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Abstract

We explicate Flach’s and Morin’s special value conjectures in [8] for proper regular arithmetic
surfaces π : X Ñ SpecZ and provide explicit formulas for the conjectural vanishing orders
and leading Taylor coefficients of the associated arithmetic zeta-functions. In particular,
we prove compatibility with the Birch and Swinnerton-Dyer conjecture, which has so far
only been known for projective smooth X . Further, we derive a direct sum decomposition of
Rπ˚Zpnq into motivic degree components.
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Chapter 0

Introduction

Background. The Tamagawa Number Conjecture — first proposed by Bloch and Kato
in [4] and then reformulated by Fontaine and Perrin-Riou in [9] — describes the vanishing
order and leading Taylor coefficient (up to sign) L˚pM,nq of the L-function LpM, sq associated
to any Chow motive M over a number field at every integer s “ n. It vastly generalizes
the Analytic Class Number Formula as well as the Birch and Swinnerton-Dyer Conjecture
which could be derived as corollaries for M “ h0pSpecF q for any number field F and for
M “ h1pEqp1q for any elliptic curve E (or, more generally, any smooth projective curve) over
F respectively.

Meanwhile Flach and Morin gave conjectural descriptions of the special values of arithmetic
ζ-functions ζpX , sq associated to any proper regular arithmetic scheme X Ñ SpecZ in [8].
They proved that under certain standard assumptions their conjectures are compatible with
the Tamagawa Number Conjecture for projective smooth X , in the sense that they predict
the same vanishing orders and leading Taylor coefficients for the L-function associated to
the Tate-twisted motive M “ hpXQqpnq of the generic fiber XQ (cf. [8] Thm. 5.26).

Special Value Conjectures for arithmetic schemes. We will present their conjecture
and the constructions necessary for its formulation in more detail. One may also consult
Appendix A.6 for a schematic overview of the involved types of cohomology and their
interconnections. Let d “ dim X and let n be any integer.

• Flach and Morin have constructed perfect complexes RΓcpX ,Rpnqq and

RΓar,cpX , R̃pnqq “ RΓcpX ,Rpnqq ‘RΓcpX ,Rpn´ 1qq

in the derived category of real vectorspaces, the former being the mapping cone of the
Beilinson regulator map. Conjecturally, the vanishing orders of LpX , sq are determined
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by the ranks of the resulting compact Arakelov cohomology groups:

ords“nζpX , sq “
ÿ

iPZ
p´1qi ¨ i ¨ dimRH

i,n
ar,cpX , R̃pnqq.

• Further, they assume the validity of the Artin-Verdier duality conjecture, i.e., the
existence of a perfect pairing

H‚pX ,Z{mpnqq ˆH2d`1´‚pX ,Z{mpd´ nqq ÝÑ Q{Z

for positive integers m, to construct a perfect complex RΓW pX ,Zpnqq out of the
(completed) motivic cohomology RΓpX ,Zpnqq of Bloch’s cycle complexes Zpnq. It
contains all information of both the finitely generated as well as the cofinitely generated
parts of motivic cohomology. They went on to define the compactly supported Weil-étale
cohomology complex RΓW,cpX ,Zpnqq via the triangle

RΓW,cpX ,Zpnqq ÝÑ RΓW pX ,Zpnqq ÝÑ RΓW pX8,Zpnqq ÝÑ (1)

where the right-most complex is an integral version of Betti cohomology.

• They have shown that the above complexes fit into a distinguished triangle

pRΓddRpX {Zq{FilnqRr´1s ÝÑ RΓar,cpX , R̃pnqq ÝÑ RΓW,cpX ,ZpnqqR ÝÑ (2)

where RΓddRpX {Zq denotes the derived version of the de Rham cohomology of X .
This motivates the definition of the fundamental line

∆pX , nq “ detZRΓW,cpX ,Zpnqq b detZRΓddRpX {Zq{Fn

and gives rise to its trivialization

λ8pX , nq : R –
ÝÑ detRRΓar,cpX , R̃pnqq –

ÝÑ ∆pX , nqR.

• They have defined a correction factor CpX , nq P Qˆ{t˘1u in terms of determinants
of conjecturally distinguished triangles coming from p-adic Hodge Theory. CpX , nq

is trivial for n ď 0. The leading Taylor coefficients ζ˚pX , nq are now conjectured to
satisfy and hence be determined by

λ8pζ
˚pX , nq´1 ¨ CpX , nq ¨ Zq “ ∆pX {Z, nq.

Results and Layout. In this thesis we will explicate these conjectures for proper regular
arithmetic surfaces X and show compatibility with the Birch and Swinnerton-Dyer conjecture.
On the way we will establish decomposition results for various types of cohomology. We will
interpret this as an indication for the existence of a decomposition of a hypothetical motive
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hpX q into motivic degree components within the framework of a yet to be developed theory
of mixed motives.

In Chapter I we will prove Artin-Verdier duality for arithmetic surfaces X in the then
remaining open case n “ 1. We will decompose X into a smooth open part on which duality
is easy and a collection of bad fibers on which the duality statement follows from Saito’s
work in [28]. The main result is Theorem 1.3. Artin-Verdier duality will be used as a
computational tool in the remaining chapters.

Chapters II and III are the core of this thesis. In the second chapter we will evaluate all
cohomology groups introduced before, assuming the existence of a section s : S Ñ X , where
S is the spectrum of the integer ring of a number field F for which there is a factorization
π : X Ñ S of the structure map of X . A summary of the results is given in Appendix A.5.
All computations will be organized around the main result Theorem 2.11 (and its various
versions throughout Section 2.2) providing a decomposition

Rπ˚ZpnqX » ZpnqS ‘ p
R1π˚ZpnqX r´1s ‘ Zpn´ 1qSr´2s (3)

in the derived category of abelian sheaves on S, and hence a decomposition of the associated
cohomology groups. The analogue of (3) for torsion sheaves will be proven using Verdier
duality and the six functor formalism for π and s. (3) will be an extension of it incorporating
Geisser’s results on dualizing cycle complexes in [12]. A further insight will be the analysis
of derived de Rham cohomology as given in Proposition 2.23. It will explain the occurrence
of the Bloch-Kato conductor ApX q in the special value formulas later.

In Chapter III we evaluate the trivialization factor coming from λ8pX , nq (Theorem 3.13). Un-
derstanding λ8pX , nq will amount to comparing the two integral structures ofRΓW,cpX ,ZpnqqR
induced by the triangles (1) and (2). Note that (2) only conjecturally determines an integral
lattice inside RΓW,cpX ,ZpnqqR as follows: Flach and Morin have constructed a pairing

H‚c pX ,Rpnqq ˆH2d´‚pX ,Zpd´ nqqR ÝÑ R (4)

that they conjecture to be perfect and, moreover, to encode the Arakelov Intersection Pairing.
This would endow the cohomology groups of the second term in (2) RΓar,cpX , R̃pnqq with a
canonical integral structure coming from RΓpX ,Zpnqq.

Let m “ r ` 2s “ rF : Qs and write g for the genus of the generic fiber X of X . We further
prove CpX , 1q “ 1 unconditionally (Theorem 3.19) and derive

CpX , nq “ ppn´ 1q! ¨ pn´ 2q!qmpg´1q

for n ě 2 assuming both the special value conjectures as well as the functional equation for
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ζpX , sq (Theorem 3.24). We will combine this to the special value formulas

ζ˚pX , nq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2pr´lpX qqεn
ś

1ďiď4

`

#TorH ipX ,Zp2´nqqcodiv
˘p´1qi R2´npSqR1´npSq

R2´npX q for n ď 0

2rp2πqs

p#µF q2
?
DF
¨
p#TorPic0X q2

#XpX{F q¨ΩpX q ¨
RpSq2

RpX q for n “ 1

´

pn´1q!¨pn´2q!

p2πq2pn´1q

¯mpg´1q
ApX q1´n ¨ ζ˚pX , 2´ nq for n ě 2

Here the regulators RnpX q and RnpSq are determinants of the matrices describing the pairing
(4) for X and S, and ΩpX q is the determinant of (a restriction of) the period isomorphism
comparing Betti and de Rham cohomology. The case n ě 2 requires an additional technical
assumption on X needed to evaluate its derived de Rham cohomology in terms of ApX q. We
will conclude that Flach’s and Morin’s conjectures for surfaces X and n “ 1 are equivalent
to the conjunction of the vanishing order part and the leading Taylor coefficient part of the
Birch and Swinnerton-Dyer conjecture. The main result will be Theorem 3.27.
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Chapter 1

Artin-Verdier duality for arithmetic
surfaces

Throughout this chapter let O be a number ring with fraction field F . Write S “ SpecO.
X will denote a proper regular arithmetic scheme over O of pure dimension d – arithmetic,
meaning that there is an integral, normal, excellent, flat map X Ñ SpecO of finite type
with smooth generic fiber XF . We will write X for a proper regular arithmetic surface over
O. Zpnq will denote the motivic cycle complexes as defined in Appendix A.1. Finally, let
GR “ GalpC{Rq.

In this chapter we combine work by Saito with Flach’s and Morin’s construction of the Artin-
Verdier étale topos to generalize Artin-Verdier duality to arithmetic surfaces for coefficients
given by Zp1q “ Gmr´1s.

1.1 The Artin-Verdier ètale topos and compact support coho-

mology

Classical Artin-Verdier duality gives a pairing

HrpS,Fq ˆ Ext3´rS pF ,Gmq ÝÑ H3pS,Gmq “ Q{Z

for all constructible étale sheaves F on S that is in general perfect only up to 2-torsion.
Duality for the 2-torsion components needs further assumptions, e.g., that the underlying
number field F is totally imaginary (cf. [21] Sec. 2).

Geisser has generalized this result to arithmetic schemes X of any dimension (cf. [12] Thm.
7.8). Conjecturally, an analogous duality should hold for Bloch’s cycle complexes replacing
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F . To treat the cases p ‰ 2 and p “ 2 uniformly Flach and Morin have constructed the
Artin-Verdier étale topos X ét (cf. [8] App. A) which we will briefly review here.

The Artin-Verdier étale topos X ét. Let Xét denote the étale topos of X and write X8

for both the quotient X pCq{GR itself and its associated topos of sheaves of set ShpX pCq{GRq

interchangeably. The projection π : X pCq ÑX8 extends to a morphism of topoi

ShpGR,X pCqq π // ShpX8q

given by

π˚pE Ñ X8q “ E ˆ
X8

X pCq Ñ X pCq and pπ˚F qpUq “ F pπ´1UqGR ,

where E is the étalé space associated to a sheaf in X8. Next, the functor that maps any
étale covering U Ñ X to the GR-equivariant étalé space UpCq ÑX pCq induces a morphism
of topoi α : ShpGR,X pCqq ÑXét. We now define the Artin-Verdier étale topos as the topos
X ét fitting into an Open-Closed-Decomposition

Xét
φ
ÝÑ X ét

u8
ÐÝ X8 (1.1)

such that u˚8φ˚ – π˚α
˚. Moreover, we may write π˚ as the composition

ShpGR,X pCqq p˚
// ShpGR,X8q

Hom pZ,´q
//X8,

where pp˚FqpUq “ Fpπ´1Uq and Hom pZ,´q denotes the composition of the sheaf-hom func-
tor inside ShpGR,X8q with the forgetful functor. We summarize this in the diagram

Xét
φ

// X ét X8u8
oo

ShpGR,X pCqq

α

ee

π

77

p˚
// ShpGR,X8q

Hom pZ,´q

OO

Next, let Pě0 Ñ Z Ñ 0 be the standard resolution of the constant sheaf Z with trivial
GR-action. Write Γ˚ for the left-adjoint functor of the global sections functor for GR-
equivariant sheaves on X pCq. For any bounded below complex A‚ of sheaves in ShpGR,X q

one has
Rπ˚A‚ –

ż

Hom pΓ˚Pě0, p˚A‚q.

Her
ş

denotes totalization. In analogy to Tate cohomology we define the Tate analogue Rpπ
of Rπ by replacing Pě0 with a complete resolution P‚ of Z:

Rpπ˚A‚ :“

ż

Hom pΓ˚P‚, p˚A‚q.1

1See [8] Sec. 6.4 for why Rpπ is well-defined as a functor between derived categories and for further details.
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For technical reasons the analogue ZpnqX of Bloch’s cycle complexes in the derived category
of abelian sheaves on X ét is defined via the distinguished triangle

ZpnqX ÝÑ Rφ˚ZpnqX ÝÑ u8,˚τ
ąnRpπ˚α

˚τě0ZpnqX ÝÑ .

However, if ZpnqX is cohomologically concentrated in degrees ď n then one has the more
intuitive identity ZpnqX “ τďnRφ˚ZpnqX (cf. [8] Prop. 6.10). The cohomology of ZpnqX

and ZpnqX only differ in 2-torsion and the precise difference will be addressed in the next
chapter and in Appendix A.3.

Milne’s étale cohomology with compact support. One formulation of Artin-Verdier
duality uses compact support cohomology which we will briefly review here. Let U Ă S be
an open subscheme. Write S8 for all infinite places of O and let Sfin “ SzU denote the set
of all finite places of O not in U . For any abelian sheaf F on Uét Milne’s cohomology with
compact support is the cohomology of the complex RpΓcpUét,Fq given via the distinguished
triangle

RpΓcpU,Fq ÝÑ RΓpU,Fq ÝÑ
à

vPSfin

RΓpFv, f
˚
v Fq ‘

à

vPS8

RpΓpFv, f
˚
v Fq ÝÑ .

Here fv : SpecFv Ñ U is the canonical embedding of the closed point v in U and RpΓpFv,´q
denotes Tate cohomology of the Galois group of Fv (cf. [22] p.165ff). We extend this definition
to schemes f : U Ñ U over U and abelian sheaves F on Uét by setting

RpΓcpUét,Fq :“ RpΓcpUét, f˚Fq. (1.2)

We write pH i
cpUét,Fq :“ H ipRpΓcpUét,Fqq.

This definition covers coefficients given by Zpnq for n ď 1 since these are cohomologically
concentrated in one degree. It is consistent with the following definition of RpΓcpXét,Zpnqq
for general n. Let Rpφ!ZpnqX be defined via the distinguished triangle

Rpφ!ZpnqX ÝÑ Rφ˚ZpnqX ÝÑ u8,˚Rpπ˚α
˚τě0ZpnqX ÝÑ .

Define RpΓcpXét,Zpnqq :“ RΓpX ét, Rpφ!ZpnqX q.

1.2 The Duality Statement

Fix any integer n. The Artin-Verdier duality conjecture may be formulated as follows.

Conjecture 1.1. AV(X ,n) Let m be a positive integer. There exists a product map

ZpnqX {mbL Zpd´ nqX {m ÝÑ ZpdqX {m
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in the derived category of Artin-Verdier étale sheaves on X such that the induced pairing

H ipX ét,Zpnq{mq ˆH2d`1´ipX ét,Zpd´ nq{mq ÝÑ H2d`1pX ét,Zpdq{mq Ñ Q{Z

is a perfect pairing of finite abelian groups integers i.

Morin has shown that this is equivalent to the following formulation using Tate cohomology
(cf. [8] Thm. 6.24).

Conjecture 1.2. AV’(X ,n) For any positive integer m there exists a product map

ZpnqX {mbL Zpd´ nqX {m ÝÑ ZpdqX {m

in the derived category of étale sheaves on X such that the induced pairing

pH i
cpXét,Zpnq{mq ˆH2d`1´ipXét,Zpd´ nq{mq ÝÑ pH2d`1

c pXét,Zpdq{mq Ñ Q{Z

is a perfect pairing of finite abelian groups for all integers i.

This conjecture is known for n ě d and n ď 0 and also for all n P Z if X is smooth over a
number ring (cf. [8] Cor. 6.26, 6.27). We wish to prove AV(X ,n) for proper regular arithmetic
surfaces X , i.e. for the case d “ 2. By the above, only the case n “ 1 remains to be shown.
This will be the main result of this chapter. We formulate it for prime powers m “ pr.

Theorem 1.3. (AV2) There exists a product map

Zp1qX {pr bL Zp1qX {pr ÝÑ Zp2qX {pr (1.3)

such that for all prime powers pr the induced pairing of cohomology groups

pH i
cpXét,Zp1q{prq ˆH2d`1´ipXét,Zp1q{prq ÝÑ pH5

c pXét,Zp2q{prq Ñ Z{pr (1.4)

is a perfect pairing of finite pr-torsion groups for all integers i.

Remark 1.4. The versions of Artin-Verdier duality in [8] conjecture the existence of a product
map for the integral complexes

ZpnqX bL Zpd´ nqX ÝÑ ZpdqX

that induce the aforementioned product maps of torsion complexes. For the pairing of
cohomology groups this does not make a difference. We will construct a product map

Zp1qX bL Zp1qX ÝÑ Zp2qX (1.5)

under the additional assumption that Zp2qX satisfies the Beilinson-Soulé conjecture. (1.3)
will be constructed unconditionally.
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1.3 Lichtenbaum’s product map and Spiess’ complex

Lichtenbaum’s complex Zp2,X q. Before Bloch defined the cycle complexes ZpnqX for
general n ě 0 Lichtenbaum constructed a complex Zp2,X q using K-theory and proved that
it satisfies many of the axioms for arithmetic cohomology complexes as proposed by Beilinson
(cf. [20]). We review its definition.

Let A be a regular noetherian ring. Write A1
A “ SpecArts and Z “ SpecArts{tpt´ 1q. a P A

is an exceptional unit if both a, 1´ a P Aˆ. For a finite set B Ă A of exceptional units let
YB “ SpecArts{

ś

bPBpt´ bq. pYBqB forms an inverse system, so we may define

Cn,1pAq “ lim
ÝÑ
B

KnpA1
AzYB, Zq and Cn,2pAq “ lim

ÝÑ
B

K 1
n´1pYBq

(cf. [20] Def. 1.5). After gluing and sheafifying the presheaves SpecA ÞÑ Cn,ipAq for i “ 1, 2

we obtain abelian sheaves CX
n,1 and CX

n,2 on Xét.

Definition 1.5. (cf. [20] Def. 2.1) Let Zp1,X q and Zp2,X q be the complexes in the derived
category of abelian sheaves on Xét given by

Zp1,X q “ r

0

CX
1,1 Ñ

1

CX
1,2s, and Zp2,X q “ r

1

CX
2,1 Ñ

2

CX
2,2s.

Lichtenbaum shows that K1pX qr´1s is quasi-isomorphic to Zp1,X q (cf. [20] Prop. 2.4). As
the Bloch cycle complex Zp1qX is quasi-isomorphic to K1pX qr´1s we immediately have
Zp1qX – Zp1,X q in the derived category. An analogous isomorphism for n “ 2 is only
conjectured, but for arithmetic surfaces X partial results are known.

Spiess’ complex K{X for arithmetic surfaces. Spiess constructed a complex K{X of
abelian sheaves on Xét and proved a duality of type

H ipX ,Fq ˆ Ext6´ipF ,K{X q ÝÑ Q{Z (1.6)

for any constructible étale sheaf F on X (cf. [34] Theorem 2.2.2). We review the construction
of K{X .

Definition 1.6. Let

K{X “

«

1
à

ξPX 0

piξq˚C2,1pkpξqq ÝÑ
2

à

ξPX 0

piξq˚C2,2pkpξqq
c2
ÝÑ

3
à

ηPX 1

piηq˚Gm ÝÑ

4
à

xPX 2

i˚Z

ff

,

where c2 arises from the composition of C2,2pkpξqq Ñ K2pkpξqq with the boundary map
B1 : K2pkpξqq Ñ Gm from K-theory.
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Note that there is a canonical map Zp2,X q Ñ K{X . Geisser has shown a duality for Zp2qX

analogous to (1.6) (cf. [12] Thm. 8.7) which suggests that K{X and Zp2qX might coincide.
Zhong has found a partial answer to this conjecture.

Theorem 1.7. (Zhong, [38] Thm. 3.8) There is a map of complexes Zp2qX Ñ K{X in the
derived category of etale sheaves on X that induces a quasi-isomorphism

τě1Zp2qX »
ÝÑ K{X .

In particular, [8] Conjecture 7.1 holds for arithmetic surfaces. Using Flach’s and Morin’s
technical Lemma 7.7 in [8] we may also remove the truncation after passing to mapping
cones.

Corollary 1.8. Zp2qX is cohomologically concentrated in degrees ď 2. Moreover, for any
prime power pr the complex Zp2qX {pr is cohomologically concentrated in degrees 0, 1, 2.

Proof. Spiess remarks that K{X is concentrated in degrees 1, 2 (cf. [34] 1.6.2.(A1)). Conse-
quently, [8] Conjecture 7.1 holds for Zp2qX and so [8] Lemma 7.7 applies. It yields for every
prime p and its associated Open-Closed-Decomposition

Xp
i
ÝÑ X j

ÐÝ X r1{ps

the distinguished triangle
`

τď1i˚Zp1qXp{p
˘

r´2s ÝÑ Zp2qX {p ÝÑ τď2Rj˚µ
b2
p ÝÑ,

where Xp :“ XFp . Since the left hand side is cohomologically concentrated in degree 3 it
shows that H ipZp2qX {pq “ 0 for all i ă 0.

Lichtenbaum’s product map. K-theory gives product mapsKipAqbKjpT0q Ñ Ki`jpT0q,
KipAq bKjpT, T0q Ñ Ki`jpT, T0q for any closed immersion i : T0 ãÑ T of schemes of finite
type over A. Therefore Cn,1pAq, Cn,2pAq have a K0pAq-module structure and, moreover, there
are maps KmpAq b Cn,1pAq Ñ Cm`n,1pAq. In particular, we obtain a product map

K1pX qr´1s b Zp1,X q ÝÑ Zp2,X q. (1.7)

Recalling that K1pXqr´1s – Zp1, Xq – Zp1qX and that the etale localizations pCi,1pXqqx̄ “
Ci,1pOX,x̄q are flat for i “ 1, 2 (cf. [20] Prop. 2.5) we may rewrite the left-hand side as
Zp1qX bL Zp1qX . Composition with Zhong’s isomorphism yields the product map

Zp1qX bL Zp1qX ÝÑ Zp2,X q ÝÑ K{X
»
ÝÑ τě1Zp2qX . (1.8)

Taking mapping cones gives the pairing (1.3) as desired. When assuming Beilinson-Soulé
τě1Zp2qX » Zp2qX the above extends to the pairing (1.5) into the full Zp2qX .
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1.4 A further construction of the p-torsion product map for

arithmetic surfaces a la Sato

Fix a prime power pr. We present an alternative construction of the p-torsion version of
(1.3)

Zp1qX {pr bL Zp1qX {pr ÝÑ Zp2qX {pr (1.9)

that builds on a lifting argument by Sato (cf. [29] Prop. 4.2.6). For an arithmetic surface
one can drop Sato’s normal crossing condition and use the explicit description of a boundary
map from K-theory instead. This section should be understood as an extension of some of
Sato’s results and constructions in [29] to arithmetic surfaces with not necessarily semistable
fibers.

An Open-Closed-Decomposition for ZpnqX . Let Z “ XFp denote the special fiber of X
over p and write X r1{ps for its complement. We have the Open-Closed-Decomposition

Z
i
ÝÑ X j

ÐÝ X r1{ps.

We know H ipZp2qX q “ 0 for i ą 2 (Corollary 1.8). Therefore – by Proposition A.5(ii) –
Rj˚j

˚Zp2qX {pr “ Rj˚µ
b2
pr , and we have the distinguished triangles

i˚ZZ{prr´2s ÝÑ Zp1qX {pr ÝÑ τď1Rj˚µpr ÝÑ, (1.10)
`

τď1i˚Zp1qZ{pr
˘

r´2s ÝÑ Zp2qX {pr ÝÑ τď2Rj˚µ
b2
pr ÝÑ

(cf. [8] Lemma 7.7). [38] Thm. 1.1 provides the quasi-isomorphism

Zp1qZ{pr »

«

à

ηPZ0

piηq˚WrΩ
1
kpηq,log ÝÑ

à

xPZ1

pixq˚WrΩ
0
kpxq,log

ff

r´1s, (1.11)

i.e. Zp1qZ{pr is cohomologically concentrated in degrees 1 and 2. We wish to show that

Zp1qX {pr bL Zp1qX {pr ÝÑ τď1Rj˚µpr b
L τď1Rj˚µpr ÝÑ τď2Rj˚µ

b2
pr

lifts to a duality pairing Zp1qX {pr bL Zp1qX {pr ÝÑ Zp2qX {pr. This will follow from the
picture

`

τď1i˚Zp1qZ{pr
˘

r´2s // Zp2q{pr // τď2Rj˚µ
b2
pr

//
`

τď1i˚Zp1qZ{pr
˘

r´1s

Zp1qX {pr bL Zp1qX {pr

OO

Hom“0

ll

“0

44

(1.12)
which we will verify now. Zp1qX {pr bL Zp1qX {pr is concentrated in degrees 0, 1, 2 while
pτď1i˚Zp1qZ{prqr´2s is concentrated in degree 3. So, there can in fact not be any non-trivial
morphisms between them. Now it suffices to show the
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Proposition 1.9. The composition

Zp1qX {pr bL Zp1qX {pr ÝÑ τď2Rj˚µ
b2
pr ÝÑ

`

τď1i˚Zp1qZ{pr
˘

r´1s

on the right-hand side of (1.12) vanishes.

Proof. We use Sato’s notation M r
n “ i˚Rnj˚µ

bn
pr . Observe that Zp1qX {pr bL Zp1qX {pr Ñ

`

τď1i˚Zp1qZ{pr
˘

r´1s can only be non-trivial in degree 2. The map on second cohomology
sheaves is supported on Z and thus can be identified with

H 1Zp1qX {pr bH 1Zp1qX {pr ÝÑ M2
r ÝÑ H 1pZp1qZ{prq.

Fix a geometric point z̄ of Z. Then, for A “ OX ,z̄r1{ps, F “ FracA, and any n ě 1 one has

pMn
r qz̄ “ Hn

étpA,µ
bn
pr q ãÑ Hn

étpF, µ
bn
pr q “ KnF {p

r.

The inclusion is due to Gabber as mentioned in the proof of [2], Prop. 6.1. The last equality
is only needed in the easy case n “ 1, 2 but it holds in general by the Rost-Voevodsky
Theorem. Moreover, for n “ 1 the Kummer sequence shows that H1

étpA,µprq “ K1A{p
r.

Consequently — when writing Z0
z “ Z0Xtzu for the collection of all non-closed points whose

closure contains z — (1.10) yields

pH 1Zp1qX {prqz “ Ker

˜

pM1
r qz Ñ

à

ηPZ0
z

Z{pr
¸

“ Ker

˜

K1A

pr
Ñ

à

ηPZ0
z

Z
pr

¸

.

Also,

pH 1Zp1qZ{prqz̄ “ Ker

¨

˝

˜

à

ηPZ0

piηq˚WrΩ
1
kpηq,log

¸

z̄

ÝÑ

˜

à

xPZ1

pixq˚WrΩ
0
kpxq,log

¸

z̄

˛

‚

“ Ker

˜

à

ηPZ0
z

kpηqˆ{pr ÝÑ Z{pr
¸

Ă
à

ηPZ0
z

kpηqˆ{pr.

So, it suffices to show that the composition

Ker

˜

K1A

pr
Ñ

à

ηPZ0
z

Z
pr

¸

bKer

˜

K1A

pr
Ñ

à

ηPZ0
z

Z
pr

¸

ÝÑ
K2F

pr

‘ηBη

ÝÝÝÝÑ
à

ηPZ0
z

K1kpηq

pr
(1.13)

vanishes. The map K2F {p
r BηÑ K1kpηq{p

r is the boundary map coming from K-theory with
F being regarded as the fraction field of the DVR Aη. Let the corresponding valuation be
called vη. The composition

K1F ˆK1F
b
ÝÑ K2F

Bη
ÝÑ K1kpηq

admits the explicit formula

pa, bq ÞÑ p´1qvηpaqvηpbq
avηpbq

bvηpaq
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(cf [1] Prop. 4.5(e)). In particular, the image of a b b under (1.13) is trivial whenever
vηpaq “ vηpbq “ 0 for all η P Ďtzu. Now, since the map K1F Ñ

À

ηPZ0
z
Z{pr is the tuple

À

ηPĚtzu vη and any a P A is integral with respect to all vη the composition (1.13) must be
identically zero.

The Gersten complex of logarithmic deRham-Witt sheaves of a variety X (which the right-
hand side of (1.11) is an example of) is known to be concentrated in one degree only if X
is normal-crossing. For the one-dimensional curve Z the normal-crossing condition is not
necessary.

Proposition 1.10. The boundary map

β :
à

ηPZ0

piηq˚WrΩ
1
kpηq,log ÝÑ

à

xPZ1

pixq˚WrΩ
0
kpxq,log

is surjective, i.e. Zp1qZ{pr » Kerpβqr´1s.

Proof. The Gersten complexes for Z and Zred are identical; thus we assume Z to be reduced.
The stalk of

À

xPZ1pixq˚WrΩ
0
kpxq,log at a generic point η P Z0 vanishes. It therefore suffices

to consider the maps on stalks at a geometric point z̄ ãÑ z

βz :
à

ηPĚtzu

WrΩ
1
kpηq,log

ÝÑWrΩ
0
kpxq,log

for any closed point z P Z. Note that we now work over the algebraic closure k̄ of k since we
are considering etale stalks. We may assume that Z is irreducible. Let η denote its generic
point. By restricting to a suitable neighborhood of z we may assume Z to be affine. We are
left to show that

βz : kpηqˆ{pr ÝÑ Z{pr

surjects. Let N Ñ Z be the normalization of Z and P1, . . . , Pr P N the preimages of z. Each
local ring ON,Pi is a DVR and hence comes with a valuation vi. One has βz “

ř

i vi. So, it
suffices to find a rational function f P kpNq “ kpZq which has a simple zero at precisely one
Pi0 and is non-zero at all remaining Pi. This is easy for infinite base fields.

