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"Nel mezzo del cammin di nostra vita 

mi ritrovai per una selva oscura, 

che la diratta era smarrita." 

("Midway in the journey of our life 

I found myself in a deep forest, 

for the right way had been lost.") 

Dante Alighieri, The Divine Comedy 

"···the full-grown forest turns out to be impenetrable and indefinable ••• " 

S. Ramon y Cajal, Recollections of My Life 
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ABSTRACT 

The mammalian primary visual cortex is a structure of remarkable 

physiological and morphological heterogeneity. Despite quite intensive efforts, 

using a variety of approaches, the relationships between neuronal form and 

neuronal function have remained obscure. Most previous attempts proceeded on 

the assumption that a cell's physiological responses to particular stimuli were the 

best indication of its function. In this study a different assumption was made: 

that since different efferent targets of area 17 neurons were presumably 

engaged in different sorts of neural processing, area 17 cells that project to 

those targets should be engaged in different intrinsic circuits. This in turn might 

be reflected in distinctive patterns of intrinsic axons and dendrites. This 

hypothesis was tested by comparing the morphology of two groups of neurons 

within layer VI of cat area 17: those that project to the claustrum and those 

that project to the lateral geniculate nucleus. Since both projections occupy the 

same laminar position, and therefore have potential access to the same 

environmental and lamina-specific influences, this projection was an excellent 

system to examine the role of different efferent projections in defining neuronal 

form, not confounded by differences in laminar position. 

This study was carried out by retrogradely labeling, in vivo, one or the 

other of the projections with a newly developed fluorescent tracer, latex 

microspheres. Subsequently, in vitro brain slices were prepared from area 17, 

and the retrogradely labeled neurons were visualized, impaled, and 

intracellularly stained with a second fluorescent dye, lucifer yellow. 

Comparisons of the two efferent projection classes revealed non­

overlapping patterns of distributions of intrinsic axons and dendrites between the 

two groups, and a remarkable degree of homogeneity within each group. 
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Particularly dramatic was the difference in intrinsic axons: claustrum projecting 

cells had long, horizontally directed collaterals restricted to layer VI, whereas 

LGN projecting neurons had few if any collaterals within layer VI, possessing 

instead thick, ascending collaterals which arborized in layer IV. Additionally, 

claustrum projecting cells had significantly fewer, yet more extensive, basal 

dendritic arms than LGN projecting cells. The apical dendrites of the two groups 

arborized within different overlying laminae, suggesting that the two classes 

receive different inputs. These differences in axons and dendrites demonstrate 

that the two cell classes participate in different intrinsic circuits within area 17. 

In addition to the two efferent projection classes, a considerable number of 

pyramidal cells lacking an efferent axon were observed. They resembled either 

one or the other of the projection classes, and may represent a substantial 

population of neurons that, during development, were unable to maintain an 

efferent projection. 

These results suggest that, independent of laminar differences, at least 

some of the cellular heterogeneity observed in cortex may be attributed to the 

different informational needs of various efferent targets. 



vii 

TABLE OF CONTENTS 

Title Page ........................................................... . 

First Impressions .•••••••••..••..•.••.•••.••..•....•••.•...•..••..••.. ii 

Acknowledgements .................................................. . iii 
Abstract ............................................................. v 

Table of Contents .••••••••....•.••••.••..•••••...•••••••••. vii 

Chapter I: Intrinsic Connectivity of Identified Projection Neurons ....•..••.. 1 

Introduction ...................................................... . 2 

Materials and Methods •.•.•••••.••••.....••..•....••..•••...••.•••. 11 

Results ......................................................... . 26 

Discussion •••.•••••••.•..•.••••••••••.••••..••..•••••••••.•••••.. 125 

References ••••••••••••.•••...••••••••••.••••••••••••••••••••••.• 149 

Chapter II: Development and Characteristics of Fluorescent Latex Microspheres 

as a Retrograde Tracer (unpublished manuscript) •..•••.••••••••..•• 161 

Appendix: Auditory Responses in the Zebra Finch's Motor System for Song 

(published manuscript) .•••...•...•..•.•...•.......•...••..••.•.• 177 



1 

CHAPTER I 

Intrinsic Connectivity of Identified Projection Neurons 
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INTRODUCTION 

The visual systems of the more primitive vertebrates--such as the frog-­

are highly specialized, via hard-wired neural circuits, to detect a certain limited 

category of objects (such as a fly) within the organism's visual field (Ewert 1980). 

Higher animals have achieved increasingly sophisticated visual abilities not 

by enlarging the repertoire of hard wired feature detectors, but rather by 

elaborating a more generalized approach to representing the visual world. Thus 

mammals, and in particular primates, are capable of an enormous range of visual 

perceptions and tasks. 

Beginning at the level of the retina, the mammalian visual system is 

organized around a collection of separate, parallel informational pathways, or 

channels. In higher mammals such as cats and monkeys, these parallel systems 

contain within them the information necessary for all attributes of form vision, 

depth perception, color detection, and movement detection. Unlike organisms 

such as the frog, or even mammals such as the rabbit, in which some such 

information can be analyzed and extracted at the level of the retina (Barlow et 

al. 1964, Levick 1967), the extensive processing of retinal signals in the higher 

mammals begins within the primary visual cortex. It is at this level that 

information is integrated both within each individual channel, and between 

channels. The result of this is a remarkable series of transformations of 

incoming sensory data, as shown by Hubel and Wiesel (1962). 

Whereas cells in the retina and lateral geniculate nucleus have a simple 

concentric "center-surround" organization and respond to spots or annuli of light 

(Hubel and Wiesel 1961, Kuffler 1953), cells within the cortex respond most 

vigorously to bars of light oriented in particular directions. In addition, cells 

within the cortex are excited to varying degrees by stimuli to both eyes, whereas 
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the inputs from the lateral geniculate are monocular. Cells in cortical layers 

outside the zone of primary afferent termination tend to have even more 

selective properties; in addition to requiring stimuli of particular orientation, 

many cells have strong preferences for stimuli of a particular length, or those 

moving at a particular velocity (Hubel and Wiesel 1962). 

These combined attributes of cortex are striking in that it is difficult, ~ 

priori, to predict them. The construction of properties such as orientation 

selectivity must therefore be reflected in the elaboration of specific patterns of 

connections between afferent fibers and cortical neurons, and between the 

neurons within cortex itself. 

Cells with similar eye preference and cells with similar orientation 

preference are grouped together in columns spanning the thickness or cortex 

(Hubel and Wiesel 1963). Columns are not, however, as their name might imply, 

uniform structures. Each kind of vertical column (e.g. ocular dominance, 

orientation) is composed of (in the cat) six laminae, which differ markedly in 

regards to which channels they receive connections from, or whether they 

receive direct input at all. The columnar organization provides a vertical 

framework in which different channels can combine to varying degrees, or 

remain separate. Such groupings strongly suggest that many of the neuronal 

interactions underlying the generation of response properties take place within 

the vertical dimension in restricted regions of primary visual cortex. Primary 

visual cortex has been modeled as a network of modules, each consisting of two 

ocular dominance column and a set of orientation columns representing all 

stimulus orientations (Hubel and Wiesel 1972). Each module receives input from 

a restricted portion of the visual field and provides specific kinds of output to 

other cortical and subcortical areas. Modules are presumably connected in an 

orderly fashion in the horizontal dimension of cortex, allowing formation of a 
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visual map. This map, however, contains distinctly different information than a 

strict point-to-point representation of the retina. It is, in several respects, an 

interpretive map: areas of presumed greater interest, such as the fovea, are 

expanded at the expense of the periphery, most cells are interested in lines, not 

points, and in moving, rather than stationary stimuli. The problem of relating 

the response properties of individual neurons to their structure and connections 

thus becomes one of understanding the cellular constituents and circuitry of an 

individual module, their relationship to particular informational channels, and 

the manner in which modules are linked together to form a coherent 

representation of the visual world. Understanding the input-output relationships 

of a module relies on an understanding the input-output characteristics of the 

neurons that comprise it (Gilbert 1983). 

The discovery of the physiological complexity of cortical cells gave a 

strong rationale for relating the structure of cells to their function. Hubel and 

Wiesel's physiological work revealed that cells within visual cortex showed three 

apparently distinct classes of response properties--"simple," "complex," and 

''hypercomplex" ("hypercomplex" cells are now generally regarded as complex 

cells with end-stop inhibition) (Hubel and Wiesel, 1962). The occurrence of 

simple cells primarily in layer IV of cortex, which is composed mostly of stellate 

cells, and complex cells in the supra- and infragranular layers, which are 

populated primarily by pyramidal cells, suggested that the morphology and 

laminar position of cortical neurons might be somehow related to their 

physiology. 

A number of studies directly addressed the question of the relationship 

between laminar position and receptive field properties (Henry et al. 1979, 

Gilbert 1977, Leventhal and Hirsh 1978). In general, all these studies found that 

certain receptive field characteristics were found in greater proportions in some 
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laminae than in others. For instance, the "special hypercomplex" cell (Palmer 

and Rosenquist 1974) seems to be located exclusively in layers V and at the III/IV 

border. Gilbert ( 197 5) and Henry et al. ( 1979) concluded that the most 

significant determinant of the receptive field types in a given lamina was the 

relationship of the lamina to afferent input from the LGN. Thus simple cells, 

presumably representing the first stage of cortical processing, are found 

concentrated in layers IV and VI. 

A logical extension of this approach were attempts to directly correlate 

receptive field properties with specific morphological cell classes. Before this 

was actually done, it seems that there was a strong implicit belief that the 

various types of receptive field properties would be strongly correlated with the 

apparent morphological complexity revealed by over 70 years of Golgi studies. 

Kelly and Van Essen (1974), using intracellular recording and staining of 

cortical cells, disproved at least the simplest version of the structure/receptive 

field hypothesis. Although simple cells tended to be of the stellate morphology, 

and complex cells tended to be pyramidal, these receptive field properties again 

seemed more a property of where the cells basal dendrites lay in reference to 

geniculate input. Using better staining techniques (HRP), and larger samples, 

Gilbert and Wiesel (1979, 1983) have made this particular relationship clear. 

However, it is still impossible to explain, on a morphological basis, the structure 

of a given cell's receptive field. 

Especially in early studies, a cells "function" was considered to be 

primarily reflected in the type of response (e.g. simple, complex, or 

hypercomplex) that it showed to visual stimulation. The search for correlations 

of neuronal form and function in visual cortex has been rather narrowly defined 

in terms of the features of cells that generate a limited set of response 

properties. Neurons in cortex participate in a variety of circuits, related, not 
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only to their receptive field type, but also to their laminar position, and their 

interaction with various afferent channels. Probably the best example of this 

comes from work on the parallel X, Y, and W pathways (see, for example, Rodiek 

1979). These distinct afferent systems terminate at different horizontal levels 

within area 17; thus the striate recipient cells from the outset have differential 

access to this input. In cortical layers outside layer IV, cells appear to be 

dominated by one form of input or another, although some mixing apparently 

does take place (Malpeli et al. 1981). Other sorts of parallel inputs may likewise 

be differentially distributed: the association of particular geniculate inputs with 

the ''blobs" of monkey striate cortex may preferentially endow them with the 

ability to process stimulus color related information (Livingstone and Hubel 

1984). 

The introduction of retrograde (HRP) and autoradiographic anterograde 

tracing methods (LaVail 1975, Cowan et al. 1972) has permitted a rather 

complete description (in the cat) of the areas to which pyramidal cells in area 17 

project. Several important "rules" of cortical organization have emerged: 

l) although there are exceptions, in most cases a neuron projects to a single 

efferent target, and 2) neurons that project to the same type of targets occupy 

specific laminae; layers II and III, for instance, send their output to other 

cortical areas (e.g. areas 18, 19, STS, see Toyama et al. 1974, Maciewicz 1974, 

Gilbert and Kelly 1975, Kawamura and Naito 1980) whereas cells in the lower 

layers (V an VI) send their outputs primarily to subcortical structures (e.g. 

superior colliculus, pons, lateral geniculate nucleus; see Toyama et al. 1974, 

Palmer and Rosenquist 1974, Gilbert and Kelly 197 5, Magelhaes-Castro et al. 

1975, Kawamura and Konno 1979, Albus and Donate-Oliver 1977, Kawamura and 

Chiba 1979). 
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The various extrastriate cortical targets are likely to be concerned with 

specialized features of the visual world, and serve as processing areas for these 

features (Van Essen 1979). Probably the best studied example of this is the 

primate area MT, which shows a marked functional specialization for processing 

movement related parameters of visual stimuli (Zeki 1974, Baker et al. 1981, 

Maunsell and Van Essen 1983a,b). 

The neurons in area 17, therefore, that project to different efferent 

targets, must be specialized in some manner to extract different sorts of 

information about the visual world, and send this to a specific efferent target. 

An implicit assumption is that different efferent targets require different sorts 

of incoming information. Thus, the various neurons of origin may serve to 

integrate several different sorts of input in order to generate a more complex 

output, related to a particular feature, or set of features, of interest in the next 

stage of cortical processing. 

Several investigators have in fact attempted to look for specific features 

of receptive fields that correlate with a particular efferent projection. The 

general approach has been to implant electrodes in various target areas (e.g. 

superior colliculus, LGN) and attempt to antidromically stimulate a cell in area 

17 whose receptive field properties have been analyzed. This approach has 

produced only limited success: these responses of "identified" efferent projection 

cells have shown no obvious differences in receptive field properties that 

distinguish them from other neurons in the same lamina, although neurons in 

different laminae show clear differences (Palmer and Rosenquist 1974, Gilbert 

1977, Ferster and Lindstrom 1983, Singer et al. 197 5). However, these studies 

have a number of limitations: first, it is difficult to obtain large samples, and 

perhaps more serious, it is very difficult to tell whether a cell which fails to 

show antidromic stimulation in fact doesn't project to a given area, or simply 
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cannot be easily antidromically activated. Thus Gilbert ( 1977) was only able to 

activate a few cells in layer VI via stimulating electrodes in the LGN, while 

anatomical work showed that over half the cells in the lamina project to the 

LGN (Gilbert and Kelly 1975). Second, these sorts of studies, by technical 

necessity, are restricted to comparing one projection to all other cells in the 

lamina, rather than comparing two distinct efferent populations occupying the 

same lamina. 

The equivalent experiment in terms of cell morphology, i.e., comparing the 

morphology of cells that share the same laminar position, but project to 

different sites, has not been done. If cells that project to different efferent 

targets are in fact specialized to extract certain features from incoming sensory 

information, then cells that share the same position in a cortical lamina, but 

project to distinct efferent targets, should show different patterns of dendritic 

and intrinsic axonal arborizations. Is projection site, therefore, perhaps a more 

obvious link between a cells structure and its physiological function than specific 

receptive field characteristics? 

This sort of experiment is exceedingly difficult in vivo. Such an 

investigation requires a) a method to identify cells projecting to a given efferent 

site, b) a method for visualizing the dendrites and axons of such cells, and c) the 

ability to obtain sufficient numbers of cells so as to make comparisons between 

efferent populations meaningful. In vivo, the only method for doing this is to 

combine antidromic stimulation from a specific target site with intracellular 

recording and staining. In practice, the difficulty of positioning an electrode in 

the correct layer, and the slim chance of penetrating, holding, and successfully 

intracellularly staining an identified cell, makes it virtually impossible to obtain 

a representative sample of identified projection neurons. 
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There have been several attempts to correlate projection patterns with 

specific cell types seen in Golgi preparations (Lund and Boothe 197 5, Tombol et 

al. 197 5). These studies rely on characteristics such as cell soma size, or the 

position of the cell body within a given lamina, to identify classes of projection 

neurons. Neither of these characteristics can be considered absolute criteria; 

cells projecting to different sites are often not distinguishable on the basis of 

cell size, and there can be varying degrees of intermingling of projection cells 

within a given lamina. These sorts of indirect studies show, at best, that it is 

likely that a certain cell type projects to a given efferent site. However, the 

vagaries of the Golgi technique may significantly influence the types of cells 

seen, and, especially in the case of axons in adult animals, may severely 

compromise the completeness of the morphological picture. 

In the work described here, a new approach to this problem is used. A 

retrogradely transported fluorescent tracer is injected, in vivo, into a specific 

efferent target of neurons in area 17 (A 17) of the cat. Several days later A 17 is 

surgically removed, and thin (400 1-1m) brain slices are prepared and maintained in 

vitro. An epifluorescence equipped microscope is then used to locate 

retrogradely labeled cell bodies; these are subsequently impaled under 

microscopic control and intracellularly injected with the fluorescent dye lucifer 

yellow (Stewart 1978), which visualizes the dendrites and axons of the 

retrogradely labeled neuron. Because this can all be performed under visual 

control, locating retrogradely labeled neurons in specific laminae is greatly 

simplified. In addition, the vastly greater stability of the in vitro situation 

(compared to in vivo) markedly facilitates the ease with which high quality 

intracellular recordings and dye fills can be obtained. 

The question of whether cells in the same lamina projecting to different 

targets show distinct patterns of axons and dendrites within A17 has been studied 
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by comparing the efferent projections of layer VI in the cat. Layer VI has two 

distinct efferent projections: a massive recurrent projection back to the lateral 

geniculate (Gilbert and Kelly 1975) and a considerably smaller projection to the 

visual claustrum (LeVay and Sherk 198la). This system has a number of features 

which make it attractive for this sort of study. First, both projections originate 

exclusively from layer VI (except for a very few cells in layers II/III that project 

to the claustrum). Second, the efferent target areas are physically well 

separated, relatively large, and have distinctive electrophysiological 

characteristics. This makes it easy to locate them, and difficult to cause 

spurious retrograde labeling by spillage from one injection site to the other. 

Third, the projections originate from two completely different cell populations 

within layer VI (LeVay and Sherk 198la); however there is no rigid spatial 

separation of the populations within the lamina (geniculate projecting cells are 

found throughout the thickness of the lamina, while claustrum projecting cells 

are found predominately in the middle of the layer, thus overlapping extensively 

with the geniculate projecting cells). Finally, on a physiological level, these two 

projection sites are very different. The cells in the visual claustrum have 

receptive field properties that appear very similar to those of cells in layer VI: 

they are orientation selective, and show the extreme summation for stimulus 

length and complete lack of end-inhibition characteristic of layer . VI cells 

(Gilbert 1977, Harvey 1978, Henry et al. 1979). They differ from layer VI cells 

mainly by being strongly binocular (in contrast to the often strong bias to one 

eye in layer VI) and not particularly direction selective (whereas many layer VI 

cells are). In general, most of the response properties are explainable on the 

basis of the known physiology of layer VI. 

In contrast, the physiological role of the cortico-geniculate pathway is 

rather obscure. Some evidence suggests that this pathway can change the level 
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of activity in the nucleus, either inhibiting or exciting certain classes of LGN 

neurons (Hull 1968, Kalil and Chase 1970, Tsumoto et al. 1978, Schmielau and 

Singer 1977). There have also been demonstrations of weak binocular influences 

in the LGN, presumably mediated by this feedback pathway (Schmielau and 

Singer 1977, Singer 1970). Nevertheless ce.lls in the LGN clearly do not show the 

responses to long bars of light, or the orientation and direction selectivity 

characteristic of layer VI cells. Thus, whatever the role of the cortico-thalamic 

pathway may be, the claustrum and LGN projection systems apparently have 

fundamentally different influences in their respective target areas. 

