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ABSTRACT

A core pursuit in systems and synthetic biology is the analysis of the connection
between the low-level structure and parameters of a biomolecular network and
its high-level function and performance. Elucidating this mapping has become
increasingly feasible as precise measurements of both input parameters and output
dynamics become abundant. At the same time, cross-pollination between biology
and engineering has led to the realization that many of the mathematical tools from
control theory are well-suited to analyze biological processes.

The goal of this thesis is to use tools from control theory to analyze a variety of
biomolecular systems from both natural and synthetic settings, and subsequently
yield insight into the architecture, tradeoffs, and limitations of biological network.
In Chapter 2, I demonstrate how allosteric proteins can be used to respond logarith-
mically to changes in signal. In Chapter 3, I show how control theoretic techniques
can be used to inform the design of synthetic integral feedback networks that im-
plement feedback with a sequestration mechanism. Finally, in Chapter 4 I present a
novel simplified model of the E. coli heat shock response system and show how the
the mapping of circuit parameters to function depends on the network’s architecture.

The unifying theme of this research is that the conceptual framework used to study
engineered systems is remarkably well-suited to biology. That being said, it is
important to apply these tools in a way that is informed by the molecular details
of biological processes. By combining structural and biochemical data with the
functional perspective of engineering, it is possible to understand the architectural
principles that underlie living systems.
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C h a p t e r 1

PHILOSOPHICAL CONTEXT AND MOTIVATION FOR
SYSTEMS THINKING IN BIOLOGY

Science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.
—Henri Poincaré

The primary goal of this thesis is to develop a theoretical approach to studying the
functional and computational capacity of biological molecules. The core research
builds on an intellectual trajectory that has largely coalesced in the last two decades
into the fields of systems and synthetic biology, but which has roots that pervade
the history of science. The core thread running through each of these fields is the
idea that living organisms are made up of cells, and these cells use networks of
molecular interactions to do everything from the most basic biological processes of
synthesizing new proteins and duplicating DNA for cell division to the complex task
of processing sensory information and incorporating it into the cognitive behavior
of intelligent life. Consequently, it has become clear that the only way to truly
understand what differentiates life from non-life is to understand the evolution,
function, and architecture of these biomolecular networks.

This insight was captured almost 60 years ago, when Richard Feynman gave a now-
famous lecture titled “There’s Plenty of Room at the Bottom” [1], in which he argued
that we had only just begun to understand the extent to which the physical world
can be manipulated at the molecular scale. He expressed wonderment at processes
like photosynthesis and the translation of proteins. At the time, relatively little was
known about the structure, function, and organization of the molecules that underlie
these phenomena, but it was clear from their design that evolution is a resourceful
engineer.

Feynman’s vision has largely become a reality. We nowunderstand, in amuch deeper
way than previously imaginable, that single cells have an astonishing capacity to
sense andmake decisions about their environment. From quorum sensing in bacteria
to embryonic development in animals, a great deal of information must be processed
using only DNA, RNA, and proteins. When studying information processing in
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biology, we often focus on the computational capacity of circuits and motifs of a
few components [2] and networks of tens to hundreds of elements [3, 4, 5]. While
there is certainly still much to be explored at the level of circuits and networks, this
perspective often coarse-grains the finer molecular details of these systems. The
viewpoint taken here will zoom in on these molecular details, and highlight several
cases where molecules perform an impressive range of computation.

Since the research I will present in each chapter draws from a broad array of
biological processes, it is difficult to assemble a coherent history that provides
sufficient context. Instead, I will focus more on the philosophical context of this
work. While philosophy is not often discussed explicitly in modern scientific
writing, I believe that to ignore it is to ignore the intellectual foundation on which
fields like systems and synthetic biology were built.

I will break this analysis into three time periods: ancient, Enlightenment, and
modern. The first three subsections draw heavily on a variety of entries from the
Stanford Encyclopedia of Philosophy, which has proven to be a rich source not only
for philosophical literature, but also historical context [6]. Unless otherwise noted,
this is the source for all historical information and quotes in these sections. My
goal is to elucidate one of the foundational questions in biology: Life appears to
exhibit purpose-driven behavior that separates it from non-life, yet is made up of
the same type of material as the rest of the physical world. What process underlies
the apparent purposefulness of life? This question dates back at least to Aristotle,
and my discussion here will attempt to trace its scientific trajectory to the modern
era of molecular biology. The core focus of the final subsections will be an analysis
of Jacques Monod’s work in the mid-20th century with an emphasis on his book
Chance and Necessity, which lays out a coherent integration of molecular biology
into the broader philosophical scope of the preceding sections [7].

1.1 Telos: A Story

Tiger got to hunt, bird got to fly;
Man got to sit and wonder ‘why, why, why?’
Tiger got to sleep, bird got to land;
Man got to tell himself he understand.
—Kurt Vonnegut, Cat’s Cradle

One of the oldest scientific debates for which we have a written history is that of
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whether or not material objects can be said to have purpose. This discussion dates
back at least to ancient Greece, whenAristotle in the 4th century BCE considered the
notion of telos, a Greek word meaning ‘purpose’, ‘goal’, or ‘end’. While Aristotle
considered telos in a broad context — ranging from politics to physics — we will
focus primarily on on its application to biology and the living world. He realized
early on that there were two core component of telos: the purpose of an object
(e.g., a knife’s purpose is to cut things) and the agent which imbues that object
with purpose (e.g., a person made the knife with the intent that it be used to cut
things). Regarding the latter, Aristotle wrote in his Physics [8], implicitly casting
aside Plato’s premise of an intelligent designer creating the universe:

“It is absurd to suppose that ends are not present [in nature] because we
do not see an agent deliberating.”

That being said, Aristotle also rejected the application of the reductionism of Dem-
ocritus to the context of biology. In his Generation of Animals, he writes:

“Democritus, however, neglecting the final cause, reduces to necessity
all the operations of nature. Now, they are necessary, it is true, but yet
they are for a final cause and for the sake of what is best in each case.”

Clearly, Aristotle had a nuanced view of life in the context of natural philosophy.
Variations on this debate continued for centuries, until theWestern world underwent
a dramatic intellectual upheaval in the 17th century known as the Enlightenment.
In particular, the Scientific Revolution, spurred by the likes of Galileo Galilei and
Isaac Newton, drove a wedge between the worlds of materialism and idealism. This
left biology in a precarious position, straddling the two realms.

Around this time a new philosophical termwas coined, teleology, the study of intrin-
sic purpose in the natural world [9]. The emergence of a term for a fundamentally
Aristotelian idea may signify that thinkers of the time were being forced to grapple
with the dissonance between the reductionism of the physical sciences and the ide-
alism of moral and political philosophy. How is it that humans can be both physical
objects devoid of purpose, but also metaphysical beings with moral, political, and
social obligations? René Descartes is credited with an attempt at resolving this issue
by means of the notion of dualism, that the mind and body are two separate entities,
one physical and one non-physical. This helped prop up the idea that humankind
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holds a special place in the universe and was an important steppingstone towards a
scientific view of humanism, but for our purposes mostly dodged the actual issue of
resolving the philosophical tensions between the living and non-living worlds.

1.2 Putting Descartes Before the Horse

If you try and take a cat apart to see how it works, the first thing you
have on your hands is a non-working cat.
—Douglas Adams, The Salmon of Doubt

It is important to note that post-Enlightenment scientific theory was dominated by
the physical sciences. While Newton’s Principia was published in 1687 and laid
the theoretical groundwork for physics as we know it, such a cohesive synthesis of
ideas about biology took almost two more centuries. In light of this, it makes sense
that work in the interim amounted to an attempt to shoehorn the study of life into
the framework of existing physical theories. The result of this was an extensive
physical characterization of organisms, captured by the foundational work of Carl
Linnaeus in the 18th century which culminated in the modern notion of taxonomy.
Though this descriptive work laid the foundation for the scientific study of biology,
its capacity to explain why each organism has its particular sets of traits and features
was limited.

Linnaeus did notice in his taxonomy as early as 1744 that there was an inescapable
similarity between many species, when he published Oratio de telluris habitabilis
incremento (Oration on the Increase of the Habitated World). His theory of origins
boiled down to all modern life having descended from a few original, divinely-
created forms. Linnaeus proposed the proto-Mendelian mechanism of diversity
via hybridization of species, but this served more to connect the dots between
observations than it did to propose a coherent theory of evolution.

The movement towards a more foundational theory of life can be attributed to
Georges-louis Leclerc, Comte deBuffon, an 18th century French natural philosopher
whose foundational insight was that organisms do not exist in a vacuum. Buffon’s
36 volume Natural History presented a sprawling investigation of the natural world.
Importantly, this work “presented a secular and realist account of the origins of
the earth and its life forms.” Specifically, Buffon considered that geography and
environment should have an influence on the species that inhabit a given region.
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A consequence of this perspective was that, to understand the living world, scien-
tists must go out into nature and study biology in its natural environment. Further,
Buffon put forward a contrast between ‘inert’ and ‘vital’ matter, which ran con-
trary to post-Newtonian ideas that all forms of matter are essentially uniform and
equivalent. While not literally correct, Buffon’s thinking marked an important shift
towards acknowledging that a purely context-independent theory of biology may be
insufficient to completely explain life. What he lacked was a coherent framework
for thinking about this sort of vitalism: what is it that living matter is ‘trying’ to do?

The crucial next step was taken by Buffon’s student Jean Baptiste Lamarck (born
1744), who put forth the idea of transformism, which was a first attempt to scien-
tifically study the transformation of species. While the ancient Greeks had at times
discussed the idea of transformation, Lamarck was the first to attempt an empirical
scientific exploration of this type of relatedness between species. Importantly, this
required him to both examine data and to put forth a causal mechanistic theory of
change over time.

While Lamarckian evolution is often presented solely as the theory of inheritance of
acquired characteristics, his actual views, fittingly, transformed quite dramatically
over the course of his life. His real innovation was not so much the correctness (or
lack thereof) of his theory, but that he made the conceptual leap of realizing what
a mechanistic theory of biological origins should look like. Early in his career,
Lamarck put forward a theory of linear descent or degeneracy, starting from the
most complex organisms and ending with the simplest (in this work he focused
on invertebrates). By 1800 he reversed this ordering, but still believed in a linear
arrangement of species transformation. In this framework, species did not originate
from a common ancestor but rather descended directly from awide range of primitive
organisms.

This later developed into a more coherent theory of evolution, where Lamarck
hypothesized that the mechanism of evolution was the interaction of a species with
its local environment. In this theory, animals would acquire traits throughout their
life and pass them on to their young. While the mechanism of change turns out to be
largely wrong, the idea that interactions between the environment and an organism’s
fitness drives evolution was of fundamental importance. Lamarck seems to have
stuck with his linear idea of evolution, though there appears to be some evidence
that, later in his life, he considered the idea of species branching out from common
ancestors.
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1.3 The Times They Are a-Changin’

The line it is drawn, the curse it is cast
The slow one now, will later be fast
As the present now will later be past
The order is rapidly fadin’.
And the first one now will later be last
For the times they are a-changin’.
—Bob Dylan

With the roots of evolutionary theory now in place, the early 19th century saw the
rapid development ofmany competing theories of life. A key point is that, alongwith
theoretical inquiry, as the field of evolutionary biologymatured there emerged a core
set of facts that any viable theory needed to explain. For example, it was known at this
point that there existed both homology between species, anatomically similar parts
across widely varied species (such as the heart and liver), and analogy, anatomically
distinct features that served a common functional adaptation (e.g. wings evolving
in both birds and bats). This intellectual trajectory, of course, culminated in the
publication in 1859 of Charles Darwin’s On the Origin of Species. As with all
great human achievements, it is impossible to succinctly describe Darwin’s work on
evolution without vastly oversimplifying the context and historical precedent. For
the purpose of the discussion here, I will focus primarily on the aspects of his theory
that relate to the overarching issue we hope to address: to what extent is it correct
to think of biology as a purpose-driven (i.e. teleological) phenomenon?

Darwin became concerned with this problem long before the final publication of
Origin, writing in 1842:

“Nature lets [an] animal live, till on actual proof it is found less able to
do the required work to serve the desired end, man judges solely by his
eye, and knows not whether nerves, muscles, arteries, are developed in
proportion to the change of external form.”

We see that he must have had some sense of agency in how natural forms emerge.
He at this point had at least begun to formulate the idea of evolution by natural
selection, but his comparison of Nature’s agency to that of a human’s has a distinctly
teleological tone. From the context of his other contemporary writing, he had not
yet conceptualized to what end Nature would perform such a selection, just that
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some apparent agency superior to that of humankind was exerting selective pressure
on life. Importantly, it is not clear that Darwin had a clear picture of what could
drive evolution. His theory at his point appears mostly consistent with a Lamarckian
view of acquired traits.

It is worth emphasizing this point, as most of the evolutionary work preceding Dar-
win had been limited to particular branches of life, for example the invertebrates or
the plants. While post-Lamarckian scientists were aware of anatomical similarities
between organisms, it seems that their views of evolution focused on the incremental
improvements that species made in adapting to their environment, consistent with
a linear history that was perhaps selecting for some optimally fit descendent. What
these theories all lacked was a model of diversification; what mechanism would
cause lineages to branch out from a common ancestor if each lineage was being
optimized by some Natural force? While these theories formalized the idea of nat-
ural selection, they had little they could scientifically explain about what drives the
changes to fitness upon which selection acts. There is implicit in each of these ideas
some notion of vitalism, that organisms have some inexplicable drive to adapt.

The idea that Darwin (and independently, Alfred Russell Wallace) formalized was
that natural selection does not need to be driven by some intrinsic desire to adapt
within each organism, but that random variability provided an entirely mechanistic
force that could facilitate fitness-based selective pressure. This was more than a
clever scientific observation: this idea presented a fundamental philosophical break
with the teleological theory of life. If the diversity and evolution of life is driven by
random variations, there is no need for any sort of agency — intrinsic or extrinsic
— to explain the origin of species.

Take, for example, the Linnaean categorization of species. In a Lamarckian world,
these species might represent the different lineages of descent that exist in the
modern world. This classification is scientifically meaningful, because each species
may well have descended from a separate ancestral origin that was acted upon by
different adaptive and selective pressures. Darwin went as far as to observe that the
Linnaen classification of species was scientifically meaningless under a theory of
common descent, in that each organism has a shared ancestry and is simply the end
result of the same general selective pressure coupled with natural variations. The
categorization of organisms into species was more a useful conceptual tool to help
humans think about life than it was a deep fact of nature. There is an irony in the
fact that On the Origin of Species was, in a sense, just as much about the demise of
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species as it was about their origin.

A strictly non-teleological view of biology may not have come easily to Darwin,
as evidenced by changes in language between the first edition of Origin in 1959
and subsequent ones where he altered the language to downplay the idea of Nature
exerting direct agency over life. As the theory evolved, natural variation took an
increasingly central mechanistic role. Later editions also favored the term ‘survival
of the fittest’ over ‘natural selection’, with similar teleological implications. An
important counter-point to this interpretation is explicit reference in some editions
of the book to a ‘Creator’ responsible for the origin of life. It is unclear to what
extent this reflected Darwin’s own beliefs and to what extent it was the product of
theological pressures of the time.

1.4 Plenty of Room at the Bottom

Teleology is like a mistress to a biologist: he cannot live without her
but he’s unwilling to be seen with her in public.
— J.B.S. Haldane

A key idea that began to take shape in 19th century biology was the notion of
‘traits’, and how those traits related to fitness. The general framing of these traits
were in terms of physiology and anatomy, with some generic notion of inheritance
that lacked a concrete physical manifestation. Though cell theory (the idea that all
organisms are made up of microscopic cells) was formulated by 1839, little was
known about the inner workings of these cells. By the early 20th century the term
‘gene’ had emerged, however it was mostly a placeholder for whatever material
mediated the transfer of heritable traits [10].

Over the next 50 years, this qualitative theory of inheritance crystallized into a phys-
ical theory that laid the groundwork for the field of molecular biology. Somewhat
ironically, the shift in perspective towards viewing life as a fundamentally molec-
ular process did less to advance reductionism than it did to imbue simple physical
components with purpose-driven behavior. DNA, which was originally thought to
simply be a structural component of the nucleus, suddenly became an information-
carrying vessel [11]. Enzymes orchestrated a vast sea of biochemical reactions.
RNA served as a messenger between the instructions of genes and the functions of
proteins. As with any good paradigm shift in science, these discoveries raised more
philosophical questions than they answered.
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For our purposes, the most interesting of these questions is this: when does an
assembly of decidedly dead molecules suddenly become a living cell? The storage
of information alone cannot be what underlies life, and on the other hand humans
routinely create complex chemical reactors, which are not equivalent to living or-
ganisms. Life consists of microscopic interactions forming macroscopic structure,
yet the same could be said of the crystallization of sodium chloride into a block of
salt.

The perspective I will present on this question will focused on the work of Jacques
Monod, the 20th-century biologist who shared the 1965 Nobel Prize in Physiology
and Medicine for the discovery of gene regulation. Monod was also involved in
creating the first models of allosteric regulation. The goal of this section will be to
both provide modern historical context for the work in my thesis, and to relate my
research direction to the philosophical and scientific ideas set out by Monod.

1.5 Chance and Necessity

Everything existing in theUniverse is the fruit of chance and of necessity.
—Democritus

Throughout Monod’s scientific life, he expressed a broad philosophical perspective
on the nature of biology. He famously said, “What is true for E. coli is true for the
elephant” [11], expressing a unified view of life that stood in stark contrast to the
specialized study of species that dominated 19th-century biology. Later in his life,
he became close friends with the philosopher Albert Camus, even going as far as
to co-author a critique of Lysenkoism [12], a politically motivated branch of soviet
pseudoscience that (unsuccessfully) challenged the Darwinian theory of genetics.

Shortly before Monod’s death in 1976, he published a synthesis of his philosophical
perspective titled Chance and Necessity [7], a book targeted at a non-technical
audience but with an in-depth exploration of the important discoveries of the time.
In particular, Monod sought to coalesce the classical teleological perspective that we
have discussed at length in the previous section with the new frontier of molecular
biology that emerged in the mid-20th century. What I find most fascinating about
Monod’s philosophy is that it was not isolated from his science; his perspective
permeates the research he did and represents a paradigm shift in biological thought
that we are still seeing unfold today.
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1.6 Aliens, Demons, and Chemical Machines

We live on an island surrounded by a sea of ignorance. As our island
of knowledge grows, so does the shore of our ignorance.
– John Archibald Wheeler

Artifacts and fictions
Monod starts Chance and Necessity with a chapter titled Of Strange Objects, where
he proposes a thought experiment: What if an alien space agency were to land a
probe on Earth, whose goals was to classify the objects it found as either artificial
or natural? This question is first posed to seem trivial; of course a mountain and a
cloud are qualitatively different from a knife or an airplane. A key constraint is that,
because of the aliens’ ignorance, any method they have of distinguishing the natural
from the artificial must be objective rather than projective. The latter implies that
the intent of the object’s creator can be inferred (should it exist), whereas the former
relies only on observable properties intrinsic to the object.

The problem comes when we try to define a priori criteria that separate the two
categories. As a naive approach, Monod proposes two simple properties the aliens
couldmeasure to gauge artificiality: regularity and repetition. Objects shaped by na-
ture tend to have macroscopic structure that is geometrically complex and generally
lacks properties like smoothness, right angles, and a high degree of symmetry which
are commonly found in human-made artifacts. Nominally, these criteria would let
the aliens group rocks and trees as natural and houses and trains as artificial. This
algorithm might, however, fail to recognize a quartz crystal or a diamond as being
of natural origin. These objects are highly symmetrical, often contain sharp bound-
aries and smooth surfaces. What the aliens have missed is that the regularity of these
objects is purely a macroscopic reflection of their microscopic structure. In some
sense, they lack the deliberate design that we ascribe to real artifacts. This issue
could conceivably be resolved by encoding the relatively small number of possible
crystal structures as special cases.

The problem gets significantly more difficult when our alien algorithm is confronted
with a beehive. The hive has many hallmarks of artificiality: regularity, geometric
structure, symmetry, and precise angles. In fact, if the algorithm were to look at the
bees themselves it would likely have difficulty classifying them as any less artificial
than a small robot. The purpose of this discussion, adapted from Monod, is to point
out the ambiguity inherent in the underlying task. Artificiality and naturalness are
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not intrinsic properties of objects, but are as much tied to their origin as they are to
their structure and function.

This point echoes the realization that spurred early evolutionary thinking, namely
that understanding biology is not simply a task of classifying organisms. We see
that neither reductionist nor functional categorization is sufficient to capture what
separates the living from the non-living world. Reductionism and functionalism
appear to be opposing views, but they share a key property: they each assume that
an object can be understood independently of its history. The secret of life must
lie as much in its origin as in its function. This leads us to the core concept at the
heart of Chance and Necessity, that life is fundamentally a teleonomic process. The
term teleonomy was coined in 1958 by Colin Pittendrigh [13], and is perhaps best
described by quoting Monod’s introduction of the concept directly:

“Every artifact is a product made by a living being which through it
expresses, in a particularly conspicuous manner, one of the fundamental
characteristics common to all living beings without exception: that of
objects endowed with a purpose or project, which at the same time they
exhibit in their structure and carry out through their performance (such
as, for instance, the making of artifacts).

Rather than reject this idea (as certain biologists have tried to do) it is
indispensable to recognize that it is essential to the very definition of
living beings. We shall maintain that the latter are distinct from all other
structures or systems present in the universe through this characteristic
property, which we shall call teleonomy.”

Where teleology reflects the idea of purpose-driven behavior that is the end result
of an agent with intent, teleonomy captures the idea of purpose-driven behavior that
emerges from natural law. Though the function of an artifact is derived from the
intention of its creator, and thus is strictly external to the artifact’s structure,

“...a living being’s structure results from a totally different process, in
that it owes almost nothing to the action of outside forces, but everything,
from its overall shape down to its tiniest detail, to ‘morphogenetic’
interactions within the object itself. It is thus a structure giving proof
of an autonomous determinism[.]”
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Monod goes on the describe life as being fundamentally composed of three com-
ponents: teleonomy, autonomous morphogenesis, and the invariant transfer of in-
formation. The latter two are crucial, as they are the mechanism through which
the former can be defined by primarily internal means. Life differs from non-life
in that its purpose is derived from its evolutionary lineage, not by an intentional
creator. This purpose is of course shaped by the selective pressure of the organism’s
environment, but the information that captures the result of selective pressure is,
ultimately, strictly local.

The idea of teleonomy is useful in its own right, as it succinctly resolves a broad
range of philosophical issues surrounding biology. Monod, being first and foremost
a scientist, did not treat teleonomy as the end result of his thinking, but rather as the
starting point. He sought to put this generic notion on a firm scientific footing. It
is worth noting that, while teleonomy has found a place in 20th-century philosophy,
it has primarily been applied to evolutionary thought. As far as I can tell, Monod
stands alone in the depth and seriousness with which he applies the idea to molecular
biology.

The devil is in the details
One of the core innovations of Monod’s conception of teleonomy is that it does
not sidestep the reductionist argument about biology, i.e. that biology is a purely
physical process, but confronts it head on. A key aspect of both teleology and
teleonomy is a particular type of causal relationship, specifically that some form
of information is translated into behavior. In physical terms, this causality is both
borne out and constrained by the laws of thermodynamics.

Monod presents another illustrative thought experiment to show the limits of what
a classical thermodynamic description of biology can yield. Imagine filling a
calorimeter with a supersatured solution of sucrose. If youwere to add a seed crystal,
it would grow into a large, highly-ordered crystalline structure. In accordance with
the second law of thermodynamics, a commensurate temperature change would be
measured by the calorimeter to compensate for the local decrease of entropy in the
crystal. This change in temperature should come in at exactly the limit predicted by
the second law.

Now imagine a similar setup with a calorimeter filled with a sucrose solution (along
with a few other choice molecules), except instead of a seed crystal you instead drop
a single E. coli cell. If you were then to wait a few days, you would find yourself
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with many more E. coli cells than you started with. Because of the high efficiency of
E. coli metabolism, you would expect to again measure a temperature change from
the calorimeter that almost exactly matches the displaced entropy predicted by the
second law.

