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Abstract 

Nucleon structure functions have been extracted from a large sample of neutrino and 
anti·neutrino inclusive charged·current events. These data were obtained over the period from 
June, 1979 through January, 1980, using the Lab E detector in the N30 dichromatic beam at 
Fermilab (experiment E616). 

The use of the narrow·band beam made possible flux normalized cross section and 
structure function measurements. Neutrinos were obtained from sign and momentum selected 
pions and kaons produced from 400Ge V primary protons. Details of the methods used to 
monitor and determine properties of the secondary beam are provided. The flux of neutrinos 
at the detector was calculated from this knowledge. 

The Lab E- detector performed the function of neutrino target, as well as measuring 
final state properties of the events. Hadron energy was measured using calorimetry. Spark 
chambers interspersed throughout the target and following toroidal spectrometer were used to 
sample the position of the outgoing muon. From these measurements, the muon angle and 
momentum could be determined. The procedure used for reconstructing physics variables from 
detector measurements is presented with estimates of systematic errors. 

The methods used to extract structure functions from the data are detailed. An 
analysis of sources of systematic error on these results is made. A comparison of our results 
for F2 is made with other measurements from both neutrino and charged lepton scattering. 
Differences in overall normalization and in the x dependence of the structure function are found. 
The mean square quark charge rule from the quark-parton model is confirmed at the 10% 
level. Quantum Chromodynamics ( QCD) predicts a pattern of scaling violations in F2 which 
is observed in our results. This has been quantified by making fits to the data using numerical 
integration of the Altarelli·Parisi equations. The value of AMS' the QCD scale parameter, is 
found to be 340± 100± 60MeV with an additional uncertainty of ±50MeV due to the unknown 
form of the gluon distribution. 
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Chapter 1 

Introduction 

Herein is described a scattering experiment in the tradition of Rutherford's probing of 
atomic structure with alpha particles: the determination of nucleon structure through neutrino 
deep-inelastic scattering. The neutrino, interacting via the weak force, scatters off constituent 
partons of the nucleon, providing information both about the nature and properties of those 
constituents, and the forces which hold the nucleon together. We treat the neutrino probe as 
a known quantity, and analyze the scattering data in terms of the leading theory of nucleon 
structure, Quantum Chromodynamics (QCD). Quarks and gluons are not directly observable, 
but this experiment provides a means of making basic tests of the consequences of their 
existence. 

1.1 The Neutrino and the Weak Force 

In 1931 Pauli hypothesized [Pa33] the existence of a near massless neutral half·integral 
spin object, later called the neutrino, to explain the apparent violation in nuclear /3-decay of 
the fundamental conservation laws of energy and angular momentum. However, it was not 
until 1956 that a neutral member of the lepton family (i7e) was actually observed [Re59] in 
interactions with matter. Implementing ideas of Pontecorvo [Po59] and Schwartz (Sc60], the 
first neutrino beams were built at the AGS at Brookhaven (1961) and the PS at CERN (1963) 
[Pe69]. The weak interaction could then be studied at high energies and Q2 • 

Like these original efforts, the present neutrino beams at Fermilab and the SPS at 
CERN are obtained from the weak decay of pions and kaons. The difficulty has always been 
in determining neutrino flux. The high energy, momentum selected (narrow·band) beam used 
in this experiment, with its sophisticated monitoring systems, represents a culmination to date 
of efforts to minimize systematic errors in determining fluxes. In parallel, the bubble chambers 
and simple counter detectors of the first experiments have evolved into large volume, precision 
detectors, such as that located in Lab E. 

Assumptions are made about the properties of the neutrino probe and the description 
of its interaction with matter, consistent with present world data. As a neutral spin ~ lepton, 
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the neutrino partakes of neither the strong nor the electromagnetic forces in interacting with 
matter. The experimental evidence at present indicates that the three types of charged lepton 
(e-,JL-,r-) and associated neutrino (ve,v~,v,), are distinguished by three separately con­
served, additive conservation numbers, (Le, LJ-4, Lr) [Co73). Neutrino rest masses are known to 
be less than 46 eVfc2, 520 keVfc2 and 250 MeVfc2 respectively for the Ve,v~ and Vr [Ro82J. 

The limit on muon neutrino mass is well below the point where it could kinematically 
affect charged current scattering results. However, finite neutrino masses, coupled with a viola­
tion of lepton number conservation, could result in spontaneous transitions of muon neutrinos 
into neutrinos of another type [Po67]. These transitions would cause the superposition of a 
characteristic oscillatory behavior on the normal dichromatic flux spectrum. No compelling 
evidence exists for such a phenomenon at the neutrino energies and distance to source involved 
in this experiment [Ha83]. Therefore, neutrino oscillations are not considered in this analysis. 

Soon after Pauli proposed the existence of the neutrino, Fermi [Fe34] suggested, in 
analogy with QED, an empirical form of the weak l~grangian to describe ,8-decay: 

L G ·t . 
W = -}}{}e 

v2 
where the two currents, ie and jJ£, can be written in terms of fields, 7/J: 

ie = ~e1a'l/Jv. 
ik = ~p1a¢n· 

(1.1) 

' (1.2) 

The prediction [Le56] and discovery [Wu57] of parity violation in weak interactions led to a 
more general form of the lagrangian, containing both scalar and pseudo-sealar products of 
currents [Fe58). The lepton currents took on the familiar (V-A) form: 

ie = ~e1a(l + 15 )1/Jv. 

ie = ~JJ1a(l + 15 )1/Jv, (1.3) 

The hadronic current, reflecting the complicated structure of the nucleon, was written as a 

linear combination of vector and axial-vector terms: 

(1.4) 

The operators a(a) = ~(1 ± -f) project out left-handed (positive helicity), and right-handed 
(negative helicity) neutrinos and anti-neutrinos respectively. The form of the lagrangian sum­
marizes the observed feature of the weak interactions, namely that to the extent that lepton 
masses can be neglected, only left-handed fermions and right-handed anti-fermions interact. 

The analogy with QED is completed by the current standard theory of weak inter­
actions, due to Weinberg and Salam [We67,Sa68). The weak and electromagnetic forces are 
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mediated by four vector bosons, w±, ~ and B0 • The underlying SU(2)X U(l) symmetry 
is spontaneously broken, resulting in the three massive vector bosons (W± ,Z0 ) of the weak 
interaction and the massless photon. The (V-A) character of the charged current is preserved 
in the theory. The only modification to the pointlike behavior expressed in equation 1.1 is to 
include the propagator effect. The coupling becomes G = G F /(1 + Q2 f Mw )2 , where Mw is 
the mass of the exchanged boson. 

Consider first the scattering process, vJJ e--+ p..-ve , as a prototype of the weak 
interaction. Let (k,k') and (p,p') be the initial and final state four-vectors of the (vJJ,J-L) and 
(e, lie) respectively. From the weak lagrangian (1.1), the cross section can be shown to be: 

(1.5) 

where 

L IJJ(ji)) - k k1 + k1 k - g .k. k' ± .. t: RkO'kiP 
J.HI - JJ II JJ II JJII H. J.'IIO'f-1 . 

L[e(e)J = p .,.) + p' p - g p. p' ± ic pa-p'P JJII JJl'v JJ II JJII JJIIO'p 
{1.6) 

The tensors, L1111 , are products of weak coupling spin factors, ry~-'(1 + ry5 ), sandwiched between . 
spinors for initial and final states. Neglecting masses, this reduces in the centre-of-mass to: 

d(JII .. e G2s 

dcose• = 21r 
. (1.7) 

where e• is the centre-of-mass angle between the incoming 1111 and the outgoing JJ--. Two 
observations should be made. First, the cross section rises linearly with the square of the centre­
of-mass energy, s, a consequence of the pointlike nature of the weak interaction at distance 
scales Q2 < Mtv. Second, in the centre-of-mass, the lett-handed spin of the v11 and e- result 
in a total angular momentum of 0; hence, the cross section is isotropic. 

Consider next the inclusive process studied in this experiment, v11 (7711 )N-+Ji-=f X. In 
analogy to the v11 e case above, the cross section is given by: 

d v(ii) G2 E' 
(J = ----LIJJ(i:i)J Willi 

d01 dE' (27r)2 E ~-' 11 
(1.8) 

The tensor W11 11 describes the hadronic part of the interaction schematically shown in figure 
1.1. The nucleon, unlike the pointlike electron, has a structure on the distance scales probed 
by the weak interaction. In its most general form, the hadronic tensor can be written in terms 
of three unknown functions of x and Q2 : 

{1.9) 
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Figure 1.1 Neutrino charged current event 

4 

Terms which will yield contributions of the order of lepton masses in the cross section are 
neglected. These same unknown functions then parametrize the differential cross section: 

(1.10) 

This is also commonly written in terms of R = aLfar, where: 

(1.11) 

It can be shown that R is a measure of the non-spin ~ component of the nucleon [Cl79). These 
functions: 2xF1 , F2 and xF3, describe the structure of the nucleon and are the quantities to be 
measured in this experiment. 

1.2 The Quark-Parton Model and Neutrino Scattering 

Originally, the existence of quarks was inferred from the periodicity of hadron spectros­
copy [Ge64,Zw64). Such structure could arise if mesons and baryons were composed of some 
underlying triplet of objects: u, d and s quarks. Mesons represent combinations of qq, while 
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baryons are three quark states: qqq. The original scheme has subsequently been enlarged to 
Include c and b quarks, with an expected sixth quark, t. These additional quarks provide 
an explanation for the absence of strangeness changing neutral currents (the GIM mechanism 

[Gl70]), and the narrow vector meson resonances ( tj; [Au7 4a,Au7 4b] and i [He77]). Despite ex­

tensive search, with one possible exception [La77,La78,La81), no free quarks have been observed 
[Jo77,Ly80). However, existence may be indirectly inferred from the properties of deep-inelastic 
lepton scattering. 

Flavour u d s c 
Isospin 1/2 1/2 0 0 

Is 1/2 -1/2 0 0 

Charge 2/3 -1/3 -1/3 2/3 
Baryon number 1/3 1/3 1/3 1/3 
Strangeness 0 0 -1 0 

Charm 0 0 0 1 

Table 1.1 Properties of quarks 

The standard model posits the form of the weak current for quarks to be (V-A) 
analogous to the leptonic current. Quarks appear in left-handed doublets of weak isospin: 
(u,d)L, (c,s)L and (t,b)L, and right-handed singlets. However, the eigenstates of the weak 

lagrangian are not the mass eigenstates. This leads to the complication of a mixing matrix, as 
suggested by Cabibbo [Ca63]: 

jJJ = cos Oc UIJJ(1 - /s)d 

+sin Be U/JJ(l - /s)s 

- sinOc CIJJ(1- ls)d 

+cos Be CIJJ(1- ls)s 

(1.12) 

The matrix has been generalized by Kobayashi-Maskawa [Ko73] to the present situation of six 

(supposed) quarks. 

Using this form for the hadronic current, centre-of-mass cross sections (table 1.2) 
can be calculated for free quarks. Scattering of a (left-handed) neutrino from a (left-handed) 
quark, having net angular momentum 0, is isotropic. Scattering of a (left-handed) neutrino 

from a (right-handed) anti-quark, having net angular momentum 1, exhibits a ((1 +cos B* )/2)2 

