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Abstract

We explicate Flach’s and Morin’s special value conjectures in [8] for proper regular arithmetic
surfaces m : X — SpecZ and provide explicit formulas for the conjectural vanishing orders
and leading Taylor coefficients of the associated arithmetic zeta-functions. In particular,
we prove compatibility with the Birch and Swinnerton-Dyer conjecture, which has so far
only been known for projective smooth X. Further, we derive a direct sum decomposition of

Rm.7Z(n) into motivic degree components.
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Chapter 0

Introduction

Background. The Tamagawa Number Conjecture — first proposed by Bloch and Kato
in [4] and then reformulated by Fontaine and Perrin-Riou in [9] — describes the vanishing
order and leading Taylor coefficient (up to sign) L*(M, n) of the L-function L(M, s) associated
to any Chow motive M over a number field at every integer s = n. It vastly generalizes
the Analytic Class Number Formula as well as the Birch and Swinnerton-Dyer Conjecture
which could be derived as corollaries for M = £°(Spec F) for any number field F' and for
M = R (E)(1) for any elliptic curve E (or, more generally, any smooth projective curve) over

F respectively.

Meanwhile Flach and Morin gave conjectural descriptions of the special values of arithmetic
(-functions (27, s) associated to any proper regular arithmetic scheme 2~ — SpecZ in [8|.
They proved that under certain standard assumptions their conjectures are compatible with
the Tamagawa Number Conjecture for projective smooth 27, in the sense that they predict
the same vanishing orders and leading Taylor coefficients for the L-function associated to
the Tate-twisted motive M = A(Zg)(n) of the generic fiber Zg (cf. [8] Thm. 5.26).

Special Value Conjectures for arithmetic schemes. We will present their conjecture
and the constructions necessary for its formulation in more detail. One may also consult
Appendix A.6 for a schematic overview of the involved types of cohomology and their

interconnections. Let d = dim £  and let n be any integer.

e Flach and Morin have constructed perfect complexes RT'.(Z,R(n)) and
RUar (2, R(n)) = RT(2,R(n)) ® RT.(Z,R(n — 1))

in the derived category of real vectorspaces, the former being the mapping cone of the

Beilinson regulator map. Conjecturally, the vanishing orders of L(.2", s) are determined



by the ranks of the resulting compact Arakelov cohomology groups:

orde—n( (X, 8) = > (=1)" - i - dimg HJ", (X, R(n)).
€7

e Further, they assume the validity of the Artin-Verdier duality conjecture, i.e., the

existence of a perfect pairing
H* (27, Z/m(n)) x H***=*(Z,Z/m(d - n)) — Q/Z

for positive integers m, to construct a perfect complex Ry (2, Z(n)) out of the
(completed) motivic cohomology RI'(2°,Z(n)) of Bloch’s cycle complexes Z(n). It
contains all information of both the finitely generated as well as the cofinitely generated
parts of motivic cohomology. They went on to define the compactly supported Weil-étale

cohomology complex RI'w (%2, Z(n)) via the triangle
RTw.o(2",Z(n)) — RUw (2, Z(n)) — RTw (2, Z(n)) — (1)
where the right-most complex is an integral version of Betti cohomology.
e They have shown that the above complexes fit into a distinguished triangle
(RTaar(Z/Z)/FiI")g[-1] — RI‘ar,c(%,fR(n)) — Rlw (2, Z(n))r —  (2)

where RT'4qr(Z /Z) denotes the derived version of the de Rham cohomology of £ .

This motivates the definition of the fundamental line
A(%, n) = determc(%, Z(n)) ® detzRFddR(%/Z>/Fn
and gives rise to its trivialization

Ao(Z,n) : R =5 detgRTaro(2,R(n)) — A(Z,n)k.

e They have defined a correction factor C(2°,n) € Q*/{£1} in terms of determinants
of conjecturally distinguished triangles coming from p-adic Hodge Theory. C'(2",n)
is trivial for n < 0. The leading Taylor coefficients (*(2",n) are now conjectured to

satisfy and hence be determined by

Ao(CH(Z,n)™L-C(Z,n)-Z) = A(Z)Z,n).

Results and Layout. In this thesis we will explicate these conjectures for proper regular
arithmetic surfaces X and show compatibility with the Birch and Swinnerton-Dyer conjecture.
On the way we will establish decomposition results for various types of cohomology. We will

interpret this as an indication for the existence of a decomposition of a hypothetical motive
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A(X) into motivic degree components within the framework of a yet to be developed theory

of mixed motives.

In Chapter I we will prove Artin-Verdier duality for arithmetic surfaces X in the then
remaining open case n = 1. We will decompose X into a smooth open part on which duality
is easy and a collection of bad fibers on which the duality statement follows from Saito’s
work in [28]. The main result is Theorem 1.3. Artin-Verdier duality will be used as a

computational tool in the remaining chapters.

Chapters II and III are the core of this thesis. In the second chapter we will evaluate all
cohomology groups introduced before, assuming the existence of a section s : S — X', where
S is the spectrum of the integer ring of a number field F' for which there is a factorization
m: X — S of the structure map of X. A summary of the results is given in Appendix A.5.
All computations will be organized around the main result Theorem 2.11 (and its various

versions throughout Section 2.2) providing a decomposition
RrZ(n)¥ ~ Z(n)® @ "R'mZ(n)*[~1] @ Z(n — 1)[-2] (3)

in the derived category of abelian sheaves on S, and hence a decomposition of the associated
cohomology groups. The analogue of (3) for torsion sheaves will be proven using Verdier
duality and the six functor formalism for 7 and s. (3) will be an extension of it incorporating
Geisser’s results on dualizing cycle complexes in [12]. A further insight will be the analysis
of derived de Rham cohomology as given in Proposition 2.23. It will explain the occurrence

of the Bloch-Kato conductor A(X) in the special value formulas later.

In Chapter III we evaluate the trivialization factor coming from Ay (X, 1) (Theorem 3.13). Un-
derstanding Ao, (X, n) will amount to comparing the two integral structures of RI'w (X, Z(n))r
induced by the triangles (1) and (2). Note that (2) only conjecturally determines an integral
lattice inside RT'w (X, Z(n))r as follows: Flach and Morin have constructed a pairing

H (%2 ,R(n)) x H* (2 ,2(d—n))g — R (4)

that they conjecture to be perfect and, moreover, to encode the Arakelov Intersection Pairing.
This would endow the cohomology groups of the second term in (2) RTar (2", R(n)) with a

canonical integral structure coming from RI'(Z",Z(n)).

Let m = r + 2s = [F : Q] and write g for the genus of the generic fiber X of X'. We further
prove C(X,1) = 1 unconditionally (Theorem 3.19) and derive

C(X,n) = ((n—1)"(n—2)me=b

for n > 2 assuming both the special value conjectures as well as the functional equation for
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¢(&X,s) (Theorem 3.24). We will combine this to the special value formulas

C*(X,TL) = A

-

\

2w [T (#Tor H' (X, 2(2-n))eouiv) " LS forn < 0

1<i<4 R (X)
27(2m)°  (#TorPic’x)?  R(S)? B
(#ur)2V/Dp  #U(X/F)-QX)  R(X) forn=1
V(o — m(g—1)
(eS8 Ayt o (X2 - ) for n > 2

Here the regulators R™(X) and R™(S) are determinants of the matrices describing the pairing

(4) for X and S, and Q(X) is the determinant of (a restriction of) the period isomorphism

comparing Betti and de Rham cohomology. The case n > 2 requires an additional technical

assumption on X needed to evaluate its derived de Rham cohomology in terms of A(X). We

will conclude that Flach’s and Morin’s conjectures for surfaces X and n = 1 are equivalent

to the conjunction of the vanishing order part and the leading Taylor coefficient part of the

Birch and Swinnerton-Dyer conjecture. The main result will be Theorem 3.27.



Chapter 1

Artin-Verdier duality for arithmetic

surfaces

Throughout this chapter let O be a number ring with fraction field F'. Write S = Spec O.
Z will denote a proper regular arithmetic scheme over O of pure dimension d — arithmetic,
meaning that there is an integral, normal, excellent, flat map 2~ — Spec O of finite type
with smooth generic fiber 2. We will write X’ for a proper regular arithmetic surface over
O. Z(n) will denote the motivic cycle complexes as defined in Appendix A.1. Finally, let
Ggr = Gal(C/R).

In this chapter we combine work by Saito with Flach’s and Morin’s construction of the Artin-
Verdier étale topos to generalize Artin-Verdier duality to arithmetic surfaces for coefficients
given by Z(1) = G,,,[—1].

1.1 The Artin-Verdier étale topos and compact support coho-

mology

Classical Artin-Verdier duality gives a pairing
H'(S,F) x Exty "(F,Gn,) — H*(S,Gy,) =Q/Z

for all constructible étale sheaves F on S that is in general perfect only up to 2-torsion.
Duality for the 2-torsion components needs further assumptions, e.g., that the underlying

number field F is totally imaginary (cf. [21] Sec. 2).

Geisser has generalized this result to arithmetic schemes 2~ of any dimension (cf. [12] Thm.

7.8). Conjecturally, an analogous duality should hold for Bloch’s cycle complexes replacing
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F. To treat the cases p # 2 and p = 2 uniformly Flach and Morin have constructed the
Artin-Verdier étale topos 2 ¢ (cf. [8] App. A) which we will briefly review here.

The Artin-Verdier étale topos 2 ¢. Let Xs denote the étale topos of 2~ and write 2o,
for both the quotient 2 (C)/GR itself and its associated topos of sheaves of set Sh(2Z™(C)/Gr)
interchangeably. The projection 7 : 2 (C) — %24 extends to a morphism of topoi

Sh(Gg, 2'(C)) —— Sh(Z%)
given by

(E — 2y) = E x 2(C) - 2(C) and (mF)(U)=F(xtU)%

where F is the étalé space associated to a sheaf in 2. Next, the functor that maps any
étale covering U — 2~ to the Gr-equivariant étalé space U(C) — 2 (C) induces a morphism
of topoi a : Sh(GRr, 2 (C)) — Zz. We now define the Artin-Verdier étale topos as the topos
Z ¢ fitting into an Open-Closed-Decomposition

Lo 5 To &2 2 (1.1)

such that u¥ ¢, =~ m.a*. Moreover, we may write 7, as the composition

Horre (L,—)

Sh(GRr, Z (C)) -2 Sh(Gr, Zi) Zop,

where (p«F)(U) = F(7~U) and #2s»(Z, —) denotes the composition of the sheaf-hom func-
tor inside Sh(Gr, Z5) with the forgetful functor. We summarize this in the diagram

Sk

— >, Sh (Gr, Z)

Next, let P>g — Z — 0 be the standard resolution of the constant sheaf Z with trivial
Gr-action. Write I'* for the left-adjoint functor of the global sections functor for Gg-
equivariant sheaves on 2" (C). For any bounded below complex A* of sheaves in Sh(Ggr, Z")

one has

Her { denotes totalization. In analogy to Tate cohomology we define the Tate analogue R7

of Rm by replacing P> with a complete resolution P, of Z:

R, A® = J%W(F*P.,p*A°).1

!See [8] Sec. 6.4 for why R7 is well-defined as a functor between derived categories and for further details.
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For technical reasons the analogue Z(n)? of Bloch’s cycle complexes in the derived category

of abelian sheaves on 2 ¢ is defined via the distinguished triangle

Z(n)? — R$.Z(n)* — uw7*7>”R%*a*T>OZ(n)% —.

However, if Z(n)y is cohomologically concentrated in degrees < n then one has the more
intuitive identity Z(n)? = 7<"RpyZ(n)?* (cf. [8] Prop. 6.10). The cohomology of Z(n)*
and Z(n)? only differ in 2-torsion and the precise difference will be addressed in the next

chapter and in Appendix A.3.

Milne’s étale cohomology with compact support. One formulation of Artin-Verdier
duality uses compact support cohomology which we will briefly review here. Let U < S be
an open subscheme. Write Sy, for all infinite places of O and let Sk, = S\U denote the set
of all finite places of O not in U. For any abelian sheaf F on Ug Milne’s cohomology with
compact support is the cohomology of the complex RfC(Uét7 F) given via the distinguished

triangle

RT.(U,F) — RU(U,F) — @ RU(Fy, fiF)® @ RL(F,, fiF) — .

VESHn VESw

Here f, : Spec F,, — U is the canonical embedding of the closed point v in U and Rf(FU, -)
denotes Tate cohomology of the Galois group of F,, (cf. [22] p.165ff). We extend this definition

to schemes f : U — U over U and abelian sheaves F on Ug by setting
RTo(Uer, F) := REo(Ust, o). (1.2)
We write ﬁé(u‘ét,f) := H(RTo(Uet, F)).

This definition covers coefficients given by Z(n) for n < 1 since these are cohomologically
concentrated in one degree. It is consistent with the following definition of Rfc(ﬁr‘fét, Z(n))
for general n. Let Rngng(n)% be defined via the distinguished triangle

ROZ(n)? —> RpsZ(n)? —> o R *T2%(n)* —> .

Define RT (2, Z(n)) := RU(Z e, RO1Z(n)%).

1.2 The Duality Statement

Fix any integer n. The Artin-Verdier duality conjecture may be formulated as follows.

Conjecture 1.1. AV (%2 ,n) Let m be a positive integer. There exists a product map

Z(n)” /m @ Z(d—n)? jm — Z(d)” /m
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in the derived category of Artin-Verdier étale sheaves on Z~ such that the induced pairing
HY(Z &, Z(n)/m) x H*¥ (X ¢ Z(d — n)/m) — H*Y X &, Z(d)/m) — Q/Z
s a perfect pairing of finite abelian groups integers i.

Morin has shown that this is equivalent to the following formulation using Tate cohomology
(cf. [8] Thm. 6.24).

Conjecture 1.2. AV’(Z,n) For any positive integer m there ezists a product map
Z(n)? /m @ Z(d —n)* /m — Z(d)* /m
in the derived category of étale sheaves on 2 such that the induced pairing
A (2 Zn) fm) x HX17( 25, Zd = m)jm) — A2 (24, 2(d)jm) — Q/Z
s a perfect pairing of finite abelian groups for all integers i.

This conjecture is known for n = d and n < 0 and also for all n € Z if Z is smooth over a
number ring (cf. [8] Cor. 6.26, 6.27). We wish to prove AV(X,n) for proper regular arithmetic
surfaces X, i.e. for the case d = 2. By the above, only the case n = 1 remains to be shown.

This will be the main result of this chapter. We formulate it for prime powers m = p".
Theorem 1.3. (AV2) There exists a product map
ZW)* @ Z()Y " — L)Yy (1.3)
such that for all prime powers p” the induced pairing of cohomology groups
H{(Xet, Z(1)/p") x H*H (Xt Z()/p") — H (Xt Z2))p7) — Z/p" (1)
1s a perfect pairing of finite p"-torsion groups for all integers i.

Remark 1.4. The versions of Artin-Verdier duality in [8] conjecture the existence of a product

map for the integral complexes

)

Z(n)”* @“Z(d—n)? — Z(d)”

that induce the aforementioned product maps of torsion complexes. For the pairing of

cohomology groups this does not make a difference. We will construct a product map
Z)* @ zZ(1)Y — Z(2)* (1.5)

under the additional assumption that Z(2)?% satisfies the Beilinson-Soulé conjecture. (1.3)

will be constructed unconditionally.



1.3 Lichtenbaum’s product map and Spiess’ complex

Lichtenbaum’s complex Z(2, 2°). Before Bloch defined the cycle complexes Z(n)? for
general n > 0 Lichtenbaum constructed a complex Z(2, Z") using K-theory and proved that
it satisfies many of the axioms for arithmetic cohomology complexes as proposed by Beilinson
(cf. |20]). We review its definition.

Let A be a regular noetherian ring. Write AL = Spec A[t] and Z = Spec A[t]/t(t—1). a€ A
is an exceptional unit if both a,1 —a € A*. For a finite set B c A of exceptional units let

Yr = Spec A[t]/[ [,e5(t —b). (YB)p forms an inverse system, so we may define

Crni(A) =1lim K, (AY\Yp,Z) and C,2(A) =lim K/, ;(VB)
B

B

(cf. [20] Def. 1.5). After gluing and sheafifying the presheaves Spec A — C, ;(A) for i = 1,2

we obtain abelian sheaves Q’ggfl and Q;’g on Zz.

Definition 1.5. (cf. [20] Def. 2.1) Let Z(1, Z7) and Z(2, Z") be the complexes in the derived

category of abelian sheaves on Zz given by

0 1 3 2.
71, 2) = [C{y — Cy), and Z(2,Z) = [C¥y — Cial.

