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"We know all about the habits of the ant, we know all about the 

habits of the bee, but we know nothing at all about the habits of the 

oyster. It seems almost certain that we have been choosing the wrong 

time for studying the oyster." 

Mark Twain 
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ABSTRACT 

A small glycoprotein (E3) was purified from the culture fluid of 

Sindbis virus infected chicken cells and shown to be produced from the 

cleavage of PE2 to produce E2. The N-terminal sequence of E3 is identical 

to that of PE2. The first 19 amino acids are hydrophobic and presumably 

serve as the signal sequence for PE2. This sequence is unusual in that it 

is not immediately cleaved from PE2 and is glycosylated at position 14. 

Labeling studies imply that the PE2 + E2 + E3 cleavage is not closely 

coupled to budding. E3 is cleaved and released into the culture fluid 

under conditions where no virions bud, and the kinetics of appearance of E3 

in the culture fluid and E2 in virions are dissimilar. The maturation of 

E3 is discussed as it relates to the processing of cellular membrane 

glycoproteins. 

Hybridomas were selected by the fusion of NSI/1 myeloma cells with 

spleen cells from mice inoculated with Sindbis specific antigens. Ten 

stable hybridomas were obtained, seven producing E1-specific antibodies and 

three producing capsid-specific antibodies. The seven E1 specific anti

bodies were divided into two classes, which reacted with diffferent E1 

antigenic domains. The two classes of antibodies differed in several 

tested properties. Two E1 clones inhibited viral infectivity, and one of 

these precipitated E2 along with E1 in Triton-treated preparations. These 

properties are discussed with regard to the known relationships between the 

viral structural proteins. 

The tryptic glycopeptides of E1 and E2 grown in BHK or chick cells 

were purified and analyzed by N-terminal sequencing, pronase digestions and 

labeling with various radioactive sugars. We found that the glycosylation 



vi 

patterns for the two proteins were essentially identical in the two 

hosts. E2 contains exclusively complex chains attached to Asn196 and 

simple chains attached to Asn 398 • In E1, the Asn135 glycosylation site 

contained only complex chains, but the Asn245 site contained a mixture of 

simple and complex chains. A prediction as to the relative importance of 

the different glycosylation sites to protein function is offered. 
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CHAPTER 1 

Sindbis virus glycoproteins: A model for the maturation 

of cellular membrane glycoproteins 
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Several small enveloped RNA containing viruses, including Sindbis 

virus, Semliki Forest virus, and vesicular stomatitis virus, have been used 

as model systems for the study of the maturation of eukaryotic membrane 

glycoproteins (for reviews, see Lodish et al., 1981; Simons and Warren, 

1983). These systems possess several advantages that make them easier to 

study than cellular systems. Since these viruses are able to effectively 

shut off host cell protein synthesis, the only proteins being synthesized 

during infection are large quantities of a few viral proteins, thus 

facilitating the study of the synthesis and maturation of individual pro-

teins unobscured by the large background of host cell proteins. Since 

these simple viruses have very limited coding capacities and depend on 

cellular machinery for much of their protein synthesis and processing, the 

results found with viral systems are representative of the events occurring 

in cellular proteins. Vesicular stomatitis virus has often been chosen 

because of its simplicity, since it has only one membrane glycoprotein, the 

G protein (Knipe et al., 1977). On the other hand, Sindbis virus and 

Semliki Forest virus1 are somewhat more complicated, but also potentially 

more interesting than vesicular stomatitis virus. They contain two inte-

gral membrane proteins, one of which follows a more complicated maturation 

scheme involving a proteolytic cleavage late in maturation (Schlesinger and 

Schlesinger, 1972). As such, they provide models for a broader range of 

cellular glycoproteins. 

1This virus is very similar to Sindbis virus in most of the properties 
discussed in this chapter. For the sake of this chapter, it can be assumed 
that their properties are the same, except where noted. In cases where 
studies have been done in both Sindbis and Semliki Forest virus, the 
Sindbis virus literature is preferentially cited. 



3 

Several recent reviews detailing the molecular biology and bio

chemistry of Sindbis and Semliki Forest virus are available (Strauss and 

Strauss, 1977; Schlesinger, 1980; Simons and Warren, 1983). Briefly, 

Sindbis virus (an alphavirus) is a small enveloped virus containing a 

single plus stranded, 49S RNA (4.3x10 6 daltons) (Simmons and Strauss, 

1972a) and three structural proteins, the two membrane glycoproteins E1 and 

E2, and the nucleocapsid protein (Schlesinger and Schlesinger, 1972). 

Semliki For~st virus contains a fourth structural protein (E3) that is 

associated with the outside of the virion (Garoff ~~., 1974), whereas in 

Sindbis virus this small protein is released into the culture fluid (Welch 

and Sefton, 1979). The viral 49S RNA codes for a polymerase which pro

duces, via a negative stranded intermediate, both more full length 49S RNA 

and a subgenomic 26S mRNA (Simmons and Strauss, 1972b, 1974). The 26S 

mRNA, which comprises the 3' third of the genome (Kennedy, 1976), codes for 

the three to four viral structural proteins (Clegg, 1975). It is trans

lated from one initiation site into a single polyprotein (Cancedda ~ al., 

1975), which is then processed to produce the structural proteins (Clegg, 

1975). Under normal circumstances the complete polyprotein is never 

present, but is cleaved sequentially as it is translated, producing the 

proteins in the order C/PE2(E3+E2)/6K/E1 (Rice and Strauss, 1981), where 

PE2 is the precursor to E2 and E3 and the 6K protein is a small nonstruc

tural protein. The full length polyprotein is only present as an aberrant 

by-product in some temperature sensitive mutants that do not properly 

cleave it at the nonpermissive temperature (Schlesinger and Schlesinger, 

1973). 
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Insertion into the Cell Membrane 

Blobel and coworkers first proposed a model for the translocation of 

secretory proteins across the endoplasmic reticulum membrane in 1971 

(Blobel and Sabatini, 1971), and a few years later they described this 

"signal hypothesis" in more detail (Blobel and Dobberstein, 1975). The 

essential elements of their hypothesis are that secretory proteins are 

initially synthesized with an additional segment of amino acids at their 

N-termini. As they emerge from the shielding of the ribosome they trigger 

ribosome attachment to the membrane of the rough endoplasmic reticulum and 

facilitate the translocation of the protein across the membrane into the 

lumen. While the protein is still nascent, this signal sequence is 

removed, presumably by a membrane associated activity. Since their pro

posal, many studies have been done that verified the model and extended it 

to integral membrane proteins (For reviews see Zimmerman et ~., 1980; 

Lodish, 1981; Docherty and Steiner, 1982; Sabatini et ~., 1982). Membrane 

proteins simply must have some sort of "stop transfer" sequence to prevent 

the C-terminus from passing through the membrane (Sabatini~~., 1982). 

The sequences of many N-terminal signal sequences have been analyzed 

and compared to reveal their general characteristics (Sabatini et al., 

1982; Lodish, 1981 ; Docherty and Steiner, 1982; Zimmerman et al., 1980). 

Their lengths vary from a minimum of 15 to a maximum of about 30 residues, 

of which at least 11 in a row are hydrophobic or uncharged. Often, but not 

always, they contain one to three basic amino acids at their N-termini 

which may facilitate binding to the membranes. In addition, most but not 
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all, are cleaved after a small neutral amino acid (Gly, Ala, Ser, Cys). 

Other than these constraints, the sequences show very little pattern. 

Many different laboratories have described hydrophobic N-terminal 

signal sequences associated with a variety of secretory and membrane 

proteins, the vast majority of which are proteolytically cleaved during, or 

very shortly after, translocation (Sabatini~ al., 1982; Lodish, 1981). 

The few examples of proteins with signal sequences that are not cleaved 

also exhibit atypical topologies. For instance, the membrane proteins 

cytochrome P-450 (Bar-Nun et al., 1980), influenza neuraminidase (Blok 

~~., 1982), and sucrase-isomaltase (Hauri ~~., 1982) have unusually 

long N-terminal hydrophobic sequences which probably also serve as stop 

transfer signals, and therefore act as membrane anchors. The erythrocyte 

plasma membrane protein band 3 (Sabban et al., 1981) and ovalbumin 

(Lingappa et al., 1979) contain uncleaved internal signal sequences. 

A combination of RNA sequence data (Rice and Strauss, 1981) and 

N-terminal protein sequence data (Bell~ al., 1978; 1982) reveal that both 

of the Sindbis virus proteins (E1, PE2) that are inserted into the 

endoplasmic reticulum have hydrophobic sequences near their N-termini. 

Both of these sequences presumably function as signal sequences, although 

they are both somewhat atypical ones. Shortly after the synthesis and 

release of the capsid protein into the cytoplasm (Clegg, 1975; Wirth et 

~., 1977), the N-terminus of nascent PE2 is inserted into the membrane of 

the rough endoplasmic reticulum, presumably via its signal se~uence (Wirth 

~ al., 1977; Bon at ti et al., 1979). In a cell free system, insertion into 

microsomal membranes must begin before about 100 amino acids are synthe

sized or insertion never occurs, implying that the important signal for 
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insertion is at or near the N-terminus (Garoff et ~·, 1978). N-terminal 

sequencing of PE2 reveals that the first 19 amino acids of PE2 are 

hybrophobic or uncharged, as would be expected for a signal sequence (Bell 

~ al., 1982). This sequence is atypical, as it is not cleaved from the 

protein until about 30 min later, and then only as part of a larger piece 

(Bonatti and Blobel, 1979; Welch and Sefton, 1979). As such, it is the 

only membrane protein of "typical topology" (a C-terminal membrane anchor, 

with the bulk of the protein extruding into the lumen) that we know of that 

does not have its signal sequence rapidly cleaved. In addition, it 

contains a potential glycosylation site at position 14. This site probably 

does contain an oligosaccharide chain, although this glycosylation does not 

seem to be the reason that the sequence is not cleaved (Bell ~ al., 1982). 

The translation of the 26S RNA is completed by the synthesis and 

insertion of E1 into the membrane, the details of which is not well under

stood. In the vicinity of the two cleavage sites (the C-terminus of PE2 

and the N-terminus of E1) there is sufficient hydrobic sequence to span the 

membrane up to four times. PE2 contains, in addition to its membrane 

anchor (34-61 amino acids from the C-terminus), another hydrophobic region 

of 23 amino acids ending six residues from its C-terminus. The 55 amino 

acid long 6K protein is entirely hydrophobic and is long enough to poten

tially span the membrane more than once. Since the order of the above two 

cleavages has not been determined, and up to four membrane crossings can be 

visualized, a variety of models have been postulated (see Bonatti et al., 

1979; Rice and Strauss, 1981; Sabatini~ al., 1982), but none verified. 

In Semliki Forest virus the 6K protein has been shown to function as a sig

nal sequence, at least under some circumstances, as a temperature sensitive 



7 

mutant that is unable to insert PE2 into the membrane is able to properly 

insert E1 (Hashimoto ~ al., 1981). 

Sindbis virus thus provides two atypical examples of membrane protein 

insertion. Any general models for insertion of membrane proteins will have 

to account for these and other exceptions. 

Glycosylation 

Many membrane and secreted proteins contain N-glycosidically linked 

oligosaccharide chains (for review see Lennarz, 1980). These chains are 

attached to asparagines within the sequence Asn-X-Ser/Thr, where X is any 

other amino acid (Marshall, 1974). The attachment involves the en bloc 

transfer of a core oligosaccharide of the structure Glc 1_3Man 8_12GlcNAc 2 

(see Fig. 1 for a typical example) to the asparagine via a dolichol inter-

mediate (Struck and Lennarz, 1980). This transfer occurs in the rough 

endoplasmic reticulum, probably while the protein chain is nascent. As the 

protein passes from the rough endoplasmic reticulum through the Golgi 

apparatus, these core oligosaccharides are processed to their final forms 

(Schachter and Roseman, 1980). There are two major types of asparagine 

linked oligosaccharides, called complex (or Type A) and simple (or Type B), 

chains. Examples of typical structures for these are shown in Fig. 1, 

although many variations of both types have been described (see Cummings 

and Kornfeld, 1982; Kornfeld and Kornfeld, 1980). 

An example of the processing scheme for an asparagine linked oligo-

saccharide chain is shown in Fig. 2. After the attachment of the core 

oligosaccharide, and while still in the rough endoplasmic reticulum, it is 

trimmed by removal of the glucose and some of the mannose residues. In the 

case of simple chains, this is the end of processing, but for complex 
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FIG. 1. Typical asparagine linked oligosaccharide structures. From 

Cummings and Kornfeld, 1982; Kornfeld and Kornfeld, 1980. A: Core 

oligosccaharide. B: Simple type oligosaccharide. C: Complex type 

oligosaccharide. Man: Mannose. GlcNAc: N-Acetylglucosamine. 

Gal: Galactose. NANA: Sialic acid. 

Fuc: Fucose. Asn: Asparagine. 

Glu: Glucose. 



A: CORE OLIGOSACCHARIDE 

Man-Man\ 

9 

Man\ ~ 
Man-Man/ Man-GicNAc-GicNAc -Asn 

±Giu-±Giu-Giu-Man-Man-Man/ ~ 

8: SIMPLE TYPE OLIGOSACCHARIDE 

±Man-Man\ 

/Man\ ~ 
±Man-Man Man-GicNAc-GicNAc-Asn 

±Man-±Man-Man/ ~ 

(: COMPLEX TYPE OLIGOSACCHARIDE 

(±NANA-Gai-GlcNAc\ 

Man\ 

± NANA- Gal- GlcNAc / GlcNAc- GlcNAc -A!n 

±NANA-Gai-GicNAc-Man/ Flc ~ 
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FIG. 2. Proposed sequence for the synthesis of complex-type oligosaccha

rides (Kornfeld et ~., 1978). The symbols are: (Dol): Dolichol, the 

lipid carrier of the oligosaccharide. 

( 0 ) : mannose. ( A ) : glucose. 

acid. ( 6 ) : fucose. 

( . ) : 
( . ) : N-acetylglucosamine. 

galactose. ( • ) : sialic 
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chains, more trimming occurs, and glucosamine, galactose, fucose, and 

sialic acid residues are added stepwise in the Golgi apparatus (Schachter 

and Roseman, 1980) • 

The complete protein sequences of E1, E2, and E3 as deduced from the 

nucleotide sequence of the 26S mRNA (Rice and Strauss, 1981) reveal two 

potential glycosylation sites of the Asn-X-Ser/Thr type in both E1 and E2, 

and one in E3. Studies of the oligosaccharides of these proteins suggest 

that all of~ these potential sites are used. The oligosaccharides of 

Sindbis virus E3 have not been extensively studied, but E3 is glycosylated, 

as it incorporates radioactive mannose (Welch and Sefton, 1979). Pesonen 

(1979) has shown that in Semliki Forest virus, E3 contains a complex type 

oligosaccharide chain. E1 and E2 both contain about two oligosaccharide 

chains per molecule (Sefton and Keegstra, 1974), one each of the simple 

type and the complex type (Robbins et al., 1977). The structure of these 

chains are Man 5_7GlcNAc 2 and NANA0_2Gal 2Man 3Fuc0_1GlcNAc 2, respectively 

(Burke and Keegstra, 1979; Hakimi, et al., 1981). These structures are 

analogous to those shown in Fig. 1, except that in Sindbis virus the 

complex type chain does not contain the third branch. 

When Sindbis virus (Keegstra et al., 1975; Burke and Keegstra, 1976, 

1979; Weitzman et ~., 1979), or other viruses including vesicular 

stomatitis virus (Etchison and Holland, 1974; Etchison et al., 1977) and 

retroviruses (Warren et al., 1972; Lai and Duesber g, 1972; Sefton, 197 6) , 

are grown in several different cell lines only minor differences in their 

glycosylation patterns are seen. These changes mostly consist of dif

ferences in the number of sialic acid residues (Warren et al., 1972; 

Keegstra~ al., 1975; Burke and Keegstra, 1979) or fucose residues 



13 

(Etchison and Holland, 1974) rather than major changes in oligosaccharide 

structure. In contrast, different proteins within a given host cell type 

each exhibit their own characteristic glycosylation pattern (Sefton, 1976; 

Weitzman~~., 1979). These results suggest that the protein itself, as 

opposed to the host cell, contains the information that determines its 

glycosylation pattern. On the other hand, the host cell must contain the 

proper glycosyltransferases or the glycosylation pattern of the protein 

will be affected. For instance, Sindbis virus grown in lectin resistant 

cell lines, which lack a glycosyltransferase (Schlesinger et al., 1976), or 

in insect cells, which lack a sialyltransferase (Stollar et al., 1976), 

contain proteins with unusual oligosaccharide patterns that reflect the 

host cell's defect. One exception to this is the report that Sindbis E1 in 

BHK cells contains very little simple type oligosaccharide (Burke and 

Keegstra, 1976). It is not clear whether this is due to an 

underglycosylation of one of the sites or the replacement of the simple 

chain with an additional complex chain. 

Robbins and his coworkers (Robbins et al., 1977; Krag and Robbins, 

1977) have shown that Sindbis virus proteins are initially glycosylated via 

a lipid linked intermediate. This transfer is completed while the 

glycoproteins are still being translated (Sefton, 1977). The completion of 

glycosylation is not until late in the maturation of E1 and E2. PE2 and 

intracellular E1 both contain short uncompleted oligosaccharide chains, 

deficient in galactose and fucose residues (Bonatti and Cancedda, 1982; 

Hakimi and Atkinson, 1982). 

The precise role of glycosylation is not well understood. Presumably 

it can have profound effects on conformation, which could in turn affect a 
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variety of properties of the protein, including solubility, enzymatic 

activities, or protein-protein interactions (Kornfeld and Kornfeld, 

1980). In the case of Sindbis virus glycoproteins, tunicamycin, an 

inhibitor of asparagine linked glycosylation, prevents their migration to 

the cell surface, possibly due to aggregation (Gibson et al., 1979; Leavitt 

~~., 1977). In at least one case, the use of phosphomannosyl residues 

to direct lysosomal proteins to the lysosome (Hasilik and Neufeld, 1980; 

Kaplan et aJ., 1977), a specific glycosylation pattern is important for 

targeting a class of proteins to their destination. 

Proprotein-Like Cleavages 

In addition to the removal of their signal sequences, many proteins 

are further proteolytically processed late in infection (see Lodish, 1981; 

Zimmerman, 1980; Docherty and Steiner, 1982). These proproteins range from 

peptide hormones (Potts et al., 1980; Steiner et al., 1980; Mains and 

Eipper, 1980) to some viral membrane proteins (Min Jou ~ al., 1980; Klenk 

~~., 1981). In many cases the cleavages are thought to function as a 

means of activating some protein activity late in maturation or as a method 

for facilitating their proper folding (Docherty and Steiner, 1982). 

Most of these cleavages occur in the Golgi apparatus (Habener ~ al., 

1977; Eipper et al., 1976; Lodish, 1981), but some have been shown to occur 

either in secretory granules (Gainer et al., 1977) or following secretion 

(Bornstein and Sage, 1980). Many of these proteins are cleaved by a simi

lar cleavage mechanism. This involves a cleavage after two to three basic 

residues (lys or arg) via a trypsin-like activity, followed by the removal 

of these basic residues by a carboxypeptidase 8-like activity (Kemmler 

et al., 1971; Lodish, 1981; Docherty and Steiner, 1982; Klenk et al., 
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1981). In the case of the several viral proteins that have been studied 

recently the consensus sequence at the cleavage point seems to be 

Arg-X-Lys/ Arg-Arg (Shinnick et al., 1981; Schwartz ~ al., 1983; Bosch 

et al., 1981; Garoff ~~., 1980; Rice and Strauss, 1981; Dalgarno et al., 

1983). So far all examples of proproteins that are cleaved at pairs of 

basic residues (and therefore presumably by this mechanism) are cleaved 

intracellularly, whereas those that are cleaved outside the cell are 

cleaved by ~ther mechanisms (Lodish, 1981; Docherty and Steiner, 1982). 