Embed N Ă An
k
. As k is infinite we can choose a hyperplane H Ă An

k
passing through some

Pi0 that does not contain any other Pj and that also does not contain the tangent direction
of Z at x. The linear function f with Zpfq “ H will satisfy the above.

Corollary 1.11. One has a distinguished triangle

i˚Zp1qZ{prr´2s ÝÑ Zp2qX {pr ÝÑ τď2Rj˚µ
b2
pr ÝÑ

i.e. [8] Conjecture 7.10 holds for arithmetic surfaces and n “ 2 and Sato’s complex Irp2qX
defined for normal-crossing X is quasi-isomorphic to Zp2qX and its construction in [29] Def.
4.2 can be carried out without the normal-crossing assumption.
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1.5 Saito’s duality result and duality on the closed part

For the remainder of this chapter we let X be a surface over the integer ring of a local field L
with perfect residue field of characteristic p. We write Z for its special fiber and j : XL ãÑ X

and i : Z ãÑ X for the canonical open and closed embeddings. Obviously, the constructions
from last section can equally be carried out for X , i.e. we also have Spiess’ and Lichtenbaum’s
complexes K {X and Zp2,X q.

We will show (AV2) by proving dualities on the smooth, open part and the singular, closed
part separately. This idea is based on Sato’s proof that Artin-Verdier duality in the global
and local setting are equivalent (cf. [29] Sec. 10). Duality on the closed part has essentially
been shown by Saito in [28]. We will need the analogue of [28] (4-1) for X and will briefly
sketch Sato’s proof in this context.

Theorem 1.12. (AV2l) Let X be a proper regular surface over the integer ring of a local
field with special fiber Z. Write H i

ZpX ,Zpnqq :“ H ipZ,Ri!Zpnqq. The product map

Ri!Zp1qX bL i˚Zp1qX ÝÑ Ri!Zp2qX

in the derived category of abelian sheaves on Xét induced by (1.8) induces a perfect pairing

H i
ZpX ,Gmq ˆH

4´ipZ, i˚Gmq ÝÑ H6
ZpX ,Zp2qX q

trX ,Z

ÝÝÝÑ Q{Z (1.14)

of finitely generated abelian groups.

Proof. We will replicate the computations in [28] Section 4 using the additional simplification
that L cannot have a real embedding. Note that the trace map trX ,Z is Saito’s trace map
constructed in [28] Thm. 3.1. The duality (1.14) can be written as

RΓZpX ,Gmq
˚r´4s » RΓpZ, i˚Gmq (1.15)

in the derived category of abelian groups, where p´q˚ “ RHomp´,Q{Zq. To prove (1.15) we
use the localization sequences

à

xPZ0

RΓxpX ,Gmq ÝÑ RΓZpX ,Gmq ÝÑ
à

ηPZ1

RΓηpX ,Gmq ÝÑ (1.16)

à

xPZ0

RΓxpZ, i
˚Gmq ÝÑ RΓpZ, i˚Gmq ÝÑ

à

ηPZ1

RΓpOη,Gmq ÝÑ (1.17)

and evaluate the enclosing complexes.



15

Computation of the distinguished triangle (1.16). We will now compute the terms
RΓxpX,Gmq and RΓηpX,Gmq. For x P Z0, η P Z1 write Dx “ SpecOxzx and Kη for the
fraction field of Oη. The inclusions txu ãÑ Ox and tηu ãÑ Oη give rise to the distinguished
triangles

RΓxpX ,Gmq ÝÑ RΓpOx,Gmq Ñ RΓpDx,Gmq ÝÑ,

RΓηpX ,Gmq ÝÑ RΓpOη,Gmq Ñ RΓpKη,Gmq ÝÑ .

Let kpxq, kpηq denote the residue fields of Ox, Oη respectively. It is well-known that
τě1RΓpOx,Gmq » τě1RΓpkpxq,Gmq and τě1RΓpOη,Gmq » τě1RΓpkpηq,Gmq. As kpxq
is finite, its cohomological dimension is 1. So, by Hilbert 90 and the fact that finite fields
have trivial Brauer group RΓpOx,Gmq must be concentrated in degree 0 and we have

RΓpOx,Gmq » Oˆx r0s.

Similarly, we obtain the cohomology sheaves of RΓpOη,Gmq and RΓpKη,Gmq. This may be
written as the distinguished triangles

Oˆη ÝÑ RΓpOη,Gmq ÝÑ Br kpηqr´2s ÝÑ

Kˆ
η ÝÑ RΓpKη,Gmq ÝÑ BrKηr´2s ÝÑ .

Indeed, we do not have 2-torsion groups in higher degrees as Saito does in his proof since Kη

is an extension of the local field L, i.e. it has no real embedding.

As Oη is a DVR and the canonical map Br kpηq Ñ BrKη injects, we obtain

Zr´1s ÝÑ RΓηpX ,Gmq ÝÑ
BrKη

Br kpηq
r´3s ÝÑ .

Finally, since OxzDx Ă Ox has codimension 2 one has H0pDx,Gmq “ ΓpOx,Gmq “ Oˆx and
H1pDx,Gmq “ Pic pDxq “ Pic pOxq “ 0. Also, H2pDx,Gmq – H2pOx,Gmq “ Br pOxq “ 0

where the first isomorphism is due to Grothendieck (cf. [14], III, Thm. 6.1(b)). The duality

RΓpDx,Gmq » RΓpDx,Gmq
˚r´3s

(cf. [27]) therefore proves that

RΓxpX ,Gmq » pOˆx q˚r´4s

and the distinguished triangle (1.16) becomes
À

ηPZ1
Zr´1s

��
À

xPZ0
pOˆx q˚r´4s // RΓZpX ,Gmq // RΓηpX ,Gmq

��

//

À

ηPZ1

BrKη
Br kpηq r´3s
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Taking duals and shifting 4 terms to the right gives

À

ηPZ1

´

BrKη
Br kpηq

¯˚

r´1s

��

RΓηpX ,Gmq
˚r´4s

��

// RΓZpX ,Gmq
˚r´4s //

À

xPZ0
Oˆx //

À

ηPZ1
Q{Zr´3s

(1.18)

Here we used finiteness of Z1.

Computation of the distinguished triangle (1.17). To compute RΓxpZ, i
˚Gmq we

use the localization sequence

RΓxpZ, i
˚Gmq ÝÑ RΓpOx,Gmq ÝÑ

à

vPSx

RΓpOv,Gmq ÝÑ

Here Sx “
š

η Sx,η and Sx,η denotes the collection of all codimension 1 points of SpecOhx
lying over η. We write Sη “

š

xPtηu0
Sx,η. Note that Sη can be viewed as the collection of

all finite places v of the residue field kpηq. Also, let Ov denote the henselization of Oη at v
and kpvq its residue field. We get

˜

à

vPSx

Oˆv

¸

{Oˆx r´1s ÝÑ RΓxpZ, i
˚Gmq ÝÑ

à

vPSx

Br kpvqr´3s ÝÑ .

So, p1.17q becomes

À

xPZ0

`
À

vPSx
Oˆv

˘

{Oˆx r´1s

��

À

ηPZ1
Oˆη

��
À

xPZ0
RΓxpZ, i

˚Gmq //

��

RΓpZ, i˚Gmq //
À

ηPZ1
RΓpOη,Gmq //

��
À

xPZ0

À

vPSx
Br kpvqr´3s

À

ηPZ1
Br kpηqr´2s

(1.19)

Fix η P Z1. Then kpηq is either a number or a function field depending on whether η is a
horizontal or vertical divisor of X . So, Class Field Theory gives us the short exact sequence

0 ÝÑ Br kpηq ÝÑ
à

vPSη

Br kpvq ÝÑ Q{Z ÝÑ 0

and we see that (1.19) is isomorphic to the distinguished triangle

à

xPZ0

˜

à

vPSx

Oˆv

¸

{Oˆx r´1s ‘
à

ηPZ1

Q{Zr´3s ÝÑ RΓpZ, i˚Gmq ÝÑ
à

ηPZ1

Oˆη ÝÑ .
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We compare the above with the distinguished triangle (1.18). It remains to prove that the
boundary maps

ś

xPZ0
Oˆx

δ˚3 //
À

ηPZ1

´

BrKη
Br kpηq

¯˚

(1.20)

and
à

ηPZ1

Oˆη
δ13

ÝÝÝÝÑ
à

xPZ0

˜

à

vPSx

Oˆv

¸

{Oˆx (1.21)

have isomorphic kernels and isomorphic cokernels. This requires some preparation.

Results from Kato’s higher local class field theory. Fix η P Z1. Let I Ă Oη be an
ideal. In analogy to the adeles and ideles of number fields we define

AI,η “
Ă

ź

1

vPSη

Kˆ
v

1` IOˆv
“

$

&

%

pavqv P
ź

vPSη

Kˆ
v

1` IOˆv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

av P Oˆx where v P Sx
for almost all v

,

.

-

,

II,η “
Ă

ź

1

vPSη

Oˆv
1` IOˆv

“
Ă

ź

1

vPSη
pOv{IOvqˆ Ă AI,η.

We have diagonal embeddings of Kˆ
η , Oˆη into AI,η, II,η respectively. We define

CI,η “ AI,η{Kˆ
η , C0

I,η “ II,η{Oˆη .

The existence of a perfect pairing

H ipKv,Gmq ˆH
2´ipKv,Gmq Ñ H4pKv,Zp2qq – Q{Z.

is well-known. The induced product

x´,´yv : Br pKvq ˆK
ˆ
v ÝÑ Q{Z

has the property that for each x P Br pKvq the map xx,´yv has non-vanishing kernel. BrOv
can be characterized as the subgroup of BrKv consisting of those elements x for which
xx,´yv vanishes on Oˆv (cf. [29] Thm. 2.9). Consequently there is a map

Br pKvq ÝÑ lim
ÝÑ
IĂOv

Hom
ˆ

Kˆ
v

1` IOˆv
, Q{Z

˙

.

Using the embedding Br pKηq ãÑ
À

vPSη
Br pKvq we get a map

Br pKηq ÝÑ lim
ÝÑ
IĂOη

à

vPSη

Hom
ˆ

Kˆ
v

1` IOˆv
, Q{Z

˙

“ lim
ÝÑ
IĂOη

HompAη,I , Q{Zq.

Kato has shown that the above map factors through and surjects onto lim
ÝÑ
IĂOη

HompCI,η, Q{Zq

(cf. [29] Thm.2.13), i.e. we have an isomorphism

Br pKηq – lim
ÝÑ
IĂOη

HompCI,η, Q{Zq.
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Using the characterization of BrOη “ Br kpηq from before we obtain

Br pKηq

Br kpηq
– lim

ÝÑ
IĂOη

Hom
`

C0
I,η, Q{Z

˘

. (1.22)

Comparison of kernels and cokernels. Note that

Oˆx “ lim
ÐÝ
IĂOX

pOx{IOxqˆ

since Ox is a localization of OX . Analogous statements hold for Oη,Ov. So — since

à

ηPZ1

ˆ

BrKη

Br kpηq

˙˚

“
à

ηPZ1

lim
ÐÝ
IĂOη

C0
I,η “ lim

ÐÝ
IĂOX

à

ηPZ1

Ą

ź

vPSη

1
ˆ

Ov
IOv

˙ˆ
O

ˆ

Oη
IOη

˙ˆ

by (1.22) — we may rewrite the maps (1.20) and (1.21) as inverse limits δ˚3 “ lim
ÐÝ
IĂOX

δ˚3,I and

δ
1

3 “ lim
ÐÝ
IĂOX

δ
1

3,I with

δ˚3,I :
ź

xPZ0

ˆ

Ox
IOx

˙ˆ

ÝÑ
à

ηPZ1

Ą

ź

vPSη

1
ˆ

Ov
IOv

˙ˆ
O

ˆ

Oη
IOη

˙ˆ

and

δ13,I :
à

ηPZ1

ˆ

Oη
IOη

˙ˆ

ÝÑ
à

xPZ0

˜

à

vPSx

ˆ

Ov
IOv

˙ˆ
¸O

ˆ

Ox
IOx

˙ˆ

.

δ˚3,I and δ13,I have isomorphic kernels and isomorphic cokernels already. Indeed, when writing

A “
ź

xPZ0

à

vPSx

ˆ

Ov
IOv

˙ˆ

“
à

ηPZ1

ź

vPSη

ˆ

Ov
IOv

˙ˆ

, A0 “
ź

xPZ0

ˆ

Ox
IOx

˙ˆ

, A1 “
ź

ηPZ1

ˆ

Oη
IOη

˙ˆ

we have canonical embeddings A0, A1 ãÑ A and the kernels of δ˚3,I , δ
1
3,I are isomorphic to

A0 XA1. Similarly, for the direct sum analogues

A1 “
à

xPZ0

à

vPSx

ˆ

Ov
IOv

˙ˆ

“
à

ηPZ1

à

vPSη

ˆ

Ov
IOv

˙ˆ

, A10 “
à

xPZ0

ˆ

Ox
IOx

˙ˆ

, A11 “
à

ηPZ1

ˆ

Oη
IOη

˙ˆ

the definition of Ă
ś
1

ensures that the cokernels of δ˚3,I , δ
1
3,I are isomorphic to A1{pA10 `A11q.

This completes the proof of Theorem (AV2l).

1.6 Duality on the open part

Theorem 1.13. (AV2s) Fix an integer n and a prime power pr. Let U Ă S be an open
subscheme and let f : U Ñ U denote a smooth scheme over U of dimension d. There is a
duality in the derived category of abelian groups

RpΓcpU , µbnpr qr2d` 1s » RΓpU , µbpd´nqpr q˚,
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where p´q˚ “ RHomp´,Q{Zq denotes the Pontryagin-dual. In particular, for any integer i
we have a perfect pairing

pH i
cpU , µbnpr q ˆH2d`1´ipU , µbpd´nqpr q ÝÑ pH2d`1

c pU , µbdpr q – Z{pr.

Proof. We will use the structure map f : U Ñ U to reduce the above statement to usual
Artin-Verdier duality for number fields. The key ingredient will be the cohomological purity
result [23] XVI. Thm. 3.7, which itself is an application of the Smooth Base Change
Theorem [23] XVI. Thm. 1.1. Recall that

pH i
cpU,Fq ˆ Ext3´iU pF ,Gmq ÝÑ H3pU,Gmq “ Q{Z

is a perfect pairing for any constructible sheaf of abelian groups F over U . For sheaves F
killed by pr this gives the quasi-isomorphism

RpΓcpU,Fqr`3s » RHom U pF , µprq˚.

We choose F “ Rf˚pµ
bn
pr qU . This yields

RpΓcpU , µbnpr q » RpΓcpU,Rf˚pµ
bn
pr qU q

» RHom U

`

Rf˚pµ
bn
pr qU , µpr

˘˚
r´3s

pV q
» RHom U

´

µbnpr , Rf
!pµprqU

¯˚

r´3s

pSq
» RHom U

´

µbnpr , Rf
˚µbdpr r2d´ 2s

¯˚

r´3s

» RΓ
´

U , RHom U pµ
bn
pr , Rf

˚µbdpr q
¯˚

r´2d´ 1s

» RΓpU , µbpd´nqpr q˚r´2d´ 1s.

(1.23)

For (V) we used the Verdier duality adjunction Rf˚ $ Rf ! (see also Theorem 2.3). (S)
follows from Smooth Base Change applied to f : U Ñ U . Note that this quasi-isomorphism
is why we require U to be smooth.

1.7 Proof of the global duality statement

We first rewrite (AV2l) in terms of p-torsion sheaves. We will then combine it with (AV2s)
to prove global Artin-Verdier duality.

Proposition 1.14. Keep the notation from Theorem (AV2l) and let pr be a prime power.
For each integer i there is a perfect pairing

H i
ZpX ,Zp1qX {prq ˆH5´ipZ, i˚Zp1qX {prq ÝÑ H5

ZpX ,Zp2qX {prq ÝÑ Q{Z. (1.24)
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Proof. Applying Ri! to the product map of pr-mapping cones (1.9) gives

Ri!Zp1qX {pr bL i˚Zp1qX {pr ÝÑ Ri!Zp2qX {pr

which induces the pairing (1.24). We show that it is perfect by means of a Five Lemma
argument. Consider the long exact sequence associated to ZpnqX Ñ ZpnqX Ñ ZpnqX {pr Ñ
as well as its dual under p´q˚ “ RHomp´,Z{prq. These — together with the product maps
(1.14) and (1.24) — fit into the commutative diagram

H i
ZpX ,Zp1qX q //

– p1.14q
��

H i
ZpX ,Zp1qX q //

– p1.14q
��

H i
ZpX ,Zp1qX {prq //

p1.24q
��

H i`1
Z pX ,Zp1qX q //

– p1.14q
��

H i`1
Z pX ,Zp1qX q

– p1.14q
��

H6´ipZ, i˚Zp1qX q˚ // H6´ipZ, i˚Zp1qX q˚ // H5´ipZ, i˚Zp1qX {prq˚ // H5´ipZ, i˚Zp1qX q˚ // H5´ipZ, i˚Zp1qX q˚

The outer vertical being isomorphisms is precisely the local duality result (AV2l). So, by the
Five Lemma, the middle arrow represents a perfect pairing too.

Proof of (AV2). Let Z be the collection of all special fibers of X that are singular or above
p, i.e. Z “

š

pPSbad
Zp where B is the (finite) union of all primes of O where X has bad

reduction with all primes above p, and where Zp “ X ˆ Spec kppq. Write U “ X zZ. The
Open-Closed-Decomposition Z i

ãÑ X j
Ðâ U gives rise to the distinguished triangles

j!µpr ÝÑ Zp1qX {pr ÝÑ i˚i
˚Zp1qX {pr ÝÑ (1.25)

i˚Ri
!Zp1qX {pr ÝÑ Zp1qX {pr ÝÑ Rj˚µpr ÝÑ (1.26)

Theorem (AV2s) gives us a perfect pairing on the smooth part

pH i
cpU , µprq ˆH5´ipU , µprq ÝÑ pH5

c pU , µb2
pr q – Z{pr. (1.27)

Consider the long exact sequence on compact support cohomology of the triangle (1.25)
as well as the long exact sequence of (1.26). They fit into one commutative diagram as
follows:

H i´1pZ, i˚Zp1qX {prq //

p1.24q
��

pH i
cpU , µprq //

– p1.27q

��

pH i
cpX ,Zp1qX {prq //

p1.4q

��

H ipZ, i˚Zp1qX {prq //

p1.24q
��

pH i`1
c pU , µprq

– p1.27q

��

H6´i
Z pX ,Zp1qX {prq˚ // H5´ipU , µprq˚ // H5´ipX ,Zp1qX {prq˚ // H5´i

Z pX ,Zp1qX {prq˚ // H4´ipU , µprq˚

The vertical arrows are induced by the pairings (1.24), (1.27), and (1.4) from (AV2) as
indicated. We explore the map

H ipZ, i˚Zp1qX {prq ÝÑ H5´i
Z pX ,Zp1qX {prq˚ (1.28)

in more detail. Write XB “
š

pXp where Xp “ X ˆ SpecOp. One may regard i as an
embedding of Z into XB . The Proper Base Change Theorem then gives H ipZ, i˚Zp1qX {prq “
H ipXB,Zp1qXB{prq and we may write (1.28) as

H ipXB,Zp1qXB{prq ÝÑ H5´i
Z pXB,Zp1qXB{prq˚.
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So, this map is in fact the direct sum of (1.24) for each Zp ãÑ Xp with p P B and hence an
isomorphism. By the Five Lemma, the middle vertical arrow must be an isomorphism too,
i.e. (1.4) is a perfect pairing.
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Chapter 2

Motivic decompositions of
cohomology for arithmetic surfaces

Let X denote a regular arithmetic surface with proper structure map π1 : X Ñ SpecZ. Let
O be the maximum number ring π1 factors through. Unless explicitly stated otherwise, we
write S “ SpecO and let π : X Ñ S denote the corresponding map into S. Given a point
x P X or p P S we write κpxq and κppq for their residue fields. We will write

ś

p to denote
an infinite product over all finite primes of O.

Write F for the fraction field of O. Let r and s be the number of real and complex embeddings
of F respectively and write m “ r ` 2s for its dimension over Q. If not explicitly stated
otherwise, X will denote the generic fiber XF of X . Let g be the genus of X. Also, let n P Z
and let εn be 0 or 1 depending on whether n is even or odd.

In this chapter we will define and partially compute the cohomology groups occuring in the
conjectures [8] Conj. 5.10, 5.11 for X . The underlying theme will be that all cohomology
groups will decompose into a direct sum of h i-parts for i “ 0, 1, 2 — analogously to a
decomposition of

ζpX , sq “
ź

i“0,1,2

p
LpH ipX q, sqp´1qi “

ζF psqζF ps´ 1q
p
LpH1pX q, sq

into an alternating product of adjusted L-functions p
LpH ipX q, sq for i “ 0, 1, 2. We expect

this to follow in generality from the existence of a direct sum decomposition of Rπ˚ZpnqX

into perverse degree components p
Riπ˚ZpnqX :

Rπ˚ZpnqX »
à

i“0,1,2

p
Riπ˚ZpnqX r´is » ZpnqS ‘ p

R1π˚ZpnqX r´1s ‘ Zpn´ 1qSr´2s.

We will prove such a decomposition under the assumption that there is a section s : S Ñ X
of π satisfying a further technical conjecture for higher twists n ě 2.
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2.1 L- and ζ-functions associated to arithmetic surfaces

In this section we relate ζpX , sq to the Hasse-Weil ζ-function ζHW pX, sq and review the
decomposition of ζpX , sq into its 0-, 1-, and 2-part.

For any prime p of O let l “ lp denote a rational prime not divisible by p. Moreover, write
Xp :“ X

κppq
. The arithmetic ζ-function associated to any proper arithmetic surface X is

defined as

ζpX , sq “
ź

xPX0

1

1´#κpxq´s
“

ź

p

ζ pXp{κppq, sq
´1

“
ź

p

ź

mPZ
det

`

id´Np´s Frobp | HmpXp,Ql q
˘p´1qm`1

.

The last equality above is a consequence of the Weil conjectures.

The Hasse-Weil ζ-function on the other hand is an object associated to the generic fiber
X “ XF and is thus independent of the integral model X of X. ζHWpX, sq is defined as
an alternating product of Hasse-Weil L-functions which in turn only depend on the étale
cohomology groups HmpXQ,Qlq. Concretely, one defines

ζHWpX, sq :“
ź

mPZ
LpHmpXq, sqp´1qm`1

:“
ź

mPZ

ź

p

det
`

id´Np´s Frobp | HmpX bF F ,Ql q
Ip
˘p´1qm`1

,
(2.1)

where Ip Ă GalpQ{F q denotes the inertia group of some prime p of Q lying over p.

Note that ζ and ζHW should be thought of as associated to the scheme X or, equivalently,
to X regarded as an arithmetic surface over Z (or its generic fiber X regarded as a curve
over Q), and not to arithmetic surfaces over a general number ring. However, we will make
frequent use of the map π : X Ñ S since many objects associated to X such as its motivic
cohomology groups can be best expressed in terms of S.

One knows that HmpXp,Qlq – HmpXQ,Qlq
Ip for good reduction primes p. So, the difference

between ζpX , sq and ζHW pX, sq lies in the bad reduction fibers of X only. Bloch worked
out explicitly the difference between the above étale cohomology groups and arrived at the
following result (cf. [3] Lem. 1.2 and comments).

Proposition/Definition 2.1. Let Mp denote the Ql-vectorspace freely generated by the
irreducible components of Xp. One has H ipXQ,Qlq

Ip “ H ipXp,Qlq for i “ 0, 1. For i “ 2

there is an exact sequence of pZ-modules

0 ÝÑ Mp{Qlp´1q ÝÑ H2pXp,Qlq ÝÑ H2pXQ,Qlq
Ip ÝÑ 0
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and, moreover, H2pXp,Qlq –M˚
p p´1q. We define

ΠpX , sq :“
ź

p bad

det
`

id´Np´s Frobp | Mp{Qlp´1q
˘

.

The short exact sequence shows

ζpX , sq “ ζHWpX, sq ¨ΠpX , sq´1. (2.2)

Since H0pXp,Qlq “ Ql and H2pXQ,Qlq “ Qlp´1q we may simplify (2.1) to

ζpX , sq “ ζF psqζF ps´ 1q

ΠpX , sqLpH1pXq, sq
“:

ζF psqζF ps´ 1q
p
LpH1pX q, sq

. (2.3)

For future reference, we analyze the special values of ΠpX , sq.

Lemma 2.2. For any prime p of F write dppq “ dimQl H
2pXp,Qlq for the number of

irreducible components C1, . . . , Cdppq of Xp. Further, for each 1 ď j ď dppq let nj “ njppq be
the number of irreducible components Cj decomposes into in Xp.

(i) For any integer n ‰ 1 one has

Π˚pX , nq “ ΠpX , nq “ ˘
ź

p bad

ˆ

1´
1

Npn´1

˙´1 dppq
ź

j“1

ˆ

1´
1

Nppn´1qnjppq

˙

.

(ii) For n “ 1 one has

ords“1ΠpX , sq “
ÿ

p bad

pdppq ´ 1q (2.4)

and the leading Taylor coefficient Π˚pX , 1q equals

Π˚pX , 1q “ ˘
ź

p bad

plogNpqdppq´1
dppq
ź

j“1

njppq.

Proof. Fix a bad prime p and write d “ dppq and nj “ njppq. Let M
j
p denote the subspace

of Mp generated by the irreducible components of Cj in Xp. Write P p
j and P p for the

characteristic polynomials for the action of Frobp on M j
p and Mp{Ql respectively. Frobip cycli-

cally permutes the components generating each M j
p since the Frobp-orbit of any irreducible

component of Cj in Xp must be defined over κppq by Galois-descent, and hence equal Cj .
Therefore

P ppT q “
1

T ´ 1

d
ź

j“1

P p
j pT q “ ˘

1

T ´ 1

d
ź

j“1

´

Tnjppq ´ 1
¯

.
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Write N “ dimQl H
2pXp,Qlq “

ř

j nj . Let s P C and write x “ xp “ Nps´1. One has

det
`

1´Np´s`1Frobp
ˇ

ˇMp{Ql

˘

“
1

xN´1
P ppxq “ ˘

x

x´ 1

d
ź

j“1

xnjppq ´ 1

xnjppq

“ ˘

ˆ

1´
1

x

˙´1 d
ź

j“1

ˆ

1´
1

xnjppq

˙

.

Choosing s “ n for n ‰ 1 proves part (i) and evaluating the vanishing order of the above at
s “ 1 yields (2.4). Now let yp “ ´ logNp. Then 1

xp
“ eypps´1q and

Π˚pX , 1q “ ˘ lim
sÑ1

ź

p bad

˜

1´ eypps´1q

s´ 1

¸´1 dppq
ź

j“1

1´ eypnjppqps´1q

s´ 1
“ ˘

ź

p bad

1

yp

dppq
ź

j“1

ypnjppq.

This finishes the proof of part (ii).

2.2 Motivic decompositions of push-forward sheaves in the

presence of a section

In this section we will write π : X Ñ S for a variety of structure maps, as specified in the
proceeding paragraphs. We will derive direct sum decompositions of the kind

Rπ˚F pnq
X » F pnqS ‘

p
R1π˚F pnq

X r´1s ‘ F pn´ 1qSr´2s,

where F represents locally constant sheaves with Galois twist or motivic cycle complexes on
the étale sites of X and S respectively. These results will be motivated by the theory of
motives and hence referred to as motivic decompositions. We will also write Rπ˚F pnqX »
À

i“0,1,2
p
Riπ˚F pnqX r´is. The notation p

R should indicate the expectation that those
decompositions are reflections of a broader, yet to be developed theoretical framework which
endows derived categories of motivic sheaves with perverse t-structures.

The proof strategies are centered on an application of Verdier duality. It will render the
remaining part of the proof an exercise in the six functor formalism for π and s. We will
also provide more explicit descriptions of the involved projection and inclusion morphisms
when possible and elaborate on the difference between p

Ri and Ri.

2.2.1 Verdier Duality and and Cohomological Purity

Verdier Duality. For any scheme X let DpXétq denote the derived category of abelian
torsion sheaves on Xét. We recall the sheaf theoretic generalization of Poincaré Duality.
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Theorem 2.3. (Verdier Duality, [23] Exp. XVIII, Thm 3.1.4) Let f : X Ñ Y be a separated,
quasi-compact morphism of schemes. There is a functor f ! : DpYétq Ñ DpXétq such that for
all torsion sheaves F on Xét and G on Yét one has the quasi-isomorphism

Rf˚RHomXpF , f !Gq » RHom Y pRf!F ,Gq. (2.5)

In other words, there is an adjunction of functors Rf! $ f ! between the derived categories of
torsion sheaves on Xét and Yét.

f ! generalizes the derived exceptional inverse image functor associated to closed immersions.
However, in general f ! cannot be expressed as the derived functor of any functor of sheaves.
The counit trf of the adjunction Rf! $ f ! is called the trace map. The first part of the proof
of Theorem 2.3 is the construction of the trace map. It is then used to define the map (2.5)
and one subsequently shows that it is in fact a quasi-isomorphism.

If f is smooth of relative dimension d (i.e. dimX “ dimY ` d), one knows that Rf!f
!F is

cohomologically concentrated in degrees r0, 2ds for any torsion sheaf F on Xét and trf pFq
factors through the top degree:

trf pFq : Rf!f
!F ÝÝÝÝÑ R2df!f

!F
Trf
ÝÝÝÝÑ F . (2.6)

Cohomological Purity. For the rest of this section fix a prime p and let Λ denote a finite
p-torsion group. For any scheme X we write ΛX for the constant torsion sheaf with global
sections equal to Λ. For any p-torsion sheaf F we write Fpnq “ F b µbnp8 . We will need the
following result that had originally been conjectured by Grothendieck and that was proved
in full generality by Gabber (cf. [10]).