distribution. 
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dCJ dCJ 
d cos 0* y 

~~~ d,V~ d 
G2 s G2s -

211" 11" 

II~ u,v~ u G
2 s (1 +cos o•y 

211" 2 
G2s (1- y)2 

11" 

Table 1.2 Free quark cross sections 

At high energies where we may neglect masses, the centre-of-mass angle can be related 

to a measureable quantity in the lab frame, the inelasticity y = 1 - Ep./ Ev, where Ev is the 
incident neutrino energy, E~ the outgoing muon energy. Referring to figure 1.2, it can be seen 
that 

1 _ y = 1 + cos O* 
2 

(1.13) 

The free-quark cross sections expressed in terms of y are listed in the second column of table 
1.2. 

Center of 
mass system 

11 

·Lorentz 
transformation 
y=f!JI-(32 

Lcbotctory · 11 . '/"E =v~{ 
1 
+ 8*) 

system ~EfL=,,.;; cos 

,_ y 

E=2 YE ~ ,... 
T~ 

- ~ = 
E 

I + cos B* 
2 

Figure 1.2 Connection between y and centre-of-mass scattering angle 
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vVithin the nucleon, the quarks are not free. Suppose that in the frame of the neutrino­

quark system, the struck quark carries a fraction, ~' of the total proton momentum. Then the 
energy dependence of the free quark cross sections (table 1.2) are modified to the extent that 

Svq = ~s: 

da = (da) ~P(O d~ 
dy dy free 

(1.14) 

The probability of finding a quark with fractional momenta between ~ and ~ + d~ is given by 

p( ~) d~. 

The fractional momentum, ~' can be related to measureable quantities. In the quark­
parton model [Fe69,Bj69] it is assumed that the struck quark is quasi-free: that is, a near 

massless, pointlikc object, with limited transverse momentum. Effectively, other quarks in 

the nucleon can be ignored on the distance scale of the weak interaction. Consider the boson 

and quark in the frame where the boson has zero energy, as shown in figure 1.3. A simple 

consideration of energy-momentum balance shows that 

(1.15) 

where v = E 11 - Eft, Q2 = -q2 = 2E11Eft(l- cos Oft), and Oft is the angle the outgoing muon 
makes relative to the incident neutrino. 

T ro nsferred 

Frame with 
q =0 

0 

energy q 0 = Ev- El-L 
. - -.-

momentum .Q = Pv- PfL 
invaria.nt q2 = q~ -rql 2 <0 

I_ 
'Vq 

+~ (energy conservation) 

q = -2c;P (momentum conservation) 

lq1 2 ~ -2t-p:q-
-q2 = 2c p. q 

Figure 1.8 Connection between the scaling variable x and measureable quantities 
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Within the limits of the impulse approximation, cross sections for the nucleon can be 
constructed from quark and anti-quark momentum densities, q(x) = xp(x): 

(1.16) 

Neglect for the moment small corrections due to expected differences between the strange and 
charm sea in the nucleon. Defining: 

q"(x) = qv(x) = u(x) + d(x) + s(x) + c(x) 

q(x) = qv(x) = u(x) + d(x) + s(x) + c(x) 

the cross sections become: 

cPa"= G
2
ME{(q(x)+q(x)) (I +(I- y)2

) +(q(x)- q(x)) (1- (1- yf)} 
dxdy 1T 2 2 

d
2

a'V · G
2 
ME {(q(x) + q(x)) (I+ (I- y)

2
) ..:... (q(x) _ q(x)) (1- (1- y)

2
)} 

dxdy 1T . 2 2 . 

(1.17) 

(1.18) 

This quark-parton model calculation can be compared with the general expression for the cross 
section (1.10). The connection with the standard structure functions is clearly: 

R = 0 or 2xFt(x) = F2(x) 

F2(x) = F2(x) = F~(x) = q(x) + q(x) 

xF3(x) = xF~(x) = xF~(x) = q(x)- q(x) 
(1.19) 

In the quark-parton model, the structure functions scale with x [Fe69,Bj69]. Furthermore, the 
Callen-Gross relation (Ca69], 2xFl(x) = F2(x), is satisfied unless the nucleon is hypothesized 
to contain interacting, non-spin ~ objects. 

A number of quark counting rules can be derived using the quark model. For example, 
the Gross-Llewellyn-Smith ( GLS) sum rule [Gr69] predicts that: 

fo
1 

Fa(x)dx = 3 (1.20) 

where 3 is the number of valence quarks. This can be tested using our results for xF3 • Quark­
parton predictions can also be made for charged lepton scattering by replacing the weak with 
the electromagnetic lagrangian in the calculations outlined above. The result obtained reflects 
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the coupling to quark electric rather than weak charge: 

(1.21) 

A comparison of our result for F2 with that measured from charged lepton scattering can test 
this prediction. 

1.3 Structure Functions and QCD 

Deviations from this simple scaling model are expected. The finite mass of the nucleon 
introduces scale breaking effects on the order of M'Jv / Q2 • Thus, structure functions should scale 
not with x, but with: 

2x e = --....-----.---.--..--
1 + v'l + 4M'jyx2JQ2 

(1.22) 

[Ge76a,Ge76b]. The intrinsic transverse momenta (k~) of quarks within the nucleon also 
introduces terms which fall like l/Q2 • The quark-parton model predicts [Fe72) that: 

(1.23) 

Finally, Quantum Chromodynamics (QCD), the leading theory of strong interactions, predicts 
logarithmic scaling violations [Al82]. 

In the language of perturbative QCD, coloured exchange fields, called gluons, bind 
quarks together to form hadrons. The interactions between quarks and gluons is described by 
a running coupling constant, which to lowest order is: 

(1.24) 

where NJ is the number of quark flavours. Unlike QED, the coupling a 8 (Q 2 )-+0 as Q2 -+oo, 
a phenomenon referred to as asymptotic freedom. The treatment of the struck quark in the 
q1:1ark-parton model as a quasi-free object is essentially correct. However, as the nucleon is 
probed with higher Q2 , and hence over smaller distance scales, the struck quarks are resolved 
into quark plus gluon, and gluons into a quark plus anti-quark pairs or two gluons. 

The Altarelli-Parisi equations [AJ77] quantify these statements. A set of splitting 
functions, Pii(z), describe the probability of finding a parton i inside a parton j, with a 
fraction, z = x,fx;, of the parent momentum. QCD is unable t? predict the form of the 
quark distribution functions at a given Q2 , since that would involve excursions into the low Q2 , 

non-perturbative regime or the theory. Instead, the evolution of quark densities as a function 
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Figure 1.4 Higher order QCD corrections to pointlike cross section 

of Q2 is predicted by a set of differential equations using these splitting functions: 

where 

1
1 dz x f ® g = - !( z) g(-) 

~ z z 

10 

(1.26) 

Here, G(x, Q2 ) is the momentum distribution of gluons in the nucleon. Valence quarks radiate 
gluons and move from large to small x. Sea quarks at small x result from gluon pair production. 
Therefore, with increasing Q2 , we expect a decrease in the number of quarks at large x, and an 
increase at small x. The validity of the theory in describing nucleon structure can be confirmed 
by observation of this predicted pattern of logarithmic scaling violations, parametrized by the 
single constant A. 

Perturbative QCD also predicts a finite value for R(x, Q2 ), which falls off sharply with 
x, and exhibits the usual logarithmic Q2 dependence [Fi78). Although difficult to measure, this 
experiment can address the question of the value of R(x, Q2 ), particularly at small x. 
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1.4 Outline of Presentation 

Experimental particle physics is a collaborative effort, and the data set described here 
is part of ongoing work by physicists from Caltech (now Columbia), Fermilab, Rochester and 
Rockefeller. The group has had a long history of involvement in neutrino physics, beginning 
with the first generation of neutrino detectors at Fermilab [Ba75a-b,Ba76b,Ba77a-d,Ba78a,Mc78J. 

The present detector, located in Lab E, represents a substantial upgrade, in terms of fiducial 
volume, over early detectors. Results from an engineering run of the detector in the summe1· of 
1978 have been presented [Le81] . Between June, 1979 and January, 1980 a high statistics sample 
of neutrino and anti-neutrino charged current events were obtained in a run known as Fermilab 
experiment E616. Total cross sections and y-distributions from E616 were the subject of a 
Caltech thesis by R.Blair (Bl82,Bl83a]. · 

Here we will examine results of an effort to extract structure functions from this same 
data set, and a confrontation of those results with some of the predictions of the quark-parton 
model and QCD described above. In addressing this task, the subject has been divided in the 
following manner: Chapter 2 examines the dichromatic beam line, the source of neutrinos for 
the experiment, Chapter 3 describes the Lab E detector, Chapter 4 presents detail s of the 
analysis required to convert raw experimental data into physics variables, Chapter 5 details the 
techniques used to extract structure functions from the . charged current sample, and ilnally 
Chapter 6 covers various tests of our structure function results in the light of predicLions by Lhe 
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ENCLOSURE 100 

ION CHAMBER 
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Figure 1. 5 Layout of the neutrino area at Fermilab 
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quark model and QCD. In general, the material covered in the first three chapters represents 
an outline for the purpose of completeness. Details can be found in the Caltech theses of 
J.Lee (Le81], or R.Blair [Bl82]. Also in the literature are more extensive accounts of the beam 

monitoring system [Bl83b), diffraction in the Cerenkov counter [Bo83b), and the Lab E detector 
[Ba78b]. 

Work by the group continues. During the spring of 1981, neutrino data were taken 

simultaneously in detectors located in the Wonder building and Lab E, in a search for evidence 
or neutrino oscillations [Ha83]. An upgrade of the Lab E detector is under way, converting from 

spark chambers to drift chambers, in anticipation of running at the Tevatron. The increased Q2 

range obtained with such high energy neutrinos should make possible a definitive determination 
of A, the QCD interaction scale [Bl80). 



Chapter 2 

Neutrino Source 

Measurement of the logarithmic scaling violations of structure functions requires a 

large sample of neutrino and anti-neutrino events over a wide range of high Q2 . Furthermore, 
systematic errors on flux calculations should be minimized. Definitive tests of quark model 

predictions, which depend on absolute normalization of structure functions, also require preci­

sion flux measurements. The source of neutrinos in this experiment, the dichromatic beam line 
at Fermilab, fulfills these requirements. 

The principal decay mode or charged pions and kaons is the two body decay into p,± 
and vJS('v JS). -If some fraction of the particles in a high energy beam of pions and kaons is allowed 

to decay, a flux of high energy neutrinos and muons is obtained. Muons can be removed by 

range-out in material, leaving a neutrino beam. 

The kinematics of two body decays results In a simple correspondence between neutrino 
energy, Ev, and the decay angle, Bv, that the neutrino makes with the parent particle: 

(2.1) 

where m, and E, are the mass and energy of the parent particle, and tt is the muon mass. 
In a detector a distance z downstream of the decay point, and at a radius r = z tan Bv, the 
population of neutrinos from pion and kaon decay will be clearly distinguishable by energy. For 
example, at Bv = Cf, neutrinos from pion decay have an energy 0.43E8 , whereas those from 
kaon decay have energy 0.95E8 • The banding of neutrino events from pion and kaon decay in 
energy versus radius plots is characteristic of the dichromatic beam. 

The degree to which this simple relationship is complicated is a reflection of the 
disorder of the secondary beam producing the neutrinos, and the necessarily extended length 

of the decay region. The flux of a real beam, with small angular dispersion and momentum . 
bite, will deviate little from that calculated for an ideal beam. The problem of determining 
the composition of the secondary beam is also much simplified under these conditions. The 
design or the Fermilab dichromatic beam represents a reasonable compromise between the 
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requirements of large neutrino flux and small systematic errors in the calculation of that same 

flux [Ed76a,Ed76b,St78). 

2.1 Dichromatic Beam 

Primary protons from the main ring at 400GeV /e interacted ln a 12in BeO target 
(about one collision length) to produce hadrons. The resulting secondary beam of pions, kaons 

and protons was sign and momentum selected by bending the particles with a dipole magnet 
and accepting only those particles passing through a momentum defining slit. This is analogous 
to how one would pick out one wavelength of light from a white source, using a prism and slit 

arrangement. The particular momentum selected could be controlled by changing the current 

of the dipole-bending magnet. Data were taken at nominal secondary momenta of 250, 200, 

168, 140, and 120GeV /c, for both positive (neutrino) and negative (anti-neutrino) polarities. 

The function of collimating the beam before entry into the decay pipe was accomplished 
by a point-to-parallel system of quadrupole magnets. A quadrupole focusing in the horizontal 

(defocusing in the vertical), followed by a second quadrupole focusing in the vertical (defocusing 

in the horizontal) may be likened to a lens of optical systems. In this case, particles emerging 

from the target, at the focus, entered the decay pipe with small angular divergence. The dipole 

and quadrupole magnets, termed the N-30 train, sat on a series of carts which could be moved 

into and out of the beamline. Table 2.1 summarizes the characteristics of the secondary 

beam. 

Primary proton energy 

Intensity 

Target 

Targeting angles 

Horizontal 
Vertical 

Solid angle acceptance 

Momentum acceptance 

400Gev 

1012 to 2 X 1013 

12in BeO 

11.96mr 
1.125mr 

ll.5J.LST 

±9% 
Angular divergence of secondary beam 

Horizontal ± .15mr 

Vertical ± .20mr 

Secondary momentum 50 to300GeV fc 

Table 2.1 Summary of characteristics of the dichromatic beam 

The design of the N·30 train also addressed the problem of contaminating decays of 

hadrons into neutrinos before the momentum slit. At no point before the final bend did the 

beam point toward the Lab E apparatus. Targeting was at an angle of 12mr, and there were 
bends in both vertical and horizontal planes as shown in figure 2.1 to accomplish this end. 
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Decays which did intercept the detector were from wide angle secondaries, or at large angles. 
Hence the wide-band flux was small and peaked at low energies. 

Collimated secondaries pass into a 350m evacuated decay pipe where pions and kaons 
decayed. A secondary dump, 6.5m of steel and aluminum, absorbed the hadrons which failed 
to decay by the end of the decay pipe. There followed 930m of earth and steel berm before 
Lab E, shielding to stop muons produced in secondary decays. 

HORIZONTAL 

DICHROMATIC TRAIN 

Figure £.1 
Layout of the N-30 dichromatic train showing magnet elements and the 
central momentum ray 

The calculation of neutrino fluxes required a knowledge of (1) the number of incident 
pions and kaons for a given period of running, and (2) characteristics of the beam such as mean 
momenta, momentum spread, and beam dispersion. The first task was further broken down 

into (la) a measurement of particle fractions using a Cerenkov counter, and (lb) a total flux 
measurement using ionization chambers. Monitors were therefore of two varieties: those which 
measured beam characteristics, and those which continuously monitored total secondary flux. 

Various devices to accomplish these tasks were distributed along the N-30 train, and 
at two locations in the decay pipe: the expansion port and the target manhole, respectively 
136m and 290m downstream of the last bend (see figure 1.5). 
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2.2 Total Intensity Monitors 

The flux or primary protons was monitored using a beam current transfomer (BCT). 
An attempt was made to do the same with the secondary beam, but this proved impossible due 
to the large number of beam-associated muons passing through the toroid aluminum. Instead, 

the primary flux monitors for the secondary beam were ionization chambers located in the 
expansion port and the target manhole. A typical ion chamber consisted of thin foils separated 
by 0.5in flbreglass spacers, the gap filled with gaseous helium. Electrons released by the passage 
of ionizing radiation were collected without multiplication, and the total charge digitized. 

2.2.1 Calibration 

The amount or charge produced per secondary passing through an ion chamber, 
the absolute calibration of the device, was determined in several ways. The most direct 
measurement was made using a beam of sufficiently low intensity to allow comparison of the ion 
chamber response with conventional counting using scintillator. This of course required that 
the chamber and its electronic readout be linear over beam intensity changes of the order of 
105

, in order to extrapolate to operating intensities. Comprehensive measurements were made 
in a second&ry beam in the Meson area at Fermilab (M-2 line), after preliminary studies in the 
Neutrino hadron beam (N-5 line). A special chamber with ceramic spacers was used in order 

that the small signal levels produced in a low intensity beam not be swamped by noise. During 

the course of this investigation, it was observed that the calibration of the chamber differed for 
mesons and protons. Heavily ionizing slow alphas and protons are produced by interactions in 
the upstream window of the chamber, and contribute significantly to the signal. The observed 
difference of 6.2% can be traced to the difference in absorption cross sections for protons and 
mesons. The absolute calibration was determined to be 3.38 ± .05 X 10- 18 Coulombs/meson 
and 3.63 ± .06 x 10-18 Coulombs/proton. 

The ion chambers were also calibrated by comparison with flux as measured by Na24 

production in copper foils. This method was used with the ion chambers in situ, using 200GeV fc 
primary protons passed through the train with the target removed. Intensity extrapolations 
to normal beam conditions were or the order of 102 • However, the precision of the foil 
measurements were limited to ± 5%, by uncertainties in foil thickness, and the acceptance 
of the gamma-ray detector used to measure the Na24 content of the irradiated foils. Also, 
an accurate determination of the production cross section, p+Cu-+-Na24 +X, was of cou~se 
necessary. Using the CERN measurement for the production cross section, 3.83 ± .07mb, the 
resulting calibration was 3.38± .10 X 10- 18 Coulombs/proton. A separate determination of this 
production cross section was made using the neuhall toroid (BCT), a device which could easily 
be calibrated with a current loop. The result, 3.91 ±.20mb, agreed with the CERN cross section · 
measurement, and yields an ion chamber calibration of 3.45 ± .22 x 10-18 Coulombs/proton. 

A second total intensity monitor, an RF cavity, was located in the beam during much 

of the running. This device, tuned to the RF frequency of the main ring accelerating cavities 
(53.1Mhz), was sensitive to the electric field across the cavity gap at that frequency. An output 
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lSIO£ V\EWI 

gou.ll V1£W) 

Figure 2.2 Layout of.monitor devices in the Expansion Port 

proportional to the number of beam particles passing through the cavity was produced. The 
calibration of the device could be determined from cavity properties. Unfortunately, the RF 
cavity response exhibited a not-understood 5% setting-to-setting dependence in comparison 
with ion chamber measurements. The errors on the RF cavity determination of the ion chamber 
calibration have been increased to accommodate this problem. The measured value for the · 
calibration was 3.47 ± .17 X 10-18 Coulombs/meson and 3.76± .22 x 10-18 Coulombs/proton. 
Since the measurement can be made in a full intensity beam, this would be an area for fruitful 
effort in the future. 
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The agreement among the various methods was excellent, and the average result for the 
ion chamber calibration was: 3.623± .055 X 10-18 Coulombs/meson and 3.403± .047 x 10- 18 

Coulombs/proton. The foil calibration using the CERN production cross section measurement 

was not included in this average. All other measurements are internal to this experiment and 
therefore the source of systematic errors are well understood. The much smaller error assigned 
to the CERN cross section measurement is not understood in the light of our own attempts to 
measure the same number. 

AVERAGE FOR PROTONS 

-----~------f _________ j __ l_~~~~-
-----i------ ~--------1-- -~~~~-

AVERAGE FOR MESONS 

c PROTONS 

X MESONS 

M2 NS RF CAVITY CU FOIL 

BEAM COUNTING 

Figure ~.s 
A comparison of the results of various techniques for calibrating the ion 
chambers 

2.2.2 Systematic flux errors 

In general, at any given ~time during the running, several ion chambers were used 
to measure secondary flux. Comparisons of the response of different ion chambers, or of 
ion chambers and the BCT, exhibited fluctuations of ± 2% for neutrinos and ± 5% for anti­
neutrinos. Since the foil calibration measurement was made during neutrino running, the 
response of the ion chambers before and after calibration could have deviated by as much as 2% 
from the average running condition. Combined with a measurement uncertainty of 1 ~o on the 
calibration measurement itself, a correlated 2.5% normalization error was therefore assigned to 
the secondary flux measurements. During the transition from anti-neutrino to neutrino running, 
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the response of the ion chambers changed by as much as 3%. An additional uncorrelated 3% 
uncertainty was assigned to the normalization of the anti-neutrino data. 

In an oversight, the temperature of the gas circulated through the ion chambers was 
not directly monitored during the run- only temperature in the expansion port. The maximum 
variation in this temperature was ±soc about the mean. The ion chamber response depended 
on the gas density: hence, fluctuations relative to absolute zero were important. The uncertainty 
introduced by temperature was taken to be 1%, uncorrelated for neutrinos and anti-neutrinos. 

2.3 Beam Composition 

Measurements of beam composition were made using an integrating Cerenkov counter 
which could be moved into the beam in the expansion port. Before examining the characteristics 
of the actual device, consider first the case of a monoenergetic, well collimated beam of particles 
passing through a counter of' length, L.-.oo, filled with helium at pressure P. If such particles 
have mass m 8 , and momentum p8 , Cerenkov light is emitted at a fixed angle Be with respect 
to the beam, where: 

B2 = 2KP- (ms)2 
e Ps 

(2.2) 

The constant K parametrizes the pressure dependence of the index of refraction of the helium 
radiator: n = 1 + KP. The intensity, Ie, of emitted light is given by: 

die ( 1 1 ) . 2 - = 2tra L -- - sm Be 
d'A 'A~ 'Af 

(2.3) 

where >-. 1 and >-.2 are the wavelength limits of the photon detector. 

Light is collected by the counter for angles in the interval B0 ± o B. This corresponds 

to a pressure interval of: 

P ± = _!_((Bo ± oBf + ( ms )2 ) 
2K Ps 

(2.4) 

A beam composed of pions, kaons and protons, with three distinct masses, would produce 
as a function of gas pressure in the counter three distinct bands of observable Cerenkov light 
separated by regions of zero response. The integral of light intensity in each band is proportional 
to the number of traversing particles of a given species; hence, such pressure curves could be 
used to determine particle composition of the beam. 

2.3.1 Cerenkov counter for E616 

The Cerenkov counter used in this experiment is shown in figure 2.4. A parabolic 
mirror, with 120in focal length, collected and focused Cerenkov light along a double bend 
optical path onto an iris, which passed light with angles 0.85 ± 0.15mr with respect to the· 
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beam axis. Such light was then focused onto a simple three-stage RCA phototube (CPM). The 
phototube response was found to be linear to better than 1% over the useful output range. 
Likewise the pressure gauge (CPR) was checked in the manner described in the thesis of J.Lee 
[Le81], and found to be linear at the 0.5% level. 

MIRROR (M2) 

. '-TIJ.NIUM WINDD~=~Ill 
ALUMINUM 

Figure £.4 Schematic diagram of the Cerenkov counter used for E616 

The procedure used to obtain a Cerenkov pressure curve was a two-step process. First, 
the axis of the counter was aligned with the secondary beam direction. This was accomplished 

at pressures just above the pion peak, by studying the variation of the counter response with 
respect to rotations about two directions perpendicular to the beam. Proper alignment was 
achieved when a circular image was produced at the iris plane. The counter was then evacuated 
and phototube response recorded each beam cycle (12s), with pressure incremented by a fixed 
volume of helium between cycles. In a typical curve (figure 2.8), the peaks due to pions, kaons 
and protons are clearly separated. 

It was discovered after completion of the data run for E616 that the optical alignment 
of the counter shifted with pressure, due to mechanical instability. The shift as a function of · 
gas pressure has been measured and found to be both linear and quite reproducible, as shown 
in figure 2.5. The correction was of course only significant for kaons and protons, since as 
noted the counter was always aligned at pressures just above the pion peak. However, the error 
introduced in all cases was small compared with other sources. 

In a real secondary beam, such as the Fermilab dichromatic beam, a number of effects 
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Figure 2. 5 Cerenkov misalignment with pressure 
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contribute to the broadening of the distinct bands of response of the ideal case described above: 
(1) beam divergence, (2) finite momentum spread, (3) diffraction in a finite length counter, (4) 
chromatic dispersion, due to variation of the index of refraction with wavelength, and ( 5) optical 
aberrations, negligible. Table 2.2 illustrates the level of contribution of each of these sources 
to the width of the pressure peaks. In general, the momentum spread dominated the width 
of kaons and protons, while diffraction dominated the peak widths of low mass particles such 
as pions, electrons and muons. In fact, diffraction resulted in an overlap of pion and proton 
contributions under the kaon signal. The procedure used to extract the particle fractions was 
necessarily more complicated then the simple area law. 

The effect of beam dispersion was minimized by adjusting the position of the iris so 
that the optical system focuses not from infinity, but from a point on the N-30 train near the 
target, some 205m upstream. The effective dispersion was reduced to the size of the beam 
emerging from the target as seen from this distance, less than O.lmr. 
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Source tl.8,; tl.P-,: (l.f)K APK tl.f)p tl.Pp 

mr mmHg mr mmHg mr mmHg 

Iris width 0.15 2.9 0.15 2.9 0.15 2.9 
Beam angular dispersidn 0.18 3.6 0.18 3.6 0.18 3.6 

Beam momentum bite 0.05 1.0 0.60 14. 2.20 50. 
Chromatic aberration 0.01 0.2 0.01 0.2 0.01 0.2 
Diffraction 0.26 5.0 0.26 5.0 0.26 5.0 

Table £.£ 

Contributions to the smearing of Cerenkov peaks in a 200Ge V / c secondary 
beam. For 80 = 0.85mr, the pion, kaon and proton peaks are at 14.1mmHg, 
78.5mmHg and 211.1mmHg respectively. 

2.3.2 Diffraction effects in a finite length counter 

22 

Small Cerenkov angles and short counter lengths were quite satisfactory in the in­
tegrating Cerenkov counter used in this experiment. Roughly 5 x 10-3 photoelectrons per 
particle were observed, but the large number (1010 ) of traversing particles resulted in a more 

than adequate signal. However, the short length did result in observable diffraction effects. For 
a counter of length L, the intensity of observed light is actually: 

die _ 27ra(L)2
(sin1j1)

2
• 28 ------ -- - -- sm d)..d cos f) ).. ).. 1/J 

{2.5) 

where 

(2.6) 

The width at the first node t/J = 1r, gives the diffraction entry shown in table 2.2. It is important 
to note that diffraction broadening results in contributions of intensity at all angles, including 
those below Cerenkov threshold. A finite response at zero pressure is predicted, a phenomenon 
commonly referred to as transition radiation. 

The validity of the diffraction formula has been confirmed in two ways. Cerenkov pres­
sure curves were taken with monoenergetic 200Ge V / c primary protons: a beam brought through 
the N-30 train with target out, and with 0.1mr angular divergence. Therefore, diffraction effects 
dominated the width of the proton pressure peak. As can be seen from figure 2.6, the predic­
tion of the diffraction formula conformed to observation for over three orders of magnitude of 
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intensity variation. The additional backgrounds in this figure can be accounted for in terms 
or light scattering from dust particles on mirrors in the counter, and effects of interactions in 
material in the beam upstream of the counter .. 

Secondly, the difl'raction formula predicts without free parameters the level of response 
observed at zero pressure in the Cerenkov counter, for pressure curves taken with typical 
secondary beams of the experiment. Figure 2.7 shows both the measured and predicted ratio of 
zero pressure intensity to intensity integrated over electron and pion peaks. Again agreement 
was excellent. 

2.3.3 Backgrounds 

Three backgrounds had to be subtracted from Cerenlcov pressure curves before analyz­

ing beam content. The first was light produced outside the helium radiator. This was measured 
as a function of pressure, by periodically recording along with the normal Cerenkov signal, 
the phototube response when optically isolated from the helium radiator by a shutter. This 
background has already been removed in figure 2.8. 

Interactions of particles with material in the beam, namely the vacuum window on the 
decay pipe and the counter front window, result in a wide spectrum of lower energy high angle 
particles. Such particles were a source of diffuse Cerenkov light, and produced a tail on the 
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Figure 2.6 Pressure curve for 200GeV /c protons 
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Figure £. 7 Zero pressure background and predictions 

high pressure (low momentum) side of particle peaks. This effect was studied by putting further 

material in front of the counter, and observing the changes in pressure curves. In making the 

background subtraction, the differences were scaled by the inverse ratio of interaction lengths 

with and without additional material. Backgound curves were taken with 200GeV /c primary 

protons, and at the -120GeV /c and -250GeV /c settings of the secondary beam. The form 

of the subtraction was interpolated to the other settings. 

The scattering of light from walls, baffies and particularly dust particles on mirror 
surfaces was an additional source of diffuse background. Two approaches have been used to 
remove this background. The material subtracted 200GeV jc proton pressure curve provided 
the pressure dependence of the background. If it is assumed that the form is momentum 
independent, contributions could be summed for each point in a particle peak. Amplitude 

adjustments of up to 10% were made in order to match the observed Cerenkov levels well 

beyond the proton peak, since the amount of dust on mirrors was time dependent. A second 
method used was to parametrize the background by: 

0 ~ 4.5mr 

fJ > 4.5mr 
(2.7) 

where a, {3 and 1 are free constants to be fit. The change in slope at()= 4.5mr was empirical, 
in that it seemed to best fit the data. The final particle fractions were the average of the results 



2.3. Bea.m Composition 25 

obtained using the two techniques; the difference was taken as a measure of the error clue to 
uncertainties in the light scattering subtraction. 

2.3.4 Analysis of pressure curves 

Diffraction effects resulted in a significant contribution by pions and protons to the 
kn.on peak, us noted above. Furthermore, the area rule breaks down unless integi'Ution is 
carried out over the entire diffraction peale, stretching below zero pressure for pions. A monte 
carlo, incorporating the correct Cerenkov intensity formula (2.5), was used to predict counter 
response functions for pions, kaons and protons. These response functions were then lit to 
pressure curves, after background subtraction. Free paramcLers were: ( 1) particle fr:.1cLions, 
mean momenta and peak widths for each of the three species, aud possibly (2) paramclers a, 
fJ and 1 for the light scattering background. A typical lit is shown in figure 2.8, and the values 
obtained for the particle fractions are listed in table 2.3. 

In addition to pions, kaons and protons, the beam contained a small component, of 
electrons and products from the secondary decays such as muons. Electrons were produced 
by neutral pion decay and gamma conversion in the production target. Ivleasurements were 
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Setting e/1r+e 1r /Total K/Total P/Total 

+120 .029 ± .002 .5243 ± .0205 .0470 ± .0029 .4220 ± .0219 

+140 .020 ± .003 .4214 ± .0136 .0427 ± .0022 .5300 ± .0148 

+168 .011 ± .003 .3115 ± .0115 .0349 ± .0016 .6520 ± .0127 

+200 .006 ± .003 .1 918 ± .0067 .0240 ± .0012 .7830 ± .0075 

+250 .003 ± .002 .0771 ± .0026 .0115 ± .0007 .9110 ± .0030 

-120 .065 ± .008 .8733 ± .0097 .0516 ± .0028 .0128 ± .0099 
-140 .052 ± .005 .8845 ± .0073 .0568 ± .0023 .0099 ± .0074 

-168 .031 ± .004 .9099 ± .0050 .0551 ± .0017 .0033 ± .0050 
-200 .020 ± .005 .9339 ± .0051 .0443 ± .0017 .007 4 ± .0050 

-250 .013 ± .004 .9495 ± .0017 .0388 ± .0017 .0000 ± .0050 

Table £.8 

Particle fractions in the secondary beam at the Expansion Port from the 
Cerenkov counter 
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possible for low momentum settings where the pion and electron peaks were distinguishable. 
For the higher settings we relied on a monte carlo calculation. The decay product component 
of the beam was directly proportional to the parent fraction. For the pion the only significant 
mode was the· two-body decay into muons. However, the kaon has a number of channels not 
contributing to neutrino fiux, but which do produce charged pions. The six principal decay 

modes of the kaon were included in the monte carlo calculation. 

2.3.5 Mean momenta and widths 

A Cerenkov pressure curve is a momentum transform of the beam. This is an inverse 
relation as shown in equation 2.2. For a given particle type, hadrons with momenta greater 
than the mean momentum map into pressures below the peak pressure, and vice versa. In a 
beam without angular dispersion: 

{2.8) 

where {P} is the average pressure at peak, and 01 and 82 are the Iris angle acceptance limits 
{0.7mr and l.Omr). The method was useful only for kaons and protons, since uncertainties in 
the Iris angle term, due to angular dispersion, become significantly more important for pions. 
The constant JC was determined from the 200GeV fc primary proton curves to be 4.38 ± .04 X 

10-8 mmH g-1 . 

Agreement was seen between the momentum bite of the kaons in the beam as calcu­
