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ABSTRACT 

Accelerograms obtained during the 1979 Coyote Lake, California 

earthquake are used to examine the response of a multiple-span, steel 

girder bridge to strong earthquake loading. The structure studied, the 

San Juan Bautista 156/101 Separation Bridge, is typical of many highway 

bridges in seismic regions of the United States. Although the bridge 

was not damaged, the strong-motion records are of significant engineer

ing interest as they are the first to be recorded on such a structure. 

An engineering seismology study suggests that long-period ground 

displacements at the bridge site were caused by Rayleigh waves. A 

three-second period, pseudostatic response of the superstructure is 

attributed to small amounts of differential support motion induced by 

the surface waves. 

A time-domain technique of system identification is used to 

determine linear models which can closely replicate the observed bridge 

response. Using time-invariant models, two structural modes at 3.50 and 

6.33 Hz, are identified in the horizontal direction. Each mode, having 

approximately ten-percent damping, involves coupled longitudinal and 

transverse motions of the superstructure. Time-variations of frequency 

and damping in the horizontal response are also identified using a 

moving-window analysis. 
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A three-dimensional finite element model which includes soil

structure interaction predicts several important features of the dynamic 

response of the bridge. The first two computed horizontal frequencies 

are found to be in excellent agreement with the observed responses pro

vided the model's expansion joints are locked, preventing relative 

translational motions from occurring across the joints. Locking is 

confirmed by the observed deformations of the structure in the fundamen-

tal mode. Fundamental vertical frequencies of the individual spans, 

predicted by the finite element model, are in very good agreement with 

ambient vibration test data. Results of the strong-motion data analysis 

and the finite element modeling are used to recommend a plan for expan

sion of the strong-motion instrumentation array on the bridge. 
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CHAPTER I 

INTRODUCTION 

1.1 GENERAL INTRODUCTION AND OVERVIEW 

Bridges are an essential and integral part of local and national 

highway systems. Throughout the world, many thousands of highway 

bridges are located in areas of moderate to high seismicity. The safety 

of these bridges, and the functional capability of the associated 

transportation routes in the aftermath of a major earthquake, are highly 

dependent upon the seismic resistance of the bridge structures. 

In the United States, the seismic vulnerability of highway bridges 

was made dramatically evident by the failure of many of these structures 

during the 1971 San Fernando earthquake. This earthquake provided a 

stimulus to investigate the seismic response of highway bridges, in much 

the same way as the 1933 Long Beach earthquake stimulated research on 

the earthquake response of buildings. 

The purpose of the research described in this dissertation is to 

investigate the earthquake response of a multiple-span bridge, typical 

of many highway bridge structures in North America. The bridge studied 

is the San Juan Bautista 156/101 Separation Bridge in California. The 

study is based heavily upon a set of multiple-channel recordings of the 

strong-motion response of the bridge during the 1979 Coyote Lake earth

quake. 
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The remainder of this first chapter is devoted to a discussion of 

the damage sustained by bridge structures in past earthquakes, to 

previous research on bridge earthquake engineering, and to a brief out

line of the main contents of this dissertation. 

1.2 DAMAGE TO HIGHWAY BRIDGES IN PAST EARTHQUAKES 

A study of the damage sustained by engineering structures in past 

earthquakes provides one of the best means of evaluating the seismic 

resistance of various types of structures, and serves as the ultimate 

test for assessing the adequacy of seismic design procedures. 

The greatest number of bridges damaged by past earthquakes has been 

in Japan. The 1923 Kanto earthquake (local magnitude,~~ 7.9) was the 

first earthquake to cause large scale damage and destruction to modern 

facilities in Japan. Prior to the Kanto earthquake, Japan did not have 

regulations which required the consideration of seismic forces in the 

design of structures. After the earthquake, however, seismic design 

regulations were quickly imposed for future construction. 

The Kanto earthquake damaged more than two thousand bridges, 

although for some the damage from subsequent fires was more severe than 

the direct effects of the earthquake. Since 1923, numerous other earth

quakes have also inflicted considerable damage to highway bridges in 

Japan. Iwasaki, et al., (1972)* provide a detailed discussion of damage 

sustained by many different types of bridges during nine major Japanese 

earthquakes from 1923 to 1968. For the most part, seismic damage was a 

* References appear at the end of each chapter. 
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result of failures of either bridge substructures or the surrounding 

soils. In very few instances did vibrational effects of the bridge 

account for appreciable levels of damage. When superstructure damage 

was found to occur, it was generally possible to trace the cause of the 

damage back to a failure of the substructure or soil. 

Japanese experience indicates that most damage has occurred to 

abutments, piers, bridge girders and supports. In many instances, large 

differential movement between the superstructure and substructure has 

been ascribed as the cause of collapse of single-span bridges; in 

essence, girders were displaced from their supports. Loss of foundation 

support in the form of bearing failures (including liquefaction), soil 

settlements, or excessive horizontal movements of the soil were often 

found to be significant contributors to the failure of abutments and 

piers. 

In addition to those Japanese bridges which sustained overall 

failure, many others have been observed which showed signs of distress 

or complete failure of individual structural components. These include: 

(1) excessive displacement of the end supports of girders, (2) displace

ment and/or failure of bearings, (3) anchor bolt damage, (4) settlement 

of approach fills at the abutments, rendering the bridge inaccessible, 

and (5) damage to abutments and wingwalls by excessive cracking and 

crushing of concrete. 

In the United States, nwnerous highway bridges were damaged during 

the 1964 Alaska earthquake (Sturman, 1973). The causes and types of 

damage to most Alaskan bridges were generally similar to the 
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observations from the Japanese earthquakes, namely failure of soils or 

substructures; little damage was associated with vibrational effects on 

the bridge structures themselves. 

The perception of the way in which highway bridges respond to 

earthquake shaking was dramatically changed by the 1971 San Fernando 

earthquake. For the first time, vibrational effects on the structures 

were seen to be a principal cause of the failure of bridges. Although 

failure and heavy damage to freeway structures was confined to the 

epicentral region, the total collapse of five high overcrossing 

structures at three major freeway interchanges clearly indicated that 

the dynamic behavior of such structures must be considered in the 

seismic design process. 

Some of the major deficiencies which led to collapse of the high 

overcrossing structures in the San Fernando earthquake were: 

(1) inadequate width of seats at expansion joints, (2) adjacent spans 

not tied together to prevent excessive relative movement across the 

joints, (3) inadequate column reinforcing, and (4) unstable configura

tion of spans in which only one column was placed between expansion 

joints. 

Damage to many of the shorter span, lower height bridges was 

observed to occur in a similar but less spectacular fashion, but the 

effects of vibration were still evident in many of the damaged 

structures. Shear failure of short columns, rotation of skewed 

superstructures, evidence of longitudinal and lateral movements, and 

signs of soil-bridge interaction, especially at abutment failures, were 
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noticeable in many bridges. Jennings and Wood (1971) provide a discus

sion of the damage to several freeway structures during the San Fernando 

earthquake. A comprehensive investigation of damage to freeway bridges 

was conducted for the California Department of Transportation by Elliott 

and Nagai (1973). Their report documents the most extensively damaged 

bridges, and also those which had a unique mode of failure. Included in 

their study is a summary of every bridge (66 in total) that was damaged 

during the San Fernando event. The one pertinent generalization drawn 

from their study was that it was the structural details which failed, 

precipitating most of the severe damage. 

1.3 RESEARCH ON THE EARTHQUAKE RESPONSE OF HIGHWAY BRIDGES 

1.3.1 Previous Analytical and Experimental Work 

Immediately after the 1971 San Fernando earthquake, a comprehen

sive research program to study the seismic resistance of highway bridges 

was undertaken by the University of California, Berkeley. This program 

included both analytical and laboratory investigations on the seismic 

response of specific types of highway bridge structures. In the ana-

lytic phases, long-span, high. curved overcrossings as well as short. 

single-span bridges were investigated. In the laboratory phase, a scale 

model of a long-span overcrossing structure was subjected to simulated 

seismic excitations on a shaking table, and correlations between model 

and analytic results were made. 
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The conclusions and recommendations of the above program have been 

reported and no attempt will be made to discuss them here, other than to 

mention that current seismic design criteria for bridges reflect many of 

the recommendations of the research program (Gates, 1976; Mayes and 

Sharpe, 1981; AASHTO, 1977; Applied Technology Council, 1983). Complete 

discussions and bibliographies may be found in Iwasaki et al., (1972), 

Tseng and Penzien (1973), Chen and Penzien (1975), Kawashima and Penzien 

(1976), Williams and Godden (1976). 

Other analytical research projects on bridges have been conducted 

as well. For example, Ghobarah and Tso (1974) analyzed the seismic 

response of a two-span skew highway bridge to the San Fernando earth

quake, and Lisiecki (1982) has examined the response of the Meloland 

Overcrossing to the 1979 Imperial Valley earthquake. Gillies and 

Shepherd (1981) present an analysis technique for determining the 

response time-history of a bridge structure with allowance for inelastic 

member behavior. 

Most early research on the response of bridges to earthquake motion 

has assumed uniform base excitation of the structure. Spatial varia

tions in the seismic motions at a site may, however, cause the bridge 

foundations to be subjected to different amplitudes and phasing of exci

tation. For very short-span bridges and long seismic wavelengths these 

variations are expected to be negligible, but for long-span bridges the 

variations may be of appreciable magnitude. 
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One of the earliest studies of the effects of travelling seismic 

waves on bridge stuctures was conducted by Bogdanoff, et al •• (1965) who 

examined the case of a seismic motion propagating along the length of a 

bridge foundation. The bridge responses were found to be noticeably 

different from those due to a uniform. rigid base excitation. Werner, 

et al •• (1977) and Werner and Lee (1980), investigating the effects of 

travelling seismic waves on the response of a single-span bridge, report 

that both the type of seismic wave as well as the angle of approach may 

substantially influence a bridge's dynamic response. Abdel-Ghaffar 

(1977) has also studied the problem and reports similar results. For 

bridge structures more complex than a single span, differential support 

excitation significantly complicates the problem of dynamic response 

analysis. 

To augment analytical and laboratory work in earthquake engi

neering, researchers have also performed tests on full-scale bridge 

structures. These experiments usually involve measurement of the 

dynamic response to ambient levels of excitation (e.g., wind or 

traffic), to controlled sinusoidal excitation, or to pull-back testing. 

In New Zealand, a series of sinusoidal excitation tests were conducted 

by Shepherd and Charleson (1971) at various stages of construction of a 

six-span bridge, and estimates were made of natural frequencies and 

damping values. Gates and Smith (1982) have published results of an 

ambient vibration survey on fifty-seven highway bridges in California 

and Nevada. Douglas and Reid (1982), and Douglas and Norris (1983) have 

analyzed vibration response data from pull-back tests on a Nevada 



- 8 -

highway bridge where testing loads ranged from ambient forces to lateral 

loads 1.5 times the design loads. 

While the observations of Douglas, et al., cover a number of 

points, the overall indication from their studies is that linear 

structural models with simple linear soil-structure interaction springs 

were found to work acceptably well for predicting seismic responses. At 

the Nevada test bridge, the overall rotation of pile foundations was 

found to be the major contributor to soil-structure interaction during 

large amplitude tests, rather than lateral pile stiffness (Douglas and 

Richardson, 1984). 

A compilation of research and review papers, published by the 

Applied Technology Council (1979), covers many additional aspects of 

both analytical and experimental research on the earthquake response of 

highway bridges. 

1.3.2 Strong-Motion Instrumentation of Bridges 

For engineering purposes, the basic source of data on the earth

quake response of structures is strong-motion accelerograms. Although 

many buildings are instrumented with strong-motion accelerographs, and 

many excellent records have been obtained from these installations, it 

was not until the mid-1970's that a program of strong-motion instrumen

tation of bridges and other transportation structures was initiated in 

California. The first sets of records were obtained in 1979 when two 

instrumented bridges in California were shaken by different earthquakes. 
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Currently, there are more than 567,000 highway bridges in the 

United States; approximately 23,150 of these being in the State of 

California. At present, only five California bridges are instrumented 

to record earthquake shaking. It is fortuitous that, since the begin

ning of the strong-motion instrumentation program for bridges, three of 

these five have yielded significant data, so that now there exists a 

limited supply of the accelerograms needed to examine the actual seismic 

response of highway bridges. A summary of the bridges which have been 

instrumented and the records obtained to date (May 1984) is given in 

Table 1.1. 

In connection with the California Strong-Motion Instrumentation 

Program, Raggett and Rojahn (1978) have described some standard, general 

methods to aid in the interpretation of strong-motion records from high

way bridges. Also, Rojahn and Raggett (1981) suggest guidelines for the 

strong-motion instrumentation of such bridges. 

The work to be described in this thesis is the first investigation 

of the strong-motion records from the San Juan Bautista 156/101 Separa

tion bridge. The overall objective in this study is to understand the 

seismic response of the bridge using the strong-motion data recorded 

during the 1979 Coyote Lake earthquake. It is desirable to extract from 

this data set as much information as possible, because of the limited 

data available from such structures. 
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TABLE 1.1 

California Bridges with 
Strong-Motion Instrumentation 

Bridge Name 
and Location 

10-15E Interchange 
(San Bernardino) 

San Juan Bautista 
156/101 Separation 
(San Benito Co.) 

Meloland Overcrossing 
(El Centro) 

101/Painter St. 
Overcrossing 
(Rio Dell; Humboldt Co.) 

Vincent Thomas 
Suspension Bridge 
(Los Angeles) 

1.4 OUTLINE OF PRESENT WORK 

Number of 
Transducers 

1 

12 

26 

20 

26 

Recorded Events 
. -

None to date 

18/6/79-Coyote Lake 
I 
I 
I 
110/15/79-Imperial Valley 
1980-81-several small events 

11/8/80-Trinidad Offshore 
12/16/82-Rio Dell 
8/24/83-Cape Mendocino 

I Offshore 

None to date 

I 
I 
I 

The research is presented in three chapters. Each chapter is more-

or-less self-contained in a topical sense, but the results of each 

preceding chapter are used as a starting point for the analysis of the 

subsequent chapter. Relevant works of reference are listed at the end 

of each chapter. 

In Chapter II, a detailed study is made of the earthquake ground 

motions recorded at two separate stations at the site of the San Juan 

Bautista bridge. The main objective in this chapter is to examine the 
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spatial variations in the ground motions occurring along the alignment 

of the bridge. The possibility of differential support motion induced 

by travelling body waves and surface waves is also investigated. 

The third chapter contains an adaptation of an output-error method 

of system identification developed by Beck (1978), to the structural 

response records of the San Juan Bautista bridge. Estimates of modal 

frequencies and damping values are obtained for the dominant modes of 

bridge response, asstlllling time-invariant linear response. In addition, 

time variations in modal frequencies and damping values during the 

earthquake are investigated using a moving-window analysis. 

Chapter IV is concerned with structural modeling of the bridge and 

the comparison of the computed dynamic characteristics of the structure 

with those observed during the earthquake. A linear finite element 

model, including linear soil springs at the foundations, is used to 

predict natural frequencies and mode shapes of the bridge. Common 

modeling asstllllptions for the dynamic behavior of the expansion joints 

are assessed in light of the measured responses during the earthquake. 

Chapter V, the final chapter, S1Jlllll1arizes the major findings of this 

study and presents conclusions on the seismic response of the San Juan 

Bautista bridge, as well as more general conclusions. 

At this point the dimensional units employed in this dissertation 

should be mentioned. In keeping with common practice in that field, all 

dimensions in the seismological sections of this thesis are reported in 

metric units. This mainly involves Chapter II. In Chapter IV, which is 

mainly a structural engineering chapter, dimensions are presented in 
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feet and inches. These are the units in which the bridge was designed, 

and are the units of current engineering practice in the United States. 
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CHAPTER II 

ANALYSIS OF GROUND MOTION RECORDS 

In this chapter, records of the ground motion for the San Juan 

Bautista bridge site are used to examine the nature of the seismic exci

tation to which the bridge was subjected during the 1979 Coyote Lake 

earthquake. By seismological and geophysical investigations of the 

strong-motion records, evidence is accumulated to show that surface wave 

effects are believed responsible for the presence of long-period 

components of ground motion observed at the site. There are indications 

that travelling wave effects may be responsible for a small amount of 

differential support motion along the 326-foot length of the bridge. 

2.1 SEISMOLOGICAL CONSIDERATIONS 

Seismic waves propagating in the earth can be conveniently 

classified into two major groups; body waves and surface waves, 

depending upon the type of path the waves take as they travel outwards 

from the source. The ground motion observed at a given site during an 

earthquake is normally a superposition of several types of body and 

surface waves, each of which has been influenced to some degree by fac

tors such as geologic variations along the travel path, refraction and 

reflection at layer boundaries, dispersion, focussing, anelastic 

attenuation, and radiation patterns. The following paragraphs provide a 

highly condensed summary of some important aspects of seismic wave 

propagation in a homogeneous, elastic medium. The material is standard 



- 17 -

in many texts on seismology (Richter. 1958) and mechanics (Fung, 1965). 