In Sindbis virus the cleavage of PE2 to E2 and E3 is in many ways 

suggestive of such a proprotein cleavage. It is one of the last events to 

occur in E2 maturation, 30-60 min after synthesis (Jones et al., 1974; 

Bracha and Schlesinger, 1976). The precise location of this cleavage is 

unclear. In Semliki Forest virus (Green et al., 1981) E2 is not detected 

intracellularly, but PE2 is not detected at the plasma membrane, and 

numerous studies have reported conflicting results as to whether the 

cleavage is at the plasma membrane or intracellular. Antibody studies 

which inhibit PE2 cleavage (Bracha and Schlesinger, 1976; Jones et al., 

1977; Ziemiecki ~ al., 1980) suggest that the cleavage occurs at the 

plasma membrane, whereas iodination studies (Sefton~~., 1973; Smith 

and Brown, 1977) and careful analysis of the carbohydrates of PE2 and E2 

(Bonatti and Cancedda, 1982; Hakimi and Atkinson, 1982) suggest that the 

cleavage occurs intracellularly. Circumstantial evidence from the deduced 

amino acid sequence via eDNA sequencing of the 26S mRNA of both Sindbis 

virus (Rice and Strauss, 1981) and Semliki Forest virus (Garoff et al., 

1980) implies that the cleavage may be intracellular. Both viruses contain 

pairs of basic amino acids at the junction between E3 and E2 which are 
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presumably cleaved by a mechanism like that of other intracellular pro

protein cleavages. 

The function of this cleavage is not known, but it is presumed that it 

plays some important role in virus budding (Jones~ al., 1974; Keranen and 

Kaariainen, 1975), possibly via a change in the conformation of E2 in the 

membrane to prime it for incorporation into virions (Brown, 1980). Cross

linking studies show that the interaction between PE2 and E1 is different 

than between E2 and E1 (Rice and Strauss, 1982). 

Other Modifications During Maturation 

In addition to the above modifications of the Sindbis glycoproteins, 

there are reports of several other types of alterations, including the 

attachment of fatty acids (Schmidt et al., 1979; Schmidt, 1982), sulfation 

(Pinter and Compans, 1975), and phosphorylation (Tan and Sokol, 1974; Waite 

~~., 1974). These are beyond the scope of this review, so they will not 

be discussed further. 

Scope of the Thesis 

In this thesis I investigate several aspects of Sindbis virus glyco

protein maturation in order to obtain more information concerning the 

maturation of membrane glycoproteins in general. Chapter 1 deals with the 

maturation of E3. E3 is very useful for approaching several questions from 

a previously unexamined angle. Since it is physically attached to E2 as 

the precursor protein PE2 until very late in maturation, it can be used to 

follow the maturation of E2. Comparisons between the appearance of E3 and 

E2 (in virions) in the culture fluid also provide a convenient method to 

study the maturation of virions. In the second chapter I describe the 

isolation and characterization of several hybridomas producing monoclonal 
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antibodies specific for Sindbis virus proteins. These potentially will 

prove useful for the study of various aspects of Sindbis virus infection, 

including the association of E1 and E2 during maturation, as one of the 

hybridomas is able to coprecipitate E1 and E2. Finally, a study of the 

glycosylation of E1 and E2 in BHK and chick cells compares the patterns of 

glycosylation at individual glycosylation sites in the two cell systems. 
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ABSTRACT 

A small glycoprotein (E3) was purified from the culture fluid of 

Sindbis virus infected primary chick embryo fibroblasts. Tryptic peptide 

mapping and pulse-chase studies verified that this protein was produced as 

a by-product of the cleavage of the precursor protein PE2 to produce the 

envelope glycoprotein E2. A 2600-fold enrichment was achieved via a 

purification scheme involving differential ethanol precipitation, gel 

filtration, ion exchange chromatography, and affinity chromatography using 

a lentil lectin column. Amino acid composition analysis, N-terminal 

microsequencing, and labeling studies yielded information about the fine 

structure of E3 and its relationship to E2 and virion maturation. The 

N-terminal sequence of E3 is identical to that of PE2, including the result 

that 90% of the molecules appear to be blocked. The first 16 amino acids 

are predominantly hydrophobic or uncharged and presumably serve as the 

signal sequence for the insertion of PE2 into the membrane of the 

endoplasmic reticulum, but this sequence is unusual in that it is not 

immediately cleaved from PE2 and is glycosylated at the asparagine at 

position 14. The C-terminal two residues of E3, Lys-Arg, are removed 

during or shortly after cleavage from PE2. Labeling studies imply that 

although the PE2 + E2 + E3 cleavage is necessary for virion budding, these 

two events are not closely coupled. E3 is cleaved and released into the 

culture fluid under conditions where virions do not bud, and the kinetics 

of the appearance of E3 in the culture fluid and E2 in virions are quite 

dissimilar. The maturation of E3 is discussed as it relates to the 

processing of cellular membrane or secretory glycoproteins. 
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INTRODUCTION 

Sindbis virus (an alphavirus) is a simple, enveloped, RNA containing 

virus which contains only three structural proteins, the two envelope 

glycoproteins, E1 and E2, and a nucleocapsid protein, C (for reviews see 

Strauss and Strauss, 1977; Simons and Warren, 1983). During infection the 

predominant virus specific RNA is a 26S (1.6x106 dalton) mRNA which encodes 

these three proteins (Simmons and Strauss, 1974a, 1974b). The 26S RNA has 

a single translation initiation site, and these proteins are translated as 

a single polyprotein (Cancedda et al., 1975) and processed by post

translational cleavages. This polyprotein is never produced as such, 

however, except as an abortive by-product in some temperature-sensitive 

mutants (Schlesinger and Schlesinger, 1973). Instead, the cleavages occur 

while it is still nascent (Strauss and Strauss, 1977) resulting in the 

sequential release of the proteins in the order C/PE2/6K/E1, where PE2 is a 

precursor to E2 and the 6K protein is a small nonstructural protein (Rice 

and Strauss, 1981). 

Shortly after the capsid protein has been cleaved from the nascent 

polyprotein, the N-terminus of the nascent PE2 attaches and inserts into 

the rough endoplasmic reticulum (Wirth~ al., 1977; Bonatti et al., 1979) 

and the protein is glycosylated (Sefton, 1977). In vitro the membrane 

insertion must begin before the first 100 amino acids of PE2 are translated 

or insertion does not occur (Garoff et al., 1978). Thus, the N-terminus of 

PE2 presumably serves as a signal sequence as proposed by Blobel and 

Dobberstein (1975). The translation of the 26S RNA is completed by the 

synthesis and insertion into the rough endoplasmic reticulum membrane of 

E1, possibly via the use of the 6K protein as a signal sequence 
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(Hashimoto et al., 1981), but the details of these last events are unclear 

(see Bonatti et ~·, 1979; Rice and Strauss, 1981; Sabatini et ~·, 1982 

for several possible models). 

PE2 is cleaved to produce E2 as the final proteolytic processing step 

during its maturation (Schlesinger and Schlesinger, 1972). This occurs 

about 30 minutes after translation and is one of the last events before the 

budding of the virion (Bracha and Schlesinger, 1976). Some investigators 

have suggested that this cleavage may play some important role in virus 

budding (Jones~ al., 1974; Keranen and Kaariainen, 1975). The small N

terminal peptide, E3, has been found in the culture fluid of Sindbis 

infected cells (Welch and Sefton, 1979), whereas E3 of Semliki Forest virus 

remains associated with the virion as a third structural glycoprotein 

(Garoff et ~·, 1974). We are particularly interested in E3 because of its 

similarities to the "pre" and "pro" portions of many membrane and secretory 

proteins. 

Since the signal hypothesis was proposed (Blobel and Dobberstein, 

1975), many laboratories have described hydrophobic N-terminal leader (or 

"pre") sequences which function in the translocation of membrane and secre

tory protein across the membrane of the endoplasmic reticulum, the vast 

majority of which are proteolytically removed during, or very shortly 

after, translation (for reviews see Sabatini et al., 1982; Lodish, 1981; 

Zimmerman~ al., 1980). The few cases studied where the signal sequence 

is not cleaved also exhibit topologies atypical of the norm. The secretory 

protein ovalbumin (Lingappa et al., 1979) and the erythrocyte plasma mem

brane protein band 3 (Sabban et al., 1981) both contain internal signal 

sequences. Membrane proteins such as cytochrome P-450 (Bar-Nun~ al., 1980), 
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influenza neuraminidase (Blok et al., 1982), and sucrase-isomaltase (Hauri 

~ ~·, 1982) contain unusually long hydrophobic sequences at their N

termini which may serve as "stop transfer" signals, and therefore act as 

membrane anchors as well as signal sequences. PE2 in Sindbis virus (and 

the closely related Semliki Forest virus) is an example in which the pre

sumptive signal sequence is not cleaved, even though the topology is 

"normal", with the signal sequence at its N-terminus and the bulk of the 

protein, including the N-terminus, extruded into the lumen of the endo-

p 1 as m i c ret i c u 1 u m (Wirth ~ a 1 . , 19 7 7 ; Bon at t i and B 1 o be 1 , 19 7 9 ) • 

The kinetics of the cleavage of E3 from PE2 is suggestive of the 

cleavage of proproteins. Many membrane and secreted proteins, from peptide 

hormones (Potts ~ ~·, 1980; Steiner ~ al., 1980; Mains and Eipper, 

1980), to some viral membrane proteins (Min-Jou ~ al., 1980; Klenk et al., 

1981), contain sequences which are cleaved off late in maturation (see 

Lodish, 1981; Zimmerman, 1980). These cleavages usually occur in the Golgi 

apparatus (Habener et ~., 1977; Eipper et al., 1976; Lodish, 1981), but 

examples have been found which occur in secretory granules (Gainer ~ al., 

1977) or after secretion (Bornstein and Sage, 1980). A common sequence has 

been found at the cleavage points of most of the examples that are cleaved 

intracellularly, consisting of two to three basic amino acids (Lys, Arg) 

which are cleaved by trypsin-like activity followed by a carboxypeptidase 

B-like activity (Lodish, 1981; Klenk et al., 1981), but those cleaved after 

secretion do not seem to follow this pattern (Bornstein and Sage, 1980; 

Lodish, 1981 ) • 

In this study we have purified sufficient quantities of E3 to enable 

biochemical studies and have done labeling studies in order to investigate 
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the role of E3 in viral membrane protein and virion maturation. 

MATERIALS AND METHODS 

Growth and purification of radiolabeled virus. Radiolabeled [ 14c]

leucine or [ 3H]-leucine stocks of the HR (large plaque) strain of Sindbis 

virus (Burge and Pfefferkorn, 1966) were grown in monolayers of primary 

chicken embryo fibroblasts and purified as previously described (Pierce 

~ al., 1974). 

Preparation of radiolabeled and unlabeled E3. Primary chick embryo 

fibroblasts were prepared and infected with Sindbis virus as described 

(Pierce et ~., 1974). A variety of radiolabeled preparations of E3 ([ 3H]

or [ 14c]-labeled amino acids, [ 3H]-glucosamine [ 3H]-mannose, or [ 14c]-

galactose) were prepared by one of the following methods. (i) Cells were 

labeled 3-12 hr post-infection in low salt medium (Pierce et al., 1974) 

containing 0. 3-1. m~ dialysed fetal calf serum and 1/10 the concentration of 

the appropriate amino acid. At 12 hr post-infection the culture fluid was 

collected and frozen. (ii) Cells were labeled 3-12 hr post-infection in 

Eagle's Minimal Essential Medium (Eagle, 1959) containing 0.3-1.0% dialysed 

fetal calf serum and 1/10 the concentration of the appropriate amino 

acid. At 12 hr post-infection the culture fluid was collected and pre-

cipitated with 8% final concentration polyethylene glycol as described 

previously (Pierce et ~., 1974). The supernatant, which contains all of 

the E3, was frozen. 

As needed, the radiolabeled preparations were thawed and purified 

through the first two steps of the purification scheme described below. 

Unlabeled E3 was prepared as in method (ii) above. A total of 400-420 

roller bottles of PEG supernatant was used for the final preparation, and 
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four roller bottles of [3H]-leucine labeled (1.25 mCi/roller bottle) E3 

added for the purpose of monitoring E3 through the purification scheme 

outlined below. 

Purification of E3. E3 was purified from PEG supernatants by the 

following method: 

was 

(i) Differential ethanol precipitation (2X-4X ethanol 

precipitation): The medium was precipitated with 1.75 volumes of 100% 

ethanol, stored at -20°C overnight, and centrifuged at 13,200 x g (0°C) for 

30 min. The supernatant was decanted, brought to 4.5 volumes of ethanol, 

and left overnight at -80°C. It was centrifuged again at 13,200 x g (0°C) 

for 30 min, the supernatant carefully aspirated off, and the pellet 

saved. Multiple rounds of the centrifugation were done in the same 250 ml 

centrifuge bottles, allowing the pellets to accumulate in the bottom. 

(ii) Gel filtration. The pellet was resuspended in 100 mM NaCl, 

50 mM Tris buffer, 0.01% NaN 3 , 60 pg/ml phenylmethylsulfonylfluoride, 

pH 7.3 containing 1% sodium dodecyl sulfate (SDS) and 1% S-mercaptoethanol 

and loaded onto an Ultrogel AcA-34 column equilibrated in the same buffer 

but containing 0.1% SDS and 0.1% S-mercaptoethanol. For the purification 

of the large unlabeled preparation a 44 em x 5.4 em (100 ml void volume) 

column was run at 1 ml/min and 8 ml fractions collected. E3, which 

migrated with an Rf of 0.62, was pooled and precipitated with 5 volumes of 

100% ethanol. 

(iii) Ion exchange chromatography. The E3 pellet from step (ii) was 

resuspended in 20 mM Tris buffer, 0.5% Triton X-100, pH 7.2 and loaded onto 

a 33 em x 5 em (100 ml void volume) Sephadex DE-52 column at 2 ml/min. The 

column was then washed with a salt gradient (from 20 mM Tris Buffer, 
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no NaCl to 50 mM Tris Buffer, 450 mM NaCl, both in 0.5% Triton X-100, 

0.01% NaN3, 20 ~g/ml phenylmethylsulfonylfluoride, pH 7.2) and 6.7 ml 

fractions were collected. E3 eluted at 175 mM salt and was pooled and 

precipitated with 5 volumes of ethanol. 

(iv) Lens culinaris affinity column. The E3 pellet was resuspended 

in 100 mM NaCl, 50 mM Tris buffer, pH 7.3, containing 0.5~~ Triton X-100, 

0.1% NaN 3 , 0.1 mM MnC1 2 , 20 ~g/ml phenylmethylsulfonylfluoride and loaded 

onto a 10 ml (1 em x 10 em) column of lentil (Lens culinaris) lectin which 

had been purified and coupled to Sepharose 48 as described (Howard et al., 

1971; Hayman and Crumpton, 1972). The sample was loaded onto the column at 

4°C in a stepwise fashion. Portions of the sample were run into, but not 

through, the column and left in the column for 3 hr or more. This was 

repeated until all of the sample was loaded, and the column was then washed 

for 10 hr at 0.23 ml/min. Care must be taken at these steps, as much of E3 

passes through the column if loaded too rapidly, and E3 slowly leaches off 

of the column if washed too extensively. E3 was eluted (and 4 ml fractions 

collected) with the same buffer containing 100 mM a-methylmannopyranoside. 

Unbound E3 was loaded onto a second column, eluted as before, and the two 

fractions pooled. 

(v) Final ethanol precipitation. The pooled E3 fractions were 

precipitated with 4 volumes of ethanol, left at -80°C overnight, and 

centrifuged at 95,000 x g (4°C) for 6 hr. About 50% of the radioactivity 

remained in the ethanol supernatant, so 4 more volumes of ethanol were 

added. This was left at -80°C overnight and centrifuged as before, with 
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greater than 95% of the radioactivity precipitating. The samples were 

resuspended in 0.1% SDS. 

50S-polyacrylamide gel electrophoresis. The gels used contained 20% 

acrylamide, 0.067% bis acrylamide, and the buffer system of Laemmli (1970), 

except that the concentration of Tris buffer was halved. The samples were 

electrophoresed into 1.5 mm slab gels, which were either analyzed by 

fluorography according to Bonner and Laskey (1974), or stained with 

Coomassie blue and then fluorographed. Alternatively, the samples were 

electrophoresed into 6 mm x 10-20 em tube gels, which were sliced into 1 mm 

fractions with a Mickle gel slicer and counted by liquid scintillation. 

Backgrounds and channel overlaps were corrected by a computer program. 

Small (0.5 mm thick by 10 em long) slab gels of 15% acrylamide were stained 

with silver nitrate by the method of Merril et al. (1981). Photographic 

film (Kodak X-Omat) was prefogged (Laskey and Mills, 1976) and exposed at 

-80°C. The protein standards used were ovatransferrin (MW = 77K), bovine 

serum albumin (MW = 66K), ovalbumin (MW = 45K), chymotrypsinogen (MW = 

25K), myoglobin (MW = 17K), and cytochrome c (MW = 12.3K). 

Iodination of E3. A small quantity (<1 nanomole) of purified E3 was 

precipitated with 100 ~g yeast RNA as carrier and 4 volumes of ethanol. 

This was resuspended in 0.5 M phosphate buffer (pH 7.4) and labeled 

with 1251 using chloramine T by the method of Erlich~ al. (1978). The 

iodinated preparation was mixed with 3H-leucine labeled E3 and digested 

with ribonuclease to remove the RNA carrier. This was run on a 20% 

acrylamide (0.067% bis acrylamide) tube gel (6 mm x 14 em), sliced into 

1 mm pieces, and counted by liquid scintillation. 

Amino acid analysis. Duplicate samples of 0.5 nanomoles of purified 
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E3 were hydrolyzed with 6 N HCl at 110°C for either 12, 24, 46, or 95 hr. 

To correct for degradation during hydrolysis, values of some amino acids 

were extrapolated back to zero time of hydrolysis, assuming first order 

kinetics. Others, to correct for resistance to hydrolysis, were extrapo

lated to complete hydrolysis (usually approximately equivalent to the 46 or 

95 hr time points). Cysteine and tryptophan are degraded during hydrolysis 

and were not quantitated. Whale skeletal myoglobin (MW 17,800) was used as 

a standard. · All hydrolysates were analyzed on a Durrum D-500 MKII amino 

acid analyzer. 

Protein seguenation. A 35 ~1 aliquot (10.2 nanomole) of the 

chemically pure E3 sample was diluted into 0.5 ml of 100% trifluoroacetic 

acid and loaded onto a non-commercial spinning cup sequenator, the con

struction and operation of which have been described (Hunkapiller and Hood, 

1980). The mixture of phenylthiohydantoin amino acid derivatives released 

at each cycle were analyzed by reverse phase high performance liquid 

chromatography (Johnson~ al., 1979). 

Labeling experiments. 60 mm petri plates of primary chick cells were 

infected as described previously (Pierce et al., 1974), except where 

noted. Before labeling, the cells were washed 2-3 times with medium con

taining dialyzed fetal calf serum and deficient in the amino acid to be 

used in labeling. The harvested culture fluids or monolayers were analyzed 

on 20% polyacrylamide slab or tube gels (Laemmli, 1970). 

RESULTS 

Identification of E3 during Sindbis Virus Infection 

When the culture fluid and cell lysate from Sindbis infected cells 

were examined on a polyacrylamide slab gel (Fig. 1) a small protein 
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appeared only in the culture fluid of infected cells (lanes 1, 3). This 

protein bound to an agarose-Lens culinaris column (data not shown) and 

incorporated radiolabeled mannose, galactose, and glucosamine 

(lanes 11-13), indicating that it was a glycoprotein with a complex-type 

oligosaccharide residue attached. Tryptic digests of this protein compared 

to those of E2 or PE2 (Fig. 2) showed that it was a by-product of the 

cleavage of PE2 to E2. All but one of the E3 peaks line up with PE2 peaks 

(Fig. 2A), whereas none of them correspond to E2 peaks. The one E3 peak 

which does not line up with PE2 is probably the carbohydrate containing 

peak, since PE2 contains predominantly short, unfinished oligosaccharides 

(Sefton and Keegstra, 1974) relative to the mature envelope protein. In 

addition, pulse chase experiments (Fig. 3) showed that E3 appeared in the 

culture fluid with about the same kinetics as the appearance of E2 and the 

disappearance of PE2 (30-60 min after labeling). The combination of these 

three experiments suggest strongly that this is a protein analogous to E3 

in Semliki Forest virus. 

