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Abstract 

A two loop calculation in the N = 4 supersymmetric Yang Mills theory is per­

formed in various dimensions . The theory is found to be two-loop finite in six 

dimensions or less, but infinite in seven and nine dimensions . The six­

dimensional result can be explained by a formulation of the theory in terms of 

N = 2 superfields . The divergence in seven dimensions is naively compatible with 

both N=2 and N=4 superfield power counting rules, but is of a form that can­

not be written as an on-shell N=4 superfield integral. The hypothesized N=4 

extended superfield formalism therefore either does not exist, or at least has 

weaker consequences than would have been expected. By analogy, four­

dimensional supergravity theories are expected to be infinite at three loops . 

Some general issues about the meaning of finiteness in nonrenormalizable 

theories are discussed. In particular, the use of field redefinitions, the generali­

zation of wavefunction renormalizations to nonrenormalizable theories, and 

whether counterterms should be used in calculations in "finite" theories are 

studied. It is shown that theories finite to n loops can have at most simple-pole 

divergences at n+ 1 loops . 

A method for simplifying the calculation of infinite parts of Feynman 

diagrams is developed. Based on the observation that counterterms are local 

functions, all integrals are reduced to logarithmically divergent ones with no 

dependence on masses or external momenta. The method is of general use, and 

is particularly effective for many-point Green functions at more than one loop . 
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Introduction. 

A minimal requirement of a theory is that, when it is used for calculations, 

it should give finite results for physical quantities. Quantum field theories, how­

ever, fail this simple test. This was first found in 1939 [ 1 ], when the self energy 

of the electron was found to be infinite in quantum electrodynamics. Since QED 

is a very valuable theory, ways of circumventing such divergences were sought. 

It was found that if the mass and charge of the electron in the lagrangian were 

taken, in each order of perturbation theory, to be infinite by precisely the right 

amount, all calculations of physical quantities yield finite answers. While this so 

called renormalization [2] procedure could be considered aesthetically unpleas­

ing, it is cleariy an unqualified experimental success. Furthermore, QED has 

peen generalized to Yang-Mills theories, renormalizable gauge theories that 

have been successfully used to describe the strong, weak and electromagnetic 

interactions . All these theories have parameters that are either dimensionless 

or of positive mass dimension. Once these parameters are renormalized, the 

theories give finite results. 

The renormalization idea works only if gravity is ignored, however. 

Einstein's theory of gravity has an interaction characterized by Newton's con­

stant, which has negative mass dimension. Classically, the theory is both exper­

imentally verified and theoretically beautiful. However, it does not fall into the 

class of renormalizable theories. As the order of perturbation theory is 

increased, higher powers of Newton's constant appear and, to keep the effective 

achon dimensionless, additional coupling constants are accompanied by deriva­

tives. Thus, successive terms in the perturbation expansion contain potentially 

divergent expressions, which are different at each order. This situation is com­

monly described by saying that such theories are "power-counting 
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nonrenormalizable". If a procedure such as renormalization is attempted, an 

infinite number of different counterterm structures is needed to preserve the 

finiteness of the theory. In practice, these terms are suppressed by factors of 

the energy divided by the Planck mass, or about seventeen orders of magnitude 

at presently available accelerator energies. However, as a theoretical issue, 

when quantum effects become important, the necessity of an infinite number of 

renormalization parameters destroys the predictive power of the theory. In 

field theories containing gravity, we must therefore avoid the lure of renormal-

izability and demand finiteness for a successful theory. 

Einstein gravity does have some success as a quantum theory. If a one-

loop calculation is performed in pure Einstein gravity, it is found that the theory 

is finite [3]. However, as soon as gravity is coupled to matter, a divergence that 

cannot be eliminated by renormalization is encountered. One must thus search 

for a more clever way of extending the pure gravity theory. 

A clue for doing this can be found from the case of renormalizable theories . 

It is seen there that divergences can be softened or eliminated by introducing 

supersymmetry [ 4], a symmetry between bosons and fermions. The simplest 

example of this is for the vacuum energy. Since supersymmetric theories have 

equal numbers of bosons and fermions, their free hamiltonians can be written 

as 

where a and b are the bosonic and fermionic annihilation operators in the Fock 

space. Since the bosonic oscillators commute, while the fermionic ones 

anticommute, the total vacuum energy seen by normal ordering His zero. The 
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fact that supersymmetry softens the divergences of scalar masses to loga-

rithmic ones has made supersymmetric phenomenology popular, as quantum 

corrections in these theories do not give large masses to low mass scalars [5]. 

What is more important in this context, is that there is a class of renormalizable 

theories with extended supersymmetry that are completely finite [6]. 

With this in mind, it is natural to hope that by joining supersymmetry to 

gravity, one could obtain nonrenormalizable field theories that have no diver-

gences in the perturbative expansion of their S matrix elements. Supersyrn-

metric theories containing gravity are known as supergravity theories [7]. The 

supersymmetries become local, and are gauged by spin-3/2 particles known as 

gravitinos. Indeed supergravity theories do have improved convergence proper-

ties and are one [B] and two [9] loop finite. This is already better than the non-

supersymmetric case, and could even be better than pure gravity, which may 

diverge at two loops. However, unlike their globally supersymmetric counter-

parts, there are no formal proofs of finiteness for supergravity, at all orders, 

and it is unclear whether or not the finiteness persists. 

The purpose of this work is to gain insight into the higher-loop finiteness of 

these theories. The most general proofs of finiteness in renormalizable super-

symmetric theories are based on formal power-counting arguments. However, 

for supergravity power-counting arguments can, at most, postpone the onset of 

divergences by a few loop orders, since the potential divergences become more 

severe loop by loop. The most powerful power counting arguments available 

have been proposed by Grisaru and Siegel [10]. In d dimensions at L loops, they 

would (if valid) exclude divergences for supergravity for 

1 <L < 2 (N- 1) 
d-2 

(1) 
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(Here N denotes the number of supersymmetries with respect to four dimen-

sions.) These arguments do not apply at one loop for technical reasons, but the 

one loop case can be checked either by explicit calculation or by other argu-

ments. The power-counting depends on some assumptions about the existence 

of superfield formalisms and these assumptions are known to be true only for 

N~2. The N=2 power counting in eq. (1) is clearly uninformative, and it is 

important to discover whether these rules are valid up to N = 8, corresponding 

to the maximally extended supergravity theory. If this were the case, it would 

show that N = 8 is at least six loop finite, which, given our present state of 

ignorance, would be a valuable piece of information. 

The subject of this thesis is the N = 4 supersymmetric Yang-Mills theory 

[11] in more than four dimensions. This is the maximally supersymmetric 

interacting theory not containing gravity. Because gravity calculations are 

extraordinarily difficult, and Yang-Mills theories are power-counting nonrenor-

malizable in more than four dimensions, this is a more convenient testing 

ground for the power counting rules than supergravity. In this case finiteness is 

predicted for 

1 < L < 2 (N- 1) 
d-4 

(2) 

The rule can again be trusted only for N~2. but this is already sufficient to 

prove the finiteness of N = 2 Yang-Mills theories beyond one loop in four dimen-

sions. Most of the N = 2 theories are infinite at one loop, but some can be found 

that are also one-loop finite. We shall test these rules at two loops for N=4 and 

d>4. 
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Chapter I of the thesis contains a review of supersyrnrnetric theories and 

auxiliary fields, and a brief discussion of superspace and the power-counting 

rules. Chapter II contains a description of a new method that was developed for 

calculating the infinite parts of momentum integrals [ 12]. The method is of gen­

eral applicability, and is described in the case of a ~P3 theory in six dimensions 

for pedagogical purposes. Chapter III addresses the meaning of finiteness in 

nonrenormalizable theories. In particular, field redefinitions, the generalization 

of wavefunction renormalizations to nonrenormalizable theories, are discussed. 

These issues are used in studying whether counterterms should be used in cal­

culations in "finite" theories. It is shown that the S matrix of theories finite to 

n loops has at most simple-pole divergences at n+l loops. Chapter N contains 

the details of the calculation of the N=4 Yang-Mills theory. It is found, among 

other results, that N=4 Yang Mills is infinite at two loops in seven dimensions. 

While this is seemingly in agreement with eq. (2), the form of the divergence is 

incompatible with the assumptions used in its derivation. This implies that if 

superfield formalisms exist for N>2, they must have an unusual structure 

violating the assumptions of Grisaru and Siegel. A discussion of all the results 

and their implications appears in Chapter V. By analogy, the results suggest 

that all four-dimensional supergravity theories are infinite at three loops, and 

are thus inconsistent theories. If this is true, they could be useful only as 

effective low-energy descriptions of more fundamental theories, such as super­

strings [13]. 
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I. Supersymmetry and Superspace. 

a) Supersymmetry. 

Supersymmetry is the only symmetry that relates particles of different 

spins [14]. The supersymmetry generator transforms bosons into fermions and 

thus satisfies anticommutation relations. As could be expected from the spin 

statistics theorem, it is a spinor and it changes the spins of particles by ~. The 

feature that characterizes the superalgebra is that the anticommutator of two 

supersymmetry transformations produces a spacetime translation. 

Many of the features of supersymmetry can be illustrated in one of the sim-

plest supersymmetric theories, the N = 1 Yang-Mills theory [ 15]. The particles of 

the theory are a Majorana, or real. spinor in the adjoint multiplet of a gauge 

group, and a Yang-Mills vector boson. As in all supersymmetric theories, there 

are an equal number of fermionic and bosonic degrees of freedom. Thus, a 

massless vector has two polarizations, and a Majorana spinor has two degrees of 

freedom when the Dirac equation is used. The lagrangian of the theory is 

(3) 

where Fp.v is the field strength of the vector and Dp. is the gauge-covariant 

derivative. Here, Ba is a pseudoscalar field, which has no dynamics, and van-

ishes by its field equation. Such fields are called auxiliary fields. They do not 

represent any particles, but are introduced to enforce the equality of the Bose 

and Fermi degrees of freedom of the fields themselves, and not just of the parti-

cles they represent. Thus, the vector field has three components after a gauge 

is fixed, the spinor has four and the auxiliary field has one. The supersymmetry 
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transformations of the fields are parametrized by an infinitesimal anticommut­

ing Major ana spinor t:. They are 

oAa = -i'E7a"A 

o"A = ~ Fapl'apt: + i75 Bt: 

oB = 'E75~"A (4) 

These transformation leave the lagrangian of eq. (3) invariant up to a total 

derivative . Commuting two of supersymmetry transformations, labeling the 

generator by Q, gives 

(5) 

where P P. is the translation generator, with a gauge transformation added to 

make it gauge covariant. Thus 

(6) 

Consider what happens when the auxiliary field is eliminated. This can be 

done either by using the equation of motion B=O, or equivalently by integrating 

over B in the Feynman path integral. The supersymmetry transformations of 

eqs (4) are modified by setting B to zero . It is clear that the modified lagran­

gian will be invariant under the modified supersymmetry transformations. The 

only change occurs in the commutator of two supersymmetry transformations 

on the spinor. There is now an additional term 

(7) 
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Thus, the supersyrnrnetry algebra closes only on the mass shell. Finding auxili-

ary fields is a major problem in supersymmetry, and is sometimes very difficult. 

