitney forms. For
instance, in 2D, one such regularity-raising convolution results in bicubic splines for
0-forms and biquadratic splines for 2-forms as described in [62] (see Fig. 5.3(right));
the more convolutions one uses, the smoother the associated Whitney forms are the
larger their supports become. The higher-order Whitney p-form φ

[p],k
i associated

with the i-th p-element σk
i at level k can thus be conceived as the limit of repeated

subdivisions of an initial assignment of scalar values δi j on the p-elements σk
j , i.e.,

φ
[p],k
i = lim

m→∞
R[p],m R[p],m−1...R[p],k+1 R[p],k ek

i ,

where the vector ek
i of real values on elements of the meshMk contains a single 1

corresponding to element σk
i and zero on all other p-elements.
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Properties of Subdivision-based High-order Whitney Forms

The resulting higher-orderWhitney forms have also a few key distinguishing features
that we summarize here, as these properties coming from their subdivision nature
will be heavily exploited later on.

Simple Degrees of Freedom. While finite element exterior calculus methods use
local polynomial shape functions associated with various degrees of freedom per
mesh element [9, 84], our framework uses only the p-dimensional cells of a mesh
to discretize a p-form. Consequently, the subdivision-based de Rham complex is
simply the complex of the original low-order Whitney forms, i.e., the dual of the
usual chain complex (see Fig. 5.2).

Finite-element Spaces of Differential Forms. High-order Whitney forms φ[p],ki

can still be used to construct differential p-forms frommesh values throughEq. (5.21);
the associated finite element spaces of differential forms on the level-k meshMk

are, for p=0, . . . , 3,

Λ
k
p = span

{
φ
[p],k
i

}nk

i=1

=

{ nk∑
i=1

ui φ
[p],k
i (x) | ui ∈� is associated to p-element σk

i ∈M
k
}
;

(5.24)

that is, they define “basis functions” for p-forms that use only degrees of freedom
associated with p-dimensional elements, but are of higher regularity thanWhitney’s
original p-form basis, and with a larger spatial support. They can be used as test
functions in our operator-adapted wavelet construction, i.e., we can setV kBΛk

p for
p-forms.

Refinement Property. The built-in refinablity of high-order Whitney p-forms
implies

φ
[p],k
i =

nk+1∑
j=1

R[p],kji φ
[p],k+1
j , (5.25)

that is, if all the Whitney forms of level k are stored in a row vector Φ[p],k , one has
Φ[p],k = Φ[p],k+1R[p],k.

Commuting with Exterior Derivative. If we denote by ∂k
p (p = 0, . . . , 2), the

matrix of signed incidence between p- and (p+1)-elements of meshMk implement-
ing the continuous boundary operator ∂ described in Fig. 5.2, then its transpose
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Figure 5.2: Chain Complex. Diagram depicting the chain complex of a cube
element with the boundary operator ∂: from the cube, to its square oriented faces,
to their oriented edges, and to their vertices.

Dk
p B

(
∂k

p
)T represents the discrete exterior derivatives acting on finite-element

forms and implements the continuous derivative d [67], satisfying Dk
p+1Dk

p = 0 by
construction. The subdivision matrices of high-order Whitney forms are chosen so
that they commute with the discrete exterior derivatives [190]:

Dk+1
p R[p],k = R[p+1],kDk

p .

That is, subdividing a discrete p-form on level k followed by application of the
exterior derivative on level k+1 is the same as first applying the exterior derivative
on level k followed by the subdivision scheme for (p+1)-forms.

Fast Pointwise and Integral Evaluations. Exact pointwise evaluation of the re-
sulting high-order basis functions (which are piecewise polynomial for our regular
meshes) at arbitrary parameter locations can be done efficiently [175]. Moreover, for
each subdivision scheme based on a subdivision matrix R[p],k , there is an associated
limit stencil operator S[p],k defined through its matrix representation as

S[p],ki j =

∫
σk
i

φ
[p],k
j . (5.26)

With this limit stencil, one can evaluate the integral of a finite-dimensional p-form
on all the p-elements of a mesh: indeed, from a vector of real values Uk on the
p-elements {σk

i }
nk
i=1 of meshMk , the p-form u∈Λk

p(M) defined through

u(x) = Φ[p],kUk

integrated on a mesh element σk
`
is a local linear combination of the entries of Uk

equal to the `-th entry of the vector S[p],kUk , that is,∫
σk
`

u =
[
S[p],kUk ]

`
.

Since the high-orderWhitney forms are localized, S[p],k is sparse; moreover, the non-
zero values of this matrix can be evaluated in closed form through eigenanalysis
of the subdivision matrix R[p],k [62, 191], making the evaluation of integrals over
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mesh elements of any finite-element differential forms particularly efficient. Note
that the original Whitney forms satisfy S[p],ki j =δi j (see Eq. (5.22)) due to their
histopolation property; hence, the values of the vector Uk are directly the integrals
of the continuous form. This histopolation property is no longer true for a higher-
order Whitney form, but its limit stencil encodes precisely the map between degrees
of freedom and local integrals of the corresponding finite-element p-form.

Discrete Stokes’ Theorem. Due to the commutativity with discrete exterior
derivatives and the existence of limit stencils, high-order Whitney forms induce
a discrete variant of Stokes’ theorem,

∫
R

du=
∫
∂R

u for any region R and p-form u:
for a vector of real values Uk on the p-elements {σk

i }i of meshMk ,

Dk
p S[p],kUk = S[p+1],k Dk

pUk . (5.27)

In other words, Stokes’ theorem holds over every mesh element in our finite-
dimensional setting.

Figure 5.3: Refinement Matrices for Subdivision-based Whitney Forms. We
provide the refinement rules in 2D and for 0-, 1- and 2-forms for (left) Dirac-Whitney,
(right) original Whitney, and (bottom) “bicubic” Whitney forms. For a k-element
on a twice-refined grid, the refinement rules use a simple linear combination of
nearby coarse elements to define a refinable k-form basis.
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In the remainder of our exposition, we will often omit the order [p] of the Whiney
forms or even the level k over which it is defined to improve legibility, when this
does not lead to any ambiguity. Therefore, high-order Whitney forms will often be
simply referred to as φ.

Finest Level Discretization through Subdivision-based Exterior Calculus

Consider a continuous, linear, and bijective exterior operator L that acts on dif-
ferential p-forms and returns p-forms as well. In addition, we assume it is local,
self-adjoint, and positive-definite with respect to L2 inner product on differential
forms (formally defined as 〈u, v〉L2 =

∫
Ω

u∧?v ). Note that the bijectivity condition
is needed to ensure the inverse is well-defined: in practice a differential operator is
combined with suitable boundary conditions to give rise to a well-defined problem.
Given such an operator, the differential equation Lu=g must first be discretized on
the finest meshMq. Many finite element based discretizations can be applied for
this step. The computational foundations of Finite Element Exterior Calculus [9],
Discrete Exterior Calculus [67], and Mimetic (or Compatible) Operators [23] differ
in how they deal with the discretization of PDEs: for instance, some define a discrete
operator corresponding to the Hodge star?, while other prefer to bypass the creation
of a discrete Hodge star by directly computing a discrete version of the codifferential
δ = (−1)n(k−1)+1?d? to enforce adjointness with the exterior derivative d; boundary
treatments are also often different as a consequence.

In our context, we remain agnostic vis-a-vis the discretization process of the weak
form of the equation Lu = g. The only requirement is that our subdivision-based
Whitney forms must be used as finite-element basis functions of differential forms,
so that we can leverage their refinability with simple element-based degrees of
freedom and structural properties (deRham complex, Hodge decomposition, Stokes’
theorem, etc.) to construct operator-adapted wavelets. For illustration purposes
and numerical tests, we adopt the Subdivision-based Exterior Calculus framework
(SEC [62]) based on the finite element spaces of differential forms {Λk

p}p defined in
Eq. (5.24) to provide a discretization of exterior operators in this paper, but variants
can be easily substituted.

Once this discretization is done on the finest level q, the rest of the operator-adapted
multiresolution construction is mostly unchanged as we review next.
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5.4.3 Operator-adapted Wavelets
While the subdivision-based Whitney forms naturally lead to a L2-orthogonal no-
tion of wavelets for any differential p-form by exploiting the difference between
two consecutive approximation spaces V kB Λk

p and V k+1 B Λk+1
p on two mesh

levelsM k andM k+1, the induced multiresolution decomposition leads to the same
shortcomings as for the wavelet-Galerkin approach—but this time in the context
of finite-element differential forms. In this section, we discuss how to construct
operator-adapted wavelets in order to block diagonalize a self-adjoint, positive-
definite operator L acting on differential p-forms.

Bottom-upConstruction ofWavelet p-forms. Because the construction provided
in Sec. 5.3 made no assumption on the choice of mesh hierarchy or basis functions,
it applies nearly as is for arbitrary p-forms. Because the notion of “refinement” and
“subdivision” are in fact equivalent (inasmuch as they both define linear relationships
between functions at two consecutive levels), one simply has to

1. set nq to be the number of p-elements in the finest meshMq;

2. bootstrap the construction by replacing the finest scale basis functions ϕq
i by

Whitney p-forms φq
i (of any chosen smoothness order) on mesh Mq, and

compute the corresponding stiffness matrix AqBAq;

3. use refinement matrices Ck as the transpose of the subdivision matrices Rk

associated with the selected Whitney p-forms, i.e., CkBRk,T , which in turn
impose wavelet refinement matrices Wk .

Everything else remains unchanged if the indices used in the procedure are under-
stood to refer to an enumeration of the p-cells of eachmesh; in particular, the number
Nk of wavelet coefficients at level k remains equal to nk+1−nk as it represents the
dimension of the finite-element p-forms that are inV k+1 but not inV k . The result-
ing operator-adapted basis functions and wavelets will thus be linear combinations
of Whitney p-forms on the finest grid, and can thus be stored as a sparse row vector
per level as described in Sec. 5.3.6.