Some additional seismological aspects are also introduced in later sec-

tions of this chapter, where appropriate. 

Body waves are represented by two main types of waves, depending 

upon the orientation of the particle motion with respect to the direc-

tion of wave propagation. Dilatational waves, or P waves (P for 

primary), with particle motions parallel to the direction of propagation 

are the first to arrive at a site from the earthquake hypocenter, and 

often arrive at nearly vertical angles of incidence. Most strong-motion 

accelerographs are designed to be activated at a threshold acceleration 

of approximately O.Olg in the vertical direction, in order that the 

first arrivals of vertical P waves will trigger the system. 

homogeneous elastic body, the P wave velocity a is given by 

a =~ A + 2µ 
p 

In a 

(2.1) 

where A= 2µ~/(1~2~) is Lame's constant (~=Poisson's ratio), µis the 

shear modulus and p is the density. For many seismological applications 

1 
~ may be taken as 4• hence A = µ and 

a (2.2) 

Shear waves, or S waves (S for secondary) normally arrive a few 

seconds to many seconds after the first P arrival. depending on the dis-

tance to the source and the wave speeds. The particle motion of an S 

wave is on a plane perpendicular to the direction of propagation (a 

shearing action in the medium) and the velocity of propagation is given 
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by 

( 2 .3) 

For geophysical applications a ='\['3 .13 is often a suitable approxi-

ma ti on. When the particle motion is oriented parallel to a material 

boundary (say the surface), the motion is termed SH, and when it is on 

the plane perpendicular to the boundary the waves are called SV. 

In an elastic medium bounded by a plane surface, an SV wave 

incident at the surface will cause both P and SV waves to be reflected 

back into the medium when the SV angle of incidence i, measured with 

respect to the vertical, is less than the critical angle i = c 

-1 I sin (j3 a). When i > ic' however, no P wave will be reflected and part 

of the incident wave energy will be trapped along the surface. The 

result is a coupling of P waves and SV waves at the surface which 

produces a Rayleigh surface wave. It can be shown (Fung, 1965) that 

when ~ = '!. the propagation velocity cR' of a Rayleigh wave in a 

homogeneous elastic medium is 

= 0 .92.13 (2.4) 

The particle motion at the surface for a Rayleigh wave is retrograde 

elliptical in the plane of propagation. In a heterogeneous medium 

(e.g., the earth) the wave propagation is dispersive since cR is a func-

tion of the wavelength, with larger values of cR being associated with 

the longer wavelengths. 
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With a seismological understanding of the ways in which various 

types of seismic waves combine to create the total earthquake ground 

motion, and with the increase in information on the spatial variability 

of ground motion as a result of deployment of closely-spaced arrays of 

accelerographs, it becomes increasingly significant that this informa

tion be used in a productive way. One such application is in earthquake 

engineering studies of structures which may be particularly influenced 

by spatial variations in ground motions and travelling wave effects. 

The remainder of this chapter is devoted to such a study for the ground 

motions recorded at the San Juan Bautista Separation Bridge during the 

1979 Coyote Lake earthquake. 

2.2 THE SAN JUAN BAUTISTA 156/101 SEPARATION BRIDGE 

The purpose of this section is to provide a general description of 

the San Juan Bautista 156/101 Separation Bridge and a discussion of the 

strong motion instrumentation system deployed on the bridge. The 

availability of strong ground motion records at two separate stations at 

the bridge site provides the basis for subsequent analyses in this 

chapter. 

2.2.1 Description of the Bridge 

The San Juan Bautista 156/101 Separation Bridge is located 

approximately 3.2 kilometers (2 miles) north-west of the town of San 

Juan Bautista in San Benito County, California (see Fig. 2.1). This 

two-lane bridge, constructed in 1959 and owned by the California 
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Figure 2. 1 Location of the San Juan Bautista Separation Bridge and 
Epicenter of the 1979 Coyote Lake Earthquake 
(after Liu and Helm berger, 1983) 
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Department of Transportation (Caltrans), carries a moderate amount of 

automobile and truck traffic on California State Highway 156 over U.S. 

Highway 101, and is typical of the late 1950's - early 1960's style of 

highway bridge design in the United States. Only a minimal amount of 

seismic resistance was designed into bridge structures in the late 

1950's, and for practical purposes, all loadings arose from service 

conditions. 

The San Juan Bautista bridge consists of six simple spans of steel 

girders composite with a reinforced concrete deck. Between each span is 

a small gap (1 inch), filled with an expansion joint material, to allow 

for thermal expansion and contraction of the road deck. The spans are 

simply-supported on two-column, reinforced concrete bents with a fixed 

bearing at one end of each span (the left-hand end of each span in Fig. 

2.2) and an expansion bearing at the other end. The design and orienta

tion of the bearings is such as to allow for longitudinal movement (in a 

direction parallel to the centerline of the roadway) across the expan

sion bearings. Detailed views of the bridge are shown in Figs. 2.2 and 

2.3; these include some of the major overall dimensions. Cross-

sectional dimensions of deck members are the same throughout the 326-

foot length of the bridge, with the exception of a slight change in sec

tion size of the steel girders on the two longest spans. A detailed 

summary of the material and geometric properties is given in section 

4.1.1 of this dissertation. 
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Foundation support for the bridge consists of a 7 X 12 X 2.5-foot 

spread footing at the base of each column (2 per bent). These footings 

bear directly on horizontal beds of Pliocene alluvial deposits estimated 

to be approximately fifty feet in thickness, which in turn overlie 

granitic basement rock (Porter, et al., 1983). Soil tests at the bridge 

site prior to construction gave Standard Penetration Test (SPT) values 

of N of approximately 50. Values of N this high indicate a very dense 

soil (Scott, 1981). 

The left abutment, denoted as Al on Fig. 2.2, was constructed on a 

naturally occurring rise of the ground surface while the right abutment 

(A7 on Fig. 2.2) was constructed on fill material. The deck-to-abutment 

connections also include an allowance for expansion. 

bents are skewed at 34.8° with respect to the bridge 

The abutments and 

deck. For later 

discussions, a global X-Y-Z coordinate system is defined such that the X 

axis points in the longitudinal direction (parallel to the centerline of 

the road), the Y axis points in a transverse direction, and the Z axis 

is vertical. These coordinate directions are shown on Fig. 2.2. 

2.2.2 Strong-Motion Instrumentation of the Bridge 

In May 1977 the San Juan Bautista bridge was instrumented by the 

Office of Strong Motion Studies of the California Division of Mines and 

Geology with twelve channels of strong-motion instrumentation, all 

linked to a central recording system having a common trigger and time 

signal. The strong-motion transducers were force balance accelerometers 

(Kinemetrics FBA-1 and FBA-3 models) which were connected to a CRA-1 
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central recording system. Some relevant specifications of the 

accelerometers and recording system, all of which were supplied by 

Kinemetrics Incorporated, are given in Appendix 2A at the end of this 

chapter. Six transducers were placed at ground level to measure the 

input motions to the structure, three at bent 3 (B3) and three at bent 5 

(BS). The remaining six transducers were placed at various locations on 

the superstructure as shown in the instrumentation plan in Fig. 2.2. 

The main shock of the August 6, 1979 Coyote Lake earthquake 

(~ = 5.9) triggered the system and resulted in the recording of 

approximately 27 seconds of acceleration on each of the twelve channels. 

The peak recorded ground acceleration (channel 1) was 0.12g and the peak 

recorded structural response (on channel 8) was 0.27g (corrected 

absolute values) with the duration of strong motion lasting about 10 

seconds. 

The instrumentation system was designed to measure the motion of a 

single bay and supporting bents. As a result, the lack of instruments 

at the abutments and at free-field locations was a limitation in deter

mining the global response of the bridge-soil system. However, the deck 

level instruments provide an opportunity to study certain aspects of the 

superstructure response, and the two sets of triaxial instruments at the 

base of bents 3 and 5 allow base input motions to be studied. Plots of 

corrected absolute accelerations for each data channel are shown in Fig. 

2.4. In some of the later analyses it will prove useful to rotate the 

horizontal components into the global X-Y coordinate directions of the 

bridge, as previously defined. 
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In addition to the bridge site, several other strong motion 

accelerographs were deployed throughout the region. A linear array of 

five triaxial instruments spanned the Calaveras fault zone in the 

vicinity of Gilroy, about 20 km north of the bridge. Also, there was an 

instrument installed in the town of San Juan Bautista, about 3 km east 

of the bridge. The locations of these instruments are also indicated on 

the map in Fig. 2.1. With the availability of a significant number of 

near-source strong ground motion records and also world-wide teleseismic 

data, the Coyote Lake earthquake has been well researched {Joyner, 

et al., 1981; Liu and Helmberger, 1983; Uhrhammer, 1980). Compilations 

of strong-motion records recovered from the earthquake are given by 

Porcella, et al., (1979), and processed data from the San Juan Bautista 

bridge and the station in the town of San Juan Bautista are given by 

Porter, et al., (1983). Liu and Helmberger (1983) report that the 

earthquake was nearly a pure strike-slip mechanism with strike {N24°W) 

parallel to the Calaveras fault. They indicate that faulting initiated 

at a depth of 8 km and ruptured towards the south-east. The epicenter 

of the earthquake located by the University of California, Berkeley {BK) 

and the location given by U.S. Geological Survey {GS) are also 

indicated on Fig. 2.1. They are about 3 km apart. 
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2.3 SPATIAL VARIATIONS IN GROUND MOTION 

2.3.1 Introduction 

Most commonly, the seismic response of a structure is calculated 

with the assumption that the base of the structure is excited everywhere 

by the same ground motion. That is, the amplitude and phase 

characteristics of the ground motion are identical at all points where 

the structure is attached to the ground. This assumes that the ground 

motion is a result of spatially uniform, vertically propagating shear 

waves (for horizontal excitation), or, that the wavelength of the ground 

motions are long with respect to the dimensions of the structure. For 

structures of large spatial extent, such as bridges, dams and pipelines, 

the variations in ground motion over the length of support of the 

structure may be great enough to make the assumption of uniform ground 

motion inappropriate. In this case, the different ground motions 

occurring at each support must be accounted for in what is often called 

the problem of "multiple-support excitation." 

The formulation of the equations of motion for a lumped-mass multi

degree-of-freedom (MDOF) system subjected to multiple-support excitation 

is somewhat different than the formulation for a single input rigid base 

excitation. One approach is based on the concept that the total 

response of the structure can be found by superposition of the responses 

due to each independent support motion. This approach has been 

presented by Clough and Penzien (1975) and only a brief explanation is 

given here, mainly to introduce the terminology. 
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When a single support is subjected to a movement while all other 

supports are held fixed, t the total structural displacement x may be 

expressed as the sum of a pseudostatic displacement xs and a relative 

displacement x 

t x s x + x ( 2 .s) 

The pseudostatic displacement is that which occurs when the individual 

support is displaced by an amount ·v with respect to the remaining fixed 
g 

supports. The relative displacement ~ is the dynamic displacement of 

the structure induced by the motion of the one support, and is measured 

relative to the pseudostatic displacement position of the structure. 

The pseudostatic displacements can be expressed by an influence coeffi-

cient vector I such that 

s x = IV 
g 

(2.6) 

where, once again, v is the displacement of one of the supports in a 
g 

given coordinate direction while all other supports are held fixed. For 

a lumped-mass system then, the equation of motion when a single support 

is given a motion v and all other supports are held fixed is given by 
g 

. 
CMlx + cc1x + CKlx = -[M]t, v 

g 

where [M],[C],[K] are the mass, damping and stiffness 

(2.7) 

matrices, 

respectively. When t = {1}, Eq. 2.7 becomes the well-known equation for 

the response of a MDOF system to a uni-directional rigid base excitation 

v • The complete response of the MDOF system to multiple-support 
g 
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inputs is expressed by changing the ~ vector to a matrix of pseudostatic 

influence coefficients [r], and the scalar v to a vector of support 
g 

motions Xg• Hence, the complete matrix formulation of the equations of 

motion becomes 

[MJx + ccJx + CKlx = -[M][r]~ 
g 

(2.8) 

It is clear from the above discussion that vector~ (or matrix [r]) 

will be unique for a given structure and must be evaluated prior to the 

dynamic analysis. 

2.3.2 Analysis of Long-Period Errors in Strong-Motion Data 

A large amount of the strong-motion accelerograph data currently 

available to researchers and engineers is a result of an extensive 

program of data processing initiated by the Earthquake Engineering 

Research Laboratory at the California Institute of Technology in the 

early 1970's. This program resulted in the issue of several volumes of 

uncorrected accelerograms as well as corrected acceleration, and 

integrated velocity and displacement curves (Hudson, et al., 1972). The 

majority of records processed under this program were obtained during 

the 1971 San Fernando earthquake. 

As a significant aspect of this data processing program, detailed 

studies were undertaken to determine optimum procedures for processing 

the accelerograms so that the corrected digitized accelerograms would 

provide an accurate representation of the actual ground motions over the 

widest possible frequency band. As part of this effort, Trifunac, 
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et al., (1973) have presented an analysis of the errors which might rea

sonably be expected to be present in data from the Strong-Motion 

Accelerograph processing program. The processing techniques currently 

being used (1984) are an outgrowth of the earlier methods, with modifi

cations having been made through experience and through advances in 

technologies associated with the processing procedures. 

In view of some of the analyses which follow, it is important that 

an examination be made of the possible errors present in the digitized 

accelerograms, and in the displacement curves obtained by double 

integration of the accelerations. Since the accuracy of the data in 

this investigation only becomes a problem for low-frequency signals, the 

following discussions will be restricted to the long-period components. 

(a) 1ypical Processing Conditions 

The routine data processing of earthquake accel erograms as 

performed on the San Fernando data is described by Hudson (1979). 

Accelerograms typically written 

sensitivity of 1.9 cm/g, for 

on 70 mm film (by instruments with 

the SMA-1 accelerograph), were photo-

graphically enlarged four times prior to digitization to give an 

effective sensitivity of 7.6 cm/g. The photographic enlargements were 

then digitized on a semi-automatic digitizing table which required that 

a human operator use a set of cross-hairs placed on the center of the 

trace to follow the accelerogram. Trifunac (1973) reports that of 

possible 

( 2) human 

errors 

reading 

resulting 

error, 

from (1) acceleration line thickness, 

(3) digitizer truncation error, and 

(4) digitizer discretization, the human reading error is the main 
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contributing factor to the variance of error in digitizing an 

accelerogram. Random digitization errors of acceleration from all 

sources were found to be normally distributed with zero mean and 

standard deviation of 1/312 cm (the resolution capability of the 

digitizer). For integrated displacement curves, the results of Trifunac 

(1973) suggest that errors at periods of about 8 seconds may be near 

1 cm when an effective sensitivity of 7.6 cm/g is considered. 

Hanks (1975) performed an empirical evaluation of the accuracy of 

ground displacement records using 234 components from the San Fernando 

earthquake. The basic premise behind his investigation is that ground 

displacements at closely spaced stations should show little distortion 

in the long-period, long-wavelength signals crossing the array. Any 

difference in the long-period amplitudes observed on doubly-integrated 

accelerograms, he claims, must be attributed to either instrument or 

processing errors. Hanks reports that, for an effective digitization 

sensitivity of 7.6 cm/g, displacement uncertainties are approximately 

0.5 to 1 cm in the period range 5 to 8 seconds, and 1 to 2 cm in the 

range 8 to 10 seconds. Subsequent processing using a high-pass filter 

(fLC = 0.125 Hz) results in ground displacements which are considered to 

have a noise level of no more than 1 cm amplitude at periods of 8 

seconds. Both Trifunac (1973) and Hanks (1975) indicate that this 

uncertainty decreases dramatically for shorter period components in the 

record. Basili and Brady (1979) have used the work of Hanks (1975) to 
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establish an empirical criteria for the low frequency cut-off (fLC) of a 

high-pass Ormsby filter and suggest that uncertainties in displacements 

may be ± 0.25 cm when fLC = 0.25 Hz. 

(b) Processing of the Coyote Lake Earthquake Data 

The Coyote Lake data, processed by the California Division of Mines 

and Geology (CD.MG), was handled in a somewhat different way than the San 

Fernando data. Details are provided by Porter, et al., (1983) and 

similar processing used by Fletcher, et al., (1980) for Oroville 

aftershocks provide additional insights into the techniques. The basic 

difference between the CDMG procedure and the earlier San Fernando 

procedures is in the method of digitization. For the Coyote Lake event, 

the accelerograms have been digitized from contact prints of the origi-

nal film traces using a trace-following laser scan device. The original 

film traces for the San Juan Bautista bridge data were recorded at a 

sensitivity of approximately 1.9 cm/g. The laser scanner's least count 

(ultimate resolution) is reported to be 1 micron (10-6 m) and its random 

error in digitizing a straight line of similar photographic quality to 

the accelerogram traces is claimed to be 10 microns (Porter, et al., 

1983). 