It is possible to do component calculations without knowing them, but they are 

necessary for superfield calculations . The auxiliary field problem is discussed 

further in section c. 

b) Superspace, Superfields and Power-Counting Rules. 

Since supersyrnrnetry is a spacetime symmetry, it is natural to attempt to 

understand it geometrically. This leads one to the concept of superspace [ 16]. 

Superspace has many uses and is a subject in itself. However, in this work 

superspace concepts will be needed only for the understanding of the theorem 

of Grisaru and Siegel. This section provides a brief summary of the subject. 

If supersyrnrnetry is to be realized geometrically, it is necessary to have 

anticommuting coordinates e. Under a supersyrnrnetry transformation 

of) = e 

(B) 

The spacetime coordinates must transform under supersyrnrnetry, since the 

anticommutator of two supersyrnrnetries is a translation. For the rest of this 

section the standard practice of using SL(2,C) notation for the Lorentz group 

will be followed. In this notation the supersymmetries are written as 

(9) 
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The indices a and a run from one to two, and B is the complex conjugate of 8. 

We now define superfields «P[x ,tJ ,6], which are objects that transform 

covariantly under supersymmetry transformations. Superfields can be formally 

expanded in a power series in e and e: 

(10) 

Since the e and e 's anticommute, the power series stops after a finite number 

of terms (in this case nine). The component fields in the expansion of «<> can be 

understood as ordinary gauge, auxiliary and physical fields. 

In addition to superfields, it is necessary to have the idea of derivatives. In 

ordinary spacetime, __Q_ is a covariant object. Thus, if cp is a scalar, aJJ.rp is a 
axJJ. 

vector. In superspace Ba =a~ a is not covariant, as x transforms under super-

symmetry. However, it is easy to see that the derivatives 

and 

- i 
D a· = Ba· + - eaa • 

4 aa (11) 

are invariant under supersymmetry transformations, and thus produce covari­

ant tensors . Here Baa= _!L. denotes a spacetime derivative. The D's satisfy the 
axaa 

algebra 

(12) 
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The only ingredient still needed for constructing supersymmetrically 

invariant quantities, is a rule for integrating over superspace . One can formally 

write J d 4x d 2fJ d 2e, but the fermionic integral must be defined. This is done 

using Berezin integration [ 1 7]. If X is a single Grassmann variable, 

<P[x ,X] = 'P(x) + X'f/;(x ) . Then J dXci> = 'f/1 . This definition is the only one (up to 

normalization) which is invariant under translations of X. Integration over fer-

mionic variables is thus equivalent to differentiation. The superspace integral 

therefore becomes 

(13) 

With this information, supersymmetric objects can be construct simply by 

integrating combinations of D's and superfields over superspace. 

We are now in a position to write the N = 1 Yang-Mills theory above in super-

space [18]. Ordinary Yang-Mills is obtained by replacing oJJ. with Vp. = oJJ.- Aw 

The procedure here is similar. The covariant derivatives V a • V a and V a a are 

defined. In order to preserve the structure of superspace , the algebra of eqs 

(12) is kept, i.e. 

(14a) 

(14b) 

The second equation can be regarded merely as the definition of V aa· The 

derivative Va can be expanded as Da- if a, and the potential fa is then the fun­

damental field of the theory. However, eq. (14a) gives a constraint on r a• which 

therefore cannot be used as an integration variable in a path integral. 
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Other objects can be constructed from fa· For example 

(15) 

is the lowest-dimensional field strength corresponding to the connection r a· It 

contains the spinor of the theory at f) = 0. By using (super) Jacobi identities on 

the definition of Wa, it can be shown that it satisfies 

(16a) 

(16b) 

where Wa is the complex conjugate of Wa. and the f) = 0 part of the superfield 

B is the auxiliary field introduced in section a. The equation of motion of the 

theory is thus 

B=O (17) 

Using these methods the supersymmetries and equations of motion can be 

obtained in terms of these "on-shell quantities". To quantize the theory, how-

ever, it is necessary to write r a in terms of an unconstrained superfield. This 

means solving the constraints in eq. (14a) for Va. In the case of N= 1 supersym-

metric Yang-Mills the solution is 

(18) 

where Vis a complex superfield. V can now be used as a true quantum field in 

an action. In fact the action for N = 1 Yang Mills is simply 
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(19) 

with W defined by eqs (15), (14b) and (18). This action is supersymmetric, even 

though there is no integral over§ since W satisfies eq. (17a), it is "chiral". 

The theorem of Grisaru and Siegel [ 11] can now be stated. If an uncon-

strained lagrangian exists, all counterterm.s at more than one loop can be writ-

ten as a complete integral over all superspace of connections and field 

strengths. This means, in particular, that V can never occur, and one cannot 

have chiral integrals, such as J d 2f) . The theorem fails at one loop, since the 

quantization involves an infinite number of ghosts coupling only to background 

fields . 

We can now see the implications of this for Yang-Mills theories and super-

gravity. InN-extended Yang Mills in d dimensions, the lowest dimensional coun-

terterm possible is 

(20) 

where L is the number of loops. g 2 has dimension (4-d) and J dtJ has dimen­

sion 1/2, since it acts as a derivative. As AS is dimensionless, it follows that 

1 0 > (4-d)(L-1)- d +- ·4N +2 
2 

for a counterterm to exist. This implies finiteness for 1 <L< 2 ~N_-41 ). 

(21) 

For supergravity, the lowest dimension counterterm is the superdeter-

minant of the supervielbein, a direct analogue of det V in ordinary gravity. Thus 

(22) 
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Here JC2 has dimension 2-d, and therefore 

1 0 > (2-d)(L-1)- d +- ·4 N +0 
2 

implying finiteness for 1 <L< 
2 ~_=-21 ). 

(23) 

The derivation of these rules fails if no unconstrained formalism is known, 

since the Feynman rules cannot be constructed. This is the case for all (but 

one) theories with N>2. In the next section it is shown that even the auxiliary 

field problem is difficult to solve for N=4 Yang Mills [19]. Since superfields 

automatically incorporate all the physical and auxiliary fields, they cannot exist 

if the auxiliary fields do not. A calculation testing the power counting rules thus 

can provide information as to whether superfield formalisms can exist, and what 

form they may take. 

c) Problems with Auxiliary Fields. 

The auxiliary fields in the previous sections were introduced to close the 

supersymrnetry algebra off shell. It is instructive to consider the auxiliary fields 

used for closing the Lorentz algebra [20]. These are used whenever a gauge 

theory is studied, but are generally not recognized because of the manifest 

covariance of the notation. The simplest such example is a free massless vector 

AJJ. in d dimensions . It is described by the lagrangian 

(24) 

The physical and auxiliary parts of AJJ. can be untangled by going into a light­

cone gauge . Defining J± = (! 0±JL);..J2, where L is the longitudinal direction, 

the metric becomes f·g =Jigi-J+g--J-g+, with Latin indices labeling the 
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transverse directions . If the gauge A+ = 0 is used, the lagrangian can be writ-

ten as 

1 1 2 L = -A ·OA ·+-B 2 '£ '£ 2 (25) 

where B = o·A . In this gauge it is clear that B represents an auxiliary field, 

while A i represents the transverse propagating degrees of freedom of the vee-

tor. 

The Lorentz transformations of these fields are obtained by taking the 

Lorentz transformation in the covariant theory and adding gauge transforma-

tions to preserve the gauge choice. The generators can be written as 

J+i = l+i 

and 

(26) 

where l af3 is the orbital angular momentum and Sii is the transverse spin angu­

lar momentum. Since the J's represent the Lorentz algebra, Sii and J(i can be 

shown to satisfy 

(27) 

Thus if p 2 ~0. ~i and Ki together generate SO(d-1). This is the well-known 

result that massive particles are classified by the little group SO(d-1). (Mas-

sive representations occur since p 2 ~ 0 off shell.) In the case of the vector, the 

generator Ki acts as 
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oAi = oii B 

oB = 0 Ai (28) 

and A i and B form the fundamental representation of SO( d-1). If one now 

goes to the mass shell, p 2 = B = 0. The Ki generators decouple, and only 

SO(d-2) remains. Therefore the massless particles form a representation of 

the helicity group SO(d-2). 

Finally, as in the supersymmetry example, the auxiliary field B can be set 

to zero by solving its equation of motion. If this is done, the Ki generators no 

longer exist, and even the off shell fields are only a representation of SO(d-2). 

The Lorentz transformations are modified by setting B to zero. The theory is 

still Lorentz invariant but, in analogy with eq. (7), the commutator of two ,ri 

transformations, which should be zero in the Lorentz algebra, is proportional to 

p 2 and vanishes only on the mass shell. The light-cone lagrangian, with its com­

plicated Lorentz transformations (27), is the analogue of a supersymmetric 

theory written in components, while the covariant lagrangian and transforma­

tions correspond to a theory in superspace. This demonstrates the 

simplifications that are obtained by having manifest symmetries, but shows that 

it is at the expense of introducing gauge and auxiliary degrees of freedom. 

We now present an interesting example of a theory for which "usual" 

Lorentz auxiliary fields do not exist. The example exists for all d = 4 n + 2 

dimensions but, to be specific, we work in six dimensions. In this case the field is 

AJ.~ov t, and satisfies the field equation 

tobjects with multiple indices are totally antisymmetric in those indices. 
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(29) 

where the-field strength FJJ.vp is defined by 

(30) 

and the dual is taken with the six index Levi-Civita tensor t:'AJJ.vprrr. The equation 

of motion is invariant under the gauge transformation 

(31) 

By taking the divergence of eq. (29), one sees that it describes a massless parti-

cle. To study the propagating modes, one can choose the on-shell momentum to 

be p-, without loss of generality. Using the gauge transformation of eq. (31), 

the light-cone gauge Ai+ = 0 can be chosen. Then eq. (29) implies that 

Bi = aJ.I.Aij = 0, and Aii = Aii· where this dual is with respect to the four index 

transverse t:iikL . 