Lichtenbaum shows that K;(2")[—1] is quasi-isomorphic to Z(1, Z") (cf. [20] Prop. 2.4). As
the Bloch cycle complex Z(1)? is quasi-isomorphic to K1(2)[—1] we immediately have
7Z(1)? =~ Z(1, %) in the derived category. An analogous isomorphism for n = 2 is only

conjectured, but for arithmetic surfaces X partial results are known.

Spiess’ complex %)y for arithmetic surfaces. Spiess constructed a complex J)y of

abelian sheaves on Xz and proved a duality of type
H'(X,F) x Ext®"(F, %)x) — Q/Z (1.6)

for any constructible étale sheaf F on X" (cf. [34] Theorem 2.2.2). We review the construction
of Jf//X

Definition 1.6. Let

3 4

1 2
Hjx = | @ (ig)xCo1(k(€)) — D (ie)+Ca2(k(€)) > @D (in)sGm — D L],

£eXx0 £eXx0 neXx1 reX?

where co arises from the composition of Ca2(k(§)) — Ka(k(§)) with the boundary map
0" Ko(k(&)) — Gy, from K-theory.
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Note that there is a canonical map Z(2, X) — %) x. Geisser has shown a duality for Z(2)*
analogous to (1.6) (cf. [12] Thm. 8.7) which suggests that %)y and Z(2)* might coincide.

Zhong has found a partial answer to this conjecture.

Theorem 1.7. (Zhong, [38] Thm. 3.8) There is a map of complezes Z(2)¥ — )y in the

derived category of etale sheaves on X that induces a quasi-isomorphism

7212(2)““/ - Ji//X.

In particular, [8] Conjecture 7.1 holds for arithmetic surfaces. Using Flach’s and Morin’s
technical Lemma 7.7 in 8] we may also remove the truncation after passing to mapping

cones.

Corollary 1.8. Z(2)¥ is cohomologically concentrated in degrees < 2. Moreover, for any

prime power p" the complex Z(2)X/p’” 1s cohomologically concentrated in degrees 0,1, 2.

Proof. Spiess remarks that )y is concentrated in degrees 1,2 (cf. [34] 1.6.2.(A1)). Conse-
quently, [8] Conjecture 7.1 holds for Z(2)? and so [8] Lemma 7.7 applies. It yields for every

prime p and its associated Open-Closed-Decomposition
X, > x < X[1/p]
the distinguished triangle
(i) /p) [-2] — Z2)¥fp — TR —,

where &), := Af,. Since the left hand side is cohomologically concentrated in degree 3 it
shows that #(Z(2)* /p) = 0 for all i < 0. O

Lichtenbaum’s product map. K-theory gives product maps K;(A)QK;(To) — K;+;(To),
Ki(A)® K;(T,Ty) — Kit;(T,Tp) for any closed immersion i : Ty < T of schemes of finite
type over A. Therefore Cy, 1(A), Cp2(A) have a Ky(A)-module structure and, moreover, there
are maps K, (A) ® Cp,1(A) = Cryn,1(A). In particular, we obtain a product map

Ki(X0)[-1]®Z(1,X) — Z(2,X). (1.7)

Recalling that K1 (X)[—1] = Z(1, X) = Z(1) and that the etale localizations (C; ;(X))z =
Ci1(Oxz) are flat for ¢ = 1,2 (cf. [20] Prop. 2.5) we may rewrite the left-hand side as
Z(1)* @ Z(1)*. Composition with Zhong’s isomorphism yields the product map

ZM* @ Z()Y — Z(2,X) — Ky — 77'Z2)F. (1.8)

Taking mapping cones gives the pairing (1.3) as desired. When assuming Beilinson-Soulé
7217,(2)* ~ Z(2)* the above extends to the pairing (1.5) into the full Z(2)%.
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1.4 A further construction of the p-torsion product map for

arithmetic surfaces a la Sato

Fix a prime power p”. We present an alternative construction of the p-torsion version of
(1.3)

Z)* @ Z() fph — Z(2)Y )y (1.9)
that builds on a lifting argument by Sato (cf. [29] Prop. 4.2.6). For an arithmetic surface
one can drop Sato’s normal crossing condition and use the explicit description of a boundary
map from K-theory instead. This section should be understood as an extension of some of

Sato’s results and constructions in [29] to arithmetic surfaces with not necessarily semistable
fibers.

An Open-Closed-Decomposition for Z(n)*. Let Z = Af, denote the special fiber of X
over p and write X[1/p] for its complement. We have the Open-Closed-Decomposition

Z -5 ox < x[1/p).
We know s#4(Z(2)*) = 0 for i > 2 (Corollary 1.8). Therefore — by Proposition A.5(ii) —
Rj.j*7(2)% Jp" = Rj*u?,?, and we have the distinguished triangles
ixZ2[p'[-2] — Z()Y " — T'Rjspyr —, (1.10)
(U ) 2] — T — TR —
(cf. [8] Lemma 7.7). [38] Thm. 1.1 provides the quasi-isomorphism
Z()?fp" ~ | D (i) Wri1og — D (i) Well 10 | [-1], (1.11)
neZ0 zeZ1
i.e. Z(1)%/p" is cohomologically concentrated in degrees 1 and 2. We wish to show that
ZO)X fp" @ Z(W)Y Jp" — T Rty @ 7 Rijupiyr —> T@Rj*ugg
lifts to a duality pairing Z(1)* /p" @ Z(1)* /p" — Z(2)* /p". This will follow from the

picture

(r<YiZ(1)2 )p") [-2] — Z(2) /" ———— T2 Rjup? ———— (r=Yi, Z(1)Z fpT) [—1]

Z(1)* fp" @ Z(1)* /o
(1.12)
which we will verify now. Z(1)*/p" ®“ Z(1)¥ /p" is concentrated in degrees 0,1,2 while
(751, Z(1)% /p")[—2] is concentrated in degree 3. So, there can in fact not be any non-trivial

morphisms between them. Now it suffices to show the
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Proposition 1.9. The composition
Z)* " @ Z(V)* fp" — TR — (r='Z(1)? ") [1]
on the right-hand side of (1.12) vanishes.
Proof. We use Sato’s notation M) = i*R" ]*up Observe that Z(1)* /p" @ Z(1)¥ /p" —

(7514 Z(1)? /p") [-1] can only be non-trivial in degree 2. The map on second cohomology

sheaves is supported on Z and thus can be identified with
ALY " @ ALY pT — MP — AL /"),
Fix a geometric point Z of Z. Then, for A = Ox z[1/p], F = Frac A, and any n > 1 one has
(M?")z = Hii (A, pi") — HE(F,pg) = KoF/p"

The inclusion is due to Gabber as mentioned in the proof of [2], Prop. 6.1. The last equality
is only needed in the easy case n = 1,2 but it holds in general by the Rost-Voevodsky
Theorem. Moreover, for n = 1 the Kummer sequence shows that H} (A, ) = K1 A/p".
Consequently — when writing Z0 = Z% ~ {2} for the collection of all non-closed points whose

closure contains z — (1.10) yields

(A1 Z(1)7* /p")z = Ker ( - @ zZh ) = Ker ( )
neZ? p" neZ9 "

Also,

neZo ezl

z

(jle(1>Z/pr)5 = Ker (@ ( ) Wi Qk(n) 10g> - < @ (Z.JU)*WTQ(Ii(x),log)

= Ker <@ k(n)*/p" — Z/p" ) @ k) /.

nez?

So, it suffices to show that the composition

KyF  ®non Kk
Ker ( )@Ker( ) 2 @ Bk g
P Sl Pl P oz P

On . . .
vanishes. The map KoF' /p" — K1k(n)/p" is the boundary map coming from K-theory with

F being regarded as the fraction field of the DVR A,,. Let the corresponding valuation be

called v;. The composition
® Iy
KlF X KlF — KQF —> Klk‘(n)
admits the explicit formula

a’n (b)
pon(a)

(a,b) > (—1)vn(@)va(t)



13

(cf [1] Prop. 4.5(e)). In particular, the image of a ® b under (1.13) is trivial whenever
vy(a) = vy(b) = 0 for all n € {z}. Now, since the map K F — Dyez0 Z/p" is the tuple
@neg v, and any a € A is integral with respect to all v, the composition (1.13) must be

identically zero. O

The Gersten complex of logarithmic deRham-Witt sheaves of a variety X (which the right-
hand side of (1.11) is an example of) is known to be concentrated in one degree only if X
is normal-crossing. For the one-dimensional curve Z the normal-crossing condition is not

necessary.

Proposition 1.10. The boundary map

B: @ (’L’Ti)*WTQl%:(n),log — @D (ix)*W’“Qg(x)Jog

neZo zeZl

is surjective, i.e. Z(1)Z /p" ~ Ker(B)[—1].

Proof. The Gersten complexes for Z and Z™¢ are identical; thus we assume Z to be reduced.
The stalk of (—Bxezl(%)*Wng(z)’log
to consider the maps on stalks at a geometric point z < z

— - l _— 9
Pz @WTQk(n),log WTQk(r)
ne{z}

at a generic point 1 € Z° vanishes. It therefore suffices

;log

for any closed point z € Z. Note that we now work over the algebraic closure k of k since we
are considering etale stalks. We may assume that Z is irreducible. Let 1 denote its generic
point. By restricting to a suitable neighborhood of z we may assume Z to be affine. We are
left to show that
Bz k()" /p" — Z/p"

surjects. Let N — Z be the normalization of Z and Py,..., P, € N the preimages of z. Each
local ring On,p, is a DVR and hence comes with a valuation v;. One has 8z = >, v;. So, it
suffices to find a rational function f € k(N) = k(Z) which has a simple zero at precisely one

P, and is non-zero at all remaining F;. This is easy for infinite base fields.

Embed N c A%. As k is infinite we can choose a hyperplane H < Ag passing through some
P;, that does not contain any other P; and that also does not contain the tangent direction
of Z at z. The linear function f with Z(f) = H will satisfy the above. O

Corollary 1.11. One has a distinguished triangle
LZ(V)? P [-2] — Z2)Y )P — TRy —

i.e. [8] Conjecture 7.10 holds for arithmetic surfaces and n = 2 and Sato’s complex T,.(2) x
defined for normal-crossing X is quasi-isomorphic to Z(2)* and its construction in [29] Def.

4.2 can be carried out without the normal-crossing assumption.
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1.5 Saito’s duality result and duality on the closed part

For the remainder of this chapter we let X be a surface over the integer ring of a local field L
with perfect residue field of characteristic p. We write Z for its special fiber and j : X; — X
and ¢ : Z — X for the canonical open and closed embeddings. Obviously, the constructions
from last section can equally be carried out for X, i.e. we also have Spiess’ and Lichtenbaum’s
complexes ¥ /x and Z(2, X).

We will show (AV2) by proving dualities on the smooth, open part and the singular, closed
part separately. This idea is based on Sato’s proof that Artin-Verdier duality in the global
and local setting are equivalent (cf. [29] Sec. 10). Duality on the closed part has essentially
been shown by Saito in [28]. We will need the analogue of |28] (4-1) for X and will briefly

sketch Sato’s proof in this context.

Theorem 1.12. (AV2l) Let X be a proper reqular surface over the integer ring of a local
field with special fiber Z. Write Hy(X,Z(n)) := H'(Z, Ri'Z(n)). The product map

Ri'Z()* @ i*z(1)Y — Ri'Z(2)*

in the derived category of abelian sheaves on Xe induced by (1.8) induces a perfect pairing

try,z

Hy(X,G) x H7Y(Z,i*G,) — HY(X,Z(2)") —— Q/Z (1.14)

of finitely generated abelian groups.

Proof. We will replicate the computations in [28] Section 4 using the additional simplification
that L cannot have a real embedding. Note that the trace map try 7 is Saito’s trace map

constructed in [28] Thm. 3.1. The duality (1.14) can be written as
RTz(X,G,,)*[—4] ~ RI(Z,1*G,,) (1.15)

in the derived category of abelian groups, where (—)* = RHom(—, Q/Z). To prove (1.15) we

use the localization sequences

@ RI.(X,Gy) — RIz(X,Gp) — P RT,(X,Gy) — (1.16)
TEZ nezy

@ RI.(Z,i*Gyn) — RI(Z,i*Gy) — @ RI(0,,Gn) — (1.17)
TEZ) nez

and evaluate the enclosing complexes.



15

Computation of the distinguished triangle (1.16). We will now compute the terms
RT'(X,Gy,) and RIY,(X,G,,). For x € Zy, n € Z; write D, = Spec O,\z and K, for the
fraction field of O,. The inclusions {z} — O, and {n} — O, give rise to the distinguished
triangles

RT,(x,G,,) — RI(0,,G,,) — RI'(D,,G,;,) —,

RT,(x,G,,) — RI(O,,G,) — RI'(K,,G,) —.
Let k(x), k(n) denote the residue fields of O, O, respectively. It is well-known that
71ROy, Gyy) ~ 72 RI(k(2),Gy,) and 721 RI(O,), Gy,) ~ 72 RU(k(n), Gy). As k()
is finite, its cohomological dimension is 1. So, by Hilbert 90 and the fact that finite fields

have trivial Brauer group RI'(O,,G,,) must be concentrated in degree 0 and we have

RD(Oy, Gpy) ~ OX[0].

xT

Similarly, we obtain the cohomology sheaves of RI'(O,,G,,) and RI'(K,,G,,). This may be

written as the distinguished triangles
O; — RI'(O,,G,,) — Brk(n)[-2] —
K; — RI(K,,Gp) — BrK,[-2] —.
Indeed, we do not have 2-torsion groups in higher degrees as Saito does in his proof since K,

is an extension of the local field L, i.e. it has no real embedding.

As O, is a DVR and the canonical map Br k() — Br K, injects, we obtain

Br K,

[-3] —
Brk(n)
Finally, since O,\D, < O, has codimension 2 one has H°(D,,G,,) = I'(O,,G,,) = O and
HY(D,,G,,) = Pic(D,) = Pic(O,) = 0. Also, H*(D,,G,,) =~ H*(0,,G,,) = Br(0,) =0
where the first isomorphism is due to Grothendieck (cf. [14], III, Thm. 6.1(b)). The duality

Z|-1] — RI'y(Xx,G,) —

RT(D,,G,,) ~ RTI(D,,G,,)*[-3]
(cf. |27]) therefore proves that
RUG(X,Gp) ~ (O;)*[—4]

T

and the distinguished triangle (1.16) becomes
@neZl Z[_ 1]

|

Diez,(02)*[-4] —— BT 2(X, Gp) ——— BTy (X, Gp) ———

|

Br K
DBrez, mrapy 3]
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Taking duals and shifting 4 terms to the right gives

Diezy (;}r;ff;;))* [-1] (1.18)

|

RT,(X,Gp)*[~4] —— RT2(X, Gp)*[-4] — @

|

@neZl Q/Z[—3]

X
xEZ) OCE

Here we used finiteness of 7.

Computation of the distinguished triangle (1.17). To compute RI',(Z,i*G,,) we

use the localization sequence

R, (Z,i*G,,) — RI(O.,G,) — @ RT(0,,Gy,) —
VES
Here S, = ]_[77 Sz and S; , denotes the collection of all codimension 1 points of Spec oh

lying over n. We write S, = [ | Szn- Note that S, can be viewed as the collection of

ze{n},
all finite places v of the residue field k(n). Also, let O, denote the henselization of O, at v

and k(v) its residue field. We get

(@ 0;)/0;[—1] — RT.(Z,i*Gp) — @ Brk(w)[-3] — .

VESy VESE

So, (1.17) becomes

®1‘EZO (@UESQC O:)() /O; [_1] @neZ1 O;]( (119)

| |

Diezy RUo(Z,*Gp) —— RU(Z,*G) —— @, g, RU(Oy, Gr) ——

J |

@xEZO ®’U€Sz Br k‘(U) [_3] @77521 Br k‘(?’]) [—2]

Fix n € Z;. Then k(n) is either a number or a function field depending on whether 7 is a

horizontal or vertical divisor of X. So, Class Field Theory gives us the short exact sequence

0 — Brk(n) — P Brk(v) — Q/Z — 0

veSy

and we see that (1.19) is isomorphic to the distinguished triangle

D (69 o;)m;[—u@ P Q/Z[-3] — RI(Z,i*Gp) — P 0F —.

Tr€Zy \VES: nezi nezi



17

We compare the above with the distinguished triangle (1.18). It remains to prove that the

boundary maps
53 Brk, \*
[Lez, O —= @yen (Brrk;(;)) (1.20)

and

A
@D o, ) <@ 05) /O3 (1.21)

7]€Z1 :EGZ(] UESx

have isomorphic kernels and isomorphic cokernels. This requires some preparation.

