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Abstract

Nucleon structure functions have been extracted from a large sample of neutrino and
anti-neutrino inclusive charged-current events. These data were obtained over the period from

June, 1979 through January, 1980, using the Lab E detector in the N30 dichromatic beam at
Fermilab (experiment E616).

The use of the narrow-band beam made possible flux normalized cross section and
structure function measurements. Neutrinos were obtained from sign and momentum selected
pions and kaons produced from 400GeV primary protons. Details of the methods used to
monitor and determine properties of the secondary beam are provided. The flux of neutrinos
at the detector was calculated from this knowledge.

The Lab E-detector performed the function of neutrino target, as well as measuring
final state properties of the events. Hadron energy was measured using calorimetry. Spark
chambers interspersed throughout the target and following toroidal spectrometer were used to
sample the position of the outgoing muon. From these measurements, the muon angle and
momentum could be determined. The procedure used for reconstructing physics variables from
detector measurements is presented with estimates of systematic errors.

The methods used to extract structure functions from the data are detailed. An
analysis of sources of systematic error on these results is made. A comparison of our results
for Fy is made with other measurements from both neutrino and charged lepton scattiering.
Differences in overall normalization and in the z dependence of the structure function are found.
The mean square quark charge rule from the quark-parton model is confirmed at the 10%
level. Quantum Chromodynamics (QCD) predicts a pattern of scaling violations in F which
is observed in our results. This has been quantified by making fits to the data using numerical
integration of the Altarelli-Parisi equations. The value of AMS-, the QCD scale parameter, is
found to be 3404 1004 60MeV with an additional uncertainty of 4-50MeV due to the unknown
form of the gluon distribution.
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Chapter 1
Introduction

Herein is described a scattering experiment in the tradition of Rutherford's probing of
atomic structure with alpha particles: the determination of nucleon structure through neutrino
deep-inelastic scattering. The neutrino, interacting via the weak force, scatters off constituent
partons of the nucleon, providing information both about the nature and properties of those
constituents, and the forces which hold the nucleon together. We treat the neutrino probe as
a known quantity, and analyze the scattering data in terms of the leading theory of nucleon
structure, Quantum Chromodynamics (QCD). Quarks and gluons are not directly observable,
but this experiment provides a means of making basic tests of the consequences of their
existence.

1.1 The Neutrino and the Weak Force

In 1931 Pauli hypothesized [Pa33] the existence of a near massless neutral half-integral
spin object, later called the neutrino, to explain the apparent violation in nuclear f-decay of
the fundamental conservation laws of energy and angular momentum. However, it was not
until 1956 that a neutral member of the lepton family (7,) was actually observed [Re59] in
interactions with matter. Implementing ideas of Pontecorvo [Po59] and Schwartz [Sc60], the
first neutrino beams were built at the AGS at Brookhaven (1961) and the PS at CERN (1963)
[Pe69]. The weak interaction could then be studied at high energies and Q2.

Like these original efforts, the present neutrino beams at Fermilab and the SPS at
CERN are obtained from the weak decay of pions and kaons. The difficulty has always been
in determining neutrino flux. The high energy, momentum selected (narrow-band) beam used
in this experiment, with its sophisticated monitoring systems, represents a culmination to date
of efforts to minimize systematic errors in determining fluxes. In parallel, the bubble chambers
and simple counter detectors of the first experiments have evolved into large volume, precision
detectors, such as that located in Lab E.

Assumptions are made about the properties of the neutrino probe and the description
of its interaction with matter, consistent with present world data. As a neutral spin 4 lepton,
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the neutrino partakes of neither the strong nor the electromagnetic forces in interacting with
matter. The experimental evidence at present indicates that the three types of charged lepton
(e~,u—,77) and associated neutrino (v.,v,,v,), are distinguished by three separately con-
served, additive conservation numbers, (L, Ly, L;) [Co73]. Neutrino rest masses are known to
be less than 46 eV /c?, 520 keV /c® and 250 MeV /c? respectively for the v, v, and v, [Ro82).

The limit on muon neutrino mass is well below the point where it could kinematically
affect charged current scattering results. However, finite neutrino masses, coupled with a viola-
tion of lepton number conservation, could result in spontaneous transitions of muon neutrinos
into neutrinos of another type [Po67]. These transitions would cause the superposition of a
characteristic oscillatory behavior on the normal dichromatic flux spectrum. No compelling
evidence exists for such a phenomenon at the neutrino energies and distance to source involved
in this experiment [Ha83]. Therefore, neutrino oscillations are not considered in this analysis.

Soon after Pauli proposed the existence of the neutrino, Fermi [Fe34] suggested, in
analogy with QED, an empirical form of the weak lagrangian to describe f-decay:

G
Lw = —jk Je (1.1)
w \/_2_111

where the two currents, j, and j}_,, can be written in terms of fields, ¥:

Je= ?e'Ta'pu.
.71{ = 1/’,,%% (1.2)

The prediction [Le56] and discovery [Wu57] of parity violation in weak interactions led to a
more general form of the lagrangian, containing both scalar and pseudo-scalar products of
currents [Fe58]. The lepton currents took on the familiar (V-A) form:

Je = .'d_’g"fa(l + '75)’#1/.
Je =L+, (1.3)

The hadronic current, reflecting the complicated structure of the nucleon, was written as a
linear combination of vector and axial-vector terms:

i =Vh+ AL =9,7° (1 + v’ (14)
The operators a(@) = (1 + 7°) project out left-handed (positive helicity), and right-handed
(negative helicity) neutrinos and anti-neutrinos respectively. The form of the lagrangian sum-
marizes the observed feature of the weak interactions, namely that to the extent that lepton
masses can be neglected, only left-handed fermions and right-handed anti-fermions interact.

The analogy with QED is completed by the current standard theory of weak inter-
actions, due to Weinberg and Salam [We67,5a68]. The weak and electromagnetic forces are
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mediated by four vector bosons, W£, W° and B°. The underlying SU(2)x U(1) symmetry
is spontaneously broken, resulting in the three massive vector bosons (W=£,Z°) of the weak
interaction and the massless photon. The (V-A) character of the charged current is preserved
in the theory. The only modification to the pointlike behavior expressed in equation 1.1 is to
include the propagator effect. The coupling becomes G = G /(1 + @2%/My)?, where Myy is
the mass of the exchanged boson.

Consider first the scattering process, v, e~ —pu~v, , as a prototype of the weak
interaction. Let (k,&') and (p,p’) be the initial and final state four-vectors of the (v, x) and
(e, V) respectively. From the weak lagrangian (1.1), the cross section can be shown to be:

do*ve _ G° E Ly
e — ErE E v M (1:5)

where
L) = kb, 4 Kk, — guuk - K £ i€uagh®K'?

The tensors, Ly, , are products of weak coupling spin factors, 7#(1 ~+45), sandwiched between
spinors for initial and final states. Neglecting masses, this reduces in the centre-of-mass to:

dovu® G?s

dcos0*  om (17)

where §* is the centre-of-mass angle between the incoming v, and the outgoing y~. Two
observations should be made. First, the cross section rises linearly with the square of the centre-
of-mass energy, s, a consequence of the pointlike nature of the weak interaction at distance
scales Q2 « M%,. Second, in the centre-of-mass, the left-handed spin of the v, and e~ result
in a total angular momentum of 0; hence, the cross section is isotropic.

Consider next the inclusive process studied in this experiment, v,(7,) N— pTX. In
analogy to the v, e case above, the cross section is given by:

do®) _ G2 E |
——— wHY 1.8
iViE @ B (1.8)

The tensor W#¥ describes the hadronic part of the interaction schematically shown in figure
1.1. The nucleon, unlike the pointlike electron, has a structure on the distance scales probed
by the weak interaction. In its most general form, the hadronic tensor can be written in terms
of three unknown functions of z and Q2:

g
Waw = 2L Fila Q%)+ 2

F. 2 . PaPﬂ F 2 9
2(1 Q ) ’f;worﬁ’_2M2U 3(17Q ) (1' )
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|
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v rqO energy . q qO
; transfer
p HADRONS (X)
' energy
Ep

Figure 1.1 Neutrino charged current event

Terms which will yield contributions of the order of lepton masses in the cross section are
neglected. These same unknown functions then parametrize the differential cross section:

do*®)  G2ME

2
{(1-v- 22) P00, 00+ L2271 ®0a, 0

dzdy ~ w (1.10)
_ W @, 02 '
£1(1- ¥)ars(z, %))
This is also commonly written in terms of R = o /o, where:
2 2
2% _Q_ FQ(le ) .
R(z,Q%) = (1 + 3 ) P AERD] 1 (1.11)

It can be shown that R is a measure of the non-spin 4 component of the nucleon [C179]. These
functions: 2z Fy, F» and zF3, describe the structure of the nucleon and are the quantities to be
measured in this experiment.

1.2 The Quark-Parton Model and Neutrino Scattering

Originally, the existence of quarks was inferred from the periodicity of hadron spectros-
copy [Ge64,Zw64]. Such structure could arise if mesons and baryons were composed of some
underlying triplet of objects: u, d and s quarks. Mesons represent combinations of ¢g, while
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baryons are three quark states: ggq. The original scheme has subsequently been enlarged to
include ¢ and b quarks, with an expected sixth quark, t. These additional quarks provide
an explanation for the absence of strangeness changing neutral currents (the GIM mechanism
[G170]), and the narrow vector meson resonances (3 [Au74a,Au74b] and T [He77]). Despite ex-
tensive search, with one possible exception [La77,La78,La81], no free quarks have been observed
[Jo77,Ly80]. However, existence may be indirectly inferred from the properties of deep-inelastic
lepton scattering.

Flavour u d s c
Isospin 1/2 1/2 0

I3 1/2  —1/2 0

Charge 2/3 —-1/3 —1/3 2/3
Baryon number 1/3 1/3 1/3 1/3
Strangeness 0 0 -1 0
Charm 0 0 0 1

Table 1.1 Properties of quarks

The standard model posits the form of the weak current for quarks to be (V-A)
analogous to the leptonic current. Quarks appear in left-handed doublets of weak isospin:
(u,d)L, (c,s)r and (t,b)r, and right-handed singlets. However, the eigenstates of the weak
lagrangian are not the mass eigenstates. This leads to the complication of a mixing matrix, as
suggested by Cabibbo [Ca63]:

Ju=cosbuy,(l — 7s)d
+ sin 8, Uy,(1 — 7s)s
— sinf Tyu(1 — 7s)d (1.12)
+ cos b Tyu(1 — 75)s

The matrix has been generalized by Kobayashi-Maskawa [Ko73] to the present situation of six
(supposed) quarks.

Using this form for the hadronic current, centre-of-mass cross sections (table 1.2)
can be calculated for free quarks. Scattering of a (left-handed) neutrino from a (left-handed)
quark, having net angular momentum 0, is isotropic. Scattering of a (left-handed) neutrino
from a (right-handed) anti-quark, having net angular momentum 1, exhibits a ((1 4 cos §*)/2)?
distribution.
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do gcl
d cos 0* y
— = G?%s G?%s
By Gl o o 5
_ _ G2s( 1+ cos0*)? G?s
Vy U,V U o (-—2——-) (1 —y)

Table 1.2 I'ree quark cross sections

At high energies where we may neglect masses, the centre-of-mass angle can be related
to a measureable quantity in the lab frame, the inelasticity y =1 — E,/E,, where E, is the
incident neutrino energy, E, the outgoing muon energy. Refemng to figure 1.2, it can be seen
that
1+ cos 6*

2

The free-quark cross sections expressed in terms of y are listed in the second column of table

1.2.
Center of Ps ;

l—y= (1.13)

mass syste

Lorentz ,
> transformation

y=1/./1-B?

7
t;é)gr:‘fory v E#=)’€( | +cos O*
Es2ye
Tl
E | + cos OB%
I“yE —Etﬁ-= > ) y‘ET'/E

Figure 1.2 Connection between y and centre-of-mass scattering angle
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Within the nucleon, the quarks are not free. Suppose that in the frame of the neutrino-
quark system, the struck quark carries a fraction, &, of the total proton momentum. Then the
energy dependence of the free quark cross sections (table 1.2) are modified to the extent that
Syg = €8:

do (do)
— == | = (&) dg 1.14

dy dy free ( )
The probability of finding a quark with fractional momenta between £ and € - d¢ is given by
p(€) dé.

The fractional momentum, &, can be related to measureable quantities. In the quark-
parton model [[e69,Bj69] it is assumed that the struck quark is quasi-free: that is, a near
massless, pointlike object, with limited transverse momentum. Effectively, other quarks in
the nucleon can be ignored on the distance scale of the weak interaction. Consider the boson
and quark in the frame where the boson has zero energy, as shown in figure 1.3. A simple
consideration of energy-momentum balance shows that

—q2 —g?
= —_ —————— = 1.1"
C=2=3p ¢~ 9y (1.15)
where v = E, — £, Q% = —¢2 = 2L, E,(1 — cos0,), and 0, is the angle the outgoing muon

makes relative to the incident neutrino.

energy  qo=Ey~E,
Transferred ¢ momentum q = 'f_’;,; Pu
invariant  q=q%-1g1%<0

.
va

Frame with —_ -
q, =0 + li/\-éP (energy conservation)
/

q=-2&P (momentum conservation)
I512=-2{P-q

Figure 1.8 Connection between the scaling variable z and measureable quantities
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Within the limits of the impulse approximation, cross sections for the nucleon can be
constructed from quark and anti-quark momentum densities, ¢(z) = zp(z):

v 2
e e+ @ - )
?o” G ME e 416}
e = B P 1 - v + 7))

Neglect for the moment small corrections due to expected differences between the strange and
charm sea in the nucleon. Defining:

¢“(z) = ¢"(z) = u(z) + d(z) + s(z) + c()
7'(2) =7"(2) = Uz) + d(2) + 5(z) + &(2) (1.17)

the cross sections become:

v 2
oo — T o)+ an L= 4 o(0) - ey L=

dzdy s 2 2 (L.18)
2,7 2 — 2 (1 — a2 1.18
oo — T o)+ atan SEEE I — (o) - iy (==}

This quark-parton model calculation can be compared with the general expression for the cross
section (1.10). The connection with the standard structure functions is clearly:

R=0 or 22F(z)= Fy(z)
Fa(z) = Fy (1)—F2(__) q(z) +7(=)

- (1.19)
2F3(2) = 2F3(z) = 2F3(z) = ¢(z) — q(z)

In the quark-parton model, the structure functions scale with z [Fe69,Bj69]. Furthermore, the
Callen-Gross relation [Ca69], 2zF;(z) = Fx(z), is satisfled unless the nucleon is hypothesized
to contain interacting, non-spin % objects.

A number of quark counting rules can be derived using the quark model. For example,
the Gross-Llewellyn-Smith (GLS) sum rule [Gr69] predicts that:

1
'/; F3(z)dz =3 (1.20)

where 3 is the number of valence quarks. This can be tested using our results for zF3. Quark-
parton predictions can also be made for charged lepton scattering by replacing the weak with
the electromagnetic lagrangian in the calculations outlined above. The result obtained reflects
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the coupling to quark electric rather than weak charge:

FE(2) = ~(0(2) +7(2)
: (1.21)

A comparison of our result for F; with that measured from charged lepton scattering can test
this prediction.

1.3 Structure Functions and QCD

Deviations from this simple scaling model are expected. The finite mass of the nucleon

introduces scale breaking effects on the order of M%,/Q2. Thus, structure functions should scale
not with z, but with:

€= 2z
14 1+ 4M3,5%]Q2

[GeT6a,GeT6b]. The intrinsic transverse momenta (k%) of quarks within the nucleon also
introduces terms which fall like 1/Q2. The quark-parton model predicts [Fe72] that:

(1.22)

4(k% + M% + A)
Q2
Finally, Quantum Chromodynamics (QCD), the leading theory of strong interactions, predicts

logarithmic scaling violations [Al82].

R=

(1.23)

In the language of perturbative QCD, coloured exchange fields, called gluons, bind
quarks together to form hadrons. The interactions between quarks and gluons is described by
a running coupling constant, which to lowest order is:

4iT

(@)= 7= 5N;/3) In Q2/Az

(1.24)

where Ny is the number of quark flavours. Unlike QED, the coupling as(Q@2%)—0 as Q%— o0,
a phenomenon referred to as asymptotic freedom. The treatment of the struck quark in the
quark-parton model as a quasi-free object is essentially correct. However, as the nucleon is
probed with higher @2, and hence over smaller distance scales, the struck quarks are resolved
into quark plus gluon, and gluons into a quark plus anti-quark pairs or two gluons.

The Altarelli-Parisi equations [Al77] quantify these statements. A set of splitting
functions, Pj;(z2), describe the probability of finding a parton ¢ inside a parton j, with a
fraction, z = z;/z;, of the parent momentum. QCD is unable to predict the form of the
quark distribution functions at a given @2, since that would involve excursions into the low @2,
non-perturbative regime of the theory. Instead, the evolution of quark densities as a function
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u¥

Vul(Pu) -

Figure 1.4 Higher order QCD corrections to pointlike cross section

of Q2 is predicted by a set of differential equations using these splitting functions:

] 2 2 2
digg RQ) _ od@) {qu(n@ CIC G IR CX: )}
2 2 2 2
¢ a7 28] = 2l po ) BET) 4 poglaj F2D (159
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where

1
1©9=[ Zi@ad) (1.26)

Here, G(z,Q?) is the momentum distribution of gluons in the nucleon. Valence quarks radiate
gluons and move from large to small z. Sea quarks at small z result from gluon pair production.
Therefore, with increasing @2, we expect a decrease in the number of quarks at large z, and an
increase at small z. The validity of the theory in describing nucleon structure can be confirmed
by observation of this predicted pattern of logarithmic scaling violations, parametrized by the
single constant A.

Perturbative QCD also predicts a finite value for R(z,Q?), which falls off sharply with
z, and exhibits the usual logarithmic @2 dependence [Fi78]. Although difficult to measure, this
experiment can address the question of the value of R(z,@?), particularly at small z.
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1.4 OQutline of Presentation

Experimental particle physics is a collaborative effort, and the data set described here
is part of ongoing work by physicists from Caltech (now Columbia), Fermilab, Rochester and
Rockefeller. The group has had a long history of involvement in neutrino physics, beginning
with the first generation of neutrino detectors at Fermilab [Ba75a-b,Ba76b,Ba77a-d,Ba78a,Mc78].
The present detector, located in Lab E, represents a substantial upgrade, in terms of fiducial
volume, over early detectors. Results from an engineering run of the detector in the summer of
1978 have been presented [Le81]. Between June, 1979 and January, 1980 a high statistics sample
of neutrino and anti-neutrino charged current events were obtained in a run known as Fermilab
experiment E616. Total cross sections and y-distributions from E616 were the subject of a
Caltech thesis by R.Blair [BI82,Bl83a).

Here we will examine results of an effort to extract structure functions from this same
data set, and a confrontation of those results with some of the predictions of the quark-parton
model and QCD described above. In addressing this task, the subject has been divided in the
following manner: Chapter 2 examines the dichromatic beam line, the source of neutrinos for
the experiment, Chapter 3 describes the Lab IE detector, Chapter 4 presents details of the
analysis required to convert raw experimental data into physics variables, Chapter 5 details the
techniques used to extract structure functions from the charged current sample, and finally
Chapter 6 covers various tests of our structure function results in the light of predictions by the

, MANHOLE
TARGET  _ExPANSION
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Figure 1.5 Layout of the neutrino area at Fermilab
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quark model and QCD. In general, the material covered in the first three chapters represents
an outline for the purpose of completeness. Details can be found in the Caltech theses of
J.Lee [Le81], or R.Blair [BI82]. Also in the literature are more extensive accounts of the beam
monitoring system [BI83b], diffraction in the Cerenkov counter [Bo83b], and the Lab E detector
[Ba78b). :

Work by the group continues. During the spring of 1981, neutrino data were taken
simultaneously in detectors located in the Wonder building and Lab E, in a search for evidence
of neutrino oscillations [Ha83]. An upgrade of the Lab E detector is under way, converting from
spark chambers to drift chambers, in anticipation of running at the Tevatron. The increased Q2
range obtained with such high energy neutrinos should make possible a definitive determination
of A, the QCD interaction scale [BI&0].



Chapter 2
Neutrino Source

Measurement of the logarithmic scaling violations of structure functions requires a
large sample of neutrino and anti-neutrino events over a wide range of high Q2. Furthermore,
systematic errors on flux calculations should be minimized. Definitive tests of quark model
predictions, which depend on absolute normalization of structure functions, also require preci-

sion flux measurements. The source of neutrinos in this experiment, the dichromatic beam line
at Fermilab, fulfills these requirements.

The principal decay mode of charged pions and kaons is the two body decay into u*
and v, (V). T some fraction of the particles in a high energy beam of pions and kaons is allowed
to decay, a flux of high energy neutrinos and muons is obtained. Muons can be removed by
range-out in material, leaving a neutrino beam.

The kinematics of two body decays results in a simple correspondence between neutrino
energy, E,, and the decay angle, 6,, that the neutrino makes with the parent particle:

_ 1= (1/ms)?
B =TT0er & (2.1)
1= Es/ms

where m, and E, are the mass and energy of the parent particle, and x is the muon mass.
In a detector a distance z downstream of the decay point, and at a radius r = ztand,, the
population of neutrinos from pion and kaon decay will be clearly distinguishable by energy. For
example, at §, = (°, neutrinos from pion decay have an energy 0.43E,, whereas those from
kaon decay have energy 0.95E;. The banding of neutrino events from pion and kaon decay in
energy versus radius plots is characteristic of the dichromatic beam.

The degree to which this simple relationship is complicated is a reflection of the
disorder of the secondary beam producing the neutrinos, and the necessarily extended length
of the decay region. The flux of a real beam, with small angular dispersion and momentum
bite, will deviate little from that calculated for an ideal beam. The problem of determining
the composition of the secondary beam is also much simplified under these conditions. The
design of the Fermilab dichromatic beam represents a reasonable compromise between the
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requirements of large neutrino flux and small systematic errors in the calculation of that same
flux (Ed76a,Ed76b,St78].

2.1 Dichromatic Beam

Primary protons from the main ring at 400GeV/c interacted in a 12in Be0O target
(about one collision length) to produce hadrons. The resulting secondary beam of pions, kaons
and protons was sign and momentum selected by bending the particles with a dipole magnet
and accepting only those particles passing through a momentum defining slit. This is analogous
to how one would pick out one wavelength of light from a white source, using a prism and slit
arrangement. The particular momentum selected could be controlled by changing the current
of the dipole-bending magnet. Data were taken at nominal secondary momenta of 250, 200,
168, 140, and 120GeV/c, for both positive (neutrino) and negative (anti-neutrino) polarities.

The function of collimating the beam before entry into the decay pipe was accomplished
by a point-to-parallel system of quadrupole magnets. A quadrupole focusing in the horizontal
(defocusing in the vertical), followed by a second quadrupole focusing in the vertical (defocusing
in the horizontal) may be likened to a lens of optical systems. In this case, particles emerging
from the target, at the focus, entered the decay pipe with small angular divergence. The dipole
and quadrupole magnets, termed the N-30 train, sat on a series of carts which could be moved
into and out of the beamline. Table 2.1 summarizes the characteristics of the secondary
beam.

Primary proton energy 400Gev
Intensity 10'2t02 x 10!3
Target 12in BeO
Targeting angles
Horizontal 11.96mr
Vertical 1.125mr
Solid angle acceptance 11.5usr
Momentum acceptance +9%
Angular divergence of secondary beam
Horizontal +.15mr
Vertical +.20mr
Secondary momentum 50t0300GeV /¢

Table 2.1 Summary of characteristics of the dichromatic beam

The design of the N-30 train also addressed the problem of contaminating decays of
hadrons into neutrinos before the momentum slit. At no point before the final bend did the
beam point toward the Lab E apparatus. Targeting was at an angle of 12mr, and there were
bends in both vertical and horizontal planes as shown in figure 2.1 to accomplish this end.
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Decays which did intercept the detector were from wide angle secondaries, or at large angles.
Hence the wide-band flux was small and peaked at low energies.

Collimated secondaries pass into a 350m evacuated decay pipe where pions and kaons
decayed. A secondary dump, 6.5m of steel and aluminum, absorbed the hadrons which failed
to decay by the end of the decay pipe. There followed 930m of earth and steel berm before
Lab E, shielding to stop muons produced in secondary decays.