lated by the beam monte carlo and as measured from the width of the kaon pressure peak. In 
fact, the momentum bite varied from setting to setting by no more than 0.7%. The uncertainty 
introduced into the flux calculation from this source was therefore negligible. 
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Setting Meanp'K MeanpK D.fJz D.fJy 6pfp 
GeVfc GeVfc mr mr % 

+120 119.5 122.4 .16 ± .04 .23 ± .05 10.1 

+140 139.2 142.2 .15 ± .04 .21 ± .03 9.9 

+168 166.3 169.8 .13 ± .03 .20 ± .03 10.0 

+200 197.0 200.6 .15 ± .04 .20 ± .02 9.6 

+250 243.8 247.0 .16 ± .04 .20 ± .01 9.4 
-120 118.4 119.6 .16 ± .04 .23 ± .05 9.7 

-140 137.8 138.9 .15 ± .04 .21 ± .03 9.4 
-168 164.3 165.3 .13 ± .03 .20 ± .03 9.5 

-200 194.0 194.6 .15 ± .04 .20 ± ·.02 9.2 

-250 239.0 238.0 .16 ± .04 .20 ± .01 8.7 

Table £.4 Mean secondary momenta, widths and dispersions 

2.4 Beam Dispersion and Steering 
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Beam profiles were routinely monitored using segmented wire ion chambers (SWICs), 
located in both the expansion port and the target manhole. These provided x and y projections 
or the beam profile at two points in the decay pipe. At each setting a scintillator scan of the 
beam profile was made in the expansion port. This was found to be in good agreement with 
the ion chamber measurements, except in the tails where some residual signal was seen in the 
SWICs. Combined with the known aperture of the momentum slit (4.13in x 1.50in) at the 
upstream end of the decay pipe, the SWIC profiles provided a measure of beam dispersion. 
The dispersion in the vertical plane was well determined by this method. However, the large 
horizontal aperture limited the precision of the measurement in the horizontal plane. Results 
are included in table 2.4. 

. ' 
Beam steering was monitored on a pulse-by-pulse basis while taking data, using split­

plate ion chambers in the expansion port and target manhole. The difference over sum or 
the signals from the two halves of the chamber was used as a steering parameter. Vertical 
and horizontal split plate ratios at both locations in the decay pipe were maintained within 
tolerances corresponding to ± 1.4in at Lab E. The experimenter could adjust the targeting 
angle of the primary proton beam if beam steering strayed outside these limits. 

2.5 Beam Monte Carlo 

A monte carlo was used to calculate the spectrum of neutrinos in both energy and 
position at Lab E. The calculation was divided into two parts conceptually and operation­
ally. The first task was to produce secondary rays at the beginning of the decay pipe with 
characteristics matching the observed properties described above. A production model was 
used to generate pions, kaons, and protons at the target. These rays were then traced through 
the elements of the N-30 train to the momentum slit. The production spectra itself was not 
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Monte carlo calculation of neutrino flux at Lab E for 200Ge V / c secondaries 

measured: only production folded against train acceptance. Furthermore, the positions of mag­
nets and apertures on the train are only known to survey tolerances. Slight adjustments in the 
mean momenta, and dispersion of the secondary rays were therefore made to conform with the 

measurements made of these quantities. 

The second stage in the calculation of fluxes was to model the decay of secondaries into 

neutrinos, a relatively straight-forward process. Along with the two body decay modes, rr --. J.LVJj 

and K--. f.LVJJ with branching ratios of 100% and 63.5% respectively, the three body decay K--. 
rr0 JLVJJ with a 3.20% branching ratio is a significant source of neutrinos in our charged current 
sample. (The decay channel, K--. rr0 eve, was an important source of background for neutral 
current studies.) The monte carlo thus produced a spectrum of neutrinos per pion or kaon at 
Lab E. Combined with a knowledge of the total number of livetime pions or lmons received, this 
spectrum could be converted into an absolute flux. Figure 2.9 shows the calculated neutrino 
flux at Lab E, from the beam monte carlo for +200GeV /c secondaries. The dichromatic nature 
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Setting k X 10- 11 I a b Eo 
in2-primary proton GeV GeV GeV 

+120 2.14 1.18 21.01 7.36 

+140 1.71 1.20 14.68 8.15 

+168 1.39 0.89 21.81 8.07 
+200 1.88 1.78 19.26 9.87 

+250 1.48 1.32 22.97 7.50 
-120 1.34 17.47 12.63 12.96 
-140 1.34 17.47 12.63 12.96 
-168 1.35 17.47 12.63 12.96 
-200 1.46 17.47 12.63 12.96 
-250 1.35 17.47 12.63 12.96 

Table £. 5 Parameters for wide-band background flux 

of the beam is clearly seen. 

2.5.1 Wide-band background 
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Decays of secondaries before the momentum slit constituted a diffuse source of low 
energy neutrinos referred to as wide-band background. The energy and spatial distributions 
of this source of neutrinos was impossible to model, depending as it does on details of beam 
dumping. Instead events were recorded with protons on target but the collimator closed. Such 
events could then be used to make a subtraction from observed open slit events, the method 
used for our total cross section result [Bl82,Bl83a]. An alternative approach was to convert 
the observed events into a neutrino flux, using a model for the differential cross section. Wide­
band flux could then be added to other flux sources. This was the technique used for the 
structure function results reported here. The spatial distribution was assumed to be uniform, 
so that the fiux was just proportional to the solid angle subtended by the fiducial volume under 
consideration. The reconstructed energy spectrum of wide-band neutrinos, per incident proton 
and per unit area at Lab E, was parametrized by the model: 

E ~Eo 
E >Eo 

(2.9) 

Dumping for all negative settings was nearly at the same point on the train, whereas for positives 
various locations were used. It was therefore assumed that the energy spectrum was the same 
for all negative settings, but separate fits were made for the five positive settings. Results of 
the fits are listed in table 2.5, and the level of wide-band neutrino flux as compared with other 
sources is shown in figure 2.9. 
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Neutrino Detector 

The scale of the weak interaction requires that massive targets be used in order to 

obtain high statistics samples of neutrino events. The Lab E target had a mass of 680 tons, 

sufficient to produce but a few events per 1013 protons on the primary target. Clearly this 
entire mass could not be active, and for the most part consisted of inert steel plates. However, 
the detector was instrumented so as to provide the information necessary to characterize 
a neutrino charged current event: {1) vertex position, {2) hadronic energy, (3) muon angle 
with respect to the incident neutrino, and ( 4) muon momentum. In addition, to maximize 
acceptance and simplify analysis, the resolution of these measurements was made as uniform as 
possible throughout the fiducial volume. The first three functions were performed by detectors 

integrated into the target, while the muon momentum was analyzed by a separate toroidal 
spectrometer immediately downstream. 
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3.1 Scintillation Counters 

The hadronic energy released by the neutrino interaction was measured using a sam­
pling calorimeter. The primary hadrons from the vertex interact in the target steel depositing 
energy, but also producing fast-forward going secondary pions and nucleons. T~ese in turn 
interact, and a hadronic cascade develops. Interspersed in the steel are scintillation counters 
which sample the ionization energy of the shower. Principally this energy is in the form of 
electromagnetic cascades originating from neutral pions in the hadronlc shower. The sum of 
the sampled energy is proportional to the total hadron energy. However, some hadronic energy 
is not converted to ionization energy, but is lost to nuclear binding effects. Also, some energy 
is badly sampled, such as low energy nucleons or alpha fragments which range out in the steel. 
Fluctuations in these losses result in an intrinsic resolution limit to the technique, but this limit 
was not reached by the relatively coarse-grained calorimeter of this experiment. 

The target counters, every lOcm of steel, were lOft X lOftx lin square acrylic tanks, 
filled with liquid scintillator. Along the four edges of the counter were 8 wavelength shifter 
bars, each 5ft in length, terminating in four RCA 6342A phototubes at the corners. Ionizing 
radiation passing through a counter excited a primary fluor emitting uv light. The primary 
emission was absorbed within approximately lmm by a secondary fluor emitting isotropic blue 
light. The attenuation length at this wavelength was much longer, so the secondary light passed 
to the edge of the counter, where it was collected by the wavelength shifter bars. The shifter 
bars were acrylic doped with a third fluor, BBQ, which converted blue light into green, better 
matching the response of the phototubes. The air gap separating the bars from the counters 
caused the green light to internally reflect down the length of the bars to the phototubes at 
the four corners. By this means a very large area was made sensitive to ionizing radiation at 
an efficiency of f'V 12% relative to a perfectly adiabatic system of light pipes and phototubes. 
Nevertheless, a minimum ionizing particle produced some 16 photoelectrons in the four tubes, 
with about 70% response variation across the counter. 

Essentially, the same technique was used for the toroid counter planes. Each scin­
tillator plane, every 20cm of steel, was constructed of four quadrants of plastic scintillator 
manufactured by Polytech, 5ft square and 1.5in thick. The light collected by the shifter bars, ar­
ranged as shown in figure 3.3, was viewed by a total of 10 phototubes per plane. Approximately 
8 photoelectrons were seen per quadrant, with less than 30% response variation over the surface 
of the counter. 

The monitoring of phototube gains over the course of the experiment was accomplished 
using a flasher system. Light from a spark gap was passed by light fibres to a diffusing whit.e 
disc at the centre of each counter. Changes in the gain of any phototube were reflected in 
changes in response to this stable signal. 

The output signal from each phototube was used as part of the real-time trigger logic, 
and was recorded via ADCs for hadron calorimetry. Through a series of fan-outs, fan-ins and 
discriminators, shown in figure 3.4, two trigger bit levels, corresponding to one (S) and two (T) 
ionizing particles, along with an energy sum, En, were defined for each counter. These formed 
the basic elements of the trigger logic described in section 3.4 below. 
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The range of phototube signal varied from single ionizing to many times minimum 
in a high energy hadron shower. Historically, the dynamic range of ADCs has been limited; 
and so three sets of ADCs were used to digitize this large range of input signals. A 10-bit high 
ADC (Lecroy 2249) was used to record the sum of all signals in a plane. Single ionizing was 
only a few channels above pedestal, but the signals from hadron showers were at reasonable 
levels. For the E61G run, a 15-bit low ADC (Lecroy 2280) was available to digitize the signal 
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BEAM 

Figure S.S Details of a toroid cart 

from each phototube. Single ionizing was more than 100 channels above pedestal, while hadron 
showers were below -saturation levels. In fact, the large dynamic range of these new ADCs 
made the highs redundant. For the small number of events for which a low ADC saturated, a 
superlow could be used to recover pulse height. Signals from phototubes well separated in the 
detector were summed and recor~ed by such superlow ADCs (Lecroy 2249). Presumably, only 
one counter in the set was likely to have a large pulse height. 

3.2 Spark Chambers 

The rccons~ruction of muon angle and energy was accomplished by a series of position 
measurements in spark chambers as the muon passed through the target and toroid. Each 
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target cart contained six lOft square spark chambers, one every 20cm of steel. The toroid 
gaps were instrumented with a combination of Sftx Sft and lOft square chambers. As shown 
in figures 3.2 and 3;3, a total of 78 chambers were distributed throughout the detector. The 
chambers were made of two lin aluminum-clad Hexcell panels, separated by O.Sin aluminum 
!-beams which also provided structural support. On the interior of the Ilexcell panels were 
bonded mylar-backed planes of lmm spaced wires, the planes oriented at 90° to one another. A 

gaseous mixture of Neon-Helium (90/10) with a small amount of alcohol ( "'1 %) was circulated 
through the chambers. Following passage of an ionizing particle, the application of a ~ fikv 
potential between the two wire planes of the chamber caused a breakdown of the gas, and a 
spark to occur at the point of particle transit. 

For the target chambers the high voltage pulse was a 200ns square pulse, produced by 
switching to the chamber via a thyratron the energy stored on 24 x 120ft high voltage cables. 
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Such a pulse ensured good multi-spark efficiency in hadronic showers. The toroid chambers 
were fired with a more modest capacitor discharge system, since only one or two muon tracks 
were expected in the spectrometer. 

The result of a discharge was an electromagnetic pulse passing down the wires of the 
chamber to magnetostrictive wands along two edges. An acoustic pulse, produced in the wands 
by the signal, traveled the length of the wand and was reconverted into a voltage signal by a 
transformer coil. The signal was preamplified before being sent to the readout electronics. The 
electronics for each wand consisted of: (1) a spark chamber interface module (SCI), for centre 
finding of the pulse and conversion to a logical signal, and (2) a multitime digitizer (MTD), 
with 20Mhz clocks to record the times of up to 16 pulses per wand relative to a common start. 
At fixed positions near both ends of all wands, a fiducial pulse was generated each time the 
chamber was fired and was likewise recorded. 

The muon momentum was found by measuring the bend of the muon path in the 
known field of the toroidal spectrometer magnets. This field was produced by three toroidal 
magnets, each made up of eight Sin thick steel doughnuts, 69in in diameter, with a lOin diameter 
centre hole to accommodate the four sets of coils used to power the magnets. The saturated 
field, some 17kg over the length of the toroids, gave a transverse momentum kick of 2.45GeV /c 
to a particle passing the length of the spectrometer. 

3.3 Data Acquisition 

Data acquisition was through standard CAMAC, controlled and monitored through a 
PDPll/50. Beam line elements, including SWICs, magnet currents, collimators and the like, 
were monitored through the Fermilab MAC system. In addition to event records, each machine 
cycle (12s) pedestal, flasher, scaler and monitor records were recorded. Monitor information 
was recorded by the MAC system, and passed to the experiment computer at the end of a spill. 
Events were recorded not only during beam spills, but also during fixed length cosmic-ray gates, 
to enable a determination of background cosmic rays in the data sample. 

Between cycles, this information was partially analyzed to provide feedback on beam 
and experiment operating conditions and performance. Beam steering was monitored by means 
of the split plate ion chambers in the expansion port and manhole. Such functions as the 
alignment of the Cerenkov counter could only be performed with immediate feedback on counter 
response variations with angle. The quality of pressure curves could ~lso be assessed on-line. 
Phototube balances and pedestals, bit efficiencies and spark chamber efficiencies were calculated 
from a sample of analyzed events, to provide immediate warning of problems with any of the 
components of the Lab E detector. 

Resonance extraction was used to remove protons from the main ring. Protons on the 
edge of the main ring beam were kicked out of the beam by an electrostatic septum, followed 
by a Lambertson magnet. The rate at which such extraction occurs can be controlled by the 
degree to which the main ring beam is blown up. For E616, two modes of operation were used: 
slow spill extraction over a ls period, and fast spill with extraction over 2ms. 
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3.4 Triggers 

A neutrino charged current event has a characteristic topology: a neutral incoming 
particle, interacting in the target fiducial volume and producing a penetrating muon and a 
splash of hadronic energy. The hadronic energy varies from just a recoiling nucleon in the 
elastic limit, up to most of the energy of the incident neutrino. The experiment ran with 
two triggers covering this topology. Over much of the kinematic range these were redundant, 
providing a means by which to check the efficiency of one trigger against the other. 

The first such trigger, called a muon trigger, required a special set of fixed geometry 
counters to fire, as shown in figure 3.5. Essentially, a single ionizing particle had to pass 
through the first target cart, and partway through the toroid to trigger counters T2 and/ or 
T3, along with no veto. The detailed logic is shown in figure 3.6. There was no hadronic 
energy requirement, but the muon had to have sufficient energy to reach T2. Also, due to the 

limited acceptance of the T2 counter, the muon angle with respect to the incident neutrino was 
restricted for this trigger. The T2 requirement ensured that the muon momentum could be 
analyzed. 

The second trigger, called a penetration trigger, used information from the target 
counters and first ten planes of toroid counters. An event was required to have a minimum 
ionizing particle which penetrated at least sixteen consecutive counter planes, and to have more 
than 4Ge V of hadronic energy, again with no veto. Although less restrictive on muon angle 
than the muon trigger, penetration events did have a low y cut-off due to the hadron energy 
threshold. Figure 3.7 is an example of a penetration trigger event, where the muon leaves the 

target before reaching the spectrometer. 

The only element of the trigger logic common to the two triggers was the veto counter. 
Veto overkill, that is the overlap of the veto gate with possible good events, would deplete both 
triggers. A cross comparison of the two triggers of course could not measure this effect. The 
average veto deadtime of about 2% was measured at each setting by counting the coincidence 
of a trigger with the veto delayed by approximately a gate width. 

The principal source of contaminating events which satisfied these triggers, was cosmic­
ray muons or showers. The triggers were sufficiently restrictive so that for the 2ms fast spill gate 
this is not a severe problem. However, it was necessary to make these triggers more restrictive 
during the ls slow spill gate, in order to keep cosmic-ray rates down to a few per second. The 
additional requirements were: (1) for the muon trigger, that trigger counters T3 and/or T4 fire, 
and (2) for the penetration trigger, that the hadron energy be greater than lOGeV. As will be 
shown, software cuts for the structure function analysis have been made tighter than even the 
slow spill requirements, and so this represents no complication to the data analysis. 
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Setting N euhall Toroid Muon Triggers 

-120 0.817 0.812 

-140 0.821 0.824 

-165 0.855 0.860 

-200 0.875 0.875 

-250 0.913 0.901 

+120 0.694 0.717 

+140 0.667 0.684 

+165 0.656 0.667 

+200 0.686 0.697 

+250 0.709 0.724 

Table 8.1 Livetime fraction for fast spill 

The experiment had a 50ms deadtime after taking an event, the time required to clear 
charges from the spark chambers before refiring. Clearly, only one event per cycle could be 
recorded for the fast spill. In order that deadtime corrections not become too large, event rates 
for fast spill could not greatly exceed one per spill. The event rates for anti-neutrino running 
never exceeded this limit, and so fast spill extraction was satisfactory. For the neutrino running 
this was not the case, and data were taken with about equal flux in slow and fast spill extraction 
modes. 

3.4.1 Livetime 

Monitors were gated on either: (1) the time the signal from the toroid (BCT) was 
above threshold (beam gate), or (2) the beam gate in coincidence with a Lab E generated gate 
signifying that the detector was alive {livetime gate). On a run-by-run basis the ratio of the 
number of livetime to beam gated protons received on target, as measured by the toroid (BCT), 
was used to compute the number of livetime secondaries from the total secondaries received, as 
measured during the beam gate by the ion chambers. An alternative method was to determine 
the ratio of total muon triggers per run, extracted from scaler records, to the number of recorded 
muon trigger events. Since only beam associated events should be included in such a procedure, 
corrections for cosmic-ray contamination of the scaled and recorded muon triggers were made. 
Also, adjustment was made for the fact that the scaler gate was delayed by 20J.ts to avoid spark 
chamber noise. A comparison of the two methods indicates that the rms fractional error on 
the livetime measurement was determined to 2.3% for neutrinos and 0.7% for anti-neutrinos. 
These are equivalent to an average 5% fractional error on the deadtime: therefore, the livetime 
error has been treated as a correlated error. Table 3.1 shows the livetime fractions for fast spill. 
The slow spilllivetime fraction was 86.7% for all five positive settings, reflecting the dominance 
of the trigger rate by cosmic-ray events. 
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Event Analysis 

The data set used in this analysis was obtained over the period extending from June, 
1979 through January, 1980. Some 800 raw data tapes were produced for off-line analysis 
during that time. A total of 0.5 X 1019 protons were received on target during useful runs, 
broken down between neutrinos and anti-neutrinos and among the five pairs of energy settings 
as shown in table 4.1. Off-line analysis was carried out on the li'ermilab CDC Cybers. The 
analysis of monitor data has been briefly discussed in chapter 2, and it remains to describe the 
extraction o_f useful physics information from the event records. 

The first step of data reduction was a sorting operation. Monitor and event records 

were separated, and 'beam steering monitors incorporated into event records. Pedestals were 

averaged and subtracted at this stage. 

The bulk of the event analysis was divided into two subsequent steps: (1) a data 

cruncher, containing much of the track finding and fitting routines, and producing a partially 
·analyzed record still retaining most of the raw detector measurements, and (2) a data summary 
writer, containing the final hadron energy and target track fitting routines, and producing a 
summary record with just a few physics variables per event. The procedures described below 
were for the most part incorporated into these last two analysis programs. The extraction of 

structure functions from the data summary files is the subject of chapter 5. 

4.1 Hadron Energy Determination 

The hadronic energy of the charged current event was obtained by summing pulse 
height from counters identified as being within the region of hadron shower development. In 
the counters, a typical event appeared as a region of zero deposited energy (the incoming neutral 
neutrino), a region of large pulse height (the hadron shower containing many ionizing particles), . 
and finally a region of single ionizing response (the outgoing muon). The counter PLACE was 
defined as the most upstream of a series of two counters with pulse height greater than 0.25 
times minimum ionizing, signalling the abrupt transition from the neutrino segment to hadron 
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Setting Primaries x 1017 Secondaries x 1014 
·--

Slow Spill Fast Spill Total Slow Spill Fast Spill Total 

+120 1.51 1.10 2.61 6.43 4.84 11.27 

+140 1.87 1.38 3.25 8.37 6.73 15.10 

+168 2.95 2.07 5.02 16.41 11.55 27.9G 

+200 3.53 3.01 6.54 24.44 20.68 45.12 

+250 5.42 5.56 10.98 48.94 52.43 101.37 
-120 0.00 1.98 1.98 0.00 2.32 2.32 

-140 0.00 2.88 2.88 0.00 2.83 2.83 

-168 0.00 3.79 3.79 0.00 2.70 2.70 

-200 0.00 5.31 5.31 0.00 2.64 2.G4 

-250 0.00 11.21 11.21 0.00 2.02 2.02 

Table 4-.1 Protons and secondaries received in good runs 

shower. (Minimum ionizing is a term defined below, but is roughly equivalent to the signal 
produced in the counters by a muon.) The transition between the trailing edge of the shower 
and the muon was less distinct. The counter SITEND marked the shower end, and was defined 
as the most upstream of a series of six counters with pulse height less than 3 times minimum 
ionizing. The total pulse height in the first six counters downstream of SHEND was found to 
be 0.74 ± 0.15 times minimum ionizing higher than that of the next six counters. This was 

taken to be the average hadronic energy missed by assigning SHEND in the manner described; 
a correction of this amount was made on an event-by-event basis. The sum of pulse height 
between PLACE and SHEND was proportional to the hadronic energy, EH, of the event. Pulse 

height in all counters was pedestal subtracted and converted to equivalent minimum ionizing 
prior to this summation. A determination of the energy equivalent of minimum ionizing allowed 

the calculation of EH. 

4.1.1 Counter gain monitoring 

The procedure was complicated somewhat by time and spatial response variations of 
the counters, which first had to be removed. Shifts in the gains of individual phototubes over 
time were monitored by the flasher system. Such shifts were corrected by the observed variation 
in average phototube response to the stable .flasher light source. It was also supposed that the 
flasher could be used to balance the response of the four phototubes viewing a counter, so that 
a particle passing through the counter centre would produce equal amounts of light in each 
phototube. This was demonstrated not to be the case by mapping the response of a !lasher 
balanced counter using a gamma-ray source. Despite the use of a diffusing white spot, the · 
!lasher illumination of the four phototubes was presumably not uniform in some counters. 

Shifts in the overall counte: gain were monitored using muons. The most probable 
value, the peak of the distribution of pulse heights from singly ionizing particles (muons), 
was expected [Ba75c] and observed to be independent of the energy of the traversing particle. 
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Operationally the peak values, called minimum ionizing, were taken to be the average of the 

muon pulse height distribution below twice minimum ionizing. Since initially the value for 
minimum ionizing was unknown, this was an iterative procedure. 

Over running periods of typically a few days duration, the value for mimimum ionizing 
in each counter was obtained by averaging the response to muons passing within 30in of the 

detector centre. Changes in the vahe for that segment of running reflected gain drifts from 

nominal and were corrected on a counter by counter basis. Averaged over all target counters, 
this gain monitor showed point-to-point fluctuations of less than ± 1.5%, although there was 
observed a 2% systematic drift downwards in the response to muons over the course of the 
experiment (figure 4.1). 

4.1.2 Counter mapping 

Attenuation lengths for light in the counters were of the same order as the counter 
dimensions. Hence, there was significant variation with shower position of the amount of light 
collected by any given phototube, or the sum of all four counter phototubes, for the same 
amount of energy deposited. This effect was removed by mapping the spatial variations using 
hadronic showers. 
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A model of the counter response was devised with four free parameters: a counter 
centre, (x 0 , Yo), and two attenuation lengths, Ax and Ay. The two attenuation lengths were 
used because the vertical acrylic ribs of the counter could result in different light attenuation 
in the vertical and horizontal directions. The counter model could be broken down into four 

functions representing the response of the four counter phototubes. nest values for the free 
parameters were obtained for each counter, using the observed fractional variation of light as 

seen by each phototube in hadron showers at different positions in the counters. For the ith 

counter: 

where 

Pi -
c1·(x, y) -
a· J -
k -
N -

2 - L L4 (Pj- N Cj(X, y))2 
X·-' a~ events J·= 1 J 

pulse height in the jth phototube 

model value at the posz'tion of the shower 

kJpJ· 

constant related to photons per minimum ionizing 

E~=l Pi/ E;=l ci(x, y) 

(4.1) 

was minimi~ed by varying the four parameters available. Details of the map function and fitting 

procedure can be found in Appendix B. Shown in figure 4.2 are equal response contours for a 

typical target counter. 

It has been noted that the flasher system did not always succeed in properly balancing 
the four phototubes of a counter. The map used was inadequate to addressing this balance 

problem, due to strong correlations between (Ax, Ay) and the map centre parameters, (x 0 , y0 ). 

In the future, the problem will be corrected by using a map with a set of three relative gains, 
allowing greater freedom in fitting the counter response. 

An important check of the validity of the map results was to observe the variation 

or the map corrected mean shower pulse height for fixed energy particles incident at various 

positions in the target. As shown in figure 4.3, the maximum variation was found to be 3.5% 
for 200Ge V J c pions from the target centre out to 50in, across the middle of the first two 
carts. Most of the observed deviation was seen beyond 40in. This was the region where the 
counter map would be inadequate if the four tubes were not properly balanced. Presuming 
that the counters in the first two target carts were representative of the rest of the target, the 

map correction was fractionally increased beyond 40in, reaching a maximum of 5% at GOin. 
The calibration measurements were then well fit by the hypothesis of no variation across the 
counter. A maximum of 0.40% overall systematic uncertainty in the map correction could be 
accommodated before the x2 for the fit becomes improbably small ( < 10%). Presumably, the . 
map correction uncertainty was no more than twice this value. 
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4.1.3 Calibration of hadron energy 

After time and spatial variations in counter response were removed, a check was made 

of counter-to-counter gain consistency. The observed response of the target counters to some 
average hadronic shower should be uniform. Using a sample of penetration and neutral current 
events, unbiased in the z position of the vertex, the relative variation of the mean hadronic 
energy was observed. This in turn allowed the relative gains of the counters to be determined. 

Although consistent with no variation throughout the target, the correction factors shown in 
figure 4.4 were applied to the data. 

The calorimeter was absolutely calibrated using pions from the N-5 hadronic test beam 
which runs along the east side of the neutrino berm at Fermilab . Data were taken in the first 

two target carts at beam momenta of 25, 50, 90, 200 and 250GeV /c. All corrections described 

above were applied to the phototube signals. At each setting, a Poisson distribution was fit to 

the observed spectrum of shower pulse height sums. The deviations of the determined means 
from a one-parameter linear fit passing through zero are shown in figure 4.5. Minimum ionizing 
was found to be equivalent to 0.2157 ± .0006 GeV. Figure 4.6 shows the measured resolution of 
the hadron energy determination as a function of the incident pion momenta. The resolution 
was found to be oEH = (0.72 ± 0.20) + (0.81 ± 0.03)-/ Eli. Details of the analysis of the 
hadron calibration data can be found in Appendix C. On the basis of the uncertainty in the 
map correc~ion and the calibration measurement, a maximum of 0.9% systematic error was 
assigned to the reconstructed hadron energy for neutrino events. 
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Figure 4.4 Relative counter gain through the target from hadrons 
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4.2 Muon Parameters 

4.2.1 Target track 

The counters provided a means of identifying the z position of the interaction vertex, 

PLACE, as described above. The first step in the track finding procedure was to determine a 
crude transverse vertex position from sparks near the point of interaction. In both the horizontal 
and vertical planes, a linear least squares fit was made to all sparks within a gradually enlarging 
window, which included only the first 12 chambers immediately downstream of the interaction 
point. 

The muon path in the unmagnetized target was a straight line except for multiple 
scattering effects. Hence, the sparks corresponding to the track would appear at a fixed angle, 

Bx and By, as seen from the vertex. The angular distribution of target sparks would be expected 
to peak in the direction of the muon, above a background of hadron shower and noise spar.lcs. 

In each view, a preliminary two parameter least squares fit was made to sparks which lay within 
this peak. Only those sparks on each wand which deviated least from this fit were retained. 
Sparks were also eliminated if they were more than 3.5a from the position predicted by a fit to 
all other sparks currently then included on the target track. 

The original crude determination of the transverse vertex position could cause much of 
the track to be missed. Therefore the procedure was iterated using the best value for the vertex 
position from the first pass in the second attempt. Finally, all sparks not already included on 

the target track, but which lay within 2a of the predicted track, were added to the ensemble. 

4.2.2 Toroid track 

The search for the muon track in the spectrometer was complicated by the bend of the 

muon in the magnetic field. However, the field was toroidal, so that to a good approximation 

fi= BcJ>(r)ec/>. Therefore, one component of angular momentum, Lc/> = r2d¢/dz, was conserved. 
A first ensemble of toroid sparks was obtained by including spark chamber hits which occurred 
within some tolerance of LcJ> as determined from the upstream target track. 

In general, a fit to the muon track was made by varying parameters affecting the 

predicted path of the muon, so as to minimize: 

where 

x2 =I: I:(xi- xf)lvf"ij1
(Xj- x;) 

j 

Xi, xf = measured and predicted positions in the ith chamber 
Mij 1 = inverse of the error matrix 

(4.2) 

If just the intrinsic resolution errors of the spark chambers, a 0 , are included, then both lvf = 
a~ I and M- 1 = 1/a~ I are diagonal, and the problem reduces to minimizing the sum of' 
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squares of deviation. However, the muon undergoes multiple coulomb scattering in passing 