Results from Kato’s higher local class field theory. Fixne Z;. Let I < O, be an

ideal. In analogy to the adeles and ideles of number fields we define

~/ KX KXx ay € OX whereve S
Ag=]] .t =R(ahwe [[ 25| .7 *
veSy 1 + 10, es, 1+ 10; for almost all v

Iy, = Hvesnil_}_j(’)x = ]_[ves 0,/10)* < Ap,.

We have diagonal embeddings of K,*, O, into Ay, I1, respectively. We define

Cry=Arn/KY,  C},=11,/0r.

The existence of a perfect pairing
H'(K,,Gp) x H(K,,G,,) — HYK,,Z(2)) = Q/Z.
is well-known. The induced product
(= =) Br(Ky) x K — Q/Z

has the property that for each = € Br (K,) the map {z, —), has non-vanishing kernel. Br O,
can be characterized as the subgroup of Br K, consisting of those elements x for which
{x, =) vanishes on O (cf. [29] Thm. 2.9). Consequently there is a map

Br(K,) — li_H}Hom< KIOX’Q/>

IcOy

Using the embedding Br (Ky) — @®,cg, Br (Ky) we get a map

X
Br (K,) — lim (P Hom <1—f(;(’)w @/Z) = li_I)nHom(An,[, Q/z).

—
IcO, VES, IcOy

Kato has shown that the above map factors through and surjects onto lim Hom(Cy,, Q/Z)
IcOy

(cf. |29] Thm.2.13), i.e. we have an isomorphism

Br (K,) = lim Hom(Cy,, Q/Z).

IcOy
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Using the characterization of Br O, = Brk(n) from before we obtain

Br (Ky) : 0
~ lim Hom (C} ,, Q/Z) . 1.22
BI‘k’(T]) Izn ( In / ) ( )

Comparison of kernels and cokernels. Note that
O) = lim (0,/I0,)*
[coy
since O, is a localization of Ox. Analogous statements hold for O,,, O,. So — since

9 (i) ~@m-m oIl () /()

neZy NEZ1 IcOy IcOx NEZ1 vESy,

by (1.22) — we may rewrite the maps (1.20) and (1.21) as inverse limits 65 = lim 63 ; and
IcOy

5/3 = lim 5;“ with

[coy
O X —~ O X O X
s () — @l () /()
€2 10, NEZ1 veSy, 10, IOW
O, \”~ O, \~ 0, \”~
s 0(8) — elel®))/ (@)
nezi IO” r€Zy \VES: IOU on

5:’3"7 ; and 537 ; have isomorphic kernels and isomorphic cokernels already. Indeed, when writing

a=11 @ (I%)Z @[] <I(2’)> w11 (I%) w=l <I%7>

z€Zo VES: neZy veSy xELY nezi n

and

we have canonical embeddings Ay, A7 — A and the kernels of 55“7 I (5&7 ; are isomorphic to

Ag n A;. Similarly, for the direct sum analogues

A=D D (I%)Z DD <I(?9) 4= (I%) =@ <1%7>

TE€EZ VES, neZy vesy TEZY nezy

the definition of ﬁ/ ensures that the cokernels of 03 ;, 05 ; are isomorphic to A’/(Aj + AY).
This completes the proof of Theorem (AV2l). O

1.6 Duality on the open part

Theorem 1.13. (AV2s) Fiz an integer n and a prime power p". Let U < S be an open
subscheme and let f : U — U denote a smooth scheme over U of dimension d. There is a

duality in the derived category of abelian groups

RE(U, u&M[2d + 1] ~ RUU, xS,
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where (—)* = RHom(—,Q/Z) denotes the Pontryagin-dual. In particular, for any integer i
we have a perfect pairing

_ e X
HIU ) x B i) — B2 U ) = 2

Proof. We will use the structure map f : U4 — U to reduce the above statement to usual
Artin-Verdier duality for number fields. The key ingredient will be the cohomological purity
result [23] XVI. Thm. 3.7, which itself is an application of the Smooth Base Change
Theorem [23] XVI. Thm. 1.1. Recall that

H(U, F) x Ext} (F,Gp) — HU,Gp) = Q/Z

is a perfect pairing for any constructible sheaf of abelian groups F over U. For sheaves F

killed by p" this gives the quasi-isomorphism
RL(U, F)[+3] ~ R Aoy (F, ppr )"
We choose F = Rf, (p?")u. This yields

RT (U, i3") ~ RTo(U, Rfi (1S )u0)

~ RC%@W@U (Rf* (,Uzg‘n)l/{a ,Ufpr)* [_3]

(V) n *
~ R Aot (43", RE (np)ur) (3]

()

. (1.23)
2 R Aoy (ug%”, Rf*p®%[2d — 2]) [3]

> BT (U, Ry (15", R f*ﬂg?rd))* [~2d— 1]
~ ROU, &™) [~2d - 1].

For (V) we used the Verdier duality adjunction Rfs - Rf' (see also Theorem 2.3). (S)
follows from Smooth Base Change applied to f : U/ — U. Note that this quasi-isomorphism

is why we require & to be smooth. O

1.7 Proof of the global duality statement

We first rewrite (AV2l) in terms of p-torsion sheaves. We will then combine it with (AV2s)
to prove global Artin-Verdier duality.

Proposition 1.14. Keep the notation from Theorem (AV2l) and let p" be a prime power.

For each integer i there is a perfect pairing

Hy (X, Z(1)"/p") x H7N(Z, 0" (1) /p") — Hy(x,Z(2)"/p") — Q/L. (1.24)
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Proof. Applying Ri' to the product map of p"-mapping cones (1.9) gives
RIZ(L)/p" @ " Z()* Jp" — RIZ(2)*/p
which induces the pairing (1.24). We show that it is perfect by means of a Five Lemma
argument. Consider the long exact sequence associated to Z(n)* — Z(n)* — Z(n)*/p" —

as well as its dual under (—)* = RHom(—,Z/p"). These — together with the product maps
(1.14) and (1.24) — fit into the commutative diagram

Hy (X, Z(1)) ————— Hy (X, Z(1)) ———— Hy (X, Z(1)* /p") ——— H7 (X, Z(1)") ——— HZ (X, Z(1)")

21(1.14) ;lu,m) J(1.24) ;J'(I.M) 21(1.14)

HS(Z,i*Z(1)")* —— HS(Z,i*Z(1))* —— H>(Z,i*Z(1)* /p")* —— H>"H(Z,i*Z(1))* —— H>7(Z,i*Z(1)*)*

The outer vertical being isomorphisms is precisely the local duality result (AV2l). So, by the

Five Lemma, the middle arrow represents a perfect pairing too. O

Proof of (AV2). Let Z be the collection of all special fibers of X' that are singular or above
p, ie. Z = [],cq,., Zp Where B is the (finite) union of all primes of O where X has bad
reduction with all primes above p, and where Z, = X x Speck(p). Write Y = X\Z. The

Open-Closed-Decomposition Z SHxdu gives rise to the distinguished triangles
iy — O — T — (1.25)
WRIZ()Y p7 — Z()Y /P — Rjspyr — (1.26)
Theorem (AV2s) gives us a perfect pairing on the smooth part
HiU, ) x H 7' Uy ) — HEU 1) = Z/p" (1.27)

Consider the long exact sequence on compact support cohomology of the triangle (1.25)
as well as the long exact sequence of (1.26). They fit into one commutative diagram as

follows:

HYZ,i*Z(1)¥ )p") —— HIU, pyr) —— HI(X, Z(1)Y Jp7) ——— H'(Z,i*Z(1)¥ )p") —— HAY U, )

l(1.24) %(1.27) J(IA) l(mz;) gJ(LQ?)

HE (X, Z()Y fp")* —— H 7 (U, iy )* —— HP 7Y Z() Y )" —— HZ (X Z() Y 0 )* —— H Uy )*
The vertical arrows are induced by the pairings (1.24), (1.27), and (1.4) from (AV2) as
indicated. We explore the map

HY(Z2, 7 2(0)Y fp") — HZ (X, Z(1)"/p)* (1.28)

in more detail. Write Xp = ]_[p X, where X, = X x SpecOp. One may regard i as an
embedding of Z into Xp. The Proper Base Change Theorem then gives H*(Z,i*Z(1)%* /p") =
Hi(Xp,Z(1)*? /p") and we may write (1.28) as

H'(Xp, Z(1)*? [p") — HZ ™" (Xp, Z(1)*" Jp")".
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So, this map is in fact the direct sum of (1.24) for each Z, < X, with p € B and hence an
isomorphism. By the Five Lemma, the middle vertical arrow must be an isomorphism too,

i.e. (1.4) is a perfect pairing.
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Chapter 2

Motivic decompositions of

cohomology for arithmetic surfaces

Let X denote a regular arithmetic surface with proper structure map 7’ : X — SpecZ. Let
O be the maximum number ring 7’ factors through. Unless explicitly stated otherwise, we
write S = Spec O and let 7 : X — S denote the corresponding map into S. Given a point
z € X or pe S we write r(z) and £(p) for their residue fields. We will write [ [, to denote

an infinite product over all finite primes of O.

Write F for the fraction field of O. Let r and s be the number of real and complex embeddings
of F' respectively and write m = r 4+ 2s for its dimension over Q. If not explicitly stated
otherwise, X will denote the generic fiber Xr of X. Let g be the genus of X. Also, let n e Z

and let €, be 0 or 1 depending on whether n is even or odd.

In this chapter we will define and partially compute the cohomology groups occuring in the
conjectures [8] Conj. 5.10, 5.11 for X. The underlying theme will be that all cohomology
groups will decompose into a direct sum of A*-parts for i = 0,1,2 — analogously to a

decomposition of

o) — P (). ) (<D — SF(S)CR(s —1)
C(X’ )_ H L(H (X), ) ! - pL(Hl(X),S)

i=0,1,2
into an alternating product of adjusted L-functions "L(H*(X),s) for i = 0,1,2. We expect
this to follow in generality from the existence of a direct sum decomposition of Rm,Z(n)*

into perverse degree components "Rim,Z(n)¥:

RmZ(n)¥ ~ @ PR'mZ(n)¥[—i] ~ Z(n)° @ "R'mZ(n)¥[-1] ® Z(n —1)°[-2].
i=0,1,2

We will prove such a decomposition under the assumption that there is a section s : § - X

of 7 satisfying a further technical conjecture for higher twists n > 2.
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2.1 L- and (-functions associated to arithmetic surfaces

In this section we relate ((X,s) to the Hasse-Weil (-function (gw (X, s) and review the
decomposition of ((X, s) into its 0-, 1-, and 2-part.

For any prime p of O let | = [, denote a rational prime not divisible by p. Moreover, write

Ay = Xw. The arithmetic (-function associated to any proper arithmetic surface X is
defined as
1 -1
CX,8) =[] —a=== =] [¢(X/np),9)
ey 1 — #k(x) ,
H H : —s m (=ym+t
= det (id — Np~* Frob, | H™(X;,Q;))
P meZ

The last equality above is a consequence of the Weil conjectures.

The Hasse-Weil (-function on the other hand is an object associated to the generic fiber
X = XF and is thus independent of the integral model X of X. (pw(X,s) is defined as
an alternating product of Hasse-Weil L-functions which in turn only depend on the étale

cohomology groups H m(X@, Qy). Concretely, one defines

CHW(X, S) = H L(Hm(X)’ S)(_l)m+1

meZ

(2.1)

. . m . I (_1)m+1
= [ ]det (id— Np=*Frob, | H™(X @r F,Q;)") :
meZ P

where I; < Gal(Q/F) denotes the inertia group of some prime p of Q lying over p.

Note that ¢ and (g should be thought of as associated to the scheme X or, equivalently,
to X regarded as an arithmetic surface over Z (or its generic fiber X regarded as a curve
over ), and not to arithmetic surfaces over a general number ring. However, we will make
frequent use of the map 7 : X — S since many objects associated to X such as its motivic

cohomology groups can be best expressed in terms of S.

One knows that H™ (A5, Q) = H™ (X@, Q)'¥ for good reduction primes p. So, the difference
between ((X,s) and (gw (X, s) lies in the bad reduction fibers of X only. Bloch worked
out explicitly the difference between the above étale cohomology groups and arrived at the

following result (cf. [3] Lem. 1.2 and comments).

Proposition/Definition 2.1. Let M, denote the Q-vectorspace freely generated by the
irreducible components of Xz. One has Hi(X@, Q)fr = Hi(Xg, Q) fori=0,1. Fori=2

there is an exact sequence of Z-modules

0 — M,/Q(-1) — H*(X;,Q) — H*XgQ)% — 0
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and, moreover, HZ(XE, Qi) = My (—1). We define

(X,s):= [ ] det (id— Np~*Frob, | M,/Qi(-1)).
p bad

The short exact sequence shows

C(X,s) = aw(X, s) - TI(X, )7L (2.2)

Since HO(XE, Q) = Q; and HQ(X@, Q) = Qi(—1) we may simplify (2.1) to

Cr(s)ir(s—1)  Cr(s)Cr(s—1)
I(X,s)L(HY(X),s) = PL(HY(X),s)

C(X’S) =

For future reference, we analyze the special values of II(X, s).

Lemma 2.2. For any prime p of F write d(p) = dimg, H*(X,, Q) for the number of
irreducible components C1, ..., Cyyp) of Xy. Further, for each 1 < j < d(p) let nj = n;(p) be

the number of irreducible components C; decomposes into in Xg.

(i) For any integer n # 1 one has

—1.d(p) 1
" _ -
II (X,TL) = =x H < pn 1> 1 (1 Np(nl)"J(p)> )

(ii) Formn =1 one has

Ords:lﬂ(X’S) = Z (d(p) - 1) (24)
p bad

and the leading Taylor coefficient II* (X, 1) equals

d(p)

I*(x,1) = + [ [ (log Np)* 1Hnj
p bad

Proof. Fix a bad prime p and write d = d(p) and n; = n;j(p). Let Mg denote the subspace
of My generated by the irreducible components of C; in Xz Write PJP and PP for the
characteristic polynomials for the action of Frob, on Mg and M, /Q; respectively. FrobfJ cycli-
cally permutes the components generating each Mg since the Froby-orbit of any irreducible
component of C; in A5 must be defined over x(p) by Galois-descent, and hence equal Cj.
Therefore

P = o TP = 2 T (0 1),
T—1" T-1

j=1 j=1
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Write N = dimg, H*(X5, Q) = 2. nj- Let s € C and write z =z, = Nps~L. One has

d .
_ 1 x ajn](p) —1
det (1 — Np~**'Frob, | M,/Q;) = xN_lpp(x) = t— -
j=1
1\ e 1
e(13) 10 )

Choosing s = n for n # 1 proves part (i) and evaluating the vanishing order of the above at
s =1 yields (2.4). Now let y, = —log Np. Then % = ew(5=1) and

1 — etw(s—1) () 1 awpms(p)(s— 1 4)
* _ : - - 7
H(X’l)_ill—{% ( s—1 H s—1 Hynpn]
p bad j=1 bad =1

This finishes the proof of part (ii). O

2.2 Motivic decompositions of push-forward sheaves in the

presence of a section

In this section we will write 7 : 2~ — S for a variety of structure maps, as specified in the

proceeding paragraphs. We will derive direct sum decompositions of the kind
Rro.Z(n)? =~ F(n)° @ "R'n,.F(n)? [-1] @ F(n—1)°[-2],

where . represents locally constant sheaves with Galois twist or motivic cycle complexes on
the étale sites of & and S respectively. These results will be motivated by the theory of
motives and hence referred to as motivic decompositions. We will also write Ry % (n)? =~
Di—012 PRi7.7 (n)”? [—i]. The notation PR should indicate the expectation that those
decompositions are reflections of a broader, yet to be developed theoretical framework which

endows derived categories of motivic sheaves with perverse t-structures.

The proof strategies are centered on an application of Verdier duality. It will render the
remaining part of the proof an exercise in the six functor formalism for 7 and s. We will
also provide more explicit descriptions of the involved projection and inclusion morphisms

when possible and elaborate on the difference between YR? and R’

2.2.1 Verdier Duality and and Cohomological Purity

Verdier Duality. For any scheme X let D(X¢;) denote the derived category of abelian

torsion sheaves on Xg. We recall the sheaf theoretic generalization of Poincaré Duality.
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Theorem 2.3. (Verdier Duality, [23] Exp. XVIII, Thm 3.1.4) Let f : X — Y be a separated,
quasi-compact morphism of schemes. There is a functor f': D(Yey) — D(Xet) such that for

all torsion sheaves F on Xe and G on Yg one has the quasi-isomorphism
RfsR Hom x(F, f'G) =~ R Homy (RAF,G). (2.5)

In other words, there is an adjunction of functors Rfi — f' between the derived categories of

torsion sheaves on X¢ and Ye.

f' generalizes the derived exceptional inverse image functor associated to closed immersions.
However, in general f' cannot be expressed as the derived functor of any functor of sheaves.
The counit try of the adjunction Rf - f 'is called the trace map. The first part of the proof
of Theorem 2.3 is the construction of the trace map. It is then used to define the map (2.5)

and one subsequently shows that it is in fact a quasi-isomorphism.