Choice of RefinementMatrix. As we just noted, a natural choice for a refinement
matrix Ck to be used in our operator-adapted wavelet construction is (the transpose
of) the subdivision matrix Rk associated to Whitney p-forms of a chosen regularity
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order. This includes the subdivision matrices of the original Whitney p-forms (see
Fig. 5.3(middle)), as well as any of the higher order Whitney subdivision matrices
(see an example in Fig. 5.3(right)). Since the refinement matrix describes how a
form basis element at level k can be written as a linear combination of the form basis
elements at level k+1, the sparsity of Ck =Rk,T decreases with the smoothness order
of the corresponding Whitney forms, in turn impacting the sparsity and locality of
Wk .

Remark 3: Observe that the multiresolution construction could use a given
subdivision-based Whitney p-form at the finest scale, whose regularity impacts
the quality of the discretization Aq of operator L, paired with an arbitrary refine-
ment matrix Ck . This choice of refinement instead impacts the regularity of test
functions on coarser levels depending on the spatial size of the refinement stencil.
As demonstrated in [139], approximation qualities of test functions in the weak
H−s-norm carry over to approximation qualities of the resulting operator-adapted
wavelets in stronger energy norm. This means that using a simpler (i.e., sparser)
refinement matrix Ck often turns out to be sufficient to obtain a high-quality
operator adaptation, while offering a simplified computational procedure, faster
decaying basis functions, and better condition numbers as we will demonstrate
later. On the other hand, such simplified refinement rule obviously weakens the
homogenization effect and thus reduces the efficiency of model reduction. Having
Ck and Rk being decorrelated just offers added flexibility to our construction.

Dirac-Whitney Refinement Matrix. While the original (low-order) Whitney
forms lead to the sparsest refinement matrices in the subdivision-based Whitney
family, an even sparser choice of refinement matrix is worth mentioning: because
our mesh hierarchy is nested, the p-elements of meshM k can be written as linear
combinations of p-elements of meshMk+1. This linear relationship can be seen as
the refinement rule for the basis of chains or, equivalently, of cochains. One can
thus see these refinement matrices as defining a dual basis to currents: they are
measure-based Whitney forms that include, e.g., a Dirac delta function per vertex
for 0-forms, and an indicator function of each 3-cell for 3-forms. For this reason,
we refer to these sparsest refinement matrices as Dirac-Whitney refinement matri-
ces (see Fig. 5.3(left)). While the corresponding (generalized) test functions are
not quite useful in numerical applications (and would clearly be a poor choice of
test functions), our construction can, in fact, use these refinement matrices: when
paired with any subdivision-based Whitney forms on the finest level q to bootstrap



92

the construction as discussed in Rmk. 3 above, our resulting operator-adapted basis
functions and wavelets will have very localized refinement matrices, but they will all
be linear combinations of Whitney forms defined on meshM q. As we will demon-
strate in Sec. 5.5, this approach still leads to operator adaptation, with increased
efficiency due to the sparsity of the Dirac-Whitney refinement matrices (see Fig. 5.4
vs. Fig. 5.5).
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Figure 5.4: Dirac-Whitney Basis Functions Adapted to Elliptic Operators. Ver-
tical components of 1-form basis functions ϕk

i adapted to different elliptic operators
using the Dirac-Whitney refinement 1-form rule and associated with horizontal
edges (in thick black) are visualized at three different resolution levels (2× 2, 4× 4,
and 8×8 grids) using a linear red-to-blue colormap: (a)-(c) Identity operator; (d)-(f)
1-form Laplacian; (g)-(i) modified 1-form Laplacian (see Eq. (5.28)).
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Figure 5.5: Whitney Basis Functions Adapted to Elliptic Operators. Vertical
components of 1-form basis functions ϕk

i adapted to different elliptic operators using
the original Whitney refinement 1-form rule and associated with horizontal edges
(in thick black) are visualized at three different resolution levels (2 × 2, 4 × 4, and
8 × 8 grids) using a linear red-to-blue colormap: (a)-(c) Identity operator; (d)-(f)
1-form Laplacian; (g)-(i) modified 1-form Laplacian (see Eq. (5.28)).
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Velocity field

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Advection-diffusion Adapted Basis Functions. We visualize the
vertical components of 1-form basis functions ϕk

i adapted to an (upwind-evaluated)
advection-diffusion operator and associated to various horizontal edges (in thick
black) from 3 resolution levels using a linear red-to-blue color ramp: using Dirac-
Whitney refinement at (a) level k = 1, (b) level k = 2, (c)-(d) level k = 3; using the
original Whitney refinement at (e) level k = 1, (f) level k = 2, (g)-(h) level k = 3.
The advecting velocity field (left) is reflected in the shapes of the adapted edge basis
functions.

5.4.4 Divergence-free Operator-adapted Wavelets
Oftentimes, differential equations of the form of Eq. (5.1) must be solved within
a given linear subspace. This is the case, for instance, for incompressible fluids
or solids where the additional incompressibility condition ∇·u = 0 plays a crucial
role in the resulting dynamics. Enforcing this constraint has a long history in finite
elements [47]. We show here that our operator-adapted wavelet construction can
accommodate this case quite simply as well. We first focus on the case in which
original Whitney forms are used, before extending it straightforwardly to higher-
order Whitney forms.
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Discrete Divergence. Stokes, Euler or Navier-Stokes equations in fluid dynam-
ics are conveniently expressed with differential forms [82, 129, 134]. A typical
discretization is to consider the velocity field as a 2-form in 3D, i.e., as a flux
through each face of a 3D grid so that no-flux boundary conditions are trivially
enforced [94]. A set of discrete fluxes Uq = (uq

1 . . . u
q
nq )

T on the finest res-
olution level Mq are converted into a continuous form u using the face-based
low-order Whitney basis functions {φq

i }
nq
i=1, where nq is the total number of 2-

cells in Mq. Note that the integral of the resulting continuous 2-form u on
a face is precisely the flux initially stored on that face due to the histopolation
property of linear Whitney forms (see Eq. (5.22)). The 2-
form u (or, equivalently, the corresponding vector field (?u)]

obtained by lowering the indices of the form once a metric is
given) is divergence-free iff du = 0, where d is the exterior
derivative operator [1]. In our finite dimensional setting, it
simply implies that the sum of the (oriented) fluxes leaving
any 3-cell of the mesh (see inset) is zero, which is denoted as Dq

2 Uq = 0, where Dq
2

is the discrete exterior derivative operator (the transpose of the boundary (incidence)
operator acting on 3-cells; see [67] for instance) at level q.

Divergence-free Test Forms Through Stream Functions. Instead of enforcing
the linear divergence-free constraint on Uq, one can instead work in the reduced
space of divergence-free vector fields. Because the whole setup of finite-element
exterior calculus offers a discrete de Rham complex and since we assume our
domain to be of trivial topology (no harmonic terms), we can consider instead a
set of 2-forms, one per edge ofMq, that spans this reduced space. This basis of
divergence-free 2-form is defined as

Ξ
q = ΦqDq

1,

where Ξq denotes the row vector of edge-based 2-forms {ξq
i }i and Φ

q is, similarly,
the row vector of all face-based Whitney 2-forms {φq

i }i. Hence, each 2-form ξ
q
i is a

linear combination of local Whitney 2-forms with coefficients based on the discrete
exterior derivative Dq

1, a matrix whose rows and columns correspond to faces and
edges of meshMq respectively.

For instance, for a regular 3D grid, each 2-form ξ
q
i associated with the i-th edge

is simply the signed sum of the Whitney basis functions on the four faces ad-
jacent to the edge (see inset). By construction, each edge-associated 2-form ξ

q
i
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is divergence-free since Dq
1 is in the kernel of Dq

2 (i.e., Dq
2Dq

1=

0 corresponding to the continuous property dd= 0). Hence,
the finite dimensional vector space spanned by {ξq

i }i (they
form a basis of this space due to their linear independence)
represents the set of all 2-forms (or equivalently, vector fields)
that are divergence-free in the discrete sense. This is nothing
else but the differential form equivalent of defining the velocity through the curl
of a stream (vector-valued) function: the degrees of freedom are thus edge-based
values {si}i representing the local integrals of the stream function along edges, while∑

i si ξi is the discrete divergence-free 2-form.

Operator-adaptedDivergence-freeWavelets. The bottom-up approach described
in Sec. 5.4.3 can now be applied directly with the divergence-free 2-form basis Ξq

used as test functions at the finest scale to bootstrap the construction. The only differ-
ence is that nq is now the number of edges (since it represents the number of degrees
of freedom in this divergence-free case) and one must use a refinement matrix
C[1],k corresponding to 1-forms, even though we are constructing 2-form wavelets.
With this approach, we work directly in the space of divergence-free fields without
the need for reprojection steps: both operator-adapted bases and wavelets will be
divergence-free by construction, since they are linear combinations of the elements
of {ξq

i }
nq
i=1. Note that in 2D, the stream function is a 0-form and fluxes through

edges are 1-forms, so the construction must be altered to use linear combinations of
edge-based basis functions per vertex instead, but the overall approach is identical
otherwise.

Higher Order Bases. While the divergence-free construction we just described
assumes that the refinement matrices corresponding to the original Whitney forms
are used, the same construction applies to higher order Whitney forms as well. In-
deed, when using subdivision-basedWhitney bases, the integral of the reconstructed
continuous 2-form u over an oriented face is always a local linear combination of the
initial face values {uq

i }i, called the limit stencil S[2],q (see Eq. (5.26)). Therefore, the
vector of divergences over all 3-cells is given by Dq

2 S[2],q Uq, which by Eq. (5.27)
(discrete Stokes’ theorem), is also equal to S[3],q Dq

2 Uq. Enforcing Dq
2Uq = 0 thus

implies discrete divergence-freeness of the resulting 2-form, and the construction
carries over as is, even in this high-order case.
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Non-trivial Topology. If the domain has non-zero genus and requires a non-
regular grid, the space of divergence-free forms/fields needs to account for harmonic
forms. Thankfully, computing these additional basis functions is a well studied
problem which can be achieved by leveraging the homology generators of the
domain, see for instance [67]. As long as all the meshes M k in the hierarchy
have the same number of boundaries and the same genus (that is, they all capture
the proper topology of the domain), these extra topological degrees of freedom are
present at each level and are thus trivially added to the reduced bases of divergence-
free forms at each level.