The problem of finding the auxiliary fields for this theory, which must be 

solved for a covariant lagrangian to be found, is now clear. There is one physi-

cal multiplet in a self-dual representation of S0(4). However, off shell the fields 

must be a representation of S0(5), and the anti self-dual field is automatically 

included. If A~j) is to propagate, but A~j) is to be auxiliary, the lagrangian 

analogous to eq. (26) would have to be 

(32) 

Because A ~j) and Bi now have the same dimensionality, it is impossible to write 

the analogue of the Ki transformations of eq. (28) . Therefore there is no 
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quadratic action which will propagate one of these and not the other. The solu-

tion to this dilemma is to use a Lagrange multiplier term to eliminate one field 

[21]. The covariant lagrangian for the theory is 

L = - _!_ F Ji'P'liP +..! A.JJ.v p-l pap-) 
12 JJ.vp 4 JJ. vpa (33) 

where F};:Jp is the anti-dual part of FJJ.vp• and A.JJ.11 is a symmetric traceless 

Lagrange multiplier field, that enforces eq. (29). 

In N=4 Yang Mills, the problem is very similar. Let us consider both the 

on-shell and off-shell representations . The theory is a naturally written as a 

massless ten dimensional supersymmetric theory. On shell. the spectrum thus 

forms representations of the helicity group SO(B), with the supersymmetry 

charge Qa. a spinor of SO(B). The on-shell supersymmetry algebra is 

(34) 

where the spinor indices are real and run over eight values . Eq. (34) is simply 

the definition of a Clifford algebra, and if the spinor indices are regarded as the 

vector indices of another SO(B), the charges can be represented by -l matrices . 

The representation of these is a Dirac spinor, which can be broken into left and 

right handed pieces. In terms of the original SO(B), these are the dotted spinor 

and the vector representations and, indeed, N =4 Yang Mills contains one vector 

and one spinor. 

Off shell, the fields form a representation of the massive little group S0(9), 

and the supersymmetry generator is a spinor 16 of S0(9) . The algebra is 

(35) 



- 18-

with A and B going from one to sixteen. This algebra is the definition of the 

Clifford algebra of S0(16), and its fundamental representation is the sum of the 

two 128 dimensional spinors of S0(16). When these are broken into S0(9) 

representations, they give a traceless tensor g IJ, an antisymmetric tensor A IJK 

and a "Rarita-Schwinger field" ..Y1. These representations are familiar as the 

fields of eleven dimensional supergravity, which on-shell has the same algebra 

as eq. (35). An arbitrary representation of eq. (35) is these fields multiplied by 

some S0(9) representation. The result that will be important for the auxiliary 

field problem, is that the number of fermions in any of these representations will 

be a multiple of 128 . 

The final ingredient needed is that fermionic auxiliary fields always come in 

pairs. Covariantly, this is seen by noting that the lagrangian for fermionic auxi­

liary fields must be X1/J. and X and 1/J cannot be equal since they must have 

dimensionality 3/2 or 5/2, while the lagrangian has dimension 4. Here this is 

seen by noting that if X and 1/J are S0(8) spinors, the J(i transformation must 

act on them as 

61/1 = .! ··lx 
2 

6X = .! 'liD 1/J 
2 

(36) 

to satisfy the algebra of eq. (28) . Thus 1/1 and X clearly cannot be identified. 

Thus spinor auxiliary fields always come in pairs, and each pair has 16 degrees 

of freedom. However, one can now see that the counting is inconsistent. Equat-

ing the total number of fermions to the number of auxiliary and physical fer-

mions, one needs 
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128n =16m +8 (37) 

but there are no (integral) solutions to this equation. 

N =4 Yang Mills therefore cannot have a quadratic action in superspace, 

and an analogue of the Lagrange multiplier of eq. (33) is needed. Thus far this 

has not been found, and it is unclear what properties such a theory would have. 

It is this uncertainty which raises doubts about the validity of the power count­

ing rules in these cases, motivating the calculation which follows . 
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IT. A simple method for calculating counterterms. 

Before proceeding with the calculation, it is necessary to have a method of 

evaluating Feynman diagrams. The difficult step in this is performing the 

integrations over the loop momenta of the diagrams. The integrations can be 

done, for example, using the method of Feynman parametrization, but it is then 

necessary to integrate over the parameters. These integrals are relatively easy 

for simple graphs, but become increasingly difficult as the number of prop­

agators in the diagrams increases. This method is thus particularly difficult to 

implement for many-point functions at more than one loop, and all other avail­

able methods run into similar difficulties. 

The finite parts of Green functions are complicated functions of the Man­

delstam invariants and the parameters of the theory. This must be so as, in 

order to satisfy unitarily, they have cuts and poles in the complex plane. It is 

difficult to envision these functions arising as the result of a procedure much 

simpler than the one outlined above. On the other hand, the counterterms 

needed at each order of perturbation theory have a much simpler structure . 

They are guaranteed by general arguments to be local functions in coordinate 

space, and are thus merely polynomials in momentum space . This theorem is 

central to our method. It was rigorously proved in the case of dimensional reg­

ularization [22] in ref. [23). The theorem does not depend on any properties of 

the theory, such as renormalizability, but is a statement on momentum 

integrals. If one is interested only in the renormalization properties of a theory, 

the theorem suggests that it should not be necessary to use the full Feynman 

parametrization procedure. This simplification is in common use at one loop. 

For example, if an integral is logarithmically divergent, its divergent part must 

be a pure number and cannot depend on any momenta. All external momenta in 
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the propagators can therefore be set to zero , resulting in far simpler denomina-

tors in the integral. In this chapter the procedure is extended to arbitrarily 

divergent multiloop diagrams. In fact, the simplification is especially effective 

when integrals depend on many different momenta, as is the case in multiloop 

calculations of many-point functions. 

The method described here was developed for the calculation in chapter N 

of two loop four-point functions in N=4 Yang Mills theory in more than four 

dimensions [24]. It should also be very useful for calculations in (super) gravity 

theories, which are also nonrenormalizable. In this chapter the method is illus­

trated in the far simpler case of a massive ~P3 theory in six dimensions . This is a 

renormalizable theory and thus has a less divergent structure than the Yang 

Mills theory, but the simplifications will still be clear. 

a) One Loop. 

The action of the ~P3 theory in 6-c dimensions is 

(1) 

It is written in Euclidean space (77JJ.11 = OJJ.-11 ), to avoid the necessity of performing 

Wick rotations on the integrals. Here c is the dimensional regularization param-

eter and f..i, is the dimensional regularization mass, used to keep A dimensionless 

in 6-c dimensions . The potential of the theory is unbounded from below, and 

the theory is thus ill defined, but it can nevertheless be studied in perturbation 

theory and is renormalizable in six dimensions, as could be expected from the 

dimensionlessness of A. The vertices are simplyt 

tu m~O, <p must be shifted to elirrrinate tadpole diagrams. This does not affect any 
of the results below. 
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1 y =Ap!" (2) 

We start by reviewing the one loop corrections to this theory. There is one 

propagator graph, shown in fig. 1. 

Figure 1. 

The One-Loop Propagator Correction. 

Its value is 

(3) 

where 1 is a combinatoric factor. (Our combinatorics is chosen so that graphs 
4 

are generated by the effective action.) The denominator can be simplified using 

the Feynman parametrization formula 

_1_ = f(cx+@) J1 dx xa-1(1- x)P-1 
aabp f(cx)f(p) 0 (ax+b(1-x))a+P 

(4) 

where f is the Euler gamma function . The momentum integral is evaluated using 

1 f(n-d/2) (m2)d/2-n 
(41T)dl2 f(n) 

(5) 

Thus !2 becomes 
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where 

(7) 

The Feynman parameter integral is difficult unless m=O. However, if one 

expands the expression in powers of £, the integral can be done, giving 

(B) 

Here 'le is the Euler number, arising from the expansion 

(9) 

As promised, the finite part of ! 2 is complicated, but the infinite part is a 

quadratic function of p and m . This information can be used to simplify the 

evaluation of the infinite parts of the diagrams. Consider, for example, the one 

loop vertex correction, which is given in fig . 2, 

Figure 2. 

The One-Loop Vertex Correction. 



- 24-

One factor of J..Lu2 has been pulled out to preserve the dimensionality of the ver-

tex. This integral could also be done using Feynman parametrization. The finite 

part, however, is even more complicated than that of 12 , and involves diloga-

rithm functions. On the other hand, the pole part of ! 3 is dimensionless , and 

cannot depend on p, g or m. The infinite part of ! 3 can therefore be extracted 

from 

(11) 

(From this point on, finite terms will be dropped.) The prime denotes that the 

integral is infrared convergent and is not zero as it would formally be in dimen-

sional regularization. This means that in eq. (10) the limit m ~o should be 

taken after the limit t ~ 0 . In this case one could obtain the answer by keeping 

m and only letting p and g go to zero . However, in general it is easier to avoid 

explicit mass terms . Thus 

J, d 6-&k 1 1 1 
Inf ( 2 1r)e-~: (k 2)3 = lim Inf - f(e/2)(m 2)-u2 

m-+0 (411") 3-l:/2 2 

= lim _1_ 1 1 1 (12) 
m-+0 (411") 3 e ( 411")3 e 

where Inf denotes "the infinite part of" . This integral is the only one ever 

needed for one-loop divergence calculations . Thus, no Feynman parametriza-

tions are needed in this case . The final result for the vertex is 

"AtJ.E12 1 
13 = 3' ~2-. e 

(13) 

where ~is defined in eq. (7). 
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Let us now calculate / 2 again, taking advantage of the polynomiality of its 

infinite part. In this case little is gained since / 2 contains only two propagators. 

However, the calculation is instructive, because / 2 is not logarithmically diver-

gent. Since the pole part of / 2 is a polynomial of degree 2, 

(14) 

by homogeneity. In fact, since / 2 itself is homogeneous with degree 2-t:, eq. 

(14) could be made exact by inserting a factor of 2/ (2-t:). However, as will be 

seen when the multiloop case is considered, this is not desirable. It is better to 

concentrate on the pole part, for which eq. (14) is true. The diagram is now 

reduced to 

2 

(15) 

The first three integrals are now logarithmically divergent, but the fourth one is 

linearly divergent. The procedure is thus repeated for the linearly divergent 

term, using 

(16) 

Consequently 

(17) 
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where convergent integrals have been dropped from the rhs . The infinite part of 

/2 is thus 

(1 B) 

using the result in eq. (12) . The second integral is a dimensionless tensor, and 

must therefore be proportional to r5 J.LV· Since r5 J.LJ.L = 6- c, contraction with r5 J.LII 

shows that 

( 19) 

Thus one arrives at the final result 

(20) 

as before. This may not be the most efficient way of computing the pole part of 

an integral as simple as /2, and the example is only of pedagogical value. 