Theorem 2.4. (Cohomological Purity) Let i : Z ãÑ U be a closed immersion of regular
noetherian schemes of pure codimension d. Suppose p is invertible on U . Then

Rri!ΛU –

#

ΛZp´dq if r “ 2d,
0 otherwise.

(2.7)

This result admits an extension to the functor f ! between derived categories.

Proposition 2.5. Let f : X Ñ Y be a smooth morphism of relative dimension d. Also, let
F be a complex of p-torsion sheaves on Xét and suppose p is invertible on Y . Then

f !F » f˚Fpdqr2ds.

Let π : X Ñ S be a projective morphism of schemes with X being regular and of relative
dimension d over S. Note that this includes the later most relevant case where d “ 1 and
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π is any proper morphism since projectiveness follows then from a result by Lichtenbaum
(cf. [19] Thm. 2.8). We assume throughout that p is not zero in OS . We then have open
closed decompositions as in the diagram

X r1{ps
jp

//

πr1{ps

��

X

π

��

Xp
ip
oo

πp

��

Sr1{ps
j1p

// S Sp
i1p

oo

(2.8)

Lemma 2.6. In the derived category of torsion sheaves on Sr1{psét, one has

πr1{ps!ΛSr1{ps » ΛX r1{pspdqr2ds.

Proof. πr1{ps is projective and hence factors through some PNSr1{ps as

X r1{ps
i //

π

$$

PNSr1{ps
Π

��

Sr1{ps

where Π is smooth and i is a closed embedding of regular schemes. So, by Theorem 2.4 and
Proposition 2.5,

πr1{ps!ΛSr1{ps “ Ri!Π!ΛSr1{ps » Ri!Λ
PNSr1{pspNqr2N s » ΛX r1{pspdqr2ds. l

Corollary 2.7. Write p´q_ “ RHom p´,Qp{Zpq. For any p-torsion sheaf F on X r1{psét

one has

pRπr1{ps˚Fq_ » Rπr1{ps˚F_pdqr2ds. (2.9)

Proof. This is Verdier duality for f “ πr1{ps and G “ ΛSr1{ps. Here we have used πr1{ps! “
πr1{ps˚ which holds since πr1{ps is proper.

2.2.2 A motivic decomposition for push-forwards of constant torsion sheaves

To ease notation we write ΛX ,p “ jp,!Λ
X r1{ps and ΛS,p “ j1p,!Λ

Sr1{ps. Note that if p is
invertible on S then one gets the constant sheaves ΛX ,p “ ΛX and ΛS,p “ ΛS back.

From now on, we assume S to be a connected at most one-dimensional regular scheme such
that all closed points have perfect residue fields and such that all remaining points have
residue fields of characteristic 0. Although we will need the result below only for d “ 1 we
formulate it for general d as it will make no difference for the proof.
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Theorem 2.8. Suppose π : X Ñ S has a section s : S Ñ X . Then the sheaves ΛS,ppnq

and ΛS,ppn ´ dqr´2ds split off as direct summands of the complex Rπ˚ΛX ,ppnq. If d “ 1

we will write p
R1π˚Λ

X
p pnqr´1s for the remaining summand, i.e. we will have the canonical

decomposition

Rπ˚Λ
X ,ppnq » ΛS,ppnq ‘

p
R1π˚Λ

X ,ppnqr´1s ‘ ΛS,ppn´ 1qr´2s. (2.10)

Proof. It is enough to prove the claim for the restriction πr1{ps : X r1{ps Ñ Sr1{ps to the
open part, i.e. to show that ΛSr1{pspnq and ΛSr1{pspn´ dqr´2ds split off as direct summands
of Rπr1{ps˚ΛX r1{pspnq. In fact, an application of j1p,! will then reproduce the original claim
since

j1p,!Rπr1{ps˚Λ
X r1{pspnq “ Rpj1pπr1{psq!Λ

X r1{pspnq “ Rπ!jp,!Λ
X r1{pspnq “ Rπ˚Λ

X ,ppnq.

Therefore we may assume that p is invertible on S.

We will use the adjunctions π˚ $ π˚ and s˚ $ s˚ $ s! to construct maps

ΛSpnq
ϕ0
ÝÑ Rπ˚Λ

X pnq
ψ0
ÝÑ ΛSpnq,

ΛSpn´ dqr´2ds
ϕ2d
ÝÑ Rπ˚Λ

X pnq
ψ2d
ÝÑ ΛSpn´ dqr´2ds (2.11)

that compose as
˜

ψ0

ψ2d

¸

˝

´

ϕ0 ϕ2d

¯

“

˜

id 0

0 id

¸

,

thereby proving the proposition.

The existence of ϕ0, ψ0 is a formal consequence of functoriality of the push-forward π˚s˚ “
pπsq˚ “ id and exactness of π˚, s˚, s˚. Using s˚ΛX “ ΛS and π˚ΛS “ ΛX we define

ϕ0 : ΛSpnq ÝÑ Rπ˚π
˚ΛSpnq “ Rπ˚Λ

X pnq,

ψ0 : Rπ˚Λ
X pnq Ñ Rπ˚s˚s

˚ΛX pnq “ s˚ΛX pnq “ ΛSpnq.

Consider the shift of the above maps for an pd´ nq-twist by 2d degrees:

ΛSpd´ nqr2ds
ϕ0r2ds

ÝÝÝÝÑ Rπ˚Λ
X pd´ nqr2ds

ψ0r2ds

ÝÝÝÝÑ ΛSpd´ nqr2ds.

Apply p´q_ “ RHom Sp´,Qp{Zpq. Corollary 2.7 shows that one obtains

ΛSpn´ dqr´2ds
ϕ_0 r´2ds

ÐÝÝÝÝÝÝÝ Rπ˚Λ
X pnq

ψ_0 r´2ds

ÐÝÝÝÝÝÝÝ ΛSpn´ dqr´2ds.

We let ϕ2d “ ψ_0 r´2ds and ψ2d “ ϕ_0 r´2ds.

ψ0ϕ0 “ id is clear since both maps are adjoints of identity maps. Therefore, also ψ2dϕ2d “

pψ0ϕ0q
_r´2ds “ 0. Next, one has ψ2dϕ0 “ 0 for degree reasons. More precisely, ϕ0 is
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the inclusion of the lowest degree ΛSpnq “ R0π˚Λ
X pnq into Rπ˚ΛX pnq while ψ2d factors

through the top degree τě2dRπ˚Λ
X pnq – R2dπ˚Λ

X pnq. Similarly, we must have ψ0ϕ2d “ 0

since ϕ2d maps ΛSpn´dqr´2ds into the top degree of Rπ˚ΛX pnq while ψ0 is trivial in degrees
ą 0. This completes the proof.

Remark 2.9. The construction of ϕ0, ψ0 did not require ΛX to be torsion or p to be invertible
on S. So, the above proof more generally shows that AS splits off as a direct summand of
Rπ˚A

X for the constant sheaf AX associated to any abelian group A. Since both X and S
are connected one has π˚AX “ AS and consequently

Rπ˚A
X » AS ‘ τě1Rπ˚A

X .

Remark 2.10. If π : X Ñ S is smooth and proper, and S the spectrum of a field of
characteristic unequal to p the above decomposition is well-known and the motivic components
p
Riπ˚Λ

X pnq coincide with the cohomological components Riπ˚ΛX pnq for degrees i “ 0, 2d.
In particular, if d “ 1, they are identical for all degrees, i.e. one then has

Rπ˚Λ
X pnq » R0π˚Λ

X pnq ‘ R1π˚Λ
X pnqr´1s ‘ R2π˚Λ

X pnqr´2s.

This also follows from direct computations when observing that (2.11) may be rewritten as

ΛSpn´ dqr´2ds
ϕ12d
ÝÑ R2dπ˚Λ

X pnq
Trπ
ÝÑ ΛSpn´ dqr´2ds, (2.12)

where Trπ is the trace map from Poincaré duality for etalé cohomology and ϕ12d is obtained
from applying Rπ˚ to the adjoint of a cohomological purity isomorphism Rs!ΛSpn´dqr´2ds »

ΛX pnq. We omit the details.

For a general proper regular arithmetic surface π : X Ñ S the maps in (2.12) are not
necessarily isomorphisms. This suggests that the motivic decomposition of Rπ˚ΛX pnq

arises from the (standard) cohomological degree components Riπ˚ΛX pnq as follows: Split
R2π˚Λ

X pnq into a component dual to R0π˚Λ
X pnq and into another component describing

the obstruction of X from being smooth and then regroup the latter to the motivic degree
1 part. This pattern is familiar from (2.3) and the contained definition p

LpH1pX q, sq :“

ΠpX , sqLpH1pXq, sq showing that the standard Hasse-Weil function ζHW pX, sq differs from
themotivic function ζpX , sq only by additional terms in motivic degree 1 that are characterized
entirely by the bad fibers of X .

2.2.3 A motivic decomposition for Rπ˚Zpnq

The fundamental insight for all following computations of motivic cohomology will be that
Theorem 2.8 has an analogue for Bloch’s cycle complexes. We will need a technical preparation.
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For any map f : X Ñ Y between arithmetic schemes and any étale neighborhood V Ñ Y

define

ZnY pV, jqf :“ tZ P ZnY pV, jq | pf ˆ id∆j q
´1pZq intersects all faces properlyu.

For a section s : S Ñ X of π and n P Z we introduce the technical assumption

FPB(s,n)

The inclusion of simplicial structures ZnX p´, 2n´ ‚qs ãÑ ZnX p´, 2n´ ‚q gives
rise to a quasi-isomorphism of associated derived complexes. In other words,

DKpZnX p´, 2n´ ‚qsq » ZpnqX .

FPB(s,n) ensures the existence of a functorial pull-back morphism s˚ZpnqX Ñ ZpnqS whose
adjoint ZpnqX Ñ s˚ZpnqS is given over an étale neighborhood U Ñ X by the map

ZnpU , jqs ÝÑ Znps´1U , jq

Z ÞÑ

$

’

’

&

’

’

%

psˆ id∆j q´1Z
if for all closed points x P ∆j :
Z X pX ˆ txuq has codim 0 in X ˆ txu, or
is a finite union of vertical divisors of X ˆ txu

0 otherwise

(2.13)

Note that for n ď 1 one has a morphism s˚ZpnqX Ñ ZpnqS that is functorial in s uncondi-
tionally since this is well-known for the sheaves Qp{Zppnq, Z, and Gm.

The analogue of FPB(s,n) for morphisms between smooth varieties over fields are known
(cf. [18] property 4 following Thm 1.1).

Theorem 2.11. Suppose π : X Ñ S is of relative dimension d “ 1 and has a section
s : S Ñ X . If n ě 2 assume that s satisfies the condition FPB(s,n). Then, for any
integer n, the complexes ZpnqS and Zpn´1qSr´2s split off as direct summands of Rπ˚ZpnqX .
When writing p

R1π˚ZpnqX r´1s for the remaining summand we arrive at the canonical
decomposition

Rπ˚ZpnqX » ZpnqS ‘ p
R1π˚ZpnqX r´1s ‘ Zpn´ 1qSr´2s. (2.14)

Proof. Let n ě 1. As before, we will prove the theorem by exhibiting maps

ZpnqS ϕ0
ÝÑ Rπ˚ZpnqX

ψ0
ÝÑ ZpnqS ,

Zpn´ 1qSr´2s
ϕ2
ÝÑ Rπ˚ZpnqX

ψ2
ÝÑ Zpn´ 1qSr´2s

that compose as
˜

ψ0

ψ2

¸

˝

´

ϕ0 ϕ2

¯

“

˜

id 0

0 id

¸

.
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Let Φ0 : π˚ZpnqS Ñ ZpnqX be the flat pull-back morphism, i.e. the adjoint of the canonical
morphism ZpnqS Ñ π˚ZpnqX which, on the level of complexes over an étale neighborhood
U Ñ S, is given by

ZnpU, jq ÝÑ Znpπ´1U, jq, Z ÞÑ pπ ˆ id∆j q
´1Z.

Similarly, let Ψ0 : s˚ZpnqX Ñ ZpnqS denote the pull-back morphism (2.13). By virtue of
the usual adjunctions, we may now define

ϕ0 : ZpnqS ÝÑ Rπ˚π
˚ZpnqS

Rπ˚Φ0

ÝÝÝÝÑ Rπ˚ZpnqX ,

ψ0 : Rπ˚ZpnqX ÝÑ Rπ˚s˚s
˚ZpnqX “ s˚ZpnqX Ψ0

ÝÑ ZpnqS .

One sees directly that ψ0ϕ0 “ id, i.e. ZpnqS splits off as a direct summand of Rπ˚ZpnqX .

Next, we let Φ2 : s˚Zpn´ 1qSr´2s Ñ ZpnqX to be the morphism which acts on complexes as

Zn´1ps´1U , jq Ñ ZnpU , jq, Z ÞÑ psˆ id∆j qpZq.

Cor. 3.2 in [12] shows that Φ2 is well-defined. Note that the adjoint of Φ2 is a quasi-
isomorphism Zpn ´ 1qSr´2s » Rs!ZpnqX showing cohomological purity for Bloch’s cycle
complexes (cf. [12] Cor. 7.2(a), Cor. 3.3(a)).

ϕ2 : Zpn´ 1qSr´2s “ Rπ˚s˚Zpn´ 1qSr´2s
Rπ˚Φ2

ÝÝÝÝÑ Rπ˚ZpnqX .

Finally, let Ψ2 : π˚ZpnqX Ñ Zpn´ 1qSr´2s be the proper push-forward map which is given
on cycles by

Znpπ´1U, jq Ñ Zn´1pU, jq, Z ÞÑ

$

&

%

pπ ˆ id∆j qpZq
if for all closed points x P ∆j :
ZXpXˆtxuq has codimension 2 in Xˆtxu, or
is a finite union of horizontal divisors of Xˆtxu

0 otherwise

(2.15)
The conditions on S guarantee that [12] Cor. 3.2 and Cor. 7.2(b) are applicable, showing
that Ψ2 extends to a morphism

ψ2 : Rπ˚ZpnqX ÝÑ Zpn´ 1qSr´2s.

Again it is clear that ψ2ϕ2 “ id. Also, from the explicit descriptions (2.13) and (2.15) we
see immediately that the compositions ψ2ϕ0 and ψ0ϕ2 must be trivial. Consequently, ZpnqS

and Zpn´ 1qSr´2s split off as distinct direct summands of Rπ˚ZpnqX .

Let us now consider Zp´nq. Recall that

Zp´nqX r1s “
à

p

jp,!Qp{Zpp´nq.
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It suffices to show that
Rπ˚

à

p

jp,! “
à

p

j1p,!Rπr1{ps˚ (2.16)

as the claim then follows from applying Theorem 2.8 to j1p,!Qp{Zpp´nq. However, (2.16) is
immediate from diagram (2.8) since π˚ “ π! and πr1{ps˚ “ πr1{ps!.

Finally, for n “ 0 the Remark 2.9 shows Rπ˚Z » Z ‘ τě1Rπ˚Z. Moreover the long exact
sequence for the derived functor Rπ˚ associated to

0 ÝÑ ZX ÝÑ QX ÝÑ Q{ZX ÝÑ 0

proves R1π˚Z “ 0 and τě2Rπ˚Z “ τě1Rπ˚Q{Zr´1s. Indeed, one has Rrπ˚Q “ 0 for r ą 0

as can be seen by passing to stalks and recalling that Galois cohomology with rational
coefficients vanishes. We may thus write

Rπ˚ZX “ ZS ‘
à

p

τě1Rπ˚Qp{ZX
p r´1s. (2.17)

For each p the Open-Closed-Decomposition (2.8) gives rise to the short exact sequence

0 ÝÑ pQp{ZpqX ,p ÝÑ Qp{ZX
p ÝÑ ip,˚Qp{Z

Xp
p ÝÑ 0.

Applying Rπ˚ yields the distinguished triangle

Rπ˚pQp{ZpqXp ÝÑ Rπ˚Qp{ZX
p ÝÑ i1p,˚Rπp,˚Qp{Z

Xp
p ÝÑ . (2.18)

Rπp,˚Qp{Z
Xp
p is concentrated in degrees 0, 1 and an analysis of the long exact sequence

associated to (2.18) shows that applying τě1 preserves exactness. This yields

τě1Rπ˚Qp{ZX
p » Cone

´

i1p,˚R
1πp,˚Qp{Z

Xp
p r´2s ÝÑ τě1Rπ˚pQp{ZpqX ,p

¯

.

We apply Theorem 2.8 to τě1Rπ˚pQp{ZpqX ,p and verify on stalks that there are no non-
trivial morphisms of sheaves i1p,˚R1πp,˚Qp{Z

Xp
p Ñ pQp{ZpqS,pp´1q. Thus, we may rewrite

the above as

τě1Rπ˚Qp{ZX
p » Cone

´

i1p,˚R
1πp,˚Qp{Z

Xp
p r´2s ÝÑ

p
R1π˚pQp{ZpqX ,pr´1s

¯

‘ pQp{ZpqS,pp´1qr´2s.

Combining this with (2.17) and making the identification

p
R1π˚ZX :“

à

p

Cone
´

i1p,˚R
1πp,˚Qp{Z

Xp
p r´2s ÝÑ

p
R1π˚pQp{ZpqX ,pr´1s

¯

allows us to write

Rπ˚ZX » ZS ‘
p
R1π˚ZX r´1s ‘ Zp´1qSr´2s

as desired.
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Remark 2.12. The proof of Theorem 2.11 uses the regularity assumption as follows. For
n ď 0 it is implicit in the use of Theorem 2.8 where in turn it is needed for the version
of Verdier Duality given in Corollary 2.7. For n ě 1 it is implicit in the use of FPB(s,n)
since this conjecture is formulated only for regular X . We believe FPB(s,n) to hold only for
regular X .

The most important instance of Theorem 2.11 is for the structure map π : X Ñ S of
our arithmetic surface X as it will allow us to decompose motivic and Weil-étale motivic
cohomology into degree 0, 1, 2 components. However, it is also applicable to localizations
πZp : XZp Ñ SZp as well as to structure maps of smooth proper curves over fields.

Note that for an elliptic surface π : E Ñ S one always has a section s : S Ñ E . In fact, EF
has a rational point and EpOq “ EF pF q since E is proper (cf. [31] Cor. IV.4.4(a)). In the case
of a general arithmetic surface π : X Ñ S one still has an exact triangle for n “ 1 without
assuming the existence of a section.

Let PX {S and P0
X {S denote the étale sheafifications of the functors U{S Ñ Pic pX ˆS Uq

and U{S Ñ Pic0pX ˆS Uq on S respectively.

Proposition 2.13. One has the distinguished triangle

Zp1qS ÝÑ Rπ˚Zp1qX ÝÑ PX {Sr´2s ÝÑ .

Proof. Clearly, τď1Rπ˚Zp1qX “ pτď0Rπ˚GX
mqr´1s “ π˚GX

mr´1s “ GS
mr´1s giving us the

truncation triangle

Zp1qS ÝÑ Rπ˚Zp1qX ÝÑ pτě1Rπ˚GX
mqr´1s ÝÑ .

Moreover, it is well-known that

R1π˚GX
m – PX {S . (2.19)

It remains to show Riπ˚GX
m “ 0 for i ě 2. Let x ãÑ X be a geometric point over p. Write

Sp “ SpecOurp and X pxq “ X ˆS OshX ,x and let πx be the base change of π to Sp. Then

`

Riπ˚GX
m

˘

x
“ H ipX pxq,Gmq “ 0 for i ě 2

by Grothendieck’s result [14] Cor. 3.2 (p.98) applied to the surface X pxq as it is proper and
flat over the spectrum Sp of a regular local ring.

Corollary 2.14. If π : X Ñ S has a section then p
R1π˚Zp1q – P0

X {Sr´1s and one has the
motivic decomposition

Rπ˚Zp1qX » Zp1qS ‘ P0
X {Sr´1s ‘ ZSr´2s.
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2.2.4 Motivic decompositions for complex manifolds.

The analogue of Verdier duality and of Proposition 2.5 for locally compact spaces is well-known
for all abelian sheaves. We use it to derive an analogue of Theorem 2.11 for the cohomology
of complex manifolds with coefficients given by the locally constant GR-equivariant sheaf
Rpnq :“ p2πiqnR.

Proposition 2.15. Let S “ t‚u be the one-point space and let π : X Ñ S be the structure map
of a complex manifold X of complex dimension d. Then the sheaves RpnqS and Rpn´dqSr´2ds

split off as direct summands of Rπ˚RpnqX . If d “ 1 we will write p
R1π˚RpnqXr´1s for the

remaining summand, i.e. we will have the canonical decomposition

Rπ˚RpnqX » RpnqS ‘
p
R1π˚RpnqXr´1s ‘ Rpn´ 1qSr´2s

» R0π˚RpnqX ‘ R1π˚RpnqXr´1s ‘ R2π˚RpnqXr´2s.
(2.20)

Proof. Write p´q_ “ RHomXp´,Rq. Smoothness of X implies π!RX » RpdqSr2ds. Thus,
the analogue of Verdier duality yields

Rπ˚RpdqXr2ds » Rπ˚RHomXpRX ,RpdqSr2dsq » RHom SpRπ˚RX ,RSq “ pRπ˚RXq_.

Now, the proof of Theorem 2.8 holds verbatim for the structure map π : X Ñ S of complex
manifolds with their analytic topology when replacing (2.9) with the above duality. This
yields the first line of (2.20). Equality of motivic and cohomological degree components
follows analogously to Remark 2.10.

2.2.5 The motivic picture and notation

Motivic Interpretation. The decompositions of the previous propositions are motivated
by the theory of motives over a field K. We recall it here. Any smooth projective variety X
over K comes with an associated motive hpXq, an object in a Q-linear semi-simple abelian
category MotQ. Conjecturally, hpXq produces H˚pXq for any Weil cohomology theory H
by applying an appropriate fiber functor. One of the Standard Conjectures postulates the
existence of algebraic cycles πi Ă X ˆX that induce the projections H˚pXq� H ipXq onto
the i-th degree. It would follow that ∆X “

ř2d
i“0 π

i in Cd„pX ˆXq where d “ dimX. On
the level of motives we would obtain the decomposition

hpXq “ h0pXq ‘ ¨ ¨ ¨ ‘ h2dpXq (2.21)

of hpXq into its motivic degree components h ipXq.

If X is a smooth projective curve over K the existence of a section, i.e. a K-rational
point x P XpKq yields the above decomposition — even in the Z-linear category of Chow



35

motives — by setting π0 “ X ˆ txu and π2 “ txu ˆX. Indeed, on cohomology the sequence
txu ãÑ X � txu splits off H˚ptxuq “ H0pXq and taking the transpose cycle π2 “ pπ0qt

corresponds to projecting onto the Poincaré dual H0pXq_ – H2pXq. The remaining direct
summand must be h1pXq and we may rewrite (2.21) as

hpXq “ hpxq ‘ h1pXq ‘ hpxq_p´1q.

It is expected that a similar theory holds for proper regular X of relative dimension 1

over more general base schemes S. It should provide something analogous to the perverse
t-structure on the derived category of l-adic sheaves on varieties over finite fields. A section
s : S Ñ X would then give rise to an analogous decomposition

hpX q “
phpSq ‘ ph1pX q ‘

phpSq_p´1q.

Applying the appropriate fiber functors should then reproduce (2.10) and (2.14).

Notation. Let A P DpX q be a complex in the derived category of sheaves on any fixed
topology of X . Whenever a decomposition of the kind Rπ˚A “

À

i“0,1,2
p
Riπ˚Ar´is holds

we will call p
Riπ˚Ar´is the motivic degree i component or just shortly h i-component of

Rπ˚A, and we will write

pH ipX ,Aq :“ H ipX ,
p
Riπ˚Ar´isq.

For example, Theorem 2.11 implies

H ipX ,Zpnqq “
à

p“0,1,2

pH ipX ,Zpnqq

“ H ipS,Zpnqq ‘ 1H ipX ,Zpnqq ‘ H i´2pS,Zpn´ 1qq.

2.3 Deligne Cohomology

For the remainder of this thesis we assume that π : X Ñ S has a section s : S Ñ X satisfying
the functorial pull-back condition FPB(s,n) for all integers n.

Let X be a complex manifold and n ě 0. Recall that for a subring A Ă C one defines
ApnqD “ ApnqXD as the bounded complex in the derived category of abelian sheaves on X
given by

0 Ñ p2πiqnAÑ OX{C Ñ ΩX{C Ñ . . .Ñ Ωn´1
X{C Ñ 0

concentrated in degrees r0, ns. One defines

H i
DpX,Apnqq :“ HipX,ApnqDq.
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For any arithmetic scheme X , the action of GR on X pCq carries through toH i
DpX pCq,Rpnqq

and we define Deligne cohomology to be

H i,n
D pX q :“ H i

DpX {R,Rpnqq :“ H i
DpX pCq,RpnqqGR

(cf. [30] §2 or [7] §1). The set of C-points X pCq of our arithmetic surface X has complex
dimension 1. So, we have Ωi

X pCq{C “ 0 for i ě 2 and Poincaré’s Lemma proves C » rOX pCq Ñ

ΩX pCq{Cs. Consequently

RpnqX pCqD »

$

’

’

&

’

’

%

Rpnqr0s for n ď 0
“

Rp1q Ñ OX pCq
‰

» OˆX pCq{S
1r´1s for n “ 1

rRpnq Ñ Cs » Rpn´ 1qr´1s for n ě 2.

(2.22)

Here the pseudo-isomorphism for n “ 1 is given by the exponential map. Using (2.22) we
reduce to singular cohomology and considering real and complex places separately gives us the
table of ranks (A.12). For the computation of H i,1

D pX q with i ě 2 the perfect pairing

H i
DpX {R,Rpnqq ˆH3´i

D pX {R,Rp2´ nqq Ñ H3
DpX {R,Rp2qq Ñ R (2.23)

from [8] Lemma 2.3 has been used.

Decomposition into h i-components. It is easy to see that

RpnqSpCqD »

#

RpnqSpCq for n ď 0

Rpn´ 1qSpCqr´1s for n ě 1.

Therefore, Proposition 2.15 shows together with (2.22) that also the Deligne complex
decomposes as

Rπ˚Rpnq
X pCq
D » RpnqSpCqD ‘

p
R1π˚Rpnq

X pCq
D r´1s ‘ Rpn´ 1q

SpCq
D r´2s.

On cohomology we obtain

H‚,nD pX q – H‚,nD pSq ‘ 1H‚,nD pX q ‘ H‚´2,n´1
D pSq (2.24)

and the motivic degree 1 term 1H i,n
D pX q equals the full H i,n

D pX q if i “ 1, n ď 0 or i “ 2, n ě 2,
and vanishes otherwise.

2.4 Étale motivic cohomology

For finitely or cofinitely generated groups we will write G „ H if G,H are isomorphic up
to 2-torsion1. We write Gdiv and Gcodiv “ G{Gdiv for the divisible and codivisible part

1i.e. there are homomorphisms G α
Ñ H and H β

Ñ G such that kernel and cokernel of the compositions αβ
and βα are finite 2-torsion groups
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of G. We also let p´q_ “ Homp´,Q{Zq as well as p´q˚ “ Homp´,Zq for abelian groups
and p´q˚ “ Homp´,Rq for R-vectorspaces respectively. For the remainder of this thesis we
assume the validity of the following

Conjecture 2.16 (L(X ,n)). The groups H ipX ,Zpnqq are finitely generated for i ď 2n` 1

and vanish for sufficiently small i.

L(X ,1) is equivalent to finiteness of BrX (cf. [8] Lemma 3.3 and preceding comments).
Assuming L(X ,n) allows us to reformulate Artin-Verdier duality as the existence of a perfect
pairing of integral motivic cohomology groups (cf. [8] Prop. 3.4)

H6´i,2´npX q ˆH i,npX q ÝÑ Q{Z. (2.25)

2.4.1 Completed motivic cohomology

Recall the Artin-Verdier étale topos X ét and its open closed decomposition (1.1). We write
H i,npX q :“ H ipXét,Zpnqq and H i,npX q :“ H ipX ét,Zpnqq for the motivic cohomology and
for its completed cohomology, i.e. its cohomology with respect to the Artin-Verdier étale
topos of X . The discrepancy between these two versions of cohomology is captured by the
distinguished triangle

ZpnqX ÝÑ Rφ˚Zpnq ÝÑ u8,˚τ
ąnRpπ˚p2πiq

nZ ÝÑ . (2.26)

(cf. [8] Cor. 6.8) In particular, for i ď n one has H i,npX q “ H i,npX q and for i ą n these
cohomology groups differ only in 2-torsion. The cohomology of u8,˚τąnRpπ˚p2πiqnZ is
computed in Appendix A.2. In what follows we will primarily work with completed motivic
cohomology H i,npX q as it is this type of cohomology that will factor into the definition of
Weil-étale cohomology (see Section 2.4.5).

As shown in Corollary A.12 in Appendix A.3 completed motivic cohomology also comes with
a decomposition into motivic degrees

H i,npX q – H i,npSq ‘ 1H i,npX q ‘ H i´2,n´1pSq.

We will explicate this decomposition for n “ 1.
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2.4.2 The case n “ 1

Proposition 2.17. The groups H i,1pX q are given by and decompose as in the table below.

i “ 1 i “ 2 i “ 3 i “ 4 i “ 5 i ě 6

H i,1pX q Oˆ Pic pX q XpX{F q Pic pX q_ pOˆq_ 0

H i,1pSq Oˆ ClF 0 Q{Z 0 0
1H i,1pX q 0 Pic0pX q{ClF XpX{F q

`

Pic0pX q{ClF
˘_

0 0

H i´2,0pSq 0 Z 0 ClF pOˆq_ 0

Proof. We use Lemma A.8(ii) to evaluate the long exact sequence on cohomology associated
to the version of (2.26) for the base scheme S. In degrees 3, 4 we obtain

0 Ñ H3,1pSq Ñ BrO b
ÝÑ pZ{2qr Ñ Q{ZÑ H4,1pSq Ñ 0.