If f is smooth of relative dimension d (i.e. dim X = dimY + d), one knows that Rf f'F is
cohomologically concentrated in degrees [0, 2d] for any torsion sheaf F on Xg and trs(F)
factors through the top degree:

try(F): RAf'F —— RMAf'F oy F. (2.6)

Cohomological Purity. For the rest of this section fix a prime p and let A denote a finite
p-torsion group. For any scheme X we write AX for the constant torsion sheaf with global
sections equal to A. For any p-torsion sheaf F we write F(n) = F ® ,ug%?. We will need the
following result that had originally been conjectured by Grothendieck and that was proved
in full generality by Gabber (cf. [10]).

Theorem 2.4. (Cohomological Purity) Let i : Z < U be a closed immersion of reqular

noetherian schemes of pure codimension d. Suppose p is invertible on U. Then

A(=d) ifr=2d,

0 otherwise.

R'i'AY ~ { (2.7)

This result admits an extension to the functor f' between derived categories.

Proposition 2.5. Let f: X — Y be a smooth morphism of relative dimension d. Also, let

F be a complex of p-torsion sheaves on Xg and suppose p is invertible on Y. Then

f'F ~ f*F(d)[2d].

Let m: & — S be a projective morphism of schemes with 2" being regular and of relative

dimension d over S. Note that this includes the later most relevant case where d = 1 and



27

7 is any proper morphism since projectiveness follows then from a result by Lichtenbaum
(cf. [19] Thm. 2.8). We assume throughout that p is not zero in Os. We then have open

closed decompositions as in the diagram

20 L 2 2, (2.8)
Jﬂ[l/p] Jﬂ J”p

i i
S[1/p] s S

Lemma 2.6. In the derived category of torsion sheaves on S[1/plet, one has

w1/l A = A7 009 () [2d].

Proof. m[1/p] is projective and hence factors through some ]P"].SV[1 Jp] BS

2 /Pl —— By

N
S[1/p]

where II is smooth and ¢ is a closed embedding of regular schemes. So, by Theorem 2.4 and

Proposition 2.5,
7[1/p] ASI/P) = RiTIASTUP) ~ R APS0m (NY[2N] ~ A2 TVP)(a)[2d]. O

Corollary 2.7. Write (=) = R Ao (—,Qp/ZLy). For any p-torsion sheaf F on 2 [1/plst

one has

(Rn[1/p]«F)" ~ Rr[1/plF" (d)[2d]. (2.9)

Proof. This is Verdier duality for f = 7[1/p] and G = ASI/P). Here we have used «[1/p], =
7[1/p]s which holds since 7[1/p] is proper. O

2.2.2 A motivic decomposition for push-forwards of constant torsion sheaves

To ease notation we write A% P = ijA‘%[l/p] and ASP = j;!AS[l/p]. Note that if p is
invertible on S then one gets the constant sheaves A% P = A? and ASP? = AS back.

From now on, we assume S to be a connected at most one-dimensional regular scheme such
that all closed points have perfect residue fields and such that all remaining points have
residue fields of characteristic 0. Although we will need the result below only for d = 1 we

formulate it for general d as it will make no difference for the proof.
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Theorem 2.8. Suppose w: Z — S has a section s : S — 2. Then the sheaves AS’p(n)
and ASP(n — d)[—2d] split off as direct summands of the complexr Rm A* P(n). Ifd = 1
we will write pRlﬂ*Af’/(n)[—l] for the remaining summand, i.e. we will have the canonical

decomposition
R A” P(n) ~ ASP(n) @ PRIm A? P(n)[—1] @ ASP(n —1)[-2]. (2.10)

Proof. 1t is enough to prove the claim for the restriction «[1/p] : Z°[1/p] — S[1/p] to the
open part, i.e. to show that ASI/P!(n) and ASI/P)(n — d)[—2d] split off as direct summands
of Rr[1/p]«A? 1/P)(n). In fact, an application of Jpy Will then reproduce the original claim

since
Jp o Re[1/pla A" WP (n) = R(jpm[1/p)n A" WP (n) = RmjpaA” WP (n) = R, A7 P (n).
Therefore we may assume that p is invertible on S.

We will use the adjunctions 7* - 7, and s* - s4 - s to construct maps
AS(n) 2% RrA” (n) 25 AS(n),

AS(n — d)[-2d] 25 RroA? (n) 2% AS(n — d)[-2d] (2.11)

<Z0d)o(¢0 <P2d)=<i§ i(c)il)’

thereby proving the proposition.

that compose as

The existence of g, 1 is a formal consequence of functoriality of the push-forward m,s, =

(7s)s = id and exactness of 7%, 5%, s,. Using s*A? = AS and 7*A° = A? we define
©o : AS(n) — Rmem*AS(n) = R A” (n),

Yo : RmuA” (n) — Rmyses*A? (n) = s¥A% (n) = AS(n).
Consider the shift of the above maps for an (d — n)-twist by 2d degrees:

vo[2d] Yo[2d]

AS(d — n)[2d] R A (d — n)[2d] AS(d — n)[2d].

Apply (—)Y = R Homs(—,Qp/Zy). Corollary 2.7 shows that one obtains

oy [~2d] vy [-2d]

AS(n — d)[—2d] R A? (n) —— AS(n—d)[-2d].

We let poq = 9y [—2d] and aq = @ [—2d].

Yoo = id is clear since both maps are adjoints of identity maps. Therefore, also 195994 =
(Yowo)Y[—2d] = 0. Next, one has g9 = 0 for degree reasons. More precisely, g is
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the inclusion of the lowest degree AS(n) = ROm,A? (n) into RmyA? (n) while 1yq factors
through the top degree 7>2¢Rm,A” (n) = R*m,A* (n). Similarly, we must have 1g@aq = 0
since 9q maps A°(n—d)[—2d] into the top degree of RryA? (n) while 1y is trivial in degrees
> (0. This completes the proof. O

Remark 2.9. The construction of (g, ¥y did not require A% to be torsion or p to be invertible
on S. So, the above proof more generally shows that AS splits off as a direct summand of
R, A for the constant sheaf A% associated to any abelian group A. Since both 2~ and S

are connected one has T, A% = AS and consequently
RT['*A'% ~ A% @ Tleﬂ'*Ag.

Remark 2.10. If 7 : & — S is smooth and proper, and S the spectrum of a field of
characteristic unequal to p the above decomposition is well-known and the motivic components
PRim«A? (n) coincide with the cohomological components Rim,A? (n) for degrees i = 0, 2d.

In particular, if d = 1, they are identical for all degrees, i.e. one then has
RreA” (n) ~ RmA? (n) @ R'meA? (n)[—1] @ R*meA” (n)[-2].
This also follows from direct computations when observing that (2.11) may be rewritten as
AS(n — d)[=2d] 225 R A% (n) 5 AS(n — d)[-2d], (2.12)

where Try is the trace map from Poincaré duality for etalé cohomology and ¢, is obtained
from applying R, to the adjoint of a cohomological purity isomorphism Rs'AS (n—d)[—2d] ~
A? (n). We omit the details.

For a general proper regular arithmetic surface 7 : X — S the maps in (2.12) are not
necessarily isomorphisms. This suggests that the motivic decomposition of Rm,A®(n)
arises from the (standard) cohomological degree components Rim, A~ (n) as follows: Split
R%1,A%¥(n) into a component dual to RO, A% (n) and into another component describing
the obstruction of X from being smooth and then regroup the latter to the motivic degree
1 part. This pattern is familiar from (2.3) and the contained definition "L(H'(X),s) :=
(X, s)L(H'(X), s) showing that the standard Hasse-Weil function (g (X, s) differs from
the motivic function ((X, s) only by additional terms in motivic degree 1 that are characterized

entirely by the bad fibers of X.

2.2.3 A motivic decomposition for Rm.Z(n)

The fundamental insight for all following computations of motivic cohomology will be that

Theorem 2.8 has an analogue for Bloch’s cycle complexes. We will need a technical preparation.
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For any map f : 2~ — % between arithmetic schemes and any étale neighborhood V — %
define

2BV, ) ={Ze 2} (V,j) | (f xida;) 1 (Z) intersects all faces properly}.

For a section s : § — £ of m and n € Z we introduce the technical assumption

The inclusion of simplicial structures Z%-(—,2n — )% — Z7.(—,2n — o) gives

rise to a quasi-isomorphism of associated derived complexes. In other words,
FPB(s,n)

DK(Z%-(—,2n — e)°) ~ Z(n)* .

FPB(s,n) ensures the existence of a functorial pull-back morphism s*Z(n)# — Z(n)® whose

adjoint Z(n)?* — s4Z(n)° is given over an étale neighborhood U — 2 by the map

zZrU,5)° — Z2"(s7'U,j)
if for all closed points x € Aj:
(S X idAj)_IZ Z N (£ x {z}) has codim 0 in & x {z}, or (2.13)

is a finite union of vertical divisors of 2" x {z}

7 —

0 otherwise

Note that for n < 1 one has a morphism s*Z(n)? — Z(n)S that is functorial in s uncondi-

tionally since this is well-known for the sheaves Q,/Zy(n), Z, and G,,.

The analogue of FPB(s,n) for morphisms between smooth varieties over fields are known

(cf. |18] property 4 following Thm 1.1).

Theorem 2.11. Suppose m : X — S is of relative dimension d = 1 and has a section

s: 8 > Z. Ifn = 2 assume that s satisfies the condition FPB(s,n). Then, for any

integer n, the complexes Z(n)® and Z(n—1)5[—2] split off as direct summands of RmyZ(n)” .

When writing "R n,Z(n)? [~1] for the remaining summand we arrive at the canonical

decomposition
R Z(n)? =~ Z(n)® @ "R Z(n)”* [-1] @ Z(n — 1)°[-2]. (2.14)
Proof. Let n = 1. As before, we will prove the theorem by exhibiting maps
Z(n)S 2% Rmz(n)? > z(n)s,

Z(n —1)5[-2] 2 Rmz(n)” 2 Z(n—1)5[-2)

(5)tm )= (3 3)

that compose as



31

Let ®q : 7*Z(n)° — Z(n)? be the flat pull-back morphism, i.e. the adjoint of the canonical
morphism Z(n)® — m,Z(n)? which, on the level of complexes over an étale neighborhood

U — S, is given by
ZMU, ) — Z2™(r U, j), Z — (1 xidpas) 712,

Similarly, let ¥ : s*Z(n)* — Z(n)® denote the pull-back morphism (2.13). By virtue of

the usual adjunctions, we may now define
Ry ® o
00 : Z(n)S —> Rmym*Z(n)S ——3 RmyZ(n)?,
Yo : RmyZ(n)? — Rmyses*Z(n)? = s*Z(n)” Yo, Z(n)®.

One sees directly that ¢gpg = id, i.e. Z(n)® splits off as a direct summand of Rm.Z(n)? .

Next, we let @9 : 5,Z(n —1)°[~2] — Z(n)# to be the morphism which acts on complexes as
2V sTU ) = 2V U, ), Z > (s x idai)(2).

Cor. 3.2 in [12] shows that @9 is well-defined. Note that the adjoint of @ is a quasi-
isomorphism Z(n — 1)°[—2] ~ Rs'Z(n)? showing cohomological purity for Bloch’s cycle
complexes (cf. [12] Cor. 7.2(a), Cor. 3.3(a)).

S S fims @2 2
w1 Z(n — 1)°[—2] = Rmys«Z(n — 1)°[-2] —— RmZ(n)” .
Finally, let Uy : m,Z(n)? — Z(n — 1)5[—2] be the proper push-forward map which is given
on cycles by

if for all closed points z € Aj:
1 . 1 . (7'[' X ldA])(Z) Zn(Z x{x}) has codimension 2 in & x{z}, or
Zn('ﬂ'_ U, J) g Zn_ (U7 ]), Z — is a finite union of horizontal divisors of X x{z}

0 otherwise

(2.15)
The conditions on S guarantee that [12] Cor. 3.2 and Cor. 7.2(b) are applicable, showing

that ¥y extends to a morphism

Vo : RmyZ(n)? — Z(n —1)°[-2].

Again it is clear that 19pe = id. Also, from the explicit descriptions (2.13) and (2.15) we
see immediately that the compositions 12 and ¢gps must be trivial. Consequently, Z(n)®
and Z(n — 1)S[—2] split off as distinct direct summands of Rm.Z(n)? .

Let us now consider Z(—n). Recall that

Z(-n)*[1] = @D dp.Qp/Zp(—n).
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It suffices to show that
Ry @ Gps = @Dy B [1/p) (2.16)
p P

as the claim then follows from applying Theorem 2.8 to j;,,Q;/Z,(—n). However, (2.16) is

immediate from diagram (2.8) since m, = m and 7[1/p]« = 7[1/p]:.

Finally, for n = 0 the Remark 2.9 shows Rm,Z ~ Z @ 72! Rr,Z. Moreover the long exact

sequence for the derived functor R, associated to
0 — 727 — Q¥ — Q27 — 0

proves R'7,.7Z = 0 and 722Rn,Z = 72! Rn,Q/Z[—1]. Indeed, one has R"7,Q = 0 for r > 0
as can be seen by passing to stalks and recalling that Galois cohomology with rational

coefficients vanishes. We may thus write

RmZ”" =17° & P 7' RmQy/Z) [-1]. (2.17)
p

For each p the Open-Closed-Decomposition (2.8) gives rise to the short exact sequence
0 — (Qp/Zp)%’p - @p/ngK - Z.pﬁka/Zi&/p — 0.
Applying Rm, yields the distinguished triangle
Rﬂ-*((@p/zp);{ - RW*Qp/Zg - Z';;,*Rﬂp,*@p/Zé% - (2.18)

pr,*Qp/Zf P is concentrated in degrees 0,1 and an analysis of the long exact sequence

associated to (2.18) shows that applying 72! preserves exactness. This yields

' R Q,/22 ~cone( i Ry Qp/ 257 [~2] —> T>1Rw*(@p/zp)«%).

We apply Theorem 2.8 to 72! Rr.(Q,/Z,)” P and verify on stalks that there are no non-
trivial morphisms of sheaves Zp,*R 7rp7*@p/Zp — (Qp/Z)°P(—1). Thus, we may rewrite

the above as
7 Ry Qy/Z;) = Cone (i) R'mpaQp/ 2 [<2] — "R (Qp/Zp)* "[-1]) @ (Qp/Z,)57(~1)[-2]
Combining this with (2.17) and making the identification
R'r,Z” = - @ Cone (i B @/ 257 [<2] — "R'ma(Qp/Zy) " #[-1] )
allows us to write
R Z” ~ 7% @ "R'm,2” [-1] @ Z(-1)5[-2]

as desired. O
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Remark 2.12. The proof of Theorem 2.11 uses the regularity assumption as follows. For
n < 0 it is implicit in the use of Theorem 2.8 where in turn it is needed for the version
of Verdier Duality given in Corollary 2.7. For n > 1 it is implicit in the use of FPB(s,n)
since this conjecture is formulated only for regular X'. We believe FPB(s,n) to hold only for
regular X.

The most important instance of Theorem 2.11 is for the structure map = : X — § of
our arithmetic surface X as it will allow us to decompose motivic and Weil-étale motivic
cohomology into degree 0, 1,2 components. However, it is also applicable to localizations

7z, : Xz, — Sz, as well as to structure maps of smooth proper curves over fields.

Note that for an elliptic surface 7 : £ — S one always has a section s : S — £. In fact, Ep
has a rational point and £(Q) = Er(F) since & is proper (cf. [31] Cor. IV.4.4(a)). In the case
of a general arithmetic surface m: X — S one still has an exact triangle for n = 1 without

assuming the existence of a section.

Let Zx,s and ,@?Y/S denote the étale sheafifications of the functors U/S — Pic (X xgU)
and U/S — Pic®(X xgU) on S respectively.

Proposition 2.13. One has the distinguished triangle
Z(1)° — RmZ(1)¥ — Pys[-2] — .

Proof. Clearly, 7<'RmZ(1)* = (15PRm,GY)[—1] = mGX[-1] = G5 [~1] giving us the

truncation triangle
Z(1)° — RmZ(1)* — (P'RmGY)[-1] — .