Nonetheless, the method used is very advantageous in more complicated cases, 

and can be easily implemented on a computer . 

The one loop renormalized action can now be seen to be 

where ~ is defined in eq. (7). 
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b) Two Loops. 

We can now illustrate this method for higher loop diagrams . At two loops 

the corrections to the propagators are given in fig. 3. Graph 2a contributes 

A4 f.N£d 6-£k y£d 6-£l 1 
lza. = 4 f.N2e J (27T)6-e J (27T)6-e (k2+m2)(l2+m2) 

1 
(22) 

Figure 3. 

Two-Loop Propagator Corrections. 

To calculate lza. using the standard techniques , it is necessary to reduce it to 

logarithmically divergent integrals. This can be done by using the homogeneity 

of I2a. in external momenta, as was done in eq. (14) (but keeping the c terms) . 

An equivalent technique is to insert the identity 

(23) 

into the integrand, and integrate by parts . It is necessary to have logarithmi-

cally divergent integrals in order to be able to expand the integrand in powers 

of c (see the appendices of ref.[25]) . The resulting integrals can then be calcu-

lated, with some effort, by doing four Feynman parameter integrals . The result 

is 
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(24) 

Unlike the one loop case, the nonlocal functions occur even in the infinite 

part of I 2a. This is due to the well-known phenomenon of overlapping diver-

gences . The similarity of l2a and lz , however, suggests the solution to this prob­

lem. The counterterm graphs I'2a and I'2b each contribute _7}...
2 

/2, since 
g 

(25) 

The sum of the graphs l2a and I'2a thus gives 

(26) 

which is again a simple polynomial in p 2 and m 2 . In fact even 'Ye and 47T have 

disappeared from the total answer. 

The simplicity of 12tot is expected, since the two loop counterterm must be 

a "nice" object. However, this result is stronger, as it is true for graphs (2a) and 

(2b) separately. The precise theorem of ref [23] is that the infinite part of sub-

tracted Feynman diagrams are polynomial in masses and momenta. A sub-

tracted integral is essentially an integral minus similar ones with divergent 

subintegrals replaced by their infinite parts. For (2a) , symbolically, 

Isub = J dk J dl- J dk Inf(j dl)- J dl Inf(j dk) (27) 

Pictorially, one can show boxes around subdivergences as in fig . 4 . 
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+ 

Figure 4. 

Two-Loop Propagator Subtractions. 

When the infinite parts of the integrals in these boxes are subtracted, the 

resulting divergent part is a local function. Thus lzatot = 1-lzasub = l2a + I'2a 

and 12btot = l2b +I' 2b can be treated separately. In general, the sum of the sub-

tracted diagrams is equal to the sum of diagrams plus counterterm diagrams. 

However, one must be careful to associate the appropriate counterterm 

diagrams to each graph to obtain simplifications graph by graph. If one sub-

tracts the integrals, rather than the graphs, counterterms never need be used 

explicitly. 

Some features of the cancellations resulting from adding lza and I'za can 

now be understood. The "arcsinh" term disappears, as it must in order to 

obtain a local answer. All factors of log47l't~-2 also cancel, because there is no 

other dimensionful parameter that can enter in the logarithm. The cancellation 

of the log47l't~-2 terms implies a relation between the _.!._ parts of l2a and J'2a· 
E;2 

On dimensional grounds, from eq. (25) 

(28) 

while for the corresponding subtraction 

(29) 
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1 
Thus for the logtJ. terms to cancel, C must equal -2A and the 2 part of the 

e 
counterterm diagram is thus -2 times that of the original diagram. This result 

is independent of the details of the diagrams or the theory. For example, since 

pure gravity is one loop finite, 

matrix at two loops is at most 

it needs no one-loop counterterms and the S 

.!. [26]. This is an oversimplification, because 
e 

(gauge dependent) one loop Green functions can be infinite, but the argument 

can be made rigorous. This will be done in chapter III. At n loops, the cancella-

1 1 tion of all the logm t.t terms relates the - · · · - poles of the diagrams to 
e2' • en 

those of the counterterm diagrams . In renormalizable theories these relations 

are familiar from renormalization group arguments [27]. Having recognized the 

great simplification that the cancellation of the overlapping divergences intra-

duces, from now on we will restrict our attention to integrals from which sub-

divergences are subtracted out. 

Let us now calculate the two loop vertex correction before returning to the 

propagator graphs. There are two graphs, shown together with their subtrac-

tions in fig. 5. Graph 3a contributes 

= 'At.tr:;e 'A 4f J.lr:d6-tk f g"d6-tl 1 
13a. 2 (Z7T)6-e (27T)6-t (k2+m2)((k -l)2+m2) 

1 
((k +p )2+m2)((k -q )2+m2)((l +p )2+m 2)( (l-q )2+m2) 

(30) 

It contains six propagators, and would require five Feynman parametrizations if 

calculated naively. However, 13atct will not depend on p, q, m or factors of 

(47TJ.L2)e, and these can all be dropped. Therefore 13atct simplifies to 



- 31 -

I' sa 

Figure 5. 

Two-Loop Vertices with Subtractions. 

The only subdivergence in this case comes from the l integral. The second term 

corresponds to the graph with the box replaced by the vertex counterterm. The 

l integral can be done with one Feynman parametrization, giving 

where the integral defining the Euler beta function 

1 

Jdx xa(l-x)P = r(a+l) r(p + 1) 
o r(a+P+2) 

(33) 
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1 
has been used. The infinite part of the l integral is simply It should be 

(47T) 3 c · 
noted that, if the mass were kept for infrared regularization, deriving this result 

would have been more difficult, as another parameter integral would have been 

necessary. 

The infinite part of 13a.tot now becomes 

1 1 l "'i; (k2)3 (34) 

One then arrives at the final answer using 

1 r(c) 
(47T)3 f(3+c/2) 

1 1 ( 3 ) 
(47T)3 2c 1 + d-4 -!'e) (35) 

and 

J, d6-~k _1_ - _1_ r(c/2) - _1_ .! (1- ~ ) (36) 
(21T)6-~ (k2)3 - (41T)3 2 - (41T)3 E: 2 /'e 

1 
From these formulae it is seen that the 2 part of the subtraction is indeed 

E: 

twice that of the integral. Putting eqs (34-36) together gives 

(37) 

The calculation of 13btot is similar, and the result is 

I - >-.. &/2 ( ~ - 7,._ 4 ) 
3btot - J..L 24c2 288c (38) 

The simplification of letting p, q and m go to zero has allowed the evaluation 

the vertex graph using only one fairly easy parameter integral. If the integral 

were done naively, not only would five parameter integrals be needed, but the 

resulting integral would be very complicated, with the parameters mixing in a 

complicated way. We stress again that the simplification comes from 
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considering diagrams together with the corresponding subtractions, so that 

only an overall divergence is left . 

To use these simplifications in the propagator graphs it is necessary to 

reduce the integrals to logarithmically divergent ones . Consider again I 2a . The 

infinite part of the subtracted integral is quadratic in p and m , so, as in one 

loop, 

(39) 

Since the integral and the subtraction have different degrees of homogeneity, it 

is seen that, if one required an exact result , a simple formula such as eq. {39) 

could not be used. In 12a• the integrand can be reduced using 

1 

. (40) 

The first term above is still linearly divergent, and the procedure is repeated : 

(41) 

As a result, the integral can be written as 
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(42) 

where all the integrals are implicitly subtracted. 

The evaluation of these integrals proceeds along lines similar to that dis-

cussed above, but there are some features which make it instructive to con-

tinue. The first integral is the same as that encountered in the vertex diagram. 
k k 

The second one has an additional factor of ;
2 

v. The l integral and its subtrac-

tion can be done as before. The k integral is then proportional to Op.v• and kp.kv 

0 k 2 

can be replaced by 
6
JJ.v . This substitution could be done earlier, but one 
-e 

must be careful. If k J.l.k v had appeared in a subtraction integral. it must be 
0 k 2 

replaced by J.l.~ , since all e's in the subtraction are set to zero. 

The remaining two integrals both have no divergent subintegrals, and are 

thus purely of order .! . Once again using Feynman parametrization 
e 

Since the integral has no 
1
2 part, e can be set to zero in the result of the l 

e 
integral except for the power of k 2. (This would lead to a factor of 2 error, as 

can be seen from eqs (35) and (36).) The k integral is now easily evaluated, 

resulting in 

1 1 
(47T)6 e 

(44) 
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In the final integration of eq. (43), it is possible to replace kJJ.lv with 

~ OJJ.11 k ·l with no ambiguity, since the integral is 0( ~ ) . The integrand can then 

be written as 

~ 1(k2 +L2-(k-L)2) UJJ.II _2 ____________ __ 

6 (k 2?(L2) 3 (k -L)2 
(45) 

The first two terms are the familiar integral from the vertex, while the third 

term factors into two one loop integrals. None of these integrals need to be 

subtracted, as their sum has no subdivergences . However , if one is, all must be . 

The result is 

= OJJ.V 
48 t; 

and substituting in eq. (42) one obtains 

~4 ( p 2 +6m 2 1 2 1 2 ) lzat t = - - - m - - p 
o 4 3c2 c 9t; 

(46) 

(47) 

as in eq. (26) . However, with this method only one simple Feynman parameter 

integral was needed, compared with the four nastily intertwined integrals used 

in the original derivation. The calculation of I 2b is now straightforward, yielding 

~ 4 
[ 1 ( 1 2 1 2) 1 ( 1 2 11 2 ) l lzbt t = - - - m -- p +- - m + -- p 0 4 c2 2 18 c 24 216 

(48) 

The final two loop renormalized action is 
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(49) 

We have seen that, up to two loops in the rp 3 theory, all integrals can be 

reduced to fairly simple logarithmically divergent integrals with no masses or 

external momenta . Whereas the example is rather trivial, it should be clear that 

the method will work at any loop order for any theory. 

c) Discussion. 

We conclude this chapter with some comments for applying this method to 

more complicated theories. The rp3 theory is a scalar theory with at most quad-

ratically divergent integrals . The resulting logarithmic integrals, therefore, 

contained at most two vector indices. The relation AI'-B11 ex: 01'-11 could be used to 

eliminate these indices. In a more complicated theory one would would 

encounter higher rank tensors . These can be eliminated in the same way. Thus, 

if an integral had a numerator kl'-k 11 lpla. for example, one could use the 

replacement 

(50) 

The coefficients a and b can be determined by contracting both sides with o's in 

two different ways . 