The potential resolution of the laser scan device can be used to 

estimate the random noise level in the doubly integrated displacement 

signal. A random digitization error of lOµm on a trace with sensitivity 

of 1.9 cm/ g -4 corresponds to 5.26 X 10 g. Hence, uncertainties in dis-

placements for various periods are estimated to be 0.1 mm at 1 second, 

1 mm at 3 seconds, and 8 mm at 8 seconds. Since the Coyote Lake data 
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was band-pass filtered with filter frequencies fLT = 0.05, fLC = 0.25 

and fHC = 23, fHT = 25 Hz, the computed displacements may be expected to 

have an uncertainty of about 1 mm at periods of 3 seconds. 

In the next section the uncertainties in computed displacements are 

used in an examination of differences in motions at the ground level 

stations at the San Juan Bautista bridge. The results will show that, 

while the differences in computed displacements at the two stations are 

of the same magnitude as the expected level of random digitization 

noise, several features of the data suggest that the differences are 

mainly due to differential motion of the supports. 

2.3.3 Differential Support Motion 

The instrumentation layout for the San Juan Bautista bridge 

includes two sets of triaxial transducers mounted at the base of bents 3 

and 5. Records taken at these locations during the 1979 Coyote Lake 

earthquake provide a possibility to study the differences in ground 

motion occurring at two separate supports of the bridge. This marks one 

of the first instances where recorded strong ground motion and the 

associated structural responses might be used to examine the problem of 

multiple-support excitation of a bridge. 

The X, Y and Z displacement components of ground motion at B3 and 

BS, obtained from double integration of the recorded ground accelera

tions, are shown in Fig. 2.5, and appear to be well correlated for their 

respective directions. This correlation is to be expected because of 

the close proximity of the two stations. However, subtraction of the X, 
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Y and Z-pairs, as shown in Fig. 2.6, reveals what appears to be a 

differential displacement occurring between B3 and BS with a period of 

about 3 seconds. Superimposed on the early part of this signal are some 

small amplitude, higher frequency components but most of the differen-

tial amplitude is a result of the long-period component. If the doubly-

integrated accelerograms at the two locations had been identical in 

amplitude and phase, subtraction of the pairs of records (as in Fig. 

2.6) would have yielded zero. 

In examining the differential motions, it was initially thought 

that the long-period component may have been simply an error introduced 

during the accelerogram processing, as discussed in the previous sec-

ti on. The amplitudes of the differential displacements border on the 

amplitudes predicted for random noise in processing, but the following 

analyses support fairly strongly that they may, instead, be caused by 

passage of seismic waves. 

In a seismological context, the presence of the 3-second component 

in the differential displacements may be partially explained as being a 

consequence of a phase delay in a long-period wave propagating across 

the bridge site. If one considers a sinusoidal wave propagating in a 

radial direction (with respect to the epicenter) across the site with 

wave speed c, then for radial motions at B3 and BS the displacements are 

given by 

X3 
= A cos w(t - -) 

c 
(2.9a) 
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XS 
A cos w(t - -) 

c 

Choosing station B3 as a reference Cx 3 = 0) then 

Ay(t) = A w.Ax_A · t · w.Ax A t COS wt COS Sln W Sln -- - COS W 
c c 

But w.Ax << 1 for closely spaced stations 
c 

hence Ay(t) : - AA sin wt 

where = 

( 2 .9b) 

(2 .10) 

( 2 .11) 

From the displacement records, the 3-second motion appears to have 

a maximum amplitude of approximately 5 mm, Ax from the site geometry is 

about 13 m and a reasonable value for a surface wave velocity in the 

low-velocity surficial soil layer might be 300 to 400 m/sec. These 

values, substituted into Eq. 2.11 give AA: 0.3 to 0.5 mm. The 

estimated value for AA from this simplified analysis is a factor of two 

to four less than seen in Fig. 2.6, but it does suggest further examina-

ti on. The observation of surface waves at about 3-second period in a 

low-velocity (cR - 300 m/sec) surface layer has been noted by Okamoto 

(p. 509; 1973) in data obtained from a linear array of instruments in 

Japan. In the case of the San Juan Bautista bridge however, such dif-

ference s in amplitudes are, unfortunately, of the order of the 

amplitudes expected from the random digitization noise. If the 

recording stations had been placed at the abutments, the estimated 
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difference in amplitudes would have been on the order of 1 to 1.5 mm. 

Furthermore, a more favorable orientation of the bridge with respect to 

the epicenter would have increased the time delay of signals propagating 

from one station to the next, thereby creating a more discernible phase 

shift. 

Some stronger evidence that the three-second component is, in part, 

due to differential support motion is seen by examining the response of 

the bridge superstructure. The relative displacements of the top of 

bent 5 with respect to the base of bent 5 are shown in Fig. 2.7. In 

each case (X and Y directions) it is apparent that there exists a three

second component with an amplitude of 2 to 3 mm. The nature of the 

differential motion on the superstructure is very similar to that of the 

bases of the two bents. This similarity is consistent with differential 

motion of the supports as well as systematic errors in data processing, 

but it is not expected from random errors in data processing. The 

three-second component, if present in the structural response as a 

result of the differential motion occurring along the line of supports, 

is viewed by the bridge as a pseudostatic component of the excitation 

since the natural periods of bridge response are much shorter than three 

seconds. 

To complete this discussion, Fourier amplitude spectra of X and Y 

ground accelerations at bent 3 and bent 5 are shown in Fig. 2.8. It is 

evident that even over the distance of 32.6 m (107 feet) between B3 and 

BS some differences appear in the frequency content of the ground 

accelerations. This occurs mostly in the frequency band of 3 to 8 Hz. 
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As discussed in later sections, this is the same frequency range within 

which most of the bridge's dynamic response occurs, and in some 

instances the frequency components measured at the base of the bents 

probably owe some of their amplitude to feedback from the bridge 

response. 

To study the soil-structure interaction problem in detail, and to 

know precisely what the free-field ground motion is at a given bridge 

site, it is important to have available a triaxial free-field record 

taken close to the bridge, but far enough away so as not to be 

significantly influenced by the localized effects of soil-structure 

interaction. 

The San Juan Bautista bridge was instrumented to record ground 

accelerations only at the base of B3 and BS, with no provisions made for 

a free-field station near the bridge. The closest available station is 

in the town of San Juan Bautista, about 3 km to the south-east of the 

bridge, and is referred to as the San Juan Bautista "free-field" site in 

data reports (Porter, et al., 1983). This record is too far away to be 

representative of the free-field motions at the bridge site. 

2.3.4 Rayleigh Waves 

The observations and qualitative descriptions of long-period dis

placements presented in the previous section point to an interesting 

phenomenon which is not present in strong-motion records from typical 

buildings. Assuming long-period processing errors are not large, 

components of ground motion at periods significantly longer than the 
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fundamental period of the structure would appear identically in all 

accelerograph records for a given direction in a building owing to the 

fact that all floor levels respond identically to a pseudostatic base 

motion. In a mathematical context, the pseudostatic influence coeffi

cient vector t in Eq. 2.7 is a column vector of ones. For a bridge, the 

problem is different since t is no longer a unit vector and thus 

components of differential ground motion may have a noticeable effect on 

the structural response. It is therefore of considerable interest for 

bridge response to explore the nature of the long-period components of 

ground motion in greater detail. 

The long-period component having a period of about 3 seconds 

appears in displacement time-histories of both ground motions and 

superstructure responses. Since the body wave phases (P waves and S 

waves) are clearly evident on the ground motion accelerograms at 

relatively high frequencies it was conjectured that the long-period 

components observed in the displacements might be due to lower frequency 

surface waves propagating across the bridge site. The presence of 

surface waves in recorded strong ground motions has been investigated by 

several researchers (Anderson, 1974; Hanks, 1975; Liu and Heaton, 1983) 

who report that a substantial contribution to amplitudes of ground 

motion can be made by surface waves. 

To investigate the presence of surface waves at the San Juan 

Bautista bridge site, the horizontal components of ground motion 

recorded at B5 were rotated into radial and transverse components 
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defined relative to the epicenter BK, on Fig. 2.1. These components, as 

well as the vertical component, are shown in Fig. 2.9. A long-period 

3-second component is visible in the radial direction, particularly in 

the time interval between 4 and 10 seconds. In the transverse direction 

it is more difficult to assess the contributions from long-period 

components. The fact that the 3-second motion is primarily confined to 

the radial-vertical plane is a strong indication that it is mainly a 

Rayleigh wave. 

A Rayleigh wave, propagating in the +x direction along the surface 

of a homogeneous, elastic half-space with (nondispersive) wave velocity 

cR will have horizontal and vertical displacement components, u(x,t) and 

w(x,t) respectively, given by 

u(x,t) = 

w(x,t) 

~ cos w(t c:) 

Av sin w(t c: ) 

(2.12a) 

( 2 .12b) 

When Poisson's ratio equals 0.25, the wave velocity cR will be 92% of 

the shear wave velocity for the medium, as previously stated by Eq. 2.4. 

Also, in a homogeneous, elastic half-space Av = 1.48~. Thus, Eqs. 

2.12a and 2.12b show that the particle motion is retrograde elliptic for 

a Rayleigh wave propagating in the positive x direction. 

In Fig. 2.10 the vertical displacements are plotted as a function 

of the radial displacements for the station at BS, with time as a param-

eter. For clarity the plots are shown in four second 

for the last plot which is a six second segment. 

segments, except 

To produce these 
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plots. the radial and vertical displacements shown in Fig. 2.9 were low

pass filtered to remove all frequency components above 1.25 Hz. This 

was necessary so that higher frequency displacements, resulting from 

other sources. would not confuse the trace of the long-period motion. 

The direction of increasing time, and hence the particle motion trajec-

tory, is indicated on each plot. To a large extent. the particle 

motions are retrograde within the time interval of 6 to 26 seconds (26 

seconds is nearly the end of record), the exception being an interval 

between 14 and 18 seconds when the motion is prograde. 

The motion is not always in a well-defined elliptical path. but 

this is likely attributable to the fact that at an epicentral distance 

of approximately 30 km, the Rayleigh waves are not yet fully developed. 

In a study of San Fernando data, Liu and Heaton (1983). found that 

surface waves started to develop rapidly at epicentral distances of 

approximately 30 km and dominated records beyond 40 km, so it seems rea

sonable to view the San Juan Bautista bridge site as being in a transi

tion zone where rapidly developing surface waves are challenging the 

body waves for a dominant place in the records. The retrograde ellipti

cal motion at the BS station is very clear in the time intervals of 6 to 

10 seconds and 18 to 24 seconds, indicating a few cycles of well

developed Rayleigh wave motion are occurring, interspersed with some 

less well-developed elliptical motions. The elongation of trajectories 

in the radial direction is caused by surface layers which have a low 
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wave velocity relative to the wave velocity of layers beneath. This 

elongation phenomenon was also found by Hanks (1975) for Rayleigh waves 

from the San Fernando earthquake. 

The arrival time of a Rayleigh wave at the bridge site may be 

estimated using an adaptation of the S wave minus trigger time approach 

used for calculating the distance d to the earthquake. The distance d 

may be expressed as 

d at = At = C t p P s R R (2.13) 

where a is the P wave velocity and t is the arrival time of the P wave. 
p 

Similarly, s and R denote S wave and Rayleigh wave parameters. 

Rearranging Eq. 2.13 in terms of the S-P time (Hudson, 1979) which can 

be read from the accelerogram gives 

d = = (2.14) 

At the San Juan Bautista bridge site, t -t : 4 seconds, and using typis p 

cal regional geophysical values of a= 5.5 km/sec, f3 = 3.0 km/sec gives 

an arrival time for the Rayleigh wave of tR-tp : 5 seconds. This 

simplified calculation does not consider the dispersive nature of 

surface waves, nor does it account for the possibility of velocity 

gradients along the travel path. However, it does agree closely with 

the time when retrograde particle motion commences. 

The radial polarization of the 3-second wave, the delayed onset of 

retrograde particle motion, and the radial elongation of elliptical 
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particle trajectories all provide evidence to indicate that the 3-second 

wave component is a Rayleigh wave, likely still in a developmental stage 

owing to the moderate epicentral distance. At greater epicentral dis

tances the significance of the Rayleigh waves as compared to the body 

waves would be expected to be greater. With the preponderance of the 

evidence indicating that the 3-second component in the displacement is 

actual ground motion rather than noise, its appearance in the differen

tial support motions and in the structural deflections seem·s very likely 

real as well, and not simply an accident of the data processing. 

2.4 CORRELATION ANALYSIS OF VERTICAL GROUND ACCELERATIONS 

The seismic waves first arriving at a site are the P waves, often 

arriving at a nearly vertical angle of incidence to the ground surface 

if the source is not too close. The first few seconds of motion at a 

site are generally composed of simpler wave forms than later arriving 

signals since refraction, reflection and modal conversions, although 

they occur, are not yet complicated by the contributions of S waves and 

other phases from the source. It is conjectured therefore, that the 

vertical motion between the first P wave arrival and the S wave provides 

one of the better segments of record to use in a correlation analysis to 

determine whether any observable differences in accelerations at the two 

points could be attributed to coherently propagating seismic waves. 

The first 4 seconds of vertical accelerations (P waves) at B3 and 

BS (see Fig. 2.11), digitized at 100 points per second, were used to 

compute cross-correlation coefficients (normalized cross-covariances) 
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for various time shifts "t, between the two records. The record at BS 

was taken as a reference and the record at B3 was shifted by ±i: with 

respect to BS. A similar type of analysis has been used by Smith, 

et al., (1982) in examining data from an array of strong-motion 

accelerographs near El Centro, California. 

The cross-correlation between two time signals x(t), y(t) is given 

by 

R ( "t) 

pxy ( "t) = 
· xy 

R (O)R (0) 
xx YY 

(2.lS) 

N-r 
where R ( "t) = ii:. [ x ( t . ) y( t . + ) xy r i=l 1 1 r 

(2.16) 

!. 
N 2 and R ( 0) 

k1 
x ( t.) 

xx N 1 
(2.17) 

!. 
N 

2 R ( 0) bi y (t.) 
yy N 1 

(2.18) 

and "t =rat; r = 0,1, ••• ,m; At= 0.01 seconds. 

The resulting cross-correlation coefficients plotted in 

Fig. 2.12, show that the time shift which maximizes p ("t) is near 0.007 
xy 

seconds. This means the maximum correlation between the first four 

seconds of vertical excitation occurs when the record of B3 (channel 11) 

leads the record at BS (channel 2) by approximately 0.007 seconds. This 

indicates that the seismic P wave propagating from the source reaches B3 

slightly before it reaches BS, an observation that is consistent with 
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the orientation of the bridge with respect to the epicenter (see Figs. 

2.1 and 2.2). 

An approximation to the apparent P wave velocity at the bridge site 

(the transit velocity across the site) can be made using the time delay 

found above and calculating the additional distance the P wave must 

travel to reach bent 5 along an azimuthal angle of approach from the 

· t f about 12°. ep1cen er o This yields an apparent P wave velocity at the 

bridge site of 1800 meters per second. This value. however. does not 

provide a complete picture of the P ~ave arrivals at the bridge site 

because the first arrivals of P waves are those which travel through the 

deeper. higher velocity layers and then propagate upwards to the 

surface. If the angle of incidence of P waves at the surface were zero. 

i.e •• the direction of propagation were vertical. all support points of 

the bridge would be subjected to in-phase (correlated) motions. 

However. this is not the case for the San Juan Bautista bridge. The 

time lag between P wave arrivals at B3 and BS indicates that the P waves 

are arriving at an oblique angle of incidence to the ground surface. 

thereby . subjecting the bridge to multiple-support excitation. 

An estimate of the angle of incidence can be made by using the time 

lag of approximately 0.007 seconds computed from the correlation 

analysis. and a reasonable value for the P wave velocity of the soil in 

the vicinity of the footings. In a more detailed discussion of the site 

soil conditions presented in section 4.1.2, a shear wave velocity of 460 

m/sec is considered to be appropriate for the bridge's foundation soil. 

Using relations for the propagation of a planar wave in a homogeneous 
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elastic medium (Eqs. 2.2 and 2.3} the P wave velocity is taken to be 

800 m/sec. The angle of wave emergence a, with respect to the ground 

surface as shown in Fig. 2.13, can then be found using 

a = a cos a 
a (2.19} 

which expresses the relationship between the P wave velocity in the 

foundation soil a, and the apparent P wave velocity on the surface, aa, 

as a function of the angle of a. Using a = 800 m/sec and 

0 a 1800 m/sec, the angle of wave emergence is found to be 63.6 • (The a 

angle of incidence is, therefore, 90°-63.6° = 26.4°). 