through material. Since the radiation length of steel is only 1.76cm, multiple scattering is an 
important effect and must be properly included in the calculation of the error matrix. 

Consider a series of m measurements of a track, Xi, separated by distances Li, as 
shown in figure 4.7. The standard Fermi formula gives the fundamental set of correlated errors 
in position and angle due to multiple scattering: 

(4.3) 

where 

From this, one can construct a full error matrix, as shown in Appendix D, and find that: 
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(4.4) 

where 
Zki = 2:~=k+l Lm =distance from k to £ 

Diagonal elements are increased, and off-diagonal terms, representing correlations between 
measurements due to multiple scattering, are introduced. This is the proper error matrix. The 
calculation is largely unchanged if the track passes through a magnetic field. For the fit to the 
toroid portion of the muon track, terms due to the errors in the determination of slope and 
intercept at the toroid front face, and their correlations, were added the definition of x2 ( 4.2). 

An estimate of the muon momentum from the curvature of the toroid track was used to 
make a multiple scattering fit to the target track weighted from the toroid front face upstream. 
A one parameter fit to the muon momentum was then made to the toroid track using just the 
diagonal elements of the error matrix. During a second iteration of the fit, sparks outside errors 
were removed from the ensemble. It was presumed that at this point the procedure provided 
a good estimate of the target track slope and intercept at the toroid front face and the muon 
momentum. A new ensemble of toroid sparks was then obtained by including those hits which 
lay closest to the predicted path of the muon from this preliminary fit. 

In ·an attempt to eliminate bad sparks from the ensemble, a new fit strategy was 
then invoked. A simultaneous fit was made to the target and toroid track, with free parameters 
being vertex position, muon angles and momentum, and multiple scattering angles at scattering 
centres distributed in the target and toroid steel. (Up to 12 per view in the target and 1 per 
half toroid per view in the spectrometer were used.) The use of multiple scattering angles at 
selected points distributed throughout the detector steel is an alternative method of handling 
errors and correlations introduced by multiple scattering. A more complete description may 
be found in the thesis of M.Purohit [Pu84). Sparks with bad x2 ~vere removed from the track 
ensemble. However, from monte carlo studies it was clear that, as implemented, this method of 
fitting tended to produce a biased estimate of muon momentum. Therefore, one final stage in 
the momentum determination was necessary: a return to the one parameter fit with inversion 
of the full multiple scattering error matrix in the calculation of x2 ( 4.2). Calculation of the 
minimum of x2 was iterated until successive values of the muon momentum at that minimum 
differed by less than 2%. 

In figure 4.8 is shown the distribution of Jx 2 /DF from the momentum fit to muon 
events within the final structure function fiducial and kinematic cuts (section 4.3 below), at 
the +200 setting. Resolutions of 0.8mm and 2.3mm, for target and toroid spark chambers 
respectively, were used in the calculation of x2 • The observ~d peak of the distribution was below 
1.0, indicating that the resolution error for the toroid chambers was on average somewhat better 
than the value used. However, there was considerable variation of the position of the peak with 
the number of degrees of freedom for the fit. This presumably reflects the poor alignment of a 
few chambers in the toroid, which affects the mean x2 to a greater or lesser degree depending 
on the ensemble of chambers included in the fit. The fact that the average resolution needed 
was about 2.5 times the intrinsic resolution of any single chamber was likewise a reflection of 
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the difficulty in aligning chambers in the toroid. The width of the observed x2 distribution 
was greater than the prediction. The shift of the peak position would also contribute to this 
problem, as well as the small fraction of events where the track search algorithms failed to 
remove all bad sparks. 

The calculated resolution of O.llp~-' on the muon momentum from the spectrometer 
was dominated by the contribution of multiple scattering error. The systematic error on the 
reconstructed momentum has been estimated at 1%. Most of this was due to the accuracy to 
which the magnetic field was mapped. Direct evidence was obtained from Fermilab experiment 
E595, which used the first two target carts and the spectrometer as part of their detector. 

This was an experiment to study the prompt muon signal from beam dump interactions of 
pions and protons. These were supplied to Lab E by the N-5 hadron beam, the same beam 

used for the calibration of the target calorimeters. The momentum of beam muons could be 
determined from the bend induced by the last beam dipole before Lab E (5El3). A set of PvVCs 
(Proportional wire chambers) and the observed interaction point in the detector were used to 
define the muon track before and after the bend. A difference bet,ween this momentum and 
that reconstructed from the spectrometer was about 1% (two sigma). 
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4.2.3 Event scanning 

Roughly 3000 events in the data set, although passing fiducial cuts, failed to obtain 
an acceptable fit (x2 per degree of freedom greater than 9.0), through the automated procedure 

just described. These events were hand scanned, with sparks added or deleted as necessary, 

using an interactive display and fitting routine. Failures were attributable to a number of 
causes, including: (1) backwards going defocusing cosmic-ray muons, (2) multiple tracks in 

toroid or target, (3) track too short or chambers inefficient, ( 4) track in or near the toroid hole, 
(5) occasional unrecognized bad sparks, and (6) large multiple scatters in target or toroid steel. 
Events with defocusing tracks were removed, along with a few cosmic-ray showers, and three 
runs deleted where the toroid spark chamber MTDs had failed. Dimuon events have been hand 
scanned and analyzed in a separate investigation, and were added buck into our charged current 

sample. 

E"' Probability of energy loss/m steel (%) 
----·-

GeV >1GeV >5GeV >10GeV >20GeV >30GeV >40GeV 

10. 0.92 0.01 0.00 0.00 0.00 0.00 

30. 2.74 0.70 0.07 0.00 0.00 0.00 

50. 3.93 1.47 0.40 0.02 0.00 0.00 

70. 4.96 2.24 0.97 0.20 0.01 0.00 

90. 5.52 2.55 1.18 OAG 0.14 0.01 

110. 6.28 2.82 1.13 0.45 0.23 0.11 

130. 7.10 3.52 1.39 0.45 0.20 0.08 

150. 7.76 4.15 1.79 0.76 OAO 0.19 

170. 8.15 4.81 2.46 1.04 0.65 0.29 

190. 8.70 5.42 2.43 1.16 0.69 0.37 

210. 9.10 5.82 2.84 1.55 1.11 0.89 

230. 8.57 5.84 4.09 2.34 1.36 0.58 

Table 4.2 Probability of catastrophic muon energy loss in passing through steel 

4.2.4 Muon deep-inelastic scatters 

The momentum obtained from a fit to the toroid track of the muon had to be converted 
to a momentum at the vertex. For the most part, this entailed the increase of the toroid fit value 
by the addition of ionization energy lost by the muon in passing through the steel intervening . 

between the vertex and the toroid front face. A calculation using standard formulas for the most 
probable energy loss was typically sufficient to accomplish this task. However, occasionally the 
muon would deep inelastically scatter, colliding with a nucleus and releasing far more energy 
than usual. Such energy was observable in the scintillation counters as a series of counters with 
pulse height greater than minimum ionizing. A search was made for such splashes of energy 
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in the region of the detector between the end of the hadron shower and the toroid front face. 
Where detected, such energy was added to the muon vertex momentum along with the usual 
ionization formula correction. In table 4.2 can be found the observed probability for a muon 

to undergo a catastrophic scatter and release energy Ed. 

4.2.5 Best fit to muon angle 

The accuracy with which the muon angle, 0 f.L, could be determined was dominated by 
multiple scattering. Minimizing the length of steel intervening between the vertex and the first 
measurement of the muon track minimized the error in Ow Within the hadronic shower, sparks 
in the chambers could be due to the muon, or any other of a myriad of forward-going ionizing 

particles. By projecting the fit to the muon track obtained in the unambiguous region beyond 

SHEND into the hadron shower, sparks within the shower due to the muon could be tentatively 
identified. The ratio of random sparks to good muon sparks was observed to increase as the 
track was extrapolated closer to the vertex. No attempt was made to project the track closer 
than the point at which signal to noise ratio fell below 2:1. The probability of picking up a 
good spark was ensured to be greater than 50% and of including a bad spark less than 10% 
by this requirement. The allowed extrapolation distance was a function of the hadron energy 
of the event, and the devised algorithm attempted to project as far as shown in table '1.3. 

The variation of resolution with hadronic energy, also shown in the table, simply reflects the 

increasing distance between the first detectable muon spark and the interaction point. 

Eu First chamber D.O~" 

GeV on muon track mr 

<10 1 .16 + 84.4/pf.L 
10 to 25 1 .28 + 79.2/pf.L 

25 to 50 2 .16 + 105.5/pf.L 

50 to 100 2 .15 + 107.7 fpf.L 

100 to 200 3 .10 + 129.7 fpf.L 

>200 4 ,00 + 154.8/pJL 

Table 4 . .9 

Attempted penetration into the hadron shower by the target track search 

algorithm, and corresponding 0 f.L resolution. Here, chambers are numbered 
downstream from the event vertex. 

It is instructive to compare the angle resolution obtainable in an unmagnetized target, 

with relatively frequent sampling of the muon track as in the Lab E detector, with that found 
in a magnetized target with coarse sampling, such as the CDHS (CERN-Dortmund-lleidelberg­
Saclay) neutrino detector [llo78]. The result is a degradation of roughly a factor of three in the 
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measurement error on Ow Consequently resolutions at small x, where the error on Of.l dominates, 
are worse by a factor of three in the CDllS detector. 

4.3 Cuts 

4.3.1 Monitor and steering cuts 

Variations in the direction of the secondary beam are equivalent to enlarging beam 
dispersion in a time dependent manner, which could contribute to uncertainties in the flux of 

neutrinos from pion decay. Beam steering was monitored while taking data using SWICs and 
split-plate ion chambers in the expansion port and target manhole. As mentioned in chapter 

2, the diil'erence over sum of the two halves of the split plate signal was used as a steering 
parameter. Attempts were made to keep the beam position within accepted limits while taking 
data. Monitor and events records from a given cycle, representing about 5% of the total data 
sample, were removed oil'- line if these steering parameters were outside tolerances corresponding 
to± 1.4in at Lab E. Cycles were also removed if beam intensity dropped below acceptable levels. 
vVhole runs were deleted if monitor or detector problems degraded the quality of the data. 

Setting Beam Gates Cosmic-ray Gates Total 

Slow Spill Fast Spill Slow Spill Fast Spill 

+120 30007 12662 4385 3523 50577 

+140 37275 25659 5150 4342 72t!26 

+168 65373 23830 8264 6367 10383 11 

+200 87024 33831 12429 9466 142750 

+250 113574 44759 17529 14321 190183 

-120 0 6689 0 2903 9592 

-140 0 9430 0 4172 13602 

-168 0 11950 0 6849 18799 

-200 0 13809 0 9718 23527 

-250 0 12557 0 11291 23848 

Total I 333253 I 195176 I 47757 1 72952 11 649138 1 

Table 4.4 Events analyzed by first pass physics program. 
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4.3.2 Cosmic-ray cuts 

Although not a critical problem for fast spill data, the slow spill data sample was 
predominantly cosmic rays and not neutrino events. A number of loose cuts were devised 

and tested with fast spill data to eliminate these unwanted events. When the analysis of the 

slow spill data was undertaken, events which failed these cuts were removed from the sample 
before entry into the time-consuming momentum fitting routines. These cuts were: (1) vertex 

inside 58in in both horizontal and vertical directions, (2) no more than two interaction points 
determined, (3) small pulse height outside the event region, and (4) a cut on reconstructed 
hadron energy for penetration trigger only events at 2GeV and 7GeV respectively for fast and 
slow spill. More restrictive cuts were made on the final structure function data set, so that 
these requirements served only to save computer time by quickly eliminating a large number of 

cosmic-ray events. 

The monitor and cosmic-ray cuts described were applied at the stage of the first pass 
analysis program. The number of events analyzed by the cruncher at each setting are shown 

in table 4.4. 

4.3.3 Geometric and fiducial cuts 

Events used· in the structure function analysis must be fully reconstructed. Requiring 

that the event vertex lie within a target fiducial volume defined in a beam centred coordinate 

system by: 

Pv = J x~ + y~ :::; 30in for pions 
I Xv 1:::; 50in and I Yv 1:::; 50in for kaons 

-653in < z11 < -167in or 80 ~PLACE~ 20 for all events 

ensured that the hadronic shower was contained and hence measured. Also, within this fiduciu.l 

volume the target portion of the outgoing muon track was found with high efficiency (99.9 ± 
0.1 %), and hence B" measured. The more restrictive transverse vertex cut on the neutrinos 
from pion decay was imposed because of the sensitivity of the predicted neutrino fiux at large 

radius to uncertainties in beam dispersion and steering. 

Geometric cuts on the projected target track of the muon were imposed to ensure that 
the muon momentum could be reconstructed and that the detector acceptance for the given 

event could be determined. These were: 

PF < 69in 

I XT2 I< 55 in and I YT2 I< 55 in 

AH < 0.30 
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where Pv is the radius of the muon at the front face of the toroid, (xr 2 , Yr2 ) is the projected 
position of the muon track at the T2 trigger counter, and AH is the fraction of the time that 
the projected muon track lies within the lOin diameter of the toroid hole. These were all 
defined in an apparatus centred coordinate system. A muon which satisfied these cuts entered 

the spectrometer. Since the magnetic field focused and the T2 cut was inside the physical 
dimensions of the counter, such events would satisfy the muon hardware trigger. 

4.3.4 Acceptance calculation 

The set of geometric cuts applied to the data imply a detector acceptance which 

depends on the muon angles (OJJ., ¢JJ.) and the vertex position (xv, Yv, zv). The outgoing muon 
is produced uniformly in the azimuthal angle ¢JJ., but for only some fraction 6 out of 21r does 

the muon track pass the geometric cuts, and hence trigger the detector (figure 4.9). Clearly, 6 
is the event acceptance. 

The solid angle subtended by the spectrometer varies with the longitudinal position 
of the vertex, resulting in a dependence of acceptance on Zv. This effect was accounted for by 
averaging the acceptance of an event translated over the length of the fiducial volume. 

Potentially, this z averaged acceptance could have a pJJ. dependence . Low energy 
muons which satisfied the muon trigger requirements, and had a vertex near the downstream 
end of the fiducial ~olume, could range-out before reaching the trigger counter T2 if the 
vertex were moved to the upstream end of the detector. However, such range-out events do 
satisfy the penetration trigger requirements. Furthermore, muon momentum can be obtained 
from the distance penetrated in the target steel before stopping, so these events are also 

fully reconstructed. Thus, by supplementing the structure function data set with penetration 

events which satisfied the geometric requirements of muon events, the acceptance was made PJJ. 
independent. 

Slow spill muon events required both T2 and T3 trigger counters to fire. lly scanning 
a sample of fast spill muon events, it was found that in all cases where the muon failed to reach 
T3, the muon stopped between T2 and T3. Although the slow spill muon trigger requirements 
would not be satisfied, these events would be included as part of the sample of penetration 
events pointing toward T2. It was concluded that the muon momentum could be properly 
reconstructed from range. 

The slow spill penetration trigger required either (1) greater hadron energy (Er-r > 
lOGeV) or (2) greater penetration (>32 counters) than the fast spill trigger. Events which 
pointed toward T2 and had muon energy greater than 3Ge V would pass the increased penetra­
tion requirement. lienee, the hadron energy threshold for both fast and slow spill events was 
effectively the same in the structure function data set. 
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4.3.5 Kinematic cuts 

Even after geometric acceptance correction, the muon trigger was not fully efficient 

over the entire x and y kinematic plane. An event with a vertex at the target centre, and 
at the most downstream end of the fiducial volume, would always fail geometric cuts if the 

outgoing muon had an angle OJ.L > 240mr; that is, the event had zero efficiency. Also, if 

the muon had energy EJ.L <3.8GeV it would fail to satisfy either charged cunent trigger. As 
noted above, the hadron enm·gy requirement for penetration events was about 3GeV. However , 

a more conservative cut on hadron energy was made due to uncertainties in the calibration and 
linearity of tlle calorimeter response below lOGe V. A small non-liucarity at low hadron cuergy 

could result in substantial systematic errors in our determination of x. The kinematic cuts 

applied to the events included in the structure function sample were: 

EH 2:: lOGe V 
E > 4GeV f.L-

of.L ~ 200mr 

For a lOOGeV neutrino, these cuts restrict events to the region in the x and y plane shown in 
figure 4.10. Small angle muons from events with vertices within a radius of 5in of the detector 

. centre would pass directly down the toroid hole. The hole-time cut (>,H) would resulL in zero 
acceptance for these events. Therefore, an additional minimum angle cut was made, requirin~ 

OJ.L ~ 7.1mr for such events. The number of events lost due to this cut was insignificant. Table 

4.5 shows the e[ect on the data sample of each of these kinematic cuts. 

I Setting + 120 I + 140 I -t-168 I -1-200 I +250 II Total I 
Muon event 10087 12552 20679 25877 32612 10180~( 

omax < 200mr 
f.L -

9992 12447 20513 256GO 32347 100959 

EH 2:: 10GeV 5569 7814 14181 18828 24996 71388 

EJ.L 2:: 4GeV 5529 7758 14068 18716 24794 70865 

Fiducial cuts 3924 5905 11508 15815 '21481 58633 

I Setting -120 I -140 I -168j -200 I -250 II Total I 
Muon event 2040 2999 3328 3425 3208 1 15000 

o~nax ~ 0.200mr 2032 2996 3322 3418 3197 149G5 

EH 2:: lOGeV 889 1519 1870 2034 1989 8301 

E1,~ 2:: 4GeV 858 1476 1810 1957 1875 79/G 

Fiducial cuts 557 1065 13G5 1534 14G9 5990 

Table 4. 5 Event losses due to cuts for all settings 



4. Event Analysis 58 

4.4 Tests of the Data 

4.4.1 Trigger efficiencies 

Due to the hadron energy requirement for the penetration trigger, the ratio of accep­
tance corrected muon events to penetration events, with 0~-t <200mr, exhibits the fall-of!' as 
EH-+-0 shown in figure 4.11. Likewise, the spectrometer angle acceptance limit results in the 
decline above 0~-t=240mr in figure 4.12 of the ratio of muon to penetration events. However, 
the two independent charged current triggers were both efficient after geometric acceptance 
corrections within the region: 

Elf> 20GeV 
E 11 > 4GeV 
011 < 200mr 

Within these kinematic bounds, the relative efficiency of muon and penetration triggers was 
found to be 99.8 ± 0.7% for fast spill, from the ratio of the sum of acceptance weighted muon 
and penetration events. The procedure was unreliable for slow spill, due to contamination of 

high-angle penetration events by cosmic rays. 

A second approach to determining trigger efficiencies excluded the complication of 
acceptance from the calculation. Within the kinematic limits: Elf> lOGeV (fast spill) or 
> 20GeV (slow spill) and BJJ < 100mr, the number of penetration events which point toward 
the T2 trigger counter, but which do not fire a muon trigger, were determined. Some calculable 
fraction of these events were due to range-out before T2; the remainder represented muon trigger 
inefficiency. By this means, the efficiency of the muon trigger was found to be 100. ± 0.1 %. 

\ 

The complementary procedure, namely the number of muon triggers within these limits which 

failed to fire the penetration trigger, gave a penetration trigger efficiency of 99.2 ± 0.1 %. 

These numbers represent efficiencies before the cut on x2 for the muon momentum 
fit. The correction for the events lost by this cut was determined in three ways. The difl'erence 
in the efficiency determined with and without the cut, using either of the methods described 

above, could be used as the correction. Alternatively, all failed muon events were known to have 
final state muons with momenta Ef.t >4GeV. The ratio of the sum of weights of failed events 
to all muon events within the structure function kinematic cuts also determined the required 
inefficiency. While this last technique was used to calculate the corrections shown in table 4.6, 
the three approaches produced consistent results. 
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Setting Positive Negative 

120 1.0059 1.0250 

140 1.0123 1.0009 

168 1.0265 1.0014 

200 1.0169 1.0080 

250 1.0072 1.0025 

Table 4. 8 Correction factors for losses due to toroid x2 failures 

4.4.2 Calibration check 

A check of the calibration of the spectrometer and hadron calorimetry was made by 
comparing mean event energies as a function of y. At high y the total energy of the final 
state is mostly hadronic, whereas at low y it is dominated by the muon energy. Due to the 

muon angle cut, the limits of acceptance at high y varied with energy. Corrections were made 
using an event monte carlo based on our measured structure functions and flux calculations 

(see section _5.2.4 below). Shown in figure 4.13 for the +200 setting is the ratio of the mean 
observed energy to the mean energy predicted by the monte carlo, as a function of y. Included 
in quadrature with the statistical errors are estimated systematic errors of 1.0% on hadron 

energy (section 4.1.2 and 4.1.3) and 1.0% on muon energy (section 4.2.2). Both the pion and 
kaon mean energies are seen to be consistent with the hypothesis of y-independence. Within 
the noted systematic errors, this was true for all settings. 

The average value for the ratio of data to monte carlo mean energy fluctuated about 
unity with sigmas of 1.5% and 1.0% for neutrinos from pion and kaon decay respectively. The 
predicted mean momenta depended directly on the mean second~ry momenta from the beam 

monte carlo. The pion mean momenta could only be set from the energy of neutrinos from 

forward-going decays ( 1R/ z ¢: 1 ), which were directly proportional to the parent secondary 

energy (equation 2.1). The mean kaon energies could also be determined from the observed 

mean of the kaon pressure peak from the Cerenkov counter (section 2.3.5). The consistency of 
the two methods of measuring the mean kaon momenta indicated that a systematic error of 
1% should be assigned the result. Presumably the corresponding error for pions is not much 
greater. In both cases, the monte carlo central momenta were smoothly adjusted to match the 
measurements. Therefore, the observed deviations were within expectations, given this level of 
systematic error on mean momenta. 
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Setting a(GeV) {J(in-1) 

±120 80. 0.0119 

±140 92. 0.0126 

±168 llO. 0.0140 

±200 134. 0.0155 

±250 165. 0.0177 

Table 4. 7 Parameters for neutrino type separation 

4.4.3 Separation of pion and kaon neutrino events 

Interactions in the target result were due to neutrinos from both pion and kaon 
decay, each with quite distinct energy and spatial distributions. The dichromatic nature of 

the neutrino source made possible an event-by-event determination of the parent secondary 
type. The separation was made on the basis of a function recalling the correlation between E 11 
and radius (equation 2.1): 

a 
EsEP(r) = 1 + ({3r)2 (4.5) 

where r is the radius of the event from the beam centre. If E11 < EsEP(r) the neutrino was 
from a pion decay, or if E11 ~ EsEP(r) the neutrino was from lcaon decay. a and {3 for the 
five pairs of settings are listed in table 4.7. Figure 4.14 shows the clean separation of neutrinos 
from pion and kaon decay in a sample of 200GeV muon events. 

Beam centres for each of the settings were determined from the distribution of vertex 
positions for neutrinos from pion decay with E 11 > 0.20E7r. It siwuld be also noted that the 
beam centres of the monte carlo predicted flux distributions were calculated in an analogous 
fashion, and adjusted to match the data. Deviations from the target centre were small, as 

shown in table 4.8. 

Setting Positive Negative 

xo (in) Yo (in) xo (in) Yo (in) 

120 3.67 2.21 2.33 3.79 

140 3.65 1.84 3.11 3.20 

168 3.84 1.66 4.11 3.81 

200 3.37 3.00 3.83 3.35 

250 1.36 2.01 2.18 3.92 

Table 4.8 Beam centres from the vertex distribution of pion events 



Chapter 5 

Extraction of Structure Functions 

A sample of fully reconstructed neutrino and anti-neutrino charged current events was 
available within the kinematic limits and the fiducial volume described in the last chapter. The 
normalized flux spectrum over that same fiducial volume was calculated from properties of the 
secondary beam, as described in chapter 2. It remains to be shown how structure functions 
were extracted from this information. 

5.1 Total Cross Sections 

The probability of observing a neutrino or anti-neutrino event in a differential kine­
matic and fiducial volume at (E, x, log Q2) and (r, ¢) can be expressed as: 

dav(ii) 
dn"(V) = k cpv(V)(E, r)A(r, 0,¢) dxd log Q2 dEdxd log Q2 drd¢ (5.1) 

where k is the number of scattering centres in the fiducial volume, IPv(v)(E, r) is the flux of 
neutrinos or anti-neutrinos, and A(r, 0, ¢) is the acceptance of the detector for the event. The 
acceptance couples the spatial dependence of the flux with the kinematic dependence of the 
differential cross section. However, if events are weighted by one over acceptance, that is both 
sides of the equation 5.1 are divided by A(r, 0, ¢), this coupling is removed. With dw"(v) = 
dn"(ii) /A(r, 0, ¢),the weighted event density is: 

(5.2) 

The probablity integrated over all x and log Q2 is proportional to the total cross section: 

(5.3) 

The dichromatic nature of the neutrino beam results in further simplification. Events restricted 
to an annulus (r, r + Ar) in the detector will be peaked at two distinct neutrino energies, 
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corresponding to neutrinos from pion and kaon decay. For each parent species: 

(5.4) 

The fiducial volume could be divided into a series of such concentric rings. Thus, a series of 
paired measurements of the total cross section would be obtained as a function of neutrino 
energy. 

In practice, the process was not quite so simple. The charged current triggers did 

not cover the entire kinematic range. However, for the purposes of the total cross section 
the accessible region was maximized by recognizing that events need not be fully determined 
kinematically: only separation of events into pion and kaon parent classes was necessary. Thus, 

penetration events were included where the muon momentum was not measured. Separation for 
such events was achieved on the basis of hadron energy alone, using the statistical technique 

described in detail in the theses of R.Blair [Bl82) and J.Lee [Le81). Shown in figure 5.1 is 
the total cross section result from E616 [Bl83a]. The inner error bars represent statistical 
errors only, while the outer error bars include estimates of point-to-point systematic errors 

added in quadrature. Additional overall normalization errors of 3% and 5.5% were assigned 
to the neutrino and anti-neutrino cross section measurements respectively. It can be seen that 
generally systematic errors, which were predominantly flux errors, were greater than statistical 
errors. 

The quark-parton model expectation is that the inclusive total cross section will rise 

linearly with energy. This is not modified in any essential way by QCD: the predicted level of 
scale breaking effects lead to cross section slopes which fall slightly with energy for neutrinos 

and rise slightly for anti-neutrinos. Including all sources of statistical and systematic error, the 
reported result CJ IE was found to be consistent with the linearly rising hypothesis: x2 =16.9 
for 14 degrees of freedom for neutrinos, and 5.3 for 10 degrees of freedom for anti-neutrinos. 
The average cross section slopes were: 

(]
11 IE = 0.669 ± 0.003 ± 0.024 

(Ji7 IE= 0.340 ± 0.003 ± 0.020 

where the first error is statistical, and the second systematic, including the overall scale errors. 

Two features of the measurements were of concern for the structure function analysis: 
(1) the preferred trend of CJ IE to rise with energy for neutrinos and fall for anti-neutrinos, and 
(2) the large tluctuations with energy of the ratio of fJ 11 to fJi7. If no means were found to reduce 
the systematic errors introduced by flux measurements, these features would significantly alter 
the observed scaling violations in the data, leading to large systematic errors on AQCD· For the 
purposes of the structure function analysis, a nearly model independent procedure was devised 
to adjust fluxes on a setting-by-setting basis, so that the total cross section better conformed 
to expectations. Details concerning the method will be discussed in section 5.3 below. 

Also shown in figure 5.1 are the corresponding results for fJ IE from the CDHS col­
laboration at CERN [Ab83]. The absolute level of these points was normalized in the region 
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Figure 5.1 Neutrino and anti-neutrino total cross sections for CCFRR and CDHS 

30GeV <Ev <90GeV to an earlier cross section measurement of av I E=0.62 and a 'iii E=0.30 
by the same group [Gr79]. Again, the inner error bars are statistical only, while the outer error 
bars include point-to-point systematic errors. Average overall scale errors of 6.8% for neutrinos 
and 5.5% for anti-neutrinos are not shown. The average cross section slopes over the entire 
spanned energy region are: 

av IE = 0.601 ± 0.003 ± 0.041 

aii IE = 0.294 ± 0.003 ± 0.016 

Thus, the average values of a IE, as measured by the two groups, differ by 11% and 16% 
for neutrinos and anti-neutrinos respectively. This is somewhat outside the stated systematic 
errors on the measurements. 

Since the CDHS detector was closer to the neutrino source, it was necessary to use 
only two settings of the secondary beam (± 200 and +300) in order to obtain neutrinos over 
the reported energy region. This results in a smaller contributionto point-to-point fluctuations 
due to uncertainties in particle fractions measurements in the secondary beam. The reported 
energy dependence is clearly consistent with the linear rising hypothesis of the quark-parton 
model, or with QCD expectations. 

The total cross section is proportional to integrals of structure functions at fixed Ev. 
Starting with the general expression for the cross section, equation 5.12 below, and integrating 
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over all x andy, it can be shown that: 

3 1f a" a" 11 ( -) o F2(x,Q2)dx=4="RG2M E+E 

3 1f a" a" 
/.

1 ( -) xF3(x Q2 ) dx = ----.-- -- -
o ' 2 G2 M E E 
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(5.5) 

Assuming R = 0.1, and a ~SU(3) symmetric strange sea (see section 5.2.1), the results for 
a"(V) / E imply: 

fo1 
F2(x, Q2 ) dxdy 

f0
1 

xFa(x, Q2 ) dxdy 

CCFRR 
0.478 ± 0.015 

0.312 ± 0.020 

CDHS 
0.424 ± 0.019 

0.291 ± 0.039 

The discrepancies in the total cross section measurements naturally lead to normalization 

differences in the integrals of structure functions, and ultimately in the extracted structure 
functions themselves. This is of some importance for definitive tests of quark model predictions, 

such as the mean quark charge test or the GLS sum rule. 

5.2 Weighted Event Method for F2 and xF3 

In order to obtain structure functions as a function of ( x, log Q2 ), a set of bins was 

defined spanning the accessible kinematic range in these variables. The binning scheme chosen 

. is common in the literature, but also matched resolutions in x and Q2 reasonably well. The 

acceptance weighted mean values of EH, EJS, fJJS and y, and the average weight for each of 
these bins are tabulated in Appendix F. Typically, for a given x' value, the low Q2 bins were 

populated by neutrinos from pion decay while high Q2 bins were predominantly neutrinos from 

kaon decay. The distribution of acceptance and the inverse of acceptance for a particular bin 
are shown in figure 5.2. The average weight for events from pion and kaon decay neutrinos are 

separately shown in table 5.1. 

Setting v'lf' LIK v1f LIK 

120 1.614 1.464 1.417 1.273 

140 1.523 1.415 1.383 1.271 

165 1.481 1.346 1.262 1.210 

200 1.426 1.326 1.227 1.164 

250 1.366 1.286 1.202 1.149 

Table 5.1 Average weights for both neutrino types at each setting 
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The weighted sum of events in a bin is related to the differential cross section. Equation 

5.2 can be integrated over (x,logQ2 ) within kinematic cuts and bin limits, over (r,¢) within 

the fiducial volume, and over all E to give: 

"" v(il) - I f f 2 dav(il) LJ w;, - k dE dx d log Q dxd log Q2 Pv(ii)(E) (5.6) 

Here, the integrations over the fiducial volume have been absorbed into the flux, with: 

P11 (ii) = Jdr Jd¢cpv(ii)(E,r) (5.7) 

Let the expectation value for a function J(E, x, Q2 ) be denoted as: 

( ( Q2 )) _ f dE fdx fdlogQ 2 J(E, x, Q2 )4">v(v)(E) 
1 E' X' (-;-;'\ - J J J 11 11

' dE dx d log Q2 Pv(ii)(E) 
(5.8) 

Then, equation 5.6 can be rewritten as: 

L:: w':'(il) / dav(V) ) 

k J dE J dx J ~log Q2 Pv(ii) = \ dxd log Q2 v(ii) 
(5.9) 

The most general expression for the differential cross section at high energy is in terms of three 

unknown structure functions: 

dav(ii) . :::;: ln 10 G
2 
ME y {(1 _ y _ Mxy) pv(v)(x, Q2) 

dxd log Q2 1r 2E 2 

+ y: 2xFr(i7l(x, Q2
) ± y(l- ~) xF~(i7l(x , Q2)} 

( 5.10) 
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Using: 

{5.11) 

this can be rewritten as: 

dcr
11

(Ti) = ln 10 G
2 
ME { + pv(T!)( Q2) ± - pv(ii)( Q2)} 

dxd log Q2 1r Y Y 2 x, Y x 3 x, (5.12) 

where: 

y+=1-y---+- ~-(1+(1-y)2 ) Mxy y
2

( 1 + Q2 jv2 
) 1 

2E 2 1+R(x,Q2) 2 

The dominance of spin ~ quarks in the scattering of neutrinos from nuclei is equivalent to 
R ~ 0 [Cl7_9]. For the purposes of extracting F2(x, Q2 ) and xF3(x, Q2 ), various assumptions 
were made concerning R(x, Q2 ), all consistent with present measurements. 

Given bins sufficiently small in (x, log Q2 ), the structure functions can be taken outside 
integrations and: 

2: wf(ii) _ k In 10 G
2 