Moreover, it is well-known that
RITI'*Gﬁ = @/y/s. (219)

It remains to show Rim,Gt =0 for i > 2. Let T < X be a geometric point over p. Write
S5 = Spec Op" and X (T) = X x5 Oif’f and let mz be the base change of m to Sz. Then

(R'm.Gyy,) = H'(X(Z),Gm) = 0 for i > 2

by Grothendieck’s result [14] Cor. 3.2 (p.98) applied to the surface X (Z) as it is proper and

flat over the spectrum Sj of a regular local ring. O

Corollary 2.14. If 7: X — S has a section then "R, 7Z(1) = ,@g,/s[—l] and one has the

motivic decomposition

Rr.Z(1)* ~ 7(1)° @ 25 5[-1] @ Z°[-2].
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2.2.4 Motivic decompositions for complex manifolds.

The analogue of Verdier duality and of Proposition 2.5 for locally compact spaces is well-known
for all abelian sheaves. We use it to derive an analogue of Theorem 2.11 for the cohomology
of complex manifolds with coeflicients given by the locally constant Gr-equivariant sheaf
R(n) := (2mi)"R.

Proposition 2.15. Let S = {e} be the one-point space and let w : X — S be the structure map
of a complex manifold X of complex dimension d. Then the sheaves R(n)® and R(n—d)%[—2d]
split off as direct summands of R R(n)X. If d = 1 we will write "R*7R(n)X[—1] for the

remaining summand, i.e. we will have the canonical decomposition

Rm.Rn)X ~ Rn)° @ "R'7R(n)¥[-1] @ R(n —1)%[-2]

(2.20)
~ R'mR(n)* ® R'mR(n)*X[-1] @ R?m.R(n)*[-2].

Proof. Write (=) = R #m x(—,R). Smoothness of X implies 7'R¥ ~ R(d)%[2d]. Thus,
the analogue of Verdier duality yields

R R(d)X[2d] ~ Ry R Horn x (RY R(d)®[2d]) ~ R Homes(RmRY RY) = (R, RY)V.

Now, the proof of Theorem 2.8 holds verbatim for the structure map 7 : X — S of complex
manifolds with their analytic topology when replacing (2.9) with the above duality. This
yields the first line of (2.20). Equality of motivic and cohomological degree components

follows analogously to Remark 2.10. O

2.2.5 The motivic picture and notation

Motivic Interpretation. The decompositions of the previous propositions are motivated
by the theory of motives over a field K. We recall it here. Any smooth projective variety X
over K comes with an associated motive A(X), an object in a Q-linear semi-simple abelian
category Motqg. Conjecturally, £(X) produces H*(X) for any Weil cohomology theory H
by applying an appropriate fiber functor. One of the Standard Conjectures postulates the
existence of algebraic cycles 7 = X x X that induce the projections H*(X) — H*(X) onto
the i-th degree. It would follow that Ax = Z?io 7t in C%(X x X) where d = dim X. On

the level of motives we would obtain the decomposition
AX)=(X)®- - @R X) (2.21)
of A(X) into its motivic degree components A*(X).

If X is a smooth projective curve over K the existence of a section, i.e. a K-rational

point z € X (K) yields the above decomposition — even in the Z-linear category of Chow
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motives — by setting 7° = X x {2} and 72 = {2} x X. Indeed, on cohomology the sequence
{z} — X —» {x} splits off H*({z}) = H°(X) and taking the transpose cycle 72 = (7%)!
corresponds to projecting onto the Poincaré dual HY(X)Y =~ H?(X). The remaining direct

summand must be A1(X) and we may rewrite (2.21) as
A(X) = h(z) ® A1 (X) ® A(z) Y (-1).

It is expected that a similar theory holds for proper regular 2  of relative dimension 1
over more general base schemes S. It should provide something analogous to the perverse
t-structure on the derived category of [-adic sheaves on varieties over finite fields. A section

s: S — A would then give rise to an analogous decomposition
A(2) = "R(S) @ " (2) @ "h(S)” (-1).

Applying the appropriate fiber functors should then reproduce (2.10) and (2.14).

Notation. Let A€ D(Z") be a complex in the derived category of sheaves on any fixed
topology of Z". Whenever a decomposition of the kind Rm.A = @;_g1 o PRim. A[—i] holds
we will call *Rirm, A[—i] the motivic degree i component or just shortly A'-component of

Rr. A, and we will write
PH(Z , A) := H(Z, "Rim  A[—i]).
For example, Theorem 2.11 implies

HY(Z Z(n) = @© "H'(Z.Z(n))

p=0,1,2

— HY(S,Z(n)) @ 'H(Z,Z(n)) ® H2(S,Z(n —1)).

2.3 Deligne Cohomology

For the remainder of this thesis we assume that w: X — S has a section s : S — X satisfying

the functorial pull-back condition FPB(s,n) for all integers n.

Let X be a complex manifold and n > 0. Recall that for a subring A < C one defines
A(n)p = A(n)5 as the bounded complex in the derived category of abelian sheaves on X
given by

0— (2m)"A - Ox/c — Qyjc— ... — Q}_/(é -0

concentrated in degrees [0,n]. One defines

Hh(X, A(n)) := H(X, A(n)p).



36
For any arithmetic scheme 27, the action of Gg on 2" (C) carries through to Hx (2 (C), R(n))
and we define Deligne cohomology to be

HE' () = Ho(Z [, R(n)) := HH(Z (C),R(n))%=

(cf. [30] §2 or [7] §1). The set of C-points X'(C) of our arithmetic surface X has complex
dimension 1. So, we have Qi‘v((:) jc= = 0 for i > 2 and Poincaré’s Lemma proves C ~ [O Xx(C) —

Qx(cy/c]- Consequently

R(n)[0] forn <0
R(n)p® =~ { [R(1) = Ox(o)] ~ O%cy/SH~1] forn =1 (2.22)
[R(n) > C] ~R(n —1)[-1] for n > 2.

Here the pseudo-isomorphism for n = 1 is given by the exponential map. Using (2.22) we
reduce to singular cohomology and considering real and complex places separately gives us the
table of ranks (A.12). For the computation of H;)’I(X) with ¢ > 2 the perfect pairing

Hp(X /&, R(n) x Hp '(X/e,R2—n)) - Hp(X/w,R(2) >R (223)
from [8] Lemma 2.3 has been used.

Decomposition into f’-components. It is easy to see that

R(n)5© f
]R(n)s((c) N { (n) or n

<0
R(n —1)°©[-1] forn>1

Therefore, Proposition 2.15 shows together with (2.22) that also the Deligne complex
decomposes as
RreR(n)p = R(n)p® @ "RmR(n)p O [-1] @ R(n — 1)p7[-2].
On cohomology we obtain
Hp"(X) =~ Hy"(S) @ 'Hp"(X) @ Hy, *"7'(S) (2.24)

and the motivic degree 1 term 'H3"(X) equals the full H3"(X) ifi = 1,n < Oori=2,n> 2,

and vanishes otherwise.

2.4 Etale motivic cohomology

For finitely or cofinitely generated groups we will write G ~ H if G, H are isomorphic up
to 2-torsion. We write Ggiy and Geogiv = G/Ggiv for the divisible and codivisible part

lj.e. there are homomorphisms G > H and H %, G such that kernel and cokernel of the compositions a8

and Sa are finite 2-torsion groups
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of G. We also let (—)¥ = Hom(—,Q/Z) as well as (—)* = Hom(—,Z) for abelian groups

and (—)* = Hom(—,R) for R-vectorspaces respectively. For the remainder of this thesis we

assume the validity of the following

Conjecture 2.16 (L(X,n)). The groups H'(X,Z(n)) are finitely generated for i < 2n + 1

and vanish for sufficiently small i.

L(X,1) is equivalent to finiteness of Br X' (cf. [8] Lemma 3.3 and preceding comments).
Assuming L(X',n) allows us to reformulate Artin-Verdier duality as the existence of a perfect

pairing of integral motivic cohomology groups (cf. [8] Prop. 3.4)

HO~027"(X) x H"(X) — Q/Z. (2.25)

2.4.1 Completed motivic cohomology

Recall the Artin-Verdier étale topos X and its open closed decomposition (1.1). We write
H(X) := H(Xs,Z(n)) and H*"(X) := H*(X¢,Z(n)) for the motivic cohomology and
for its completed cohomology, i.e. its cohomology with respect to the Artin-Verdier étale
topos of X. The discrepancy between these two versions of cohomology is captured by the

distinguished triangle

Z(n)Y — Ro.Z(n) —> g7 "RF.(2m0)"Z —> . (2.26)

(cf. [8] Cor. 6.8) In particular, for i < n one has H*"(X) = H*"*(X) and for i > n these
cohomology groups differ only in 2-torsion. The cohomology of ue 77" R, (2mi)"Z is
computed in Appendix A.2. In what follows we will primarily work with completed motivic
cohomology H*"(X) as it is this type of cohomology that will factor into the definition of
Weil-étale cohomology (see Section 2.4.5).

As shown in Corollary A.12 in Appendix A.3 completed motivic cohomology also comes with

a decomposition into motivic degrees

Hz,n(j) ~ Hz,n(g) @ le,n(y) D Hi—2,n—1(§).

We will explicate this decomposition for n = 1.
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2.4.2 The casen =1

Proposition 2.17. The groups H*'(X) are given by and decompose as in the table below.

i—1 i=2 i=3 i=4 i=5|i>6
HiL(X) O Pic (X) (X /F) Pic (X)V (0*)Y 0
H(S) Ox Clp 0 Q/Z 0 0
HILX) |0 | Picd(X)/Clp | T(X/F) | (Pic®(X)/Clp)¥ | 0 0
H=20(5) 0 7 0 Clp (0*)¥ 0

Proof. We use Lemma A.8(ii) to evaluate the long exact sequence on cohomology associated

to the version of (2.26) for the base scheme S. In degrees 3,4 we obtain
0— H*(S) > Bro -% (2/2)" — Q/Z — H*'(S) — 0.

Since BrO = (Z/2)"2=% the map b must be the inclusion and we get H>'(S) = 0 and
HY(S) = Q/3Z = Q/Z as well as HY(S) = H0(S) = 0. Therefore the motivic decompo-
sition of H>!(X) = Br X is given by

BrX

BrX =~ BrO® BrO”

So, the motivic degree 1 part of the triangle (2.26) gives

Br X
BrO

0 — 1H3’1(y) — — (Z/Q)ll(X).

By [35] Thm. 3.1 and (1.7) the Tate-Shafarevich group III(X/F) fits into the exact sequence

BrX
BrO

0 — II(X/F) — — [[H'(Gr, JacX,),
g
where o runs through all finite places of F' and X, = X xp, SpecC. Proposition A.14

shows that the right-most terms of the above sequences are the same, so we in fact have

H3 Y (X) = TII(X/F).

Up to 2-torsion the remaining entries are immediate from Z(1) ~ G,,[—1] and Z(0) ~ Z
or follow from Artin-Verdier duality. The additional 2-torsion information is taken from
Proposition A.15. O

2.4.3 Compact support cohomology and the perfect pairing conjecture

Fan constructs in his thesis a map between complexes p : RI'(Xet, Z(n)) — RI'p(X /g, Z(n)) in

the derived category of abelian groups that induces the Beilinson regulator maps H2"~%"(X)

lIe
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CH™(X,i) — H%n_i’n(X). We define RT'.(X,R(n)) as the mapping fiber of p ® R, i.e. we
have the distinguished triangle

RT.(X,R(n)) —> RIT(Xer,R(n)) 2255 RTp(X/w,R(n)) —> (2.27)

and write HZ"(X) := H{(X,R(n)) for its cohomology groups. We have seen earlier that
the motivic degrees of RI'p(X /g, R(n)) coincide with cohomological degrees. So, p ® R
trivially decomposes into maps between the motivic degree components of RI'.(X',R(n)) and

RT'(X:,R(n)) and we get a motivic decomposition of Hy™(X) as well:
Hin(X) = HE(S) @ THIm(X) @ HI-271(S).
Flach and Morin have constructed a product map
RT'(X,R(n)) ® R[.(X,R(m)) — RT.(X,R(n+ m)) (2.28)

(cf. [8] Prop. 2.1) and have shown that under certain assumptions (cf. [8] Conj 2.9) Beilinson’s

conjecture (cf. [30] §3) is equivalent to

Conjecture 2.18. B(X,n) The product map (2.28) induces for all i,n € Z a perfect pairing
of R-vectorspaces

HO™M(X) x HY7927"(X)g — HY?(X) - R. (2.29)
Remark 2.19. B(X,n) is equivalent to non-degeneracy of the induced pairing
Hin (X)) x THAZ2 (X)) — R. (2.30)

In fact, due to the decompositions (2.14) and (2.10) the conjecture B(X,n) is implied by
the above together with B(S,n) and B(S,n — 1). However, B(S,n) is known for all n. We
will later see that (2.30) for n = 1 coincides with the height pairing which is known to be

non-degenerate. In particular, B(X,1) is a well-known fact.

Ranks of motivic cohomology groups. From now on we assume B(X n) to hold for
all n € Z. We use it to compute H*"(X)g and H-™(X). Together with cofinite generation
of the H*"(X)g for i > 2n one gets

Hi,n(X)R

12

R fori=n=0
0 forn<Oorn=0,i#0

So, we can read off the ranks of H2"(X) for n > 1 from B(X,n). Moreover, the long exact

sequences associated to (2.27) for n # 1 give us

HY(X)/HOO(X)g fori=1,n=0

H"(X) =4 7 .
Hy "(X) forn<Oandi#1,n=0
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and

Ker(HZ*(X) — He (X)) fori=3,n=2

H™(X)g ~ : A .
(e { HEMX)* =~ HY"(X) forn>2o0ri#3, n=2

We obtain ranks as given in tables (A.15) and (A.17) in Appendix A.5. In particular,

lHé’n(X)éng ifi=2,n<0
HEMX) = § (AR = (PICX/Clp)s =2, 0= 1
0 otherwise

2.4.4 Torsion of motivic cohomology

Let T?i’n = Tor H""(?)eodiy for 7 = S, 5, X, X as well as lT?i’n = Tor 1Hi’”(?)codiv for
? = X, X. Artin-Verdier duality gives Tg” >~ Tg_i’l_". Moreover, it is known that for
n>=2,i+# 1,2 one has Tg" ~ 0 and even Tg" = 0 for i < 0 (cf. [8] Section 5.8.3). In this
section, we establish an analogous vanishing result for the torsion parts of the Al-part of the

motivic cohomology of X.

Proposition 2.20. Let n be any integer. One has le\;n ~ lTZ?" ~ 0 whenever i # 2,3,4

and, moreover, 1T)z{’” =0 fori< 2.

Proof. Due to Artin-Verdier duality it suffices to consider ¢ < 2. For n < 0 the claim is
immediate from the definition Z(n) = @®,, jp,1Qp/Zy(—n) and for n = 0,1 it follows from the
explicit expressions Z(0) ~ Z and Z(1) ~ G,,[—1].

Let now n > 2 and fix a prime p. We will show that 1H’A(/’(, Zp(n)) = 0 for i < 0, proving
that 1Tf\‘;n has trivial p-part for ¢ < 1. Consider the Open-Closed-Decomposition

X[1/p] > X < Xy,
The proof of [8] Lemma 7.7 provides the distinguished triangle
i« Ri'Zy(n) — Zp(n) — RjuZy(n) —> (2.31)
together with a quasi-isomorphism
TS (14 Zp(n — 1)[-2]) = 7L Ri'Z,(n).

Zy(n — 1)*» is known to be cohomologically concentrated in degrees [(n — 1),2(n — 1)]
(see [38] Thm. 1.1). Consequently,

TSPRT (14 Ri'Zy(n)) ~ 75" RT(1"i4 Ri'Zy(n))
~ 7SR (75" (ixZp(n — 1)[-2])) ~ 0.
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Therefore (2.31) implies

7<"RT(X,Zy(n)) ~ 7<"RI(X, Rj«Zp(n)) ~ 7="RL'(X, Rj*Ténzp(n))

~ 7<"RU(X, Rjups) ~ 7<"RT(X[1], u32),

(2.32)

where the third quasi-isomorphism is [38] Thm. 2.6. Theorem 2.8 provides the decomposition
RrlL/plen = pi2 @ "R'w[L/plan (1] @ "~V [-2].

A direct comparison of the cohomology groups of both sides (or, alternatively, Remark 2.9)
shows that pRlﬂ[l/p]*u?.”[—l] is concentrated in positive degrees. So, by virtue of (2.32),

one has

TURIT(X, Z(n) /p*) =~ 7 PRIT(X[1/p], uit*)
~ 7'<1RF(X[1/p], ple[l/p]*ug).”[—l]) =0,

proving the proposition. O

2.4.5 Weil-étale cohomology

Flach’s and Morin’s work in [8] is founded on their insight that even in the absence of any
Weil-étale topos one may construct a Weil-étale cohomology complex RTy (X, Z(n)) — in
terms of which the special value conjectures are then formulated — utilizing Artin-Verdier

duality. We recall their definitions.

