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ABSTRACT

Kinetic and nuclear magnetic resonance experiments on
the catalytic mechanism of the serine proteases have been
carried out using alpha lytic protease, a bacterial serine
protease. 13¢ R measurements indicate that His 57, and not
Asp 102, is the residue titrating with pK, 6.7 in the free
enzyme. However, when alpha lytic protease is complexed
with transition state analogs (peptide aldehydes and benzene-
boronic acid), the pKa of this residue can shift to lower
values. This shift can be at least as large as 1.8 pK units,
and suggests that the enzyme may behave differently in the
presence of substrate, especially in its transition state
or intermediate forms, than it does in its absence.

The reaction of elastase with specific peptide p-nitro-
anilides is biphasic, indicating the buildup of a tetrahedral
intermediate in a pre-steady state reaction, followed by
linear turonver. The intermediate accumulates to about 20-25%
of the total amount of substrate bound to the enzyme. The
ability for the substrate to make favorable contacts along an
extended portion of the enzyme binding site is important
in the observation of the buildup of this intermediate.

13¢ NMR studies on model compounds for the Asp 102-His
57 dyad in water and in DMSO solution indicate that pKa
reversal of the two ionizable groups can occur under conditions
of moderate dielectric and high polrity. Overall, the results
indicate that the ''charge relay'" mechanism may be operative

in cases where the substrate can make precise extended contacts

with the enzyme.
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"That's what makes us the unique animal, we want to know why
and try to find out. We even try to find out why we want

to know why, though of course we never will."

Nero Wolfe, in Please Pass the

Guilt, by Rex Stout

Rebutt Qo Kavase, th
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CHAPTER ABSTRACTS

CHAPTER I,

This chapter presents background information on the
important aspects of the mechanism of action of the serine
proteases. It discusses the various general aspects of enzyme
catalysis in terms of this family of enzymes. The various
structures of the catalytic pathway of these enzymes are dis-
cussed in light of the current level of understanding of the
roles of the residues of the catalytic triad. Some general
information about alpha lytic protease, a bacterial serine
protease used extensively in this research, is also given.
CHAPTER II.

13

This chapter presents the results of a C NMR study at

50.3 MHz and 125.76 MHz designed to determine the ionization

behavior of His 57 of 13

C-labelled alpha lytic protease.
The NMR data indicate that His 57 titrates with a normal

pK_ (6.7) in the free enzyme, contrary to previously published

a
reports using this technique (Hunkapiller et al., 1973), and

15N NMR investigation of this

in accord with the results of a
residue (Bachovchin and Roberts, 1978). Spectra acquired at
high field (125.76 MHz) also indicate the existence of two
conformational forms of the protein below pH 6; however, it
could not be determined if multiple forms also exist at higher
pH. The source of error in the results of the previously

published 13C NMR study (Hunkapiller et al., 1973) are discussed

in terms of the multiple low pH forms of alpha lytic protease



xXvii

and their effect on the appearance of the decoupled versus
coupled spectra obtained in that study, as well as the low
sensitivity of the spectrometer and the use of spectral
subtraction to measure coupling constants. The 'charge relay"
mechanism is re-examined in light of these results; due caution
is advised in extending the results of any study on the behavior
of the catalytic triad in the free enzyme to a discussion of its

behavior during the catalytic process.

CHAPTER III.

This chapter presents the results of an investigation of the
reaction of alpha lytic protease with p-nitrophenyl trimethyl-
acetate and diethyl p-nitrophenyl phosphate. The latter
reagent can be used to determine the molar concentration of

active alpha lytic protease by active site titration.

CHAPTER 1V.

This chapter presents the results of an investigation of the
Sstructure of the complex of alpha lytic protease with specific
tripeptide aldehydes. The results indicate that these aldehydes
are bound as neutral hemiacetals to Ser 195 of the active site;
however, the role of the Asp 102-His 57 dyad in forming these
covalent adducts is not yet resolved. Interestingly, the pK,
of the His 57 residue in these complexes as determined by 13C

NMR and the pH dependence of the binding constant of these



xviii

aldehydes is lowered by as much as 0.5 pK, unit relative to its
value in the free enzyme. A speculative mechanistic explanation
featuring increased acidity of His 57 in the transition state
over the ground state to facilitate proton abstraction and
donation is presented. The results also suggest that movement of
the His 57 side-chain during formation of the tetrahedral
intermediate may be important to catalysis. A new procedure
for the synthesis of peptide aldehydes is presented.
CHAPTER V.