On polyacrylamide gels E3 appears as a major band with two or more 

minor bands (Fig. 1), the relative intensities of which vary from one 

preparation to another. These multiple bands, which can also be seen on 

isoelectric focusing gels (Fig. 4) are probably caused by heterogeneity in 

E3, presumably in the oligosaccharides. Upon digestion with neuraminidase 

some, but not all, of the heterogeneity is lost (data not shown). This may 

be due to either incomplete digestion of sialic acid residues, or 

additional heterogeneity in E3. 

Purification of E3. In order to obtain E3 of the necessary chemical 

purity for careful biochemical analyses, including amino acid compositions 



41 

FIG. 1. Distribution of viral proteins during Sindbis virus infection. 

Infected (I) and mock infected (M) chick cells grown in 60 mm petri plates 

were labeled with 200 ~Ci [3H]-leucine from 3 to 12 hr post-infection. 

Virus was grown using one of two alternative protocols. Lanes 1-2, 7-8: 

Virus was grown in normal ionic strength (116 mM NaCl) medium (N). The 

culture fluid was harvested (lanes 1 and 2) and the cell monolayer lysed 

with 1% SDS (lanes 7 and 8). Lanes 3-6, 9-10: Virus was grown in low 

ionic stren~th medium (69 m~ NaCl). The low salt culture fluid (L) was 

harvested (lanes 3 and 4), the cells were incubated with high ionic 

strength (216 mM NaCl) medium (H) for 30 min (lanes 5 and 6), and the cell 

monolayer was lysed (L/H) with 1% SDS (lanes 9 and 10). All fractions 

collected were analyzed by gel electrophoresis and fluorography. Lanes 11-

13: Chick cells were labeled with [3H]-mannose, [ 14c]-galactase, or [3H]

glucosamine between 3 and 12 hr post-infection in medium of normal ionic 

strength and the culture fluid harvested and analyzed as above. 
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FIG. 2. High pressure liquid chromatograph peptide maps of E3 versus E2 or 

PE2. Radiochemically pure [ 14c]-leucine E3 was purified as described in 

Materials and Methods. [ 3H]-leucine labeled PE2 or E2, from an infected 

cell lysate and purified virions respectively, were purified by preparative 

gel electrophoresis as previously described (Rice ~ ~·, 1982). The 

samples were oxidized with performic acid (Hirs, 1967) and, after lyophili-

zation, concentrated by ethanol preparation. Samples to be compared were 

mixed, digested exhaustively with trypsin (TPCK treated, Worthington), and 

the tryptic peptides were separated on a Dupont 830 high-pressure liquid 

chromatograph using a 25 em Zorbax-C18 column (McMillan et ~·, 1978; Rice 

and Strauss, 1982). A: E3 (---) compared to PE2 (-). B: E3 (---) 

compared to E2 ( -). 
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FIG. 3. Pulse-chase of viral proteins during infection. At 4 hr post 

infection 60 mm petri plates of Sindbis infected chick cells were washed 

twice with medium lacking methionine and incubated for 10 min in the 

presence of 10 ~Ci/ml [ 35s]-methionine. After 10 min one plate was put 

onto ice and the rest were washed two times with media containing twice the 

normal concentration of methionine. Two ml of this medium was added to the 

plates and at 20, 30, 60, and 90 min after the initial addition of label, 

an additional plate was put on ice. The culture fluids were removed and 

the cell monolayers lysed with 1 ml of 1% SDS. Both the culture fluids (A) 

and lysed monolayers (B) were precipitated and analyzed by gel 

electrophoresis and autoradiography. Lane 1: [ 35 s]-labeled purified 

virus. Lane 2: 10 min pulse. Lanes 3 + 4: 10 min chase. Lanes 5 + 6: 

20 min chase. Lanes 7 + 8: 50 min chase. Lanes 9 + 10: 80 min chase. 
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FIG. 4. Nonequilibrium isoelectric focusing gel of E3. A modification of 

the method of O'Farrell (1975) was used. E3 labeled with [ 3H]-leucine was 

electrophoresed for 1500 volt hours into a 14 em x 4 mm 4.25% (0.11% bis) 

acrylamide tube gel containing an ampholine mix of 4.95% pH 3-10 (Biorad), 

0.34% pH 4-6 (Biorad), 0.34% pH 5-7 (Biorad), and 0.89% pH 9-11 (LKB), plus 

9.2 M urea and 2% Triton X-100. 1.0 mm slices were cut and counted by 

liquid scintillation. A control gel was cut into 5 mm sections, immersed 

in 0. 5 ml H2o and the pH of the pieces measured. (-) radiolabeled 

E3. (---) pH measurements of blank gel. 



48 

8 -------------------, 16 

"""' 
I 

'-' 6 ~ 

w z -(.) 
:::> 
w 
..J 4 ~ 
I 

:c 
M 

M ·o 

0 

/ ..,..., 
/ 

/ 
/ 

/ .,.,... .,.,... 

I 

I 

-

- 12 

I -
/ 

" I 
I 

- 8 '-' :c 
a. 

-

- 4 

-

ll \._J\_ ______ -----i 
0 

I I I I I 

40 80 120 

FRACTION NUMBER 



49 

and N-terminal sequencing, a purification scheme was devised using a 

combination of several typical protein separation steps (column chroma

tography, ion exchange chromatography, and lentil lectin affinity 

chromatography) and the differential precipitation of E3 with ethanol 

(summarized in Table 1 and Fig. 5). Virus in the culture fluid is first 

precipitated with polyethylene glycol. Then two volumes of ethanol are 

added to the supernatant which causes the vast majority (99.6%) of the 

serum protein to precipitate whereas E3 remains in the supernatant. When 

the amount of ethanol is now raised to four volumes E3 quantitatively 

precipitates. At this stage E3 is radiochemically pure enough for many 

purposes and the 250-fold purification achieved greatly facilitates the 

subsequent column chromatography steps used to achieve chemically pure 

material. 

When E3 reaches a certain degree of purity (after the lentil lectin 

step), it becomes more difficult to precipitate and ethanol concentrations 

of greater than 80% are required to effectively precipitate E3. In one 

instance, differential ethanol precipitation worked as an excellent final 

purification step, as virtually all the remaining contaminants precipitated 

with 80% ethanol (Fig. 6, lanes 7 and 9) and pure E3 was precipitated by 

90~~ ethanol (lanes 8 and 10), but the variability in the amount of E3 that 

precipitates at 80% ethanol limits the use of this procedure as a purifi

cation step until further modifications are made. 

Technical problems make it difficult to quantitate and follow E3 

during the above purification. E3 does not stain well with Coomassie blue 

(Fig. 6, lane 8). The small amount of stained material seen probably 

corresponds to a minor contaminant in the pure E3 fraction. E3 does stain 



Table 1 

Description and Quantitation of E3 Purification Scheme 

~~ ofb Pur i ficationd 
Step Location of E3 Protein (mg)a starting E3 ~)C factor 

1 • Harvest culture fluid at 12 hr Culture fluid 27000 NDe NDf 
post infection 

2. Precipitate with 8% PEG, Supernatant 27600 NO NO 
0.4 M NaCl 

3. Precipitate supernatant with 1.75 Supernatant NO NO NO NO 
volumes of ethanol 

4. Precipitate supernatant with 4.5 Pellet 106 1 00~~ NO 255 en 
volumes of ethanol 0 

5. Gel filtration (Ultrogel AcA-34) Rf = o.62 62.1 94~~ NO 409 

6. Ion exchange chromatography 175 mM NaCl 20.0 87~~ NO 1175 
(Sephadex DE-52) 

7. Lentil lectin chromatography 
(Elut"e with 0.1 M a-methyl- Elution peak 5.87 45~~ 3.21 2070 
mannopyranoside)--

B. Precipitate with 4 volumes Supernatantg NO NO NO NO 
of ethanol 

9. Precipitate with 8 volumes Pellet 4.03 38~~ 2.76 2580 
of ethanol 



51 

Table 1 (continued) 

aoetermined by Lowry assay (Lowry et al., 1951). 

boetermined by recovery of label through the steps, assuming all the label 

after the differential ethanol precipitation is in E3. 

coetermined by fitting the data obtained from amino acid compositions to 

the complete sequence as obtained from the RNA sequence (Rice and Strauss, 

1981). 

dEnrichment of labeled E3 relative to total protein. 

ecould not determine the amount of E3 in first two steps due to excess of 

free label. Other experiments have shown that essentially 100% of E3 is 

recovered through these steps. 

fND = not done. 

gA variable amount of E3 precipitates at this step. 
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FIG. 5. Purification of E3. A: Gel filtration of E3 (after differential 

ethanol precipitation) using Ultrogel AcA-34. Excluded (V
0

) and included 

(Vi) volumes as determined by blue dextran and phenol red respectively are 

marked by arrows. The E3 peak which was pooled is indicated with a 

horizontal bar. B: Ion exchange chromatography of E3 using Sephadex DE-

52. A 50 ~1 aliquot of every fifth fraction of the load and wash 

(fraction 1-75) and 10 ~1 aliquot of every fraction of the elution 

(fraction 101-160) were counted. The conductivity of several standard NaCl 

solutions are shown on the right. The pooled peak is indicated by the 

horizontal bar. (-) [ 3H ]-leucine labeled preparation. ( ---) 

Conductivity measurements of a gel run in parallel with the gel containing 

sample. C: Lentil lectin affinity chromatography. The arrow indicates 

the additon of 0.1 ~ a-methylmannopyranoside. The fractions pooled are 

indicated by a horizontal bar. D: A 20% polyacrylamide gel of iodinated 

E3 preparation to determine its purity. (---) Radiochemically pure [ 3H]

leucine labeled E3. (-) Iodinated E3 preparation. Arrow indicates the 

start of the separating gel. 
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FIG. 6. Purity of E3 through the purification procedures. Aliquots of the 

preparation were saved during purification and analyzed by polyacrylamide 

gel electrophoresis. The percentage above each lane indicates the 

percentage of the total preparation loaded in the lane, and the headings 

indicates the purification step through which the sample has proceeded. 

Lane 1: Aliquot of fetal calf serum as an indicator of its contribution to 

the starting material. Lane 2: Culture fluid harvested from infected 

cells. Lane 3: Supernatant after PEG precipitation. Lane 4: Four volume 

pellet from 2X-4X differential ethanol precipitation. Lane 5: Pooled peak 

from gel filtration (Ultrogel AcA-34). Lane 6: Pooled peak from ion 

exchange column (Sephadex DE-52). Lanes 7 + 9: Four volume ethanol 

precipitate of pooled lentil lectin column peaks. Lanes 8 + 10: Eight 

volume ethanol precipitate of supernatant from 4 volume precipitation. 

Lane 11: Standards. Ovatransferrin (77K), bovine serum albumin (66K), 

ovalbumin (45K), chymotrypsinogen (25K), myoglobin (17K), cytochrome c 

(12.3K). Lanes 1-8: Coomassie blue stained 20% polyacrylamide gel. 

Lanes 9-11: Silver stained 15% polyacrylamide gel. 
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well with the silver staining method, however (Fig. 6, lane 10). Other 

methods of staining protein in gels, such as Schiffs staining and 

fluorescein labeled Concanavalin A staining did not succeed due to 

diffusion of E3 out of the gels during the extensive washing required by 

these procedures, and glutaraldehyde fixation failed to stabilize E3 in 

gels. Thus, unless the gel was dried down immediately after running the 

multiple bands diffused together to form a broad smear. 

To ve~ify the purity of the final E3 preparation an aliquot was 

radioactively labeled with 1251 and compared to [3H]-leucine labeled E3 

(Fig. 50). Assuming that all of the contaminants are iodinated to the same 

degree as E3, this gel shows that the E3 preparation was greater than 90% 

pure. Silver staining also confirmed this estimate (Fig. 6, lane 10). The 

only stainable substances in the lane are E3 and contaminants which overlap 

with the lower molecular weight side bands of E3. It was very clear on the 

original silver stained gel that these were two different components, as 

they stained different colors. As a comparison, Fig. 6, lane 9 contains 

the proteins which precipitated with 80% ethanol. 

We obtained 369 nmole (2.76 mg) of pure E3 from 420 roller bottles of 

chick cells (27 g protein, mostly serum proteins). This was 38% overall 

recovery of starting E3 and a 2580-fold enrichment (Table 1). These 

numbers are based on the assumption that all of the E3 is recovered through 

the polyethylene glycol precipitation and the differential ethanol precipi

tations, since the large excess of free label at these stages precluded 

monitoring the loss of radiolabeled E3. These assumptions were verified by 

mixing experiments using a small quantity of radiochemically pure E3 as a 

tracer (data not shown). 
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Amino Acid Composition 

The results from amino acid compositions of E3 and comparisons with 

the theoretical values as deduced from the sequence of the 26S mRNA (Rice 

and Strauss, 1981) are shown in Table 2. The fit to the theoretical values 

is fairly good but there are some exceptions, which when used in con

junction with the RNA sequence (Fig. 8), yield information about the 

structure of E3. The most interesting difference is that the experimental 

amino acid ~omposition almost completely lacks lysine, whereas the RNA 

sequence shows a lysine at position 63 (out of 64) in the sequence 

(-Gly60-Arg 61 -Ser 62-Lys63-Arg64-CDOH). Thus, it is likely that at least 

the carboxy terminal -Lys63-Arg64-COOH is not present in mature E3. The 

composition shows 5 instead of the theoretical 6 arginine residues, which 

is consistent with this hypothesis. The presence of the serine at position 

62 is less clear. The composition shows an underrepresentation of serine 

by 1.7 residues, but serine and threonine (underrepresented by 1.1 

residues) are prone to degradation during hydrolysis. We cannot definitely 

conclude whether or not this serine (or the arginine at position 61) is 

present or, if so, to what extent. 

Amino Terminal Sequence 

The primary amino acid sequence of the N-terminal 16 residues of E3 

(Fig. 7) are compared with the amino acid sequence deduced from the 

sequence of 26S RNA (Rice and Strauss, 1981) and the amino terminal 

sequence of PE2 (Bell et al., 1982) in Fig. 8. The sequences are 

identical, verifying that E3 forms the N-terminus of PE2 and that the 

processing of PE2 to E2 and E3 leaves the N-terminus of E3 unaltered. We 

were unable to detect residues 10 and 14, and residues 1 and 16 were only 
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Table 2 

Amino Acid Composition of E3 

From anal yzera 

From RNA 

mol e 0 1 . d b sequencec ~d 10 res1 ues 

ASP 7 11 • 71 6.8 ~ 3 

ASN 4 

THR 5.05 2.9 4 -1 

SER 7.34 4.3 6 -2 

GLU 
~ 7.81 4.5 ~ 4 

GLN 0 

PRO 8.33 4.8 5 

GLY 5.69 3.3 3 

ALA 12.10 7.0 6 +1 

CYS NOe NO 4 

VAL 5.95 3.4 3 

MET 1.40 0.8 

ILE 3.88 2.2 2 

LEU 15.36 8.9 8 +1 

TYR 2.76 1. 6 2 

PHE 1 • 88 1 • 1 1 

HIS 2.17 1 • 3 1 

LYS 0.22 0.1 1 -1 

ARG 8.36 4.9 6 -1 

TRP NO NO 0 

TOTAL 64 

MOL. WT. 7475f 



59 

Table 2 (continued) 

aResults from amino acid analysis. 

bsest fit using RNA sequence data and assuming that one Lys and one Arg are 

missing (see text). 

cAmino acid composition deduced from the RNA sequence (Rice and Strauss, 

1981) assuming all residues between the C-terminus of capsid protein and 

the N-terminus of E2 are present. 

dsecond column minus third column rounded to the nearest integer. 

eNot determined. 

fNot including carbohydrate content. 
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FIG. 7. Yields of amino acid phenylthiohydantoin (PTH)-derivatives from 

the spinning cup sequenator analysis of 10.2 nanomoles of E3. Aliquots of 

each cycle were analyzed by high pressure liquid chromatography, peaks were 

quantitated by comparison with a standard mixture of PTH-amino acids, and 

the yields were normalized to an injection of 100% of the sample. PTH

cysteine was not determined. 
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FIG. B. The N-terminal sequence of E3, as determined by Edman degradation 

and compared with other available sequence data. The symbol "X" indicates 

that no residue could be identified. The RNA sequence was determined by 

Rice and Strauss (1981), and the capsid, PE2, and E2 protein sequences were 

determined by Boege et al. ( 1980), Bell ~ al. ( 1982), and J. R. Bell 

~~· (1978), respectively. The potential 64 amino acid E3 sequence is 

marked by the solid overline. 
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5 10 

FROM RNA SEQUENCE:-- -Giu-Giu-Trp-Ser-Aia-Aia-Pro-Leu-Vai-Thr-Aia-Met-Cys-Leu-Leu-
CAPSID/PE2: -- -Giu-Giu-Trp/Ser-Aia-Aia-Pro-Leu-Vai-Thr-Aia-Met- X -Leu-Leu-
E3: Ser-Aia-Aia-Pro-Leu-Vai-Thr-Aia-Met- X -Leu-Leu-

15 20 25 30 
Gly-Asn-Vai-Ser-Phe-Pro-Cys-Asp-Arg-Pro-Pro-Thr-Cys-Tyr-Thr-Arg-Giu-Pro-Ser-Arg
Giy- X -Val- X -Phe-(Pro)-X ---
Gly--X -Vai-Ser- - -

35 40 45 50 

Ala-Leu-Asp-lle-Leu-Giu-G lu-Asn-Val-Asn-His-Giu-Ala-Tyr-Asp-Thr-Leu-Leu- Asn-Ala -lie-

55 60 64 

Leu- Arg-Cys-Giy-Ser-Ser-Giy-Arg-Ser-Lys-Arg-Ser-Val-lle-Asp-Giy-Phe-Thr-Leu-Thr- - -
E2: Ser-Val-lle-Asp-Giy-Phe-Thr-Leu-Thr---



64 

identified as serine by small amounts of characteristic breakdown 

products. The RNA data show that residues 1 and 16 are indeed serines and 

residue 10 is cysteine, whose phenylthiohydantoin derivatives are exten

sively degraded during sequencing, but residue 14 is an asparagine, which 

should have been detected. From RNA sequence analysis (Fig. 8) the 

asparagine at this position is the only potential glycosylation site of the 

Asn-X-Ser/Thr type (Marshall, 1974), and this asparagine is thus presumably 

glycosylated. The lack of sequence at position 14 confirms this view, and 

identical results were obtained for PE2 (Bell et ~., 1982). 

It was found that the yields of the phenylthiohydantoin derivatives 

were only about 10% of the expected values. This was not unexpected, as it 

has been shown that 80-90% of purified PE2 is unsequenceable due to N

terminal acetylation (Bell et al., 1982; Bell and Strauss, 1981). The 

similarities in sequenceable yields indicate that the N-terminus of E3 is 

probably not further altered after its cleavage from PE2. 

Lysine Content of E3 

Because of the similarity of the potential cleavage site at the C

terminus of E3 to the cleavage sites of many proproteins that are cleaved 

intracellularly (Lodish, 1981), and the suggestive amino acid composition 

data, we further investigated the lysine content of E3. A pulse chase 

experiment was performed whereby cells were labeled with [3H]-lysine or 

[ 14c]-leucine for 30 min and chased with unlabeled medium for 30 min to 

investigate the percentage of E3 that contained lysine at short times after 

synthesis. The radiolabeled proteins that were released into the culture 

fluid as virions or E3 during the 30 min chase (virtually no label appeared 

in the culture fluid during the 30 min pulse, data not shown) were analyzed 
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on polyacrylamide gels for the incorporation of [3H]-lysine and [ 14c]

leucine (Fig. 9) and carefully quantitated. By using the theoretical 

ratios (from the RNA sequence) of the number of lysines and leucines in 

each of the proteins and assuming that the E1, E2, and capsid proteins 

isolated were intact, the percentages of E3 molecules that contain lysine 

can be calculated (Table 3). A maximum of 1% of the E3 molecules contained 

lysine, which is probably an overestimation in light of the background 

noise level~ of the experiment and the fact that the small lysine peak 

which contributed most of the counts did not actually line up with the E3 

peak (Fig. 9B). In addition, mock infected cells which were labeled with 

[ 3H]-lysine produced a background in the vicinity of the E3 peak sufficient 

to obscure the detection of E3 containing less than about 2% lysine (data 

not shown). Thus, virtually all of the E3 molecules have had at least the 

two C-terminal amino acids removed during or shortly following the cleavage 

to remove E2 (see Fig. 8). 