One important feature that has not been seen here, has to do with the 

indices in the subtractions . When the logarithmically divergent integrals are 
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evaluated, the tensor Op.v is generated, where (formally) the indices go from one 

to (d-e). If the integral occurs in a subtraction, the tensor must be replaced 

with ojiii• where barred indices go from one to d . This is necessary because cis 

set to zero in the subtraction. If this tensor is contracted with a d-e dimen­

sional object, the barred indices can be replaced by unbarred ones. This can be 

remembered by regarding E.: as a positive real number. In this theory, all indices 

are contracted with momenta that go from one to d-e, and thus barred indices 

are unnecessary. In fact this subtlety can be ignored in all renormalizable 

theories when dimensional regularization is used. This is so , because all pole 

parts in these theories have the same form as the original lagrangian, where 

indices are always contracted with momenta or fields . However, in a nonrenor­

malizable theory containing spinors, indices can be associated only with 1 

matrices, and barred indices cannot be reduced to unbarred ones. 

Another point is that at more than two loops the subtractions of graphs are 

more complicated [28]. A three loop graph with its subtractions is shown in fig. 

6 . In addition, the two loop graphs subtracted in D and E must have their own 

one loop subdivergences subtracted (or they would not be local). Working with 

the subtracted graphs is equivalent to adding the one and two loop counterterm 

graphs, as in fig. ?. It must be noted, however, that only the counterterm from 

l3a and not that of / 3b must be used in D' and E'. as can be seen by looking at D 

and E. If one added both the two loop propagator diagrams together, however, 

one could simply add all the counterterm diagrams. 
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A B c 

D E F 

Figure 6. 

A Three-Loop Propagator Graph with Subtractions. 

A' B' C' 

D' E' . F' 

Figure 7. 

A Three-Loop Propagator Graph with Counterterms. 



- 39-

The final comment is that at one loop the only integral required is 

f
, dd- E:k 
(k 2)dl 2 , which can be done trivially. At two loops the integrals have the 

form 

(51) 

with a+b +c =d. As the number of loops is increased, the integrals become 

more and more complicated. At three loops, for example, one encounters 

integrals of the form 

with a +b +c +e + f +g =3/ 2d . These integrals can sometimes be done easily 

using Feynman parameters, but sometimes other methods such as Gegenbauer 

polynomials [29] are needed. There has been much work in developing tech-

niques for propagator integrals to many loops [29]. The method described here 

of differentiating graphs and setting momenta and masses to zero allows one to 

calculate the infinite parts of arbitrary divergent graphs with any number of 

external legs in any theory to n loops, using the results of massless propagator 

calculations at (n-1) loops, and then integrating over the propagator 

momenta. 



- 40-

III. The Meaning and Properties of Finite Theories. 

In asking whether or not a theory is finite, one must be careful to refer only 

to physical quantities , such as S matrix amplitudes . Even if a theory is physi­

cally finite , its Green functions are , in generaL infinite. If the finite theory is 

also renormalizable, these divergences can always be removed by infinite 

wavefunction renormalizations of the form 

<P'(x) = Z<P(x) (1) 

with Z a dimensionless quantity independent of the field <P . These rescalings are 

unphysical and gauge dependent . This is in contrast to the renormalization of 

the parameters of the lagrangians, such as masses and coupling constants, 

which leads to physically meaningful quantities such as the {3 function . In gauge 

theories the redefinitions also result in a change of gauge, but this complication 

does not alter the discussion. In renormalizable theories finiteness can be for­

mulated equivalently as the lack of ultraviolet divergences inS matrix elements, 

or by the absence of mass and charge renormalizations . 

In nonrenormalizable theories, the situation is very similar. However, as 

there are dimensionful parameters in the theories, the rescalings of eq. ( 1) can 

be generalized to become field redefinitions 

<P'(x) =J[<P(x)] (2) 

Here f can be nonlinear, and its only restriction is that it be a local function of 

~ . In eliminating infinities, this locality will be insured by the locality of the 

counterterms. In gauge theories the complications due to field redefinitions 

involving ghosts and changes of gauge will not affect any arguments given below. 

We note that eq. (1) is just a special case of eq. (2), corresponding to a linear 
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redefinition of the fields. The important feature is that, as for wavefunction 

renormalizations, nonlinear field redefinitions do not affect the S matrix. This 

well known argument goes as follows . Apart from source terms, field 

redefinitions can be absorbed by a change of variable in the path integral. The 

jacobian of this transformation is of the type det(l +X), as rp' = rp + 0(1!.). It can 

be evaluated in perturbation theory using the path integral representation 

det( 1 +X) = J de de cc(l + X)c (3) 

where c and care anticommuting ghost fields. Since X is a local operator, the 

ghosts c and c have local interactions. Because the ghost propagator is simply 

one in momentum space, all ghost loop diagrams contain integrals of polynomi­

als. They therefore vanish in dimensional regularization, and the jacobian is 

one [30]. The change of variables also alters the couplings to the sources, 

which become 

(4) 

where f- 1 is also a local function in perturbation theory. There is thus a cou­

pling of the source J to several fields q,• at the same spacetime point, and the 

Green functions differ from those obtained by the usual Jq,• coupling. However, 

it is familiar from the proofs of renormalizability of Yang-Mills theories that the 

additional source couplings do not affect the S matrix [31]. When the sources 

are put on shell and the external legs are amputated for computing S matrix 

elements, the contributions from the nonlinear source couplings lack the neces­

sary poles on some of the external legs, and therefore vanish. The conclusion is 

that finite theories in general produce redefinitions of the type (2), but these do 

not affect the S matrix. 
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In practice, when doing explicit loop calculations, the redefinition in eq. (2) 

appears as a power series in the coupling constants of the theory, and can be 

written as a power series in 1i (here not set equal to one) 

(5) 

It is interesting to examine the meaning of finiteness loop by loop. At one loop, 

inserting (5) in the action implies that the counterterm needed to make Green's 

functions finite in a finite theory is of the form 

(6) 

A theory is thus one loop finite if its counterterms vanish with the use of the 

classical field equations 

(7) 

since they can be absorbed by a field redefinition, using eq. (6). 

A well-known example of this is provided by pure Einstein quantum gravity 

at one loop. This was discussed by 't Hooft and Veltman [3] in a background 

field de Donder gauge . The Green functions are infinite, but can be made finite 

by introducing the counterterm 

(8) 

where a and b are gauge dependent coefficients. This follows simply from the 

power counting at one loop, general coordinate invariance and the Gauss­

Bonnet identity, which implies that R2 and R~11 are the only independent gen-

eral coordinate invariant scalars of dimension four . Since the equation of 

motion implies RJJ-11 = 0, 6.S vanishes on shell and the theory is one loop finite. 
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Indeed, l:lS can be written as 

(9) 

which corresponds to the field redefinition 

I _ 41C2n ( ( 1 ) ) g p.v- Yp.v + -- aRp.v- b +-a Y/LvR 
E: 2 r 

(10) 

In fact, because the S matrix is physical, it is general coordinate invariant in 

any gauge and background field methods are not necessary. One loop finiteness 

follows simply from the fact that (B), which is the only possible correction to the 

S matrix, vanishes on shell. Another proof that the counterterm of eq. (B) is 

unphysical is that there is a gauge [32] (not a very convenient one for actual 

calculations) in which a and b are zero. In this gauge the Green functions 

themselves are one-loop finite, and no field redefinitions are needed. 

Before asking whether a theory is finite at higher loops, one must decide 

whether to calculate with S or S1 , the action plus the one loop counterterms. 

The sensible definition of a finite theory is that the S matrix calculated from the 

original action must not diverge . Thus at any order, calculating without coun-

terterms, the infinities of the Green functions must vanish on shell, giving a 

finite S matrix. In this sense, the common statement that "a theory is finite if 

its counterterms vanish on shell" is true. It should be noted, however, that cal-

culations are not conveniently done in this manner. If counterterms are not 

used, Green functions have overlapping divergences. This is not a problem in 

principle but, as was shown in chapter II, it makes the evaluation of graphs very 

difficult. 

It is thus important to see how calculations can be done using counter-

terms. A clue to this problem can be obtained from the renormalizable case. 
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There, using or not using counterterms is a question of whether or not to insert 

wavefunction renormalizations into Feynman diagrams . However, factors of "Z" 

from vertices are canceled by 1/ Z's from propagators . Moreover, the proper 

definition of the S matrix involves a rescaling of the external legs, and the two 

procedures are clearly equivalent. In the nonrenormalizable case, one can 

analogously calculate either with the original action or with the action of the 

redefined field . This action is not just S 1, however, since additional terms from 

the Taylor series expansion of S[ tP] also contribute . Thus at two loops (to be 

definite) one can calculate with 

( 11) 

rather than with S[ tP]. The first correction provides the counterterms neces-

sary for removing the divergences of Green functions at one loop. The second 

term is already 0(1i2) and is thus inserted only into tree diagrams. It therefore 

produces no overlapping divergences, and the cancellation of the overlapping 

divergences by the first term is preserved. It is however necessary to include 

this term or one would erroneously conclude that the theory had additional 

divergences at two loops . This also occurs for renormalizable theories where a 

rpn vertex is multiplied by zn, not by (1+n(Z-1)) . If one wishes to calculate 

only with the original action and its counterterms (i .e . without the second order 

term in eq. ( 11 )), a mathematically equivalent, if philosophically different, pro-

cedure is to calculate the effective action in this way and determine the coun­

terterms. Then the two-loop counterterm would contain the II o2 " term, and the 

theory is finite if all the counterterms fit into one and two-loop field 

redefinitions . This method is less suited to working with the S matrix. 
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To summarize , finiteness can be stated in several equivalent ways. 

1) The S matrix, calculated without counterterms, is finite. 

2) The counterterms of the theory combine into field redefinitions. 

3) The S matrix , calculated using lower order field redefinitions to remove 

overlapping divergences, is finite. 

We find the third definition to be the most convenient one . It can be imple-

mented by calculating in the theory with all diagrams completely subtracted 

and adding the O(nP) terms from the Taylor expansions of the field redefinitions 

at less than n loops . If the theory is finite at n loops , the remaining infinities 

will vanish on shell or when S matrix elements are calculated. 