The overall result of this work has been to show that, in this system at 

least, the two efferent populations have dramatically different, non-overlapping 

patterns of distribution of intrinsic axonal and dendritic processes, and that, 

within each group, these patterns are remarkably homogeneous. It seems 

reasonable, therefore, that the large variety of different pyramidal cell types 

seen within the various laminae of visual cortex may be at least partly explained 

by the number of different efferent targets to which a lamina projects. These 

differences in cell form likewise imply that cells occupying virtually identical 

positions in cortex can be receiving information from different sources (as 

reflected in differences in dendritic field organization) and be sending 

information into non-overlapping local circuits (as shown by differences in 

intrinsic axonal arborizations). 

MATERIALS AND METHODS 

All experiments used adult cats of both sexes (over 6 months old, 2.5-

4.5 kg), obtained from either a laboratory breeding colony or a commercial 

supplier. 
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In vivo injections 

Cats, anesthetized with Nembutal (40 mg/kg, I.P.) and placed in a 

conventional stereotaxic frame, had their nictating membranes retracted with 

Neosynephrine (2.5%, Winthrop), pupils dilated with atropine (1 %, Alcon), and 

corneas protected with zero power contact lenses. An electric heating blanket 

maintained body temperature. 

The procedures for lateral geniculate nucleus (LGN) injections began with 

bilateral craniotomies from Horsley-Clark (H-C) coordinates 4-9 anterior­

posterior, and 7 to 11 medial-laterally. Extracellular activity, recorded with 

glass-coated platinum-iridium or Elgiloy electrodes amplified and displayed with 

conventional techniques (including an audio monitor to detect visually driven 

responses), provided information on the location of the LGN. In early 

experiments a manual micromanipulator (Narishige) advanced the electrode, 

later experiments employed a stepping motor driven microdrive. At a depth of 

approximately 11 mm, the LGN was easily recognized by the sudden appearance 

of strong activity in response to visual stimulation of the eye contralateral to 

the electrode. The receptive fields of either single units or small groups of cells 

near or at the dorsal surface of the nucleus were approximately mapped with a 

small spot of light (about 1° diameter) from a hand held ophthalmoscope 

projected onto a tangent screen 57 em from the eyes. The positions of receptive 

fields were estimated by projecting the optic disks using a reversible 

ophthalmoscope. The areae centrali were taken to lie 16° nasal and 6.5° down 

from the centers of the optic disks (Bishop et al. 1962). Animals were not 

paralyzed, however the position of the optic disk, plotted before and after crude 

determination of the receptive field position, did not move significantly. The 

receptive field from the first penetration was used to deduce the approximate 



13 

position of the electrode in the LGN, according to the map of Sanderson ( 1971). 

Subsequent penetrations, made at various other positions (usually at least 6), 

generally mapped the extent of the LGN. All penetrations showed characteristic 

shifts from contralateral to ipsilateral and back to contralateral-eye driven 

responses; this provided an estimate of the thickness of the LGN at each site. 

The recording electrode was then replaced with a l lll glass-tipped 

Hamilton syringe filled with the retrograde tracer, a suspension of fluorescent 

red latex microspheres (''beads") (see below for details of tracer preparation and 

characteristics). One-microliter bead injections (spaced 1 mm apart in the 

antero-posterior direction, and at least 1.5 mm apart medial-laterally), were 

made over a period of 3-5 minutes, distributed throughout the thickness of the 

LGN, at each of 6 sites previously characterized electrophysiologically. Pipettes 

remained in place for five minutes after each injection. These large injections 

maximized the number and extent of retrogradely labeled cells in A 17. 

Tracer injections into the claustrum followed the basic procedure described 

by LeVay and Sherk (198la), except that animals in this case were not paralyzed 

during the mapping of geniculate receptive field positions. Briefly, a point on 

the antero-lateral portion of the LGN located using the procedure described 

above provided equivalent H-C coordinates from the map of Sanderson ( 1971). 

From this, the electrode was moved to a position equivalent to H-C coordinates 

12.3 mm lateral and 11 mm anterior (the apparent center of the visual portion of 

the claustrum). No conclusive visually driven activity was seen at this site, 

however electrode penetrations consistently recorded cellular activity at the 

depths appropriate for the claustrum, and subsequent reconstruction of electrode 

tracks revealed that the electrodes passed through the claustrum. Injections of 

beads (2-3, 1 lll injections, spaced approximately 500 llm apart in anterior­

posterior and medial-lateral directions) at this location and at the appropriate 
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depths produced excellent labeling in the visual cortex, identical in distribution 

and extent to that seen by LeVay and Sherk (198la). Only injections which 

subsequent histological investigation showed to be in the claustrum produced 

labeling in A17; even very extensive injections of surrounding fiber tracts failed 

to produce any label whatsoever in A17 (see Results below). 

Animals were given a prophylactic dose of 0.5 cc of penicillin post­

operatively and allowed to recover from anesthesia. Cats survived from 2 days 

to 1 week post-injection until slices were prepared. 

Slice preparation 

Cats previously injected with beads in either the LGN or claustrum (as 

described above), were anesthetized with Nembutal (40 mg/kg, I.P.) and placed in 

a standard stereotaxic apparatus. Surgery began with a large craniotomy which 

exposed the posterior third of the . brain followed by retraction of the dura 

overlying one hemisphere (operations described below were completed on one 

hemisphere, and repeated on the other side). A large section of the posterior 

portion of the brain (including the shaded area shown in Fig. 1) was removed by 

making deep medial-lateral and antero-posterior scalpel cuts, undercutting the 

white matter, and sliding the brain section out on a teflon spatula. This large 

chunk was immediately placed in a beaker of cool (15°) artificial cerebro-spinal 

fluid (ACSF). The ACSF had the following composition (in mM): NaCl 124 mM, 

KCl 5mM, KH2P04 1.25 mM, MgS04 2 mM, CaCl2 3 mM, NaHC03 26 mM, 

d-glucose 10 mM, pH 7.4. The brain chunk, trimmed with razor blades to the 

boundaries shown in the shaded area of Fig. 1 (e.g. medial-laterally from the 

fundus of the splenial sulcus to the fundi of the lateral and post-lateral sulci, and 

antero-posterior extent from H-C +2 to -15) had the pia gently peeled off with 

115 Dumont forceps. The prepared brain was then placed on a 5 mm thick agar 



15 

Figure 1. Dorsal (above) and medial (below) views of the cat brain; shading 

indicates the area used for making cortical slices. The lateral borders 

correspond to the fundi of the lateral and post-lateral sulci, the medial border 

to the fundus of the splenial sulcus. Abbreviations: 0, Horsley-Clark 0; Cb, 

cerebellum. 
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slab (2% Difco Bactero-Agar in ACSF) on the stage of the slicing apparatus (see 

description below). Four hundred micrometer thick, coronal slices were used in 

all experiments. 

After slicing, the chunk was transferred to a 10 em diameter petri dish 

filled with cool (15°) oxygenated ACSF. After gently separating each group of 

6-8 slices with fine paintbrushes (Artec, series 610, #000) (Fig. 2a), one was 

removed, placed under a fluorescence microscope and checked for the presence 

of retrogradely labeled cell bodies. Individual slices were floated onto small 

rectangles (6mm by 8mm) of embedding bag paper (Spectrum), and placed (6 to a 

well) in a standard 4-well hippocampal slice chamber (Fig. 2b) (similar to the one 

described in Hatton et al. 1980). Polycarbonate filter membrane ( 12 ~m pore 

size, Nucleopore Corp, Pleasanton, CA) whose smooth surface facilitated 

removing slices for transfer to the recording apparatus, replaced the standard 

nylon mesh slice supports. A temperature probe/feedback circuit kept the 

chamber at 33°C; a warmed, humidified mixture of 95% 02, 5% C02 

(approximate flow rate 175 ml/min) provided oxygenation. Although not 

continuously perfused, portions of the bathing fluid in each well were 

occasionally replaced with fresh ACSF. Slices, maintained at the air/water 

interface, remained viable for up to 16 hours. The entire slicing operation (from 

brain removal to placement in the holding chamber) usually took less than 15 

minutes per hemisphere. 

After removal of both hemispheres, the cat was perfused intracardially 

with 0.1 M phosphate buffer followed by 10% formalin in 0.1 M phosphate 

buffer. For verification of injection sites, appropriate portions of the brain were 

blocked, sunk in 30% sucrose in 0.1 M phosphate buffer, and sectioned at 40 ~m 

on a freezing microtome. Sections were mounted on Gatenby slides, air dried, 

cleared in xylene for 1-2 minutes, and coverslipped using Fluoromount (Gurr). 
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Figure 2. a) The upper portion of the photograph shows a chunk of visual cortex 

just sliced by the tissue slicer (Fig. 3); the fine gold wires of the slicer are 

visible. In the lower portion of the field, slices have been separated from the 

chunk and are sitting in a ACSF-filled petri dish, awaiting transfer to the holding 

chamber. Scale bar: 1 em. b) Cortical slices in one well of the holding chamber; 

the slices sit on small squares of embedding bag paper, which in turn rest on a 

membrane filter support. Scale bar: 1 em. c) A single slice in the miniature 

chamber on the compound microscope stage. The chamber, constructed on a 

3"x2" glass microscope slide, consists of: 1) Hollow plexiglas oxygen dispersion 

ring; outlets for oxygen are distributed around the circumference; some of these 

are indicated by arrows. 2) Silastic oxygen inlet tube. 3) Perfusion solution inlet 

tube--a 21 gauge hypodermic needle. 4) Chlorided ground wire. 5) Kimwipe 

wick, which fits under a narrow groove milled in the dispersion ring; this 

effectively isolates the slice from the suction line, which could otherwise draw 

lab air into the chamber. 6) Vacuum line. 7) Brain slice. &) Slot for electrode 

access. Scale bar: 1 em. d) Chamber ready for recording, and stage mounted 

slice-support systems. 1) 16X objective. 2) Heating element. 3) Sliding cover; 

the underside is lined with moistened filter paper. 4) Chamber clamps. 

5) Recording electrode. 6) Oxygen humidifying tower (containing moistened 

Kimwipe tissue). 7) Power resistors to warm entire stage. &) Glass radiator 

which warms inflowing oxygen. 9) Glass radiator which warms inflowing ACSF. 

10) Vacuum line. 11) Ground wire. Scale bar: 1 em. 
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Description of the tissue slicer 

The slicing process included extensive areas of cortex for two main 

reasons: first, the experiments demanded many slices, and second, it was not 

possible to know ( because of the placement of tracer injections), before making 

slices, precisely where, either in the antero-posterior or medial-lateral 

directions, the greatest number of retrogradely labeled cell bodies would lie. 

Conventional techniques for preparing slices--tissue choppers, the 

Vibratome, or by hand--are either too slow or cannot accommodate pieces of 

tissue larger than about 3 mm (reviewed and compared in Dingledine et al. 

1980). A new type of brain slicer, designed to overcome some of the limitations 

of both speed and size, is shown in Fig. Ja. 

The basic principle of operation is similar to a kitchen egg slicer. A 

spring-loaded arm holds a stainless steel grid which has a rectangular opening, 

25 mm by 13 mm, across which are tightly stretched a series of 60 parallel,gold 

plated tungsten wires, 20 1-1m in diameter, 400 1-1m apart (Fig. Jb). Figure Jc shows 

the device ready to slice the portion of the brain described above. Release of 

the trigger causes the thin wires to pass through the brain and the agar pad, at 

high velocity, producing precise, 400 1-1m thick coronal slices, without visible 

compression or deformation of the brain (Fig. 3d). After slicing, the grid and the 

brain are removed from the slicer and placed in ACSF in a petri dish, and slices 

are separated as described above. The slicer allows preparation of up to sixty 

slices in one operation, can handle even quite large pieces of tissue, and produces 

slices with excellent viability (see below). 

The slicing process usually resulted in slight stretching of the slicing 

wires. A specially designed winder rewound the grids with fresh wire before 

each experiment. 
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Figure 3. The brain slicer. a) Slicer in loaded position. 1) Spring loaded arm. 

2) Removable base plate. 3) Cutting grid. 4) Grid releasing knob. b) Slicer set 

to slice the portion of cortex (shown in Fig. 1), which is sitting on an agar pad. 

c) The same piece of brain, immediately after slicing; the extremely fine wire 

cuts are not visible, and the brain is not deformed. The ruler in a, b and c 

indicates mm and em. 
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Intracellular recording and labeling 

After a recovery time of at least 1.5 hours, individual slices were 

transferred from the holding chamber to a miniature chamber on the stage of a 

modified epifluorescence equipped Zeiss WL compound microscope (Fig. 2). The 

figure legend describes the details of the chamber construction. A heated 16X 

objective (N.A. 0.35) fit through a hole in the chamber's sliding cover (Fig. 2d). 

In early experiments, conventional glass microelectrodes (pulled on a 

Brown-Flaming micropipette puller (Sutter Instruments) from 1.2 mm O.D. 

Omega dot tubing (Frederick Haer Co.), and filled with 20% lucifer yellow 

(Aldrich) in 0.1 M LiCl (Stewart 1978)), were advanced through the slice at a 

shallow (less than 20°) angle with a hydraulic microdrive, in regions of 

retrogradely labeled cell bodies. Cells were intracellularly filled at random, 

producing a number of "double labeled" cells (e.g. those containing retrogradely 

transported beads and intracellularly injected lucifer yellow [Fig. 4c]) directly 

proportional to the number of retrogradely labeled cell bodies in the area (about 

50% for the LGN projection, about 5% for the claustrum projection). In later 

experiments, the tips of micropipettes were bent to an angle of about 90°, 

(Hudspeth and Corey 1978) permitting penetrations normal to the surface of the 

slice (and thus allowing an electrode to be "aimed" at a particular retrogradely 

labeled cell body). Both the modified and unmodified electrodes had initial 

resistances of approximately 350 megaohms; the tips were usually manually 

broken to a final resistance of 100-200 megaohms. The tips of the bent 

electrodes were aligned with retrogradely labeled cell bodies (by means o{ an 

eyepiece graticule), and advanced through the slice in 1-3 llm steps with the fine 

vertical control on a Leitz micromanipulator. Standard DC amplifiers and 

oscilloscopes amplified and displayed intracellular electrical activity, and an FM 
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tape recorder recorded potentials for later analysis. Cells were penetrated by 

applying large (90 mV) positive voltage pulses (200 msec duration) to the stimulus 

input port of the amplifier. Stable cells of interest (generally with action 

potentials of 40 mV or greater in amplitude and less than 1 msec duration at half 

height) were injected with lucifer yellow (trapezoidal current pulses, 10 msec 

rise/fall time, 200 msec duration, 4 Hz, 2.5 nA, electrode negative) for 1-10 

minutes, usually until anode break action potentials and resting potential 

disappeared. After filling 4-6 cells (over the course of one hour), the slice was 

removed from the chamber and fixed in 10% formalin in 0.1 M phosphate buffer. 

Twelve to sixteen slices were used in this manner. Experiments lasted about 16 

hours after slice preparation; after this time slices contained few healthy cells. 

After fixation (at least overnight, but for up to 6 months) individual slices were 

sunk in 30% sucrose in 0.1 M phosphate buffer and sectioned coronally (i.e. 

parallel to the slicing plane) at 60 J.lm on a freezing microtome. Sections were 

mounted on Gatenby coated slides, air dried, briefly dried on a slide warmer, 

cleared directly in xylene for 1-2 minutes, mounted in Fluoromount (Gurr), and 

examined and photographed on a Zeiss Standard WL epifluorescence microscope 

with rhodamine and fluorescein filters. Drawings of selected lucifer yellow 

stained cells were made with a lOOX oil immersion objective and a camera lucida 

(final magnification, 1250X) on black paper with white pencils. All photography 

was done with Ektachrome film (ASA 200, Kodak). 

Measurements of distances between labeled neurons in vitro (at 160X) and ---
after processing showed virtually no shrinkage within the limits of 

measurements, thus shrinkage in the plane of the section was under 5%. 

Shrinkage orthogonal to the plane of slicing was not assessed, since all 

reconstructions were two-dimensional. No corrections, therefore, were made for 

tissue shrinkage in any of the data presented below. 
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Laminar and areal boundaries were delineated according to the criteria of 

Otsuka and Hassler ( 1962). Nomarski-differential-interference contrast optics 

provided a fairly reliable indication of laminar boundaries in uncounterstained 

sections, but for precise determination of boundaries, sections were subsequently 

counterstained with cresyl violet. This procedure destroyed the bead's 

fluorescence, but the lucifer yellow fluorescence persisted quite well. 

Measurements of axon and soma sizes 

Camera lucida drawings of retrogradely labeled cell somas (at 1250X) were 

entered (via a digitizing tablet) into a computer (Hewlett-Packard 2647 graphics 

terminal) which calculated somal area. Since axons were usually too thin to 

measure directly using an eyeiece graticule, estimates of axon diameters were 

obtained by photographing portions of the axon with a lOOX objective (N.A. 1.25) 

and measuring the diameter of the photographic image using a compound 

microscope with a lOX objective and eyepiece graticule. This systems resolution 

was limited to approximately 0.25 llm. 

Fluorescent latex microspheres 

Characteristics and preparation. The accompanying manuscript 

(Chapter II) describes most of the salient features regarding the performance of 

''beads" as a retrograde tracer. Only a few points directly relevant to these 

experiments will be discussed. 

Beads have several characteristics that make them extremely useful for 

this sort of experiment. Most important, they show absolutely no tendency to 

leak or diffuse out of cells, even after very long survival times, after the 

manipulations involved in preparing slices, or following prolonged storage of 

slices after an experiment. Thus one can be assured that a cell labeled with 
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beads did in fact project to the appropriate site. Second, illumination of beads 

does not seem obviously toxic to cells, which contrasts with the marked 

phototoxicity of many fluorescent dyes (e.g. lucifer yellow [Miller and Selverston 

1979]) and probably relates to the fact that beads show very little bleaching 

under illumination (Gupta et al. 1981). The fluorescent intensity of bead labeled 

cells is a third important considertion: well labeled neurons are easily visualized 

at the relatively low magnification used in these experiments, and in uncleared, 

thick slices of tissue (Fig. 4a). This facilitates "aiming" for specific cells. 

A large batch of beads, prepared by ultracentrifugation and used in all 

experiments, minimized the possibility that differences in tracer preparation 

might influence the number or extent of labeled cells. 

RESULTS 

A total of four cats received bilateral injections of beads into the LGN. 

Eight cats received injections directed at the claustrum; five of these showed 

retrograde labeling in Al7 (the other cats functioned as controls for injections of 

the surrounding fiber tracts, see below). 

Injections of beads into the LGN produced an identical pattern of labeling 

1n all cases, with retrogradely labeled neurons confined to, and distributed 

throughout the entire thickness of, layer VI (Fig. 5a). In A 17, approximately 50% 

of neurons in the lamina contained beads; labeling in areas 18 and 19 , also 

confined to VI, was somewhat sparser. The cell bodies containing label were 

mostly medium sized pyramidal, fusiform or ovoid cells characteristic of this 

layer (Fig. 5b) Most cells showed very dense, granular labeling in the soma, 

extending partway into the proximal portion of the apical dendrite (Fig. 5c). The 

observed pattern of labeling agrees precisely with that describe& by Gilbert and 
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Figure 4-. a) Neuronal cell bodies in a living brain slice, retrogradely labeled with 

beads, following injection of the visual claustrum. In this 4-00 ~m thick section, 

fewer than 596 of the cell bodies are labeled. Arrows indicate the out of focus 

cell bodies double labeled with lucifer yellow, shown in (b). b) Same field as (a) 

seen under lucifer yellow illumination wavelengths, showing two claustrum 

projecting cells intracellularly injected. The somas, dendrites, and even 

dendritic spines are visible. Scale bars: 100 ~m. c) A claustrum projecting 

neuron double labeled by retrogradely transported beads and intracellularly 

injected lucifer yellow. The exposure on the right was made under rhodamine 

illumination, the section was then shifted slightly, and the exposure on the right 

was made, under lucifer yellow illumination. The background haze in the bead 

exposure results from weak fluorescence of lucifer yellow, even at rhodamine 

wavelengths. Scale bar: 20 ~m. 
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Figure 5. Retrograde labeling of the LGN projecting neurons in area 17. a) Bead 

labeling at the apex of the lateral gyrus following LGN injections. The 

occasional bright spots in the white matter and outside layer VI are artifact. 