Distribution of Viral Specific Proteins during Infection 

A careful analysis of the distributions of viral proteins during 

infection using two different growth conditions yielded information con

~erning the relationship between PE2 cleavage and virion budding. Virus 

was grown either in medium of normal ionic strength, or by the low salt

high salt reversal technique (Pierce et al., 1974). Under the latter 

conditions envelope proteins and nucleocapsids accumulate in the cells, but 

the virions do not bud until the addition of medium of high ionic strength, 

after which a rapid burst of budding occurs (Waite and Pfefferkorn, 1970; 

J. W. Bell et al., 1978). Aliquots of the different culture fluids and 

cell lysates were analyzed on polyacrylamide slab gels (Fig. 1). The viral 
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FIG. 9. Lysine content of E3. At 5.5 hr post-infection 60 mm petri plates 

of chick cells were labeled with 250 ~Ci of [ 3H]-lysine or 12 ~Ci of [ 14c]

leucine for 30 min in medium lacking the corresponding unlabeled amino acid 

followed by a 30 min chase with unlabeled medium containing twice the 

normal concentration of lysine and leucine. The harvested culture fluid 

was immediately brought to 200 ~g/ml phenylmethylsulfonyl-fluoride and 1% 

SDS and put on ice in order to prevent degradation. Aliquots from [14cJ

leucine and [ 3H]-lysine labeled plates were mixed and processed as 

follows: A: Culture fluid was precipitated with 4 volumes of ethanol to 

precipitate all protein present. B: Culture fluid was precipitated by 2X-

4X differential ethanol precipitation as described in text to precipitate 

only E3. Both preparations were analyzed by gel electrophoresis on 6 mm X 

20 em tube gels, sliced into 1 mm slices and counted by liquid 

scintillation. The top of the gels are to the left and the bottom 7 em of 

the gels were not sliced. (-) [3H]-lysine. (---) [14c)-leucine. 
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Lysine/Leucinea CPM 

Protein in sequence 3H-Lysine 

E3 1/8 80 

c 25/14 13400 

E2 27/28 27400 

E1 23/27 21000 

Table 3 

Lysine Content of E3 

CPM 3H-Lysine: 14c-Leucineb 

Ratio (corrected) 

1313 0.49 

170 44.9 

624 45.5 

521 47.3 

Percentage ofc 

Theoretical Value 

1.06 

97.7 

99.2 

103.1 

0) 

00 
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Table 3 (continued) 

aFrom RNA sequence (Rice and Strauss, 1981). 

b 
3H-Lysine cpm X 1 

14c-Leucine cpm Lysine/Leucine Ratio 

c100% = average of corrected 3H-Lys: 14c-Leu ratio (previous column) from C, 

E1 , and E2. 
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protein bands from polyacrylamide tube gels were quantitated and normalized 

using the known amino acid compositions from the RNA sequence (Rice and 

Strauss, 1981) and the results tabulated in Table 4. 

We found that E3 was released into the culture fluid, even under the 

low ionic strength conditions where virions (as monitored by E1, E2 and C) 

are not released. In addition, under either growth conditions there is not 

a 1:1 correspondence between release of E3 and virions, but rather a 2-3 

fold excess~ of E3 released. Much of this excess can be explained by the 

large amount of E1 and E2 which remains associated with the cell and 

presumably the rest is due to turnover of these proteins before they mature 

into virions. Large quantities (30-60%) of E1 and E2 do not mature into 

virions. In addition, Table 4 confirms the results of others that E1, E2, 

and capsid exist at approximately a 1:1:1 ratio in virions (Rice~~., 

1982; Schlesinger et ~., 1972), but that an excess of capsid is made 

within infected cells (Cancedda and Schlesinger, 1974). 

Comparison of the Kinetics of Release of E3 and Viral Structural Proteins 

Additional information concerning the mechanism of viral budding can 

be obtained by comparing the kinetics of release of E3 and the structural 

proteins (as virions) into the culture fluid. To do this, a pulse chase 

experiment using a very long pulse was used. [ 3H]-leucine was added to 

infected cells at 3 hr, before large quantities of structural proteins are 

being made, and left on the cells for 4 hr in order to label virtually all 

viral structural proteins present in the cells. At 7 hr, after the plateau 

of virion production has been reached (Strauss and Strauss, 1977), the 

label was removed and the medium changed and saved at 0.5-1 hr intervals, 

in order to follow the decay in the amounts of labeled viral protein being 



Protein 

c 

PE2 

E3 

E2 

6K 

E1 

Table 4 

Distribution of Sindbis Virus Proteins during Infectiona 

Low Salt-High Salt Reversal 

Low Salt 

Harvest 

1 • 1 

0.4 

136.9 

1.6 

o.o 

4.9 

High Salt 

Harvest 

57.0 

o.o 

4.5 

66.5 

o.o 

65.9 

Cell 

Lysate 

111 .o 

7.2 

10.0 

31.9 

57.4 

29.1 

Total 

169.1 

7.7 

151.5 

100.0 

57.4 

100.0 

Regular Infection 

Culture 

Fluid 

Harvest 

37.8 

o.o 

149.9 

41.3 

0.0 

49.2 

Cell 

Lysate 

229.9 

20.0 

17.3 

58.7 

70.1 

69.0 

Total 

267.5 

20.0 

167.1 

100.0 

70.1 

118.8 

~ ...... 
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Table 4 (continued) 

achick cells were infected, labeled and processed as described in 

Figure 1. Aliquots were run on 20 em x 6 mm polyacrylamide tube gels, and 

one mm slices counted by liquid scintillation. The numbers are the 

relative quantities of viral proteins produced during infection. All 

quantities are normalized to total E2 produced equal to 100.0% (underlined) 
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released (Fig. 10, lanes 1-6, 12). The radioactivity in each of the viral 

proteins released into the culture fluid was carefully quantitated and 

their "specific activities" calculated by dividing by the number of plaque 

forming units released (Fig. 11). This correction yields a true specific 

activity for the structural proteins (quantity of labeled protein per 

virion), but not for E3 due to the lack of a 1:1 correspondence between 

release of E3 and structural protein (in virions). It does, however, allow 

for the correction for different durations of the chase harvests and for 

the drop in the number of healthy cells late in infection. The amounts of 

E1 and E2 could not be quantitated separately due to the inability to 

separate them on the tube gels used, but as can be seen from Fig. 10, the 

kinetics of their chase were essentially identical. 

The key result of this experiment is that although E2 and E3 are 

physically connected until late in their maturation, the kinetics of their 

release into the culture fluid are very different. All but 7.4% of the E3 

labeled during the 4 hr pulse has been released from the cells before the 

chase has even started, whereas 40% of the labeled envelope protein 

released from the cells throughout the experiment is released during the 

chase. Eighty-seven percent of the labeled E3 released throughout the 4 hr 

chase appears in the culture fluid within the first hr, but only 44% of the 

labeled envelope protein appears during this same period. Even after 4 hr 

of chase, a large percentage of the total labeled envelope protein (45%) is 

still in the cell. Some of this material may be a deadend pathway and not 

available for release, but clearly some is still being released and is 

available for incorporation into virus between 3 and 4 hr into the chase. 

Fig. 11 shows the drop in the specific activity of the viral proteins 
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FIG. 10. The kinetics of the release of E3 and structural proteins during 

Sindbis virus infection. Lanes 1-6, 12: A 60 mm petri plate of infected 

cells was labeled from 3-7 hr post-infection with 50 ~Ci/ml [3H]-leucine in 

medium containing 1/10 the normal concentration of leucine in order to 

uniformly label all viral proteins in the cells. At 7, 7.5 , 8, 9, 10, and 

11 hr post-infection the culture fluid was harvested, the cells washed, and 

new culture fluid containing twice the normal concentration of leucine 

added. At · 11 hr post-infection the cells were lysed with 1% SDS. 

Lanes 7-11, 13: A 60 mm plate was processed as above, except no 

radioactivity was added at 3 hr and 12.5 ~Ci/ml [ 3H]-leucine was added each 

time new medium (containing 1/10 the normal concentration of leucine) was 

added to the plates during the chase. All samples were precipitated and 

analyzed by gel electrophoresis. P: pulse. L: lysate. 1f2 , 1, 2, 3, 4: 

the number of hours after the "pulse" was stopped. A longer exposure of 

the E3 portion of the gel is shown below the full gel. 
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FIG. 11. Patterns of release into the culture fluid of E3 and structural 

proteins during Sindbis infection. Aliquots of the culture fluid harvests 

described in Figure 10 (lanes 1-6) were used to quantitate the radio

activity in the viral proteins using 6 mm x 20 em polyacrylamide tube gels 

and liquid scintillation. In order to correct the release of labeled 

proteins for the number of viable cells, especially late in infection, the 

quantities were normalized to the number of plaque forming units in the 

samples using a standard plaque assay (Strauss~~., 1976). All the 

quantities are further normalized to 100 for the period 0-0.5 hr after the 

label was removed. The amounts of E3 at the 3 and 4 hr time points were 

the same as or less than the background noise level in that region of the 

gel (pooled peaks of 586 and 277 CPM, respectively) and therefore are 

possibly artifacts. 
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throughout the experiment, normalized to 100 for the period of the first 

0.5 hr of the chase. As noted above, E3 shows a rapid release, with most 

of E3 released after a transit time of 0.5-1 hr to the cell surface. E1 

and E2, on the other hand, show a slower stochastic release, presumably 

because the newly synthesized unlabeled protein must compete with the large 

pool of premade labeled protein during the chase. The drop in the specific 

activity of labeled capsid protein released is much slower still and the 

amount left inside the cells after the chase is larger (86%). This implies 

an even larger pool of capsid protein in the cell which is consistent with 

the observation that although E1 and E2 are made in a 1:1 ratio, capsid is 

made in excess (Cancedda and Schlesinger, 1974). 

The complementary experiment where only the chase contained [ 3H]

leucine gave comparable results (Fig. 10). The E3 specific activity 

quickly increased such that virtually all of the E3 being released after 

0.5 to 1 hr was labeled, whereas the specific activity of the structural 

protein continued to increase throughout the chase (quantitation not 

shown). In addition, a double label version of this experiment using a 

[ 3H]-leucine pulse and a [ 14c]-isoleucine chase (data not shown) confirmed 

that the level of release of E3 as well as virions stayed approximately 

constant throughout the chase period. 

DISCUSSION 

In this study, we have identified, purified, and analyzed a small 

Sindbis specific glycoprotein which is found in the culture fluid of 

infected cells. From our data (including pulse chase experiments, tryptic 

peptide mapping, and N-terminal sequencing) this protein has been shown to 

be produced from the cleavage of PE2 to E2, analogous to Semliki Forest 
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virus E3, even though it is not associated with the virions, as is E3 in 

Semliki Forest virus (Garoff et al., 1974). Similar studies have been done 

independently by Welch and Sefton (1979). Additional studies, including 

labeling experiments with Sindbis virus infected cells have yielded 

information concerning the maturation of virions and the viral envelope 

glycoproteins. 

PE2, which is inserted into and translocated across the membrane 

while stili-'\,nascent, presumably contains an N-terminal signal sequence 

which is not cleaved (Wirth~ al., 1977; Bonatti et ~., 1979; Bonatti and 

Blobel, 1979). Since E3 is located at the N-terminal end of PE2 in both 

Sindbis and Semliki Forest virus (Rice and Strauss, 1981; Garoff et al., 

1980), the signal sequence should be at its N-terminus also, assuming that 

is is not further processed after cleavage from PE2. The N-terminal 

sequence reported here and previously (Rice and Strauss, 1981) confirms 

that at least the first 16 amino acids are uncharged, as expected of a 

signal sequence. 

Although it seems likely that this is the signal sequence, in some 

ways it is atypical. The most striking difference is the fact that it is 

not cleaved off during translocation, although it seems to contain several 

potential cleavage sites similar to those reported for other signal 

sequences (Lodish, 1981; Inouye and Halegoua, 1980; Zimmerman et al., 

1980), after the Gly13 , the Ser 16 , or the Cys18 • So far E3 (PE2) is the 

only protein with a signal sequence of "typical topology" that we know of 

that is not cleaved. The other examples of proteins with uncleaved signal 

sequences have atypical topologies such as internal signal sequences or N

terminal membrane anchors. 
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There is also a potential glycosylation site of the Asn-X-Ser/Thr 

type (Marshall, 1974) at position 14, within the presumed signal 

sequence. Since this is the only potential glycosylation site in E3 (Rice 

and Strauss, 1981), and E3 is glycosylated, it is presumably glycosylated 

at this site. The failure to detect a phenylthiohydantoin derivative at 

position 14 during N-terminal sequenation supports this view. While 

glycosylation should not affect its function as a signal sequence, since 

glycosylati~n occurs after translocation (Lodish, 1981), this very hydro

philic sugar on the hydrophobic signal sequence should profoundly affect 

the conformation and folding, and therefore the properties, of E3. It is 

tempting to hypothesize that the glycos ylation in the signal sequence may 

be the reason that the signal sequence is not cleaved from PE2 while 

nascent. However, Bell et ~· (1982) showed that when glycosylation of PE2 

was inhibited by tunicamycin, the putative signal sequence is still not 

cleaved. 

The N-terminus of E3 is found to be identical to that of PE2 (Bell 

~ al., 1982; Bonatti and Blobel, 1979), indicating that there is no 

further proteolytic processing of E3's N-terminus during or after its 

cleavage from PE2 (Fig. 8). This similarity extends to the finding that 

90~~ of both PE2 (Bell et al., 1982) and E3 are unsequenceable. Since 

labeling studies in PE2 showed that this was due to acetylation of the N

terminal serine (Bell and Strauss, 1981), and PE2 and E3 share the same N

terminus, the unsequenceable E3 is ~lso probably acetylated. These results 

suggest that the N-terminal acetylation does not perform any major function 

after translocation. Neither acetylated nor nonacetylated forms are 

apparently used or degraded preferentially, as this would skew the relative 
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amounts of these two species. N-terminal acetylation, which is common 

among structural proteins, is found to occur on the cytoplasmic side of the 

membranes (Jornvall, 1975), and therefore the acetylation of PE2 probably 

occurs prior to insertion into the endoplasmic reticulum (see Bell and 

Strauss (1981) for a more detailed discussion). 

In addition to its probable function as a signal sequence, E3 has 

many of the characteristics of the "pro" portion of a proprotein (see 

Zimmerman .&_ ~·, 1980). It is cleaved from PE2 very late in maturation, 

as are most proproteins. This cleavage is similar to a common cleavage 

among proproteins, involving the cleavage at two or more basic residues 

(Lys, Arg) via a trypsin-like activity followed by a carboxypeptidase B-

like activity. The absence of the C-terminal Lys-Arg of E3 that we 

observed via amino acid compositions and lysine labeling experiments imply 

that E3 is cleaved by such a mechanism. All of the known examples of this 

type of cleavage occur intracellularly (Docherty and Steiner, 1982; 

Zimmerman et al., 1980). This observation argues circumstantially that the 

cleavage of PE2 to E2 and E3 occurs intracellularly. There are numerous 

other reports in the literature that offer conflicting data as to whether 

the cleavage occurs intracellularly (for instance, Smith and Brown, 1977; 

Bonatti and Cancedda, 1982; Hakimi and Atkinson, 1982) or at the plasma 

membrane (for instance Jones et al., 1977; Ziemiecki ~ ~·, 1980). In 

Semliki For est virus Green et al. ( 1981) could not detect any intracellular 

E2, but also could not detect any PE2 at the plasma membrane. More sensi-

tive techniques will have to be devised in order to resolve this conflict 

adequately. 
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Our data argue against the model sometimes proposed that the cleavage 

of PE2 is the event that triggers virus budding. When the low salt-high 

salt reversal method is used for virus growth, 90% of the E3 released is 

released into low salt medium, whereas greater than 95% of the virus does 

not bud until the addition of medium of high ionic strength. Although we 

cannot absolutely eliminate the possibility that it is the abnormal condi

tions of the low ionic strength medium that uncouples any cause-effect 

relationshi~, we feel that it is unlikely. Even in the virus infection 

under regular salt conditions, by 12 hr after infection a large fraction of 

the E2 made (60%) is still associated with the cells, although virtually 

all of the E3 has been released. The kinetics of the appearance of the 

structural proteins (as virions) and the release of E3 in the culture fluid 

supports our view. Although E2 and E3 are physically attached, and there

fore follow the same maturation route until very late in their maturation, 

the kinetics of their appearances in the culture fluid are very different 

(Fig. 11). Labeled E3 is chased into the culture fluid much more quickly 

than E2. Whereas essentially all the labeled E3 has been chased into the 

culture fluid by 2 hr, a significant amount of E2 is still being released 

at the latest time that we examined. 

Our results are consistent with the following model. PE2 is synthe

sized in the endoplasmic reticulum and processed to the point where E3 is 

cleaved with deterministic kinetics, proceeding through the various steps 

in maturation in well-defined intervals, with most of the newly made E2 (or 

PE2) reaching the plasma membrane within 1 hr of synthesis. E3 also 

follows these kinetics, as it is released into the culture fluid very 

rapidly upon cleavage from PE2. In contrast, once E2 reaches the cell 



83 

surface its release into virions follows stochastic kinetics, with newly 

made E1 and E2 competing with a large pool of preexisting envelope proteins 

for incorporation into virions. The chase of labeled capsid protein is 

even slower, consistent with our results and those of others (Cancedda and 

Schlesinger, 1974) that there is excess capsid protein made relative to 

envelope protein. 

Johnson et al. (1981) have reported a different result using a 

combinatio~~of pulse-chase experiments and fluorescent photobleaching 

recovery studies. They find that Sindbis virus structural proteins are 

quickly chased into virions and that they may already be complexed with 

nucleocapsids before their appearance on the cell surface. We have not 

been able to combine the two sets of data into a consistent model but 

suggest one variable which may account for our different results. Whereas 

they used the wild type virus stock, we used a strain (HR) which was 

selected long ago for resistance of the virion to 60°C (Burge and 

Pfefferkorn, 1966). These two strains, with different properties, and thus 

changes within the structural proteins, may have proteins with different 

tendencies for aggregation which could profoundly affect the kinetics of 

virion maturation. This would also be consistent with the fact that they 

find extensive aggregation of structural proteins at the plasma membranes, 

whereas Rice and Strauss (1982) find, using crosslinking studies on the HR 

strain, a maximum of 6 structural proteins (3 sets of E1:E2 dimers) 

complexed to any large degree. Further studies will need to be done to 

resolve these differences. 

Since the specific activities of all of the viral proteins can be 

easily calculated from their sequences (Rice and Strauss, 1981), 
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quantitative relationships can be readily calculated. There is a 1:1:1 

relationship between the three structural proteins in virions as has been 

reported earlier (Rice~ al., 1982; Schlesinger~~., 1972). If the 

total protein in all fractions of the infection is summed, there is an 

excess of capsid protein (see also Cancedda and Schlesinger, 1974), even 

relative to E3, which should be a good indicator of the total glycoprotein 

made. This excess could be due to one of two reasons. Either the ribo

somes are abortively dissociating after capsid translation, or some percen

tage of the nascent PE2 is not attaching to and translocating across the 

membrane due to a limiting number of translocation sites (Lingappa ~~., 

1978) and is subsequently degraded. The excess of total E3 relative to E1 

and E2 seen is probably due to recycling of viral glycoproteins from the 

plasma membrane, since endocytosis and membrane recycling are common events 

on plasma membranes. 