HORIZONTAL

DICHROMATIC TRAIN

-4 -3.366

=0

1 R | 1 [
100 1200 140 160° 180' 200

Figure 2.1

Layout of the N-30 dichromatic train showing magnet elements and the
central momentum ray

The calculation of neutrino fluxes required a knowledge of (1) the number of incident
pions and kaons for a given period of running, and (2) characteristics of the beam such as mean
momenta, momentum spread, and beam dispersion. The first task was further broken down
into (1a) a measurement of particle fractions using a Cerenkov counter, and (1b) a total flux
measurement using ionization chambers. Monitors were therefore of two varieties: those which
measured beam characteristics, and those which continuously monitored total secondary flux. ‘

Various devices to accomplish these tasks were distributed along the N-30 train, and
at two locations in the decay pipe: the expansion port and the target manhole, respectively
136m and 290m downstream of the last bend (see figure 1.5).



2. Neutrino Source 16

2.2 Total Intensity Monitors

The flux of primary protons was monitored using a beam current transfomer (BCT).
An attempt was made to do the same with the secondary beam, but this proved impossible due
to the large number of beam-associated muons passing through the toroid aluminum. Instead,
the primary flux monitors for the secondary beam were ionization chambers located in the
expansion port and the target manhole. A typical ion chamber consisted of thin foils separated

by 0.5in fibreglass spacers, the gap fllled with gaseous helium, Electrons released by the passage
of jonizing radiation were collected without multiplication, and the total charge digitized.

2.2.1 Calibration

The amount of charge produced per secondary passing through an ion chamber,
the absolute calibration of the device, was determined in several ways. The most direct
measurement was made using a beam of sufficiently low intensity to allow comparison of the ion
chamber response with conventional counting using scintillator. This of course required that
the chamber and its electronic readout be linear over beam intensity changes of the order of
10%, in order to extrapolate to operating intensities. Comprehensive measurements were made
in a secondary beam in the Meson area at Fermilab (M-2 line), after preliminary studies in the
Neutrino hadron beam (N-5 line). A special chamber with ceramic spacers was used in order
that the small signal levels produced in a low intensity beam not be swamped by noise. During
the course of this investigation, it was observed that the calibration of the chamber differed for
mesons and protons. Heavily ionizing slow alphas and protons are produced by interactions in
the upstream window of the chamber, and contribute significantly to the signal. The observed
difference of 6.2% can be traced to the difference in absorption cross sections for protons and
mesons. The absolute calibration was determined to be 3.38 4- .05 X 10™'¥ Coulombs/meson
and 3.63 4 .06 X 10™!8 Coulombs/proton.

The ion chambers were also calibrated by comparison with flux as measured by Na2%
production in copper foils. This method was used with the ion chambers in situ, using 200GeV/c
primary protons passed through the train with the target removed. Intensity extrapolations
to normal beam conditions were of the order of 10%. However, the precision of the foil
measurements were limited to 4-5%, by uncertainties in foil thickness, and the acceptance
of the gamma-ray detector used to measure the Na?* content of the irradiated foils. Also,
an accurate determination of the production cross section, p+Cu—Na?4+4X, was of course
necessary. Using the CERN measurement for the production cross section, 3.83 4- .07mb, the
resulting calibration was 3.384 .10 X 10~ '8 Coulombs/proton. A separate determination of this
production cross section was made using the neuhall toroid (BCT), a device which could easily
be calibrated with a current loop. The result, 3.914-.20mb, agreed with the CERN cross section
measurement, and yields an ion chamber calibration of 3.45 4- .22 x 10~ !¥Coulombs/proton.

A second total intensity monitor, an RF cavity, was located in the beam during much
of the running. This device, tuned to the RF frequency of the main ring accelerating cavities
(53.1Mhz), was sensitive to the electric fleld across the cavity gap at that frequency. An output
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Figure 2.2 Layout of monitor devices in the Expansion Port

proportional to the number of beam particles passing through the cavity was produced. The
calibration of the device could be determined from cavity properties. Unfortunately, the RI'
cavity response exhibited a not-understood 5% setting-to-setting dependence in comparison
with ion chamber measurements. The errors on the RI' cavity determination of the ion chamber
calibration have been increased to accommodate this problem. The measured value for the
calibration was 3.47+4 .17 X 10™!8 Coulombs/meson and 3.76 .22 X 10™8 Coulombs/proton.

Since the measurement can be made in a full intensity beam, this would be an area for fruitful
effort in the future.
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The agreement among the various methods was excellent, and the average result for the
ion chamber calibration was: 3.623 4 .055 X 10~!8 Coulombs/meson and 3.4034- .047 x 10— !8
Coulombs/proton. The foil calibration using the CERN production cross section measurement
was not included in this average. All other measurements are internal to this experiment and
therefore the source of systematic errors are well understood. The much smaller error assigned
to the CERN cross section measurement is not understood in the light of our own attempts to
measure the same number.
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Figure 2.8
A comparison of the results of various techniques for calibrating the ion
chambers

2.2.2 Systematic flux errors

In general, at any given time during the running, several ion chambers were used
to measure secondary flux. Comparisons of the response of different ion chambers, or of
ion chambers and the BCT, exhibited fluctuations of 4-2% for neutrinos and 4-5% for anti-
neutrinos. Since the foil calibration measurement was made during neutrino running, the
response of the ion chambers before and after calibration could have deviated by as much as 2%
from the average running condition. Combined with a measurement uncertainty of 1% on the
calibration measurement itself, a correlated 2.5% normalization error was therefore assigned to
the secondary flux measurements. During the transition from anti-neutrino to neutrino running,
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the response of the ion chambers changed by as much as 3%. An additional uncorrelated 3%
uncertainty was assigned to the normalization of the anti-neutrino data.

In an oversight, the temperature of the gas circulated through the ion chambers was
not directly monitored during the run—only temperature in the expansion port. The maximum
variation in this temperature was +4 5°C about the mean. The ion chamber response depended
on the gas density: hence, fluctuations relative to absolute zero were important. The uncertainty
introduced by temperature was taken to be 1%, uncorrelated for neutrinos and anti-neutrinos.

2.3 Beam Composition

Measurements of beam composition were made using an integrating Cerenkov counter
which could be moved into the beam in the expansion port. Before examining the characteristics
of the actual device, consider first the case of a monoenergetic, well collimated beam of particles
passing through a counter of length, L— oo, filled with helium at pressure P. If such particles
have mass mg, and momentum p,, Cerenkov light is emitted at a fixed angle 8, with respect
to the beam, where:

Mg
Ds

The constant x parametrizes the pressure dependence of the index of refraction of the helium
radiator: n = 1 4 «kP. The intensity, /., of emitted light is given by:

82 = 2kP — (—=)? (2.2)

dl,

1 IR
- e —2—)511129c (2.3)

=2raLl(— —
MM

where \; and Ay are the wavelength limits of the photon detector.

Light is collected by the counter for angles in the interval 6y 4 66. This corresponds
to a pressure interval of:

Py = 5-((00 £ 867 + (54 (2.4

A beam composed of pions, kaons and protons, with three distinct masses, would produce
as a function of gas pressure in the counter three distinct bands of observable Cerenkov light
separated by regions of zero response. The integral of light intensity in each band is proportional
to the number of traversing particles of a given species; hence, such pressure curves could be
used to determine particle composition of the beam.

2.3.1 Cerenkov counter for E616

The Cerenkov counter used in this experiment is shown in figure 2.4. A parabolic
mirror, with 120in focal length, collected and focused Cerenkov light along a double bend
optical path onto an iris, which passed light with angles 0.85 4 0.15mr with respect to the
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beam axis. Such light was then focused onto a simple three-stage RCA phototube (CPM). The
phototube response was found to be linear to better than 1% over the useful output range.
Likewise the pressure gauge (CPR) was checked in the manner described in the thesis of J.Lee
[Le81], and found to be linear at the 0.5% level.
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Figure 2./ Schematic diagram of the Cerenkov counter used for E616

The procedure used to obtain a Cerenkov pressure curve was a two-step process. First,
the axis of the counter was aligned with the secondary beam direction. This was accomplished
at pressures just above the pion peak, by studying the variation of the counter response with
respect to rotations about two directions perpendicular to the beam. Proper alignment was
achieved when a circular image was produced at the iris plane. The counter was then evacuated
and phototube response recorded each beam cycle (12s), with pressure incremented by a fixed
volume of helium between cycles. In a typical curve (figure 2.8), the peaks due to pions, kaons
and protons are clearly separated.

It was discovered after completion of the data run for E616 that the optical alignment
of the counter shifted with pressure, due to mechanical instability. The shift as a function of -
gas pressure has been measured and found to be both linear and quite reproducible, as shown
in figure 2.5. The correction was of course only significant for kaons and protons, since as
noted the counter was always aligned at pressures just above the pion peak. However, the error
introduced in all cases was small compared with other sources.

In a real secondary beam, such as the Fermilab dichromatic beam, a number of effects
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Figure 2.5 Cerenkov misalignment with pressure

contribute to the broadening of the distinct bands of response of the ideal case described above:
(1) beam divergence, (2) finite momentum spread, (3) diffraction in a finite length counter, (4)
chromatic dispersion, due to variation of the index of refraction with wavelength, and (5) optical
aberrations, negligible. Table 2.2 illustrates the level of contribution of each of these sources
to the width of the pressure peaks. In general, the momentum spread dominated the width
of kaons and protons, while diffraction dominated the peak widths of low mass particles such
as pions, electrons and muons. In fact, diffraction resulted in an overlap of pion and proton
contributions under the kaon signal. The procedure used to extract the particle fractions was
necessarily more complicated then the simple area law.

The effect of beam dispersion was minimized by adjusting the position of the iris so
that the optical system focuses not from infinity, but from a point on the N-30 train near the
target, some 205m upstream. The effective dispersion was reduced to the size of the beam
emerging from the target as seen from this distance, less than 0.1mr.
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Source Aby AP Abg APk A6, AP,
/ mr mmHg mr mmHg mr mmHg
Iris width 0.15 29 0.15 29 015 29

Beam angular dispersion 0.18 3.6 0.18 36 018 36
Beam momentum bite 0.05 1.0 0.60 14. 2.20  50.
Chromatic aberration 0.01 0.2 0.01 0.2 0.01 0.2
Diffraction 0.26 5.0 0.26 5.0 0.26 5.0

Table 2.2

Contributions to the smearing of Cerenkov peaks in a 200GeV/c secondary
beam. For §, = 0.85mr, the pion, kaon and proton peaks are at 14.1mmHg,
78.5mmHg and 211.1mmHg respectively.

2.3.2 Diffraction effects in a finite length counter

Small Cerenkov angles and short counter lengths were quite satisfactory in the in-
tegrating Cerenkov counter used in this experiment. Roughly 5 x 10~2 photoelectrons per
particle were observed, but the large number (10'°) of traversing particles resulted in a more
than adequate signal. However, the short length did result in observable diffraction effects. For
a counter of length L, the intensity of observed light is actually:

2/, . 2
d)\:i;sa = 21;0('15) (%ﬂ) sin® (2:5)
where
¢=Z%L-(;l%—-cos0) g
N%(%)2+92—2KP) o

The width at the first node ¢ = m, gives the diffraction entry shown in table 2.2. It is important
to note that diffraction broadening results in contributions of intensity at all angles, including
those below Cerenkov threshold. A finite response at zero pressure is predicted, a phenomenon
commonly referred to as transition radiation.

The validity of the diffraction formula has been confirmed in two ways. Cerenkov pres-
sure curves were taken with monoenergetic 200GeV/c primary protons: a beam brought through
the N-30 train with target out, and with 0.1mr angular divergence. Therefore, diffraction effects
dominated the width of the proton pressure peak. As can be seen from figure 2.6, the predic-
tion of the diffiraction formula conformed to observation for over three orders of magnitude of
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intensity variation. The additional backgrounds in this figure can be accounted for in terms
of light scattering from dust particles on mirrors in the counter, and effects of interactions in
material in the beam upstream of the counter.

Secondly, the diffraction formula predicts without free parameters the level of response
observed at zero pressure in the Cerenkov counter, for pressure curves taken with typical
secondary beams of the experiment. Figure 2.7 shows both the measured and predicted ratio of

zero pressure intensity to intensity integrated over electron and pion peaks. Again agreewment
was excellent.

2.3.3 Backgrounds

Three backgrounds had to be subtracted from Cerenlkov pressure curves before analyz-
ing beam content. The first was light produced outside the helium radiator. This was measured
as a function of pressure, by periodically recording along with the normal Cerenkov signal,
the phototube response when optically isolated from the helium radiator by a shutter. This
background has already been removed in figure 2.8.

Interactions of particles with material in the beam, namely the vacuum window on the
decay pipe and the counter front window, result in a wide spectrum of lower energy high angle
particles. Such particles were a source of diffuse Cerenkov light, and produced a tail on the
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Figure 2.6 Pressure curve for 200GeV/c protons
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Figure 2.7 Zero pressure background and predictions

high pressure (low momentum) side of particle peaks. This effect was studied by putting further
material in front of the counter, and observing the changes in pressure curves. In making the
background subtraction, the differences were scaled by the inverse ratio of interaction lengths
with and without additional material. Backgound curves were taken with 200GeV/c primary
protons, and at the —120GeV/c and —250GeV/c settings of the secondary beam. The form
of the subtraction was interpolated to the other settings.

The scattering of light from walls, baffles and particularly dust particles on mirror
surfaces was an additional source of diffuse background. Two approaches have been used to
remove this background. The material subtracted 200GeV/c proton pressure curve provided
the pressure dependence of the background. If it is assumed that the form is momentum
independent, contributions could be summed for each point in a particle peak. Amplitude
adjustments of up to 10% were made in order to match the observed Cerenkov levels well
beyond the proton peak, since the amount of dust on mirrors was time dependent. A second
method used was to parametrize the background by:

_fa+p6%  6< 4.5mr
Ius = {a + 82 6 > 4.5mr (2:7)

where a, § and -y are free constants to be fit. The change in slope at § = 4.5mr was empirical,
in that it seemed to best fit the data. The final particle fractions were the average of the results
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obtained using the two techniques; the difference was taken as a measure of the error due to
uncertainties in the light scattering subtraction.

2.3.4 Analysis of pressure curves

Diffraction effects resulted in a significant contribution by pions and protons to the
kaon peak, as noted above. [Furthermore, the area rule breaks down unless integration is
carried out over the entire diffraction peak, stretching below zero pressure for pions. A monte
carlo, incorporating the correct Cerenkov intensity formula (2.5), was used to predict counter
response functions for pions, kaons and protons. These response functions were then fit to
pressure curves, after background subtraction. Free paramcters were: (1) particle fractions,
mean momenta and peak widths for cach of the three species, and possibly (2) parameters «,
£ and « for the light scattering background. A typical [it is shown in figure 2.8, and the values
obtained for the particle fractions are listed in table 2.3.

In addition to pions, kaons and protons, the beam contained a small component of
electrons and products from the secondary decays such as muons. Electrons were produced
by neutral pion decay and gamma conversion in the production target. Mecasurements were

R T
nEi L £
- f_
10 ° =
g e -
2 |
2 L }
‘17]7 10 74 =
~ = o
N X l;x b=
g 3 R AR -
m -1 -
= i ~ LIGUT SCATTERING
BACKGROUND
107 —
10-3 AL I' T LT T l'l TrT I L a L E ] —rrr I mTrTT I L i ; l T—rrr
0 200 400 600 800
PRESSURE (mmHg)
Figure 2.8

Pressure curve for 200GeV/c secondary showing backgrounds and contribu-
tion from the three particle types
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Setting e/m+e m/Total K/Total P/Total

+120 .029 4 .002 0243 4 .0205 .0470 + .0029 4220 4- .0219
<140 .020 4- .003 4214 4- .0136 .0427 4 .0022 .5300 4 .0148
<4168 .011 4 .003 3115 4 .0115 .0349 4 .0016 .6520 4 .0127
4200 .006 4- .003 .1918 + .0067 .0240 4- .0012 .7830 4 .0075
4250 .003 4 .002 0771 4 .0026 .0115 4 .0007 9110 4 .0030
-—120 065 4 .008 8733 4 .0097 0516 4 .0028 0128 4= .0099
140 | 052 .005 | .8845 - .0073 | .0568 + .0023 | .0099 4 .0074
—168 .031 4 .004 9099 4 .0050 .0551 4 .0017 .0033 + .0050
—200 .020 4 .005 .9339 4 .0051 .0443 4 .0017 .0074 4 .0050
—250 .013 4 .004 9495 4 .0017 .0388 4+ .0017 .0000 4 .0050

Table 2.9

Particle fractions in the secondary beam at the Expansion Port from the
Cerenkov counter

possible for low momentum settings where the pion and electron peaks were distinguishable.
For the higher settings we relied on a monte carlo calculation. The decay product component
of the beam was directly proportional to the parent fraction. For the pion the only significant
mode was the two-body decay into muons. However, the kaon has a number of channels not
contributing to neutrino flux, but which do produce charged pions. The six principal decay
modes of the kaon were included in the monte carlo calculation.

2.3.5 Mean momenta and widths

A Cerenkov pressure curve is a momentum transform of the beam. This is an inverse
relation as shown in equation 2.2. For a given particle type, hadrons with momenta greater
than the mean momentum map into pressures below the peak pressure, and vice versa. In a
beam without angular dispersion:

1>+4%+w@f+%)

— m2({
2 = SR

(2.8)
where (P) is the average pressure at peak, and 6, and 62 are the Iris angle acceptance limits
(0.7mr and 1.0mr). The method was useful only for kaons and protons, since uncertainties in
the Iris angle term, due to angular dispersion, become significantly more important for pions.
The constant £ was determined from the 200GeV/c primary proton curves to be 4.38 4 .04 X
10~ 8mmHg™!.

Agreement was seen between the momentum bite of the kaons in the beam as calcu-
lated by the beam monte carlo and as measured from the width of the kaon pressure peak. In
fact, the momentum bite varied from setting to setting by no more than 0.7%. The uncertainty
introduced into the flux calculation from this source was therefore negligible.
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Setting | Meanpy | Mean pk Ab, Aby Ap/p
GeV/c GeV/c mr mr %

+120 119.5 122.4 164-.04 | 234 .05 | 10.1
-+140 139.2 142.2 154 .04 | 214 .03 9.9
+168 166.3 169.8 134 .03 | .204 .03 | 10.0
+200 197.0 200.6 15+ .04 | 204 .02 | 96
+250 243.8 247.0 16 4 .04 | .20 4 .01 9.4
—120 118.4 119.6 164 .04 | .234 .05 9.7
—140 137.8 138.9 154 .04 | .21 4 .03 9.4
—168 164.3 165.3 134 .03 | .20 4 .03 9.5
—200 1940 | 1946 154 .04 | 20402 | 9.2
—250 239.0 238.0 164 .04 | 204 .01 8.7

Table 2.4 Mean secondary momenta, widths and dispersions

2.4 Beam Dispersion and Steering

Beam profiles were routinely monitored using segmented wire ion chambers (SWICs),
located in both the expansion port and the target manhole. These provided z and y projections
of the beam profile at two points in the decay pipe. At each setting a scintillator scan of the
beam profile was made in the expansion port. This was found to be in good agreement with
the ion chamber measurements, except in the tails where some residual signal was seen in the
SWICs. Combined with the known aperture of the momentum slit (4.13in x 1.50in) at the
upstream end of the decay pipe, the SWIC profiles provided a measure of beam dispersion.
The dispersion in the vertical plane was well determined by this method. However, the large
horizontal aperture limited the precision of the measurement in the horizontal plane. Results
are included in table 2.4.

Beam steering was monitored on a pulse-by-pulse basis while taking data, using split-
plate ion chambers in the expansion port and target manhole. The difference over sum of
the signals from the two halves of the chamber was used as a steering parameter. Vertical
and horizontal split plate ratios at both locations in the decay pipe were maintained within
tolerances corresponding to +41.4in at Lab E. The experimenter could adjust the targeting
angle of the primary proton beam if beam steering strayed outside these limits.

2.5 Beam Monte Carlo

A monte carlo was used to calculate the spectrum of neutrinos in both energy and
position at Lab E. The calculation was divided into two parts conceptually and operation-
ally. The first task was to produce secondary rays at the beginning of the decay pipe with
characteristics matching the observed properties described above. A production model was
used to generate pions, kaons, and protons at the target. These rays were then traced through
the elements of the N-30 train to the momentum slit. The production spectra itself was not
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Monte carlo calculation of neutrino flux at Lab E for 200GeV/c secondaries

measured: only production folded against train acceptance. Furthermore, the positions of mag-
nets and apertures on the train are only known to survey tolerances. Slight adjustments in the
mean momenta, and dispersion of the secondary rays were therefore made to conform with the
measurements made of these quantities.

The second stage in the calculation of fluxes was to model the decay of secondaries into
neutrinos, a relatively straight-forward process. Along with the two body decay modes, 7 — pv,
and K— pv, with branching ratios of 100% and 63.5% respectively, the three body decay I{—
7 pv, with a 3.20% branching ratio is a significant source of neutrinos in our charged current
sample. (The decay channel, K— n°ev,, was an important source of background for neutral
current studies.) The monte carlo thus produced a spectrum of neutrinos per pion or kaon at
Lab E. Combined with a knowledge of the total number of livetime pions or kaons received, this
spectrum could be converted into an absolute flux. [igure 2.9 shows the calculated neutrino
flux at Lab E, from the beam monte carlo for +200GeV/c secondaries. The dichromatic nature
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Setting ¥ 3¢ 1044 a b E,
in2-primary proton GeV GeV GeV
-+120 2.14 1.18 21.01 7.36
+140 1.71 1.20 14.68 8.15
+168 1.39 0.89 21.81 8.07
-+200 1.88 1.78 19.26 9.87
+250 1.48 1.32 22.97 7.50
—120 1.34 17.47 12.63 12.96
—140 1.34 17.47 12.63 12.96
—168 1.35 17.47 12.63 12.96
—200 1.46 17.47 12.63 12.96
—250 1.35 17.47 12.63 12.96

Table 2.5 Parameters for wide-band background flux

of the beam is clearly seen.

2.5.1 Wide-band background

Decays of secondaries before the momentum slit constituted a diffuse source of low
energy neutrinos referred to as wide-band background. The energy and spatial distributions
of this source of neutrinos was impossible to model, depending as it does on details of beam
dumping. Instead events were recorded with protons on target but the collimator closed. Such
events could then be used to make a subtraction from observed open slit events, the method
used for our total cross section result [Bl82,BI83a]. An alternative approach was to convert
the observed events into a neutrino flux, using a model for the differential cross section. Wide-
band flux could then be added to other flux sources. This was the technique used for the
structure function results reported here. The spatial distribution was assumed to be uniform,
so that the flux was just proportional to the solid angle subtended by the fiducial volume under
consideration. The reconstructed energy spectrum of wide-band neutrinos, per incident proton
and per unit area at Lab E, was parametrized by the model:

k(1 = e—E/s E<E
PurlE) = {k%l - e_E°/2)e—(E'—Eo)/b E ; EZ 29)
Dumping for all negative settings was nearly at the same point on the train, whereas for positives
various locations were used. It was therefore assumed that the energy spectrum was the same
for all negative settings, but separate fits were made for the five positive settings. Results of
the fits are listed in table 2.5, and the level of wide-band neutrino flux as compared with other
sources is shown in figure 2.9.



Chapter 3
Neutrino Detector

The scale of the weak interaction requires that massive targets be used in order to
obtain high statistics samples of neutrino events. The Lab E target had a mass of 680 tons,
sufficient to produce but a few events per 10*® protons on the primary target. Clearly this
entire mass could not be active, and for the most part consisted of inert steel plates. However,
the detector was instrumented so as to provide the information necessary to characterize
a neutrino charged current event: (1) vertex position, (2) hadronic energy, (3) muon angle
with respect to the incident neutrino, and (4) muon momentum. In addition, to maximize
acceptance and simplify analysis, the resolution of these measurements was made as uniform as
possible throughout the fiducial volume. The first three functions were performed by detectors
integrated into the target, while the muon momentum was analyzed by a separate toroidal
spectrometer immediately downstream.