We see that both of these experiments are subject to the same constraints, indepen-
dent of the fact that the underlying processes could not be more wildly different at
the molecular level. At the same time it is reasonable to argue that where, in the
crystalline case, thermodynamics is the end of the story, for the E. coli it is just the
beginning. As an analogy, Newton’s laws are fundamental to the mechanics of both
a projectile launched by a catapult and a rocket leaving Earth. In the former case,
Newton’s laws can essentially describe the entire story of the projectile, whereas
in the latter most of the interesting behavior comes not from what the constraining
laws say, but how the engineering of the rocket acts within them.

To Monod, the difference between the sugar crystal and E. coli is Maxwell’s demon.
This demon is derived from a 19th-century thought experiment proposed by James
Clerk Maxwell, where he imagined a partitioned chamber containing a collection of
molecules, some moving fast and some moving slowly. The molecules are randomly
spread between the left and right side of the partition, and thus each side should have
the same temperature. The partition contains a small hatch controlled by a demon,
who can selectively open and close the hatch to let certain molecules through and
not others. In theory, the demon could open the hatch whenever a slow molecule
approached from the left or a fast molecule from the right. If this were the case, the
demon could somehow reduce the overall entropy of the chamber simply by taking
advantage of the thermal properties of the molecules, apparently sidestepping the
laws of thermodynamics and passively moving away from thermal equilibrium.

The apparent violation seems to imply that, by the act of some cognitive function,
the demon is able to rig things in its own favor without exerting energy. The flaw
is that we have not properly accounted for the fact that the simple act of measuring
each molecule’s velocity and making a decision is inherently costly, and thus must
use energy. A common interpretation of this result is that nature is more clever than
any demon, and that the universe is stuck abiding by the laws of thermodynamics.

Monod had a somewhat different perspective: rather than casting aside the demon
as being too costly, biology has seen fit to employ it many millions of times over.
The most salient example might be the enzyme, whose job it is to do exactly what
Maxwell’s demon does: selectively pickmolecules to interact with such that thermal
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fluctuations can be translated into chemical kinetics. These interactions generally
consume energy, but the payoff is that cells have an enormous cognitive capacity
to pick and choose the chemistry that will be carried out. Enzymes not only create
order within a cell, they also are responsible for the directed functionality of life:

“At work here is, quite literally, a microscopic discriminative (if not
‘cognitive’) faculty. We may say that any teleonomic performance or
structure in a living being – whatever it may be – can, in principle at
least, be analyzed in terms of stereospecific interactions involving one,
several, or a very large number of proteins.”

Monod does go on to acknowledge the role of DNA and RNA in this process as
well, but most of his discussion focuses on the cognitive role of proteins in carrying
out teleonomic function. What is most fascinating is his recognition at the dawn
of the molecular era of biology that, fundamentally, “living beings are chemical
machines”.

Reactionary thinking
WhileChance and Necessity covers a vast range of philosophical issues in molecular
biology, I will restrict the rest of the discussion ofMonod’s work to the fourth chapter
of the book, titledMicroscopic Cybernetics. In this chapter, Monod lays out a broad
vision of molecular biology that is strikingly similar to what has become the field of
systems biology. In particular, the perspective presented is surprisingly ambivalent
to the details of any particular pathway. Instead he focuses on the general themes
that appear to emerge across a wide variety of systems, with a heavy emphasis on the
consistent appearance of feedback control. In the context of enzymatic pathways, he
points to the apparent ‘gratuity’ of interactions that are not essential to the synthesis
of a final product, but nonetheless serve a crucial role in regulating the cellular
function.

In particular he discusses at great length allosteric enzymes, a class of proteins
that exemplify the degree to which biological molecules can perform sophisticated
computation by having indirect protein-ligand interactions that regulate biological
activity. This echoes the developments in his academic work on allosteric reg-
ulation, where he helped develop one of the first mechanistic models of protein
regulation that was consistent with both biochemical and structural data [14, 15].
The discovery of allostery represented not only progress in our understanding of the
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connection between structural and functional aspects of molecular biology, but also
the theoretical insight that regulatory processes could be independent of the events
they regulate.

To contrast, the competing theories of the time proposed direct interaction between
either substrates and inhibitors, or between binding sites of the protein. In the former
case, the idea was that a regulatory molecule could compete with the substrate for
the binding site of the protein. In the latter case, a theory developed by Koshland,
Nemethy, and Filmer proposed that one binding site on a protein could directly
interact with another to increase or decrease its substrate affinity [16].

Allostery differs fundamentally from thesemodels, in that it assumes that the binding
of substrate occurs at a physically distinct location from the binding of regulatory
effectors. While this may at first seem like a technical detail that is only relevant
to protein structure, the reality is that allosteric regulation essentially creates a
virtualization between function and regulation. Many allosteric proteins have several
regulators, both positive and negative effectors, each with stereospecific binding.
This separation of regulation from function facilitates the development of complex
control circuitry that far exceeds what would be possible in a world where, for
example, each enzyme could only bind to its primary substrate.

This is whyMonod referred to allostery as the ‘second secret of life’, after the genetic
code [17]. By freeing proteins to interact with each other via arbitrary molecular
interactions, cells could perform the sophisticated control and computation that are
required to ensure that the cell functions properly. The cell may be a chemical
machine, but it can only ever be as clever as its programming. Just as Darwin
realized that natural selection is sufficient to bring about the purpose-drive behavior
of evolution, Monod realized that stereospecific interactions of molecules can bring
about the teleonomic behavior that turns a dead collection of proteins and nucleic
acids into a living cell.

1.7 The Ship of Modernity

Throw Pushkin, Dostoevsky, Tolstoy, etc. overboard from the Ship of
Modernity.
—Vladimir Mayakovsky, A Slap in the Face of Public Taste

Why bother with all of this? Now that we have the end result of this line of inquiry,
is there any use in retracing lines of thought that have long outlived their warranty?
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More to the point, what does any of this have to do with the actual process of doing
science?

What has become clear is that science and philosophy have always gone hand in
hand. While a great deal of incremental work can be myopic in scope, large changes
in thinking rarely occur by accident. Major scientific discoveries are, more often
than not, as much a product of a new philosophical perspective as they are of
technological innovation. Darwin likely would not have gone to the Galapagos had
he not been thinking about the nature of selection and variation, Watson and Crick
analyzed DNA not because it has an interesting structure, but because they believed
it had the capacity to store the genetic code, and Monod’s belief in the teleonomic
nature of life most likely led him to search for regulatory interactions throughout
the biomolecular world. Each of these steps required scientists to go beyond the
intellectual framework used by their predecessors and develop a novel point of view.

With all this in mind, I hope that the work I present in the remaining chapters will
be read with a philosophical subtext. In particular, that the language of design,
architecture, and tradeoffs is not simply a useful metaphor for discussing biological
systems, but that teleonomic language is the right way to describe biological phe-
nomena. Once we start to looking at biology through the lens of engineering, it
becomes natural to ask questions that are suited to purpose-driven systems. It does
not necessarily make sense to ask what is the purpose of the Earth revolving around
the Sun or an electron going through a particular slit, but we can learn quite a bit
by investigating, for example, the purpose of some biochemical pathway having two
feedback loops instead of just one.

To this end, the research presented in the following chapters examines the design,
architecture, and function of three molecular processes. The work in Chapter 2
builds directly on the work of Monod, studying functional properties of allosteric
proteins. I show that, encoded in the thermodynamics of allostery, is the capacity
for pathways to sense and respond to logarithmic changes in signal. In Chapter 3
I will use tools from control theory to analyze the performance of circuits that use
a sequestration mechanism to implement robust perfect adaptation (i.e. integral
feedback control). Finally, in Chapter 4 I show how a comparative perspective of
circuit architecture yields insight into the design of the E. coli heat shock response
system.
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C h a p t e r 2

ALLOSTERIC PROTEINS AS LOGARITHMIC SENSORS

2.1 Introduction
Sensory systems in biology are faced with two seemingly conflicting goals: they
must be sensitive in order to detect small changes in signal (Figure 2.1A), and at the
same time they must have a broad response range because many natural signals vary
over several orders of magnitude (Figure 2.1B) [1]. To achieve these conflicting
goals, it has been proposed that many sensory systems have evolved to tune their
sensitivity over a wide range (Figure 2.1C). In these systems, the pathway can adapt
the regime which it is most sensitive to depending on the magnitude of the signal
they receive.

The ability to tune sensitivity over a broad range of signal is a key property of
the phenomenon known as fold-change detection, where the change in activity of
a system is not a function of the level or absolute difference in signal, but of the
ratio of signal to background [2, 3]. For example, a change in signal level from 1
to 3 or from 10 to 30 would yield an identical outcome. Fold-change detection is
related to the well-known Weber’s Law, which describes how our sensory systems
tune their detection thresholds to the background state [4]. Weber’s Law has been
proposed in many sensory systems, including vision, weight perception, taste, as
well as numerical and temporal cognition [5, 6, 4, 7]. Beyond sensory systems
in whole organisms, fold-change detection has recently emerged at the cellular
level, governing signal transduction in animal cells. Specifically, studies in several
signaling pathways have presented evidence that gene transcription responds to the
fold change in the level of a transcription factor, rather than its absolute level [8, 9,
10, 11]. Finally, evidence for fold-change detection has also been observed in the
sensory response of fungi [12], bacteria [13, 3] and social amoeba [14].

Given its wide-ranging occurrence, it is therefore of interest to understand how fold-
change detection is implemented at the molecular level. It has been proposed that
fold-change detection can be mediated by specific classes of incoherent feedforward
loops (Figure 2.1D) and nonlinear feedback loops (Figure 2.1E) [3, 15]. The authors
also hypothesized that fold-change detection can be realized using another type of
circuit, where an upstream logarithmic sensor is coupledwith linear feedback (Figure
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Figure 2.1: Sensory SystemsHaveConflictingGoals. A)A sensitive system detects small
changes in signal, but has a narrow response range. B) A broad-ranged system responds
to a large range of signal, but is not sensitive to small changes. C) A tunable sensor is
both sensitive to small changes in signal, and is capable of adjusting its response curve
logarithmically across a broad range.
Proposed molecular circuits for fold-change detection. D) An incoherent feedforward
loop is a common motif in gene regulatory systems, where an input activates an output, and
at the same time a repressor of the output. E) A nonlinear feedback loop has also been
proposed as a mechanism for fold-change detection. F)A logarithmic-feedback circuit, built
from a logarithmic sensor coupled to linear feedback. In this study we ask how a logarithmic
sensor might be implemented at the molecular level.

2.1F). Whereas feedforward and feedback circuits are commonly found in biological
systems, it is not clear how a logarithmic sensor would be implemented. Here we
define a logarithmic sensor as having two properties: (i) it must be able to respond to
changes in signal on a logarithmic scale, and (ii) it must be logarithmically tunable,
i.e. shift its response curve on a logarithmic scale (see Figure 2.1C). We will
rigorously define and analyze these properties in the next section.

In this study we explore the possible roles of allostery in fold-change detection. An
allosteric protein is one that has an effector which regulates its activity by acting on
a site physically distant from the protein’s ligand binding site. Allostery is found
in a vast range of processes, including metabolism, signal transduction, oxygen and
membrane transport, cell cycle regulation, and transcription [16, 17]. Allostery
has been thought to mediate cooperativity, for example in various hemoglobin and
metabolic enzymes. Allostery has also been thought to facilitate biological control
loops, for example mediating feedback in glycolysis [18].
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Notation Meaning Units First Use
c(t) Input ligand concen-

tration
µM Equation (2.1)

ε0 Allosteric constant None Equation (2.1)
KA,KI,KD Dissociations con-

stants
µM Equation (2.1)

N Number of protein
subunits

None Equation (2.1)

a(c, ε0) Fraction of active
proteins

None Equation (2.1)

S(c, ε0) Sensitivity function:
c δa
δc

None Equation (2.4)

τ limits of the logarith-
mic response range

None Equation (2.6)

R,TGDP,TGTP, αGDP, αGTP Concentrations in
GPCR system

µM Equation (2.8)

ki, i ∈ [1, 6] Rates in GPCR sys-
tem

s−1 Equation (2.8)

Table 2.1: Description of notation in Chapter 2.

We propose a new function for allosteric proteins as logarithmic sensors. In the
context of bacterial chemotaxis, Lazova et al. and Tu et al. have proposed that
a logarithmic transformation can emerge from the aspartate-sensing Tar receptors
that follow the Monod-Wyman-Changeux model of allostery [15, 19]. Here we find
that logarithmic sensing is a general property of allostery, regardless of whether the
conformational change is thermally or kinetically driven, independent of the specific
model of allostery (e.g. conformational selection or sequential binding), and can
even be implemented in either a single protein or a network of proteins. Essentially,
we find that the capacity to act as a logarithmic sensor arises from the fundamental
feature of allostery, the ability to tune the activity of a protein without directly
affecting its binding kinetics. Given the broad presence of allosteric proteins, this
raises the possibility that diverse cellular processes may sense input in a fold-change
manner, akin to how our sensory systems work. For convenience, table 2.1 describes
the notation used in this chapter.

2.2 Results
To investigate if an allosteric protein can act as a logarithmic sensor, we begin
by analyzing a widely used model of allostery, the MWC model, proposed by
Monod, Wyman, and Changeux to explain cooperativity in metabolic enzymes and
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hemoglobin [20, 21]. The MWC model is based on conformational selection. It
considers a large homogeneous population of proteins, where each protein has N

identical subunits that can independently bind ligand (Figure 2.2A). Each protein
can either be in the active (A) or inactive (I) conformation, each of which have
different binding affinities for ligand. Conformational change occurs in an all-or-
none fashion when there is no ligand bound, and is regulated by the binding of an
allosteric effector.

Let c be the concentration of ligand, KA and KI be the dissociation constants
associated with the active and inactive conformations and let eε0 =

I0
A0

be the
equilibrium ratio between the inactive and active conformations when no ligand is
bound. This parameter eε0 is known as the allosteric constant. ε0 represents the
free-energy difference when the system is at thermodynamic equilibrium, or the
reaction equilibrium constant when the system is at steady state. The fraction of
proteins in the active state a(c, ε0) is

a(c(t), ε0) =

(
1 + c(t)

KA

)N(
1 + c(t)

KA

)N
+ eε0

(
1 + c(t)

KI

)N . (2.1)

The MWC model is typically analyzed in a static context. Tu, Shimizu, and Berg
analyzed a dynamic version of the model in the context of bacterial chemotaxis [19,
22] by taking partial derivatives with respect to c,

∂a
∂c
= Na(1 − a)

K−1
A − K−1

I

(1 + c/KA)(1 + c/KI)
. (2.2)

With this dynamic framework, we now examine the range KA � c � KI where the
ligand concentration is large enough to facilitate binding to the active conformation,
but not so large as to allow binding to the inactive conformation.

This range can be substantial in some proteins, e.g. up to three orders of magnitude
in phosphofructokinase [23]. In this range, equations (2.1) and (2.2) simplify
respectively to

a(c, ε0) ≈
e−ε0

(
c

KA

)N

1 + e−ε0

(
c

KA

)N , (2.3)

∂a
∂c
≈ N

e−ε0( c
KA
)N(

1 + e−ε0( c
KA
)N

)2
1
c
= S(c, ε0)

1
c
,
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where we define the sensitivity function S(c, ε0), which describes the steepness of
the activity curve:

S(c, ε0)
∆
= N

e−ε0( c
KA
)N(

1 + e−ε0( c
KA
)N

)2 . (2.4)

Representative plots of a(c, ε0) and S(c, ε0) are shown in Figure 2.2B and C. We
give a detailed analysis in the Supplement and Figures 2.7 and 2.8 of how S(c, ε0)

varies with c and ε0 for the full range of ligand concentration.

Examining the dynamics of activity with respect to ligand changing in time, we get
the equation

da
dt
=
∂a
∂c

dc
dt
≈ S(c, ε0)

KA

c
d
dt

(
c

KA

)
= S(c, ε0)

d
dt

(
ln

c
KA

)
. (2.5)

This shows explicitly that the rate of change in the activity of an MWC protein is a
function of the logarithm of ligand concentration c.

The logarithmic dependence of an MWC protein occurs within a certain range,

ε0 − ln(τ)
N

< ln
(

c
KA

)
<
ε0 + ln(τ)

N
, (2.6)

where τ parametrizes the limits of the logarithmic range. This range is illustrated
by the gray regions in Figure 2.2B and C, where we have chosen as an example
τ = 6. We provide a detailed derivation in the Supplement for how the range (2.6)
translates into the gray regions in Figure 2.2B and C.

τ can be related to the deviation of the MWC response curve from a hypothetical
ideal logarithmic sensor (the blue line in Figure 2.2B, derived in the Supplement).
If we tolerate, for example, at most 10% error (at the lower and upper limits of
the range (2.6) when τ = 6) then an MWC protein with cooperativity N = 4 (e.g.
hemoglobin and phosphofructokinase), would have a logarithmic range of ∼ 2.5-
fold change in ligand concentration. Amonomeric protein without any cooperativity
(N = 1) would have a logarithmic range of 36-fold change in ligand concentration.
Therefore, the range over which the activity of an MWC protein is logarithmically
dependent on ligand concentration can be quite substantial. We see further that this
range can be increased at the expense of cooperativity, telling us that there is an
intrinsic trade-off between sensitivity and logarithmic range.

The logarithmic dependence of activity on ligand concentration is, however, not a
unique feature of MWC proteins. Any monotonic binding curve, e.g. that of a Hill
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Figure 2.2: An MWC Protein Can Act as a Logarithmic Sensor. A) The MWC model
describes a protein that can switch between an active and inactive conformation at a rate determined by the
allosteric constant eε0 . The active state has a ligand binding affinity KA and the inactive state has an affinity KI .
The white and blue triangles represent binding sites unoccupied and occupied by ligand, respectively. B)Within
a certain range, activity of the MWC protein, a(c, ε0), depends logarithmically on the ligand concentration. The
blue line indicates the ideal logarithmic sensor, whose activity directly corresponds to the logarithm of ligand
concentration. The gray range indicates the range where activity of the MWC protein coincides with that of the
ideal logarithmic sensor with a certain tolerable error. In this illustration, we set the error to be at most 10%
(corresponding to τ = 6 in equation (2.20)) C) The Sensitivity function S(c, ε0) is related to the derivative of
the activity function, a(c, ε0). It allows us to define a range (in gray) where the sensitivity is above a certain
threshold. In this illustration, the threshold is set to N

8 , corresponding approximately to τ = 6. In both B and C
we use N = 4, KA = 10−3µM , KI = 102µM , and ε0 = 13. D) The activity curve of an MWC protein can be
tuned on a logarithmic scale, by modulating the allosteric parameter ε0.

model

a(c) =

(
c

KD

)N

1 +
(

c
KD

)N , (2.7)
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would also show some range for which activation depends logarithmically on ligand.
The requirement for a logarithmic sensor we are considering here is a more stringent
one: the activity of the protein must also be logarithmically tunable (Figure 2.1C).
This will allow a protein which can already sense logarithmically over some regime
of ligand to extend its responsiveness to a much greater range.

MWC proteins have the additional feature of logarithmic tunability, facilitated by
the presence of an allosteric effector. Inequality (2.6) shows that the net effect of
varying the allosteric parameter ε0 is a shift in the midpoint of the logarithmic
range, without changing its width (Figure 2.2D). The logarithmic tuning of the
activity curve comes from the independent multiplicative relationship between eε0

and c in equation (2.3). To contrast, a Hill protein with a fixed KD has no capacity
to tune its response curve logarithmically. This can be seen in equation (2.7), which
is analogous to the activation of an MWC protein in equation (2.3), except that there
is no allosteric parameter ε0. Allosteric regulation, which modulates the structural
conformation of a protein, produces logarithmic tuning in the protein’s response
range.

Now we may ask, is the capacity to act as a logarithmic sensor a unique feature of
the MWC model? First, we find that logarithmic tuning of the response curve does
not depend on the specific form of the equilibrium ratio eε0 . Either an exponential
form or a polynomial form of this function, as originally used by Monod, Wyman,
and Changeux, work equally well (See Supplement) [21]. This means that an MWC
protein can act as a logarithmic sensor whether it is thermally or kinetically driven.

Second, we find that other models of allostery also show the capacity for logarithmic
sensing. An alternative model of allostery was proposed by Koshland, Nemethy, and
Filmer, known as the KNF or sequential binding model [24]. In this model, ligand
binding induces processive conformational changes, as opposed to the all-or-none
transition in the MWC model. We find that activity of the KNF model can be tuned
logarithmically, though it requires the regulation of more parameters (see derivation
in Supplement and Figure 2.9).

Finally, beyond a single protein, we find that a network of proteins with appropriate
connectivity can act as a logarithmic sensor. We illustrate this by analyzing the G
protein-coupled receptor (GPCR) system (Figure 2.3A). GPCRs are a large family of
seven-transmembrane domain receptor that couples to a G protein. The G proteins
are composed of α, β, and γ subunits. Ligand binding induces a conformational
change in the receptor, which results in the exchange of GDP to GTP in the alpha
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subunit. This causes the α subunit to break off and activate downstream targets.

The GPCR system is described by a mass-action model (Figure 2.3A) [25]:

ÛR = k1c(1 − R) − k2R (2.8a)
ÛTGDP = k3αGDP − k4TGDPR (2.8b)
ÛTGTP = k4TGDPR − k5TGTP (2.8c)

ÛαGTP = k5TGTP − k6αGTP (2.8d)

ÛαGDP = k6αGTP − k3αGDP, (2.8e)

where R is the fraction of active receptors, c is the ligand concentration, TGDP and
TGTP are the concentrations of G protein with GDP and GTP bound, and αGDP and
αGTP are the concentrations of α subunits dissociated from the G protein complex
with GDP and GTP bound. Additionally, let Ttot = TGDP +TGTP + αGDP + αGTP be
the total concentration of G protein.

Although this system of differential equations appears unrelated to theMWCmodel,
we find upon solving the equations that the steady-state activity of the GPCR system
is

α̂GTP(c) =
αGTP

Ttot
=

c

(1 + k6
k3
+

k6
k4
+

k6
k5
)c + k6

k4

k2
k1

, (2.9)

which is analogous to equation (2.3) in the MWC model (see detailed derivation
in Supplement). The effective allosteric parameter here is k6/k4, which regulates
the availability of G proteins. As plotted in Figure 2.3B, varying k4 logarithmically
tunes the activity curve of the GPCR. This eventually breaks downwhen k4 becomes
too low. In a later section, we will discuss the physiological significance of tuning
the rate k4.

Therefore the capacity to act as a logarithmic sensor can be realized when confor-
mational changes in an allosteric protein are either thermally or kinetically driven,
whether allosteric regulation is manifested through all-or-none or processive confor-
mational change, andwhether allosteric regulation is realized by a single proteinwith
multiple subunits or a network of many proteins. We formally define a logarithmic
sensor as a system that satisfies the property

a(c, ε0 + ∆ε) = a(e−κ∆εc, ε0), (2.10)

where κ is a scaling factor that corresponds to the rate at which logarithmic shifting
occurs. The particular value of κ will depend on the parameters of the underlying
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Figure 2.3: The Regulatory Circuit of the G Protein-Coupled Receptors Can Act
as a Logarithmic Sensor. A) Upon activation by ligand (c), the receptor (R) changes
conformation and activates a G protein (T), which then break into an α and a βγ subunit.
The α subunit is responsible for downstream signaling, after which it recombines with a
βγ subunit and recover the pool of G proteins. B) Activity of the GPCR system, i.e. the
concentration of α̂GTP, is logarithmically tuned by k6

k4
, the effective allosteric constant in

the system. The logarithmic tuning breaks down when k4 is much slower than k6. In this
plot, k1 = 1, k2 = 10, k3 = 10, k5 = 50, k6 = .01, and k4 ∈ [10−2, 102].

system. With some manipulation, we get

a(c, ε0 + ∆ε) = a(e−κ∆εc, ε0) (2.11)

= a(e−κ∆εeln(c), ε0)

= a(eln(c)−κ∆ε, ε0).

In any system where equation (2.10) holds, a linear shift in ε results in a logarithmic
tuning of the response curve. We show in the Supplement that the different models
we have considered satisfy these requirements in equation (2.10) (e.g. the MWC
model, the GPCR network, the KNF model).