This chapter presents the results of a study concerning

the structure of the alpha lytic protease/benzeneboronic acid

complex. 11B NMR data reveal that the complex is a tetrahedral

adduct of Ser 195 and the boron atom of the inhibitor; this

13¢ NMR studies of C-2 of His 57 in the

is further confirmed by
complex, and by a measurement of the pH dependence of the
dissociation constant of the complex. As was observed for
the alpha 1lytic protease/peptide aldehyde system, the pKa of
His 57 is lowered in this complex from its normal value by
about 1.8 PK, units. These results suggest that the presence
of a negative charge on the tetrahedral adduct is important
in determining the magnitude of the shift. Thus it appears
that, during catalysis, the formation of a negatively charged

transition state or intermediate may allow the enzyme to

manifest behavior not observed in the free enzyme.
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CHAPTER VI.

This chapter presents the results of a stopped-flow
kinetic study of the hydrolysis of two specific tripeptide
p-nitroanilides, N-acetyl-L-alanyl-L-prolyl-L-alanine p-nitro-
anilide and N-succinyl-L-alanyl-L-alanyl-L-alanine p-nitro-
anilide, by porcine elastase. Biphasic kinetics are observed
for both substrates; in both cases, the initial absorbance burst
is linearly proportional to the enzyme concentration. Thus,

the biphasic kinetics are consistent with a mechanism in which

a tetrahedral intermediate builds up to a steady state
concentration prior to turnover. The intermediates accumulate
to about 20-25% of the total amount of substrate bound to
enzyme at steady state. These results are then discussed in
light of a report by Markley et al. (1981) that challenges

the existence of these intermediates. The ability to de-

tect intermediate will depend on the relative rates of

its formation and its breakdown, as well as its thermodynamic
stability in relation to the ES-complex and the acyl-enzyme.
Since we have specifically engineered these substrates to
provide stable tetrahedral intermediates, it is probable

that the observed accumulation is near the upper limit

for intermediate concentration. For less specific substrates,
or those having less stable intermediates, observation of

an accumulated intermediate may not be possible. The importance
of extended enzyme-substrate contacts for efficient catalysis

is also discussed.



CHAPTER VITI.

This chapter presents a Lt

C NMR investigation of the
ionization of two model compounds for the Asp 102-His 57 dyad,

imidazole-4-acetic acid and trans-urocanic acid, in water, in

dimethyl sulfoxide, and in water dimethyl sulfoxide mixtures,
In water both molecules ionize normally, with the imidazole
being a stronger base than the carboxylate. However, in
dimethyl sulfoxide solution, the situation is reversed, the

imidazole now being a weaker base than the carboxylate. Thirty

to fifty mole percent of water can be added to dimethyl sulfoxide
before substantial protonation of the imidazole by the carbox-
ylate is observed. The results therefore indicate that the
"charge relay'" mechanism of serine protease catalysis could

be a viable explanation of the catalytic process; if, in the
presence of substrate, at some point along the reaction path-
way the dielectric of the active site can be lowered, probably
through exclusion of water from the active site by active site
residues and the substrate, pKa reversal could occur even in

a highly polar environment. The results further indicate that
only moderate, and not gross, changes in the conformation

of the protein might be required to elicit the ''charge relay"

behavior.



NOTES

1. The sequence numbering system used throughout this
thesis for residues of the serine proteases is that
determined for chymotrypsinogen. For example, the serine
residue at position 188 in porcine elastase is analogous
to the serine residue at position 195 in chymotrypsinogen,
etc.

2. The following numbering system for the imidazole ring

of histidine has been used in this thesis:

H,N=——CH——COOH
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CHAPTER I--INTRODUCTION

The study of enzyme mechanisms and the understanding
of the relationship between protein structure and function
is one of the most interesting and exciting areas of bio-
chemical research. These polypeptide molecules have
evolved to catalyze a wide variety of basic chemical

reactions which in vitro are too slow to be biologically

feasible to sustain a living organism. At the same time,
nature has managed to exert control over the actions of
enzymes by including in the tertiary structure of the protein
the means to discern among a plethora of possible natural
substrates through the incorporation of a specificity binding
pocket, as well as by providing the means to monitor their
activity through the presence of natural enzyme inhibitors,
allostery, and zymogen activation.

The study of the mechanism of action of enzymes, that is,
the microscopic pathway along which the enzymatic reaction
progresses from substrate(s) to product(s), has been prompted
by the curiosity about how nature has managed to accomplish
what man has so far failed to imitate. This thesis
will present some experimental attempts to further elucidate
the mechanism of catalysis of a well-studied family of
enzymes, the serine proteases.