‘.
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Figure 8.1 Lab E detector
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3.1 Scintillation Counters

The hadronic energy released by the neutrino interaction was measured using a sam-
pling calorimeter. The primary hadrons from the vertex interact in the target steel depositing
energy, but also producing fast-forward going secondary pions and nucleons. These in turn
interact, and a hadronic cascade develops. Interspersed in the steel are scintillation counters
which sample the ionization energy of the shower. Principally this energy is in the form of
electromagnetic cascades originating from neutral pions in the hadronic shower. The sum of
the sampled energy is proportional to the total hadron energy. However, some hadronic energy
is not converted to ionization energy, but is lost to nuclear binding effects. Also, some energy
is badly sampled, such as low energy nucleons or alpha fragments which range out in the steel.
Fluctuations in these losses result in an intrinsic resolution limit to the technique, but this limit
was not reached by the relatively coarse-grained calorimeter of this experiment.

The target counters, every 10cm of steel, were 10ft X 10ft X lin square acrylic tanks,
filled with liquid scintillator. Along the four edges of the counter were 8 wavelength shifter
bars, each 5ft in length, terminating in four RCA 6342A phototubes at the corners. Ionizing
radiation passing through a counter excited a primary fluor emitting uv light. The primary
emission was absorbed within approximately lmm by a secondary fluor emitting isotropic blue
light. The attenuation length at this wavelength was much longer, so the secondary light passed
to the edge of the counter, where it was collected by the wavelength shifter bars. The shifter
bars were acrylic doped with a third fluor, BBQ, which converted blue light into green, better
matching the response of the phototubes. The air gap separating the bars from the counters
caused the green light to internally reflect down the length of the bars to the phototubes at
the four corners. By this means a very large area was made sensitive to ionizing radiation at
an efficiency of ~12% relative to a perfectly adiabatic system of light pipes and phototubes.
Nevertheless, a minimum ionizing particle produced some 16 photoelectrons in the four tubes,
with about 70% response variation across the counter.

Essentially, the same technique was used for the toroid counter planes. Each scin-
tillator plane, every 20cm of steel, was constructed of four quadrants of plastic scintillator
manufactured by Polytech, 5ft square and 1.5in thick. The light collected by the shifter bars, ar-
ranged as shown in figure 3.3, was viewed by a total of 10 phototubes per plane. Approximately
8 photoelectrons were seen per quadrant, with less than 30% response variation over the surface
of the counter. : ~

The monitoring of phototube gains over the course of the experiment was accomplished
using a flasher system. Light from a spark gap was passed by light fibres to a diffusing white
disc at the centre of each counter. Changes in the gain of any phototube were reflected in
changes in response to this stable signal. '

The output signal from each phototube was used as part of the real-time trigger logic,
and was recorded via ADCs for hadron calorimetry. Through a series of fan-outs, fan-ins and
discriminators, shown in figure 3.4, two trigger bit levels, corresponding to one (S) and two (T)
ionizing particles, along with an energy sum, E,, were defined for each counter. These formed
the basic elements of the trigger logic described in section 3.4 below.
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Figure 8.2 Details of a target cart

The range of phototube signal varied from single ionizing to many times minimum
in a high energy hadron shower. Historically, the dynamic range of ADCs has been limited,
and so three sets of ADCs were used to digitize this large range of input signals. A 10-bit high
ADC (Lecroy 2249) was used to record the sum of all signals in a plane. Single ionizing was
only a few channels above pedestal, but the signals from hadron showers were at reasonable
levels. For the £616 run, a 15-bit low ADC (Lecroy 2280) was available to digitize the signal
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Figure 8.9 Details of a toroid cart

from each phototube. Single ionizing was more than 100 channels above pedestal, while hadron
showers were below saturation levels. In fact, the large dynamic range of these new ADCs
made the highs redundant. For the small number of events for which a low ADC saturated, a
superlow could be used to recover pulse height. Signals from phototubes well separated in the
detector were summed and recorded by such superlow ADCs (Lecroy 2249). Presumably, only
one counter in the set was likely to have a large pulse height.

3.2 Spark Chambers

The reconstruction of muon angle and energy was accomplished by a series of position
measurements in spark chambers as the muon passed through the target and toroid. Each
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target cart contained six 10ft square spark chambers, one every 20cm of steel. The toroid
gaps were instrumented with a combination of 5{t X 5{t and 10ft square chambers. As shown
in figures 3.2 and 3.3, a total of 78 chambers were distributed throughout the detector. The
chambers were made of two lin aluminum-clad Hexcell panels, separated by 0.5in aluminum
I-beams which also provided structural support. On the interior of the Hexcell panels were
bonded mylar-backed planes of Imm spaced wires, the planes oriented at 90° to one another. A
gaseous mixture of Neon-Helium (90/10) with a small amount of alcohol (~1%) was circulated
through the chambers. Following passage of an ionizing particle, the application of a ~5kv
potential between the two wire planes of the chamber caused a breakdown of the gas, and a
spark to occur at the point of particle transit.

IFor the target chambers the high voltage pulse was a 200ns square pulse, produced by
switching to the chamber via a thyratron the energy stored on 24 X 120ft high voltage cables.
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Figure 8.4 Front end logic for target and toroid counters
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Such a pulse ensured good multi-spark efficiency in hadronic showers. The toroid chambers
were fired with a more modest capacitor discharge system, since only one or two muon tracks
were expected in the spectrometer.

The result of a discharge was an electromagnetic pulse passing down the wires of the
chamber to magnetostrictive wands along two edges. An acoustic pulse, produced in the wands
by the signal, traveled the length of the wand and was reconverted into a voltage signal by a
transformer coil. The signal was preamplified before being sent to the readout electronics. The
electronics for each wand consisted of: (1) a spark chamber interface module (SCI), for centre
finding of the pulse and conversion to a logical signal, and (2) a multitime digitizer (MTD),
with 20Mhz clocks to record the times of up to 16 pulses per wand relative to a common start.
At fixed positions near both ends of all wands, a fiducial pulse was generated each time the
chamber was fired and was likewise recorded.

The muon momentum was found by measuring the bend of the muon path in the
known fleld of the toroidal spectrometer magnets. This fleld was produced by three toroidal
magnets, each made up of eight 8in thick steel doughnuts, 69in in diameter, with a 10in diameter
centre hole to accommodate the four sets of coils used to power the magnets. The saturated
field, some 17kg over the length of the toroids, gave a transverse momentum kick of 2.45GeV/c
to a particle passing the length of the spectrometer.

3.3 Data Acquisition

Data acquisition was through standard CAMAC, controlled and monitored through a
PDP11/50. Beam line elements, including SWICs, magnet currents, collimators and the like,
were monitored through the Fermilab MAC system. In addition to event records, each machine
cycle (12s) pedestal, flasher, scaler and monitor records were recorded. Monitor information
was recorded by the MAC system, and passed to the experiment computer at the end of a spill.
Events were recorded not only during beam spills, but also during fixed length cosmic-ray gates,
to enable a determination of background cosmic rays in the data sample.

Between cycles, this information was partially analyzed to provide feedback on beam
and experiment operating conditions and performance. Beam steering was monitored by means
of the split plate ion chambers in the expansion port and manhole. Such functions as the
alignment of the Cerenkov counter could only be performed with immediate feedback on counter
response variations with angle. The quality of pressure curves could also be assessed on-line.
Phototube balances and pedestals, bit efficiencies and spark chamber efficiencies were calculated
from a sample of analyzed events, to provide immediate warning of problems with any of the
components of the Lab E detector.

Resonance extraction was used to remove protons from the main ring. Protons on the
edge of the main ring beam were kicked out of the beam by an electrostatic septum, followed
by a Lambertson magnet. The rate at which such extraction occurs can be controlled by the
degree to which the main ring beam is blown up. For E616, two modes of operation were used:
slow spill extraction over a 1s period, and fast spill with extraction over 2ms.
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3.4 Triggers

A neutrino charged current event has a characteristic topology: a neutral incoming
particle, interacting in the target fiducial volume and producing a penetrating muon and a
splash of hadronic energy. The hadronic energy varies from just a recoiling nucleon in the
elastic limit, up to most of the energy of the incident neutrino. The experiment ran with
two triggers covering this topology. Over much of the kinematic range these were redundant,
providing a means by which to check the efficiency of one trigger against the other.

The first such trigger, called a muon trigger, required a special set of fixed geometry
counters to fire, as shown in figure 3.5. Essentially, a single ionizing particle had to pass
through the first target cart, and partway through the toroid to trigger counters T2 and/or
T3, along with no veto. The detailed logic is shown in figure 3.6. There was no hadronic
energy requirement, but the muon had to have sufficient energy to reach T2. Also, due to the
limited acceptance of the T2 counter, the muon angle with respect to the incident neutrino was
restricted for this trigger. The T2 requirement ensured that the muon momentum could be
analyzed.

The second trigger, called a penetration trigger, used information from the target
counters and first ten planes of toroid counters. An event was required to have a minimum
ionizing particle which penetrated at least sixteen consecutive counter planes, and to have more
than 4GeV of hadronic energy, again with no veto. Although less restrictive on muon angle
than the muon trigger, penetration events did have a low y cut-off due to the hadron energy
threshold. Figure 3.7 is an example of a penetration trigger event, where the muon leaves the
target before reaching the spectrometer.

The only element of the trigger logic common to the two triggers was the veto counter.
Veto overkill, that is the overlap of the veto gate with possible good events, would deplete both
triggers. A cross comparison of the two triggers of course could not measure this effect. The
average veto deadtime of about 2% was measured at each setting by counting the coincidence
of a trigger with the veto delayed by approximately a gate width.

The principal source of contaminating events which satisfied these triggers, was cosmic-
ray muons or showers. The triggers were sufficiently restrictive so that for the 2ms fast spill gate
this is not a severe problem. However, it was necessary to make these triggers more restrictive
during the 1s slow spill gate, in order to keep cosmic-ray rates down to a few per second. The
additional requirements were: (1) for the muon trigger, that trigger counters T3 and/or T4 fire,
and (2) for the penetration trigger, that the hadron energy be greater than 10GeV. As will be
shown, software cuts for the structure function analysis have been made tighter than even the
slow spill requirements, and so this represents no complication to the data analysis.
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Figure 8.5 Computer reconstruction of a muon trigger event
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Setting Neuhall Toroid Muon Triggers
—120 0.817 0.812
—140 0.821 0.824
—165 0.855 0.860
—200 0.875 0.875
—250 0.913 0.901
+120 0.694 0.717
+140 0.667 0.684
+165 0.656 0.667
4200 0.686 0.697
+250 0.709 0.724

Table 8.1 Livetime fraction for fast spill

The experiment had a 50ms deadtime after taking an event, the time required to clear
charges from the spark chambers before refiring. Clearly, only one event per cycle could be
recorded for the fast spill. In order that deadtime corrections not become too large, event rates
for fast spill could not greatly exceed one per spill. The event rates for anti-neutrino running
never exceeded this limit, and so fast spill extraction was satisfactory. For the neutrino running
this was not the case, and data were taken with about equal flux in slow and fast spill extraction
modes.

3.4.1 Livetime

Monitors were gated on either: (1) the time the signal from the toroid (BCT) was
above threshold (beam gate), or (2) the beam gate in coincidence with a Lab E generated gate
signifying that the detector was alive (livetime gate). On a run-by-run basis the ratio of the
number of livetime to beam gated protons received on target, as measured by the toroid (BCT),
was used to compute the number of livetime secondaries from the total secondaries received, as
measured during the beam gate by the ion chambers. An alternative method was to determine
the ratio of total muon triggers per run, extracted from scaler records, to the number of recorded
muon trigger events. Since only beam associated events should be included in such a procedure,
corrections for cosmic-ray contamination of the scaled and recorded muon triggers were made.
Also, adjustment was made for the fact that the scaler gate was delayed by 20us to avoid spark
chamber noise. A comparison of the two methods indicates that the rms fractional error on
the livetime measurement was determined to 2.3% for neutrinos and 0.7% for anti-neutrinos.
These are equivalent to an average 5% fractional error on the deadtime: therefore, the livetime
error has been treated as a correlated error. Table 3.1 shows the livetime fractions for fast spill.
The slow spill livetime fraction was 86.7% for all five positive settings, reflecting the dominance
of the trigger rate by cosmic-ray events.



Chapter 4

Event Analysis

The data set used in this analysis was obtained over the period extending from June,
1979 through January, 1980. Some 800 raw data tapes were produced for off-line analysis
during that time. A total of 0.5 X 10'? protons were received on target during useful runs,
broken down between neutrinos and anti-neutrinos and among the five pairs of encrgy settings
as shown in table 4.1. OfFline analysis was carried out on the ermilab CDC Cybers. The
analysis of monitor data has been briefly discussed in chapter 2, and it remains to describe the
extraction of useful physics information from the event records.

The first step of data reduction was a sorting operation. Monitor and event records
were separated, and beam steering monitors incorporated into event records. Pedestals were
averaged and subtracted at this stage.

The bulk of the event analysis was divided into two subsequent steps: (1) a data
cruncher, containing much of the track finding and fitting routines, and producing a partially
analyzed record still retaining most of the raw detector measurements, and (2) a data summary
writer, containing the final hadron energy and target track fitting routines, and producing a
summary record with just a few physics variables per event. The procedures described below
were for the most part incorporated into these last two analysis programs. The extraction of
structure functions from the data summary files is the subject of chapter 5.

4.1 Hadron Energy Determination

The hadronic energy of the charged current event was obtained by summing pulse
height from counters identified as being within the region of hadron shower development. In
the counters, a typical event appeared as a region of zero deposited energy (the incoming neutral
neutrino), a region of large pulse height (the hadron shower containing many ionizing particles),
and finally a region of single ionizing response (the outgoing muon). The counter PLACE was
defined as the most upstream of a series of two counters with pulse height greater than 0.25
times minimum ionizing, signalling the abrupt transition from the neutrino segment to hadron
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Setting Primaries x 107 Secondaries X 10%*
Slow Spill | TFast Spill | Total | Slow Spill | Fast Spill | Total |

+120 151 1.10 2.61 6.43 4.834 11.27
+140 1.87 1.38 3.25 8.37 6.73 15.10
+168 2.95 2.07 5.02 16.41 11.55 97.96
+200 3.53 3.01 6.54 24.44 20.68 45.12
+250 5.42 5.56 10.98 48.94 52.43 101,37
—120 0.00 1.98 1.98 0.00 2.32 2.32
—140 0.00 2.38 2.88 0.00 2.83 2.83
—168 0.00 3.79 3.79 0.00 2.70 2.70
—200 0.00 5.31 5.31 0.00 2.64 2.64
—250 0.00 11.21 11.21 0.00 2.02 2.02

Table 4.1 Protons and secondaries received in good runs

shower. (Minimum ionizing is a term defined below, but is roughly equivalent to the signal
produced in the counters by a muon.) The transition between the trailing edge of the shower
and the muon was less distinct. The counter SHEND marked the shower end, and was defined
as the most upstream of a series of six counters with pulse height less than 3 times minimum
ionizing. The total pulse height in the first six counters downstream of SHEND was found to
be 0.74 4~ 0.15 times minimum ionizing higher than that of the next six counters. This was
taken to be the average hadronic energy missed by assigning SHEND in the manner described;
a correction of this amount was made on an event-by-event basis. The sum of pulse height
between PLACE and SHEND was proportional to the hadronic energy, £y, of the event. Pulse
height in all counters was pedestal subtracted and converted to equivalent minimum ionizing
prior to this summation. A determination of the energy equivalent of minimum ionizing allowed
the calculation of Eg.

4.1.1 Counter gain monitoring

The procedure was complicated somewhat by time and spatial response variations of
the counters, which first had to be removed. Shifts in the gains of individual phototubes over
time were monitored by the flasher system. Such shifts were corrected by the observed variation
in average phototube response to the stable flasher light source. It was also supposed that the
flasher could be used to balance the response of the four phototubes viewing a counter, so that
a particle passing through the counter centre would produce equal amounts of light in each
phototube. This was demonstrated not to be the case by mapping the response of a flasher
balanced counter using a gamma-ray source. Despite the use of a diffusing white spot, the
flasher illumination of the four phototubes was presumably not uniform in some counters.

Shifts in the overall counter gain were monitored using muons. The most probable
value, the peak of the distribution of pulse heights from singly ionizing particles (muons),
was expected [Ba75¢c] and observed to be independent of the energy of the traversing particle.
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Figure 4.1 Average gain of the target counters during the run

Operationally the peak values, called minimum ionizing, were taken to be the average of the
muon pulse height distribution below twice minimum ionizing. Since initially the value for
minimum ionizing was unknown, this was an iterative procedure.

Over running periods of typically a few days duration, the value for mimimum ionizing
in each counter was obtained by averaging the response to muons passing within 30in of the
detector centre. Changes in the value for that segment of running reflected gain drifts from
nominal and were corrected on a counter by counter basis. Averaged over all target counters,
this gain monitor showed point-to-point fluctuations of less than 4-1.5%, although there was
observed a 2% systematic drift downwards in the response to muons over the course of the
experiment (figure 4.1).

4,1.2 Counter mapping

Attenuation lengths for light in the counters were of the same order as the counter
dimensions. Hence, there was significant variation with shower position of the amount of light
collected by any given phototube, or the sum of all four counter phototubes, for the same
amount of energy deposited. This effect was removed by mapping the spatial variations using
hadronic showers.
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A model of the counter response was devised with four free parameters: a counter
centre, (Z,,%,), and two attenuation lengths, A\, and Ay. The two attenuation lengths were
used because the vertical acrylic ribs of the counter could result in different light attenuation
in the vertical and horizontal directions. The counter model could be broken down into four
functions representing the response of the four counter phototubes. Best values for the free
parameters were obtained for each counter, using the observed fractional variation of light as

seen by each phototube in hadron showers at different positions in the counters. For the ¢*"
counter:

528 g Z Z Nca(z y))? (4.1)

events j=1

where
p; = pulse height in the j** phototube
ci(z,y) = model value at the positionof the shower
ay = ky/pj
k = constant related to photons per minimum tonizing
N = Z;=1 21 E;‘—_q cj(z,y)

was minimized by varying the four parameters available. Details of the map function and fitting
procedure can be found in Appendix B. Shown in figure 4.2 are equal response contours for a
typical target counter.

It has been noted that the flasher system did not always succeed in properly balancing
the four phototubes of a counter. The map used was inadequate to addressing this balance
problem, due to strong correlations between (Az, \y) and the map centre parameters, (2, Y,).
In the future, the problem will be corrected by using a map with a set of three relative gains,
allowing greater freedom in fitting the counter response.

An important check of the validity of the map results was to observe the variation
of the map corrected mean shower pulse height for fixed energy particles incident at various
positions in the target. As shown in figure 4.3, the maximum variation was found to be 3.5%
for 200GeV/c pions from the target centre out to 50in, across the middle of the first two
carts. Most of the observed deviation was seen beyond 40in. This was the region where the
counter map would be inadequate if the four tubes were not properly balanced. Presuming
that the counters in the first two target carts were representative of the rest of the target, the
map correction was fractionally increased beyond 40in, reaching a maximum of 5% at 60in.
The calibration measurements were then well fit by the hypothesis of no variation across the
counter. A maximum of 0.40% overall systematic uncertainty in the map correction could be
accommodated before the x2 for the fit becomes improbably small (<10%). Presumably, the
map correction uncertainty was no more than twice this value.
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Figure 4.2 Equal response contours for a typical target counter
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Raw and map corrected calorimeter response to 200GeV/c pions across the
second target cart
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4.1.3 Calibration of hadron energy

After time and spatial variations in counter response were removed, a check was made
of counter-to-counter gain consistency. The observed response of the target counters to some
average hadronic shower should be uniform. Using a sample of penetration and neutral current
events, unbiased in the z position of the vertex, the relative variation of the mean hadronic
energy was observed. This in turn allowed the relative gains of the counters to be determined.

Although consistent with no variation throughout the target, the correction factors shown in
figure 4.4 were applied to the data.

The calorimeter was absolutely calibrated using pions from the N-5 hadronic test beam
which runs along the east side of the neutrino berm at Fermilab. Data were taken in the first
two target carts at beam momenta of 25, 50, 90, 200 and 250GeV/c. All corrections described
above were applied to the phototube signals. At each setting, a Poisson distribution was fit to
the observed spectrum of shower pulse height sums. The deviations of the determined means
from a one-parameter linear {it passing through zero are shown in figure 4.5. Minimum ionizing
was found to be equivalent to 0.2157 4- .0006 GeV. Figure 4.6 shows the measured resolution of
the hadron energy determination as a function of the incident pion momenta. The resolution
was found to be §Ep = (0.72 4- 0.20) - (0.81 4= 0.03)y/Is;;. Details of the analysis of the
hadron calibration data can be found in Appendix C. On the basis of the uncertainty in the
map correction and the calibration measurement, a maximum of 0.9% systematic error was
assigned to the reconstructed hadron energy for neutrino events.
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Figure 4.4 Relative counter gain through the target from hadrons
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4.2 Muon Parameters

4.2.1 Target track

The counters provided a means of identifying the z position of the interaction vertex,
PLACE, as described above. The first step in the track finding procedure was to determine a
crude transverse vertex position from sparks near the point of interaction. In both the horizontal
and vertical planes, a linear least squares fit was made to all sparks within a gradually enlarging

window, which included only the first 12 chambers immediately downstream of the interaction
point.

The muon path in the unmagnetized target was a straight line except for multiple
scattering effects. Hence, the sparks corresponding to the track would appear at a fixed angle,
0, and 0y, as seen from the vertex. The angular distribution of target sparks would be expected
to peak in the direction of the muon, above a background of hadron shower and noise sparks.
In each view, a preliminary two parameter least squares {it was made to sparks which lay within
this peak. Only those sparks on each wand which deviated least from this fit were retained.
Sparks were also eliminated if they were more than 3.50 from the position predicted by a fit to
all other sparks currently then included on the target track.

The original crude determination of the transverse vertex position could cause much of
the track to be missed. Therefore the procedure was iterated using the best value for the vertex
position from the first pass in the second attempt. I'inally, all sparks not already included on
the target track, but which lay within 20 of the predicted track, were added to the enscmble.

4.2.2 Toroid track

The search for the muon track in the spectrometer was complicated by the bend of the
muon in the magnetic field. However, the field was toroidal, so that to a good approximation
B= By(r)@€4. Therefore, one component of angular momentum, Ly = r2d¢/dz, was conserved.
A first ensemble of toroid sparks was obtained by including spark chamber hits which occurred
within some tolerance of Ly as determined from the upstream target track.

In general, a fit to the muon track was made by varying parameters affecting the
predicted path of the muon, so as to minimize:

X2 =3 ) (& — ol )My (25— <f) (4.2)
i

where
T zf = measured and predicted positions in the i chamber
M E‘ = inverse of the error matrix
If just the intrinsic resolution errors of the spark chambers, 0,, are included, then both M =
02 and M~ = 1/021 are diagonal, and the problem reduces to minimizing the sum of
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squares of deviation. However, the muon undergoes multiple coulomb scattering in passing
through material. Since the radiation length of steel is only 1.76cm, multiple scattering is an
important effect and must be properly included in the calculation of the error matrix.

Consider a series of m measurements of a track, z;, separated by distances L;, as

shown in figure 4.7. The standard Fermi formula gives the fundamental set of correlated errors
in position and angle due to multiple scattering:

Bit; = 050y

L.

¢i6j = —2-1-0361']'

$;0; = ¢ib; (4.3)
2

6,‘6;,‘_ = —:Sia'f,é,-j
where

B 0.015 L
¢ p Lraa

From this, one can construct a full error matrix, as shown in Appendix D, and find that:
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h L2 L l
M=) U%(—:f 4 ‘2‘k‘(zkj + 213) + Zkizkj) + 026;; (4.4)

k=1

where

2pi = zfn:k-*—l L,, =distance from & to 7
Diagonal elements are increased, and ofl-diagonal terms, representing correlations between
measurements due to multiple scattering, are introduced. This is the proper error matrix. The
calculation is largely unchanged if the track passes through a magnetic field. For the fit to the
toroid portion of the muon track, terms due to the errors in the determination of slope and
intercept at the toroid front face, and their correlations, were added the definition of x? (4.2).

An estimate of the muon momentum from the curvature of the toroid track was used to
make a multiple scattering fit to the target track weighted from the toroid front face upstream.
A one parameter fit to the muon momentum was then made to the toroid track using just the
diagonal elements of the error matrix. During a second iteration of the fit, sparks outside errors
were removed from the ensemble. It was presumed that at this point the procedure provided
a good estimate of the target track slope and intercept at the toroid front face and the muon
momentum. A new ensemble of toroid sparks was then obtained by including those hits which
lay closest to the predicted path of the muon from this preliminary fit.