The foregoing analysis has used as a starting po3nt the time delay 

between B3 and BS predicted by correlation of the P wave motion. Since 

the accelerograms were digitized at 100 points per second, it is 

difficult to determine accurate time delays of less than one interval of 

digitization (0.01 second}. A different approach is possible however, 

wherein the geophysical velocity structure of the region is used to 

examine P wave arrivals at the bridge site. The method, explained in 

greater detail in Appendix 2B, uses the velocity structure for the 

region given in Table 2.1 and assumes that wave propagation paths can be 

described by rays. At layer boundaries Snell's law is used to find the 

change in direction of the ray. 

Using the velocity structure in Table 2.1 and the ray path computed 

in Appendix 2B, the angle of emergence a, of P waves at the ground 

surface is found to be 59°, in good agreement with the value from the 

correlation analysis. However, the corresponding apparent P wave 
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velocity at the bridge site is found to be 5825 m/sec (using a for the 

0.5 km layer) which is obviously much too large. This error arises 

because the ray approach considers only the gross geologic structure of 

the region and demonstrates that 

TABLE 2 .1 

Velocity Structure for the Coyote Lake -
San Juan Bautista Region 

Thickness P Velocity S Velocity 
a ~ 

(km) (km/sec) (km/sec) 

0.5 3.0 1.5 

2.5 5.0 2.8 I 
9.0 5.7 3 .3 

- -

(after Liu and Helmberger, 1983) 

wave signals, as recorded at the bridge, must be influenced by the local 

site soil conditions. The low-velocity surface layer of soil at the 

bridge site, not included in the ray model, slows down the P waves 

arriving from below and turns the wave front (ray) more towards the 

vertical as the wave crosses into the surface layer soil. 

A further look at the problem using ray theory involves taking into 

consideration the surface soil layer with a = a = 800 m/sec and the 
0 

angle of emergence of 59°, as computed in Appendix 2B. The angle at the 

ground surface 0, is found by applying Snell's law 
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e 90° - i 
0 

where i . -1 

[·: 
sin 31°] = s1n 

0 

which gives e = 82°. This value is greater than the 63.6° computed from 

the correlation analysis. 

The previous analyses (correlation and ray theory) indicate that 

the ray approach. while providing an informative picture of the overall 

paths of wave travel is not sufficiently detailed to account for the 

local soil effects in the vicinity of the foundation. Its usefulness 

seems to be more suited to describing the regional features of seismic 

wave propagation. 

The first approach. using the correlation of strong motion data 

recorded at two stations may be somewhat inaccurate. but it is believed 

to provide the better estimate of wave arrivals at the bridge site. In 

further discussion. the value of 0.007 seconds will be used as the time 

delay in P wave arrivals between B3 and BS. 

An.estimate of the phase difference between motions occurring at 

the two abutments due to the travelling P wave may be made using the 

predominant frequency f • of the P wave and relating this to the P 
p 

wavelength A. • 
p 

via A. = a/f • . Examining the first four seconds of the p p 

vertical acceleration records at B3 and BS. it is seen that the 

predominant P wave frequency is about 9 Hz. Using a surface layer P 

phase velocity of 800 m/sec gives a P wavelength of approximately 89 m 

(290 feet). If it is assumed that the delay of 0.007 seconds between B3 
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and BS occurs uniformly over the length of the bridge, then a P wave 

will arrive at A7 0.021 seconds after its arrival at Al. Thus, the 

maximum anticipated phase difference between abutments due to the 

observed non-vertically incident P wave is approximately 0.38n, or about 

68°. 

Werner and Lee (1980) have performed a parametric study on the 

response of a single span bridge structure subjected to excitation by 

various types of seismic waves. Their findings, although not directly 

applicable to the structural configuration of the San Juan Bautista 

bridge, do provide interesting observations on the response of a simpler 

bridge system to spatially varying excitations. A significant finding 

of their work is that non-vertically incident waves propagating 

obliquely to the bridge span (as is the case for P waves at the San Juan 

Bautista bridge) can induce torsional deformations in various elements 

of the bridge. For the San Juan Bautista bridge these torsional defor

mations may possibly be induced in the deck as a result of differences 

in the rocking displacements of adjacent bents. The rocking of the 

bents .may, in turn, be induced by both the oblique angle of approach of 

the P waves and by the non-vertical angle of incidence. Thus, the two 

footings at each bent may be subjected to phased inputs having both 

horizontal and vertical components. 

The Fourier spectra of vertical motions (Fig. 2.8) indicate that 

9 Hz is about equal to the maximum frequency component which has a 

significant Fourier amplitude. Lower frequency P waves will have longer 

wavelengths, which will result in smaller phase differences between 
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abutments than the previously estimated 68°. This gives an indication 

that vertical differential support motion of the San Juan Bautista 

bridge due to travelling P waves is likely to be minimal for the 1979 

Coyote Lake event. Furthermore, as will be pointed out later, the 

vertical response of the bridge is uncoupled from the horizontal 

response due to the simply-supported spans, and consequently any effects 

of multiple-support excitation in the vertical direction would be 

confined to the vertical or torsional response of the individual spans. 

2.S SUMMARY 

The presence of long-period components in the ground displacement 

records at the San Juan Bautista bridge site may be the result of one or 

more of the following sources: long-period seismic waves, systematic 

data processing errors; and random data processing errors. While 

systematic data processing errors cannot be completely ruled out by the 

writer, the evidence suggests that the three-second component observed 

in the ground displacement records are caused by a Rayleigh wave travel

ling -across the bridge site. Radial polarization of the three-second 

component and retrograde elliptical particle motions are strong indica

tions to support the Rayleigh wave hypothesis. 

Although random digitization noise might be of the same general 

amplitude as the observed displacements, the fact that the three-second 

displacement components are correlated at the two ground sites and in 

the superstructure records, seems to rule out the presence of any 

significant amount of random processing error at a three second-period. 
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In the vertical direction, a very small time delay was detected 

between the arrival of P waves at bent 3 and bent 5. At least in this 

case, the influence of differential support motion induced by body waves 

in the vertical direction appears to be much less noticeable than the 

differential motion induced by long-period surface waves. 

Although the consequences of differential support motion were not 

serious for the · San Juan Bautista bridge in this earthquake, they did 

complicate the analysis of the response and they could be of much more 

importance for more extended structures with longer natural periods. 
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APPENDIX 2A 

SPECIFICATIONS ON RECORDING INSTRUMENTATION AT 
THE SAN JUAN BAUTISTA BRIDGE 

I. Central Recording Acceleration System*: CRA-1 

- a multi-channel, photographic recording system. 

- 12 channels of acceleration data on 7" wide film. 

- film speed: 1 cm/sec. 

- start up: full operation within 0.1 second. 

- timing: 0.5 second marks. 

- references: 6 fixed traces. 

- transducers: force balance accelerometers. 

II. Force Balance Accelerometers*: FBA-1 and FBA-3 

- range: ±lg (approximately 1.9 cm/g on film) 

- damping: 7(1/o critical. 

- natural frequency: 50 Hz. 

*manufactured by Kinemetrics, Inc., Pasadena, California 
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APPENDIX 2B 

SEISMIC WAVE PROPAGATION ALONG RAY PATHS 

The propagation of a seismic body wave from the earthquake focus to 

a surface receiver can be described by ray paths when the layers through 

which the wave passes are each assumed to have constant wave speed. 

Figure 2B.1 illustrates the case where the focus is located in the third 

layer. Snell's law is assumed to hold at layer boundaries and also it 

is assumed that the wave velocities v in the three layers are such that 

Let the initial take-off angle of a wave front from the focus be 

i 3 , as shown in Fig. 2B.1. Hence, the angle of incidence of the ray 

(describing the direction of motion of the wave front) at the 3-2 

boundary is also i 3 • By Snell's law 

sin i 2 sin i 1 
= = 

v2 vl 

and from Fig. 2B.1 the epicentral distance is 

3 
e = \ dk tan ik 

k~l 

Also, from the geanetry of the problem 

= k=l ,2 ,3 

( 2B.1) 

(2B.2) 

( 2B.3) 
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The solution of the problem to find travel times and angles of 

incidence involves an iterative procedure as follows: 

Solution Iteration: 

1) 

2) 

3) 

4) 

5) 

6) 

Assume an initial take-off angle i 3 • 

Calculate i 2 and i 1 using Eq. 2B.1. 

Calculate e (an estimate of e) using Eq. 2B.2. 

If l~-el ~ e, where e is a prescribed tolerance (say 1%) then stop. 
e 

Otherwise, assume a new i
3 

and repeat steps 2 and 3. 

3 
Calculate travel distance {TOT = \ fk using Eq. 2B.3. 

k~1 
3 _lk 

Calculate total travel time T = [ -
k='1 vk • 

The above procedure, when applied to the San Juan Bautista bridge 

site using e = 26.87 km, d1 = 0.5 km, d2 = 2.5 km, d3 = 5.0 km gives the 

following results: 

l1 = .5 83 km i1 = 30.907° 

l2 = 4.837 km i2 = 58.878° 

f 3 = 22 .921 km i3 77.400° 

(TOT= 28.341 km 

T = 5.183 seconds (for a P wave). 
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CHAPI'ER III 

SYSTEMATIC IDENTIFICATION OF BRIDGE DYNAMIC PROPERTIES 

A time-domain technique of system identification developed by Beck 

(1978. 1982) and Beck and Jennings (1980) for analysis of strong-motion 

records from buildings is reviewed in the first part of this chapter. 

Next, the technique is applied to the earthquake records obtained from 

the San Juan Bautista Separation bridge during the 1979 Coyote Lake 

earthquake to find optimal estimates of the modal parameters for the 

response of the bridge. Initial difficulties encountered in obtaining 

reliable and stable parameter estimates were resolved by a series of 

preliminary data processing steps applied before performing the system 

identifications. These operations resulted in reliable optimal param-

eter estimates for the first two modes of bridge response and also 

permitted an examination of the .time variation of modal properties 

during the earthquake. 

3.1 A SYSTEM IDENTIFICATION TECHNIQUE FOR EARTHQUAKE ENGINEERING 

Recent advances in application of the theory of system identifica

tion to problems in structural dynamics have led to the development of 

techniques which are particularly well-suited to earthquake engineering. 

A time-domain approach developed by Beck (1978) is reviewed in prepara-

tion for later applications to bridge response records. An analogous 

procedure in the frequency domain has been developed by McVerry (1979). 
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3.1.1 Output-Error, Identifiability and Measurement Noise 

Beck's technique is based upon a general system identification 

formulation called an output-error approach. The output-error x, is 

defined as 

x,Ct,~) (3.1) 

where x, is a function of both time t and model parameters A· In Eq. 3.1 

y is the measured output (displacement, velocity or acceleration) of the ,..., 

real system and m is the model output which also has a dependence upon 

A 
the input ~· In the output-error approach, optimal estimates ~ of the 

parameters ~ of a linear structural model are obtained by systematically 

varying the parameters until a selected measure-of-fit between the 

recorded response of the structure y and the calculated response of the 
,..., 

model m has been minimized. Both the model and the real system are 

assumed to be subjected to the same input excitation~· In the approach 

proposed by Beck, the measure-of-fit, denoted by J, is chosen to be an 

integral mean-square evaluation of the output-error v in Eq. 3.1. 
,..,, 

In the course of developing a system identification procedure for 

application to strong-motion studies, two important questions must be 

addressed: (1) Is the model, as described by optimal parameter estimates 

A 
~ unique? and, (2) What are the effects of model error and measurement 

noise on the accuracy of the estimates of the model properties? Both of 



- 72 -

these questions have been studied in detail by Beck (1978) for the 

output-error method of system identification. For a general class* of 

linear structural models with N degrees of freedom which possess classi-

cal normal modes and for which the mass matrix is known, Beck has shown 

that it is necessary to measure the response at no less than~:iN of the 

degrees of freedom in order to uniquely define the stiffness matrix [K] 

and the damping matrix [CJ. This assumes that the optimal [K] and [C] 

can be selected from a finite number of possible choices. If this is 

not the case, then a unique solution can be found only if the response 

is measured at all N degrees-of-freedom. This restriction is a severe 

problem for the identification of structural models from earthquake 

records because the seismic response of most structures is measured for 

only a very few degrees-of-freedom. In many buildings, instrumentation 

is installed only at the.ground level and the roof, and possibly also at 

the mid-height. In some cases, such as the Imperial County Services 

Building (Pardoen, et al., 1981) there may be as many as 12 or 13 trans-

ducers in a building, but this is still a small number compared to the 

degrees-of-freedom of the system. 

To overcome the very restrictive nature of the problem of identi-

fying [KJ and [CJ another approach was adopted. Beck showed that if the 

base input and the response at a particular degree-of-freedom are known, 

then, regardless of the total number of degrees-of-freedom in the model, 

*A class of models is defined by the theoretical model chosen to 
represent the system, together with an output equation. A 
particular model within the class is specified by assigning values 
to the parameters of the theoretical model. 
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the modal frequency f , modal damping ~ , and effective modal participa-
r r 

tion factor at each point of measurement (for mode r) can be 

uniquely determined for the general class of linear models. Because of 

practical limitations on the number of measurements usually taken, it is 

nearly always preferable to attempt identification of modal parameters 

fr, tr.pr rather than elements of [K] and [C] when using earthquake 

response data. 

The presence of measurement noise also affects the ability to 

determine complete structural models from earthquake data. This becomes 

especially significant at higher frequencies where the recorded signal-

to-noise ratio decreases and for this reason, estimation of the param-

eters of higher modes becomes unreliable. In a modal approach, identi-

fication should be restricted to estimating parameters only for the 

first few dominant modes of response. The limited capability to resolve 

all the modal parameters in the presence of noise once again indicates 

that the stiffness and damping matrices normally cannot be found with 

sufficient accuracy to provide a good structural model. 

The output-error technique and the associated developments by Beck 

to identify linear models of structures from earthquake response data 

are based upon using a single input (ground acceleration) and a single 

output (structural response at a specified location), although the 

method can be extended to handle multiple inputs and multiple outputs 

(Beck, 197 8; Mc Verry, 197 9) • By allowing only a single input-single 

output situation the identifiable models are restricted to the subset of 

planar linear models within the broader class of linear models. While 
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the restriction of planar modeling has obvious drawbacks in application 

to bridge response records where coupled two- and three-dimensional 

responses often occur, the use of systematic computer-based identifica-

tion techniques, even on a single input-single output basis, offers many 

advantages and improvements over other less systematic approaches such 

as trial-and-error modeling, or transfer function estimations. 

System identification in structural dynamics and earthquake engi-

neering is still in early developmental and experimental stages. Its 

implementation, refinement and use as an effective research and 

investigative tool can be expected to increase as more experience and 

greater confidence is obtained in applying it in a variety of situa-

tions. 

3.1.2 Optimal Models: Modal Minimization Method 

An output-error approach to finding optimal estimates of modal 

parameters from earthquake records is outlined in this section. The 

ultimate objective is to obtain reliable estimates of the parameters 

which appear in the uncoupled modal equations of motion for planar, 

linear, structural models. For mode r, these equations may be written 

as 

• ·r r"r r r .. 
r 

x + a
2

x + a
1

x a
3 

z ( t) 

(3.2) 

xr(t.) r "r r = a4 x Ct.) as 1 1 
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The total response is the sum of the modal responses 

1 N 
x(t,j! , ••• •.! ) (3.3) 

In a terminology more conventional to structural dynamics, the param-

eters in Eq. 3.2 may be written as 

= (3.4) 

= 2~ (I) r r 
(3.5) 

= 

In the above, f is the 
r 

the component of the 

(3.6) 

modal frequency, ~ is modal damping and d . is r ri 

rth mode shape vector d measured at location i. 
"'I: 

Equation 3.6 is defined to be the effective participation factor, p for 
r 

mode r at location i. 

The optimal match between the model output ~ and the real system 

output y (ref. Eq. 3.1) is measured by an integral mean-square output ,..., 
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error J defined as 

tf tf 
1 N J<t·····.!> a.1v1 f 2 (x

0
-x) dt + a.2 v2 f 

• 2 
(v0-x) dt 

t. t. 
1 1 

tf 

+ a.3 V3 f 
•• 2 

(a
0
-x) dt (3.7) 

t. 
1 

By choosing the a.. as either 0 or 1, the optimal estimate may be 
1 

obtained by matching displacements, velocities or accelerations, or some 

combination of these three quantities, over the time interval [ti,tf]. 