M {( E +) Fv(ii')(x Q2) 
f dE f dx J d log Q2 P11 (ii) - 1r y y v(ii) 2 ' 

±{yEy-)"~ xF~(Vl(x, Q2 )} 

(5.13) 

It the differences in the energy spectrum of incident neutrinos and anti-neutrinos are ignored, 
so that (yEy±)

11 
= (yEy±)v, and taking xF3(x, Q2

) = xF~(x, Q2
), this is simply: 

2 1r 1 { 2: wr 2: wf} 
F2(x, Q ) = 2k In 10 G2 M (yEy+) J Pv + I Pv 

2 1r 1 { 2: wr 2: wf} 
xF3(x, Q ) = 2k In 10 G2 M {yEy-} f P

11 
- I Pv 

(5.14) 

The three dimensional integrals (yEy+), (yEy-}, I P11 , and f Pv can be evaluated numerically. 
The sum and difference of the total number of acceptance weighted neutrino and anti-neutrino 
events in a given bin in (x, logQ2 ), yield F2 (x, Q2 ) and xF3(x, Q2 ) respectively. 
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It was of course not necessary to make these simplifying assumptions, and as imple­
mented the structure functions were extracted using: 

(5.15) 

The symbols dO'v(ii) / dxd log Q2 lrron represent the cross sections for neutrinos and anti-neutrinos 
in an iron target. These were evaluated using the same F2(x, Q2 ) and xF3 (x, Q2 ) which ap­
pear explicitly on the right hand side of equations 5.15. To begin with the structure func­
tions were unknown: the method therefore required iteration. However, corrections were 
small and convergence was fast. 

5.2.1 Corrections to isoscalar cross section 

The cross section in iron can be expressed in terms of F2(x, Q2 ), xF3(x, Q2 ), and a 
number of correction terms: (1) isoscalar corrections, f"'(v), (2) strange sea corrections, sv(Ti), 

(3) corrections for slow rescaling due to the charm quark mass, cv(ii), and ( 4) electromagnetic 
radiative corrections, R~~. Thus: 

dO'v(ii) dav(ii) { v(~ 2 } 
dxd log Q2 !Iron= In 10 Y dxdy !Bare 1 +Rem (E, x, Q ) ( 5.16) 

where: 

dO'v(ii) G2 ME + 2 - 2 
- !Bare= {y F2(x, Q ) ± Y xF3(x, Q ) 
dxdy 1r 

+I"("i'l(E, x, Q2 ) + sv(V)(E, X, Q2 ) + cv(V)(E, x, Q2 )} 

(5.17) 

The origin of the various correction terms is outlined below; a detailed discussion of the form of 
the differential cross section is included in Appendix E. Not shown is theW-Boson propagator 
term, which was included in the procedure for extracting structure functions. 

An iron nucleus, with an excess of neutrons over protons, differs slightly from an 
isoscalar target. This results in the term: 
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where Uv and dv are respectively the valence distributions for u and d quarks in the proton. 

As shown in figures 5.3 and 5.4, this correction was quite small for F2, but was as large as 10% 
for xF3 at low Q2 • 

If the charm content of the nucleon is taken to be negligible, then the conventional 

definitions of the structure functions are recovered only with the additional term: 

S11(V1(E, x, Q2 ) = s(x, Q2 ) (1- (1- y)2 ) (5.19) 

where s is the strange sea in the proton. For this analysis, the strange sea was assumed to 
be ~SU(3) symmetric, as discussed in section 5.2 .2 below. Figure 5.5 shows the strange sea 
correction for F2 • The correction was substantial only at small x. This reflects the nature of 
the sea quark distribution, which is peaked at small x. In the case of xF3 , which is proportional 
to the difference between neutrino and anti-neutrino cross sections, the correction cancels. 

The effect of a finite charm mass was properly accounted for by the use of ~-scaling 

and a slow rescaling threshold factor. The components of the cross section reflecting transitions 

from both d and s quarks to charm were so modified. In order to restore the suppression 
introduced, the correction term C 11(il)(x, Q2 ) was required. Rather than displaying this term in 

excruciating detail, the reader is referred to equations E.10 and E.13 for the specific form of 

the cross sections used in these calculations. The effect on the structure function results of a 
finite charm mass is shown in figures 5.6 and 5.7. Again, the conection was largest at small x. 
However, since Cabibbo-suppressed transitions of valence d quarks are also modified, the effect 
persisted at all x. The threshold effect was minimal at high energies, and hence, high Q2 : thus, 

the correction exhibited some Q2 dependence. 

Figure 5.8 lsoscalar correction factors for F2 
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Figure 5. 6 Charm mass correction factors for F2 
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Figure 5. 7 Charm mass correction factors for xF3 
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Figure 5. 8 Radiative correction factors for F 2 
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Leading log radiative corrections to the lepton leg were made in the manner suggested 
by De Rujula and Petronzio [Ru79). The emission of a collinear photon by the outgoing muon 
results in the reduction of the muon energy from E JJ / z to E JJ, but little change in muon angle. 
The migration in x and y is calculable and given by: 

R v(V)(E Q2) = Clem I 2M E(1- Y + xy)2 

em 'x, 2 n 2 
7r mJJ 

/.
1 dz 1 + z2 {y e(z- Zmin)[dav(V) !Bare] - dav(ii) laare} + O(Q~m) 

o 1- z z(y + z- 1) dxdy dxdy 21r 
:z:',y' 

where: 

x' = xyf(z + y- 1) 

y' = (z + y- 1)/ z 

Zmin = 1 - Y + XY 

(5.20) 

The magnitude of the radiative corrections to F2 and xF3 are shown in figures 5.8 and 5.9 
respectively. 

C~rrections due to variations of F2(x, Q2 ) and xF3(x, Q2 ) within a bin were made 
implicitly by retaining the structure functions under the integral signs. These corrections were 
in general only a few percent, except for edge bins. 

5.2.2 Model of F2 and xF3 for integrations 

Quark distribution functions were obtained from fits to the data of the form proposed 
by Buras and Gaemers [Bu77,Bu78). These functions represented\a simple, but efficient, means 
of modeling the x and Q2 variation of the differential cross section for the purposes of calculating 
required integrals. The chosen forms were motivated by expectations of the quark-parton model 
and QCD. Arguments relating the pomeron and p Regge trajectories to the small x behavior of 
structure functions lead to the prediction that Qv(x ),.,...., x112 and q(x ),.,...., c as x -+ 0 [Fi77 ,Cl79). 
Correlations between elastic form factors and F2 lead to the prediction that q( x ),.,...., (1 - x )3 

as x -+ 1 [Dr70,We70]. Asymptotic analysis [Al82] of the Altarelli-Parisi equations confirms 
that q( x ),.,...., ( 1 - x )11, as x --+ 1 and Q2 --+ oo, and leads to the additional expectation that 
G(x).·'-J(1- x)11c+ 1 and q(x),.,....,(1- x)'1c+ 2 in the same limits. All of these predictions were 
incorporated in the model. 

As a corollary of the fact that our target was nearly isoscalar, this experiment could not 
make measurements distinguishing between u and d quark x distributions. In order to establish . 
a relationship, it was therefore necessary to make an appeal to' the experimental literature. The 
observation in electron deep-inelastic scattering [Bo73,Fi77) that F2n /F2P -+ 1/4 as x -+ 1, 
implies that q(x) ........ uv(x) at large x. Consistent with this result, the assumption was made that 
dv(x),.,....,uv(x)(1- x). This last represents a slight extension of the basic model proposed by 
Buras and Gaemers. 
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From asymptotic QCD, the evolution of the structure functions with Q2 can be 
calculated. One convenient form of these predictions is the moment equations: integrals of 
the AJtarelli-Parisi equations over all x. Analytic expressions for the x and Q2 variation of 
quark distributions were devised by Buras and Gaemers, which incorporated the expectations 
of the parton model described above, and yet whose moments evolved as predicted by QCD. 

The moment equations for the valence quark distributions are simply: 

where 1" are predicted by the theory (see [Bu78]), and: 

The choice of: 

where 

Uv(x, Q2 ) = a
11 

x'Jl(s) (1- x)'7 2 (s) 

dv(x, Q2
) = Cd(s) Uv(x, Q2)(1- x) 

1]1(8) = 1J10- 1J11 · S 

1J2(s) = 1J2o + 1J21 · s 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

satisfies these moment equations to high order. The parameter cd was fixed by quark counting 
rules for the proton: f0

1
dx uv(x, Q2 )/x = 2 f0

1
dx dv(x, Q2 )/x. However, the overall normaliza­

tion, av, was retained as a free parameter, rather than using the constraint of the GLS sum 
rule. 

The anti-quark and gluon distributions should be peaked at small x; hence, q(x, Q2 ) 

or G(x, Q2 ) are well determined from the first two moments alone. A suitable choice was: 

It can easily be seen that: 

2q(x, Q2 ) = S(x, Q2 ) = a8 (s) (1- x)'ls(s) 

G(x, Q2 ) = aa(s)(1- x)'la(s) 

{S(Q2)}2 
1Js(s) = {S(Q2))3 - 2 

as(s) = {S(Q2 )}2 (1 + 1Js(s)) 

( 5.25) 

(5.26) 

and likewise for the gluon parameters. The equations describing the evolution of these moments 
are more complicated than those for the valence quarks (5.21), but are determined by asymptotic 
QCD (see [Bu78} for details). Thus, the parameters required to determine this segment of the 
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model were ·the second and third moments of the anti-quark and gluon distributions at Q5. 
The second moment of the gluons was fixed by the momentum sum rule: f0

1 F2(x, Q2 ) dx = 

1- / 0
1 

G(x, Q2 ) dx. A reasonable choi~e for the gluon x dependence was 17a(O) = 5, which fixed 

the third gluon moment. The moments of the anti-quark distributions were free parameters. 

Best values for the eight free parameters of the model were obtained from fits to 

2xF1 (x, Q2
) and xF3(x, Q2 ) extracted from our data. The structure functions were expressed 

in terms of quark distributions as follows: 

The best values for the free parameters, under various assumptions about R(x, Q2 ), are shown 
in table 5.2. A Q5 = 12.6GeV2 was used for all fits. 

Parameter R=0.1 R=O.O RQcD 

A (MeV) 210 202 247 

av 1.752 1.838 1.702 

f/1 0 0.413 0.438 0.408 

TJu 0.188 0.151 0.216 

1720 2.333 2.285 2.225 

1721 1.707 1.849 1.742 

as(O) 1.141 1.214 1.091 

17s(O) 6.991 6.267 6.300 

Table 5.2 Parameters used in model for quark distributions 

The fraction of the anti-quark distribution represented by strange quarks can be 

determined from events with two opposite sign muons in the final state. A charmed quark 
produced at the initial weak interaction vertex results in a charmed particle in the hadron 
shower. Such a short-lived object decays before interacting. Occasionally the decay is through 

a semi-leptonic channel, yielding a second muon. Due to weak selection rules, this muon would 
have the opposite electric charge to that from the neutrino vertex. The cross sections for such 

events are: 

(5.28) 
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where Be is the branching ratio of charm to the muon channel. The use of the scaling 

variable ~ = x + m~/2M Ey and the threshold factor tc = 1-.- m~/2M E~ properly accounts 
[Ge76a,Ge76b,Ba76a] for effects of a finite charm quark mass, me. 

A useful parametrization of the strange sea quark fraction is: 

A _ f0
1
dx(s(x) + s(x)) 

"- f~dx(u(x) + d(x)) 
(5.29) 

If it is assumed that the x and Q2 variation of s(x, Q2) is the same as q(x, Q2), and that 
u(x, Q2

) = d(x, Q2 ), then one obtains: 

s(x, Q2) = s(x, Q2) = ~q(x, Q2) 
2 + /\s 

u(x, Q2) = d(x, Q2) = 2 ~As q(x, Q2) 
(5.30) 

The validity of this description has been confirmed in detail from the observed properties of 

the dimuon sample. Taking u(x, Q2 ) and d(x, Q2 ) from charged current data, the parameter As 
can be determined from the dimuon x distributions and event rates. Our data favoured As = 
o.so:tJ~, as shown in figure 5.10 [Ws83). CDHS has published a determination of this same 
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Figure 5.10 Strange sea fraction from observed number of anti-neutrino dimuon events 
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parameter from a high statistics sample of dimuon data obtained from wide-band neutrino and 
anti-neutrino running. The reported value [Ab82b] was As = 0.52 ± 0.09, but has substantial 
model dependence. Both results were obtained assuming the effective charm mass to be 1.5GeV. 
A 10% change in the mass was reported [Ab82b] to result in a corresponding 5% change in As. 

5.2.3 Quadrature technique 

The beam monte carlo predicted the energy and spatial distribution of neutrinos per 
secondary at the Lab E detector. As has been noted above, with acceptance handled on an 
event-by-event basis, the integrals of flux over fiducial volume (equation 5.7) can be trivially 
accomplished. All neutrinos from two body decays of secondaries were included in the flux sum 
if: 

Pv = J x~ + y~ ~ 30in for 7r~ J.lV 
I Xv I~ 50in and I Yv I~ 50in for K~J.LV 

Other sources of neutrino flux, representing a total of a few percent of the two body contribution, 
were also included: neutrinos from three body decays of kaons and wide-band background 
neutrinos. For these sources, the flux was first separated into that which would be classified as 
coming from pion or kaon decay in the event sample. The appropriate fiducial cuts were then 
applied, so that this flux was included only if: 

Ev < Esep(r) and Pv ~ 30in 
or Ev > Esep(r) and I Xv I~ 50in and I Yv I~ 50in 

where Esep(r) was the same separation function used for the data (section 4.4.3). The result 
of this summation of flux over the fiducial volume was stored in an array of flux per secondary 
in 2GeV bins for each of the ten settings (Pv(ii)(E)). 

Integrals were performed by stepping through Ev(v) in these 2GeV bins. Within a 
bin, a 7 point Gaussian quadrature formula was used to integrate over x. The limits of the 
integration in log Q2 were determined at each x value. If Q] was the lower bin limit, then the 
lower and upper limits of integration were: 

( 

Q~ 
J . 

2MxEmin 
Qfower =max 2E2 _ (1 _ ~s emax) 

v(v) ~ 
(5.31) 
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The integration in log Q2 between these limits was accomplished using the 16 point Gaussian 

quadrature formula. Events with a vertex inside a radius of Sin of the apparatus centre were 

subject to a further o;in cut. The integration upper limit in this case was: 

( 5.32) 

Halving the step sizes in any of these calculations had no effect on the result. 

5.2.4 Resolution smearing corrections 

The effect of resolution smearing was calculated using an event generating monte 

carlo. Neutrino rays from the beam monte carlo, with the energy and spatial distribution of 

the dichromatic beam, were input to this program which simulated interactions in the detector. 
Events were thrown with the x and y distribution observed in the data. A more primitive 

model of the structure functions than that described in section 5.2.2 was used to parametrize 
the differential cross section for the event generator. The chosen form of the x dependence 

was similarly motivated by the need to separate the contributions of valence and sea quark 

distributions in the model. However, the Q2 variation was treated in a more empirical fashion, 

with: 

(5.33) 

The function, fi(x) = fi1 - {32 /X, was an ad hoc representation of the observed pattern of 

scaling violations. Such a form was better behaved as Q2 !....t.O, and therefore was more suitable 

for the monte carlo. The free parameters of the model were obtained from fits to our structure 

function results, as with the Buras-Gaemers type model. Figures S.ll and 5.12 show observed x 
distribution for data obtained at the ± 200 settings, compared with the monte carlo prediction. 

The monte carlo can be seen to well represent the data. 

Reconstructed quantities, E'H, E~ and 0~, were then thrown from the corresponding 
generated values, using the appropriate resolution functions. These were Gaussian distributions 

for E~ and 0~, with widths given by: 

CJE, = 0.11 . EJJ 
{3 

CJo =a+-
" E~ 

where a and f3 are given in table 4.3. The smeared EH was thrown from a Poisson distribution, 

with: 

C!EH = 0.72 + 0.81 JE;; 
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The resolution in x can readily be expressed in terms of errors on these measured 
quantities: 

( ~x)
2 2 (~E~-')

2 2(~EH)2 (~8~-')2 7 = {2- y) EJJ + (1- y) EH + 4 o; (5 .34) 

At small x the error on OJJ dominates the x resolution, while at large x the resolution is 
dominated by EH at low Q2 and EJ.' at high Q2 • As illustrated in figure 5.13, in our detector x 
resolution varied from 15 to 30%, depending on x and neutrino energy. Except for the highest 
x bin, this was in general smaller then the bin size. 

Similarly, the resolution in Q2 is given by: 

(5.35) 

The important quantity for these considerations is ~log Q2 , shown in figure 5.14. In almost all 
cases, the resolution was dominated by the measurement error on EJJ. The chosen bin width 
in log Q2 can be seen to be well matched to the measurement error on that quantity. 

The probability distribution for deep-inelastic scatters of muons passing through the 
target iron )VaS measured from the data (section 4.2.3). This distribution was used to simulate 
scatters within the hadron shower, which were appropriately added toE# and subtracted from 
E~, as they would be in the data. Beyond the shower, such energy losses were added back 
into E~, with the resolutions of a calorimetric measurement. A check was made to determine 
whether the muon would stop before reaching the trigger counter T2. Such events were given 
a fixed momentum resolution of 0.15GeV, since momentum would be determined from range. 

The observed number of events in a bin was corrected to a number without resolution 
smearing, by diyiding by the ratio, R8 , of smeared (N) to unsmeared (N') monte carlo generated 

events appearing in that bin. Since N' = N + nin- nout, the correction was just: 

(5.36) 

where nin and nout are the number of events which move into and out of a bin due to smearing. 
In general, at least a factor of four more events are thrown at each setting than in our data set 
at that setting, so that ~Rs contributed negligibly to the final errors. 

5.3 Flux Smoothing Procedure 

As noted in section 5.1, the energy dependence of the total cross section for both 
neutrinos and anti-neutrinos was dominated by flux measurement systematics. The reported 
cross sections were consistent with the quark-parton prediction of a linear rise with energy, 
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but exhibited substantial fluctuation about this mean behavior, due to the magnitude of flux 
errors. A procedure was devised to smooth out much of this fluctuation. 

If for the moment the effect of R is neglected, the structure functions F2 and xF3 

extracted from any pair of neutrino and anti-neutrino secondary beam settings should be 
consistent, in the overlapping x and Q2 region, with the structure functions extracted from all 
the data. This implies that the differential cross sections constructed from the average siructui'e 
functions must be consistent with the differential cross secLion measUl'ed at any given setting, 
again in the overlapping kinematic regions. The integral of this cross section, weighted by flux 
and within the kinematic and fiducial volume included in the structure function measurements, 
is just: 

( 5.37) 

where 1V~(~fD is the predicted total number of events for the setting. The difference between 
N~(&fD and the observed number of events Ne(~f was presumed to originate in the flux errors: 
both errors on the determined secondary beam composition and run-by-run fluctuations in tlle 
ion chamber response. The ratio Ne(~s f N~(~ED was then used to adjust the flux on a settint~­
by-setting basis. Tile overall normalizations of the total cross sections were kept fixed at the 
reported values. 

The resulting flux factors are shown in figure 5.15. The inner error bars reflect the 
statistical precision with which these smoothing factors could be calculated. The outer error 
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bars include in quadrature the errors assigned to the pion and kaon Cerenkov pressure curve 
areas (1-2% for pions and 3-5% for kaons) and the ion chamber measurements. This last 
consisted for neutrinos of 2% for chamber response stability, and 1% for chamber temperature 
uncertainties. The corresponding numbers for anti-neutrinos were 5% and 1% respectively. 
Given these errors, the flux smoothing factors were consistent with unity: x2 =14.7 for 10 
degrees of freedom for neutrinos and 7.6 for 10 degrees of freedom for anti-neutrinos. 

An important check of the validity of this smoothing procedure was the observed etl'ect 
on the total cross section. In figures 5.16 and 5.17 are shown the 90% confidence limits for fits 
to the cross section slopes of the form: 

o-"(V) IE = a + f3 · E (5.38) 

For the case of our reported cross section measurements, all systematic errors were included 
in the calculation. For the flux smoothed case, the only errors included in addition to the 
statistical errors were the errors on the flux factors. 

The reported cross section measurements were consistent with f3 = 0, as stated earlier 
(section 5.1), although the preferred value was for o- 11 IE to rise with energy and o-'ii"j E to fall. 
In contrast, the preferred value for the flux smoothed case lay close to the quark-parton model 
expectation of f3 = 0, and coincided very well with the QCD prediction. The dashed lines in 
figures 5.16 ·and 5.17 represent reasonable limits on a QCD prediction for the energy dependence 
of the cross section slopes. Uncertainties include the contribution of the integrated cross section 
below Q2 = lGe¥-2, and assumptions about the behavior of R, particularly at low Q2 . The size 
of the 90% confidence ellipse was reduced, noticeably so in the neutrino case. This reflected the 
fact that the procedure at least partially reduced sensitivity to flux measurement systematics. 
However, the most important feature was the noted good agreement for the total cross section 
between expectation and observation. 

The effect of a finite R on this smoothing procedure is to. introduce an effective energy 
dependence into F2 extracted from different settings. This is a natural consequence of the 
variation of the mean neutrino energy with setting. However, the observed effect was quite 
small: flux smoothing factors calculated under different assumptions concerning R were the 
same within errors. The lack of sensitivity reflects the fact that R changes only the high y 
behavior of the cross section, whereas N~(tf0 was calculated by integrating over essentially 
ally. 

.As with other numerical calculations discussed in this chapter, this method required 
iteration. The starting values for the flux factors were taken to be unity. The corresponding 
structure functions were then used to calculate N~{hED, and hence the new flux factors. New 
structure functions were extracted, and the procedure repeated until convergence. However, 
most of the difference between unity and the final result was not dependent oil the particular · 
form of the underlying structure functions. In fact, if the Q2 dependence of the structure 
functions was removed, essentially the same smoothing factors would result. Again, this reflects 
the fact that N~~ED was an integral over all energies (or Q2 ), which averages out scale breaking 
effects. The difference in the predicted total cross section between scaling ({3 = 0) and QCD is 
small. 
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An alternative approach to smoothing the total cross section might be to require a 

strict linear rise with energy. The flux factors necessary to achieve this end are designated as 

squares in figure 5.15. As expected, these points differ little from the factors derived above. 

For a QCD analysis, an appropriate procedure would be to calculate the slight modifi­
cation to the quark-parton prediction, and suitably adjust our measurements to match. However, 

the prediction relies on structure function measurements made over a restricted kinematic 

region. As a result, there is some uncertainty in the predicted total cross sections, becoming 
quite large at low energies. The chosen method did not suffer from this difficulty, as the integra­
tions were carried out only over measured kinematic regions. Also, the method had the aesthetic 
appeal of using a consistency requirement, rather than a model prediction, to smooth the 
data. 

5.4 Alternative Extraction Method 

There are other approaches to obtaining structure functions from the data. A common 
method is to compare a monte carlo prediction for the number of events in a bin to the observed 
number. The structure functions assumed in the monte carlo are adjusted until a match with 
the data is achieved. Essentially, . the monte carlo technique differs in that acceptance and 
resolution smearing are included in the calculation of predicted number of events. If smearing 
is corrected separately, the required integrations can be performed using standard numerical 

quadrature techniques. Details of the implementa~ion of such an approach are described in the 

thesis of M.Purohit [Pu84], and so only an outline will be provided here. 

As before, the starting point is the formal expression for the event density, equation 

5.1. This can be integrated over the kinematic space, (E, x, logQ2 ) and fiducial volume, (r, ¢), 
within the standard grid of x and log Q2 bins. It can be shown from the form of the differential 

cross section (equation 5.10), that a linear system is obtained: 

nv = av F2(x, Q2
) + bv xF3(x, Q2

) + Cv 

nv- = av- F2(x, Q2
) + bv- xF3(x, Q2

) + cv-

where n11(ii) are the observed number of events in the bin, 

(5.39) 

(5.40) 

and Cv(ii) are integrals over the various correction terms J 11{i7), sv(ii), R"(ii) and the like. F 2 

and xF3 are then found by solving this system. The effect of resolution smearing was removed 

by adjusting nv(ii)' using the same event monte carlo described in section 5.2.4 above. To sum­
marize, this method differed in the treatment of acceptance and in the inclusion of corrections 
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additively rather than multiplicatively. Programming was of course quite separate. In theory, 

this second approach should yield structure functions with minimum possible statistical errors, 
although the actual improvement over the weighted event method was less than 10%. 

5.5 Results for F2 and xF3 with Fixed R 

Structure functions were extracted under three different assumptions about R. These 

were: R = 0.0, R = 0.1 and a so-called RQcD. A brief explanation of the later is in order; for 
details, the reader is referred to sections 6.4 and 6.5.5. 

QCD beyond leading order predicts [Fi78) a finite value for R (equation 6.17), propor­

tional to the strong coupling constant as(Q2) (equation 6.13). The value can be calculated 

using results for F2 and assumptions about the gluon distribution. A simple model of the x 
and Q2 dependence of the predicted R was needed for the purposes of extracting structure 
functions. The x dependence of the prediction was fit at Q2 = 10GeV2 to the form: a(l- x)b. 
Neglecting contributions due to scaling violations in F2 or the gluon distribution, all of the Q2 

dependence of R comes from the variation of as(Q2 ). Therefore, the value of R at any other 
Q2 was obtained by: 

b as(Q2) 
RQcD = a(1- x) (Q2 ) as = 10 

(5.41) 

Using the parameters for F2 and the gluon distribution listed in table 6.1 for the second order 

fit, a calculation of R from QCD was made. A fit to this prediction at Q2 = 10GeV2 yielded 

the result: a= 0.14 and b = 3.7. 

The final structure function results shown in table 5.3 and 5.4 represent bin-by-bin 

weighted averages of the values obtained using the two extraction techniques. The value of 

F2 in table 5.3 was obtained using RQCD· The last three columns of the table represent the 

absolute change in the result if the strange sea were assumed SUt3) sysmmetric, or if R = 0.0 

orR= 0.1 were assumed. A W-boson mass of 80GeV was assumed in extracting the structure 

functions results listed in the tables. Note that bins have been eliminated from the analysis if . 

fractional statistical error exceeded 50%, or if the smearing correction was greater than 35%. 

The differences between the results obtained by the two methods were in general small, 
except in bins with large statistical error: the average integral over x of F2 and xF3 differed by 

2% and 1% respectively. The large statistical errors on xF3 tended to exaggerate the level of 

the difference for this structure function. If all bins were included, the rms width of the ratio 
of structure functions obtained by one method to structure functions from the averaged data 

set was 3.0% for F2 and 8.0% for xF3. However, if only bins with fractional statistical errors 

under 20% were included, the widths reduced to 2.5% and 3.0% respectively. The differences 
were probably statistical in origin. Fluctuations in the number of weighted versus unweighted 
events in a bin leads to large variations in the resulting structure functions in the case of small 
numbers of events. No systematic problem was thought to exist. 

There was a tendency for the value of F2 in the highest Q2 bins to appear below 
the level anticipated from a linear extrapolation in log Q2 from results in lower Q2 bins. 
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Figure 5.18 Comparison of xF3 normalization with and without flux smoothing 

Possibly, this could represent an inefficiency for events with EJ.l < lSGeV and large hadron 
energy. However, a scan of a subset of these events revealed no evidence for such a problem. 

The most direct test of the validity of the implementation of equation 5.15 was to 
run monte carlo events through the analysis. When this was done, it was found that the 
reconstructed integrals over x of F2 and xF3 , averaged over Q2 , a.greed at the 0.5% level with 
the predicted values. The hypothesis that the generator function fit the reconstructed structure 
functions was checked using the standard goodness-of-fit test: the calculated x2 was found to 

be acceptable. 

A further proof of the efficacy of the flux smoothing procedure was found in the 
consistency of xF3 obtained from different independent subsets of the data. A comparison was 
made of results in overlapping x and Q2 regions for each of the five pairs of secondary beam 
settings and two parent types. The fluctuations relative to xF3 obtained from neutrinos from 
pion decay at the ±250 settings are shown in figure 5.18. For comparison, the corresponding 
ratios of the integral of xF3 , as computed for each subset from the total cross section result, 
are also shown in the figure. Errors are statistical only. The flux-smoothed structure function 
results are clearly consistent with unity, and exhibit less fluctuation than if raw fluxes were 
used. The large excursions from unity of the raw flux calculation reflect the significant nature 
of flux errors. 
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As shown in figures 6.1 and 6.2, qualitatively the Q2 dependence was consistent with 
QCD; namely, the structure functions rose at small x with Q2 and fell at large x. Quantitative 
statements on this and other features of the data which can be tested against theory are reserved 
for chapter 6. 

Q2 X F2 A stat Asys SU(3) R=O.l R=O.O 
1.26 .015 1.287 .051 .021 .016 -.032 -.078 
2.00 1.343 .059 .022 .000 -.034 -.091 
3.16 1.537 .084 .024 -.019 -.036 -.109 
5.01 1.402 .116 .023 -.035 -.030 -.109 
7.94 1.584 .269 .026 -.058 -.031 -.148 
1.26 .045 1.134 .050 .019 .027 -.001 -.015 
2.00 1.359 .047 .022 .014 -.009 -.037 
3.16 1.363 .044 .021 -.003 -.016 -.062 
5.01 1.545 .059 .023 -.021 -.017 -.082 
7.94 1.662 .081 .025 -.041 -.015 -.095 
12.6 1.531 .113 .023 -.055 -.010 -.110 
20.0 1.071 .197 .018 -.047 -.002 -.091 
1.26 .080 1.244 .128 .021 .035 -.001 -.002 
2.00 1.445 .055 .024 .029 .002 -.009 
3.16 1.487 .046 .023 .012 -.001 -.024 
5.01 1.464 .044 .022 -.006 -.004 -.048 
7.94 1.545 .051 .022 -.022 -.002 -.066 
12.6 1.591 .068 .023 -.037 .002 -.070 
20.0 1.576 .090 .023 -.052 .008 -.089 
31.6 1.228 .166 .020 -.048 .014 -.085 
2.00 .150 1.183 .109 .020 .026 .003 .009 
3.16 1.180 .036 .019 .019 .003 .001 
5.01 1.280 .028 .020 .010 .003 -.009 
7.94 1.235 .025 .018 -.003 .006 -.022 
12.6 1.232 .028 .018 -.013 .010 -.032 
20.0 1.292 .036 .019 -.021 .015 -.036 
31.6 1.270 .046 .019 -.030 .021 -.044 
50.1 1.161 .075 .019 -.032 .030 -.051 
79.4 .889 .251 .016 -.025 .031 -.045 
5.01 .250 1.026 .039 .020 .013 .002 .002 
7.94 .985 .026 .019 .007 .004 -.002 
12.6 .933 .024 .017 .000 .009 -.007 
20.0 .923 .026 .017 -.005 .015 -.012 
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X F2 A stat Asys SU(3) R=0.1 R=O.O 
.250 .952 .033 .018 -.009 .018 -.014 

.840 .034 .016 -.012 .022 -.016 

.747 .053 .015 -.013 .029 -.019 

.568 .279 .012 -.010 .027 -.017 
.350 .676 .027 .019 .005 .001 .001 

.649 .023 .017 .002 .004 -.001 

.638 .024 .016 .000 .009 -.003 

.627 .027 .016 -.002 .012 -.004 

.587 .028 .016 -.003 .014 -.004 

.597 .037 .015 -.005 .022 -.007 

.684 .076 .018 -.006 .034 -.010 
.450 .498 .041 .019 .003 -.001 .001 

.419 .020 .017 .001 .001 .000 

.395 .019 .015 .001 .004 .000 

.382 .020 .014 .000 .007 -.001 

.347 .021 .013 -.001 .007 -.001 

.375 .026 .014 -.001 .011 -.002 

.279 .028 .010 -.001 .013 -.002 

.290 .132 .010 -.001 .018 -.002 
.550 .241 .017 .014 .001 .000 .000 

.231 .016 .013 .000 .002 .000 

.206 .014 .011 .000 .003 .000 

.198 .018 .011 .000 .004 .000 

.199 .020 .011 .000 .005 .000 

.150 .019 .008 .000 .006 .000 

.120 .040 .006 .000 .007 .000 
.650 .150 .018 .013 .000 .000 .000 

.120 .010 .011 .000 .001 .000 

.138 .015 .012 .000 .001 .000 

.111 .015 .010 .000 .002 .000 

.098 .016 .008 .000 .002 .000 

.092 .014 .007 .000 .003 .000 

.068 .020 .005 .000 .003 .000 

Table 5.8 

Averaged F2 obtained under various assumptions about R and the strange 
sea (Propagator included with mw = 80GeV). Systematic errors are diagonal 
elements only and do not include an overall scale error of 3.1 %. 
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Q2 X xF3 tlstat tlsys 

1.26 .015 .165 .058 .012 
2.00 .366 .056 .021 
3.16 .303 .076 .017 
5.01 .431 .106 .025 
1.26 .045 .440 .143 .055 
2.00 .620 .089 .049 
3.16 .608 .062 .032 
5.01 .508 .072 .023 
7.94 .693 .094 .033 
12.6 .646 .116 .028 
20.0 .631 .182 .026 
2.00 .080 .615 .182 .068 
3.16 .769 .103 .054 
5.01 .666 .070 .031 
7.94 .655 .069 .025 
12.6 .781 .085 .031 
20.0 .771 .098 .028 
31.6 .662 .162 .022 
3.16 .150 .732 .135 .069 
5.01 .689 .073 .043 
7.94 .879 .046 .036 
12.6 .855 .042 .027 
20.0 .790 .049 .024 
31.6 .847 .055 .025 
50.1 .799 .080 .021 
79.4 .704 .239 .018 
5.01 .250 .623 .161 .052 
7.94 .794 .076 .045 
12.6 .797 .048 .029 
20.0 .770 .042 .023 
31.6 .799 .050 .023 
50.1 .747 .042 .020 
79.4 .650 .057 .016 

7.94 .350 .584 .108 .042 
12.6 .553 .060 .027 
20.0 .469 .047 .017 
31.6 .512 .048 .017 
50.1 .563 .041 .019 
79.4 .500 .045 .014 
126. .266 .083 .007 
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Q2 X xF3 b. :; tat D- s ys 

12.6 .450 .'152 .OG8 .029 

20.0 .306 .043 .OlS 

31.6 .319 .038 .011 

50.1 .340 .036 .015 

79.4 .317 .037 .013 

12G. .303 .032 .011 

200. .302 .139 .011 

12.6 .550 .218 .071 .018 
20.0 .168 .011·1 .012 

3l.G .209 .029 .013 

50.1 .171 .033 .Oll 

79.4 .1G9 .031 .010 

12G. .170 .024 .009 

200. .130 .()tl:1 .007 

12.6 .650 .163 .080 .018 

20.0 .171 .033 .018 

31.6 .122 .039 .012 

50.1 .072 .030 .007 

79.4 .058 .028 .005 

126. .099 .018 .003 

200. .076 .023 .006 

Table 5.4 

Averaged xF3 obtained assuming RQcD (Propagator included with mw = 
80GeV). Systematic errors are diagonal clements only and do not include 