The equivalence of calculating with or without field redefinitions has an 

interesting consequence for the first physical divergence of a theory. If a 

theory is finite to n-1 loops, but infinite at n loops, the n loop divergence of 

the S matrix, which could a. priori be of the type .! · · · _l t, is purely .! . In 
e en e 

renormalizable theories, this result follows from the observation that all higher 

order poles can be obtained from simple poles using the renormalization group 

[26]. A proof of this result for pure gravity at two loops has been given by Chase 

[27]. He used the observation, proved in chapter II, that the 
1
2 part of a two 

e 
loop graph is - ~ that of the corresponding counterterm graph. He then used a 

field redefinition to show that the gauge fixed action could be redefined back to 

the original Einstein-Hilbert action, and that the counterterms thus give no 

contribution. The gauge fixing terms and ghosts considerably complicate his 

proof, and the proof is, in fact, slightly flawed, as the possibility that the gravi-

ton redefinition contains ghost-ghost terms was ignored. 

tin odd dimensions 1 · · · ~ 
~ ~Ln/2J 
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It is possible to evade the problems caused by gauge invariance altogether, 

and give a simple proof of the general result. This follows from the gauge-

independence of the S matrix. If the S matrix of a theory is n-1 loop finite in 

some gauge, it will also be finite in a ghost free gauge, such as an axial or light 

cone gauge. In this physical gauge the theory shows no sign of its gauge invari-

ance. If the desired result holds in non-gauge theories, it implies that the n 

loop S matrix has no compound poles in this gauge . Again using the gauge 

independence of the S matrix, this result must hold in any gauge . It is thus only 

necessary to prove the result for a non-gauge theory. 

If a theory is finite to n-1 loops, one can calculate then loop contribution 

to the S matrix without counterterms. It has the form 

(12) 

where J.1. is the dimensional regularization mass introduced to preserve the 

dimensionality of the constants in the action. If the S matrix is calculated with 

field redefinitions, however, it cannot have any overlapping divergences, and 

thus logf.J. can never appear in its divergent part. Since the two methods of cal-

culation are equivalent, logf.J. also cannot appear in the infinite part of eq. ( 12) . 

Expanding 

(13) 

it follows that only A1 can be non zero, giving the required result. 
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N. Quantum Corrections to N=4 Yang Mills. 

We now describe in some detail the various steps involved in the calculation 

of the ultraviolet divergences of N = 4 supersyrnmetric Yang- Mills at two loops . 

The theory is formulated most simply in ten dimensions [ 12], where it describes 

the interactions of an adjoint multiplet of Majorana-Weyl (i.e . real left-handed) 

spinors with a Yang-Mills field . The action is 

(1) 

where 

(2) 

and 

(3) 

Early Greek letters are used to denote ten dimensional indices . In the following, 

middle Greek letters will be used for d dimensional indices . The action has been 

Wick rotated into Euclidean space (7Jap= Oap). to avoid the necessity of perform­

ing Wick rotations when doing loop integrals . (Rigorously these spinors do not 

exist in Euclidean space, but this causes no problems .) The !abc's are the 

structure constants of a semisimple Lie algebra, and are real and totally 

antisyrnmetric. The supersyrnmetry transformations of the theory are 

.n.a- 1 Fa v f\ - Z ap 7 ap E: (4) 
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where 'Yap is the product of 'Ya and 'Yp antisymmetrized with weight one. The 

lagrangian can be dimensionally reduced to any dimension d < 10 simply by 

dropping the dependence of the fields with respect to 1 0-d spatial coordinates. 

The fields then split into irreducible representations of the d-dimensional 

Lorentz group. For example, in going from d = 10 to d =4 the spinor splits into 

four four-dimensional Weyl spinors, and the vector splits into a four-dimensional 

vector and six scalars. However, while it is natural to use d dimensional indices 

in d dimensions, this is inconvenient for explicit calculations, because the 

action splits into many pieces. Therefore, we will keep the form of the action in 

eq. (1) for all d::;;1 0 (changing d 10x to dd.x). This simplifies the Feynman rules 

and also has the effect of allowing similar manipulations in all dimensions . 

Since the intermediate results of a calculation diverge even in a finite 

theory, it is necessary to regularize the action. To preserve the gauge invari­

ance of the regularized action, a dimensional regularization scheme should be 

used. Ordinary dimensional regularization does not preserve the equality of 

Bose and Fermi degrees of freedom, and the regularized action is thus not 

supersymmetric. Therefore, a supersymmetric modification of dimensional reg­

ularization, known as dimensional reduction [33], should be used. In this 

scheme momenta are continued to d-e; dimensions, as in dimensional regulari­

zation, but fields are left d-dimensional. The notation above is very convenient 

for this scheme, which can be implemented simply by replacing g with g f..Lu2 and 

ddx with dd.-Ex, while leaving the ten dimensional indices on the fields 

untouched. 

The Feynman gauge (aaAa) = 0 results in the simplest vector propagator 

and is therefore used in the calculation. The quantum action of the theory, 

obtained by the usual Faddeev Popov prescription, is 
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(5) 

where c a is the familiar ghost field . The Feynman rules are shown in fig. 1. It 

should be noted that, since the spinor is Majorana, the spinor propagator has no 

"arrow" associated with it. 

We choose to calculate the four-spinor S matrix amplitude . This has two 

advantages. First, this case requires a total of 43 one and two-loop diagrams, to 

be compared with 100 for the spinor-spinor-vector-vector amplitude and 69 for 

the four-vector one. Secondly, four-spinor terms are superficially less diver­

gent than terms involving vectors, even though, once gauge invariance is used, 

vector terms are actually less divergent than spinor terms. Multi-spinor ampli­

tudes, however, do have the disadvantage of requiring the use of Fierz identi­

ties, relating different spinor structures. 

In order to calculate this amplitude, the types of diagrams shown in fig. 2 

are needed. Writing non 1PI graphs for S matrix calculations is equivalent to 

calculating the 1PI graphs for the effective action and using the equations of 

motion. In either method, three 1PI Green functions, the vector propagator, the 

vector-spinor-spinor vertex and the four-spinor amplitude must be calculated. 

From the diagrams, it can be seen that external spinors can be put on shell, but 

external vectors must be kept off shell since they couple to spinors. Spinor pro­

pagators corrections are proportional to (p 2)Cd-4)L/2 at L loops. Thus in four 

dimensions the spinor propagator is renormalized, inducing a renormalization 

of the external spinor legs. In more than four dimensions these corrections 
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vanish when the legs are put on shell, and the spinor propagator need not be 

calculated. 

-- + 

Figure 2. 

The four-spinor S matrix. Circles denote lPI graphs. 

a) One Loop Graphs. 

We can now study the one loop Green functions . These are both interesting 

in their own right, and useful as insertions in two loop diagrams. We calculate 

the effective action or, equivalently, the generating function for the S matrix. It 

is thus not necessary to permute external legs, greatly reducing the number of 

diagrams. Furthermore, because the spinor fields anticommute, all "minus" 

signs are automatically taken care of. With this method, the combinatoric fac-

tor of a graph is simply one over the dimension of the group of all symmetry 

transformations of the graph, allowing interchanges of both internal and exter-

nallegs. 

All the one-loop graphs needed are shown in fig. 3. The vector propagator 

corrections contribute 

to the effective action. This structure has already been manipulated to write it 

as a transverse tensor . We remind the reader that the "vector" indices in (6) 
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run from 1 to 10, and thus also represent scalars in d dimensions . It is a non-

trivial feature, that only occurs at one loop, that all d dimensional indices 

disappear . 

The spinor propagator correction equals 

(7) 

where, from this expression on, the external momentum integrals (with their 

factors of (27T)d) are omitted for brevity. 

+ 

+ 

Figure 3. 

The one loop graphs. 

, ..... 
, ' 

+~ yvv 
' I .......... 
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The vertex corrections give 

. &dd-&k 1 
'L &/2 2J abc J '-f.J:-~-
Zgf..L g (21T)d-& k 2 (k+p) 2 (k-q)2 

· A~(-p-q) ~a.(p)~/'a(5k 2 + 6p·k- 2q·k -/ttj- 2ptj- 2p ·q] 

(B) 

Finally, the four-s-pinor Green function equals 

(9) 

Here the group theory factor is written diagrammatically, as explained in the 

appendix, u sing a notation first introduced by Cvitanovic [34]. The indices on 

the group theory graphs will often be omitted if they appear in this order. 

b) Pole Parts. 

Extracting the pole parts from the integrals in eqs (6-8) is straightforward. 

First , one loop finiteness is trivial in all odd dimensions, because there are no 

poles at odd numbers of loops in odd dimensions. In d =4 the four-spinor 1PI 

amplitude of eq. (9) converges, whereas the amplitudes of eqs (6) and (7) give 

where 

( 11) 



-54-

The field equation for Aa is 

(12) 

while f...a satisfies 

( 13) 

Substituting these results into (10), it is seen that the divergence vanishes on 

shell, and N = 4 supersymmetric Yang-Mills theory is thus one-loop finite in 

four-dimens ions [35]. This is, of course, well known. Here we have seen how the 

finiteness is recognized in terms of the on-shell effective action. 

From ( 1 0), one can read off the field redefinitions (in this case simply the 

wavefunction renormalizations) induced by the counterterms needed to make 

the Green functions finite . They are 

(14) 

and 

(15) 

In six dimensions the pole parts of the effective action that contribute to 

the four spinor S-matrix can be written as 

(16) 
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where the spinors have been put on shell . Once again, all d dimensional indices 

have canceled. In obtaining this expression, it was necessary to use Fierz and 

group theory identities, as illustrated in the appendix. For example, when mul-

tiplied by the box group theory factor, 

(17) 

The use of the vector equation of motion now causes the divergence to van-

ish. Thus the divergences in the Green functions can be removed by the field 

redefinition 

2 3 -oAa = _ g (DrAa+ _ igjabcf... b-v f...c) 
a 3 (4 7T)3t: a 2 ra 

(18) 

The redefinition is now nonlinear, as anticipated in the previous section. There 

are also other terms in oA~ which cannot be determined from this calculation, 

and are obtained by making other Green functions finite, as well as field 

redefinitions for spinors and ghosts. In general the field redefinitions mix all 

fields in the theory. As we have stressed, field redefinitions are gauge-

dependent and unphysical, but they are useful (in principle, at least) for 

higher-loop calculations. In practice, the method of subtraction of subdiver-

gences omits explicit mention of them altogether. This should be clear from the 

discussion that follows. 