Since BrO “ pZ{2qr,
ř

“0 the map b must be the inclusion and we get H3,1pSq “ 0 and
H4,1pSq “ Q{1

2Z – Q{Z as well as H1,0pSq “ H1,0pSq “ 0. Therefore the motivic decompo-
sition of H3,1pX q “ BrX is given by

BrX – BrO ‘ BrX
BrO

.

So, the motivic degree 1 part of the triangle (2.26) gives

0 ÝÑ
1H3,1pX q ÝÑ BrX

BrO
ÝÑ pZ{2q1lpX q .

By [35] Thm. 3.1 and (1.7) the Tate-Shafarevich group XpX{F q fits into the exact sequence

0 ÝÑ XpX{F q ÝÑ
BrX
BrO

ÝÑ
ź

σ

H1pGR, JacXσq,

where σ runs through all finite places of F and Xσ “ X ˆF,σ SpecC. Proposition A.14
shows that the right-most terms of the above sequences are the same, so we in fact have
1H3,1pX q –XpX{F q.

Up to 2-torsion the remaining entries are immediate from Zp1q » Gmr´1s and Zp0q » Z
or follow from Artin-Verdier duality. The additional 2-torsion information is taken from
Proposition A.15.

2.4.3 Compact support cohomology and the perfect pairing conjecture

Fan constructs in his thesis a map between complexes ρ : RΓpXét,Zpnqq Ñ RΓDpX {R,Zpnqq in
the derived category of abelian groups that induces the Beilinson regulator mapsH2n´i,npX q –
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CHnpX , iq Ñ H2n´i,n
D pX q. We define RΓcpX ,Rpnqq as the mapping fiber of ρ b R, i.e. we

have the distinguished triangle

RΓcpX ,Rpnqq ÝÑ RΓpXét,Rpnqq
ρbR
ÝÝÝÝÑ RΓDpX {R,Rpnqq ÝÑ (2.27)

and write H i,n
c pX q :“ H i

cpX ,Rpnqq for its cohomology groups. We have seen earlier that
the motivic degrees of RΓDpX {R,Rpnqq coincide with cohomological degrees. So, ρ b R
trivially decomposes into maps between the motivic degree components of RΓcpX ,Rpnqq and
RΓpXét,Rpnqq and we get a motivic decomposition of H i,n

c pX q as well:

H i,n
c pX q “ H i,n

c pSq ‘
1H i,n

c pX q ‘H i´2,n´1
c pSq.

Flach and Morin have constructed a product map

RΓpX ,Rpnqq bRΓcpX ,Rpmqq ÝÑ RΓcpX ,Rpn`mqq (2.28)

(cf. [8] Prop. 2.1) and have shown that under certain assumptions (cf. [8] Conj 2.9) Beilinson’s
conjecture (cf. [30] §3) is equivalent to

Conjecture 2.18. B(X ,n) The product map (2.28) induces for all i, n P Z a perfect pairing
of R-vectorspaces

H i,n
c pX q ˆH4´i,2´npX qR ÝÑ H4,2

c pX q Ñ R. (2.29)

Remark 2.19. B(X ,n) is equivalent to non-degeneracy of the induced pairing

1H i,n
c pX q ˆ

1H4´i,2´npX qR ÝÑ R. (2.30)

In fact, due to the decompositions (2.14) and (2.10) the conjecture B(X ,n) is implied by
the above together with B(S,n) and B(S,n´ 1). However, B(S,n) is known for all n. We
will later see that (2.30) for n “ 1 coincides with the height pairing which is known to be
non-degenerate. In particular, B(X ,1) is a well-known fact.

Ranks of motivic cohomology groups. From now on we assume B(X ,n) to hold for
all n P Z. We use it to compute H i,npX qR and H i,n

c pX q. Together with cofinite generation
of the H i,npX qR for i ą 2n one gets

H i,npX qR –

#

R for i “ n “ 0

0 for n ă 0 or n “ 0, i ‰ 0
.

So, we can read off the ranks of H i,n
c pX q for n ě 1 from B(X ,n). Moreover, the long exact

sequences associated to (2.27) for n ‰ 1 give us

H i,n
c pX q –

#

H0,0
D pX q{H0,0pX qR for i “ 1, n “ 0

H i´1,n
D pX q for n ă 0 and i ‰ 1, n “ 0
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and

H i,npX qR –

#

KerpH3,2
D pX q Ñ H4,2

c pX qq for i “ 3, n “ 2

H3´i,2´n
D pX q˚ – H i,n

D pX q for n ą 2 or i ‰ 3, n “ 2
.

We obtain ranks as given in tables (A.15) and (A.17) in Appendix A.5. In particular,

1H i,n
c pX q “

$

’

’

&

’

’

%

1H1,n
D pX q – Rmg if i “ 2, n ď 0

1H2,1pX qR “ pPic0X {ClF qR if i “ 2, n “ 1

0 otherwise

.

2.4.4 Torsion of motivic cohomology

Let T i,n? “ TorH i,np?qcodiv for ? “ S, S,X ,X as well as 1T i,n? “ Tor 1H i,np?qcodiv for
? “ X ,X . Artin-Verdier duality gives T i,n

S
– T 4´i,1´n

S
. Moreover, it is known that for

n ě 2, i ‰ 1, 2 one has T i,nS „ 0 and even T i,nS “ 0 for i ď 0 (cf. [8] Section 5.8.3). In this
section, we establish an analogous vanishing result for the torsion parts of the h1-part of the
motivic cohomology of X .

Proposition 2.20. Let n be any integer. One has 1T i,nX „
1T i,nX „ 0 whenever i ‰ 2, 3, 4

and, moreover, 1T i,nX “ 0 for i ă 2.

Proof. Due to Artin-Verdier duality it suffices to consider i ă 2. For n ă 0 the claim is
immediate from the definition Zpnq “

À

p jp,!Qp{Zpp´nq and for n “ 0, 1 it follows from the
explicit expressions Zp0q » Z and Zp1q » Gmr´1s.

Let now n ě 2 and fix a prime p. We will show that 1H ipX ,Zppnqq “ 0 for i ď 0, proving
that 1T i,nX has trivial p-part for i ď 1. Consider the Open-Closed-Decomposition

X r1{ps j
ÝÑ X i

ÐÝ XFp .

The proof of [8] Lemma 7.7 provides the distinguished triangle

i˚Ri
!Zppnq ÝÑ Zppnq ÝÑ Rj˚Zppnq ÝÑ (2.31)

together with a quasi-isomorphism

τďn`1 pi˚Zppn´ 1qr´2sq
»
ÝÑ τďn`1i˚Ri

!Zppnq.

Zppn ´ 1qXFp is known to be cohomologically concentrated in degrees rpn ´ 1q, 2pn ´ 1qs

(see [38] Thm. 1.1). Consequently,

τďnRΓpi˚Ri
!Zppnqq » τďnRΓpτďni˚Ri

!Zppnqq

» τďnRΓ
`

τďn pi˚Zppn´ 1qr´2sq
˘

» 0.
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Therefore (2.31) implies

τănRΓpX ,Zppnqq » τănRΓpX , Rj˚Zppnqq » τănRΓpX , Rj˚τďnZppnqq

» τănRΓpX , Rj˚µbnp8 q » τănRΓ
`

X
“

1
p

‰

, µbnp8
˘

,
(2.32)

where the third quasi-isomorphism is [38] Thm. 2.6. Theorem 2.8 provides the decomposition

Rπr1{ps˚µ
bn
p‚ » µbnp‚ ‘

p
R1πr1{ps˚µ

bn
p‚ r´1s ‘ µ

bpn´1q
p‚ r´2s.

A direct comparison of the cohomology groups of both sides (or, alternatively, Remark 2.9)
shows that p

R1πr1{ps˚µ
bn
p‚ r´1s is concentrated in positive degrees. So, by virtue of (2.32),

one has

τă1 pR1ΓpX ,Zpnq{p‚q » τă1 pR1ΓpX r1{ps, µbnp‚ q

» τă1RΓ
`

X r1{ps, pR1πr1{ps˚µ
bn
p‚ r´1s

˘

“ 0,

proving the proposition.

2.4.5 Weil-étale cohomology

Flach’s and Morin’s work in [8] is founded on their insight that even in the absence of any
Weil-étale topos one may construct a Weil-étale cohomology complex RΓW pX ,Zpnqq — in
terms of which the special value conjectures are then formulated — utilizing Artin-Verdier
duality. We recall their definitions.

Flach and Morin use perfectness of the pairing (2.25) to construct a morphism

αX ,n : RHompRΓpX ,Qp2´ nqq,Qr´6sq ÝÑ RΓpX ,Zpnqq

(cf. [8] Thm. 3.5) whose induced maps on cohomology H ipαX ,nq have image equal to the
divisible part of H i,npX q. In other words, they factor as follows:

H ipαX ,nq : HomQpH
6´i,2´npX q bQ,Qq � H i,npX qdiv ãÑ H i,npX q. (2.33)

Weil-étale cohomology RΓW pX ,Zpnqq is defined as the mapping cone of αX ,n, i.e. one has a
distinguished triangle

RHompRΓpX ,Qp2´ nqq,Qr´6sq
αX ,n

// RΓpX ,Zpnqq // RΓW pX ,Zpnqq // .

We write H i,n
W pX q :“ H ipRΓW pX ,Zpnqqq. From the associated long exact sequence and the

factoring (2.33) one easily deduces

H i,n
W pX q – H i,npX qcodiv ‘HompH5´i,2´npX q,Zq. (2.34)
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In particular, L(X ,n) ensures that all H i,n
W pX q are finitely generated. (2.34) gives the

Weil-étale cohomology groups listed in (A.18) and for n “ 1 we get the splittings

i “ 1 i “ 2 i “ 3 i “ 4 i “ 5 i ě 6

H i,1
W pX q Oˆ PicX XpX{F q ‘ pPicX q˚ TorPicX ‘ pOˆq˚ µF 0

H i,1
W pSq Oˆ ClF Z 0 0 0

1H i,1
W pX q 0 Pic0X {ClF XpX{F q ‘ pPic0X q˚ TorPic0X {ClF 0 0

H i´2,0
W pSq 0 Z 0 ClF ‘ pOˆq˚ µF 0

2.5 Betti cohomology and Weil-étale cohomology with com-

pact support

The long exact sequence induced by the regulator map splits motivic cohomology into a
compactly supported part and an infinite part given by Deligne cohomology. In this section
we work out the analogous decomposition for Weil-étale motivic cohomology.

Betti cohomology. Let RΓW pX8,Zpnqq be defined via the exact triangle

RΓW pX8,Zpnqq ÝÑ RΓpGR,X pCq, p2πiqnZq ÝÑ RΓpX pRq, τąnRpπ˚p2πiqnZq ÝÑ (2.35)

(cf. [8] Def. 3.23). Since the rightmost complex is entirely 2-torsion we have

RΓW pX8,Zpnqq b R » RΓpGR,X pCq, p2πiqnZq b R » RΓpX pCq,RpnqqGR .

We write H i,n
W,8pX q :“ H ipRΓW pX8,Zpnqqq. We evaluate the singular cohomology groups on

the right hand side directly and get ranks as in table (A.13). The torsion groups of H i,n
W,8pX q

are computed in Appendix A.2.

Lemma A.11 shows that RΓpX pRq, τąnRpπ˚p2πiqnZq and RΓpGR,X pCq, p2πiqnZq decompose
into motivic degrees. Consequently, the entire triangle (2.35) decomposes and we have

H i,n
W,8pX q – H i,n

W,8pSq ‘
1H i,n

W,8pX q ‘ H i´2,n´1
W,8 pSq.

Compactly supportedWeil-étale cohomology. There is a canonical map u˚8 : RΓpX ét,Zpnqq Ñ
RΓW pX8,Zpnqq since RΓpX ét,Zpnqq can be regarded as the mapping fiber of the composi-
tion

RΓpXét,Zpnqq Ñ RΓDpX {R,Zpnqq Ñ RΓpGR,X pCq, p2πiqnZq Ñ RΓpX pRq, τąnRpπ˚p2πiq
nZq.

Flach and Morin have shown that there is a unique i˚8 : RΓW pX ,Zpnqq Ñ RΓW pX8,Zpnqq
making u˚8 factor through RΓW pX ,Zpnqq (cf. [8] Prop. 3.24). RΓW,cpX ,Zpnqq is defined as
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the mapping fiber of i˚8, i.e. we have a short exact triangle

RΓW,cpX ,Zpnqq ÝÑ RΓW pX ,Zpnqq
i˚8
ÝÑ RΓW pX8,Zpnqq ÝÑ . (2.36)

We write H i,n
W,cpX q :“ H ipRΓW,cpX ,Zpnqqq for its cohomology groups. As u˚8 splits into

h i-parts, so does i˚8 and we obtain the usual decomposition

H i,n
W,cpX q “ H i,n

W,cpSq ‘
1H i,n

W,cpX q ‘ H i´2,n´1
W,c pSq.

We will evaluate H i,n
W,cpX q later, as part of the computation of fundamental lines.

2.6 De Rham and derived de Rham cohomology

Algebraic de Rham cohomology. Let Π : X Ñ S be an arithmetic scheme. Recall
algebraic de Rham cohomology RΓdRpX {Sq :“ RΓpX ,Ω‚X {Sq and its Hodge filtration given
by RΓdRpX {Sq{Fn :“ RΓpX ,Ω‚X {S{Filnq where

ΩănX {S :“ Ω‚X {S{Filn :“ rOX Ñ ΩX {S Ñ . . .Ñ Ωn´1
X {Ss

as a complex in the derived category of sheaves of OX -modules on XZar concentrated in
degrees r0, n´ 1s.

The de Rham complexes of the generic fiber X over Q, of X8 over R, and of X pCq over C
are related as follows:

RΓdRpX8{Rq{Fn “ RΓdRpX{F q{F
n b

Q
R “ pRΓdRpX pCq{Cq{FnqGR .

We call RΓdRpX8{Rq{Fn the real de Rham complex and write

H i,n
dRpX q :“ H ipRΓdRpX8{Rq{Fnq “ HipX pCq,ΩănX pCq{Cq

GR .

For n ă 1 these groups are trivial. For n “ 1 de Rham cohomology simplifies to the
cohomology of the structure sheaf H i,1

dRpX q “ H ipX pCq,OX pCqq
GR which is well-understood.

For n ě 2 we use the GAGA principle to reduce to analytic cohomology. Recall that rOan
X pCq Ñ

Ωan
X pCq{Cs is a resolution of CX pCq (cf. [37] Lem. 8.13) so that H i,2

dR “ H i
anpX pCq,CqGR . We

infer the ranks as given in table (A.14).

We will now exhibit an integral structure for RΓdRpX{Qq{Fn. The natural candidate arising
from RΓdRpX {Zq{Fn turns out to have undesirable properties for n ě 2. We thus resort to
derived de Rham cohomology.
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Derived de Rham cohomology. Derived de Rham cohomology is a variant of the above
where the alternating powers Ωk

X {S of the Kähler differentials are replaced with derived
alternating powers L

Źk LX {S of the cotangent complex LX {S . Its construction and related
notations can be found in Appendix A.4. We write

RΓddRpX {Sq{Fn :“ RΓpXZar, LΩ‚X {S{F
nq and H i,n

ddRpX q :“ H ipRΓddRpX {Zq{Fnq.

Algebraic and derived de Rham cohomology coincide for smooth schemes. In particular – when
denoting the generic fiber of X Ñ S by X Ñ Spec k – one has LΩ‚X {SbOX “ LΩ‚X {k » Ω‚X {k.
Consequently, RΓddRpX {kq{Fn “ RΓdRpX {kq{Fn attains an integral structure via

RΓddRpX {Sq{Fn
´b1
ÝÝÝÝÑ RΓddRpX {Sq{Fn b k “ RΓddRpX {kq{Fn.

For the remainder of this section we assume Π : X Ñ S to be projective and regular. In
particular, X may be any proper regular arithmetic surface or curve. Let i : X Ñ PNS be a
closed immersion into projective space and let I denote the sheaf of OPNS

-modules generated
by the equations defining X .

Lemma 2.21. In the derived category of sheaves of OX -modules one has

LX {S » ΩX {S .

Proof. The morphisms of schemes X
i

ãÑ PNS Ñ S induce a distinguished triangle of cotangent
complexes

i˚LPNS {S
ÝÑ LX {S ÝÑ LX {PNS

ÝÑ

in the derived category DpModOX
q of OX -modules (cf. [16] Prop. 2.1.2 and 2.1.5.6). As

PNS Ñ S is smooth we have a quasi-isomorphism LPNS {S
» ΩPNS {S

(cf. [16] Ch. III, Prop.
3.1.2). Moreover, by [16], Prop.3.2.4(ii) one has LX {PNS

» I{I2r1s. So, we have

I{I2 d
ÝÑ i˚ΩPNS {S

ÝÑ LX {S ÝÑ

in DpModOX
q. Here d is given by the usual Kähler differential. d has to be injective as

H ´1pLX {Sq “ 0. In fact, by [16] Prop. 3.2.6 one has LX {S “ rF Ñ Gsr`1s with F ,G being
finitely generated and locally free. Besides, one has LX {S bOX “ LX {k “ ΩX {kr0s. Therefore
– as F is torsion-free – the map F Ñ G must be injective and, moreover, LX {S » H 0pLX {Sq.
In particular,

LX {S “ rI{I2 d
ÝÑ i˚ΩPNS {S

sr1s » ΩX {S . (2.37)

The last quasi-isomorphism follows from direct inspection or, alternatively, from the short
exact sequence (2.1) in [3].
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We will now compare algebraic and derived de Rham cohomology for π1 : X Ñ SpecZ. We
begin with some preparations. The second quasi-isomorphism in (2.37) can be rewritten as
the short exact sequence

0 ÝÑ I{I2 ÝÑ i˚ΩPNZ {Z
ÝÑ ΩX {Z ÝÑ 0.

It provides a canonical map ρ1 which we regard as a two-term complex

C 1 “

„

ΩX {Z b detOX I{I
2

ρ1

ÝÝÝÝÑ detOX i
˚ΩPNZ {Z



r1s

in degrees ´1 and 0 or, equivalently, a map ρ giving rise to Bloch’s complex

C “

„

Ω1
X {Z

ρ
ÝÝÝÝÑ ωX {Z



r1s,

where
ωX {Z “ Hom

´

detOX I{I
2, detOX i

˚ΩPNZ {Z

¯

is the canonical normal bundle of X (cf. [3] §2 for Bloch’s treatment of ωX {Z, ρ,C ).

For a complex C‚ in the derived category of abelian groups we write

χpC‚q :“
ź

iPZ

`

#TorH ipC‚q
˘p´1qi

for its multiplicative Euler characteristic if it is well-defined. For a complex F ‚ of abelian
sheaves on X we write2

χpF ‚q :“ χpRΓpX ,F ‚qq :“
ź

iPZ

`

#HipX ,F ‚q
˘p´1qi

.

Recall the definition of the conductor ApX q “ χpΩ‚X {Z,torsq. We will need

Theorem 2.22. (Bloch, [3] Thm. 2.3) One has ApX q “ χpC q.

Proposition 2.23. Let X be a regular arithmetic surface with proper structure map π1 :

X Ñ SpecZ.

(i) One has gr0pLΩX {Zq » OX and gr1pLΩX {Zq » ΩX {Zr´1s. Moreover, for i ě 2 the
graded piece gripLΩX {Zq is locally quasi-isomorphic to C 1r´2s, i.e. for any point x of
X there is a quasi-isomorphism of complexes of stalks

gripLΩX {Zqx » C 1xr´2s

in the derived category of OX ,x-modules. In particular, for i ě 2 the complex griLΩ‚X {Z
is cohomologically concentrated in degrees 1 and 2.

2This is an extension of Bloch’s notation in [3] which he only defines for complexes with torsion cohomology.
This is, e.g., the case if the base change F ‚

bQ yields a bounded exact complex of finitely generated abelian
sheaves.
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(ii) Let n ě 2. Then F 2{Fn is cohomologically concentrated in degrees 1 and 2 and there
is a distinguished triangle

RΓpX , F 2{Fnq ÝÑ RΓddRpX {Zq{Fn ÝÑ RΓpX ,Ωď1
X {Zq ÝÑ . (2.38)

(iii) Let n ě 2. We make the following technical assumption:

RPpX q
All special fibers of X are reduced, or there is a closed immersion
i : X Ñ P2

Z into two-dimensional projective space.

Then one has

detZRΓddRpX {Zq{Fn

detZRΓddRpX {Zq{F 2
“ ApX qn´2, (2.39)

where the left hand side is understood as a quotient of lattices in the (1-dimensional)
Q-vectorspace detQRΓdRpX{Qq{Fn “ detQRΓdRpX{Qq{F 2.

Proof. (i): LΩď1
X {Z » Ωď1

X {Z is immediate from Lemma 2.21. Now, recall the identity LX {Z “

rI{I2 d
ÝÑ i˚ΩPNZ {Z

sr1s from its proof. Note that both OX -modules I{I2 and i˚ΩPNZ {Z
are

locally free of finite type. So, following Illusie we may express the derived exterior powers of
LX {Z in terms of Koszul complexes.

griLΩX {Z »
´

L
ľi

X
LX {Z

¯

r´is [17] Ch. VIII, (2.1.1.5) (p.277)

» LΓX pLX {Zr´1sqi [16] I.4.3.2.1(ii), or proof of [17] VIII. Col. 2.1.2.2

» KosipI{I2 d
ÝÑ i˚ΩPNZ {Z

q [17] Ch. VIII Lem. 2.1.2.1

»

”

ΓiOX I{I
2 Ñ Γi´1

OX
I{I2 b i˚ΩPNZ {Z

Ñ . . .Ñ Γi´NOX
I{I2 b

ľN
i˚ΩPNZ {Z

ı

.

(2.40)

Let i ě 2. We treat the case N “ 2 first. Then there is a section f generating I, and i˚ΩPNZ {Z

as well as ΓiI{I2 are locally free of rank 2 and rank 1 respectively. Write γjpfq for the
generator of ΓjI{I2. Then γ1pfq “ f . Since I{I2 is a line bundle one has ΓjI{I2 – pI{I2qbj .
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Thus, the Koszul complex simplifies to

griLΩX {Z »
rΓiI{I2 ÝÑ Γi´1I{I2 b i˚ΩP2

Z{Z
ÝÑ Γi´2I{I2 b

Ź2 i˚ΩP2
Z{Z
s

γipfq ÞÑ γi´1pfq b df

γi´1pfq b ω ÞÑ γi´2pfq b df ^ ω

»
pI{I2qbpi´2q b rpI{I2qb2 Ñ I{I2 b i˚ΩP2

Z{Z
Ñ

Ź2 i˚ΩP2
Z{Z
s

f b f ÞÑ f b df

f b ω ÞÑ df ^ ω

»
pI{I2qbpi´2q b rI{I2 b ΩX {Z

´^
df
f

ÝÝÝÝÑ
Ź2 i˚ΩP2

Z{Z
sr´1s

f b η ÞÑ η ^ df

» pI{I2qbpi´2q b rΩX {Z b detOX I{I2
ρ1

ÝÝÝÝÑ detOX i
˚ΩP2

Z{Z
sr´1s

» pI{I2qbpi´2q b C 1r´2s.

(2.41)

Here we have used (2.37) and the fact that taking the tensor product with a line bundle is
an exact operation. The claim now follows after passing to stalks. Since the claim is local
the general case N ě 2 follows from the observation that X may locally be described by one
equation fpu, vq “ 0 as a subscheme of SpecZJu, vK (cf. [3], Proof of Lemma 2.4).

(ii): We use the distinguished triangle

F 2{Fn ÝÑ LΩ‚X {Z{F
n ÝÑ LΩ‚X {Z{F

2 ÝÑ

and apply RΓpX ,´q to obtain (2.38). Next, we consider for all m ě 2

grmLΩX {Z ÝÑ F 2{Fm`1 ÝÑ F 2{Fm ÝÑ (2.42)

and use LΩď1
X {Z » Ωď1

X {Z to conclude inductively that all F 2{Fm are cohomologically concen-
trated in degrees 1 and 2. This completes (ii).

(iii): Let i ě 2. First assume that X embeds into P2
Z. (2.41) shows that there is a line bundle

L on X such that
griLΩX {Z » L b C 1r´2s. (2.43)

Therefore (2.42) gives

χpF 2{F i`1q

χpF 2{F iq
“ χpgriLΩX {Zq “ χpL b C 1q “ χpL b C q.
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In fact, the third equality holds since ρ arises from ρ1 via the adjunction between b and
Hom. We will show the identity

χpL b C q “ χpC q (2.44)

later in this proof. Using (2.44) and Theorem 2.22 one obtains χpF 2{Fnq “ ApX qn´2

inductively. Consequently – by virtue of (2.38) –

detZRΓddRpX {Zq{Fn

detZRΓddRpX {Zq{F 2
“

detZRΓddRpX {Zq{Fn

detZRΓpX ,Ωď1
X {Zq

“ ApX qn´2. (2.45)

It remains to show (2.44). The distinguished triangle

L bKerpρqr1s ÝÑ L b C ÝÑ L b cokerpρq ÝÑ

proves that χpL b C q “ χpLbcokerpρqq
χpLbKerpρqq . The same can be said for χpC q. So, it suffices to

prove
χpL bKerpρqq
χpKerpρqq

“
χpL b cokerpρqq
χpcokerpρqq

. (2.46)

Kerpρq and cokerpρq are supported on the at most 1-dimensional subscheme Z Ă X of
non-smooth points of X (since Kerpρq – ΩX {Z,tor and cokerpρq is locally isomorphic to Ω2

X {Z).
Write Zp “ Z X Xp. We show (2.46) for the restrictions to each Zp separately. Fix a prime
p. By abuse of notation we write L again for the restriction L |Zp . When writing χ̃ for
the additive Euler characteristic3 then the Riemann-Roch Theorem for non-reduced curves
(cf. [36] Ex. 18.4.S) gives for any coherent sheaf F on X

χ̃pL bF q ´ χ̃pF q “
ÿ

ZiĂZp

degZred
i

L |Zred
i
¨ lengthOηiFηi .

Here the sum is taken over all irreducible components Zi of Zp and ηi denotes the generic
point of Zi. Now, (2.46) follows from applying the above formula to Kerpρq|Zp and cokerpρq|Zp

and using Bloch’s result [3] Lemma 2.5 that

lengthOηKerpρqη “ lengthOηcokerpρqη

for every codimension 1 point η of X .

We now assume all special fibers of X to be reduced instead of having an embedding of X
into P2

Z. The subscheme Z Ă X of non-smooth points is then 0-dimensional. Write

H j
Bl :“ H jpC 1r´2sq and H j

ddR :“ H jpgriLΩX {Zq

for the cohomology sheaves in degrees j “ 1, 2. (2.41) shows that H j
Bl and H j

ddR have
isomorphic stalks. However, since the H j

Bl are supported on the finite collection of points Z
3i.e. the alternating sum of the dimensions of the cohomology groups as kppq-vectorspaces. This means it

relates to χ via Npχ̃pLbFq´χ̃pFq
“

χpLbFq

χpFq
.
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this glues to global isomorphisms of sheaves H j
Bl – H j

ddR for j “ 1, 2. From the pτď1, τě2q-
truncation triangles for griLΩX {Z and C 1r´2s we obtain

χpgriLΩX {Zq “
χpH 2

ddRq

χpH 1
ddRq

“
χpH 2

Blq

χpH 1
Blq

“ χpC 1q “ χpC q.

The claim follows as in (2.45).

Remark 2.24. We expect (2.39) to also hold without the assumption RP(X ). However, it
is unclear how to construct a line bundle L satisfying (2.43) from the local isomorphisms
(2.41) without an embedding into P2

Z.

The canonical bundle complex ω‚X {Z. Derived de Rham cohomology endowsRΓdRpX8{Rq
with integral structures for each n ě 2. It will turn out to be most natural to compare them
to a further integral structure coming from the complex

ω‚X {Z :“

„

OX
ρ ˝ d

ÝÝÝÝÑ ωX {Z



.

One indeed has RΓpX , ω‚X {ZqQ “ RΓdRpX{Qq. The advantages of using ω‚X {Z are two-fold:

(i) The cohomology of RΓpX , ω‚X {Zq is torsion-free and its induced integral structure on
RΓdRpX{Qq will allow for a formula for the later to be defined correction factor CpX , nq
that does not contain the conductor ApX q or any unspecified torsion cardinalities.

(ii) RΓpX , ω‚X {Zq admits a motivic decomposition fitting neatly into the formalism developed
in this chapter (cf. Proposition 2.30).

Proposition 2.25. One has

detZRΓddRpX {Zq{F 2

detZRΓpX , ω‚X {Zq
“ ApX q.

So, if RP(X ) holds, one has for any n ě 2

detZRΓddRpX {Zq{Fn

detZRΓpX , ω‚X {Zq
“ ApX qn´1. (2.47)

Proof. Due to Proposition 2.23(iii) it suffices to prove the claim for n “ 2. In this case the
left hand side equals

detZRΓpX ,Ωď1
X {Zq

detZRΓpX , ω‚X {Zq
“ χ

ˆ

rΩ1
X {Z

ρ
ÝÝÝÑ ωX {Zs

˙

“ ApX q,

where the last equality is Theorem 2.22.