How might a logarithmic sensor be used in biological systems? A logarithmic
sensor can mediate fold-change detection if it is coupled to a downstream feedback
module (Figure 2.4A and B). For example, consider a system that experiences a two-
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Figure 2.4: Logarithmic-Feedback Circuit. A) A logarithmic sensor can produce fold-
change detection when coupledwith negative feedback. In ourmodel, the logarithmic sensor
is an allosteric protein and the feedback comes from downstreammodulation of an allosteric
effector. B) In fold-change detection a step increase in signal from 25 to 50, or from 50
to 100 will produce identical outputs. C) An illustration of how the logarithmic-feedback
circuit can produce fold-change detection. In the first row: a logarithmic sensor experiences
a two-fold change in signal from 25 to 50. This produces a change in the sensor’s activity
(orange arrow). The change in activity turns on downstream feedback which allosterically
tunes the activation curve on a logarithmic scale (blue arrow), returning the sensor’s activity
to its basal level. In the second row: the same sensor now experiences another 2-fold change
in signal, from 50 to 100. Despite the different in signal magnitude, this 2-fold change
produces a change in activity that is identical to the previous one (dashed lines). Feedback
will eventually take effect and the system will return again to its basal level of activity.

fold change in signal, from 25 to 50 (Figure 2.4C, row 1). The logarithmic sensor
computes a two-fold change, and produces an activity change of ∆a. Subsequently,
the feedbackmodule adapts the system to the new signal level by allosterically tuning
the response curve and restoring the protein to the original level of activity. The
system is now poised to respond to signal changes again. If, from the basal activity
of 50, the system experiences another change in signal to 100 (Figure 2.4C, row 2),
the logarithmic sensor will again compute a two-fold change, producing an identical
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change in activity of ∆a, and the feedback module again adapts the system to the
new signal level. We simulate the interaction of allostery and negative feedback,
and confirm that they can indeed produce fold-change detection (see Supplement
and Figures 2.10 and 2.11). Therefore, the combination of a logarithmic sensor and
adaptive feedback produces fold-change detection by continually tuning the response
curve to a new background level, avoiding saturation and maintaining sensitivity to
subsequent changes in signal.

Evidence that allosteric proteins are used as logarithmic sensors
While our theoretical results show that allosteric proteins can act as logarithmic
sensors, in practice there may be physical limitations where the systems may not
operate in an appropriate parameter regime to facilitate this behavior. For example,
it may be that the inactive conformation is so heavily preferred that ligand binding
follows a Michaelis-Menten model. Alternatively, the binding of allosteric effectors
may be saturated, making it impossible to tune the activity curve.

We therefore explored evidence in the literature to see if known allosteric proteins
act as logarithmic sensors in physiological contexts. We found two lines of evidence.
First, we found many measurements of allosteric proteins show response curves that
are logarithmically tunable. Second, we find examples where allosteric proteins
play a prominent role in processes where fold-change detection has been proposed
or established.

Shown in Figure 2.5 are measured activity curves of some allosteric proteins. We
reproduced these measurements with original data when available, or by retrieving
data with the application Web Plot Digitizer. In some instances the curves were
originally plotted in linear scale, and we have replotted them here in logarithmic
scale to examine if they are logarithmically tunable. Although there is wide literature
on allosteric proteins, we present here examples where quantitative measurements
have been performed over a broad range of ligand concentrations.

Not only do some allosteric proteins tune their response on logarithmic scale, they
can do so over a substantial range. One striking example we found is the gly-
colytic enzyme phosphofructokinase (PFK1), whose response can be tuned over a
remarkable 2000-fold range of ligand concentration. This eventually fails at low
concentrations, where leaky enzyme activity begins to appear. More examples are
summarized in the table (Figure 2.5G). Presented in the table is the approximate
range of ligand concentrations over which allosteric proteins tune their response

http://arohatgi.info/WebPlotDigitizer/app/?
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logarithmically. We found examples across a wide range of biological processes
including metabolism, ion transport, neurotransmission, insulin signaling, and ol-
faction.

In addition to evidence that some allosteric proteins operate in the parameter regime
where they are logarithmically tunable, we find that they play a prominent role in
systems where fold-change detection has been proposed. Further, in each example,
the allosteric proteins are coupled to feedback mechanisms, suggesting that their
capacity as a logarithmic sensor is functionally utilized. We describe three examples
here.

Bacterial Chemotaxis
Bacterial cells detect and track chemical gradients in their environment. Mesibov et
al. [13] first observed that the bacterial motile behavior depended on fold changes
in attractant concentration. The fold-change detection was later confirmed through
elegant FRET experiments [15, 28, 34].

Structural studies have now established a physical basis for MWC allostery in the
aspartate-sensing Tar receptors (Figure 2.5D) [35, 22]. Further, the allosteric re-
ceptor is connected to a well established feedback mechanism. Feedback is largely
mediated by methylation and demethylation of the Tar receptors, which yields pre-
cise adaptation [36, 37, 38].

Vision
Logarithmic response is well established in vision, in particular in the context of
dark adaptation in rod photoreceptors [5, 39]. Light detection is mediated by the
GPCR rhodopsin in retinal photoreceptor cells. Examining the rhodopsin regulation
network, we found two possible roles for allostery. First, recent studies find evidence
that GPCRs follow the MWC model, existing in distinct conformational states,
containing physically distant regulatory sites, and forming oligomers [29, 40, 41, 42,
43]. Indeed, several regulators tune activity curves of GPCRs on a logarithmic scale
(Figure 2.5E). Second, as described earlier, the regulatory network of interactions
betweenGPCRs andG proteins can give the net effect of allosteric regulation (Figure
2.3).

Moreover, the allosteric rhodopsin is coupled to a known feedback mechanism
mediated by β-arrestin. Activation of rhodopsin induces receptor phosphorylation
and binding of arrestin, which blocks further binding of transducin and results in
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Figure 2.5: Biophysical Measurements Show That Allosteric Proteins are Logarith-
mically Tunable.In A-F, activity of an allosteric protein is plotted against ligand concentration. Within
each plot, each activity curve corresponds to a different level of allosteric modulation. The arrow indicates
modulation of the concentration of allosteric effectors. Data points (black circles) were extracted from the
original studies using Web Plot Digitizer, except in panels A and B where the original data were available. The
data were fit with Hill equations using a nonlinear least-square fit in MATLAB. The range of logarithmic tuning
is defined as the ratio of KA

KI
, which we estimated from the published measurements with empirical KDs from

the Hill equation and is depicted in the blue regions. These regions are meant to be a visual aid to highlight the
effects of allosteric regulation, and are not analytical. A) Phosphfructokinase is a key enzyme in glycolysis and
is allosterically regulated by ADP and ATP. In this study, ADP was varied from 0 to 2mM [23]. B)Hemoglobin
is the primary oxygen transport protein in vertebrates. It is allosterically regulated by blood pH. In this study,
pH was varied from 6.6 to 7.8 [26]. C) Cyclic Nucleotide-Gate Ion Channels are allosterically modulated
by calmodulin. In this study, the ion channels were treated with 0 and .5µM calmodulin [27]. D) The Tar
Receptor in the E. coli chemotaxis pathway is allosterically regulated by methylation level. In this study, the
methylation level was varied through receptor mutants [28]. E) Muscarinic Acetylcholine Receptors are a G
protein-coupled receptor responsible for signaling often found in neurons. They are allosterically regulated by
benzyl quinolone carboxylic acid (BQCA). In this study, BQCA was varied from 0 to 10µM [29]. F) Epidermal
Growth Factor Receptors are allosterically regulated by receptor density [30]. In this study, receptor density was
varied by overexpression from 2 × 104 to 1.2 × 106 receptors per cell. G) A table summary of more allosteric
proteins, whose measured activity shows logarithmically tuning. When measurements were performed in vivo,
the systems was either Chinese Hamster Ovary (CHO) cells, Human Embryonic Kidney (HEK) cells, Xenopus
oocytes, or E. coli. Data for CNG ion channels in phototransduction comes from Molokanova et al. [31], data
for M2 mAChR, A1-AR, and GLP-1 GPCRs come from Wootten et al. [32], and data for the lac repressor
comes from Lewis et al. [33].

http://arohatgi.info/WebPlotDigitizer/app/?
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adaptation to the pre-stimulus state. The action of arrestin modulates k4 in Figure
2.3A, the regulatory step that facilitates logarithmic tuning of the GPCR response
curves (Figure 2.3B).

Epidermal Growth Factor Signaling
The EGF receptor (EGFR) pathway is a major signaling pathways in animal cells.
Cohen-Saidon et al. showed that upon ligand stimulation, single cells show a
precise fold-change response relative to the basal level, despite large variation in the
absolute magnitude of the response [9]. Recent evidence suggests that the EGFR
is allosterically regulated [30]. The EGFR exists in monomeric and dimeric forms.
Binding of the ligand stabilizes the dimers, leading to activation of downstream
effectors. It is proposed that modulation of dimerization rate results in allosteric
regulation, which produced logarithmic tuning in the receptor activity (Figure 2.5F).

Moreover, the allosteric receptor is upstream from various known feedback mech-
anisms, including ubiquitylation and endocytosis of receptors [44, 45], dephos-
phorylation of active receptors [46], and feedback by ERK [47]. Interestingly, one
member of the EGFR family, ErbB2 receptor, lacks a ligand-binding domain but can
dimerize with other receptors. Overexpression of ErbB2 has been associated with
therapy-resistant cancers [48], suggesting that disrupting the allosteric regulation of
the EGF receptors may play a role in disease.

2.3 Discussion
In this study, we set out to search for a molecular implementation of a logarithmic
sensor that can mediate fold-change detection in sensory systems. We identify
that a ubiquitous class of regulation, allostery, has the necessary properties to act
as a logarithmic sensor. Allostery has traditionally been thought as a mechanism
for generating cooperativity and implementing feedback in signaling systems. Our
analysis suggests a new role for allosteric proteins, namely as logarithmic sensors.
We find that the capacity for logarithmic sensing is not dependent on the specific
physical implementations of allostery. Rather, it arises from the basic feature of
allostery: the presence of an independent regulation to tune the protein’s activity
without altering the ligand binding kinetics. It is remarkable that the seemingly
complex task of computing a logarithm can be encoded within a single protein, and
further that this can be accomplished through such a pervasive form of regulation
in biological systems. Moreover, beyond proteins, allostery also applies to RNAs.
For instance, there is recent evidence that riboswitch activity can be tuned via
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Figure 2.6: Allostery and Feedback in Glycolysis and Oxygen Regulation. A) Phos-
phofructokinase (PFK) is a key enzyme in glycolysis. PFK both catalyzes downstream
production of ATP and is allosterically regulated by ATP itself. This system of interactions
resembles a logarithmic-feedback circuit, which has the capacity to produce fold-change
detection. B) Oxygen transport in vertebrates is mediated by hemoglobin and feedback
via multiple effectors (including carbon dioxide level). This system of interactions forms a
logarithmic-feedback circuit, which can produce fold-change detection.

conformational selection [49]. This opens up the possibility of an RNA-based
logarithmic sensor that senses metabolite concentration.

When allosteric regulation is coupled with linear feedback, it can produce fold-
change detection (Figure 2.4A). This logarithmic-feedback circuit is an appealing
architecture because feedback regulation is another ubiquitous feature of biological
systems, and raises the questions of whether logarithmic sensing and the related
phenomenon of fold-change detection occurs more broadly in biological processes
than is currently appreciated. For instance in glycolysis, phosphofructokinase is
inhibited by ATP and ADP, end products of the pathway, producing a logarithmic-
feedback circuit (Figure 2.6A) [18]. We imagine that fold-change detectionmight be
beneficial in glycolysis to maintain sensitive metabolic activity across a broad range
of glucose concentrations. In another example, hemoglobin is regulated by blood
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pH, in what is known as the Bohr effect [26, 50]. High levels of carbon dioxide cause
changes in blood pH, which in turn regulate the activity of hemoglobin, producing
a logarithmic-feedback motif (Figure 2.6B). We imagine that fold-change detection
might be beneficial for hemoglobin to maintain sensitivity across a range of altitude,
metabolic state, physical activity, lifestyle, or body size, where oxygen level varies.

Therefore, beyond their commonly thought of roles as enzymes, transporters, it
would be interesting to see if allosteric proteinsmay also generally act as quantitative
sensors, adjusting detection on a logarithmic scale to maintain sensitivity over a
broad response range.

2.4 Supplemental Material
Analysis of the Sensitivity and Error Functions
We now define the sensitivity function S(c, ε0), which summarizes the steepness of
the slope of the activity curve is as a function of c and ε0,

S(c, ε0)
∆
= N

e−ε0( c
KA
)N(

1 + e−ε0( c
KA
)N

)2 . (2.12)

Looking at the dynamics of activity with respect to ligand changing in time, we get
the equation

da
dt
=
∂a
∂c

dc
dt
≈ S(c, ε0)

KA

c
d
dt

(
c

KA

)
= S(c, ε0)

d
dt

(
ln

c
KA

)
. (2.13)

Here we see the first requirements for a protein to give rise to logarithmic sensing:
the rate of change of activity is naturally a function of the logarithm of the ligand
concentration c. Equation (2.5) is complicated by the sensitivity function S(c, ε0),
which varies with c and is therefore not a simple proportional factor. An ideal
logarithmic sensor requires that the activity function depends strictly on ln c, as
illustrated by the blue dashed line in Figure 2.2B. To measure how well an MWC
protein can act as a logarithmic sensor, let us quantify the extent to which S(c, ε0)

varies as a function of c.

First we note that an ideal logarithmic sensor coincides exactly with anMWCprotein
at the midpoint of the activity curve (a = 1/2, at the inflection point of a). This
also corresponds to the maximum of the sensitivity function Smax =

N
4 in equation

(2.4), i.e. the peak in Figure 2.2C. Any variation in ligand which pushes activity
away from the midpoint will lower the sensitivity, and will do so in a nonlinear way.
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Our first task here is to define a regime of the sensitivity curve (the gray region
in Figures 2.2B, C and D) where the MWC protein can approximate a logarithmic
sensor, and compute the corresponding error.

To parametrize variation from Smax, we define the effective ligand concentration to
be

L(c, ε0) = e−ε0(c/KA)
N . (2.14)

Deriving equation (2.4) in terms of L, we obtain a natural representation of the
sensitivity function,

S(L) =
da
dL
=

L

(1 + L)2
. (2.15)

In this representation, the sensitivity is now maximized at L = 1. Next, we derive
a lower limit on the sensitivity function. Let us define the parameter τ, such that
for distance τ > 1 from the midpoint of the activity curve, we have a minimum
sensitivity,

Smin(τ) =
τ

(1 + τ)2
. (2.16)

With these lower and upper limits on sensitivity, we now define the regime in the
response curve over which the MWC protein approximates a logarithmic sensor as

Smin < S(L) < Smax. (2.17)

Using equation (2.14), we can derive a corresponding lower limit on for the range
of L over which the bound holds, 1

τ < L < τ. These limits give the ligand
concentration range over which an MWC protein behaves as a logarithmic sensor,

ε0 − ln(τ)
N

< ln
(

c
KA

)
<
ε0 + ln(τ)

N
. (2.18)

This range is shown in Figure 2.2B and C, where the sensitivity regimes for different
values of ε0 are shaded in gray. We see that the range of ligand over which theMWC
systems functions as a logarithmic sensor is set by a threshold for sensitivity Smin.
The error between the MWC activity curve and the idealized sensor is parametrized
by τ. The range over which the MWC protein behaves as a logarithmic sensor
depends on how much error the system can tolerate.

To derive the error, we first write the formal expression for an ideal logarithmic
sensor,

a∗(L) =
1
4

lnL +
1
2
. (2.19)
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We will now use this expression to define an error function r = 1 − a
a∗ to quantify

the deviation of the actual activity function a from the idealized one a∗. Combining
equations (2.3) and (2.19), we have

r(L) = 1 −
a(L)
a∗(L)

= 1 −
2L

(1 + L)(1 + 1
2 lnL)

. (2.20)

At the midpoint of activity (L = 1) the error function is minimized at r(1) =
0, since this is the point where MWC activity coincides exactly with the ideal
logarithmic sensor. We observe that the error r(L) increases as L moves away
from 1. Consequently, the error at the threshold τ, r(τ), corresponds to the worst
case error in the sensitive regime. For example in Figure 2.2E where we set τ = 6,
we have r(τ) ≈ .1, so the MWC response differs by at most ∼ 10% from the ideal
logarithmic response in the sensitive regime. The threshold τ serves as a way to
analyze howmuch the response of anMWC protein differs from an ideal logarithmic
sensor as we expand the range of ligand concentration over which it is used. The
maximum error r(τ) increases at an asymptotic rate of

lim
τ�1
= 1 −

4
ln τ

.

This means that the error increases slowly with τ, and that the MWC protein can
approximate well an ideal logarithmic sensor over a wide range of the activity curve.

With the error function, we can now define the logarithmic regime of an MWC
protein, as the ratio of the maximum and minimum ligand concentrations in the
sensitive regime

cS(τ) =
cmax

cmin
=

e
ε0+ln(τ)

N

e
ε0−ln(τ)

N

= e
2
N ln(τ) = τ

2
N . (2.21)

If we tolerate, for example, 10% error from the ideal logarithmic sensor (correspond-
ing to τ ≈ 6), then an MWC protein with cooperativity N = 4 (as is the case, for
example, with hemoglobin and phosphofructokinase), we have cS(τ) =

√
τ ≈ 2.45,

so the protein can act as a logarithmic sensor over a 2.45 range of fold change in
signal. If, for example, the protein of interest were a monomer (i.e. N = 1) that
lacks cooperativity, we would have cS(τ) = τ2 = 36, so the protein can act as a
logarithmic sensor over a 36-fold range of signal. We see from this that an MWC
protein can approximate an ideal logarithmic sensor over a substantial range of
ligand concentration. Reducing cooperativity effectively increases the regime over
which an MWC protein responds logarithmically to ligand. Equation (2.21) tells
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us that there is an intrinsic trade-off between sensitivity and signaling range. Since
N corresponds to cooperativity and cs corresponds to the width of the sensitivity
regime, we see directly that increasing N for a given τ narrows the range over which
the sensor can function.

Effects of the Allosteric Constant on the Sensitivity Function
We first analyze the effects of ε0 on S(c, ε0) when c is in the range KA � c � KI ,
and then analyze the general case where c could be near saturation. In the former
case, as we derive in the main text,

S(c, ε0)
∆
= N

e−ε0( c
KA
)N(

1 + e−ε0( c
KA
)N

)2 .

Figure 2.7 shows that S(c, ε0) shifts logarithmically as ε0 is varied, in the same way
as the activity curve a(c, ε0) does.

Figure 2.7: Effects of ε0 on the Sensitivity Function. A) Activation curves for the MWC
model in equation (2.1). The parameters used here are KA = 10−2,KI = 102, N = 4, ε0 ∈

[15, 25]. B) Sensitivity functions corresponding to the MWC activation curves in panel A.

Next, we analyze the general case for all values of ligand concentration c. The
general sensitivity function S(c, ε0) is defined in terms of the expression,

∂a
∂t
= S(c, ε0)

d log c
dt

. (2.22)



38

For an MWC protein, we have from equation (2.2) that

∂a
∂t
= Na(1 − a)

K−1
A − K−1

I

(1 + c/KA)(1 + c/KI)

dc
dt

(2.23)

= Nca(1 − a)
K−1

A − K−1
I

(1 + c/KA)(1 + c/KI)

d log c
dt

=⇒ S(c, ε0) = Nca(1 − a)
K−1

A − K−1
I

(1 + c/KA)(1 + c/KI)
. (2.24)

Next, assuming that KA � KI , we can rewrite the sensitivity function as

S(c, ε0) = Na(1 − a)
c/KA

(1 + c/KA)(1 + c/KI)
. (2.25)

As a sanity check, we see that in limit KA � c � KI (i.e. c
KA
� 1, c

KI
� 1),

equation (2.25) reduces to the sensitivity function we derive in the main text,

S(c, ε0) = Na(1 − a) = N
e−ε0( c

KA
)N(

1 + e−ε0( c
KA
)N

)2 .

Logarithmic tuning fails for very high or low values of ε0, when c is near saturation.
To see this, we derive the limit of S(c, ε0) as c ≈ KA, corresponding to the ligand
concentration being near the lower saturation limit. We can make the simplification
c

KI
� 1, which yields

Slower(c, ε0) = Na(1 − a)
c/KA

1 + c/KA
. (2.26)

Figure 2.8B shows the full sensitivity function (equation (2.25)) as a solid black
line and the approximation in equation (2.26) as a blue dotted line. We see that, as
c/KA approaches 1, S(c, ε0) is scaled down by a factor of c/KA

1+c/KA
(shown as a dotted

black line). This will become a noticeable effect when ε0 is small enough to push
the center of the sensitivity function close to KA.

At the upper limit, as c ≈ KI , which give the simplification c
KA
� 1, we can derive

Supper(c, ε0) = Na(1 − a)
1

1 + c/KI
. (2.27)

Figure 2.8C shows the equation (2.27) in red. As c approaches KI , S(c, ε0) scales
down by a factor of 1

1+c/KI
. This will become a noticeable effect when ε0 is large

enough to push the center of the sensitivity function close to KI .

This analysis shows how c and ε0 combine to determine the shape of the full sen-
sitivity function, and how logarithmic sensing breaks down as ligand concentration
nears saturation.
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Figure 2.8: Saturation Effects in the Sensitivity Function. A) Activation curves for
the MWC model in equation (2.1), across a full range of ligand concentration, c. The
parameters used here are KA = 10−2,KI = 102, N = 4, ε0 ∈ [0, 60]. B) S(c, ε0) as c nears
lower saturation. The solid black curves are S(c, ε0) for the same parameters as in panel
A, the dashed blue line is Slower (c, ε0) from equation (2.26), and the dotted black line is
the scaling function N

4
c/KA

1+c/KA
. C) S(c, ε0) as c nears upper saturation. The solid black

curves are plots of S(c, ε0) for the same parameters as in panel A, the dashed red line is from
equation (2.27), and the dotted black line is the scaling function N

4
1

1+c/KI
.

Allosteric Activators and Inhibitors in the MWCModel
In their original model, Monod et al. did not express their “allosteric constant” in
the general form eε0 , but rather proposed a more detailed model where the binding
of allosteric activators and inhibitors are explicitly accounted for, in much the same
way as the primary ligand. In terms of our notation, their model can be expressed
in the form

a(c, ca, ci) =

(
1 + c

KA

)N(
1 + c

KA

)N
+ L

(
1 + c

KI

)N , (2.28)

where L = eε0
(1+ ci

Ki
)ni

(1+ ca
Ka
)na

. This version of the model assumes that the activator
and inhibitor have na and ni binding sites with dissociation constants Ka and Ki,
respectively. Rewriting the expression for L, we get

L = exp
(
ε0 + ni ln

(
1 +

ci

Ki

)
− na ln

(
1 +

ca

Ka

))
. (2.29)
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If the allosteric effectors are far from saturation, then from the Taylor expansion of
ln(1 + x) we have

L ≈ exp
(
ε0 + ni

ci

Ki
− na

ca

Ka

)
. (2.30)

This approximation gives a mechanism for the linear dependence of free-energy
on the concentrations of allosteric regulators. Shimizu et al. found just such a
dependence in experiments on receptor methylation in the bacterial chemotaxis
pathway [28].

Logarthmic Tuning in the KNF Model
Shortly after Monod, Wyman, and Changeux published their MWC model of al-
lostery via conformational selection, Koshland et al. put forth what is now called
the induced fit or KNF model of allostery to explain hemoglobin binding kinetics
[24]. This model proposes that instead of undergoing spontaneous comformational
change, that individual binding events in one subunit could directly change the bind-
ing kinetics of another. This model has the advantage that it can both encapsulate
positive cooperativity (like the MWC model) and negative cooperativity, where a
given binding even could potentially inhibit the next. In the years after both models
of hemoglobin were published, structural work by Perutz gave evidence that the
MWC model was indeed more accurate. In reference to the work of Monod et al.,
Perutz wrote, “These words ring prophetically if we look at the mechanism in terms
of quaternary structure” [51].

Be that as it may, the concept of induced fit proved useful for describing other
classes of allosteric systems, in particular those in which negative cooperativity
plays an important role [52]. Here we show under what conditions the KNF model
can be logarithmically tuned. The KNF model differs from other models of binding
typically discussed because the specific geometry of the protein plays an important
role, we will use as an example the tetrahedral geometry discussed in the original
paper by Koshland et al. which results in the saturation function

Y (c,KBB) =
K3

AB
c

KD
+ 3K4

ABKBB(
c

KD
)2 + 3K3

ABK3
BB(

c
KD
)3 + K6

BB(
c

KD
)4

1 + 4K3
AB

c
KD
+ 6K4

ABKBB(
c

KD
)2 + 4K3

ABK3
BB(

c
KD
)3 + K6

BB(
c

KD
)4
,

(2.31)
where KD is the ligand dissociation constant, and the subunit conformations are
denoted A and B. By convention, A will be the low affinity inactive state and B will
be the high affinity active state. The interaction strengths KAB and KBB represent
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the relative strengths of interactions between the A and B conformations and the
B conformation with itself, respectively. Here we allow allosteric effects to enter
through KBB. The motivation for this is the underlying model that the allosteric
effectors alter the stability of the bonds between the active conformation.