The x0 ,v0 and a0 are, respectively, the observed relative displacement, 

velocity and acceleration responses of the real structure. The Vi are 

chosen as normalizing constants so that comparisons may be made between 

J values for different response quantities and for different time 

intervals. The V. are defined as the inverse of the mean-square of the 
1 

observed relative responses (McVerry and Beck, 1983 ): 

= 

Thus, the measure-of-fit J is the ratio of the mean-square output error 

to the mean square of the recorded response over the time interval under 

consideration. 
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The degree of matching in the time-domain may be quantitatively 

evaluated by assessing the value of J for the optimal estimates. The 

A 
optimal estimates of the modal parameters, A· are those values which 

minimize the value of J for a given mode. The optimal value of J would 

be zero if there were a perfect match between the records of m and y 
"' 

(i.e., v = 0 
"' 

in Eq. 3 .1) • In practice Beck and McVerry found that 

optimal values of J ranged from less than 0.1 for excellent matches to 

as high as 0.5 for poor matches. The poorer matches were most often 

associated with response records from earthquake damaged structures, 

whose effective periods and dampings varied with time. 

To achieve optimal estimates of the modal parameters, the measure-

of-fit J is minimized with respect to the constraints imposed by the 

class of model described by the theoretical equations in Eq. 3.2. A 

method developed by Beck which has been found to be numerically effi-

cient and has reliable convergence properties is used to minimize J. In 

this method, called modal minimization, J is minimized by a series of 

modal sweeps to find new estimates for the rth mode parameters 

r . 
l (r=l, ••• N). Each modal sweep involves N single-mode minimizations. 

During the sweeps, updated estimates for the parameters of the rth mode 

are obtained by matching a modified response in which the current esti-

mates of all other modes s (s=l, ••• ,N;s#r) have been subtracted from the 

original record. Iteration is terminated when a fractional decrease in 

J is less than a specified amount &. In later applications, e is taken 

-4 to be 10 • 
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Beck (1978) has used the above method to investigate a limited 

number of building response records, and McVerry (1979) has used a 

similar technique in the frequency domain on a larger sample of 

buildings. In these applications it was found that modal periods were 

always estimated very accurately, and the damping and effective partici

pation factors for each mode were estimated quite accurately for the 

dominant modes of response. In other words, minimization of J is most 

sensitive to the estimation of modal frequency, and less sensitive to 

estimation of damping and effective participation factor. Sensitivity 

analyses (Beck, 1978; 1982) indicate that correlation between modal 

parameters a~ •••• ,a~ is generally insignificant, except for an interac

tion between ~r and Pr· This may be expected on the physical grounds 

that the amplitude of the transfer function is controlled by the ratio 

p/~. The interaction between p and ~ is generally not viewed as a 

serious problem for structural identification from earthquake records. 

Reasonable ranges for values of damping for a given structure are often 

known a priori, so it is usually easy to detect abnormally high or low 

values. Furthermore, the inherent uncertainties in attempting to 

describe the energy dissipation mechanisms of a real structure by a 

single parameter often override the effects that parameter interaction 

may have on estimation of damping values. 

3.2 SYSTEM IDENTIFICATION USING THE SAN JUAN BAUTISTA BRIDGE RECORDS 

This section is concerned with application of the single input

single output modal minimization algorithm to records of the seismic 



- 79 -

response of the San Juan Bautista bridge during the 1979 Coyote Lake 

earthquake. Most applications of system identification techniques in 

the past have been related to building dynamics, or to laboratory models 

of structures, and hence, this application is one of the first instances 

where such an identification scheme has been applied to the strong-

motion records from a bridge. In the initial attempt at using system 

identification on the San Juan Bautista bridge the recorded ground 

motions and superstructure responses were rotated into the global X-Y 

axes system, as defined in Fig. 2.2. 

Several runs of the modal minimization program were completed using 

one-mode matches of displacement Ca1 =1; a
2 

= a
3 

= 0 in Eq. 3.7) and 

two-mode matches of acceleration (a3 = 1; a 1 = a
2 

= 0). Fourier spectra 

of absolute accelerations in the global X and Y directions at the top of 

bent 5, shown in Fig. 3.1. were used to make initial estimates of 

3.17 Hz and 6.0 Hz as the first and second modal frequencies of the 

bridge. 

The outcome of these attempts at model identification were 

generally disappointing as none of the optimal models produced satisfac-

tory matches to the recorded response time histories. In most cases the 

optimal measure-of-fit J was found to be greater than approximately 0.6 

which, by comparison to results from similar identifications of models 

of buildings. is judged to be a fairly poor match. Optimal estimates of 

modal frequencies ?r• dampings ~· and effective participation factors 

A 
pr• and the optimal measure-of-fit J for the time interval 0 to 20 

seconds are summarized in Table 3.1. 
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Figure 3. 1 Fourier Spectra of Absolute Accelerations at the Top 
of Bent 5 in the X and Y Directions 
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TABLE 3 .1 

Optimal Models Using Global X-Y Records 
for the Time Interval 0 to 20 Seconds 

X-direction Y-direction 
Modal 

Parameters 
1-mode 2-mode 1-mode 2-mode 
model* model** model* model** 

"' f1 (Hz) 3 .3 9 

I 
3 .3 8 3.61 3 .60 

t (%) 10.4 7.2 12. 7 3.7 
I 

A I pl 0.84 
J 

0.53 0.87 0.31 

A 

I f 2 (Hz) 6.17 5.92 

t (%) 4.0 8.3 

I ,,. 
P2 I 0.50 0. 7 4 

J o. 70 I .58 0. 76 0.65 

• **1-mode models are displacement matches 
2-mode models are acceleration matches 

The one-mode displacement matches in the X and Y directions have 

modal frequencies within about 7% of each other, and the damping values 

demonstrate a general consistency of being moderately high at 10% to 

13%. On the other hand, although the first modal frequencies of the 

two-mode acceleration matches are in general agreement with the values 

found by displacement matching, the damping values are substantially 

different in both directions. Based upon these observations, the relia-

bility of the estimates in Table 3.1 is open to some question. 
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Before proceeding with another approach to the use of system iden-

tification on these records, it is instructive to examine a single case 

from Table 3.1 in more detail. The optimal one-mode displacement match 

for the X-direction in Table 3.1 is shown in a comparative plot in Fig. 

3.2. The observed relative response is shown by a solid line; the one-

mode model response as a dashed line. The model appears to identify the 

higher frequency content of the relative displacement response quite 

well but does a poor job in capturing the long-period component; hence, 

the large J value of 0.70. Inclusion of a second "mode" with optimal 

parameters ?2 = 0.318Hz, ti = 8.1%, improves the match con-

siderably, as illustrated in Fig. 3.3, with a consequent reduction in J 

to a value of 0.31. 

While the two-mode match appears to be a better representation of 

the response, evidence presented in Chapter II has indicated that the 

presence of motion with a period of about 3 seconds appears to be a 

result of a surface wave travelling across the bridge site. Also, three 

seconds is an unreasonably long period for such a bridge. The param-
,.. 

eters associated with f 2 = 0.318 Hz are therefore not considered to be a 

modal response, but rather, an imposed, pseudostatic deformation. 

Since the real aim of using system identification techniques is to 

extract information on the dynamics of the structure, the artificial 

mode that was added to account for the long-period component really does 

not contribute to an understanding of the structural behavior. In the 

following section some refinements are introduced in the application of 
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the system identification technique to the bridge response records. 

These refinements lead to much better estimates of the modal parameters. 

3.3 OPTIMAL MODAL PARAMETERS OF THE SAN JUAN BAUTISTA BRIDGE 

The preliminary system identification analysis, summarized in Table 

3.1, demonstrated that long-period motions (apparently due to multiple

support excitation by surface waves) had a significant influence on the 

ability of the identification procedures to achieve a reasonably good 

measure-of-fit J and simultaneously yield physically meaningful modal 

parameters. Additionally, for the cases investigated, it was not possi

ble to achieve stable and reliable estimates of optimal parameters. 

Another problem occurred with the orientation of the records. 

Rotation of the strong-motion data from the original recording orienta

tions into the global X-Y coordinate system initially appeared to be a 

logical choice for system identification procedures as motions in these 

directions describe the longitudinal and transverse responses of the 

bridge as a whole. However, the system identification showed that the 

motions in the global X-Y system may have been coupled, a situation 

which is more complicated than can be handled by a single input-single 

output analysis. 

Four refinements were introduced in applying the modal minimization 

approach to the San Juan Bautista bridge data in an attempt to improve 

the estimation of parameters of the dominant modes of response. The 

four refinements are: 
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(1) Since the fundamental frequency of the bridge is well above 

1 Hz (Fig. 3.1), it was decided to high-pass filter all input and 

response data to eliminate frequency components below 1 Hz. The 

filtered data contains only frequency components in the range of 

interest for dynamic structural response. 

(2) To reduce the effects of directional coupling in the bridge 

response records it was decided to use the records as originally 

recorded at the bridge site. That is, the components shown as channels 

1,2,3, ••• on Fig. 2.2 were used. The directions of original recordings 

on Fig. 2.2 will be denoted by their true compass bearings for positive 

motions: N23W for channels 1 and 4; and N67E for channels 3 and 5. 

Visual comparisons of the Fourier amplitude spectra in Fig. 3.4 

with previous data for components in the X-Y system show that there is a 

distinct separation of frequency components when the N23W and N67E 

directions are used. This distinct separation is not evident in the X-Y 

directions; it indicates the presence of modes vibrating primarily in 

the original skew directions. 

(3) A problem in application of the output-error technique is 

ensuring that the global minimum of J has been found during the 

nonlinear optimization. It is possible that a mode may be missed if the 

initial frequency estimate used to start the modal sweeps is not suffi

ciently accurate. To circumvent such a problem, preliminary calcula

tions of the measure-of-fit J were made for a range of initial period 

values for both the N23W and N67E data sets. These calculations pro-

vided an easy and reliable aid for obtaining good initial estimates for 
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the frequencies of the dominant modes of response. A more sophisticated 

approach, not undertaken here, would be to use computer graphics to plot 

the surface defined by J in the f-~ space. 

(4) The analyses were extended to examine the time variation of 

modal properties during the earthquake by using a 4-second moving 

window. This technique helps identify any significant changes in modal 

properties during the duration of the response; for example, such as 

caused by sudden freeing of an expansion joint or onset of structural 

damage. 

3.3.1 Time-Invariant Models 

Incorporating modifications (1), (2) and (3) above, one-mode 

optimal models were determined by separate matches of displacement, 

velocity and acceleration over the time interval 0 to 20 seconds. Ini

tial estimates of the modal frequencies were obtained by evaluating the 

measure-of-fit J for displacement matches over a range of frequencies at 

a fixed value of 5% damping. A sample plot of the measure-of-fit J as a 

function of period is shown in Fig. 3.5 for the N23W direction. From 

these evaluations, good initial estimates for modal periods are: 

0.30 sec (3.33 Hz) for the N23W direction and 0.15 sec (6.66 Hz) for the 

N67E direction. These estimates are consistent with the frequency 

region in which the Fourier amplitude spectra (Fig. 3.4) have maximum 

amplitudes and are similar to the estimates used in section 3.2. 
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The separate identifications made for motions perpendicular to the 

bents (N23W, using filtered data of channels 1 and 4), and in the plane 

of the bents (N67W, using filtered data of channels 3 and 5) are sum-

marized in Table 3.2. 

TABLE 3 .2 

Optimal Time-Invariant One-Mode Models 
Using Filtered Data in the N23W and N67E Directions 

I A 

~ I Direction f A 
<~It> x Match (Hz) (%) p 100 J 

Displ. 3.50 11.0 1.24 11.3 0.13 

N23W Velocity 3 .47 10.3 1.13 11.0 0.21 

Accel. 3 .46 8.7 0.92 10.6 0.40 
I I -

Displ. 6.33 10.2 . 1.11 10.9 0 .37 

N67E Velocity 6.33 10.0 1.13 11.3 0.29 

Accel. I 6.21 7.5 I 0.88 I 11. 7 0.40 

Optimal estimates of modal frequencies from both sets of data are 

clearly consistent for matches of all three response quantities, thereby 

providing a strong measure of confidence that they are reliable optimal 

values for the first two dominant modes of response. 

In both directions, the variation in damping among the three 

matches is about 2¥i!!o of critical, with displacement matches giving the 

"p/~ highest values in each case. It is noted, however, that the ratio ~ 
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is approximately constant (variation is less than 8% in each direction) 

indicating that the individual variations in ~ and ~ are likely due to 

interaction between the two parameters. This interaction is most likely 

A 
the reason for a value of p less than 1.0 for acceleration matching in 

the fundamental mode in Table 3.2. 

The accuracy of the match as judged by the measure-of-fit J ranges 

from a very good match (J = 0.13) of displacements in the N23W direction 

to several significantly poorer matches where J is greater than 0.3. It 

is interesting to note that the best fit in the N23W direction was 

obtained using displacements, while velocity matching worked best in the 

N67E direction. Acceleration matches gave identical J values in both 

cases. Figures 3.6 and 3.7 show the excellent agreements achieved for 

N23W displacement matching and N67E velocity matching, respectively. 

Despite the fact that different response matchings were used in the two 

directions, all three response quantities in Figs. 3.6 and 3.7 match 

very well over the entire 20 second duration. 

The lower J values for N23W data as compared to N67E data are 

rather difficult to explain. One possible reason is that the dynamic 

response of the bridge in the N67E direction is not described as well by 

models of the class given in Eq. 3.2 as are the responses in the N23W 

direction. It is also possible that a higher mode, which would appear 

more strongly in the acceleration trace, is causing the larger J in the 

N67E direction. Another factor which may contribute is the difference 

in the signal-to-noise ratios in the N23W and N67E responses. In the 

N23W direction the peak relative displacement is about 5 mm, whereas in 
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the N67E direction it is only approximately 1 mm. These factors may 

limit the accuracy of the determination of modal parameters in this 

direction. 

3.3.2 Time-Varying Models 

To investigate the possibility of changes occurring in the stiff

ness of the San Juan Bautista bridge during the earthquake, optimal 

linear models were determined for five successive time segments, each of 

four seconds duration. Changes in modal parameters from one time seg-

ment to the next provide an indication of changing structural 

properties. For this purpose, modal minimization in the time domain as 

proposed by Beck (1978) is preferrable to a similar approach in the 

frequency domain (McVerry, 1979) because of the limited resolution 

possible when short time segments are transformed to the frequency 

domain. 

To obtain the most accurate assessment of the time variation of 

modal parameters, results from section 3.3.1 were used to select the 

type of match most likely to produce minimum values of J. For the N23W 

components this was displacement matching; for the N67W data velocity 

matching was used. Optimal modal parameters for nonoverlapping four 

second windows are presented in Table 3.3 for the N23W direction, and in 

Table 3.4 for the N67E direction. 

There is a clear indication from these results that the frequencies 

of the two identifiable modes experienced a gradual decrease during the 

first twenty seconds of the Coyote Lake earthquake. In interpreting 
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TABLE 3 .3 

Optimal Time-Varying One-Mode Models 
for the N23W Direction (Displacement Matching) 

A t f A 

(Hz) (%) 
p 

3.53 5.4 1.02 

3.46 12.0 1.25 
I 

3.45 I 7.4 1.15 

3.62 I 3.5 1.68 
I I 

3 .3 9 3 .1 0.96 

TABLE 3.4 

Optimal Time-Varying One-Mode Models 
for the N67E Direction (Velocity Matching) 

A t A 
f p 

(Hz) (%) 

6.85 13 .4 1.44 

6 .21 7.3 0.94 

6 .21 11.0 1.04 

6. 76 12.6 1.61 

6.13 8.1 0.77 

I 

I 
I 

I 

J 

0.068 

0.088 
I 

0.124 

0.053 
I 

0.035 

J 

0.41 

0.22 

0.27 

0.33 

0.40 
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these results, it should be recalled that the time from 0 to 12 seconds 

is of greatest engineering significance since it encompasses the 

interval of strongest response. 

In the 12 to 16 second segment of response both modes show an 

unexpected increase in frequency, but beyond 16 seconds the frequency 

once again decreases. The increase in frequency in the 12 to 16 second 

interval is not completely understood. Since the strong ground motion 

is essentially over after about 12 seconds, it is possible that the low 

levels of excitation may have caused problems in accurately defining the 

modal parameters. During the first 12 seconds the change in the two 

modal frequencies amounts to a 2.3% decrease in fundamental frequency 

and a 9.3% decrease in frequency of the second mode. These percentage 

changes are similar to those found for time-varying models of the Union 

Bank building and JPL Building 180 during the 1971 San Fernando 

earthquake (Beck, 1978). Both buildings suffered only minor damage to 

nonstructural components. 

The calculated displacements for optimal one-mode time-varying 

models, determined by matching displacements over four second segments, 

are compared with the measured responses in Fig. 3.8 for the N23W direc-

ti on. A comparison of velocities is made in Fig. 3.9 for velocity 

matching of the N67E component. 