Lemma 2.26. (cf. [3] Lemma 2.2) Write p´q˚ “ RHom p´,Zq. Then one has

pRπ˚ω
‚
X {Zq

˚ » Rπ˚ω
‚
X {Zr`2s.

In particular, the cohomology of RΓpX , ω‚X {Zq is torsion-free.
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Decomposition into motivic degrees.

Proposition 2.27. Suppose πC : X pCq Ñ SpCq has a section sC : SpCq Ñ X pCq, i.e. for
each real embedding σ of F one has XσpRq ‰ H. Let n P Z. Then RΓdRpS8{Rq{Fn and
RΓdRpS8{Rq{Fn´1r´2s split off as direct summands of RΓdRpX8{Rq{Fn. When writing
p
R1ΓdRpX8{Rq{Fnr´1s for the remaining summand we have a canonical decomposition

RΓdRpX8{Rq{Fn » RΓdRpS8{Rq{Fn ‘
p
R1ΓdRpX8{Rq{Fnr´1s ‘ RΓdRpS8{Rq{Fn´1r´2s

in the derived category of abelian groups. Moreover, each summand on the right hand side is
cohomologically concentrated in one degree only, i.e.

RΓdRpX8{Rq{Fn » H0,n
dR pS8{Rqr0s ‘

1H1,n
dR pX8{Rqr´1s ‘ H0,n´1

dR pS8{Rqr´2s.

Proof. The claim is trivial for n ď 0. For n “ 1 it suffices to show that OSpCq splits off as a
direct summand of RπC,˚OX pCq. Since s˚COX pCq “ OSpCq and π˚COSpCq “ OX pCq this follows
verbatim as in the proof of Theorem 2.8. (Also cf. Remark 2.9). For n “ 2 the decomposition
is immediate from Proposition 2.15. Finally, a comparison with the ranks in table (A.14)
shows that each complex on the right hand side is concentrated in one degree only.

Proposition 2.28. Suppose π : X Ñ S has a section s : S Ñ X . Then, for any integer
n, the complex LΩ‚S{Z{F

n splits off as a direct summand of Rπ˚LΩ‚X {Z{F
n. When writing

p
Rě1π˚LΩ‚X {Z{F

nr´1s for the remaining summand we have a canonical decomposition

Rπ˚LΩ‚X {Z{F
n » LΩ‚S{Z{F

n ‘
p
Rě1π˚LΩ‚X {Z{F

nr´1s

in the derived category of OF -modules.

Proof. The cotangent complex formalism provides maps `π : π˚LΩ‚S{Z{F
n Ñ LΩ‚X {Z{F

n and
`s : s˚LΩ‚X {Z{F

n Ñ LΩ‚S{Z{F
n satisfying `s ˝ s˚`π “ id. Consequently, the resulting maps

ϕ0 : LΩ‚S{Z{F
n ÝÑ Rπ˚π

˚LΩ‚S{Z{F
n
Rπ˚`π
ÝÝÝÑ Rπ˚LΩ‚X {Z{F

n,

ψ0 : Rπ˚LΩ‚X {Z{F
n ÝÑ Rπ˚s˚s

˚LΩ‚X {Z{F
n “ s˚LΩ‚X {Z{F

n `s
ÝÑ LΩ‚S{Z{F

n

compose to the identity on LΩ‚S{Z{F
n. So, LΩ‚S{Z{F

n splits off as a direct summand of
Rπ˚LΩ‚X {Z{F

n proving the proposition.

Remark 2.29. It is unclear whether to expect the existence of a full decomposition

Rπ˚LΩ‚X {Z{F
n ?
» LΩ‚S{Z{F

n ‘
p
R1π˚LΩ‚X {Z{F

nr´1s ‘ LΩ‚S{Z{F
n´1r´2s (2.48)

analogously to Theorem 2.11. In order to replicate its proof one would need a duality result
of the kind

pRπ˚LΩ‚X {Z{F
nq˚ » Rπ˚LΩ‚X {Z{F

n´1r´2s (2.49)
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for a suitable duality operation p´q˚ that is analogues to classical Verdier duality Theorem 2.3
or Geisser’s duality [12] Thm. 7.3. In any case, one has a decomposition of the integral
structure determined by the canonical bundle complex.

Proposition 2.30. Write ωF “ HompOF ,Zq for the different ideal of OF . Suppose π : X Ñ
S has a section s : S Ñ X . Then OF and ωF r´2s split off as direct summands of Rπ˚ω‚X {Z.
When writing p

R1π˚ω
‚
X {Zr´1s for the remaining summand we have a canonical decomposition

Rπ˚ω
‚
X {Z » OF ‘

p
R1π˚ω

‚
X {Zr´1s ‘ ωF r´2s

in the derived category of OF -modules.

Proof. We mimic the proof of Theorem 2.8. Define

ϕ0 : OF “ R0π˚ω
‚
X {Z ÝÑ Rπ˚ω

‚
X {Z,

ψ0 : Rπ˚ω
‚
X {Z ÝÑ Rπ˚s˚s

˚ω‚X {Z “ s˚ω‚X {Z ÝÑ OF .

The composition

OF
ϕ0

ÝÝÝÑ Rπ˚ω
‚
X {Z

ψ0

ÝÝÝÑ OF (2.50)

is the identity. Apply p´q˚ “ RHom p´,Zq to (2.50) and then shift by ´2 degrees. Due to
Lemma 2.26 one obtains

ωF r´2s
ϕ˚0 r´2s

ÐÝÝÝÝÝÝÝ Rπ˚ω
‚
X {Z

ψ˚0 r´2s

ÐÝÝÝÝÝÝÝ ωF r´2s.

We let ϕ2 “ ψ˚0 r´2s and ψ2 “ ϕ˚0r´2s. Again, one has ψ2ϕ2 “ pϕ0ψ0q
˚r´2s “ id. Further-

more, ψ2ϕ0 “ 0 and ψ0ϕ2 “ 0 for degree reasons.

In the absence of a duality result of type (2.49) we will introduce ad hoc definitions to
artificially force a splitting of derived de Rham cohomology on the level of determinants.
This allows us to use the formalism for motivic decompositions as developed in this chapter
on derived de Rham cohomology as well.

Definition 2.31. Let n be any integer.

(i) Let p
R0π˚LΩ‚X {Z{F

n :“ LΩ‚S{Z{F
n and p

R2π˚LΩ‚X {Z{F
n :“ LΩ‚S{Z{F

n´1r´2s. Write

detZ
p
R1ΓddRpX {Zq{Fn :“ detZ

p
Rě1ΓddRpX {Zq{Fn b det´1

Z RΓddRpS{Zq{Fn´1.

(ii) For i “ 0, 1, 2 let
iApX q :“

detZ
p
RiΓddRpX {Zq{F 2

detZ
p
RiΓpX , ω‚X {Zq

.
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(iii) For any integer n

t
pnq
ddRpX q :“ χpRΓddRpX {Zq{Fnq and t

pnq
ddRpSq :“ χpRΓddRpS{Zq{Fnq.

Also, let 1t
pnq
ddRpX q be defined by the equation

t
pnq
ddRpX q :“ t

pnq
ddRpSq ¨

1t
pnq
ddRpX q

´1 ¨ t
pn´1q
ddR pSq.

Remark 2.32.

(i) The symbol p
R1ΓddRpX {Zq{Fn itself is undefined. However, Definition 2.31(i) ensures

that we have the decompositions

detZRΓddRpX {Zq{Fn “
â

i“0,1,2

`

detZ
p
RiΓddRpX {Zq{Fn

˘p´1qi
. (2.51)

as well as
ApX q “

ź

i“0,1,2

iApX qp´1qi . (2.52)

Similarly, 1t
pnq
ddRpX q should be thought of as a substitute for the hypothetical Euler

characteristic χp pR1ΓddRpX {Zq{Fnq.

(ii) For any n ě 1 one has tnddRpSq “ ApSqn´1 “ p#DF q
n´1 by [8] Prop. 5.35. Moreover,

t
p1q
ddRpX q “ 1 since H1pX ,OX q – H0pX , ωX {Zq has no torsion and H2pX ,OX q –

H´1pX , ωX {Zq “ 0 by Serre duality.

(iii) The exact triangle OX Ñ LΩ‚X {Z{F
2 Ñ ΩX {Zr´1s Ñ and the short exact sequence

0 Ñ ωF Ñ OF Ñ ΩS{Z Ñ 0 prove that

0ApX q “ detZRΓddRpS{Zq{F 2

detZRΓpS,OF q
“ χpΩS{Zq “ ApSq,

2ApX q “ detZRΓddRpS{Zq{F 1

detZRΓpS, ωF q
“ χpΩS{Zq “ ApSq.

Therefore, the decomposition (2.52) becomes

ApX q “ ApSq ¨ 1ApX q´1 ¨ApSq.

2.7 Completions of L- and ζ-functions

Let H ipX pCq,Cq “
À

p`q“iH
p,q be the Hodge Decomposition and write hp,q “ dimCH

p,q.
Further, write pHp,pq˘1 for the eigenspace of complex conjugation to the eigenvalue ˘1 and
let hp,˘ “ dimCpH

p,pq˘p´1qp for integral p and hp,˘ “ 0 otherwise. Define

L8pH
ipXq, sq :“

ź

p`q“i, păq

ΓCps´ pq
hp,q ¨

ź

p“q“ i
2

ΓRps´ pq
hp,`ΓRps´ p` 1qh

p,´
.
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Obviously L8pH ipXq, sq decomposes into a product over all infinite places of F similarly to
(2.1). We analogously write

ζpX8, sq :“
ź

iPZ
L8pH

ipXq, sqp´1qi (2.53)

and define the completions of ζpX ,´q and ζHWpX,´q to be

ζpX , sq :“ ζpX8, sqζpX , sq, and ζHWpX, sq :“ ζpX8, sqζHWpX, sq.

Bloch and Kato conjecture ζpX , sq to obey a functional equation.

Conjecture 2.33 (Functional Equation Conjecture FE(X )). For any complex s one
has

ApX q
2´s

2 ζpX , 2´ sq “ ˘ApX q
s
2 ζpX , sq.

The lemma below provides special values of the completion factors L8pH ipXq, sq. We express
them in terms of the special values Γ˚pnq of the Γ-function.

Lemma 2.34. One has

L8pH
0pXq, sq “ ζpS8, sq “ ΓRpsq

rΓCpsq
s and L8pH

2pXq, sq “ ζpS8, s´ 1q

and, moreover,

formula s “ n ord
s“n

leading Taylor coefficient at s “ n

ζpX8, sq
ΓCps´ 1qr`s

ΓCpsqmg´s

n ď 0 mpg´1q
´

2π
n´1

¯r`s
`

2p2πq´nΓ˚pnq
˘mp1´gq

n “ 1 ´pr`sq p2πqr`sπmpg´1q

n ě 2 0
´

2π
n´1

¯r`s
`

2p2πq´nΓ˚pnq
˘mp1´gq

L8pH
1pXq, sq ΓCpsq

mg
n ď 0 ´mg

`

2p2πq´nΓ˚pnq
˘mg

n ě 1 0

Proof. One checks directly that

hij j “ 0 j “ 1

i “ 0 m gm

i “ 1 gm m

hi,˘ ` ´

i “ 0 r ` s s

i “ 1 r ` s s

Γ˚Cpnq ord
s“n

ΓC

n ď 0
2p2πq´nΓ˚pnq

´1

n ě 1 0

From here the claim is straightforward.
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In particular, we may read (2.53) as a decomposition of ζpX8, sq into factors corresponding
to both motivic and cohomological degrees i “ 0, 1, 2. We may consequently define the
completion of each perverse L-function p

LpH ipX q, sq separately:

p
LpH ipX q, sq :“ L8pH

ipXq, sq
p
LpH ipX q, sq.

Together with (2.52) Conjecture 2.33 decomposes entirely into motivic degree components
and since the functional equation for ζF psq is well-known we arrive at

Corollary 2.35. Conjecture 2.33 is equivalent to

1ApX q
2´s

2
p
LpH1pX q, 2´ sq “ ˘ 1ApX q

s
2
p
LpH1pX q, sq.
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Chapter 3

The special value conjectures in their
Weil-étale formulation

In this chapter we will define and compute the fundamental line ∆pX , nq as well as the
correction factor CpX , nq P Qˆ for arithmetic surfaces X . ∆pX , nq will be a copy of Z that
comes with a distinguished trivialization map λ8pX , nq : R –

Ñ ∆pX , nq b R. λ8pX , nq gives
rise to a unique real number up to sign Λ8pX , nq P Rˆ{t˘1u signifying the inverse generator
of the preimage of ∆pX , nq. These quantities feature in the conjectures [8] Conj. 5.10 and
5.11, describing the vanishing orders and leading Taylor coefficients at all integers. We
formulate them as follows.

Special Value Conjectures. Let X be a proper regular arithmetic surface and let n be any
integer. Then one has

(VO) ords“nζpX , sq “
ÿ

iPZ
p´1qi`1 dimRH

i,n
c pX q

(TC) ζ˚pX , nq “ CpX , nqΛ8pX , nq (3.1)

We will explicate these conjectures using the decompositions into motivic degrees of the
various cohomology groups worked out in the last chapter. In particular, for n “ 1 the
above will turn out to be equivalent to the Birch and Swinnerton-Dyer conjecture. This
extends the two-dimensional case of the result [8] Thm. 5.26 — i.e. the compatibility of the
above conjectures for smooth projective arithmetic surfaces X with the Tamagawa Number
Conjecture — to (not necessarily smooth) proper regular arithmetic surfaces.

We keep the notations from Chapter 2.
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3.1 Conjectural vanishing orders and compatibility with BSD

In this section we will explicate [8] Conj. 5.10 for arithmetic surfaces and show compatibility
with the rank part of the Birch and Swinnerton-Dyer conjecture.

The Vanishing Order Conjecture. We will formulate the vanishing order conjecture as
in [8]. Define

RΓar,cpX , rRpnqq “ RΓcpX ,Rpnqq ‘RΓcpX ,Rpnqqr´1s

and write H i,n
ar,cpX q :“ H ipRΓar,cpX , rRpnqqq for its associated cohomology groups. We wish

to verify

Conjecture 3.1 (Vanishing Order Conjecture VO(X ,n)). For all n P Z one has

ords“nζpX , sq “
ÿ

iPZ
p´1qi ¨ i ¨ dimRH

i,n
ar,cpX q “

ÿ

iPZ
p´1qi`1 dimRH

i,n
c pX q.

We begin with a preparational Lemma. We write Λp for the abelian group generated by the
irreducible components of Xp modulo the relation rXps “ 0, i.e. modulo the special fiber Xp

interpreted as the weighted sum of its irreducible components. In other words,

Λp “ CH0pXpq{rXps.

Lemma 3.2. We have a short exact sequence

0 ÝÑ ClF ‘
à

p bad
Λp ÝÑ PicX ÝÑ PicX ÝÑ 0. (3.2)

Moreover, since 1H2,1pX q – Pic0X
ClF

, the above can be rewritten as

0 ÝÑ
à

p bad
Λp ÝÑ

1H2,1pX q ÝÑ Pic0X ÝÑ 0 (3.3)

Proof. The theory of Chow groups provides the Localization Sequence

CH1pX, 1q
v
ÝÑ

à

p

CH0pXpq ÝÑ CH1pX q ÝÑ CH1pXq ÝÑ 0.

We have CH1pX, 1q – H0pX,OˆXq “ Fˆ and v is the valuation map. Therefore, after taking
the quotient with the image of v the above sequence becomes (3.2). Since ClF ‘

À

p bad Λp

maps into Pic0X (cf. e.g. [26] Thm. (8.1.2)(i)) we also have the short exact sequence

0 ÝÑ ClF ‘
à

p bad
Λp ÝÑ Pic0X ÝÑ Pic0X ÝÑ 0.

For the second part of the claim take the quotient with ClF .
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Proposition 3.3. The Vanishing Order Conjecture for X is equivalent to

ords“nζpX , sq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

mp1´ gq for n ă 0

mp1´ gq ´ 1 for n “ 0

r ` s´ 1´ rk PicX for n “ 1

´1 for n “ 2

0 for n ą 2

(3.4)

or to

ords“nLpH1pXq, sq “

$

’

’

&

’

’

%

mg for n ď 0

rk Pic0X for n “ 1

0 for n ě 2

(3.5)

In particular, VO(X ,1) is equivalent to the vanishing order part of the Birch and Swinnerton-
Dyer conjecture.

Moreover, VO(X ,n) holds for n ě 2. Also, VO(X ,n) is compatible with the conjectural
functional equation for LpH1pXq, sq. In particular, for an elliptic surface X “ E defined
over Z (i.e. S “ SpecZ) one knows VO(E ,n) for all n ‰ 1.

Proof. The equivalence of (3.4) to VO(X ,n) is immediate from table (A.15). We will now
show equivalence to (3.5). Proposition/Definition 2.1 gives

ords“nζpX , sq “ ords“nζHWpX, sq ´ ords“nΠpX , sq.

For n ‰ 1 Lemma 2.2(i) shows ords“nΠpX , sq “ 0. Hence – for n ‰ 1 – (3.5) follows from
(3.4) when using

ζHWpX, sq “
ζF psqζF ps´ 1q

LpH1pXq, sq

and the well-known formula

ords“nζF psq “

$

’

’

’

’

&

’

’

’

’

%

εnr ` s if n ă 0

r ` s´ 1 if n “ 0

´1 if n “ 1

0 if n ą 1

(3.6)

for the vanishing orders of ζF . By Lemma 2.2(ii) it remains to show

rkPicX “ rkPicX `
ÿ

p bad

pdppq ´ 1q . (3.7)

This in turn follows from the short exact sequence (3.3) since dppq ´ 1 “ rkΛp.

For the second part note that ords“nLpH1pXq, sq “ 0 for n ě 2 since the infinite product
expression for LpH1pXq, sq converges for Repsq ą 3{2. Assuming the motivic degree 1 part
of the conjectural functional equation

1ApX q
s
2L8pH

1pXq, sq
p
LpH1pX q, sq “ 1ApX q

2´s
2 L8pH

1pXq, 2´sq
p
LpH1pX q, 2´sq (3.8)
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and using the vanishing order part of Lemma 2.34 verifies ords“nLpH1pXq, sq “ mg for
n ď 0. The last statement follows since (3.8) is known for X being an elliptic curve over Q
by virtue of the Modularity Theorem. l

3.2 Integral Structures

In the next two sections we present preparatory results for the computation of the fundamental
line ∆pX {Z, nq in Section 3.4 and introduce notation for the integral structures that are left
implicit in its definition. An overview of their bases can be found in Appendix A.7.

We reserve v|8 for infinite places of F and let j “ 1, . . . , g. From now on we write MB1,B2pfq

for the matrix describing a linear map f between real vectorspaces with specified bases B1

and B2.

Integral structures coming from H1pX pCq,Cq. The ˘1-eigenspaces H1pX pCq,Zq˘ of
the GR-action on H1pX pCq,Zq induced by the GR-action on X pCq sum to a subgroup of
H1pX pCq,Zq of finite index

H1pX pCq,Zq` ‘H1pX pCq,Zq´ Ă H2pX pCq,Zq. (3.9)

Consequently, their images under the base change maps

H1pX pCq,Zq˘
´bR1
ÝÝÝÝÑ H1pX pCq,Rq˘

into the summands of the eigenspace decomposition

H1pX pCq,Rq “ H1pX pCq,Rq` ‘H1pX pCq,Rq´

are integral lattices of maximal order. Since H1pX pCq,Zq has a Hodge Decomposition after a
base change to C both groups H1pX pCq,Zq˘ must have the same rank mg. In fact, Poincaré
duality provides a pairing of H1pX pCq,Zq with itself that restricts to a pairing between
complementary eigenspaces

^ : H1pX pCq,Zq` ˆH1pX pCq,Zq´ ÝÑ H2pX pCq,Zq –
à

v

Z, (3.10)

which in turn is a direct sum of perfect pairings over all infinite places of F . Write B` “ tδ`vjuvj
for a basis of the image of H1pX pCq,Zq` in H1pX pCq,Rq` and let B´ “ tδ´vjuvj “ pB`q˚ be
the basis of H1pX pCq,Rq´ dual to B`. Note that B`YB´ is an R-basis of H1pX pCq,Rq but
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does not necessarily generate the lattice H1pX pCq,Zq Ă H1pX pCq,Rq since (3.9) is generally
not an equality1. Next, define

δ`;n
vj “

#

p2πiqnδ`vj for n even
p2πiqnδ´vj for n odd

and δ´;n
vj “

#

p2πiqnδ`vj for n odd
p2πiqnδ´vj for n even

and let B˘;n :“ tδ˘,nvj uvj Ă H1pX pCq,Cq.

B`;n is a basis of H1,n
W,8pX qR “ H1pX pCq,RpnqqGR that generates the integral lattice

H1,n
W,8pX q Ă H1,n

W,8pX qR. Moreover, the set B`,n´1 is for n ě 2 a basis of H2,n
D pX q “

H1pX pCq,Rpn ´ 1qqGR and for n ď 1 it is a basis of H1,n´1
D pX q “ H1pX pCq,Rpn ´ 1qqGR .

Their integral structures shall be the Z-lattices generated by B`;n´1. Further, for n ď 0 we
endow H2,n

c pX q with an integral structure via H2,n
c pX q – H1,n

D pX q. Finally, for any fixed
integer n we give H1pX pCq,CqGR an integral structure via

H1pX pCq,CqGR “ H1pX pCq,RpnqqGR ‘H1pX pCq,Rpn´ 1qqGR

i.e. BnC :“ B`;n Y B`;n´1 is its integral basis.

Integral structures coming from H2pX ,Zpnqq for n ě 2. For each n ě 2 we fix a set
of generators

Cn “ tcnvj | v|8, 1 ď j ď gu

of the image of H2,npX q in H2pX ,ZpnqqR. Since H i,npX qR – H i,n
W pX qR for these n, the

set Cn also determines an integral structure on H i,n
W pX qR. Further, (2.34) shows that

H3,2´n
W pX qR – HompH2,npX q,Rq for n ě 2. We write c2´n

vj P H3,2´n
W pX qR for the cycle class

corresponding to c2
vj under this isomorphism. C 2´n :“ tc2´n

vj | v|8, 1ďjďgu is a basis of the
integral structure of H i,n

W pX qR determined by H i,n
W pX q since the duality (2.34) is a duality of

integral lattices.

If there is no risk of confusion we will also use δ`;‚
vj and c‚vj to refer to integral elements of

H2,n
c pX q for n ď 0 and H2,n

W pX q, H3,2´n
W pX q for n ě 2 respectively.

Integral structures for de Rham cohomology. One has the decomposition

H1
dRpX pCq{CqGR – H1pX ,OX qR ‘H

0pX , ωX qR.

Serre duality for coherent sheaves provides a perfect pairing

^ : H1pX ,OX q ˆH
0pX , ωX q ÝÑ H1pX , ωX q – Z (3.11)

1E.g. if X is an elliptic curve over Q so that one may write XpCq – C{Λ, the matrix B describing the
base change from H1

pX pCq,Zq to B is given by B “ p 1
1 q or B “

`

1 1
1 ´1

˘

respectively, depending on whether
complex conjugation acts on a basis of the lattice Λ by

`

1
´1

˘

or p 1
1 q.
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of free abelian groups. Let B10
dR “ tωvjuvj be a basis of the image of H1pX ,OX q

´bR1
ÝÑ

H1pX ,OX qR and let B01
dR :“ pB10

dRq
˚ :“ tηvjuvj be the basis of H0pX , ωX q dual to B10

dR. We
will use

BdR :“ B10
dR Y B01

dR “ tωvj , ηvjuvj .

A subtlety needs to be taken into account for the choice of bases of derived de Rham coho-
mology groups. Let rBnddR and rBp2q;nddR be bases of the images of H1,n

ddRpX {Zq and H
2,n
ddRpX {Zq

in H1
dRpX8{Rq and H2

dRpX8{Rq under base change to R. Similarly, let Bp2qdR be a basis of the
image of H0pS, ωF q

´bR1
ÝÑ H2

dRpX8{Rq. After splitting off the motivic degree 0 component
(2.47) unravels to

t
pnq
ddRpX q
t
pnq
ddRpSq

¨

detM
rBp2q;nddR ,Bp2qdR

`

idH2pX8{Rq
˘

detM
rBnddR,BdR

`

idH1pX8{Rq
˘ “

ˆ

ApX q
ApSq

˙n´1

. (3.12)

Due to the ad-hoc Definition 2.31(i) the motivic degree 1 and 2 parts of the quotient (2.47)
can only be expressed in terms of differently defined integral bases of H i

dRpX8{Rq for i “ 1, 2

– which we will denote BnddR,B
p2q,n
ddR . They have to be chosen in such a way that (2.47) holds

for each motivic degree component separately. Concretely, we let Bp2q;nddR be any basis of
H2

dRpX8{Rq, satisfying

t
pn´1q
ddR pSq ¨ detMBp2q;nddR ,Bp2qdR

`

idH2pX8{Rq
˘

“
detZRΓddRpS{Zq{Fn´1

detZRΓpS, ωF q

and then choose BnddR to be such a basis of H1
dRpX8{Rq that (3.12) remains valid when

replacing rBnddR, rB
p2q,n
ddR with BnddR,B

p2q,n
ddR . Now the 1-part of (2.47) is

1t
pnq
ddRpX q ¨ detMBnddR,BdR

´

idH1
dRpX8{Rq

¯

“
1ApX qn´1. (3.13)

Obviously, if we had a duality result of the kind (2.48) one could choose BnddR “ rBnddR and
Bp2q;ndR “ rBp2q;ndR . In any case, the difference will not concern us in the remainder of this
thesis.

The Period Isomorphism. Let

Φ : H1pX pCq,Cq –
ÝÑ H1

dRpX pCq{Cq

be the period isomorphism and write ΦGR : H1pX pCq,CqGR Ñ H1
dRpX8{Rq for its restriction

to the GR-invariant part.

Lemma 3.4. One has
detMB1,BdRpΦ

GRq “ 1.

Consequently, for all integers n,

detMBn,BdRpΦ
GRq “ p2πiq2mgpn´1q. (3.14)
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Proof. Most of the work towards the above identity is hidden in the definitions of B1 “

p2πiqB´ Y B` and BdR “ B10
dR Y B01

dR as self-dual bases. It suffices to show that

detMB`YB´,B01
dRYB

10
dR
pΦGRq “ p2πiq´mg.

In other words, we need to calculate the quantity c P Rˆ{t˘1u for which
ľ2gm

ΦGR :
ľ2gm

H1pX pCq,CqGR ÝÑ
ľ2gm

H1
dRpX8{Rq (3.15)

acts as
ľ

v|8
1ďjďg

´

δ`vj ^ δ
´
vj

¯

ÞÝÑ c ¨
ľ

v|8
1ďjďg

pωvj ^ ηvjq . (3.16)

By the Poincaré and Serre dualities (3.10) and (3.11) δ`vj ^ δ
´
vj and ωvj ^ ηvj are generators

of (the v-component of) H2pX pCq,Zq and H2pX , ω‚X {Zq, i.e. they correspond to classes in
H2pX pCq,CqGR and H2

dRpX8{Rq represented by a point. But it is well-known that the period
isomorphism on second cohomology

Φ : H2pX pCq,CqGR ÝÑ H2pX8{Rq

is just multiplication with p2πiq´1 (for each v) with respect to point class bases. Consequently,
one has c “ p2πiq´mg.

Finally, note that the period isomorphism restricts to a map

Φ10 : H1pX pCq,Rp1qqGR –
ÝÑ H1pX ,OX qR.

We define
ΩpX q :“ detMB`;1,B10

dR
pΦ10q.

The duality isomorphism hBpX ,nq. Let hpiqBpX ,nq : H i,npX qR
–
ÝÑ H4´i,2´n

c pX q˚ be the
isomorphism induced by the conjectural perfect pairing (2.29). It is related to the Beilinson
regulator map ρ2 : H2,npX qR Ñ H2,n

D pX q as follows.

Lemma/Definition 3.5. Let n ě 2. Then one has

detMCn,B`;2´nph
p2q
BpX ,nqq “ detMCn,B`;n´1pρ2q.

We write RnpX q for the above determinants and call it the n-th regulator of X .

Proof. The hpiqBpX ,nq fit into a commutative diagram (cf. [8] Rmk. 2.6)

// H i,n
c pX q //

– ph
p4´iq
BpX ,2´nqq

˚

��

H i,npX qR
ρ

////

– h
piq
BpX ,nq
��

H i,n
D pX q //

– hi,nD
��

H i`1,n
c pX q //

– ph
p3´iq
BpX ,2´nqq

˚

��
ρ˚
// H4´i,2´npX q˚R // H4´i,2´n

c pX q˚ // H3´i,2´n
D pX q˚ ρ˚

// H3´i,2´npX q˚R //
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with exact rows coming from (2.27) and where hi,nD : H i,n
D pX q – H3´i,2´n

D pX q is the isomor-
phism induced by the perfect pairing (2.23) of Deligne cohomology groups. Specializing to
i “ 2 yields the commutative square

H2,npX qR –

ρ2
//

– h
p2q
BpX ,nq
��

H2,n
D pX q

– h2,n
D
��

H2,2´n
c pX q˚ – // H1,2´n

D pX q˚

(3.17)

(2.23) simplifies for i “ 2 to the restriction of the Poincaré duality pairing of algebraic
topology

H1pX pCq,Rpn´ 1qq ˆH1pX pCq,Rp2´ nqq ÝÑ H2pX pCq,Rp1qq.

to itsGR-equivariant part. Since Poincaré duality also holds integrally h2,n
D does not contribute

to the determinant of the upper right decomposition h2,n
D ˝ ρ2 : H2,npX qR Ñ H1,2´n

D pX q˚ of
the square. Finally, since H2,2´n

c pX q derives its integral structure from the bottom map of
(3.17) the claim follows from taking determinants in (3.17).