The authors use KAA = 1 as a reference interaction strength against which tomeasure
the other two, so it does not have to be explicitly accounted for in equation (2.31).
In this model, high cooperativity comes from high stability of the active state B, i.e.
KBB � 1 and KAB ≈ KAA = 1. Under these conditions, the intermediate terms in the

Figure 2.9: Logarithmic Tuning in the KNF Model. Here we show the capacity of the
KNFmodel to be logarithmically tuned. This plot usesKD = 102,Kab = 1,Kbb ∈ [100, 102].
For these parameters, we observe approximately three orders-of-magnitude in logarithmic
shifting before the response curve begins to change shape. Much like the MWC and GPCR
models, the KNF model can pontentialy act as a logarithmic sensor over a broad range of
signal.

KNF model drop out the saturation function and we have the simplified expression

Y (c,KBB) ≈
K6

BB(
c

KD
)4

1 + K6
BB(

c
KD
)4
=

eε0( c
KD
)4

1 + eε0( c
KD
)4
, (2.32)

where ε0 = 6 ln (KBB). Here we see that, in the limits of strong cooperativity,
the KNF model satisfies the logarithmic tuning requirement in relationship (2.10).
This is consistent with the data originally fitted by Koshland et al., where they use
KAA = KAB = 1 and, for the tetrahedral case, find KBB ∈ [1.8, 6.8]. Even for the
lower end of this range, we have K6

BB ≈ 34, which is much greater than the next
largest coefficient in equation (2.31), K3

ABK3
BB ≈ 5.8.
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Detailed Analysis of the GPCR Model
Here we present a more detailed derivation of the activation function derived in
equation (2.9). We begin again from the system of differential equations for GPCR
activation:

ÛR = k1c(1 − R) − k2R

ÛTGDP = k3αGDP − k4TGDPR

ÛTGTP = k4TGDPR − k5TGTP

ÛαGTP = k5TGTP − k6αGTP

ÛαGDP = k6αGTP − k3αGDP .

From this, we will solve for α̂GTP, the relative level αGTP compared to the total level
of G protein Ttot = TGDP + TGTP + αGDP + αGTP. Just by setting derivatives equal
to zero, we get

α̂GTP =
αGTP

Ttot

=
αGTP

TGDP + TGTP + αGDP + αGTP

=

k5
k6

TGTP

TGDP + TGTP + αGDP +
k5
k6

TGTP

=

k4
k6

TGDPR

TGDP +
k4
k5

TGDPR + αGDP +
k4
k6

TGDPR

=

k4
k6

R

1 + k4
k5

R + k4
k3

R + k4
k6

R

=
R

k6
k4
+ R( k6

k5
+

k6
k3
+ 1)

.

We then use the fact steady-state relationship

R =
c

k2
k1
+ c
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to find

α̂GTP =

c
k2
k1
+c

k6
k4
+ c

k2
k1
+c
(

k6
k5
+

k6
k3
+ 1)

=
c

k6
k4
(

k2
k1
+ c) + c( k6

k5
+

k6
k3
+ 1)

=
c

(1 + k6
k3
+

k6
k4
+

k6
k5
)c + k6

k4

k2
k1

,

just as in equation (2.9). Since k2
k1

is effectively a KD for the receptors, it is taken as
a fixed quantity. On the other hand, β-arrestin signaling alters the rate (k4) at which
TGDP binds to active receptors. To this end, we will rewrite equation (2.9) to see if
it can be made to look like the form for the LAS requirement defined in relationship
(2.10), with the definition KD =

k2
k1
,

α̂GTP =
c

(1 + k6
k3
+

k6
k4
+

k6
k5
)c + k6

k4

k2
k1

=

k4
k6

c
KD

1 + (1 + k6
k3
+

k6
k4
+

k6
k5
)

k4
k6

c
KD

. (2.33)

Here we see that, if we allow k4
k6

to play the role that eε0 plays in the MWC model,
with variations in β-arrestin signaling effectively shifting the free energy ε, then the
GPCR model almost fits the logarithmic tuning requirement in relation (2.10). The
confounding element is the factor of (1 + k6

k3
+

k6
k4
+

k6
k5
) that depends on k4 and thus

could potentially complicate things. Rearranging this term, we get(
1 +

k6

k3
+

k6

k4
+

k6

k5

)
=

(
1 + k6

(
1
k3
+

1
k4
+

1
k5

))
.

From this we see that there dependence on k4 will vanish so long as either 1
k4
�

1
k3
+ 1

k5
or k6 � k4, and consequently under these conditions the system will behave

as a logarithmic sensor. In terms of the biochemistry of the GPCR pathway, this
means that β-arrestin binding is far from saturation so that TGDP is alway able to
find active receptors, be it at an attenuated rate.

Fold-Change Detection Arises From Logarithmic Sensing and Negative Feed-
back
We present here simulations showing fold-change detection arising from a circuit
containing allosteric regulation and negative feedback. We use as specific examples
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Figure 2.10: Fold-Change Detection with an MWC Tar/Tsr Sensor. In this simulation,
KA = 10−2,KI = 102, N = 4,m = 10, a0 =

1
3 . The blue line indicates the activity of the

Tar/Tsr receptor. The orange line indicates ligand concentration, varied by 3-fold at each
step increase.

the Tar/Tsr receptor system (discussed in the second half of the Result section) and
the GPCR system.

Tar/Tsr receptor and negative feedback. Wemodel the allosteric regulation of the
receptor using the MWC model, and the negative feedback as described in Shimizu
et al. [28] and Pontius et al. [38]. The negative feedback via methylation acts
on a slower time scale than receptor activation, such that a(c, ε0) instantaneously
responds to changes in ligand and allosteric effector concentrations. Further, ε0 and
a are related by a linear feedback coupling, such that

a(c, ε0) =

(
1 + c

KA

)N(
1 + c

KA

)N
+ eε0

(
1 + c

KI

)N (2.34)

Ûε0 = m(a − a0),

where a0 is the basal activation level to which the system adapts and m is a constant
corresponding to the rate of adaptation. When Ûε0 = 0, we have a = a0, and the
system will show precise adaptation, as expected. Figure 2.10 shows the change
in Tar/Tsr receptor activity (blue) in response to sequential 3-fold step increases in
ligand concentration (orange). The system gives identical responses for all three
steps, performing fold-change detection.

GPCR receptor and negative feedback. The dynamics of the GPCR system are
described in the main text (equations (2.8)). As described in the main text, allosteric
regulation is implemented through k4, which characterizes the rate of receptor
phosphorylation and β-arrestin binding. While we could express feedback in terms
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Figure 2.11: Fold-Change Detection with a GPCR Sensor. In this simulation, k1 =

.01, k2 = 15, k3 = 10, k5 = 20, k6 = .05, β = 1,m = .15, a0 =
1
3 . The blue line indicates

the activity of the GPCR system. The orange line indicates ligand concentration, varied by
3-fold at each step increase.

of k4 directly, we may run into problems because k4 is a reaction rate and therefore
must be non-negative. To avoid running into negative values, we rewrite k4 = βeε0 ,
for some constant β. The differential equations describing the GPCR system are
now

ÛR = k1c(1 − R) − k2R (2.35)
ÛTGDP = k3αGDP − βeε0TGDPR

ÛTGTP = βeε0TGDPR − k5TGTP

ÛαGTP = k5TGTP − k6αGTP

ÛαGDP = k6αGTP − k3αGDP

Ûε0 = m(a0 − α̂GTP),

where α̂GTP =
αGTP

Ttot
. Figure 2.11 shows the response of the GPCR system to

sequential 3-fold step increase in signal. We see again that a logarithmic sensor
coupled with negative feedback yields fold-change detection.
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C h a p t e r 3

HARD LIMITS AND PERFORMANCE TRADEOFFS IN A
CLASS OF SEQUESTRATION FEEDBACK SYSTEMS

3.1 Introduction
One of the central goals of systems biology is to gain insight into the design,
function, and architecture of biomolecular circuits. When systems biology emerged
as a field, there was a focus on the precise measurement of parameters in canonical
pathways, for example those that govern glucose metabolism [1] and developmental
signaling [2, 3]. As both our understanding of these pathways and our quantitative
measurements improved, it became apparent that many of the underlying circuit
parameters are subject to large amounts of variability, despite the circuit’s overall
performance being robust [4, 5, 6, 7]. These observations led to the important insight
that signaling networks have evolved sophisticated feedback controlmechanisms that
confer robustness, similar to those developed for classical engineering systems [8,
9, 10, 11, 12]. To this end, understanding the architecture and constraints of these
regulatory processes is essential both to assessing the range of biological functions
that they can implement and to building functional synthetic systems [13, 14, 15].

For many systems, the key to achieving robust performance is feedback control,
which can provide robustness to both external noise and disturbances and to internal
system variability [16, 17, 9, 18]. When the system undergoes a change, such as an
external disturbance or a variation in parameters, feedback can ensure that the system
returns to its desired steady state with a small error [18]. Additionally, feedback
control can stabilize and speedup unstable or slow processes [19, 8, 20]. However,
feedback must be correctly designed and tuned, as it can inadvertently amplify noise
and exacerbate instability [21, 18]. Despite some limitations, feedback control is
ubiquitous in natural biological systems, where it serves to regulate diverse processes
such as body temperature, circadian rhythms, calcium dynamics, and glycolysis [22,
23, 17, 8, 16].

There are a variety of circuit architectures capable of implementing feedback control
in a biomolecular network. However, the time scale and dynamic range of their
response can vary greatly depending on implementation details, such as whether
the circuit relies on gene regulation [24] or post-translational modification [7].
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Similarly, some circuits are robust over a broad range of inputs [25], while others
may have a more modest functional range of response [4].

Aparticularly interesting class of biological control circuitswas recently proposed by
Briat et al. [26]. The authors showed that feedback implemented with a molecular
sequestration mechanism is equivalent to integral feedback control [18], which
guarantees perfect steady-state adaptation of the output of a network to an input
signal [16]. An endogenous biological system that uses sequestration feedback
to achieve perfect adaptation relies on the binding of sigma factor σ70 to anti-
sigma factor Rsd [27]. Examples of synthetic biological systems that employ
sequestration feedback include a concentration tracker [28, 29], two bacterial cell
growth controllers [30], and a gene expression controller [31].

While integral control is a powerful tool, its stability and performance are not
guaranteed to be well-behaved. Even if both the controller and the network being
controlled are stable, their closed-loop dynamics may be either stable (Figure 3.1A)
or unstable (Figure 3.1B). If the closed-loop system is stable, performance can
be characterized by metrics such as tracking error, response time, leakiness, and
sensitivity to disturbances. Although these metrics can be optimized individually,
they can rarely all yield good results simultaneously due the constraints imposed by
performance tradeoffs. These hard limits have been studied in a variety of contexts,
for example in general stochastic biological control systems [32] and in the particular
context of metabolic control in the yeast glycolysis system [8, 12].

Though many biomolecular circuits of interest are too complex to yield clear the-
oretical results that describe system-level dynamics and performance, we show in
section 3.2 that a class of sequestration feedback networks can be precisely analyzed
using techniques from control theory. In particular, we find that there exists an an-
alytic stability criterion for a class of sequestration feedback systems (described in
Figure 3.1C). This stability criterion gives rise to performance tradeoffs, for example
between speed and sensitivity, since fast responding controllers are intrinsically less
robust. We prove these results both in the case where there is no controller degrada-
tion (section 3.2), as in the model from [26], and in the more biologically realistic
context where there is such degradation (section 3.2) [33]. Though we determine
many different classes of tradeoffs for the circuit, we find that they can all be viewed
as different aspects of Bode’s integral theorem, which states a conservation law for
the sensitivity of feedback control systems [18].

These theoretical tools provide novel insight into both the analysis of endogenous
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Notation Meaning Units First Use
x1, x2 Process species concen-

tration
nM Equation (3.1)

z1, z2 Controller species con-
centration

nM Equation (3.1)

k Synthesis rate for x2 h−1 Equation (3.1)
θ1, θ2 Synthesis rates for z1

and x2

h−1 Equation (3.1)

γp, γc Degradation rates for
process and controller
species

h−1 Equations (3.1) and (3.11)

µ Synthesis rate for z1 nM h−1 Equation (3.1)
η Sequestration rate for z1

and z2

nM−1 h−1 Equation (3.1)

x Linearized state vector
(4x1)

h−1 Equation (3.3)

M Linearized system ma-
trix (2x2)

nM Equation (3.3)

α Open-loop system gain h−1 Equation (3.3)
β Linearized feedback

strength
h−2 Equation (3.3)

ω Frequency of oscilla-
tion at stability bound-
ary

h−1 Equation (3.6)

S(iω) Sensitivity function None Equation (3.7)
M Stability measure None Equation (3.8)
F Fragility measure None Equation (3.10)
ε Steady-state error of x2 None Equation (3.13)

Table 3.1: Description of notation in Chapter 3.

biological systems and the design of synthetic systems, which we demonstrate by
applying our results to a synthetic bacterial growth control circuit in section 3.2.
Finally, we demonstrate in section 3.2 that it is possible to develop control architec-
tures that will stabilize an otherwise unstable chemical reaction process. This result
points towards new application domains, such as autocatalytic metabolic networks,
for sequestration-based controllers that have yet to be explored in detail. Table 3.1
describes the most common notation used throughout this chapter.

3.2 Results
Our goal here will be to develop a mathematical framework to investigate the
general constraints that shape the structure of the closed-loop sequestration feedback
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network. For the sake of clarity we focus the results here on the simplest examples
of a network regulated by sequestration feedback, however many of the results
presented in this section generalize to a broader class of systems (e.g. the case with
more network species and the case with controller degradation).

Model Description

z1 z2

...

Xn-1X2

XnX1

k1

k2 kn-2

kn-1

ø

ø ø

ø

γp

γp

γp

γp

θ1 θ2

ημ

z1 z2

C

øγcø γc

Figure 3.1: The Sequestration Feedback Network. A) Stable dynamics of a sequestration
feedback system, where the output (solid line) precisely adapts to a reference signal (dashed
line). B) Unstable dynamics of the same circuit, where the system is now in a parameter
regime that results in sustained oscillations. C) A class of sequestration feedback networks.
This general model has two control species, z1 and z2, and n process species. The two
controller species are subject to a sequestration reaction with binding rate η. Additionally,
we assume that the binding of the two controller species is much faster than their unbinding.
The process species production rates are denoted as θ1, θ2, k1, . . . , kn−1. For simplicity, the
process species degradation rate γp is assumed to be equal for each xi, as is the controller
species degradation rate γc. This class of networks is defined by a simple set of possible
processes where each species is only involved in the production of the next species.

We first describe the simple sequestration feedback model proposed by Briat et al.
[26] with two control species (z1 and z2) and two species in the open-loop network
(x1 and x2), which corresponds to the case of n = 2 in the general circuit diagram
presented in Figure 3.1C with γc = 0. In the control theory literature the network
being controlled is often referred to as the process, a convention we will use in the
rest of the chapter.

We model the full closed-loop network using the following system of ordinary
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differential equations:

Ûx1 = θ1z1 − γpx1, (3.1a)

Ûx2 = k x1 − γpx2, (3.1b)

Ûz1 = µ − ηz1z2, (3.1c)

Ûz2 = θ2x2 − ηz1z2. (3.1d)

The rates k and γp are production and degradation rates that are internal to the
process. The parameters θ1 and θ2 are production rates that provide an interface
between the network and the controller. An external reference inducer µ determines
production rate of z1, and the two control species z1 and z2 sequester each other at
the rate η.

While realistic models of biological circuits often have both more complex interac-
tions and many more states, this model captures much of the important structural
information about the sequestration feedback system. In particular, Briat et al. found
that the network defined by (3.1) implements precise adaptation of x2 via integral
feedback [26], as shown by the following relationship:

Ûz1 − Ûz2 = µ − θ2x2 =⇒ (z1 − z2)(t) = θ2

∫ t

0

(
µ

θ2
− x2(t′)

)
dt′. (3.2)

This ensures that, if the system is stable (i.e. Ûz1 − Ûz2 → 0), then at steady state
(denoted with a ∗) x∗2 = µ/θ2. The parametric conditions that guarantee stability
are not, however, obvious at first glance. Briat et al. showed general algebraic
conditions that prove the existence of both stable and unstable dynamics of the
linearized sequestration feedback system (using Descartes’ rule of sign), however it
is not trivial to use their methods to explicitly describe stability in general.

We find that, in the limit of strong feedback (large η), there is a simple closed-form
criterion for system-level stability. Later, we will show that a one-state network is
intrinsically stable for all parameters, and that there exists a simple stability criterion
for the general class of networks with many states represented in Figure 3.1C. For
the analysis, we assume both that a set of process parameters (k and γp) and a
desired set point (determined by µ and θ2) are given, and we study how stability and
performance relate to the rest of the control parameters (θ1 and η).

Linear Stability Analysis
In this section, we derive an analytic criterion for the stability of sequestration
feedback networks. For simplicity, we assume strong sequestration binding of the
controller species (which we define mathematically later in the section).
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A key difficulty in studying sequestration is the nonlinear term ηz1z2 that mediates
feedback in equations (3.1c) and (3.1d). Though there exist techniques to study
nonlinear feedback systems, there are far more general tools available to study linear
ones. While analysis of the linear system does not give guarantees about global
behavior, it does allow us to characterize the local stability of the steady state to
which wewould like x2 to adapt. To this end, we linearize the sequestration feedback
network around the non-zero steady-state value derived from equation (3.1):

Ûx = Mx,

x =


x1

x2

z1

z2


, M =


−γp 0 θ1 0

k −γp 0 0
0 0 −α −β/α

0 θ2 −α −β/α


, (3.3)

where α = θ1θ2k/γ2
p and β = ηµ. We can think of α as representing the open-loop

gain of the system, and β as representing the feedback gain.

In general, stability of linear systems is determined by the sign of the real parts of
its eigenvalues. If they are all strictly negative, then the dynamical system is stable
and the system will converge to the equilibrium point. Ideally, we would be able
to directly compute the eigenvalues of M , however this computation corresponds to
finding the roots of a fourth-order polynomial p(s) = det(sI − M). While this is
difficult to do in general, it is possible to study stability by finding what has to be
true of the parameters for the system to have a pair of purely imaginary eigenvalues,
which characterizes the boundary between stable and unstable behavior. We find
that, in the limit of strong sequestration (specifically η � max(α, γp) · α/µ), M

will have purely imaginary eigenvalues λ = ±iω when ω = γp =
3
√

θ1θ2k
2 . More

generally, we find that the criterion for stability is

3

√
θ1θ2k

2
< γp, (3.4)

a relationship we refer to as the production-degradation inequality (proved in sec-
tion 3.4).

This implies that the closed-loop systemwill be stable so long as the degradation rate
is larger than a constant that is proportional to the geometric mean of the production
rates ( 3√θ1θ2k). We note that, in this strong sequestration limit, inequality (3.4)
is independent of the controller variables µ and η. Thus, this relationship tells us
that stability is purely a function of the parameters describing the process and its
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connection to the controller, and is independent of the controller itself. Intuitively,
the degradation rate sets the rate of adaptation of x1 and x2, so inequality (3.4) tells
us that, so long as the species have a rate of adaptation that is faster than the rate of
change in production, the system will be stable.

Through a more technical argument (also in section 3.4), we find that a generalized
system with a chain of n process species has a production-degradation inequality of
the form

n+1

√
θ1θ2

∏n−1
i=1 ki

Ωn
< γp, (3.5)

where Ωn is a constant that is only a function of the number of process species.
When the system has purely imaginary eigenvalues, each species will oscillate at
the frequency

ω = tan
( π
2n

)
γp. (3.6)

For n = 1 we get ω = tan(π/2)γp = ∞, corresponding to an intrinsically stable
system (i.e. it cannot oscillate or become otherwise unstable). At n = 2 we find
ω = γp, so the frequency of oscillation is equal to the process degradation rate.
Since tan(π/(2n)) is a decreasing function of n, the frequency of oscillation will
monotonically decrease as the system grows (assuming a fixed value of γp).

Alternatively, we can interpret the parameter α as the open-loop gain between z1

and z2. Rearranging inequality (3.5), we get the inequality

α < Ωnγp,

which says that the degradation rate γp sets a bound on how large α can be, which
can be interpreted as the open-loop gain between z1 and z2, while still maintaining
stability.

For simplicity, the results so far focus only on the strong feedback regime. However,
we show in the supplement that there are also tractable and interesting results in
the regime of weak feedback (η small). The results have a similar form to that of
the strong feedback limit, however the direction of the inequality is reversed. The
stability condition for weak feedback is

n−1

√
Ωnθ1θ2

∏n−1
i=1 ki

β
> γp.

One interpretation of these results as a whole is that stability is achieved when either
feedback or process degradation are sufficiently large, but not when both are.
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Bode’s integral theorem and The Anatomy of a Sensitivity Function

∥S∥∞

Figure 3.2: The Sensitivity Function. The sensitivity function for a system, with simu-
lations of reference tracking dynamics for various inputs. We see that when |S(iω)| < 1,
the system has small error and performs well (blue and green). At the peak |S(iω)| = ‖S‖∞
(red), we see that the output magnitude is not only amplified, but also phase shifted such
that it is almost exactly out of sync with the reference. At high frequencies (purple), the
reference is changing so quickly that the system can barely track it.

The primary goal of any control system is to ensure that a process has a desirable
response to an input signal, while minimizing the effect of external disturbances
(such as noise and systematic modeling errors). While we often think of the time
evolution of the full state of a dynamical system x(t), it is often useful to study
the input-output relationship of a dynamical system using the (one-sided) Laplace
transform

X(s) =
∫ ∞

0
x(t)e−st dt,

where it becomes straightforward to mathematically analyze the input-output rela-
tionship of given process. Here s is a complex number.

We call functions that describe the input-output response of a system in the Laplace
domain transfer functions, and in particular the transfer function between a ref-
erence and the output error of a system is the sensitivity function of a system
S(s). If we take y(t) as the output state of the system (in the sequestration circuit
y(t) = x2(t)), we denote the Laplace transform of the output Y (s). We can similarly
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define an input or reference signal r(t) (corresponding to µ) with a corresponding
transformed signal R(s). We then define the error of the closed-loop system as
E(s) = R(s) −Y (s), and ask how large the error of the system will be when tracking
a given reference. This is given by the function

S(s) =
E(s)
R(s)

=
1

1 + P(s)C(s)
,

where P(s) and C(s) are the transfer functions for the open-loop process and con-
troller, respectively.

Intuitively, when the magnitude of this function |S(s)| is small, then there will
be a small tracking error between the reference signal r(t) and the output y(t).
Conversely when |S(s)| is large, then there is a large tracking error. If we assume
r(t) = A sin(ωt), then we can study the frequency response of the system |S(iω)|
to a sinusoidal input with frequency ω.

|S(iω)| provides a way to measure system robustness, by quantifying how well
a system attenuates errors to a given input. The worst-case robustness can be
described by the maximum value of |S(iω)|, denoted ‖S‖∞. Ideally we would have
|S(iω)| � 1 for all ω. However, a deep result known as Bode’s integral theorem
(proved by Hendrik Bode in 1945 [34]) states that, for an open-loop stable process,
the following is true of the closed-loop response:∫ ∞

0
| log(S(iω))|dω = 0. (3.7)

This implies that in order to reduce error in one frequency range, itmust be increased
elsewhere. This is known as the waterbed effect, and sets a fundamental limitation
on the performance of any feedback control system.

Performance Tradeoffs and Hard Limits
While inequality (3.4) gives us a binary condition that determines stability, it does
not directly tell us about overall performance of the system. We know when the
system becomes unstable, but it is unclear how the system behaves as it approaches
instability. Let

M = 1 −
θ1θ2k
2γ3

p
(3.8)

be a measure of how far the system is from going unstable that we will refer to
as a stability measure of the system. For simplicity the analysis here will focus
on the n = 2 species case, however the results naturally generalize for arbitrary n.
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From inequality (3.4), we have thatM = 0 implies instability, and that the larger
M is the further the system is from becoming unstable. Intuitively it seems that
the system should become increasingly fragile to disturbances as M approaches
zero. Conversely, we can increaseM by decreasing the production rates θ1, θ2, and
k, but this will slow down the dynamics of the system and could potentially hurt
performance.