In‘an attempt to eliminate bad sparks from the ensemble, a new fit strategy was
then invoked. A simultaneous fit was made to the target and toroid track, with free parameters
being vertex position; muon angles and momentum, and multiple scattering angles at scattering
centres distributed in the target and toroid steel. (Up to 12 per view in the target and 1 per
half toroid per view in the spectrometer were used.) The use of multiple scattering angles at
selected points distributed throughout the detector steel is an alternative method of handling
errors and correlations introduced by multiple scattering. A more complete description may
be found in the thesis of M.Purohit [Pu84]. Sparks with bad x? were removed from the track
ensemble. However, from monte carlo studies it was clear that, as'implemented, this method of
fitting tended to produce a biased estimate of muon momentum. Therefore, one final stage in
the momentum determination was necessary: a return to the one parameter fit with inversion
of the full multiple scattering error matrix in the calculation of x2 (4.2). Calculation of the
minimum of x2 was iterated until successive values of the muon momentum at that minimum
differed by less than 2%.

In figure 4.8 is shown the distribution of \/x2/DF from the momentum fit to muon
events within the final structure function fiducial and kinematic cuts (section 4.3 below), at
the 4200 setting. Resolutions of 0.8mm and 2.3mm, for target and toroid spark chambers
respectively, were used in the calculation of 2. The observed peak of the distribution was below
1.0, indicating that the resolution error for the toroid chambers was on average somewhat better
than the value used. However, there was considerable variation of the position of the peak with
the number of degrees of freedom for the fit. This presumably reflects the poor alignment of a
few chambers in the toroid, which affects the mean x? to a greater or lesser degree depending
on the ensemble of chambers included in the fit. The fact that the average resolution needed
was about 2.5 times the intrinsic resolution of any single chamber was likewise a refllection of
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the difliculty in aligning chambers in the toroid. The width of the observed x2 distribution
was greater than the prediction. The shift of the peak position would also contribute to this

problem, as well as the small fraction of events where the track search algorithms failed to
remove all bad sparks.

The calculated resolution of 0.11p, on the muon momentum from the spectrometer
was dominated by the contribution of multiple scattering error. The systematic error on the
reconstructed momentum has been estimated at 1%. Most of this was due to the accuracy to
which the magnetic field was mapped. Direct evidence was obtained from Fermilab experiment
E595, which used the first two target carts and the spectrometer as part of their detector.
This was an experiment to study the prompt muon signal from beam dump interactions of
pions and protons. These were supplied to Lab E by the N-5 hadron beam, the same beam
used for the calibration of the target calorimeters. The momentum of beam muons could be
determined from the bend induced by the last beam dipole before Lab E (5E13). A set of PWCs
(Proportional wire chambers) and the observed interaction point in the detector were used to
define the muon track before and after the bend. A difference between this momentum and
that reconstructed from the spectrometer was about 1% (two sigma).
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Figure 4.8

Distribution of \/x2/DF for toroid fits to muon events from the --200
setting
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4.2.3 Event scanning

Roughly 3000 events in the data set, although passing fiducial cuts, failed to obtain
an acceptable fit (x? per degree of freedom greater than 9.0), through the automated procedure
just described. These events were hand scanned, with sparks added or deleted as necessary,
using an interactive display and fitting routine. Iailures were attributable to a number of
causes, including: (1) backwards going defocusing cosmic-ray muons, (2) multiple tracks in
toroid or target, (3) track too short or chambers ineflicient, (4) track in or near the toroid hole,
(5) occasional unrecognized bad sparks, and (6) large multiple scatters in target or toroid steel.
Events with defocusing tracks were removed, along with a few cosmic-ray showers, and three
runs deleted where the toroid spark chamber MTDs had failed. Dimuon events have been hand
scanned and analyzed in a separate investigation, and were added back into our charged current
sample.

E, Probability of energy loss/m steel (%) __\
GeV >1GeV >5GeV >10GeV >20GeV >30GeV ‘ >40GeV
10. 0.92 0.01 0.00 0.00 0.00 0.00
30. 2.74 0.70 0.07 0.00 0.00 0.00
50. 3.93 1.47 0.40 0.02 0.00 0.00
70. 4.96 2.24 0.97 0.20 0.01 0.00
90. 5.52 . 2.55 1.18 0.46 0.14 0.01
110. 6.28 2.82 1.13 0.45 0.23 0.11
130. 7.10 3.52 1.39 0.45 0.20 0.08
150. 7.76 4.15 1.79 0.76 0.40 0.19
170. 8.15 4.81 2.46 1.04 0.65 0.29
190. 8.70 5.42 2.43 1.16 0.69 0.37
210. 9.10 5.82 2.84 1.55 1.11 0.89
230. 8.57 5.84 4.09 2.34 1.36 0.58

Table 4.2 Probability of catastrophic muon energy loss in passing through steel

4.2.4 Muon deep-inelastic scatters

The momentum obtained from a fit to the toroid track of the muon had to be converted
to a momentum at the vertex. For the most part, this entailed the increase of the toroid fit value
by the addition of ionization energy lost by the muon in passing through the steel intervening
between the vertex and the toroid front face. A calculation using standard formulas for the most
probable energy loss was typically sufficient to accomplish this task. Ilowever, occasionally the
muon would deep inelastically scatter, colliding with a nucleus and releasing far more cnergy
than usual. Such energy was observable in the scintillation counters as a series of counters with
pulse height greater than minimum ionizing. A search was made for such splashes of energy
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in the region of the detector between the end of the hadron shower and the toroid front face.
Where detected, such energy was added to the muon vertex momentum along with the usual
ionization formula correction. In table 4.2 can be found the observed probability for a muon
to undergo a catastrophic scatter and release energy .

4.2,5 Best fit to muon angle

The accuracy with which the muon angle, ¢, could be determined was dominated by
multiple scattering. Minimizing the length of steel intervening between the vertex and the first
measurement of the muon track minimized the error in 0,. Within the hadronic shower, sparls
in the chambers could be due to the muon, or any other of a myriad of forward-going ionizing
particles. By projecting the fit to the muon track obtained in the unambiguous region beyond
SHEND into the hadron shower, sparks within the shower due to the muon could be tentatively
identified. The ratio of random sparks to good muon sparks was observed to increase as the
track was extrapolated closer to the vertex. No attempt was made to project the track closer
than the point at which signal to noise ratio fell below 2:1. The probability of picking up a
good spark was ensured to be greater than 50% and of including a bad spark less than 10%
by this requirement. The allowed extrapolation distance was a function of the hadron energy
of the event, and the devised algorithm attempted to project as far as shown in table 4.3.
The variation of resolution with hadronic energy, also shown in the table, simply reflects the
increasing distance between the first detectable muon spark and the interaction point.

Ey First chamber Al

GeV on muon track mr
<10 1 16+ 84.4/p,
10 to 25 1 28 +179.2/p,,
25 to 50 2 16 - 105.5/py
50 to 100 2 A5 - 107.7/py
100 to 200 3 104 129.7/pu
>200 4 .00 + 154.8/p,,

Table 4.8

Attempted penetration into the hadron shower by the target track search
algorithm, and corresponding 6, resolution. Here, chambers are numbered
downstream from the event vertex.

It is instructive to compare the angle resolution obtainable in an unmagnetized target,
with relatively frequent sampling of the muon track as in the Lab E detector, with that found
in a magnetized target with coarse sampling, such as the CDHS (CERN-Dortmund-Heidelberg-
Saclay) neutrino detector [Ho78]. The result is a degradation of roughly a factor of three in the
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measurement error on ;. Consequently resolutions at small z, where the error on ¢, dominates,
are worse by a factor of three in the CDUS detector.

4.3 Cuts

4.3.1 Monitor and steering cuts

Variations in the direction of the secondary beam are equivalent to enlarging beam
dispersion in a time dependent manner, which could contribute to uncertainties in the flux of
neutrinos from pion decay. Beam steering was monitored while taking data using SWICs and
split-plate ion chambers in the expansion port and target manhole. As mentioned in chapter
2, the difference over sum of the two halves of the split plate signal was used as a steering
parameter. Attempts were made to keep the beam position within accepted limits while taking
data. Monitor and events records from a given cycle, representing about 5% of the total data
sample, were removed off-line if these steering parameters were outside tolerances corresponding
to 4-1.4in at Lab E. Cycles were also removed if beam intensity dropped below acceptable levels.
Whole runs were deleted if monitor or detector problems degraded the quality of the data.

Setting Beam Gates Cosmic-ray Gates Total
Slow Spill | [Fast Spill | Slow Spill | Ifast Spill
+120 30007 12662 4385 3523 50577
-+140 37275 25659 5150 4342 72426
-+168 65373 23830 8264 6367 103834
4200 87024 33831 12429 9466 142750
--250 113574 44759 17529 14321 190183
—120 0 6689 0 2903 9592
—140 0 9430 0 4172 13602
—168 0 11950 0 6849 18799
—200 0 13809 0 9718 23527
—250 0 12557 0 11291 23848
Total | 333253 | 195176 47757 72952 | 649138

Table 4.4 Events analyzed by first pass physics program
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4.3.2 Cosmic-ray cuts

Although not a critical problem for fast spill data, the slow spill data sample was
predominantly cosmic rays and not neutrino events. A number of loose cuts were devised
and tested with fast spill data to eliminate these unwanted events. When the analysis of the
slow spill data was undertaken, events which failed these cuts were removed from the sample
before entry into the time-consuming momentum fitting routines. These cuts were: (1) vertex
inside 58in in both horizontal and vertical directions, (2) no more than two interaction points
determined, (3) small pulse height outside the event region, and (4) a cut on reconstructed
hadron energy for penetration trigger only events at 2GeV and 7GeV respectively for fast and
slow spill. More restrictive cuts were made on the final structure function data set, so that
these requirements served only to save computer time by quickly eliminating a large number of
cosmic-ray events.

The monitor and cosmic-ray cuts described were applied at the stage of the first pass
analysis program. The number of events analyzed by the cruncher at each setting are shown
in table 4.4.

4.3.3 Geometric and fiducial cuts

Events used-in the structure function analysis must be fully reconstructed. Requiring
that the event vertex lie within a target fiducial volume defined in a beam centred coordinate
system by:

Py = /22 4 y2 < 30in for pions
| 7y |< 50¢n and | yy |< 50in for kaons
—653in < 2y < —16Tin or 80 < PLACE < 20 for all events

ensured that the hadronic shower was contained and hence measured. Also, within this fiducisl
volume the target portion of the outgoing muon track was found with high efliciency (99.9 -
0.1%), and hence 6, measured. The more restrictive transverse vertex cut on the neutrinos
from pion decay was imposed because of the sensitivity of the predicted neutrino flux at large
radius to uncertainties in beam dispersion and steering.

Geometric cuts on the projected target track of the muon were imposed to ensure that
the muon momentum could be reconstructed and that the detector acceptance for the given
event could be determined. These were:

pr < 69in
| 72 |< 55in and | yro |< 55in
A < 0.30
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where p, is the radius of the muon at the front face of the toroid, (zrs, y7s) is the projected
position of the muon track at the T2 trigger counter, and Ap is the fraction of the time that
the projected muon track lies within the 10in diameter of the toroid hole. These were all
deflined in an apparatus centred coordinate system. A muon which satisfied these cuts entered
the spectrometer. Since the magnetic field focused and the T2 cut was inside the physical
dimensions of the counter, such events would satisfy the muon hardware trigger.

4.3.4 Acceptance calculation

The set of geometric cuts applied to the data imply a detector acceptance which
depends on the muon angles (6,,$,) and the vertex position (zy, ¥y, 2y). The outgoing muon
is produced uniformly in the azimuthal angle ¢,, but for only some fraction § out of 27 does
the muon track pass the geometric cuts, and hence trigger the detector (figure 4.9). Clearly, d
is the event acceptance.

The solid angle subtended by the spectrometer varies with the longitudinal position
of the vertex, resulting in a dependence of acceptance on z,. This effect was accounted for by
averaging the acceptance of an event translated over the length of the fiducial volume.

Potentially, this z averaged acceptance could have a p, dependence. Low energy
muons which satisfied the muon trigger requirements, and had a vertex near the downstream
end of the fiducial volume, could range-out before reaching the trigger counter T2 if the
vertex were moved to the upstream end of the detector. However, such range-out events do
satisfy the penetration trigger requirements. Furthermore, muon momentum can be obtained
from the distance penctrated in the target steel before stopping, so these events are also
fully reconstructed. Thus, by supplementing the structure function data set with penctration
events which satisfied the geometric requirements of muon events, the acceptance was made p,
independent.

Slow spill muon events required both T2 and T3 trigger counters to fire. By scanning
a sample of fast spill muon events, it was found that in all cases where the muon failed to reach
T3, the muon stopped between T2 and T3. Although the slow spill muon trigger requirements
would not be satisfied, these events would be included as part of the sample of penetration
events pointing toward T2. It was concluded that the muon momentum could be properly
reconstructed from range.

The slow spill penetration trigger required either (1) greater hadron energy (I >
10GeV) or (2) greater penetration (>32 counters) than the fast spill trigger. Events which
pointed toward T2 and had muon energy greater than 3GeV would pass the increased penetra-
tion requirement. Hence, the hadron energy threshold for both fast and slow spill events was
effectively the same in the structure function data set.



4. Event Analysis

56

T2

4
EVENT

| T/IIIIGGERED

TRIGGER COUNTER

N

P

L

N,
N,
L
~——
Yo /
//

.~

EVENT NOT
TRIGGERED

ACCEPTANCE=¢/2w

Figure 4.9 Nllustration of geometric efficiency calculation

o
- T 1 = T 1 T
| |
| |
| |
I |
ITe) | 3 1
N | “h 1 -
e : 2 :
| [~
B 2 B
19 [N
onr | - X |-
o MUON TRIGGERS .
1) &,
| |
0 ! | I
ok | (=
S : ‘ | | PENETRATION
! TRIGGERS
x 1
= | 1
(3, { O 4 1 n 1 ’ L
.00 0.25 0.50 0.75 1.0
Y

Figure 4.10 Restrictions in the

2-y plane due to kinematic cuts for £,=100GeV



4.3. Cuts 5T

4.3.5 Kinematic cuts

Even after geometric acceptance correction, the muon trigger was not fully efficient
over the entire 2 and y kinematic plane. An event with a vertex at the target centre, and
at the most downstream end of the fiducial volume, would always fail geometric cuts if the
outgoing muon had an angle 0, > 240mr; that is, the event had zero efliciency. Also, if
the muon had energy I, <3.8GeV it would fail to satisfy cither charged current trigger. As
noted above, the hadron energy requirement for penetration events was about 3GeV. However,
a more conservative cut on hadron energy was made due to uncertainties in the calibration and
linearity of the calorimeter response below 10GeV. A small non-linearity at low hadron energy
could result in substantial systematic errors in our determination of 2. The kinematic cuts
applied to the events included in the structure function sample were:

EH Z 10GeV
E, > 4GeV
0 < 200mr

For a 100GeV neutrino, these cuts restrict events to the region in the z and y plane shown in
figure 4.10. Small angle muons from events with vertices within a radius of 5in of the detector
. centre would pass directly down the toroid hole. The hole-time cut (\77) would result in zero
acceptance for these events. Therefore, an additional minimum angle cut was made, requiring
0y = T.1mr for such events. The number of events lost due to this cut was insignificant. Table
4.5 shows the eflect on the data sample of each of these kinematic cuts.

Setting +120 140 -+168 —i-2'00 +250 Total
Muon event 10087 12552 20679 25877 32612 101807
0,;1%% < 200mr 9992 12447 20513 25660 32347 || 100959
Ey > 10GeV 5569 7814 14181 18828 24996 71388
E, > 4GeV 5529 7758 14068 18716 24794 70865
Fiducial cuts 3924 5905 11508 15815 21481 58633
Setting —120 —140 — 168 —200 —250 Total
Muon event 2040 2999 3328 3425 3208 15000
0,** < 0.200mr 2032 2996 3322 3418 3197 14965
Ey > 10GeV 889 1519 1870 2034 1989 8301
L, > 4GeV 858 1476 1810 1957 1875 7976
IPiducial cuts 557 1065 1365 1534 1469 5990

Table 4.5 Event losses due to cuts for all settings
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4.4 Tests of the Data

4.4.1 Trigger efficiencies

Due to the hadron energy requirement for the penctration trigger, the ratio of accep-
tance corrected muon events to penetration events, with 0, <200mr, exhibits the fall-ofl' as
Ep~0 shown in figure 4.11. Likewise, the spectrometer angle acceptance limit results in the
decline above 0,=240mr in figure 4.12 of the ratio of muon to penectration events. However,

the two independent charged current triggers were both eflicient after geometric acceptance
corrections within the region:

Eg > 20GeV
Ey > 4GeV
0y < 200mr

Within these kinematic bounds, the relative efliciency of muon and penetration triggers was
found to be 99.8 4- 0.7% for fast spill, from the ratio of the sum of acceptance weighted muon
and penetration events. The procedure was unreliable for slow spill, due to contamination of
high-angle penetration events by cosmic rays.

A sccond approach to determining trigger efficiencies excluded the complication of
acceptance from the calculation. Within the kinematic limits: Ey >10GeV (fast spill) or
>20GeV (slow spill) and 6, <100mr, the number of penetration events which point toward
the T2 trigger counter, but which do not fire a muon trigger, were determined. Some calculable
fraction of these events were due to range-out before T2; the remainder represented muon trigger
inefliciency. By this means, the eficiency of the muon trigger was found to be 100. 4 0.1%.
The complementary procedure, namely the number of muon triggers within these limits which
failed to fire the penetration trigger, gave a penetration trigger efliciency of 99.2 + 0.1%.

These numbers represent efficiencies before the cut on x2 for the muon momentum
fit. The correction for the events lost by this cut was determined in three ways. The difference
in the efliciency determined with and without the cut, using either of the methods described
above, could be used as the correction. Alternatively, all failed muon events were known to have
final state muons with momenta E,>4GeV. The ratio of the sum of weights of failed events
to all muon events within the structure function kinematic cuts also determined the required
inefliciency. While this last technique was used to calculate the corrections shown in table 4.6,
the three approaches produced consistent results.
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Setting Positive Negative
120 1.0059 1.0250
140 1.0123 1.0009
168 1.0265 1.0014
200 1.0169 1.0080
250 1.0072 1.0025

Table 4.6 Correction factors for losses due to toroid y?2 failures

4.4.2 Calibration check

A check of the calibration of the spectrometer and hadron calorimetry was made by
comparing mean event energies as a function of y. At high y the total energy of the final
state is mostly hadronic, whereas at low y it is dominated by the muon energy. Due to the
muon angle cut, the limits of acceptance at high y varied with energy. Corrections were made
using an event monte carlo based on our measured structure functions and flux calculations
(see section 5.2.4 below). Shown in figure 4.13 for the 4200 setting is the ratio of the mean
observed energy to the mean energy predicted by the monte carlo, as a function of y. Included
in quadrature with the statistical errors are estimated systematic errors of 1.0% on hadron
energy (section 4.1.2 and 4.1.3) and 1.0% on muon energy (section 4.2.2). Both the pion and
kaon mean energies are seen to be consistent with the hypothesis of y-independence. Within
the noted systematic errors, this was true for all settings.

The average value for the ratio of data to monte carlo mean energy fluctuated about
unity with sigmas of 1.5% and 1.0% for neutrinos from pion and kaon decay respectively. The
predicted mean momenta depended directly on the mean secondhry momenta from the beam
monte carlo. The pion mean momenta could only be set from the energy of neutrinos from
forward-going decays (YR/2 < 1), which were directly proportional to the parent secondary
energy (equation 2.1). The mean kaon energies could also be determined from the observed
mean of the kaon pressure peak from the Cerenkov counter (section 2.3.5). The consistency of
the two methods of measuring the mean kaon momenta indicated that a systematic error of
1% should be assigned the result. Presumably the corresponding error for pions is not much
greater. In both cases, the monte carlo central momenta were smoothly adjusted to match the
measurements. Therefore, the observed deviations were within expectations, given this level of
systematic error on mean momenta.
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Setting a(GeV) Blin~1)
4120 80. 0.0119
1140 92. 0.0126
4168 110. 0.0140
+200 134. 0.0155
+250 165. 0.0177

Table 4.7 Parameters for neutrino type separation

4.4.3 Separation of pion and kaon neutrino events

Interactions in the target result were due to neutrinos from both pion and kaon
decay, each with quite distinct energy and spatial distributions. The dichromatic nature of
the neutrino source made possible an event-by-event determination of the parent secondary
type. The separation was made on the basis of a function recalling the correlation between I,
and radius (equation 2.1):

o ,

Espp(r) = ——— 4.5

"= TG o)

where r is the radius of the event from the beam centre. If F, < Eggp(r) the neutrino was

from a pion decay, or if £, > Eggp(r) the neutrino was from kaon decay. « and f§ for the

five pairs of settings are listed in table 4.7. Figure 4.14 shows the clean separation of neutrinos
from pion and kaon decay in a sample of 200GeV muon events.

Beam centres for each of the settings were determined from the distribution of vertex
positions for neutrinos {rom pion decay with £, > 0.20L,. It should be also noted that the
beam centres of the monte carlo predicted flux distributions were calculated in an analogous
fashion, and adjusted to match the data. Deviations from the target centre were small, as
shown in table 4.8.

Setting Positive Negative
zo (in) | yo (in) | o (in) | o (in)
120 3.67 2.21 2.33 3.79
140 3.65 1.84 3.11 3.20
168 3.84 1.66 411 | 381
200 3.37 3.00 3.83 3.35
250 1.36 2.01 2.18 3.92

Table 4.8 Beam centres from the vertex distribution of pion events



Chapter 5
Extraction of Structure Functions

A sample of fully reconstructed neutrino and anti-neutrino charged current events was
available within the kinematic limits and the fiducial volume described in the last chapter. The
normalized flux spectrum over that same fiducial volume was calculated from properties of the
secondary beam, as described in chapter 2. It remains to be shown how structure functions
were extracted from this information.

5.1 Total Cross Sections

The probability of observing a neutrino or anti-neutrino event in a differential kine-
matic and fiducial volume at (E, z,log Q2) and (r, ¢) can be expressed as:

dg"(r")

' = k o,(m)(E, 1) A(r,6,¢) 7— PPRITYTE

dEdzdlog Q° drd¢ (5.1)
where k is the number of scattering centres in the fiducial volume, o, )(E,r) is the flux of
neutrinos or anti-neutrinos, and A(r, 6, @) is the acceptance of the detector for the event. The
acceptance couples the spatial dependence of the flux with the kinematic dependence of the
differential cross section. However, if events are weighted by one over acceptance, that is both
sides of the equation 5.1 are divided by A(r, 8, ¢), this coupling is removed. With dwv®) =
dn*( [ A(r,0, ¢), the weighted event density is:

dov(®)

dw'®) =k o, 5(E, r)d oz 02

————dEdzdlog Q% drd¢ (5.2)

The probablity integrated over all z and log @2 is proportional to the total cross section:
dw’® = ko, (E,r) 0" ") (E)dEdrd¢ (5.3)

The dichromatic nature of the neutrino beam results in further simplification. Events restricted
to an annulus (r,7 - Ar) in the detector will be peaked at two distinct neutrino energies,
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corresponding to neutrinos from pion and kaon decay. For each parent species:
k JdE [T 5dr [ dg ou()(B, 7)

The fiducial volume could be divided into a series of such concentric rings. Thus, a series of

paired measurements of the total cross section would be obtained as a function of neutrino
energy.

") E,) = (5.4)

In practice, the process was not quite so simple. The charged current triggers did
not cover the entire kinematic range. However, for the purposes of the total cross section
the accessible region was maximized by recognizing that events need not be fully determined
kinematically: only separation of events into pion and kaon parent classes was necessary. Thus,
penetration events were included where the muon momentum was not measured. Separation for
such events was achieved on the basis of hadron energy alone, using the statistical technique
described in detail in the theses of R.Blair [BI82] and J.Lee [Le81]. Shown in figure 5.1 is
the total cross section result from E616 [BI83a]. The inner error bars represent statistical
errors only, while the outer error bars include estimates of point-to-point systematic errors
added in quadrature. Additional overall normalization errors of 3% and 5.5% were assigned
to the neutrino and anti-neutrino cross section measurements respectively. It can be seen that
generally systematic errors, which were predominantly flux errors, were greater than statistical
errors.