The Serine Proteases. The serine proteases are a family of

enzymes that catalyze the hydrolysis of peptide bonds at



neutral or slightly basic pH. These enzymes are characterized
by the presence of a uniquely reactive serine residue in the
active site region of the protein molecule. They are of
extremely widespread occurrence and diverse function, and
include the mammalian digestive enzymes chymotrypsin, trypsin,
and elastase, the bacterial enzymes such as the subtilisins,

several proteases of Streptomyces griseus, and the a-lytic

protease of Lysobacter enzymogenes (for reviews concerning

these enzymes, see Stroud, 1974 and Kraut, 1977, and the ref-
erences cited therein), as well as enzymes connected with
cellular chemotaxis (Hatcher et al., 1977), fertilization
(acrosomal protease), blood clot formation (thrombin) and
dissolution (plasmin), the complement cascade (Stroud, 1974,
Neurath and Walsh, 1976; Davie et al., 1979), hormone activation
(bradykinin and kallikrein; Schacter, 1980), and other cellular
functions (Woodbury and Neurath, 1980). The term "family"
is used in connection with these proteins to signify the high
degree of primary sequence homology among these proteins,
especially in the region of the active site, as well as the
high degree of topological equivalence of their tertiary
structures (Dayhoff, 1972; Kraut, 1977; James et al., 1978).
Two sub-families of the serine proteases have been
especially well-studied to date, the trypsin sub-family and
the subtilisin sub-family. All serine proteases so far
characterized contain a precisely arranged triad of catalytic-
ally important residues--the carboxylate side-chain of aspartic
acid, the imidazole side-chain of histidine, and the hydroxyl

side-chain of serine. The trypsin sub-family is further



characterized by the primary sequence Gly-Asp-Ser-Gly-Gly
around the catalytically important serine residue, and a
catalytic triad of Asp 102, His 57, and Ser 195. The Asp 194
residue is conserved in this sub-family as it is an integral
feature of the tertiary structure of active enzyme. In the
mammalian enzymes, this residue forms a salt bridge to the
amino terminus of Ile 16 on zymogen activation, resulting in
catalytically competent enzyme; in the bacterial proteases
of this sub-family, no zymogens have yet been isolated, and
the salt bridge is internal in these proteins between Asp
194 and the guanidinium group of Arg 138 (Stryer, 1975; Brayer
et al., 1979). By comparison, the subtilisin sub-family
is characterized by the primary sequence Thr-Ser-Met-Ala
around the catalytically important serine residue, and a
catalytic triad of Asp 32, His 64, and Ser 221. Thus, these
two sub-families are an example of convergent evolution, in
that two classes of protein that are quite different in their
overall tertiary structures have evolved to utilize the same
triad of amino acid side-chains as a unique catélytic entity.
Another key structural feature of the serine protease
enzymes is the "oxyanion hole", which consists of the amide
backbone NH groups of Ser 195 and Gly 193 in the trypsin
sub-family (Kraut, 1977; Steitz et al., 1969; Henderson, 1970),
and the amide backbone NH group of Ser 221 and the side-chain
NH, group of Asn 155 in the subtilisin sub-family (Robertus

et al., 1972). This region of the active site is proposed to



)

be crucial for the stabilization of the negatively charged
tetrahedral intermediate formed during the catalytic process
through strong hydrogen bonding to the oxyanion portion of
the intermediate.

Lastly, it must be mentioned that the numerous, extended,
non-covalent contacts made betweeen the substrate and the
enzyme surface, including the specificity pocket, seem to be
critical for the precise orientation and alignment of the
residues of the active site and the scissile bond of the
substrate with respect to each other, so as to allow the

enzyme to manifest its total catalytic potential.

The Catalytic Mechanism of the Serine Proteases. The generally

accepted overall kinetic scheme for catalysis by the serine
proteases is diagrammed in Figure 1. As in all enzyme processes
on natural substrates, the initial step in the reaction sequence
is the formation of an enzyme-substrate (Michaelis) complex,
usually a diffusion controlled process. This complex is held
together by non-covalent forces--hydrogen bonds, charge-transfer
interactions, ionic attractions, and Van der Waal's interactions.
In the formation of the Michaelis complex the specificity
pocket of the enzyme plays its part in determining which bond
of the substrate will be cleaved and by setting the stereo-
chemical preference of the enzyme; the known serine proteases
rapidly catalyze the hydrolysis of L-amino acid derivatives,
while only sluggishly catalyzing the hydrolysis of their D-
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