5.4.5 Embedding Complex Domains on Cartesian Grids
While unstructured meshes can conform to arbitrary domains, regular grids require
simpler data structures and simpler refinement stencils which make them highly de-
sirable when efficiency is paramount. However, handling complex domains clashes
with the simplicity of regular grids.

Recently, in the context of DEC discretiza-
tion of differential calculus, a local numer-
ical homogenization of the diagonal Hodge
star to capture sub-grid resolution was pro-
posed in [120]. It extended to arbitrary k-forms the approach of [135], which offered
a robust and second-order convergent pressure projection over an arbitrary domain
Ω using a regular computational grid. While diagonal entries of the standard diag-
onal Hodge p-star are defined as the ratios of volumes of primal p-element and its
dual element [26], the key idea of the improved boundary treatment is to account
for the parts of the regular grid that are outside the domain Ω by altering the dis-
crete diagonal Hodge star accordingly: partial lengths, areas, or volumes of primal
elements that are within the domain Ω are used in the evaluation of the diagonal
Hodge star, see inset. Topological operators like the exterior derivative remain un-
changed. This method can be used in our context as well: one can construct arbitrary
operator-adapted basis functions and wavelets on a regular grid while conforming
to a smaller domain Ω by modifying the Hodge star operator on the finest mesh
M q: as Figs. 5.9 and 5.11 demonstrate, an operator L involving Hodge stars in
its exterior calculus expression will be properly handled over the actual domain Ω
as long as it is covered by the computational grid. Note that this approach, which
homogenizes both space and operator over the regular grid, is currently limited to
a low-order approximations of the Hodge star. Future extensions to higher-order
approximations of Hodge stars may provide more accurate sub-grid accuracy.
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5.4.6 Discussion
A few remarks are in order about our extension to multiresolution analysis of
differential forms.

L2-adapted Case. When the identity operator is used along withWhitney p-forms
at the finest level and their corresponding refinement matrices, one may expect that
the resulting operator-adapted basis functions ϕk will simply be the same Whitney
p-forms on each p-element of the meshM k at each level k. However, as Rmk. 2
in Sec. 5.3.1 pointed out, this would only be true if these Whitney forms were
L2-orthonormal in the first place, which is not the case. However, the induced
L2-orthonormal basis functions ϕk share a close resemblance to the Whitney forms
from which the refinement matrix comes, as Fig. 5.5 demonstrates.

Impact of Refinement Matrix Choice. Having the finest basis functions used to
bootstrap the construction and the actual refinement matrix Ck being decorrelated
as noted in Rmk. 3 of Sec. 5.4.3 offers much flexibility in practical computations.
Dirac-Whitney refinement matrices will have operator-adapted basis functions and
wavelets with the smallest support, and this support will grow with the smoothness
order of the Whitney forms that the refinement matrix corresponds to. Higher-order
Whitney forms are advisable from a functional approximation point of view as they
induce lower approximation errors for a given resolution level. If, instead, lowering
computational cost is paramount, then low-order Whitney forms are preferable.
In particular, Dirac-Whitney refinement matrices typically induce lower condition
numbers of matrices Ak and Bk : their associated refinement kernel matrix Wk have
optimal condition numbers, i.e., cond Wk =1, while the use of higher-orderWhitney
forms leads to higher (but still bounded) condition numbers.

Linear Differential Constraints. While we only gave details for the case of
divergence-free vector fields, the construction of a basis of differential forms in a
given linear subspace is possible for many typical differential constraints in physical
systems: one only has to find a set of localized linear combinations of Whitney
forms that creates a basis of the kernel of the linear operator at play in the constraint.
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5.5 Numerical Tests and Applications

Figure 5.7: Quiver plot vs. LIC visualization.

In this section, we discuss potential applications of our operator-adapted decom-
position of differential forms and present a number of numerical experiments to
illustrate our contributions.

Since our work extends the recent work of Owhadi et al. [138–141, 158] on operator-
adapted decompositions of scalar functions, we focus on examples involving one-
forms (instead of zero-forms) to highlight the novelty of our work, even if our
approach applies to arbitrary forms. We will depict one-forms either visualizing
components of associated vector fields or using a variant of Line Integral Convolu-
tion (LIC [38], implemented in [156]), which offers a more expressive visualization
than the traditional quiver plot of vectors (see Fig. 5.7) through the use of integral
lines and greylevel coloring to encode direction and length respectively.

5.5.1 Elliptic Operators
We first show examples of operator-adapted basis functions and wavelets for typical
linear operators. In these three examples, the original Whitney 1-forms are used at
the finest level to bootstrap the decomposition.

Identity Operator. As a trivial example, we can run our algorithm on 1-forms for
L=�. As expected, using a Dirac-Whitney refinement matrix leads to nearly edge-
based Dirac basis functions, while using a low-order Whitney refinement matrix
engenders an L2-orthogonal basis of 1-forms resembling the edge-based Whitney
forms; see Figs. 5.4 and 5.5 (top rows).

Laplace–de RhamOperator. For the 2D LaplacianL = ?1d0?
−1
0 dT

0 ?1+ dT
1 ?2 d1

of one-forms with zero Dirichlet boundary conditions (corresponding to the vector
Laplacian ∇∇· −∇× ∇× in vector calculus), the adapted basis functions look much
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smoother (see Figs. 5.4 and 5.5 (middle row)). This is to be expected due to the
obvious link between the Dirichlet energy (a common measure of smoothness)
and the Laplace–de Rham operator: as indicated by the variational definition in
Eq. (5.20), they are, in fact, the smoothest localized functions.

General Elliptic Operator. Our approach applies to any elliptic operator, such as
the general diffusion operator ∆σ, where the vector Laplacian (with zero Dirichlet
boundary condition) uses an arbitrary conductivity tensor σ. We demonstrate this
property by using L = ?̃1d0 ?

−1
0 dT

0 ?̃1+ dT
1 ?2 d1 on one-forms, where the Hodge

star of 1-forms is altered by making it dependent on a spatially-varying metric µ of
the same form as proposed in [142]:

µ(x, y) =

(
α(x, y) 0

0 1

)
, where

α(x, y) =
4∏

k=0

(
1 + 1

5 cos(2kπ(x + y))
) (

1 + 1
5 sin(2kπ(x − 2y))

)
.

(5.28)

We denote the resulting modified Hodge star as ?̃1. Figs. 5.4 and 5.5 (bottom rows)
show the resulting operator-adapted 1-form basis functions, reflecting the highly-
oscillatory modification from the vector Laplacian that the metric µ creates. We
will show in Sec. 5.5.5 that these basis functions allow proper homogenization of
this elliptic operator and lead to bounded stiffness condition numbers. One can thus
see our decomposition as an extension of the numerical methods for scalar-valued
homogenization of the operator ∇ · σ∇, such as [142].

5.5.2 Advection-Diffusion Operator
Our approach can handle non-elliptic operators just as well: we demonstrate it
by constructing a wavelet decomposition adapted to the well-studied advection-
diffusion equation (with zero boundary flux and free-slip along the boundary):

∂u
∂t
+ a · ∇u − ν∆u = b,

where a, b ∈�2 are given vector fields, ν ∈�+ is a viscosity parameter and u ∈�2

is the unknown, time-varying velocity field. In general, this equation describes
the transport and diffusion of physical entities such as the ozone in the atmosphere
or pollutants in oceans. Using its exterior calculus equivalent for one-forms (i.e.,
u=u[), a trapezoidal-based time discretization for a time step τ leads to the following
implicit scheme (using un+1

2
as a shorthand for 1

2 (un+1+un)):
un+1 − un

τ
+ £a un+1

2
− ν ∆un+1

2
= b[
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(a)Adapted basis (with Dirac) (b)Adapted basis (withWhitney)

(c) x and y components (d) x and y components

Figure 5.8: Adapted Basis for Advection-diffusion. We visualize a coarse-edge (in
thick black) basis function ϕk

i adapted to advection-diffusion, where the advecting
velocity field is shown in the top-left inset. Instead of the first-order upwind dis-
cretization used in other figures, an energy-preseving discretization of the advection
operator [146] is employed here.

or, equivalently,[
� + 1

2τ £a −
1
2τν ∆

]
un+1 =

[
� − 1

2τ £a +
1
2τν ∆

]
un + b[,

where the operator £a encodes the (Lie) advection of a form by the vector field a.
Observe that since the continuous form of the advection-diffusion equation mixes
the skew-symmetric advection operator and the self-adjoint diffusion operator, the
operator ` =

[
� + 1

2τ £a −
1
2τν ∆

]
is not necessarily symmetric and positive-definite.

We thus compute the basis functions adapted to the symmetrized operator L = `T`

instead. In our results, we discretize the advection-diffusion operator ` using a first-
order upwind approach [131] for most numerical tests involving advection-diffusion;
the only exception is in Fig. 5.8 where we use the antisymmetric and conservative
discretization provided in [146], which leads to similar results once symmetrized:
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the adaptation to the operator L manifests itself in the “advected” shape of the
resulting basis functions; see Figs. 5.6, 5.8, and 5.10.

5.5.3 Embedded Domains
By exploiting the domain adaptation of the Hodge star explained in Sec. 5.4.5, we
can construct operator-adapted basis functions over complex domains while still
using Cartesian computational grids. Figs. 5.9 and 5.11 show vector-Laplacian-
adapted edge functions over fish-shaped and US-shaped domains. Far away from
the boundary, the edge functions are virtually unchanged, but they nicely adapt to the
convoluted boundary for surrounding edges. While more precisely conforming edge
functions could be constructed from a triangle or quadrangle mesh approximation of
the shape, our sub-grid accurate treatment of arbitrarily-shaped domains over regular
grids is trivial to implement and properly converges as the grid is refined [120, 135].