To analyze this problem, we will study the sensitivity function S(s), which is the
transfer function between the reference signal and the output error of the system
[18]. This transfer function captures the effect of external disturbances on the output
error of a system, in this case, x2. The sensitivity function is described in greater
detail in the box above.

While there are many different ways to characterize robustness, generally we con-
sider a system to be robust if there no small change in parameters that would cause
it to become unstable. A mathematically equivalent interpretation is that a system is
robust when its worst-case error when tracking references (i.e. the maximum value
of S) is small [18]. For the n = 2 case of the circuit in Figure 3.1, we have (see
section 3.4):

|S(iω)| =
γ2

p + ω
2√(

1
ωθ1θ2k − 2ωγp

)2
+ (γ2

p − ω2)2

. (3.9)

The robustness of a system can be formally quantified by ‖S‖∞ = maxω |S(iω)|, the
maximum magnitude of the sensitivity function across all frequencies (in mathe-
matics, the quantity ‖ · ‖∞ is referred to as the infinity norm of a function). The
quantity ‖S‖∞ describes the worst-case disturbance amplification for the system to
an oscillatory input. If ‖S‖∞ is in some sense small enough to be manageable, then
values of |S | across all frequencies are also small and the system is robust to any
disturbance. If ‖S‖∞ is large enough to be problematic, then there is at least one
disturbance against which the system is fragile.

Directly computing ‖S‖∞ in terms of the parameters of a system is difficult in general,
but it is sometimes possible to compute good lower bounds that yield insight into a
system’s robustness. To this end, we find that (see Section 3.4 for a detailed proof):

‖S‖∞ ≥ F =
1 + α

2γp

1 − α
2γp
=

2γ3
p + θ1θ2k

2γ3
p − θ1θ2k

, (3.10)
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with equality when

M = 0 ⇐⇒ γp =
3

√
θ1θ2k

2
⇐⇒ ‖S‖∞ = F = ∞.

The fragility bound F is constructive, in that we can write down the frequency ω∗

that achieves it:

|S(iω∗)| = F ⇐⇒ ω∗ =

√
αγp

2
.

For a given constant reference µ/θ2, we use equation (3.10) to derive a tradeoff
between fragility and response time (which we quantify with 1/θ1). Figure 3.3A
shows this tradeoff curve for a particular set of parameters as θ1 varies, with the
corresponding dynamics shown in Figure 3.3B. We see from the latter plots that
the response time (1/θ1) and fragility (F ) correspond directly to the rise times
and oscillatory behavior of simulations in Figure 3.3B. Figure 3.3C shows the
corresponding sensitivity functions, with colored dots corresponding to values of
F . Here we can clearly see Bode’s integral theorem (equation (3.7)) at work, in
that the area above and below the dashed line (corresponding to log |S(iω)| = 0) is
always equal. We see that, as dynamics become more oscillatory, ‖S‖∞ becomes
large.

Because we have fixed µ/θ2 and assumed that η is large, the only remaining control
parameter to vary is θ1, so there will only ever be one meaningful tradeoff dimension
to study for this system. In the next section, we present results for the case with
non-zero controller degradation rates. This model is both more biologically realistic
and provides a richer tradeoff space to analyze.
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Figure 3.3: Hard Limits and Performance Tradeoffs in Sequestration Feedback Cir-
cuits. A) We see the relationship between speed and fragility in the sequestration feedback system. Speed
can be characterized in terms of any of the production rates of the system (here we vary θ−1

1 ), where higher
production rates lead to a faster response. Fragility is defined as a lower bound on the maximum value of the
sensitivity function ‖S‖∞ as defined in equation (3.10). B) Time-domain simulations corresponding to different
points on the tradeoff curve inA. We see that speed and fragility naturally relate to the rise time and settling time
of the system. C) Sensitivity functions for various parameter values. We see what is known in control theory
as a waterbed effect, where better attenuation of disturbances at low frequencies necessarily implies worse
amplification of disturbances at higher frequencies as a result of equation (3.7). The colored dots correspond
to values of F computed using equation (3.10). D) Here we set γc > 0 and observe the effects of controller
degradation being varied on its own. We set θ1 = 2 h−1 so that, if γc = 0, the system would be unstable. We
see that increasing γc decreases fragility, at the cost of introducing steady-state error, which is illustrated in the
dynamics shown in panel E. F) The corresponding sensitivity functions also illustrate the tradeoff, where the
peak of |S(iω)| (fragility) decreases as the value of |S(0)| (steady-state error) increases. F is now computed
using equation (3.15). G-I) In these plots we vary both γc and θ1 such that θ1/γc = 9, corresponding to ε = .1
in equation (3.13). We now observe a tradeoff between fragility and leakiness, the latter being captured by how
much turnover of z1 and z2 is introduced by γc . K-L) Finally, we can instead hold F constant and numerically
solve for θ1 given a value of γc . This introduces a tradeoff between steady-state error and leakiness. In all
simulations k = θ2 = γp = 1 h−1, η = 1000 h−1 nM−1, and µ = 100 nM h−1.



62

The Effects of Controller Species Degradation
In the previous sections, we assumed that the controller species does not degrade
and we derived an analytic stability criterion for closed-loop sequestration feedback
networks. Fulfilling the stability criterion ensures that the sequestration feedback
network precisely adapts. As discussed, perfect adaptation is a desirable property
because it facilitates disturbance rejection and robustness despite variability pro-
cess dynamics. However, the literature suggests that implementing sequestration
feedback with no controller species degradation is challenging [35, 36]. Because
of this, we will now extend our analysis of stability, performance, and tradeoffs to
sequestration feedback networks with nonzero controller species degradation rates.

To model the effects of controller species degradation, we modify equations (3.1c)
and (3.1d) such that,

Ûz1 = µ − ηz1z2 − γcz1, (3.11a)

Ûz2 = θ2x2 − ηz1z2 − γcz2, (3.11b)

where γc is the degradation rate of the control species z1 and z2.

Including the controller species degradation rate in the sequestration feedback net-
work model changes its properties of stability and performance. In particular, the
closed-loop sequestration feedback network has zero steady-state error for γc = 0,
whereas if γc > 0 then there will generally be some non-zero error in x2.

In the limit of strong sequestration, we can analytically compute the steady-state
values of the system species and bound its sensitivity function. While it is somewhat
more complicated to compute even the steady-state values of each species for this
system, we show (see section 3.4) that, in the limit of large η, it is possible to derive
a simple approximate formula for x∗2:

x∗2 ≈
µ

θ2

1
1 + γc

α

, (3.12)

from which all other steady-state values can be derived. Under the strong feedback
assumption, x2 no longer precisely adapts to the set point µ/θ2, but rather will have
some amount of steady-state error determined by the ratio γc/α. The relative error
in x∗2 can be quantified by the relationship

ε =
µ/θ2 − x∗2
µ/θ2

=
1

1 + α
γc

. (3.13)
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We see that γc = 0 =⇒ ε = 0, corresponding to our previously results that precise
adaptation is achieved when there is no controller degradation. Using this simplified
expression, the relative steady-state error function can be bounded. For example, if
we are interested in obtaining ε < .1, then we can choose a controller degradation
rate such that γc <

α
9 .

Moreover, we can also derive the corresponding stability criterion (see section 3.4).
Here we present the stability criterion for the two process species case, which was
proved in [37] by Yoke Peng Leong:

θ1θ2k
2

< γp(γc + γp)
2. (3.14)

This reduces to inequality (3.4) when γc = 0, and shows that γc > 0 leads to a in-
creased stability measure. If we only consider variations in γc, then the combination
of equation (3.13) and inequality (3.14) yields yet another tradeoff. As γc increases,
the system becomes increasingly stable at the cost of worse steady-state error (see
Figure 3.3D and E).

In section 3.4, we derive a general stability criterion that depends on comparing
the controller and the process species degradation rates for n > 2 process species.
When the process degradation rate is much larger that the controller degradation rate
or the two are comparable, then the stability criterion is the same as the production-
degradation inequality. However, when the process degradation rate is much smaller
than the controller degradation rate, then the stability criterion relies on the con-
troller degradation term to compensate for the slow process degradation rate. Since
the process network is slow, the sequestration feedback network is challenging to
stabilize and its performance can be very poor.

We now focus on analyzing the properties of the sensitivity function and the tradeoff
it introduces. Figure 3.3F shows the corresponding sensitivity function for this
system. One major difference between these sensitivity functions and those in
Figure 3.3C is that we now have |S(0)| > 0. This is directly related to the steady-
state error in equation (3.12), as we can think of a signal with frequency ω = 0
as a constant reference. A convenient property of the sensitivity function is that
|S(0)| = ε, so the previously mentioned tradeoff between robustness and steady-state
error can be recast as a tradeoff between |S(0)| and ‖S‖∞. In Figure 3.3C we see that
log |S(0)| = −∞, corresponding to |S(0)| = 0, implying ε = 0 steady-state error.
Because of the waterbed effect, increasing |S(0)| has a tendency to reduce ‖S‖∞.
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This can be seen directly by deriving a bound similar to the one in equation (3.10)
for the case γc > 0:

‖S‖∞ > F =
(γ2

p + ω
∗2)

√
1 +

( γc
ω∗

)2

(γ2
p − ω∗

2) + 2γcγp
, (3.15)

ω∗ = γp

√
α + γc

2γp + γc
. (3.16)

ThoughF is nowmore complicated, we can see that it will scale asO(1/γc) for small
γc. This tells us that increasingly γc has the potential to reduce F . In Figure 3.3D
we see this effect, where F asymptotically decreases to 1 as γc (and consequently
ε) increases. It is also straightforward to check that F reduces to equation (3.10)
when γc = 0.

So far we have shownwhat happens when the control parameters θ1 and γc are varied
individually, however it is also interesting to studywhat happenswhen they are varied
such that a particular performance characteristic is held constant. Figure 3.3G, H
and I demonstrate the system’s response when we vary θ1 and γc such that the
steady-state error ε is fixed. This sort of variation can be interpreted as changing
the turnover rate, and consequently the leakiness, of the controller. This leakiness
can also be thought of decreasing efficiency, as it means that control molecules
are degraded before ever being involved in feedback. By increasing γc, we make
the system less efficient because the controller spends resources producing and then
degradingmolecules of z1 and z2. Figure 3.3G shows that highly efficient controllers
aremore fragile than less efficient ones. We can also see this in Figure 3.3I, where the
integrated area of |S(iω)| gets spread out over high frequencies, rather than having
a large and narrow peak. This leads to a lower value of ‖S‖∞ and a corresponding
increase in robustness. Conversely, we can fix F and see how ε changes with
leakiness. In Figure 3.3J and K we see that highly efficient controllers have worse
steady-state error, and as the controller becomes less efficient ε improves. This can
be observed in Figure 3.3L, where |S(0)| is reduced as γc increases. Because |S(0)|
is decreasing and ‖S‖∞ is fixed, we see that |S(iω)| stays large at higher frequencies
rather than falling off quickly after its peak.

While any of these tradeoffs could be studied in their own right, the important
conceptual takeaway is that what underlies all of them is Bode’s integral theorem. In
the sameway that conservation laws provide a broad understanding of the constraints
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on physic quantities (like momentum and energy), Equation (3.7) gives us a unifying
framework for understanding the fundamental performance limitations of control
systems. With this result in hand, we see that the performance tradeoffs shown here
are simply different ways of tuning parameters to shape the function |S(iω)|. In
the next section, we will apply some of these theoretical concepts to a particular
biological circuit model. Though this model is more complex and nonlinear than
those we have discussed so far, we will see that the same essential theoretical
approach applies.

A Synthetic Growth Control Circuit

μ
η

kRkp

τ

r

asRNA mRNA

AHL
CcdB

A

Figure 3.4: A Synthetic GrowthControl Circuit. A)The circuit diagram for the dynamics
described in equation (3.17). B) Simulations of the growth control circuit without RNA
degradation (solid lines) for various set points µ (dashed lines). This architecture exhibits
the precise adaptation property, though the response is relatively slow and oscillatory. C)
Here we see the same circuit simulated with RNA degradation. The response is much faster
and more robust, however there is non-zero steady-state error for each trajectory. D)Here we
again simulate the circuit without degradation, but now vary kR. We see qualitatively similar
performance tradeoffs to those in Figure 3.3. E) As before, we see that adding controller
degradation yields a very fast and consistent response. For these particular parameters, the
circuit can achieve this performance with relatively little steady-state error. For all circuits
we use the parameters Nm = 109 , r = 1 h−1, η = 20 nM−1 h−1, kp = 10 h−1, γp = 3 h−1,
Ga = 10−6 nM, and τ = 4 × 10−3 nM−1 h−1. Panel B uses kR = 0.1 h−1 and C uses
kR = 10 h−1 and γR = 20 h−1.

Here we will use the results from previous sections to study a simple model of a
synthetic sequestration feedback circuit based on the work in [38, 30], illustrated in
Figure 3.4A. The intended function of this circuit is to regulate the population level
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Species Steady State Exact Form γR = 0 Approximate Form, γR > 0

N/Nm N∗/Nm
µ

Nm k̂R

µ

Nmk̂R
+
γR
α

1+γRα

[CcdB] r
τ

(
1 − N∗

Nm

)
r
τ

(
1 − µ

Nm k̂R

)
r
τ

1
1+γcα

(
1 − µ

Nm k̂R

)
[mRNA] γp

kp
[CcdB]∗ γpr

kpτ

(
1 − µ

Nm k̂R

)
γpr
kpτ

1
1+γcα

(
1 − µ

Nm k̂R

)
[asRNA] µ

η
1

[mRNA]∗
µkpτ
ηγpr

(
1 − µ

Nm k̂R

)−1 µkpτ
ηγpr (1 +

γc
α )

(
1 − µ

Nm k̂R

)−1

Table 3.2: Steady-state parameter values derive from equation (3.17). For the case γR = 0
these solutions are exact, while they are approximated (assuming η large) for γR > 0.

of a colony of E. coli via an external reference signal such as an inducer. We model
the circuit with the following set of differential equations:

d
dt
[CcdB] = kp[mRNA] − γp[CcdB] (3.17a)

d
dt

N = rN
(
1 −

N
Nm

)
− τ[CcdB]N (3.17b)

d
dt
[mRNA] = kRGaN − η[mRNA][asRNA] − γR[mRNA] (3.17c)

d
dt
[asRNA] = µ − η[mRNA][asRNA] − γR[asRNA]. (3.17d)

Quantities of the form [·] represent intracellular concentrations for each cell, and N

represents the total number of cells. N follows logistic dynamics with an additional
death rate due to toxicity τ proportional to the concentration of [CcdB] per cell.
[CcdB] is a protein that is toxic to the cell, [mRNA] is the corresponding messenger
RNA, the transcription of which we model as being induced by a quorum sensing
ligand that is produced at a rate proportional to N , and [asRNA] is a short antisense
RNA that has a complementary sequence to the CcdB mRNA, thus acting as a
sequestering partner. The term Ga = 10−6 nM captures the gain between N and
mRNA induction mediated by the quorum-sensing molecule AHL.

As before, we will analyze a linearized version of this circuit. To do this we must
first compute the steady-state values, shown in table 3.2. The linearized dynamics
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can now be written as
Ûx = Mx,

where

x =


[CcdB]

N

[mRNA]
[asRNA]


, M =


−γp 0 kp 0
−T −γN 0 0
0 k̂R −ν − γR −ρ

0 0 −ν −ρ − γR


,

and k̂R = kRGa, T = τN∗, γN = rN∗/Nm, α = (k̂RτNm)/(γRr), ν = [asRNA]∗,
and ρ = [mRNA]∗. From this, we can again derive stability results in the limit of
large η. In terms of the parameters in M , we get a similar relationship to that of
inequality (3.14), with the introduction of heterogeneous degradation rates:

kp k̂RT < (γp + γR)(γN + γR)(γp + γN ), (3.18)

and the corresponding stability measure

M = 1 −
kp k̂RT

(γp + γR)(γN + γR)(γp + γN )
.

A notable difference about this circuit is that stability is implicitly dependent on µ.
This is because µ appears in N∗, which determines the values of γN and T . Given
that the function of this circuit is to control cell proliferation, it is natural to ask
what steady-state levels of N∗ are achievable for a given set of parameters. Because
the scale of N∗ is set by Nm, we can non-dimensionalize the population size with
the term N∗/Nm. In the case γR = 0, we can recast equation (3.18) as

N∗

Nm
=

µ

k̂RNm
>

kp

γp

τ k̂RNm

r2 −
γp

r
. (3.19)

One immediate result of inequality (3.19) is that, if the following holds:

kp

γp

τ k̂RNm

r2 <
γp

r
=⇒

τ k̂RNm

r
<
γ2

p

kp
,

then the steady-state N∗ is stable for any µ such that µ

k̂R
< Nm (the steady-state value

of N∗ cannot exceed the carrying capacity Nm in equation (3.17b) from the nonlinear
model). This constraint is also implicit in the steady-state value [asRNA]∗, which
is infinite if µ

k̂R
= Nm. Because the right-hand side of the inequality has a factor

of γ2
p/kp, it is possible to improve performance without changing the steady-state
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concentration of [CcdB] by increasing both kp and γp simultaneously, effectively
increasing the protein’s turnover rate. If the right-hand side of inequality (3.19)
is positive, then we see that the system’s performance is constrained, in that there
is a certain population threshold below which N∗ cannot be set. Just as in the
previous section, as the system approaches this threshold it will become increasingly
oscillatory. These effects were observed experimentally in [39], which uses the same
general growth control architecture as in [38].

Figure 3.4B demonstrates how the growth control circuit adapts to various steady-
state population levels when there is no controller degradation (γR = 0). The steady
state is set by varying µ. When possible, parameters for this model are taken from
[38]. What is clear across all set points is that the population first grows to carrying
capacity before the circuit is activated. Intuitively, the blue curve in Figure 3.4B has
a large amount of asRNA that sequesters mRNA. Because of this, it takes longer
to accumulate enough mRNA to make CcdB and lower the population level. In
contrast, the purple curve has comparatively little asRNA, effectively increasing the
rate at which CcdB can be produced. Qualitatively similar long-term oscillatory
behavior in a CcdB-based growth control circuit was observed in [39].

Since [38] does not explicitly model transcription, we would ideally pick realistic
transcription and translation timescales for bacteria. If we were to naively assume
that we could model asRNA and mRNA as if they were like z1 and z2 in section 4.4,
i.e. neglecting controller degradation and assuming they are only removed via
sequestration, then we run into an issue. Because the sequestration mechanism
modeled in section 4.4 assumes that controller degradation is negligible, we must
use a very small mRNA synthesis rate to achieve stable dynamics, assuming all
other parameters are fixed in a biologically plausible regime, even if sequestration
is fast. This leads to a slow circuit response and a large transient overshoot. This is
demonstrated in Figure 3.4B, where CcdB production is so slow that the population
reaches carrying capacity before the circuit can become active. In Figure 3.4D we
see similar dynamics to those in Figure 3.3, where the circuit faces harsh tradeoffs
between speed and robustness.

We see from Figure 3.4C and E that good performance requires not only that RNA
is removed via sequestration, but also that it is degraded at a nontrivial rate. At
the cost of a lack of precise adaptation, these circuits display dramatically improved
performance. In Figure 3.4C and E, the transient overshoot from Figure 3.4B and D
has almost entirely disappeared, and each system adapts on a nearly identical time
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scale, independent of µ. Figure 3.4D and E compare performance for various values
of kR in each system. Figure 3.4E shows that the introduction of γR makes the
system’s dynamics extremely robust to variations in kR over a wide range of values.
We can interpret γR as introducing a third tradeoff dimension, namely steady-state
error. By allowing the system flexibility along this axis, its speed and robustness
are greatly improved.

This section illustrates two key points, the first being that the general theoretical
results from our initial analysis can be adapted to specific biological-motivated
models of control. The second more general takeaway is that systems that look on
the surface to be both biologically and mathematical distinct, e.g. a linear model of
a chemical reaction network and a nonlinear population-level growth control circuit,
have the same underlying structure. We often think of linearization simply as a
method of approximation, but its real power often lies in showing us the connection
between seemingly different mathematical models. In this case, it becomes clear
what the analogous production and degradation rates are in equation (3.1) and
equation (3.17). This type of system-level theory allows us to abstract away details
to see that seemingly different problems can be tackled with the same class of tools.

Controlling Autocatalytic Processes
The general approach of the results presented so far has been to analyze in detail
the simplest classes of networks that can be controlled by sequestration feedback.
Going forward, it will be important to study networks where both the process and
controller have more complex architecture. At the controller level, the seques-
tration mechanism alone only implements integral feedback. It will be useful to
investigate mechanisms that could robustly implement proportional and derivative
controlmechanismswith the ultimate goal of synthesizing full proportional-integral-
derivative (PID) controller [18, 40] in synthetic circuits.

It will also likely be essential to explore other mechanisms of implementing feed-
back control in living systems. Several mechanisms for biological control that
are currently being explored include: paradoxical extracellular signaling inspired
by process regulation [41] and post-translation mechanisms such as multi-protease
regulation. Using control theoretical tools, it will be important to developmodels for
these biological controllers and assess their stability and performance. Researchers
in bioengineering will likely benefit from having multiple mechanisms of feedback
control to choose from, depending on the particular application.
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Our results thus far has focused on the application of sequestration feedback to
processes that are open-loop stable. It will likely be important to study the case
of unstable processes, which can occur in autocatalytic networks such as the one
involved in glycolysis and other metabolic processes. In control theory, unstable
processes lead to a modified version of Bode’s integral theorem:∫ ∞

0
ln(|S(iω)|)dω = π

∑
k

Re(pk), (3.20)

where Re(pk) is the real part of the unstable eigenvalues. Larger values of π
∑

k Re(pk)

correspond tomore global sensitivity to disturbances and harsher performance trade-
offs.
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Figure 3.5: Using Sequestration to Control an Unstable Network. Here we take an
unstable process (center) and study two different sequestration-based control architectures
(left and right). This network is unstable so long as k1k2 > γ2. The repressive architecture
on the left is intrinsically unstable, in that there are no values of the the control parameters
that lead to the system reaching a stable steady state. A representative simulation of the
unstable dynamics is presented below the architecture diagram. In contrast, the repressive
architecture on the right is not only stabilizing, but intrinsically stabilizing. Any non-zero
parameter values that result in positive steady-state concentrations of species will yield a
stable closed-loop network. Panel A shows the sensitivity function as θ1 varies for a fixed
value of k1 = 4 h−1. In this case, equation (3.7) tells us that the integrated area of the |S(iω)|
will be constant as θ1 varies, because θ1 does not effect the location of unstable poles. In
panel B, θ1 = 1 h−1 is fixed and k1 varies. This will change the location of the unstable pole,
and we see a consequent change in integrated area of |S(iω)|, with large values of k1 leading
to higher overall sensitivity of the system. In all simulations we take θ2 = k2 = γp = 1 h−1,
η = 1000 h−1 nM−1, µ1 = 10 nM h−1, and µ2 = 110 nM h−1.

To demonstrate the nuance and complexity added by unstable processes, we demon-
strate two seemingly similar control architectures that yield diametrically opposed
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behavior. As a simple model of an unstable process, we will use the process
described in Figure 3.5, which has the following dynamics:

Ûx1 = k2x2 − γpx1,

Ûx2 = k1x1 − γpx2.

Since the system is linear, it is straightforward to check that the system is unstable
when k1k2 > γ2

p. Because of the instability of the process, our controller will need
to be repressive rather than activating, as it has been throughout the chapter. The
left panel of Figure 3.5 describes a plausible control architecture for such a system:

Ûx1 =
k2x2

1 + θ1z1
− γpx1,

Ûx2 = k1x1 − γpx2,

Ûz1 = µ1 − ηz1z2,

Ûz2 =
µ2

1 + θ2x2
− ηz1z2.

Here z1 represses x1 and x2 represses z2. Intuitively, if x2 is large then z1 will be
reduced, increasing the amount of z1 which in turns reduces the amount of x1 and
x2. We prove that this controller is actually incapable of stabilizing an unstable
process, in that there are no parameters for which the closed-loop system is stable
(section 3.4). If, however, we instead have z1 directly repress x2 (Figure 3.5, right):

Ûx1 = k2x2 − γpx1,

Ûx2 =
k1x1

1 + θ1z1
− γpx2,

Ûz1 = µ1 − ηz1z2,

Ûz2 =
µ2

1 + θ2x2
− ηz1z2.