3.3 The Regulator RpX q

In this section we will revisit Conjecture 2.18 and introduce the additional assumption that
B(X ,n) specializes to the Arakelov intersection pairing. We then define the regulator RpX q
of an arithmetic surface X and compare it to the classical regulator RpXq of the generic
fiber X. The main result is Proposition 3.11.

The pairing B(X ,n). Let σ be a section of the inclusion τď2n´1RΓDpX {R,Rpnqq Ñ
RΓDpX {R,Rpnqq. We define RrΓpX ,Rpnqq as the mapping fiber of its composition σ ˝ ρ with
Beilinson’s regulator map. Write rH i,npX q “ H ipRrΓpX ,Zpnqqq. By the work of last chapter
we have a decomposition into motivic degrees

RrΓpX ,Rpnqq » RrΓpS,Rpnqq ‘ p
R1

rΓpX ,Rpnqqr´1s ‘ RrΓpS,Rpn´ 1qqr´2s. (3.18)

RrΓpX ,Rpnqq fits into the 9-Lemma diagram [8] (29) in Section 2.3 whose associated long
exact sequences show that rH i,n vanishes for i ‰ 2n and that one has

rH0,0pX q – rH0,0pSq “ H0,0pSqR – R, rH4,2pX q – rH2,1pSq “ H2,1
c pSqR – R (3.19)

as well as the short exact sequence

0 ÝÑ cokerpρ1q ÝÑ rH2,1pX q ÝÑ H2,1pX qR ÝÑ 0. (3.20)
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It shows that the motivic decomposition of rH2,1pX q is given by

rH2,1pX q “ cokerpρ1q ‘

ˆ

Pic0X
ClF

˙

R
‘ R. (3.21)

rH2n,npX q is isomorphic to the n-th Arakelov Chow group CHnpX qR (cf. [8] Prop. 2.11) and
the pairing B(X ,n) translates into a perfect pairing

rH2n,npX q ˆ rH4´2n,2´npX q ÝÑ R. (3.22)

Remark 3.6. Flach’s and Morin’s identification rH2n,npX q – CHnpX qR results from an
application of the 5-Lemma and thus depends on the choice of a splittingH2,1pX qR Ñ rH2,1pX q
of (3.20). However, the identifications (3.19) and the decomposition (3.21) into motivic degree
components provide one such splitting, i.e. we have rH2n,npX q – CHnpX qR canonically.

From now on we will assume the following enhanced version of B(X ,n).

Conjecture 3.7 (B(X ,n)). Conjecture B(X ,n) holds and the perfect pairing

CHnpX qR ˆ CH2´npX qR ÝÑ R

obtained from (3.22) via the canonical identifications rH2n,npX q – CHnpX qR coincides with
the Arakelov Intersection Pairing x´,´yAr.

For arithmetic surfaces x´,´yAr is only non-trivial if n ‰ 0, 1, 2. Moreover, it only involves
information from motivic degree 1 if n “ 1. We now make the Arakelov pairing explicit
for n “ 1 and compare it to the intersection pairing x´,´yX from algebraic geometry,
following [15].

Proposition 3.8. (Arakelov, Hriljac)

(i) (3.21) is an orthogonal decomposition of rH2,1pX q, i.e. one has

rH2,1pX q “ cokerpρ1q K

ˆ

Pic0X
ClF

˙

R
K R

and x´,´yAr is defined on each summand separately. x´,´yAr is negative definite on
pPic0X {ClF qR (cf. [15] Thm. 3.4, Prop. 3.3).

(ii) Let D,D1 P Pic0X be fibral divisor classes with support in the special fiber Xp. Then

xD,D1yAr “ logNp ¨ xD,D1yX

(cf. [15] def. of pD ¨ Eqv in Sec. 2).
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(iii) There is a unique linear splitting

Pic0X ÝÑ pPic0X qQ, P ÞÑ P

of the natural projection Pic0X Ñ Pic0X such that the image is orthogonal to all fibral
divisor classes in Pic0X (cf. [15] Thm. 1.3).

(iv) Fix an isomorphism φ : Pic0X
–
ÝÑ JacX. X has a divisor such that its associated

canonical height h satisfies for all P P Pic0X (cf. [15] Thm. 3.1)

xP,PyAr “ ´hpφpP qq.

Definitions of RpX q, RpXq and cppXq. Let P be a basis of the image of 1H2,1pX q in
1H2,1pX qR – pPic0X {ClF qR. P also defines an integral basis on H2,1

c pX q due to H2,1
c pX q –

H2,1pX qR. Let P˚ be the basis of 1H2,1pX q˚R dual to P. We define the regulator RpX q of
X to be

RpX q :“ det
`

xP , P 1yAr
˘

P ,P 1PP “ detMP,P˚

´

ph
p2q
BpX ,1qq

˚
¯

.

Next, fix a basis P “ tPiu1ďiďrkPic0X of the image of Pic0X in pPic0XqR. The regulator
RpXq of the generic fiber X equals

RpXq “ det
`

xP ,P 1yAr
˘

P,P 1PP

since the Arakelov Intersection Pairing is by Proposition 3.8(iv) the same as the Neron-Tate
height pairing on Pic0X .

Now, fix a prime p. Let J Ñ Sp denote the Neron model of the Jacobian J “ JacXFp of
the generic fiber of the local surface XOp over Sp “ SpecOp. Let J̃ “ Jp denote the special
fiber of J and let J̃ 0 be its identity component. We also write J 0 Ă J for the subgroup
scheme with generic fiber J and special fiber equal to J̃ 0. We define

cppXq :“#
J pFpq

J 0pFpq
“

#J̃ pkppqq
#J̃ 0pkppqq

.

Decomposition of RpX q. Fix a prime p of O. Recall the notations dppq and njppq from
Lemma 2.2. Also, let tCp

j u1ďjďdppq be the reduced irreducible components of Xp and let
mjppq be the multiplicity of Cp

j in Xp. The section s : S Ñ X provides a rational point on
one component – say Cp

dppq – of Xp. Thus C
p
dppq must be simple and cannot decompose further

over any algebraic extension of kppq, i.e. mdppqppq “ ndppqppq “ 1. We conclude that the set
of classes Dp :“ trCp

j s P pΛpqRu1ďjădppq is a basis of the image of Λp inside pΛpqR.
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Lemma 3.9. (Raynaud; Bosch, Liu) Fix a prime p of O. The sequence

CH0pXpq
α

ÝÝÝÝÑ CH0pXpq
β

ÝÝÝÝÑ Z

Cp
j ÞÑ

dppq
ÿ

i“1

xCp
i , C

p
j yX ¨ C

p
i

Cp
j ÞÑ mjppq

(3.23)

is a chain complex and one has

#
Kerβ
Imα

“ cppXq ¨

dppq
ź

j“1

njppq.

Proof. This is [5] Theorem 1.11 applied to the abelian variety A “ J . Indeed, the right-most
term in Thm 1.11 qdZ{d1Z vanishes since Xp has a component satisfyingmdppqppq “ ndppqppq “

1. Moreover, the geometric multiplicities ej of C
p
j in Cp

j (cf. [6] Def. 9.1.3) occurring in [5]
Rmk. 1.12 equal 1 since the base change of any reduced curve over a perfect field to its
algebraic closure remains reduced (see e.g. [26] example (6.1.7)).

Remark 3.10. Raynaud has shown the analogue of Lemma 3.9 for algebraically closed residue
fields (cf. [26] Prop. 8.12); Bosch and Liu extended it to more general residue fields. As
part of his proof Raynaud has shown that, in the case kppq “ kppq, the Picard-scheme Pic0

Xp

is isomorphic to the group of components J̃ {J̃ 0 of J – a finite étale group scheme that
only depends on the generic fiber X. This should serve as intuition for why #Kerβ

Imα does not
depend on the special fiber Xp beyond the values of the njppq.

Proposition 3.11. One has

RpX q “ ˘ 1

p#TorPic0Xq2

ˆ

#
TorPic0X

ClF

˙2

¨RpXq ¨
ź

p

¨

˝plogNpqdppq´1
dppq
ź

j“1

njppq

˛

‚cppXq

“ ˘
1

p#TorPic0Xq2

ˆ

#
TorPic0X

ClF

˙2

¨RpXq ¨Π˚pX , 1q ¨
ź

p

cppXq.

Proof. (3.3) gives a short exact sequence of real vectorspaces

0 ÝÑ

ˆ

à

p

Λp

˙

R
ÝÑ

ˆ

Pic0X
ClF

˙

R
ÝÑ

`

Pic0X
˘

R ÝÑ 0. (3.24)

Due to the splitting provided by Proposition 3.8(iii) the above sequence yields an orthogonal
decomposition

ˆ

Pic0X
ClF

˙

R
–

ˆ

à

p

Λp

˙

R
K

`

Pic0X
˘

R (3.25)
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and we may regard P 1 :“ P Y
Ť

pDp as a further (R-)basis of 1H2,1pX qR. (3.25) gives

RpX q “
`

detMP,P 1pidq
˘2
¨ det

`

xP , P 1yAr
˘

P ,P 1PP 1

“
`

detMP,P 1pidq
˘2
¨ det

`

xP ,P 1yAr
˘

P,P 1PP ¨
ź

p

det
´

xrCp
i s, rC

p
j sy

¯

1ďi,jădppq

“ RpXq ¨
`

detMP,P 1pidq
˘2
¨
ź

p

plogNpqdppq´1 det
´

xCp
i , C

p
j yX

¯

1ďi,jădppq

(3.26)

where the last equation uses Proposition 3.8(ii). We evaluate the remaining factors separately.

First, since (3.3) is an integral exact sequence, detMP,P 1pidq measures the discrepancy in
torsion between Pic0X {ClF and its surrounding terms in (3.3), i.e. one has

detMP,P 1

´

id 1H2,1pX qR

¯

“
1

#TorPic0X
¨#

TorPic0X
ClF

.

Finally, recall the sequence (3.23) of the previous Lemma. Since mdppq “ 1 the set Dp may
also be viewed as a basis of Kerβ. Besides, α is represented by the full intersection matrix
´

xCp
i , C

p
j yX

¯

1ďi,jďdppq
. It follows that

det
´

xCp
i , C

p
j yX

¯

1ďi,jădppq
“#

Kerβ
Imα

.

Lemma 3.9 completes the proof.

3.4 The Fundamental Line

Consider the perfect 3ˆ3-square from [8] Prop. 4.14.

RΓdRpX8{Rq{Filnr´1s // RΓDpX {R,Rpnqq //

��

RΓW pX8,ZpnqqR

��

RΓdRpX8{Rq{Filnr´1s // RΓcpX ,Rpnqqr1s ‘RΓcpX ,Rpnqq //

��

RΓW,cpX ,ZpnqqRr1s

��

RΓpX ,Rpnqqr1s ‘RΓpX ,Rp2´nqq˚r´4s
– // RΓW pX ,ZpnqqRr1s

(3.27)

The middle horizontal triangle is exact by the 9-Lemma. So, the fundamental line

∆pX , nq :“ detZRΓW,cpX ,Zpnqq b detZRΓddRpX {Zq{Fn

has a trivialization
λ8pX , nq : R –

ÝÑ ∆pX , nq b R.

By the work of the previous chapter the determinants of the complexes in diagram (3.27)
decompose entirely into motivic degree components in the presence of a section s : S Ñ X ,
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satisfying FPB(s,n). So, we may write

∆pX , nq “ ∆pS, nq b 1∆pX , nq´1 b∆pS, n´ 1q

as well as
λ8pX , nq “ λ8pS, nq b

1λ8pX , nq´1 b λ8pS, n´ 1q, (3.28)

where 1∆pX , nq and 1Λ8pX , nq denote the Z-line and its trivialization coming from the
h1-part of the cohomology diagram induced by p3.27q. We write Λ8pX , nq P Rˆ{t˘1u for
the inverse of the generator of the inverse image of ∆pX , nq under λ8pX , nq, i.e.

λ8pX , nqpZq “ Λ8pX , nq ¨∆pX , nq.

Let 1Λ8pX , nq and Λ8pS, nq be defined analogously. (3.28) translates into

Λ8pX , nq “
Λ8pS, nqΛ8pS, n´ 1q

1Λ8pX , nq
.

Flach and Morin have worked out Λ8pS, nq in [8].

Theorem 3.12. (cf. [8] equ. (92) following Prop. 5.33) For n ě 1 write

RnpSq “ vol
´

coker
´

H1,npSq
ρn
ÝÑ H1,n

D pSq
¯¯

,

where the volume is taken with respect to the integral structure of H1,n
D pSq coming from

H1,n
D pSq – H0pFC, p2πiq

n´1ZqR. Then

(i)
Λ8pS, nq “

#T 2,1´n

S

#T 1,1´n

S

¨R1´npSq for n ď 0

(ii)
Λ8pS, nq “ 2p´1qn´1rp2πqmn´rεn´s ¨ |DF |

1
2
´n ¨

#T 2,n

S

#T 1,n

S

¨RnpSq for n ě 1

The remaining part of this section will be dedicated to the proof of the below analogue of
Theorem 3.12 for (the motivic degree 1 part of) arithmetic surfaces.

Theorem 3.13. With the notations from above and the preceding sections (as well as
Appendix A.2 for 1lpX q), one has

(i)
1Λ8pX , nq “ 2εn

1lpX q
#1T 3,2´n

X
#1T 2,2´n

X ¨#1T 4,2´n

X

¨R2´npX q for n ď 0

(ii)
1ΛpX , 1q “ #XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

RpX qΩpX q

“
#XpX{F qΩpX qRpXq

p#TorPic0Xq2

ź

p

¨

˝plogNpqdppq´1
dppq
ź

j“1

njppq

˛

‚cppXq
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(iii) Suppose that the technical condition RP(X ) (or the formula (2.39)) holds. Then

1Λ8pX , nq “ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨

ˆ

p2πq2mg

1ApX q

˙n´1

¨RnpX q for n ě 2

Remark 3.14. An alternative expression for 1ΛpX , 1q in terms of BrX instead of XpX{F q can
be obtained using the comparison sequence induced by (2.26). When defining r´1 ď c ă lpX q
via the equation

2lpX q´1´c “ #Ker
ˆˆ

TorPic0X
ClF

˙_

ÝÑ
1H4,1pX q

˙

then
1ΛpX , 1q “ 2´c#BrX

ˆ

#
TorPic0X

ClF

˙´2

RpX qΩpX q.

Computing 1Λ8pX , nq effectively means to compare the two integral structures on
RΓW,cpX ,ZpnqqR, one coming from the vertical and one coming from the horizontal dis-
tinguished triangle in (3.27) passing through RΓW,cpX ,ZpnqqR. (2.36). To do this we will
provide explicit descriptions of the maps occuring in the long exact sequences associated
to (the h1-part of) (3.27) in terms of the integral bases specified in the preceding two
sections.

Contribution from 2-torsion. Before considering each case n “ 1, n ě 2, n ď 0

separately we evaluate the contribution of the torsion parts of 1H‚,nW,8pX q and
1H‚,nW pX q.

Note that for S these torsion groups explain the occurrence of the factor 2p´1qn´1r in the
formula for Λ8pS, nq with n ě 1 since by Corollary A.16(i) and Corollary A.10

χ pRΓW pS,Zpnqqq
χ pRΓW pS8,Zpnqqq

“

´

2p´1qn n`εn
2

r
¯´1

$

’

&

’

%

2p´1qn n`εn
2

r #T 2,1´n

S

#T 1,1´n

S

for n ď 0

2p´1qnpn`εn2
´1qr #T 2,n

S

#T 1,n

S

for n ě 1

“

$

’

&

’

%

#T 2,1´n

S

#T 1,1´n

S

for n ď 0

2p´1qn´1r#T 2,n

S

#T 1,n

S

for n ě 1.

We will now evaluate the h1-part of the analogue of the quotient above for X . Corollary A.16(ii)
and Corollary A.9 show

χ
` p
R1ΓW pX ,Zpnqq

˘

χ
` p
R1ΓW pX8,Zpnqq

˘ “ χ
` p
R1ΓW pX ,Zpnqq

˘

“

$

’

’

’

&

’

’

’

%

#XpX{F q
´

#TorPic0X
ClF

¯´2
for n “ 1

2εn
1lpX q #

1
T 3,n

X

#
1
T 2,n

X
¨#

1
T 4,n

X

for n ‰ 1.
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This explains the leading factors in the formulas of Theorem 3.13.

3.4.1 The Trivialization Factor for n “ 1

The below diagram depicts the relevant parts of the long exact sequences induced by the
h1-part of (3.27). It also displays zero-terms such as p1T i,nX qR if they carry information on the
involved integral structures and hence give rise to the numerical value of 1Λ8pX , nq.

´

TorPic0X
ClF

¯˚

R

1H1,1
W,8pX qR

β12 //

��

H1pX pCq,OX pCqq
GR

`

Pic0Xcotor
˘

R
α2 //

��

1H2,1
W,cpX qR

β2
//

��

H1pX pCq,OX pCqq
GR

`BrX
BrO

˘˚

R ‘
´

Pic0X
ClF

¯

R

– //

´

Pic0X
ClF

¯

R

��

1H2,1
W,8pX qR

��
`

Pic0Xcotor
˘

R
α3 //

ph
p2q
BpX ,1qq

˚

��

1H3,1
W,cpX qR

��
´

Pic0X
ClF

¯˚

R
‘
`BrX
BrO

˘

R
//

´

Pic0X
ClF

¯˚

R
‘XpX{F qR

��

1H3,1
W,8pX qR

��

1H4,1
W,cpX qR

��
´

TorPic0X
ClF

¯

R
//

´

TorPic0X
ClF

¯

R
.
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The quotient of the alternating product of torsion cardinalities associated to the two sequences
passing through H‚,nW,cpX q equals

#XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

t
p1q
ddRpX q “ #XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

.

The integral lattices of 1H2,1
W,cpX qR and 1H3,1

W,cpX qR characterized by the vertical maps, are
generated by P Y B`;1 and P˚ respectively. α2 acts as the identity on P. β12 is the period
isomorphism. Therefore the trivialization factor becomes

1Λ8pX , nq “#XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

¨ detMB`;1,B10
dR
pβ12q ¨ detMP,P˚pα3q

“#XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

¨ detMB`;1,B10
dR
pΦ10q ¨ detMP,P˚

´

ph
p2q
BpX ,1qq

˚
¯

“#XpX{F q

ˆ

#
TorPic0X

ClF

˙´2

¨ ΩpX q ¨RpX q.

In light of Proposition 3.11 this may be reformulated as

1Λ8pX , nq “
#XpX{F qΩpX qRpXq

p#TorPic0Xq2

ź

p

¨

˝plogNpqdppq´1
dppq
ź

j“1

njppq

˛

‚cppXq.
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3.4.2 Trivialization Factors for n ě 2

For n ě 2 the h1-part of the diagram on cohomology induced by (3.27) becomes

p
1T 2,2´n

X q˚R

1H1,n
W,8pX qR

β12 //

��

H1,n
dR

γ12 // H2,n
D

1H2,n
W,cpX qR

β2
//

��

H1,n
dR

p
1T 3,2´n

X q˚R ‘ pZmg ‘
1T 2,n

X qR
– //

ρ2

��

pZmg ‘ 1T 2,n

X qR

0
��

H1,n
dR

// H2,n
D pX q 0 // 1H2,n

W,8pX qR

��

H1,n
dR

1H3,n
W,cpX qR

��

p
1T 4,2´n

X q˚R ‘ p
1T 3,n

X qR
– // p

1T 3,n

X qR

��

1H3,n
W,8pX qR

��

1H4,n
W,cpX qR

��

p
1T 4,n

X qR // p
1T 4,n

X qR

��

1H4,n
W,8pX qR.
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The integral structure of 1H2,n
W,cpX qR induced by the vertical sequence is generated by

Bnc “ B`;n Y Cn. The diagram shows that

1Λ8pX , nq “ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨
1t
pnq
ddRpX q

´1 ¨ detMBnc ,BnddRpβ2q

“ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨
1

1ApX qn´1
¨ detMBnc ,BdRpβ2q by (3.13)

“ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨

ˆ

p2πq2mg

1ApX q

˙n´1

¨ detMBnc ,Bnpβ2q by (3.14)

“ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨

ˆ

p2πq2mg

1ApX q

˙n´1

¨ detMCn,B`;n´1pρ2q by Def. 3.5

“ 2εn
1lpX q

#1T 3,n

X
#1T 2,n

X ¨#1T 4,n

X

¨

ˆ

p2πq2mg

1ApX q

˙n´1

¨RnpX q.
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3.4.3 Trivialization Factors for n ď 0

Finally, for n ď 0 the h1-part of (3.27) equals

p
1T 4,2´n

X q˚R

��

H1,n
D pX q

α12 //

–

��

1H1,n
W,8pX qR

��

H2,n
c pX q α2 //

0
��

1H2,n
W,cpX qR

��

p
1T 4,2´n

X qR ‘ p
1T 3,2´n

X q˚R
– // p

1T 4,2´n

X qR

��

1H2,n
W,8pX qR

��

H2,n
c pX q α3 //

ph
p2q
BpX ,2´nqq

˚

��

1H3,n
W,cpX qR

��

p
1T 3,2´n

X qR ‘ pZmg ‘ 1T 2,2´n

X q˚R
– // pZmg ‘ 1T 3,2´n

X qR

��

1H3,n
W,8pX qR

��

1H4,n
W,cpX qR

��

p
1T 2,2´n

X qR
– // p

1T 2,2´n

X qR.

The vertical sequence endows 1H2,n
W,cpX qR and 1H3,n

W,cpX qR with integral structures generated
by B`;n and C 2´n. So, since detMB`;n,B`;npα2q “ 1, the diagram shows

1Λ8pX , nq “ 2εn
1lpX q

#1T 3,2´n

X
#1T 2,2´n

X ¨#1T 4,2´n

X

¨ detMB`;n,C2´npα3q.

The proof of Theorem 3.13 is complete after observing that the commutative square involving
α3 shows

detMB`;n,C2´npα3q “ detMB`;n,C2´npph
p2q
BpX ,2´nqq

˚q “ R2´npX q.
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3.5 The Correction Factor

Definition of CpX , nq. Geisser has shown that the étale topology of a curve equals the
eh-topology of the corresponding reduced curve. Therefore the definition of CpX , nq in [8]
Sec. 5.3, 5.4 simplifies for π : X Ñ S as follows.

Definition 3.15. For each prime p and n P Z let

χpXFp ,O, nq “
ÿ

0ďkăn,
jPZ

p´1qk`jpn´ kqdimFp H
jpX red

Fp ,Ω
k
X red

Fp {Fp
q.

In particular, χpXFp ,O, nq “ 0 for all p whenever n ď 0.

Conjecture/Definition 3.16. For any prime p and n P Z one has a distinguished triangle
in the derived category of Qp-vectorspaces

RΓdRpXQp{Qpq{F
nr´1s ÝÑ RΓpXZp ,Qppnqq ÝÑ RΓpX red

Fp ,Qppnqq ÝÑ . (3.29)

In particular, there is a trivialization

λppX , nq :
`

detZpRΓpXZp ,Zppnqq
˘

Qp

–
ÝÑ

´

detZpRΓpX red
Fp ,Zppnqq b det´1

Zp
RΓddRpXZp{Zpq{F

n
¯

Qp

(3.30)

that specifies a power ΛppX , nq “ detZpλppX , nq P Qˆp {Zˆp of p. We let cppX , nq “ pχpXFp ,O,nq ¨

ΛppX , nq and define the correction factor for X and n to be

CpX , nq “
ź

pă8

|cppX , nq|p.

The proof of [8] Prop. 5.9 shows that cppX , nq is trivial unless p ď n ` 1 or XFp is a bad
fiber. Thus, CpX , nq is well-defined. Moreover, one has CpX , nq “ 1 for n ď 0 (cf. [8] Prop.
5.7).

The leading Taylor coefficient conjecture. Write ζ˚pX , nq for the leading coefficient
of the Taylor expansion of ζpX , sq at s “ n. Define ζ˚pX8, nq and ζ˚pX , nq analogously.
We can now formulate Flach’s and Morin’s conjectural description of ζ˚pX , nq (cf. [8] Conj.
5.11).

Conjecture 3.17 (Leading Taylor Coefficient Conjecture TC(X ,n)). For any integer
n one has

ζ˚pX , nq “ CpX , nqΛ8pX , nq.
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Decomposition of CpX , nq into motivic degrees. Let

iχpXFp ,O, nq :“ p´1qi
ÿ

0ďkďn

pn´ kqdimFp H
i´kpX red

Fp ,Ω
k
X red

Fp {Fp
q

i.e. iχpXFp ,O, nq is the sub-summation of those summands of χpXFp ,O, nq for which j`k “ i.
One has iχpXFp ,O, nq “ 0 whenever i ‰ 0, 1, 2 as desired. To define a decomposition
ΛppX , nq “

ś

i“0,1,2
iΛppX , nqp´1qi we will proceed as in Definition 2.31 and let

p
R0π˚Zppnq

X red
Fp :“ R0π˚Zppnq

X red
Fp “ Zppnq

SredFp and p
R2π˚Zppnq

X red
Fp :“ Zppn´ 1q

SredFp

as well as

detZp
p
R1ΓpX red

Fp ,Zppnqq :“ detZpτ
ě1RΓpX red

Fp ,Zppnqq b det´1
ZpRΓpSred

Fp ,Zppn´ 1qq. (3.31)

Again, the complex RΓpX red
Fp ,Zppnqq does not necessarily decompose since X red

Fp is not
necessarily smooth, i.e. the symbol p

R1ΓpX red
Fp ,Zppnqq itself is undefined. We introduce

(3.31) to force a splitting on the level of determinants

detZpRΓpX red
Fp ,Zppnqq “

â

i“0,1,2

´

detZp
p
RiΓpX red

Fp ,Zppnqq
¯p´1qi

.

Theorem 2.11 provides a motivic decomposition of RΓpXZp ,Zppnqq after passing to the
p-adic completion. A decomposition of detZpRΓddRpXZp{Zpq{Fn is given in (2.51). So, every
term in (3.30) decomposes and we may define iΛppX , nq as the trivialization factor of the

h i-component of (3.30). Finally, after defining icppX , nq “ p
i
χpXFp ,O,nq ¨ iΛppX , nq and

iCpX , nq “
ź

pă8

|
icppX , nq|p

we get the decomposition

CpX , nq “
ź

iPZ

iCpX , nqp´1qi “
CpS, nqCpS, n´ 1q

1CpX , nq
. (3.32)

Results for S. Flach and Morin have computed the correction factor for S assuming the
validity of a conjecture from p-adic Hodge theory.

Proposition 3.18. (cf. [8] Prop. 5.33) When assuming Conjecture CEP pQppnqq in [24][App.C2]
for all local fields Fv of F one has

CpS, nq “

#

1 for n ď 1

pn´ 1q!´m for n ě 1.
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Computation of CpX , 1q. Fix a rational prime p. For any complex F of sheaves on a
scheme X we will use the notation

xRΓpX ,F q :“ RΓ

ˆ

X , lim
ÐÝÝ

F {p‚
˙

“ lim
ÐÝÝ

RΓpX ,F {p‚q

to denote p-adic completion2.

Theorem 3.19. For n “ 1 the triangle (3.29) exists. Moreover, CpX , 1q “ 1.

Proof. Write X “ XZp and let Z “ X red
Fp . Let ι : Z Ñ X denote the closed immersion of

the reduced special fiber. Write I Ă OX for the ideal sheaf of Z, i.e. there is a short exact
sequence

0 ÝÑ I ÝÑ OX ÝÑ OZ ÝÑ 0. (3.33)

Note that I is the radical of ppq “ pOX . Z is the disjoint union of fibers Zp “ X red
kppq over each

prime p dividing p. Write ppa “ papZpq for their arithmetic genera.

For n “ 1 the triangle (3.29) becomes

Dpp1q : RΓpXQp ,OXQp q
exp
ÝÑ xRΓpX ,Gmq bQp ÝÑ xRΓpZ,Gmq bQp ÝÑ (3.34)

after shifting by one degree since RΓpXQp ,OXQp q is p-adically complete already. We will show
that the above triangle is exact, and moreover, compute the associated trivialization factor
ΛppX , 1q by comparing it to the below distinguished triangle (3.36) of integral lattices.

Fix a power p‚ of p. One checks on stalks that

1 ÝÑ p1` Iq{p‚ ÝÑ pGm{p
‚qX ÝÑ ι˚pGm{p

‚qZ ÝÑ 1 (3.35)

is a short exact sequence of abelian sheaves on X . Applying the derived global sections
functor and then passing to p-adic completions yields

xRΓpX , 1` Iq ÝÑ xRΓpX ,Gmq ÝÑ xRΓpZ,Gmq ÝÑ . (3.36)

The two right most complexes in (3.36) coincide with the integral structures of the two right
most complexes in (3.34). So, it remains to compare the integral lattice RΓpX ,OX q inside
RΓpXQp ,OXQp q with RΓpX , 1` Iq. A diagrammatic overview of this comparison as worked
out in the remainder of this proof is given in Remark 3.20 below.

Write pX ,OX q for the formal completion of X along Z and let ιX : Z Ñ X denote the
inclusion into X . Let IX :“ IOX . One has IX “ lim

ÐÝÝ
I{I‚ “ lim

ÐÝÝ
I{p‚. Moreover, the

Theorem on Formal Functions gives for any k ě 0

RΓpX , Ikq » RΓpX , IkX q
2When applied to objects in a derived category lim

ÐÝÝ
is understood to mean the homotopy limit.
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since Ik is coherent. The transition to formal scheme theory equips us with a logarithm map
log : 1 ` IX Ñ OX which reduces to an isomorphism log : 1 ` IrX – IrX for sufficiently
large r. Consequently, for some fixed r, one has

RΓpX , IrX q » xRΓpX , 1` IrX q.