(a) (b)

(c) (d)

Figure 5.9: Laplace-adapted basis functions on grid-embedded domains. Dis-
cretization of the 1-form Laplace operator on a regular grid can be adjusted to
account for an arbitrary computational domain, like a US map or a fish: using the
finest grid of 256×256 elements, two resulting coarse (4×4 level) operator-adapted
basis functions ϕk

i (one in red, one in blue) are displayed in (a-b), and all the basis
functions at the level for which the grid is 8 × 8 are shown using different colors in
(c-d).
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Figure 5.10: Operator-adapted Divergence-free Bases. We visualize vector fields
corresponding to divergence-free 1-form basis functions ϕk

i adapted to various
operators and associated to several spatial locations on three different resolution
levels. Divergence-free basis functions retain a characteristic vortical appearance;
however, the differences in their shapes reflect their ability to capture representative
features of the associated solution spaces: they are smooth for the 1-form Laplacian
(top), have high frequency oscillations for the modified 1-form Laplacian (middle,
see Eq. (5.28)), and are stretched along the advecting velocity field for the advection-
diffusion operator (bottom; see advecting field in Fig. 5.6(left)).

5.5.4 Divergence-Free Basis Functions
The construction of divergence-free vector-valued basis functions is an important
computational need in many practical applications. While multiscale analysis ap-
proaches using divergence-free L2-orthogonal wavelets have been proposed (in both
the tensor and non-tensor product cases) [65, 183], none have been offered in the
more general case of operator-orthogonality. As detailed in Sec. 5.4.4, our approach
lends itself quite straightforwardly to this case. We demonstrate the divergence-free
basis functions adapted to three differential operators in Fig. 5.10 on a simple do-
main. We also leverage the domain adaptation of the Hodge star in Fig. 5.11 to
provide divergence-free bases on complex domains: using only a Cartesian grid, we
construct a hierarchy of divergence-free vector-Laplacian-adapted basis functions
that are restricted to a spatial domain with complex boundaries and with zero normal
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Figure 5.11: Divergence-free Adapted Basis Functions on Grid-embedded Do-
mains. Using the same setup as Fig. 5.9, we now show the divergence-free basis
function adapted to the 1-form Laplacian restricted to complex embedded domains.
Various basis functions on a coarse (4 × 4) and a finer (8 × 8) level are shown using
different colors in: three coarse and four dine basis functions for the US map, and
three coarse and one fine basis functions for the fish.

components at the boundary. One can clearly see the effects of the boundary in the
way the basis functions associated to edges of various hierarchy levels are shaped
through the domain.

5.5.5 Approximation properties
We demonstrate the coarse-graining properties of our operator-adapted basis func-
tions through the analysis of approximation errors. The notion of numerical ho-
mogenization is characterized by the following bound on the energy norm of the
difference between a solution u to Eq. (5.1) and its operator-adapted level k approx-
imation uk (see Table 5.1 for definition):

| |u − uk | |L ≤ 2−ksC (5.29)

for the case of our 2D regular mesh hierarchy, where the constant C > 0 does not
depend on the choice of operator (see App. D or [140] for the general case).

Using high resolution FEM solution of Eq. (5.1) as a proxy for u, and the right hand
side of Eq. (5.29) as a reference slope, we plot the decay of the energy norm of
approximation error as a function of k in Fig. 5.13 (top row) for several examples.
The slopes of resulting curves follow the theoretical bound of Eq. (5.29) for three
test operators, with original Whitney refinement rule leading to a faster error decay
compared to Dirac-Whitney. If non-adapted wavelets are used instead (see Fig. 5.13
(bottom row)), the approximation errors deteriorate significantly and even display
some growth with k for Dirac-Whitney refinement rule. For completeness, we also
provide a similar plot in Fig. 5.14, where now the L2-norm is employed to measure
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approximation error instead of the energy norm. Operator-adapted construction still
exhibits much faster decay compared to non-adapted version.

The coarse-graining properties of our basis-functions imply that only a subset of
adaptedwavelets can be used to produce a high-quality approximation of the solution
space of their associated operator, thus naturally opening possibilities for efficient
model reduction. The visualization of multiresolution decomposition of uq for the 1-
formLaplace and advection-diffusion operators in Fig. 5.12 also confirms that insight
and reiterates that finer resolution levels correspond to high-frequency components
of the solution, albeit they look quite different for the original Whitney vs. the
Dirac-Whitney refinement rules: the former has better homogenizing properties
due to larger support, which results in its ability to carry over more information
to coarser resolutions. Indeed, Laplace-adapted multiresolution decomposition
(Fig. 5.12(a)) shows that using only the 3 coarsest levels of Whitney wavelets leads
to a smaller approximation error than using the 5 coarsest levels of the Dirac-
Whitney construction; the Whitney-based construction allows to capture 99.9% of
energy content with only 112 adapted wavelets, while Dirac-Whitney needs 1984
adapted wavelets to achieve the same energy content; for reference, a full solution
uq has 32512 degrees of freedom.

We finally note that our level k approximations uk are in fact optimal both inGalerkin
and game-theoretical sense; see App. C for more details.



106

(a) Multiresolution Decomposition for Laplace operator.

u = u1 + ω1 + ω2 + ω3 + ω4 + ω5 + ω6

Dirac-Whitney refinement

Whitney refinement

Divergence-free

(b) Multiresolution Decomposition for Advection-diffusion operator.

u = u1 + ω1 + ω2 + ω3 + ω4 + ω5 + ω6

Dirac-Whitney refinement

Whitney refinement

Figure 5.12: Operator-adapted Multiresolution Decomposition. Given a 1-form
differential operator, an element of its solution space 1-form u defined via edge values
on a 128×128 grid (left, LIC-visualized as its equivalent vector field) can be efficiently
decomposed into a sum of a coarse 1-form u1 described via edge values on a 2×2
grid, and all the wavelet contributions ω1, ω2, ω3, ω4, ω5, ω6 of the mesh hierarchy.
Since our vector visualization does not convey relative magnitude, we also indicate
the energy content (as a percentage) of each component. All operator-adapted
bases exhibit homogenization properties with most of the energy concentrating
on coarser resolution levels; however, this effect is significantly more pronounced
for the Whitney refinement rule. We omitted operator-adapted divergence-free
decomposition in (b), because advection-diffusion solution element u used in this
figure is not divergence-free.
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With operator-adapted bases
Dirac-Whitney refinement matrix Whitney refinement matrix

With L2-orthogonal bases
Dirac-Whitney refinement matrix Whitney refinement matrix

Figure 5.13: HomogenizationEffect. Wedemonstrate decay of the homogenization
error — i.e., the energy norm of the approximation error between the fine FEM
solution u and its level-k operator-adapted approximation uk (see Eq. (D.1)) —
as a function of k; for each of the test operators (1-form Laplacian, modified 1-
form Laplacian and advection-diffusion), the solution u is visualized in Fig. 5.1, to
which the uk approximant is compared. The slope of red line depicts the theoretical
bound on typical numerical homogenization error behavior, assuming a regular 2D
grid is used. Our operator-adapted Dirac-Whitney (top left) and original Whitney
(top right) wavelets lead to exponential decay of the error for the three operators,
demonstrating the expected numerical homogenization effect. In contrast, operator-
independent wavelets based on Dirac-Whitney (bottom left) and original Whitney
(bottom right) refinement rules fare significantly worse, leading to growing energy
norm errors and unconvincing decay respectively (here we use wavelets that are
L2-orthogonal between the scales, i.e., adapted to Identity operator; see Figs. 5.4 &
5.5).
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With operator-adapted bases
Dirac-Whitney refinement matrix Whitney refinement matrix

With L2-orthogonal bases
Dirac-Whitney refinement matrix Whitney refinement matrix

Figure 5.14: Approximation Errors. Using the same setup as Fig. 5.13, we now
measure the approximation error using the L2 norm instead of the energy norm.
With this norm, it is known that non adapted bases may also exhibit convergence,
but their rate of convergence can be arbitrarily bad [14]. While the decay rate
is improved for all curves compared to Fig. 5.13, operator-adapted wavelets (top
row) still perform significantly better than non-adapted ones (bottom row); Dirac
refinement rules (left column) lead to slower decay than Whitney (right column), as
expected due to smaller stencil. Note that the red curve representing the theoretical
rate of convergence here is two times steeper than before.
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5.5.6 Eigenvalue Ranges and Condition Numbers
An important measure of performance for our multiscale construction involves a
spectral analysis of the resulting wavelet stiffness matrices Bk . In Fig. 5.15, we
show that the condition numbers of the stiffness matrices Bk are much smaller than
their counterparts Ak–from two to six orders of magnitude for high frequencies.
Moreover, in Fig. 5.16 we also show that the ranges of eigenvalues of the matrices
Bk overlap for consecutive values of k, reconstructing the full eigenvalue range of the
input stiffness matrix Aq (evaluated with non-adapted basis on the finest resolution
q), confirming the proper capture of the operator solution space at various spatial
resolutions. Note that performing the same numerical tests for divergence-free bases
lead to very similar results; see Fig. 5.17.

5.5.7 Exponential decay of basis functions
As we discussed in Sec. 5.3.5, our operator-adapted basis functions decay exponen-
tially fast as long as somemild assumptions on the interaction between test functions
and operator hold (see App. D). Figs. 5.18 and 5.19 corroborate this statement in
the case of exterior operators, even if divergence-free constraints are imposed.