an overall scale error of 3.1 %. 

· 5.6 Systematic Errors 
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There were a number of sources of systematic errors on the structure functions. These 
included: (1) errors on flux measurements, (2) systematic uncertainties in Er-r and E1,~, (3) 
differences between the results of the two extraction techniques, and ( 4) errors on smearing 
corrections. Shown in table 5.3 and 5.4 are the diagonal elements of the systematic error matrix. 
These are useful only in illustrating the relative level of systematic and statistical errors. For 
all bins, the latter exceeded the former. Global fits, such as those for QCD, were made with 
proper point-to-point correlations. 

Consider the flux uncertainties first. Much of the error contributing to setting-to­
setting :fluctuations was removed using the procedure described in section 5.3 above. The 
residual error, reflecting the total number of events at each setting, represented the precision 
with which the flux adjustments could be made. In addition, there were correlated and 
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Source v flux v flux Common flux 
error (%) error (%) error (%) 

Ion chamber calibration 1.5 

Calibration connection to data 2.0 

Veto deadtime 0.5 

x2 correction 0.5 

Livetime 1.7 

Neutrino energy 1.0 

Ion chamber temperature 1.0 1.0 

Proton fraction 1.0 

(v jv) ion chamber connection 3.0 

Total 1.4 3.2 3.1 

Table 5. 5 Sources of overall flux error 

uncorrelated overall errors for neutrinos and anti-neutrinos. The sources of these scale errors 
have been discussed at various points in the text, but are collected here for convenience in table 
5.5. The total uncorrelated error on flux was 1.4% for neutrinos and 3.2% for anti-neutrinos. 
The shape of the extracted structure functions was directly affected by these uncertainties in 
the relative , neutrino to anti-neutrino normalization. The total correlated scale error of 3.1% 

was of significance for the quark model tests. 

The method used to study contributions of these flux errors to errors on the structure 
functions was typical of all our studies of systematic errors. The simplest representation of the 
expression for extraction of structure functions (equation 5.15) is in each x and Q2 bin: 

(5.42) 

where ft(x, Q2 ) corresponds to F2(x, Q2 ) and xF3 (x, Q2 ) respectively. Since the level of sys­
tematic error was small compared with statistical errors, it would be difficult to separate the 
effect of the two sources if examined in combination. It was more appropriate to consider the 
effect of systematic errors on an infinite statistics sample. 

Equivalent to this, n~ti1ED could be used in both the numerator and denominator of 
equation 5.42. This trivially yields fi(x, Q2 ) unless sources of systematic error are appropriately 
added. For the study of flux errors, the variant used was: 

(5.43) 
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An ensemble of twenty experiments was constructed by calculating structure functions with 
factors fv and f-v randomly thrown from Gaussian distributions with mean unity, and sigmas 
corresponding to the noted systematic flux errors. Thus, for the overall level errors, f 11 and fv 
were obtained from distributions with sigmas of 1.6% and 3.2% respectively. For the errors on 
the flux factors, uncorrelated values for f v or f-v were thrown for each setting, with the widths 
matching respective errors. The sigma in each bin of the distribution of structure function 
values for the ensemble of experiments was taken as the diagonal element of the error matrix. 
Typically, these errors were small for F2 , but varied from 5-7% for xF3 in the lowest Q2 bin 
to 1-2% in the highest Q2 bin at each x value. Clearly, the error contributed to each of the 
parameters of a global fit could be determined from the width of the distribution of parameter 
values from fits to the ensemble of experiments. This would properly account for correlations 
among errors. 

This method was easily adapted to study the error introduced by beam dispersion. The 
quantities n~(t{0 in the numerator of equation 5.42 were calculated not with the nominal beam 
dispersions, but with all dispersions increased by one standard deviation. From a comparison of 
monte carlo prediction with measurement, the dispersion error appeared to be well correlated 
from setting to setting. Given this observation, there was no need to generate an ensemble of 
experiments in order to study the problem. Typically the contribution of this source of error 
was a few percent for bins containing events from pion decay neutrinos. For bins consisting 
mostly of neutrinos from kaon decay the contribution was negligible. If in fact the dispersion 
error was not correlated from setting-to-setting, studies showed that the error introduced was 
approximately random and less than1 %. The actual situation probably lies between these two 
extreme assumptions. 

The analysis of systematic errors due to uncertainties in the calibration of muon (1.5%) 
and of hadron (0.5%) energies was similarly accomplished. Here, the quantities n~(Jf0 in the 

numerator were calculated with the cross section evaluated not at (x, y, Q2 ), but at (x', y1
, Q21

). 

It is a simple matter to show that for E'rf = EH(1 + 6H) and E~ = E~-': 

I- (1 + 6HY) 
X -X 1 + 6H 

y' = yu: ::y) (5.44) 

Q21 = Q2(1 + 6Hy) 

and forE#= EH and E~ = EJ-1(1 + 6~-'): 
x' = x (1 + 6 J.l ( 1 - y)) ( 1 + 6 J.l) 

if= y 
1+61-'(1-y) (5.45) . 

Q21 
= Q2 (1 + 61-'(1- y))(1 + 61-') 

Again, all errors were considered correlated, so that an ensemble of experiments was not needed. 
It should be noted that systematic shifts of EJ.I effectively enter as the square of the deviation 
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at moderate to high y. In contrast, for EH the effect is proportional to oH and decreases to zero 
at high y. In both cases, the systematic uncertainty was magnified at large x by the (1- x )-1 

behavior of dfildx over fi. The calibration error on Ep resulted in systematic uncertainties as 
large as 8% in the highest x bins. In general, the error from EH was considerably smaller. 

A simple check was made of these calculations. From the mean value of y in each bin 
(see Appendix F), the shift in x and Q2 could be calculated. The ratio of the structure function 
at the bin centre to the value at this shifted position gave the systematic error due to EH or 
Ew This simple calculation agreed with the more elaborate technique. 

The systematic errors on the smearing corrections were examined in a somewhat less 
than rigorous fashion. The parameters of the structure function model and the resolution 
functions of the event monte carlo were varied within reasonable limits. However, this was 
not an exhaustive study. The observed changes in the smearing corrections were smaller than 
the statistical precision with which corrections were calculated. This would imply that the 
systematic uncerntainty in the smearing corrections was less than 10% of the statistical error 
in any bin. In the sense that the statistical errors on the smearing corrections were added in 
quadrature with those from the data, systematic uncertainties in the smearing corrections have 
been properly included. 

5. 7 Extraction of R 

The method devised to simultaneously obtain 2xF1 , R and xF3 from the data was a 
two-step process. First, the differential cross section, da"(ii) ldxdy, was found in bins of x, y 
and v = EH. The method used was basically an extension of the approach described above 
for extraction of structure functions. The second step was a one or two parameter fit to the y 
dependence of these cross sections. 

Analogous to the expression for extracting structure fun~tions (equation 5.15), in each 
bin in (x, y, EH) the relationship between observed events and the differential cross section 
(equation 5.9) can be rewritten as: 

1 dav(ii) 

1 da"(v) E dxdy 2: wi(ii) 

E dxdy = ( 1 da"(v) ) k f dE f dx f dy cf>v(v)(E) 
E dxdy !Iron 

v(ii) 

(5.46) 

where integrations are implicitly within bin limits and kinematic cuts. On the right-hand 
side, the cross section in iron is da"(v) I dxdy !Iron (equation 5.16), and da"(v) I dxdy is the bare 
isoscalar cross section (equation 5.17), evaluated with xF3 = xFK = q - 7j. The necessary 
isoscalar, strange sea, charmed mass and radiative corrections to the differential cross section 
are thus accomplished. Within each bin the sum of neutrino and anti-neutrino cross sections 
is: 

(5.47) 
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Using: 

this can be written as: 

2(1- y) 
£(y) = 1 + (1 - y)2 
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(5.48) 

(5.49) 

A two parameter linear fit for 2xF1 and FL = 2xF1 • R to the y distribution in each x and 
EH bin can be converted into a measurement of 2xF1 and R. Likewise, xF3 can be found by 
using: 

xF3(x Q2) = 1 271" { dCJII - dCJv} 
' 1- (1- y)2 G2 ME dxdy dxdy 

(5.50) 

Examples of y distribution fits are shown in figure 5.19. To cover a large range in polarization 

£, and in particular to obtain points below £ = 0.5, requires data at large y > 0.70. This limits 
the useful range in v = Eh over which results can be obtained without large systematic errors. 

5.7.1 Results for R = CJL/CJT 

In table 5.6 are recorded the values for 2xF1, FL and R obtained in the manner 
described. If the error on the sum of neutrino and anti-neutrino differential cross sections 
exceeded 50%, that bin was removed from the analysis. Bins in (x, v) were discarded if the 

minimum polarization was greater than Q.70, or if the number of available measurements in y 
fell below four. This ensured a reasonable range in f over which the two parameter fit was to 
be made. Comparison of these results with expectations and witk the values assumed for R in 

section 5.5 will be made in section 6.5.5. 

Note, that the form of the fit in y was optimal for extracting Rand 2xF1• The error on 

F2 = 2xF1 + FL could be reduced by reworking equation 5.47 in terms of F2 and R. However, 
the dependence on R would enter as a coefficient of a y2 term, requiring good measurements 

at even higher y values than the chosen technique. 

Not listed are the values for xF3 , which can be found both by the method of section 
5.2 and as in equation 5.50, independent of the assumption for R. The two techniques yield the 
same average value for xF3 within 1%, confirming the validity of the implementation of the R 
extraction code. Reconstruction of monte carlo data produces a value for R within errors of 

the generator value, R = 0.1. 

One observation should be made with regard to the measurements obtained in the 

x = 0.15 bin. Only when all settings were combined did the value rise to the reported large 

values. Separate results from different pairs of neutrino and anti-neutrino settings were more 

consistent with expectations. This was an indication that some setting-to-setting systematic 
errors were important, at least for this particular bin. 
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EH (GeV) Q2 (GeV2 ) X 2xFt FL R 
20.0 1.88 .050 1.078 ± .275 0.157 ± .413 0.145 ± .322 
31.6 2.97 1.314 ± .133 0.096 ± .215 0.073 ± .136 
50.1 4.70 1.014 ± .086 0.259 ± .156 0.255 ± .149 
79.4 7.46 1.479 ± .111 0.026 ± .203 0.018 ± .116 
126. 11.8 1.425 ± .121 0.230 ± .275 0.161 ± .186 

20.0 5.63 .150 0.676 ± .363 0.600 ± .542 0.887 ± 1.069 
31.6 8.90 0.788 ± .161 0.535 ± .256 0.678 ± .389 

50.1 14.1 0.968 ± .117 0.363 ± .201 0.375 ± .212 
79.4 22.4 0.911 ± .143 0.616 ± .260 0.676 ± .341 

126. 35.5 1.155 ± .161 -0.055 ± .336 -0.048 ± .249 

20.0 9.39 .250 0.876 ± .387 0.133 ± .574 0.152 ± .550 

31.6 14.8 0.721 ± .186 0.234 ± .186 0.324 ± .394 

50.1 23.5 0.754 ± .151 0.191 ± .151 0.253 ± .305 

79.4 37.3 0.930 ± .176 -0.045 ± .176 -0.048 ± .248 

126. 59.1 0.652 ± .154 0.282 ± .154 0.432 ± .512 

31.6 23.7 .400 0.282 ± .134 0.264 ± .134 0.934 ± 1.001 

50.1 37.6 0.517 ± .103 -0.043 ± .103 -0.084 ± .233 

79.4 59.6 0.335 ± .094 0.147 ± .094 0.439 ± .497 

126. 94.6 0.447 ± .107 -0.025 ± .107 -0.056 ± .391 

50.1 56.4 .600 0.175 ± .091 -0.045 ± .091 -0.260 ± .472 

79.4 89.5 0.056 ± .080 0.123 ± .080 2.187 ± 4.991 

126. 142. 0.097 ± .036 0.009 ± .036 0.094 ± .601 

Table 5. 6 Results for 2xF1 and R 

Much of the emphasis in the analysis efforts described in this thesis has been confined 
to the extraction and study of structure functions under fixed assumptions about R. As a 
consequence, no studies of the systematic errors on these results for R and 2xFt have been 
undertaken as yet. This will presumably be accomplished by future graduate students, working 
with higher statistics samples of charged current events. 



Chapter 6 

Quark-Parton Model and QCD Results 

The structure functions obtained by the methods detailed above are compared with 
both experimental and theoretical expectations in this final chapter. Much of the structure 
function effort was the work of this author and M.Purohit. The emphasis in the physics 
discussions included here is on our results for F2 • Corresponding and complementary analyses 
for xF3 are described in detail in the thesis of M.Purohit (Pu84). Only salient features of these 
last discussions will be presented here in the interest of completeness. 

6.1 Comparisons with Existing Neutrino Results 

This is not the first experiment to extract structure functions from neutrino and anti­
neutrino charged current data. The consistency of our measurements with published results 
will first be examined. Of particular interest are the high statistics data from the CDHS col­
laboration [Ab83]. These are reported for the same kinematic range as covered by this experi­
ment, with comparable statistics. Other relevant results are frQm BEBC-Gargamelle [Bo78) 
and CHARM [Pa81] at CERN, and HPvVFOR [He81) at Fermilab. All results from neutrino 
experiments discussed in this chapter have been appropriately adjusted where necessary for the 
effect of theW-Boson propagator. 

The comparisons were made with a view to addressing three aspects of the results: 
(1) normalization, (2) x dependence of structure functions at fixed Q2 , and (3) Q2 dependence. 
To achieve this end, the various data sets were to be interpolated to common x and Q2 points. 
If necessary in x, this was accomplished by linearly interpolating the two nearest x bins to the 
required x value. The Q2 variation of these points was then fit to the form: 

(6.1) 

where fi was either F2 or xF3 , and f~(x) was the value of the structure function at Q2 = 
lOGe"¥2. The motivation for such a form is the expectation from QCD that scaling violations 
will be logarithmic in Q2 • 
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Figure 6.1 F2(x, Q2 ) from this experiment (CCFRR) with linear fits in log Q2 
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Figure 6.2 xF3(x, Q2 ) from this experiment (CCFRR) with linear fits in log Q2 



6.1. Comparisons with Existing Neutrino Results 103 

Examples of fits to our data are shown in figures 6.1 and 6.2 for F2 and xF3 respec­

tively. These illustrate the degree to which the data conforms to this functional form. lt can 
be seen that for the most part the fitted value of the structure function at Q2 = lOGe\72 

represents an interpolation of the data, rather than an extrapolation, except in the lowest and 

highest x bins. 

In figure 6.3 are shown the values of the parameter f3 obtained from fits to reported 
data without interpolation in x. The fits were limited in Q2 to the region above the lowest Q2 

bin reported by this experiment. The Q2 behavior of data so eliminated could differ from that 

in the region of concern, due to the effect of higher-twist terms which decrease with inverse 
powers of Q2 , rather than logarithmically. Results from BEllC-GGM are not shown, as the 

statistical precision of this data in the overlap region was limited. The conclusion to be drawn 

from the figure is that the Q2 variation of the considered data sets is consistent, although at 

high x the scaling violations in the HPWFOR result are generally larger. 
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Figure 6.4 

F2(x, Q2 ) from the CDHS collaboration. Solid lines are fits to CDIIS using 
slopes from our data. Dashed lines are corresponding fits to CCFRR. R = 
0.1 was assumed for both sets of data. 
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Figure 6.5 

F2(x, Q2 ) from the IIPWFOR collaboration. Solid lines are fits to HPWFOR 
using slopes from our data. Dashed lines are corresponding fits to CCFHR. 
R = 0.0 was assumed for both sets of data. 
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F2(x, Q2 ) from the CHARM collaboration. Solid lines are fits to CHARM 
using slopes from our data. Dashed lines are corresponding fits to CCFRR. 
R = 0.0 was assumed for both sets of data. 
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Given this conclusion, the normalization and x dependence differences among the 
various results were investigated using the value of f3 obtained from our data in each x bin. 
Equation 6.1 then becomes a one parameter fit for the comparison data set. Within the limits 
of the stated assumption, the values of ratio of F2 at Q2 = lOGe¥-2 from the two experiments 
under consideration therefore had smaller errors. The efficacy of the procedure is illustrated by 
examining figures 6.4 through 6.7. These show the logarithmic variation in Q2 of F2 for each 
of the other data sets. The solid lines in the figures are the best fits to F2(x, Q2 = 10GeV2 ) 

using f3 from our data. The dashed lines are the best fit to our data, with the actual points 
removed for clarity of presentation. The chosen technique can be seen to fit the various data 
sets reasonably well. There is a hint in the Gargamelle data, shown in figure 6.7, that at large 
x the Q2 dependence below Q2 = lOGe¥-2 differs significantly from that measured by this 
experiment. This observation is confirmed by reported measurements of F2 from SLAC [Bo79) 
discussed below. · 

Figure 6.8 shows the fit values of F2 at Q2 = lOGe¥-2 from both our data and CDHS. 
Part of the discrepancy between the results reflects the difference in the reported total cross 
sections. On this basis, one would expect the integrals to differ by 10%, somewhat outside 
the estimated normalization errors of 4.1% for F2 from this experiment and 6% for that from 
CDHS. In order to connect the normalization of structure functions to a pre-assigned total cross 
section level, it would be necessary to estimate the integrals of structure functions in unmeasured 
regions. Disagreements at the few percent level might be anticipated. However, the integrals in 
fact differ by a total of 19%. The origin of the additional discrepancy is not understood. Our 
structure function measurements, given reasonable extrapolations of their behavior outside the 
measured region, have been found to reproduce the reported total cross section measurement to 
within± 2%. Also, the integral over all x of structure functions averaged over Q2 was 0.482 for 
F2 and 0.324 for xF3 (with zero charm mass and 1/2 SU(3) symmetric strange sea). These are 
within 1% and 4% respectively of the predicted values from the total cross section (section 5.1). 
The results calculated from the total cross section are averages of structure function integrals 
at fixed Ev(ii), and do not strictly correspond to Q2-averaged illtegrals of structure function 
measurements. Therefore, this represents reasonable agreement. 

Irrespective of these overall normalization difficulties, there is considerable difference 
in the reported x dependence of F2 • This is most easily seen in figure 6.9, which shows the ratio 
at Q2 = lOGe¥-2 of F2 from CDHS to F2 reported here. The dashed line represents the average 
ratio expected from the total cross section values. The CDHS result. was reported under the 
assumption of a zero charm quark mass. The effect on the ratio has been estimated to vary 
from 5% at small x to 2% at large x, but is not sufficient to account for the discrepancy. The 
squares in the figure show the necessary level of adjustment for each x bin. The differences 
between the two results are outside statistical errors, and exhibit a clear systematic trend. In 
general, our result for F2 is more strongly peaked at small x than that from CDHS. Except in 
the highest x bins, the systematic errors in the two results have been estimated to be small. 
The ratio of neutrino to anti-neutrino total cross sections used in the two analyses was not 
sufficiently different to contribute significantly to a shape difference. Therefore, the origin of 
the difficulty is not understood either. However, the reader is reminded that the resolution of 
our measurements at small x was about three times better than that of CDHS. 
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Figure 6.10Ratio of F2 at Q2 = 10GeV2 for CCFRR and HPWFOR assuming R = 0.0 

This same analysis has been repeated in comparing our result for F2 with that from 

HPWFOR. Figures 6.10 shows the ratio of F2 at Q2 = 10GeV2 from the two experiments. 
Results under the assumption that R = 0.0 were used for both groups. The dashed line in the 
figure is the expected ratio from the total cross sections. The squares represent the adjustment 

· required for a finite charm mass (1.5GeV). Despite the obvious differences at large x, the ratio 
of integrals of F2 was not in serious disagreement with the predicted ratio from the total cross 
section. It should be noted that in the case of the HPWFOR result, the total cross sections used 
were not measured but represented the world average at the time of the experiment. Ignoring 
the level difference, the shape of the HPWFOR result matches well the CDHS result except at 
large x. The effect of the different assumptions made about R by the two groups is appreciable 
only below x = 0.2, and does not change this conclusion. Therefore, the observation that 
our result for F2 is more strongly peaked at small x is true in comparison with HPWFOR. 
The difference between our measurement and that of HPWFOR could originate in at least 
two sources: (1) the HPWFOR result was obtained in a wide-band beam, which suggests that 
systematic errors in neutrino flux could be a contributing factor to the discrepancy, and '(2) the 
HPWFOR target was scintillator (2/3) and iron (1/3), so that nuclear Fermi motion corrections 
could explain part of the large x difference. In this last · connection, the reader is referred 
to section 6.2 for a discussion of the observation in charged lepton scattering experiments of 
target-dependent differences in the shape of F2(x). 



G.l. Comparisons with Existing Neutrino Results 

~ 
....... 

§' t\l 
,...; -

0 
<0 
0

.00 

I 

• CHArul 

c BEDC-GGM 

I 
0.25 X 

Figure 6.11 

I 

-

0.50 0.75 

R:\tio of F2 at Q2 = 10GeV2 for CCFRR and CHARM and BEBC-GGM 

assuming R = 0.0 

111 

Finally, consider the comparison of our results with those from CHARM and BEBC­

Gargamelle. Figure 6.11 shows the ratio of F2 from these experiments to our result at Q2 = 
10Gey2. Appropriately, our R = 0.0 measurement was used for this comparison. Limited 
statistics in the overlapping Q2 regions, particularly for the BEBC result, make definitive 

conclusions impossible. However, there is reasonable agreement between the observed level 
differences and the expectation from total cross section predictions. Except at high x, the x 
dependence of the CHARM result agrees with our measurement. Again, the target material for 

CHARM was marble and not iron, so the agreement is perhaps fortuitous. For the BEBC-GGNI 
results the target was variously liquid freon or a liquid Ne-H2 mix. 

These observations can be suillmarized as: (1) there are systematic discrepancies in 

the x dependence of F2 from the various experiments, and (2) the normalization differences 
among the experiments for the most part reflect the different total cross section measurements 
used by the groups, and hence flux normalization errors. It should be noted that there is some 

additional level discrepancy in comparison with CDHS, perhaps due to some difficulty with 
resolution corrections in conjunction with uncertainties in tl.te values of structure functions 

outside kinematically accessible regions. Despite these differences in the x dependence of F''.2, 
the Q2 variation observed in the data is quite similar, as indicated by the agreement in values 

of dlnF2 /dlnQ2 . 
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6.2 Mean Square Quark Charge Test 

In the quark-parton model the structure functions are interpreted in terms of quark 
densities within the nucleon. Let Qi(x)dx be the probability density in momentum space of the 
ith quark with fraction x of the nucleon momentum. Then: 

2xF1(x) = F2(x) = I)qi(x) + qi(x)) 
i 

xF3(x) = L)qi(x)- qi(x)) 
i 

(6.2) 

Neglecting thresholds introduced by finite quark masses, the coupling of the weak force to 
quarks is flavour independent. On the other hand, coupling to the electromagnetic force is 
proportional to e~,. Structure functions extracted from electron or muon scattering from the 
nucleon reflect this fact. In the quark-parton model: 

(xF3 is not measurable in parity-conserving electromagnetic interactions.) 

F2 ·as measured by muon scattering from protons and neutrons is: 

4 1 -
F~P(x) = g-(up(x) + up(x)) + g-(dp(x) + dp(x)) + 

~(sp(x) + sp(x)) + ~(cp(x) + 'Cp(x)) 

4 1 -
F~"(x) = g-(un(X) + Un(x)) + g-(dn(x) + dn(x)) + 

~(sn(x) + Sn(x)) + ~(cn(x) + Cn(x)) 

(6.3) 

(6.4) 

Now, assume the usual isospin symmetry: up(x) = dn(x) and dp(x) = un(x), and that for sea 
quarks qp(x) = Qn(x). Then for an isoscalar target: 

FPN( ) = ~{1 - 3 (s(x)- c(x)) + (s(x)- c(x))} "( ·{ ) + -.( )) (6.5) 
2 x 18 5 q(x)+q(x) L.Jq,x q,x 

Thus F~N is related in this model by the mean square quark charge {5/18) to F2N. 

The European Muon Collaboration (EMC) has published [Au81 b) a high statistics . 
measurement of F2 from inclusive deep-inelastic muon-scattering data in iron. This data has 
been used along with corresponding results for neutrino scattering in iron to test the quark­
parton model prediction. For this test the structure functions have been compared as a function 
of x at a fixed Q2 • The same technique described in section 6.1 was used to accomplish this 
end. The EMC data were firs.t interpolated to the same x values as the comparison neutrino 
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data set. A linear fit in log Q2 was made to the interpolated points: 

(6.6) 

Since the EMC data had the greatest statistical precision, the comparison data sets were 

interpolated to the Q2 = 10GeV2, using the best fit to the Q2 variation of the EMC data: 

(6.7) 

A predicted value for the neutrino result at Q2 = 10GeV2 was made using F~N and equation 
6.5. 

lO 
7::-
0 

0 
l.D 

0 

l.D 
N 
ci 

lD 
N 
0 
I 

0 
lO 
0 
I 

l.D 
7::-
0 

! 
1 iII 

T 

! 

-

-

I .00 

I I 

i f 
~% * -

I ~ 

I 
0.25 

I 
I 

I 

X 

Figure 6.12 

~I 

' 

I 

o CCFRR (R=O.l) 
D CDHS (R=O.l) 
x EMC {R=O.l) -
111 BCDMS (R=O.l) 
}l: SLAC (R=O.O) 
o BFP (R=O.O) 

-

1 
-

~~ 
~~ 
· t-.. 

I -

I 
I 

0.50 0.75 

Values of dF2 fdlogQ 2 normalized by F2 at Q2 - 10GeV2 for various 
neutrino and charged lepton experiments 



5. Qua.rk-Pa.rton Model and QCD Results 114 

0 
0 r-~~--~~~~~----~--~~~~~----~--~~~~~ 
0 
..-I 

0 
0 
..-I 

0 
T-i 

0 

0 
T""l 

• 

I I.150 (X12.5) 

~:q;; &=@~--~ x=.250 (X6.25) 

m-J__.. "'e-.:~ • I "' :m €r~ .:r x=.350 (X3.75) -

o EMC (R=O.l) 

0 ~~~--~~~~~----~--._~~~~-----~--~~~~uu 
0 1.0 10.0 100.0 1000.0 

logQ2 (GeV2
) 

Figure 6.18 

F 2(x, Q2 ) from this experiment and EMC. Solid lines are fits to our data 
using slopes from EMC. Dashed lines are corresponding fits to EMC. R = 
0.1 was assumed for both sets of data. 
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The procedure is justified, as in the case of the comparison of neutrino experiments 
in section 6.1, by the agreement in the level of observed scaling violations found in the various 
data sets. A measure of this agreement is shown in figure 6.12: the fit values of f3 from neutrino 
and charged lepton measurements of F2 • Shown in the figure are both fits to our result and 
that of CDHS, along with those from EMC (Jt-iron) [Au81b), BFP (Jt-iron) [Me83), BCDMS 
(Jt-carbon) [Bo81) and SLAC (e-D2 ) (Bo79]. Except for the SLAC data, the fits were made in 
overlapping Q2 regions, and are in reasonably good agreement. The SLAC measurements were 
at lowe!' Q2 , and significantly differ from the other results at large x. Thus, the hint of larger 
Q2 variation in the BEBC-GGM data at small W2 and large xis also seen in the SLAC data. 

An example of a fit of the form given in equations 6.6 and 6.7 is shown in figure 6.13. 
The dashed line in the figure is the best fit to the EMC data. The solid line is the result 
of a one parameter fit to our data using f3EMc(x). The ratio of F2N from this experiment 
to the predicted value from F~Mo is shown in figure 6.14. The inner error bars represent 
statistical errors only, while the outer error bars include in quadrature estimates of point-to­
point systematic errors. Additional overall scale errors of 4.1% for our result and 3% for 
that from EMC are not shown. The small correction for the strange sea was made using the 
measured x dependence of q(x, Q2 ) from our data. It was assumed thn:t c(x) = c(x) = 0 within 
the nucleon. As shown in the figure, x dependent changes at the few percent level could be 
made in the ratio by changing the fraction of the sea assumed to be represented by strange 
quarks (nominally 1/2 SU(3)), or the correction for slow rescaling due to finite charm quark 
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mc=l.5GeV). These uncertainties do not modify significantly the conclusions to be drawn 
from the figure. It can be seen that our result lies on average 9.5% above the predicted value, 
but shows little x dependence. The level difference is so mew hat outside the quoted systematic 
scale errors. 

There is some evidence that systematic uncertainties in the normalization of the E!v1C 
result have been underestimated. Comparisons of published results for F2 from charged lepton 
scattering in H2 have been made by Smadja [Sm81] for SLAC [Bo79) and EMC [Au8la], 
and by Sciulli and Fisk [Fi82] for CHIO [Go79] and ENIC. Reproduced in figure G.l5 is the 
ratio of F2 from the three experiments. It was concluded that there existed a discrepancy 
in the normalization of the three experiments outside estimated scale errors. On average 
the measurements from SLAC and CHIO were respectively 10% and 8% higher then EMC. 
Recently, other results for F2 from iron have been presented by the BPF muon experiment 
[Cl83]. This group found that the EMC result was systematically lower by 5% in comparison 

with their measurement of F'J.. This suggests that the E:NIC resulLs from both 112 and iron 
targets should be raised by 5 ± 5% to accommodate the incompatibility among charged lepton 
results. Reasonable agreement between the EMC measurement and our result using the quark 
model relation (equation 6.5) would then be observed. 
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The relation can also be tested using the published neutrino results from the CDllS 
collaboration. This comparison is shown in figure 6.14. Here the ratio exhibits an x dependence, 
with the CDHS measurement on average 10% below the predicted value. Again, the level 
difference is outside the combined systematics of the two experiments. If the CDHS result was 
adjusted for a finite charm mass, the average difl'erence would be reduced to 6%. However, 
the disagreement at small x would remain. Since the x dependence of our result is seen to 
agree well with that of EMC, the comparison reflects on the earlier observation of disagreement 
between our measurements and those from CDHS. Other authors have pointed out the low x 
discrepancy between ENIC and CDHS [De83]. 

The same procedure can be repeated in comparing our results with those from the 
BFP muon experiment [Me83]. In this case, the values of (3 from fits to our data were used to 
constrain the fit to the muon data. The two data sets, along with the fits obtained, are shown 

in figure 6.16. The ratio o~ the values of F2 at Q2 = lOGeY-2 is shown as a function of x in 
figure 6.17. Clearly, there is good agreement between F2 from this experiment and the llFP 
measurement of F2 adjusted by the quark-parton model factor of 18/5. The scale error for the 
BFP measurement was reported to be 3% [Cl83]. 
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Figure 6.17Mean square quark charge test: F2 from CCFRR compared with BFP muon results 
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Before examining the comparison between our results and those from SLAC, a short 
digression is in order to remind the reader of recent unexpected developments in the field. The 
ratio of F2 from iron to F2 from D2 has been found to exhibit a strong x dependence not 
explainable in terms of Fermi motion corrections. In fact, the effect is in a direction opposite to 
that expected from Fermi motion smearing. The phenomenon has been observed both in muon 
scattering by the EMC collaboration [Au83] and in electron scattering at SLAC [Bo83a). Figure 
6.18 reproduces the ratio observed by the two collaborations. The good agreement between the 
two measurements, despite the large difference in mean Q2 for the experiments, indicates that 
the effect has little Q2 dependence above Q2 's of a few Ge y2. The explanation for the difference 
in the intrinsic shape of quark distributions in iron and deuterium is thought to lie in large 
distance, low Q2 effects, uncalculable using perturbaiivc QCD. Quark distributions within a 
nucleon are apparently distorted by the presence of other nucleons within the nucleus. Recent 
bag model calculations [Ja83] suggest that distortions can occur by mechanisms such as six 
quark collective states. These observations invalidate previous QCD fits which combined raw 
measurements of' structure functions obtained from different targets, but not fits made to data 
internal to one target or properly adjusted data from different targets. 
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F2(x, Q 2 ) from this experiment and SLAC. Solid lines are fits to SLAC using 
slopes from our data. Dashed lines are corresponding fits to CCFRR. R = 

0.0 was assumed for both sets of data. 
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In order to compare the shape and normalization of the SLAC data within our own 

measurements, it was necessary to make suitable adjustments to the x dependence of the SLAC 
deuterium results. This adjustment was based on the EMC measurement [Au83) of: 

(6.8) 

Below x = 0.65, this clearly fits the SLAC measurements as well. Adjustments were also needed 
to account for the fact that the SLAC data were analyzed in terms of 2xF1 and F2 , with no 
fixed assumption about R. This makes comparisons with experiments which do assume values 
for R more difficult. The method used by SLAC to obtain structure functions [Bo79] was similar 
in spirit to that described in section 5.7. In fixed bins of x and Q2 , the differential cross section 
was measured at various angles, Be, or photon polarizations (c). A two parameter linear fit was 

then made, with 2xF1 proportional to the intercept and F2 proportional to the value at c = 1.0. 

Experiments which assume R fix the slope of this fit. Without the full correlation matrix, such 

a one parameter fit cannot be reconstructed from the published data. However, if R = 0.0 