Scale bar: 100 llm. b) Higher power view of retrogradely labeled neurons, mostly 

medium sized pyramidal cells, located throughout the thickness of layer VI. 

Scale bar: 50 llm. c) A single retrogradely labeled pyramidal cell, with a soma 

and apical dendrite densely packed with granular appearing beads. Scale bar: 

10 llm. 
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Kelly (1975) using HRP, and Baughman and Gilbert (1981) and LeVay and Sherk 

(1981a), using tritiated aspartate. 

LeVay and Sherk (1981 a) described the projection from the A 17 to the 

claustrum as originating from cells in the middle of lamina VI, and comprising 

less than 5% of the cells in the layer. They also noted that more cells were 

labeled in the portion of A 17 subserving the peripheral portions of the visual 

field than in the areas subserving central vision. In these characteristics, 

retrograde labeling by beads was identical. Figure 6 shows a portion of layer VI 

labeled after an injection of beads into the claustrum. In addition to the 

prominent label in a band of cells, 2-3 cell bodies thick, in the central portion of 

layer VI, very occasional cells were labeled in the more superficial layers, which 

was also noted by LeVay and Sherk. Such labeling was never seen if only the 

fiber tracts surrounding the claustrum were labeled. In the cases of succesful 

claustrum injections, the lateral geniculate nucleus was sectioned and examined 

as described in Methods. Since the geniculo-cortical and cortico-geniculate 

pathways follow the same course (Guillery 1967), if the apparent claustrum 

labeling in cortex resulted from spurious labeling by cortico-geniculate fibers, 

one would expect to see labeling in the geniculate as well from damage to the 

geniculo-cortical fibers. In no case was any labeling ever seen in the lateral 

geniculate, even after extensive claustrum injections. 

The health of slices prepared using the slicer descibed in Methods was in 

general excellent, as determined by the number of cells intracellularly 

penetrated, the size and duration of their action potentials, and the length of 

time that penetrations remained stable. An average of 45 cells were 

intracellularly stained in each experiment, and in only one case was there a 

complete failure, for unknown reasons, to intracellularly impale any neurons. In 

the best experiment, 85 cells were intracellularly labeled with lucifer yellow. 
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Figure 6. Retrograde labeling of claustrum projecting neurons in area 17. 

a) Labeled neurons in the middle of layer VI (laminar boundaries indicated by 

arrows) following bead injection into the visual claustrum. The section is from a 

more central part of area 17 than (b), below, and fewer cells are labeled. Scale 

bar: 50 pm. b) same as (a), except that this section, taken from a more

peripheral part of area 17, contains greater numbers of labeled neurons. The 

bright cell in the center was also labeled with lucifer yellow. Scale bar: 50 pm.
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An example of the appearance of retrogradely and intracellularly labeled 

cells in vitro, during an actual experiment, is shown in Fig. 4-. Although the 

aqueous environment degrades the image quality significantly, it is still 

relatively easy to focus on individual retrogradely labeled cell bodies, as well as 

visualize the somas and dendrites (and occasionally axons) of intracellularly 

filled neurons. 

Figure 7 shows examples of the electrical activity recorded from cells 

later identified as projecting to either the claustrum or LGN. In both cases, 

action potentials were of normal shape and duration; the average amplitude was 

45 mV, which was identical to the amplitude of cells not retrogradely labeled 

with beads. Observations showed no obvious differences in the length of time a 

retrogradely labeled cell could be held, or in the level or quality of its electrical 

activity, compared to an unlabelled cell. At this level of analysis, retrograde 

labeling by beads does not have any significant effects on the ability of neurons 

to maintain normal electrical activity. The amplitude of the action potentials in 

slices reported here (approximately 45 mV) is slightly lower than that reported 

for other slice preparations (Schwartzkroin 1975), probably due to the electrical 

properties of high resistance, lucifer yellow filled micropipettes, rather than the 

health of neurons in slices. Occasional recordings made with micropipettes filled 

with 3 M KCl, (resistance 50-70 megaohms), showed action potentials in the 60-

70 mV range. 

Not infrequently during experiments, action potentials of considerably 

smaller size--less than 30 m V--were recorded. Despite their small size, they had 

a normal duration (about 1 msec) and were quite stable. This contrasted with 

other small potentials which indica ted cell injury--in such cases the small 

potentials were greatly prolonged and disappeared quickly. In all cases in which 

injections were attempted in cells which exhibited these small, fast potentials, 



35 

Figure 7. Intracellularly recorded action potentials from claustrum and LGN 

projecting neurons; no differences were seen in the size, shape, or duration of 

potentials either between the two projection classes, or compared to unlabeled 

neurons. 
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subsequent inspection (in vitro), with the electrode still in place, revealed cells 

which had been impaled in either the apical dendrite (in most cases), or, 

occasionally, in a basal dendrite. In some cases the recording electrode was over 

150 l.lm from the cell body. Recordings from apical dendrites have been 

described previously in hippocampus (Wong et al. 1979, Masukawa and Prince 

1984) and cerebellum (Llinas and Sugimori 1980, Llinas and Hess 1976), but not in 

neocortex. The size and shape of the potentials suggests that they originated 

from somal action potentials which invaded the dendrites. 

Morphology of neurons projecting to the visual claustrum and lateral geniculate 

nucleus 

Both qualitative and quantitative observations were made on these two cell 

types. The data base for qualitative observations consisted of 50 cells double 

labeled after injections of the LGN, and 30 cells double labeled after claustrum 

injections. An example of a neuron double labeled by lucifer yellow and beads is 

shown in Fig. 4c. After the initial identification of the distinguishing features of 

these two cell classes, some additional cells were examined which contained only 

intracellular lucifer yellow, but showed obvious features of one class or the other 

(none of these cells were used for quantitative analysis, however). Cells selected 

for observations were well filled, with no obvious distortion of the dendrites or 

axons, and not obviously truncated (cells located in the top 40 l.lm of the slice 

often had severely truncated dendritic and axonal processes). In general, cells 

that continued to show anode break action potentials for at least 4 minutes gave 

the best quality fills. Cells filled for 1-3 minutes often had well filled dendrites, 

but only fair filling of axon collaterals. Fills of less than 1 minute usually 

labeled the soma, basal dendrites, and part of the apical dendritic tree; the axon 

collaterals were either not visible or traceable for only short distances. Under 
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the conditions used in this study, even very fine (circa 0.2 J..lm diameter) 

collaterals could be visualized for distances of up to 1 mm. No processes 

significantly longer than this were seen, but it is not clear whether this is a 

limitation of the slicing procedure (i.e. truncation artifact), a limitation of the 

sensitivity of lucifer yellow, or a combination of both. 

For quantitative observations on basal and apical dendritic arbors, using 

Sholl analysis (Sholl 1955), samples of seven cells from each of the two classes 

were selected for analysis on the basis of the most complete axons and 

dendrites. Cells selected for this analysis covered the range of morphological 

variability observed qualitatively. Because of these selection procedures, the 

sample is not random, but representative. The analysis consisted of counting the 

number of intersections of basal or apical dendritic processes with a series of 

concentric circles spaced at 20 J..lm intervals. For the basal dendrites, the center 

of the circles was placed in the center of the cell's soma; for apical dendrites it 

was placed at the base of the main apical dendritic arbor. 

Claustrum-projecting cells: general morphological characteristics 

Figure 8 shows several examples of double labeled claustrum projecting 

neurons. As a group, the claustrum projecting neurons exhibited a remarkable 

degree of similarity in their patterns of dendrites and axons. All were medium 

sized pyramidal cells, with a sparse basal dendritic field, and an apical dendrite 

that usually reached the lower boundary of layer I. The basal dendritic 

processes, although few in number, often had extensive horizontal spread within 

layer VI. The sparsely branched apical dendrite possessed a few short branches 

restricted to layers VI and V, with none ever observed in layer IV. Dendritic 

spines densely covered both the apical and basal dendrites. All these cells had an 

identical pattern of distribution of axon collaterals: three or four thin processes 
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Figure 8. Several intracellularly filled claustrum projecting neurons in layer VI. 

All three cells show many of the distinctive features of claustrum projecting 

cells: the thick, asymmetric basal dendritic process (indicated by open arrows in 

[a] and [c]), densely spined apical dendrite with short side branches (most clearly 

seen in [a] and [b]), and axons with thin, horizontally directed intrinsic collaterals 

(indicated by solid arrows in [a] and [b]). Figure 9 shows a camera lucida drawing 

of the cell in (a). Scale bars: 50 J..lm. 
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eminated from the main efferent axon and coursed horizontally within layer VI 

for up to 1 mm. Occasionally these gave rise to a small vertical branch that 

never reached beyond the lower portion of layer V. These characteristics, which 

can be seen in a camera Iucida drawing of one claustrum-projecting cell in 

Fig. 9, will be considered in greater detail below. 

Soma and basal dendrites 

The soma shapes of claustrum projecting cells varied from pyramidal to 

oval and in some causes had almost a bipolar appearance (due to the presence of 

a thick basal dendrite, see below). The size of retrogradely labeled somas was 

normally distributed around a mean of 155 llm2 (±34.7 S.E.M., n=lOO). The 

sample of double labeled cells had an average somal area of 149 llm2 (±39.4 

S.E.M., n= 24) (some of the sample of 30 such cells were not included because the 

soma was distributed between two sections, or was somewhat swollen or 

otherwise mildly distorted by the filling process). The difference between these 

two populations is not statistically significant (student's T -test, p < .0 1) 

(Fig. 10). No consistent trends in cell body size reliably distinguished these cells 

from those projecting to the LGN (see below). 

Claustrum projecting cells had a very distinctive basal dendritic field 

structure, formed by 3-5 dendritic arms emanating from the soma (X=4.5 ± 1.0 

S.E.M., n=24). Invariably one or two of these arms was significantly thicker (and 

often much longer) than the rest; this thick proximal portion gave the soma a 

somewhat fusiform or bipolar appearance (see Figs. 9, 11 and 12). The other 

dendritic branches were significantly thinner and usually less than 150 llm long. 

The thick processes, in contrast, extended for up to 1 mm horizontally in layer VI 

(e.g. Fig. 12) and branched extensively along this length, often resulting in highly 

asymmetric shapes of the basal dendritic field. Figure 13 shows an extreme 
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Figure 9. Camera lucida drawing of the cell shown in (a) of Fig. 8. In addition to 

the features described in that figure legend, this drawing shows the thin apical 

dendrite reaching layer I, the short dendritic branches originating from layer V, 

and the short, thin ascending vertical axonal subcollaterals described in the 

text. No dendritic side branches originate from, or pass into, layer IV. The 

marked difference in the horizontal extent of apical dendritic and basal dendritic 

branches is quite apparent in this cell. 
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Figure 10. Size distributions of retrogradely labeled (open bars) and double 

labeled (solid bars) neurons after LGN (top) and claustrum (bottom) injections. 

Mean somal area of LGN-projecting cells was 143 ~m2 ± 41.5 S.E.M., n=100. 

Mean somal area of claustrum projecting cells was 155 11m2 ± 34.7 S.E.M., n 100. 
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example of this: two asymmetric basal dendritic processes each run 

horizontally, forming a dendritic field with a diameter of almost 1 mm. The 

overall branching pattern of these cells was reminiscent of an umbrella (with the 

"handle" pointing towards the white matter). The dendrites arched over an 

extensive area, but within that enclosed space, the processes tended to be 

short. This tendency is shown graphically by sector analysis of Sholl plots, which 

gave a rough indication of the length of dendrites in each sector (Fig. 14). These 

plots were obtained from Scholl analysis (as described above) in which the 

concentric cirles were divided into eight 45° sectors, with a line running through 

the center of the cells soma, parallel to the apical dendrite, defining the 0° 

axis. Although all cells had the thick dendritic process, in some cases (e.g. 

Figs. 15, 16) the absence of a long process resulted in a dendritic arbor 

considerably smaller (approximately 200 llm in diameter) and more symmetric 

than those described above. Since claustrum projecting cell bodies are generally 

located in the middle of layer VI, most of the observed asymmetries did not 

result simply from constraints on dendritic branching imposed by close proximity 

to the white matter. 

These unusually extensive basal dendrites have not been described in Golgi 

preparations of cat cortex. However Lund and Boothe ( 197 5) briefly mentioned a 

similar sort of cell in layer VI of monkey visual cortex, with an unknown efferent 

target. The structure of these dendrites has several implications for the types of 

input these cells can recieve. Clearly dendrites with the extent described here 

could integrate inputs from at least one ocular dominance column, or span a 

considerable portion of two. These cells may represent a population of layer VI 

cells that are binocular, in contrast to the majority, which are strongly 

monocular (and have, as the section on geniculate cells below describes, 
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Figure 11. A claustrum projecting cell with a bipolar soma, caused by the 

presence of a very thick basal dendritic process. This cell has a wide basal 

dendritic arbor, with processes extending into the white matter. The apical 

dendrite reaches only to the middle of layer IVab, with few side branches. The 

horizontal axonal collaterals are very extensive and well developed, and show 

numerous vertically oriented subcollaterals, seemingly in clusters spaced at 

about 300 ~m intervals. 
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Figure 12. A claustrum projecting cell with a highly elongated basal dendritic 

process. Additionally, one of this cell's apical dendritic side branches appears to 

skip over an intervening segment of cortex, and arborize about 200 l-Im from the 

main cluster of apical dendritic branches (see also Fig. 15). 
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Figure 13. A claustrum projecting cell with an extreme example of the basal 

dendritic asymmetry, and the difference in horizontal extent of basal and apical 

dendrites. In this case, two asymmetric basal dendritic processes originate from 

the soma and run in opposite directions, forming an arbor almost 1 mm in 

diameter. In contrast, the spread of the apical dendritic side branches is about 

200 ~m. 
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Figure 14. Sector Sholl analysis of the basal dendritic arbors of LGN and 

claustrum projecting cells, as described in the text. The characteristic 

asymmetric, umbrella shape of claustrum projecting cells' basal dendrites shows 

clearly, and contrasts with the considerably more regularly shaped basal 

dendrites of LGN projecting cells. In this figure, 0 refers to the direction of the 

apical dendrite, the concentric circles represent iso-length contours for the total 

length of dendrite in each of the sectors. 
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considerably more restricted basal dendritic fields), which would fit well with 

the observed response properties of cells within the claustrum, which are 

strongly binocular (Sherk and Le Yay 1981). 

One other noteworthy feature of the basal dendritic field was that 

dendrites, in may cases, did not repect the grey /white matter border: portions 

of the basal dendrites often extended for up to 100 1-1m into the white matter 

(see, e.g., Figs. 9, 16, 17). As described in more detail below, these cells, as well 

as geniculate projecting cells, often have portions of their intrinsic axonal 

collaterals in this zone of white matter subadjacent to layer VI. Thus this region 

may be similar to layer I, in that it contains distal portions of dendrites as well 

as axon terminals, but contains very few cell bodies. 

Apical dendrites 

Most claustrum projecting cells possessed a long, thin apical dendrite that 

reached the bottom of layer I (Figs. 9, 15) In a few cells the apical dendrites 

only reached to layer IV (Figs. 11, 17). In both cases, the apical dendrite had 

occasional branches along its length, restricted to layers VI and V. In no case did 

branches either originate in or pass into layer IV. These apical side branches 

were usually short, less than 200 1-1m in length, and restricted in their horizontal 

extent. Branches that originated in layer V coursed upwards rather steeply and 

terminated at the V /IV border. After leaving the apical dendrite they either did 

not branch or branched once before terminating. The cells in Figs. 9, 13 and 18 

illustrate these features well. As a rule, the horizontal spread of the apical 

dendritic arborization was considerably narrower than that of the basal 

dendrites. Although the function of apical dendrites is obscure, they are likely 

to play some sort of modulatory role on the responses of cells. In this regard it 

is interesting that the apical dendrites of these cells are "listening" to a much 
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narrower zone of a column than are the basal dendrites. It may be that in these 

cells the apical dendrite's effect, whatever specific form it takes, is rather 

reduced in comparison to the basal dendrite. 

Occasionally cells had one process in layer V considerably longer and more 

horizontally extended than the others, as shown in Figs. 12 and 15. Interestingly, 

such processes always had roughly twice the horizontal extent of the main apical 

dendritic arbor. There were no intermediate forms, and thus these horizontal 

processes gave the impression of skipping over an area of cortex about 200 f.lm 

wide in order to arborize in some specific, more distant area. 

Dendritic spines 

A third distinguishing feature of these cells was the presence, on both 

apical and basal dendrites, of very large numbers of dendritic spines. Spines had 

a uniform size and morphology: usually a classic simple spine with a narrow 

(approximately 0.25 f.lm diameter) stalk, 3-5 urn long, topped by a sphere 

approximately 0.5 llm in diameter (Fig. 19). 

A brief investigation of the distribution of spines was conducted in order to 

investigate for any possible relationship between synapse density and innervation 

from the claustrum. Along the apical dendrite, spines reached their highest 

density in the upper portion of layer VI and the lower portion of layer V 

(Fig. 20). Spine density, high throughout layer V, dropped off dramatically in the 

upper layers. 

The basal dendrites' spine density, although also heavy, did not reach the 

density of the spiniest portion of the apical dendrite. As in most pyramidal cells, 

the middle section of dendrites had the greatest spine density (Jones 1975, Cajal 

1911 ). In particular the long, thick process usually had the highest spine density, 

and the portions of the dendrites in the white matter were sparsely spined. 
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The relationship between spine density and patterns of claustrum afferents 

is detailed in Discussion. 

Axonal collaterals 

The structure of the intrinsic axonal arbor provided the most obvious, 

consistent feature of claustrum projecting cells. Observations on the laminar 

distribution pattern of collaterals showed virtually identical patterns in every 

cell, and these differed completely from the pattern observed for LGN 

projecting cells, as discussed below. Claustrum projecting cells had a main 

efferent axon, approximately 0.7 urn in diameter, which emanated from the 

lower part of the cell body or from the initial portion of a basal dendrite. Before 

entering the white matter, it emitted 3-5 fine (0.2 J.lffi diameter), horizontally 

directed collaterals (Fig. 21). These collaterals continued in layer VI for at least 

500 J.lffi and frequently longer, up to 1 mm (Figs. 9, 15). Along this course they 

periodically showed various specializations, such as swellings (about 0.5 J.lm 

diameter) and spine like appendages, which probably represent sites of en passant 

synapses (LeVay 1973). At periodic intervals, these horizontal processes emitted 

shorter vertically directed subcollaterals of the same or finer diameter, which 

rose no higher than the lower half of layer V, where they terminated (Figs. 11, 

15). These subcollaterals exhibited many of the spine like appendages seen on 

the horizontal processes. In several cases the vertical processes seemed to form 

clusters of terminals, as previously described for other cortical neurons by 

Gilbert and Wiesel (1983). Subjectively, the course of the vertical collaterals 

seemed to run as if associated with the apical dendrites of some unidentified 

postsynaptic cells. 