These studies on the small nonstructural viral protein, E3, have 

allowed us to look at the maturation of Sindbis virus proteins and virions 

from a new perspective. As a result we have obtained new information and 

confirmed other data concerning their maturation. We feel that further 

studies along these lines could yield more information concerning the 

Sindbis virus infection. 
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CHAPTER 3 

Isolation and characterization of hybridomas producing monoclonal 

antibodies specific for Sindbis virus structural proteins 
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ABSTRACT 

Hybridomas were selected by the fusion of BALB/c MOPC21 NSI/1 myeloma 

cells with spleen cells from mice inoculated with either Triton X-100 

treated Sindbis virions or with membrane preparations from cells infected 

with ts-23, a Sindbis virus temperature sensitive mutant that fails to 

cleave the precursor protein PE2 at the nonpermissive temperature. Ten 

stable hybridomas were obtained, seven producing antibodies specific for 

the envelo~e glycoprotein E1 and three producing antibodies specific for 

the capsid protein, and the immunoglobulin subclasses of these antibodies 

were determined. The seven E1-specific monoclonal antibodies were divided 

into two classes, which reacted with different antigenic domains of E1, as 

determined by a binding competition assay. The two classes of antibodies 

differed in several tested properties. One class, referred to as the E1(a) 

class and including five of the clones, reacted with a protein preparation 

(E1 + E2 solubilized in Triton X-100) that the second class, called E1(b) 

did not. In addition, E1(a) antibodies precipitated intact virus to a much 

greater degree than E1(b) antibodies. Two of the five E1(a) monoclonal 

antibodies inhibited viral infectivity, and one of these precipitated E2 

along with E1 in Triton-treated virus preparations. These properties are 

discussed with regard to the known relationships between the viral 

structural proteins. 
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INTRODUCTION 

The three viral structural proteins that are produced during Sindbis 

virus infection (two envelope glycoproteins, E1 and E2, and a nucleocapsid 

protein, C) mature via a complex pathway from a common polyprotein pre

cursor, involving several proteolytic cleavages (Rice and Strauss, 1981). 

The two glycoproteins follow a maturation scheme very similar to that of 

cellular plasma membrane glycoproteins and secreted proteins, involving 

cotranslational insertion into the endoplasmic reticulum and transport 

through the Golgi apparatus to the plasma membrane (Green~~., 1981), 

during which they are modified by the addition of carbohydrates (Sefton and 

Keegstra, 1974) and fatty acids (Schmidt and Schlesinger, 1980). In addi

tion, the precursor to one of these glycoproteins (PE2) has an N-terminal 

peptide (E3) removed very late in its maturation to produce E2 (Schlesinger 

and Schlesinger, 1972; Welch and Sefton, 1979). Finally, the three struc

tural proteins (E1, E2, and C), plus the viral RNA, are assembled into 

virions which bud from the infected cells (Brown, 1980). 

These processes have been studied extensively, using a variety of 

approaches (for reviews, see Strauss and Strauss, 1977; Simons and Warren, 

1983). Specific probes, such as probes for a particular precursor form of 

a protein (i.e., PE2) or probes for a particular conformation of a protein 

(i.e., E2 when complexed to E1) would be very useful for further study of 

these processes. The new techniques for producing hybridomas which secrete 

large quantities of a single antibody should be very useful for generating 

these probes. Since this procedure produces antibodies specific for a 

single antigenic determinant, antibodies to a number of these specificities 

may be obtainable given the proper immunization and selection scheme. 
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Several laboratories have reported the generation of hybridomas which 

produce antibodies specific for Sindbis structural proteins (Roehrig 

~ al., 1980, 1982; Chan as ~ al., 1982) and have used them to study in 

detail the contribution of particular viral proteins in several virus

mediated events, such as infection of susceptible host cells, and hemag

glutination and hemolysis of erythrocytes. Monoclonal antibodies have also 

been tremendously useful in studying the function of antigenic determinants 

of a numbe~ of other viruses, including murine leukemia virus, (Stone and 

Nowinski, 1980; Oroszlan and Nowinski, 1980), mouse mammary tumor virus 

(Massey~~., 1980), influenza virus (Laver~~., 1979), and reovirus 

(Lee et ~·, 1981). 

We report here the isolation and characterization of 10 hybridomas 

producing monoclonal antibodies specific for the structural proteins of 

Sindbis virus, including one which may be useful in investigating the 

interactions between E1 and E2 (or PE2) during maturation. 

MATERIALS AND METHODS 

Antisera and materials. Rabbit antisera specific to mouse immuno

globulin and immunoglobulin subclasses were obtained from Bionetics 

taboratories, and Protein A from Staphylococcus aureus was obtained from 

Pharmacia. The preparation of rabbit antisera specific to Sindbis virus 

and individual Sindbis virus proteins have been described previously 

(Birdwell and Strauss, 1974; Rice and Strauss, 1982). Dinitrophenol 

coupled to bovine serum albumin (DNP-BSA) plus a hybridoma producing 

antibodies specific to this antigen were kind gifts of Dr. Jack Richards. 

Cells, virus, and laboratory animals. Sindbis virus (HR large plaque 

strain, Burge and Pfefferkorn, 1966) was grown in monolayers of primary 
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chick embryo fibroblasts and purified as described previously (Bell et al., 

1979). The growth of the Sindbis virus temperature sensitive mutant ts-23 

to obtain virus infected membrane preparations was done in either chick or 

BALB/c 3T3 cells (kindly provided by C. F. Fox, UCLA). Plaque assays to 

quantitate infectious particles were done in chick cells (Strauss, et ~., 

1976). 

The myeloma cell line BALB/c MOPC21 NSI/1, which produces kappa light 

chains bu~no heavy chain, was kindly provided by C. Milstein (Molecular 

Research Council, Cambridge), and grown in RPMI-1640 medium containing 1 mM 

pyruvate and 15% fetal calf serum. Antigens were inoculated into BALB/c 

mice and thymocyte feeder layers were obtained from three week old BALB/c 

or co2 F1 mice. 

Preparation of ts-23 infected cell membranes. Chick cells or BALB/c 

3T3 cells were infected with Sindbis virus ts-23, a mutant which fails to 

cleave PE2 to E2 at the nonpermissive temperature (Bracha and Schlesinger, 

1976), at a multiplicity of 20 plaque forming units/cell (37°C). Ninety 

minutes post-infection the infecting medium was removed, 50 ml of minimal 

essential media (Eagle, 1959) containing 3% fetal calf serum was added, and 

the cells shifted to 40°C. At 6.5 hr post-infection the cells were washed 

twice with cold phosphate buffered saline (PBS, pH 7.2) and scraped into 

cold PBS. The cells were pelleted at 160 x g for 5 min and resuspended in 

swelling buffer (12.5 mkL triethylamine, 12.5 mkL KCl, pH 7.8). After 

5-10 min in swelling buffer, the cells were homogenized with 60 strokes in 

a Dounce homogenizer and the buffer brought to 20 mM EDTA. The homogenate 

was brought to 60% sucrose (w/w), transferred to cellulose nitrate centri

fuge tubes, overlaid with layers of 5~~ (w/w) and 25% (w/w) sucrose in TK 
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buffer (50 mM triethylamine, 50 mM KCl, pH 7.8) and centrifuged at 

158,000 x g for 16 hr (4°C). Over 9m~ of the PE2 containing membranes are 

recoverable at the 25-50% sucrose interface, which was collected, diluted 

three-fold into TK buffer, and given 15 more strokes in a Dounce homoge

nizer. A 1 ml preparation containing the membranes from 107 cells has an 

absorbance of 2.2 at 280 nm. Mock infected membranes were purified by an 

identical method. 

Iodi~ation. Iodinations were done by the Chloramine T method of 

E r 1 i c h et ~· ( 1 9 7 8 ) • 

Purification of IgG from clone 6-8G. IgG was purified from the 

culture fluid of clone 6-8G using a protein A-sepharose column as described 

in Rice and Strauss (1982). 

Immunoassays. Immune precipitation using Staphylococcus aureus 

(Cowan I strain) was as described in Rice and Strauss (1982). The solid 

phase immunobinding assay (plate binding assay) was as described in 

Nowinski et ~· (1979). A secondary antibody (rabbit anti-mouse immuno

globulin) was routinely used unless otherwise noted. We also found it to 

be important to use fresh antigen for each assay. Variations of this assay 

for specific experiments are described in the figure legends. 

Selection of hybridomas. The method used was essentially that of 

Nowinski et al. (1979) with some modifications. A brief description of 

this method, including the specifics of our selection protocols, is sum

marized below and in Table 1. Spleen cells from BALB/c mice inoculated 

with the antigens were fused with NSI/1 cells using polyethylene glycol and 

plated at about 10 5 cells/well in 96 well microtiter plates. They were 

grown in HAT selective medium (complete RPMI-1640 plus 1.0x10-4 M 
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hypoxanthine, 4.0x10- 7 .!:!. aminopterin, and 1.6x1o-s.!:!. thymidine) for about 

15 days before using plate binding assays to detect the growth of clones 

producing antibodies specific for the antigens tested. The fusions using 

Sindbis virus inoculated mouse cells were tested on plate binding assays 

using triton solubilized Sindbis virus as the antigen. The fusions using 

mice inoculated with membranes from ts-23 infected cells were tested on 

three parallel plate binding assays using either triton solubilized Sindbis 

virus, membranes from ts-23 infected cells, or membranes from mock infected 

cells as antigens. The cells in positive wells were dispersed, mixed with 

feeder cells (thymocytes from three week old mice) and plated at dilutions 

of 5-50 hybridoma cells per well. These were fed every 3-4 days with HT 

medium (HAT medium lacking the aminopterin) and tested again by plate 

binding assay after 12-15 days. Two to four wells were selected by a 

combination of their reactivity to the antigen and the observation in the 

microscope of a single healthy clone of cells and "minicloned" as before. 

This process was repeated (2-4 times) until all the wells showed up as 

uniformly positive by plate binding assay. Stable clones were grown up and 

injected into the intraperitoneal cavities of co2 F1 mice, and ascites 

fluids were drained from these mice periodically until they died. 

Dilutions of either these ascites fluids or the culture fluid from the 

hybridomas in culture were used in the assays described in this paper. 
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RESULTS 

Hybridoma selection. We did a total of 5 different fusions, 

generating about 3000 initial microtiter wells, 10-15% of which contained 

viable hybridomas. Initial screening of these for reactivity to Sindbis 

protein produced 88 preliminary positive wells, ten of which eventually 

produced stable hybridomas specific for Sindbis virus proteins. A summary 

of the 5 fusions appears in Table 1. 

Three different immunization and selection strategies were used to 

produce a variety of Sindbis specific hybridomas. Two fusions were done 

using mice immunized with Sindbis virions solubilized with Triton X-100, a 

nonionic detergent which should leave much of the native tertiary structure 

of the proteins unaltered. These were followed by three attempts to 

generate monoclonal antibodies specific for the portion of the nonstruc

tural protein PE2 that is not present in E2. These fusions used mice 

immunized with membrane preparations from cells infected with ts-23, a 

temperature sensitive mutant that causes PE2 to accumulate in cells at the 

nonpermissive temperature (Bracha and Schlesinger, 1976). In each case 

three mice were used, each immunized with a slightly different antigen 

preparation, either membranes solubilized in Triton X-100, membranes 

solubilized in SDS, or membranes not treated with detergents. The spleen 

cells from the three mice were combined before fusion. For the last 

inoculation we used ts-23 infected BALB/c 3T3 cells (which should be 

antigenically identical to the inoculated mice) rather than chick cells as 

antigens in order to decrease the background of hybridomas reactive with 

host cell specific proteins. The cells resulting from these fusions were 

assayed in parallel for reactivity to Triton solubilized virus, ts-23 



TABLE 1 

Number Boost/Fusion a Quantity of Fusion Ratio 

of mice Antigen (days after antigen per mouse (spleen cells/ Stable Positive Plate 

primary 

inoculated Used inoculation) (inoculum/boost) NSI/ 1 cells) Clones Obtained Numbersb 

Sindbis Virus in 22/26 100 J.lg/50 J.lg 4:1 0 NAC 
0.02~o Triton X-100 

5 Sindbis Virus in 8/11 50 J.lg/25 J.lg 5: 1 and 16: 1 d 4 1-11 
0.02% Triton X-100 

I-' 

3 ts-23 infectede 7/10 2.2 A28o/2.2 A280 5:1 1 12-16 
0 
~ 

chick cell membranes 

3 ts-23 infectede 8/11 2.2 A28o/2.2 A280 4:1 3 17-22 
chick cell membranes 

3 ts-23 infectede 19/23 2.1 A28o/2.1 A280 4:1 2 23-28 
BALB/c membranes 

--- --
15 Totals NAf NA NA 10 NA 
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Table 1 (continued) 

aPrimary inoculations were done by subcutaneous, intraperitoneal, and 

intradermal injections. Boosts were done by either intraperitoneal or 

subcutaneous injections. 

bThe first portion of the stable clones' names refers to the origina~lat 

e number, and the second portion refers to the microtiter well on that 

plate (i.e~, clone 6-BG was obtained from well BG on plate 6). 

cTwo microtiter plates. Not given consecutive numbers due to lack of 

positive clones. 

dTwo separate fusions were done with these cells. The 16:1 ratio was done 

using slightly overgrown (2-4x10 6 cells/ml) NS-I/1 cells. 

eEach of the three mice used was injected with one of the following three 

ts-23 preparations: 

1) As described in Materials and Methods 

2) Above, solubilized with 1.~~ Triton X-100 

3) Above, solubilized with 1.0% SDS 

Spleen cells from the three mice were mixed together before fusion. 

fNot applicable. 
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infected membranes, and mock infected membranes. The hope was that the 

culture fluid from clones producing antibodies to the nonstructural portion 

of PE2 would react with the ts-23 membranes, but not with the virus protein 

or mock infected membranes. Although we obtained 6 stable clones specific 

for structural proteins and numerous clones that reacted with both the 

infected and uninfected membranes, none were obtained to the nonstructural 

domain of PE2. 

Immunoglobulin subclass determinations of stable hybridomas. The 

subclasses of the immunoglobulin heavy chains were determined with a plate 

binding assay using rabbit antisera specific for different mouse subclasses 

as the secondary antigens (Fig. 1). Since~· aureus protein A reacts only 

with IgG, and to different degrees with different subclasses of IgG 

(Ey et al., 1978), the binding of iodinated protein A to wells without a 

secondary antibody varies greatly according to the subclass of the mono

clonal antibody. By the use of a secondary antibody that can bind 

protein A, the wells that are able to bind the secondary antibody (those 

with bound monoclonal antibodies of the proper subclass) will label more 

heavily with [ 125I]. Therefore, each monoclonal antibody should show 

positive for only one subclass plus the rabbit antisera specific for whole 

mouse immunoglobulin. If the monoclonal antibody is one which itself 

reacts with protein A, then there will also be a background of [ 125I] in 

the rest of the wells (see Fig. 1, 6-BG and 14-4C). 

We were able to unambiguously identify the subclass of the antibodies 

produced by nine of the ten clones (Table 2). We found 3 IgM's, 6 IgG's of 

various subclasses (2 IgG1, 2 IgG2a, 1 IgG2b and 1 IgG3), and 1 IgG of 

unknown subclass. This last clone (28-6F) reacted equally with all of the 
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FIG. 1. Monoclonal antibody subclass determinations. Thousand-fold 

dilutions of ascites fluid from each stable hybridoma (plus NS-1 cells as a 

control) were tested on plate binding assays using rabbit antisera specific 

for the different mouse immunoglobulin subclasses (IgA, IgM, IgG1, lgG2a, 

IgG2b, IgG3) as the secondary antibody. Two separate experiments are 

shown. The left six lanes refer to the subclasses listed to the left, and 

right seven lanes refer to the subclasses listed to the right. No 

secondary ·~tibody was used in the top row. a mouse lg refers to Rabbit 

antisera to total mouse immunoglobulins. The nomenclature of the 

hybridomas is described in a footnote of Table 1. 
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TABLE 2 

Characteristics of Stable Hybridomas 

Antigenic SEecificit~a Relative ability 
Clone Viral SDS/Triton Immunoglobulin to precipitate Competition 
No.b Protein X-100c Subclassd intact viruse with 6-8Gf 

2-6H cg IgM 0. 2~~ 

6-SG E1 SDS=Triton IgG2a 43~~ ++ 

6-9[ E1 SDS>>Triton IgM 0. 6~~ + -
7-2C E1 SDS>Triton IgG1 14% ++ 

14-4C E1 SDS>Triton IgG2a 19~~ ++ 

17-3C E1(+E2) SDS>Triton IgM 93~~ ++ 

17-10A c IgG2b 1 • 1 ~~ 

22-12C E1 SDS>Triton IgG1 14~~ +++ 

25-10F E1 IgG3 oot tO 

28-6F (C) Triton>SDS IgG oot tO 

a DNP-BSA DNP-BSAh (IgM) oot tO 

NSI/1 none none oot tO 

a Sindbis E1,E2,C Triton>SDS NDi 1om~ ND 
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TABLE 2 (continued) 

aDetermined from a combination of a plate binding assay (Fig. 1) and immune 

precipitations followed by polyacrylamide gel electrophoresis (Fig. 2). 

bRefers to plate and well number of initial plating following fusion. 

ccomparison of reactivity to SDS and Triton X-100 solubilized viral 

protein. From Fig. 2. 

dFrom Fig. 3. 

elmmunoprecipitation using S. aureus. [3Ss]-methionine labeled intact 

virus in PBS plus 1 mg/ml bovine serum albumin was reacted with 1/100 

dilutions of ascites fluids followed by rabbit anti-mouse immunoglobulin as 

a secondary antibody. These were precipitated using ~· aureus, washed, and 

counted by liquid scintillation. The results are given as a percentage of 

the label precipitated by a 1/50 dilution of the anti-Sindbis polyclonal 

antibody (Birdwell and Strauss, 1974). The amount of label precipitated by 

anti-DNP-BSA antibodies was subtracted from all values to correct for 

non-specific precipitation. 

fFrom Fig. 5. 

glnformation in parentheses is from data that is suggestive but not firmly 

established. 

hstable hybridoma (obtained from Dr. Jack Richards) which is specific for 

dinitrophenol coupled to bovine serum albumin. 

iNot Done. 
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wells of the plate binding, including the one that had no secondary anti

body added, indicating that it was an IgG, but obscuring the identity of 

its subclass. It should be noted that we found that the degree to which 

iodinated protein A reacted directly with the antibodies of various IgG 

subclasses varied in different repeats of the assay. At various times all 

but one of the IgG producing clones (22-12C) reacted positively on plate 

binding assays without any secondary antibody. The slight reactions of 

clones 7-~ and 22-12C to the IgG2a wells is probably caused by a small 

amount of contaminating IgG1 specific antisera in the IgG2a antisera 

preparation. 

Representative samples of clones containing each of the subclasses 

were labeled with [ 355]-methionine as described in the figure legend, 

immunoprecipitated with ~ aureus, and analyzed on polyacrylamide gels 

(Fig. 2). To the sensitivity that this technique allows, each of the 

clones investigated secretes only one class of heavy chain and one class of 

light chain, but NSI/1 does not secrete any immunoglobulin. The migration 

of their heavy chains correspond to that expected for IgG and IgM as deter

mined by the plate binding assay. The aberrant migration of the light 

chain of the iodinated clone 6-BG is presumably an artifact of the 

iodination. 

Antigenic specificity of clones. Two types of experiments were used 

to determine the antigenic specificities of the antibodies produced by the 

stable hybridomas: either a plate binding assay using different Sindbis 

specific antigens (Fig. 3), or an immune precipitation of [ 355]-methionine 

labeled virus followed by polyacrylamide gel electrophoresis (Fig. 4). The 

antigenic specificities, as determined from these experiments, are 
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FIG. 2. Polyacrylamide gel analysis of selected monoclonal antibodies. 

Hybridomas representative of the different subclasses found were labeled 

with [ 355]-methionine. Cells were centrifuged as 160 x g for 5 min and 

resuspended to 1x10 6 cells/ml in minimal essential medium (Eagle, 1959) 

lacking methionine and containing 15% dialyzed fetal calf serum. [ 355]

methionine was added to 50 ~Ci/ml and the cells incubated at 37°C for 

4 hr. The cells were removed by centrifugation at 650 x g for 10 min and 
· ~ 

the culture fluid saved. Aliquots of the culture fluids were immunopre-

cipi tated using rabbit anti-mouse immunoglobulin and ~· aureus. The 

immunoprecipitation pellet was resuspended in Laemmli sample buffer, elec-

trophoresed on 10% polyacrylamide slab gels (Laemmli, 1970), and analyzed 

by autoradiography. Pig IgG and rabbit IgM were used as size standards. 