The quark-parton model expectation is that the inclusive total cross section will rise
linearly with energy. This is not modified in any essential way by QCD: the predicted level of
scale breaking effects lead to cross section slopes which fall slightly with energy for neutrinos
and rise slightly for anti-neutrinos. Including all sources of statistical and systematic error, the
reported result o/E was found to be consistent with the linearly rising hypothesis: x?=16.9
for 14 degrees of freedom for neutrinos, and 5.3 for 10 degrees of freedom for anti-neutrinos.
The average cross section slopes were:

0¥ /E = 0.669 4 0.003 + 0.024
0”/E = 0.340 4 0.003 + 0.020

where the first error is statistical, and the second systematic, including the overall scale errors.

Two features of the measurements were of concern for the structure function analysis:
(1) the preferred trend of o/E to rise with energy for neutrinos and fall for anti-neutrinos, and
(2) the large fluctuations with energy of the ratio of 0¥ to o7, If no means were found to reduce
the systematic errors introduced by flux measurements, these features would significantly alter
the observed scaling violations in the data, leading to large systematic errors on Agcp. For the
purposes of the structure function analysis, a nearly model independent procedure was devised
to adjust fluxes on a setting-by-setting basis, so that the total cross section better conformed
to expectations. Details concerning the method will be discussed in section 5.3 below.

Also shown in figure 5.1 are the corresponding results for o/E from the CDHS col-
laboration at CERN [Ab83]. The absolute level of these points was normalized in the region
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Figure 5.1 Neutrino and anti-neutrino total cross sections for CCFRR and CDHS

30GeV< E, <90GeV to an earlier cross section measurement of 0¥ /E=0.62 and ¢”/E=0.30
by the same group [Gr79]. Again, the inner error bars are statistical only, while the outer error
bars include point-to-point systematic errors. Average overall scale errors of 6.8% for neutrinos
and 5.5% for anti-neutrinos are not shown. The average cross section slopes over the entire
spanned energy region are:

0¥ /E = 0.601 4 0.003 4- 0.041
0”|E = 0.294 4 0.003 4 0.016

Thus, the average values of o/E, as measured by the two groups, differ by 11% and 16%
for neutrinos and anti-neutrinos respectively. This is somewhat outside the stated systematic
errors on the measurements.

Since the CDHS detector was closer to the neutrino source, it was necessary to use
only two settings of the secondary beam (4200 and +-300) in order to obtain neutrinos over
the reported energy region. This results in a smaller contribution to point-to-point fluctuations
due to uncertainties in particle fractions measurements in the secondary beam. The reported
energy dependence is clearly consistent with the linear rising hypothesis of the quark-parton
model, or with QCD expectations.

The total cross section is proportional to integrals of structure functions at fixed £,.
Starting with the general expression for the cross section, equation 5.12 below, and integrating
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over all z and y, it can be shown that:

' 9 3 7 [ov  o¥
'/; FQ(Z:Q )dz: "'"+'—'

4— RG?M\ E E
! 3 1 [ov oY (5:5)
F. Ndg =—— | — — =
/o 2Fa(z, Q%) dz 2G2M(E E)

Assuming R = 0.1, and a #SU(3) symmetric strange sea (see section 5.2.1), the results for
0¥ /E imply:

1 CCFRR CDHS
[y Fa(z,Q%)dzdy 0.478 4 0.015 0.424 4 0.019

Jy zFs(z,Q2) dzdy 0.312 + 0.020 0.291 + 0.039

The discrepancies in the total cross section measurements naturally lead to normalization
differences in the integrals of structure functions, and ultimately in the extracted structure
functions themselves. This is of some importance for definitive tests of quark model predictions,
such as the mean quark charge test or the GLS sum rule.

5.2 Weighted Event Method for F, and zF;

In order to obtain structure functions as a function of (z,log @?), a set of bins was
defined spanning the accessible kinematic range in these variables. The binning scheme chosen
is common in the literature, but also matched resolutions in z and Q2 reasonably well. The
acceptance weighted mean values of Ey, E,, 6, and y, and the average weight for each of
these bins are tabulated in Appendix F. Typically, for a given z value, the low Q2 bins were
populated by neutrinos from pion decay while high Q2 bins were predominantly neutrinos from
kaon decay. The distribution of acceptance and the inverse of acceptance for a particular bin
are shown in figure 5.2. The average weight for events from pion and kaon decay neutrinos are
separately shown in table 5.1.

Setting Vg Vi Vs Uk
120 " 1.614 1.464 1.417 1.273
140 1.523 1.415 1.383 1.271
165 1.481 1.346 1.262 1.210
200 1.426 1.326 1.227 1.164
250 1.366 1.286 1.202 1.149

Table 5.1 Average weights for both neutrino types at each setting
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The weighted sum of events in a bin is related to the diflerential cross section. Equation

5.2 can be integrated over (z,log @2) within kinematic cuts and bin limits, over (r,¢) within
the fiducial volume, and over all E to give:

=i o foec 22
Y wi®) =k [dE [dz [dlog @*——— - d]og Q2 ®(E) (5.6)
Here, the integrations over the fiducial volume have been absorbed into the flux, with:
D) = /dr /dd) pu)(E,7) (5.7

Let the expectation value for a function 7(E, z,Q?) be denoted as:

J dE [dz [dlog Q* 7 (E, 3,Q°) 9y (5)(E)

¥ E’ , 2 = 5.8
(7(E,2, @) [ dE [dz [dlog Q2 8,)(E) (5:8)
Then, equation 5.6 can be rewritten as:
Ewu(') < dov @) > (5.9)
5 o,
k [ dE [ dz [ dlog Q2 Dy dadlog Q? o(7)

The most general expression for the differential cross section at high energy is in terms of three

unknown structure functions:

do*®  In10G2ME {( Mzy
dzdlog Q2 T Y

(5.10)
+L 2P Ps, Q) 1 401 — Y2t (5,02
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Using:
2 —
1+ ) F5(5,¢%) = (1 + R(z, Q%) 2274z, @?) (5.11)
this can be rewritten as:
do¥() IRI0GAME [ o u®) A2y oL s o (P A2
e A AU TR ETRE L ICN-0) B CE
where:
Mzy y2(1+Q2/V2) 1
T e oy — g N - e 12
y l—y—=5 +3 ¥ RGO 2(l-i—(l y)°)
—=1-(1—yP)
g = y

The dominance of spin % quarks in the scattering of neutrinos from nuclei is equivalent to
R ~ 0 [CI79]. For the purposes of extracting Fo(z, Q2) and zF3(z,Q?), various assumptions
were made concerning R(z,@?), all consistent with present measurements.

Given bins sufficiently small in (z,log ©2), the structure functions can be taken outside
integrations and:

Y wi® _ kIn10G?M
JdE [ dz [ dlog Q2 d, (5 ™

(B, PP, 0%
. (5.13)
+(VEY ), ) 2F5 (3, Qz)}

If the differences in the energy spectrum of incident neutrinos and anti-neutrinos are ignored,
so that (yEy*), = (yEy*),, and taking 2F}(z, Q%) = 2F5(z,Q?), this is simply:

2y T 1 Ywt Yuwy
Fe(z, Q%) = 2k 1n10G2M(yEy+){ [&, qug}
" (5.14)
IF(I Q2)_ m 1 Zwi’_zwf
SR T ok n10G2M (yvEy—) | [ o, [ %5

The three dimensional integrals (yEy*), (yEy™), [ $,, and [ &5 can be evaluated numerically.
The sum and difference of the total number of acceptance weighted neutrino and anti-neutrino
events in a given bin in (z,log @2), yield Fa(z,@?) and zFs(z, @?) respectively.
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It was of course not necessary to make these simplifying assumptions, and as imple-
mented the structure functions were extracted using:

i ]
Pz, Q)= 1 BEe) {Ew? + zw,v}
k do do” Je,  [op
L(dzdlong l"‘"‘>u+ dzdlog 2 l1ron N
) "1 (5.15)
2y _ 1 2F3(z,Q?) Twl  Twl
)= do” do” {f ¢ [ 45;}
\<dzdlogQ2 l""">y" dzdlog Q2 |1"on )

The symbols do*(®) /dzd log Q2 |rron represent the cross sections for neutrinos and anti-neutrinos
in an iron target. These were evaluated using the same Fy(z,Q?) and zF3(z,Q?) which ap-
pear explicitly on the right hand side of equations 5.15. To begin with the structure func-
tions were unknown: the method therefore required iteration. However, corrections were
small and convergence was fast.

5.2.1 Corrections to isoscalar cross section

The cross section in iron can be expressed in terms of Fy(z,Q?), 2F3(z,Q?), and a
number of correction terms: (1) isoscalar corrections, I*(%), (2) strange sea corrections, S¥(¥),

(3) corrections for slow rescaling due to the charm quark mass, C¥(*), and (4) electromagnetic
radiative corrections, R¥(¥). Thus:

dO’V(T;) dOU(F)
dzdlog Q2 liron= 010y dzdy |Bare {1 + R,D(E, 2, Qg)} (5.16)
where:
do¥”) G2ME

— — + 2 — 2F. 2
d:cdy |Barc = {y F2(Z;Q )Ity z 3(I:Q )

(5.17)
+I"O(E,2,Q%) + §*P(E, 2,@%) + C*PE, 3, Q2)}

The origin of the various correction terms is outlined below; a detailed discussion of the form of
the differential cross section is included in Appendix E. Not shown is the W-Boson propagator
term, which was included in the procedure for extracting structure functions.

An iron nucleus, with an excess of neutrons over protons, differs slightly from an
isoscalar target. This results in the term:

1

P (5.18)

OB, 2,6%) = £~ 22/)(wul, @) — dz, @
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where u, and d, are respectively the valence distributions for u and d quarks in the proton.

As shown in figures 5.3 and 5.4, this correction was quite small for /5, but was as large as 10%
for zF5 at low Q2.

If the charm content of the nucleon is taken to be negligible, then the conventional
definitions of the structure functions are recovered only with the additional term:

SV(T/)(E:I:Qz) = S(iE, QQ)(I - (1 - y)2) (519)
where s is the strange sea in the proton. For this analysis, the strange sea was assumed to
be 4SU(3) symmetric, as discussed in section 5.2.2 below. Figure 5.5 shows the strange sea
correction for Fy. The correction was substantial only at small z. This reflects the nature of

the sea quark distribution, which is peaked at small z. In the case of 2F}5, which is proportional
to the difference between neutrino and anti-neutrino cross sections, the correction cancels.

The effect of a finite charm mass was properly accounted for by the use of £-scaling
and a slow rescaling threshold factor. The components of the cross section reflecting transitions
from both d and s quarks to charm were so modified. In order to restore the suppression
introduced, the correction term C¥(®)(z, Q2) was required. Rather than displaying this term in
excruciating detail, the reader is referred to equations .10 and E.13 for the specific form of
the cross sections used in these calculations. The effect on the structure function results of a
finite charm mass is shown in figures 5.6 and 5.7. Again, the correction was largest at small z.
However, since Cabibbo-suppressed transitions of valence d quarks are also modified, the effect
persisted at all z. The threshold effect was minimal at high energies, and hence, high @2: thus,
the correction exhibited some Q2 dependence.
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Leading log radiative corrections to the lepton leg were made in the manner suggested
by De Rijula and Petronzio [Ru79]. The emission of a collinear photon by the outgoing muon
results in the reduction of the muon energy from E,/z to E,, but little change in muon angle.
The migration in z and y is calculable and given by:

_ 2
RONE,2,Q7) = S 20—y )

mi
1 2
1422 | y©(2 — 2pmin)| do¥(P) do¥ (V) -
d e
/0 ‘ 11—z | 2(y+2—1)| dzdy |zare L dzdy |Bare ¢ 4O 2w )
(5.20)

where:

"=ay/(z+y—1)
Y =(+y—1)z
Zmin=1"y+zy

The magnitude of the radiative corrections to F» and zF3 are shown in figures 5.8 and 5.9
respectively.

Corrections due to variations of Fy(z, Q?) and zF3(z,Q?) within a bin were made
implicitly by retaining the structure functions under the integral signs. These corrections were
in general only a few percent, except for edge bins.

5.2.2 Model of I; and zF3 for integrations

Quark distribution functions were obtained from fits to the data of the form proposed
by Buras and Gaemers [Bu77,Bu78]. These functions represented a simple, but efficient, means
of modeling the z and Q2 variation of the differential cross section for the purposes of calculating
required integrals. The chosen forms were motivated by expectations of the quark-parton model
and QCD. Arguments relating the pomeron and p Regge trajectories to the small z behavior of
structure functions lead to the prediction that g,(z)~z'/2 and g(z)~c as z — 0 [Fi77,CI79).
Correlations between elastic form factors and F, lead to the prediction that ¢(z)~(1 — z)*
as  — 1 [Dr70,We70]. Asymptotic analysis [Al82] of the Altarelli-Parisi equations confirms
that g(z)~(1 — z)% as z — 1 and Q2 — o, and leads to the additional expectation that
G(z)~(1 — z)™t! and g(z)~(1 — z)%+2 in the same limits. All of these predictions were
incorporated in the model.

As a corollary of the fact that our target was nearly isoscalar, this experiment could not
make measurements distinguishing between u and d quark z distributions. In order to establish.
a relationship, it was therefore necessary to make an appeal to the experimental literature. The
observation in electron deep-inelastic scattering [Bo73,Fi77] that F§"/FE — 1/4 as z — 1,
implies that g(z)~u,(z) at large z. Consistent with this result, the assumption was made that
dy(z)~uy(z)(1 — z). This last represents a slight extension of the basic model proposed by
Buras and Gaemers.
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From asymptotic QCD, the evolution of the structure functions with Q2 can be
calculated. One convenient form of these predictions is the moment equations: integrals of
the Altarelli-Parisi equations over all z. Analytic expressions for the z and @2 variation of
quark distributions were devised by Buras and Gaemers, which incorporated the expectations
of the parton model described above, and yet whose moments evolved as predicted by QCD.

The moment equations for the valence quark distributions are simply:

(‘IV(QQ))(n) = (qv(o))(n) exp[—1"s] (5.21)

where 4" are predicted by the theory (see [Bu78]), and:

_ 1. In(@%/A%)
"= P (ga/a) (522)
The choice of:
uy(z, Qz) = a, zM(s) (1-— I)ﬂz(s)
dy(2,Q?) = ca(s) uu(z, Q%) (1 — 2) (5.23)
where
m(s)=mno—n1-s
n2(s) = n20 +n21 -8 (5.24)

satisfies these moment equations to high order. The parameter c; was fixed by quark counting
rules for the proton: foldz uy(z,Q%)/2z = 2 foldz dy(z,Q%)/z. However, the overall normaliza-

tion, ay, was retained as a free parameter, rather than using the constraint of the GLS sum
rule.

The anti-quark and gluon distributions should be peaked at small z; hence, g(z, Q?)
or G(z,Q?) are well determined from the first two moments alone. A suitable choice was:

27(2, Q) = S(z,Q?) = as(s) (1 — 2)"*(®)

G(z, Q%) = ag(s) (1 — 7)) (5.25)
It can easily be seen that:
(5(@2*)2
1) = (5o -
as(s) = (S(@*))2(1 + ns(s))

and likewise for the gluon parameters. The equations describing the evolution of these moments
are more complicated than those for the valence quarks (5.21), but are determined by asymptotic
QCD (see [Bu78] for details). Thus, the parameters required to determine this segment of the
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model were the second and third moments of the anti-quark and gluon distributions at Q3.
The second moment of the gluons was fixed by the momentum sum rule: fol Fy(z,Q%)dz =
1— fol G(z,Q?)dz. A reasonable choice for the gluon z dependence was ng(0) = 5, which fixed
the third gluon moment. The moments of the anti-quark distributions were free parameters.

Best values for the eight free parameters of the model were obtained from fits to
2zFy(z,Q?) and zF3(z, Q?) extracted from our data. The structure functions were expressed
in terms of quark distributions as follows:

zF3(z, Qz) = uy(2, Q2) + do(z, Q2)

27,2
2zF(z,Q%) = (-1—1_—*__%%—’/57)) Fy(z,Q%) (5.27)

= 2F3(2,Q°) + S(z,Q?)

The best values for the free parameters, under various assumptions about R(z,Q?), are shown
in table 5.2. A Q2 = 12.6GeV? was used for all fits.

Parameter R=0.1 R =00 Rgcep
A (MeV) 210 202 247

ay 1.752 1.838 1.702

10 0.413 0.438 0.408
o 0.188 0.151 0.216
N2o 2.333 2.285 2,225

Moy 1.707 © 1.849 1742
a5(0) 1.141 1.214 1.091
N0 6.991 6.267 6.300

Table 5.2 Parameters used in model for quark distributions

The fraction of the anti-quark distribution represented by strange quarks can be
determined from events with two opposite sign muons in the final state. A charmed quark
produced at the initial weak interaction vertex results in a charmed particle in the hadron
shower. Such a short-lived object decays before interacting. Occasionally the decay is through
a semi-leptonic channel, yielding a second muon. Due to weak selection rules, this muon would
have the opposite electric charge to that from the neutrino vertex. The cross sections for such
events are:

dov—s*te™  G2ME
dzdy =

do”+ ¥~ G2ME
dzdy

B, tc{(u(f) + d(£)) sin® 0. + 23(£)C052 Bc}
(5.28)

Bit, {(v(e) 4 7(6))sin? 0, + 23(¢) cos? ec}
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where B, is the branching ratio of charm to the muon channel. The use of the scaling
variable £ = z + m2/2M Ey and the threshold factor t, = 1 — m2/2M E¢ properly accounts
[Ge76a,Ge76b,Ba76a] for effects of a finite charm quark mass, m,.

A useful parametrization of the strange sea quark fraction is:

\, = Jodzs(2) +5(2)
Joda(a(z) + d(a))

(5.29)

If it is assumed that the z and Q? variation of s(z,Q?) is the same as g(z,Q2), and that
%(z, Q%) = d(z,Q?), then one obtains:

Xs

5(z,Q%) = 5(z,Q*) = Y 7(z,Q°)
i 1 (5.30)
-‘!7(27, Q2) = d(I, Qz) = 3+ )\55(-”5, Q2)

The validity of this description has been confirmed in detail from the observed properties of
the dimuon sample. Taking u(z, @?) and d(z, @?) from charged current data, the parameter
can be determined from the dimuon z distributions and event rates. Our data favoured \; =
0.50F:1%, as shown in figure 5.10 [Ws83]. CDHS has published a determination of this same

80.
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20.0

.00

; . | R | o
.00 0.25 0. 50 0.75 1.0
. STRANGE SEA FRACTION X\,

Figure 5.10 Strange sea fraction from observed number of anti-neutrino dimuon events



5. Extraction of Structure Functions 78

parameter from a high statistics sample of dimuon data obtained from wide-band neutrino and
anti-neutrino running. The reported value [Ab82b] was A\s = 0.52 4 0.09, but has substantial
model dependence. Both results were obtained assuming the effective charm mass to be 1.5GeV.
A 10% change in the mass was reported [Ab82b] to result in a corresponding 5% change in \s.

5.2.3 Quadrature technique

The beam monte carlo predicted the energy and spatial distribution of neutrinos per
secondary at the Lab E detector. As has been noted above, with acceptance handled on an
event-by-event basis, the integrals of flux over fiducial volume (equation 5.7) can be trivially

accomplished. All neutrinos from two body decays of secondaries were included in the flux sum
if:

pv = /22 4+ y2 < 30in for m— uv
| zy |< 50in and | y, |< 50in for K— pv

Other sources of neutrino flux, representing a total of a few percent of the two body contribution,
were also included: neutrinos from three body decays of kaons and wide-band background
neutrinos. For these sources, the flux was first separated into that which would be classified as
coming from pion or kaon decay in the event sample. The appropriate fiducial cuts were then
applied, so that this flux was included only if:

E, < Esgp(r) and p, < 30in
or E, > Esgp(r) and | 2, |< 50in and | y, |< 50in

where Eggp(r) was the same separation function used for the data (section 4.4.3). The result
of this summation of flux over the fiducial volume was stored in an array of flux per secondary
in 2GeV bins for each of the ten settings (¢, 7)(E)).

Integrals were performed by stepping through E, () in these 2GeV bins. Within a
bin, a 7 point Gaussian quadrature formula was used to integrate over z. The limits of the
integration in log @2 were determined at each z value. If Q? was the lower bin limit, then the
lower and upper limits of integration were:

Q3
\ aMzEp"
Qlower = max 2E12/(7)(1 — €OS Blr‘naz)
T+ By)(1 = cos 079 )/ Mz (5.31)

2 . QF +AQ3
upper — min 3
- 2Mz(Ey @z — ET")
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The integration in log @2 between these limits was accomplished using the 16 point Gaussian
quadrature formula. Events with a vertex inside a radius of 5in of the apparatus centre were
subject to a further 0"}"" cut. The integration upper limit in this case was:

2
upper

= min 2E (1 — cos 85*") (5.32)
1+ Ey(;)(1 — cos ")/ Mz

2
upper

Halving the step sizes in any of these calculations had no effect on the result.

5.2.4 Resolution smearing corrections

The effect of resolution smearing was calculated using an event generating monte
carlo. Neutrino rays from the beam monte carlo, with the energy and spatial distribution of
the dichromatic beam, were input to this program which simulated interactions in the detector.
Events were thrown with the z and y distribution observed in the data. A more primitive
model of the structure functions than that described in section 5.2.2 was used to parametrize
the differential cross section for the event generator. The chosen form of the z dependence
was similarly motivated by the need to separate the contributions of valence and sea quark
distributions in the model. However, the Q2 variation was treated in a more empirical fashion,
with:

fiz, Q%) = fi(z,Q* = 10) {(1 + B(z)log(Q?/10)} (5.33)

The function, A(z) = By — B2y/Z, Was an ad hoc representation of the observed pattern of
scaling violations. Such a form was better behaved as @2—0, and therefore was more suitable
for the monte carlo. The free parameters of the model were obtained from fits to our structure
function results, as with the Buras-Gaemers type model. Figures 5.11 and 5.12 show observed z
distribution for data obtained at the 4-200 settings, compared with the monte carlo prediction.
The monte carlo can be seen to well represent the data.

Reconstructed quantities, E%;, £, and ¢),, were then thrown from the corresponding
generated values, using the appropriate resolution functions. These were Gaussian distributions
for E, and 0,, with widths given by:

OE“=0.11-E“
B

O, = 0+ —
u 1;“

where a and f§ are given in table 4.3. The smeared Ey was thrown from a Poisson distribution,
with:

og, =072+ 081VEy
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The resolution in z can readily be expressed in terms of errors on these measured

quantities:
(5 - o] (5 e

At small z the error on 6, dominates the z resolution, while at large z the resolution is
dominated by Ep at low @2 and E, at high Q2. As illustrated in figure 5.13, in our detector z
resolution varied from 15 to 30%, depending on z and neutrino energy. Except for the highest
7 bin, this was in general smaller then the bin size.

Similarly, the resolution in @2 is given by:

= 4 .35
(8%) =e-ur(5) +(BEnY 445 (559
The important quantity for these considerations is A log @2, shown in figure 5.14. In almost all

cases, the resolution was dominated by the measurement error on E,. The chosen bin width
in log @2 can be seen to be well matched to the measurement error on that quantity.

The probability distribution for deep-inelastic scatters of muons passing through the
target iron was measured from the data (section 4.2.3). This distribution was used to simulate
scatters within the hadron shower, which were appropriately added to EY; and subtracted from
E'u' as they would be in the data. Beyond the shower, such energy losses were added back
into E’“, with the resolutions of a calorimetric measurement. A check was made to determine
whether the muon would stop before reaching the trigger counter T2. Such events were given
a fixed momentum resolution of 0.15GeV, since momentum would be determined from range.

The observed number of events in a bin was corrected to a number without resolution
smearing, by dividing by the ratio, R, of smeared (V) to unsmeared (N') monte carlo generated
events appearing in that bin. Since N’ = N + n;, — n,y¢, the correction was just:

nout Nin
Re=1--F+%
A%R, = -]%{n]"\‘["(l _ n}.,\.;:) 4 Min Nin (1 4 Nin )} (5.36)

where n;, and n,4¢ are the number of events which move into and out of a bin due to smearing.
In general, at least a factor of four more events are thrown at each setting than in our data set
at that setting, so that AR, contributed negligibly to the final errors.