5.5.8 Stiffness Sparsity Patterns
We finally provide an evaluation of the sparsity of the stiffness matrices resulting
from ourmultiresolution construction. In Fig. 5.20, we visualize diag[A1,B1, ...,B6],
a principal submatrix of the global multiresolution matrix L (Eq. (5.5)) using the
Laplace operator on 1-forms. A straighforward implementation of Alg. 5.2 using
an off-the-shelf linear solver combined with a pruning of all entries of Bk that
are less than 1e−15 in absolute value results in already sparse matrices. However,
our fast solve through spatial localization produces even sparser matrices with a
limited impact on accuracy: the relative L2 error in the resulting operator-adapted
basis functions ψk

i introduced by this sparsification does not exceed 0.75% (as
discussed in Sec. 5.3.6, we used 3-element-wide neighborhoods localization for
Dirac-Whitney refinements, and 4-element wide for Whitney to account for larger
support). Observe that in this example using 1-forms, each Bk is represented by two
blocks corresponding to horizontal and vertical edges respectively.
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Figure 5.15: Condition Numbers. We compare the condition numbers (in log
scale) of stiffness matricesAk of 1-form basis functions (in blue) and their associated
waveletsBk (in orange) for our operator-adaptedmultiresolution decompositionwith
q = 7 resolution levels (finest grid is 128 × 128 cells) for three operators: 1-form
Laplacian (top row), modified 1-form Laplacian (middle row, see Eq. (5.28)), and
advection-diffusion (right row). The Dirac-Whitney refinement rule (left column)
tends to produce slightly better condition numbers for matrices Bk compared to the
original Whitney rule (right column) as expected, but in both cases they remain
bounded and often peak on intermediate resolution levels. In particular, condition
numbers of the wavelet stiffness matrices Bk are up to 3 orders of magnitude smaller
than those of Ak for large k (i.e., on finer scales).
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Figure 5.16: Eigenranges. We show that the eigenvalue ranges of 1-form wavelet
stiffness matrices Bk are (overlapping) subbands of the eigenvalue range of the
input stiffness matrix Aq = Aq (evaluated with non-adapted basis on the finest res-
olution) for three test operators: 1-form Laplacian (top row), modified 1-form
Laplacian (middle row, see Eq. (5.28)) and advection-diffusion (bottom row);
each horizontal segment covers the spectrum of the associated stiffness matrix
(A1,B1,B2,B3,B4,B5,B6, and A7.). Both Dirac-Whitney (left column) and Whitney
(right column) refinement rules produce operator-adapted wavelets that capture fre-
quencies associated with respective resolution levels; the degree of overlap generally
depends on the operator and tends to be smaller for Dirac-Whitney refinement due
to its small spatial support.
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Laplacian Modified Laplacian Advection-Diffusion

Figure 5.17: Eigenanalysis of Operator-adapted Divergence-free Basis. We
demonstrate spectral properties of stiffness matrices corresponding to the 1-form
divergence-free wavelets and basis functions adapted to 1-form Laplacian (left
colum), modified 1-form Laplacian (middle column, see Eq. (5.28)) and advection-
diffusion (right column): condition numbers (top row) and eigenrange subband
structure (bottom row) have the same qualitative properties as for unconstrained
operator-adapted multiresolution constructions (see Figs. 5.15&5.16). Note that the
range of eigenvalues for the top level is degenerate (hence the short orange bar):
since there’s only one vertex at the coarsest level, the stiffness matrix becomes just
a scalar.
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Figure 5.18: Localization of Laplacian-adapted Bases. We demonstrate the
exponential decay of basis functions ϕk

i adapted to the 1-formLaplacian usingDirac-
Whitney (top), originalWhitney (middle), and divergence-free (bottom) refinements,
normalized to have unit maximum value, using log-scale contour plots. Examples
of edge-based basis functions from five different levels of the mesh hierarchy are
shown.
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Figure 5.19: Localization of Advection-diffusion-adapted Bases. We demon-
strate the exponential decay of basis functions ϕk

i adapted to the advection-diffusion
(discretized through first-order upwind approximation) using Dirac-Whitney (top),
original Whitney (middle), and divergence-free (bottom) refinements, normalized
to have unit maximum value, using log-scale contour plots. Examples of edge-based
basis functions from five different levels of the mesh hierarchy are shown.

Dirac-Whitney refinement matrix Whitney refinement matrix
Simple thresholding Local sparsification Simple thresholding Local sparsification

Figure 5.20: Sparsity. We visualize the sparsity pattern of the block diagonal
stiffness matrix diag[A1,B1, ...,B6] obtained via Alg. 5.1 when a simple linear solver
with threshold-based (<1e−15) pruning (left) vs. fast localized solve (right) is used,
for a 1-form Laplace operator adapted decomposition using Dirac-Whitney (top) and
original Whitney (bottom) refinement rules. Using fast localized solves allows to
decrease sparsity (proportion of non-zeros) from 6.58% to 0.51% for Dirac-Whitney,
and from 10.96% to 3.63% for original Whitney refinement.
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5.5.9 Examples of Applications
Our construction of fine-to-coarse operator-adapted basis functions and wavelets
have many potential applications in numerical contexts. We cite a few important
examples next.

Model Reduction. Aswe discussed early on, our operator-adapted basis functions
offer a finite-dimensional basis of localized functions that captures the eigensub-
spaces of the corresponding operator, associated with different frequency subbands,
as well as possible. Therefore, they are particularly relevant in the context of model
reduction and adaptive refinement, much more so than classical wavelets. We next
discuss a few approaches to leverage our operator-adapted multiresolution analysis
to either improve accuracy for the same number of degrees of freedom, or reduce
the number of degrees of freedom for a given accuracy.

• Resolution reduction. The simplest way to reduce the number of degrees of
freedom in the discretization of a differential equation with limited impact
on accuracy is to omit high frequencies (i.e., the “details” of the solution
corresponding to finest operator-adapted wavelets) while retaining wavelets
spanning the p coarsest resolution levels for p < q. Since our bottom-up
construction accumulates information from finer scales to derive coarser basis
functions, this simple approach allows to capture most of the solution without
a large amount of fine scale wavelets.

• Goal-driven model reduction. While the previous approach is intuitive and
simple, it fails at providing a clear assessment of the error induced by the
removal of the finest details. Goal-oriented adaptive refinement techniques
aim, instead, at selecting a subset of wavelets from each resolution level lead-
ing to a computationally efficient and high quality estimation of a particular
output functional [36], typically defined as a linear functionalQ. This is easily
achieved in our framework: after computing wavelet coefficients wk on level
k via a sparse linear solve, the least contributing wavelets {ψk

j }
Nk

j=1 are found
by checking if

|Q(wk
j ψ

k
j )| ≤ εmax

1≤i≤Nk
1≤p≤k

|Q(wp
i ψ

p
j )|

for a small ε>0. Thesewavelets can be safely eliminated to reduce the number
degrees of freedom and make the matrices Bk sparser while insuring that the
quantity of interest Q can still be well approximated. Note that the error in Q



115

incurred by removing the weakly contributing wavelets can be evaluated on
the fly.

• Norm-driven reduction. Yet another strategy to drop degrees of freedom is to
remove those that least contribute to the operator-norm of the solution. Since
our wavelets are well localized, interactions between them tend to be limited.
Therefore, a wavelet ψk

j at level k can be considered negligible in its impact
on the solution if

| |wk
j ψ

k
j | |

2
L ≤ ε max

1≤i≤Nk
1≤`≤k

| |w`
i ψ

`
i | |

2
L

for a small ε>0. However, since the operator norm of the solution

| |uq | |2L =

n1∑
i, j=1

u1
i u1

j A
1
i j +

q−1∑
k=1

Nq∑
i, j=1

wk
i w

k
j Bk

i j

has non-negligible wavelet interaction terms associated with off-diagonal el-
ements of the stiffness matrices, this simple heuristic can be made more
robust by measuring the importance of a particular wavelet ψk

j through its full
contribution to the norm, expressed as����wk

j

Nq∑
i=1

wk
i Bk

i j

����.
Thresholding these contributions results in a well-approximated solution in
the operator norm with typically very few coefficients.

Efficient Navier-Stokes Simulation. Our approach also applies to nonlinear equa-
tions such as the Navier-Stokes equations for incompressible fluids:

∂u
∂t
+ u · ∇u − ν∆u = 0

∇ · u = 0.

Multiresolution analysis of incompressible fluids is an important topic in computa-
tional fluid dynamics, but an efficient construction of wavelets that are truly adapted
to the fluid dynamics has remained elusive. Our construction offers such a tool, and
could be extremely useful to turbulence analysis and efficient simulation.

For simple integrators where the update rule is linear in the next velocity un+1, our
approach can be used as is where the operator corresponds to the update rule just
like we showed in Sec. 5.5.2 in the case of advection-diffusion. For instance, using a
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trapezoidal temporal discretization with operator splitting, we obtain the following
Implicit-Explicit numerical scheme involving the usual pressure projection step:[

� + 1
2τAdv(un) −

1
2
τν∆

]
u∗n+1 =

[
� −

1
2
τAdv(un) +

1
2
τν∆

]
un

∆pn+1 = ∇ · u∗n+1

un+1 = u∗n+1 − ∇pn+1.

If the velocity u is treated as a two-form (flux ?u[) and the pressure p as a three-
form (integral per cell), the advection terms Adv can be discretized to produce the
traditional Harlow-Welsh scheme [94] as discussed in [146]. Alas, this type of
simplistic integration scheme is only relevant for low Reynolds numbers. For more
involved nonlinear integrator schemes, our construction of operator-adapted basis
functions can still pay off significantly: one can linearize the integrator, use only
a reduced basis of divergence-free velocity fields (in order to bypass the pressure
projection altogether), and construct operator-adapted basis functions at the current
time step in almost linear time; from these basis functions, the nonlinear update
rule can be solved efficiently by picking only the most relevant degrees of freedom
as discussed earlier, which cuts down on the computational time of the simulation
significantly (see Alg. 5.4). In addition, other simple heuristics can be applied; for
instance, one could omit wavelets that are far enough from certain areas of interest in
physical space. Finally, note that fluid simulations generally require high resolutions
to accurately resolve interactions between small and large scale structures. They
often benefit from subgrid models, aimed at modeling small scale effects without
explicitly resolving them, thus reducing the dimensionality of the system. Our
operator-adapted bases also provide a framework to directly modulate particular
frequency subbands (with localization in physical space if needed) by appropriately
varying the corresponding wavelet coefficients in order, for instance, to reproduce
Kolmogorov’s law of energy cascading. The same idea can also be applied in the
more general context of fluid or smoke simulations in graphics by locally exciting
or repressing certain frequencies of a simulation to produce a visually richer and/or
desired look: the tools afforded by our operator-adapted basis functions andwavelets
can help with a large spectrum of numerical tasks. A thorough investigation of
operator-adapted wavelets for fluid dynamics is left to future work.