Next, consider the short exact sequences

1 ÝÑ 1` Ik`1
X ÝÑ 1` IkX ÝÑ p1` IX qk{p1` Ik`1

X q ÝÑ 1

0 ÝÑ Ik`1
X ÝÑ IkX ÝÑ IkX {Ik`1

X ÝÑ 0

for k “ 1, 2, . . . , r ´ 1. One checks directly that

IkX {Ik`1
X ÝÑ p1` IkX q{p1` Ik`1

X q, f ÞÑ 1` f

is an isomorphism of sheaves. Therefore we obtain

detZpRΓpX , IX q
detZpRΓpX , IrX q

“
detZp

xRΓpX , 1` IX q
detZp

xRΓpX , 1` IrX q
,

where the above should be read as an equality of quotients of Zp-lattices inside the (1-
dimensional) Qp-vectorspaces detQpRΓpXQp , IXQp

q and detQp
xRΓpXQp , 1`IXQp

q respectively.
Moreover, the long exact sequence associated to (3.33) equals

0 Ñ ΓpX , Iq Ñ OZp Ñ Ored
Fp

0
ÝÑ H1pX , Iq Ñ H1pX ,OX q Ñ

à

p|p

kppqp
p
a 0
ÝÑ

0
ÝÑ H2pX , Iq –

ÝÑ H2pX ,OX q Ñ 0.

So, we obtain

detZpRΓpX ,OX q

detZpRΓpX , IX q
“

detZpRΓpX ,OX q

detZpRΓpX , Iq
“

ź

p|p

#kppqp
p
a

#kppq
“

ź

p|p

Nppp
p
a´1q. (3.37)

It remains to relate the cohomology complexes of p1` Iq{p‚ and p1` IX q{p‚. By virtue of
the proper base change theorem the canonical morphisms of sheaves on Z

φ‚ : ι˚p1` Iq{p‚ ÝÑ ι˚X p1` IX q{p‚

induce a compatible system of maps

RΓpX , p1`Iq{p‚q “ RΓpZ, ι˚p1`Iq{p‚q
RΓpφ‚q

ÝÝÝÑ RΓpZ, ι˚X p1`IX q{p‚q “ RΓpX , p1`IX q{p‚q.

We will show later that the induced map between p-adic completions is an isomorphism:

lim
ÐÝÝ

RΓpφ‚q : xRΓpX , 1` Iq »
ÝÑ xRΓpX , 1` IX q. (3.38)
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It will show that ΛppX , 1q must equal (3.37). This will finish the proof since it combines with

χpXFp ,O, 1q “
ÿ

j

p´1qj
ÿ

p|p

dimFp H
jpZp,OZpq

to the desired result

CpX , 1q “ pχpXFp ,O,1q ¨ ΛppX , 1q “
ź

j

¨

˝

ź

p|p

#HjpZp,OZpq

˛

‚

p´1qj

¨
ź

p|p

Nppp
p
a´1q “ 1.

The proof of (3.38) amounts to the algebraic exercise of verifying that taking mapping cones
of the multiplicative sheaf 1` I interacts well with transitioning to the formal (i.e. p-adic)
completion IX “ lim

ÐÝÝ
I{p‚ of the additive sheaf I. Clearly, each φ‚ and hence

lim
ÐÝÝ
n

φn : lim
ÐÝÝ
n

p1` Iq{pn ÝÝÝÝÑ lim
ÐÝÝ
n

p1` IX q{pn “ lim
ÐÝÝ
n

lim
ÐÝÝ
m

p1` I{pmq{pn

is injective. For surjectivity it suffices to show that for each pair of integers n,m there is an
N ě n such that

p1` Iq{pN ÝÑ p1` I{pmq{pn

surjects. To do this it is enough to exhibit a constant c such that for all N ě c one has

p1` IqpN Ă 1` pN´cI.

Recall that for some s one has Is Ă ppq. Let f P I and consider p1`fqpN “ 1`
řpN

k“1

`

pN

k

˘

fk.
Since ordp

`

pN

k

˘

ą N ´ i for k ă pi and fk P ppqt
k
s u one may choose c “ maxi

´

i´
Y

pi

s

]¯

.

Remark 3.20. The diagram below summarizes the comparison between RΓpX ,OX q and
xRΓpX , 1` Iq made in the proof. Also note that the p-adic completeness of the complexes in
Dpp1q is essential as otherwise there would be no way to relate RΓpX , 1`IX q to RΓpX , 1`Iq.

RΓpX ,OX q

“

xRΓpX , 1` Iq

lim
ÐÝÝ

RΓpφ‚q »

��

RΓpX ,OX q

ś

p|pNppp
p
a´1q

RΓpX , IX q

detZp
yRΓpX ,IX q

detZp
yRΓpX ,IrX q

Ă

xRΓpX , 1` IX q

detZp
yRΓpX ,1`IX q

detZp
yRΓpX ,1`IrX q

RΓpX , IrX q

Ă

»

log
// xRΓpX , 1` IrX q.

Ă
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Remark 3.21. The presented proof does not use dimX “ 2 at any point. So – when recalling
the more general definition of the correction factor in [8] – the above proof shows CpX , 1q “ 1

for proper regular arithmetic schemes X of any dimension.

Remark 3.22. Since we already know CpS, 1q “ CpS, 0q “ 1 the above shows iCpX , nq “ 1

for each i “ 0, 1, 2. One has 1ΛppX , 1q “
ś

p|ppNpqp
p
a which cancels with p

1
χpXFp ,O,1q “

ś

p|ppNpq´p
p
a .

Remark 3.23. We keep the notation of the proof and provide a more geometric version of
it for X with good reduction. In this case Dpp1q decomposes entirely into motivic degree
components and it suffices to understand its h1-part. Write J “ JacX {Zp for the Jacobian
variety of X . J is a projective abelian variety of relative dimension g over OZp .

Let J ãÑ PNZp be defined in terms of homogeneous equations in variables T0, . . . , TN . Let
O “ SpecOZp ãÑ J be its unit section. Choose local coordinates X1, . . . , Xg of J at O,
i.e. X1, . . . , Xg is a set of generators of the maximal ideal m of the ring of regular functions
OO :“ pOJ qO at O. Since Z is smooth its Jacobian variety J is obtained from reducing J
modulo p, i.e. J “ JFp . Write Ĵ and Ĵ for the formal groups of J , J with respect to their
local coordinates tXju1ďjďg and tXju1ďjďg. The motivic degree-1-part of the H1-groups of
the long exact sequence belonging to Dpp1q is given by

0 ÝÑ H1pX ,OX q bQp
exp
ÝÑ {J pOq bQp ÝÑ

{JpOred
Fp q bQp ÝÑ 0. (3.39)

Since H1pX ,OX q – H0pX , ωX q
˚ where ωX denotes the canonical bundle of X the choice of

tXju1ďjďg corresponds to a choice of an integral basis of H1pX ,OX q bQp “ H1pXQp ,OXQp q

and hence lets us identify its integral structure with pGg
apOZpq.

Let p be the Jacobson radical of Ored
Fp , i.e. O

red
Fp {p “

À

p|p kppq. We may assume O “ r1 :

0 : ¨ ¨ ¨ : 0s, i.e. Ti P m for all 0 ă i ď N . Then the Ti may be interpreted as power series
Ti “ T̂ipX1, . . . , Xgq P yOO “ lim

ÐÝÝ
OO{m‚ in the variables X1, . . . , Xg. This gives for any

exponent e ě 1 a morphism of abelian groups

ι : Ĵ ppeq ÝÑ {J ppeq, pxjq1ďjďg ÞÑ T̂ipx1, . . . , xgq.

Formal Group Theory provides a logarithm map log : Ĵ ÝÑ pGg
a that restricts for sufficiently

large r ą 0 to an isomorphism of abelian groups

log : Ĵ pprq –
ÝÑ pGg

app
rq “

à

1ďjďg

pr.

The exponential map in (3.39) is the base change of the inverse of the above logarithm to Qp.
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Therefore, the (non-exact) restriction of p3.39q to integral structures fits into the diagram

0 // pGg
apOq

exp
// {J pOZpq

// {JpOred
Fp q

// 0

pGg
appq

Ă

Ĵ ppqlog
oo

ι

OO

pGg
apprq

Ă

oo – // Ĵ pprq

Ă

Since, moreover, pGg
appkq

M

pGg
appk`1q – Ĵ ppkq

M

Ĵ ppk`1q for all k ě 1, the trivialization
factor associated to (3.39) does not depend on r and agrees with the trivialization factor of

0 ÝÑ Ĵ ppq ι
ÝÑ {J pOZpq ÝÑ

{JpOred
Fp q ÝÑ 0 (3.40)

up to a factor of #pGg
apOq{pGg

appq “ p
ś

p|pNpqg – which equals
ś

p|ppNpqp
p
a since we assume

Z to be smooth. So, it suffices to show that (3.40) is exact.

First, let t “ rt0 : t1 : ¨ ¨ ¨ : tN s P {J pOZpq be an integral point that is congruent to O modulo
p. The Xj “ XjpT0 : ¨ ¨ ¨ : Tnq are rational functions in the Ti that vanish at O. Therefore we
have xj :“ Xjptq P p. We then have ιpxjqj “ t proving exactness at the middle component.
Let now Zn “ X ˆ SpecZ{pn. By the Theorem on Formal Functions the categories of line
bundles on X and X are equivalent. So, one has J pOZpq “ Pic0X “ lim

ÐÝÝ
Pic0Zn. Therefore

it suffices to show that each Pic0Zn surjects onto J pOFpq “ Pic0Z. This in turn follows from
the long exact sequence associated to

1 ÝÑ 1` pOZn ÝÑ GZn
m ÝÑ GZ

m ÝÑ 1

since H2pZ, 1` pOZnq “ 0 because Z is one-dimensional. Note that exactness of (3.40) in
the special case of an elliptic surface is precisely [32] Ch. VII, Prop. 2.1 & 2.2.

3.6 The Functional Equation

The correction factor for n ě 2. For higher twists n ě 2 the correction factor CpX , nq
may be computed using the conjectural functional equation FE(X ).

Theorem 3.24. Assume conjectures FE(X ) and TC(X ,n) hold. Then for n ě 2 one has

1CpX , nq “ ˘
ˆ

Γ˚p2´ nq

Γ˚pnq

˙mg

“ ppn´ 1q! ¨ pn´ 2q!q´mg . (3.41)

Similarly, when assuming TC(S,n) one has for n ě 1

CpS, nq “ pn´ 1q!´m
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and consequently
CpX , nq “ ppn´ 1q! ¨ pn´ 2q!qmpg´1q .

Proof. Let n ě 2. Corollary 2.35 unfolds to

1ApX q
2´n

2
p
L˚8pH

1pXq, 2´nq 1Λ8pX , 2´nq “ ˘ 1ApX q
n
2
p
L˚8pH

1pXq, nq 1Λ8pX , nq1CpX , nq.

By virtue of Theorem 3.13 and Lemma 2.34 this simplifies to

1CpX , nq “ ˘ 1ApX q1´n ¨
p
L˚8pH

1pXq, 2´ nq
p
L˚8pH

1pXq, nq
¨

1Λ8pX , 2´ nq
1Λ8pX , nq

“ ˘
1ApX q1´n ¨

ˆ

p2πq2pn´1qΓ
˚p2´ nq

Γ˚pnq

˙mg
˜

p2πiq2mgpn´1q

1ApX qn´1

¸´1

“ ˘

ˆ

Γ˚p2´ nq

Γ˚pnq

˙mg

.

Similarly, for n ě 1 we obtain from the well-known functional equation FE(S)

CpS, nq “ ˘ApSq
1
2
´n ¨

Γ˚Rp1´ nq
rΓ˚Cp1´ nq

s

Γ˚Rpnq
rΓ˚Cpnq

s
¨

Λ8pS, 1´ nq

Λ8pS, nq

“ ˘p#DF q
1
2
´n

˜

πn´
1
2

`

1
2

˘´εn Γ˚p1´n
2 q

Γ˚pn2 q

¸r
ˆ

p2πq2n´1 Γ˚p1´nq

Γ˚pnq

˙s 1

2p´1qn´1rp2πqmn´rεn´sp#DF q
1
2
´n

“ ˘2´pn´
1
2qr2εnr

˜

Γ˚p1´n
2 q

Γ˚pn2 q

¸r
pn´ 1q!´2s

2p´1qn´1rp2πq
m
2
´rεn´s

“ ˘2p´n`
1
2
`εnqrp2πq´

p´1qn

2
r2p´1qnr

˜

Γ˚p1´n
2 q

Γ˚pn2 q

¸r
1

pn´ 1q!2s

“ ˘2p1´nqr
ˆ

2n´1

pn´ 1q!
π
p´1qn

2

˙r
1

pn´ 1q!2s

“ pn´ 1q!´m.

Note that the factor p1{2q´εn arises from the relation between leading Taylor coefficients
Γ˚Rpkq “ p1{2q

ords“kΓRpsq π´k{2Γ˚ pk{2q . (3.32) concludes the proof.

In particular, CpS, nq “ pn´ 1q!´m also holds for n ě 1 when assuming TC(S,n) instead of
the conjecture CEPpQppnqq from p-adic Hodge Theory.

A simplified version of FE(X ) for integers n “ s. Flach and Morin provide a reformu-
lation of FE(X ) for integer arguments in terms of a newly defined quantity x8pX , nq P Rą0,
satisfying

x8pX , nq2 “
Λ8pX , 2´ nq

Λ8pX , nq
. (3.42)
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The definition of x8pX , nq2 will not incorporate the full fundamental line, mirroring the fact
that the quotient on the right hand side is easier to evaluate than each term separately. We
will review it here and use it to compute x8pX , nq independently of Theorem 3.13. Set

Ξ8pX {Z, nq :“ detZRΓW pX8,Zpnqq b det´1
Z RΓddRpX {Zq{Fn b

det´1
Z RΓW pX8,Zp2´ nqq b detZRΓddRpX {Zq{F 2´n.

(3.43)

This definition is made to have an isomorphism

φ : ∆pX {Z, nq b Ξ8pX {Z, nq
–
ÝÑ ∆pX {Z, 2´ nq.

Observe that the distinguished triangle

RΓdRpX8{Rq{Fnr´1s ÝÑ RΓDpX {R,Rpnqq ÝÑ RΓW pX8,ZpnqqR ÝÑ (3.44)

together with the duality (2.23) for Deligne cohomology gives a trivialization

Ξ8pX {Z, nqR » detRRΓDpX {R,Rpnqq b det´1
R RΓDpX {R,Rp2´ nqq

» detRRHompRΓDpX {R,Rp2´nqq,Rr´3sq b det´1
R RΓDpX {R,Rp2´nqq

» detRRΓDpX {R,Rp2´nqq b det´1
R RΓDpX {R,Rp2´nqq

» R.

(3.45)

We denote it by ξ8pX , nq : R –
ÝÑ Ξ8pX {Z, nqR and define x2

8pX , nq P Rą0 via

ξ8pX , nqpZq “ x2
8pX , nq ¨ Ξ8pX {Z, nq

as an equality of lattices in Ξ8pX {Z, nqR. Clearly x8pX , 2´nq “ x8pX , nq´1. One has

Proposition 3.25. (cf. [8] Prop. 5.28, Cor. 5.30) The diagram

∆pX {Z, nq b Ξ8pX {Z, nq b R φbR
// ∆pX {Z, 2´ nq b R

Rb R

λ8pX ,nqb ξ8pX ,nq
OO

R

λ8pX ,2´nq
OO

commutes. Therefore – when assuming TC(X ,n) for all integers n – the functional equation
FE(X ) holds for all integers s “ n if and only if for all n

ApX q
n
2 ¨ ζ˚pX8, nq ¨ CpX , nq

x8pX , nq
“ ˘

ApX q
2´n

2 ¨ ζ˚pX8, 2´ nq ¨ CpX , 2´ nq
x8pX , 2´ nq

. (3.46)

Motivic decomposition of Ξ8pX {Z, nq. By the work of last chapter all determinants in
(3.43) admit motivic decompositions. So, we obtain further decompositions

Ξ8pX {Z, nq “ Ξ8pS{Z, nq b
1
Ξ8pX {Z, nq´1 b Ξ8pS{Z, n´ 1q

and
x8pX , nq “ x8pS, nq ¨

1x8pX , nq´1 ¨ x8pS, n´ 1q.
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Proposition 3.26. Let n be any integer. One has

x2
8pS, nq “ 2p´1qnrp2πqrεn`s´mnp#DF q

n´ 1
2 .

Moreover, when assuming the technical condition RP(X ) (or the formula (2.39)), one has

1x2
8pX , nq “

1ApX qn´1

p2πq2mgpn´1q

and consequently
x2
8pX , nq “

´

p2πq2mpg´1qApX q
¯n´1

.

Proof. It suffices to consider n ě 1 since x8pS, 1 ´ nq “ x8pS, nq
´1 and x8pX , 2 ´ nq “

x8pX , nq´1. The second quasi-isomorphism of (3.45) is due to Poincaré Duality which holds
integrally; the third and the fourth follow directly from the determinant formalism. Therefore
the trivialization factors x2

8pX , nq and x2
8pS, nq arise fully from a comparison of the integral

structures of the complexes in (3.44) (and its analogue for S). The motivic degree 1 part of
its associated long exact sequence is

0 ÝÑ H1,n
W,8pX qR ÝÑ H1,n

dR pX qR ÝÑ H2,n
D pX q ÝÑ 0,

which is exact integrally with respect to Bn. Consequently, for n ě 2,

1x2
8pX , nq “

1t
pnq
ddRpX q ¨ detMBnddR,Bnpidq

“
1

p2πq2mgpn´1q
¨

1t
pnq
ddRpX q ¨ detMBnddR,BdRpidq by Lemma 3.4

“

1ApX qn´1

p2πq2mgpn´1q
by (3.13).

The 2-torsion of RΓW pX8,Zpnqq does not contribute due to Corollary A.9.

For S we begin noting that by Corollary A.16(i) one has for all n

χpRΓW pS8,Zpnqqq “
ź

iPZ

´

#TorH i,n
W,8pSq

¯p´1qi

“ 2p´1qn n`εn
2

r.

The long exact sequence associated to the analogue of (3.44) for S becomes

0 ÝÑ H0,n
W,8pSqR ÝÑ H0,n

dR pSqR ÝÑ H1,n
D pSq ÝÑ 0.

The implied integral structures are obvious. The outer cohomology groups contribute factors
of p2πiq´npεnr`sq and p2πiq´pn´1qpεnr`sq respectively to x2

8pS, nq. The relative determinant
between the lattices H0,n

ddRpS{Zq and H0pS,OF q “ OF equals ApSqn´1 “ p#DF q
n´1. A

remaining factor of
?

#DF results from the comparison of OF with the integral lattice of
the Minkowski space FR. Therefore one obtains

x8pS, nq
2 “

2p´1q1´n
1´n`ε1´n

2
r

2p´1qn n`εn
2

r
p2πiq´npεnr`sq´pn´1qpεnr`sqp#DF q

n´1
a

#DF

“ 2p´1qnrp2πqrεn`s´mnp#DF q
n´ 1

2
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as claimed. Finally, we combine this to

x2
8pX , nq “

x8pS, nqx8pS, n´ 1q
1x8pX , nq

“

ˆ

|DF |

p2πqm

˙2pn´1q

¨

˜

p2πq2mgpn´1q

1ApX qn´1

¸

“

´

p2πq2mpg´1qApX q
¯n´1

.

In particular, (3.42) holds for every motivic degree component separately. So, we can rederive
the formula for the correction factor (3.41) from (3.46).

3.7 Summary of special value results

We may now combine Theorem 3.13 and Theorem 3.12 with the results on the correction
factor Theorem 3.19 and Theorem 3.24 to obtain closed formulas for the leading Taylor
coefficients of ζpX , sq. These are presented in the Theorem below.

Moreover, when combining the second equality in Theorem 3.13(ii) with Lemma 2.2(ii) one
obtains

L˚pH1pXq, 1q “
1Λ8pX , 1q1CpX , 1q

Π˚pX , 1q
“

#XpX{F qΩpX qRpXq
p#TorPic0Xq2

ź

p

cppXq,

which is precisely the leading Taylor coefficient part of the Birch and Swinnerton-Dyer
conjecture for the abelian variety Pic0X (cf. [35] equ. (1.5)). We may thus summarize the
special value results of this chapter as follows.

Theorem 3.27. Let the notation be as per this and the preceding chapter. We make the
standard assumptions that L(X ,n) and B(X ,n) hold for all integers n. Suppose π : X Ñ S

has a section s : S Ñ X satisfying FPB(s,n) for all n ě 2. Then

(i) VO(X ,n) is equivalent to

ords“nζpX , sq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

mp1´ gq for n ă 0

mp1´ gq ´ 1 for n “ 0

r ` s´ 1´ rk PicX for n “ 1

´1 for n “ 2

0 for n ą 2

, (3.47)

or to

ords“nζpX , sq “

$

’

’

&

’

’

%

´1´ rk PicX for n “ 1

´1 for |n´ 1| “ 1

0 for |n´ 1| ą 1

. (3.48)
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(ii) TC(X ,1) is equivalent to

ζ˚pX , 1q “ 2rp2πqs

p#µF q2
?

#DF
¨
p#TorPic0X q2

#XpX{F q ¨ ΩpX q
¨
RpSq2

RpX q
.

For n ď 0, TC(X ,n) is equivalent to

ζ˚pX , nq “ 2pr´lpX qqεn
#T 2,2´n

X ¨#T 4,2´n

X
#T 1,2´n

X ¨#T 3,2´n

X

¨
R2´npSqR1´npSq

R2´npX q
.

We now suppose that the technical condition RP(X ) (or the formula (2.39)) holds.
When further assuming FE(X ), the pair of conjectures TC(X ,n) and TC(X ,2´ n)
implies

CpX , nq “

#

1 for n ď 1

ppn´ 1q! ¨ pn´ 2q!qmpg´1q for n ě 2
. (3.49)

When assuming FE(X ) and (3.49) then, for n ě 2, TC(X ,n) is equivalent to

ζ˚pX , nq “ 2pr´lpX qqεn
#T 2,n

X #T 4,n

X
#T 1,n

X #T 3,n

X

ˆ

pn´ 1q!pn´ 2q!

p2πq2pn´1q

˙mpg´1q

ApX q1´nR
npSqRn´1pSq

RnpX q
.

(iii) VO(X ,1) is equivalent to the vanishing order part and TC(X ,1) is equivalent to the
leading Taylor coefficient part of the Birch and Swinnerton-Dyer conjecture for the
Jacobian of the generic fiber X.
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Appendix A

Computational Material

A.1 The motivic cycle complexes Zpnq

In this section we will review the construction of Bloch’s motivic cycle complexes Zpnq “
ZpnqX for arithmetic schemes X .

Simplicial structures. The standard co-simplex ∆ is the category of finite ordinal numbers
rns “ t0, . . . , nu with order preserving maps as morphisms. A simplicial object A of a category
C or a C-simplex is a functor A : ∆op Ñ C. We write An :“ Aprnsq and think of A as the
diagram

¨ ¨ ¨A3
////
//
// A2

ttyy}}
////// A1

ww}}
//// A0.

yy

Simplicial objects are relevant since they may be viewed as generalizations of chain complexes.
Indeed, in abelian categories these two notions are equivalent (cf. [25] Thm. 2.7).

Theorem A.1. (Dold-Kan-Correspondence) Let A be an abelian category and write SimppAq
for the category of A-simplices and Cě0pAq for the category of chain complexes of A supported
in non-negative degrees. There is an equivalence of categories

DK : SimppAq ÝÑ Cě0pAq, A “ pA‚, d
‚
‚q ÞÑ DKpAq “ pDKpAq‚, B‚q

where DKpAqn “
Şn´1
i“0 Ker din and Bn “ p´1qndnn : DKpAqn Ñ DKpAqn´1.

The standard co-simplex ∆ may be regarded as a full subcategory of the category of arithmetic
schemes by setting

∆n “ Spec
Z rti|i P rnss
ř

iPrns ti ´ 1
“ Spec

Zrt0, . . . , tns
řn
i“0 ti ´ 1

.
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In fact, each B : rms Ñ rns gives rise to a canonical morphism of schemes ∆m Ñ ∆n induced
by tj ÞÑ

ř

iPB´1pjq ti. A face of ∆n is a subvariety defined by a set of equations of the kind
ti1 “ ¨ ¨ ¨ “ tis “ 0.

Arithmetic cycles. Let X be an arithmetic scheme of pure (Krull) dimension d.

Proposition/Definition A.2.

(i) For any arithmetic scheme U and any integers i, n ě 0 let ∆i
U “ U ˆZ ∆i. U‚ attains

a cosimplicial structure from ∆‚. Next, let ZnpU , iq denote the abelian group freely
generated by all n-cycles of ∆i

U , i.e. by all irreducible subschemes of ∆i
U of codimension

n that intersect all faces of ∆i properly.

The proper intersection condition ensures that the inverse image of each map B : ∆i
U Ñ

∆j
U gives a well-defined map B´1 : ZnpU , jq Ñ ZnpU , iq between cycle groups. We

denote the corresponding simplex of abelian groups by ZnpU , ‚q.

(ii) Let n ě 0. The presheaf U ÞÑ ZnpU , iq of abelian groups on Xét is already sheaf. We
denote it ZnX p´, iq, or just Znp´, iq if X is clear from context. We write ZnX p´, ‚q
for the associated simplex of abelian sheaves. We define Bloch’s cycle complex Zpnq “
ZpnqX to be the chain complex of abelian sheaves on the étale site of X that arises
from the Dold-Kan correspondence applied to the simplex ZnX p´, ‚q after reindexing
via ‚ Ø 2n´ ‚. More concisely,

ZpnqX :“ DK
`

ZnX p´, 2n´ ‚q
˘

.

ZpnqX is cohomologically concentrated in degrees ď n ` d. If d ą n it is even
concentrated in degrees ď 2n.

(iii) For n ă 0 one defines Zpnq :“
À

p jp,!pµ
bn
p8 qr´1s where jp : X r1{ps ÑX denotes the

canonical open embedding.

(iv) For any n and m ą 0 one defines Z{mpnq :“ Zpnq{m :“ Zpnq bL Z{m, i.e. Z{mpnq is
the mapping cone of the complex Zpnq m

ÝÑ Zpnq.

Remark A.3. The indexing in the definition of Zpnq agrees with Bloch’s use of Zpnq as well
as with the use in [8]. So, we will frequently call Zpnq Bloch’s cycle complexes. Geisser [12]
and Levine [18] use different indexing to obtain a cycle complex – here denoted Z̃pnq – that
relates to Bloch’s complex via Z̃pnqX “ Zpd´ nqX r2ds.

Conjecture A.4. Let n ě 0.

(i) (Beilinson-Soulé) ZpnqX is cohomologically concentrated in non-negative degrees.
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(ii) If X is regular then ZpnqX is cohomologically concentrated in degrees ď n.

Geisser has shown Conjecture A.4(ii) for smooth arithmetic schemes X (cf. [11] Cor. 4.2).
Moreover, if n “ 0, 1, it is known for any scheme X as it is clear from

Proposition A.5.

(i) One has Zp0q » Zr0s and Zp1q » Gmr´1s.

(ii) Let X Ñ S be regular and p invertible on S. Then, if Conjecture A.4(ii) holds true
one has Z{prpnq » µbnpr .

Even without knowing the Beilinson-Soulé conjecture one may define the motivic cohomology
complex RΓpX ,Zpnqq using K-injective resolutions of Zpnq (as defined in [33]).

A.2 GR-equivariant cohomology

Write Zpnq for the GR-module p2πiqnZ. For any GR-space X let Γ˚X denote the constant
sheaf functor for GR-equivariant sheaves on X. In other words, Γ˚X is given by the adjunction
Γ˚X $ ΓpX,´q. We write ZpnqX “ Γ˚XZpnq and omit the superscript if X is clear from
context. Also, write

εn “

#

0 if n even
1 if n odd

εn “ 1´ εn, εi,n “ εi´n“

#

0 if i ” n mod 2

1 if i ı n mod 2
εi,n “ 1´ εi,n.

For any infinite place v of F write Xv “ XF ˆF,v SpecC. Real embeddings and pairs of
complex conjugate embeddings of F will be denoted by σ and tτ, τu respectively and we let
Xtτ,τu “ Xτ >Xτ . Finally, let

lpσq :“ # of connected components of XσpRq “ XGR
σ ; and lpX q :“

ÿ

σ

lpσq.

In this section we will establish the following computational

Lemma A.6. One has

(i)

H ipGR,X pCq,Zpnqq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 for i ă 0

Zrεn`s for i “ 0

Zmg ‘ pZ{2qlpX qεn for i “ 1

Zrεn`s ‘ pZ{2qlpX q for i “ 2

pZ{2qlpX q for i ě 3

(ii)
H ipX8, τąnRpπ˚Zpnqq “

#

0 for i ď n` 1

pZ{2qlpX q for i ě n` 2
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(iii) One has H i
W pX8,Zpnqqcotor – Zrεn`s,Zmg,Zrεn`s for i “ 0, 1, 2. Moreover,

H i
W pX8,Zpnqqtor “

$

’

’

&

’

’

%

pZ{2qlpX q for n ě 0 and εn ` 1 ď i ď n` 1

pZ{2qlpX q for n ă 0 and n` 3 ď i ď εn ` 1

0 otherwise

We begin with some preliminary remarks. Fix a real embedding σ of F and write X “ Xσ.
Let π : X Ñ X{GR be the natural projection. Write U “ XzXGR . We have a diagram of
Open-Closed-Decompositions.

XGR i // X

π

��

U
j

oo

π

��

XGR i // X{GR U{GR
j
oo

(A.1)

where, by abuse of notation, we denote the closed and open embedding on both levels by i
and j. One observes directly that the analogues of proper base change

j˚π˚ “ π˚j
˚ and i˚π˚ “ π˚i

˚ “ p´qGRi˚

hold. Moreover, one has the following classical results.