5.3 Flux Smoothing Procedure

As noted in section 5.1, the energy dependence of the total cross section for both
neutrinos and anti-neutrinos was dominated by flux measurement systematics. The reported
cross sections were consistent with the quark-parton prediction of a linear rise with energy,
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but exhibited substantial fluctuation about this mean behavior, due to the magnitude of flux
errors. A procedure was devised to smooth out much of this fluctuation.

If for the moment the effect of R is neglected, the structure functions Fo and zl3
extracted from any pair of neutrino and anti-neutrino secondary beam settings should be
consistent, in the overlapping z and Q2 region, with the structure functions extracted from all
the data. This implies that the differential cross sections constructed from the average structure
functions must be consistent with the differential cross section measured at any given setting,
again in the overlapping kinematic regions. The integral of this cross section, weighted by flux
and within the kinematic and fiducial volume included in the structure function measurements,
is just:

T i Q2 7)
PRE D o * da”(”
V( ‘/ Zmin min % ( ) dzdlog Q2 (0 )

where NP (R)ED is the predicted total number of events for the setting. The difference between
NFPRED

(~) and the observed number of events N,?(B) was presumed to originate in the flux errors:
bobh errors on the determined secondary beam composition and run-by-run fluctuations in the

ion chamber response. The ratio N988 /NFPEED was then used to adjust the flux on a setting-
P (@) 1Y u(@)

by-setting basis. The overall normalizations of the total cross sections were kept fixed at the
reported values.

The resulting flux factors are shown in figure 5.15. 'The inner error bars reflect the
statistical precision with which these smoothing factors could be calculated. The outer error
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bars include in quadrature the errors assigned to the pion and kaon Cerenkov pressure curve
areas (1-2% for pions and 3-5% for kaons) and the ion chamber measurements. This last
consisted for neutrinos of 2% for chamber response stability, and 1% for chamber temperature
uncertainties. The corresponding numbers for anti-neutrinos were 5% and 1% respectively.
Given these errors, the flux smoothing factors were consistent with unity: x°=14.7 for 10
degrees of freedom for neutrinos and 7.6 for 10 degrees of freedom for anti-neutrinos.

An important check of the validity of this smoothing procedure was the observed effect
on the total cross section. In figures 5.16 and 5.17 are shown the 90% confidence limits for fits
to the cross section slopes of the form:

0N E=a+p-E (5.38)

For the case of our reported cross section measurements, all systematic errors were included
in the calculation. For the flux smoothed case, the only errors included in addition to the
statistical errors were the errors on the flux factors.

The reported cross section measurements were consistent with § = 0, as stated earlier
(section 5.1), although the preferred value was for 0¥ /E to rise with energy and o”/E to fall.
In contrast, the preferred value for the flux smoothed case lay close to the quark-parton model
expectation of # = 0, and coincided very well with the QCD prediction. The dashed lines in
figures 5.16 and 5.17 represent reasonable limits on a QCD prediction for the energy dependence
of the cross section slopes. Uncertainties include the contribution of the integrated cross section
below Q% = 1GeV?, and assumptions about the behavior of R, particularly at low Q2. The size
of the 90% confldence ellipse was reduced, noticeably so in the neutrino case. This reflected the
fact that the procedure at least partially reduced sensitivity to flux measurement systematics.
However, the most important feature was the noted good agreement for the total cross section
between expectation and observation.

The effect of a finite R on this smoothing procedure is to introduce an effective energy
dependence into Fy extracted from different settings. This is a natural consequence of the
variation of the mean neutrino energy with setting. However, the observed effect was quite
small: flux smoothing factors calculated under different assumptions concerning R were the
same within errors. The lack of sensitivity reflects the fact that R changes only the high y
behavior of the cross section, whereas N f(g)ED was calculated by integrating over essentially
all y.

As with other numerical calculations discussed in this chapter, this method required
iteration. The starting values for the flux factors were taken to be unity. The corresponding
structure functions were then used to calculate N f(‘%ED , and hence the new flux factors. New
structure functions were extracted, and the procedure repeated until convergence. However,
most of the difference between unity and the final result was not dependent on the particular -
form of the underlying structure functions. In fact, if the Q2 dependence of the structure
functions was removed, essentially the same smoothing factors would result. Again, this reflects
the fact that N 5(%50 was an integral over all energies (or @), which averages out scale breaking
effects. The difference in the predicted total cross section between scaling (4 = 0) and QCD is
small. '
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An alternative approach to smoothing the total cross section might be to require a
strict linear rise with energy. The flux factors necessary to achieve this end are designated as
squares in figure 5.15. As expected, these points differ little from the factors derived above.

For a QCD analysis, an appropriate procedure would be to calculate the slight modifi-
cation to the quark-parton prediction, and suitably adjust our measurements to match. However,
the prediction relies on structure function measurements made over a restricted kinematic
region. As a result, there is some uncertainty in the predicted total cross sections, becoming
quite large at low energies. The chosen method did not suffer from this difficulty, as the integra-
tions were carried out only over measured kinematic regions. Also, the method had the aesthetic
appeal of using a consistency requirement, rather than a model prediction, to smooth the
data.

5.4 Alternative Extraction Method

There are other approaches to obtaining structure functions from the data. A common
method is to compare a monte carlo prediction for the number of events in a bin to the observed
number. The structure functions assumed in the monte carlo are adjusted until a match with
the data is achieved. Essentially, the monte carlo technique differs in that acceptance and
resolution smearing are included in the calculation of predicted number of events. If smearing
is corrected separately, the required integrations can be performed using standard numerical
quadrature techniques. Details of the implementation of such an approach are described in the
thesis of M.Purohit [Pu84], and so only an outline will be provided here.

As before, the starting point is the formal expression for the event density, equation
5.1. This can be integrated over the kinematic space, (E, z,log @2) and fiducial volume, (r, ¢),
within the standard grid of z and log @2 bins. It can be shown from the form of the differential
cross section (equation 5.10), that a linear system is obtained:

ny = ay Fg(z‘, Qg) + by IFS(I; Q2) + ¢y
ny = ay Fa(z, Q%) + by 2F3(2,Q%) + ¢7 (5.39)

where n,(7) are the observed number of events in the bin,

G’ME
aym) = k/dEd:tdlogQerdmou(;;)(E, r)A(r,0,9) 1rM yt
) G2 ME (5.40)
by = ;tk/dEdzdlogQ drd¢ o, @) (E, 1) A(r, 9, ¢) - Y-

and ¢, () are integrals over the various correction terms /* @), sv(®) R¥(Y) and the like. F
and zF3 are then found by solving this system. The effect of resolution smearing was removed
by adjusting n,(z), using the same event monte carlo described in section 5.2.4 above. To sum-
marize, this method differed in the treatment of acceptance and in the inclusion of corrections
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additively rather than multiplicatively. Programming was of course quite separate. In theory,
this second approach should yield structure functions with minimum possible statistical errors,
although the actual improvement over the weighted event method was less than 10%.

5.5 Results for F» and zF; with Fixed R

Structure functions were extracted under three different assumptions about R. These

were: R = 0.0, R = 0.1 and a so-called Rgcp. A brief explanation of the later is in order; for
details, the reader is referred to sections 6.4 and 6.5.5.

QCD beyond leading order predicts [Fi78] a finite value for R (equation 6.17), propor-
tional to the strong coupling constant as(@?) (equation 6.13). The value can be calculated
using results for /> and assumptions about the gluon distribution. A simple model of the z
and Q? dependence of the predicted R was needed for the purposes of extracting structure
functions. The z dependence of the prediction was fit at @2 = 10GeV? to the form: a(1 — z)°.
Neglecting contributions due to scaling violations in F> or the gluon distribution, all of the Q2

dependence of R comes from the variation of ag(@2). Therefore, the value of R at any other
@2 was obtained by:

as(Q?)
as(Q? = 10)

Using the parameters for F» and the gluon distribution listed in table 6.1 for the second order
fit, a calculation of R from QCD was made. A fit to this prediction at Q2 = 10GeV? yielded
the result: a = 0.14 and b = 3.7.

Rgcp =a(l —z)° (5.41)

The final structure function results shown in table 5.3 and 5.4 represent bin-by-bin
weighted averages of the values obtained using the two extraction techniques. The value of
Fy in table 5.3 was obtained using Rgcp. The last three columns of the table represent the
absolute change in the result if the strange sea were assumed SU{3) sysmmetric, or if R = 0.0
or R = 0.1 were assumed. A W-boson mass of 80GeV was assumed in extracting the structure
functions results listed in the tables. Note that bins have been eliminated from the analysis if
fractional statistical error exceeded 50%, or if the smearing correction was greater than 35%.

The differences between the results obtained by the two methods were in general small,
except in bins with large statistical error: the average integral over z of F, and zFj differed by
2% and 1% respectively. The large statistical errors on zF3 tended to exaggerate the level of
the difference for this structure function. If all bins were included, the rms width of the ratio
of structure functions obtained by one method to structure functions from the averaged data
set was 3.0% for F» and 8.0% for zF3. However, if only bins with fractional statistical errors
under 20% were included, the widths reduced to 2.5% and 3.0% respectively. The differences
were probably statistical in origin. Fluctuations in the number of weighted versus unweighted
events in a bin leads to large variations in the resulting structure functions in the case of small
numbers of events. No systematic problem was thought to exist.

There was a tendency for the value of Fo in the highest @2 bins to appear below
the level anticipated from a linear extrapolation in log@? from results in lower Q2 bins.
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Figure 5.18 Comparison of zF3 normalization with and without flux smoothing

Possibly, this could represent an inefficiency for events with [, <15GeV and large hadron
energy. However, a scan of a subset of these events revealed no evidence for such a problem.

The most direct test of the validity of the implementation of equation 5.15 was to
run monte carlo events through the analysis. When this was done, it was found that the
reconstructed integrals over z of F» and zF3, averaged over Q2, agreed at the 0.5% level with
the predicted values. The hypothesis that the generator function fit the reconstructed structure
functions was checked using the standard goodness-of-fit test: the calculated x? was found to
be acceptable.

A further proof of the efficacy of the flux smoothing procedure was found in the
consistency of zF3 obtained from different independent subsets of the data. A comparison was
made of results in overlapping z and Q2 regions for each of the five pairs of secondary beam
settings and two parent types. The fluctuations relative to /5 obtained from neutrinos from
pion decay at the 4-250 settings are shown in figure 5.18. I'or comparison, the corresponding
ratios of the integral of zF3, as computed for each subset from the total cross section result,
are also shown in the figure. Errors are statistical only. The flux-smoothed structure function
results are clearly consistent with unity, and exhibit less {luctuation than if raw fluxes were

used. The large excursions from unity of the raw flux calculation reflect the significant nature
of flux errors.
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As shown in figures 6.1 and 6.2, qualitatively the @2 dependence was consistent with
QCD; namely, the structure functions rose at small z with Q2 and fell at large z. Quantitative

statements on this and other features of the data which can be tested against theory are reserved
for chapter 6.

Q2 z Fg A"ag Asys SU(3) R=0.1 R =0.0
1.26 015 1.287 051 021 016 —.032 —.078
2.00 1.343 059 022 .000 —.034 —.091
3.16 1.537 .084 024 —.019 —.036 —.109
5.01 1.402 116 .023 —.035 —.030 —.109
7.94 1.584 .269 026 —.058 —.031 —.148
" 1.26 045 1.134 .050 019 027 —.001 —.015
2.00 1.359 047 022 014 —.009 —.037
3.16 1.363 044 021 —.003 —.016 —.062
5.01 1.545 .059 023 — 021 — 017 ~.082
7.94 1.662 081 025 —.041 —.015 —.095
12.6 1.531 113 023 —.055 —.010 —.110
20.0 1.071 197 018 —.047 —.002 —.091
1.26 .080 1.244 128 021 .035 —.001 —.002
2.00 1.445 055 024 .029 .002 —.009
3.16 1.487 .046 .023 012 —.001 —.024
5.01 1.464 044 022 —.006 —.004 —.048
7.94 1.545 051 022 - .022 —.002 —.066
12.6 1.591 .068 023 — 08T .002 —.070
20.0 1.576 .090 023 —.052 .008 —.089
31.6 1.228 .166 .020 —.048 014 —.085
2.00 150 | 1.183 .109 .020 .026 .003 .009
3.16 1.180 036 019 019 .003 .001
5.01 1.280 .028 .020 010 .003 —.009
7.94 1.235 025 018 —.003 .006 —.022
12.6 1.232 028 018 {115 010 — 032
20.0 1.292 .036 019 —.021 015 —.036
31.6 1.270 .046 019 —,030 021 —.044
50.1 1.161 075 019 —.032 .030 —.051
79.4 889 251 016 —.025 031 —.045
5.01 .250 1.026 .039 .020 013 | .002 .002
7.94 985 026 019 .007 .004 —.002
12.6 933 024 017 .000 .009 —.007
20.0 923 026 017 —.005 015 —.012




5.5. Results for F» and 2F'3 with Fixed R

91

Q2 z Fy Batad | Liggy SU(3) R=0.1 R=10.0
31.6 250 952 .033 018 —.009 018 —.014
50.1 840 034 016 —.012 .022 —.016
79.4 747 053 015 —.013 029 —.019
126. 568 279 012 —.010 027 —.017
7.94 350 676 027 019 .005 .001 .001
12.6 649 023 017 .002 .004 —.001
20.0 638 024 016 .000 .009 —.003
31.6 627 027 016 — 002 012 —.004
50.1 587 .028 016 —.003 014 —.004
79.4 597 .037 015 —.005 022 —.007
126. 684 076 018 —.006 .034 —.010
7.94 450 498 041 019 .003 —.001 .001
12.6 419 .020 017 .001 .001 .000
20.0 .395 019 015 .001 .004 .000
31.6 382 .020 014 .000 .007 —.001
50.1 347 021 013 —.001 .007 —.001
79.4 375 .026 014 —.001 011 —.002
126. 279 .028 .010 —.001 013 — 002
200. 290 132 .010 —.001 018 —.002
12.6 550 241 017 014 .001 .000 .000
20.0 231 016 013 .000 .002 .000
31.6 206 014 011 .000 .003 .000
50.1 .198 018 011 .000 .004 .000
79.4 .199 .020 011 .000 .005 .000
126. 150 019 .008 .000 .006 .000
200. 120 040 .006 .000 .007 .000
126 | .650 150 018 013 .000 .000 .000
20.0 120 .010 011 .000 .001 .000
31.6 138 015 012 .000 .001 .000
50.1 111 015 .010 .000 .002 .000
79.4 .098 016 .008 .000 .002 .000
126. .092 014 .007 .000 .003 .000
200. .068 .020 .005 .000 .003 .000
Table 5.8

Averaged F3 obtained under various assumptions about R and the strange
sea (Propagator included with my, = 80GeV). Systematic errors are diagonal
elements only and do not include an overall scale error of 3.1%.
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Q2 .’l,‘ :L’F3 Astat Asys
1.26 015 .165 058 012
2.00 .366 056 021
3.16 .303 076 017
5.01 431 .106 025
1.26 045 440 143 055
2.00 620 .089 049
3.16 608 .062 032
5.01 508 072 023
7.94 693 .094 033
12.6 646 116 028
20.0 631 182 026
2.00 .080 615 .182 068
3.16 769 103 054
5.01 666 070 031
7.94 655 069 025
12.6 781 .085 031
20.0 71 .098 028
31.6 662 162 022
3.16 .150 732 135 .069
5.01 689 073 043
7.94 879 046 036
12.6 855 042 027
20.0 790 .049 024
31.6 847 055 025
50.1 799 .080 021
79.4 704 239 018
5.01 .250 623 .161 052
7.94 794 076 045
12.6 797 048 029
20.0 770 042 023
31.6 799 050 023
50.1 747 042 020
79.4 650 057 016
7.94 350 584 108 042
12.6 553 .060 027
20.0 469 047 017
31.6 512 .048 017
50.1 563 041 019
79.4 .500 045 014
126. .266 .083 007
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Q2 A zl'y Agiat Asys
12.6 450 452 .068 .029
20.0 .300 .043 015
31.6 319 .038 014
50.1 .340 .036 .015
79.4 BT 037 013
126. .303 032 011
200. .302 .139 011
12.6 050 218 071 018
20.0 .168 044 .012
31.6 209 .029 013
50.1 o 7 .033 011
79.4 169 031 010
126. 170 024 .009
200. .130 044 007
12.6 .650 163 .080 .018
20.0 ATl .033 .018
31.6 122 .039 .012
50.1 072 .030 .007
79.4 .058 .028 .005
126. .099 018 .003
200. .076 .023 .006
Table 5.4

Averaged 2[5 obtained assuming Rgcp (Propagator included with my =
80GeV). Systematic errors are diagonal elements only and do not include
an overall scale error of 3.1%.

5.6 Systematic Errors

There were a number of sources of systematic errors on the structure functions. These
included: (1) errors on flux measurements, (2) systematic uncertaintics in Ly and E,, (3)
differences between the results of the two extraction techniques, and (4) errors on smearing
corrections. Shown in table 5.3 and 5.4 are the diagonal elements of the systematic error matrix.
These are useful only in illustrating the relative level of systematic and statistical errors. I'or
all bins, the latter exceeded the former. Global fits, such as those for QCD, were made with
proper point-to-point correlations.

Comsider the flux uncertainties first. Much of the crror contributing to setting-to-
setting {luctuations was removed using the procedure described in section 5.3 above. The
residual error, reflecting the total number of events at each setting, represented the precision
with which the flux adjustments could be made. In addition, there were correlated and
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Source v flux 7 flux Common flux
error (%) error (%) error (%)

Ton chamber calibration 1.5

Calibration connection to data 2.0

Veto deadtime 0.5

x? correction 0.5

Livetime 1.7

Neutrino energy 1.0

Ion chamber temperature 1.0 1.0

Proton fraction 1.0

(v/7) ion chamber connection 3.0

Total 14 3.2 3.1

Table 5.5 Sources of overall flux error

uncorrelated overall errors for neutrinos and anti-neutrinos. The sources of these scale errors
have been discussed at various points in the text, but are collected here for convenience in table
5.5. The total uncorrelated error on flux was 1.4% for neutrinos and 3.2% for anti-neutrinos.
The shape of the extracted structure functions was directly affected by these uncertainties in
the relative neutrino to anti-neutrino normalization. The total correlated scale error of 3.1%
was of significance for the quark model tests.

The method used to study contributions of these flux errors to errors on the structure
functions was typical of all our studies of systematic errors. The simplest representation of the
expression for extraction of structure functions (equation 5.15) is in each z and Q2 bin:

nOBS n8Bs
v :t v
P, b
f;(z,Q"’) = nP{?ED nffRED fi(x) Qz) (542)
o, * %

where fi(z,Q?) corresponds to Fy(z, @?) and zF3(z, @2) respectively. Since the level of sys-
tematic error was small compared with statistical errors, it would be difficult to separate the
effect of the two sources if examined in combination. It was more appropriate to consider the
effect of systematic errors on an infinite statistics sample.

Equivalent to this, nf &P could be used in both the numerator and denominator of

equation 5.42. This trivially yields f;(z, @) unless sources of systematic error are appropriately
added. For the study of flux errors, the variant used was:

nOBS n8BS
v 4= v
v ¢u v ¢7
fi(erz)z £P£ED £E£ED fi(z;Qz) (543)

e e
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An ensemble of twenty experiments was constructed by calculating structure functions with
factors f, and fy randomly thrown from Gaussian distributions with mean unity, and sigmas
corresponding to the noted systematic flux errors. Thus, for the overall level errors, f, and fr
were obtained from distributions with sigmas of 1.6% and 3.2% respectively. For the errors on
the flux factors, uncorrelated values for f, or f; were thrown for each setting, with the widths
matching respective errors. The sigma in each bin of the distribution of structure function
values for the ensemble of experiments was taken as the diagonal element of the error matrix.
Typically, these errors were small for Fy, but varied from 5-7% for zF3 in the lowest Q2 bin
to 1-2% in the highest @2 bin at each z value. Clearly, the error contributed to each of the
parameters of a global fit could be determined from the width of the distribution of parameter
values from fits to the ensemble of experiments. This would properly account for correlations
among errors.

This method was easily adapted to study the error introduced by beam dispersion. The
quantities n %7 in the numerator of equation 5.42 were calculated not with the nominal beam
dispersions, but with all dispersions increased by one standard deviation. From a comparison of
monte carlo prediction with measurement, the dispersion error appeared to be well correlated
from setting to setting. Given this observation, there was no need to generate an ensemble of
experiments in order to study the problem. Typically the contribution of this source of error
was a few percent for bins containing events from pion decay neutrinos. For bins consisting
mostly of neutrinos from kaon decay the contribution was negligible. If in fact the dispersion
error was not correlated from setting-to-setting, studies showed that the error introduced was
approximately random and less than 1%. The actual situation probably lies between these two
extreme assumptions.

The analysis of systematic errors due to uncertainties in the calibration of muon (1.5%)
and of hadron (0.5%) energies was similarly accomplished. Here, the quantities n{,’(‘i}fD in the

numerator were calculated with the cross section evaluated not at (z,y, Q2), but at (2,3, Q%').
It is a simple matter to show that for EY; = Eg(1+ 6y) and EYy = Ej;:

' 1 + 6Hy)
= Z( 14 6n
)
) 64

Q¥ = Q*(1 + 6ny)

and for B}y = Ey and E), = Eu(1 4 6,):

=z(146,01—y)1+6,)
— y _
o l46(1—y) (5.45)

Q¥ = Q2(1 4 6,(1— y) (1 + 6,)

Again, all errors were considered correlated, so that an ensemble of experiments was not needed.
It should be noted that systematic shifts of E, effectively enter as the square of the deviation
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at moderate to high y. In contrast, for Ey the effect is proportional to 6y and decreases to zero
at high y. In both cases, the systematic uncertainty was magnified at large z by the (1 — z)™!
behavior of df;/dz over f;. The calibration error on E, resulted in systematic uncertainties as
large as 8% in the highest z bins. In general, the error from Ey was considerably smaller.

A simple check was made of these calculations. From the mean value of y in each bin
(see Appendix F), the shift in z and @2 could be calculated. The ratio of the structure function
at the bin centre to the value at this shifted position gave the systematic error due to Eg or
Ey. This simple calculation agreed with the more elaborate technique.

The systematic errors on the smearing corrections were examined in a somewhat less
than rigorous fashion. The parameters of the structure function model and the resolution
functions of the event monte carlo were varied within reasonable limits. However, this was
not an exhaustive study. The observed changes in the smearing corrections were smaller than
the statistical precision with which corrections were calculated. This would imply that the
systematic uncerntainty in the smearing corrections was less than 10% of the statistical error
in any bin. In the sense that the statistical errors on the smearing corrections were added in
quadrature with those from the data, systematic uncertainties in the smearing corrections have
been properly included.

5.7 Extraction of R

The method devised to simultaneously obtain 2zF;, R and zF3 from the data was a
two-step process. First, the differential cross section, da"(m/dzdy, was found in bins of z, y
and v = Eg. The method used was basically an extension of the approach described above
for extraction of structure functions. The second step was a one or two parameter fit to the y
dependence of these cross sections.

Analogous to the expression for extracting structure functions (equation 5.15), in each

bin in (z,y, Ey) the relationship between observed events and the differential cross section
(equation 5.9) can be rewritten as:

1 dov(®)
_l_da"(V) _ E dzdy Ew:{(m (5.46)
E dzdy <1 ) > k [dE [dz [dy &,(p)(E) '
=75 |Iron
E dzdy )

where integrations are implicitly within bin limits and kinematic cuts. On the right-hand
side, the cross section in iron is do¥™) /dzdy |1ron (equation 5.16), and do¥(") /dzdy is the bare
isoscalar cross section (equation 5.17), evaluated with zF§ = :cF;"- = ¢ — ¢. The necessary
isoscalar, strange sea, charmed mass and radiative corrections to the differential cross section
are thus accomplished. Within each bin the sum of neutrino and anti-neutrino cross sections
is:

T doV do¥
2501"'1(1,@2){(1 —y)(1+ R(z,Q%) + ?} = GIME {dzdy = dzdy} (5.47)
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Using:
__Al—y)
e(y) = m (5.48)
this can be written as:
2aF1(2, Q)1 + W) R(#, QM) = 1 11__ = GQQLE{j:;y + :;;y} (5.49)

A two parameter linear fit for 2zF) and Fy = 2zF) - R to the y distribution in each z and

Ey bin can be converted into a measurement of 2zF and R. Likewise, zF3 can be found by
using:

1 o doV do?
Fa(z,Q%) = - :
(@ Q) = Ty G2ME{d:zdy dzdy} (5.50)

Examples of y distribution fits are shown in figure 5.19. To cover a large range in polarization
€, and in particular to obtain points below € = 0.5, requires data at large y > 0.70. This limits
the useful range in v = E}, over which results can be obtained without large systematic errors.