The cells whose apical dendrite terminated in layer IV (Figs. 11, 17) had the 

most extensive horizontal collaterals, as well as the best examples of clustered 
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Figure 15. A claustrum projecting cell with a thick, basal dendritic process, but 

having an overall symmetric basal dendritic arbor. This cell has well develope9 

horizontal collaterals, with a cluster of vertically ascending processes . in the 

vicinity of the apical dendrite. Additionally, one apical dendritic side branch has 

an arbor about 200 ~m distant from the apical dendrite, giving the appearance of 

having skipped over the intervening portion of cortex. 
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Figure 16. Another claustrum projecting cell, which, like the one in Fig. 15, has 

a thick basal dendritic process but an otherwise symmetric arbor. This cell has 

extensive portions of its dendritic arbor in the white matter immediately 

subadjacent to layer VI; numerous short axonal collaterals originate within that 

zone as well. 
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Figure 17. A claustrum projecting neuron similar to that shown in Fig. 11. The 

apical dendrite goes no higher than the middle of lamina IVab; the extensive 

horizontal collaterals give rise to a dense cluster of vertical subcollaterals 

immediately to the right of the apical dendrite, in layer VI. Considerable 

portions of the basal dendrite arborize within the white matter subadjacent to 

layer VI. 
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Figure 18. An unusual claustrum projecting neuron with two thin apical 

dendrites reaching to the top of layer II. In other respects the cell shows 

standard claustrum projecting cell features: an umbrella shaped (although 

symmetric) basal dendritic arbor, restricted horizontal extent of apical dendrite 

branches, and horizontal intrinsic axonal collaterals, with vertical subcollaterals 

reaching lower layer V. 
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Figure 19. A high-power view of a portion of a claustrum projecting cells' apical 

dendrite, at the border between laminae VI and V. The dendrite is densely 

covered with simple spines with narrow stalks topped by small spheres. The 

spines appear to be roughly uniform in size and shape. Scale bar: 20 llm. 
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Figure 20. Numbers of spines along the apical dendrite of representative 

claustrum and LGN projecting neurons. Counts were made along 40 ~m long 

segments; the Roman numerals on top of each histogram refer to boundaries of 

the cortical laminae. Both projection classes showed a prominent peak of spine 

density at the layer VI/V border, some claustrum projecting cells had a smaller 

secondary peak at the IVc/IVab border. 
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Figure 21. Close-up view of the efferent axon and horizontal collaterals of the 

cell shown in Fig. 8a. The thick arrows point to the very thin, horizontally 

directed subcollaterals, which are considerably thinner than the main efferent 

axon. The thin arrow shows a small subcollateral originating in the white 

matter. Scale bar: 20 llffi· 
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Figure 22. Detail of a claustrum projecting cell's axonal subcollateral (thin 

arrows) with several en passant boutons (arrowheads) originating from the main 

efferent axon (thick arrows) within the white matter. The thicker process at the 

top of the figure, a dendritic process from the same neuron, also arborizes in the 

white matter. Scale bar: 20 llm. 
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ascending collaterals. In these examples clusters of vertical collaterals seemed 

spaced at about 300 llm intervals. 

Claustrum projecting cells often had a short collateral originating from the 

main axon after it had entered the white matter (Fig. 22). These collaterals did 

not show the marked horizontal orientation of the collateral originating in the 

grey matter; however their existence (along with the presence of dendritic 

processes from these cells) suggests, as within layer I, the presence of synaptic 

contacts in an acellular zone. The main axon itself frequently exhibited spine 

like appendages in this same zone (see, for example, Figs. 9, 17, 18) 

Lateral geniculate nucleus projecting cells: general morphological 

characteristics 

As a group, the geniculate projecting cells showed somewhat greater 

morphological variability. Most (>80%) were medium to large pyramidal cells 

with a dense, symmetric basal dendritic arbor, and a highly branched apical 

dendrite, reaching no higher than layer III, with branches in VI, V, and IV. These 

cells had few if any axon collaterals in layer VI, possessing instead strong 

recurrent collaterals to layer IV. Based on differences in the horizontal spread 

of their ascending dendritic and axonal arbors, these cells were termed class I 

and II cells. Another set of geniculate projecting cells (class III cells) had a 

smaller and less profuse (although generally symmetric) basal dendritic field, 

with apical dendrites that reached no higher than the bottom of layer IVc. The 

apical dendrite branched occasionally in layer VI, but no branches originated 

from higher levels. The intrinsic axons of these cells, thin and sparse, did not 

extend significantly within layer VI, and reached no higher than layer V. In the 

detailed descriptions given below, the properties of the class I and II cells are 

considered together since they form the bulk of the geniculate projecting cells; 
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the characteristics of the type III cells are considered separately. 

The separation of these cells into three classes is not completely 

arbitrary. As discussed in more detail below, the differences between these 

three classes bear at least some resemblance to the differences between the 

functionally distinct X, Y and W systems of cortical afferents. 

Soma and basal dendrites: class I and II cells 

Figure 23 shows several examples of these cells. Most class I cells had a 

distinctive, small, oval soma, approximately 12 1-1m along the long axis, which ran 

parallel to the grey/white matter border. Somal area was less than 120 1-1m2, thus 

placing these cells on the small side of the distribution of geniculate projecting 

cell sizes (as a group, retrogradely labeled geniculate projecting cells had an 

average size of 143 1-1m2 ± 41.5 S.E.M., n= 1 00) (Fig. 1 0). These cells had 6-8 basal 

dendritic arms (X = 6.6 ± 1.0 S.E.M., n=24 for combined class I and II cells), 

emanating from all points around the soma. These processes, all of similar 

thickness and length, branched profusely, close to the cell body. As a 

consequence, the basal dendritic arbor of these cells appeared very dense, 

compact and highly symmetric, with a radius of approximately 150 1-1m (Figs. 24, 

25). 

Class II cells generally possessed a standard pyramidal shaped cell body, 

somewhat larger than the class I cells. Like the class I cells, these cells had 6-8 

dendritic arms, all of equal thickness, which originated from symmetric positions 

around the soma. However, these dendrites tended not to show nearly as 

extensive branching as the class I cells, consequently the basal dendritic arbor 

had a somewhat sparser appearance (Fig. 26). Despite this difference, class II 

cell dendrites are all of approximately equal length (similar to class I cells, 

150 ].1m) and the basal dendrites show the same sort of symmetric pattern. 
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Figure 23. Intracellularly stained class I (a and b) and class II (c) lateral 

geniculate nucleus projecting cells. (A), (b), and (c) all show the dense, 

symmetric basal dendritic arbor typical of these cells. In (a), the widespread 

apical dendritic arbor is visible; in (b) some of the processes, particularly some 

of the extensive side branches, are located on adjacent sections, (see Fig. 24). 

Arrows indicate the characteristic thick, ascending vertical axonal collaterals. 

Scale bars: 50 lJm. 
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Figure 24. An example of a typical class I LGN projecting neuron. This cell has 

a small soma, with seven basal dendritic arms of equal length arranged radially 

around it. The apical dendrite reaches only to layer III, with long horizontal side 

branches in V and IV. Note the extensive collateral arborization in layer IV, the 

thick ascending collaterals, and the complete absence of horizontal collaterals 

within layer VI. A few unmyelinated collaterals originate from the axon in the 

white matter immediately subadjacent to layer VI. 
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Figure 25. A second class I LGN projecting neuron, similar to Fig. 25. In this 

neuron the apical dendritic branches in la.yer V form an arbor over 500 ~m in 

diameter, in contrast with the considerably smaller basal dendritic arbor, which 

is about 300 ~m in diameter. The thick ascending collaterals, which have only a 

small subcollateral in layer VI, arborize over an extensive area in Layer IV. 



Ill 

I 

WM 



82 

Figure 26. An example of a class II LGN projecting neuron. The cell has a 

medium sized, pyramidal soma, with six radially arranged basal dendritic arms. 

The dendritic arbor is somewhat sparser than that of class I cells. The apical 

dendrite extends to layer III, with side branches more vertically directed than 

those of class I cells. The ascending axon collaterals, thinner and more 

vertically oriented than class I cell's axons, also have somewhat greater number 

of collaterals, thin and unmyelinated, within layer VI. The ascending axons 

terminate within layer IV. 
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The shapes of the basal dendritic arbor were analyzed by the sector Sholl 

method as described for claustra! projecting cells (Fig. 14). Although most cells 

show the symmetric pattern, some deviate markedly from it, usually as a 

consequence of the position of the cell body relative to the grey/white matter 

border. Unlike claustrum projecting cells, geniculate projecting cells basal 

dendrites generally avoid the white matter. Cells close to the border often 

orient their dendrites parallel to the border rather than penetrating it, thus 

producing bilaterally symmetric, but not radially symmetric patterns. 

Apical dendrites: class I and II cells 

Both class I and class II cells possessed apical dendrites never traced higher 

than layer III. Along their course, these dendrites emitted numerous branches in 

layers VI, V and IV. However, the horizontal extent and form of these side 

branches differed somewhat between the two classes. Class I cells typically had 

very long horizontal branches originating from layer V, which, at their point of 

exit from the apical dendrite, made an angle of almost 90° with it. Such 

branches coursed horizontally within layers V and IVc for up to 400 llm on either 

side of the apical dendrite, thus endowing some of these cells with an apical 

dendritic arbor of over 700 llm in width (Fig. 25). Other branches, particularly 

those in layer IV, formed considerably steeper angles with the apical dendrite 

and did not show such considerable horizontal extent. Both types of dendritic 

collaterals of type I cells branched either once or not at all after leaving the 

apical dendrite. 

The side branches of class II cells left the apical dendrite at considerably 

steeper angles than the horizontally directed dendrites of class I cells, thereby 

forming an apical dendritic field with about with about half the horizontal extent 

observed for the class I cells (Fig. 26). Also, these processes tended to branch 
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multiple times during their ascending course, increasing the total dendritic 

length significantly. 

The horizontal extent of the apical dendritic field was always greater than 

that of the basal dendrites, a difference most pronounced for the class I cells, in 

which apical dendritic spread was often twice, and occasionally up to three times 

that of the basal dendrites. For the class II cells, the difference was not as 

dramatic, but still on the order of 1.5 times as extensive. 

Dendritic spines: class I and II cells 

Both classes of cells had light to moderate numbers of spines. Spine 

morphology and size varied considerably, ranging in shape from the classic 

simple spine with a narrow stalk topped by a sphere, to stalks without spheres, 

and occasional thorn-like projections (Fig. 27), and ranging in size from 5 1-1m long 

down to less than 1 1-1m. On the apical dendrites, the concentration of spines 

peaked at the top of layer VI and the lower portion of layer V (Fig. 20b). Spine 

density remained rather high through layer V but dropped off considerably in 

layer IV. The basal dendrites showed a lower spine density (Fig. 27), with an 

average of 1 spine per 5 linear microns of dendrite. 

Axon collaterals: class I and II cells 

As with the claustrum projecting cells, the appearance of the intrinsic 

axonal arbor formed the most consistent and obvious feature of the geniculate 

projecting cells. Class I and II cells showed similar distribution of processes. 

Both had a prominent efferent axon (0.5-1.0 1-1m diameter) which entered the 

white matter. Before this point, the axon emitted 3-5 thick, vertically directed 

axonal collaterals, which ascended with only occasional branching, and 

terminated in layer IV. These collaterals, only slightly less thick than the parent 
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Figure 27. Spines on the dendritic processes of LGN projecting cells. a) Spines 

on the apical dendrite as it passes through the VI/V border. Spines are of many 

shapes and sizes, and considerably less dense than those on claustrum projecting 

cells (Fig. 19). b) Spines on the middle portion of a basal dendrite (where spine 

density is highest); even at this point spines are quite sparse. Scale bars: 20 ~m. 
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axon, and myelinated until they reached the lower boundary of layer IV, then lost 

their myelination and began branching extensively, with prominent spine like 

appendages at frequent intervals along their length in layer IV (Figs. 24-26). In 

contrast to this well developed ascending collateral system, these cells produced 

minimal numbers of axon collaterals within layer VI. Class I cells usually had no 

more than an occasional axonal twig, less than 50 1-1m long, in layer VI; class II 

cells occasionally had slightly greater collateralization within VI. Figure 26 

shows the cell which had one of the most extensive layer VI collateral systems of 

any geniculate projecting cell encountered. 

In terms of axonal arborization, class I and II cells differ principally in the 

thickness and horizontal spread of the ascending collaterals. Class I cells all had 

widespread, thick ascending collaterals 0.7-0.9 1-1m in diameter. As they coursed 

through layer v, the processes emitted few if any appendages or subcollaterals. 

The lateral spread of these collaterals could extend up to 1 mm (measured at the 

boundary of layers V and IVc). The fine terminal collaterals had an even greater 

lateral spread than the parent trunks. 

The ascending collaterals of the class II cells were considerably thinner 

(0.3-0.5 1-1m diameter) and more restricted in horizontal extent than those of 

class I cells: in general the collaterals remained within the confines of the cells 

apical dendritic arbor. The terminal arbors of these cells did not fill with dye as 

well as those of class I cells (probably because of the thinner ascending 

collaterals). As they coursed through layer V, class II collaterals showed 

occasional spine-like appendages, or short, unmyelinated branches (Fig. 28a), 

only rarely seen in the type I cells (Fig. 28b). 

The difference between the patterns of distribution of intrinsic axons of 

geniculate and claustrum projecting cells forms a striking dichotomy. The 

absence of horizontal collaterals in geniculate projecting cells does not result 
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Figure 28. Ascending axonal collaterals of LGN projecting cells. a) Collateral 

of a class I neuron, as it courses through layer V, showing the characteristically 

thick, smooth process with only an occasional appendage (arrow). b) Collateral 

of a class II cell in layer V, considerably thinner than the process in (a), and 

showing frequent spine-like appendages (arrows). Scale bars: 20 1-1m. 
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from a failure to fill such processes, or consistent truncation of them in the 

slicing process. Gilbert and Wiesel ( 1979, 1981, 1983) have published several 

examples of cells in layer VI filled in vivo with HRP. Even in their very 

complete fills, cells with ascending collaterals to layer IV have virtually no 

axonal arbor within layers VI and V. However, apparently the extent of filling of 

the terminal arborization of these cells is significantly more complete in vivo 

than in vitro, although the pattern of distribution of processes is identical. Thus 

one must be cautious in interpreting the absence of processes in slices; the 

possibilities of truncation and/or failure to fill fine terminals pose genuine 

problems. 

Both classes of cells exhibited occasional short collaterals and spine-like 

appendages in the zone of white matter approximately 100 l.lm below the border 

of layer VI and white matter. The post-synaptic targets of such processes are 

unclear. Since most geniculate projecting cells dendrites do not cross the 

grey/white matter border, these short collaterals probably do not make extensive 

contacts with the basal dendrites of other geniculate projecting neurons. 

Soma and basal dendrites: class III cells 

These cells had a range of soma sizes and shapes indistinguishable from 

those of the class I and II cells. Occasionally a very small cell, such as the one 

shown in Fig. 29 was filled, but many were of the standard pyramidal shape and 

size (e.g. Fig. 30). 

Similarly, class III cells had a dendritic field structure virtually identical to 

the class I and II cells, with 6-8 thin basal dendritic arms, of the same length, 

arranged radially around the soma (Fig. 30). When the soma was located near the 

white matter (Fig. 31), the dendrites adjacent to the white matter were 

somewhat shorter than the rest. The dendrites extended in a symmetric fashion, 
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Figure 29. A small class III LGN projecting neuron. This cell has a very small 

soma, with 7 basal dendritic arms. The apical dendrite is restricted to layer V, 

and the axon collaterals are thin and sparse. Dendrites are moderately spined. 
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Figure 30. An example of a sparsely spined class III LGN projecting neuron. This 

cell has a medium sized pyramidal shaped soma, with eight dendritic branches. 

The apical dendrite is weakly developed and appears almost vestigial. The axon 

collaterals, thin and with little horizontal extent in layer VI, reach no higher 

than layer V. 
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Figure 31. A class III LGN projecting neuron with a soma located at the 

grey /white matter border. The close proximity to the border gives the dendritic 

arbor a bilaterally, rather than radially, symmetric appearance. The apical 

dendrite reaches no higher than lower lamina IV, and side branches originate in 

VI only. The intrinsic collaterals are sparse. 
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forming an arbor about 150 J.Jm in diameter. 

Apical dendrites: class III cells 

All class III cells had poorly developed apical dendrites which extended no 

higher than the lower part of layer IV, and usually no higher than the V /IV 

border. Within layer VI, the apical dendrite gave rise to several short side 

branches, with a horizontal extent less than that of the cell's basal dendrites 

(Figs. 29-31). These branches coursed primarily through layer VI, occasionally 

reaching and ending within layer V. No side branches originated from the apical 

dendrite above the VI/V border. 

Dendritic spines: class III cells 

Both the basal and apical dendrites of these cells exhibited dendritic spines 

of numerous shapes and sizes, similar to those described for the class I and II 

cells. Their density ranged from moderate (e.g. Fig. 31) to quite sparse 

(Fig. 30). Dendritic spine distribution on the apical dendrites of class III cells 

differed from that observed on the class I and II cells in that class III cells had 

their dendritic spines concentrated on those portions of the apical dendrite that 

lay within layer VI, with a marked diminution of spine density after the dendrite 

entered layer V (in contrast, the spine density of class I and II cells, initially low 

within layer VI, peaked at the V /VI border, and remained quite high within 

layer V). 

Axon collaterals: class III cells 

In comparison to the class I and II cells, class III cells had considerably 

restricted intrinsic axon collaterals. None of the very thin (0.2-0.3 J.Jm diameter) 

ascending collaterals reached higher than layer V. Horizontally, within layer VI, 
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the collaterals were highly restricted as well, with no significant arborization 

seen much outside the boundaries of the basal dendrites. Figure 30 shows the 

cell with one of the most extensive collateral systems encountered. 

Thus in general class III cells greatly resemble the class I and II cells in 

terms of basal dendritic structure, but show marked differences in the apical 

dendritic and intrinsic axonal arborizations. 

Axon diameters of lateral geniculate nucleus projecting neurons 

After looking at many geniculate projecting cells, it became clear that 

they, unlike the axons of claustrum projecting cells, exhibited considerable 

heterogeneity in the diameters of both the efferent and especially the intrinsic 

ascending axons. As Fig. 32 (top) shows, this variability did not result as a 

simple consequence of cell size; soma area alone could not predict the size of 

the cell's axons. In Fig. 33, the number of cells in each group of efferent and 

recurrent axon diameters is shown. Because of the limited resolving power of 

the light microscope (about 0.2 llm) and the small diameter of these axons to 

begin with, no distinctions can be made on a fine enough level to decide whether 

these groupings reflect distinct classes, or the distribution of a parameter along 

a continuum. Nevertheless, there is at least a three-fold difference between the 

smallest and largest diameter axons. It is also important to note that axon 

diameter is a shared property of the efferent and recurrent axon colla terals: the 

two diameters are very highly correlated (r=0.88, p < 0.00 1). One observation 

that suggests that this distribution may in fact represent distinct classes of 

neurons is that the larger size collaterals (those greater than 0.6 llm diameter) 

are almost always ( 11 of 13 class I cells) associated with the class I dendritic 

morphology described above, the smaller diameter axons belonged to either 

class II or III cells. In order to rigorously separate this continuum into classes 
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Figure 32. Comparison of soma area with efferent (top) and recurrent (bottom) 

axon diameters: the efferent axons show a weak correlation, the recurrent axons 

have none. 
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Figure 33. Histogram of the number of cells with efferent and recurrent axon 

collaterals in the smallest intervals resolvable by the light microscope. Although 

both types of axons are apparently distributed along a continuum, there is over a 

three-fold difference in the diameters of the largest and smallest axons. 