Damping for the N23W response shows a large increase during the 

strongest segment of motion, the interval from 4 to 8 seconds. Over 

this time the damping approximately doubled from the initial value of 

5.4% during the first four seconds. After the segment of strongest 
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motion, damping values again decreased, as the amplitudes of response 

diminished. The higher level of damping during the 4 to 8 second seg-

ment is an indication that certain energy dissipation mechanisms in the 

bridge became activated at the higher levels of response, or 

alternatively, these mechanisms have a nonlinear response with respect 

to amplitude. Possible mechanisms include some relative motion at the 

bearings, or increased energy loss with amplitude through soil-structure 

interaction. 

The low-to-moderate levels of end of the N23W record when excita

tions are fairly low are probably indicative of the damping that would 

be observed in the fundamental mode of response during ambient or forced 

vibration testing. Thus, at low levels of dynamic response one might 

reasonably expect the bridge to be damped at 3% to 6% in the fundamental 

mode. 

The very low measures-of-fit J attest to the exceedingly good 

matches that were achieved by time-varying modal properties. As a final 

comment on the N23W response, the modal frequency and damping for the 

time invariant model (Table 3.2) are very nearly the same as for the 4 

to 8 second interval of the time-varying models. One may conclude in 

this case that the interval of strongest motion exerts a dominant 

influence on the optimization of a time-invariant model. 

Optimal estimates of damping for the one-mode model in the N67E 

direction, as given in Table 3.4, tend to maintain a consistently high 

level (e.g., approximately 7% to 13%) throughout the 20 seconds of 

record. Each measure-of-fit J for the 4-second segments is 
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substantially higher than for the corresponding N23W response and 

indicates that optimal parameters for the second mode are not estimated 

as well as those for the first mode, although the calculated model 

responses in Fig. 3.9 match the observed bridge response very well. 

The 13.4% damping in the first time segment of Table 3.4 seems 

excessively high. This is thought to be a result of a rapid change in 

frequency over the first few seconds of response. Since the system 

identification procedure attempts to find a "best-fit" to the changing 

frequency, the resulting damping and participation factors will be 

adjusted to try to make up for deficiencies in the frequency match. The 

overall effect is to produce a rather poor match over 0 to 4 seconds. 

This is reflected in the high J value of 0.41. 

3.4 SUMMARY 

Time-invariant models for the response of the San Juan Bautista 

bridge were found to work quite well under the following conditions: 

(1) long-period components were filtered from both input and response 

data, (2) input and response components were selected to be parallel and 

perpendicular to the direction of skew of the bents, and (3) reasonably 

accurate initial estimates of modal frequencies were available. The 

filtering of long-period components removed contributions from possible 

differential support motions at frequencies below 1 Hz and thereby 

"forced" the system identification to iterate to parameters for real 

structural modes, as opposed to attempting to fit pseudostatic ground 

motions. A seleciive choice of the orientation of the data made it 
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possible to obtain a separation of the effects of modal contributions 

from the two dominant modes of bridge response. Thus, the N23W 

component of superstructure response was essentially the response of the 

bridge in the fundamental mode, while the 

predominantly the second mode. 

N67E component was 

The results of finding optimal modal parameters for a time-

invariant model of the San Juan Bautista bridge indicate that reliable 

estimates of parameters for two dominant modes can be extracted from the 

strong-motion data. The optimal estimate of a time-invariant fundamen-

tal mode was 3.50 Hz and a second mode was estimated at 6.33 Hz. Both 

modes are damped at approximately 1~ of critical. A three-mode 

analysis of the bridge was attempted by searching for a mode in the 

vicinity of the peak at 7.5 Hz on the Fourier spectra in Fig. 3.4, but 

it was not possible to obtain reliable estimates of parameters for modes 

beyond the second. 

In conclusion, in spite of the observed changes in modal frequency 

and damping values during the earthquake, time-invariant linear models 

were able to simulate the response of the San Juan Bautista bridge very 

well. 
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CHAPTER IV 

DYNAMIC MODELING AND ANALYSIS OF THE SAN JUAN BAUTISTA BRIDGE 

The results of Chapters II and III have provided a fairly detailed 

view of the dynamic response of the San Juan Bautista bridge during the 

1979 Coyote Lake earthquake. Seismological investigations significantly 

aided in the implementation of the system identification procedures 

leading to the reliable identification of the first two modes of bridge 

response. In the present chapter the results from Chapters II and III 

are utilized, along with the original strong-motion records, to 

synthesize a realistic dynamic model of the bridge. Such a synthesis is 

a natural and important continuation of the research of previous 

chapters because it allows comparison of the computed response of a 

mathematical idealization of the structure with that observed during an 

earthquake. In a much broader context, the successful modeling of one 

type of bridge structure, such as the San Juan Bautista bridge, provides 

valuable knowledge and experience for predicting the earthquake response 

of other similar bridges. Systematic examination of the seismic 

response records is particularly important because so few bridges are 

instrumented to measure strong-motion response. 

A finite element model of the San Juan Bautista bridge (model I), 

synthesized from the structural geometry and material properties of the 

bridge is presented in this chapter. The model includes an allowance 

for soil-structure interaction. Comparison of the dynamic response 

predicted by the model with the response observed during the earthquake 
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reveals a significant deficiency in the model which is attributed to 

dynamic behavior of the expansion joints. A second model (model II) 

with revisions to the expansion joints and soil-bridge interaction 

effects, predicts the first two horizontal modal frequencies in 

excellent agreement with the optimal values found by system identifica

tion procedures. 

4.1 A FINITE ELEMENT MODEL OF THE BRIDGE 

Bridges such as the San Juan Bautista bridge are well-suited to 

dynamic analysis by the finite element method wherein complex structural 

features such as skewed supports and abutments, expansion joints, multi

column bents and soil-bridge interaction can be incorporated into the 

model. While analytic models may serve adequately for continuous types 

of bridge construction, the complicating effects mentioned previously, 

especially the presence of many expansion joints in some bridges, 

generally makes the use of analytic models rather unwieldy. 

4.1.l Model Synthesis: Model I 

A three-dimensional finite element beam model of the San Juan 

Bautista bridge was constructed using the features of the linear elastic 

finite element program SAP IV (Bathe, et al., 1973). This program (and 

subsequent versions of it) is a standard computer code for finite ele

ment analysis of many structural systems in civil engineering applica

tions. 
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The superstructure was modeled using a series of beam elements to 

form each simply-supported span, one end pinned and one end on a roller, 

in conformity with the boundary conditions existing for each span of the 

bridge. The supporting bents were modeled as two columns spaced 28 feet 

apart and connected by a rigid bent cap. The deck-to-bent connection in 

the model was placed so that the centerline of the deck (the longitudi-

nal axis of the deck beam elements) was connected to the bent cap midway 

between the columns. The effective column length was taken from the top 

of the footing to the center of the bearings supporting the deck. The 

complete finite element model of the bridge is shown in Fig. 4.1. 

Geometrical and material properties of the structure (as provided by 

Gates and Smith, 1982b) are summarized in Table 4.1. For the 

superstructure, the entries in Table 4.1 for areas, moments of inertia 

and weights/length are total values for each span. For the substructure 

(the bents) these quantities are for a single column of the bent. The 

moments of inertia for the superstructure are defined as follows: I for 
x 

torsion of the deck about the X axis; I for bending in the vertical 
y 

plane; I for transverse bending. The orientation of the local 1,2,3 
z 

axes for the columns is shown in Fig. 4.1 and the respective moments of 

inertia I 1 ,I2 ,I3 are defined for torsion about the local 1 axis and for 

bending about the local 2 and 3 axes. For analysis of the composite 

deck, the concrete was transformed to an equivalent area of steel using 

a modular ratio of n=9 (n = E /E where E -steel concrete steel -

4.18 X 109 lbs/ft2 ). 
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TABLE 4.1 

Structural Properties of the San Juan Bautista Bridge 

Su~erstructure 

Length Area I I I Wt. /Length 
Span 

x y z 

.(ft) (ft2) ( ft 4
> (ft4

> ( ft 4> (lbs/ft) 

1 43 .5 2 .881 0.17 4.55 253 .32 3759 
I I I I I 2 I\ 5 68.5 3.158 0.17 6.85 280 .58 3895 

3 I\ 4 53 .5 2.950 0.17 5 .04 260.14 3793 

6 33.5 2.881 0.17 4.55 253 .32 3759 

Substructure 

I Bent Length Area Il 12 I3 Wt./Length 
I Structure (Height) 

(ft) (ft2
> ( ft 4> ( ft 4> ( ft 4> Obs) 

Cap 28 12 19.44 16 9 1800 

Columns 
bent 2 21.6 
bent 3 16.7 
bent 4 15. 7 12 19.44 16 9 1800 
bent s 22.3 
bent 6 22.1 

Of major significance in determining the dynamic response of a 

structure is the allowable degrees-of-freedom assigned to each node in 

the model. The allowable degrees-of-freedom at the abutment nodes and 

column base nodes are discussed in section 4.1.2 under the topic of 
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soil-structure interaction. Elsewhere within the structure, six 

degrees-of-freedom per node were permitted. 

The allowable degrees-of-freedom assigned to the ends of the spans 

(in modeling the expansion joints) requires special discussion. The 

expansion joints at each bent were modeled by allowing a gap of 0.1 foot 

to exist between the end nodes of adjacent spans. On all spans, the 

supports at the left end (orientations as in Fig. 2.2) provide a fixed 

bearing, having only a rotational degree-of-freedom about the Y axis; 

the right end support is an expansion bearing having degrees-of-freedom 

for X translation and rotations about both Y and Z axes. Details of the 

two bearings are shown in Fig. 4.2. The end nodes on adjacent spans are 

rigidly linked together to provide continuity across the joint for 

translations in the Y and Z directions and rotations about the X axis. 

The foregoing assumptions on the degrees-of-freedom of such bearings are 

consistent with the assumptions used by Caltrans in their standard 

dynamic analysis procedures (Gates and Smith, 1982a, 1982b). Hereafter, 

the above described finite element model of the San Juan Bautista bridge 

will be ref erred to as model I. 

4.1.2 Soil-Structure Interaction 

The earthquake response of all civil engineering structures is 

influenced, to some degree, by the dynamic characteristics of the soil 

medium on which the structures are founded. Often, the influence of the 

soil is judged to be minimal and the base of the structure is assumed to 

be rigidly attached at the surface of the ground. Earthquake 
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measurements and other experimental data suggest, however, that in many 

situations soil compliance can account for a substantial portion of the 

total response of the structure (e.g., Foutch and Jennings, 1978) and 

should be considered when accurate response calculations are attempted. 

In the past decade or so, many approaches have been suggested to 

deal with the problem of soil-structure interaction. Often, these are 

based upon the simplified assumption that the soil can be represented by 

an elastic half-space (Jennings and Bielak, 1973; Luco and Westmann, 

1971; Richart, et al., 1970; Veletsos and Wei, 1971). Veletsos and Wei 

(1971) and other researchers have examined the case of a rigid circular 

disc resting on an elastic half-space and have shown that the influence 

of the half-space may be represented by two pairs of frequency-dependent 

springs and dashpots; one pair for rotational motions of the disc and 

the other pair for translational motions. The stiffness and damping 

coefficients derived from an elastic half-space analysis are dependent 

upon the frequency of excitation of the disc. In translation, this 

frequency dependence is very small, but for rocking motions both the 

rotational stiffness and damping coefficients show a strong dependence 

upon the frequency. Fortunately, in many practical applications where 

the significant structural response is confined to the first few modes, 

reasonable approximations may be made by considering the stiffness and 

damping coefficients to be independent of the frequency of response. 

Using results based upon an elastic half-space analysis, 

appropriate foundation springs and dashpots, with constant coefficients, 

may be estimated from a knowledge of the foundation dimensions 
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(represented by the disc) and the shear modulus and Poisson's ratio for 

the soil. For the San Juan Bautista bridge, it seems desirable to 

include the effects of soil-structure interaction by simply adding foun-

dation springs to the finite element model. Because of the limited 

amount of data recorded at the foundations and on the superstructure, 

and the lack of abutment and free-field records, a greater complexity 

does not seem warranted. 

Considerations of the geometry of the structure, the relative 

stiffness of the soil for rocking and for translational motions, and 

also experimental data from a Nevada bridge test (Douglas and 

Richardson, 1984) suggest that rocking of the bents about their footings 

is likely to be the most important feature introduced to the dynamic 

response of the bridge by a flexible soil foundation. The tendency for 

rocking of the bents to be accentuated is evident from the results of 

Chapter III wherein the dominant response of the bridge in the fundamen

tal mode was found to be in a direction perpendicular to the direction 

of skew of the bents. 

To incorporate soil compliance into finite element model I, rota

tional foundation springs were placed at the base of each column on all 

five bents, allowing rotation of each column footing about the X and Y 

axes of the bridge. The foundation dashpots were not included in the 

model because they were not needed in the subsequent modal analyses. 

Full base fixity is still assumed for column rotation about the Z axis 

(torsion) and for base translation along the X, Y and Z directions. The 

abutments are assumed fixed for all degrees-of-freedom. The arrangement 
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of soil springs for a single bent is shown in Fig. 4.3. In the finite 

element model, rotational springs ke are aligned along the local 2 axis 

(ke2 > and local 3 axis (ke3 > of each column, which are also the 

principal axes of the rectangular footings. 

Using the results for a rigid disc on an elastic half-space, 

Veletsos and Wei (1971) express the rocking stiffness of the half-space 

as 

( 4.1) 

where G is the shear modulus of the half-space material, ~ is Poisson's 

ratio (assumed herein to be f), and R is the radius of the disc. The f
9 

is a constant dependent upon a dimensionless frequency parameter 

a 
0 

( 4.2) 

where w is the (circular) frequency of excitation and ~ is the shear-

wave velocity of the material in the half-space (see Eq. 2.3). An 

equivalent radius for rocking for a rectangular footing, based upon a 

moment of inertia equivalent to the circular disc, is given by 

R = [~~3r ( 4.3) 

where a is the dimension of the footing parallel to the axis of rotation 

and b is the length of the other side. Assuming that the soil 

properties are isotropic it is obvious from Eqs. 4.1 and 4.2 that 
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Figure 4. 3 Rotational Soil Springs Added to Finite Element Model 
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( 4.4) 

where R2 and R
3 

are the equivalent radii for rocking about the local 2 

and 3 axes, respectively. For the San Juan Bautista bridge 

R2 = 6.00 feet and R3 = 4.S7 feet. 

To complete the evaluation of foundation stiffness coefficients it 

is necessary to have available a suitable shear modulus for the bridge 

site. As cited in a previous section (2.2.1), geotechnical investiga-

tions at the bridge location prior to construction indicated standard 

penetration values of N of about SO. According to Scott (1983), N 

values in the range of SO would correspond to a dense soil having a 

shear-wave velocity of approximately lSOO feet per second. In other 

studies, test data for soils presented by Okamoto (p. 19; 1973), and SPT 

tests and shear-wave velocity measurements by Shannon and Wilson Inc., 

and Agbabian Associates (1980), at selected U.S. sites, indicate a 

similar shear-wave velocity for soil deposits with N-values of about SO. 

Thus, an estimated shear-wave velocity of ~ = lSOO fps was used to 

compute the shear modulus G via Eq. 2.3 (G = µ in Eq. 2.3). For the San 

Juan Bautista bridge, the dimensionless frequency parameter a is much 
0 

less than unity for the values of ~ and R given above and for w equal to 

the fundamental frequency of the bridge, approximately 3.S Hz. Hence, 

from Veletsos and Wei (1971), Eq. 4.1 may be used with f
0 

= 1.0 to 

compute rotational foundation stiffness coefficients for an individual 

footing. The results are ke2 = 8.40 X 109 ft-lb/radian and k03 = 3.71 X 

109 ft-lb/radian. 
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Finite element model I, together with the rotational foundation 

springs determined above, is thought to represent the most straightfor

ward, state-of-the-art finite element model for purposes of evaluating 

the dynamic response characteristics of the bridge. It is consistent 

with most of the common asswnptions made about the behavior of 

structural components and with the information given in the structural 

drawings. Furthermore, its complexity is believed to be commensurate 

with the amount of strong-motion data available to evaluate the realism 

of the model. 

4.1.3 Dynamic Bridge Response Predicted by Model I 

Natural frequencies and mode shapes were computed for model I of 

the San Juan Bautista bridge. Owing to the simply-supported nature of 

the spans, the vertical modes are uncoupled from the horizontal modes of 

response. In the horizontal (X-Y) plane coupling is introduced due to 

the skewed supports and hence, each mode has components in both the X 

and Y directions. The instrumentation scheme (Fig. 2.2) is much better 

suited to gaining information on the longitudinal (X) and transverse (Y) 

responses of the bridge; for this type of bridge. horizontal response is 

usually of greater concern for earthquake engineering than is vertical 

response. 