Lefthand six lanes: Hybridomas labeled with [ 355]-methionine. Righthand 

lane: [ 125!]-labeled clone 6-BG IgG (labeled by the chloramine-T method). 
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FIG. 3. Antigenic specificities of the monoclonal antibodies isolated. 

Culture fluids from stable hybridomas were tested on plate binding assays 

using either virus, E1+E2, or E1 as antigens. The antigens used were pre

pared as described by Bell et al. (1979). Antigen preparations used: 

Row A: Purified virus solubilized in 0.05% Triton X-100 in PBS (2-4 pg 

protein/well final concentration). Row B: E1+E2 in 0.5% Triton X-100, 

200 mM NaCl, 50 mM Tris, 1 mM EDTA, pH 7.4. Diluted 30-fold into PBS 

(0.5 ~ piatein/well final concentration). Row C: E1 in 0.05% Triton 

X-100, 50 mM sodium succinate, 300 mM CaC1 2 , 1 mM DTT, pH 5.5. Diluted 

five-fold into PBS (0.25 ~ protein/well final concentration). Antibody 

preparation used: Ra E1, Ra E2, Ra E3: Monospecific antisera to viral 

structural proteins produced in rabbits (Rice and Strauss, 1982), diluted 

to 1/5000 in PBS. 6-BG, 6-9E, etc.: Culture fluids from hybridomas. 

24-4F represents a clone which we subsequently lost. 
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FIG. 4. Sindbis specific proteins immunoprecipitated by ascites fluids. 

[ 355]-methionine labeled virions were solubilized in either 0.5% Triton 

X-100 (A) or 0.5~~ SDS (B) and immunoprecipitated with the ascites fluids of 

stable hybridoma clones grown in mice. Aliquots of ascites fluids, poly

clonal antisera, or preimmune sera were diluted into TNA (200 mM NaCl, 

50 m!:!_ Tris, 1 mM EDTA, pH 7.4, 0.5~~ Triton X-100, 1 mg/ml BSA) as 

follows. a SV: Sindbis virus specific polyclonal antiserum (Birdwell, 

1974) was -shluted to 1/50 in TNA. a E1, a E2, a C: Polyclonal antisera 

monospecific for viral structural proteins (Rice and Strauss, 1982) were 

diluted into TNA (E1, 1/25 dilution; E2, 1/30 dilution; C, 1/10 

dilution). Preimmune: Preimmune rabbit serum was diluted to 1/10 in 

TNA. 2S-10F, 17-10A, etc.: Ascites fluids were diluted to 1/100 in TNA. 

Ten ~1 aliquots of the diluted antisera were mixed with 10 ~1 of either 

Triton X-100 or SDS solubilized virus and incubated for 10 hr at 4°C. Ten 

~1 of a 1/10 dilution of rabbit anti-mouse immunoglobulin was added for 

1 hr and 50 ~1 of 1 0~~ S. au reus was added. After incubation for 8 hr at 

4°C, the preparations were layered over 1 ml of 30% sucrose in TNA and the 

precipitates pelleted. The supernatants were removed and the precipitates 

dissolved in Laemmli sample buffer (1% SDS, 1% S-mercaptoethanol, 

1m~ glycerol, 2~~ bromphenol blue, 0.05 !:!_ Tris, pH 6.8), electrophoresed on 

10% polyacrylamide slab gels by the method of Laemmli (1970) except that 

one half the concentration of Trisma was used in the gel buffers, and 

analyzed by autoradiography. A: Virus diluted into TNA. B: Virus, 

brought to 0.5% SDS, heated to 56°C for 5 min, and diluted 10-fold with 

TNA. 
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summarized in Table 2. The three antigens used for the plate binding assay 

were Triton X-100 solubilized virus, an E1 plus E2 mixture produced by 

pelleting intact nucleocapsids out of Triton solubilized virus, and E1 

purified from the E1/E2 mixture by chromatography on a glass wool column 

(Bell~ al., 1979 ) . We decided to use these antigens because Triton X-100 

is a relatively gentle nonionic detergent that should not extensively 

denature the antigens, although the exposure of the separated E1 to 

dithiothr~~t ol and low pH (5.5) during purification may denature this 

preparation further. In addition, in several cases the antigens used for 

inoculation and selection were Triton X-100 treated. 

Antibodies from seven of the nine clones tested on the plate binding 

assay show specificity for E1, and can be divided into two classes, 

reacting with at least two different antigenic specificities on E1. 

Antibodies from five of the clones (6-BG, 7-2C, 14-4C, 17-3C, 22-12C) 

reacted with all three of the antigen preparations tested, whereas those 

from the other two (6-9E, 25-10F) react with solubilized virus and pure E1, 

but not with the E1/E2 mixture. These two classes of antibodies, and the 

clones that secrete them, will be referred to as E1(a) and E1(b), respec

tively. Thus, whereas the antigenic site(s) that the antibodies from E1(a) 

clones react with are exposed in all the preparations, the site(s) that the 

antibodies from E1(b) clones react with is exposed in Triton X-100 solu

bilized virus, but is somehow hidden after removal of nucleocapsids. After 

treatment with a reducing agent and removal of E2, the E1(b) specific 

antigenic site is reexposed. This implies that there may be some 

interaction between all three viral structural proteins, even in the 

presence of nonionic detergents. The remaining two antibodies tested 
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(2-6H, 17-10A) are probably specific for capsid proteins. Antibodies from 

clone 2-6H are only very weakly reactive and it is thus hard to be certain 

of its specificity. Antibodies from clone 17-10A reacts slightly with the 

E1/E2 mix, but the monospecific polyclonal anticapsid antisera (lane 3) 

does also, possibly due to a low level of residual nucleocapsid proteins in 

the preparation. 

Sindbis virus proteins treated with either Triton X-100 or SDS were 

immunoprecipitated with ascites fluid from the 10 stable clones and 

analysed by gel electrophoresis (Fig. 4). The ascites fluids from the five 

E1(a) specific clones precipitated both Triton and SDS treated E1. The 

ascites fluid from the two E1(b) specific clones were ineffective at 

immunoprecipitating E1 with S. aureus. Ascites fluid from clone 6-9E 

weakly precipitated only SDS solubilized E1, and that from clone 25-10F did 

not precipitate any detectible amounts of E1. One of the E1(a) clones 

(17-3C) exhibited the interesting property that its ascites fluid also 

precipitated Triton solubilized E2 to some degree. 

Antibodies from the three remaining clones (2-6H, 17-10A, 28-6F) are 

probably capsid specific, but the large amount of nonspecific precipitation 

of capsid protein during the immunoprecipitations interferes with the 

interpretation. Ascites fluids from clones 2-6H and 17-10A do not precipi

tate enough capsid to be visible above the background level, but ascites 

fluid from clone 28-6H, which was not tested on the plate binding assay, 

precipitated a significantly greater amount of [ 355]-methionine label from 

Triton X-100 treated virus (data not shown) than the negative controls 

(ascites fluid from the DNP-BSA specific hybridoma or NSI-1 cells). 

Careful examination of the gel pattern of the Triton solubilized protein 
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precipitated by 28-6F reveals a capsid band that is more intense than the 

controls (Fig. 4), identifying 28-6F as probably capsid specific. 

The ability of the ascites fluids to precipitate whole virus was also 

tested (Table 2). Ascites fluids from the five E1(a) specific clones 

precipitated significant quantities of virus but ascites fluids from the 

two E1(b) specific clones and the three capsid specific clones fail to 

precipitate more than about 1% of the virus. 

Competition of binding to Sindbis virus proteins. A variation of the 

plate binding assay was used to test the ability of the ascites fluids from 

the 10 clones to interfere with the ability of [ 1251]-labeled 6-SG IgG to 

bind to viral proteins (Fig. 5). Other investigators (i.e., Stone and 

Nowinski, 1980) have found using monoclonal antibodies that the individual 

antigenic determinants can be grouped into a limited number of regions of 

antigenicity by competition studies such as these. These groupings based 

on competition experiments correlate well with groupings made based on 

other properties of the antibodies. We found that the E1 specific 

hybridomas could be grouped into two such groups by the experiment 

described in Fig. 5. Ascites fluids from the five E1(a) clones effectively 

competed with [ 125!]-labeled 6-SG IgG, whereas that from the two E1(b) 

clones competed poorly (6-9E) or not at all. Ascites fluid from the three 

capsid specific clones and the controls (G-DNP-BSA, NSI/1) as was expected, 

did not compete. 

The competitions at the higher concentrations of antibodies show a 

plateau effect presumably due to the saturation of all of the available 

antigenic sites at these dilutions. Likewise, the ineffective competition 

by ascites fluid from clone 6-9E is probably not due to a low concentration 
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FIG. 5. Competition between monoclonal antibodies for binding to Sindbis 

virus proteins. A variation of the plate binding assay was used. Ascites 

fluids diluted 10 2 , 10 3 , and 10 4-fold into PBS were bound to Triton 

solubilized virus in microtiter wells by the standard method. Following 

the ascites binding and washes, 50 ~1 of [ 1251]-labeled clone 6-BG IgG 

diluted 10 4-fold into PBS was added to the microtiter wells. The plate was 

incubated 2 hr at 37°C, washed 10 times with PBS containing 1% bovine serum 

albumin, a~d dried. The plate was analyzed by autoradiography as described 

previously (Nowinski~ al., 1979). DNP-BSA specific ascites fluid, NSI/1 

ascites fluid, and buffer lacking any primary antibody were used as con

trols. Row A, B and C contain 10 2 , 10 3 , and 10 4 dilutions of ascites 

fluids respectively. Row D shows the binding of sequential two-fold 

dilutions of [ 1251]-labeled 6-BG IgG when no ascites fluid was used to 

compete with it. 
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of antibodies, since it competes to the same degree even when diluted 

10-fold. It is presumably due either to a low avidity for its antigenic 

site, or to the location of its binding site sufficiently far from that of 

the 6-SG antibodies such that it only marginally sterically hinders the 

binding of 6-SG IgG. 

Neutralization of Sindbis virus infectivity. By exposing virions to 

a series of dilutions of hybridoma ascites fluids or polyclonal antisera 

and then ~ediately assaying the surviving infectivity, we investigated 

the ability of the antibodies from the different clones to inhibit infec

tivity. Our results (Table 3) indicated that none of our clones were very 

effective in inhibiting infectivity when compared with rabbit antisera 

specific for Sindbis. Ascites fluids from two of the clones (6-SG, 17-3C) 

showed clear, although inefficient inhibition of infectivity, but that from 

most of the other clones tested gave ambiguous results. A miscalculation 

of the total plaque forming units in the starting material prevented us 

from getting a clear answer from this experiment. Even at the lowest 

concentration of virus, the plaques on the control plates and most of the 

test plates were either confluent or semiconfluent. For a clear answer, 

this experiment will have to be redone. 

A similar effect to that seen in the competition tests can be seen 

here with ascites fluids from clones 6-SG and 17-3C. The similar degree of 

inhibition by 10-fold different dilutions of antibody indicate that the 

limiting factor in the infectivity inhibition may be due to the avidity of 

the antibody itself, rather than a dilution effect. In contrast, the 

effect of dilution on the rabbit antisera to Sindbis virus is quite large 

(Table 3). 
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TABLE 3 

Neutralization of Sindbis Virus infectivity by antiseraa 

Antisera Used 

Controlc 

None 

Rabbit preimmune 

Rabbit a E1 IgGh 

Rabbit a E2 IgGh 

6-BG Ascites 

17-3C Ascites 

2-6H Ascites 

6-9E Ascites 

17-10A Ascites 

14-4C Ascites 

22-12C Ascites 

7-2C Ascites 

Antisera Dilution PFU/plateb 

NAd Semiconfluente 

NA Confluentf 

1/10 Confluent 

1/10, 1/100, 1/1000 22, 79, 254 

1/10 Confluent 

1/10 153 

1/10, 1/100 305, 314 

1/10, 1/100 296, 316 

1/10 Semiconfluent 

1/10 Semiconfluent 

1/10 Semiconfluent 

1/10, 1/100 Semiconfluent, Semiconfluent 

1/10, 1/100 Semiconfluent, Semiconfluent 

1/10, 1/100 Confluent, Confluent 
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TABLE 3 (continued) 

asindbis virus (10 6 plaque forming units in 200 ~1) was mixed with 200 ~1 

aliquots of dilutions of the various antisera and incubated for 1 hr at 

37°C. The mixture was brought to 4 ml and the remaining infectivity 

immediately determined by plaque assay (Strauss and Strauss, 1976). In 

addition, aliquots of the virus were incubated with no antisera or 

preimmune antisera from rabbits. All dilutions were made into PBS 

containing 0.9 mli CaC1 2 , 0.5 mM MgC1 2 , and 1% fetal calf serum. 

bPlaque forming units per plate of a 4x10 3-fold dilution of the starting 

concentration of the virus. A miscalculation of the titer of starting 

virus made it impossible to calculate the relative rates of inactivation. 

cAliquot (200 ~1) of virus diluted to 4 ml and kept on ice during the 1 hr 

incubation. 

dNot applicable 

esemiconfluent: too many plaques to count (greater than 400 plaques), but 

portions of the cell lawn were uninfected, giving the lawn a mottled look. 

fconfluent: all cells in lawn were lysed. 

gSee Birdwell and Strauss, 1974. 

hsee Rice and Strauss, 1982. 
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The inhibition of infectivity by ascites fluid from clone 17-3C as 

compared with rabbit antisera to Sindbis virions was more thoroughly 

investigated using multiple dilutions of antibodies and lower quantities of 

starting virus (3x10 3 PFU vs. 1x10 6 PFU). Fig. 6 shows the results of this 

experiment. Although the rabbit antisera shows a strong correlation 

between concentration and infectivity, the ability of ascites fluid from 

clone 17-3C to inhibit infectivity is only slightly affected by concen

tration wit,hin the range tested (varying only from 15~~ to 37~~ residual 

virus infectivity over a 10,000-fold difference in antibody concen

tration). Thus, as seen before, the limitations of the ascites fluids from 

the hybridomas may be due to the avidity of the antibodies or its inherent 

ability to inhibit infectivity, not concentration effects. All of the 

concentrations tested seem to essentially saturate the antigenic sites. 

We cannot rule out the possibility that a nonspecific inhibition of 

infectivity is caused by some component of clone 17-3C and clone 6-BG 

ascites fluids that is not present in the other ascites fluids, but we feel 

that this is unlikely. 

DISCUSSION 

One of our aims was to generate hybridomas specific for various 

Sindbis virus proteins to help compare antigenic determinants of the dif

ferent proteins with various viral characteristics. In addition, by using 

preparations containing the nonstructural protein PE2 as an antigen, we 

hoped to produce monoclonal antibodies specific for a nonstructural pro-

tein to use a tool for studying viral protein maturation. Although we were 

unsuccessful in generating PE2 specific antibodies, we obtained 10 
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FIG. 6. Comparison of the inhibition of infectivity by 17-3C ascites fluid 

and Sindbis specific rabbit antisera. Sindbis virus (3x10 3 plaque forming 

units) in 200 ~1 of PBS containing 0.9 mM CaC1 2, 0.5 mM MgC1 2 , and 1% fetal 

calf serum was mixed with 200 ~1 of the antisera diluted 10 1, 10 2 , 10 3, or 

10 4-fold in the same buffer. They were incubated for 1 hr at 37°C, 

immediately diluted to 2 ml in the same buffer, and the infectivity of the 

preparation assayed by plaque assay (Strauss and Strauss, 1976). ( ____ ): 

Relative infectivity after treatment with clone 17-3C ascites fluid. 

(---): Relative infectivity after treatment with Sindbis specific rabbit 

antisera. 
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hybridomas producing antibodies specific for the structural proteins, among 

them several very interesting ones. 

The strategy we used to look for PE2 specific hybridomas was to 

immunize the mice with a cell membrane preparation from cells which had 

been infected with Sindbis ts-23, in order to obtain some hybridomas which 

secreted antibodies specific for the N-terminal piece of PE2 that is 

cleaved off before virion assembly (Schlesinger and Schlesinger, 1972) if 

this regiaq_ is antigenic. Our failure to obtain such a clone can be 

explained by a simple numerical comparison. We were attempting to generate 

antibodies to a protein sequence representing only about 6% of the total 

structural protein sequence. Since we only isolated six stable clones 

using ts-23 infected membranes as antigens, the chances of getting even one 

clone producing antibody specific for the nonstructural portion of PE2 were 

small, unless the antigenicity of the nonstructural portion was signifi-

cantly greater than the average. It is clear that in order to be 

successful with this approach either many more stable clones would have to 

be isolated, or some change in the approach made. The most straightforward 

change would be to increase our fusion efficiency (or survival rate of 

fused cells). Nowinski et al. (1979) obtained about a 10-fold higher rate 

of viable hybridoma production than we did from their fusions. Another 

approach would be to immunize the mice with purified E3, which is the 

N-terminal piece of PE2 (Rice and Strauss, 1981), and use ts-23 infected 

membranes for the plate binding assay. We tried this once, but lost the 

cells due to contamination (data not shown). A lack of more purified E3 

prevented a repeat of this experiment, but since that time we have purified 

sufficient quantities (2 mg) to be able to repeat this approach. 
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The seven clones producing E1 specific antibodies that were isolated 

can be easily separated into two classes, termed E1(a) and E1(b), that 

exhibit markedly different properties and bind to two different domains of 

E1. The five E1(a) clones (6-BG, 7-2C, 14-4C, 17-3C, 22-12C) produced 

antibodies that reacted with all three antigen preparations used in the 

plate binding test described in Fig. 3, were relatively effective at 

precipitating intact virions by immunoprecipitation and effectively 

competed with the binding of iodinated clone 6-BG IgG to viral proteins. 

Conversely, the two E1(b) clones (6-9E, 25-10F) produced antibodies that 

did not react with the Triton X-100 E1/E2 mixture used as an antigen on the 

plate binding assays described in Fig. 3, were very ineffective at 

precipitating intact virions, and did not compete effectively with 

clone 6-BG IgG for binding to viral proteins. Antibodies from E1(a) clones 

also were more effective than those from E1(b) clones at immunoprecipi

tating Triton X-100 or SDS solubilized viral proteins (Fig. 4), but this 

difference is less striking. 

The competition test using iodinated clone 6-BG IgG (Fig. 5) allowed 

us to demonstrate that the antibodies from the E1(a) and E1(b) groups bind 

to at least two different regions of antigenicity on E1. The assumption is 

that if the binding sites of two antibodies are sufficiently close to each 

other, the binding of one antibody will sterically hinder the binding of 

the other, whereas if the binding sites are separated, the antibodies will 

have little, if any, effect on each other. Stone and Nowinski (1980) found 

with monoclonal antibodies directed against murine leukemia virus proteins 

that each protein could be divided into a fairly limited number of these 

regions of antigenicity (2 for gp70 and 2 for p15(E)), and that these 
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groupings corresponded very closely with the ability of the antibodies to 

affect other properties of the protein. Our groupings based on the compe

tition experiment also matched up well with the other differences in 

properties that we found. We should note that antibodies from the two 

clones in the E1(b) group do not necessarily react with the same antigenic 

domain in E1. Although they share similar (but not identical) properties, 

we have not tested whether they compete with each other for binding to E1. 