In eight dimensions even after the equation of motion is used a divergence 

remains [36]. This divergence is physical. After simplification using Fierz iden-

tities, symmetries of the group-theory factor and the Jacobi identity it can be 

written in the simple form 
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All eight-dimensional indices have disappeared from this expression. It is impor-

tant that the group theory factor is totally symmetric , as demonstrated in the 

appendix. This result is simply the four-spinor piece of the supersymmetric 

counterterm found by Green, Schwarz and Brink in their one-loop string-theory 

calculations [36]. 

The calculation can also be repeated in ten dimensions . In this case only 

ten dimensional indices have to be dealt with, but the integrals have a higher 

superficial degree of divergence, and manipulating the results is somewhat more 

tedious. After simplifications, the result can be written as 

+t [ X - 'X] +u [- H- X J ] (20) 

where the Mandelstam invariants are the differential operators 

s = 2PaPb t = 2PaPc and u = 2PaPa (21) 

This apparently bizarre way of writing the result is actually very convenient. 

The expression (20) could be simplified by using the Jacobi identity in eq. (A.5), 

and the relations +t +u = 0 , which holds for massless particles. However, we 

have chosen to write it in a way that the total symmetry of the second factor is 

manifest. The result has the same "kinematic factor" as the eight dimensional 

result , and is thus again part of an N=4 supersymmetric structure. 
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Our calculations therefore agree with the superstring result [36] that the 

onset of divergences at one loop occurs in eight dimensions . They also illustrate 

the need for nonlinear field redefinitions to make Green functions finite in 

theories which are finite but power-counting nonrenormalizable . Finally, they 

provide us with the building blocks for the two-loop calculation to be presented 

in the following. 

c) Two Loops. 

As stated in chapter III, we want to eliminate the overlapping divergences 

from two-loop graphs . This could be done by associating to each graph the 

corresponding counterterm graphs, but we shall instead use the equivalent pro­

cedure of performing subtractions on the integrals. Thus, we never explicitly 

mention counterterm graphs. The two-loop diagrams contributing to the vector 

and spinor propagator corrections, the two-loop vertex correction and the 

four-spinor amplitude are shown in fig. 4 . The spinor propagator correction is 

again needed only in four dimensions . In these graphs the shaded portions 

denote the total one-loop propagator and vertex corrections. Using these 

insertions corresponds to performing a partial Schwinger-Dyson expansion. It 

turns out that the number of diagrams is minimized by doing this for two and 

three point insertions , but not for four and and higher-point ones . 

Once the graphs are written down, the next problem is to extract their 

divergences in different dimensions . The remainder of this section will deal with 

technical details concerning the derivation of the results . This should clarify 

the remarks made at a rather mo.re abstract level in the previous chapter. The 

discussion of the results and their interpretation is the subject of the next 

chapter. 
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Figure 4. 

Two Loop Graphs. 
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In four dimensions, the finiteness of N=4 Yang Mills can be seen in two 

equivalent ways (methods (2) and (3) of chapter III) . The action plus the one 

and two loop vertex and propagator counterterms is 

(22) 

where to apply the usual methods, we have introduced the indices i and j to 

refer to the six scalars . Eq. (22) corresponds to the standard method of calcu-

lation. The counterterms simply induce the wavefunction renormalizations 

,_(-~~__a_:_ 1. _!_) 
A JJ. - AJJ. 1 ( )2 + ( )4 ( 2 + 2 ) 47T [; 47T [; [; 

(23) 

but no charge renormalization, and the theory is thus finite [36]. If, on the 
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other hand, we want to calculate with the field redefinitions, it is necessary to 

o2s 
include the - 2 term from eq. (III .11 )i. This can either be done explicitly or by or; 
adding the graphs in fig. 5. 

+ + 

Figure 5. 

Field Redefinition Contributions. Dots represent counterterms. 

These give the additional contribution 

(24) 

In this way, the infinite part of the two loop effective action becomes 

When the equations of motion are used, this infinity vanishes. 

Next consider the d = 5 case . Here the extraction of pole parts is rela-

tively simple, because no one-loop subdivergences are present. These integrals 

could be evaluated straightforwardly by a Feynman parametrization, but factor-

ing out the momentum dependence is still a simpler procedure. The result for 

the effective action is 

tAs this term is purely 0(1/ e:2) and we know from the arguments of the previous 
section that the S matrix has no 1/ e:2 part, we could ignore it altogether . However, 
it is kept, as it provides a useful check of the calculation. 
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Using the equations of motion, the theory is again finite . 

In six dimensions the calculation becomes more complicated. There are 

subtleties due both to the nonrenormalizability and to the presence of subdiver-

gences. Moreover, the superficial degree of divergence of the diagrams 

increases , and the integrals of the four-spinor Green function must be 

differentiated up to four times to reduce them to logarithmically divergent ones . 

Nonetheless, the method described in Chapter II simplifies matters considerably 

and, after many manipulations, we arrive at the result 

+ i Jabc (- _1.!_ + 275 ) (~a f... b) ~Ac 
g 72 c2 1728 c "Ya L-11' a 

(27) 
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for the divergences from one and two-loop graphs . The algebraic manipulation 

program SMP [37] was used in performing the differentiations, and particularly 

for the 1 matrix algebra needed in simplifying these results . The square or the 

one-loop field redefinitions from the graphs of fig. 5 give 

(28) 

When these results are added, and the field equations are used, all ~ diver­
c 

gences cancel, in agreement with the general arguments presented in the previ-

ous section. The interesting result is that the .!. terms also cancel [24]. The 
f: 

the effective action has no divergences on-shell, and thus the S-matrix is finite . 

Finally we describe the results in seven and nine dimensions [38]. Again, as 

in d=5, the calculation is conceptually rather simple , since no one-loop sub-

divergences occur in the integrals. The calculations are, however, very difficult 

in practice, due to the high superficial degree of divergence of the integrals. 

(The divergent part of the four point Green function in nine dimensions contains 

eight powers of momenta .) Because of the number of terms obtained after the 

differentiation, it was necessary to write specialized programs (in the C 

language) for their manipulation. 

In both cases the theory is found to diverge. As in the one loop ten-

dimensional result, the S matrix is the product of the kinematic factor from eq. 

( 19), and a totally symmetric factor made from group theoretical invariants and 

Mandelstam variables. The seven dimensional result is 
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( 
4 .1<1. l 

s - +-
9 90 

• 

• • 

+u (~1<1 
• 

+ 1 
90 

) 

r->--<-XJ)J 
The nine dimensional result is similar, though somewhat more complicated: 

• b 

- s•( 4;;6 1Q + 13;056 [ H + '-:><:! J ) 

( 
13 "jy( 

- tS 4536 Y. + __ 5;...__ 
133056 

( 13 -~· 5 -us -- + _......;.__ 
4536 133056 

b 

rX-XJ) 

r->--<-XJ)] . 

(29) 

(30) 

In the next chapter the meaning of the results presented here, and their impli-

cations for superspace and supergravity are discussed in detail. 
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Appendix. 

Our spinors are anticommuting and satisfy both the Majorana condition 

A= CJ.. T (A.l) 

and the Weyl condition 

(A.2) 

in ten dimensions. All Fierz identities can be derived from the fundamental one 

For the group theory factors it is convenient to use the graphical represen-

tation introduced by Cvitanovi6 [34]. Structure constants are represented by a 

trilinear vertex 

(A.4) 

Since Jabc is antisymmetric, the vertex changes sign whenever two of its legs 

are interchanged. The Jacobi identity is a quadratic relation in structure con-

slants, and in this notation reads 

0 (A.5) 

At one loop only one new group theory structure is encountered in 

processes with up to four particles. The one loop propagator group theory 

diagram gives 
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-o- (A.6) 

which is a definition of the quadratic Casimir, and the one loop vertex group 

theory diagram gives 

y 1 
2 

y 
after the use of eqs (A.5) and (A.6). On the other hand, the box diagram 

D 

(A.7) 

(A. B) 

is an independent invariant tensor . It is manifestly symmetric under reflections 

about its diagonals and sides. Its antisymmetric part can be reduced to tree 

structures using 

D Q= 1 
2 X (A.9) 

as can be seen using eqs (A.5), (A.6) and (A.7). The irreducible totally symmetric 

invariant tensor is 

(A.lO) 

At two loops new structures emerge, but again only from diagrams with four 

external legs. They are represented by the double-box diagram 

'r----r 

(A.ll) 
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and by the nonplanar diagram 

(A.l2) 

These two structures are not independent. The Jacobi identity (A.5) implies 

(A.l3) 

The nonplanar diagram is irreducible. It is manifestly symmetric under 

interchanges of its two upper legs or its two lower legs, and, as can be seen from 

of eq. (A. l3), it is symmetric under the interchange of its upper and lower legs. 

Finally 

(A. l4) 

The nonplanar diagram thus has the same symmetry properties as 

(A. l5) 

It is crucial, however, that in general the nonplanar and tree group theory ten-

sors are independent. (It should be appreciated how simply all these identities 

can be derived from the Jacobi identity (A.5) using the graphical notation. It 

would be very difficult to do this working directly with the products of many 

structure constants.) 

Finally, the symmetries of the group theory factors can be combined with 

the Fierz identity to relate different structures, and this is of course crucial in 

the calculation. As an example of many such relations, consider 
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(A.16) 

Since the box diagram is symmetric about its diagonals, it follows that the 

expression above equals the one obtained by interchanging .\ b and .\ c and rela-

be ling q ~ -p -q -r . Thus 

(A.17) 

where the equation of motion of the spinor, 

(A.1B) 

has been used. Using the Fierz identity (A.3) implies 

when multiplied by the box group theory diagram. 

Performing similar manipulations on other structures, eq. (18) can be 

simplified into terms involving only one 1 matrix. Thus, one can replace 

(A.20) 

when the expression is multiplied by the box group theory diagram. There are 

many such results . They can all be derived using similar methods and will not be 

shown here . 
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V. Discussion. 

The divergences found in the previous section all have similar structures . 

They can be written as 

1 - b - d - A a"V a A · A c "V a A 
3 1a {3 1a {3 (1) 

multiplied by a totally symmetric tensor T constructed out of the structure con­

stants !abc and the Mandelstam invariants s , t and u of the four-particle pro-

cess . The results of our analysis are summarized for convenience in the table 

below. 

loops\ dim 4 5 6 7 8 9 10 

1 0 0 0 0 Ta 0 TlO 

2 0 0 0 T? - Tg -

Table 1. 

Divergence Structure in All Dimensions at One and Two Loops. 

The calculations in eight and in ten dimensions were not done at two loops, 

since the theory was already found to be infinite at one loop in these cases . 