The natural frequencies computed for the first seven horizontal 

modes of model I are given in Table 4.2. Similar information is given 

for five vertical modes in Table 4.3. Only these modes are presented 

because examination of the Fourier spectra of the bridge response 
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TABLE 4.2 

Horizontal Modal Frequencies Computed for Model I 

Mode Frequency 
- (Hz) 

H-1 2.49 

H-2 3 .20 

H-3 3. 70 

H-4 3.80 

H-5 4.37 

H-6 I 6 .74 
I 

H-7 
1. 

8.11 

TABLE 4.3 

Vertical Modal Frequencies Computed for Model I 

Mode Frequency 
(Hz) 

V-1 5 .258 

V-2 5 .261 

V-3 7 .317 

V-4 7 .343 

V-5 10.5 98 
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indicated very little contribution in either horizontal or vertical 

directions by frequency components above approximately 10 Hz. The 

horizontal mode shapes associated with the frequencies listed in Table 

4.2 are shown in Fig. 4.4. and the vertical mode shapes are illustrated 

in Fig. 4.5. 

One striking feature of the results in Table 4.2 is that the 

computed fundamental frequency of 2.49 Hz is substantially below both 

the peak of 3 .16 Hz in the Fourier spectra and the optimal modal 

frequency determined for the first mode by the system identification 

procedures in Chapter III. The mode shape in Fig. 4.4 corresponding to 

2.49 Hz indicates response, predominantly that of bent 5, with lesser 

responses at bents 4 and 6. The overall effect is a rather localized 

modal response, as opposed to a response of the entire bridge. If 

model I is to emulate the measured seismic response of the bridge 

adequately, it is necessary to review the manner in which the finite 

element model was synthesized to determine why the overall stiffness of 

the model is too low. 

For structures such as the San Juan Bautista bridge, the complex 

assemblage of multi-column bents, deep bent caps, substantial size 

bearings and a deep girder-and-slab deck structure makes it difficult to 

define precisely the top of the column, and hence the effective column 

length that is needed for purposes of dynamic analysis. While the 

original effective column length, extending to the center of the 

bearings, appears to be a realistic choice based upon physical grounds, 

other reasonable alternatives are also possible. 
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In order to bring the dynamic response predicted by model I, closer 

to the observed earthquake response, the stiffness of the finite element 

model was changed, increasing the fundamental frequency to 3.16 Hz. 

This frequency corresponds to the peak in the Fourier spectra for X and 

Y responses and is comparable to the fundamental bridge frequency found 

by system identification procedures. The increase in stiffness was 

achieved by decreasing the effective column heights to the distance from 

the tops of the footings to one foot beyond the bottans of the bent 

caps. This represents a shortening of each column by 3.4 feet from its 

previous length. The natural frequencies for this modified version of 

model I are presented in Table 4.4 for the first seven horizontal modes. 

The mode shapes (not presented here) are virtually identical to those 

shown in Fig. 4.4. 

The development of model I to this stage has assumed that the ini

tial structural idealizations were appropriate for seismic analysis. 

These idealizations were drawn from the way in which various structural 

components were expected to behave under dynamic conditions. The 

uncertainty in the choice of an effective column length was examined, 

but was found to affect only the values of the horizontal modal 

frequencies; the column length did not have a significant influence on 

the calculated mode shapes of the bridge. An examination of the seismic 

response of the San Juan Bautista bridge shows, however, that its 

dynamic behavior is substantially different than the response predicted 

by model I. The main difference seems to arise from the modeling of the 

expansion joints. 
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TABLE 4.4 

Horizontal Modal Frequencies for a Modified Model I 

Mode 

H-1 

H-2 

H-3 

H-4 

H-5 

H-6 

H-7 

Frequency 
(Hz) 

3.16 

4.03 

4.56 

5.15 

5.99 

8.67 

10.47 

The fundamental mode shape predicted by model I, and the earthquake 

Fourier data at 3.16 Hz are compared in Table 4.5 where both sets of 

results have been normalized to a unit response in the X direction at 

the top of bent 5 (location XBS). From this comparison it is evident 

that the finite element model drastically underestimates the modal 

amplitudes for location XDS, and makes a major underestimation of the 

amplitudes at points IDS and YDS. (XBS is the X component of channels 4 

and 5 on Fig. 2.2; XDS is the X component of channels 6 and 8. Similar 

comments apply for Y components). Fourier data from the superstructure 

response indicate that the X motions of the bent and deck across the 

expansion joint at 3.16 Hz are nearly identical in both amplitude and 

phase. This result suggests that the expansion joint is "locked," with 
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TABLE 4.5 

Comparison of Fundamental Modal Amplitudes for 
Modified Model I and Fourier Spectral Data 

Normal iz edt 
Fourier Amplitude 

1.00 
0.80 

0.92 
1.09 j 

Normalized* 
Modal Amplitude 

1.00 
0.47 

0.18 
0.74 

Notes: Ct> from relative acceleration spectra at 3.16 Hz 
(*) from modified model I (f1 = 3.16 Hz) 

at nodes corresponding to instrument locations 

. --I 

very little relative motion occurring between the top of the bent (XBS) 

and the deck (XDS) in the fundamental mode. The normalized modal 

amplitudes predicted for the Y direction are also lower than observed 

during the earthquake; however, this discrepancy may be partly due to 

the deficiencies of the model in the X direction. 

A more detailed look at the behavior of the expansion joints can be 

made by examining the relative motions which occur across the joint at 

bent 5. The instrumentation layout on the bridge is ideally suited for 

such a study. The absolute accelerations, recorded at the top of bent S 

and at the deck level of span 4 near bent S are shown in Fig. 4.6, after 

they have been rotated into the X and Y directions. Fourier spectra of 

these motions, presented in Fig. 4.7, show a distinct peak at 3.16 Hz 

and several smaller peaks in the S to 7 Hz range. Relative motions 

across the expansion joint were obtained by subtraction of the 
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respective X and Y records, with the results shown in Figs. 4.8 and 4.9. 

The Fourier spectra are transforms of the relative acceleration time-

histories. 

For motions in the longitudinal (X) direction the data presented in 

Fig. 4.8 supports the earlier observation that the expansion joints are 

essentially locked for response in the fundamental mode. The small peak 

in the Fourier spectrum near 3.4 Hz (Fig. 4.8b) may be a result of some 

slight rotation of the deck about a vertical axis in the fundamental 

mode, but the amplitude of the peak is similar to the amplitudes of many 

other peaks at higher frequencies (e.g., 9 Hz), which are probably 

noise-induced. The most noticeable features in the X direction are the 

peaks between 5¥2 and 6 Hz. This response dominates the Fourier spectra 

in Fig. 4.8b and is clearly visible in the time-history response in Fig. 

4.8a. However, it is quite small in absolute terms. Considering the 

strongest segment of response in Fig. 4.8a, if one assumes this segment 

to be harmonic motion at 5.5 to 6 Hz, with acceleration amplitude of 

1000 to 1500 2 mm/s , then the maximum estimated displacement occurring 

across the joint at this frequency would be no more than 1 millimeter. 

The source of the motions at a frequency of about 51/z Hz is 

difficult to determine. In a later section (4.2.2) results of an 

ambient vibration survey show that the observed fundamental vertical 

frequency of the adjacent span (span 5) is 5.62 Hz. It is possible that 

the eccentric vertical loading on bent 5 due to the vertical vibration 

of span 5 has induced this small amount of relative longitudinal motion 

between the deck of span 4 and top of bent 5. 
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In the Y direction, the only peak to attract attention on the 

Fourier spectrum in Fig. 4.9b is at 3.16 Hz, but the amplitude of motion 

is relatively small, being comparable to the X amplitude at a similar 

frequency. The time-history response, shown in Fig. 4.9a, indicates a 

high-frequency relative acceleration with overall amplitudes less than 

in the X direction. The relative acceleration responses that were 

recorded in the Y direction represent displacements of substantially 

less than 1 mm and are believed indicative of the allowable displace

ments of the bearings in their transverse directions. The design of the 

expansion joints should prevent any larger relative motions between deck 

and bent in the Y direction. 

From the observations in previous paragraphs it is apparent that 

the fundamental mode of bridge response (at least at these amplitudes of 

motion) is not modeled well by finite element model I. In particular, 

the problem appears to lie in providing the finite element model with 

the capability of correctly reproducing the behavior of the expansion 

joints. It would seem, from a study of the Fourier spectra and the 

recorded responses across the expansion joint, that a model with locked 

expansion joints would be more appropriate for describing the fundamen

tal mode of the bridge. This observation is in direct contrast to the 

basic modeling assumption made for the expansion joints during synthesis 

of the finite element model from the structural plans, but seems to be 

the direction in which the earthquake response would point. The reason 

that such locking may occur is possibly a result of a certain amount of 

corrosion at the bearing interfaces, and the accumulation of windblown 
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debris over a period of years. Such locking behavior has been noticed 

by Douglas and Reid (1982) in tests of a bridge with neoprene bearing 

pads. Smith (1983) observed a significant amount of debris in the 

bearings of the San Juan Bautista bridge during a 1981 Cal trans field 

inspection and questioned their capability to move freely (in the 

intended, longitudinal direction). Consequently, further analysis of 

the San Juan Bautista bridge will be done using a finite element model 

which does not allow relative translations to occur between the ends of 

adjacent bridge spans. 

4.2 A REVISED FINITE ELEMENT MODEL: MODEL II 

Despite the modeling details, including soil compliances, intro

duced into model I, the computed modal responses do not correlate well 

with the observed bridge response during the Coyote Lake earthquake. 

The results of the previous section indicated that modeling of the 

expansion joints should be changed so that each simple span had pinned

pinned connections for longitudinal motions, rather than pinned-free 

connections. In this revised model, hereafter referred to as model II, 

the entire superstructure is involved in the modal responses in the 

horizontal (X-Y) plane, as contrasted with the previous model wherein 

modal responses were essentially vibrations of subsections of the 

bridge. Thus, in model II, there is continuity of displacements between 

the ends of adjacent spans in the X,Y,Z directions and continuity of 

rotation about the X axis. Both ends of each span are free to 

independently rotate about the Y axis, and the right end of each span is 



- 138 -

free to rotate about the Z axis. Finally, there is continuity of rota

tion about the Z axis between the left end of each span and the 

associated bent structure below. 

In model I the influence of longitudinal abutment stiffness is 

confined to span 1 because all other spans are isolated from abutment 

motions by the expansion bearings (roller) at the end of spans 1 and 6. 

Thus, for model I, it was reasonable to neglect soil-structure interac

tion at the abutments. In model II however, since the deck is continu

ous, forces may be transmitted longitudinally to the abutment, and hence 

their stiffnesses should be considered. 

Evaluation of abutment stiffnesses for a highway bridge is a much 

more difficult task than the estimation of foundation stiffnesses for 

the intermediate supporting columns. Typically, methods developed for 

column footings (e.g., using results from elastic half-space analysis) 

are difficult to apply for determining abutment stiffness because of the 

complicated geometry and significantly different loading conditions. 

Only a few attempts have been made to determine experimentally the 

stiffnesses of typical highway bridge abutments (Douglas and Reid, 

1982). 

To include an allowance for abutment stiffness in model II of the 

San Juan Bautista bridge, a linear translational spring w"ith stiffness 

kA was placed in the X direction at both ends of the deck in the finite 

element model. Using the results of the system identification analyses 

in Chapter III as a guide, it was found that a spring constant of 

kA = 3Xl06 lbs/ft was required in order that the fundamental frequency 
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of model II matched the optimal fundamental frequency of 3.50 Hz. This 

value of kA is somewhat low compared to recommended design values 

(Caltrans, 1982), and possibly indicates that the abutment stiffness 

during the Coyote Lake earthquake resulted from the mobilization of only 

a small amount of soil resistance due to the low displacement 

amplitudes. 

Mode shapes for the first four horizontal modes of model II are 

shown in Fig. 4.10 and the corresponding frequencies are listed in Table 

4.6. 

TABLE 4.6 

Horizontal Modal Frequencies for Model II 

Mode 
Frequency 

(Hz~ 

H-1 3.50 

H-2 6.27 

H-3 7.27 

H-4 9.19 

The vertical mode shapes and vertical modal frequencies of model II are 

unchanged from those of model I. The results for the horizontal modes 

indicate that, in addition to the forced match of the fundamental mode 

of the model with the results from system identification, the model 

predicted a second mode at a frequency of 6.27 Hz, very close to the 
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6.33 Hz frequency found by system identification. Verification of more 

than two horizontal modes in the finite element model is not possible 

with the present data set, as it appears that longitudinal and 

transverse responses in higher modes are indistinguishable from high 

frequency recording noise. 

4.2.1 Comparison of Observed and Modeled Responses in the Horizontal 
Direction 

By comparing Fourier amplitudes from the earthquake records with 

the modal amplitudes at nodes of finite element model II, which 

correspond to instrument locations, it is possible to obtain an indica-

tion of how well the model simulates the actual seismic response of the 

bridge. Values of the Fourier amplitude and fundamental modal amplitude 

from model II, each normalized with respect to the amplitude in the X 

direction at the top of bent 5, are summarized in Table 4.7 (Fourier 

data are taken from Table 4.5). The motions at XB5 and XD5 and the 

motions at YB5 and YD5 are both in-phase, respectively. 

The normalized modal amplitudes of model II are in reasonably good 

agreement with the Fourier amplitudes, and show a marked improvement 

over the results from model I, especially for the X direction where it 

is evident that very little relative motion is occurring across the 

expansion joint in the fundamental mode. From this comparison it 

appears that model II, which asswnes locked expansion joints in the X 

direction, provides a substantially better representation of the funda-



I 
I 

- 142 -

TABLE 4. 7 

Comparison of Fundamental Modal Amplitudes for 
Model II and Fourier Spectral Data 

Component 

XBS 
YBS 

XDS 
IDS 

I 

Normal iz edt 
Fourier Amplitude 

1.00 
0.80 

0.92 
1.09 

Notes: Ct> from Table 4.5 

I 
I 

Normalized* 
Modal Amplitude 

1.00 
0 .75 

1.08 
0.80 

(*) from model II at nodes corresponding to 
instrument locations. 

I 
I 

mental mode of response of the bridge than does model I, with its free 

expansion joints. 

4.2.2 Dynamic Response in the Vertical Direction 

The deployment of strong-motion instruments on the bridge, shown 

in Fig. 2.2, makes it clear that very little experimental information 

can be gained concerning the vertical modes of response because there is 

only one vertically-oriented transducer on the superstructure. This 

transducer is located on the underside of the concrete deck of span 4, 

very nearly above the expansion joint at bent S (see channel 7 on Fig. 

2.2). Unfortunately, since the transducer is located very close to the 

end of the span, the amplitudes of vertical vibration are minimal. 

However, a Fourier spectrum of the motion on channel 7 does suggest a 

structural resonance of span 4 at a frequency of 7.13 Hz. Information 
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on the fundamental mode of vertical vibration for each span is sum-

marized in Table 4.8, including a summary of data obtained during an 

ambient vibration survey (AVS) of the San Juan Bautista bridge conducted 

by Caltrans in April 1981 (Gates and Smith, 1981). 

TABLE 4.8 

Fundamental Vertical Mode Frequencies for Each Span 

I Data Source 

Finite 
Element 
Models 

I Cal trans AVS 

I Fourier I Spectrumt 

I Theoretical* 

Span 1 

10.59 

10.01 

--

10.59 

not recorded 
** not calculated 

I 
I 

Vertical Frequencies (Hz} 

I 
s .26 1.34 . I 1.32 s .26 

I 
I I I S.51 I 7.81 7.91 S.62 
I I I 
I 

7.13 -- I -- --

s .1s 7 .34 7 .3 4 5.15 

Span 6 

•• 

I 18.65 
I 

I ---

I 17.86 

t from acceleration recorded during the Coyote Lake earthquake 
• see text 

The theoretical frequencies in Table 4.8 were calculated using the 

equation for the fundamental frequency of a simply-supported 

Bernoulli-Euler beam, f = ¥1.lf EI/mt 4 , m = mass/length, and using 

properties of the deck sections from Table 4.1. Average section 

properties were used for spans 2 and S in the beam equation, whereas the 

finite element solution accounts for the slight changes in girder size 

along the length of spans 2 and 5. The section properties of spans 1, 

3, 4 and 6 are constant along their length. 
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The vertical frequency of 7.32 Hz computed by the finite element 

model for span 4 is in good agreement with the frequency of response 

(7.13 Hz) observed during the earthquake. The ambient vibration 

frequencies for spans 2 through S are from 6% to 8% greater than those 

predicted by the finite element analysis, possibly as a consequence of 

some minor amount of rotational restraint existing at the bearings 

during the low levels of ambient excita~ion. Overall, however, it 

appears that both the finite element model and Bernoulli-Euler beam 

theory predict the fundamental vertical frequency of each span quite 

well, with the maximum discrepancy between the ambient results and those 

of the models being less than 8%. The single vertical frequency 

observed during the earthquake, that of span 4, was within 3% of the 

frequency predicted by finite element model II. 