Flach and Morin use perfectness of the pairing (2.25) to construct a morphism
i : RHom(RT(X,Q(2 — n)), Q[6]) — RI(F,Z(n))

(cf. [8] Thm. 3.5) whose induced maps on cohomology H'(ax ) have image equal to the
divisible part of H*"(X). In other words, they factor as follows:

H'(ax,) : Homg(H ™" (X)) ®Q,Q) - H"™(X)gy — H""(X). (2.33)

Weil-étale cohomology RUyw (X,7Z(n)) is defined as the mapping cone of avy , i.e. one has a
distinguished triangle

ax n

RHom(RT'(X,Q(2 —n)),Q[—6]) RU(X,Z(n)) —— RUw(X,Z(n)) —.

We write H&}l (X) := H(RTw (X, Z(n))). From the associated long exact sequence and the

factoring (2.33) one easily deduces

HiN(X) = HY™(X)coqiy ® Hom(H? 427" (X), 7). (2.34)
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In particular, L(X,n) ensures that all HIZ; (X) are finitely generated. (2.34) gives the
Weil-étale cohomology groups listed in (A.18) and for n = 1 we get the splittings

i=1| i=2 i=3 i=4 i=5|i=6
HiL(®X) | 0 PicX |II(X/F)® (PicX)* |TorPicX @ (0*)*| ur 0
Hy(S) | 0% Clp Z 0 0
HILN®) | 0 |PicPx/Clp | TI(X/F) @ (Pic’X)* | Tor Pic®X / Clp 0
HE29E) | 0 7 0 Clr® (07)* 2 0

2.5 Betti cohomology and Weil-étale cohomology with com-
pact support

The long exact sequence induced by the regulator map splits motivic cohomology into a
compactly supported part and an infinite part given by Deligne cohomology. In this section
we work out the analogous decomposition for Weil-étale motivic cohomology.
Betti cohomology. Let RI'w (X, Z(n)) be defined via the exact triangle

RTw (Xy,Z(n)) — RI(Gg, X(C), (271)"Z) — RT(X(R), 7" "R7.(2mi)"Z) — (2.35)

(cf. [8] Def. 3.23). Since the rightmost complex is entirely 2-torsion we have

0

RTyw (X, Z(n)) @ R ~ RI(Gg, X(C),(2m)"Z) @R ~ RI(X(C),R(n))C*.

We write Hé{,”oo()() := H'(RT'w (X, Z(n))). We evaluate the singular cohomology groups on
the right hand side directly and get ranks as in table (A.13). The torsion groups of H‘Z}V" (X))
are computed in Appendix A.2.

Lemma A.11 shows that R['(X(R), 77" R7,(27i)"Z) and RT'(Gr, X (C), (2mi)"Z) decompose

into motivic degrees. Consequently, the entire triangle (2.35) decomposes and we have

Hy' (X)) = Hy' (S) @ 'Hy' (X) @ Hé;’i;"_l(S).

Compactly supported Weil-étale cohomology. There is a canonical map u? : RT(Xe, Z(n)) —
RTw (X, Z(n)) since RT (X4, Z(n)) can be regarded as the mapping fiber of the composi-
tion

RT' (X, Z(n)) —» RIp(X/r,Z(n)) — RI'(Gg, X(C), (27i)"Z) — RT(X(R), 7" " R4 (2mi)"Z).

Flach and Morin have shown that there is a unique 4% : RUyw (X, Z(n)) — RUy (X, Z(n))
making u¥ factor through RI'yw (X,Z(n)) (cf. [8] Prop. 3.24). RT'w,(X,Z(n)) is defined as
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the mapping fiber of i}, i.e. we have a short exact triangle
I o
RT'w . (X,Z(n)) — RI'w(X,Z(n)) BN RUw (X, Z(n)) — . (2.36)

We write HWC(X) := HY(RT'w,(X,Z(n))) for its cohomology groups. As u¥ splits into

Ai-parts, so does i% and we obtain the usual decomposition

HjP (X) = Hi' (S) © 'Hj' (X) @ Hyp 2" (S).

We will evaluate H&f (X)) later, as part of the computation of fundamental lines.

2.6 De Rham and derived de Rham cohomology

Algebraic de Rham cohomology. Let Il : 2" — S be an arithmetic scheme. Recall
algebraic de Rham cohomology RTqr(Z27/S) := RI'(Z, %, /S) and its Hodge filtration given
by RU'ar(Z/S)/Fy := RI(Z, Q;Z/S/Filn) where

0OFs = QY s/Filn =[O — Qays — ... — Qo]

as a complex in the derived category of sheaves of O g-modules on 27, concentrated in

degrees [0,n — 1].

The de Rham complexes of the generic fiber X over Q, of Xy, over R, and of X'(C) over C

are related as follows:
RTar(¥zo/R)/F" = RTar(X/F)/F" @R = (RTar(¥ (C)/C)/F™)%*.
We call RT'4r(Xn/R)/F™ the real de Rham complex and write
Hi(X) i= H'(RDar(Xoo/R)/F™) = H'(X(C), Q7))

For n < 1 these groups are trivial. For n = 1 de Rham cohomology simplifies to the
cohomology of the structure sheaf HS’II{(X )= H{(X(C),0 X(C))GR which is well-understood.
For n = 2 we use the GAGA principle to reduce to analytic cohomology. Recall that [(’)‘j{n((c) -
ng((c)/(c] is a resolution of C*(©) (cf. [37] Lem. 8.13) so that Hé’é = H! (X(C),C)%®. We

infer the ranks as given in table (A.14).

We will now exhibit an integral structure for RT'4r(X/Q)/F™. The natural candidate arising
from RT'4r(X/Z)/F™ turns out to have undesirable properties for n > 2. We thus resort to
derived de Rham cohomology.
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Derived de Rham cohomology. Derived de Rham cohomology is a variant of the above
where the alternating powers Q’}f /s of the Kahler differentials are replaced with derived
alternating powers L /\k Ly s of the cotangent complex L g /s. Its construction and related

notations can be found in Appendix A.4. We write
RU44r(Z/S)/F" = RI’(%ZM,LQ:@/S/F”) and HQ’QLR(%) := HY(RU4ar (2 /Z)/F™).

Algebraic and derived de Rham cohomology coincide for smooth schemes. In particular — when
denoting the generic fiber of 2" — S by X — Spec k — one has LQEK'/S@)OX = LQ;(/k ~ Q;(/k.
Consequently, RI'qqr(X/k)/F™ = RT'qr(X/k)/F™ attains an integral structure via

RTaan(2/S)/F" —%s RTqan(2/S)/F" & k — RTaar(X/k)/F™.

For the remainder of this section we assume Il : 2~ — S to be projective and regular. In
particular, 2 may be any proper regular arithmetic surface or curve. Let i : 2" — ]P’g be a
closed immersion into projective space and let Z denote the sheaf of (’)Pg—modules generated

by the equations defining 2.

Lemma 2.21. In the derived category of sheaves of O g -modules one has
L%/S ~ Q%/s

Proof. The morphisms of schemes 2 < Pg — § induce a distinguished triangle of cotangent
complexes

*Lpy ;s — Larjs — Ly py —

in the derived category D(Modp, ) of Oz -modules (cf. [16] Prop. 2.1.2 and 2.1.5.6). As
]P’fgv — S is smooth we have a quasi-isomorphism Lﬂng/s ~ ng/s (cf. [16] Ch. III, Prop.
3.1.2). Moreover, by [16], Prop.3.2.4(ii) one has Ly py ~ T/T%[1]. So, we have

I/IQ i)Z*QIP’g/S — thy/s —

in D(Modp, ). Here d is given by the usual Kéhler differential. d has to be injective as
A YLy s) = 0. In fact, by [16] Prop. 3.2.6 one has Ly s = [F — G][+1] with F,G being
finitely generated and locally free. Besides, one has Ly /s ® Ox = Ly = Qyx;[0]. Therefore
—as F is torsion-free — the map F — G must be injective and, moreover, Ly /s ~ %O(L%/s).
In particular,

d .
Lyys = [Z/T? = i*Qpy s][1] ~ Qg s. (2.37)

The last quasi-isomorphism follows from direct inspection or, alternatively, from the short

exact sequence (2.1) in [3]. O
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We will now compare algebraic and derived de Rham cohomology for 7’ : X — SpecZ. We
begin with some preparations. The second quasi-isomorphism in (2.37) can be rewritten as

the short exact sequence
0 — I/I2 — Z'*QIP’Q’/Z — Qyiz — 0.

It provides a canonical map p’ which we regard as a two-term complex

/

ig/ = [Qx/z ® det@XI/IZ detox ’L*QPIZV/Z:| [].]

in degrees —1 and 0 or, equivalently, a map p giving rise to Bloch’s complex

p

€ = [Q}\e/z WX/Z} [1]7

where

wy/z = Hom (det@X /T2, deto,, i*Qpy /Z)
is the canonical normal bundle of X' (cf. [3] §2 for Bloch’s treatment of wy 7, p, €).

For a complex C'*® in the derived category of abelian groups we write
. ) . 1)
(€)= T (#Tor Hi(C*) Y
€L
for its multiplicative Euler characteristic if it is well-defined. For a complex .#* of abelian
sheaves on X we write?
. . 3 . 1)
W(F*) = xR, 7)) = ] (i (x, 7))
€L

Recall the definition of the conductor A(X) = x(Q% /Ztors)- We will need
Theorem 2.22. (Bloch, [3] Thm. 2.3) One has A(X) = x(%¥).

Proposition 2.23. Let X be a reqular arithmetic surface with proper structure map 7' :
X — SpecZ.

(i) One has grO(LQX/Z) ~ Oy and grl(LQX/Z) ~ Qyz[—1]. Moreover, for i = 2 the
graded piece gri(LQX/Z) is locally quasi-isomorphic to €'[—2], i.e. for any point x of

X there is a quasi-isomorphism of complexes of stalks
g’ (LQxz)z ~ Co[—2]

in the derived category of Ox x-modules. In particular, for i = 2 the complex griLQ}/Z

is cohomologically concentrated in degrees 1 and 2.

2This is an extension of Bloch’s notation in [3] which he only defines for complexes with torsion cohomology.
This is, e.g., the case if the base change .#* ® Q yields a bounded exact complex of finitely generated abelian

sheaves.
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(ii) Let n = 2. Then F?/F™ is cohomologically concentrated in degrees 1 and 2 and there

is a distinguished triangle

RT(X,F?/F") — RT44r(X/Z)/F" — RI'(X, Qi}z) — . (2.38)

(iii) Let n = 2. We make the following technical assumption:

All special fibers of X are reduced, or there is a closed immersion

1:X — IP’% into two-dimenstonal projective space.

Then one has

detZ RFddR(X/Z)/Fn

detz, RTqar(X/Z)/F2 — A(X) 2, (2.39)

where the left hand side is understood as a quotient of lattices in the (1-dimensional)

Q-vectorspace detgRUgr (X /Q)/F"™ = detgRT4r(X/Q)/F?.

Proof. (i): LQ;}Z ~ QE}Z is immediate from Lemma 2.21. Now, recall the identity Ly /7 =
[Z/7? 4, i*QPQ’/Z] [1] from its proof. Note that both Ox-modules Z/Z? and *Qpy 17, are
locally free of finite type. So, following Illusie we may express the derived exterior powers of

L)z in terms of Koszul complexes.

er [y 7 = (L /\;LX/Z) [—i] [17] Ch. VIIL, (2.1.1.5) (p.277)
~ L0y (L z[-1])’ [16] 1.4.3.2.1(ii), or proof of [17] VIIL. Col. 2.1.2.2
~ Kos'(Z/I% ~% i*Qpy ;) [17] Ch. VIIT Lem. 2.1.2.1
= [T, 2/ = T5 /T2 @ gy g — . — TV T/T?® A 2]

(2.40)

Let i = 2. We treat the case N = 2 first. Then there is a section f generating Z, and i*Q%\r /Z
as well as I"Z/Z? are locally free of rank 2 and rank 1 respectively. Write v;(f) for the
generator of [YZ/Z2%. Then v1(f) = f. Since Z/Z? is a line bundle one has TZ/7? ~ (Z/7°)®’.
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Thus, the Koszul complex simplifies to

V72— TReiQm, — DR AR,

griLQX/Z x~
vi (f) — vi—1(f) ® df
Yi—1(f) Qw — Yi—2(f)®df A w
@Y @ (/1P IPeim, — A2
fef - fedf
f®w — df A w
N
T (Z/1?)%02) @ [I/I2 ®Qx;z — A i*QlP%/Z] [—1]
f®n — 7 A df

0

(Z/12)202) @ [y ® deto,T/T? detoi*Qz 7 | [ 1]

0

(/)% @ ¢'[-2].
(2.41)

Here we have used (2.37) and the fact that taking the tensor product with a line bundle is
an exact operation. The claim now follows after passing to stalks. Since the claim is local
the general case N > 2 follows from the observation that X may locally be described by one

equation f(u,v) = 0 as a subscheme of Spec Z[u, v] (cf. [3], Proof of Lemma 2.4).
(ii): We use the distinguished triangle
F2[F" — LQ% 5/ F" — LQY 5/ F? —
and apply RT'(X,—) to obtain (2.38). Next, we consider for all m > 2
gLy — F*/F™T — F?/F" —s (2.42)

and use LQE}Z ~ Qf{}z

trated in degrees 1 and 2. This completes (ii).

to conclude inductively that all F?/F™ are cohomologically concen-

(iii): Let i > 2. First assume that X’ embeds into PZ. (2.41) shows that there is a line bundle
Z on X such that
'Ly ~ L RC'[-2). (2.43)

Therefore (2.42) gives
X(F2/Fi+1)

N X(er' Ly jz) = X(Z QF) = X(£ QF).
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In fact, the third equality holds since p arises from p’ via the adjunction between ® and
Hom. We will show the identity

X(Z®%) =x(?) (2.44)

later in this proof. Using (2.44) and Theorem 2.22 one obtains y(F?/F") = A(X)" 2
inductively. Consequently — by virtue of (2.38) —

dety, RFddR(X/Z)/Fn _ dety RFddR(X/Z)/Fn B

— = A(X)" 2. 2.45
dety, RPddR(X/Z)/F2 dety RF(.)(, Q§}2> ( ) ( )

It remains to show (2.44). The distinguished triangle
ZRKer(p)[l] — ZQ®FC — £ ®coker(p) —

proves that (£ ® €) = %. The same can be said for x(%). So, it suffices to

prove

X(Z ®Ker(p)) _ x(£ ® coker(p))

x(Ker(p))  x(coker(p))
Ker(p) and coker(p) are supported on the at most 1-dimensional subscheme Z < X of

(2.46)

non-smooth points of X' (since Ker(p) = Q7 o, and coker(p) is locally isomorphic to Q%(/Z).
Write Z, = Z n &,,. We show (2.46) for the restrictions to each Z, separately. Fix a prime
p. By abuse of notation we write .2 again for the restriction £|z,. When writing x for
the additive Euler characteristic® then the Riemann-Roch Theorem for non-reduced curves
(cf. |36] Ex. 18.4.S) gives for any coherent sheaf .# on X

ML QF)—X(F) = ), degyea L] ymealengthy Fy..
ZiCZp

Here the sum is taken over all irreducible components Z; of Z, and n; denotes the generic
point of Z;. Now, (2.46) follows from applying the above formula to Ker(p)|z, and coker(p)|z,
and using Bloch’s result [3] Lemma 2.5 that

lengthy, Ker(p), = lengthy, coker(p)y

for every codimension 1 point n of X.

We now assume all special fibers of X' to be reduced instead of having an embedding of X

into IP’%. The subscheme Z < X of non-smooth points is then 0-dimensional. Write
) = HNE[-2])  and g = A (@' LQyg)

for the cohomology sheaves in degrees j = 1,2. (2.41) shows that %%jl and %”dde have

isomorphic stalks. However, since the ji”le are supported on the finite collection of points Z

3i.e. the alternating sum of the dimensions of the cohomology groups as k(p)-vectorspaces. This means it

i X(LRF)—x(F) _ x(LBF)
relates to x via Np =
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this glues to global isomorphisms of sheaves f%”gl ~ %{m for j = 1,2. From the (75!, 722)

truncation triangles for gr! L)y sz and ¢"'[—2] we obtain

. 2 I ,
(e L) — ;ﬁﬁ ﬁﬂjgg - )’ig %g; — (%) = X(#).