Recurrent axons are in general slightly thinner than efferent axons (about 7 596 of 

the diameter), but for any one cell the thickness of the efferent and recurrent 

processes is very highly correlated. 
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(indeed, if it can be so separated) additional, independent criteria, such as 

distinct patterns of inputs to these three putative classes, will be required. 

It is well known that there are three independent, functionally distinct 

classes of afferent fibers to Al7 arising from the lateral geniculate: the parallel 

Y, X and W systems (Hoffman and Stone 1971, reviewed by Lennie 1980). The 

morphology and terminal sites of these systems are also distinct--Y afferents are 

large, fast conducting, and show widespread terminals in layer IVab and upper 

layer VI, X afferents are medium sized, slower conducting, and terminate 

narrowly within layer IVc and upper layer VI, and W afferents are very thin, 

slowly conducting, and terminate within layers V and I (Ferster and LeVay 

1978). The ratio between the thickness of Y:X:W axons is approximately 2:1:0.8, 

which is very similar to the apparent size differences in recurrent colla terals 

shown in Figs. 32 and 33. In this regard, the varying thickness of the intrinsic 

recurrent collaterals is intriguing, as it may represent separate feedback streams 

corresponding to the different afferent information channels. 

If in fact these various layer VI cells were functionally related to the X or 

Y systems, one might expect that their axon terminals would show distinct 

patterns of sub-laminar termination within layer IV that corresponded to the 

channel with which they were involved. Gilbert and Wiesel ( 1979, 1983) have 

published drawings of some layer VI cells that have their terminal arborizations 

primarily restricted to layer IVab, and others whose terminals distribute 

throughout layer IV. Similar patterns were occasionally observed in the various 

LGN projecting cells described here. However, no conclusions regarding the 

relationship of axon diameter or dendritic morphology to mode of termination 

within layer IV have been drawn here, for the following reason. As mentioned 

previously, there are significant limitations on the completeness of filling of 

some of the more distal branches of long axons. Although in most cases, some 
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axon collaterals of LGN projecting cells could be traced to layer IV, in no case 

was the entire axonal arborization within layer IV visualized. Thus, apparent 

laminar restrictions might be artifactual. It is possible, however, that using HRP 

as an intracellular marker, which is probably more sensitive for visualizing such 

processes, might indeed reveal a relationship between axonal termination 

patterns and dendritic morphology. 

Summary comparison of claustrum and geniculate projecting cells 

Cells that project to the lateral geniculate or to the claustrum have 

completely different, and in some respects, non-overlapping patterns of 

distribution of basal and apical dendrites, dendritic spines, and intrinsic axonal 

arborizations. 

Somas and basal dendrites 

Statistical comparison of the distributions of cell body areas for claustrum 

and LGN projecting cells showed no significant difference (Fig. 1 0). The very 

smallest cells of the geniculate class ( <80 llm2) were, however, smaller than the 

smallest of the claustrum projecting cells. 

Claustrum projecting cells have about one third fewer basal dendritic arms 

(3-5) than lateral geniculate projecting cells (6-8), a difference which is highly 

significant (students t-test, p < 0.0 1). The presence of one or two thick, long 

dendrites, a feature never observed in geniculate projecting cells, gives the 

claustra! cells a markedly asymmetric basal dendritic field, compared to the 

characteristically symmetric field of geniculate projecting cells. However, the 

two projection classes show similar branching patterns for the initial 100 llm of 

dendritic length as assessed by Sholl analysis (Figs. 34 and 35). Claustrum 

projecting cells dendritic processes do not generally respect the grey/white 



106 

Figure 34. Sholl analysis (using 20 1-1m spacing between concentric circles) of the 

basal dendritic arbors of claustrum (top) and LGN (bottom) projecting neurons. 

Each curve represents an individual cell. Despite considerable variability, the 

claustrum projecting cells show a clear "tail" in this analysis, due to the presence 

of a long, asymmetric process. In both projection classes, neurons that have a 

large number of intersections close to the soma have a more restricted total 

radius; cells with reduced numbers have arbors extending over greater distances. 
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_Figure 35. Data from Fig. 34 averaged to show general trends. The points 

represent average values from 7 cells of each projection, the error bars are ± 

S.E.M. Although both LGN and claustrum projecting cells have peak numbers of 

intersections at about 80 l-Im from the soma, the LGN neurons arbor is 

significantly denser, due principally to the greater number of dendritic arms. 

The asymmetric process of claustrum projecting cells gives rise to a long "tail", 

absent from the geniculate projecting neurons. 
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matter boundary, but those of geniculate projecting cells usually do. 

Apical dendrites 

The apical dendrite of claustrum projecting cells characteristically reaches 

layer I; geniculate projecting cells never reach above layer III. However, the 

geniculate projecting cells have a quite extensive apical dendritic arbor, with 

branches in layers VI, V and IV. Figure 36 shows a Sholl analysis of the apical 

dendritic branching patterns of geniculate and claustrum projecting cells, which 

demonstrates the more profuse branching of the geniculate projecting cells' 

apical dendrites. The horizontal extent of these branches is often considerably 

greater than that of the basal dendrites. In contrast, the apical dendrite of 

claustrum projecting cells has only short branches in layers VI and V, so that the 

horizontal extent of the apical dendritic arbor is typically considerably narrower 

than that of the basal dendrites. In terms of total length, geniculate projecting 

cells have an apical dendritic arbor about 5096 larger than claustra! projecting 

cells (Fig. 37). 

Dendritic spines 

Claustrum projecting cells have an overall spine density higher than that of 

geniculate projecting neurons, with spines more uniform in shape and size. In 

terms of peak density (at the layer VI/V border), claustrum projecting cells have 

roughly twice as many spine per length of dendrite as geniculate projecting 

cells. The two projections share one feature of spine distribution both have 

peaks of spine density at the VI/V border. Geniculate projecting cells tend to 

have a peak of spine density at the III/IV border as well, a feature not observed 

in claustrum projecting neurons. 
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Figure 36. Sholl analysis of the apical dendritic arbors of LGN and claustrum 

projecting cells (using 20 lJffi spacing between concentric circles), each point 

shows the average of 7 cells, ± S.E.M. Both the greater horizontal and vertical 

extent of the apical dendritic arbor of LGN projecting cells are apparent. 
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Figure 37. Cumulative dendritic length of claustrum and LGN projecting 

neurons, derived from the average values obtained in the analysis shown in 

Fig. 36. LGN projecting cells have substantially greater amounts of apical 

dendritic length; this, coupled with the data on distribution of such processes 

(see text) implies that these cells can collate information from significantly 

larger areas of the upper layers than can the claustrum projecting neurons. 
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Intrinsic axonal arborizations 

All claustrum projecting cells had thin, horizontally directed axon 

collaterals which coursed extensively within layer VI and never rose above 

layer V. The geniculate projecting neurons, in marked contrast, had virtually no 

horizontal collaterals within layer VI, but possessed instead thick, ascending 

collaterals that arborized extensively within layer IV. The efferent axons of 

both cells had occasional collaterals or appendages within a 100 1-1m thick zone of 

white matter immediately subadjacent to layer VI. 

Non-projecting pyramidal cells in layer VI 

Studies on the neuronal constituents of layer VI have revealed a puzzling 

discrepancy. Large, extensive injections of various retrograde tracers into the 

lateral geniculate nucleus label at most 6096 of the cells in layer VI (Gilbert and 

Kelly 1975, LeVay and Sherk 1981). According to LeVay and Sherk (1981), and 

the work presented here, fewer than 596 of layer VI cells project to the visual 

claustrum. Electron-microscopic (Lund 1981) and immunocytochemical (Ribak 

1978) studies suggest that, outside layer IV, fewer than 1096 of the neurons are 

spine-free or sparsely spined interneurons. Totaling these percentages leaves 

2596 of the cells unaccounted for. Several trivial explanations could potentially 

account for the discrepancy. For instance, certain populations of projection 

neurons may be very difficult to retrogradely label using current techniques, thus 

the actual percentages of projecting neurons might be higher than the numbers 

stated above. Another possibility, although somewhat less likely, is that certain 

glial cells have been consistently misidentified as neurons, thus artifactually 

raising the percentage of unlabeled cells. 

However, at least some, and perhaps most, of these "lost" cells are 
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pyramidal cells that lack an efferent axon. In early experiments, random lucifer 

yellow fills of cells in layer VI suggested that approximately 20% of the cells 

filled lacked an efferent axon, despite excellent filling in all other respects. 

Figure 38a shows an example of one commonly encountered cell of this type. In 

such cells, a thick axonal process left the soma, proceeded towards the white 

matter for about 100 11m, and then abruptly turned pially, forming a distinct "U" 

turn. The axonal process of another such cell shows this in more detail in 

Fig. 38b. At the bottom of the "U", the thick axon occasionally possessed a 

short, very thin, unmyelinated collateral that either ended within layer VI or 

continued briefly within the white matter before terminating. Before the "U" 

turn, the thick axon also sent off several collaterals only slightly thinner than 

the parent axon. These processes followed the course of the parent axon, i.e., 

towards the pia. Occasionally along their length in layer VI they gave rise to 

thin, unmyelinated, vertically directed subcollaterals that arborized within 

layer V. Although in some cases both the parent and daughter collaterals could 

be traced for over 1 mm, the final terminal arborizations of these cells were not 

found. The overall pattern of the intrinsic axonal arbor strongly resembled 

either class I or II geniculate projecting cells: thick, vertically oriented axons 

with only very sparse collateralization within layer VI. 

In most cases the dendritic arborizations as well resembled that of either 

class I or II geniculate projecting neurons. The basal dendritic field consisted of 

6-8 dendritic arms, all of approximately equal thickness and length, forming a 

symmetric field. The apical dendrites did not rise higher than layer III, with 

frequent side branches in layers VI and V. Moderate numbers of spines covered 

both apical and basal dendritic processes (Fig. 39). 

A second type of intrinsic pyramidal cell, encountered much less 

frequently, had features of basal and apical dendrites, as well as intrinsic axonal 
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Figure 38. a) intrinsic pyramidal cell with morphological characteristics 

resembling LGN projecting neurons. The arrow indicates the main axon, which 

makes an abrupt "U" turn. Figure 39 is a camera lucida drawing of this cell. 

Scale bar: 50 1-1m. b) A close up view of the "U" turn (arrows), in a cell similar to 

that described in (a). Scale bar: 20 1-1m. 
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Figure 39. Drawing of the intrinsic pyramidal cell shown in Fig. 38a. The size 

and shape of the basal dendrites, the spine distribution on the apical dendrites, 

and the morphology and distribution of the axon collaterals resemble those of 

LGN projecting neurons. A very thin, unmyelinated process enters the white 

matter, but definitely ended where indicated. The thick ascending collaterals 

could not be followed to their final destination, although some terminals are 

clearly visible in layer V. 
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Figure 40. Intrinsic pyramidal cell with morphological characteristics 

resembling those of claustrum projecting neurons. Figure 41 is camera lucida 

drawing of this cell. Scale bar: 50 1-1m. 
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Figure 41. Drawing of the intrinsic pyramidal cell shown in Fig. 40. This cell 

has the asymmetric basal dendritic process, and long, thin, sparsely branched 

apical dendrite typical of claustrum projecting neurons (compare, for example, 

to Fig. 16). This is one of a very few cells whose apical dendrite terminated in 

layer I with a "spray" of branches. The axon initially heads in the direction of 

the white matter, but then turns to the right and travels horizontally, without 

entering the white matter, for over 1 mm ( the axon traveled in the direction 

directly opposite to that of efferent axons that entered the white matter). The 

axon also shows features characteristic of claustrum projecting cells; in addition 

to the horizontal orientation of the processes, the axon sends up occasional 

short, vertically oriented subcollaterals. The overall axonal arbor of this cell is 

quite sparse, however. 
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arbors, very similar to those of claustrum projecting neurons (Figs. 40 and 41 ). 

Such cells possessed 3-5 basal dendrites, with one considerably thicker than the 

rest, forming an asymmetric basal dendritic arbor. The thin apical dendrite 

reached layer I with minimal side branching and very short branches in layers VI 

and V. Both apical and basal dendritic processes had many spines. The thin 

intrinsic axons of these neurons ran horizontally within layer VI, and never rose 

above lower layer V. Although usually not as profuse as most claustrum 

projecting cells, the axon's horizontal extent seemed greater; in several cases a 

single process extended for over 1 mm. 

Pyramidal cells without an efferent axon have been previously described 

(Gilbert and Wiesel 1983, O'Leary 1941, Sholl 1955). However, the use of the 

Golgi technique (except by Gilbert and Wiesel) in these studies makes the lack of 

an efferent axon ambiguous, for in some cases it might be due to failure of the 

process to impregnate. Also, neither the Golgi data, nor the in vivo intracellular 

work can provide a reasonable estimate for the frequency of such cells. In 

layer VI of the adult cat at least, they appear to be quite common. Based on the 

morphological resemblance of the intrinsic cells to known projection classes of 

pyramidal cells in the same layer, these cells might represent populations of 

neurons that originally projected either to the lateral geniculate or the 

claustrum, but which, during development, did not for some reason maintain 

connections to their respective post-synaptic targets (see Discussion). 

DISCUSSION 

LeVay and Sherk (198la), on the basis of anterograde labeling within cortex 

following the injection of tritiated aspartate into the claustrum or LGN, first put 

forward the idea that claustrum and LGN projecting neurons might have 
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different patterns of intrinsic axonal connections. They noted, (as did Baughman 

and Gilbert 1980), that lateral geniculate injections produced, in addition to 

retrogradely labelled cell bodies within layer VI, a band of labelled terminals in 

layer IV, which they surmised originated from axonal collaterals of layer VI 

cells. After claustrum injections with tritiated aspartate, label, both within cell 

bodies and diffuse, was confined to layer VI. They interpreted this as implying a 

lack of ascending axons in claustrum projecting cells. Alternatively, the 

sensitivity of the retrograde aspartate technique might not have been sufficient 

to demonstrate a layer IV projection arising from a small population of neurons. 

However, the results presented here demonstrate that they were correct: 

claustrum projecting cells do not have axonal collaterals to layer IV. Their 

results, corraborate, therefore, on a population level, the results described here 

at the level of a sample of single identified neurons. Although the techniques 

employed by LeVay and Sherk did not allow them to visualize the complete 

dendritic arbors of claustrum projecting cells, their published drawings of somas 

and initial dendritic processes bulk-labelled after large peroxidase injections into 

the claustrum, clearly show the same cell types described here. Their Figure 5, 

for example, shows cells with two of the diagnostic features of claustrum 

projecting cells: the presence of one or two basal dendritic processes 

considerably thicker than the rest, and the marked asymmetry of the basal 

dendritic arborization. This again independently corroborates the identity of the 

cells described here. 

The demonstration that neurons which project to the claustrum or LGN 

have such distinct differences in their patterns of dendrites and intrinsic axons 

has important implications for the kinds of information to which these cells have 

access, and the influences of these cells on the activity of other neurons within 

Al7. The very widespread horizontal collaterals of claustrum projecting cells 
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suggests that the activity of one cell can influence other cells at a considerable 

distance. These collaterals contact unknown postsynaptic sites, making it 

imposssible to predict whether these collaterals have excitatory or inhibitory 

effects on, or possibly do not even connect with, other claustrum projecting 

neurons. The prediction of the sign of any post-synaptic effects is particularly 

difficult since electron-microscopic evidence shows that pyramidal cell 

collaterals can contact either dendritic spines, or the dendrites or somas of 

spine-free (and presumably inhibitory) neurons (LeVay 1973). However, the 

horizontal collaterals may coordinate in some way the activity of cells that form 

the single, highly ordered retinotopic map found in the claustrum (LeVay and 

Sherk 198lb). In all the experiments described here, coronal sections of All 

were used, and thus all horizontal collaterals of claustrum projecting cells ran 

primarily along the medial to lateral axis of the visual map. It is not known what 

the relative extent of such collaterals might be in the anterior-posterior 

direction. Based on the information obtained so far, it is not yet possible to 

explain the marked distortion of the claustrum map-in which the representation 

of the periphery is greatly expanded relative to All-on the basis of observed 

axonal patterns of claustrum projecting cells. In monkey striate cortex, 

horizontal collaterals apparently strongly and specifically connect cytochrome 

oxidase "blobs" (Livingstone and Hubel, 1984); other functionally related cortical 

subsystems, such as the claustrum projection, may show similar connectional 

patterns. In any event, the sparse connections of LGN projecting cells within 

layer VI provides rather unambigious evidence that activity in any one of these 

cells must have little or no direct, monosynaptic effect on that cell's neighbors. 

On the other hand, the ascending collaterals to layer IV must have quite strong 

effects on at least some of the cells within that layer. Sherk and LeVay (1983) 

noted that after destruction of the claustrum, end stop inhibition was decreased 
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by roughly 20%, especially in layers IV, and II/III. They postulated that the 

ability of claustrum cells to respond to very long slits might underly an inhibitory 

circuit that generated end-stop inhibition. Since a fair amount of end-stopping 

persists even after destruction of the claustrum, it cannot be the sole source for 

generating this response property, and they considered it possible that the 

geniculo-cortical cells in layer VI, which also respond to long slits, might underly 

the remainder of the end-stopping. McGuire et al. (1983) have shown that the 

ascending axons of these cells contact dendrites of spine-free cells in layer IV, 

which would be consistent for such cells playing a role in the generation of end­

stopping. 

The relationship of cell morphology to afferent input 

Both the LGN and claustrum send afferents to cortex, as well as receive 

input from the two neuron types described here. How do the structural features 

of these cells relate to the known pattern of their respective afferent inputs? 

According to LeVay and Sherk (198la) the claustrum projection to Al7, 

assessed autoradiographically, distributes across all the cortical layers. The 

lower portion of layer VI, and layer IV show the densest labeling; layer V has 

markedly fewer terminals. Within layer V, a trough of claustrum afferent 

density, claustrum projecting cells have their apical dendritic branching; these 

branches absolutely stop at the V /IV border, where the afferents from the 

claustrum reach their peak. Conversely, at the lowest point of afferent 

density--in upper layer VI and layer V--the density of dendritic spines on the 

apical dendrite of these cells reaches its peak (Fig. 20). The basal dendrites, 

however, lie in a region of high claustrum afferent input, and do not extend into 

the upper part of layer VI, which has a low density of such input. The apical 

dendrites of claustrum projecting cells seem to follow one set of rules, 
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attempting to minimize the region of overlap between dendrites and claustra! 

afferents, while the basal dendrites follow a different set of rules, and try to 

maximize such over lap. 

The afferents to cortex from the LGN terminate principally in upper 

layer VI and throughout layer IV. In contrast to the claustrum projecting cells, 

the geniculate neuron apical dendrite structure does not seem to avoid layers in 

which the LGN afferents terminate; they have quite a few dendritic branches 

within layer IV. In addition, the apical dendrites have their highest 

concentrations of spines at the V /VI border, again an area of dense afferent 

innervation. This picture agrees well with that seen in monkey layer VI by Lund 

(1973). In that Golgi study, neurons identified as probably projecting to the LGN 

showed specific patterns of branching of their apical dendrites and intrinsic, 

recurrent collaterals back to the layers of primary afferent input from the 

various layers of the LGN. 