Proposition A.7. (cf. [13] Prop. 3.1) Let a “ apσq and l “ lpσq denote the number of
connected components of U and XGR respectively1. Then

(i) U{GR is connected and X{GR has Euler characteristic 1´ g.

(ii) 0 ď l ď g ` 1

(iii) a “

#

2 if X{GR is orientable
1 otherwise

(iv) If a “ 1 then l ‰ g ` 1. If a “ 2 then l ‰ 0 and l ” g ` 1 mod 2.

Moreover, each pair pa, lq satisfying the constraints (ii)-(iv) arise in the above way from some
real smooth proper curve.

Proof of Lemma A.6.
Computation of RΓpGR,X pCq,Zpnqq. One has the decomposition

RΓpGR,X pCq,Zpnqq “
à

σ

RΓpGR, Xσ,Zpnqq ‘
à

tτ,τu

RΓpGR, Xtτ,τu,Zpnqq

“
à

σ

RΓpGR, Xσ,Zpnqq ‘ p2πiqn
à

tτ,τu

RΓpXtτ,τu{GR,Zq.
(A.2)

1Note that a and l do in fact depend on the real embedding σ as can be seen from the elliptic curves over
Qr
?

5s given by y2
“ x3

˘
?

5x´ 1.
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The last equality follows since GR acts freely onXtτ,τu. SinceXtτ,τu{GR – Xτ the cohomology
of RΓpXtτ,τu{GR,Zq is well-understood. In particular, it has no torsion. We will now analyze
the first summand of (A.2). We fix a real embedding σ and adopt the notations of the
comments preceding the proof.

The diagram

ShAbpGR, Xq
ΓpX,´q

//

π˚

��

ModZrGRs
p´qGR

// AbGrps

ShpX{GRq

ΓpX{GR,´q

22 (A.3)

commutes since F pXqGR “ pπ˚F qpX{GRq for any GR-equivariant sheaf F on X. In particu-
lar,

RΓpGR, X,ZpnqXq » RΓpX{GR, Rπ˚ZpnqXq.

We will compute the right hand side.

Proposition A.7 shows that either X is the disjoint union of two copies of X{GR or π : X Ñ

X{GR is the orientation cover of X{GR. Moreover, since X{GR is either non-orientable or
l ą 0 one has H2pX{GR,Zq “ 0. Also XGR “ pS1q>l.

We analyze the restrictions of Rπ˚Zpnq to the closed and to the open part separately. One
has

i˚π˚Γ
˚
X “ p´q

GRi˚Γ˚X “ p´q
GRΓ˚

XGR “ Hom pΓ˚
XGRZ, Γ˚

XGR´q

“ Γ˚
XGRHomGRpZ,´q “ Γ˚

XGR p´q
GR .

Therefore
i˚Rπ˚ZpnqX “ Rpi˚π˚Γ

˚
XqZpnq “ Γ˚

XGRRΓpGR,Zpnqq.

To compute the Galois cohomology complex we use the standard projective resolution

. . .
1´c
// ZpnqrGRs

1`c
// ZpnqrGRs

1´c
// ZpnqrGRs

deg
// Zpnq 0,

where c P GR denotes complex conjugation. Apply HomZrGRsp´,Zpnqq. Dropping the first
term yields the complex

0 // Z 2εn // Z 2εn // Z 2εn // . . . ,

which is quasi-isomorphic to Zεn ‘
À

kě1 Z{2rεn ´ 2ks. In summary, we obtain

i˚Rπ˚ZpnqX “ Γ˚
XGRZ

εn ‘
à

kě1

Γ˚
XGRZ{2rεn ´ 2ks. (A.4)

The restriction of Rπ˚ZpnqX to the open part needs to be analyzed stalkwise. For x P X
let Gx Ă GR denote its stabilizer and write x “ πpxq P X{GR. One has pRπ˚Zpnqqx »
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RΓpGx,Zpnqxq (cf. [8] Lem. 6.1). Consequently, for x P U we obtain pRπ˚Zpnqqx » Z, proving
that j˚Rπ˚Zpnq » Rπ˚ZpnqU is concentrated in degree 0. Therefore all of τě1Rπ˚Zpnq is
supported on XGR . In view of (A.4) the distinguished truncation triangle for pτď0, τě1q

equals
π˚ZpnqX ÝÑ Rπ˚ZpnqX ÝÑ

à

kě1

i˚Γ
˚

XGRZ{2rεn ´ 2ks ÝÑ .

We apply RΓpX{GR,´q and obtain

RΓpX{GR, π˚Zpnqq ÝÑ RΓpGR, X,Zpnqq ÝÑ
à

kě1

RΓpXGR ,Z{2qrεn ´ 2ks ÝÑ . (A.5)

We make a distinction of cases to evaluate the cohomology of the left-most complex. We will
arrive at

H ipX{GR, π˚ZpnqXq i “ 0 i “ 1 i “ 2

n even
a “ 1 Z Zg

a “ 2 Z Zg

n odd
a “ 1 Zg Z
a “ 2 Zg Z

(A.6)

First, let n be even. Then π˚ZpnqX “ ZX{GR and the first part of table (A.6) is immedi-
ate.

Now suppose n is odd. Computing stalks shows i˚π˚ZpnqX “ 0 and consequently π˚ZpnqX “
j!π˚ZpnqU . Therefore, the connecting morphisms of (A.5) must vanish. If a “ 2 then
j!π˚ZpnqU “ j!ZU{GR . The long exact sequence associated to

0 ÝÑ j!ZU{GR ÝÑ ZX{GR ÝÑ i˚ZX
GR
ÝÑ 0

gives

0 “ H0pX{GR, j!Zq Ñ Z ∆
ÝÑ Zl Ñ H1pX{GR, j!Zq Ñ Zg α

ÝÑ Zl Ñ H2pX{GR, j!Zq Ñ 0.

∆ is the diagonal embedding. H1pXGR ,Zq{Impαq is generated by a copy of S1 in XGR that
divides X into two components since such a loop will be trivial in the fundamental group
of X and hence X{GR. We infer H1pX{GR, j!Zq – Zg and H2pX{GR, j!Zq – Z. This yields
the last row of (A.6).

Let now n be odd and a “ 1. It follows from the classification of compact surfaces with
boundary that X{GR is the l-times punctured connected sum of k “ g`1´ l many projective
planes. The precise value for k follows from the equality of the two expressions for the Euler
characteristic 2´ k ´ l “ 1´ g of X{GR. It is now a standard exercise to compute the Cech
cohomology groups of j!π˚ZpnqU .2 It yields the remaining row of (A.6).

Now, (i) follows from the long exact sequence of cohomology associated to (A.5).
2One may choose 2k ` 2l` 2 “ 2pg ` 1q many simply connected open neighborhoods covering X{GR such
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Computation of RΓpX{GR, τ
ąnRpπ˚Zpnqq. The analogous computation for Tate coho-

mology is simpler since one has on stalks

pRpπ˚Zpnqqx “ RpΓpGx,Zpnqxq “

#

À

kPZ Z{2rεn ´ 2ks if x P XGR

0 if x P U
(A.7)

Consequently j˚Rpπ˚ZpnqX “ 0 proving

Rpπ˚ZpnqX “ i˚i
˚Rpπ˚ZpnqX “

à

kPZ
i˚Γ

˚

XGRZ{2rεn ´ 2ks (A.8)

and

RΓpX{GR, τ
ąnRpπ˚Zpnqq “

à

kPZ, εn´2kă´n

RΓpXGR ,Z{2qrεn ´ 2ks

“
à

kě1

RΓpXGR ,Z{2qr´n´ 2ks.

Part (ii) follows.

Computation of RΓW pX8,Zpnqq. Recall that RΓW pX8,Zpnqq is defined via the distin-
guished triangle

RΓW pX8,Zpnqq ÝÑ RΓpGR,X pCq,Zpnqq ÝÑ RΓpX pRq, τąnRpπ˚Zpnqq ÝÑ .

We decompose it analogously to (A.2) and – together with (A.5) – we get for n ě 0

RΓpX{GR, π˚Zpnqq ÝÑ RΓW pX{GR,Zpnqq ÝÑ
n`εn

2
à

k“1

RΓpXGR ,Z{2qrεn ´ 2ks ÝÑ

The long exact sequence on cohomology together with (A.6) proves the first case of (iii). For
n ă 0 we similarly get the distinguished triangle

´
n`εn

2
à

k“1

RΓpXGR ,Z{2qr´n´ 2k ´ 1s ÝÑ RΓW pX{GR,Zpnqq ÝÑ RΓpX{GR, π˚Zpnqq ÝÑ

The remaining cases of (iii) follow. l

The analogous results for SpCq are much simpler to prove. We write iR : SpRq ãÑ S8 and
iC : S8zSpRq ãÑ S8 for the closed immersions of the collection of all real points and pairs of
complex conjugate points respectively.

Lemma A.8. One has

that no four of them have common non-trivial intersection and such that each boundary of X{GR intersects
precisely two open neighborhoods. The resulting Cech complex has three terms and one verifies by direct
computation that each of its its cohomology groups is torsion-free. We leave further details to the reader.
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(i)

H ipGR, SpCq,Zpnqq “

$

’

’

&

’

’

%

0 for i ă 0

Zrεn`s for i “ 0

pZ{2qrεi,n for i ě 1

(ii)
H ipS8, τ

ąnRpπ˚Zpnqq “

#

0 for i ď n` 1

pZ{2qrεi,n for i ě n` 2

(iii) One has H i
W pS8,Zpnqqcotor – Zrεn`s, 0 for i “ 0, i ‰ 0. Moreover,

H i
W pS8,Zpnqqtor “

$

’

’

&

’

’

%

pZ{2qr for n ě 0 and εn ` 1 ď i ă n` 1, i ” n mod 2

pZ{2qr for n ă 0 and n` 3 ď i ă εn ` 1, i ı n mod 2

0 otherwise

Proof. We follow the proof of Lemma A.6. As Sσ “ SF ˆ
F,σ

SpecC “ SpecC is just a point

the analogue of (A.1) collapses to the identity of a one-point space. When combining the
analogues of (A.2) and (A.4) we immediately arrive at

Rπ˚ZpnqSpCq “ piCq˚Γ˚S8zSpRqZ ‘ piRq˚

˜

Γ˚SpRqZ
εn ‘ Γ˚SpRq

à

kě1

Z{2rεn ´ 2ks

¸

. (A.9)

Applying RΓpS8,´q yields

RΓpGR, SpCq,Zpnqq “ Zrεn`s ‘
à

kě1

RΓpSpRq,Z{2qrεn ´ 2ks.

Part (i) follows. Next, mimicking the computations (A.7) and (A.8) yields

Rpπ˚ZpnqSpCq » piRq˚Γ˚SpRq
à

kPZ
Z{2rεn ´ 2ks. (A.10)

(ii) follows after truncating and applying RΓpS8,´q.

For (iii) consider the distinguished triangle defining RΓW pS8,Zpnqq. For n ě 0 one gets

RΓW pSi,Zpnqq » Zrεn`s ‘
n`εn

2
à

k“1

RΓpSpRq,Z{2qrεn ´ 2ks.

Similarly, for n ă 0 one has

´
n`εn

2
à

k“1

RΓpSpRq,Z{2qr´n´2k´1s ÝÑ RΓW pS8,Zpnqq ÝÑ Zrεn`s ÝÑ

proving the final part of the claim.
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Corollary A.9. Write 1lpX q “ lpX q ´ r. One has 1H1
W pS8,Zpnqqcotor – Zmg, 0 for i “

1, i ‰ 1. Moreover,

1H i
W pX8,Zpnqqtor “

$

’

’

&

’

’

%

pZ{2q1lpX q for n ě 0 and εn ` 1 ď i ď n` 1

pZ{2q1lpX q for n ă 0 and n` 3 ď i ď εn ` 1

0 otherwise

In particular,

χ
` p
R1ΓW pX8,Zpnqq

˘

“
ź

iPZ

´

#Tor 1H i,n
W,8pX q

¯p´1qi

“ 1.

Corollary A.10. For all integers n one has

χpRΓW pS8,Zpnqqq “
ź

iPZ

´

#TorH i,n
W,8pSq

¯p´1qi

“ 2p´1qn n`εn
2

r.

A.3 Comparison between motivic and completed motivic co-

homology

Recall the triangle (2.26). Building on the work done in the last section we will show that the
term τąnRpπ˚ZpnqX pCq controlling the discrepancy between motivic and completed motivic
cohomology allows a decomposition into motivic degrees analogous to Theorem 2.11.

Lemma A.11. Let π8 : X8 Ñ S8 be the structure map of X8. Suppose π8 has a section
s8 : S8 Ñ X8, or, equivalently, lpσq ą 0 for every real place σ. Then – in the derived
category of abelian sheaves on S8 – the complexes Rpπ˚ZpnqSpCq and Rpπ˚ZpnqSpCqr´1s split
off as direct summands of Rπ8,˚Rpπ˚ZpnqX pCq.3 When writing p

R1π8,˚Rpπ˚ZpnqX pCq for the
remaining summand we arrive at the canonical decomposition

Rπ8,˚Rpπ˚ZpnqX pCq » Rpπ˚ZpnqSpCq ‘
p
R1π8,˚Rpπ˚ZpnqX pCqr´1s ‘ Rpπ˚Zpn´1qSpCqr´2s

or, equivalently,

Rπ8,˚Rpπ˚Zpnq » piRq˚
à

kPZ
Z{2SpRqrεn´2ks ‘

p
R1π8,˚Rpπ˚Zpnqr´1s ‘ piRq˚

à

kPZ
Z{2SpRqrεn´2k´1s

Proof. The equivalence of the two decompositions is (A.10); we will prove the latter. We adopt
the notations of the proof of Lemma A.6. We will also need the restrictions πR “ π8|X pRq

and sR “ s8|SpRq. By virtue of (A.8) one has

Rπ8,˚Rpπ˚Zpnq “ Rπ8,˚
à

kPZ
i˚Γ

˚

XGRZ{2 “
à

kPZ
Rπ8,˚i˚Z{2SpRq “

à

kPZ
piRq˚RπR,˚Z{2SpRq.

3Beware the two different roles of the letter π. π8 is derived from the structure map X pCq Ñ SpCq
while pπ˚ is the Tate modification of the morphism of topoi ShpGR,X pCqq Ñ ShpX8q induced by the natural
projection X pCq Ñ X8.
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So, it suffices to show that Z{2SpRq and Z{2SpRqr´1s split off as direct summands of
RπR,˚Z{2SpRq. The category of constant sheaves on the finite point space SpRq is equivalent
to the category of abelian groups via the global sections functor. Therefore we have to prove
a decomposition of the form

RΓpX pRq,Z{2q » RΓpSpRq,Z{2q ‘ p
R1ΓpX pRq,Z{2q ‘ RΓpSpRq,Z{2qr´1s.

Using the derived functor formalism as in the proof of Theorem 2.8 the identity πRsR “ id
shows immediately that RΓpSpRq,Z{2q splits off as direct summand of RΓpX pRq,Z{2q (see
also Remark 2.9). Moreover, Poincaré duality gives

RΓpX pRq,Z{2q_ » RΓpX pRq,Z{2qr1s and RΓpSpRq,Z{2q_ » RΓpSpRq,Z{2q.

Therefore RΓpSpRq,Z{2qr´1s » RΓpSpRq,Z{2qr1s_ splits off of RΓpX pRq,Z{2q as well.
RΓpSpRq,Z{2q and RΓpSpRq,Z{2qr´1s must in fact be distinct direct summands for degree
reasons.

Evidently the same proof holds for any truncation of Rpπ˚ZpnqX pCq. Therefore, the decompo-
sition of Theorem 2.11 extends to completed motivic cohomology.

Corollary A.12. Suppose π : X Ñ S has a section s : S Ñ X satisfying FPB(s,n) for all
integers n ě 2. Then the complexes ZpnqS and Zpn´ 1qSr´2s split off as direct summands
of Rπ˚ZpnqX in the derived category of sheaves on the Artin-Verdier étale site X “ X ét of
X . When writing p

R1π˚ZpnqX r´1s for the remaining summand we arrive at the canonical
decomposition

Rπ˚ZpnqX » ZpnqS ‘ p
R1π˚ZpnqX r´1s ‘ Zpn´ 1qSr´2s. (A.11)

Remark A.13. The decomposition (2.14) of Theorem 2.11 cannot generally hold without
assuming the existence of a section. Indeed, if the generic fiber X “ XF does not have an
F -rational point then lpX q “ 0 and consequently H i,npX q “ H i,npX q for all i, n. However,
we will see below that H i,npX q “ H i,npSq “ 0 for i ě 7, n ě 1 while at the same time
H i,npSq “ pZ{2qrεi,n for i ě 5, n ě 1.

If a section exists, then lpX q can be understood in terms of the Jacobian J “ JacXF of the
generic fiber. In fact, one has

Proposition A.14. Let X be a smooth proper real algebraic curve. Write J “ JacXpCq
and let l be the number of connected components of XpRq. If l ą 0 then

H1pGR, Jq – pZ{2ql´1.

Proof. Combine [13] Prop. 1.1, Prop. 1.3, and Prop. 3.2(2).
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Computation of torsion parts. We will conclude with a summary of all information
on torsion for motivic and completed motivic cohomology. Recall the notations T i,n? “

TorH i,np?qcodiv for ? “ S, S,X ,X and 1T i,n? “ Tor 1H i,np?qcodiv for ? “ X ,X .

Proposition A.15. Suppose π : X Ñ S has a section s : S Ñ X satisfying FPB(s,n) for
all integers n ě 2. Write 1lpX q “ lpX q ´ r. Then T i,nS , T i,n

S
and 1T i,nX , 1T i,nX are given as in

the tables below.

T i,nS
i ď 0 i “ 1 i “ 2 i “ 3 4 ď i

T i,n
S

n “ 0
0 0 „ ClF „ µF pZ{2qrεi

0 0 ClF µF 0

n “ 1
0 µF ClF BrO pZ{2qrεi

0 µF ClF 0 0

T i,nS
i ď 0 i “ 1 i “ 2 3 ď i ď n` 1 n` 2 ď i

T i,n
S

n ą 1
0 T 1,n

S
T 2,n

S
pZ{2qrεi,n pZ{2qrεi,n

0 T 1,n

S
T 2,n

S
pZ{2qrεi,n 0

T i,nS
i ď n` 2 n`3 ď i ď 1 i “ 2 i “ 3 4 ď i

T i,n
S

n ă 0
0 0 „ T 2,1´n

S
„ T 1,1´n

S
pZ{2qrεi,n

0 pZ{2qrεi,n T 2,1´n

S
T 1,1´n

S
0

1T i,nX
i ď 1 i “ 2 i “ 3 i “ 4 i ě 5

1T i,nX

n “ 0
0 „

1T 4,2´n

X „
1T 3,2´n

X „
1T 2,2´n

X pZ{2q1lpX q

0 1T 4,2´n

X
1T 3,2´n

X
1T 2,2´n

X 0

n “ 1
0 TorPic0X

ClF
BrX
BrO „TorPic0X

ClF
pZ{2q1lpX q

0 TorPic0X
ClF

XpX{F q TorPic0X
ClF

0

n “ 2
0 1T 2,n

X
1T 3,n

X „
1T 4,n

X pZ{2q1lpX q

0 1T 2,n

X
1T 3,n

X
1T 4,n

X 0



97

1T i,nX
i ď 1 i “ 2, 3, 4 5 ď i ď n`1 n` 2 ď i

1T i,nX

n ą 2
0 1T i,nX pZ{2q1lpX q pZ{2q1lpX q

0 1T i,nX pZ{2q1lpX q 0

1T i,nX
i ď n` 2 n`3 ď i ď 1 i “ 2, 3, 4 5 ď i

1T i,nX

n ă 0
0 0 „

1T 6´i,2´n

X pZ{2q1lpX q

0 pZ{2q1lpX q 1T 6´i,2´n

X 0

In particular, RΓpS,Zpnqq and p
R1ΓpX ,Zpnqq are perfect complexes.

Proof. The vanishing of 1T i,nX and 1T i,nS for i ď 1 and i ď 0 respectively has been established
in Proposition 2.20. The torsion groups for n “ 1 and near-central i have already been
computed in in the proof of Proposition 2.17. The remaining entries are easily obtained from
Zp0q » Z, Zp1q » Gmr´1s and Artin-Verdier duality. Throughout, use the triangle (2.26) to
translate between motivic and completed motivic cohomology.

Corollary A.16. One has

(i)

ź

iPZ

`

#TorH i,npSq
˘p´1qi

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2p´1qn n`εn
2

r
#T 2,1´n

S

#T 1,1´n

S

for n ď 0

2p´1qnpn`εn2
´1qr

#T 2,n

S

#T 1,n

S

for n ě 1

(ii)

ź

iPZ

´

#Tor 1H i,npX q
¯p´1qi

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

#XpX{F q

ˆ

#
TorPic0X

ClF

˙2

for n “ 1

2´εn
1lpX q

#1T 2,n

X ¨#1T 4,n

X
#1T 3,n

X

for n ‰ 1

A.4 Supplementary material for derived de Rham cohomol-

ogy

In this section π : X Ñ S will denote any map of schemes.
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Construction of the cotangent complex LX{S. An adjunction T $ U between cate-

gories A,B – which we write as A
T // B
U

oo – gives rise to a simplicial structure pT,Uq‚ on

the endofunctor category EndB as follows. The adjunction data may be thought of as a pair
of natural transformations

α : idA ÝÑ UT and β : TU ÝÑ idB

that satisfy the compatibility relations

pβ ˚ T q ˝ pT ˚ αq “ idT and pU ˚ βq ˝ pα ˚ Uq “ idU .

We define pT,Uqn “ pTUqn`1 and let the (co)boundary maps be given by the natural
transformations

pTUqi ˚ β ˚ pTUqn´i : pTUqn`1 ÝÑ pTUqn, pTUqi´1T ˚ α ˚ UpTUqn´i : pTUqn ÝÑ pTUqn`1.

Repeated application of β gives a canonical map pT,Uq‚ Ñ idB, i.e. a unique compatible
collection of natural transformations pT,Uqn Ñ idB.

Now, fix a scheme X and let ShpXZarq and ShRingspXZarq denote the topoi of sheaves of sets
and rings on the Zariski site XZar of X. We fix O P ShRingspXZarq and let ShO-AlgpXZarq

denote the topos of O-algebras on XZar. We will apply the previous construction to the
adjunction

ShpXZarq
Or´s

// ShO-AlgpXZarq
Ou

oo ,

where the functor Or´s “ SymOOp´q assigns to any sheaf of sets F on XZar the sheaf of
O-algebras OrFs which is the sheafification of the presheaf that assigns to each Zariski-open
U Ă X the OpUq-algebra freely generated by FpUq regarded as a set. Let POp´q denote the
resulting End ShO-AlgpXZarq-simplex.

If X comes with a structure map π : X Ñ S the above construction may be carried out
for O “ π´1OS . Applying the resulting functors to the π´1OS-module OX yields the
Shπ´1OS -AlgpXZarq-simplex PX{S‚ “ Pπ´1OS pOXq. Each P

X{S
i has an algebraic de Rham reso-

lution PX{Si Ñ Ω‚
P
X{S
i {π´1OS

“ Ω‚
P
X{S
i {π´1OS

. So, we obtain a complex of Shπ´1OS -AlgpXZarq-
simplices

Ω‚
P
X{S
‚

“

////
//
// Ω2

P
X{S
2

//////

OO

Ω2

P
X{S
1

////

OO

Ω2

P
X{S
0

OO

////
//
// Ω
P

X{S
2

OO

////// Ω
P

X{S
1

OO

//// Ω
P

X{S
0

OO

////
//
// P

X{S
2

OO

////// P
X{S
1

OO

//// P
X{S
0

OO
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The rows Ωk

P
X{S
‚

of Ω‚
P
X{S
‚

may be regarded as PX{S‚ -modules and we may use the morphism

P
X{S
‚ Ñ OX to define

L̃kX{S :“ Ωk

P
X{S
‚

b
P
X{S
‚

OX

as a simplicial object of ShOX -ModpXZarq.

Write LkX{S “ DKpL̃kX{Sq for the complex of OX -modules associated to L̃kX{S via the Dold-
Kan correspondence. LX{S :“ L1

X{S is the cotangent complex of π : X Ñ S. One has
LkX{S “

Źk LX{S . We write

LΩ‚X{S “

ż

L‚X{S “

ż

DK

˜

Ω‚
P
X{S
‚

b
P
X{S
‚

OX

¸

for the totalization of the double complex arising from Ω‚
P
X{S
‚

b OX after applying the
Dold-Kan correspondence to its rows. Moreover, we define a filtration

Fm :“ FilmLΩ‚X{S :“

ż

LěmX{S “

ż

DK

˜

Ωěm
P
X{S
‚

b
P
X{S
‚

OX

¸

and write LΩďmX{S :“ LΩ‚X{S{F
m :“ LΩ‚X{S{Fil

mLΩ‚X{S as well as grmLΩ‚X{S “ Fm{Fm`1.

The de Rham conductor ApX q. The de Rham or Kato conductor of π1 : X Ñ Z

ApX q :“
ź

iPZ

`

#HipX ,Ω‚X ,torsq
˘p´1qi

P Qˆ

encapsulates the discrepancy between algebraic de Rham and derived de Rham cohomology
(cf. Proposition 2.23(iii)). Since Ω‚X ,tors is concentrated on the non-smooth points of X the
conductor ApX q depends only on the bad fibers of X . In many instances it can be computed
explicitly. We give one example.

Proposition A.17. Let π1 : X Ñ Z have semistable reduction at every prime p. Write
ip : Zp ãÑ X for the closed embedding of the subscheme of singular points Zp of the special
fiber Xp into X . Then

ΩX {Z,tors “ 0 and Ω2
X {Z “

à

p

pipq˚ Z{p.

In particular,
ApX q “

ź

p

p#Zp .

Proof. First, observe that Z “
Ť

p Zp Ă X must be a finite collection of closed points.
Let x be a singular closed point of X and let x ãÑ X be a corresponding geometric point.
Semistability means that

OX ,x “ OshX ,x –
ˆ

Zru, vs
uv ´ p

˙sh

pu,v,pq

,
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i.e. étale locally at x the differentials of X coincide with the differentials of the scheme
X0 “ Spec Zru,vs

uv´p over Z at its singular point O “ pu, v, pq. So, when writing fpu, vq “ uv´ p,
the claim follows from the direct computations

`

ΩX0{Z
˘

O,tors “ ΓpX0,ΩX0{Zqtors “

ˆ

OX ,xdu‘OX ,xdv

df

˙

tors
“ 0

and
´

Ω2
X0{Z

¯

O
“ ΓpX0,Ω

2
X0{Zq “

OX ,x
´

Bf
Bu ,

Bf
Bv

¯ du^ dv – Z{p.

This exercise may be repeated for singularities described by different equations f . A general
formula for ApX q — which involves Swan characters of Galois representations given by the
l-adic étale cohomology of XQ — has been found by Bloch in [3], Prop. 1.1.

A.5 Overview of computed cohomology groups

The following tables summarize the results for the ranks of the cohomology groups associated
to X as computed in Chapter 2 and pair them with the corresponding cohomology groups
for S (see [8] Sec. 5.8 for their derivations). As indicated before, we observe in all cases a
decomposition pattern as it is implied by decompositions of the kind

H i,n
? pX q “ H i,n

? pSq ‘ 1H i,n
? pX q ‘H i´2,n´1

? pSq.

We also provide torsion information for motivic andWeil-étale motivic cohomology groups.

A.5.1 Rank tables

Ranks of Deligne cohomology.

dimRH
i,n
D pSq

i “ 0 i “ 1 i “ 2 i “ 3
dimRH

i,n
D pX q

n ď 0
εnr ` s

εnr ` s mg εnr ` s

n “ 1
r ` s

r ` s r ` s

n ě 2
εnr ` s

εnr ` s mg εnr ` s

(A.12)
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Ranks of H i
W pX8,Zpnqq.

dimRH
i,n
W,8pSq i “ 0 i “ 1 i “ 2

dimRH
i,n
W,8pX q

any n
εnr ` s

εnr ` s mg εnr ` s

(A.13)

Ranks of de Rham cohomology.

dimRH
i,n
dRpSq i “ 0 i “ 1 i “ 2

dimRH
i,n
dRpX q

n “ 1
H‚pFC,CqGR m

H‚pX pCq,OX pCqq
GR m mg

n ě 2
H‚pFC,CqGR m

H‚pX pCq,CqGR m 2mg m

(A.14)

Ranks of compact support cohomology.

dimRH
i,n
c pSq

i “ 1 i “ 2 i “ 3 i “ 4
dimRH

i,n
c pX q

n ă 0
εnr ` s

εnr ` s mg εnr ` s

n “ 0
r ` s´ 1

r ` s´ 1 mg s

n “ 1
1

rkPicX r ` s´ 1

n “ 2
1

(A.15)
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Ranks of Weil-étale cohomology with compact support.

rkH i,n
W,cpSq i “ 1 i “ 2 i “ 3 i “ 4 i “ 5

rkH i,n
W,cpX q

n ă 0
εnr ` s εnr ` s

εnr ` s εnr ` s εnr ` s εnr ` s

n “ 0
r ` s´ 1 r ` s´ 1

r ` s´ 1 mg ` r ` s´ 1 mg ` s s

n “ 1
m´ 1 1

m´ 1 rkPicX `m´ 1 rkPicX`r`s´1 r ` s´ 1

n “ 2
m

m 2mg m´ 1 1

n ą 2
m

m 2mg m

(A.16)

A.5.2 Motivic and Weil-étale motivic cohomology tables

The entries of the following tables are valid up to 2-torsion.
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