The claim follows as in (2.45). O

Remark 2.24. We expect (2.39) to also hold without the assumption RP(X). However, it
is unclear how to construct a line bundle £ satisfying (2.43) from the local isomorphisms
(2.41) without an embedding into PZ.

The canonical bundle complex w3, 17 Derived de Rham cohomology endows R gg (X /R)
with integral structures for each n > 2. It will turn out to be most natural to compare them

to a further integral structure coming from the complex

pod

w;(/Z = |:OX OJX/Z:| .
One indeed has RI'(X,w?, /Z)Q = RU4r(X/Q). The advantages of using w, /7 are two-fold:

(i) The cohomology of RI'(X,w?, /Z) is torsion-free and its induced integral structure on
RT'4r(X/Q) will allow for a formula for the later to be defined correction factor C(X, n)

that does not contain the conductor A(X) or any unspecified torsion cardinalities.

(ii) RO(X,wy /Z) admits a motivic decomposition fitting neatly into the formalism developed

in this chapter (cf. Proposition 2.30).

Proposition 2.25. One has

2
detz RFddR(X/Z)/F _ A(X)
detz RT'(X, wY ;)
So, if RP(X) holds, one has for any n > 2
T X/7)/F™
detz R ddR( / )/ :A(X)n_l. (2.47)

dety, RT(X,w}, ;)

Proof. Due to Proposition 2.23(iii) it suffices to prove the claim for n = 2. In this case the
left hand side equals

detz RT'(X,Q5),) o
2L -y <[Q£(/Z — w;v/z]) = A(X),

detz RT'(X, w;(/z)

where the last equality is Theorem 2.22. O

Lemma 2.26. (cf. [3] Lemma 2.2) Write (—)* = R .#2»(—,7Z). Then one has
(Rmsw )" ~ Rmswl z[+2].

In particular, the cohomology of RI’(X,w:Y/Z) is torsion-free.
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Decomposition into motivic degrees.

Proposition 2.27. Suppose nc : X(C) — S(C) has a section s¢ : S(C) — X(C), i.e. for

each real embedding o of F' one has X,(R) # &. Let n € Z. Then RIU4r(Sw/R)/F™ and

RU4R(Sx/R)/F"~1[—2] split off as direct summands of RUqr(X/R)/EF™. When writing

PRIT qr (X /R)/F"[—1] for the remaining summand we have a canonical decomposition
RT4r(Xo0/R)/F™ =~ RU4r(Seo/R)/F" @ "R'Tar(Xoo/R)/F"[~1] & RTar(Swo/R)/F" ' [-2]

in the derived category of abelian groups. Moreover, each summand on the right hand side is

cohomologically concentrated in one degree only, i.e.

RTar(Xeo/R)/F™ > Hag' (So/R)[0] @ "Hy (Xo/R)[ 1] @ Hag' ™" (Seo/R)[-2].

Proof. The claim is trivial for n < 0. For n = 1 it suffices to show that Ogc) splits off as a
direct summand of Rmc «Ox ). Since s¢Ox ) = Og(c) and 71¢O0gc)y = Ox(c) this follows
verbatim as in the proof of Theorem 2.8. (Also cf. Remark 2.9). For n = 2 the decomposition
is immediate from Proposition 2.15. Finally, a comparison with the ranks in table (A.14)

shows that each complex on the right hand side is concentrated in one degree only. O

Proposition 2.28. Suppose m : X — S has a section s : S — X. Then, for any integer
n, the complex LQE/Z/F" splits off as a direct summand of RW*LQ:V/Z/F". When writing

pR>17T*LQ;(/Z/F"[—1] for the remaining summand we have a canonical decomposition
R LQY /" ~ L0, /F" @ "RZ i LQY, /' [-1]

in the derived category of Op-modules.

Proof. The cotangent complex formalism provides maps £, : 7% LOg 17 JF™ — LQS, /7 JF™ and

Ly S*LQ}/Z/FTL — LQE/Z/F” satisfying £ o s*/; = id. Consequently, the resulting maps

Rﬂ'*fﬂ—
©o - LQE/Z/FH — RW*W*LQE/Z/FR - RW*LQR’/Z/FR7

Yo 1 R LYy 7/ F" — Ritysys LYY 7 /F™ = 5* LY 1 /F" > LQY [ F™
compose to the identity on LQQ/Z/F”. So, LQE/Z/F” splits off as a direct summand of

R, LS, /Z/ F" proving the proposition. O

Remark 2.29. It is unclear whether to expect the existence of a full decomposition
? ° n ° n ° n—
R LQY jz/F" =~ L9 /F" @ "R'm LQY )/ F[—1] @ LQG 5/ F" 1 [-2] (2.48)

analogously to Theorem 2.11. In order to replicate its proof one would need a duality result
of the kind
(Rma LY/ F)* = R QY 7/ F™ [ 2] (2.49)
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for a suitable duality operation (—)* that is analogues to classical Verdier duality Theorem 2.3
or Geisser’s duality [12] Thm. 7.3. In any case, one has a decomposition of the integral

structure determined by the canonical bundle complex.

Proposition 2.30. Write wp = Hom(Op,Z) for the different ideal of Op. Suppose w: X —
S has a section s: S — X. Then Op and wp[—2] split off as direct summands of Rw*w:\,/Z.

When writing pRlﬂ'*w;(/Z[— 1] for the remaining summand we have a canonical decomposition

in the derived category of Op-modules.

Proof. We mimic the proof of Theorem 2.8. Define
wo:O0p = Roﬂ'*w;(/z — Rmw¥ 7,

The composition

%o Yo

is the identity. Apply (—)* = R #2(—,7Z) to (2.50) and then shift by —2 degrees. Due to

Lemma 2.26 one obtains

ei[-2] . i [—2]
RW*U.)X/Z

WF[*Q] wp[—Z].

We let o = ¢§[—2] and ¢2 = pf[—2]. Again, one has ¥aps = (pot00)*[—2] = id. Further-
more, oy = 0 and Ygps = 0 for degree reasons. O

In the absence of a duality result of type (2.49) we will introduce ad hoc definitions to
artificially force a splitting of derived de Rham cohomology on the level of determinants.
This allows us to use the formalism for motivic decompositions as developed in this chapter

on derived de Rham cohomology as well.

Definition 2.31. Let n be any integer.
(i) Let "ROToLQ, ) /F™ = LOY 5 /F™ and "R LS, /F" := LY, /F" 1 [=2]. Write
detz "R'Tqar (X/Z)/F™ := detz "R*'Tqar(X/Z)/F™ ® det, ' RTqar(S/Z)/F" .
(i) Fori=0,1,2 let

A(X) = detz "R'Tqqr (X /Z)/F?
C detz"RT(X,0y ;)
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(iii) For any integer n
10 (X) := x(RTaar(X/Z)/F™) and 0% (S) := x(RTaar (S/Z)/F™).
Also, let ltgé)R(X) be defined by the equation
(%) = R (9) - i ()71 18R (9).

Remark 2.32.

(i) The symbol "RITqqr (X /Z)/F™ itself is undefined. However, Definition 2.31(i) ensures

that we have the decompositions

dety RUaar(X/Z)/F" = X (detz"RTaar(X/Z)/F") " (251)
i=0,1,2
as well as
Ax) = ] ‘A)ED. (2.52)
i=0,1,2

Similarly, 1tgé)R(X ) should be thought of as a substitute for the hypothetical Euler

characteristic x("R'Tqqr (X /Z)/F™).

(ii) For any n > 1 one has t%,z(S) = A(S)"! = (#Dr)"! by [8] Prop. 5.35. Moreover,
2 (X) = 1 since HY(X,0x) = H°(X,wy/z) has no torsion and H2(X,0yx) =
Hfl(X,wX/Z) = 0 by Serre duality.

(iii) The exact triangle Oy — LQ:\,//Z/F2 — Qx/z[—1] — and the short exact sequence
0 — wp — O — Qg7 — 0 prove that

e 2
() = ST AT — x(@5) = A(S)
A(v) = RSB _ o) = as)

dety, RT'(S,wp)

Therefore, the decomposition (2.52) becomes

A(X) = A(S) - TA(X)7L- A(S).
2.7 Completions of L- and (-functions
Let H'(X(C),C) = D, 14 H"? be the Hodge Decomposition and write i = dim¢ HP.

Further, write (HPP)%! for the eigenspace of complex conjugation to the eigenvalue +1 and
let hPE = dime (HPP)E(D? for integral p and hP® = 0 otherwise. Define

p+q=i, p<q

Lo(H'(X),s):= [] Tels=p)"™" [] Tals—p)" Te(s—p+1)"".
p=q=1%
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Obviously Lo (H*(X),s) decomposes into a product over all infinite places of F similarly to

(2.1). We analogously write

(X, 8) 1= [ [ Lo (H'(X), 5) V' (2.53)
€7

and define the completions of ((X,—) and (gw (X, —) to be
C(X,5) := (X, s)C(X,8), and (aw(X,s):= (X, s)Caw(X,s).
Bloch and Kato conjecture ((X,s) to obey a functional equation.
Conjecture 2.33 (Functional Equation Conjecture FE(X)). For any complex s one

has
2—s B

AX) 7T ((X,2—5) = +A(X)2((X, 5).

The lemma below provides special values of the completion factors Lo (H!(X),s). We express

them in terms of the special values I'*(n) of the I'-function.
Lemma 2.34. One has
Lo (H(X), ) = ((Sx,8) = Tr(s)'Tc(s)®  and  Loo(H*(X),5) = ((Sen, 5 — 1)

and, moreover,

formula s=n ord leading Taylor coefficient at s = n
S=n
+ _
n<0|mg-1)| () (2@n) T m)"
F((:(S _ 1)r+5
(X, 8) To(symes | n=1 —(r+s) (2m) e pmlo—1)
+ _
n=2 0 (%) " (2(2m) 7T (n)) ™)
n<0| —mg m
Lo(HY(X),s) | Te(s)™ (2(2m) "D ()™
n=1 0
Proof. One checks directly that
Wiolj=0 j=1 wE | o+ - ‘ I'E(n) ‘ ordT'c
1=0| m gm 1=0|r+s s n<0 —1
: : 2(2m) "I (n)
1=1| gm m t=1|r+s s n>1 0

From here the claim is straightforward. O
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In particular, we may read (2.53) as a decomposition of ((X, s) into factors corresponding
to both motivic and cohomological degrees ¢ = 0,1,2. We may consequently define the

completion of each perverse L-function “L(H!(X), s) separately:
PL(HY(X),s) := Lo (H'(X),s)'L(H'(X), s).

Together with (2.52) Conjecture 2.33 decomposes entirely into motivic degree components

and since the functional equation for (r(s) is well-known we arrive at

Corollary 2.35. Conjecture 2.33 is equivalent to

A(X) 2 PL(HY(X),2 — 5) = + "A(X)2 PL(H (%), 5).
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Chapter 3

The special value conjectures in their

Welil-étale formulation

In this chapter we will define and compute the fundamental line A(X,n) as well as the
correction factor C(X,n) € Q* for arithmetic surfaces X'. A(X,n) will be a copy of Z that
comes with a distinguished trivialization map Ao (X, 1) : R S A(X,n) @ R. Ay (X, n) gives
rise to a unique real number up to sign Ay (X, n) € R*/{£1} signifying the inverse generator
of the preimage of A(X,n). These quantities feature in the conjectures [8] Conj. 5.10 and
5.11, describing the vanishing orders and leading Taylor coefficients at all integers. We

formulate them as follows.

Special Value Conjectures. Let X' be a proper reqular arithmetic surface and let n be any

integer. Then one has

(VO) orde—n((X,5) = > (~1)""! dimp HI"(X)
€L
(TC) C*(X,n) = C(X,n)Ap(X,n) (3.1)

We will explicate these conjectures using the decompositions into motivic degrees of the
various cohomology groups worked out in the last chapter. In particular, for n = 1 the
above will turn out to be equivalent to the Birch and Swinnerton-Dyer conjecture. This
extends the two-dimensional case of the result [8] Thm. 5.26 — i.e. the compatibility of the
above conjectures for smooth projective arithmetic surfaces X with the Tamagawa Number

Conjecture — to (not necessarily smooth) proper regular arithmetic surfaces.

We keep the notations from Chapter 2.
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3.1 Conjectural vanishing orders and compatibility with BSD

In this section we will explicate [8] Conj. 5.10 for arithmetic surfaces and show compatibility

with the rank part of the Birch and Swinnerton-Dyer conjecture.

The Vanishing Order Conjecture. We will formulate the vanishing order conjecture as
in [8]. Define

RI’ar’c(X,]INQ(n)) = RI(X,R(n))® RL(X,R(n))[—1]
and write Hi(X) := Hi(RFar,C(X,]T%(n))) for its associated cohomology groups. We wish

to verify

Conjecture 3.1 (Vanishing Order Conjecture VO(X,n)). For all n € Z one has

0rde—n((X,8) = > (=1)" - i - dimg H,(X) = > (—1)""" dimg H:"(X).

ar,c

€7 €L

We begin with a preparational Lemma. We write A, for the abelian group generated by the
irreducible components of A, modulo the relation [X}] = 0, i.e. modulo the special fiber A

interpreted as the weighted sum of its irreducible components. In other words,
Ay = CHO(X,)/[%)-

Lemma 3.2. We have a short exact sequence

0 — Clrp® P Ay — PicX — PicX — 0. (3.2)
p bad
Moreover, since 1HQ’I(X) ~ Piccl(;x, the above can be rewritten as
0 — @A — 'HP@X) — Pi’X — 0 (3.3)
p bad

Proof. The theory of Chow groups provides the Localization Sequence
CH'(X,1) - (P CHO(X,) — CH'(X) — CH'(X) — 0.
p

We have CH'(X,1) ~ HO(X,0%) = F* and v is the valuation map. Therefore, after taking
the quotient with the image of v the above sequence becomes (3.2). Since Clp @ @D, paq Ap
maps into Pic’A’ (cf. e.g. [26] Thm. (8.1.2)(i)) we also have the short exact sequence

0 — Clp® P Ay — Pic?X — Pic’X — 0.
p bad

For the second part of the claim take the quotient with Clg. 0
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Proposition 3.3. The Vanishing Order Conjecture for X is equivalent to

-

m(1—g) forn <0
m(l—g)—1 formn =0
ords—n((X,s) =< r+s—1—rkPicX forn=1 (3.4)
-1 forn =2
| 0 forn > 2
or to
mg forn <0
ordg—p, L(HY(X),s) = { 1k Pic®X forn =1 (3.5)
0 forn =2

In particular, VO(X,1) is equivalent to the vanishing order part of the Birch and Swinnerton-

Dyer conjecture.

Moreover, VO(X,n) holds for n = 2. Also, VO(X,n) is compatible with the conjectural
functional equation for L(H*(X),s). In particular, for an elliptic surface X = £ defined
over Z (i.e. S = SpecZ) one knows VO(E,n) for all n # 1.

Proof. The equivalence of (3.4) to VO(X,n) is immediate from table (A.15). We will now
show equivalence to (3.5). Proposition/Definition 2.1 gives
ords—n (X, s) = ords—p(aw (X, s) — ords—, II(X, s).

For n # 1 Lemma 2.2(i) shows ords—,II(X,s) = 0. Hence — for n # 1 — (3.5) follows from

(3.4) when using
Cr(s)Cr(s —1)

X.s) =
) = L (0,9
and the well-known formula

€T+ S ifn<0

r+s—1 ifn=20
ords—nCr(s) = 3.6
Cr(s) 1 1 (3.6)

0 ifn>1

for the vanishing orders of (. By Lemma 2.2(ii) it remains to show
rkPic X = tkPicX + Y (d(p) —1). (3.7)
p bad

This in turn follows from the short exact sequence (3.3) since d(p) — 1 = rk A,.

For the second part note that ords—, L(H'(X),s) = 0 for n > 2 since the infinite product
expression for L(H'(X), s) converges for Re(s) > 3/2. Assuming the motivic degree 1 part
of the conjectural functional equation

2—s

"A(X)2 Lo (HY(X), s)PL(HY(X), s) = "A(X) T Ly (H'(X),2—s)’L(H'(X),2—s) (3.8)
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and using the vanishing order part of Lemma 2.34 verifies ords—, L(H(X),s) = mg for
n < 0. The last statement follows since (3.8) is known for X being an elliptic curve over Q

by virtue of the Modularity Theorem. O

3.2 Integral Structures

In the next two sections we present preparatory results for the computation of the fundamental
line A(X/Z,n) in Section 3.4 and introduce notation for the integral structures that are left

implicit in its definition. An overview of their bases can be found in Appendix A.7.