is assumed, only the diagonal elements of the matrix are needed. Under this assumption, F2 

is the weighted average of the published results for F2 and 2xF1 • Appropriately, our results 
assuming R = 0.0 were compared with the SLAC results so adjusted. 

There was almost no overlap in the Q2 range covered by the two experiments. The 
requirement that only common Q2 regions be considered was therefore removed. Fits were 

made both with and without the constraint of using f3 determined from our data. An example 
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Figure 6.£0 Mean square quark charge test: F2 from CCFRR compared with SLAC electron results 
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or a fit including the Q2 constraint is shown in figure 6.19. The observed ratio of F2 at Q2 = 
lOGe V2 is shown in figure 6.20. As expected from the discussion of the consistency of SLAC 
and EMC results from H2, our measurement can be seen to be in good agreement with the 
adjusted SLAC results. 

A common feature of these comparisons of our measurements of F2 with both neutrino 
and charged lepton-scattering results is the tendency for the last x bin (0.65) to lie above 
expectations. The predominant systematic error in this bin was calibration uncertainties in 
the measurements of EIJ and to a lesser extent EH. The implication is that the muon energy 
measurement was systematically high. However, as illustrated in figure 6.14, the estimated 
systematic errors assigned the measurements in that bin were sufficient to accommodate the 
discrepancy. 

To summarize these observations: (1) the x dependence of our measurement of F2 

is consistent with comparable measurements from charged lepton scattering in contrast with 
the disagreement among neutrino experiments, and (2) the mean square quark charge test is 
confirmed at the 10% level. The agreement among the results from SLAC, BFP and this 
experiment is well within errors. There is evidence that the normalization uncertainty assigned 
the EMC result is underestimated. If so, the level discrepancy between EMC and our result is 
understood. Finally, the scaling violations seen in measurements of F2 in the Q2 range covered 
by this experiment are similar for both neutrino and charged lepton experiments. 

6.3 Gross-Llewellyn Smith Sum Rule 

Another result which is sensitive to absolute normalization is the Gross-Llewellyn 
Smith (GLS) sum rule [Gr69). Under the usual assumption of isospin symmetry, up = dn and 
dp = Un, the net electric charge of protons and neutrons can be expressed in terms of integrals 
over quark number densities: 

Thus 

11 { } 
dx 2 _ 1 -
- - (u(x)- u(x))- -(d(x)- d(x)) == 1 

0 X 3 3 

11 { } 
dx 2 - 1 _ 
- -(d(x)- d(x))- -(u(x)- u(x)) = 0 

0 X 3 3 

{

1 

dx(u(x)- u(x)) = 2 lo x 

/.

1 
dx -
-(d(x)- d(x)) = 1 

0 X 

Furthermore, the nucleon has net strangeness zero, so: 

/.

1 

dx (s(x)- s(x)) = 0 
0 X 

(6.9) 

(6.10) 

(6.11) 
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Figure 6.£1 xF3 and J; F3 dx at Q2 = 3Ge¥-2 with global fit xF3(x) = AxO'(l- x)~ 

Combining these results, it can be seen that the quark-parton model result for the GLS sum 
rule is: 

[1 dx xF3(x, Q2) = [1 dx (q(x)- q(x)) = 3(1- as(Q2)) 
lo x lo x 1r 

(6.12) 

Equation 6.12 includes the correction due to QCD beyond the leading log approximation. 

Summarized here are results for the GLS sum rule reported by M.Purohit [Pu84). 
The experimental measurement of the integral of F3 receives important contributions from the 
small x region. In fact, roughly half the integral comes from x below 0.06. The excellent small 
x resolution of this experiment allows us to make a nearly model independent measurement. 
However, the reported result is necessarily at low Q2 , since the accessible Q2 range at small x 
was limited. The technique used was to divide the integral into two portions. Above x = 0.06, 
xF3 fx was numerically integrated. Below this point, xF3 was extracted in six bins of width 
0.01, and fit to the form AxO'. The best value for a was 0.58±0.18. This is consistent with 
the expectation [Fi77] that xF3 behaves like Jx as x-+ 0. The result for the GLS sum rule was 
2.79 ± .28 ± .14 at Q2 = 3GeV2, where the first error is statistical and the second the scale 
uncertainty for xF3 • A more model dependent fit of the form Axo-(1- x)P yielded a consistent 
value of 2.83 ± .15, with f3 = 0.58± .06. These results indicate that AQcD < 600MeV. Figure 
6.21 shows the x dependence of both xF3 and the integrated value of F3 at Q2 = 3GeV2. 
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6.4 QCD Formalism 

A brief summary of the perturbative QCD description of deep-inelastic scattering 
processes is presented here. The reader interested in a more complete and rigorous discussion is 
referred to the extensive literature on the subject, such as review articles by Altarelli [A182] or 
Field [Fi78,Fi79]. For QCD beyond leading order the work of Curci, Furmanski and Petronzio 
[Cu80,Fu82} has been useful. 

Quantum Chromodynamics (QCD) is the most promising field theoretic description 
of the strong interaction. Formally, QCD is a non-Abelian gauge theory based on the SU(3) 
(colour) group [Po73,Gr73]. In this description, forces among coloured quarks are mediated by 
the exchange of massless vector gluons. The exchanged particles are also coloured and therefore 
self-coupling. The coupling between quarks and gluons, as( Q2 ), decreases logarithmically with 
increasing momentum transfer, Q2 : the theory is asymptotically free. In leading order: 

2 411" 
as(Q ) = f3o lnQ2fA2 

2 
f3o = 11- -Nf 

3 

(6.13) 

where Nf is the number of quark flavours, and A is the QCD scale parameter, related to the 
renormalization point. This implies that high Q2 elements of processes are calculable using 
perturbation theory and Feynman rules derived from the quantiz~d QCD lagrangian. However, 
those elements of the process involving low Q2 cannot be so addressed. Suitable division of 
problems into high and low Q2 parts is a necessary precursor to solution in terms of QCD. 

For the deep-inelastic scattering problem, this division has been made in analogy to the 
quark-parton model. Structure functions are calculated by convoluting parton densities with 
parton-current cross sections. The validity of such a procedure rests on the assumption that 
partons within the nucleon have limited k ..L and are quasi-free. The quark-parton interaction 
is therefore a high Q2 process: modifications to the pointlike cross section are significant and 
calculable. In lowest order, this is handled by absorbing the leading-log corrections to the cross 
section into the definition of the parton density: the parton density becomes effectively Q2 

dependent. As the current probes the nucleon with larger Q2 , quarks are resolved into quark 
plus anti-quark pairs, or quark plus gluon. Thus the evolution of quark densities with Q2 can 
be described. The aspect of the problem which is not calculable is the intrinsic distribution 
of quarks within the nucleon: this depends on long range and low Q2 interactions among 
constituent quarks. Also, distortions observed in intrinsic quark distributions due to the nuclear 
environment in which the quark is found cannot at present be predicted. 
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The Altarelli-Parisi equations [Al77] represent a quantitative statement of the solution 
to the deep-inelastic scattering problem: 

d~21~Q~
2

) = 05i~
2

) k~~l(x) ® F2(x, Q2l+ 2N1P~~(x) ® G(x, Q2
)} 

d~~:·~
2

) = 05;~
2

) {P~l(z) ® F2(x, Q2
) + P~!,(x) ® G(x, Q2

)} (6.14) 

dxF3(x, Q
2
) = as(Q

2
)p(o)( ) tO\ F: ( Q2) 

dlnQ2 27r qq x VYx ax, 

where 

1
1 

dz x 
f(x) ® g(x) = - f(-) g(x) 

X Z Z 
(6.15) 

The splitting functions, P~~)(z), describe the probability of finding a parton i with momentum 
z produced by a parent parton j. These probabilities are completely determined by the theory: 

p(o)(z) = ~{ 1 + z2 + ~8(z- 1)} 
99 3 (1- z)+ 2 

1 
P~~(z) = 2{z2 + (1- z)2

} 

p~)(z) = ~{1 + (1- z)
2

} 
q 3 z 

(6.16) 

(o) { z 1 - z 33 - 2N 1 } 
PJ0 (z) = 6 ( ) +---+ z(1- z) + 8(z- 1) 

1- z + z 36 

where (1- z)+ 1 is defined by 

1
1 

dz h(z) = h(z = l)ln(1- x) + 11 

dzh(z)- h(z = 1) 
X (1 - Z )+ X 1 - Z 

The evolution of the singlet distribution, F2 , can be seen to receive contributions from two 
terms: (1) quark bremsstrahlung and (2) pair production from the unknown gluon distribution, 
G(x, Q2 ). The gluon distribution itself evolves with Q2 . Thus, a coupled set of integral­
differential equations simultaneously describe the evolution of F2 and G. The evolution of 
the non-singlet combination of quark densities, xF3 , has a more simple description. Here the 
contribution of gluon pair production to quark and anti-quark sea distributions cancels, leaving 
just the quark bremsstrahlung term. 
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In figure 6.22, a typical example of the predicted variation of dF2 j dIn Q2 with x is 
shown, with the level of contribution from quark bremsstrahlung and gluon pair production 
separately indicated. In this particular example, for x > 0.15 the losses due to quark radiation 
exceed gains from gluon pair production. For x < 0.15 the second process contributes more 
t~an the first. The observed pattern of scaling violations in F2 conforms to these expectations. 
As can be seen in figure 6.1, F2 at small x increases with Q2 , and at large x decreases. Figure 
6.23 shows the corresponding variation with x of dxF3 / d ln Q2 

1 which receives contributions 
only from quark bremsstrahlung. 

Another useful way of illustrating the features induced in parton distributions by 
QCD scaling violations is to compare distributions at two different values of Q2 • In figure 
6.24 and 6.25 are shown typical values for 2xF1 = q + q, xF3 = q - q, q and the gluon 
distribution at Q2 = 5GeV2 and Q2 = 200GeV2. The migration of valence quarks to smaller 
x is clearly evident in xF3 • The increase in the sea quark distributions at small x due to 
gluon pair production results in the corresponding increase of F2 at small x. Along with losses 
at high x from pair production, the gluon distribution rises sharply at small x due to quark 
bremsstrahlung. 

Calculations of the next-to-leading order corrections to the Altarelli-Parisi equations 
have recently been made (see [Fu82] for the long list of contributors to this work). Presuming 
the perturbation series to be convergent, these calculations offer a more accurate prediction of 
the processes under consideration. For example, calculations beyond the leading order lead to 
predictions for a finite value for FL = F2- 2xF1 orR, proportional to a 8 (Q2 ): 

(6.17) 

Neglecting Q2 variation in the quark and gluon distributions, FL should decrease logarithmically 
with Q2 • Also, it is evident that FL should be large at small x and small at large x. 

There is an additional consideration. The strong coupling constant is a solution to 
the renormalization group equations. In leading order the most general solution is: 

2 411' 411' 2 

as(Q ) = f3o(lnQ2jA2 +c)- f3o lnQ2JA2 + O(as) (6.18) 

where (30 is given in equation 6.13. The constant c is equivalent to O(a~) corrections to the 
leading order expression, and can in general differ from process to process. Only by including 
next-to-leading order effects will the value of A be the same from different processes. This 
implicitly assumes that O(a~) corrections are small. 

Beyond leading order, several renormalization schemes appear in the literature; com­
monly the MS scheme is used which minimizes the 0( a~) corrections to the evolution equations. 
There is a further ambiguity in the precise factorization of structure functions into parton den­
sities and pal'ton-current cross sections. One approach is to evolve universal parton densities 
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according to: 

(6.19) 

Here the splitting functions Pd include the first order terms of equation 6.16 plus O(as) 
corrections: 

P·. = p(~)(x) + as(Q2) p(l)(x) 
'J l} 271" lJ (6.20) 

The structure functions obtained from specific deep-inelastic scattering processes are con­
structed by convoluting these universal parton densities with the corresponding short distance 
cross section (coefficient functions) calculated to O(as ): 

Fi(x, Q2
) = 2: c;.(x) ® Qi(x, Q2

) + C~(x) ® G(x, Q2
) 

i 
(6.21) 

The form of the splitting functions and coefficient functions can be found in the literature 
[Cu80,F'u82). Of course, as in first order, there is no contribution from the gluons to the 
evolution of xFa . However, QCD beyond the leading order predicts a difference between 2xF1 

and F2, as manifested in the formalism by different coefficient functions for 2xF1 and F2 . This 
' two-step method was the approach adopted in a program written by Duke [De83] and later 

supplied for our use. Charge and momentum sum rules in these universal parton densities are 
preserved to all orders. 

Alternatively, the definition of parton densities can be fixed to some specific process. 
A common choice is to preserve the Adler sum rule to all orders: 

(6.22) 

Evolution of structure functions is accomplished directly, using an appropriately modified set 
of splitting functions . The virtue of this second approach is computational simplicity. The 
program used and supplied by Barnett [Ab80] for next-to-leading order fits to xF3 uses this 
one-step method. The observable structure functions are of course the same in either method; 
how they are parametrized in terms of parton distributions is ambiguous. 

For completeness, it should be mentioned that there are processes and effects at low 
Q2 and low ltf2 which can contribute scaling violations to the data decreasing with inverse 
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powers of Q2 • These include (1) scattering from di-quark or multi-quark components of the 
nucleon wave function, (2) the intrinsic k .L distributions of quarks leading to finite values of 
R, (3) quark mass thresholds and (4) target mass corrections. In a global view of existing data, 
it is evident that at high x there is a considerable difference between the amount of scaling 

violation observed in low Q2 experiments, such as SLAC [Bo79], and the more recent higher 
Q2 results. This was noted in section 6.2 above. The difference cannot be accommodated in a 
global QCD fit, but does suggest significant higher-twist contributions to scaling violations at 
small W2 [Ei81]. This region was not included in any of the QCD fits described below. 

6.5 ~<Jl) ~its 

Several methods exist for comparing data with QCD predictions. One particularly 
simple form is the moment equations for the non-singlet distribution: 

(6.23) 

In this case, the convolution integral for xF3 (equation 6.14) reduces to a simple product, so 
that: 

dlnMn(Q 2 ) as(Q2 ) 
-------~~= an 

dlnQ2 21r 
(6.24) 

where an is the nth moment of the splitting function, P~~)(z). Ratios of moments are predicted 

to vary linearly with slopes fixed by the theory. From equation 6.24, it can be shown that 

the moments decrease in inverse powers of lnQ2 /A2 , which also can be tested. A summary of 
results from other experiments using these techniques can be fo.und in the review by Soding 

and Wolf [So81). The principal limitation of such methods is that in order to compute the 
moments, substantial extrapolation outside the measured x region is necessary. 

An alternative method has been suggested by Buras and Gaemers [Bu77,Bu78]. Simple 
analytic expressions for quark distributions were constructed, which represented approximate 
solutions to the Altarelli-Parisi equations. For the valence quarks, the distributions reproduced 
the expected scaling violations of the first 12 moments to within 2%. The sea and gluon 
distributions were less well modeled. However, efficient numerical integration of the equations 
using a computer allows the use of a less restrictive model, with hardly any more difficulty. 

These data therefore have been fit to QCD predictions for parton distributions directly 
evolved using numerical integration. As noted in section 6.4, programs have been provided by 
Barnett [Ab80) and Duke [De83] to accomplish this end. The strategy employed is to start with 
a suitable general functional form for the quark distributions at some Q~, and evolve to all 
other required Q2 . The parameter A, through the strong coupling constant as( Q2 ), controls 
the amount of scaling violation predicted. The virtue of the technique lies in directly comparing 
prediction with measurement in accessible kinematic regions. 
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The various functional forms assumed for the behavior of G, F2 and xF3 at Q5 were: 

G(x, Q~) = ao(l- x)c 0 (1 + 1ox) 

F2(x, Q~) = a2(l- x)c2 (1 + 12x) 

xFa(x, Q~) = a3Xb3(l- x)c3 (1 + 13x) 
(6.25) 

The motivation for these particular choices is much the same as that described in relation to the 
calculational model used for integrations necessary for structure function extraction (section 
5.2.2). Along with A, appropriate subsets of these parameters were varied until a minimum x2 

was obtained. 

Several subtle limitations of this approach have been reported [De83]. First, the 
amount of scaling violation induced in the data by the essentially unmeasured region above 
x = 0.65 is substantial, and depends on the functional form assumed for the behavior of 
the quark distributions in this region. Second, there is an inconsistency between the usual 
prescriptions for making target mass corrections: the use of Nachtmann moments [Na73] and 
the Georgi-Politzer [Ge76a,Ge76b] convolution integrals in momentum space. To address this 
last difficulty, fits were restricted to the region Q2 > 5GeV2 and W2 > 10GeV2, as these 
authors have recommended. 

The relative statistical precision with which F2 is measured would seem to offer the 
best opportunity for testing QCD. However, the evolution of F2 is complicated by coupling 
to the evolution of the gluon distribution. The form of G is not directly probed by the deep­
inelastic processes considered here. Hence, fits to singlet combinations of quark distributions 
contain additional free parameters. The nature of the contribution of the gluon distribution 
to scaling violations in F2 is not well constrained by F2 alone. It is difficult to decouple the 
correlation bet.ween A and parameters of the gluon distribution. 

This can be seen in figure 6.22. The values of F2 imply t~rough the quark bremsstrah­
lung term a A dependent expectation for the level of scaling violation in the data. In fits to F2 

alone, the deviations in the x dependence of these scaling violations from this expectation are 
all that determine the gluon distribution. The integral of G is normally fixed by the momen­
tum sum rule (equation 6.26 below), but the distribution in x needs to be determined. If the 
fraction of gluons at large x were increased, for example by decreasing c9 , the same values 
for dF2 fd In Q2 could be obtained by increasing A. Thereby, the contributions from the quark 
bremsstrahlung term would be increased to offset the increased component of the scaling viola­
tions due to the gluon term. Clearly, distortions in the predicted x dependence of dF2/ dIn Q2 

would result. However, there is relatively little correlation between small and large x behavior 
embodied in the functional form used for the gluons. It is unreasonable, and in fact undesirable, 
to expect that the fitted form of the gluons at small x should strongly limit the behavior of 
G at large x. Therefore, it is beyond the statistical power of the present measurements of F2 
alone to well constrain the fraction of gluons at large x. 

Alternatively, fits to xF3 could be used to determine A. Since the evolution of this 
structure function does not depend on the gluon distribution, potentially a unique opportunity 
exists to make a measurement of A with minimum assumption. From the experimental point 
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Leading Order Second Order(MS) 
R=O.O R=RQcD 

A 360± 100MeV 340 ± 110MeV 

a2 1.525 ± .086 1.808 ± .092 

c2 2.85 ± .16 3.36 ± .15 

12 1.87 ±.56 2.14 ±.57 
x2 45.5 for 39 DF 45.5 for 39 DF 

Table 6.1 

Best values for free parameters obtained in fits to F2 with co = 4.6 and 

10 = 9.0 

132 

of view, xFa is also attractive since extraction is nearly independent of the value of R and 
assumptions about the strange sea. However, the data are statistically less precise than F2 , and 
the resulting best values for A have large errors. 

6.5.1 F2 analysis 

Fits were made to F2 in the region Q2 > 5GeV2 and W2 > 10GeV2, where target 
mass, higher-twist and quark mass threshold corrections should be small. Data below x = 0.1 
are eliminated in an attempt to limit reliance on uncertain assumptions about the strange sea. 
The normalization of the gluon distribution at Q~ = 5GeV2 was obtained from the momentum 
sum rule: 

(6.26) 

As expected, fits using F2 alone were unable to significantly constrain the other gluon param­
eters. These parameters were therefore fixed to reasonable values: co = 4.6 and 10 = 
9.0. T.arget mass corrections were made following the prescription of Georgi and Politzer 
[Ge76a,Ge76b]. Due to the Q2 and W2 restrictions noted above, these corrections resulted in 
changes in A of less than 15MeV. 

The best values for the free parameters from a leading order fit to F2 (extracted with 
R = 0.0) are listed in Table 6.1, along with associated statistical errors. Figure 6.26 shows 
the variation of x2 with ALo for this fit, with minimum at A= 360MeV. The horizontal lines 
correspond to one standard deviation and the 90% confidence limit. The corresponding result 
for a second order fit to F2 (extracted with R = RQcD) is shown in figure 6.27. The best 
values for the free parameters from this fit are listed in the second column of table 6.1. The 
fit was equally good, and the value of A was 20MeV smaller than that obtained in the leading 
order case. The results for F2 assuming R = RQcD, together with the second order QCD fit 
are shown in figure 6.28. 
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It is well known [Ab82a,De83] that the fitted value of A is strongly correlated with 
the parameters characterizing the gluon distribution. The variation of the value obtained for 
A with changes in the assumed values for the parameters of the gluon distribution has been 

studied. The correlation between ALo and ca, for various values of "fa, is shown in figure 6.29 
for the leading order fit described above (R = 0.0). Figure 6.30 shows the correlations observed 
for the second order fit (R = RQcD ). The quark-parton model and asymptotic QCD [Al82] 
predict that the gluon distribution behaves at large x like (1- x)' 3+1 • The large x behavior 
of both xF3 and F2 suggest that c3"'3. It is reasonable to expect that the gluon parameters 
lie within the limits: 4 ::; ca ::; 8 and "/G ;:?: 0. The rms contribution to the uncertainty in the 
determined value of A was found to be about ±50MeV, if all values of the gluon parameters 
within the noted limits were equally probable. 

The best value of ALo also depended on R. The level of sensitivity is shown in table 
6.2, where the results obtained for A under various assumed values for R are listed. The same 

gluon distribution noted above was used in all cases. The value of ALo increased by 160MeV 
in changing R from 0.1 to 0.0. Structure functions extracted with a value of R as predicted by 
second order QCD (equation 6.17) lie roughly midway between the R = 0 and R = 0.1 results. 

The predicted value of R depends on both F2 and the gluon distribution. The 

correlation between A and the gluon parameters shown in figure 6.30 does not take this fact into 
account. The shift in A was observed for two extreme assumptions about the gluon distribution: 

(co = 3~ "/G = 1000) and (co = 8, "fa = 0). The change produced was in a direction to reduce 
the sensitivity to the gluon distribution: at (co = 3, "/G = 1000) the value of A shifted down by 
30MeV and at (ca = 8,"/a = 0) the value shifted up by 30MeV. Hence, if properly included, 

the effect of using a predicted value for RQcD would reduce the maximum range of variation 

induced in A by variations in the assumed gluon distribution. Most of the shift was found to 

be due to changes in the x dependence of R resulting from different gluon distributions. The 

effect on A of changing the amount of scaling violation in R was found to be negligible. 

Considerable variation in the best value for A also arise't from changing assumptions 
about the strange sea. If the strange sea were full rather than half SU(3) symmetric, A would 

increase by 70MeV. The uncertainty in our measurement of the strange sea fraction, As = 
0.5±:~~, implies the assignment of a ±25MeV uncertainty to A from this source. Furthermore, 
the effect of changing the charm quark mass used in slow rescaling was also significant. If the 
effective charm mass were raised to 1.8GeV2, and As in correspondence increased to 0.55, the 
value of A was found to fall by 25NleV. Conversely, a mass of 1.2GeV and fraction As produced 
a rise of 25MeV. Reasonable variation of the assumptions about the strange sea therefore led 
to uncertainties in A of about ±35MeV. 

A-'MS 
R=O.O 360 ± lOOMeV 390 ± 110MeV 

R=O.l 200 ± 90MeV 230 ± lOOMeV 

RQCD 300 ± lOOMeV 340 ± llOMeV 

Table 6.2 Variation of the best value of A with the assumed R 
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Source of error Change in ALo 

Gluon distribution ±50~1eV 

Strange sea 
-.-

±35MeV 

Flux smoothing ±25MeV 

Flux level ±30MeV 

Secondary beam dispersion ±lOMeV 

Hadron energy calibration ±15MeV 

:Muon energy calibration ±15MeV 

Total (excluding gluon contribution) ±57MeV 

Table 6. S Approximate systematic errors on ALo from fits to F2 

R=O.l R=O.O R = RQcD 

W2 > lOGe¥-2 200± 90MeV 360 ± lOOMeV 300 ± lOOMeV 

W2 > 20Ge¥-2 180 ± 130MeV 410 ± 150MeV 310 ± 140MeV 

W2 > 30GeV2 250 ± 210MeV 520 ± 230MeV 410 ± 200MeV 

Table 6.4 Best values for ALo as a function of the W2 cut 

The uncertainty contributed by systematic measurement errors has also been eval­
uated. For each of the partially correlated sources of systematic error, such as the normalization 

errors, an ensemble of twenty experiments was randomly thrown as described in section 5.6. 
The resulting values for F2 from each of these pseudo experiments were fit using the same 

procedure described above. The rms of the distribution of fit values for each of the parameters 

was taken as the systematic error on that parameter due to the source under consideration. 
The systematic error on ALo, due to normalization errors and the flux smoothing procedure, 
was thereby determined to be ±40MeV for F2. 

For completely correlated sources of error, such as the calibration error on E"', a fit 

was made to the values of F2 shifted by an amount corresponding to a one sigma variation 
of the particular source of systematic error. Consistent with the remarks made in section 
5.6, the contribution of uncertainties in secondary beam dispersion was evaluated by shifting 
the dispersion at all settings by one sigma. This represented the extreme case. If instead a 
large component of the uncertainty was not correlated from setting-to-setting, the error due 
to dispersion would be smaller. Collected in table 6.3 are estimates of systematic errors on A 
due to various measurement errors. As expected, these are considerably smaller than statistical 

errors. 

The effect of raising the W2 cut was studied. Systematic changes in the fit value 
of A as a function of the W2 cut have been observed in other data sets [Ba82b). This has · 
been interpreted as possible evidence for substantial contributions by higher-twist terms to the 
scaling violations in these data. As shown in table 6.4, there is a systematic trend observable 
in our data also. However, the changes are well within errors and are in a direction opposite to 

that seen in fits to the CDHS and EMC results for F2 • 
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6.5.2 Comparison with results from other experiments 

Comparisons of results for A from F2 are complicated by the many different assump­

tions made by the various experiments in both extracting the structure function and in making 

the QCD fits. Different assumptions about R, and for neutrino experiments about the strange 
sea, have been shown to induce large changes in the value of A. The results are also sensitive 
to assumptions about the gluon distribution. This includes the use by some groups of the 
non-singlet evolution equation for fits to F2 above some x value: implicitly, the effect of the 
gluons is assumed to be negligible above that x. 

Despite these complications, it is clear that results from deep-inelastic experiments 

in the Q2 range covered by this experiment are consistent. This conclusion is in part drawn 

from the literature, such as studies by Duke [De83}. It can also be illustrated by the specific 

examples. Where possible, for the comparisons listed in table 6.5, our F2 results were fit under 

the same assumptions about the gluon distribution and R as the particular experiment under 
consideration. The one exception was the result attributed to the CDHS collaboration. This 
value was obtained using the program supplied by Duke [De83] to fit published data [Ab83] 
from that group. Differences between pairs of results can be seen to lie within statistical 
errors. The agreement was not unexpected, given the similar behavior among the experiments 
of dlnF2 /dlnQ2 noted earlier. This is not to say that A is well determined: the mean value 
from the ensemble of experiments can vary considerably depending on the choice for the gluon 
distribution orR. 

This agreement among current results is in contrast with the historical trend in 

reported results for A. Fits to measurements of F2 in lower Q2 ranges produce distinctly higher 

values for A [Fi82]. QCD alone would have difficulty accommodating both high and low Q2 

data, possibly due to higher-twist contributions at these lower Q2 's [Ei8l,Ba82b]. 

6.5.3 F2 analysis with q 

To obtain the results reported above, it was necessary to assume a reasonable form 
for the gluon distribution: a less than satisfying procedure. Analysis of F2 alone cannot 
simultaneously constrain the width of the gluon distribution and determine A. However, a 

measurement of the anti-quark distribution, q(x, Q2 ), could be used to limit the fraction of 

Experiment Gluon distribution R A AccFRR 
(ca/Ya) (MeV) (MeV) 

CDHS (4.6,9.0) 0.1 240 ± 70 200 ± 90 

CHARM [Jo82] (4.6,0.0) 0.0 290 ± 90 240 ± 70 

EMC [Au82a] (5.9,9.0) 0.0 200 ± 30 300 ± 90 

BFP [Cl83] (5.0,0.0) 0.0 230 ± 80 280 ± 90 

Table 6.5 Comparison of current measurements of ALo from F2 QCD fits 
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gluons at large x. The evolution of q(x, Q2 ) is given by: 

where the P~j)(z) are the same splitting functions appearing in equation 6.16. It is the fact that 
the q distribution is strongly peaked at small x which leads directly to the constraint of the 
gluon distribution at high x: above some x value, a null result for q implies that the gluon term 
P~~(x)@ G(x, Q2

) must also be small. Figure 6.31 shows the contribution to scaling violations 
in q from both gluon pair production and anti-quark bremsstrahlung. 

One way of measuring the anti-quark distribution is to use the difference between 2xF1 

and xF3: 

q = ~(2xF1- xF3) 
2 

(6.28) 

where 2xFt is obtained from F2 using the same value for R as used in the extraction of F2 : 

2xF = ( 1 + Q2 I v2 )F. 
1 1 +R 2 

(6.29) 

The result shown in figure 6.32 for q averaged over Q2 was obtained in this manner (R = RQcD 
assumed). However, the measurement was not sufficiently precise to constrain the gluons. 

The CDHS collaboration has published a high statistics determination of q, from a 
large sample of wide-band anti-neutrino events [Ab83]. These measurements, averaged over 
Q2 , are also shown in figure 6.32. Our result can be seen to be consistent at large x, although 
with considerably larger errors. The technique used by the CDHS group to obtain this result 
was based on the fact that the anti-neutrino cross section at large. y is due mostly to scattering 
from anti-quarks. From the form of the cross section shown in equation 1.16, at high y the 
quark contribution is clearly suppressed by a (1- y)2 factor, but the anti-quark component is 
not. Such measurements are particularly suited to the CDHS detector [Ho78], which has good 
acceptance at high y. 

It has been remarked [De83] that the values for q so obtained are sensitive to radiative 
corrections and assumptions about R and the strange sea. Furthermore, there are substantial 
normalization and x dependence differences between the structure functions obtained by CDHS 
and this group. However, the near zero result above x = 0.30 cannot be seriously affected by 
any of these uncertainties. On the basis of this argument, simultaneous fits were made to q from 
CDHS above x = 0.30 and F2 from this experiment. Additional parameters were introduced 
to describe the anti-quark distribution at Q~: 

7j = as(1- x)c• (6.30) 

Cuts in Q2 and W2 were retained, but the restrictions in x were relaxed to include data above 
X= 0.04. 
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ALo 240 ± 100MeV 250 ± 80MeV 

a2 2.85 ± .15 2.84 ± .13 

C2 1.621 ± .090 1.602 ± .070 

/2 1.49 ± .42 1.53 ± .38 

as 0.025 ± .028 0.054 ± .057 

Cs 3.61 ± 1.62 co+ 1 
co 5.55 ± 1.43 5.17 ± .14 

"to 8.5 ± 8.6 9.00 ±.59 

x2 80.1 for 79 DF 78.5 for 80 DF 

Table 6. 6 

Best values for free parameters obtained in fits to F2 (R = RQcD) and 7j 
from CDHS (Ab83] 
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Two approaches to fitting F2 and 7j were made. In the first attempts, both a8 and c8 

were retained as free parameters. However, in using this method it was found that only one 
of the gluon parameters (co) could be well determined. Partly, this resulted from the use of 
two parameters to fit an essentially null result. Additional fits were therefore made retaining 
as variable the level of anti-quarks beyond x = 0.30, but fixing: 

c, =co+ 1 (6.31) 

The relationship between gluon and anti-quark behavior at large x embodied in equation 6.31 
is predicted by an asymptotic analysis of the Altarelli-Parisi equations (AI82] in the limit Q2 ~. 
The values for the free parameters resulting from these fits are listed in table 6.6. Only the 
leading order QCD evolution equations were used, with no target mass corrections. 

The observed values of A listed in table 6.6 are so mew ~at lower than those reported 

in sect.ion 6.5.1. This is mostly due to the relaxation of the lower x limit to include all data 

above x = 0.04. The result without target mass corrections and using the standard assumed 
gluon distribution was A= 260 ± 90MeV. 

The main purpose of this exercise was to measure the gluon distribution. In comparing 

our results with those of CDHS (Ab83], it has been noted that (1) the integrals of F2 differ by 
about 19%, and (2) the x dependence of F2 exhibits differences at the level of 10%. These 
observations imply that the integral of the gluon distribution is 19% smaller in our case. The 
common constraint of the 7j result from CDHS above x = 0.30 forces the behavior of G at large 
x to be similar. Consequently, the behavior at small x is quite dissimilar. A comparison of the 
fit values of F2 and G at Q6 is shown in figure 6.33. The valu.e reported for A by the CDHS 