It is not only possible to stabilize the closed-loop system, but the system is intrin-
sically stable. So long as the system has positive parameter values and steady-state
concentrations, we recover robust precise adaptation as presented in the earlier sec-
tions (section 3.4). While the stable process architecture could either be stable or
unstable in closed-loop, this unstable process architecture confers a sort of inherent
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closed-loop stability that is quite surprising. If the systemwere linear, this would not
be possible. Stability is a direct result of the nonlinearity introduced by repression.
There is, however, a limitation: equation (3.20) tells us that a very unstable process
(k1k2 � γ2

p) must exhibit extreme disturbance amplification. In terms of reference
tracking, this implies that even the intrinsically stable controller will potentially
have very bad transient behavior (e.g. extreme overshoot and ringing as the system
stabilizes). While we can use the techniques developed in this chapter to math-
ematically prove why these two architectures behave so differently, we have little
biological insight into the architectural requirements for a stabilizing sequestration
feedback controller. In the future we hope to develop a more general theoretical
understanding of which architectures can confer stability to unstable networks.

3.3 Discussion
The development of synthetic biomolecular controllers could enable bioengineering
to yield new solutions to problems in drug synthesis, immune system engineering,
waste management, and industrial fermentation [42, 43, 44]. In their current state,
however, most current synthetic circuits lack the requisite robustness and scalability
required of industrial technologies. The application of control theory to synthetic
biological controllers aims to ensure that they function robustly in different host
organisms and signaling contexts, despite perturbations from an uncertain environ-
ments.

The recent development of sequestration feedback controllers represents a promising
step towards a general framework for implementing control in biological networks.
This is best demonstrated by the rapid experimental progress towards implementing
these controllers in a variety of contexts andwith different sequestrationmechanisms
[30, 28, 45, 46, 47]. As these controllers become widely used, we believe that the
theoretical results in this chapter will not only provide a broad theoretical perspective
on how the parameters of these networks interact to determine circuit performance,
but also provide practical design rules that will tune circuit behavior in order to meet
performance requirements.

In the first half of the 20th century, the development of a cohesive theory of feedback
control by Hendrik Bode, Harry Nyquist, and many other foundational thinkers
facilitated the rapid development and proliferation of control systems in fields such as
aerospace, electrical, and chemical engineering. The work presented here provides
a link between the tools from classical control theory and contemporary problems in
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synthetic biology. In particular, we showed that it is possible to explicitly describe
parametric conditions that determine stability, performance tradeoffs, and hard limits
for a class of sequestration feedback controllers. While these limits can each be
evaluated on their own, we observe that they can all be interpreted as different
aspect of Bode’s integral theorem. This result acts like a fundamental conservation
law for the performance of feedback control systems. By understanding these
general theoretical constraints, we can gain a broad understanding of what is and is
not achievable with a given control architecture.

3.4 Supplemental Information
The Stability Criterion
We consider the mathematical model of the sequestration network described in
equation (3.1). This mathematical model has a nonlinear term introduced by the
sequestration dynamics. To evaluate its properties of stability and performance,
we first linearize its dynamics. We can then describe the block structure of the
linearized system in terms of the following matrices:

A =


−γp 0 · · · 0
k1 −γp · · · 0

0 . . .
. . .

...

0 · · · kn−1 −γp


, B =


θ1 0
...

...

0 0

 ,

C =

[
0 · · · 0
0 · · · θ2

]
,D =

[
−α −β/α

−α −β/α

]
,

M =

[
A B

C D

]
,

where α = θ1θ2
∏n−1

i=1 ki
γnp

and β = β. The linearized dynamics will then be of the form

Ûx = Mx,

where

x =



x1
...

xn

z1

z2
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To prove our main stability result, we will analyze the characteristic polynomial of
M , p(s). The roots of p(s) correspond to eigenvalues of M . In general it is difficult
to analyze these roots, however we will see that the p(s) has a great deal of useful
structure which we can exploit. First, we have to write down what p(s) actually is.

Lemma 1. The characteristic polynomial of M is

p(s) = det(sI − M) = (s + γp)
n
[
s2 +

(
α +

β

α

)
s
]
+ γn

pβ.

Proof. We start by using the result that, for a block matrix such as M , we can use
the classical result from linear algebra

p(s) = det(sI − M)

= det

[
sI − A −B

−C sI − D

]
= det(sI − A) det[(sI − D) − C(sI − A)−1B].

Since A is lower-triangular, we see immediately that the first term is

det(sI − A) = (s + γp)
n.

To analyze the second term, we first focus on computing C(sI − A)−1B. Because of
the sparse structure of B and C, we have

C(sI − A)−1B =

[
0 0

θ1θ2(sI − A)−1
n1 0

]
,

where (sI − A)−1
n1 is the bottom-left most entry of (sI − A)−1. Using Cramer’s rule,

we can compute

(sI − A)−1
n1 =

1
(s + γp)

n (−1)n+1 det


−k1 s + γp · · · 0
...

. . .
. . .

...

0 · · · −kn−2 s + γp

0 0 · · · −kn−1


=

1
(s + γp)

n (−1)n+1(−1)n−1
n−1∏
i=1

ki

=

∏n−1
i=1 ki

(s + γp)
n .
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Combing these results, we see that

p(s) = (s + γp)
n det

[
s + α β

α

α −
θ1θ2

∏n−1
i=1 ki

(s+γp)n
s + β

α

]
= (s + γp)

n
[
(s + α)

(
s +

β

α

)
− β +

γn
pβ

(s + γp)
n

]
= (s + γp)

n
[
s2 +

(
α +

β

α

)
s
]
+ γn

pβ. (3.23)

�

We can now use this result about p(s) to analyze the stability of the linearized
sequestration feedback system.

Theorem 2 (Eigenvalue Classification Theorem). For a given n and β � α2, αγp,
the eigenvalues λ of M has a parameter-independent classification of the form���arg

(
λ
γp

)
+ arg

(
λ
γp
+ 1

)��� = mπ, for an integer m.

Proof. To study the eigenvalues of M , we will analyze the roots of p(s). We begin
by substituting s = γpσ in equation (3.23) and setting p(σ) = 0:

γ2
pσ(1 + σ)

n
[
σ +

α2 + β

αγp

]
= −β.

Taking the limit of strong feedback (β � α2, αγp), this equation reduces to

σ(1 + σ)n
[
1 + σ

αγp

β

]
= −

α

γp
.

From this relationship we see that p(σ) has one large real root at σ ≈ − β
αγp

. If we
plug this into the phase constraint equation, this gives a phase of (n + 1)π. We will
say the index of this root is n + 1. If |σ | � β

αγp
, we get the simplified magnitude

constraint
|σ | |1 + σ |n =

α

γp

and the phase constraint

arg(σ) + n arg(1 + σ) = π + 2kπ = (2k + 1)π.

We can see from this that the maximum phase possible is n+ 1 and that any each of
the indices will be of the form 2k + 1 (i.e., odd integers). Because the magnitude
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constraint is independent of k, fundamentally we can have phase indices for any odd
integer m such that |m| ≤ n + 1.

First we will see what conditions can produce purely real roots. If σ is real and
σ > 0, then

arg(σ) + n arg(1 + σ) = 0,

which violates the phase constraint. This implies that, if there are unstable roots,
they are not purely real. If −1 < σ < 0, then

arg(σ) + n arg(1 + σ) = π,

and we can have stable real roots with index 1. The magnitude constraint tells us
that we will have a pair of these real roots if α

γp
< nn
(n+1)n+1 (which have index 1)

with a bifurcation that generates conjugate pairs of roots when α
γp
≥ nn
(n+1)n+1 . These

conjugate roots will have indices ±1.

An immediate result of these observations is that, for any positive odd integer m such
that 1 < m < n + 1, roots cannot be purely real and must come in conjugate pairs
±m. If n is odd, then we will have a conjugate pair of roots for each m ∈ [3, n − 1],
either a pair of small real roots or a conjugate pair for m = 1, and a single large
negative real root for m = n + 1.

If n is odd, then the situation will be almost the same except for the fact that there
will be a second real root with index n+1. By some simple accounting, this analysis
accounts for all n + 1 roots of p(σ), which correspond to roots of p(s) by a simple
rescaling by 1

γp
. �

Theorem 3 (Production-Degradation Inequality). Let M be the matrix correspond-
ing to a linearization of the sequestration feedback systemwith two control molecules
(z1 and z2) and n process species. In the limit of strong feedback (β � α2, αγp),

the system is stable if and only if n+1

√
θ1θ2

∏n−1
i=1 ki
Ωn

< γp, where Ωn is a constant that
only depends on n. Further, when the system has purely imaginary eigenvalues the
frequency of oscillation will be ω = tan( π2n )γp.

Proof. We will prove the results by finding parametric conditions that will result
in purely imaginary eigenvalues, and then study what happens to the stability of
the system when those parametric conditions do not hold (i.e. equalities become
inequalities). To do this, we generalize a technique from [26], where we evaluate
p(s) = 0 on the imaginary axis. In particular, we pick the change of variable
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s = iω∗γp, where ω∗ is a positive real number (which we can assume without loss
of generality because complex roots come in conjugate pairs), and evaluate p(ω∗).
This yields the equations

p(ω∗) = 0 =⇒ γ2
piω∗(1 + iω∗)n(φ + iω∗) = −β, (3.24)

where φ = α2+β
αγp

. If we take the magnitude and phase of the the left-hand side of
equation (3.24), we get the constraints

γ2
pω
∗(1 + ω∗2)

n
2

√
φ2 + ω∗2 = β (3.25)

n tan−1(ω∗) + tan−1
(
ω∗

φ

)
=
π

2
+ 2kπ. (3.26)

From theorem 2 we know that, in the limit of strong feedback, all complex eigen-
values have magnitude much less than φ, therefore tan−1(ω∗/φ) → 0. From these
observations, we get the simplified relationship

n tan−1(ω∗) =
π

2
+ 2kπ =⇒ ω∗ = tan

(
π

2n
+

2k
n
π

)
,

and equation (3.25) becomes

ω∗(1 + ω∗2)
n
2
γp

α
= 1

=⇒ γp =
n+1

√
θ1θ2

∏n−1
i=1 ki

Ωn
, (3.27)

whereΩn = ω
∗(1+ω∗2)

n
2 . We can think of the parametric constrain equation (3.27)

as the boundary between stable and unstable behavior in the system. Because the
left-hand side of equation (3.25) is monotone in ω∗, we can infer that ω∗ is unique
and consequently there can only be one point in parameter space where there exist
purely imaginary eigenvalues.

The final step is to study what happens when equation (3.27) does not hold. First

we look at the regime n+1

√
θ1θ2

∏n−1
i=1 ki
Ωn

< γp. Again using the uniqueness of ω∗, if we
understand the stability behavior of the system for a particular value of γp in this
regime, the same stability behavior must hold for all γp in this range. Because of
this, we can first examine the range where γp is large. Intuitively, if degradation is
sufficiently stronger than production then all species subject to degradation should
converge to 0. To prove this rigorously, we will first search for roots with a large
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magnitude. If we apply the strong feedback limit to the characteristic equation from
equation (3.23), we get

p(s) = s(s + γp)
n(s +

β

α
) + γn

pβ = 0

=⇒ s
(

s
γp
+ 1

)n (
s
γpα

β
+ 1

)
+ γpα = 0.

When |s | � γpα, the characteristic equation will have the approximate form(
s
γp
+ 1

)n (
s
γpα

β
+ 1

)
= 0,

which gives us n roots at −γp and one root at − β
γpα

. Since equation (3.23) is order
n + 2, we know there is one remaining root outside of this regime. Next, we search
for the final small root (|s | � min(γp,

β
γpα

), which gives the relationship

s + γpα = 0,

which gives a final small root at −γpα. Since each of the n+ 2 roots is negative, the

system is stable for all n+1

√
θ1θ2

∏n−1
i=1 ki
Ωn

< γp.

Now we examine the regime n+1

√
θ1θ2

∏n−1
i=1 ki
Ωn

> γp. Here we will use a different
technique, as taking the analogous limit of very small γp is less straight-forward to
analyze. To start, we will perform a change of variable s = γpσ, where σ ∈ C.
We will again using the strong feedback limit, and study roots near the stability
boundary, such that the characteristic equation still has the general form

σ(1 + σ)n = −
α

γp
. (3.28)

If we write σ = a + ib, we have the magnitude constraint

(a2 + b2)[(1 + a)2 + b2]n =

(
α

γp

)2
> Ω2

n.

We also get the phase relationship

tan−1
(

b
a

)
+ n tan−1

(
b

1 + a

)
= π

=⇒
b

1 + a
< ω∗.
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Combining these relationships, we get

[a2 + ω∗2(1 + a)2](1 + ω∗2)n(1 + a)2n > Ω2
n.

=⇒

[( a
ω∗

)2
+ (1 + a)2

]
(1 + a)2n > 1.

Since a = 0 at the stability boundary, there must be a regime of parameters suffi-
ciently close to the boundary such that |a| � ω∗, for which we have the relationship

(1 + a)2(n+1) > 1 =⇒ a > 0.

This proves the existence of an unstable point when n+1

√
θ1θ2

∏n−1
i=1 ki
Ωn

> γp, which
implies that all parameters in this regime will yield unstable dynamics (so long as
the strong feedback assumption still holds). �

Wenote that, though previous results studied the regime of strong feedback (β large),
the core assumption that was made is that the quantity

α2 + β

αγp
� 1.

Wenote that there is an entirely differentway to achieve this, bymakingα2 � β, αγp.
In this regime, all of the previous results follow in almost exactly the same way,
except for changes to the constants involved. It is relatively straightforward to show
that the characteristic equation for the system reduces to

σ(1 + σ)n = −
βγp

α
.

Following the same steps from the previous proofs, we can find that instability now
occurs when

n−1

√
Ωnθ1θ2

∏n−1
i=1 ki

β
= γp.

Interestingly, the stable regime is now

n−1

√
Ωnθ1θ2

∏n−1
i=1 ki

β
> γp,

the opposite of what occurs in the strong feedback limit. One interpretation of
these results as a whole is that stability is achievable when either controller seques-
tration or process degradation are individually large, but not when both are large
simultaneously.
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The Sensitivity Function
The sensitivity function S(s), s ∈ C is the transfer function between an input refer-
ence to a system and output error [18]. It is particularly useful to examine |S(iω)|,
which corresponds to the magnitude of S given a purely oscillatory disturbance. If
|S(iω)| > 1, then the systemwill amplify disturbances at a frequencyω. Conversely,
if |S(iω)| < 1 then the system will attenuate disturbances at frequency ω.

Define P(s) and C(s) to be the transfer function between inputs and outputs of the
process and controller, respectively. It is a standard result in control theory that

S =
1

1 + PC
.

In general, for a linear system

Ûx = Ax + Bu

y = Cx,

the transfer function has the form H(s) = C(sI − A)−1B. For the sequestration
feedback system, we have that

P(s) = [0, · · · , 1](sI − A)−1


0
...

θ1

 =
θ1

∏n−1
i=1 ki

(s + γp)
n ,

where just as before we use

A =


−γp 0 · · · 0
k1 −γp · · · 0

0 . . .
. . .

...

0 · · · kn−1 −γp


.

Similarly, we have that

C(s) = [1, 0](sI − D)−1

[
0
θ2

]
=

1
s

θ2
β
α

[s +
(
α +

β
α

)
]

,

where

D =

[
−α −β/α

−α −β/α

]
.
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Note that C(s) has a factor if 1
s , indicating that it corresponds to an integrator. From

P and C, we see that

S(s) =
1

1 +
β
α θ1θ2

∏n−1
i=1 ki

s(s+γp)n
[
s+

(
α+

β
α

)] =
s(s + γp)

n
[
s +

(
α +

β
α

)]
s(s + γp)

n
[
s +

(
α +

β
α

)]
+ βγn

p

.

If we again take the limit α+
β
α

γp
� 1 and substitute s = γpσ we get the approximation

S(σ) ≈
σ(1 + σ)n

σ(1 + σ)n + α
γp

.

Ideally we would like to analyze ‖S(iω)‖∞ = maxω |S(iω)|, however this is difficult
to compute in general. A lower bound for this term can, however, be easily computed
by evaluating a particular value of ω close to the maximum. Specifically, we will
use ω = tan( π2n )γp = ω

∗γp. At σ = iω∗, we get

|S(iω∗)| ≈
ω∗(1 + ω∗2)

n
2

ω∗(1 + ω∗2)
n
2 − α

γp

=
Ωn

Ωn −
α
γp

.

From our previous results, we know that the system is purely oscillatory when
Ωn =

α
γp
, which corresponds to |S(iω∗)| = ‖S(iω)‖∞ = ∞. This gives the intuitive

result that the system is infinitely sensitive to a periodic disturbance at ω = ω∗γp

when Ωn =
α
γp
. In general, we will have that

‖S(iω)‖∞ ≥
Ωn

Ωn −
α
γp

. (3.29)

For the special case of n = 2, we can explicitly derive an even tighter bound than
the one in inequality (3.29). First, we can explicitly compute

|S(iω∗)| ≈
|iω∗(1 + iω∗)2 |

|iω∗(1 + iω∗)2 + α
γp
|

=
ω∗(1 + ω∗2)���( αγp − 2ω∗2

)
+ iω∗(1 − ω∗2)

���
=

ω∗(1 + ω∗2)√(
α
γp
− 2ω∗2

)2
+ (ω∗(1 − ω∗2))2

.
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Much of the complexity in this equation comes from the denominator, which can be
simplified if we pick ω∗ such that either the real or imaginary part is 0. If we plug
in ω∗ = tan(π/4) = 1, the complex part of the denominator vanishes and we recover
the original bound:

‖S‖∞ ≥ |S(i)| =
2

2 − α
γp

=
1

1 − α
2γp

.

To set the real part to zero, it must be the case that

α

γp
− 2ω∗2 = 0 =⇒ ω∗ =

√
α

2γp
.

Plugging this in, we get that

‖S‖∞ ≥
����S (

i
√
α/2γp

)���� = 1 + α
2γp

1 − α
2γp

>
1

1 − α
2γp

. (3.30)

We see that this newbound is strictly greater than the one derived in inequality (3.29),
and therefore is a better approximation of ‖S‖∞. While inequality (3.29) generalizes
to all value of n, the latter bound unfortunately requires us to find real roots of order
n polynomials, which scales poorly for this problem.

Sequestration Feedback with Controller Species Degradation
Steady state analysis

Following the same notation as the previous sections, we can model the role of
controller degradation as

Ûx1 = θ1z1 − γpx1 (3.31a)

Ûx2 = k1x1 − γpx2 (3.31b)
...

Ûxn = kn−1xn−1 − γpxn (3.31c)

Ûz1 = µ − ηz1z2 − γcz1 (3.31d)

Ûz2 = θ2xn − ηz1z2 − γcz2, (3.31e)

where γp is the degradation of the process species xi and γc is the degradation rate
of the control species z1 and z2. At a high level we will proceed much in the same
way as we did previously, however we will see that nonzero controller degradation
leads to several technical challenges that do no appear when γc = 0. The first of
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these arises from simply solving for the steady values around which we will linearize
the model. Where previously we used the fact that Ûz1 − Ûz2 = 0 =⇒ x∗n = µ/θ2,
where ∗ denotes a steady-state value. to subsequently solve for all other steady-state
concentrations, we are now left with the messier relationship

Ûz1 − Ûz2 = 0 =⇒ x∗n =
µ

θ2
−
γc

θ2
(z∗1 − z∗2).

This implies that, for γc > 0, we expect xn to differ from the desired steady-state
µ/θ by some error that depends on the values of z∗1 and z∗2. Since this error is
almost surely a function of many other parameters, we essentially lose the robust
precise adaptation property where x∗n is completely independent of the network’s
parameters. We will first calculate a general form for x∗n, then derive a large η limit
thats make further calculations tractable.

To begin, we use equations (3.31d) and (3.31e) to derive the relationships

µ = z∗1(ηz∗2 + γc) =⇒ z∗2 =
1
η

(
µ

z∗1
− γc

)
x∗n =

1
θ2

z∗2(ηz∗1 + γc).

Combining these equations, we find that

x∗n =
µ

θ2
+
γcµ

ηθ2

1
z∗1
−
γc

θ2
z∗1 −

γ2
c

ηθ2
.

Finally, we observe that

z∗1 =
γn

p

θ1
∏

i ki
x∗n =

θ2

α
x∗n,

which yields the relationship

x∗n =
µ

θ2
+
γcµ

ηα

1
x∗n
−
γc

α
x∗n −

γ2
c

ηθ2
,

=⇒
(
1 +

γc

α

)
x∗n

2
=

(
µ

θ2
−
γ2

c

ηθ2

)
x∗n +

γcµ

ηα
. (3.32)

While this quadratic can be solved explicitly, the result can be greatly simplified by
again taking the limit of large η. Here the sense in which we take this limit is such
that µ

θ2
�

γ2
c

ηθ2
and 1 � γcµ

ηα . These reduce to the condition

η �
γ2

c

µ
,
γcµ

α
.
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Combined with the previous assumption about the size of η we now have a large
number of conditions to fulfill, however we find that in practice we rarely are in
parameter regimeswhere a great deal of tuning needs to be done to satisfy everything.
That being said, we can use this limit to reduce equation (3.32) to(

1 +
γc

α

)
x∗n

2
=
µ

θ2
x∗n =⇒ x∗n ≈

µ

θ2

1
1 + γc

α

. (3.33)

Using the same approximation, we can also compute

z∗1 =
θ2
α x∗n ≈

µ
α+γc

, (3.34)

z∗2 =
θ2

ηz∗1+γc
x∗n ≈

α
η . (3.35)

These will be useful for computing the linearized dynamics of the system in the next
section.

As a sanity check, we can immediately see that x∗n = µ/θ2 when γc = 0, as expected.
For γc > 0, equation (3.33) captures the steady-state error relative to the set point
µ/θ induced by non-zero controller degradation. We see that, so long as the ratio
γc/α � 1, error will be negligible. What is unclear at this point is under what
conditions this can be achieved while still ensuring stability of the overall system.
To this end, we will now characterize stability and performance for γc > 0.

Linearized dynamics and characteristic equation

Here we present results analogous to those in section 3.4, omitting detailed proofs
since the structure of the argument from this point on is essentially identical to what
was show in the previous section. Because the only nonlinear terms in our system
are in equations (3.31d) and (3.31e), the only matrix to change in our linearization
from section 3.4 is

D =

[
−ηz∗2 − γc −ηz∗1
−ηz∗2 −ηz∗1 − γc

]
≈

[
−α − γc −β/(α + γc)

−α −β/(α + γc) − γc

]
.

Using this D matrix and proceeding with precisely the same calculation as before,
we can derive the characteristic equation for the system:

(s + γp)
n(s + γc)

[
s + γc + α +

β

α + γc

]
+ γn

pβ
α

α + γc
= 0. (3.36)

We again take the appropriate limit of β � (γc + α)γp, (γc + α)
2 to follow the same

argument as in section 3.4 to get the simplified expression in terms of σ = s/γp:

(1 + σ)n
(
γc

γp
+ σ

)
= −

α

γp
. (3.37)
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First we note that, when γc = 0, we recover equation (3.28) as expected. Proceeding
as before, we canwrite the characteristic polynomial in terms of phase andmagnitude
constraints for σ = iω∗:

(1 + ω∗2)
n
2

√
γ2

c

γ2
p
+ ω∗2 =

α

γp
(3.38)

n tan−1(ω∗) + tan−1
(
γp

γc
ω∗

)
= π. (3.39)

Stability analysis.

Unfortunately, the additional complexity in equation (3.39) makes it challenging
to write down the sort of explicit closed-form expressions for stability seen in
theorem 3. While we can write out explicit stability conditions for n = 2, we will
need to study particular parameter regimes for n > 2 as the summation relationship
for tan−1 scales poorly.

To solve for ω∗ in equation (3.39) we make use of the inverse trigonometric identity

tan−1(a) + tan−1(b) = tan−1
(

a + b
1 − ab

)
(mod π).