Yet other work reveals neurons in other layers which, similar to the 

claustrum projecting cells, seem to avoid contacts within the layers of afferent 

termination. For instance layer V cells in both cat and monkey either have a 

greatly reduced spine density as their apical dendrite traverses layer IV (Lund 

1973), or in the monkey, the apical dendrite becomes vestigal before or just after 

entering layer IV (Lund and Boothe 1975). Layer V, like the claustrum projecting 

cells in layer VI, sends a retinotopic projection to the superior colliculus (Gilbert 

and Kelly 1975, Palmer and Rosenquist 1974, Lund et al. 1975). 

Cell morphology: possible relationships to feedforward and feedback projections 

The differences in LGN and claustrum projecting cell's structure could be 

due to their projections to different efferent targets. However, an additional 

factor, perhaps even more significant, may be the different directions that they 
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send their respective information, either feedforward or feedback. The 

organization of visual cortical areas according to their position in feedforward 

and feedback loops has been studied extensively by Maunsell and Van Essen 

(1983a). Their definition of the direction of a projection rests on the anatomical 

relationships between two areas. Feedforward connections originate primarily 

from the upper (supragranular) cortical layers, with occasional small 

contributions from lower (infragranular) cortical laminae. These projections 

terminate principally in layer IV of the recipient area. Feedback projections 

originate predominantly from the infragranular layers and terminate in the 

supra- and infragranular layers of the recipient area, conspiciously avoiding 

layer IV. On a physiological level, an area that is higher in the hierarchy (that is, 

receives feed forward projections) has larger receptive fields at a given 

eccentricity, and tends to show greater selectivity in some response properties. 

They also recognized a third type of connectional pattern, intermediate between 

feedforward and feedback, which they termed lateral connections. 

This scheme was explicitly constructed to explain patterns of connections 

between visual cortical areas in the macaque, and the authors caution that it 

may not be applicable to other species or to subcortical connections. 

Nevertheless, it serves as a useful starting point for analyzing the relationships 

between the morphology of cells in various laminae, and whether they send 

feedforward or feedback connections. 

The claustrum is an unusual structure in that, although it is subcortical, it 

receives its input primarily from cortical areas, and sends its efferents 

exclusively to the cortical structures. It receives no direct inputs from visual 

thalamic relay nuclei, and thus in several ways resembles an extrastriate cortical 

area. By considering the patterns of projections to and from this structure, as 

well as the response properties within it, some educated guesses can be made 
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concerning its hierarchical position. 

The afferents to the claustrum in A17 originate almost exclusively from 

layer VI, while layer III makes an almost negligible contribution. In the monkey 

this would be very unusual for a feedforward connection; in the cat as well, most 

of the well-defined feedforward connections originate from the supragranular 

layers of A 17 (e.g. connections to areas 18 and 19). The projection from the 

clasutrum likewise has an unusual termination pattern: the densest projections 

are to layers IV and VI, although all layers recieve some input. While the 

layer VI projection would be expected for a feedback connection, the layer IV 

projection would not. 

On a physiological level, claustrum cells have several characteristics which 

would indicate that they receive feedforward projections from Al7. Their 

receptive fields are larger, at a given eccentricity, than those of layer VI cells. 

Other characteristics, such as binocularity, direction and velocity selectivity, 

suggest that individual claustrum cells may pool the input from several layer VI 

cells. The response properties of claustrum cells greatly resemble those seen in 

layer VI of Al7: they have very elongated receptive fields, show linear response 

summation to slits of increasing length, and show marked orientation 

selectivity. Claustrum cells probably integrate the input from groups of input 

cells, since these cells are strongly binocular, whereas layer VI cells are strongly 

monocular; they have little direction selectivity, which is often strong in layer VI 

cells. Also, claustrum cells show response summation to slits of light even 

longer than those which generate maximal responses in layer VI (Sherk and LeVay 

1981). Since the claustrum does not receive any visual input other than from 

cortical cells, disruption of the cortex would presumably eliminate responses in 

the claustrum. Ablation of the claustrum (by kainic acid injections) has rather 

mild effects on the response properties of cells in A 17, reducing end-stop 
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inhibition in about 2096 of the cells, but not destroying the overall responsiveness 

of any lamina (Sherk and LeVay 1983). 

Based on the above considerations, it would seem somewhat artificial to 

afix a rigid hierarchical position to the claustrum. Although the laminar origins 

and terminations of projections are incorrect for the strict formulation of 

feedforward and feedback projections in macaque cortex, if the apparent 

physiological role of the projections is considered, it seems plausible that the 

projection to the claustrum from A17 has many of the characteristics of a 

feedforward projection, whereas the projection from the claustrum to A17 

resembles a feedback connection. 

In contrast, eliminating input to A17 by the application of local anesthetic 

to the LGN virtually silences layer VI (as well as layer IV) (Malpeli 1983). 

Interrupting the activity of A17 (by local cooling, for example) leaves the major 

response characteristics of LGN neurons intact (although subtle effects have 

been described (see Introduction), there is no concensus about how, or how 

strongly the Al7 projection to the LGN influences the response properties of 

LGN neurons). Thus, on a formal (as well as intuitive) level, Al7 has a feedback 

projection to the LGN. 

Major conclusions about the underlying role 9f projection direction in 

defining neuronal structure obviously cannot be drawn from the examination of 

only two projections. However, other pieces of circumstantial evidence also 

suggest that it may provide an important determinant of at least the intrinsic 

axonal patterns of a given neuron. It is important to note that this suggestion is 

based entirely on observation, not on logical deduction about the different 

functions required of feedforward and feedback neurons. Stated explicitly, 

feedforward cells may have long horizontal intrinsic axonal collaterals, primarily 

within the lamina in which their cell body lies; feedback cells may have 
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restricted horizontal connections within the lamina, but extensive recurrent 

collaterals to other laminae. Within A 17, no other extrinsic projections, besides 

the LGN projection, can be considered feedback. However, a group of pyramidal 

cells in layer Va of O'Leary (1941), which lie just superficial to the large 

pyramids of layer V, have many of the characteristics of feedback cells. 

Although they apparently lack efferent axons, these cells send a strong recurrent 

projection back to, and arborize extensively within, layer III, effectively 

bypassing layer IV. Within layer Va, however, these cells apparently have few 

horizontal processes, and thus resemble the pattern seen in geniculate projecting 

cells. 

Virtually all other pyramidal cells in A 17 participate in feedforward 

circuits--primarily to extrastriate areas from layers II and III and to subcortical 

areas in layer V. The studies of Gilbert and Wiesel (1979, 1981) on the structure 

of cells in these layers reveal that many of the cells described so far have 

extremely extensive horizontal collaterals--often traversing distances of greater 

than 2 mm. 

It would be most interesting to examine, in contrast, the intrinsic axonal 

collaterals of cells in the upper layers of, for instance, area 18 that contribute to 

the feedback projection to A 17, versus those that send feedfoward projections to 

area 19 (both feedfoward and feedback cells are found in layers II and III in Al8) 

(Gilbert and Kelly 1975). Extracellular injections of HRP in either 17 or 18 

unfortunately do not provide a clear answer to this particular question. While 

small HRP injections into area 17 produce patches of cell bodies as well as 

diffuse labelling in area 18 (Gilbert and Wiesel 1980), this approach cannot 

distinguish whether the diffuse label results from anterograde transport from 17, 

or portions of the axonal processes of the retrogradely labelled neurons. There 

have been no published Golgi studies on the morphology of cells within 
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extrastriate areas that would allow this question to be addressed. In one 

preliminary experiment, cells that projected to the LGN from areas 18 and 19 

were double labeled by intracellular injection. The intrinsic axons of these cells, 

like those of A17 cells, showed minimal amounts of collateralization within layer 

VI, and had strong ascending colla terals to the upper layers. This, however, 

could again simply reflect a special case of shared morphological characteristics 

between cells that project to the same efferent target, albeit from different 

cortical areas. Nevertheless, this hypothesis of the directional dependence of 

intrinsic axon patterns is readily testable, using the approach described here for 

investigating the claustrum and LGN projecting cells. 

Morphological variability of cell types projecting to the LGN 

In the original formulation of this project, the goal was to compare the 

morphology of neurons projecting to two distinct efferent sites from the same 

position within a single cortical lamina. This somewhat simplified the real 

situation, for, on a variety of levels, the lateral geniculate nucleus is best 

considered not as a single unified structure, but rather as containing several 

distinct functional subsystems. Separate geniculate laminae subserve each of 

the two eyes, and perhaps most important, at least three functionally and 

anatomically distinct, parallel pathways are relayed through the LGN: 

specifically, the parallel X ("brisk sustained") Y, (''brisk transient") and W 

("sluggish") afferents to cortex originating from the LGN (Lennie 1980). 

Anatomically, these subsystems terminate at different cortical levels, and the 

terminals and afferent axons have markedly different appearances (Ferster and 

LeVay 1977, Blasdel and Lund 1983). As described in Results, the characteristics 

of the axons of various types of geniculate projecting cells in layer VI show some 

morphological relationship to the characteristics of the distinct afferent 
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groups. In the monkey, where X and Y -like cells may be separated into parvi-

and magnocellular layers of the geniculate (Hubel and Wiesel 1972), apparently 

distinct morphological cell types in layer VI project to either one or the other 

geniculate layers (Lund and Boothe 1975). Lund proposed a continuity of 

afferent information, from the recipient layer of A 17 all the way to the 

feedback pathway from layer VI. Attention was drawn to the possibility that 

distinct morphological types of cells might collate different sorts of information 

to send to distinct efferent targets. In the cat the distinction between X, Y, and 

W cells cannot be made on the basis of geniculate laminae. X and Y feedback 

axons probably both go to laminae A and Al (Updyke 1975), but may only contact 

cells involved in the X or Y circuits within those laminae. In sum, then, the 

morphological diversity of geniculate projecting cells may be consistent with the 

role of specific functional projections underlying the need for different cell 

types in cortex. 

Intrinsic pyramidal cells in layer VI 

A consistent, but unexpected finding during these experiments was the 

existence of significant numbers of pyramidal cells in layer VI lacking an 

efferent axon. The substantial numbers of such cells--about 2096 of the total 

cells in layer VI--implies that these do not represent isolated "mistakes" or 

aberrant cells, but rather that they contribute significantly to the structure of, 

and presumably to the processing within, layer VI. These cells could originate 

via at least two distinct mechanisms: either they represent a class of neurons 

that never sent an axon into the white matter, or, alternatively, they represent 

cells that originally made efferent connections, but lost them during 

development. Indirect evidence from a number of studies on the development of 

neural connections in general, and those within cortex in particular, suggest the 
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latter possibility. At the neuromuscular junction, motorneurons originally 

innervate a considerably larger number of post-synaptic sites (muscle fibers) 

than they do in adult animals (reviewed in Van Essen 1982). The same 

phenomenon, observed in numerous developing neuronal systems including 

climbing fiber input into the cerebellum, and innervation of sympathetic ganglion 

cells, strongly suggests that early multiple innervation of post-synaptic sites is a 

general developmental rule (Cowan 1978). In the best studied case of the 

neuromuscular junction, multiple innervation is apparently reduced by retraction 

of processes of some motor neurons (Bixby 1981 ). In this system, however, if 

motor neurons are completely deprived of their efferent post-synaptic target, 

they die (reviewed in Cowan 1973). 

The situation within cerebral cortex shows many similarities. Several 

experiments have demonstrated conclusively that in young animals, cortical cells 

make considerably more extensive efferent projections in the young animal than 

they do in the adult (Innocenti et al. 1980, O'Leary et al. 1981, Ivy and Killackey 

1982). Changes in the extent of callosal projections illustrate this particularly 

well. In young kittens, cells which project across the corpus callosum are 

distributed extensively throughout A17, at a quite high density, in all cortical 

layers. In the adult, only the narrow strip of A 17 representing the vertical 

meridian contains callosally projecting cells, confined primarily to layers II/III. 

However, in contrast to the situation at the neuromuscular junction, cortical 

cells that lose their callosal connections do not die, and clearly persist into 

adulthood (O'Leary et al. 1981). Some such cells do make other efferent 

connections (Ivy and Killackey 1982), but whether others may end up without 

efferent axons, is not known. 

The significant proportion of intrinsic cells, as well as their resemblance 

(both in terms of axons and dendrites) to either geniculate or claustrum 
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projecting neurons, suggests that these cells may represent neurons which 

originally projected to one or the other site (or perhaps across the corpus 

callosum), but which retracted their axons during development. If this 

population does in fact represent a general developmental process in cortex, 

pyramidal cells without axons should be actually quite common in other cortical 

layers as well. In this regard it is interesting that Gilbert and Wiesel (1981) have 

described one such cell in layer II which despite having axon collaterals filled for 

over 4 mm, showed no evidence of an efferent axon. They also mention having 

encountered several other such cells. In Golgi preparations, Sholl (1955) 

classified neurons lacking an efferent axon; in his sample they generally 

represented about 396 of the cells in a given lamina. However, in Golgi studies it 

is difficult to tell whether an axon has simply failed to impregnate, or whether it 

in fact does not exist. 

Whatever their origin, the role of intrinsic pyramidal cells in cortical 

processing is probably similar in some respects to other cells in the same layer 

that have an efferent axon. All the intrinsic pyramidal cells observed in slices 

had electrical activity indistinguishable from effererent projecting cells; thus 

the lack of an efferent connection does not impair their ability to generate 

action potentials. More directly, Gilbert and Wiesel showed, for the cell 

described above, normal receptive field properties, clearly demonstrating that 

such cells are well integrated into the surrounding circuitry. 

Cell classification in cerebral cortex 

Historically, classification of the myriad of cell types encountered in Golgi 

preparations of cerebral cortex proceeded, in the absence of functional 

information, along subjective, and frequently botanical, lines. Early anatomists 

considered the patterns of dendritic branches, dendritic spines, and axonal 
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collaterals as particularly significant (Cajal 1911, Lorente de No 1933, O'Leary 

1941, Sholll954, 1955). Even at this level of analysis, cortical cells could be 

quite readily divided into three classes: the intrinsic axon cells, with spine free 

dendrites, the spiny stellate cells in the afferent recipient layers, and the 

efferent projecting, spiny pyramidal cells. A variety of independent criteria 

allow these fundamental distinctions, including distribution of axon terminals, 

the electron microscopic appearance of terminals, and differences in 

neurotransmitter (Levay 1973, Somogyi 1978, Peters and Fairen 1978, Ribak 

1978, Baughman and Gilbert 1981). Within each of these broad classes, however, 

cells show considerable morphological variability. The work presented here 

specifically addresses the question of whether any consistent rules of cortical 

organization subdivide pyramidal cells into distinct, consistent cell classes, or 

whether the morphological variability observed in a given cortical layer results 

from sampling a continuum of cell types. The distinctions between various kinds 

of intrinsic interneurons may follow fundamentally different rules than those 

observed for pyramidal cells, and such questions will not be addressed here. 

Perhaps only in the past 20 years, with the explosion of information about 

the functional organization of cortex, has anatomical work had a more objective 

set of criteria by which to classify cells. The impact of this knowledge on 

understanding the Golgi picture in cortex is well illustrated by the work of Lund 

in the rriacaque. Here the relationship between a neuron's laminar position, 

patterns of apical dendritic branching and intrinsic axonal arborization, and 

probable efferent connectivity, were related to the levels of termination of 

specific groups of cortical afferents. Retrograde tracing showed that neurons in 

the lower layers of layer VI apparently provided the feedback to the 

magnocellular layers of the LGN, whereas those in the upper layers seemed to 

project to the parvicellular layers. The Golgi picture of cells in the two parts of 
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layer VI was quite distinct: cells in the layer which tended to project to 

magnocellular LGN had apical dendritic branches primarily in layers Va and IVca, 

or exclusively within IVb or exclusively within Vb. In contrast, cells in the 

lamina which tended to project to parvicellular LGN had branches in VB and Ilia, 

or Va and IIIb. These two classes did not seem to simply represent the extremes 

of a morphological continuum; no neurons with intermediate patterns have been 

described. Certainly, the specific relationship of these classes to a set of 

functionally derived criteria--specifically patterns of afferent and efferent 

connectivity--makes them considerably less arbitrary than the various 

classifications used in previous Golgi work. The work of Sholl on the 

organization of cellular elements in cortex provides an interesting counterpoint 

to this approach. Like Lund, he attempted to classify cells on the patterns of 

distribution on axon collaterals and dendrites, but at that time no information 

existed about the significance of specific patterns--for instance, why a collateral 

to the upper part of layer IV may have different effects than one to the lower 

portion. As a result, his view of cortex lacked any specific sorts of interactions, 

processing took place not by specific circuits but by statistical consequences of 

random connections within limited areas. 

Both the work of Lund described above, and the work described in this 

report, provide strong evidence for the existence of morphological classes of 

cells based on efferent projection patterns. However, how even well defined 

morphological classes relate to the physiology and response properties of cortical 

neurons remains obscure. Indeed, as Kelly and Van Essen, and Gilbert and Wiesel 

have shown, the standard set of receptive field properties distributes across even 

the broad morphological distinctions of spinefree, spiny stellate, and pyramidal 

cells. There are at least two possible explanations for this discrepancy: l) that 

the kinds of physiological tests (orientation and direction selectivity, ocular 
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dominance, complex vs simple) are either not sensitive enough, or do not include 

some unknown important stimulus parameter, or 2) that many of the observed 

morphological differences do not exist solely to construct a cell's receptive field 

properties, underlying instead some other (unknown) function of a specific 

morphological cell class. In this regard it is somewhat disturbing that the 

morphological feature of pyramidal cells that frequently attracts the greatest 

attention--namely the shape of the apical dendrite--has a completely unknown 

function. In contrast, the structure of non-pyramidal cells has provided some 

insights into their possible function. Basket cells, for example, show responses 

to visual stimulation virtually identical to those of pyramidal cells (Martin et al. 

1983), however, the structure of their axonal arbors--with well developed, 

horizontally running collaterals with numerous pericellular baskets--suggests 

that they may play a role in inhibiting pyramidal cells over a considerable 

horizontal extent (Marin-Padilla 1974, Jones 1975). As more is learned about the 

properties of areas to which groups of pyramidal cells project, and about how 

pyramidal cells relate to each other synaptically, both what information various 

cells extract from A 17, and how the morphology of specific cell types under lies 

this process, may become clearer. 

Comparison of brain slices with Golgi techniques 

Until the introduction of intracellular staining of cortical neurons by Kelly 

and Van Essen (1974) and more recently by Gilbert and Weisel (1979, 1983) and 

Martin et al. ( 1983), the Golgi technique provided the only detailed pictures of 

the cellular architecture of cerebral cortex. Probably the most dramatic result 

of Gilbert and Wiesel's intracellular injections was the discovery of extremely 

extensive intrinsic axonal connections never seen in Golgi preparations. This 

provided one concrete example of what had been long suspected--namely that 
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the Golgi technique has important constraints on the extent and completeness of 

cell visualization. Indeed, in the adult cat, it has been virtually impossible, using 

Golgi techniques, to extensively visualize the axons of pyramidal cells (Lund et 

al. 197 5). 

Although the in vivo intracellular fills provide by far the greatest detail on 

the structure of any given cell, this resolution is obtained at the expense of the 

number of cells available for analysis, as well as an inability to choose which 

particular cells to study. 