Although the vertical seismic response of bridges such as the San 

Juan Bautista bridge are not of as great concern to engineers as are the 

longitudinal and transverse motions, the close agreement between results 

from the analysis and from experiments, including both ambient tests and 

the limited earthquake data, helps provide confidence in the structural 

idealizations and model synthesis described in earlier sections of this 

dissertation. The results also show that simple beam models can be used 

with reasonable confidence in examining the vertical responses of 

similar bridges. That is, bridge structures in which each span acts in 

a simply-supported manner, with vertical responses uncoupled from 

horizontal motions of the bridge. 
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CHAPI'ER V 

SUMMARY AND CONCLUSIONS 

In this dissertation, the earthquake response of a major six-span 

highway bridge has been studied using strong-motion records obtained on 

the bridge after a moderate earthquake. The bridge under study, the San 

Juan Bautista 156/101 Separation bridge in California, was subjected to 

moderate levels of ground shaking (0.12g maximum horizontal accelera

tion) at a distance of approximately 30 km from the epicenter of the 6 

August 1979 Coyote Lake earthquake (~ = 5.9). The shaking was not 

strong enough to damage the bridge. The set of twelve time-synchronized 

accelerograms was the first strong-motion data recorded on a highway 

bridge in California and provided a unique opportunity to study the 

earthquake response of such a structure. The moderate levels of shaking 

and the undamaged condition of the bridge after the earthquake provided 

reasonable grounds for assuming linear elastic behavior of structural 

components. 

The study was subdivided into three parts, involving: (1) a study 

of the earthquake ground motions at the bridge site using techniques of 

engineering seismology; (2) a computer-oriented, systematic determina

tion of best estimates of modal parameters (frequency and damping) of 

the bridge, using the strong-motion data; and (3) dynamic modeling and 

analysis of the bridge using a finite element approach. Although each 

of the three major parts viewed the earthquake response of the bridge 
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from a different perspective, and together involved several forms of 

analyses, the overall result is a fairly comprehensive evaluation of the 

seismic response of the San Juan Bautista bridge. 

The location of transducers at two ground level stations made it 

possible to study variations in ground motion along the length of the 

bridge. By correlation of the P wave motions at the two instrument 

sites, the .difference in arrival time of P waves at the abutments was 

estimated to be 0.021 seconds. The results indicated that, within the 

significant frequency band of the earthquake motion, differential verti

cal excitation of the bridge supports by travelling P waves would be 

minimal. 

The calculated ground displacements did reveal, however, the pres

ence of a seismic excitation having a period of approximately three 

seconds, much longer than any structural periods. Upon subtraction of 

the displacements at the two sites it was found that the three-second 

signal was responsible for a differential motion of the bridge founda-

ti on. A three-second period signal also appearing in the displacement 

of the superstructure relative to the ground at bent S was found to be 

correlated with the three-second differential ground motion. This is an 

indicator of pseudostatic response of the structure to differential 

movement of its supports. Furthermore, analysis of the ground displace

ments, using a horizontal component rotated into the radial direction 

with respect to the earthquake epicenter, demonstrated that the long

period ground displacements in the radial-vertical plane were retrograde 

during most of the strong shaking. These findings all support the 
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premise that the long-period superstructure displacements were a result 

of differential support motion induced by phase delays in a Rayleigh 

wave travelling across the bridge site. 

In Chapter III, a computer-oriented system identification 

technique, based upon an output-error approach, was utilized to 

determine optimal estimates of frequencies and damping values of the 

dominant modes of response of the bridge. The modal minimization 

method, originally conceived for a single input-single output analysis 

of earthquake records from buildings, was found to work surprisingly 

well provided the strong-motion records were rotated into directions in 

which the dominant structural response was in a single mode. For the 

San Juan Bautista bridge, record orientations parallel to and perpen

dicular to the direction of skew of the bents were found to work best. 

The contribution made to the structural response by the long-period 

differential support motion was not serious from the viewpoint of possi

ble damage, but it significantly complicated modal identification from 

the strong-motion data. Systematic identification of frequencies and 

estimates of damping for the first two modes required that these long

period components be filtered from the data in order to obtain good 

definition of modal characteristics. Using time-invariant models, best 

estimates of frequencies of the first two horizontal modes of the bridge 

were found to be 3.50 Hz and 6.33 Hz, with associated damping values of 

approximately 1~ of critical in each mode. A moving window analysis, 

used to study the time variation of frequencies and damping values, 

indicated a general trend towards a decrease in frequency of each mode 
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as the intensity of shaking increased. In the fundamental mode, at very 

low levels of excitation, the damping was found to be in the range of 3% 

to 6%, but increased to 12% during the time of strongest response. 

In Chapter IV a three-dimensional finite element model of the 

bridge was developed to compare responses calculated from standard 

modeling procedures with the observed earthquake responses. It was 

found that such a model, which also included soil-structure interaction, 

was able to predict modal frequencies in agreement with the observed 

values only when the expansion joints were assumed to be locked, thereby 

preventing relative motion between adjacent spans in the longitudinal 

direction. This is in contrast to the common assumptions used in 

modeling such expansion joints in which freedom of longitudinal relative 

movement supposedly occurs at the joints. Springs, added to model the 

effect of abutment resistance, were adjusted to provide a fundamental 

modal frequency of 3.50 Hz, the same as the observed fundamental 

frequency of the bridge. The fundamental modal amplitudes predicted by 

this model were in reasonably good agreement with those observed as a 

result of earthquake shaking. Additionally, the finite element model 

predicted the second horizontal modal frequency to within 1% of the 

observed value of 6.33 Hz. 

The only significant dynamic response in the vertical direction was 

that of the individual spans. Very close agreement was found in the 

fundamental vertical frequencies predicted by the finite element model, 

the Bernoulli-Euler beam analyses and the results of an ambient vibra-

tion survey. Together, the results for horizontal and vertical 
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responses suggest that the bearings were essentially free to work in 

rotation but not in longitudinal translation. 

5.2 CONCLUSIONS 

The comments and observations on earthquake response of bridges 

stated in previous chapters were directed specifically at the San Juan 

Bautista bridge. In a broader context, the results of the research also 

may be used to comment on the seismic response of highway bridges in 

general. 

As previously stated, the response of the San Juan Bautista bridge 

was a result of only moderate earthquake ground shaking. In the 

horizontal directions the bridge responded to the shaking as a con-

tinuous structure with expansion joints locked for translational 

motions. It seems reasonable to conjecture that under similar levels of 

ground shaking many other bridges, particularly those similar to the San 

Juan Bautista bridge, may respond with locked expansion joints and with 

behavior described by a dynamic model which assumes this feature. At 

higher levels of earthquake ground shaking, however, the forces involved 

may be large enough that one or more expansion joints may suddenly 

become free to respond with large amplitudes. A bridge's dynamic 

response under these conditions would be significantly different than 

that shown by the San Juan Bautista bridge. Thus, a knowledge of the 

expected behavior of the bearing-expansion joint system under dynamic 

loading conditions is an important factor in an assessment of the 

seismic response of such bridge structures. Most significant are the 
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questions of when the bearings allow movement to occur, and in what 

degrees-of-freedom will movement occur. The research in this disserta-

tion has addressed the later question. Future work and additional 

strong-motion records obtained for various intensities of shaking are 

needed before the former question can be answered adequately. 

Current methods of upgrading the seismic resistance of bridges like 

the San Juan Bautista structure are aimed, in part, at providing 

positive connections across the expansion joints by means of restrainer 

bars or cables. Depending on the details of the restrainers, the 

assumption of locked expansion joints may be appropriate even under 

severe seismic loading conditions. 

The responses of individual bridge spans in the vertical direction 

was predicted very well by both the theoretical beam models and the 

finite element model. The close agreement between the finite element 

results and the observed fundamental vertical frequencies provides 

encouraging support for the modeling techniques used in creating the 

finite element representation, especially in the use of a transformed 

deck section and in allowance for rotations about the Y axis of the 

bearings. 

The presence of long-period surface waves complicated modal 

identification procedures; however, since the periods of all bridge 

modes were much shorter than the surface wave period, the response of 

the bridge to these waves was essentially static. The results of this 

research suggest that, for engineering purposes, effects of differential 

support motion could normally be neglected in computing the earthquake 
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response of moderate length highway bridges founded on uniform soil 

conditions. The more common assumption of rigid base excitation is 

likely to be sufficient for such structures. For very long span or very 

tall bridge structures, where the fundamental frequency may be close to 

the frequency of large amplitude surface waves, then long-period 

differential support motions may significantly influence the dynamic 

response of the bridge. 

A major problem associated with measuring and evaluating some 

aspects of the response of structures to long-period earthquake motions 

is the accuracy with which long-period displacements can be recovered 

from recorded accelerograms. Furthermore, with current processing 

techniques, permanent offsets of a structure, such as rotations of skew 

bridges, cannot be evaluated from the time-histories, as permanent 

deformations are removed during routine processing of velocities and 

displacements. Digital recording strong-motion accelerographs are 

expected to improve this situation by increased recording resolution and 

by associated changes in processing techniques. 

A few comments may be made regarding the placement of strong-motion 

transducers on the San Juan Bautista bridge. Although a substantial 

amount of data was collected at the bridge during the Coyote Lake 

earthquake, the research of previous chapters suggests that the present 

plan of instrumentation might be augmented or reconfigured in order to 

obtain additional earthquake response data which would both complement 

and supplement the existing data set. This is not meant as a criticism 

of the present placement of instruments, which were installed to study 
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one aspect of the bridge response, but rather as a way in which addi-

tional information might be obtained. Either an augmentation or 

rearrangement of instruments on the San Juan Bautista bridge is believed 

preferable to moving them to a new bridge site because the potential for 

future earthquakes to occur in the area is much greater than in many 

other areas of California, and because of the advantages of having 

repeated measurements on the same structure. 

Based upon the research in this dissertation, it is recommended 

that the present twelve transducers be redeployed at the San Juan 

Bautista bridge site, if they cannot be augmented. In redeployment, one 

triaxial free-field station should be located at a distance of 200 to 

300 feet from the bridge, along the median of U.S. Highway 101, and the 

other nine channels should be arranged on the superstructure and abut

ments of the bridge. The overall objective of the proposed - redeployment 

of transducers is to place a greater emphasis on obtaining detailed mea

surements of the dynamic response of the superstructure/abutment system, 

rather than on measuring spatial variations in ground motions. 

The exact placement of transducers on the superstructure will 

depend upon the practical constraints of installation of the instru

ments. It would, however, be highly desirable to locate at least two 

sets of biaxial transducers to measure motions in the horizontal plane. 

The results of finite element model II suggest that maximum modal infor

mation might be recovered if one set of superstructure instruments was 

located near bent 3, and a second set near bent 5. 
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Of course, even greater flexibility and scope would be possible by 

addition of a second central recording system to increase the number of 

data channels. Figure 5.1 illustrates a more ambitious plan involving 

rearrangement and augmentation of the present instrumentation system on 

the San Juan Bautista bridge. The plan, consisting of twenty-six trans

ducers, is based upon the dual objectives of: (1) obtaining a second set 

of data from the same locations that were instrumented during the 1979 

Coyote Lake earthquake; and (2) obtaining dynamic measurements for 

several additional degrees-of-freedom, involving both bridge and soil 

systems. The following paragraph outlines the intended purpose in the 

location of each of the transducers. To complement Fig. 5.1, the loca

tion of each transducer is described in Table S.1. 

It is recommended that a triaxial package (transducers 1,2,3 in 

Fig. S.1) be located 200 to 300 feet from the bridge, along the median 

of U.S. Highway 101, to record free-field accelerations. Transducers 8, 

9 and 10 are placed with the intent of measuring the motions at abutment 

1 (Al) in X and Y translation and in rotation about the Z axis (using 8 

and 10). Transducers 23, 24 and 25 have a similar function at abutment 

7. Additionally, transducer 26 is placed for measurement of relative 

motions in the X direction across the abutment joint at A7. Transducers 

11 to 16 are placed to obtain better definition of the bridge response 

in the horizontal plane. Pair 12 and 13, and pair lS and 16 will 

provide a check on possible expansion joint movements. Transducers 4 

and S, and 17 to 20 are at the same location as several of the trans

ducers during the Coyote Lake earthquake and hence will provide for a 
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TABLE S .1 

Recommendation for Strong-Motion Instrumentation 
of the San Juan Bautista Bridge 

Transducer . Location 

1,2 ,3 Free-field 

4,S Horizontal, on footing at BS 

6. 7 Vertical, on footing at BS 

8,9,10 Deck of span 1, near Al 

11,12 
I 

Top of B3 

13 Deck of span 2, near B3 

14,lS 
I 

Top of B4 

16 Deck of span 3, near B4 

17,18,21 Top of BS 

19 ,20 ,22 Deck of span 4, near BS 

23,24,2S Deck of span 6, near A7 

26 Near joint at A7 

valuable comparison of bridge responses during different earthquakes. 

Transducers 21 and 22, together with 18 and 20, may be used to determine 

whether relative translational and/or rotational motions occur across 

the expansion joint at bent S. Vertically oriented transducers 6 and 7, 

located on opposite sides of one of the footings at bent S, are intended 

for measurement of rocking motions of the foundation. 
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In addition to strong-motion transducers, it is further recommended 

that scratch-plate devices be installed across one or more of the expan

sion joints to obtain direct measurement of any relative displacements 

occurring across the joints. These devices would provide for a valuable 

comparison with the maximum displacements computed by integration of the 

accelerograms. 

The above described instrumentation plan should allow a 

comprehensive set of strong-motion records to be obtained for the San 

Juan Bautista bridge. In view of the results of the analysis of the 

bridge's response to the Coyote Lake earthquake, most of the emphasis 

has been placed on measurements for the horizontal (X-Y) plane. Only 

three transducers (2,6,7) have been oriented in the vertical direction. 

A deployment of twenty-six transducers affords enough flexibility to 

provide a check on the behavior of several of the expansion joints 

without unduly compromising the number of transducers available for the 

purpose of defining modal properties. 

To date, research efforts to study the earthquake response of 

bridges have been small in comparison to the efforts put forth in other 

areas of earthquake engineering. From the research undertaken in the 

preparation of this thesis, it is felt that investigations in the near 

future in bridge earthquake engineering should be focused in two major 

directions, with the aims of: (1) increasing the number of bridges 

instrumented with strong-motion accelerographs; and (2) gaining an 

increased understanding of the dynamics of soil-bridge systems. 
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Since strong-motion accelerograms are the basic source of data for 

earthquake engineering research, it is necessary that the current plan 

of instrumenting highway bridges (ref: Table 1.1) be extended to include 

a variety of types of construction (steel, reinforced concrete, pre

stressed concrete), geometry, length and height. The current existence 

of only a few sets of response data necessarily limits the broader 

implications which can be drawn from the data. Of particular concern is 

the lack of strong-motion instrumentation on very long-span, high 

overcrossing bridges. This type of bridge has significantly different 

dynamic properties than a structure like the San Juan Bautista bridge. 

One effective method of studying structural dynamics of bridges, in 

addition to utilizing strong-motion accelerograms, is to measure experi

mentally the dynamic response of full-scale structures. Ambient vibra

tion surveys, while relatively quick and easy to perform, may not always 

furnish sufficient information. For example, under low levels of 

ambient excitation it is possible that not all of the modes of interest 

may be sufficiently excited to allow accurate measurements to be made. 

Forced vibration testing, although more expensive and time-consuming, 

affords the opportunity of exciting a structure under controlled condi

tions and at various applied force levels. Such studies have the poten

tial of yielding valuable information on both structural dynamics and 

soil-bridge interaction. Again, it would be desirable to investigate 

bridge structures of various designs. 
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5.3 FINAL REMARKS 

The observations and results presented in this dissertation have 

provided a detailed examination of the seismic response of a multiple

span highway bridge, subjected to moderate levels of earthquake ground 

motion. By a careful consideration of the nature of earthquake ground 

motions at the bridge site it was possible to identify both pseudostatic 

and dynamic components of bridge response. From the dynamic components, 

dominant modes of response were identified. It was also shown that 

standard finite element methods of dynamic analysis can describe the 

earthquake response of geometrically complicated highway bridge 

structures extremely well for moderate levels of earthquake excitation. 

In developing such models, attention must be given to the dynamic 

behavior of structural details, particularly expansion joints. Similar 

analyses, applied to the strong-motion records from other bridges, 

should lead to a substantially better understanding of the earthquake 

response of these structures. 