5.7.1 Results for R = o /oT

In table 5.6 are recorded the values for 2zF), F; and R obtained in the manner
described. If the error on the sum of neutrino and anti-neutrino differential cross sections
exceeded 50%, that bin was removed from the analysis. Bins in (z,v) were discarded if the
minimum polarization was greater than 0.70, or if the number of available measurements in y
fell below four. This ensured a reasonable range in ¢ over which the two parameter fit was to
be made. Comparison of these results with expectations and with the values assumed for R in
section 5.5 will be made in section 6.5.5.

Note, that the form of the fit in y was optimal for extracting R and 2zF;. The error on
Fy = 2z F + F, could be reduced by reworking equation 5.47 in terms of F» and K. However,
the dependence on R would enter as a coefficient of a y? term, requiring good measurements
at even higher y values than the chosen technique.

Not listed are the values for F3, which can be found both by the method of section
5.2 and as in equation 5.50, independent of the assumption for R. The two techniques yield the
same average value for zF3 within 1%, confirming the validity of the implementation of the R
extraction code. Reconstruction of monte carlo data produces a value for R within errors of
the generator value, R = 0.1.

One observation should be made with regard to the measurements obtained in the
z = 0.15 bin. Only when all settings were combined did the value rise to the reported large
values. Separate results from different pairs of neutrino and anti-neutrino settings were more
consistent with expectations. This was an indication that some setting-to-setting systematic
errors were important, at least for this particular bin.
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Er (GeV) | Q% (GeV?) T 21, Fr R
20.0 1.88 .050 1.078 + .275 0.157 4 .413 0.145 4 .322
31.6 2.97 1.314 4- .133 0.096 4 .215 0.073 + .136
50.1 4.70 1.014 + .086 0.259 + .156 0.255 4 .149
79.4 7.46 1.479 4 .111 0.026 4 .203 0.018 4- .116
126. 11.8 1.425 4 .121 0.230 4 .275 0.161 4- .186
20.0 5.63 150 0.676 + .363 0.600 4 .542 0.887 + 1.069
31.6 8.90 0.788 + .161 0.535 4 .256 0.678 + .389
50.1 14.1 0.968 + .117 0.363 4 .201 0.375 + .212
79.4 22.4 0.911 4 .143 0.616 4 .260 0.676 + .341
126. 35.5 1.155 4 .161 —0.055 4 .336 —0.048 4 .249
20.0 9.39 .250 0.876 4 .387 0.133 4- .574 0.152 4 .550
31.6 14.8 0.721 4- .186 0.234 + .186 0.324 4 .394
50.1 23.5 0.754 4 .151 0.191 4 .151 0.253 4 .305
79.4 37.3 0.930 4 .176 —0.045 + .176 —0.048 4 .248
126. 59.1 0.652 4 .154 0.282 4+ .154 0.432 4 .512
31.6 23.7 .400 0.282 4 .134 0.264 4 .134 0.934 4- 1.001
50.1 37.6 0.517 4 .103 —0.043 4 .103 —0.084 + .233
79.4 59.6 0.335 4 .094 0.147 + .094 0.439 + .497
126. 94.6 0.447 4- .107 —0.025 + .107 —0.056 4 .391
50.1 56.4 .600 0.175 4 .091 —0.045 4 .091 —0.260 4 472
79.4 89.5 0.056 4 .080 0.123 4 .080 2.187 4 4.991
126. 142. 0.097 + .036 0.009 4 .036 0.094 + .601

Table 5.6 Results for 2zF; and R

Much of the emphasis in the analysis efforts described in this thesis has been confined
to the extraction and study of structure functions under fixed assumptions about R. As a
consequence, no studies of the systematic errors on these results for R and 2zF; have been
undertaken as yet. This will presumably be accomplished by future graduate students, working
with higher statistics samples of charged current events.



Chapter 6

Quark-Parton Model and QCD Results

The structure functions obtained by the methods detailed above are compared with
both experimental and theoretical expectations in this final chapter. Much of the structure
function effort was the work of this author and M.Purohit. The emphasis in the physics
discussions included here is on our results for F». Corresponding and complementary analyses
for zF3 are described in detail in the thesis of M.Purohit [Pu84]. Ouly salient features of these
last discussions will be presented here in the interest of completeness.

6.1 Comparisons with Existing Neutrino Results

This is not the first experiment to extract structure functions from neutrino and anti-
neutrino charged current data. The consistency of our measurements with published results
will first be examined. Of particular interest are the high statistics data from the CDHS col-
laboration [Ab83]. These are reported for the same kinematic range as covered by this experi-
ment, with comparable statistics. Other relevant results are from BEBC-Gargamelle [Bo78]
and CHARM [Pa81] at CERN, and HPWFOR [He81] at Fermilab. All results from neutrino
experiments discussed in this chapter have been appropriately adjusted where necessary for the
effect of the W-Boson propagator.

The comparisons were made with a view to addressing three aspects of the results:
(1) normalization, (2) z dependence of structure functions at fixed @2, and (3) @2 dependence.
To achieve this end, the various data sets were to be interpolated to common z and Q2 points.
If necessary in z, this was accomplished by linearly interpolating the two nearest z bins to the
required z value. The @2 variation of these points was then fit to the form:

fi(z,Q%) = f(z) {1+ B(z)log(Q?/10)} (6.1)

where f; was either Fy or zF3, and f9(z) was the value of the structure function at Q2 =
10GeV2. The motivation for such a form is the expectation from QCD that scaling violations
will be logarithmic in Q2.
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Examples of {its to our data are shown in figures 6.1 and 6.2 for I's and zF3 respec-
tively. These illustrate the degreec to which the data conforms to this functional form. It can
be seen that for the most part the fitted value of the structure function at Q2 = 10GeV?2
represents an interpolation of the data, rather than an extrapolation, except in the lowest and
highest 2 bins.

In figure 6.3 are shown the values of the parameter # obtained from fits to reported
data without interpolation in z. The fits were limited in @2 to the region above the lowest Q*
bin reported by this experiment. The @2 behavior of data so eliminated could differ from that
in the region of concern, due to the effect of higher-twist terms which decrcase with inverse
powers of @2, rather than logarithmically. Results from BEBC-GGM are not shown, as the
statistical precision of this data in the overlap region was limited. 'I'he conclusion to he drawn
from the figure is that the @2 variation of the considered data sets is consistent, although at
high 2 the scaling violations in the HPWFOR result are generally larger.
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F>(z,Q?) from the CDHS collaboration. Solid lines are fits to CDHS using
slopes from our data. Dashed lines are corresponding fits to CCFRR. R =
0.1 was assumed for both sets of data.
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F>(z,@%) from the HPWFOR collaboration. Solid lines are fits to HPWFOR
using slopes from our data. Dashed lines are corresponding fits to CCFRR.
R = 0.0 was assumed for both sets of data.
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F>(z,Q?) from the CHARM collaboration. Solid lines are fits to CHARM
using slopes from our data. Dashed lines are corresponding fits to CCI'RR.
R = 0.0 was assumed for both sets of data.
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F5(z,Q?) from the BEBC-GGM collaboration. Solid lines are fits to BEBC-
GGM using slopes from our data. Dashed lines are corresponding fits to
CCFRR. R = 0.0 was assumed for both sets of data.
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Given this conclusion, the normalization and z dependence differences among the
various results were investigated using the value of § obtained from our data in each z bin.
Equation 6.1 then becomes a one parameter fit for the comparison data set. Within the limits
of the stated assumption, the values of ratio of F» at @2 = 10GeV? from the two experiments
under consideration therefore had smaller errors. The efficacy of the procedure is illustrated by
examining figures 6.4 through 6.7. These show the logarithmic variation in Q2 of F, for each
of the other data sets. The solid lines in the figures are the best fits to Fa(z,Q? = 10GeV?)
using f from our data. The dashed lines are the best fit to our data, with the actual points
removed for clarity of presentation. The chosen technique can be seen to fit the various data
sets reasonably well. There is a hint in the Gargamelle data, shown in figure 6.7, that at large
z the Q2 dependence below Q2 = 10GeV? differs significantly from that measured by this
experiment. This observation is confirmed by reported measurements of F» from SLAC [Bo79)
discussed below.

Figure 6.8 shows the fit values of Fy at Q% = 10GeV? from both our data and CDHS.
Part of the discrepancy between the results reflects the difference in the reported total cross
sections. On this basis, one would expect the integrals to differ by 10%, somewhat outside
the estimated normalization errors of 4.1% for Fy from this experiment and 6% for that from
CDHS. In order to connect the normalization of structure functions to a pre-assigned total cross
section level, it would be necessary to estimate the integrals of structure functions in unmeasured
regions. Disagreements at the few percent level might be anticipated. However, the integrals in
fact differ by a total of 19%. The origin of the additional discrepancy is not understood. Our
structure function measurements, given reasonable extrapolations of their behavior outside the
measured region, have been found to reproduce the reported total cross section measurement to
within 4-2%. Also, the integral over all z of structure functions averaged over Q2 was 0.482 for
F5 and 0.324 for zF3 (with zero charm mass and 1/2 SU(3) symmetric strange sea). These are
within 1% and 4% respectively of the predicted values from the total cross section (section 5.1).
The results calculated from the total cross section are averages of structure function integrals
at fixed E,(5), and do not strictly correspond to Q2-averaged iltegrals of structure function
measurements. Therefore, this represents reasonable agreement.

Irrespective of these overall normalization difficulties, there is considerable difference
in the reported z dependence of F». This is most easily seen in figure 6.9, which shows the ratio
at Q2 = 10GeV? of F, from CDHS to F, reported here. The dashed line represents the average
ratio expected from the total cross section values. The CDHS result was reported under the
assumption of a zero charm quark mass. The effect on the ratio has been estimated to vary
from 5% at small z to 2% at large z, but is not sufficient to account for the discrepancy. The
squares in the figure show the necessary level of adjustment for each z bin. The differences
between the two results are outside statistical errors, and exhibit a clear systematic trend. In
general, our result for Fy is more strongly peaked at small z than that from CDHS. Except in
the highest z bins, the systematic errors in the two results have been estimated to be small.
The ratio of neutrino to anti-neutrino total cross sections used in the two analyses was not
sufficiently different to contribute significantly to a shape difference. Therefore, the origin of
the difficulty is not understood either. However, the reader is reminded that the resolution of
our measurements at small z was about three times better than that of CDHS.
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This same analysis has been repeated in comparing our result for F» with that from
HPWFOR. Figures 6.10 shows the ratio of Fp at Q% = 10GeV? from the two experiments.
Results under the assumption that R = 0.0 were used for both groups. The dashed line in the
figure is the expected ratio from the total cross sections. The squares represent the adjustment
required for a finite charm mass (1.5GeV). Despite the obvious differences at large z, the ratio
of integrals of F» was not in serious disagreement with the predicted ratio from the total cross
section. It should be noted that in the case of the HPWFOR result, the total cross sections used
were not measured but represented the world average at the time of the experiment. Ignoring
the level difference, the shape of the HPWFOR result matches well the CDHS result except at
large z. The effect of the different assumptions made about R by the two groups is appreciable
only below z = 0.2, and does not change this conclusion. Therefore, the observation that
our result for Fo is more strongly peaked at small z is true in comparison with HPWFOR.
The difference between our measurement and that of HPWFOR could originate in at least
two sources: (1) the HPWFOR result was obtained in a wide-band beam, which suggests that
systematic errors in neutrino flux could be a contributing factor to the discrepancy, and (2) the
HPWTOR target was scintillator (2/3) and iron (1/3), so that nuclear Fermi motion corrections
could explain part of the large z difference. In this last connection, the reader is referred
to section 6.2 for a discussion of the observation in charged lepton scattering experiments of
target-dependent differences in the shape of Fy(z).
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assuming R = 0.0

Finally, consider the comparison of our results with thosc from CHARM and BEBC-
Gargamelle. Figure 6.11 shows the ratio of F» from these experiments to our result at @2 =
10GeV2. Appropriately, our R = 0.0 measurement was used for this comparison. Limited
statistics in the overlapping Q2 regions, particularly for the BEBC result, make definitive
conclusions impossible. However, there is reasonable agreement between the observed level
differences and the expectation from total cross section predictions. Except at high z, the z
dependence of the CHARM result agrees with our measurement. Again, the target material for
CHARM was marble and not iron, so the agreement is perhaps fortuitous. For the BEBC-GGM
results the target was variously liquid freon or a liquid Ne-Hy mix.

These observations can be sunmarized as: (1) there are systematic discrepancies in
the z dependence of Fp from the various experiments, and (2) the normalization differences
among the experiments for the most part reflect the different total cross section measurements
used by the groups, and hence flux normalization errors. It should be noted that there is some
additional level discrepancy in comparison with CDIS, perhaps due to some difficulty with
resolution corrections in conjunction with uncertainties in the values of structure functions
outside kinematically accessible regions. Despite these differcnces in the = dependence of 17,
the Q2 variation observed in the data is quite similar, as indicated by the agreement in values
of dln Fa/d1n Q2.
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6.2 Mean Square Quark Charge Test

In the quark-parton model the structure functions are interpreted in terms of quark
densities within the nucleon. Let ¢;(z)dz be the probability density in momentum space of the
i*® quark with fraction z of the nucleon momentum. Then:

22Fy(z) = Fa(a) = ) (4i(2) +7,(2))
zFa(z) = Y _(gi(z) — ()

1]

(6.2)

Neglecting thresholds introduced by finite quark masses, the coupling of the weak force to
quarks is flavour independent. On the other hand, coupling to the electromagnetic force is

proportional to ei‘. Structure functions extracted from electron or muon scattering from the
nucleon reflect this fact. In the quark-parton model:

2F ¥ (z) = Fit = E €20 +7,) (6.3)

(zF3 is not measurable in parity-conserving electromagnetic interactions.)

F5 as measured by muon scattering from protons and neutrons is:

FiP(2) = 5lupla) + Ty(a)) + 5(d(2) + Fyla)) +
S(5p(2) + 55(2) + 5(c5(2) + Tp(2)
(un(2) + Tn(a)) + {da(2) + Tala)) +

5(6n(2) + Fa(2) + 5(en(2) + Ta(2)

— (6.4)

O

Now, assume the usual isospin symmetry: up(z) = dn(2z) and dp(z) = un(z), and that for sea
quarks gp(7) = gn(z). Then for an isoscalar target:

_ 5 {30 ea) + D)= H) | o
PV = S - HE AT 4w 6)

Thus F4V is related in this model by the mean square quark charge (5/18) to FE,

The European Muon Collaboration (EMC) has published [Au81b] a high statistics
measurement of Fo from inclusive deep-inelastic muon-scattering data in iron. This data has
been used along with corresponding results for neutrino scattering in iron to test the quark-
parton model prediction. For this test the structure functions have been compared as a function
of z at a fixed Q2. The same technique described in section 6.1 was used to accomplish this
end. The EMC data were first interpolated to the same z values as the comparison neutrino
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data set. A linear fit in log @ was made to the interpolated points:
FiN(z,Q%) = F4N(2,Q% = 10) {1 + feamc(z) log(@%/10)} (6.6)

Since the EMC data had the greatest statistical precision, the comparison data sets were
interpolated to the Q2 = 10GeV?, using the best fit to the Q2 variation of the EMC data:

FiN(z,Q%) = F4N(z,Q% = 10) {1 + Berrc(a) log(Q?/10)} (6.7)

A predicted value for the neutrino result at @ = 10GeV? was made using F4" and equation
6.5.
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Values of dFy/dlog@? normalized by F» at @ = 10GeV? for various
neutrino and charged lepton experiments
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Fo(z,Q?) from this experiment and EMC. Solid lines are fits to our data
using slopes from EMC. Dashed lines are corresponding fits to EMC. R =

0.1 was assumed for both sets of data.



6.2. Mean Square Quark Charge Test 115

The procedure is justified, as in the case of the comparison of neutrino experiments
in section 6.1, by the agreement in the level of observed scaling violations found in the various
data sets. A measure of this agreement is shown in figure 6.12: the fit values of # from neutrino
and charged lepton measurements of F,. Shown in the figure are both fits to our result and
that of CDHS, along with those from EMC (u-iron) [Au81b], BFP (u-iron) [Me83], BCDMS
(u-carbon) [Bo81] and SLAC (e-D,) [Bo79]. Except for the SLAC data, the fits were made in
overlapping @? regions, and are in reasonably good agreement. The SLAC measurements were
at lower @2, and significantly differ from the other results at large z. Thus, the hint of larger
Q? variation in the BEBC-GGM data at small W? and large z is also seen in the SLAC data.

An example of a fit of the form given in equations 6.6 and 6.7 is shown in figure 6.13.
The dashed line in the figure is the best fit to the EMC data. The solid line is the result
of a one parameter fit to our data using Sgac(z). The ratio of F‘Q’N from this experiment
to the predicted value from F2EMO is shown in figure 6.14. The inner error bars represent
statistical errors only, while the outer error bars include in quadrature estimates of point-to-
point systematic errors. Additional overall scale errors of 4.1% for our result and 3% for
that from EMC are not shown. The small correction for the strange sea was made using the
measured z dependence of §(z, @2) from our data. It was assumed that ¢(z) = ¢(z) = 0 within
the nucleon. As shown in the figure, 2 dependent changes at the few percent level could be
made in the ratio by changing the fraction of the sea assumed to be represented by strange
quarks (nominaily 1/2 SU(3)), or the correction for slow rescaling due to finite charm quark
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Figure 6.1/ Mean square quark charge test: neutrino results for F» compared with EMC
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m=1.5GeV). These uncertainties do not modify significantly the conclusions to be drawn
from the figure. It can be seen that our result lies on average 9.5% above the predicted value,
but shows little z dependence. The level difference is somewhat outside the quoted systematic
scale errors.

There is some evidence that systematic uncertainties in the normalization of the EMC
result have been underestimated. Comparisons of published results for /5 from charged lepton
scattering in Hy have been made by Smadja [Sm81] for SLAC [Bo79] and EMC [Au8la),
and by Sciulli and Fisk [Fi82] for CHIO [GoT9] and EMC. Reproduced in figure 6.15 is the
ratio of Fo from the three experiments. It was concluded that there existed a discrepancy
in the normalization of the three experiments outside estimated scale errors. On average
the measurements from SLAC and CHIO were respectively 10% and 8% higher then EMC.
Recently, other results for F5 from iron have been presented by the BPF muon experiment
[CI83]. This group found that the EMC result was systematically lower by 5% in comparison
with their measurement of Fy. This suggests that the EMC results from both Hs and iron
targets should be raised by 54 5% to accommodate the incompatibility among charged lepton
results. Reasonable agreement between the EMC measurement and our result using the quark
model relation (equation 6.5) would then be observed.
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The relation can also be tested using the published neutrino results from the CDHS
collaboration. This comparison is shown in figure 6.14. Here the ratio exhibits an « dependence,
with the CDHS measurement on average 10% below the predicted value. Again, the level
difference is outside the combined systematics of the two experiments. If the CDIIS result was
adjusted for a finite charm mass, the average diflerence would be reduced to 6%. However,
the disagreement at small 2 would remain. Since the z dependence of our result is seen to
agree well with that of EMC, the comparison reflects on the earlier observation of disagreement
between our measurements and those from CDHS. Other authors have pointed out the low z
discrepancy between EMC and CDHS [De83].

The same procedure can be repeated in comparing our results with those from the
BFP muon experiment [Me83]. In this case, the values of § from fits to our data were used to
constrain the fit to the muon data. The two data sets, along with the fits obtained, are shown
in figure 6.16. The ratio of the values of I at Q? = 10GeV? is shown as a function of z in
figure 6.17. Clearly, there is good agrecment between s from this experiment and the BI'P
measurement of /s adjusted by the quark-parton model factor of 18/5. The scale error for the
BFP measurement was reported to be 3% [CI83].
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Before examining the comparison between our results and those from SLAC, a short
digression is in order to remind the reader of recent unexpected developments in the field. The
ratio of Fo from iron to /5 from Dy has been found to exhibit a strong z dependence not
explainable in terms of Fermi motion corrections. In fact, the effect is in a direction opposite to
that expected from Fermi motion smearing. The phenomenon has been observed both in muon
scattering by the EMC collaboration [Au83] and in electron scattering at SLAC [Bo83a]. Figure
6.18 reproduces the ratio observed by the two collaborations. The good agreement between the
two measurements, despite the large difference in mean Q? for the experiments, indicates that
the effect has little @2 dependence above Q2’s of a few GeV?2. The explanation for the difference
in the intrinsic shape of quark distributions in iron and deuterium is thought to lie in large
distance, low @2 eflects, uncalculable using perturbative QCD. Quark distributions within a
nucleon are apparently distorted by the presence of other nuclecons within the nucleus. Recent
bag model calculations [Ja83] suggest that distortions can occur by mechanisms such as six
quark collective states. These observations invalidate previous QCD fits which combined raw
measurements of structure functions obtained from different targets, but not fits made to data
internal to one target or properly adjusted data from different targets.
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F5(z,Q?) from this experiment and SLAC. Solid lines are fits to SLAC using
slopes from our data. Dashed lines are corresponding fits to CCFRR. R =
0.0 was assumed for both sets of data.
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In order to compare the shape and normalization of the SLAC data within our own
measurements, it was necessary to make suitable adjustments to the z dependence of the SLAC
deuterium results. This adjustment was based on the EMC measurement [Au83] of:

Fle|FDs =1.182— 0522 (6.8)

Below z = 0.65, this clearly fits the SLAC measurements as well. Adjustments were also needed
to account for the fact that the SLAC data were analyzed in terms of 2zF} and Fb, with no
fixed assumption about R. This makes comparisons with experiments which do assume values
for R more difficult. The method used by SLAC to obtain structure functions [Bo79] was similar
in spirit to that described in section 5.7. In fixed bins of z and @2, the differential cross section
was measured at various angles, §,, or photon polarizations (¢). A two parameter linear fit was
then made, with 2z F} proportional to the intercept and F5 proportional to the value at € = 1.0.
Experiments which assume R fix the slope of this fit. Without the full correlation matrix, such
a one parameter fit cannot be reconstructed from the published data. However, if R = 0.0
is assumed, only the diagonal elements of the matrix are needed. Under this assumption, Fs
is the weighted average of the published results for F» and 2zF;. Appropriately, our results
assuming R = 0.0 were compared with the SLAC results so adjusted.

There was almost no overlap in the Q2 range covered by the two experiments. The
requirement that only common Q2 regions be considered was therefore removed. Fits were
made both with and without the constraint of using § determined from our data. An example
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Figure 6.20 Mean square quark charge test: F from CCFRR compared with SLAC electron results
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of a fit including the @2 constraint is shown in figure 6.19. The observed ratio of F, at Q% =
10GeV? is shown in figure 6.20. As expected from the discussion of the consistency of SLAC
and EMC results from Hz, our measurement can be seen to be in good agreement with the
adjusted SLAC results.

A common feature of these comparisons of our measurements of F» with both neutrino
and charged lepton-scattering results is the tendency for the last z bin (0.65) to lie above
expectations. The predominant systematic error in this bin was calibration uncertainties in
the measurements of £, and to a lesser extent Eyy. The implication is that the muon energy
measurement was systematically high. However, as illustrated in figure 6.14, the estimated

systematic errors assigned the measurements in that bin were sufficient to accommodate the
discrepancy.

To summarize these observations: (1) the z dependence of our measurement of Fj,
is consistent with comparable measurements from charged lepton scattering in contrast with
the disagreement among neutrino experiments, and (2) the mean square quark charge test is
confirmed at the 10% level. The agreement among the results from SLAC, BFP and this
experiment is well within errors. There is evidence that the normalization uncertainty assigned
the EMC result is underestimated. If so, the level discrepancy between EMC and our result is
understood. Finally, the scaling violations seen in measurements of F, in the Q2 range covered
by this experiment are similar for both neutrino and charged lepton experiments.