The use of brain slices for anatomical studies is not completely novel­

several authors have published short accounts of intracellularly stained neurons 

in hippocampal slices (Schwartzkroin and Mathers 1978) and in hypothalamic 

areas (Kelly et al. 1979, Mac Vicar et al. 1982). In most cases, however, the 

staining primarily confirmed the general type of cell from which a physiological 

recording originated, e.g., pyramidal vs. granule cells in the hippocampus. No 

previous descriptive studies on the morphology of neurons in brain slices go much 

beyond simply relating cells to known Golgi cell types from the same area (but 

see Knowles and Schwartzkroin 1981). 

The major advantages of slices over Golgi techniques for studying cellular 

architecture include: 1) fewer truncated processes due to the use of thicker 

slices, 2) excellent filling of axonal processes, even in adult animals, and 

3) directed filling of specific cells in specific areas or laminae of cortex. A 

more detailed discussion of these points follows below. 

The picture of layer VI neurons obtained in Golgi studies differs in several 

respects from that seen in slices. For LGN projecting cells, for instance, the 

previous Golgi descriptions of O'Leary (1941), Cajal (1911), and Lund et al. (1979) 

show a basically similar cell type to that described here. However, in the Golgi 

picture, the basal dendritic field is considerably sparser than that seen in slices; 
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the horizontal extent of the apical dendrites is much reduced as well. This 

indicates significant truncation of dendritic processes, even when the most 

complete Golgi stained cells were used. Sholl (1954) examined the number of 

basal dendritic arms of cortical pyramidal cells and reported a range of 4-10, 

with an average of about 6. A similar number was observed using slices, thus the 

sparser dendritic arbors of Golgi stained neurons probably did not result from a 

failure to impregnate some of the dendritic arms. Rather, the thickness of the 

sections used in Golgi studies (generally 100-200 l.lm, uncorrected for shrinkage), 

which is considerably thinner than the observed diameter of the dendritic field, 

results in an underestimation of the density of basal dendritic branches. This 

may also explain why the unusually elongated basal dendrites of claustrum 

projecting cells have not been described in cat. Also, no cells showing of the 

class I LGN-projection type--with the widespread dendritic side branches (such 

as the cells in Figs. 24 and 25)--have been previously mentioned in the Golgi 

literature. 

A second major problem with the Golgi technique is the difficulty, in the 

cat at least, of obtaining any impregnations whatsoever of intrinsic axonal 

collaterals in adult animals (Lund et al. 1979); thus not surprisingly the vast 

majority of studies on the Golgi architecture of cat cortex have been actually on 

the brains of kittens of various ages (with the exception, apparently, of Sholl 

1954). The visual cortex undergoes profound transformations during the "critical 

period" of 3-12 weeks postnatal (Hubel and Wiesel 1970, Shatz and Stryker 1978, 

LeVay et al. 1978); most Golgi sudies are done on animals younger than this (up 

to about 4 weeks old). The structure of the cells of young animals might 

significantly differ, in unknown ways, from that of older animals, since in other 

systems some substantial differences have been seen. For instance Guillery 

( 1966) saw changes in the morphology of the various classes of LGN neurons 
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between young animals and adults; Lund et al. ( 1977) have observed changes in 

the number of dendritic spines on pyramidal cells of different ages. One 

persistent and somewhat puzzling difference between Golgi studies of layer VI 

cells and the results reported here concerns neurons whose apical dendrite 

arborizes within layer I. Both O'Leary (1941) and Lund et al. (1979) describe 

layer VI (in young kittens) as containing either exclusively (O'Leary) or primarily 

(Lund et al.) such neurons. In slices of adult cortex, the LGN projecting cells, 

which clearly form the bulk of the neurons in the lamina, never had an apical 

dendrite above layer III. Even in the case of claustrum projecting cells, only a 

few had the characteristic "spray" of processes in layer I; most simply ended in 

the upper portion of layer II or at the lower border of layer I. The only cell 

which showed a significant apical dendritic arbor in layer I was an intrinsic 

pyramidal cell of the claustrum projecting type (Fig. 39). It is extremely 

unlikely that this difference is due to a failure to fill such processes in virtually 

all the cells. In most cases (and certainly in all those drawn for figures) the 

actual end of the dendrite was visible: the process did not gradually fade out, 

but rather abruptly stopped at a certain point. In addition, in both published and 

personal communications, Gilbert and Wiesel ( 1979, 1983) have observed that in 

vivo LGN-projecting type cells have apical dendrites to layer III; claustrum 

projecting cell types have long thin apical dendrites which end without a "spray" 

either below layer I or at the I/ II border. These pieces of evidence suggest either 

that 1) a considerable amount of reshaping and retracting of the dendritic field is 

occurring between 2.5 weeks of age and adulthood, involving specifically the 

elimination of connections to layer I, or 2) the Golgi technique selectively 

impregnates a rare cell type in layer VI, making it appear as the dominant cell 

type of the layer. In her study of the development of monkey visual cortex 

neurons, Lund et al.( 1977) found no evidence for reshaping or pruning of apical 
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dendritic fields. However, since this study employed the Golgi technique, the 

results are subject to the same constraint raised in point (2) above. This final 

point, of course, has been a worrisome one for quite some time, since the basis 

on which a neuron becomes Golgi stained is completely obscure. 

The controlled filling of cells, in contrast with the unknown basis of the 

Golgi stain, constitutes a major advantage of intracellular staining in slices: one 

can either chose to imp?le specific neurons (such as those in a particular part of 

a layer, or several neurons with a specified spatial relationship to one another), 

or, alternatively, random filling of cells is probably close to truly random, and 

therefore gives a fairly accurate estimate of the relative proportions of specific 

cell types. The evidence for this last point (with the caveat that very small cells 

may be under-represented) comes primarily from early experiments in which 

cells were filled in a fashion taken to be random. In those cases, the proportion 

of double labeled cells in a given experiment was remarkably close to that which 

would have been expected on the basis of truly random filling. This in turn led to 

the discovery that a significant proportion of layer VI cells were intrinsic 

pyramidal cells--a conclusion that would have been quite suspect using Golgi 

staining. 

However, without some of the very elegant and incisive interpretations of 

Golgi stains, simply injecting cells in slices, without some reference to either 

Golgi or in vivo work, can be quite risky, since a whole new class of slice 

artifacts may exist. Also, for an overview of a given brain area, Golgi staining 

provides a much larger scope, allowing the simultaneous visualization of 

hundreds of cells in all configurations, and in all layers. Finally, Golgi staining 

may be demonstrably superior to intracellular staining in the completeness and 

number of small cells stained. Even in vitro, it is difficult to penetrate, hold, 

and adequately fill cells smaller than about 8 11m in diameter. 
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The problem of truncation of processes, particularly long axonal ones, 

remains even in well filled cells in slices. Slices, although superior in this 

respect to Golgi stains, nevertheless cannot compare to in vivo intracellular fills 

in the completeness of collateral staining. This was seen particularly clearly 

when the projection to layer IV originating from LGN-projecting neurons filled in 

vitro was compared to similar cells filled in vivo: the density of axon terminals, 

even in the best in vitro cases, was considerably less than seen in the best in vivo 

cases. Slices do have significant advantages in some respects over in vivo 

experiments, principally in the greater number of well filled cells that can be 

obtained in vitro versus in vivo; additionally, specific cell populations can be 

studied in vitro, which is almost impossible using in vivo intracellular injections. 

These three techniques for studying the structure of single neurons have 

complementary strengths: the superb detail and physiological information 

available from in vivo intracellular work, the cellular overview possible from 

Golgi staining, and the ability to study defined groups of cells in great 

anatomical detail allowed by the in vitro approach. 

Determinants of cell form in cortex 

The question of cell classification in cortex relates intimately to the 

question of the mechanisms by which might generate distinct cell classes. One 

extreme view would be that genetic factors determine all the branching patterns 

of a cells axons and dendrites; the opposite view would be that all cell features 

differentiate in response to the environment in which the cell finds itself in 

cortex. 

It is abundantly clear that most vertebrate and invertebrate neurons have a 

strong innate program to differentiate along a certain basic pattern. Thus for a 
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variety of vertebrate systems--including cortex (Dichter 1978, Kriegstein and 

Dichter 1983), and cerebellum (Gahwiler 1981)--fetal cells grown in culture 

usually aquire morphological patterns which resemble one of the cell types 

typical of the area from which the culture was derived. In cerebellar cultures in 

particular, the Purkinje cell, a homogeneous cell type (both in terms of dendritic 

morphology and efferent axon projections), is clearly recognizable in vitro. This 

has only been studied in a broad sense in cortex--i.e., whether a cell aquires a 

pyramidal morphology versus various kinds of spiny stellate or spine-free 

morphologies. Thus even cells disconnected from their normal pattern of inputs 

and outputs, differentiate into recognizable cell types. In a sense the in vivo 

work on reeler mice, whose cortical structure is completely abnormal, shows the 

same result: well defined pyramidal and non-pyramidal cells are easily 

recognizable in reeler cortex, even though they may assume abnormal 

orientations (Caviness 1977). 

The effects of a cell's surroundings--in particular its specific patterns of 

inputs--apparently have morphologically more subtle effects. Features 

consistently effected by the amount or type of input a cell receives include the 

density and distribution of dendritic spines, and the number and distribution of 

tertiary dendritic branches (reviewed in Cowan 1979, Berry 1982). Certain 

features of the axonal arbors of cells--such as described here for intrinsic 

pyramidal cells--are probably a consequence of developmental, and not strictly 

innate processes. Geniculo-cortical afferents undergo significant morphological 

changes--either expanding or contracting the region of layer IV they cover--in 

response to changes in the activity level of the visual pathway (e.g. by monocular 

lid suture) (Shatz and Stryker 1978). It would be surprising if other cortical cells 

intrinsic axons--such as the layer VI cortico-geniculate cells feedback arboriza­

tions in layer IV--did not show similar, perhaps compensatory, changes as well. 
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Both claustrum projecting and LGN projecting cells occupy similar laminar 

positions, and therefore at least have potential access to many, if not all of the 

same environmental influences. Nonetheless they show non-graded, non­

overlapping patterns of dendrites and axons. This strongly suggests innate 

differences between these cell types, and not differentiation from a common 

precursor. 

The observation that claustrum and LGN projecting cells occupy 

overlapping horizontal positions in layer VI implies that some of each of these 

projection classes must have been generated and migrated to cortex at virtually 

identical times (Rakic 1974). This in turn suggests that birthdate does not in 

itself form a sufficient cue for telling an individual cortical cell where to send 

its efferent projection. There is evidence in the monkey that time of birth does 

play some role in organizing efferent projections: the first neurons to reach 

their final position in layer VI send out the first axons to the magnocellular 

portions of the LGN, the projection to the parvicellular layers originates later, 

from a second group of neurons in layer VI born after the first (Shatz and Rakic 

1981 ). It remains a difficult problem to explain how a small group of neurons 

projecting to one site can find where to go when surrounded by at least ten times 

as many cells projecting somewhere else. 

Since birthdate does not seem to provide specific enough cues for 

organizing the efferent projection of claustrum projecting cells, these neurons 

could rely on some common marker which allows them to sort themselves out 

from the plethora of LGN projecting cells. One such system-related cell surface 

marker has been described for the limbic system (Levitt 1984). Because the 

claustrum projection consists of relatively few cells, (probably fewer than 

150,000 in area 17), and because they exhibit such uniform morphological 

characteristics, they could conceivably all be clonally derived from a very small 
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number of precursor cells. In this case 7-8 divisions of 5 clonal precursors could 

generate all the claustrum projecting cells in layer VI. A similar proposal has 

been advanced, with more direct evidence from studies of chimeric mice, for the 

relationships of Purkinje cells (another quite uniform cell type) in the cerebellum 

(Wetts and Herrup 1981). A clonal relationship between cells (Moody and 

Jacobsen 1983) might provide a mechanism which produces a morphologically 

uniform cell class which could make specific contacts with each other, as well as 

with their efferent target. 
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The use of retrograde axonal transport of various substances (e.g. enzymes, 

lectins, synthetic fluorescent compounds) has yielded a wealth of information on 

the organization of neuronal pathways. Each type of retrograde tracer has its 

own set of attributes which define the scope of problems it can address 1-3. We 

describe here a new class of retrograde tracer, rhodamine-labeled fluorescent 

latex microspheres (0.02-0.2 1-1m diameter), which have distinct advantages over 

other available tracers for in vivo and in vitro applications. When injected into 

brain tissue, these microspheres show little diffusion and consequently produce 

small, sharply defined injection sites. Once transported back to neuronal 

somata, the label persists for at least 10 weeks in vivo and 1 year after ---
fixation. Microspheres have no obvious cyto- or phototoxicity as assessed by 

intracellular recording and staining of retrogradely labeled cells in a cortical 

brain slice preparation. This approach was further employed to visualize and 

compare, in cat visual cortex slices, neurons with different projection patterns, 

revealing significant differences in patterns of intrinsic axons and dendrites. 

These properties of microspheres open new avenues for anatomical and 

physiological studies of identified projection neurons in slices as well as in 

dissociated cell cultures. 

The methodology for obtaining retrograde labeling was studied by 

injections into the visual cortex (area 17, 40 cases) and corpus callosum (3 cases) 

of adult rats. The first 20 rats were used to establish parameters such as the 

concentration and volume of bead suspensions, bead size, survival time, and 

histological procedures. The 23 remaining rats were used to ascertain the 

effective injection site and test for uptake by fibers, pathway selectivity, long 

term survival effects and toxicity. Using a standardized protocol (see Fig. 1 

legend) 21 of the 23 rats injected showed retrograde labeling. 

Injection sites, 50-200 1-1m in diameter (Fig. la), remained similar in size 
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after 6 hours or 10 weeks of post-injection survival time. Their restricted extent 

probably results from the relatively large size (on a molecular scale) of the 

microspheres, and the hydrophobic nature of plastic polymers. Semi-thin 

sections of the injection site revealed apparently healthy tissue and normal 

looking neurons; the only signs of injury were numerous bead-filled macrophages 

invading the electrode track. 

Injections into area 17 (All) resulted in retrograde labeling locally within 

A 17, in cortical areas outside A 17, and subcortically. We measured the extent of 

retrograde labeling in the lateral geniculate nucleus (LGN) to estimate the 

effective site of bead uptake. Injections into the peripheral representation of 

the upper visual field typically produced a cluster (0.15-0.3 mm across) of 

labeled LGN neurons. The part of the visual field represented by such a cluster 

corresponds with the area included in the cortical injection site 4,5, thus the 

injection site boundaries delineate the effective site of uptake. 

Retrograde transport was obtained after 12-hour survival times, improved 

over 48 hours, and remained completely unchanged even 10 weeks post-injection. 

The results of injections in A 17, typically including layer IV and parts of 

layer II/III, were compared with published HRP labeling, a non-pathway selective 

tracer3• The known connections of rat Al77 were all labeled, suggesting that 

microsphere uptake and transport is not selective for specific neuronal 

pathways. These injections also labeled a previously undescribed set of intrinsic 

connections within A 17. When the injection site was about 150 1-lm in diameter, 

labeling was seen immediately surrounding the injection site; in layer V, 

retrogradely labeled cells were spread over an area about five times the 

diameter of the injection site. Upper layer VI was generally free of labeling. In 

sharp contrast to this, cells in lower layer VI were found in an area about ten 

times the diameter of the injection site (Fig. lb). The lateral extent of labeled 
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cells in layer V and lower layer VI indicates that these neurons have widespread 

lateral axonal connections (Burkhalter and Katz, unpublished observations), 

consistent with the morphology of some layer V and VI cells in cat A 176. Label 

in the extrastriate visual areas 18a and 18b included layers II-VI. Subcortical 

labeling was observed in the ipsilateral LGN (Fig. ld) and in the lateral posterior 

thalamic nucleus. Microspheres are transported by broken axons as well. 

Injections into the corpus callosum resulted in many densely labeled pyramidal 

cells in layers II/III, V, and VI throughout the cortex (Fig 1e). In one experiment, 

instead of injecting the corpus callosum, 4 lll of microspheres were placed on top 

of it, which produced no retrograde labeling. This suggests that while severed 

fibers take up and transport microspheres, unbroken fibers of passage do not. 

In all labeled neurons, label, confined to the cytoplasm, filled the soma and 

the proximal dendrites (Fig. lc,d,f) with a granular fluorescence, leaving nuclei 

unlabeled. 

All structures which contained retrogradely labeled cell bodies are 

reciprocally connected to A 177 ,g, but close examination failed to reveal any 

evidence of anterograde labeling. The same negative result was found in the 

superior colliculus, a known target of layer V pyramidal cells9. Thus, at the 

level of the light microscope, microspheres are an exclusively retrograde tracer. 

Retrograde labeling of cat A17 pyramidal cells, combined with an in .vitro 

brain slice preparation was used to study the morphology and distribution of the 

dendritic and axonal arbors of LGN 10 and claustrum 11 projecting cells co­

localized within layer VI. Three days after injections of either the LGN or 

claustrum, slices of area 17 were prepared and microsphere labeled cells were 

intracellularly injected with lucifer yellow (Fig. 1 legend). Fifty LGN projecting 

cells (in 4 cats) and 30 claustrum projecting cells (3 cats) were analyzed. All the 

double labeled neurons showed normal resting, synaptic, and action potentials 
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whose size (x=45 ± 5 m V versus 42 ± 5m V) and time course was indistinguishable 

from unlabeled neurons. Morphologically, the double labeled cells showed no 

evidence of degeneration in axons, dendrites, or dendritic spines (Fig lf). Thus, 

microspheres did not have obvious toxic effects, and intermittent illumination 

with rhodamine excitation wavelengths in vitro for several minutes did not seem 

harmful. Comparison of these two efferent projection classes revealed striking 

differences in the laminar distribution of dendritic and intrinsic axonal arbors 

(Fig. 2). Claustrum projecting cells have roughly half the number of basal 

dendritic arms (3-5) compared to LGN projecting cells (6-8). The apical 

dendrites of claustra! cells reach to layer I with branches in layers VI and V only; 

LGN projecting cells branch in VI, V, and IV, but do not reach above layer III. 

Finally, all claustra! projecting cells had fine, horizontally directed axonal 

collaterals that extended for up to 1 mm in layer VI. In contrast, LGN projecting 

neurons had very few axon collaterals within layer VI, but thick, ascending 

processes which terminated in layer IV. These two classes therefore not only 

receive different afferent inputs via different dendritic patterns, but their non­

overlapping intrinsic axon patterns indicate participation in distinct circuits 

within Al7, which may be involved in the extraction of feedback (to the LGN) 

and feed forward signals (to the claustrum). 

The mechanism(s) by which microspheres get taken up and transported are 

unknown. However, not all latex microspheres are retrogradely transported. 

Experiments with coumarin labeled carboxy-activated (0.05 l-Im diameter) or plain 

polystyrene (0.1 l-Im diameter) microspheres (Polysciences) produced no 

observable labeling; neither did larger diameter microspheres (>0.2 l-Im) of the 

type described herein. Thus, both the size and surface properties 12 may play a 

role. Latex microspheres can bind many antibodies non-covalently (which is the 

basis of most latex particle agglutination tests 13); possibly microspheres below a 
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certain size can enter synaptic clefts, and interactions between non-specific 

synaptic determinants and reactive groups on the bead's surface could trigger an 

endocytotic event 14 (endocytosis of latex particles by many cells, including 

amoebae 15 and platelets16 is well-known). Endocytotic vesicles containing 

microspheres may then be transported by fast retrograde transport 17. The 

uptake by broken fibers may be explained by the formation of growth cones at 

the proximal ends of severed axons 18, followed by internalization and subsequent 

retrograde transport of microspheres bound to membrane components 19• 

Microspheres are probably transported packed in vesicles, since naked latex 

microspheres with similar negative charge move only in the anterograde 

direction when injected directly into axons 12. This, however, does not rule out 

vesicle bound anterograde transport of beads, which may have remained 

undetected20• 

The resistance of these rhodamine-labeled microspheres to fading under 

illumination, and their non-phototoxicity within cells are probably related, since 

the relationship between bleaching time and killing time is usually linear21 • 

Both photodynamic damage and bleaching depend on the presence of molecular 

oxygen22 and probably results from the formation of free radicals. Hydrophobic 

polymers (such as styrene), by restricting the access of molecular oxygen to the 

rhodamine dye in the interior of the microspheres, could greatly attenuate the 

formation, and resultant phototoxicity of destructive free radicals. 