Applying this identity twice yields the relationship

2 tan−1(ω∗) + tan−1
(
γp

γc
ω∗

)
= π

=⇒ tan−1
(

2ω∗

1 − ω∗2

)
+ tan−1

(
γp

γc
ω∗

)
= 0 (mod π)

=⇒ tan−1

(
2ω∗ + γp

γc
ω∗(1 − ω∗2)

1 − (1 + γp
γc
)ω∗2

)
= 0 (mod π).

Since the only value for which tan−1(x) = 0 is x = 0, the problem reduces to solving
the equation

2ω∗ +
γp

γc
ω∗(1 − ω∗2) = 0

=⇒ 2 +
γp

γc
(1 − ω∗2) = 0

=⇒ ω∗ =

√
2
γc

γp
+ 1.



86

Combining this with equation (3.38) yields the stability criterion

θ1θ2k
2

< γp(γc + γp)
2. (3.40)

If we assume that we have full freedom to set control parameters, then inequal-
ity (3.40) that it is possible to make the production rates θ1 and θ2 large, so long as
there is a compensatory increase in γc. This implies that we can, in a sense, sidestep
the performance tradeoffs between speed and stability if we are willing pay a price
in terms of efficiency, measured by the turnover rates of z1 and z2.

Next we will study what happens when n > 2. We note that there is an interesting
topological distinction going from n = 2 to n > 2which yields qualitatively different
stability results. To see why this is the case, we return to equation (3.39):

n tan−1(ω∗) + tan−1
(
γp

γc
ω∗

)
= π.

Recall that tan−1(x) < π/2 for all x. Because this is the case, when n = 2 it is
always the case that 2 tan−1(ω∗) < π, implying that satisfying the phase condition
is strictly contingent of the value of the term tan−1((γp/γc)ω

∗). On the other hand,
for n > 2, there exist values of ω∗ such that n tan−1(ω∗) ≥ π, so depending on the
relative magnitude of the ratio γp/γc satisfying the phase condition may or may not
depend strongly on γc.

If we look again at equation (3.37):

(1 + σ)n
(
γc

γp
+ σ

)
= −

α

γp
,

we notice that the only place in which γc appears is in the ratio γc/γp. One natural
approach to studying the solutions to this equation is to examine what happens at
various limits, namely γc � γp, γc = γp, and γc � γp. Here we will present
results without going into formal detail, however the analysis can be made rigorous
by analyzing equation (3.39).

Case I γc � γp: This case is fairly straightforward, as it is it reduces to the case of
no controller degradation. We recover the characteristic polynomial

σ(1 + σ)n = −
α

γp
,

which has the same exact stability condition as in theorem 3.
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Case II γc = γp: This case is representative of what happens when controller
and process degradation have the same order of magnitude. We use γp/γc = 1 in
equation (3.39) to find that the stability boundary is characterized by

n tan−1(ω∗) + tan−1
(
γp

γc
ω∗

)
= π

γc=γp
=⇒ (n + 1) tan−1(ω∗) = π

=⇒ ω∗ = tan
( π

n + 1

)
.

Here it is useful to define the quantity

Ω̃n =

(
1 + tan

(π
n

)2
) n

2

,

where Ω̃n differs from the previously defined Ωn by a factor of 1/2 in the argument
of the tangent term. Using this expression, we can use equation (3.38) to derive the
stability criterion

α

γp
< Ω̃n+1 =⇒

n+1

√
θ1θ2

∏
i ki

Ω̃n+1
< γp.

This condition is qualitatively the same as the one in theorem 3 up to a constant
difference accounted for by the Ω̃n+1 term.

Case III γc � γp: Following a similar line of reasoning as in the previous case,
taking the limit γp/γc � 1 in equation (3.39) to show that

n tan−1(ω∗) + tan−1
(
γp

γc
ω∗

)
= π

γc�γp
=⇒ n tan−1(ω∗) = π

=⇒ ω∗ = tan
(π

n

)
.

We again use equation (3.38) to find that the stability boundary is set by the following
relationship:

(1 + ω∗2)
n
2

√
γ2

c

γ2
p
+ ω∗2 =

α

γp

γc�γp
=⇒ Ω̃n

γc

γp
=
α

γp

=⇒ Ω̃n =
α

γc
.
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This implies that the stability criterion for this case is

α

γc
< Ω̃n =⇒

n

√
θ1θ2

∏
i ki

γcΩ̃n
< γp.

Notice that in the n = 2 case, ω∗ is a function of γc and the subsequent stability
criterion depends on the term (γp + γc)

2. This is quite different from the n > 2
cases where in each regime, the γc dependence in ω∗ disappears. Similarly, in the
stability criterion we see a linear (rather than quadratic) dependence on γc. This is
a direct result of the previously mentioned topological difference between the n = 2
and n > 2 cases.

One interesting side effect of this results is that, when the system is purely oscillatory
(on the stability boundary), the frequencies of oscillation may be dramatically
different depending on n. Consider the case where γc � γp If n = 2, this frequency
will be

ω = γpω
∗ = γp

√
2
γc

γp
+ 1 ≈

√
2γpγc.

If n > 2, we use the results from Case III above to find

ω = γpω
∗ ≈ γp tan

(π
n

)
.

In the former case, ω scales with √γp, whereas in the latter case ω is independent of
γc. This implies that for large controller degradation rates we would expect much
faster oscillatory modes for n = 2 than for n > 2.

The effects of degradation on sensitivity and performance

Just as in section 3.4, we can write the generic sensitivity function for the linearized
sequestration feedback system with degradation in terms of the variable σ = γps as

S(σ) =
(1 + σ)n

(
γc
γp
+ σ

)
(1 + σ)n

(
γc
γp
+ σ

)
+ α

γp

. (3.41)

For the case n = 2, we can again derive an explicit lower bound for ‖S(iω∗)‖∞:

|S(iω∗)| =

���(1 + iω∗)2( γcγp + iω∗)
������(1 + iω∗)2

(
γc
γp
+ iω∗

)
+ α

γp

���,
=

(1 + ω∗2)
√

γ2
c

γ2
p
+ ω∗2���( γcγp (1 − ω∗2) − 2ω∗2) + i

(
2ω∗ γcγp + ω

∗(1 − ω∗2)
)��� . (3.42)
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We can again solve for ω∗ such that the real part of the denominator is zero:

γc

γp
(1 − ω∗2) − 2ω∗2 = 0 =⇒ ω∗ =

√
α + γc

2γp + γc
.

If we evaluate equation (3.42) at ω∗, we can write the bound

‖S‖∞ > |S(iω∗)| = F =
(1 + ω∗2)

√
1 +

(
γc
ω∗γp

)2

(1 − ω∗2) + 2 γc
γp

. (3.43)

It is easy to check that, for γc = 0, we recover the bound from inequality (3.30). As
ω∗ approaches 1 + 2γc/γp, ‖S‖∞ will asymptotically increase to ∞. Alternatively,
increasing γc will decrease sensitivity, and consequently improve robustness. We
can think of γc as capturing the inefficiency of our controller (higher degradation
means the control species are degraded before being used in a sequestration reaction).
In these terms, we see that increasing γc will reduceF at the cost of increased steady-
state error (see Figure 3.3D-F). If we hold ε constant by varying both γc and θ1,
the we can decrease F at the cost of on decreasing efficiency of the controller (see
Figure 3.3G-I). Finally, we can vary γc and θ1 such that F is constant, which leads
to a tradeoff between steady-state error and efficiency (see Figure 3.3J-L).

Controlling an Unstable Process
In all prior sections, we have assumed that the underlying process being controlled
is open-loop stable. Here we will examine a simple model of an open-loop unstable
process and describe which control architectures are capable of stabilizing the
closed-loop system. To start, we will use a simple linear system as our process:

Ûx1 = k2x2 − γpx1,

Ûx2 = k1x1 − γpx2.

This system will be unstable when at least one eigenvalue of the matrix:

A =

[
−γp k2

k1 −γp

]
has positive real part. With some straightforward linear algebra we can find that the
eigenvalues of A are

λ± = −γp ±
√

k1k2.

Because k1, k2, γp > 0, we know that λ− < 0 for all parameters. λ+, however, can
be either positive or negative. In particular,√

k1k2 > γp ⇐⇒ λ+ > 0.
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To facilitate our study of unstable processes, we will assume
√

k1k2 > γp for the rest
of the section. One immediate difference is that, due to the unstable process, any
controller must now be repressive. To model this, we will first study the following
architecture (described in equation (3.21) and the left panels of Figure 3.5):

Ûx1 =
k2x2

1 + θ1z1
− γpx1,

Ûx2 = k1x1 − γpx2,

Ûz1 = µ1 − ηz1z2,

Ûz2 =
µ2

1 + θ2x2
− ηz1z2.

If θ1 = θ2 = 0, then this architecture reduces to the open-loop system described
above. The controller topology is essentially the same as in the stable case, with
the core difference that z1 represses x1 and x2 represses z2, where before these
interactions were activating. Since now there is no reaction synthesizing z2, we
must add in some external production rate µ2. We will again proceed by solving for
the steady-state concentrations of each species and linearizing around these values.
The steady-state concentrations are as follows:

x∗1
x∗2
z∗1
z∗2


=

[
γp

k1θ2

µ2−µ1
µ1

, 1
θ2

µ2−µ1
µ1

,
k1k2−γ

2
p

θ1γ
2
p
,
µ1
η

θ1γ
2
p

k1k2−γ
2
p

]T
.

If we now linearize around this fixed point, we can define a new set of parameters:

k̂2 =
d

dx2

(
k2x2

1 + θ1z1

)
z∗1

=
γ2

p

k1
,

θ̂1 =

����� d
dz1

(
k2x2

1 + θ1z1

)
x∗2,z

∗
1

����� = θ1

θ2

γ4
p

k2
1 k2

µ2 − µ1

µ1
,

θ̂2 =

����� d
dx2

(
µ2

1 + θ2x2

)
x∗2

����� = θ2
µ2

1
µ2
,

α = ηz∗2 =
µ1θ1γ

2
p

k1k2 − γ
2
p
,

β = β1,

which characterize the linearized set of dynamics:

Ûx = Mx,
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x =


x1

x2

z1

z2


, M =


−γp k̂2 −θ̂1 0
k1 −γp 0 0
0 0 −α −β/α

0 −θ̂2 −α −β/α


.

Following the same methods in section 3.4, we can derive the characteristic poly-
nomial for M ,

p(s) = s(s − λ+)(s − λ−)
(
s + α +

β

α

)
+
β

α
θ̂1θ̂2k1,

where we now use λ± = −γp ±
√

k1 k̂2. If we plug in k̂2, we see that λ+ = 0 and
λ− = −2γp. The fact that the process’s eigenvalues change when comparing the
open- and closed-loop systems is a byproduct of the fact that our original model was
nonlinear, and is something that would not occur for a strictly linear system.

Again taking the limit of strong feedback, which here takes the form β � α2, 2αγp,
and setting p(s) = 0, we get the equation

s2(s + 2γp) = −θ̂1θ̂2k1.

The corresponding phase constraint for this equation when s = iω is (after some
algebra):

tan−1
(
ω

2γp

)
=
π

2
.

Since tan−1(x) < π/2, there are no parameter values for which this phase constraint
is achieved.

Next, we consider an alternative architecture, shown in Figure 3.5 and equa-
tion (3.22). This system is described by the same dynamics as before, except
we now have z1 directly repressing x2 (rather than indirectly doing so via x1):

Ûx1 = k2x2 − γpx1,

Ûx2 =
k1x1

1 + θ1z1
− γpx2,

Ûz1 = µ1 − ηz1z2,

Ûz2 =
µ2

1 + θ2x2
− ηz1z2.

The steady-state values are almost identical to those of section 3.4, except we now
have that

x∗1 =
k2

γpθ2

µ2 − µ1

µ1
.
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We can define another set of linearized parameters,

k̂1 =
d

dx1

(
k1x1

1 + θ1z1

)
z∗1

=
γ2

p

k2
,

θ̂1 =

����� d
dz1

(
k1x1

1 + θ1z1

)
x∗1,z

∗
1

����� = θ1

θ2

γ3
p

k1k2

µ2 − µ1

µ1
,

with θ̂2, α, and β the same as before. Our linearized dynamics are now described
by the matrix

M =


−γp k2 0 0
k̂1 −γp −θ̂1 0
0 0 −α −β/α

0 −θ̂2 −α −β/α


,

with a corresponding characteristic polynomial

p(s) = s(s − λ+)(s − λ−)
(
s + α +

β

α

)
+
β

α
θ̂1θ̂2(s + γp),

with λ± = −γp ±
√

k̂1k2. The limiting form of the characteristic equation is now

s2(s + 2γp) = −θ̂1θ̂2(s + γp),

with the phase constraint

tan−1
(
ω

2γp

)
= tan−1

(
ω

γp

)
.

Unlike in the previous architecture, this constraint is achievable for ω = 0. This
leads to a stability criterion of the form

0 <
θ̂1θ̂2

2
,

which implies that the linear system is intrinsically stable so long as the parameters
are set such that the system has a positive steady-state concentrations (µ2 > µ1,
k1k2 > γ2

p). The in turn implies that the nonlinear system will be locally stable near
the fixed point independent of the model’s parameters.

Finally, we can find the sensitivity function for the stabilizing architecture. This
is somewhat complicated by the fact that the process transfer function varies with
control parameters, so it is difficult to separate the process and the controller transfer
functions. However we can use a convenient form

S(s) =
pol(s)
pcl(s)

,
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where pcl(s) is the characteristic equations for the closed-loop systems, and pol(s) =

limθ1→0 pcl(s) [48, 8]. Using

pcl(s) = s2(s + 2γp)

(
s + α +

β

α

)
+
β

α
θ̂1θ̂2(s + γp),

we get the sensitivity function (assuming large β):

S(s) =
s(s + γp −

√
k1k2)(s + γp +

√
k1k2)

s2(s + 2γp) + θ̂1θ̂2(s + γp)
.

Note that it is important the we take care with the limits, as the roots of pol(s) should
reflect the eigenvalues of the unstable open-loop system. This is used to generate
the right-hand plots in Figure 3.5A and B.
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C h a p t e r 4

ARCHITECTURE AND TRADEOFFS IN THE HEAT SHOCK
RESPONSE SYSTEM

4.1 Introduction
Biological control systems, much like engineered ones, are faced with a variety of
heterogeneous constraints that shape their design [1, 2]. Because of this, the selective
pressures of evolution have likely not only selected for nominal performance, but
also for robustness and efficiency [3]. While many different system architectures
may be able to perform a given task, it is reasonable to assume that the ones that
actually evolve reflect a balance between the myriad tradeoffs faced by the cell.

In this chapter, we examine such tradeoffs in the context of the Heat Shock Response
(HSR) system of E. coli. When a cell encounters a rapid increase in temperature,
there is a corresponding increase in the rate at which its proteins become misfolded.
If too many of the cell’s proteins are misfolded, the cell will likely die. To prevent
this, cells will produce Heat Shock Proteins (HSPs) whose job is to rapidly refold
proteins so that the organism can continue functioning normally.

From a systems perspective the HSR clearly must be an extremely fast and robust
system, as it is vital to a cell’s ability to respond to sudden and unexpected stress.
On the other hand, if heat shock is a rare event then it would be wasteful for the
cell to constantly produce HSPs at a high rate. Intuitively, we would expect that a
strong architecture would be capable not only of refolding proteins, but would do so
as quickly, efficiently, and robustly as possible.

We find that the natural HSR system in E. coli does an excellent job balancing these
various tradeoffs. To demonstrate this, we examine several hypothetical alternative
architectures for the system, and show that the complexity of the full system results
in performance that none of the simpler systems can match. While it is possible
for these reduced architecture to perform well on a given metric, e.g. efficiency or
speed, they are limited in their ability to do well on many tasks simultaneously. We
find that the strong performance of the natural HSR system is due to several elegant
mechanisms, for example a layering of planning and control modules, that work
together to make the system highly functional.
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Figure 4.1: Abstract block diagram of the full HSR System. This shows a high-level
representation of how the HSR system uses a combination of feedforward and feedback
mechanisms to regulate the level of unfolded protein in a cell. Arrows signify effects which
increase concentration, while flat-headed line signify repression of activity.

In section 4.2, we will present a new reduced-order model of the HSR system that
faithfully captures the quantitative results ofmore complexmodels. In section 4.3we
will present hypothetical alternative architectures to the HSR system. In section 4.4
we analyze tradeoffs between several response metrics, and compare the relative
performance of the architectures discussed in section 4.3. Because this chapter has
a large number of parameters, their description is in the supplement at the end.

4.2 Reduced-Order Model
The core of the HSR system involves four classes of proteins: the unfolded proteins
which the system is trying to refold, the chaperone whose job it is to refold proteins,
the σ factor that regulates the expression of all proteins involved in heat shock
response, and the proteases that degrades the σ factor. While the real HSR system
has a variety of chaperones and proteases that are expressed during heat shock,
we follow previous work [4, 5] and substitute a single chaperone (DnaK) denoted
[D] and a single protease (FtsH) denoted [F] in our model. Each of these has a
corresponding mRNA responsible for its translation ([MD] and [MF], respectively),
and the system is controlled by a single σ factor (σ32) denoted [σ] that regulates
RNA transcription and has a constant amount of mRNA ([Mσ]) at all times. This
assumption comes from the fact that [Mσ] transcription is regulated by a separate
mechanism, independent of what we study in this model. We ignore the effects of
temperature on the protein synthesis rates, which is admittedly a simplification but
is consistent with prior modeling work by domain experts [4, 5].

Before heat shock occurs, much of the σ factor is inactivated by DnaK. This
occurs because σ32 contains a region that closely resembles an unfolded protein,
so any DnaK not in the process of refolding proteins will bind to σ32, effectively
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sequestering it. The protease FtsH will target sequestered σ factor for degradation,
effectively giving it a high turnover rate (i.e. rapid production and degradation).
Both provide feedback control.

Upon heat shock in the cell, two key events occur. The first is an increase in
unfolding rate of proteins kun(Thigh) = δ · kun(Tlow), and the second is an increase
in σ factor production represented by the parameter η(T) in translation of σ, which
ultimately leads to the increased production of DnaK and FtsH. This change in η
is mediated by a temperature-dependent change to the structure of the σ32 mRNA,
caused by a melting of certain bonds that result in the RNA being more accessible
to ribosomes. This acts as a direct temperature sensor in the HSR system. Increases
in unfolded protein cause an immediate increase in free σ factor, because the high
concentration of unfolded protein displaces any sequesteredσ factor bound toDnaK.
This increase in free σ factor, along with the increased production rate, cause a fast
spike in production of DnaK and FtsH. Because theσ factor is no longer sequestered
it will no longer be degraded by FtsH, further boosting its net production. Once
DnaK has reduced unfolded protein to pre-shock levels, excess chaperone will re-
sequester σ factor and facilitate degradation via protease, reducing production of
both DnaK and FtsH. Thesemechanisms act as two negative feedback loops between
σ factor and the proteins it regulates.

In Figure 4.1 we present a block diagram of the full system containing a single
feedforward mechanism and two feedback loops. A more detailed explanation of
the biology of the HSR system can be found in [6]. Our deterministic model of the
system consists of 6 ODEs:

[ Û̂σ] =kpη(T)[Mσ] − kpd[σ̂] − kpr[σ : D : F] (4.1)

[ ÛMD] =kmD[σ] − kmd[MD] (4.2)

[ ÛMF] =kmF[σ] − kmd[MF] (4.3)

[
Û̂D] =kp[MD] − kpd[D̂] (4.4)

[ ÛF] =kp[MF] − kpd[F] (4.5)

[
Û̂Pun] =kun(T)([Ptot] − [P̂un]) − k f [P : D], (4.6)
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and 6 algebraic relationships:

[σ : D] =KσD[σ][D] (4.7)

[σ : D : F] =KσF[σ : D][F] (4.8)

[P : D] =KPD[Pun][D] (4.9)

[σ̂] =[σ] + [σ : D : F] + [σ : D] (4.10)

[D̂] =[D] + [P : D] + [σ : D]

+ [σ : D : F] (4.11)

[P̂un] =[Pun] + [P : D]. (4.12)

Note that [·̂] denotes the total quantity of the protein, [·] represent the free (i.e.
unbound) quantity of the protein, and [· : ·] represents complexed proteins. We
provide tables describing all variables (table 4.1) and parameters (table 4.2) of
the system in section 4.6 for reference. This model is based on a more complex
one proposed by El-Samad et al. [4], which contains a mix of 31 algebraic and
differential equations. One of the core assumptions that makes both our model
and previous ones tractable is that fast dynamics (e.g. biochemical interactions)
are assumed to be at quasi-steady state and that no delays are explicitly modeled.
In section 4.5 we discuss how these assumptions make it difficult to study certain
properties of the HSR, such as the relationship between feedforward response and
delays in the system. While this likely plays an important role in biology, our model
likely undersells the role of planning (here feedforward) in the HSR system.

Our model not only has fewer equations, but also has the property that the algebraic
relationship can be explicitly approximated, whereas in the original work these
constraints had to be implicitly solved. In section 4.6 we explain in more detail
how we derive this model from the original and justify our approximations. The
simplicity not onlymakes themodel tractable for theoretical analysis, but also makes
it possible to simulate the system using an explicit solver in MATLAB (as opposed
to the implicit solver required for the original model).

We believe that this model is relatively simple while still accurately capturing the
complexity of the natural HSR system. Our formulation manages to be simple
enough to be analytically tractable, yet complicated enough to have interesting
performance tradeoffs (which will be analyze in sections 4.3 and 4.4). Due to the
model’s relative simplicity, it is possible to analytically approximate the steady-state
solutions of most quantities in the system. First we note that [σ]ss determines [D̂]ss
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and [F]ss:

[MD]ss =
kmD

kmd
[σ]ss =⇒ [D̂]ss =

kp

kpd

kmD

kmd
[σ]ss,

[MF]ss =
kmF

kmd
[σ]ss =⇒ [F]ss =

kp

kpd

kmF

kmd
[σ]ss .

Next, if we are in the regime where the system is capable of efficient refolding
([Ptot] � [Pun]ss) and that feedback results in most DnaK being bound to unfolded
protein ([P : D] ≈ [D̂]), then we get the relationship

[D̂]ss ≈
kun(T)

k f
[Ptot]. (4.13)

This yields the relationship

[σ]ss ≈
kpd

kp

kmd

kmD

kun(T)
k f
[Ptot]. (4.14)

We note that this independence of [σ]ss and the protease rate kpr was observed
experimentally in [6].

Next we can see from equation (4.1), with the assumption that the intrinsic protein
degradation rate is much slower than active degradation via FtsH (kpd � kpr), that

[σ : D : F]ss ≈
kp

kpr
η(T)[Mσ]. (4.15)

Finally, if we assume that there is enough FtsH such that it will bind to most
sequestered σ factor ([σ : D] � [σ : D : F], or equivalently K−1

σF � [F]), we can
combine these terms to see that [σ̂]ss ≈ [σ]ss + [σ : D : F]ss .

The result of this design is a fast system that is able to quickly create new DnaK
proteins when heat shock first occurs, and is then able to quickly adapt down once
the system has been stabilized (see green curves in figure Figure 4.2). In the next
section we will explore in more depth how and why this architecture performs so
well.

4.3 Architecture
Herewe can observe some interesting properties of equations (4.14) and (4.15). First
we note that, when the assumptions of the previous section hold, the biochemical
parameters KσF , KσD, and KPD do not appear anywhere in the steady state equa-
tions. This tells us that the system in some sense abstracts away the particulars of the
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Figure 4.2: The dynamics of the architectures described in section 4.3. Here we see that,
for a given set of parameters, the full HSR system architecture responds much more quickly
than the simpler designs. We choose parameters to match pre-stimulus steady-state values
of [σ̂] and [D̂] as closely as possible. For all architectures we use parameters as described
in table 4.2. We note that the dynamics of [F] match almost exactly to those of [D̂] up to
scaling (the same is true of their respective mRNAs), this is because our simple model of
protein synthesis leads to these species having the same dependence on [σ], up to parameter
scaling. We note that the bottom two panels do not have blue trajectories because [F] does
not appear in that architecture.
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binding kinetics and makes the system purely dependent on the topology of the net-
work at the biochemical level. This is largely a result of assumptions regarding time
scales (i.e. that biochemistry is much faster than gene expression) and concentration
scales (i.e. the inequalities that allowed us to derive equations (4.14) and (4.15)).
While it is not obvious from the physics of the system that these assumptions all
must hold simultaneously, it seems to be the case that the HSR system evolved to
operate in a regime where they are correct.