The ~eactivity pattern of E1(b) antibodies, especially in Fig. 3, is 

very hard to explain. We expected the conformation of E1 in the 

Triton X-100 solubilized virus and the Triton X-100 solubilized E1/E2 

mixture to be identical, since the only difference was that the cores had 

been centrifuged out of the latter. We propose two possible explanations 

for this difference. First, it is possible that even in Triton solubilized 

virus there is some interaction between the viral capsid and envelope pro

teins such that the removal of capsid causes a change in conformation of E1 

or E2 to hide an antigenic site of E1. It has been previously shown (Rice 

and Strauss, 1982) that at least E1 and E2 form stable associations in 

Triton. Further purification of E1 could then reexpose that site, due to 

either the removal of E2 or the treatment with low pH (5.5) and a reducing 

agent which would remove any disulfide bonds. Although the ease by which 

these proteins can be separated in solution by pelleting the capsids argues 

against this explanation, it is possible that this interaction is weak, and 

only when reacting with a common surface (the plate) are these interactions 

stabilized. A more trivial explanation would be that an artifact was 

introduced into the E1/E2 preparation. Even if this is the case, the 
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difference between the two antigenic classes is presumably real, as the two 

groups react differently with the E1/E2 preparation, whatever its 

condition. 

Antibodies from clone 17-3C exhibits a very interesting, and poten

tially quite useful, property. Although its primary antigenicity is for 

E1(a), it coprecipitates some E2 in immunoprecipitation experiments with 

Triton solubilized, but not SDS solubilized (Fig. 4) virus. The most 

likely explanation for this phenomenon is that this antibody is able to 

bind to E1 without disrupting the dimeric E1/E2 complex. The separation of 

E1 from E2 by the other monoclonal antibodies, or by polyclonal antibodies, 

is presumably due to a competitive disruption of the E1/E2 interaction. 

These antibodies could prove very useful for studying the interaction 

between E1 and E2 (or PE2) during the course of viral glycoprotein matura

tion, assuming this cross reactivity is also present in E1/E2 complexes in 

infected cell membranes. 

Surprisingly, most of the E1 antibodies produced are more reactive to 

SDS solubilized E1 than to Triton X-100 solubilized E1, even though some of 

the clones (7-2C, 6-9E) were derived from mice immunized with Triton solu

bilized virus, and all the clones were selected using Triton solubilized 

antigens. This is possibly the case because SDS solubilized E1 is a better 

antigen than Triton solubilized E1, both in raising an immune response and 

reacting with antibodies. Clone 6-BG is the only clone which does not 

exhibit this tendency, its antibodies reacting about equally well with both 

preparations of antigens. 

When ascites fluids from the E1 specific clones were tested for their 

ability to inhibit virus infectivity that from only two of the clones (6-BG 
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and 17-3C) inhibited viral infectivity to any significant degree. Even 

these, at the higher antibody concentrations, inhibited infectivity 100-

1000-fold less effectively than Sindbis specific polyclonal antisera. Any 

inhibition was surprising, as previous results using monospecific poly

clonal antisera indicated that only E2 specific polyclonal antisera was 

able to inhibit infectivity (see Table 3 and Dalrymple et al., 1976). On 

the other hand, a recent report by Chanas et al. (1982) describes two 

hybridomas producing antibodies specific for Sindbis E1, one of which is 

able to inhibit viral infectivity. This inhibition may be an indirect 

effect caused by steric hindrance of the interaction of E2 with the cell 

membrane when the antibodies are complexed with E1. If only a limited 

number of exposed E2 molecules are needed for infectivity, and only a 

subset of the sites in the E1(a) domain will sterically hinder the acces

sibility of E2, then rabbit antisera to E1, by its polyclonal nature, will 

not effectively inhibit infectivity whereas some monoclonal antibodies 

will. In polyclonal antisera a significant fraction of the E1 molecules 

will have an antibody bound to their E1(a) domain that is ineffective at 

inhibiting infectivity, and this fraction of the molecules will allow 

infectivity. With a monoclonal antibody, if it binds to a site which will 

sterically hinder E2, all of the sites on the virus will be filled, and 

infectivity will be affected. Since the antibody is only indirectly 

blocking a neighboring protein, the steric effect may not be complete, 

leading to a residual low level of infectivity even when all of the sites 

are saturated, which is the result we observed. 

In several instances the monoclonal antibodies produced only weak 

effects when tested. In at least two of these instances (the competition 
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for binding between antibodies from clones 6-9E and 6-8G, and the inhibi

tion of infectivity by antibodies from clones 17-3C and 6-8G) the effect is 

probably due to inherent properties (such as avidity) of the antibody

antigen complex rather than a dilution effect. In both cases, the ability 

of the antibody to produce the observed effect varied only slightly over a 

100-1000-fold variation in concentration, implying that all of the anti

genic sites were essentially saturated at all the dilutions. 

The ~ntibodies from the three capsid specific hybridomas have not 

been extensively characterized. They were negative for inhibition of viral 

infectivity, competition with clone 6-8G IgG for binding to viral proteins, 

and precipitation of whole virus, as would be expected for a protein buried 

within the virion. 

The results presented above show the ability of monoclonal antibodies 

to elucidate and dissect the effects of individual antigenic determinants 

on viral properties, which are often masked when polyclonal antisera is 

used. Such probes may also prove useful in the future for investigating 

the events during viral maturation. 
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CHAPTER 4 

Comparison of the specificity and extent of glycosylation of 

Sindbis virus proteins produced in hamster and chicken cells 
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ABSTRACT 

The tryptic glycopeptides of the Sindbis virus envelope glycoproteins 

E1 and E2 grown in BHK and chick cells were purified by gel filtration 

followed by high pressure liquid chromatography. Each of the purified 

glycoproteins was analyzed by N-terminal sequencing to identify from which 

of the potential glycosylation sites it was derived. The identity of the 

type of oligosaccharide chain attached to each glycopeptide was determined 

from gel filtration analysis of the pronase digested glycopeptides, and the 

relative incorporation of radiolabeled galactose, mannose, and glucosamine 

into each glycopeptide was used to confirm these determinations. We found 

that the glycosylation pattern for the two proteins were essentially iden

tical in the two hosts. The E2 glycosylation sites at Asn196 and Asn 398 

contained exclusively complex type and simple type oligosaccharide chains 

respectively. In E1, the glycosylation site at Asn 135 contained only 

complex type chains, but the site at Asn 245 contained a mixture of simple 

(15-25%) and complex (75-85%) type chains. These results are compared to 

previous results and a prediction as to the relative importance of the 

different glycosylation sites to the function of the proteins is made. 
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INTRODUCTION 

The two Sindbis virus membrane glycoproteins (E1 and E2) are 

glycosylated in a manner similar to that of other membrane and secreted 

glycoproteins containing asparagine linked oligosaccharides (for review see 

Lennarz, 1980). A core oligosaccharide (Glc 1_3Man 8_12GlcNAc 2) is 

transferred in one step from a lipid linked intermediate to the nascent 

polypeptide chain (Sefton, 1977; Robbins~~., 1977). Some of the core 

mannose residues are trimmed while still in the endoplasmic reticulum and 

N-acetylglucosamine, galactose, fucose, and sialic acid are added in the 

Golgi apparatus (Robbins~~., 1977; Schachter and Roseman, 1980). The 

two classes of oligosaccharide chains that do or do not contain these 

terminal sugars are called complex type and simple type, respectively 

(Kornfeld and Kornfeld, 1980). 

These two Sindbis virus proteins each contain two potential glyco

sylation sites of the Asn-X-Ser/Thr type (Rice and Strauss, 1981). Several 

studies indicate that each protein contains oligosaccharide chains of both 

the simple (Man5_7GlcNAc 2) and complex (NANA0_2Gal 2Man3Fuc1GlcNAc4) types 

in approximately a 1:1 ratio (Sefton and Keegstra, 1974; Burke and 

Keegstra, 1979; Hakimi et al., 1981). The predominant complex and simple 

oligosaccharide chains of E2 have been tentatively assigned to position 196 

and 398, respectively (Rice and Strauss, 1981), but those of E1 have not 

been localized. 

When a variety of enveloped viruses, including Sindbis virus 

(Keegstra et al., 1975; Burke and Keegstra, 1976, 1979; Weitzman et al., 

1979), vesicular stomatitis virus (Etchison and Holland, 1974; Etchison 

et al., 1977), or retroviruses (Warren et al., 1972; Lai and 
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Duesberg, 1972; Sefton, 1976), are grown in several different cell lines 

only minor differences in their glycosylation patterns are detectable. 

These changes are largely due to differences in the number of sialic acid 

residues (Warren et al., 1972; Keegstra~ al., 1975; Burke and Keegstra, 

1979) or fucose residues (Etchison and Holland, 1974) rather than major 

changes in oligosaccharide structure. In contrast, different proteins 

within a given type of host cell each exhibit their own characteristic 

glycosylatf:tm pattern (Sefton, 1976; Weitzman et al., 1979). These results 

suggest that the protein itself, rather than the host cell, contains the 

information that determines its glycosylation pattern. If the host cell 

lacks the proper oligosaccharide processing capability however, the pro

tein's glycosylation pattern will be altered. For instance, Sindbis virus 

grown in lectin resistant cell lines, which lack a N-acetylglucosaminyl

transferase (Schlesinger et al., 1976), or in insect cells, which lack a 

sialyltransferase (Stollar et al., 1976), contain proteins with unusual 

oligosaccharide patterns that reflect the host cell's defect. 

Sindbis virus E1 offers a possible exception to the above rule. 

Burke and Keegstra (1976) have reported that when E1 is grown in BHK cells, 

but not chick cells, it is deficient in simple oligosaccharide chains. In 

contrast, Hakimi and Atkinson (1980) have reported that E1 grown in chick 

cells is also deficient in simple oligosaccharide chains, although to a 

lesser extent. We would like to resolve this difference. In this paper we 

investigate the extent of glycosylation and the nature of the oligo

saccharide chains added to the different glycosylation sites in E1 and 

E2. We compare the results obtained following infection of two host cells, 

BHK and chick. 
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MATERIALS AND METHODS 

Growth and Purification of Virus 

Virus was purified by polyethylene glycol precipitation, velocity 

sedimentation, and isopycnic density banding (Bell et al., 1979). Roller 

bottles of either BHK cells or primary chick embryo fibroblasts were 

infected with the HR strain of Sindbis virus (Burge and Pfefferkorn, 1966) 

at 20 plaque forming units per cell by the method of Pierce et al. (1974) 

except that at 1.5 hr post-infection Eagles minimal essential medium 

(Eagle, 1959) containing 3% dialyzed fetal calf serum was added. Bottles 

of infected cells were labeled with various radioactive sugars from 3 hr to 

15 hr post-infection. The virus used to produce the BHK grown glycopep

tides was grown in 28 roller bottles of BHK cells. Two of these roller 

bottles were labeled with 125 ~Ci [3H]-glucosamine and two with 20 ~Ci 

[ 14c]-galactose. That used to produce the chick cell grown E1 glyco

peptides was a mixture of 30-40 roller bottles of previously polyethylene 

glycol precipitated and frozen virus and 5 roller bottles of labeled virus 

(1 roller bottle containing 160 ~Ci [3H]-mannose, 2 roller bottles con

taining 150 ~Ci [ 3H]-glucosamine, and 2 roller bottles containing 35 ~Ci 

[ 14c]-galactose). Finally, that used to produce chick cell grown E2 

glycopeptides was a mixture of 30-40 roller bottles of the frozen virus and 

4 roller bottles labeled with a combination of labels (470 ~Ci [3HJ

mannose, 175 ~Ci [ 3H]-glucosamine and 375 ~Ci [ 14c]-glucosamine. 

Purification of Envelope Proteins and Their Glycopeptides 

Virions purified by isopycnic density centrifugation were solubilized 

with Triton X-100 and the nucleocapsids removed by centrifugation. The two 

glycoproteins were then separated from one another via a glass wool column 
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as described by Bell et al. (1979). After ethanol precipitation the puri

fied proteins were resuspended in 8 ~ urea, 0. 5~~ SDS, 0.2 ~ Tr is buffer, 

pH 8.0 and reduced and acetylated by sequential treatment with 20 mM 

di thiothrei tal for 60 min at 37 °C, 50 m~ ICH2CDNH2 for 30 min at 25 °C, and 

30 mM dithiothreitol for 15 min at 37°C (all steps in a N2 atmosphere). 

After two rounds of ethanol precipitation to remove the urea the samples 

were exhaustively digested with TPCK treated trypsin (Worthington). The 

peptides frbm the trypsin digests were separated on Biogel-P10 columns 

followed by reverse phase high pressure liquid chromatography (HPLC) 

columns as described in Figs. 1 and 2. The pooled HPLC peaks were dialyzed 

at 4°C against 100 mM NH 2Hco 3 and lyophilized. Aliquots of these samples 

were analyzed by either pronase digestion or N-terminal sequencing to 

determine the type of oligosaccharide attached to the peptide and the site 

of attachment. 

In two cases the pooled peaks contained a mixture of two peptides. 

In these cases a Concanavalin A-Sepharose column (250 ~1 bed volume) was 

used to effectively separate the two peptides (Cummings and Kornfeld, 1982; 

Kornfeld et al., 1981). The two peaks from these columns were dialyzed and 

lyophilized as before and used for N-terminal sequencing and pronase 

digestion. 

Analysis of Proteins and Glycopeptides by Pronase Digestion 

Aliquots of the purified glycopeptides or labeled standards (chick 

cell grown E1 or E2, or a BHK cell grown E1 plus E2 mixture) were mixed 

with 200 ~g unlabeled virus and resuspended in 300 ~1 100 mM Tris buffer, 

pH 8. 0, 10 mM CaC12• The samples were digested for 48 hr at 60 °C, with 

25 ~1 aliquots of 10 mg/ml pronase (predigested for 2 hr at 37°C) added to 
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each sample at 0, 12, 24, and 36 hr. The sample was layered onto a Biogel 

P-4 column (1cm x 120cm) equilibrated in 100 mM Tris buffer, pH 8.0, 0.02% 

NaN3 , containing 200 ~g/ml bovine serum albumin (trypsin digested) as a 

carrier. Ten drop (0.4 ml) fractions were collected and counted by liquid 

scintillation. The patterns of radioactivity were compared with the 

standards, which were either mixed with the sample before digestion or 

digested in parallel and analyzed on the column immediately before or after 

the sample~. 

N-terminal Sequencing of Purified Glycopeptides 

Aliquots of the purified glycopeptides were subjected to automatic 

Edman degradation on a non-commercial gas phase sequencer (Hewick et ~., 

1981). The phenylthiohydantoin amino acid derivatives were analyzed by a 

modification of the reversed phase high pressure liquid chromatographic 

procedure previously described (Johnson et ~., 1979), quantitated by 

comparison to a standard mixture, and the yields normalized to an injection 

of 100% of the sample. 

RESULTS 

Labeling Studies on BHK and Chick Cell Grown E1 and E2 

Fig. 1 shows the pronase digestion patterns of the simple and complex 

type oligosaccharides ~r E1 and E2 grown in either BHK or chick cells. 

Pronase digestion followed by column chromatography on Biogel P-6 is often 

used to analyze the glycosylation of Sindbis virus glycoproteins. The 

glycoproteins show a characteristic pattern including three galactose 

containing peaks that represent complex-type oligosaccharide chains con

taining zero, one, and two sialic acid residues, and a broad peak that does 
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not contain galactose that represents the heterogeneous simple-type chains 

found in Sindbis virus (Burke and Keegstra, 1976, 1979) A Biogel P-4 

column was used to analyze these patterns, rather than a P-6 column as used 

by others, because in our hands the P-4 column gave significantly better 

resolution than the P-6 column. Good separation of the simple and complex 

peaks was obtained except for a small galactose labeled peak in some of our 

chick cell preparations (Fig. 1, panels B and D) which migrated at the 

leading (left hand) edge of the simple peak. This was not one of the three 

standard complex peaks, but a previously uncharacterized peak. The pronase 

patterns from other laboratories (Hakimi and Atkinson, 1980; Burke and 

Keegstra, 1976) also exhibit this small peak, but its analysis has been 

neglected. Because the emphasis of this paper is not oligosaccharide 

structure, we will not further characterize it. 

Next, radioactively labeled E1 or E2 from BHK and chick cells were 

mixed, digested with pronase, and analyzed on P-4 columns (Fig. 2). The 

patterns are very similar (except for the peak in chick cell E2 as men

tioned above). As reported previously (Burke and Keegstra, 1976), the 

glycoproteins from BHK cells contain a larger percentage than chick cells 

of the large complex type oligosaccharides containing two sialic acid 

residues. 

Since the compositions of the simple and complex oligosaccharide 

chains of E1 and E2 are known (Burke and Keegstra, 1979; Hakimi et al. 

1981), we were able to make estimates of the relative amounts of each in E1 

and l2 by quantitation of the radioactivity in Figs. 1 and 2 (see 

Table 1). The results indicate that although there is some under

representation of simple oligosaccharide chains in E1, it is not the 
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FIG. 1. Identification of the simple type and complex type oligosaccharide 

chains of E1 and E2. Mixes of [ 14c]-galactose and [ 3H]-mannose or [ 3H]

glucosamine E1 or E2 were digested with pronase and analyzed on Biogel P-4 

columns as described in Materials and Methods. Panel A: BHK cell grown 

E1. [14c]-galactose plus [3H]-glucosamine labeled proteins. Panel B: 

Chick cell grown E1. [ 14c]-galactose plus [ 3H]-mannose labeled proteins. 

Panel C: BHK cell grown E2. [14c]-galactose and [ 3H]-glucosamine labeled 

proteins. fanel D: Chick cell grown E2. [ 14c]-galactose and [ 3H]-mannose 

labeled proteins. (,.--): (14c]-galactose label. ): [ 3H]-mannose or 

[ 3H]-glucosamine label. The three vertical lines near the top of each 

panel indicate the three standard complex oligosaccharide peaks, and the 

horizontal bar indicates the broad simple oligosaccharide peak. Vertical 

lines under this horizontal bar mark the major peaks within the simple 

peak. The unusually small complex peak within the simple pattern is not 

marked. 
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FIG. 2. Comparison of the pronase digestion patterns of the envelope 

proteins from virus grown in BHK cells and chick cells. [ 3H]-glucosamine 

labeled BHK grown proteins were mixed with [ 14c]-glucosamine labeled chick 

cell grown proteins before digestion. Pronase digestions and gel filtra

tion on Biogel P-4 were done as described in Materials and Methods. 

Panel A: Comparison of E1s. Panel B: Comparison of E2s. ( ----): 

[ 14c]-glucosamine label. (-----): [ 3H]-glucosamine label. 
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Table 1 

Molar Ratios of Simple and Complex Type Oligosaccharidea 

Chains in E1 and E2 

Host Cell/Protein Figure 

BHK/E.;l 2A 

BHK/E1 1A 

CEF/E1 2A 

CEF/E1 1B 

BHK/E2 2B 

BHK/E2 1C 

CEF/E2 2B 

CEF/E2 1D 

Sugar 

Labeled 

Glucosamine 

Glucosamine 

Glucosamine 

Mannose 

Glucosamine 

Glucosamine 

Glucosamine 

Mannose 

Molar Ratio 

(Simple/Complex) 

0.63 

0.71 

0.98 

0.72 

0.69 

0.87 

1.00-1.28 b 

0.71-0.81 b 

aCalculated from the pronase digest patterns in Figs. 1 and 2. The 

radioactivity in the simple and complex peaks were summed and corrected for 

the number of the labeled sugars in the known predominant oligosaccharide 

structures. Complex (E1+E2): NANA0_2Gal 2Man 3Fuc 1GlcNAc4 • Simple (E1): 

Man5GlcNAc 2• Simple (E2): Man7GlcNAc 2 (Burke and Keegstra, 1979; Hakimi 

et al • , 1981 ) • 

bchick cell grown E1 contained enough of the small galactose labeled 

oligosaccharide comigrating with the simple peak to complicate the 

quantitation. The numbers given are obtained by ignoring it totally, or 

including it in the simple peak, respectively. 
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dramatic result seen by Burke and Keegstra (1976), and it varies somewhat 

from preparation to preparation. The results also indicate that there may 

be some underrepresentation of simple oligosaccharide chains in E2, which 

also varies with the preparation. 