These microspheres exhibit a variety of characteristics available in very 

few tracers. The highly restricted injection sites, the compatibility with all 

known retrograde and anterograde tracers and with immunocytochemical 

procedures (Burkhalter, Baughman and Katz, in prep.) makes microspheres 

particularly useful for the study of local circuitry within or between brain 

areas. The exceptionally long stability of this label makes it attractive for 
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developmental studies on the reshaping of patterns of axonal connections and as 

a marker in transplantation studies. The most outstanding property of this 

tracer, however, is that the viability of neurons is unaffected by transported 

microspheres. Fluorescent microspheres can therefore be used for in vitro 

studies of identified projection neurons, and their role in cortical circuits. 

Preliminary experiments indicate that bead labeling can also be used as a marker 

for dissociated neurons in culture which were sorted in a fluorescence activated 

cell sorter (Huettner and Baughman, personal communication). 

Although numerous approaches exist for identifying neuronal cell classes, 

very few of those presently available can be used to study living cells. Recently 

a specific cell surface marker has been used to study, in vitro, the physiology of 

identified neurons in culture23• The approach described here may provide an 

attractive alternative for the visualization and physiological study of projection 

neurons. 

We are grateful to Drs. M. Konishi and D. Van Essen for their lab facilities 

and support, and to Drs. J. Nerbonne and J.P. Revel for electron microscopic 

analysis of the microspheres. This work was supported by grants from the 

Caltech President's Venture Fund (to M. Konishi) and the Swiss National 

Foundation (A.B.), and an NSF predoctoral Fellowship (L.C.K.). 
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Figure Legends 

Figure 1. Retrograde labeling by fluorescent rhodamine latex microspheres. 

A. Injection site, less than 100 llm diameter, produced by injection of 0.02-0.05 l.J.l 

of microsphere suspension into layer IV of rat visual cortex. B. A patch of cells 

in layer VI in area 17, at the grey/white matter border, labeled after an injection 

approximately 400 llm away that included layers III and IV. C. Labeling of 

layer V pyramidal cells in area 18b after area 17 injection. Note labeling of 

apical and basal dendrites, low background, and distinctive granular appearance 

of label. D. Lateral geniculate nucleus labeling after an area 17 injection. 

E .. Dense retrograde labeling of pyramidal cells in layers II/III after corpus 

callosum injection, indicating transport by broken axons. F. LGN projecting 

neuron in layer VI of A 17 from a cat in vitro cortical brain slice preparation, 

retrogradely labeled with microspheres and intracellularly injected with lucifer 

yellow; the soma, dendrites and dendritic spines appear normal. Inset: Single 

exposure micrograph of microsphere labeled soma. Scale bars: A, 100 llm; 

B,C,D,F, 20 llm; E, 50 l.J.m. 

Methods: An aqueous suspension of rhodamine-labeled fluorescent microspheres, 

was obtained from International Diagnostics Technology, Palo Alto, CA (Dr. 

Boyse Burge, Director of Research). Anesthetized rats were injected with 0.02 

to 0.1 l.J.l of bead suspension using a glass pipettes with 30-50 llm tip diameter. 

After survival times of 24 to 72 hours, rats were reanesthetized and perfused 

with phosphate buffer (0.1 M) followed by 4% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7 .4) (glutaraldehyde can be used as a fixative, however the 

resulting higher background may make bead labeling more difficult to discern). 

After the brains sank in 30% sucrose in buffer, 30 llm sections were cut on a 
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freezing microtome, collected in phosphate buffer, mounted on gelatinized slides 

and either air dried or inspected wet. Brief dehydration (30 sec, 100% ethanol, 

after air drying), followed by clearing in xylene (60 sec) and mounting in 

Fluoromount (Gurr) or Krystalon (Harleco) often improved the visibility of label 

significantly. However, longer exposures to ethanol, and in particular to xylenes, 

causes serious deterioration of the bead fluorescence. Observations were made 

using a rhodamine filter combination (Zeiss filters, exciter BP 510-560, beam 

splitter FT 580, barrier LP 590) on an epifluorescence equipped microscope. 

Labeled neurons are readily visible in sections prepared over a year ago, stored 

either dry in the dark or unmounted in 4% formaldehyde in phosphate buffer at 

4°C. 

Cat cortical slices (400 llm thick, coronal sections) were prepared and 

maintained using essentially standard hippocampal slice techniques24. For 

intracellular recording and staining, slices were transferred to a chamber on the 

stage of an epifluorescence equipped compound microscope. Microsphere labeled 

cell bodies can be seen in living tissue even at low magnifications (lOOX or 

160X). Cells in layer VI were impaled with micropipettes filled with 20% Lucifer 

yellow (Aldrich) in 0.1 M LiCl (final resistance 100-150 Mo). Neurons with 

stable resting potentials and action potentials of at least 35 m V amplitude were 

filled with dye by passing hyperpolarizing current pulses (3 nA, 200 msec, 4 Hz, 

1- 10 minutes). Slices were fixed in phosphate buffered 10% formalin for at least 

two hours and processed as described for brain sections (except that the sections 

were 60 J.lm thick). 

Figure 2. Camera lucida drawings of claustrum (A) and lateral geniculate 

nucleus (B) projecting neurons in cat area 17, obtained as described in the Fig. 1 
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legend and in the text. The numerals refer to laminar boundaries. Claustrum 

projecting cells had a thick, often asymmetric basal dendrite, in contrast with 

the compact, symmetric arbor of LGN projecting cells. The apical dendritic side 

branches of these two projection classes have terminate within different 

laminae. Most conspicuously the claustrum projecting cells, as in (A), had thin, 

horizontally directed intrinsic axonal collaterals, which remained within 

layer VI. The LGN projecting cells, as in (B), had few horizontal collaterals in 

VI, but sent thick ascending collaterals to layer IV, in which they terminated. 
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Vocal learning in songbirds is critically dependent on auditory information. Intracellular 
electrophysiological recordings, combined with horseradish peroxidase staining of single cells has 
revealed neurons within one central nervous system vocal control nucleus, hyperstriatum ventrale, 
pars caudale (HYc) that show responses to auditory stimuli. Auditory and non-auditory neurons fall 
into distinct morphological classes, based on soma size, dendritic field structure, and efferent 
projections. The neurons described may play a role in conveying auditory information into the vocal 
control system. 

The development and maintenance of song in oscine birds shows two compo­
nents: auditory acquisition of a song model, and vocal learning of the motor program 
for song3. Because vocal learning depends upon the bird using auditory feedback to 
match his own vocal output against his memory of the song model3, auditory 
information must be accessible to the motor system controlling song. The vocal 
control system includes at least three telencephalic nuclei: the hyperstriatum ventrale, 
pars caudale (HVc), the nucleus robustus archistriatalis (RA), and Area X. HVc is 
afferent to RA, which in tum projects onto the motor neurons of the hypoglossal 
nucleus which innervate the syrinx, the avian vocal organ. Lesion of either HVc or RA 
produces a deficit in song6. We now report the discovery of neurons within HVc of the 
zebra finch (Poephilia guttata) which respond to auditory stimuli, as demonstrated by 
using intracellular recording and horseradish peroxidase (HRP) staining of single 
neurons. 

Microelectrodes were pulled from 1.2 mm capillary tubing (Omega-Dot, 
Frederich Haer Co.), backfilled 18-24 h before an experiment with 8 ~~horseradish 
peroxidase (wjv, Boehringer-Mannheim grade I) in 0.5 M KCl buffered with Tris (0.1 
M) to pH 7.4, and had resistances of 150-200 Mil. Adult male zebra finches were 
anesthetized with 0.10 to 0.13 ml of 20% (w/v) urethane (Sigma) and held in a 
stereotaxic apparatus which was equipped with hollow ear bars for conveying the 
auditory stimuli to the bird's ears. The electrode was manually advanced using a 

•Present address : Department of Pharmacological and Physiological Sciences, University of Chicago, 
. Chicago, Ill. 60637, U.S.A. 
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Narishige microdrive (model SM-20) and penetration of neurons was facilitated by 
applying a series of square voltage pulses (40 V, 200 ms duration, 4 Hz) to the 
electrode. Successfully penetrated cells showed stable resting potentials of -30 to -60 
mV, and action potentials of30-80 mV with a half-height duration of approximately 2 
ms. Approximately one minute after penetration such cells were presented with 
auditory stimuli consisting of noise or tone bursts of 30-50 dB SPL and 400 
ms duration at a rate of one per second. Cells were held anywhere from 5-40 min, and 
data were collected throughout this time. Data collection ceased when a cell was either 
abruptly lost, or began to show signs of deterioration (i.e. decreased action potential 
height, greatly lengthened spike duration, or noticeable loss of resting potential). 
Usually only one cell per electrode track was filled with HRP by passing trapezoidal5-
nA current pulses (200 msec duration at 4 Hz) for 5-15 min. At the end of the 
experiment, the bird was perfused with phosphate buffer (0.13 M) followed by fixative 
(1.25% glutaraldehyde, 1% formaldehyde in 0.13 M phosphate buffer). The brain was 

--
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sp~;.,L 
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ventricle ----
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HVcL 

NC 
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Fig. 1. Neuronal responses along an electrode penetration through HVc. All of the auditory neurons 
encountered on this track were phasically excited by the onset and ·or offset of the noise burst. Post­
stimulus-time histograms (1 O-ms bins, 100 stimulus presentations) of action potentials for each of the 
intracellularly recorded neurons are shown together with a black bar which indicates the onset and 
duration of the noise burst (400-ms duration, 30-50 dB SPL intensity). TOP indicates the surface of 
brain, and the depth of each neuron encountered on the track is given in micrometers. Abbreviations: 
HVc, hyperstriatum ventrale, pars caudale; NC, neostriatum caudale; NR, no auditory response. 
Inset at lower left shows recordings obtained from the HVc neuron encountered at a depth of 416 pm. 
The top trace shows the noise burst, and beneath it are intracellular records of activity during four 
consecutive stimulus presentations. 



179 

194 

removed from the skull and sagittal, 100 1-lm sections were cut using a vibratome 
(Oxford). HRP reaction product was demonstrated using the protocol of Mesulam5. 

Our results are based on experiments in 22 adult males, in which we tested 112 
neurons for responses to auditory stimuli. Reconstruction of electrode tracks by using 
the HRP-filled cells as markers of depth revealed that 59 of these neurons were located 
within HV c. The borders of HV c were easily discernible using either clarkfield or 
polarized light illumination, thus the location of HRP-fi1ledc ells relative to the nucleus 
could be unambiguously determined. 36 (61 %) of the HVc neurons responded to 
noise, while 23 neurons (39 %) showed no alteration in either their synaptic activity or 
their firing rate which correlated to the presentation of the .noise bursts. We did not 
notice any change in response properties of cells over the time during which we were 
recording data. Responses obtained along one electrode penetration are shown in Fig. 
I. Most auditory HVc neurons showed excitation or inhibition apparently correlated 
with the onset and/or the offset of the noise burst; a few showed a sustained response 
correlated with the duration of the stimulus. (However, we cannot at this point be 
certain that sound onset and offset were the actual cues to which the HVc neurons were 
responding). For example, the two neurons encountered on this track at depths of 164 
1-lm and 186 #m from the brain's surface were phasically excited by both the onset and 
the offset of the noise burst. Deeper in the same track, at a depth of 360 flm, lay a 
neuron which was phasically excited by only the stimulus offset. The two auditory 
neurons deepest in HV c responded only to the stimulus onset. Few neurons fired 
action potentials in response to each stimulus presentation, as illustrated by the raster 
plot of consecutive intracellular records in the inset of Fig. 1. This neuron (depth 416 
#m) showed an excitatory postsynaptic potential (EPSP) which was timelocked to 
every stimulus presentation, yet only a minority of these generated action potentials. 
In general the spontaneous firing rate of auditory HV c neurons was less than 5 
spikes/s. This was observed when the bird was anesthetized with either urethane (0.1 0 
ml) or with Equithesin (0.035 ml, Jensen-Salsbery Laboratories) used in some of our 
preliminary experiments. Leppelsack and Vogt, who studied the responses to species­
specific vocalizations by auditory neurons within Field L of awake starlings, found that 
a low rate of spontaneous activity was correlated with a high degree of selectivity for 
specific elements within the starlings' vocal repertoire4• When we compared the 
effectiveness of noise to tone bursts between 1 and 4kHz, at 0.5-kHz steps (this covers 
most of the zebra finch's audibility range) we failed to find neurons which preferred 
tone bursts to noise. In many cases, tone bursts were completely ineffective at driving 
the neurons. The latencies of the excitatory responses to onset of the stimulus were 
generally 25-40 ms; excitatory responses to stimulus offset had somewhat longer 
latencies of 35-50 ms. We had the distinct impression that the response patterns (i.e. 
on/off profiles, latencies) of neurons encountered within 20-30 p.m of one another 
resembled each other more than those of other neurons on the same electrode track. 
For pairs of cells within 25 ,um of one another, 6 had similar response properties, while 
4 had different; for pairs more than 25 #m apart, 8 had similar responses, 18 had 
different. Such a clustering of neurons with similar responses is evident in Fig. 1 . 

. HVc has two projections, one rostrally to Area X, the other caudally to nucleus 
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RA. Results obtained thus far indicate that HVc auditory neurons project to Area X, 
and that the RA projecting HV c cells do not show auditory responses. Of the 36 
auditory neurons encountered in HVc, we filled 12 with HRP. Of these, 9 showed 
sufficient axonal filling to allow us to trace their axons beyond the rostral border of 

__ .... 

I 
/ 

100 IJm 
Fig. 2. Light microscopic drawings of horseradish peroxidase-stained neurons. Neuron b is represen­
tative of neurons which responded to noise bursts. Its axon could be traced beyond the rostral border 
of HVc and into the lamina hyperstriatica which carries the projection ofHVc to Area X. The neurons 
labeled a and c did not respond to auditory stimuli. The axon of neuron a could be traced until it 
exited the caudal border of HVc and entered the tractus dorsalis archistriatalis which carries the 
projection of HVc to RA. Neurons a and b are each representative of distinct cell types within HVc 
and are distinguished physiologically by their response (or Jack of response) to auditory stimuli, and 
morphologically on the basis of somata! diameter, dendritic field structure, and dendritic field 
diameter. Neuron c, like two other neurons which failed to respond to auditory stimuli, possessed a 
dendritic morphology similar to that of the auditory HVc neurons. The axon of one of these three 
non-responding neurons could also be traced beyond the rostral border of HVc and into the fiber tract 
carrying the projection to Area X. The neuron labeled d was located in the NC beneath HVc and 
responded to auditory stimuli. Its axon arborized dorsally into HVc as well as ventrally into the NC. 
The distal portions of some of its dorsal dendrites penetrated the lamina hyperstriatica and entered 
the ventral border of HVc. 
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HVc and into the fiber tract (lamina hyperstriatica) which carries the projection of 
HV c to Area X. In two exceptional cases, filled axons could be traced the entire 5-mm 
distance from HVc to Area X. In addition, the axons of all the Area X-projecting HVc 
neurons gave off many collaterals which arborized within HVc. Their dendritic 
morphologies were also similar: dendritic arms were heavily endowed with spines, and 
branching was strictly dichotomous. Soma tal diameters of these neurons ranged from 
10 to 15 p.m; dendritic fields had diameters of 150-200 p.m. 

The HV c neurons which did not respond to either noise or tones fell into two 
classes: RA-projecting HV c neurons and Area X-projecting HV c neurons. The ax oris 
of 4 were followed until they exited the caudal border of HVc and entered the fiber 
tract (tractus dorsoarchistriatalis) carrying the projection of HVc to RA, while 3 had 
axons which exited HVc rostrally and appeared to project to Area X. The four neurons 
whose axons went to RA resembled each other in that they all had a somata! diameter 
of 6-8 p.m and supported a sparse dendritic arborization 80-120 p.m in diameter. The 
morphology of these neurons was clearly different from that of the auditory HVc 
neurons which project to Area X. The other three non-responding neurons, which 
projected to Area X, had somata! diameters and dendritic arborizations which closely 
resembled those of the auditory Area X projecting cells. Since we cannot be certain 
that noise or tone bursts were appropriate auditory stimuli for them, it may be that 
these neurons were also auditory. Alternatively, there may be two classes of HVc 
neurons which project to Area X: auditory and non-auditory. 

Two additional auditory neurons we filled were within the neostriatum caudale 
(NC) immediately beneath HVc. This area corresponds to the neostriata! shelf, ventral 
to HVc, which Kelley and Nottebohm2 report receives a projection from Field Lin 
canaries. Axonal collaterals from these two cells arborized dorsally into HV c as well as 
ventrally into Field L. The response properties of one of these neurons (encountered at 
a depth of 520 p.m) is shown in Fig. 1. Its response pattern closely resembles that 
typical of many HV c neurons. Three such NC cells were recorded. All preferred noise 
to tone bursts. 

The discovery of neurons showing auditory responses in a part of the songbird 
vocal control system creates the opportunity for conjecture about the possible function 
of these neurons. Before such conjecture is possible, it will be necessary to ascertain the 
source of this auditory input. HVc has numerous afferents of unknown function (i.e. 
Uva and NIF7) in addition to neostriata} shelf area. While it appears that some auditory 
information reaches HV c via the shelf, we do not know if this is the only or one of 
many, such inputs. Furthermore, while the shelf receives inputs via the 'classicar 
auditory pathway (i.e. from Field L)2, the possibility that it receives input from othet 
brain regions cannot be excluded. 

The long latencies and low firing rates seen in HVc auditory responses raise thf 
possibility that the response might be some sort of non-specific multi-modal response, 
for example, a startle response. We strongly believe that this is not the case, since (1) i1 
seems unlikely that only noise, and not tone bursts would be effective in producing thf 
responses, and (2) a startle response would be expected to habituate quickly; ou1 
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responses remained unchanged (in terms of EPSP size, or spike frequency) for 
hundreds ,of stimulus repetitions presented once a second. 

It must be mentioned that Zaretsky8 claimed to have recorded auditory responses 
within HVc of zebra finches and canaries. We do not take this claim seriously, 
however, as he presents no decent histologic evidence for recording within HVc and 
the auditory responses he claims to have observed are at such great variance from ours 
that we think it extremely unlikely that he was actually looking at HV c. 

Electrical stimulation in HVc elicits electromyographic responses in the syrinxl, thus 
implicating the HVc neurons which project to RA as particip~ting in the motor pathway 
for song. At some level in the brain, the motor program for song must be stored, and 
at some point reference to auditory feedback is used to modify the motor output (since 
learning of song requires auditory feedback). Interfaces between auditory pathway(s) 
and the descending motor pathway for song define the levels in the brain at which the 
motor output can be modified. An interface may exist in HVc, if the axonal collaterals 
of the auditory neurons within HVc synapse onto the HVc motor neurons which 
project in turn to RA. 
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