Second we note that, since [σ]ss and [σ : D : F]ss reflect different aspects of the
overall concentration of σ factor, we would intuitively expect them to be governed
bymany of the same parameters. In fact we see that, with the exception of the protein
synthesis rate kp, the parameters that do appear in both equations (4.14) and (4.15)
are entirely non-overlapping. When we consider the temperature dependent param-
eters η(T) and kun(T), we see that all of the feedforward architecture (i.e. direct
measurement and response to changes in temperature caused by the parameter η) is
encapsulated by [σ : D : F]ss in equation (4.14), and all of the feedback architecture
(measurement of and response to changes in [Pun], rather than T directly, mediated
by kun), is reflected by [σ]ss in equation (4.15).

If we now think about the dynamics of the system (see curves in Figure 4.2), this
separation is a nice feature. We note that, to compare different architectures, we
choose parameters such that the steady-state values of [σ̂] are the same across
simulations. When heat shock first occurs, the fast increase in production via η(T)
and decrease in degradation via FtsHwill cause a spike inσ factor, allowing for a fast
initial refolding response. Because these terms do not appear in the steady-value of
[σ̂]ss in equation (4.14), it effectively allows for tuning of dynamics independently
of steady-state response in the system. We note that the approximations presented
here do not capture the precise value of [Pun]ss accurately, because equation (4.13)
implies [Pun]ss = 0. The simulations in Figure 4.2 show that [Pun]ss has a small but
non-zero steady-state value.

To provide contrast to our analysis so far, we will now examine some alternative
designs for the HSR system. We will describe first some qualitative features of
the different designs, and then in the next section delve into more quantitative
comparisons.
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Figure 4.3: Block Diagram of the Sequestration and Degradation Feedback Architecture

Sequestration and Degradation Feedback Architecture
This architecture assumes that there are two feedback control mechanisms in re-
sponse to heat shock that respectively sequester σ factor with DnaK, and then
degrade it (see Figure 4.3):

[ Û̂σ] =kpη[Mσ] − kpd[σ̂] − kpr[σ : D : F]

[ ÛMD] =kmD[σ] − kmd[MD]

[ ÛMF] =kmF[σ] − kmd[MF]

[
Û̂D] =kp[MD] − kpd[D̂]

[ ÛF] =kp[MF] − kpd[F]

[
Û̂Pun] =kun(T)([Ptot] − [P̂un]) − k f [P : D].

This system incorporates dynamics analogous to those in equations (4.1), (4.2),
(4.4), (4.6), (4.9), (4.11) and (4.12). The only difference is that in this case the
translation rate of σ factor, η, does not increase with temperature. This architecture
effectively has a lower σ32 translation rate than an architecture with the feedforward
mechanism.

We see in Figure 4.2 that this system has a somewhat slower adaptation time to that of
the system with full regulation, and the steady state concentration of [P̂un] is higher,
implying imprecise adaptation. When feedback is present there is more than enough
total σ factor to produce the requisite amount of DnaK to refold proteins. In the
absence of the feedforward response, it is the case that most of the σ factor is needed
to produce as much DnaK as possible, so the small amount that is sequestered and
degraded has a significant impact on the steady-state level of [P̂un]. In this sense, it
seems that a significant role of the feedforward loop is to ensure that there is enough
total σ factor to balance the effects of degradation feedback. Because kpr � kpd ,
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even small amounts of sequestered protein can lead to reduced levels of DnaK when
the system is saturated, consequently increasing the final level of unfolded protein.

Feedforward and Sequestration Feedback Architecture

Figure 4.4: Block Diagram of the Sequestration Feedback Architecture

This architecture contains only a single feedback loop where DnaK binds toσ factor,
sequestering it (see Figure 4.4). We also add in the effect of the feedforward mech-
anism, which essentially provides an immediate response to temperature changes
via an increase to the translation rate of σ factor. In terms of the model, we simply
modify the equation for [σ̂] so that η is temperature dependent and kpr = KσF = 0,

[ Û̂σ] = kpη(T)[Mσ] − kpd[σ̂]. (4.16)

This is almost identical to the full HSR system described in section 4.2, except that
it lacks the degradation feedback loop mediated by the protease FtsH. This feedback
serves to regulate the free amount of [σ], but has no direct affect on the total amount
[σ̂]. We can use the same argument from section 4.2 to see that [σ]ss will be
approximately the same as in equation (4.14):

[σ]ss ≈
kpd

kp

kmd

kmD

kun(T)
k f
[Ptot],

And the complex will have the form

[σ : D]ss = [σ̂]ss − [σ]ss

≈
kp

kpd

(
η(T)[Mσ] −

kun(T)
γ
[Ptot]

)
, (4.17)

where

γ = k f
k2

p

k2
pd

kmD

kmd
.

We can think of this feedback system as serving two purposes. First, we see that
it provides the benefit generally seen in feedback systems, namely that the signal
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level (in this case [σ]) can be directly coupled to the disturbance that it is trying
to compensate for, kun(T). This feedback mechanism can also serve to provide fast
response for the system, in that a large amount of σ factor can be stored in the
complex [σ : D] and quickly released during heat shock (see the blue curves in
Figure 4.2).

The downside to this architecture is that it is, in a sense, leaky. We see from
equation (4.16) that the time scale for [σ̂] to reach steady state is determined by the
protein degradation rate kpd , which is typically quite slow (we use kpd = .03min−1,
corresponding to a dilution-limited time scale of about 30 minutes). If the system
has a low initial amount of σ factor, (corresponding to a small value of [Mσ]), then
the time to refold proteins may be comparable to the scale of kpd (as seen in the blue
curves in Figure 4.2). Since the cell division time of E. coli is approximately 20-30
minutes, it would likely be dangerous (if not lethal) for the cell to respond on such
a long time scale.

Alternatively, the cell could have a high initial amount of [σ̂] (large [Mσ]), and
a correspondingly large amount of [σ : D]. This would allow for fast response,
however [σ̂] would still reach steady state on time scale set by kpd . This implies
that after the cell has already adapted to heat shock, it would still be synthesizing σ
factor unnecessarily and simply sequestering it into the complex [σ : D], as can be
seen by the fact that equation (4.17) is a function of both η(T) and kun(T).

This is in contrast from the full model in section 4.2, where sequestered and free
σ factor are governed by separate parameters (see equations (4.14) and (4.15)).
Intuitively, this is a result of the protease providing much faster degradation than
would intrinsically be seen in a cell (i.e. kpr � kpd).

Natural Architecture
The simpler architectures described in the previous sections serve to motivate the
benefits of the natural HSR system (seen in Figure 4.1). We see that the structure of
equations (4.1) to (4.12) allows for a layering of what we might consider planning
(the terms in the feedforward loop η(T) and [Mσ], contained in the expression for
[σ : D : F]ss in equation (4.15)) and control (the terms in the feedback loop kmD,
kmd , and k f , contained in the expression for [σ]ss in equation (4.14)).

The independence of parameters in these layers allows for evolution to tune the
system’s dynamics independent of steady-state expression levels, a powerful feature
that likely has been taken advantage of over the billions of years the system has
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been in place. In the next section, we will explore parametric variations in these
different architectures to gain a better understand of the tradeoffs that constrain their
performance.

4.4 Tradeoff Analysis
In this section we will explore quantitative tradeoffs in performance for the HSR
system. While the primary goal of the system is to refold proteins, we can see from
Figure 4.2 that simply achieving a good steady state does not fully characterize the
performance of the different architectures. We see that, while all of the architectures
are capable of achieving a good steady state, they do so on different time scales and
with different levels of efficiency. We define the response time to be the amount
of time between when heat shock occurs, and when [P̂un] first comes within 5% of
[P̂un]ss. We define the inefficiency of the response to be:

Inefficiency = 1 −
[P : D]ss

[D̂]ss
,

the fraction of [D̂] that is not being utilized for protein folding at steady state.
Intuitively we might think of the most efficient response as the one that produces
exactly as much [D̂] as there is [P̂un]ss. Any excess [D̂] is not refolding proteins, and
is thus considered to be in excess. An ideal architecture would not only be able to
refold proteins efficiently, but would also minimize response time and inefficiency.

In Figure 4.5 we explore these tradeoffs by randomly varying the parameters [Mσ]

and KσD, and examining the performance of architectures that refold at least 85%
of proteins within 100 minutes. The specifics of these thresholds are somewhat
arbitrary, but the key idea is to only look at parameter sets where the HSR system
is at least somewhat functional. Intuitively, it does not matter how fast or efficient
a circuit is if it is not able to perform the primary task of refolding proteins. The
reasoning behind our choice of [Mσ] and KσD as the varying parameters is that they
directly affect σ factor dynamics and are not global parameters of the cell (like kp

and kpd). We omit varying kpr and KσF , the respective protease degradation and
binding rates, because they are only present in the full architecture and would not
affect the simpler architectures.

We see in Figure 4.5A that there is a clear separation between the architectures with
degradation feedback (green and black points) and the one without it (blue points).
This is due to the fact that much of the fast response time of the system is tied to
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Figure 4.5: Tradeoffs across HSR architectures. Here we simulate the dynamics of each
architecture for 1000 random parameter sets, where we sample values over Mσ ∈ [1, 100]
and KσD ∈

[
10−4, 10−2] , with all other parameters kept as they are in Figure 4.2. These

two parameters allow us to tune both the total amount of σ factor and the strength of the
sequestration feedback loop (for the architectures with feedback). Each panel shows a dif-
ferent pairwise tradeoff between performance metrics, providing insight into the robustness
of the qualitative features discussed in section 4.3.
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the degradation mechanism, so in order for the architecture without it to respond
quickly, it must greatly overproduce DnaK and consequently be highly inefficient.

One might also consider efficiency in terms of the rate at which a circuit incurs
metabolic overhead. It is likely that cells face heat shock rarely, so it makes sense
to think about how much ATP (the common unit of energy in the cell) per minute a
given architecture uses in the absence of heat shock. While precise numbers for this
may be difficult to come by, a reasonable proxy can be calculated easily in terms
of how much ATP is spent on protein production, as this is likely the dominant
metabolic expense to the cell. Using estimates of ATP use as a function of protein
size, we estimate a cost of α = 2400 ATP

protein for large proteins (DnaK and FtsH) and
β = 1200 ATP

protein for small proteins (σ factor) [7]. The overhead rate is then computed
from the steady-state production rates in the absence of heat shock,

Overhead = βkpη(Tlow)[Mσ] + αkp[MD]ss + αkp[MF]ss .

We see in Figure 4.5B that the more complex architectures outperform the simpler
ones. First we see again that the systems with degradation outperform the one
without it. Because the feedforward mechanism allows for a very fast change to
the translation rate of σ factor, it is the case that for a given protein overhead the
feedforward system systematically responds more quickly to heat shock. The few
cases that respond quickly but with high overhead also likely sacrifice a great deal
of resources to overproduce DnaK and are effectively behaving as an open-loop
response.

In Figure 4.5C we see that the full HSR system actually performs worse in terms
of the tradeoff between overhead and inefficiency. This is because the simpler
architecture that perform well in this tradeoff (i.e. those that are efficient and cheap),
have the worst response time. This tells us that evolution may have selected strongly
for architecture that optimizes response time, at the expense of some performance
on the other two metrics.

4.5 Discussion
In this work, we presented a novel theoretical perspective on the architecture and
design of the heat shock response system in E. coli. We showed that the HSR system
seen in nature has many desirable properties, such as layering, speed, and efficiency.
Further, we showed that simpler hypothetical architectures for the HSR system are
not sufficient to match the response of the full architecture.
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More generally, we believe that the HSR system serves as an ideal example of
engineering tradeoffs in a biological setting. While several architectures are capable
of performing the task of refolding proteins, there are many other performance
metrics that may be subject to selective pressure. In engineered control systems
stability is a primary goal, however properties such as speed, robustness, and cost
are equally important for a system to be functional in the real world. Similar
constraints are likely pervasive in biology, leading to the apparent complexity of
many biological systems beyond what would naively be necessary.

Our analysis shows, through a combination of theory and simulation, that it is
possible to systematically investigate the role of complexity in biology. In the
future, we plan to expand our model to incorporate stochastic effects and a more
nuanced model of heat shock. While our deterministic model was sufficient to ask
many interesting questions, it is not able to tell us how noise in the system affects
performance. Because σ factor is often at very low copy number, it is likely that
stochastic effects play an important role and may present tradeoffs that are hidden
in the deterministic setting.

While it is difficult to analytically study the role this sort of discrete delay in
the dynamics, these simulations result yield insight into how biology might tune
parameters to improve transient performance. It appears that when dynamics are
slow (low kp) there are moderate benefits to long advanced warning. For fast
dynamics the benefits are larger and require less warning. Since we are essentially
tuning the turnover rate of all proteins in the system, this implies that the systems
which get the most out of this sort of warning are those that have high gains and
thus are less efficient.

Wefind it encouraging that even a relatively simplemodel like that of theHSR system
yields dynamics are quite complex and difficult to analyze in general. While we
derived some approximate results, the nonlinearities in the system make it difficult
to write down closed-form solutions to the various steady-states of the system in
general. Further, these structural nonlinearities make it challenging to say anything
precise about the dynamics of the system. Because the heat shock radically disturbs
the system, linearizations that work well locally do a poor job of describing the
global dynamics. We hope that future will yield deeper theoretical insights into the
types of complex control systems that are pervasive in biology.
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4.6 Supplemental Information
Description of Variables and Parameters

Variable Description Initial Condition
σ The σ factor σ32, regulates transcription of HSPs 30

D
The chaperone DnaK, responsible for refolding
proteins 10,000

F
The protease FtsH, responsible for degrading σ
factor 1,000

MD DnaK mRNA, responsible for translation of DnaK 10
MF FtsH mRNA, responsible for translation of FtsH 3
Pun Unfolded protein in the cell 30,000

Table 4.1: Variable descriptions for Chapter 4.

Here we present tables describing the variables and parameters of the HSR sys-
tem, along with descriptions and initial conditions/parameter values used in typical
simulations. We followed parameters as much as was possible from [4], with the
only difference being the translation rates kmD and kmF which had to be fit to typ-
ical steady-state values seen in their simulations. The reason for this is that these
two parameters in our model reflect a large number of processes in their original
model (mostly involving the binding of RNA polymerase), which we found could
be simplified while still faithfully reproducing the dynamics seen in [4].

Model Reduction and Assumptions
In [4] and [5], detailed models of the HSR system are presented which aim to capture
all relevant cellular processes at amechanistic level. Thesemodels are quite complex
(each containing on the order of 30 equations), and incorporate biochemistry, gene
expression, and transcription/translation. Since these processes occur on vastly
different time scales, the original models make a quasi-steady state assumption and
treat fast processes as if they are algebraic (rather than differential) equations.

This makes simulations tractable, however the algebraic constraints were so complex
that they could only reasonably be simulated with an implicit Differential-Algebraic
Equation (DAE) solver. The shear number of equations makes it difficult to make
an simplifications that would allow for analytic approximations to the algebraic
constraints. To simplify the system, we observed that much of the complexity of
the original model stems from the author’s detailed description of transcriptional
regulation. Because they explicitly σ factor binding to RNA polymerase and the
consequent binding of polymerase to various sites on the genome, about 1/3 of the
equations have little to do with the actual heat shock response and mostly govern



112

Parameter Description Value
kp Translation rate of proteins 20min−1

kpd Intrinsic degradation rate of proteins 0.03min−1

kpr Protease degradation rate of σ factor 5min−1

kmD Transcription rate of DnaK mRNA 0.45min−1

kmF Transcription rate of FtsH mRNA 0.03min−1

kmd Degradation rate of mRNA 0.5min−1

KσD Dissociation constant for [σ : D] binding 1
400 M−1

KσF Dissociation constant for [σ : D : F] binding 1
400 M−1

KPD Dissociation constant for [P : D] binding 1
400 M−1

[Ptot ] Total amount of protein in the cell 2 · 106

[Mσ] Amount of σ factor mRNA in the cell 10
η(Tlow) Pre-shock translation rate of σ factor 0.35min−1

η(Thigh) Post-shock translation rate of σ factor 1.75min−1

k f Protein refolding rate 15000min−1

kun(Tlow) Pre-shock protein unfolding rate 75min−1

kun(Thigh) Post-shock protein unfolding rate δ · 75min−1

δ Heat shock magnitude 2

Table 4.2: Description of parameters in Chapter 4.

transcriptional regulation.

We observed that, so long as RNA polymerase and promoter regions are not sat-
urated, all of these relationships could be captured simply by the level of free σ
factor in the cell. Additionally we observe that, given the parameter values observed
in biology, FtsH is generally far in excess of σ factor. This means that we can
safely ignore conservation equations for FtsH, further simplifying the model. These
assumptions yield the model described by equations (4.1) to (4.12). In our model,
the only equations that have implicit dependences are equations (4.10) to (4.12).
Combining these equations with equations (4.7) to (4.9), we can get the relation-
ships:

[σ] =
[σ̂]

1 + KσD[D](1 + KσF[F])
,

[D] =
[D̂]

1 + KPD[Pun] + KσD[σ](1 + KσF[F])
,

[Pun] =
[P̂un]

1 + KPD[D]
.

These equations all depend on each other, so analytical expressions for [σ], [D], and
[P̂un] would require us to solve a system of three nonlinear equations. Fortunately,
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we can simplify the system by making assumptions based on biological information.
First we assume [σ : D] � [Pun : D], or equivalently KσD[σ] � KPD[Pun]. This
gives us a simpler equation for free DnaK:

[D] =
[D̂]

1 + KPD[Pun]
.

Now we can solve for [σ] if we know [D], and [D] if we know [Pun]. Using the
equations for [D] and [Pun], we get a quadratic with the solution:

[Pun] =
−α +

√
α2 + 4β
2

,

α = K−1
PD − [P̂un] + [D̂], β =

[P̂un]

KPD
.

Since we can solve for [Pun] independently of [D] and [σ], we can solve the entire
system explicitly, give values of [F], [D̂], [σ̂], and [P̂un] determined by the ODES
in equations (4.1) to (4.6). With this result, we were able to simulate the model with
the MATLAB ode15s function, and have it match almost exactly to the results in
[4].
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C h a p t e r 5

CONCLUSION

The overarching theme of thework presented here is that the type of systems thinking
that pervades engineering is not just a useful metaphor for understanding life, but in
fact provides a wide variety of constructive tools to help us analyze the design and
architecture of biological processes. It is worth noting that the set of tools used for
each of the problems presented is diverse, combining theory and simulation, physics
and engineering, and some techniques that are not neatly categorized.

As systems and synthetic biology mature, I hope that a cohesive theory will emerge
that yields a unified perspective of biological control. Some of this will undoubtedly
come directly from the classical theory of control systems, however biology is
already starting to open up new avenues of research that require more than just
re-purposing old techniques. For example, in Chapter 2 we sought to understand
fold-change detection by combining the classical idea of integral feedback control
with physical models of protein activation. To characterize the performance of these
systems and understand their tradeoffs, we had to analyze notions of sensitivitywhich
are quite particular to biology.

Similarly, in Chapter 3 we used a variety of standard results from control theory,
but sought to use them to understand the sequestration feedback mechanism, which
is quite distinct from any electrical or mechanical controller. To solve this problem,
we had to develop new proof methods that took advantage of the particular structure
of the system. Finally, Chapter 4 analyzes a system that has many properties analo-
gous to classical control systems, yet is deeply constrained by the nonlinearities of
biomolecular interactions. Because of this, standard linear analysis tools turned out
to yield little insight. The key step to making progress came from understanding the
biology of the system and reducing the mathematical model to something tractable
enough for efficient simulation and analysis.

Going forward, there are several research frontiers that I believe will prove to be
fertile ground for systems thinking in biology. Though a great deal of progress
has been made towards understanding robustness at the level of circuits, there is
still a large gap between the performance of natural and synthetic circuits. Where
many natural circuits exhibit robust behavior over a wide range of environments
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and conditions, synthetic circuits are often quite fragile. While the capacity to
reliably implement feedback controllers (like the sequestration circuit in Chapter 3)
is a promising development, most robust natural circuits contain a large number of
feedback loops and are farmore complex thanwhat is currently feasible to implement
in synthetic contexts. Given the evolutionary conservation of many circuits (e.g.,
in developmental signaling or metabolism), it is likely the case that the consistent
appearance of complex feedback architecture is necessary for robust function. Until
we can not only build complex circuits, but also develop reliable design guidelines
for their implementation, it will likely be difficult for synthetic systems to match
their natural counterparts.

While the origin of this performance gap is likely multifactorial, one likely culprit
is our poor understanding of the constraints imposed by resources in the cell. Of-
tentimes when we write down a circuit diagram, we implicitly virtualize away many
core biological processes so that we can describe a given system using a simple
model. For example, it is common to describe the expression of proteins with the
reaction kinetics

geneoff
kon
−−−⇀↽−−−−

kof f
geneon,

geneon
km
−−−→ geneon +mRNA

γm
−−−→ ∅,

mRNA
kp
−−−→ mRNA + protein

γp
−−−→ ∅.

This model captures the general features of the central dogma of molecular biology,
but puts a layer of abstraction between complex biological processes and the rate
parameters of the model. Take the translation rate kp as an example. The parameter
kp encapsulates the entire complex process of a ribosome binding to an mRNA,
recruiting tRNA which must in turn bind the correct amino acids, the ribosome
moving along the mRNA and elongating a new protein, and the subsequent folding
of the protein into its functional conformation. All of this, wrapped up in a single
rate!

The reason this model is useful is that, in nominal physiological conditions, the
actual kinetic process of transcription and translation is well approximated by these
equations. An important and understudied question is what happens when the
assumptions of the model break down? One consequence of our simplified model is
that the expression of different proteins from different mRNAs is independent, i.e.
the rate of translation kp,1 of a protein p1 is not affected by whether or not another
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protein p2 is being translated at a rate kp,2. If we imagine a situation in which so
much mRNA is present that ribosomes are in relatively scarce supply, then there
must be some implicit coupling between translation rates as mRNA will effectively
be competing for ribosomes.

Following through with this logic, we would predict that the rates have some func-
tional form kp,i(R, M) where R is the number of ribosomes in the cell and M is the
total number of mRNA. Qualitatively we can predict that limR→∞ kp,i(R, M) = kp,i

should be true, in other words the rate is asymptotically independent of M as R

becomes large. This captures the effect of what is sometimes referred to as ribo-
somal loading. This effect is believed to sometimes cause synthetic circuits to not
behave as expected, for example when the circuit contains a reporter that produces
so many fluorescent proteins that the production of other proteins in the circuit is
indirectly repressed [1]. If we are ever to develop a predictive design framework
for synthetic circuits, it will likely be essential to quantitatively understand what the
resource requirements for a given circuit are [2]. In the ribosomal loading case, this
may look like some total mRNA budget for a circuit that is based on the expected
number of spare ribosomes in a given cell. This type of analysis would need to be
repeated for each constraining resource that factors into the synthesis of biological
parts.

This is a potential way to frame the notion of layering and abstraction in biological
circuits [3]. We can say that there exists a good layering when it is possible to
abstract away many underlying physical processes into simple, independent param-
eters. By understanding how this layering breaks down, we will both gain insight
into the fundamental constraints of biological processes and develop theory-driven
design guidelines for synthetic circuits. It is likely the case that the design of evolved
pathways we see in natural contexts all fall inside these guidelines, whatever they
may be. If this is true, it will likely be possible to test the hypothesis that there
really are fundamental constraints on circuit design by comparing many different
pathways, quantified in the appropriate way, to see if they all follow some universal
laws of biological circuit design. By understanding in a rigorous way the connection
between the detailed physical and chemical reality of the most basic biological pro-
cesses and coarse-grained phenomenological representations of functional behavior
of a cell, it may become possible to understand the architecture of life.

Biology is undoubtedly complex, but I see no fundamental barriers to developing a
theoretical framework for understanding the structure of living systems. With each
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technological development, from single-cell imaging to gene editing, it becomes
easier and easier to understand the inner workings of the cell. We often like
to think of theory as driving technology and experiments, but a theory can only
be as predictive as experiments are precise. The results I presented here would
have been impossible to develop even 30 years ago, when quantitative information
about biomolecular processes was extremely hard to come by. If all goes well, the
rapid development of new technology will results in a comparable expansion of
theoretical and computational tools. To quote Craig Venter and Daniel Cohen, “If
the 20th century was the century of physics, then the 21st century will be the century
of biology” [4].
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