Purification of E1 and E2 Glycopeptides Grown in BHK and Chick Cells 

Radiochemically pure individual tryptic glycopeptides of E1 and E2 

were obtained using a purification scheme involving Biogel P-10 column 

chromatography followed by reversed phase high pressure liquid chroma

tography. This purification scheme generally was sufficient to obtain 

preparations containing only one labeled glycopeptide plus at most one to 

two unglycosylated tryptic peptides. Both the Biogel P-10 columns (Fig. 3) 

and the HPLCs (Fig. 4) were necessary for clean separation. The P-10 

column by itself gives insufficient separation of tryptic peptides. In 

addition, many of the nonglycosylated tryptic peptides migrate in the same 

regions of the column (data not shown). Although the HPLC gives sharp 

peaks, in many cases peptides eluting in different regions of the P-10 

column elute from the HPLC at identical fraction numbers, and they often 

turned out to be different peptides (i.e., BHK/E2/2A and BHK/E2/4B2 , see 

Table 3 for nomenclature description). In two instances (BHK/E2/3A and 

BHK/E2/4B) the resulting samples from this purification were still a mix of 

two glycopeptides. In these cases, a concanavalin A-Sepharose column was 

used to cleanly separate the two peptides (data not shown). The recovery 

from each time the samples were manipulated was 80-90%. Although this was 

quite good, the extensive manipulations of the sample during purification 

meant that the final recovery was a small percentage of the starting 

material (10-20%). 
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FIG. 3. Gel filtration (Biogel P-10) separation of tryptic glycopep

tides. Trypsin digested envelope proteins (E1 or E2) grown in either BHK 

cells or chick cells were passed through a 1 em x 120 em Biogel P-10 column 

equilibrated in 100 m~ NH4Hco3• Aliquots of the 20 drop (BOO ~1) fractions 

were counted by liquid scintillation and peaks were pooled. Horizontal 

bars mark the fractions pooled, and the numbers above the bars correspond 

to a portion of the full peptide name as defined in Table 3. The numbers 

down the laft portion of each panel represent CPM x 10-2• The arrows 

marked V
0 

and Vi represent the excluded and included volumes of the column 

as monitored by blue dextran and phenol red, respectively. Panel A: BHK 

cell grown E1 labeled with [3H]-glucosamine and [14c]-galactose. 

Panel B: Chick cell grown E1 labeled with [ 3H]-mannose, [ 3H]-glucosamine, 

and [14c]-galactose. Panel C: BHK cell grown E2 labeled with [ 3H]

glucosamine and [ 14c]-galactose. Panel D: Chick cell grown E2 labeled 

with [3H]-mannose, [ 3H]-glucosamine, and [14c]-glucosamine. 
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FIG. 4. HPLC separation of tryptic glycopeptides. Pooled peaks from 

Biogel P-10 columns (Fig. 3) were lyophilized and resuspended in 75-100 ~1 

of perchlorate buffer (100 mM sodium perchlorate, 0.1% concentrated 

phosphoric acid). The sample was loaded onto an IBM-Cyano reverse phase 

high pressure liquid chromatograph equilibrated in perchlorate buffer and 

eluted off at 1 ml/min with a linear gradient going from 0-35% acetonitrile 

(in perchlorate buffer) between 10 and 70 min after injection. Aliquots of 

the fracti~s were counted and the peaks pooled for analysis (horizontal 

bars). The numbers and letters across the top and right-hand sides of the 

figure and the letters above the bars correspond to portions of the full 

peptide name as defined in Table 3. Panels A-C: BHK cells grown E1. 

Panels D-F: Chick cell grown E1. Panels G-J: BHK cell grown EZ. 

Panels K-M: Chick cell grown EZ. 



156 

BHK/E1 CEF/E1 BHK/E2 CEF/E2 
A D 

~ 
G K 

~ 10 10 A 10 .... 

A 
8 

1 
A 5 5 5 1---t 

4 

0 

B E H L 
2 20 3 A 3 

£ B --B A 
~ 2 2 .... 2 A B 

H ....... 
10 

1 

A 
H 

0 0 

N c 
I 

F M 
0 A 20 ...- A ->< 8 

::51 
4 

:E ~ A 
3 a. ..... 

(.) 1.0 
B 

10 
4 ... 2 

0 0 0 
0 40 80 0 40 80 J 0 40 80 

4 B ..... 

A 4 
2 

40 80 

FRACTION NUMBER 



157 

Analysis of Purified Glycopeptides 

Each of the purified glycopeptides was analyzed by N-terminal 

sequencing, and its pronase digestion pattern on Biogel P-4 and [3H]:[14c] 

ratio were examined. The N-terminal sequence of each peptide was compared 

with the sequence around the two potential glycosylation sites in each 

protein (Table 2) in order to identify which site it contained, and the 

results are summarized in Table 3. We were able to routinely detect 

5-10 picomo~ es of sample, and in one case were able to identify a glyco

peptide on the basis of 1.7 picomoles of sample. The sequence data was 

carefully examined for the presence of residues corresponding to the other 

glycopeptide. Contamination by greater than about 1.0 picomoles of this 

sequence should have been detectable. Thus, a glycopeptide sequence 

detected at the level of 10 picomoles contains less than 10% of the other 

glycopeptide. It should be noted that the arginine at position 249 in E1 

should be resistant to tryptic cleavage due to the proline at position 250 

(M. Hunkapiller, personal communication). The sequence of three of the 

peptides (BHK/E1/2A, BHK/E1/3A, and CEF/E1/3A) did not go past this site, 

implying that in these cases at least, the Arg-Pro bond was in fact 

cleaved. The other glycopeptides containing this site (BHK/E1/1A), 

BHK/E1/2B, and CEF/E1/2B) were not cleaved at this bond. 

The Biogel P-4 column elution pattern of each of the pronase digested 

glycopeptides was compared with a standard pattern (see Fig. 1 and 2) in 

order to determine the class of oligosaccharide chain attached to each one 

(Fig. 5). Although the pooled HPLC peaks were very sharp, the Biogel P-4 

analysis after pronase digestion often exhibited broad, multipeaked 

patterns. These patterns often look very similar to the patterns for 
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TABLE 2 

Sequence of Tryptic Peptides Containing the Potential 

Glycosylation Sites of Sindbis Virus E1 and E2a 

Protein Site 

E1 1 

E1 2 

E2 1 

E2 2 

aFrom Rice and Strauss (1981). 

Seguenceb 

••• GLR/IVYG~TTSFDVYVNGVTPGTSK/DL ••• 
I 

135 

••• WK/~NSGR/PLQETAPFGCK/IAV ••• 
I 

245 

••• SGK/~ITYECK/CGD ••• 
I 

196 

••• TVR/~FTVDR/DGL 
I 

398 

bThe single letter amino acid code is used: A=ala, C=cys, D=asp, E=glu, 

F=phe, G=gly, H=his, I=ile, K=lys, L=leu, M=met, N=asn, P=pro, Q=gln, 

R=arg, S=ser, T=thr, V=val, W=trp, Y=tyr. The first amino acid of the 

peptide containing the potential glycosylation site is numbered relative to 

the N-terminus of the protein. *=potential glycosylation site. 

/=potential tryptic cleavage site around the glycosylation site. The 

potential cleavage site after position 249 in E1 is partially resistant to 

cleavage due to the proline that follows it. 
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TABLE 3 

Summary of Analysis of Purifieq Glycopeptides 

T~ee of Carboh~drate Quantity 

Pr-onase Ratio of Con A Glycosylation Detectedf Total 9 

Peptide a Digestb Labelsc Columnd Sitee (pmoles) (nmoles) 

BHK/E1/1A c c 2 7<N246) 0.16 

BHK/E1/1B c c 62(1135) 3.59 

BHK/E1/2A * c 2h 8(N246/G248)i 0.39 

BHK/E1/2B s s 2 11(G248) 1.16 

BHK/E1/3A s s 2h 9(G248) 0.78 

CEF /E1 /1 A Lost c (2)j (0.22)k 

CEF/E1/1B c c 1 20(V136) 4.02 

CEF/E1/2A * c (2)j 0 co.o5)k 

CEF/E1/2B s s 2 13(N246) 1.22 

CEF/E1/3A s s 2h 8.3(N246) 0.48 

CEF/E1/3B * s 

BHK/E2/1A c c 90 0197) 4.92 

BHK/E2/2A c c 14(E2oo) 2.52 

BHK/E2/3A1 c c c 16(1197) 1 0 23 

BHK/E2/3A2 s s s 2 12(F399) 0.92 

BHK/E2/4A s s 2 65(F399) 1. 72 

BHK/E2/4B1 c c c 40(1197) 1 .01 

BHK/E2/4B2 s s s 2 118(F399 ) 2.97 

CEF/E2/1A c c 30 (1197) 
5.70 

CEF/E2/2A c c 0.37 

CEF/E2/2B c c 4<E2oo) 
CEF/E2/2C c c 1 1.7(E2oo) 0.13 

CEF/E2/3A s s 2 38(F399) 8.57 
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Table J (continued) 

aThe peptide name identifies the source and purification history of the 

peptide. The first and second parts identify the host cell and protein, 

respectively. The third portion identifies the purification history of the 

protein. The number refers to the pooled peak from the Biogel P-10 column 

used to separate tryptic peptides, and the letter refers to the pooled peak 

from the HPLC used to further separate these Biogel P-10 peaks. When a 

Concanavalin A column was needed to further separate peptides (BHK/E2 only) 

a subscript 1 or 2 was used to identify the peak eluting with a

methylglucoside (complex carbohydrates) or a-methylmannopyranoside (simple 

carbohydrates) respectively. This identification system is used throughout 

this paper. 

bPronase digests of the tryptic peptides (Fig. 3) were compared with the 

known typical patterns for simple or complex type oligosaccharides. In the 

case where the patterns were atypical and could not be assigned, an 

asterisk (*) is used. 

cAliquots of the final preparations of each peptide were counted by liquid 

scintillation and the [ 14c]:[ 3H] ratios were calculated. Using our 

knowledge of the radioactive sugar labels used and the known structures of 

simple and complex oligosaccharide chains (Burke and Keegstra, 1979; Hakimi 

et al., 1981) the identity of the type of oligosaccharide was determined. 

din two cases a Concanavalin A column was needed to separate two species 

from a single HPLC peak. The resulting peaks were assigned as simple or 

complex both by their [ 3H]:[ 14cJ ratio and by the previously reported 

ability of a-methylglucoside and a-methylmannopyranoside to elute complex 

and simple type oligosaccharides, respectively (Cummings and Kornfeld, 1982). 
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Table 3 (continued) 

eThe site of glycosylation was determined by comparing the amino acid 

sequencing results with the complete protein sequence as determined by Rice 

and Strauss (1981). The sequences in the vicinity of the potential glyco

sylation sites in E1 and E2 are shown in Table 2. 

fQuantitation was determined by measuring peak heights of phenyl

thiohydant~in amino acid derivatives of selected residues and comparing 

them with a known quantity of a standard mix of phenylthiohydantoin deriva

tives. The residue used for the quantitation is shown in parentheses. The 

quantitation is accurate only to about a factor of two. 

gTotal quantity of the glycopeptides extrapolated back to starting material 

(pure E1 or E2). Thus is done by correcting the quantity of sequence 

obtained (previous column) for the percentage of the sample loaded and cor

recting for a repetitive yield of 94%. Then this quantity was corrected 

for the loss of radioactivity through each of the purification steps 

used. Differential losses at steps where more than one peptide were 

together cannot be corrected for. 

hsequenceable only through the Arg249 , implying an Arg-Pro cleavage. 

iAverage of the two residues shown. 

jNo sequence data was available for these. The glycosylation site was 

inferred from their elution position from the HPLC column (see text). 

kThese quantitations were determined by comparing the radioactivity in 

these samples to that in CEF/E1/1B. The assumption is that each of the 

complex chains should label approximately equally. 
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FIG. 5. Pronase digestion patterns of purified glycopeptides. Samples 

were digested and chromatographed as described in Materials and Methods, 

and the nomenclature for the glycopeptides is that described in Table 3. 

The positions of peaks from the standard patterns are indicated in the 

upper portion of each panel. The three vertical lines represent the three 

complex oligosaccharide peaks, and the horizontal bar represents the broad 

simple oligosaccharide peak typically seen. Vertical lines under this 

horizontal bar mark the major (and in some cases the minor) peaks within 

the simple peak pattern (see Figs. 1 and 2 for examples). Panels A-E: BHK 

cell grown E1. Panels F-J: Chick cell grown E1. Panels K-Q: BHK cell 

grown E2. Panels R-V: Chick cell grown E2. 
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complex or simple oligosaccharide chains seen with pronase digests of the 

complete proteins (see Figs. 1 and 2). Thus it appears that the elution 

point of the glycopeptide from the HPLC is predominantly determined by the 

protein component, particularly in the case of E1. Each of the three 

different types of protein backbone from E1 (site 1, site 2 cleaved after 

Arg249 , and site 2 cleaved after Lys260) have a characteristic elution 

point on the HPLC. For example, in several cases where the glycosylation 

patterns differ, but the protein backbone is the same (i.e., BHK/E1/1A and 

BHK/E1/2B), the peptides elute identically on the HPLC (Fig. 4) 

(glycopeptide CEF/E1/3B has an unusual HPLC elution point because in this 

case, the gradient of hydrophobic buffer malfunctioned slightly during the 

run). If this pattern is reproducible, the glycosylation sites for 

CEF/E1/1A and CEF/E1/2A (peptides for which no sequence data was obtained) 

can be inferred to be site 2 in both cases. Further circumstantial evi

dence that this is probably the case can be seen by noting the close 

similarities between respective peaks of BHK/E1 and CEF/E1 at all steps of 

the purification and analysis. Therefore peptide CEF/E1/1A and CEF/E1/2A 

should correspond to peptide BHK/E1/1A and BHK/E1/2A, respectively. 

In the case of E2, the situation is more complicated. Since the 

protein portions of the oligopeptides are smaller and more similar to each 

other in size than those in E1 the elution times from the HPLC are all 

relatively similar and seem to be determined by a complex combination of 

the oligosaccharide chain and the peptide. In this case the complex 

oligosaccharide patterns seen in Fig. 5 are only subsets of the complete 

patterns. This is due to the cuts made when pooling the incompletely 

separated P-10 peaks (see Fig. 3). The pattern is further complicated by 
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the small fourth complex peak, which appears in several of the complex 

patterns (i.e., CEF/E2/2A-2C and BHK/E2/3A1). The pronase pattern of the 

isolated peptides also enable us to detect this peptide in the BHK cell 

grown E2 (BHK/E2/3A1), although to a much lesser extent. 

We also found several peptides with oligosaccharide chains that did 

not fit the standard pattern. An oligosaccharide chain that was labeled 

with galactose but did not comigrate with any of the standard complex peaks 

was found ih both chick and BHK cell E1 (CEF/E1/2A and BHK/E1/2A). In 

addition an unusual small simple oligosaccharide chain was found in chick 

cell E1 (CEF/E1/3B). In all three cases, these unusual oligosaccharides 

were minor portions of the total peptides and will not be further 

discussed. 

Finally, the ratios of [3H]:[ 14cJ were used to independently identify 

the peptides as simple or complex (summarized in Table 3). In all of the 

cases, these results were consistent with the results determined by pronase 

digest patterns. In the case of the three atypical pronase digest patterns 

seen, these ratios were used to determine that the two glycopeptides that 

were approximately the size of typical complex chains (BHK/E1/2A and 

CEF/E1/2A) had a complex chain as they contain [14c]-galactose, whereas the 

small glycopeptide (CEF/E1/3B) had a simple chain as it did not contain 

[ 14c]-galactose. 

In E2, all of the complex type oligosaccharide chains are attached to 

site 1 (Asn 196) and all of the simple type chains are attached to site 2 

(Asn398 ) (Table 3). The glycosylation pattern of E1 is more variable. 

Site 1 (Asn135 ) contains only complex type chains, but site 2 (Asn245 ) 

contains a mix of complex and simple chains. In BHK cells, 10-15% of the 
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complex carbohydrate is attached to site 2 (20-25% of the total oligo

saccharide attached at that site). For E1 from chick cells we find that 

about 6% of the complex carbohydrate is attached to site 2 (about 15% of 

the total oligosaccharide attached to that site). Thus the two host cells 

glycosylate the glycoproteins in a nearly identical fashion within the 

limitations of our quantitation. 

Table 4 summarizes the ratios of nanomoles of site 2 to that of 

site 1. T~ error in these quantities are too large to determine whether 

there are significant differences in the glycosylation of site 1 and site 2 

in the different cases. If there is any trend, it is that E1 in both cell 

systems is somewhat underglycosylated. 

DISCUSSION 

The Sindbis virus envelope glycoproteins seem to be glycosylated in a 

quite specific way. The predominant species of complex and simple oligo

saccharide chains in E2 have been assigned to the first (Asn 196 ) and second 

(Asn398 ) glycosylation sites respectively (Rice and Strauss, 1981; see also 

Burke and Keegstra, 1979). We have confirmed and extended this result 

using a method that should detect even minor variations in the patterns, 

and have not detected any exceptions. In the case of E1, conflicting 

reports about its glycosylation have appeared. Burke and Keegstra (1976) 

reported that E1 grown in BHK cells, but not chick cells, is drastically 

underrepresented in simple oligosaccharides, whereas Hakimi and Atkinson 

(1980) reported that E1 grown in chick cells is also deficient in simple 

chains, although to a more moderate degree. We have found that the glyco

sylation patterns in both host cells are essentially identical, and that in 

both cases simple chains are underrepresented. In both cases site 1 
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Table 4 

Ratio of Nanomoles of Glycosylated Site 2 to Glycosylated Site 1a 

Protein 

BHK/E1 

CEF /E1 

BHK/E2 

CEF/E2 

in Starting Material 

Ratio (Site 2:Site 1) 

0.69 

0.42 (0.49)b 

0.58 

1. 38 

aThe number of nanomoles of site 1 or site 2 for a given protein (Table 3, 

last column) are summed and the ratios of site 1:site 2 determined. 

bThe numbers in parentheses include the quantitation arrived at by indirect 

means (see Table 3, footnotes j and k and text). 
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(Asn135 ) contains only complex chains, whereas site 2 (Asn245 ) contains 

predominantly simple chains, but also a small proportion (15-25%) of 

complex chains. Therefore, the presence of complex oligosaccharides at 

site 2 accounts for at least part of the underrepresentation of simple 

chains in E1. The quantitation suggests that site 2 may also be 

underglycosylated. 

It is interesting to note that in the closely related Semliki Forest 

virus (Gara[f et al., 1980) and Ross River virus (Dalgarno et al., 1983) 

the second E1 glycosylation site is missing. The single glycosylation site 

in each of these viruses (Asn141 in both Semliki Forest virus and Ross 

River virus) contains a complex chain (Matilla ~ al., 1976; Pesonen, 1979; 

Dalgarno et al., 1983) and is found at almost the identical position as the 

first site in Sindbis virus (Asn 135 ), which also contains a complex 

chain. On the other hand, the E2 in both viruses contains two glycosyla

tion sites (Asn 200 and Asn 262 in both Semliki Forest virus and Ross River 

virus), as does Sindbis virus. At least for Semliki Forest virus, E2 

contains both complex and simple chains, although it is not known where 

these chains are attached (Matilla et al., 1976; Pesonen, 1979). The 

position of the first, but not the second, of these glycosylation sites is 

closely conserved across these three viral systems. 

We would predict from our data, and that of others in Sindbis virus, 

Semliki Forest virus, and Ross River virus, that the glycosylation at the 

first site in both E1 and E2 is quite important for proper protein matura

tion or function, as their locations and glycosylation patterns are con

served across a wide range of hosts and viruses. In contrast, glycosyla

tion at the second site in E1 should be of little or no importance, as the 
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glycosylation pattern seems to be nonspecific and highly variable and the 

site itself is missing in closely related viruses. The case of the second 

glycosylation site in E2 is less clear. Although the pattern of glycosyla

tion in E2, and therefore probably also the pattern at the second site in 

E2, is conserved throughout a wide range of hosts (Burke and Keegstra, 

1976, 1979; Keegstra et ~., 1975; Weitzman~~., 1979; Hakimi and 

Atkinson, 1980), its precise position in the molecule is not crucial, as 

can be se~, by its divergent positions in Sindbis virus, Semliki Forest 

virus and Ross River virus. 

The testing of this prediction must wait for a more detailed under

standing of the precise function of the two envelope glycoproteins in the 

viral infection cycle, and the identification of the importance of par

ticular protein domains to their function. 
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