Image Processing. A variety of modern image processing tools that perform
denoising, filtering, high dynamic range tone mapping, and contrast enhancement
are based on the multiresolution concept: they decompose an input image into a
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base and detail layers (that correspond to coarser and finer scales respectively),
and process them separately before assembling an output image, see [77, 95, 96,
116, 143, 144]. The base-detail decomposition is often constructed using either
non-adapted wavelets, or image-dependent anisotropic diffusion (e.g., through the
edge-aware Perona-Malik operator [147], or an anisotropic Laplace operator in
which the metric is controlled by variations in log-luminance [76]).

Our work provides a new approach to perform multiresolution decomposition
adapted to anisotropic diffusion operators and has a lot of potential in improving
and accelerating traditional image processing techniques thanks to its quasi-linear
complexity. We hope to have results soon to confirm this expectation (see Fig. 5.21
for a preliminary test).

Figure 5.21: Base-detail decomposition. For an input image of 512 × 512 pixels
(left) we perform amultiresolution decomposition adapted to Perona-Malik operator
acting on 2-forms using q = 9 resolution levels. This complete decomposition can
be directly leveraged in image processing tasks, but it can also be used to obtain a
reduced base-detail representation. In particular, the base layer can be computed as a
projection of the original image onto the k-th resolution levelV k (top row); observe
the strong preservation of edges even for k = 4. The detail level, obtained as the
difference between the original image and the base level (bottom row), can also be
seen as a projection of the original image onto the wavelet spaceWk⊕L . . .⊕LW

q.

5.6 Conclusion
In this paper, we have introduced an operator-adapted multiresolution analysis for
differential forms. Building over the recent notion of “gamblets”, we presented
an efficient fine-to-coarse construction, in log-linear time, of a hierarchy of basis
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functions for differential forms and associated wavelets tailored to a given differ-
ential operator. Our numerical procedure involves only linear algebra, and can
thus be easily implemented. This construction can be leveraged in finite element
analysis for model reduction, numerical homogenization, or simply to provide a
Galerkin discretization of an operator such that the resulting stiffness matrix be-
comes block diagonal, with uniformly well-conditioned and sparse blocks. Our
method also leads to what we believe is the first constructive approach to obtain
vector-valued wavelets that block diagonalize a given continuous, linear, bijective,
positive-definite, and self-adjoint operator, where vector fields are expressed through
their covariant counterparts, i.e., one-forms. Our construction is very general: it
applies to various types of computational grids, different smoothness orders of refin-
able basis functions, many strategies of sparsification, etc. Depending on the precise
application that one targets, this flexibility is beneficial, as it can accommodate a
variety of specific numerical requirements.
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C h a p t e r 6

CONCLUSION

In this chapter we summarize the contributions presented in this thesis before dis-
cussing possible directions for future research on geometric model reduction.

6.1 Summary of Contributions
Our main contributions can be summarized as follows:

• We first formulated a local geometry processing method suitable for both
manifold learning and nonlinear shape deformation. In the manifold learn-
ing setting, our proposed approach produces an embedding whose coordinate
functions are as affine as possible within the local isometric parameteriza-
tion of each small neighborhood. Formally, the embedding is obtained as a
minimizer of the novel “multi-Laplacian” quadratic form, which characterizes
geometry features of the data through all local relative positions of input points
with respect to each other, subject to conditions of non-degeneracy. Compu-
tationally, our spectral affine-kernel embedding framework is based on local
eigenanalysis of each neighborhood followed by a partial eigendecomposition
of the global, sparse multi-Laplacian quadratic form. Our approach offers
linear precision and is significantly more robust to irregular sampling and to
reasonable amounts of noise than previous methods. In addition, we lever-
age the multi-Laplacian, augmented with user-prescribed constraints on select
vertices, to formulate first spectral as-rigid-as-possible nonlinear deformation
tool. It does not suffer from artifacts typical to alternative nonlinear de-
formation approaches and provides better convergence guarantees due to its
eigen-based nature.

• Relying on the concepts of Levi-Civita connection and Cartan development,
we also proposed a novel method for the efficient estimation of geodesic
distances over point sets sampling connected compact manifolds through dis-
crete parallel transport. This contribution was leveraged to formulate a global
manifold learning method, based on partial eigenanalysis of a dense matrix
and inspired by the Isomap algorithm. We demonstrated that our approach
removes the restriction for geodesic convexity of the input data needed by the
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Dijkstra graph-based shortest path estimator and significantly improves the
accuracy of geodesic distance estimates in practice, while retaining the same
computational complexity. Our parallel transport unfolding inherits resilience
to strong noise characteristic of Isomap, recovering similar embeddings for
geodesically convex input data. However, unlike Isomap, it does not suffer
from large spurious deformations in the case of highly irregular sampling and
non-geodesically convex inputs. This property is particularly important to the
success of a subsequent landmark-based approximation of parallel transport
unfolding, which can efficiently compute the low-dimensional embedding of
large datasets in O(n2 log n), even in the presence of noise.

• Finally, we have introduced an operator-adapted multiresolution analysis for
differential forms, extending the recent notion of gamblets and providing an
alternative axiomatic derivation of the gamblet transform motivated by finite-
element considerations. Our efficient fine-to-coarse construction computes
a hierarchy of basis functions for differential forms and associated wavelets
adapted to a given continuous, linear, bijective, positive-definite, and self-
adjoint differential operator using simple linear algebra in log-linear time. In
particular, our method leads to the first constructive approach to obtain vector-
valued operator-adapted wavelets, where vector fields are expressed through
natural covariant counterparts – 1-forms. This multiresolution analysis can
be leveraged in finite element framework to produce a Galerkin discretization
with block diagonal stiffness matrix, composed of uniformly well-conditioned
and sparse blocks, and further, to perform model reduction and numerical ho-
mogenization. Our construction can be applied to both linear and nonlinear
differential equations, various types of computational grids, different smooth-
ness orders of underlying refinable basis functions, and finite-element spaces
satisfying linear differential constraints (e.g., divergence-freeness).

6.2 Future Work
Having introduced a number of new methods and concepts, we note that this work
could be further extended in several interesting ways. Next, we discuss a few
promising directions for future research.

High-dimensional Data Processing. With the increasing interest in data-driven
computations, further extending current geometry processing tools to analyze, en-
code, and edit high dimensional datasets as we started in this thesis is an interesting
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direction of future research. While we have assumed that the input data lie on a
manifold of a given dimension d, approaches that estimate the right dimensional-
ity from the data or from local scale selection [30, 51, 86, 115, 148] could prove
valuable additions to our proposed approaches. However, the real data is sometimes
better captured by a CW complex rather than a manifold, i.e., a set made out of re-
gions of different dimensionality combined together. Developing a method for high
accuracy estimation of geodesic distances in this case, or being able to compute
low-dimensional parametrization of a CW complex with local or global geomet-
ric dimensionality reduction techniques would be a nice and useful extension. In
addition, targeting geometric parametrization properties other than quasi-isometry
(e.g., measure-preservation or conformality) could prove fruitful in certain applica-
tions. Out of sample extensions [18] and consolidation of high-dimensional datasets
(where high dimensional points are denoised, resampled, and even inserted based
on the voids in the reduced embedding as is commonly used for 3D pointsets [5])
may be worth exploring as well.

Even though differential geometry is rarely used in data analysis (a notable ex-
ception being in unsupervised domain adaptation [167]), its concepts may offer
new insights addressing common data science problems or improve existing algo-
rtihms. In particular, using the notions of arbitrary non-Euclinean metrics, metric
connections, parallel transport and geodesic distances can be further explored in
the context of semi-supervised learning, graph-based clustering, and generalized
manifold learning (CW complex learning).

Operator-adaptedMultiresolutionAnalysis. Besides the large number of poten-
tial practical applications that our efficient construction of operator-adapted wavelets
could impact, including model reduction in fluid simulation and image processing,
a few obvious theoretical developments are worth investigating. For instance, cur-
rent approach assumes that the operator L is self-adjoint and positive-definite –
otherwise, we use LTL. This fallback symmetrized operator results in squaring
the condition number, which may not be optimal. Also, our treatment of arbitrary
domain shapes within the computational grid is currently restricted to a low-order
approximation of the Hodge star on the finest level. Finding higher-order spatial ho-
mogenizations of the Hodge star may be valuable to allow for broader applications.
Finally, while we described our approach on “flat” domains, the notion of forms
carries over naturally to non-flat domains (defined for instance through subdivision
of cell complexes) as well, and a proper numerical treatment of the resulting Rie-
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mannian metric induced by the embedding space can be efficiently achieved via a
push-pull quadrature of the Hodge star at the finest level [62]. This should allow an
even more general treatment of operator-adapted wavelets. In particular, the con-
struction of scale spaces (multiresolution descriptions) of geometric shapes based
on the Laplace-Beltrami operator for instance could also have important applications
for geometric encoding [109], without requiring a global parameterization.
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A p p e n d i x A

PROOF OF PROPOSITION 4.3

Before formulating a precise error bound on our geodesic approximation to quantify
Proposition 4.3, we first review existing results and state a few reasonable assump-
tions on the sampling S of the manifoldM.

A similar notion of discrete parallel transport was considered by the authors of [168]
in order to define and prove convergence of a connection Laplacian operator. We
will make use of one of the theorems they proved towards their goal, with a proof
(omitted here) relying on geometric properties of parallel transport and probabilistic
guarantees (obtained through Bernstein’s inequality) on the quality of tangent bases
approximation. Following their notations, let ϕ : M ↪→�D be the embedding of
a smooth and compact Riemannian d-manifold M with its metric induced from
the embedding space �D. Points from S are considered to be sampled from M
according to a probability density function p ∈ C3(M). Denote the tangent bundle
ofM byTM, the tangent space at point xi byTiM, the differential of the embedding
at xi by dϕi : TiM 7→ �D and the parallel transport operator from x j to x j along
a geodesic connecting them by Pi, j : TjM 7→TiM. Let ε be the maximum radius
of the geodesic K-neighborhoods used to construct our approximate tangent bases
{Ti}

n
i=1 (see Eq. (4.1) and its description) and finally, let εg > 0.

Theorem (from [168]). Assume ε = O(n−
1

d+2 ) and consider two points xi and x j

ofM, such that the geodesic distance between them is O(εg). Then for any vector
u j ∈ TjM, with high probability:

Ri, jT
T
j dϕ j

[
u j

]
= TT

i dϕi
[
Pi, ju j

]
+ O(γi, j), (A.1)

where γi, j = ε
3+ε3

g if xi and x j are at least ε-away from the boundary ofM and
γi, j =ε+ε

3
g otherwise.