The fact that divergences take the simple form (1) was originally noticed at 

one loop in the string theory calculation of ref . [36], and the persistence of this 

result to two loops is rather fortunate . The expression ( 1) can be completed to 

give the four-point interactions including vectors by enforcing N = 4 supersym-

metry. The result is 
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(2) 

where Fap is the linearized field strength of the vector . This expression is 

supersymmetric on-shell, i .e. when the the field equations are used, provided its 

group theory indices are contracted with a totally symmetric invariant tensor . 

This is somewhat tedious to prove but , once it is done , the supersymmetry of the 

divergences in all dimensions follows, since any totally symmetric tensor factor 

is invariant under supersymmetry. As the calculations were performed in a 

nonsupersymmetric gauge, the supersymmetry of the results is a good check. 

The tensor factors in the cases where divergences are found are all 

different. In eight dimensions at one loop the tensor is simply 

(3) 

It does not contain any Mandelstam invariants, as is clear on dimensional 

grounds . In ten dimensions at one loop the invariant tensor does contain Man-

delstam invariants. It is given by 

+t rx- X)+" [-H- lll (4) 

In seven dimensions at two loops the tensor is 
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1 
+ 90 

+ t ( ~ .Q. + e1o [ X - X J ) 

) 

+u (~·~· 
b 

1 
+ 90 [-H-XJ)J 

and in nine dimensions at two loops it is 

. ~ 

s( 13 W 
-s 4536 \? + 5 

133056 [X- X] ) 

(5) 

In each case the tensors that appear are the most general ones allowed on 

dimensional grounds . If the structure of the divergence is assumed, the only 

problem is to determine the coefficients. The one surprise from this point of 

view is that the two-loop divergence in six dimensions which could, a priori, be 

proportional to T8 , vanishes [24]. 

The expressions T 1o and T7 are very similar. Their only difference lies in 

the fact that eq. (5) contains a more complicated group theory invariant. This 

additional invariant cannot occur at one loop, since it has the topology of a 
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two-loop diagram. As sho wn in the appendix, the tree group theory factor in eq. 

(5) satisfies similar identities as the nonplanar group theory factor. In general, 

however, it is an independent invariant. For example, in the case of SO(N), 

where the structure constants can be written as products of metric tensors, it 

can be shown that the two tensors are proportional only in the relatively trivial 

cases of SO (3) and SO( 4). This is crucial for the interpretation of the seven 

dimensional result. 

Let us now consider the results in the various dimensions . At one loop all 

theories are finite in odd dimensions . The results in even dimensions were first 

obtained in ref . [36] by taking the zero slope limit of the corresponding super­

string theory amplitudes. The four-dimensional result has been understood by a 

light-cone superspace argument [39], and later by instanton methods [ 40] and 

by an application of the Adler- Bardeen theorem [ 41]. The result is well known, 

and is true to all orders . In six dimensions one-loop finiteness follows simply 

from supersymmetry. In that case the only dimensionally correct gauge invari­

ant vector counterterm is of the form F 3 . However, this cannot be completed 

into an N = 4 supersymmetric invariant. Divergences do occur in eight and in 

ten dimensions . 

At two loops in four dimensions, the methods used to show finiteness at one 

loop still apply. In addition, because N = 2 superspace formalisms exist [ 42], 

finiteness is guaranteed by theN= 2 power counting rules . Possible divergences 

in five dimensions at two loops have the same structure as one-loop ones in six 

dimensions, and vanish for the same reason. The two-loop finiteness in six 

dimensions is more subtle. The result found in eight dimensions at one loop, 

when dimensionally reduced, has the correct dimensionality to occur in six 

dimensions at two loops . Moreover, the superfield power counting appears to 
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rule this out only if N = 4 superfields exist. (N = 4 superfields could exclude a 

divergence in six dimensions while allowing one in eight dimensions, because the 

theorem about the structure of the counterterms does not apply to one loop .) 

However, Howe and Stelle [ 43] succeeded in explaining the six-dimensional 

result in terms of the existing N = 2 superfield formulation. Their argument 

goes as follows . When N=4 Yang Mills is written in terms of N=2 superfields, 

the spectrum splits into two multiplets. There is a Yang-Mills multiplet and a so 

called hypermultiplet, or N = 2 scalar multiplet. The only two-loop counterterms 

for the Yang-Mills multiplet, that are allowed on dimensional grounds, are of the 

form 

(7) 

with various possible contractions of the indices. Here F is the dimension 3/ 2 

field strength of N = 2 Yang- Mills in six dimensions, which at e = 0 contains the 

spinor of the theoryt . The structure in (7) is the type of counterterm used in 

the derivation of the power counting rules (see eq. (1.20)). However, the 

superfield F satisfies the on-shell Bianchi identity 

(B) 

and its equation of motion is 

VABF!= 0 (9) 

t a is an SU(2) index, and A is a spacetime spinor, or su•(4) index. 
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where V AB is a spacetime derivative . It follows that all possible contractions in 

eq. (7) lead to expressions that vanish on shell, and there is thus no counter-

term for this sector. It is then argued that counterterms containing the hyper-

multiplet do not occur since the nonlinearly realized supersymmetry would 

relate these counterterms to the nonexistent pure vector counterterm. Thus in 

this case, the power counting formula can be strengthened, and N = 2 

superfields are sufficient to give finiteness in six dimensions . 

The N = 2 superspace analysis does allow a counterterm at three loops [ 42] 

in six dimensions. The unique possible structure is 

+ more (1 0) 

where "more" denotes the hypermultiplet terms, and A is a group theory factor 

antisyrnmetric in both the (af3) and the (-)'O) indices, and symmetric under the 

interchange of the two. From the appendix of chapter Nit can be seen that, in 

less than three loops, such a group theory factor can be only 

X ( 11) 

or 

(12) 

Indeed, by integrating out the anticommuting variables, one can show that the 

expression in eq. ( 1 0), multiplied by the two group theory factors, reproduces 

the one-loop divergence in ten dimension and the two-loop divergence in seven 
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dimensions. They both have this structure, since they have the same dimen­

sionality as the three-loop six-dimensional result. One would expect that the 

three-loop six dimensional result, which is unknown, would have additional 

invariant group theory tensors, as the seven dimensional result had more than 

the ten dimensional one. It can be noted, parenthetically, that to this order, the 

structure of (2) is unique because of the uniqueness of eq. (10). The fact that 

the same kinematic factor also appears in nine dimensions has not been under­

stood in terms of superfields. It is an open question whether this structure per­

sists to higher orders of perturbation theory, but this appears likely. 

The divergence in seven dimensions is given by eqs (2) and (5) . The result, 

when dimensionally reduced to six dimensions, can thus be obtained from the 

N = 2 superfield integral of eq. ( 1 0). Thus the seven-dimensional result can be 

written in a non-manifestly Lorentz invariant way as a N = 2 superspace integral 

over six-dimensional superfields. (This is suggestive of an extension of six­

dimensional N = 2 superfields above six dimensions, as can be done with four 

dimensional N = 1 superfields [ 44].) What one is really interested in, however, is 

attempting to write an N=4 superspace counterterm, as in eq. (1 .20). The only 

gauge invariant candidate at the linearized level is 

( 13) 

where fA is the spinorial connection of ten-dimensional Yang-Mills, .and WA is 

the corresponding linearized on-shell field strengtht. At the linearized level wA 

is given by 

tHere A is an S0(9,1) spinor index. 
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( 14) 

The term ( 13) is gauge invariant. This is not manifest, but follows immediately 

from the linearized on shell Bianchi identity satisfied by WA 

(15) 

The nonlinear generalization of (13) can be obtained using the methods in ref . 

[ 45]. The resulting expression 

(16) 

is somewhat unenlightening, but can be understood by noting that its variation 

is 

(17) 

The important point is that the group theory factors in ( 16) are, at most 

trees . The term has a manifest N=4 supersymmetry, and thus an N=2 super-

symmetry. As (2) is the unique term with N=4 supersymmetry, (13) must be 

proportional to it . It is even possible that the highest 8-component of the 

integrand in eq. (13) is a total divergence, causing the whole integral to vanish. 

In either case, the N=4 superspace counterterm is clearly different from the 

seven dimensional result, since the group theory factor in eq. (5) contains 

"non-planar" structures, which cannot be written as "trees". The seven 



- 76-

dimensional result thus cannot be written as a full superspace integral of on­

shell N = 4 superfields. 

The main conclusion of this work is that the basic ingredient of the N = 4 

superfield power counting, the form of the on-shell effective action, is explicitly 

violated. Although the violation of the power-counting was discovered in N = 4 

Yang- Mills in higher dimensions, this demonstrates that one should not trust the 

power-counting of extended superspace for any theory for which the off-shell 

superfield formalism is unknown. The only theory for which N>2 superfields are 

known is simple supergravity in ten dimensions, together with its dimensional 

reductions [ 46]. However, this theory already diverges at one loop [ 47], and is 

thus somewhat uninteresting. 

These results lead to the conclusion that divergences invariably appear 

whenever there is no good argument excluding them. There are no miracles . 

What are the implications for super gravity? It has been suggested that N = 8 

supergravity might be two-loop finite in eleven dimensions [ 48], even though it is 

already infinite in eight dimensions at one loop. This is not even sustained by 

the N=8 power counting. Our results suggest that this is extremely unlikely . In 

particular, the nine-dimensional two-loop result is a good analogue of this case, 

since at one loop the N =4 Yang Mills theory is infinite in eight dimensions and 

trivially finite in nine dimensions . If the eleven-dimensional supergravity is 

indeed two-loop infinite, this would undermine the use of this theory for a 

Kaluza- Klein approach to the unification of the fundamental interactions, as the 

underlying theory would be divergent. The compactification to four dimensions 

would not affect the divergence, as the theory would still look eleven dimen­

sional at very small scales. 
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In four dimensions, all pure supergravity theories are known to be finite up 

to two loops. The superspace power counting arguments can be used for N = 1 

and N=2, but this has no further implications . Furthermore, explicit super­

space counterterms for supergravity have been studied in ref . [ 49] and, unlike 

the case of six-dimensional Yang-Mills at two loops , three-loop counterterms 

are available for the N = 2 supergravity multiplet which do not vanish on shell. 

It is therefore very likely that all supergravity theories will diverge at three 

loops in four dimensions . If this is actually true, supergravities could not be 

considered to be fundamental theories. One possibility is that they could be 

considered to be limits of string theories at energies below the Planck mass. 

N = 2 superstring theories in ten dimensions have been shown to be one loop 

finite [36], unlike their ten-dimensional field theory limits. The analysis of 

divergences in string theories is quite different, and one could hope that this 

would persist to all orders. The final word on these issues may have to await 

further explicit calculations. 
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