collaboration (Ab83] was 290 ± 30MeV. Despite the difference in the fitted gluon distribution, 

the results for A agree within errors. 
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Figure 6.88 Comparison of QCD fits for F2 and G for CCFRR and CDHS [Ab82a,Ab83] 

6.5.4 xF3 analysis 

QCD fits to xF3 were made to those results with Q2 > 5GeV2 , vlf2 > lOGe¥2 

and 0.04 < x < 0.70. These restrictions excluded regions when~ non-perturbative effects are 
expected to be large. The functional form used for xF3 at Qg = 12.6GeV2 was as shown 
in equation 6.25 above. The GLS sum rule (equation 6.12) was not used to constrain the 

normalization, but the parameter 13 was fixed to be zero. Target mass corrections were not 

made. 

Results using the two available programs [Ab80,De83] agreed in leading order. The 

90% CL limit on A is .2 < ALo < 420MeV. The best values for the various parameters are 
listed in table 6.7. The evolution equations (6.14) depend non-linearly on A. Therefore, given 

the large statistical errors on xF3 , a more appropriate measure of t.he scaling violations was 
found to be a8 . The value of J F3dx = 2.70 ± .15 obtained was consistent with the more 
model independent result discussed in section 6.3. The reduced statistical error was due to the 
constraint of point-to-point correlations imposed by the global model. 

The same non-singlet analysis was repeated using tllC standard technique [De83] of 
replacing the experimental values of xF3 for x > OA with those or F2 . This implicitly assumes 
a vanishing sea and small R in the high x region, or equivalently that xF3 = F2 above x = 0.4. 
The results of such a fit is also listed in table 6.7. It should be noted that for both non-singlet 
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xFa only xF3, x < 0.4 

F2, X> 0.4 

A 9o+.160MeV -80 270+ 110MeV -100 
a8 (Q2 = 12.6Ge¥-l) 0.204 ± 0.079 0.291 ± 0.047 

a3 4.34 ± 0.24 4.29 ± 0.22 

b3 0.672 ± 0.058 0.635 ± 0.049 

C3 3.29 ± 0.24 2.90 ± 0.13 
x2 44.2 for 39 DF 50.0 for 46 DF 

Table 6. 7 Non-singlet fits to xF3 or xF3 and F2 

Method A (MeV) as(Q2 = 12.6GeV~) 

Leading Order 90+16o 
-80 .204 ± .079 

MS [Ab80) 120+200 -110 .176 ± .062 

MS [De83] 190+270 -160 .201 ± .070 

Table 6.8 A and as resulting from first and second (MS) order fits 

fits, the hypothesis of no QCD scale breaking (as = 0 or A= 0) was poor: x 2 was 52.7 for 45 
degrees of freedom using xF3 alone and 100.6 for 47 degrees of freedom using the combination 
of xF3 and F2 • In both cases, the x2 for the best fit was acc~ptable using statistical errors 
only. 

The systematic errors on these results have been investigated using the same technique 

described in section 6.5.1 for F2 • In all cases, the uncertainties in ets (or A) represented by 

systematic errors were smaller than statistical errors. It should be noted that the shape of 
xF3 is sensitive to relative uncertainties in the neutrino and anti-neutrino fluxes: precision flux 
measurements are necessary in order to keep this source of error ,small. 

Finally, these fits have also been made in second order using both programs. In 
contrast with the agreement between the results of leading-order fits, the results shown in 
table 6.8 exhibit significant differences in the values of A obtained in second order. As was 
noted in section 6.4, the programs differ in that Barnett [Ab80] uses the· one-step version of 
the second order equations, while Duke [De83] uses the two-step method. However, in principle 
similar values for AMS should be obtained. It has been suggested [Ow83) that if a more general 
functional form for xF3 were used, the discrepancy would disappear. Experimentally, the data 
did not support the use of additional parameters, since x2 changed by less than one when 13 

was allowed to vary. The two results did coincide within errors. 

6.5.5 Comments on R 

QCD beyond the leading order predicts a value for R which falls rapidly with x, and 
decreases logarithmically with Q2 • The value depends on F2 and G, as shown in equation 6.17, 
where R = FL/2xF1 • A calculation of the prediction was made by modifying the program 
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for QCD evolution supplied by Duke [De83). This involved suitably changing the coefficient 

functions used for F2 into those necessary for 2xF1 [Fu82). A and the parameters used for F2 

and G were assigned the values listed in table 6.1 for the fit beyond leading order. 

The result is shown as a function of x in figure G.34, along with our measurements 

(section 5.7). The data were consistent with expectations, although the errors were quite large. 

The x2 for the fit to the prediction shown was 5.0 for 5 degrees of freedom. The alternative 

assumptions made in the structure function analysis, R = 0.0 and R = 0.1, also were consistent 
with the measurements. The fit to the R = 0.1 hypothesis was actaully slightly better than to 

R = RQcD: x2 = 3.8 for 5 degrees of freedom. The R = 0.0 case was somewhat improbable 
(x2 = 9.8 for 5 degrees of freedom), due to the finite value observed in the two smallest x bins. 
Given such large errors, no significant Q2 variation could be noted, as shown in figure 6.35. 

There have been several other attempts to measure R: also shown in the two figures 

are results from the CDHS collaboration [Ab81). The error bars are smaller, particularly at 

large x, due to the better high y acceptance of the CDHS detector. However, the measurements 

are not any more conclusive with regard to testing the QCD prediction. The average result, 
R = 0.10 ± 0.025 ± O.OG, is somewhat at variance with the hypothesis R = 0.0. The finite 

values arc mostly clustered at small x, while the large :r results would easily overlap zero if 

systematic errors were included. The EMC collaboration has reported [Au82b] an average result 
of R = 0.00 ± 0.035 ± 0.095 fot· data with an average v = lOOGeV. They concluded ihat these 

results were also consistent with a QCD prediction. 
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On the basis of results from this experiment, and published data in similar Q2 from 
other experiments, none of the three hypotheses used in extracting structure functions can be 

ruled out. There is a slight hint that R has an x dependence, with a finite value at small x. 
For the purposes of QCD, the preferred structure function results are those obtained using a 
value for R consistent with the theory. 

6.6 Conclusions and the Future 

A high statistics sample of neutrino-nucleon scattering data has been obtained using 

the Lab E detector at Fermilab (experiment E616). Care was taken to understand both the 
detector and the neutrino in painstaking detail. In so doing, the systematic uncertainties in 
these results have been minimized. The structure functions F2 and xF3 extracted from the 

data have been analyzed in terms of the quark-parton model aud QCD. From these studies it 
is concluded that: 

(1) Inconsistencies among results from the various neutrino experiments exist outside difficulties 

with overall normalization. The scale errors presumably reflect problems with overall flux 

measurements, but diiferences in the x dependence of structure functions imply more subtle 

problems. 
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(2) The quark-parton model comparison of F2 (x) with the analogous structure function measured 

in muon scattering by the EMC collaboration [Au81 b] shows a level difference of about 10%, 
probably due to systematic normalization differences among experiments. The x dependence of 

the two structure functions is very similar. The difference between our measurements and those 

published by SLAC [Bo79] or the BFP collaboration [:Me83,Cl83] are within systematic er­
rors. 

(3) The pattern of scaling violations observed in measurements of F2 was consistent with that 
in comparable published results from both neutrino and muon scattering experiments. 

(4) Measurement of the GLS sum rule (Pu84] gives 

fo' Fadx = 2.79 ± .28 ± .13 

consistent with the quark-parton model and QCD with A < 600MeV. 

(5) Fits to F2 in leading order and second order give, with statistical and estimates of systematic 
errors: 

Atb = 360 ± 90 ± 60MeV (R = 0.0) 

AQS = 340 ± 100 ± 60MeV (R = RQcD) 

for a particular choice of gluon distribution. Variations of the parameters in the gluon dis­

tribution over reasonable limits indicate an additional rms uncertainty in A of approximately 
50MeV. Also, the assumed value of R can introduce large variations in the best value for A. 

Other sources of systematic error, such as flux uncertainties, were smaller than the statistical 

error. The result for A is consistent with other measurements from deep-inelastic scattering. 

(6) Fits to F2 from this experiment and q from CDHS [Ab83] allow a determination of A 

and the form of the gluon distribution. The result obtained for the gluon distribution differs 

substantially at small x from that reported by the CDHS collaboration. This fact is a direct 

consequence of differences in the x dependence of F2 noted in item (1). The constraint of the 

q measurement leads to similar large x behavior in the two results. 

(7) A fit to xF3 in leading order, gives with statistical and estimated systematic errors [Pu84]: 

AL_~ = 90:t 1 ~~:t 1?gMeV 

Second order fits [Ab80,De83] to xFa give somewhat different values of A, although as(Q~ = 
12.6GeV2) are not so strikingly different. The value obtained using the program obtained from 
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Duke [De83] was 19o±n8MeV. Both results were consistent with the values for A obtained from 
li'2. Again, systematic errors were found to be smaller than the statistical errors for these fits. 

It is evident that, for the purposes of testing QCD hypotheses, the results reported 
here are statistically limited. A factor of five more data could easily be accommodated before 
the level of systematic error would become comparable. This conclusion is based on ignoring 
the uncertainties in the F2 result due to the gluon distribution or R. Presumably, these 
quantities are of interest as well as a determination of A. The direct strategy of obtaining a 
well-constrained measurement of A from xF3, and using F2 to measure the gluon distribution, 
could be employed if the measurement of xF3 were sufficiently precise. 

With the upgraded Lab E detector [Bl80), the limitation of only one event per SOms 
will be removed. A large sample of events obtained in wide-band running at the Tevatron, 
normalized to these or future dichromatic results, would represent a logical way of increasing 
the size of the data sample in the kinematic region covered by this experiment. 

Finally, approved running in the dichromatic beam at the Tevatron [Bl80) offers the 
opportunity of increasing the maximum available Q2 by about a factor of three. The test of 
whether structure functions at these high Q2 's represent logarithmic extrapolations of present 
measurements will be definitive for QCD. 
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Appendix B 

Target Counter Maps 

The response function for each of the four counter tubes was divided into three parts: 
(1) exponential attenuation in the counter from the light source to the edge of t.he counter, 
(2) transmission across the air gap to the light bar and (3) exponential attenuation in the light 
bar. The transmission across the air gap was calculated by integrating the average transmission 
coefficient for parallel and perpendicular polarized electric fields: 

{e" 
ft(tp) = }_gcr ft(O,tp)dO (B.l) 

where 0 is the angle out of the counter plane, and tp is the polar angle in the plane of the 
counter. The limits of integration were the angles at which total internal reflection occurred, 
±Ocr. The function It( tp) was found to be well approximated by' a step function between the 
limits tp = IPcr and tp = -tpc,, where again IPcr is the critical angle. For each light bar and its 
reflection, the extent of the region for which transmission could occur was determined, given 

the constraints of geometry and the requirement that tp < IPcr. Figure B.l illustrates this 

procedure for a typical topology. If the lower and upper limits in tp are designated tp1 and 1{)2 

respectively, then the mean value of cos tp is: 

(B.2) 

The distance from the source to the bar at this mean cosine was used to determine the 
attenuation of light passing from the source to the light bar. In practice, as indicated in the 
figure, the allowed region for each light bar was divided into three portions in order to improve 
the fit. 
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Figure B.1 Typical geometry for collecting light from a source within a counter 
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The map function for each tube represented the sum of contributions from two light 

bars ( i), each with three segments (f): 

2 
{ 

3 
j'Pl(j) [ (Xij - Xo f (Yij - Yo f ]} 

ck(x, y) = L L dtp exp - ') - ') . 
i=l j= 1 ~~(j) >.;c Ay 

{ t Li\?J exp [- 'AL
1 J} 

J=l bar ·. 

(B.3) 

The quantities Xij and Yii are the x and y distances from the source to the calculated mean 

position on the Ph segment of the ith light bar. The distance from the mean position to the 

phototube is denoted by Li. Thus, the model had five free parameters: (x 0 ,y0 ), the counter 

balance point, (>-x ,f.y ), the attenuation lengths in x and y, and A bar, the attenuation length in 

the light bars. 

The best values of the map parameters were obtained using hadron showers from 
neutrino events. For this purpose the absolute level of response was unimportant and in fact 

varied greatly among the chosen ensemble of showers. Instead, on a counter-by-counter basis 
the variation with shower position of the fmction of light collected by each of the four counter 
phototubes was used in fitting for the parameters. 
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For a particular counter, an event was included in the fit if the following constraints 
were satisfied: 

(1) a muon or penetration trigger fired 

(2) a good target track was obtained for the muon, and hence the vertex was well known 

(3) the vertex lay within a radius of 50in of the apparatus centre 

( 4) the counter was among the first four counters in the shower, that is was close to the 
vertex 

(5) the pulse height in any phototube was more than two times minimum, and the sum 
of the four tubes was greater than ten times minimum 

(6) the lett-right asymmetry of the four tubes was within 30% of zero. 

These criteria eliminated cosmic-ray showers, and ensured adequate photostatistics. The values 
of map parameters were obtained by minimizing for this ensemble of events ( i): 

where: 

x2 = I: t (P;- N~~(x;,y;))2 
events i=l J 

Pi was the observed pulse height. in the ith low 

Ni = I: Pi/ I: ci was a normalization factor 
i j 

c; was the map.predicted pulse height at x,, y, 

(ji = 0.2~v'Pj was the error due to photostatistics 

(B.4) 

Note that the calculation of (ji was in error, since the contribution from the normalization 
condition was ignored. Future efforts should include this term. It was found that x2 was 
insensitive to the value of the attenuation length in the light bars, which was thereafter fixed 
to be 115in. Since a target track was required, no data were available for mapping the first ten 
counters: therefore, the average values for the map parameters were used instead. 

One additional point should be reiterated here. The procedure described assumes the 
response of the four phototubes to be balanced: light at the counter centre produces equal 
response in all tubes. If this were not true, the available range of variation of the balance 
parameters is limited by strong coupling to the attenuation lengths Ax and Ay. It has been 
determined from mapping the counters with sources that the flasher system did not always 
properly balance the phototube response. Therefore, a more suitable approach was devised for 
subsequent efforts to map the counters, c'k(x, y). An attenuation length for the counter(>-) and . 
three balance coefficients were used instead of two attenuation lengths and a balance point: 

c~(x, y) = fkck(x, y) 
4 

I: !k = 4 
(B.5) 

k=l 
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The inability of the original map to adequately correct counter planes which were not properly 
balanced is thought to be the origin of the few percent rise beyond 40in of the map-corrected 
calibration results shown in figure 4.3. 



Appendix C 

Hadron Calibration 

The response or the calorimeter was calibrated using pions brought to Lab E by means 
of the N-5 hadron test beam. This beam ran along the east side of the Neutrino area berm, 
providing pions or muons with a Ap/p of about 1%. The target and toroid of the Lab E 
detector are segmented, which allowed us to move the first two target carts into the beam. 
Data were taken at 25, 50, 90, 200 and 250GeV fc, near the centre of the detector. 

The transverse vertex position for each event was taken to be the average of the shower 
spark positions in the target. Beam centres (xo,Yo) for each setting were determined from the 
mean of the distribution of this vertex. The counter pulse heights were map corrected, with 
the position in the ith counter calculated from the nominal beam centre and direction: 

Xi= xo + 0.03(zi- zo) 

Ya =Yo (C.l) 

The quantity z0 was the position of the upstream end of the s~ond target cart. Since the 
showers were near the target centre these corrections were small. Cuts were applied to the data 
to eliminate events due to muons {1) a vertex cut: (x- xo)2 + (y- Yo)2 ~ 1.75in, and {2) a 
hadron energy requirement of more than 10GeV. 

The same techniques used to find the beginning and end of the hadron shower in the 
charged current analysis (section 4.1) were used for the calibration data. However, the algorithm 
for finding the longitudinal position of the vertex assumed a neutral incoming particle. As a 
result, for a charged pion the vertex was always at the upstream end of the second target cart. 
An average correction of 0.8 times minimum ionizing was necessary to account for events which 
actually interacted further downstream. The average energy lost due to a misidentified ~hower 
end has been found to be of almost equal amount, but in the opposite direction. Therefore, the 
net correction was taken to be zero. 

Beam momenta were determined from recorded currents of two dipole magnets in the 
N-5 beam line: 5E01 and 5W09 in enclosures 101 and 109 respectively. However, the momenta 
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Pion xo Yo Mean shower Sigma 
Momentum inches inches sum (minimums) 

25.21 ± .39 -0.20 -0.24 114.56 ± 0.56 21.77 ± 0.40 

48.99 ± .60 -0.13 -0.21 229.92 ± 1.12 30.56 ± 0.82 

90.63 ± .42 -0.50 -0.37 419.52 ± 1.73 39.65 ± 1.31 

200.0 ± .83 -0.27 -0.26 928.62 ± 2.36 55.99 ± 1.76 

250.5 ± 1.6 0.10 0.06 1158.9 ± 2.20 61.58 ± 1.53 

Table C.1 Mean shower sums and sigmas for the calibration data 

so found were not quite consistent. Therefore, the average of the two measurements was used, 
with the error taken to be half the difference. Ultimately, the absolute calibrations of these 
currents were measured by E595, an active beam dump experiment using part of the Lab E 
detector [Bo82,Ri83]. This group found the momentum of each incoming hadron from the 
bend induced by the final dipole magnet before Lab E, 5E13. PWCs upstream and the target 
spark chambers downstream provided a measurement of the track position before and after the 
magnet. The reported accuracy of the upstream tagging system was 0.5% [Bo82). 

The sum of map-corrected shower pulse height at each setting was fit using a Poisson 
distribution, as suggested by Barish, et al. (Ba75c]. The resulting values for the mean shower 
pulse height and distribution width are listed in table C.l. These were used to obtain the 
calibration constant and resolution function reported in section 4.1. 



A'P'Pendix D 

Multiple Scattering Error Matrix 

A charged particle passing through a uniform material of length L, undergoes a shift 
in angle, ¢, and displacement, 6, as illustrated in figure 4.7. The probability distribution for 
such scatters is described by the Fermi formula: 

{ 
2 [ 2 3¢6 36

2
]} p(¢o)=Nexp --¢ --+-

' a2 L £2 
D.l 

where: 

D.2 

From this we infer that: 

D.3 

where M- 1 is the inverse of the error matrix. The elements of lvi- 1 can be identified and the 
inversion carried out to obtain the fundamental correlation matrix for multiple scattering: 

2 ( 1 L/2) 
M =a L/2 £2/3 D.4 

If there are m such slabs of material, then scatters in the ith slab are independent of scatters 
in the jth slab, so that: 

D.5 
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Displacements after each slab of material are: 

At= 61 

A2 = A1 + L2¢1 + 62 

= (61 + 62) + L2¢1 

A3 = A2 + £3(¢1 + ¢2)+ 63 

= (61 + 02 + 03) + £3(¢1 + ¢2) + £2¢1 

i i-1 i 

Ai = L Ok + L ¢k L Lm 
k=1 k=1 m=k+l 

i 

= E (ok + ¢kdki) 
k=l 

where dki = 'E~=k+l Lm, and using the fact that dii = 0. Then: 

i j 

AiAi = L 2::: (ok + ¢kdki)(6t + r/Jtdtj) 
k=ll=l 
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D.6 

D.7 

Consider only the case i ~ ;', :since AiA;' = AjA,. Using the results of equation D.6, one 
obtains: 

AiA;· =··t a2{L~ + Lk (dkj + dki) + dkidkj} 
k=1 3 2 

D.8 

This is the multiple scattering error matrix used in fitting the muon toroid track, and referred 
to in Section 4.2.2. 



A'Ppendix E 

Quark Model Predictions for Cross Sections 

Cross sections for neutrinos and anti-neutrinos from protons and neutrons can be 
constructed from the quark cross sections detailed in Table 1.3. Assume that: 

One obtains: 

up(x) = dn(x) = u(x) 

dp(x) = Un(x) = d(x) 

Up(x) = dn(x) = dp(x) = Un(x) 

da 11
P 2G2 ME { 

-d d = d(x)cos2 Bc+d(e)tc sin
2 Bc+.s(e)tc cos2 0c+.s(x)sin2 0c 

X y 1r 

+ (li(x)+ C(x))(l- y)2
} 

' 

(E.l) 

(E.2) 

where the significance of the finite charm mass, me, is taken into account by the use of e-scaling 
and threshold factor, tc: 

m2 
e=x+--c-

2MEy 
M2 

tc = 1- __ c_ 
2MEe 

(E.3) 

Contributions to the cross section by such transitions to a charm quark are limited to the 

kinematic region: 

(E.4) 
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Likewise: 

da"n 2G2 ME { 
dxdy = 7r u(x) cos2 Oc + u(e) tc sin

2 Oc + s(e) tc cos2 Oc + s(x) sin2 Oc 

+ (d(x) + Z(x))(1- y)2
} 

daTiP 2G2 ME {- -
dxdy = 7r d(x) cos2 Oc + d( e) tc sin2 Oc + 8( e) tc cos2 Oc + s(x) sin2 Oc 

+ (u(x) + c(x))(1- y)2
} 

:~:: = 
2
G

2
: E { ii(x) cos2 8, + 1l"{e} t, sin2 8, + 8(€) t, cos2 8, + B(x) sin2 8, 

+ (d(x) + c(x)) (1- y)2
} 
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(E.5) 

(E.6) 

(E.7) 

An iron nucleus contains Z protons and A- Z neutrons, and so the cross section for neutrinos 
in iron is: 

(E.8) 

Note that: 

z ( z) 1 1 ( 2z) A d(x) + 1- A u(x) = 2(u(x) + d(x)) + 2' 1- A (u(x)- d(x)) (E.9) 

Hence: 

- = (u(x) + d(x))cos2 Oc +(u(e) + d(e))tc sinO~+ 2s(e)tc cos2 Oc + 2s(x)sin2 Oc da" G2 ME{ 
dxdy 1r 

+ (u(x) + d(x) + 2c(x))(l- y)2 

+ ( 1- ~)<u(x)- d(x))cos2 B, 

+ ( 1-
2~)<u(€)- d(€)) t, sin2 B,} 

(E.lO) 
Likewise for anti-neutrinos in iron: 

(E.ll) 

Again: 

z ( z) 1 1( 2z) -u(x) + 1- - d(x) = -(u(x) + d(x))- - 1- - (u(x)- d(x)) A A 2 . 2 A 
(E.l2) 
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Hence: 

(E.13) 
If the charm mass is neglected, these neutrino and anti-neutrino cross sections become: 

da 11 G2ME{ -
dxdy = 7r u(x) + d(x) + 2s(x) +Cu(x) + d(x) + 2c(x))(l- y)2 

+ ( 1 - ~ )t u( X) - d( X))} 
(E.14) 

-d - = u(x) + d(x) + 2s(x) +(u(x) + d(x) + 2c(x))(l- y)2 dav G2 ME{ -
xdy 1r 

, ( ) } (E.l5) 
- 1-

2~ (u(x)- d(x))(l- y)2 

Let these expressions be rewritten in terms of quark and anti-quark distributions: 

Then: 

q(x) = u(x) + d(x) + s(x) + c(x) 

q(x) = u(x) + d(x) + s(x) + c(x) 

d(] 11 G2 ME{ dxdy == 7r q(x) + s(x)- c(x) +(q(x) + c(x)- i(x))(l- y)2 

+ ( 1-
2~)ru(x)- d(x))} 

daii = Q2 .lvf E {7j( X) + s( X) - c( X) +( q( X) + c( X) - s( X)) ( 1 - y )2 
dxdy 1r 

Now: 

- ( 1- ~)(u(x)- d(x))(1- y)2
} 

F2(x) = q(x) + q(x) 

xF3(x) = q(x)- q(x) 

(E.16) 

(E.17) 

(E.18) 

(E.l9) 



E. Quark Model Predictions for Cross Sections 161 

If we assume s( x) = s( x) and c( x) = c( x ), then an expression for the cross sections in terms of 
the standard definitions of the structure functions is obtained, and may be directly compared 
with equation 5.17: 

- = y+ F2(x) + y- xF3(x) + (s(x)- c(x))(1- (1- y)2 ) 
da 11 G2ME{ 
dxdy 1r 

+ ( 1- ~) (u(x)- d(x))} 

- = y+ F2(x)- y- xFa(x) + (s(x)- c(x))(1- (1- y)2 ) 
da;; G2 ME{ 
dxdy 1r 

where: 

- ( 1- ~)tu(x)- d(x))(l- yf} 

1 
y+ = -(1 + (1 - yf) 

2 

y- = ~(1- (1- y)2 ) 
2 

(E.20) 

(E.21) 

(E.22) 



Appendix F 

Characteristics of Binned Data 

Mean values in each structure function bin for various relevant kinematic quantities 
are given in tables F .1 and F .2. The symbols: E H, E J-" 0 ~ and y, represent the one over 
acceptance-weighted average values of EH, E~, B~ andy for then events appearing in the bin. 
The average total energy is Ev(i7) = EH + E~. The average weight is given in the column 
designated w. 

Q2 X n w EH (GeV) E~ (GeV) B~ (mr) y 

1.26 .015 169 1.077 ± .009 41.5 ± 1.6 41.2 ± 2.5 27.8 ± 1.3 .543 ± .015 
2.00 110 1.073 ± .010 57.8 ± 2.5 42.0 ± 3.1 31.5 ± 1.7 .617 ± .017 

3.16 75 1.069 ± .014 86.4 ± 3.3 18.0 ± 4.1 30.8 ± 2.0 . .673 ± .021 

5.01 24 1.119 ± .041 110.9 ± 4.0 J7.0 ± 7.2 33.7 ± 3.2 .729 ± .030 
t' 

7.94 8 1.110 ± .078 145.9 ± 7.3 ~.7 ± 15.0 41.9 ± 9.1 .764 ± .059 

1.26 .045 145 1.072 ± .019 16.6 ± 0.3 54.4 ± 3.1 26.5 ± 1.7 .292 ± .012 
2.00 195 1.082 ± .009 25.2 ± 0.4 40.9 ± 2.2 ,. 36.5 ± 1.3 .439 ± .011 

3.16 187 1.086 ± .013 38.5 ± 0.6 44.6 ± 2.8 42.2 ± 1.7 .533 ± .013 

5.01 140 1.178 ± .032 58.6 ± 1.1 ll7.5 ± 3.5 51.8 ± 2.6 .630 ± .016 

7.94 65 1.257 ± .058 89.7 ± 2.5 53.6 ± 4.5 48.2 ± 3.6 .664 ± .022 

12.6 23 1.183 ± .055 134.7 ± 5.7 50.5 ± 6.7 45.9 ± 4.3 .738 ± .029 

20.0 3 1.447 ± .226 157.8 ± 3.2 f9.3 ± 5.0 79.4 ± 10.7 .894 ± .024 

1.26 .080 39 1.070 ± .019 11.2 ± 0.1 ~.3.5 ± 5.3 27.6 ± 2.6 .219 ± .016 

2.00 199 1.090 ± .022 14.4 ± 0.2 50.4 ± 2.3 34.8 ± 1.7 .272 ± .009 

3.16 254 1.130 ± .039 21.8 ± 0.2 ·17.2 ± 2.2 46.5 ± 2.1 .387 ± .010 

5.01 256 1.263 ± .055 34.5 ± 0.4 40.2 ± 2.1 64.2 ± 2.3 .545 ± .011 

7.94 182 1.277 ± .054 52 .9 ± 0.6 44.5 ± 2.5 65.5 ± 2.7 .611 ± .013 

12.6 80 1.336 ± .075 78.9 ± 1.2 45.9 ± 3.5 63.9 ± 3.5 .675 ± .015 

20.0 37 1.288 ± .065 125.0 ± 3.1 53.2 ± 4.8 56.3 ± 3.8 .717 ± .020 

31.6 4 1.403 ± .239 174.2 ± 8.8 33.8 ± 7.5 74.1 ± 9.6 .845 ± .026 
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Q2 X n w EH (GeV) E~ (GeV) () ~ (mr) y 
2.00 .150 37 1.080 ± .016 11.2 ± 0.1 48.7 ± 4.4 34.7 ± 2.6 .219 ± .014 
3.16 267 1.065 ± .005 13.4 ± 0.1 57.2 ± 2.0 35.7 ± 0.9 .224 ± .005 
5.01 489 1.108 ± .013 19.4 ± 0.2 51.2 ± 1.5 47.8 ± 1.0 .321 ± .006 
7.94 398 1.225 ± .027 30.8 ± 0.3 49.5 ± 1.8 62.5 ± 1.5 .450 ± .008 
12.6 266 1.359 ± .043 45.7 ± 0.6 53.0 ± 2.1 68.6 ± 2.0 .523 ± .009 
20.0 156 1.386 ± .056 70.8 ± 1.2 61.8 ± 2.8 65.6 ± 2.5 .574 ± .012 
31.6 59 1.473 ± .114 108.9 ± 2.6 63.0 ± 4.6 70.8 ± 4.1 .662 ± .018 
50.1 11 2.208 ± .457 155.0 ± 6.8 29.4 ± 4.7 114.3 ± 7.7 .846 ± .021 
3.16 .250 2 1.092 ± .014 10.3 ± 0.1 29.6 ± 1.3 57.7 ± 2.4 .258 ± .010 
5.01 197 1.115 ± .020 12.1 ± 0.1 52.9 ± 2.3 49.4 ± 1.6 .222 ± .006 
7.94 288 1.170± .019 17.8 ± 0.2 54.3 ± 2.1 58.1 ± 1.4 .294 ± .006 
12.6 230 1.324 ± .042 27.4 ± 0.3 51.0 ± 2.2 74.4 ± 2.0 .407 ± .008 
20.0 146 1.435 ± .086 42.2 ± 0.6 57.7 ± 3.0 80.7 ± 3.0 .489 ± .012 
31.6 72 1.562 ± .147 68.4 ± 1.2 67.5 ± 4.4 82.5 ± 4.5 .556 ± .018 
50.1 25 1.437 ± .130 107.1 ± 3.4 72.4 ± 5.4 70.1 ± 4.9 .610 ± .022 
79.4 5 1.779 ± .358 143.0 ± 4.8 45.1 ± 6.8 100.0 ± 8.4 .769 ± .025 
5.01 .350 8 1.146 ± .087 10.5 ± 0.1 51.9 ± 11.3 54.7 ± 7.0 .203 ± .023 
7.94 142 1.121 ± .018 12.9 ± 0.1 64.4 ± 3.3 51.1 ± 1.7 .202 ± .006 
12.6 159 1.250 ± .036 19.7 ± 0.2 56.2 ± 2.6 68.6 ± 2.1 .304 ± .008 
20.0 135 1.600 ± .127 29.7 ± 0.3 51.3 ± 2.8 94.3 ± 3.3 .437 ± .011 
31.6 65 1.958 ± .261 48.3 ± 0.6 57.2 ± 4.2 102.9 ± 4.7 .530 ± .016 
50.1 25 1.421 ± .121 76.4 ± 2.2 83.5 ± 5.4 69.0 ± 4.8 .498 ± .020 
79.4 11 1.815 ± .360 118.7 ± 4.8 62.7 ± 7.0 95 .6 ± 8.3 .667 ± .031 
126. 4 2.531 ± .385 167.2 ± 7.5 43.4 ± 5.3 116.8 ± 6.5 .794 ± .023 
7.94 .450 48 1.122 ± .029 11.3 ± 0.1 57.7 ± 4.4 56.0 ± 2.7 .187 ± .008 
12.6 89 1.276 ± .066 14.8 ± 0.2 58.4 ± 3.7 69.8 ± 3.1 .245 ± .009 
20.0 87 1.439 ± .070 24.4 ± 0.3 61.6 ± 3.8 79.0 ± 3.0 .335 ± .011 
31.6 49 2.004 ± .222 35.7 ± 0.5 57.1 ± 4.3 102.4 ± 4.6 .453 ± .015 
50.1 23 1.743 ± .135 58.0 ± 1.2 81.1 ± 7.0 78.5 ± 5.0 .455 ± .021 
79.4 13 1.675 ± .164 97.3 ± 3.0 77.9 ± 6.2 84.1 ± 5.3 .567 ± .022 
7.94 .550 2 1.113 ± .031 10.2 ± 0.1 42.9 ± 2.5 66.3 ± 3.2 .192 ± .009 
12.6 46 1.360 ± .098 12.4 ± 0.2 57.8 ± 4.7 73.2 ± 4.5 .220 ± .012 
20.0 45 1.582 ± .120 19.8 ± 0.3 54.4 ± 4.6 88.9 ± 4.2 .315 ± .013 
31.6 27 1.685 ± .173 29.7 ± 0.7 63.5 ± 7.6 93.0 ± 5.5 .377 ± .020 
50.1 14 1.802 ± .667 46.4 ± 1.2 92 .8 ± 14.0 100.8 ± 12.9 .431 ± .040 
79.4 7 1.748 ± .202 75.3 ± 1.9 89.6 ± 9.6 79.8 ± 7.6 .476 ± .033 
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Q2 X n w EH (GeV) E 11 (GeV) f) 11 (mr) y 
12.6 .650 17 1.318 ± .121 11.6 ± 0.2 57.7 ± 8.4 73.3 ± 6.1 .199 ± .015 
20.0 19 1.301 ± .148 15.8 ± 0.3 60.3 ± 5.8 76.8 ± 6.4 .235 ± .017 

31.6 16 2.635 ± .719 27.2 ± 0.7 41.0 ± 4.5 134.4 ± 7.8 .447 ± .022 

50.1 11 2.323 ± .475 39.3 ± 0.7 61.5 ± 8.0 107.6 ± 8.3 .438 ± .027 

79.4 6 2.104 ± .395 66.3 ± 1.6 70.1 ± 8.4 102.3 ± 8.8 .509 ± .030 

12.6 .850 7 1.397 ± .088 10.9 ± 0.2 64.6 ± 15.7 74.3 ± 9.0 .184 ± .021 
20.0 35 1.476 ± .122 14.0 ± 0.3 62.7 ± 5.8 83.7 ± 4.8 .220 ± .012 

31.6 16 2.086 ± .621 20.1 ± 0.3 65.4 ± 10.3 118.0 ± 11.0 .333 ± .027 
50.1 11 1.563 ± .155 31.1 ± 1.1 79.4 ± 10.7 85.9 ± 6.7 .313 ± .020 

79.4 6 1.182 ± .063 53.7 ± 1.7 122.6 ± 14.8 64.1 ± 6.4 .319 ± .024 

Table F.1 Mean values of kinematic variabl~s for anti-neutrino events 

Q2 X n w EH (GeV) E 11 (GeV) 811 (mr) y 

1.26 .015 9l11 1.054 ± .003 52.1 ± 1.1 58.9 ± 1.6 23.1 ± 0.5 .520 ± .007 

2.00 915 1.064 ± .004 65.8 ± 1.1 59.4 ± 1.6 27.0 ± 0.6 .580 ± .007 

3.16 733 1.101 ± .008 91.1 ± 1.2 58.9 ± 1.6 29.1 ± 0.7 .644 ± .007 

5.01 464 1.129 ± .011 123.1 ± 1.3 50.4 ± 1.5 31.7 ± 0.8 .726 ± .007 

7.94 206 1.204 ± .023 161.2 ± 1.7 38.2 ± 1.6 40.3 ± 1.3 .816 ± .007 

12.6 17 1.198 ± .069 209.5 ± 4.3 23.2 ± 3.4 53.3 ± 4.3 .902 ± .013 

1.26 .045 674 1.062 ± .005 16.2 ± 0.1 64.3 ± 1.9 22.5 ± 0.5 .260 ± .005 

2.00 1117 1.075 ± .004 25.8 ± 0.2 58.5 ± 1.5 31.9 ± 0.6 .394 ± .005 

3.16 1391 1.116 ± .008 39.1 ± 0.2 55.3 ± 1.3 41.8 ± 0.7 .510 ± .005 

5.01 1260 1.154 ± .010 60.0 ± 0.4 61.3 ± 1.3 44.0 ± 0.8 .575 ± .006 

7.94 1101 1.188 ± .011 96.4 ± 0.6 62.5 ± 1.1 39.3 ± 0.7 .639 ± .005 

12.6 644 1.261 ± .016 137.6 ± 1.0 47.4 ± 1.1 48.0 ± 0.9 .755 ± .005 

20.0 122 1.322 ± .037 182.6 ± 1.8 33.7 ± 1.9 61.1 ± 1.8 .850 ± .007 

1.26 .080 133 1.044 ± .004 11.3 ± 0.1 71.3 ± 4.6 22.0 ± 0.9 .183 ± .007 

2.00 882 1.067 ± .004 14.7 ± 0.1 68.4 ± 1.6 27.4 ± 0.5 .233 ± .004 

3.16 1464 1.093 ± .008 22.3 ± 0.1 58.9 ± 1.2 39.3 ± 0.6 .354 ± .004 

5.01 1773 1.187 ± .013 34.7 ± 0.1 55.3 ± 1.1 53.8 ± 0.8 .489 ± .005 

7.94 1671 1.271 ± .019 53.5 ± 0.2 56.2 ± 1.1 61.8 ± 1.0 .577 ± .005 

12.6 1349 1.293 ± .022 86.0 ± 0.4 65.3 ± 1.0 52.3 ± 0.9 .613 ± .004 

20.0 996 1.423 ± .022 130.2 ± 0.6 47.4 ± 0.8 62.9 ± 0.9 .748 ± .004 

31.6 229 1.554 ± .052 177.4 ± 1.4 32.2 ± 1.3 80.8 ± 1.7 .852 ± .005 

50.1 5 1.340 ± .166 237.3 ± 5.2 29.6 ± 5.5 80.6 ± 8.0 .890 ± .019 
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Q2 X n w EH (GeV) E 11 (GeV) (} 11 (mr) y 
2.00 .150 186 1.059 ± .009 11.0 ± 0.1 64.4 ± 3.4 29.8 ± 1.2 .189 ± .006 
3.16 1369 1.070 ± .003 13.6 ± 0.1 65.1 ± 1.2 35.3 ± 0.5 .223 ± .003 
5.01 2681 1.120 ± .006 19.9 ± 0.1 62.1 ± 0.9 46.4 ± 0.5 .313 ± .003 
7.94 3461 1.249 ± .011 31.3 ± 0.1 56.8 ± 0.8 63.1 ± 0.6 .446 ± .003 
12.6 3239 1.418 ± .021 46.7 ± 0.2 58.0 ± 0.8 74.8 ± 0.7 .536 ± .003 
20.0 2639 1.470 ± .022 73.9 ± 0.3 64.6 ± 0.7 69.5 ± 0.7 .586 ± .003 
31.6 2080 1.548 ± .023 114.2 ± 0.5 56.9 ± 0.7 74.4 ± 0.7 .689 ± .003 
50.1 818 1.750 ± .040 157.7 ± 0.7 41.6 ± 0.7 93.7 ± 1.0 .798 ± .003 
79.4 55 2.051 ± .166 208.2 ± 1.6 29.4 ± 1.5 110.9 ± 2.8 .879 ± .005 
3.16 .250 11 1.067 ± .025 10.2 ± 0.0 63.4 ± 9.0 35.9 ± 5.4 .165 ± .021 
5.01 931 1.099 ± .007 12.2 ± 0.0 69.5 ± 1.6 43.6 ± 0.7 .199 ± .003 
7.94 1859 1.186 ± .010 18.1 ± 0.1 62.8 ± 1.1 57.6 ± 0.7 .289 ± .003 
12.6 2272 1.403 ± .020 28.4 ± 0.1 57.9 ± 0.9 76.6 ± 0.8 .417 ± .003 
20.0 2096 1.585 ± .027 43.7 ± 0.1 60.3 ± 0.9 85.1 ± 0.8 .504 ± .003 
31.6 1740 1.644 ± .036 69.5 ± 0.2 69.7 ± 0.9 81.3 ± 0.9 .557 ± .003 
50.1 1370 1.638 ± .024 108.9 ± 0.4 64.5 ± 0.8 80.4 ± 0.8 .649 ± .003 
79.4 549 1.951 ± .058 156.3 ± 0.7 46.2 ± 0.8 104.7 ± 1.2 .780 ± .003 
126. 25 3.135 ± .346 205.7 ± 2.2 28.4 ± 1.3 133.5 ± 2.6 .879 ± .005 
5.01 .350 40 1.123 ± .030 10.4 ± 0.0 64.5 ± 6.7 47.3 ± 3.3 .177 ± .011 
7.94 842 1.148 ± .014 13.0 ± 0.1 67.5 ± 1.5 53.5 ± 0.9 .208 ± .003 
12.6 1187 1.323 ± .020 19.9 ± 0.1 63.7 ± 1.3 71.2 ± 1.0 .309 ± .004 
20.0 1240 1.628 ± .039 31.4 ± 0.1 59.5 ± 1.1 90.6 ± 1.1 .431 ± .004 
31.6 1109 1.901 ± .064 49.4 ± 0.2 61.0 ± 1.1 101.4 ± 1.2 .527 ± .004 
50.1 905 1.779 ± .055 77.7 ± 0.3 72.6 ± 1.1 88.5 ± 1.2 .560 ± .004 
79.4 708 1.872 ± .037 122.3 ± 0.5 62.4 ± 0.9 94.4 ± 0.9 .675 ± .003 
126. 167 2.472 ± .148 177.3 ± 1.1 43.2 ± 1.1 124.8 ± 1.9 .807 ± .004 
7.94 .450 203 1.174 ± .032 11.0 ± 0.0 68.1 ± 3.3 57.2 ± 2.0 .184 ± .006 
12.6 631 1.298 ± .021 15.4 ± 0.1 64.7 ± 1.8 69.3 ± 1.2 .248 ± .004 
20.0 691 1.498 ± .036 24.6 ± 0.1 66.0 ± 1.6 83.2 ± 1.3 .343 ± .004 
31.6 629 1.844 ± .068 38.7 ± 0.2 64.2 ± 1.5 99.3 ± 1.5 .454 ± .005 
50.1 528 1.837 ± .067 59.5 ± 0.3 76.3 ± 1.6 92 .5 ± 1.5 .495 ± .005 
79.4 491 1.787 ± .043 94.9 ± 0.5 77.4 ± 1.3 89.0 ± 1.2 .574 ± .004 
126. 211 2.543 ± .136 144.6 ± 0.9 50.5 ± 1.2 125.5 ± 1.7 .751 ± .004 
200. 17 2.904 ± .325 204.1 ± 1.9 45.3 ± 2.3 129.7 ± 3.3 .820 ± .008 
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Q2 X n w EH (GeV) E 11 (GeV) 011 (mr) y 

7.94 .550 6 1.101 ± .053 10.1 ± 0.0 50.0 ± 3.8 59.1 ± 4.3 .173 ± .011 

12.6 304 1.222 ± .019 12.9 ± 0.1 67.0 ± 2.5 64.9 ± 1.5 .202 ± .00t1 

20.0 347 1.478 ± .060 20.1 ± 0.1 65.9 ± 2.4 83.5 ± 1.9 .295 ± .006 

31.6 348 1.744 ± .074 31.3 ± 0.2 68.9 ± 2.3 95.9 ± 1.9 .387 ± .006 

50.1 278 1.831 ± .081 49.0 ± 0.3 80.4 ± 2.3 91.3 ± 2.0 .436 ± .007 

79.4 256 1.703 ± .060 79.1 ± 0.5 00.5 ± 2.1 85.1 ± 1.7 .197 ± .006 
126. 169 2.142 ± .105 123.5 ± 1.0 69.0 ± 1.8 110.3 ± 2.0 .657 ± .006 
200. 23 3.693 ± .360 176.4 ± 1.9 42.9 ± 1.6 144.3 ± 2.6 .806 ± .006 

12.6 .650 108 1.182 ± .025 11.7 ± 0.1 78.7 ± 4.6 59.0 ± 2.4 .165 ± .006 

20.0 215 1.415 ± .053 16.8 ± 0.1 69.9 ± 3.0 79.0 ± 2.2 .2 '16 ± .OOG 

31.6 200 1.714 ± .091 25.6 ± 0.2 70.7 ± 3.0 94.8 ± 2.5 .335 ± .007 

50.1 141 1.860 ± .149 40.0 ± 0.3 79.9 ± 3.4 97.1 ± 3.0 .397 ± .010 

79.4 110 2.064 ± .139 66.1 ± 0.6 82 .0 ± 3.3 100.8 ± 2.9 .492 ± .010 

126. 108 2.020 ± .120 103.5 ± 0.9 82.4 ± 2.6 101.9 ± 2.4 .577 ± .008 

200. 33 2.752 ± .321 153.6 ± 2.2 61.6 ± 3.1 130.0 ± 3.7 .722 ± .010 

12.6 .850 26 1.161 ± .042 10.8 ± 0.1 88.9 ± 9.9 53.6 ± 4.4 .137 ± .011 

20.0 191 1.379 ± .043 13.6 ± 0.1 7·1.9 ± 3A 75 .6 ± 2.2 .199 ± .005 

31.6 187 1.539 ± .072 21.4 ± 0.2 79.5 ± 3.0 84.2 ± 2.5 .262 ± .007 

50.1 146 1.880 ± .121 34.4 ± 0.3 87.6 ± 3.7 95.6 ± 2.9 .348 ± .009 

79.4 102 1.873 ± .17 4. 53.1 ± 0.6 93.3 ± 4.3 98.4 ± 3.4 .417 ± .011 

126. G5 1.873 ± .111 86.2 ± 1.1 97.7 ± 3.5 96.3 ± 2.7 .495 ± .010 

200. 50 2.557 ± .230 130.0 ± 1.7 73.6 ± 3.1 125.9 ± 3.3 .650 ± .011 

Table F.2 Mean value of kinematic variables t'or neutrino events 
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