In addition to this theorem, we will use two more assumptions:

I. Let cp = (xi1, ..., xim) be the shortest polyline connecting xi1 and xim in the
proximity graph G. First, we assume that the polyline is included in an εd-
thickening of the real geodesic cg connecting the same endpoints, where εd

is a positive constant such that ε2
dκs � 1, with κs denoting the maximum

absolute value of intrinsic sectional curvature ofM. Note that this condition
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is less stringent than the one used to prove convergence of Dijkstra polylines
to geodesic curves [180]: sampling voids of maximum geodesic diameter εd

are allowed in the input pointset S.

II. Let gis be a tangent vector in TisM that connects the endpoints of the Cartan
development of the geodesic curve between xis and xis+1 onto TisM. Denoting
eis = (xis+1−xis ), we will also assume:

TT
isdϕisgis = T

T
iseis + O(γis,is+1) (A.2)

This condition links local curvature and sampling density: the projection of
eis onto the approximate tangent basis Tis must be close to the unwrapped
geodesic in the same basis. Note that the length rescaling step (Eq. (4.2.4))
can help in practice to tighten the error bound O(γis,is+1).

Proposition 4.3 revisited: Under assumptions I, II and the assumptions of the the-
orem, the PTU estimate dPTU of the geodesic distance between points xi1 and xim ,
based on a Dijkstra shortest polyline cp = (xi1, ..., xim) on G, provides an approx-
imation of the length dg of the geodesic curve cg with the same endpoints in the
following sense:

dPTU(xi1, xim) = dg(xi1, xim) + O(δ),

whereO(δ) is betweenO(m2(ε+ε3
g+εgε

2
dκs)) andO(m2(ε3+ε3

g+εgε
2
dκs)) depending

on how many polyline segments are close to the manifold boundary.

Proof : First, observe that condition (A.2) implies

vis =
©«

r−1∏
j=1

Rij,ij+1
ª®¬
[
T t

ir eis

]
=

©«
r−1∏
j=1

Rij,ij+1
ª®¬
[
T t

ir gis

]
+O(ε3

g).

Using Eq. (A.1) repeatedly, we obtain that vis is approximately equal to gis parallel-
transported to Ti1 along a piecewise-geodesic curve cpg passing through the points
(xi1, ..., xim), i.e.

vis = Ti1 dϕi1
©«

s−1∏
j=1

Pij,ij+1
ª®¬
[
gis

]
+O ©«

s−1∑
j=1

γij,ij+1
ª®¬ +O(ε3

g).

Denoting the first term of the right-hand side by wis and calling w =
∑m

s=1 wis , we
obtain m∑

s=1
vis =

m∑
s=1

wis +O(γ) , i.e., v = w + O(γ),
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where O(γ) takes value between O(m2(ε+ ε3
g))

and O(m2(ε3 + ε3
g)) depending on how many

polyline segments are close to the boundary;
note that w is the vector connecting the end-
points of Cartan’s development σpg ∈ Ti1M of
the piecewise-geodesic curve cpg interpolating
the polyline vertices (see inset, bottom right).
To show that the curve σpg stays close to Car-
tan’s development σg of the geodesic cg, recall
that for a patch ofM with diameter O(εd), the
change in direction of a vector parallel-transported along different paths within the
patch is bounded by O(κsε

2
d) (this result relies on a bounded curvature transforma-

tion, which in turn follows from our bound on absolute value of sectional curvature
from Assumption I). Using Assumption II, we can cut the geodesic cg connecting
xi1 and xim into curved segments with vertices x̃ik , such that dg(x̃ik, xik ) = O(εd)

for k = 2, . . . ,m−1 (we set x̃i1 = xi1 and x̃im = xim for notational consistency).
Because the geodesic length of xik+1xik is O(εg), the diameter of a patch enclosed
by four geodesic segments xikxik+1 , x̃ik+1 x̃ik , x̃ikxik and xik+1 x̃ik+1 is O(εg+εd)=O(εd)

assuming εg . εd (see inset). Thus the result of parallel transporting a vector along
3 geodesic segments x̃ikxik , xikxik+1 and xik x̃ik deviates in direction from parallel
transporting the same vector along geodesic segment x̃ik x̃ik+1 by O(κsε

2
d). Summing

up contributions from all the patches for k = 1, . . . , `, and taking into account can-
cellations from segments xik x̃ik and x̃ikxik for k = 2, . . . , `−1, the directional error
in parallel transporting a vector along the piecewise geodesic curve xi1xi2 . . . xi` x̃i`

compared to its transport along the true geodesic segment xi1 x̃i` becomes O(`κsε
2
d).

As a result, performing Cartan’s development patch by patch, the final discrepancy
between the endpoint positions of σpg and σg incurred by developing them us-
ing parallel transport along piecewise-geodesic curve cpg vs. the true geodesic cg is
O(m2κsεgε

2
d), as it combines the cumulative directional errors of parallel transported

tangent vectors and the lengths of the corresponding segments.

Given that Cartan’s development of a geodesic curve is a straight segment, we
conclude that | |w| |2 = dg(xi1, xim) + O(m

2κsεgε
2
d). By construction, we have

dPTU(xi1, xim) = | |v| |2, implying that

dPTU(xi1, xim) = dg(xi1, xim) + O(δ),

where O(δ) = O(m2εgε
2
dκs+γ). Note that our discrete unfolding of any polyline
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converges to the corresponding Cartan’s development; however, in general it has to
be a (nearly-)shortest polyline for its extremities to be at a distance approximating
the proper geodesic length, as geodesic curves are only locally (and not globally)
shortest. �

Finally, we note that while our assumptions are weaker that the ones used to prove
convergence of Dijkstra polylines to geodesic curves [180], the error for graph-based
distance approximations has linear dependence on the number of polyline segments,
while our bound depends quadratically on the number of segments. However, in
practice our parallel transport based method consistently outperforms Dikstra path
approximation (see Fig. 4.4), potentially pointing to the existence of a tighter bound.
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A p p e n d i x B

PARALLEL TRANSPORT UNFOLDING: SUPPLEMENTAL
MATERIAL

This appendix contains additional results to provide further tests of the Parallel
Transport Unfolding (PTU) approach and comparisons to other existing manifold
learning algorithms.

B.1 PTU vs. Local Methods
One of the key advantages of Parallel Transport Unfolding is its resilience to noise:
like Isomap [180], PTU uses all geodesic distances to embed a dataset into a
low-dimensional space, which allows for a greatly increased robustness to noise and
outliers. In this section, we provide further numerical tests to confirm this statement.

Petals Dataset
First off, the noiseless Petals dataset makes clear that Isomap fails due to the obvious
geodesic non-convexity while PTU has no problem finding the proper four petals, as
demonstrated in Fig. B.1. In this noiseless case, it turns out that most local methods,
such as Modified LLE [203], Hessian LLE [71], and SAKE, do also remarkably
well (see Fig. B.2), as convexity (or lack thereof) plays basically no role in their
embeddings.

However, if a bit of noise is added to this example, local methods fail (at times
spectacularly): for a moderate Gaussian noise with a standard variation of 3% of the
radius of the sphere on which the petals lie, Fig. B.3 shows that local methods all fail
while PTU keeps a very similar embedding since it relies on all pairwise geodesic
distances—Isomap too to a certain extent, even if it is clearly more deformed than
in the noiseless case.

Study of Noise Effects on Local and Global Methods
In order to better demonstrate the robustness of global methods to noise, we use
the simple (and very widely used) Swiss Roll dataset, and use both local and global
methods on this dataset with an increasing amount of Gaussian noise along the
normal of this roll (varying the standard deviation from0 to 2.8% of the bounding box
size). The number of neighbors is set to 10 for all methods to offer a fair comparison.
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Figure B.1: Unfolding Petals. From a 3D sampling of 4-petal shaped portion of a
sphere (middle), Isomap (a staple of manifold learning) fails to find a near isometric
2D parameterization (left) due to the non-convexity of the intrinsic geometry. Our
parallel transport approach, instead, deals with this case perfectly (right). Lifting
the pointset to 100D and applying random rotations and reflections does not change
our result.

Figure B.2: Local Methods for Noiseless Petals. From a 3D sampling of 4-petal
shaped portion of a sphere (see Fig. 4.1), local methods such asModified LLE [203],
Hessian LLE [71], or SAKE have no issue with the non-convexity of the intrinsic
geometry (unlike Isomap), and give results nearly equivalent to PTU. A notable
exception is LLE [155], which returns a near degenerate solution.

As Table B.4 clearly shows, the best local method (SAKE on this example, see
Image SAKE/σ = 1.2%) starts failing at half of the maximum standard deviation
that global methods can handle (see Images Isomap/σ = 2.2% and PTU/σ = 2.2%).
When the standard deviation of the noise reaches 2.8%, even global methods fail as
the proximity graph starts having numerous connections across branches: pairwise
geodesic distances will have too many incorrect values to be able to recover a decent
embedding. Note that at this level of noise (see side view of Swiss Roll), the dataset
is far from the manifold assumption we are making about input data.