6.3 Gross-Llewellyn Smith Sum Rule

: Another result which is sensitive to absolute normalization is the Gross-Llewellyn
Smith (GLS) sum rule [Gr69]. Under the usual assumption of isospin symmetry, u, = d, and

dp == uy, the net electric charge of protons and neutrons can be expressed in terms of integrals
over quark number densities:

Yz (2 - 1 -
/0 —{g(u(z) = U(2)) = 3(dz) - d(z))} =1

z

1 (6.9)
[ & {3t~ Tan - g0 - e =0
Thus
'dz
[ - s =2
g _ (6.10)
| L)~ dtan =1
0o

Furthermore, the nucleon has net strangeness zero, so:

Yz
f —(s(z) —3(z)) =0 (6.11)
0 I
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Figure 6.21 2F3 and [; Fadz at Q2 = 3GeV? with global fit zF3(z) = Az%(1 — z)?

Combining these results, it can be seen that the quark-parton model result for the GLS sum
rule is:

m

1 1 2
fo 2 1Pz, @) = /0 d;"(q(z)-a(z))=3(1—3s—(—Q——l) (6.12)

Equation 6.12 includes the correction due to QCD beyond the leading log approximation.

Summarized here are results for the GLS sum rule reported by M.Purohit [Pu84).
The experimental measurement of the integral of Fi3 receives important contributions from the
small z region. In fact, roughly half the integral comes from z below 0.06. The excellent small
z resolution of this experiment allows us to make a nearly model independent measurement.
However, the reported result is necessarily at low Q?, since the accessible Q2 range at small z
was limited. The technique used was to divide the integral into two portions. Above z = 0.06,
zF3/z was numerically integrated. Below this point, zF3 was extracted in six bins of width
0.01, and fit to the form Az®. The best value for ¢ was 0.584-0.18. This is consistent with
the expectation [Fi77] that zF3 behaves like /z as z—0. The result for the GLS sum rule was
2.79 4 .28 4+ .14 at Q2 = 3GeV?, where the first error is statistical and the second the scale
uncertainty for zFs. A more model dependent fit of the form Az%(1 — z)? yielded a consistent
value of 2.83 4- .15, with § = 0.58 4- .06. These results indicate that Agcp < 600MeV. Figure
6.21 shows the z dependence of both zF3 and the integrated value of F3 at Q% = 3GeV2,
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6.4 QCD Formalism

A brief summary of the perturbative QCD description of deep-inelastic scattering
processes is presented here. The reader interested in a more complete and rigorous discussion is
referred to the extensive literature on the subject, such as review articles by Altarelli [A182] or

Field [Fi78,Fi79]. For QCD beyond leading order the work of Curci, Furmanski and Petronzio
[Cu80,Fu82] has been useful.

Quantum Chromodynamics (QCD) is the most promising field theoretic description
of the strong interaction. Formally, QCD is a non-Abelian gauge theory based on the SU(3)
(colour) group [Po73,Gr73]. In this description, forces among coloured quarks are mediated by
the exchange of massless vector gluons. The exchanged particles are also coloured and therefore
self-coupling. The coupling between quarks and gluons, as(Q?), decreases logarithmically with
increasing momentum transfer, @2: the theory is asymptotically free. In leading order:

gy 4T
aS(Q )—,BOIUQ2/A2
Bo=11— >N (6.13)
0 == "'g S

where Ny is the number of quark flavours, and A is the QCD scale parameter, related to the
renormalization point. This implies that high Q2 elements of processes are calculable using
perturbation theory and Feynman rules derived from the quantized QCD lagrangian. However,
those elements of the process involving low @2 cannot be so addressed. Suitable division of
problems into high and low Q? parts is a necessary precursor to solution in terms of QCD.

For the deep-inelastic scattering problem, this division has been made in analogy to the
quark-parton model. Structure functions are calculated by convoluting parton densities with
parton-current cross sections. The validity of such a procedure rests on the assumption that
partons within the nucleon have limited k| and are quasi-free. The quark-parton interaction
is therefore a high Q2 process: modifications to the pointlike cross section are significant and
calculable. In lowest order, this is handled by absorbing the leading-log corrections to the cross
section into the definition of the parton density: the parton density becomes eflectively Q2
dependent. As the current probes the nucleon with larger @2, quarks are resolved into quark
plus anti-quark pairs, or quark plus gluon. Thus the evolution of quark densities with @2 can
be described. The aspect of the problem which is not calculable is the intrinsic distribution
of quarks within the nucleon: this depends on long range and low Q2 interactions among
constituent quarks. Also, distortions observed in intrinsic quark distributions due to the nuclear
environment in which the quark is found cannot at present be predicted.
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The Altarelli-Parisi equations [A177] represent a quantitative statement of the solution
to the deep-inelastic scattering problem:

dFy(z, Q2 2
dzl(:Qg ) 25l ){P(")(z)@ Fo(z, @)+ 2N, PQ(2) ® G, Qz)}
v 2
dats, 52 L tale {pgs,’)(z)@ Folz,@%) + PRL(2) ® Gz, Qz)} (6.14)
dzF3(z, Q?
xd?x(sz @) _ el Dp0a) @ 2Rz, %)

where

1dz T
= [ &1 (6.15)

The splitting functions, P(°)(z), describe the probability of finding a parton ¢ with momentum
2 produced by a parent parton J. These probabilities are completely determined by the theory:

3 (1—=2) 2
PR(e) = 3 +(1- 2}
o A [l (1= 2 (6.16)
Pl = H{1E0 =22
33 — 2N
PG (z)=6{(1_zz) + -4 2 362 ’6(z—1)}

where (1 — z)3! is defined by

! h(z) Y on(z)—h(z=1)
‘/;dz(l—_—z--)—_;-—h(z—1)111(1—:c)—}-/z (7 e

1—2

The evolution of the singlet distribution, F, can be seen to receive contributions from two
terms: (1) quark bremsstrahlung and (2) pair production from the unknown gluon distribution,
G(z,Q%). The gluon distribution itself evolves with Q2. Thus, a coupled set of integral-
differential equations simultaneously describe the evolution of F, and G. The evolution of
the non-singlet combination of quark densities, zF3, has a more simple description. Here the
contribution of gluon pair production to quark and anti-quark sea distributions cancels, leaving
just the quark bremsstrahlung term.
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In figure 6.22, a typical example of the predicted variation of dFy/dInQ? with z is
shown, with the level of contribution from quark bremsstrahlung and gluon pair production
separately indicated. In this particular example, for z > 0.15 the losses due to quark radiation
exceed gains from gluon pair production. For z < 0.15 the second process contributes more
than the first. The observed pattern of scaling violations in F, conforms to these expectations.
As can be seen in figure 6.1, F» at small z increases with @2, and at large z decreases. Figure

6.23 shows the corresponding variation with z of dzF3/dln @2, which receives contributions
only from quark bremsstrahlung.

Another useful way of illustrating the features induced in parton distributions by
QCD scaling violations is to compare distributions at two different values of Q2. In figure
6.24 and 6.25 are shown typical values for 2zF)} = ¢+ @, 2F3 = ¢ — q, 7 and the gluon
distribution at @2 = 5GeV? and Q% = 200GeV2. The migration of valence quarks to smaller
z is clearly evident in zF3. The increase in the sea quark distributions at small z due to
gluon pair production results in the corresponding increase of Fp at small z. Along with losses
at high z from pair production, the gluon distribution rises sharply at small z due to quark
bremsstrahlung.

Calculations of the next-to-leading order corrections to the Altarelli-Parisi equations
have recently been made (see [Fu82] for the long list of contributors to this work). Presuming
the perturbation series to be convergent, these calculations offer a more accurate prediction of
the processes under consideration. For example, calculations beyond the leading order lead to
predictions for a finite value for F, = Fy — 2zF) or R, proportional to as(Q?):

_os(@) [MufBp a8 0 gy 2

po= 39 [ 885,00+ Paotwenn - D) -
—FL '
—2IF1

Neglecting @2 variation in the quark and gluon distributions, F;, should decrease logarithmically
with @2. Also, it is evident that F, should be large at small z and small at large z.

There is an additional consideration. The strong coupling constant is a solution to
the renormalization group equations. In leading order the most general solution is:

4T _ 4T
InQ2/A2+¢) ~ folnQ2/A2

as(Q?) = + 0(a}) (6.18)
Bo(

where f, is given in equation 6.13. The constant ¢ is equivalent to O(ag) corrections to the

leading order expression, and can in general differ from process to process. Only by including

next-to-leading order effects will the value of A be the same from different processes. This
implicitly assumes that O(a2) corrections are small.

Beyond leading order, several renormalization schemes appear in the literature; com-
monly the MS scheme is used which minimizes the O(ag) corrections to the evolution equations.
There is a further ambiguity in the precise factorization of structure functions into parton den-
sities and parton-current cross sections. One approach is to evolve universal parton densities
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according to:

00.9) 28 0)® ol Q%) + Pite) © 15, @)

+ch( z) ® G(z,Q%)}
dZ‘li’Se) - as Q }{Pr(2) ® 0(2,@%) + Prr(2) ® 705, @?)

+P—G(z) ® G(z,Q%)} (6.19)
d 2
fﬁi’gz ) aS(Q {Pcq(2) @ (2, Q%) + Poj(z) @ 7(z, Q%)

+Pcc(z)® G(z,Q%)}

Here the splitting functions P;j include the first order terms of equation 6.16 plus O(ag)
corrections:

Py = psg)( Yobe aS(Q )p(l)( ) (6.20)

The structure functions obtained from specific deep-inelastic scattering processes are con-
structed by convoluting these universal parton densities with the corresponding short distance
cross section (coefficient functions) calculated to O(ag):

Fi(z,Q%) Zc 2) ® 9;(2, Q%) + C5(2) ® G(z,Q%) (6.21)

The form of the splitting functions and coefficient functions can be found in the literature
[Cu80,Fu82). Of course, as in first order, there is no contribution from the gluons to the
evolution of zF3. However, QCD beyond the leading order predicts a difference between 2z F;
and F,, as manifested in the formalism by different coefficient fuqctions for 2zF, and F5. This
two-step method was the approach adopted in a program written by Duke [De83] and later
supplied for our use. Charge and momentum sum rules in these universal parton densities are
preserved to all orders.

Alternatively, the definition of parton densities can be fixed to some specific process.
A common choice is to preserve the Adler sum rule to all orders:

1
/0 Z(ryr - Fpry =2 (6.22)

Evolution of structure functions is accomplished directly, using an appropriately modified set
of splitting functions. The virtue of this second approach is computational simplicity. The
program used and supplied by Barnett [Ab80] for next-to-leading order fits to zF3 uses this
one-step method. The observable structure functions are of course the same in either method;
how they are parametrized in terms of parton distributions is ambiguous.

For completeness, it should be mentioned that there are processes and effects at low
Q? and low W? which can contribute scaling violations to the data decreasing with inverse
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powers of @2. These include (1) scattering from di-quark or multi-quark components of the
nucleon wave function, (2) the intrinsic k) distributions of quarks leading to finite values of
R, (3) quark mass thresholds and (4) target mass corrections. In a global view of existing data,
it is evident that at high z there is a considerable difference between the amount of scaling
violation observed in low Q2 experiments, such as SLAC [Bo79], and the more recent higher
Q° results. This was noted in section 6.2 above. The diflerence cannot be accommodated in a
global QCD fit, but does suggest significant higher-twist contributions to scaling violations at
small W2 [Ei81]. This region was not included in any of the QCD fits described below.

6.5 QCD Fits

Several methods exist for comparing data with QCD predictions. One particularly
simple form is the moment equations for the non-singlet distribution:

1
d
M (Q*) = /0 —fz"Fa(x,Qz) (6.23)
In this case, the convolution integral for zF3 (equation 6.14) reduces to a simple product, so
that:

dlo Ma(Q?) _ as(Q?)
dlnQ? ~  or

an (6.24)

where a,, is the n'® moment of the splitting function, Pf,°q)(z). Ratios of moments are predicted
to vary linearly with slopes fixed by the theory. From equation 6.24, it can be shown that
the moments decrease in inverse powers of In ©Q?/A2, which also can be tested. A summary of
results from other experiments using these techniques can be found in the review by Soding
and Wolf [So81]. The principal limitation of such methods is that in order to compute the
moments, substantial extrapolation outside the measured z region is necessary.

An alternative method has been suggested by Buras and Gaemers [Bu77,Bu78]. Simple
analytic expressions for quark distributions were constructed, which represented approximate
solutions to the Altarelli-Parisi equations. For the valence quarks, the distributions reproduced
the expected scaling violations of the first 12 moments to within 2%. The sea and gluon
distributions were less well modeled. However, efficient numerical integration of the equations
using a computer allows the use of a less restrictive model, with hardly any more difficulty.

These data therefore have been fit to QCD predictions for parton distributions directly
evolved using numerical integration. As noted in section 6.4, programs have been provided by
Barnett [Ab80] and Duke [De83] to accomplish this end. The strategy employed is to start with
a suitable general functional form for the quark distributions at some @3, and evolve to all
other required Q2. The parameter A, through the strong coupling constant as(Q?), controls
the amount of scaling violation predicted. The virtue of the technique lies in directly comparing
prediction with measurement in accessible kinematic regions.
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The various functional forms assumed for the behavior of G, F> and zFj at Q2 were:

G(z,Q3) = ag(1 — z)°°(1 + v¢2)
Fa(2,Q3) = aa(1 — 2)7%(1 + 722)

6.25
2F3(z,Q3) = a3z%(1 — 2)°°(1 + 732) B

The motivation for these particular choices is much the same as that described in relation to the
calculational model used for integrations necessary for structure function extraction (section

5.2.2). Along with A, appropriate subsets of these parameters were varied until a minimum x?
was obtained.

Several subtle limitations of this approach have been reported [De83]. First, the
amount of scaling violation induced in the data by the essentially unmeasured region above
z = 0.65 is substantial, and depends on the functional form assumed for the behavior of
the quark distributions in this region. Second, there is an inconsistency between the usual
prescriptions for making target mass corrections: the use of Nachtmann moments [Na73] and
the Georgi-Politzer [Ge76a,Ge76b] convolution integrals in momentum space. To address this
last difficulty, fits were restricted to the region Q2 > 5GeV? and W? > 10GeV?, as these
authors have recommended.

The relative statistical precision with which F5 is measured would seem to offer the
best opportunity for testing QCD. However, the evolution of F» is complicated by coupling
to the evolution of the gluon distribution. The form of G is not directly probed by the deep-
inelastic processes considered here. Hence, fits to singlet combinations of quark distributions
contain additional free parameters. The nature of the contribution of the gluon distribution
to scaling violations in Fb is not well constrained by F» alone. It is difficult to decouple the
correlation between A and parameters of the gluon distribution.

This can be seen in figure 6.22. The values of F5 imply through the quark bremsstrah-
lung term a A dependent expectation for the level of scaling violation in the data. In fits to Fp
alone, the deviations in the z dependence of these scaling violations from this expectation are
all that determine the gluon distribution. The integral of G is normally fixed by the momen-
tum sum rule (equation 6.26 below), but the distribution in z needs to be determined. If the
fraction of gluons at large z were increased, for example by decreasing cg, the same values
for dFy/dIn @2 could be obtained by increasing A. Thereby, the contributions from the quark
bremsstrahlung term would be increased to offset the increased component of the scaling viola-
tions due to the gluon term. Clearly, distortions in the predicted z dependence of dF>/dInQ?
would result. However, there is relatively little correlation between small and large z behavior
embodied in the functional form used for the gluons. It is unreasonable, and in fact undesirable,
to expect that the fitted form of the gluons at small z should strongly limit the behavior of
G at large z. Therefore, it is beyond the statistical power of the present measurements of Fi
alone to well constrain the fraction of gluons at large z.

Alternatively, fits to zF5 could be used to determine A. Since the evolution of this
structure function does not depend on the gluon distribution, potentially a unique opportunity
exists to make a measurement of A with minimum assumption. From the experimental point
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Leading Order "~ Second Order(MS)
R=0.0 R = Rgcp
A 360 4+ 100MeV 340 4 110MeV
‘4o 1.525 4 .086 1.808 4 .092
o 2.85 4 .16 3.36 4- .15
Yo 1.87 4 .56 2.14 + .57
x* " 45.5 for 39 DF 45.5 for 39 DF
Table 6.1
Best values for free parameters obtained in fits to Fo with ¢c¢ = 4.6 and

Y6 = 9.0

of view, zF3 is also attractive since extraction is nearly independent of the value of R and
assumptions about the strange sea. However, the data are statistically less precise than F,, and
the resulting best values for A have large errors.

6.5.1 F5 analysis

Fits were made to F» in the region @2 > 5GeV? and W2 > 10GeV?, where target
mass, higher-twist and quark mass threshold corrections should be small. Data below z = 0.1
are eliminated in an attempt to limit reliance on uncertain assumptions about the strange sea.

The normalization of the gluon distribution at Q3 = 5GeV? was obtained from the momentum
sum rule:

1 1
f G(z,Q%)dz =1— / Fo(z,Q%)dz (6.26)

0 0
As expected, fits using F» alone were unable to significantly constrain the other gluon param-
eters. These parameters were therefore fixed to reasonable values: ¢c¢ = 4.6 and ¢ =

9.0. Target mass corrections were made following the prescription of Georgi and Politzer
[Ge76a,Ge76b]. Due to the @2 and W? restrictions noted above, these corrections resulted in
changes in A of less than 15MeV.

The best values for the free parameters from a leading order fit to F (extracted with
R = 0.0) are listed in Table 6.1, along with associated statistical errors. Figure 6.26 shows
the variation of x? with Ao for this fit, with minimum at A = 360MeV. The horizontal lines
correspond to one standard deviation and the 90% confidence limit. The corresponding result
for a second order fit to F, (extracted with R = Rgcp) is shown in figure 6.27. The best
values for the free parameters from this fit are listed in the second column of table 6.1. The
fit was equally good, and the value of A was 20MeV smaller than that obtained in the leading
order case. The results for F assuming R = Rgcp, together with the second order QCD fit
are shown in figure 6.28.



6.5. QCD Tits

138

CHISQ

45.0

€60.0

55.0

50.0

40.0

f R T .

|
|
|
|
ol

L S |
=]
1)
Il
<l
|
|

R ' l i
90% CONIIDENCE LIMIT A
|
lo |

\.L-/

- | l
|
|
[ [
|

I ; L1
.00 200.0 400.0 600.0

Figure 6.26 x? as a function of Aro for fit to Iy (R = 0.0)

Q
o T " T -
o I
I
|
[
oL E ' -
S g
!
< |
[
ol ' i
o |
© | 90% CONFIDENCE LIMIT |
o | \ | /
% lo |
] o \’\-—Iv
o | i
- |
1
1
o |
S . | e
.00 200.0 Ags | 400.0 600.0

Figure 6.27 %2 as a function of A~M—§ for fit to Iy (R = Rqcb)



6. Quark-Parton Model and QCD Results 134
Q
d L 1 T I L} Ill 1 1 i L L L=
=1 ;
i i
. ~ i
P ¢ x=.015 (X25.0)
n x=.045 (X12.5)
« & * L
b
SF_ o 8 o © ® O x=.080 (X6.25) -
¥ = '——0—.—0-—'———‘——_‘————-} x=.150 (X3.75) 1
B e S S . S
o
u x=.250 (XR.25)
(
o @

A o o — 8 _w 3 z . =
4 x=.350 (X1.50) 1
o | =
1—5 =
St
ol
-

O. 1 5 | L S |I L i 1 l | S - IL 1 | W N .}
©1.0 10.0 100.0 1000.0

Figure 6.28 I's (R = Rgcp) with second order QCD fit

log Q2(GeV?)



6.5. QCD Fits 135

It is well known [Ab82a,De83] that the fitted value of A is strongly correlated with
the parameters characterizing the gluon distribution. The variation of the value obtained for
A with changes in the assumed values for the parameters of the gluon distribution has been
studied. The correlation between Ao and cg, for various values of 4g, is shown in figure 6.29
for the leading order fit described above (R = 0.0). Figure 6.30 shows the correlations observed
for the second order fit (R = Rgcp). The quark-parton model and asymptotic QCD [Al82]
predict that the gluon distribution behaves at large z like (1 — z)°*+!, The large z behavior
of both zF; and F5 suggest that c3~3. It is reasonable to expect that the gluon parameters
lie within the limits: 4 < ¢g < 8 and g > 0. The rms contribution to the uncertainty in the
determined value of A was found to be about 4 50MeV, if all values of the gluon parameters
within the noted limits were equally probable.

The best value of Ay o also depended on R. The level of sensitivity is shown in table
6.2, where the results obtained for A under various assumed values for R are listed. The same
gluon distribution noted above was used in all cases. The value of Ao increased by 160MeV
in changing R from 0.1 to 0.0. Structure functions extracted with a value of R as predicted by
second order QCD (equation 6.17) lie roughly midway between the R = 0 and R = 0.1 results.

The predicted value of R depends on both Fo and the gluon distribution. The
correlation between A and the gluon parameters shown in figure 6.30 does not take this fact into
account. The shift in A was observed for two extreme assumptions about the gluon distribution:
(cc = 3,7¢ = 1000) and (cg = 8,7¢ = 0). The change produced was in a direction to reduce
the sensitivity to the gluon distribution: at (cg = 3, v¢ = 1000) the value of A shifted down by
30MeV and at (¢ = 8,7¢ = 0) the value shifted up by 30MeV. Hence, if properly included,
the effect of using a predicted value for Rgcp would reduce the maximum range of variation
induced in A by variations in the assumed gluon distribution. Most of the shift was found to
be due to changes in the z dependence of R resulting from different gluon distributions. The
effect on A of changing the amount of scaling violation in R was found to be negligible.

Considerable variation in the best value for A also arises from changing assumptions
about the strange sea. If the strange sea were full rather than half SU(3) symmetric, A would
increase by 70MeV. The uncertainty in our measurement of the strange sea fraction, A =
0.5F-18, implies the assignment of a 4-25MeV uncertainty to A from this source. Furthermore,
the effect of changing the charm quark mass used in slow rescaling was also significant. If the
effective charm mass were raised to 1.8GeV?, and \, in correspondence increased to 0.55, the
value of A was found to fall by 25MeV. Conversely, a mass of 1.2GeV and fraction A\s produced
a rise of 25MeV. Reasonable variation of the assumptions about the strange sea therefore led
to uncertainties in A of about 4+-35MeV.,

ALO Am
R=00 360 4+ 100MeV 390 4 110MeV
R=0.1 200 4+ 90MeV 230 4 100MeV
Rgcp 300 + 100MeV 340 4+ 110MeV

Table 6.2 Variation of the best value of A with the assumed R
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8.5. QCD Fits 137

Source of error i Change in Ao
Gluon distribution +50MeV
Strange sea ) i +35MeV
Flux smoothing +25MeV
Flux level 4+ 30MeV
Secondary beam dispersion +10MeV
Hadron energy calibration s +15MeV
Muon energy calibration 4 15MeV
Total (excluding gluon contribution) 4+ 57TMeV

Table 6.8 Approximate systematic errors on Az o from fits to Fo

R=0.1 R=0.0 R = Rgcp
W? > 10GeV? 200 + 90MeV 360 + 100MeV 300 + 100MeV
W? > 20GeV? 180 4 130MeV 410 4 150MeV 310 4 140MeV
W2 > 30GeV? 250 4 210MeV 520 4 230MeV 410 4+ 200MeV

Table 6.4 Best values for Aro as a function of the W2 cut

The uncertainty contributed by systematic measurement errors has also been eval-
uated. For each of the partially correlated sources of systematic error, such as the normalization
errors, an ensemble of twenty experiments was randomly thrown as described in section 5.6.
The resulting values for Fy from each of these pseudo experiments were fit using the same
procedure described above. The rms of the distribution of fit values for each of the parameters
was taken as the systematic error on that parameter due to the source under consideration.

The systematic error on Az o, due to normalization errors and the flux smoothing procedure,
was thereby determined to be 4-40MeV for Fa.

For completely correlated sources of error, such as the calibration error on E,, a fit
was made to the values of F, shifted by an amount corresponding to a one sigma variation
of the particular source of systematic error. Consistent with the remarks made in section
5.6, the contribution of uncertainties in secondary beam dispersion was evaluated by shifting
the dispersion at all settings by one sigma. This represented the extreme c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>