B.2 Landmark-PTU
Fig. B.5 provides more results for Landmark-PTU: in order to complement Fig. 17
from the submission, we also provide the results for landmarks on the noiselessPetals



145

Figure B.3: Noisy Petals. Given a 3D sampling of a 4-petal shaped portion of a
sphere (see Fig.B.1) with added Gaussian noise in the normal direction (σ: 3% of
sphere radius), PTU recovers an almost perfect quasi-isometric 2D parametrization,
while Isomap still fails (bottom). Local methods, not exploiting large geodesic
distances, fail even worse, with the notable exception of SAKE that performs better
than Isomap.

dataset, as well as on the highly-irregular S-shaped dataset from Fig. 11. Here again,
less than 1% of landmarks is enough to capture the shape almost perfectly.
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Swiss Roll
algorithm vs. noise σ=0% σ=0.4%σ=0.8%σ=1.2%σ=1.6% σ=2% σ=2.4%σ=2.8%

Input
side view

LLE

MLLE

HLLE

SAKE

Isomap

Ours

Figure B.4: Effects of Noise on Local and Global Methods. Using the Swiss
Roll dataset, Gaussian noise with standard deviation given as a percentage of the
bounding box of the original noiseless swiss roll is added along the normal. We use
the same number of neighbors (10) for local methods to provide a fair comparison
(it prevents shortcutting as much as possible; using larger values would make the
local methods fail earlier). Local methods all failed around σ = 1.3%, while global
methods (Isomap and our approach) fare well until 2.7%. At 2.8%, the neighbors
of a datapoint may belong to several different branches of the roll, which makes it
impossible even for global methods to handle.
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Figure B.5: Landmark-PTU. Landmarks are colored red for clarity. (Left) the use
of 9 landmarks (left) or 19 landmarks (right) is enough to reconstruct the petals
in the noiseless example of Fig. 1 of the submission. (Right) using 10 landmarks
(top) vs. 20 landmarks (bottom) is visually very similar on this 2000-point datasets,
although one can notice a slight distortion as indicated by the color of the mapped
points using the color ramp based on distortion error compared to the expected
perfect embedding.
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A p p e n d i x C

VARIATIONAL DEFINITION OF OPERATOR-ADAPTED BASIS

We briefly summarize in this appendix the original motivation of the operator-
adapted decomposition proposed in [140, 141]. Since it matches our construction
in the case of scalar-valued basis functions, it is interesting to understand the func-
tional approximation roots of their approach to contrast it with our finite element
perspective.

Optimal Choice of Basis Functions. Consider the solution u to Eq. (5.1), and a
finite set of measurements mi = 〈u, ϕk

i 〉L2 on a fixed level k obtained by integrating
u against a set of test functions {ϕk

i }
nk
i=1. In a context of functional approximation,

a natural thing to ask is: what is the optimal selection of “adapted” basis functions
ϕk

i , such that the approximation error between u and ũk =
∑nk

i=1 miϕ
k
i is minimized,

for any choice of u?

Game Theoretical Insight. This functional approximation problem can be for-
malized as a zero-sum game between two players as follows: player I chooses an
arbitrary function uI ∈ H from the solution space of Eq. (5.1); player II constructs
an approximation uII of uI from partial information, only having access to the mea-
surements {mi}

nk
i=1 of player I’s function; the utility that player I aims to maximize

and player II to minimize is given by

V(uI, uII) =
| |uI − uII | |L
| |uI | |L

. (C.1)

This game has a solution in mixed strategies, with mixed optimal strategy for player
I, and pure optimal strategy for player II [140]. In particular, optimal strategy
for player I consists in drawing uI at random from a weak Gaussian distribution
ζ of covariance L−1, while a minimax strategy for player II reduces to computing
deterministic function uII as the conditional expectation of ζ given themeasurements
{mi}

nk
i=1.

Variational Formulation. The optimal basis functions {ϕk
i }

nk
i=1 corresponding to

the minimax strategy are, in fact, solutions of the following variational problem:

ϕk
i = arg min

φ∈H
| |φ| |2L s. t. 〈φ, ϕk

j 〉L2 = δi j for j = 1 . . . nk . (C.2)
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Using this formulation, [140] shows that since the test functions were chosen to be
refinable, the optimal basis functions are refinable as well:

ϕk
i =

nk+1∑
j=1

Ck
i jϕ

k+1
j ,

where entries of the refinement matrix Ck
i j correspond to conditional expectations

of finer test measurements 〈ϕk+1
j , ζ〉L2 given a single non-zero coarser level mea-

surement 〈ϕk
l , ζ〉L2 = δil for l = 1 . . . nk . To find the explicit expression of the

refinement matrix, we can rewrite the problem (C.2) in matrix form, and using
earlier notation Ak

i jB 〈ϕ
k
i , ϕ

k
k〉L , we obtain

Ck = arg min
X∈Rnk×nk+1

Tr
[
XAk+1XT ]

s. t. X Ck,T = �nk .

The solution to this constrained minimization is precisely Eq. (5.15), which demon-
strates the equivalence of variational formulation of Eq. (C.1) to our axiomatic con-
struction (Sec. 5.3) and implies that resulting operator-orthogonal basis functions
are optimal in the game-theoretical functional-approximation sense of Eq. (C.1).

They are also optimal in the Galerkin sense on any resolution level k [140]: for any
u ∈ H and its approximation uk =

∑nk
i=1 mi ϕ

k
i , we have

‖u − uk ‖L = inf
v∈V

k
‖u − v‖L .

In other words, uk is the L-orthogonal projection of u ontoV k .
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A p p e n d i x D

PROPERTIES OF THE BOTTOM-UP WAVELET
CONSTRUCTION

In this first appendix, we briefly review the properties of the (scalar-valued) gamblets
construction derived in [139], as they apply to our extension as well. Readers are
referred to [139] for rigourous proofs: we only provide a summary of the properties,
along with the key conditions required.

D.1 Bounded Condition Numbers
Let | |·| |L−1 be the norm of H∗ defined as the dual to the energy norm | |·| |L . The
condition numbers of stiffness matrices Bk and A1 are uniformly bounded, provided
the spans of the test functions {V k}

q
k=1 are regular and weakly aligned with the

eigensubpaces of L−1 in the following sense: there exists a constant c1, such that

• the coarsest test functions can capture the eigenspaces of L−1, i.e.,

sup
x,y∈Rn1 ;|x|=|y|=1

‖
∑n1

i=1 xiϕ
1
i ‖L−1

‖
∑n1

i=1 yiϕ
1
i ‖L−1

≤ c1;

• the condition numbers of the wavelet refinement matrices are bounded for
k = 1, . . . , q − 1:

cond
(
WkWk,T

)
≤ c1;

• the refinement matrices of test functions are bounded for k = 1, . . . , q − 1:

‖Ck ‖2 ≤ c1;

• eigensubspaces of L−1 and test functions must be weakly aligned for k =

2, ..., q, i.e.,

sup
x∈Ker Ck−1,|x |=1

inf
y∈Rnk−1

������∑nk
i=1 xiϕ

k
i −

∑nk−1
j=1 y jϕ

k−1
j

������2
L−1

infz∈Rnk ,|z |=1
����∑nk

i=1 ziϕ
k
i

����2
L−1

≤ c1.

This inequality can also be interpreted as a bound on the relative gap between
information that is lost vs. the one that is propagated during transition from fine
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to coarse levels. Note that slightly stronger versions of all these conditions can
provide bounds for the minimum and maximum eigenvalues of matrices Ak and Bk ,
revealing that the eigenranges of Bk correspond to k frequency subbands of the
original stiffness matrix Aq corresponding to the finest level [139, 140].

D.2 Exponential Decay
The fast decay of our operator-adapted basis functions on a given resolution level
k follows from the localization properties of both the underlying operator and of
the test functions. For each i = 1..nk , define τk

i ∈ Ω to be a small convex region
including the support of the test function ϕk

i , containing a ball of radius hk , and
being contained in a ball of radius δhk for some constants δ, hk ∈ [0, 1]. Let Ωk

i

be a small neighborhood of τk
i , such that Ω = ∪nk

i=1Ω
k
i , and the distance between τk

i

and complement of Ωk
i is between δh and h. Denoting the standard Sobolev norm

(with appropriate boundary conditions) on H(Ω) by | | · | |H(Ω) and its dual norm on
H∗(Ω) by | | · | |H∗(Ω), the key (sufficient) condition required for exponential decay of
operator-adapted basis is the existence of two constants 0 < cmin ≤ cmax < ∞ that
satisfy the following frame inequality for all v ∈ H∗(Ω):

cmin inf
ϕ∈Vk

| |v − ϕ| |2H∗(Ω) ≤

nk∑
i=1

inf
ϕ∈Vk

| |v − ϕ| |2
H∗(Ωk

i )
≤ cmax inf

ϕ∈Vk
| |v − ϕ| |2H∗(Ω).

The exponent of the decay rate depends on cmin, cmax and the locality of the operator
L. This condition, describing the localization of test functions in the dual norm,
is in fact implied by three simple and natural inequalities (for some finite constant
c2 > 0):

• Poincaré inequalities: any ϕ⊥ from the L2-complement of test functions
V k,⊥= {v ∈ H : 〈v, ϕk

i 〉L2 =0∀ϕk
i ∈ V

k} has bounded derivatives:����Dtϕ⊥
����

L2(Ω)
≤ c2 hs−t

k ‖ϕ
⊥‖Hs

0 (Ω)
∀t ∈ {0, . . . , s};

• Frame inequalities (boundedness of test functions):
nk∑
i=1
〈ϕk

i , f 〉2L2 ≤ c2

s∑
t=0

h2t
k ‖D

t f ‖L2(Ω) ∀ f ∈ Hs
0(Ω);

• Inverse Poincaré inequalities:

h2s
k ≤ c2‖ϕ

k
i ‖

2
H∗(τi)

∀i ∈ {1, ..., nk}.

Note that these conditions, obtained in [138, 139], provide a generalization of
[113, 124, 140].
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D.3 Homogenization Property
The operator-adapted basis functions on coarser levels carry over information from
finer scales, nicely approximating the operator eigensubspaces of corresponding
frequencies. Indeed, their resulting shape better captures the operator on a given
resolution level than generic polynomial finite-element basis functions, with a bound
proven analytically in [139] for several cases. More concretely, the solution u to
Eq. (5.1) and its operator-adapted level-k FEM approximation uk (Eq. (5.19)),
assembled using k coarsest resolution levels, satisfy the following inequality for
some constant c > 0:

| |u − uk | |L

| |g | |L2
≤ chs

k, (D.1)

where the right-hand side is independent of L and hk characterizes the radius of
support of a test functions of level k. This last inequality implies that most of the
“energy” concentrates on coarser resolutions and serves as one of the key reasons
behind the homogenization properties of operator-adapted multiresolution analysis
and its ability to use only a few discretization levels to get good approximate solu-
tions: it guarantees that omitting (some or all) information from higher resolution
levels does not degrade accuracy too much.