We reserve v|co for infinite places of F' and let j = 1,...,g. From now on we write Mp, 5, (f)
for the matrix describing a linear map f between real vectorspaces with specified bases By
and Bs.

Integral structures coming from H!(X(C),C). The +1-eigenspaces H!(X(C),Z)* of
the Gg-action on H'(X(C),Z) induced by the Gg-action on X (C) sum to a subgroup of
H(X(C),Z) of finite index

HY(Xx(C),2)* ®@ H'(X(C),Z)” < H*(X(C),Z). (3.9)

Consequently, their images under the base change maps

HY(X(C), ) — s HY(X(C), R)*

into the summands of the eigenspace decomposition
H'(X(C),R) = H'(X(C),R)* ® H'(X(C),R)"

are integral lattices of maximal order. Since H'(X(C),Z) has a Hodge Decomposition after a
base change to C both groups H'(X(C),Z)* must have the same rank mg. In fact, Poincaré
duality provides a pairing of H!(X(C),Z) with itself that restricts to a pairing between

complementary eigenspaces

A HYX(C),Z)" x HY(X(C),Z)” — H*X(C),Z) = PZ, (3.10)

which in turn is a direct sum of perfect pairings over all infinite places of F. Write Bt = {6;}}Uj
for a basis of the image of H'(X(C),Z)* in H'(X(C),R)* and let B~ = {4, ;},; = (B*)* be
the basis of H!(X(C),R)~ dual to B*. Note that BT U B~ is an R-basis of H'(X(C),R) but
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does not necessarily generate the lattice H'(X(C),Z) = H'(X(C),R) since (3.9) is generally

not an equality!. Next, define

A ot \n S+
s _ { (2m2)"0,;  for n even and 5 { (2mi)"6,;  form odd

(2mi)"d, . form odd v (2mi)"0, .

v vj forn even

and let BY" .= {67:"},; « H'(X(C),C).

BT is a basis of H%}TLOO(X)R = H'(X(C),R(n))“® that generates the integral lattice
H;I’,TLOO(X) c Hé[}noo(X)R. Moreover, the set BY™~1 is for n > 2 a basis of HZ"(X) =
H'(X(C),R(n —1))%® and for n < 1 it is a basis of Hln Y(x) = HY(X(C),R(n — 1))%=.
Their integral structures shall be the Z-lattices generated by B¥"~1. Further, for n < 0 we
endow H2™(X) with an integral structure via Ho™(X) = H5"(X). Finally, for any fixed

integer n we give H'(X(C),C)%® an integral structure via
H'(X(C),C)% = H'(X(C),R(n))“* ® H'(X(C),R(n — 1))

ie. BL:= Bt U BT 1 s its integral basis.

Integral structures coming from H?(X,Z(n)) for n > 2. For each n > 2 we fix a set
of generators
Cn = e [vloo, 1 < < g}

of the image of H*"(X) in H?(X,Z(n))g. Since H""(X)g H *(X)g for these n, the
set C™ also determines an integral structure on Hi (?) . Further, (2.34) shows that
Haf_”(f)R ~ Hom(H?"(X),R) for n > 2. We write c e H3 27" (X)g for the cycle class
corresponding to cgj under this isomorphism. ¢?~" := { Coi "|v|oo, 1<j<g} is a basis of the
integral structure of H‘Z; (X)r determined by HIZ/Vn (X) since the duality (2.34) is a duality of

integral lattices.

If there is no risk of confusion we will also use 5+5' and ¢y, to refer to integral elements of
Hgn( X) for n <0 and H2n(X),H€{,2_"( ) for n > 2 respectively.

Integral structures for de Rham cohomology. One has the decomposition
HiR(X(C)/C)%* =~ H'(X,0x)r ® H*(X,wx)r.

Serre duality for coherent sheaves provides a perfect pairing

HYX,0x) x H'(X,wy) — HY(X,wy) =7 (3.11)
)

C/A, the matrix B describing the

'E.g. if X is an elliptic curve over Q so that one may write X (C) =
) respectively, depending on whether

base change from H'(X(C),Z) to B is given by B = (! ,) or B = (1

1
complex conjugation acts on a basis of the lattice A by ( _1) r(,?

)-
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—®r1
—

of free abelian groups. Let Bi} = {wyj}v; be a basis of the image of H'(X,Ox)
HY(X,0x)r and let B 1= (B%)* := {ny;}v; be the basis of HY(X,wx) dual to Bi%. We
will use

._ 10 01 _
Bar = Big v Bar = {wWujs Mvj }uj-

A subtlety needs to be taken into account for the choice of bases of derived de Rham coho-

mology groups. Let B% and géi)ﬁn be bases of the images of Hyy (X/Z) and HkL (X /Z)

in Hjg(X0/R) and H3g (Xo0/R) under base change to R. Similarly, let B((f}% be a basis of the

image of H°(S,wr) —8x! H2: (X/R). After splitting off the motivic degree 0 component

(2.47) unravels to

ti () 9 Mg gy (dimeeem) <A<X>)”{
(G (s)  det M, A(S)

Due to the ad-hoc Definition 2.31(i) the motivic degree 1 and 2 parts of the quotient (2.47)

3.12
(id g1 (e /) (312)

roBar

can only be expressed in terms of differently defined integral bases of Hig (Xy/R) for i = 1,2
— which we will denote By, Béi)ﬁn. They have to be chosen in such a way that (2.47) holds
for each motivic degree component separately. Concretely, we let B((i?f;{n be any basis of

H2: (X0 /R), satisfying

dety, RFddR(S/Z)/Fn_l
detz RI'(S,wr)

tiin (S) - det M. 5 (e, m) =

ddR

and then choose Bz to be such a basis of Hlz(Xo/R) that (3.12) remains valid when
replacing gg‘dR, g((ﬁi)f’{n with Big, Bé?f’{n. Now the 1-part of (2.47) is

4 (X) - det Mgy, 5 (idHéR(Xw /R)) = Ux)L. (3.13)

Obviously, if we had a duality result of the kind (2.48) one could choose Bjj;r = gng and

B((f}%m = gfﬁ%m. In any case, the difference will not concern us in the remainder of this

thesis.

The Period Isomorphism. Let
©: H'(X(C),C) — Hr(X(C)/C)
be the period isomorphism and write ®“% : HY(X(C), C)%* — Hlp (X /R) for its restriction

to the Gr-invariant part.

Lemma 3.4. One has
det MBl,BdR((bGR) =1.

Consequently, for all integers n,

det Mgn g, (99%) = (2mi) 291, (3.14)

JBar



61

Proof. Most of the work towards the above identity is hidden in the definitions of B! =
(2mi)B~ U BT and Bar = B U Bk as self-dual bases. It suffices to show that

det Mg+ 5~ gor oo (99%) = (2mi) ™.
In other words, we need to calculate the quantity ¢ € R*/{£1} for which

N0 N (2(C),0)% — N Hlp (X /R) (3.15)

acts as

/\ <5:}rj A 51}_]) — C- /\ (Woj A Nuj) - (3.16)

v]oo v|oo
1<j<g 1<j<g

By the Poincaré and Serre dualities (3.10) and (3.11) 5;3- A 6, and wy; A 1y are generators
of (the v-component of) H?(X(C),Z) and HQ(X,w;(/Z), i.e. they correspond to classes in
H?(X(C),C)% and H2g(Xx/R) represented by a point. But it is well-known that the period

isomorphism on second cohomology
®: H?(X(C),C)% — H?*(X,/R)
is just multiplication with (27i)~! (for each v) with respect to point class bases. Consequently,
one has ¢ = (2m)™"™9. O
Finally, note that the period isomorphism restricts to a map
10 H'(X(C),R(1))“* = H'(X,Ox)r.

We define
Q(X) := det Mg+ gro (@1°).

The duality isomorphism hp(y ). Let hg)(x n) Hi(X)g —> Hy "?7"(X)* be the

isomorphism induced by the conjectural perfect pairing (2.29). It is related to the Beilinson
regulator map ps : H>"(X)g — H%’n(X) as follows.
Lemma/Definition 3.5. Let n > 2. Then one has

det Mcn7B+;2—n (hg()){,n)) == det Mcn7B+;n—1 (pQ)

We write R"(X) for the above determinants and call it the n-th regulator of X.

Proof. The hg)( Xn) fit into a commutative diagram (cf. [8] Rmk. 2.6)

— HMX) —— H"™(X)p —f— HP'(X) —— HM(X) ——

(4—1) ~ | p@ ~ | pin ~ | (p3=D
l(hB(X,Q—n))* _J/h’B(X,n) _J,hD _l(hB(X,Q—n))*

P H4_Z’2_n(X)ﬁ§ Hél—172—n(X)* H%_Z72_n(.)()* P HS_ZQ—n(X)]E

lle
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with exact rows coming from (2.27) and where h%" : H"(X) = H3 "> "(X) is the isomor-
phism induced by the perfect pairing (2.23) of Deligne cohomology groups. Specializing to

1 = 2 yields the commutative square

H2"(X)g —2— HEZ™(X) (3.17)

~

~|p®2 ~ | p2n
_J/hB(X,n) _lh’D

HE2 ()" —= HE"(X)*

(2.23) simplifies for i = 2 to the restriction of the Poincaré duality pairing of algebraic
topology

HY(X(C),R(n—1)) x HY(X(C),R(2—n)) — H?*(X(C),R(1)).

to its Gr-equivariant part. Since Poincaré duality also holds integrally h%’" does not contribute
to the determinant of the upper right decomposition h%n opo: H>™"(X)g — H%Q_"(X)* of
the square. Finally, since HZ ’27n(/1’ ) derives its integral structure from the bottom map of
(3.17) the claim follows from taking determinants in (3.17). O

3.3 The Regulator R(X)

In this section we will revisit Conjecture 2.18 and introduce the additional assumption that
B(X,n) specializes to the Arakelov intersection pairing. We then define the regulator R(X)
of an arithmetic surface X and compare it to the classical regulator R(X) of the generic

fiber X. The main result is Proposition 3.11.

The pairing B(X,n). Let ¢ be a section of the inclusion 752" 'RI'p(X /g, R(n)) —
RUp (X /r,R(n)). We define RT'(X,R(n)) as the mapping fiber of its composition o o p with
Beilinson’s regulator map. Write H*"(X) = H'(RT'(X,Z(n))). By the work of last chapter

we have a decomposition into motivic degrees
RI'(X,R(n)) ~ RI(S,R(n)) @ "R'T'(X,R(n))[-1] @ RI(S,R(n—1))[-2]. (3.18)

RI(X,R(n)) fits into the 9-Lemma diagram [8] (29) in Section 2.3 whose associated long

exact sequences show that H™ vanishes for i # 2n and that one has
HYO(X) = H(8) = H*°(S)p = R,  H™?(X) = H>'(S) = H*'(S)s =R (3.19)
as well as the short exact sequence

0 —> coker(p)) — H>'(X) — H>'(X)g — 0. (3.20)
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It shows that the motivic decomposition of H 21(X) is given by

01 Pic’ X
H?1(X) = coker(p1) @ ( - > O R (3.21)
R
H?"(X) is isomorphic to the n-th Arakelov Chow group CH™(X)g (cf. [8] Prop. 2.11) and
the pairing B(X,n) translates into a perfect pairing
H*m(X) x HA7227"(X) — R, (3.22)

Remark 3.6. Flach’s and Morin’s identification H2""(X) ~ CH"(X)g results from an
application of the 5-Lemma and thus depends on the choice of a splitting H*!(X)gr — H2! (X)
of (3.20). However, the identifications (3.19) and the decomposition (3.21) into motivic degree

components provide one such splitting, i.e. we have H (X)) = CH"(X)g canonically.

From now on we will assume the following enhanced version of B(X',n).

Conjecture 3.7 (B(X,n)). Conjecture B(X ,n) holds and the perfect pairing
CH"(X)g x CH* "(X)g — R

obtained from (3.22) via the canonical identifications H2""(X) =~ CH™(X)g coincides with
the Arakelov Intersection Pairing (—, —)a;.

For arithmetic surfaces (—, —)a, is only non-trivial if n # 0,1,2. Moreover, it only involves
information from motivic degree 1 if n = 1. We now make the Arakelov pairing explicit
for n = 1 and compare it to the intersection pairing (—, —)~ from algebraic geometry,

following [15].

Proposition 3.8. (ARAKELOV, HRILJAC)

(i) (3.21) is an orthogonal decomposition of H*(X), i.e. one has

. 0
H*Y(X) = coker(p;) L (Plc X) 1R
R

and {—, —)ay is defined on each summand separately. (—, —)ay is negative definite on

(Pic’ X /Clp)r (cf. [15] Thm. 3.4, Prop. 3.3).

(ii) Let D,D'" e Pic’ X be fibral divisor classes with support in the special fiber Xy. Then
<D7D/>AI" = log Np - <D7D/>ﬁ

(cf. [15] def. of (D - E), in Sec. 2).



64

(iii) There is a unique linear splitting
Pic’X — (Pic’X)g, P+ P

of the natural projection Pic’ X — Pic’ X such that the image is orthogonal to all fibral
divisor classes in Pic’X (cf. [15] Thm. 1.8).

(iv) Fiz an isomorphism ¢ : Pic®X = JacX. X has a divisor such that its associated
canonical height h satisfies for all P € Pic®X (cf. [15] Thm. 3.1)

<Pv P>Ar = _h(¢(P))

Definitions of R(X), R(X) and ¢,(X). Let & be a basis of the image of 'H*'(X) in
IH21(X)g = (Pic®X /Clp)r. 2 also defines an integral basis on Hz'' (X) due to H>'(X)
H>Y(X)g. Let 2* be the basis of "H>!(X)% dual to 2. We define the regulator R(X) of
X to be

lle

R(X) := det ((P, P)ar) p pre pp = det Moy s <(h§32£;(,1))*) :
Next, fix a basis P = {P}; c;cpepicox of the image of Pic’X in (Pic"X)g. The regulator
R(X) of the generic fiber X equals

R(X) = det ((P, P")ar) p prep

since the Arakelov Intersection Pairing is by Proposition 3.8(iv) the same as the Neron-Tate

height pairing on Pic®X.

Now, fix a prime p. Let J — S}, denote the Neron model of the Jacobian J = Jac Xp, of
the generic fiber of the local surface Xo, over Sy, = Spec Oy. Let J = J, denote the special
fiber of J and let j 0 be its identity component. We also write J 0 = 7 for the subgroup
scheme with generic fiber J and special fiber equal to J°. We define

J(F) _ #J(k(p))

)= 505 = e k)

Decomposition of R(X). Fix a prime p of O. Recall the notations d(p) and n;(p) from
Lemma 2.2. Also, let {C’}J}Kjgd(p) be the reduced irreducible components of &}, and let
m;(p) be the multiplicity of C’; in &,. The section s : S — X provides a rational point on
one component — say C’E(p) —of A,. Thus C’s(p) must be simple and cannot decompose further
over any algebraic extension of k(p), i.e. mg)(p) = ngg)(p) = 1. We conclude that the set
of classes DF := {[C;] € (Ap)r}1<j<d(p) is @ basis of the image of A, inside (Ay)r.
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Lemma 3.9. (RAYNAUD; BoscH, Liv) Fiz a prime p of O. The sequence

B

CHO(X,) —s CHO(X,) .z
d(p)
c? - YNCEChy,, -t (3.23)
i=1
ch = mj(p)
1$ a chain complex and one has
d(p)
Ker
# mo ¢p(X) Jlj[lng(P)

Proof. This is [5] Theorem 1.11 applied to the abelian variety A = J. Indeed, the right-most
term in Thm 1.11 gdZ/d'Z vanishes since &}, has a component satisfying mq,) (p) = nqq) (p) =
1. Moreover, the geometric multiplicities e; of C’; in C; (cf. [6] Def. 9.1.3) occurring in [5]
Rmk. 1.12 equal 1 since the base change of any reduced curve over a perfect field to its

algebraic closure remains reduced (see e.g. [26] example (6.1.7)). O

Remark 3.10. Raynaud has shown the analogue of Lemma 3.9 for algebraically closed residue
fields (cf. [26] Prop. 8.12); Bosch and Liu extended it to more general residue fields. As
part of his proof Raynaud has shown that, in the case k(p) = k(p), the Picard-scheme Picg(E

is isomorphic to the group of components J /j O of J — a finite étale group scheme that
Ker g8

only depends on the generic fiber X. This should serve as intuition for why # 7>~ does not
depend on the special fiber A}, beyond the values of the n;(p).
Proposition 3.11. One has
R =t (#7 pic ¥ )2 rx)-TT { tomey® 1 T Trsto) ()
= . . n . C
~ (#Tor PicX)? Clr ARG ¥ M
1 Tor Picx \ 2
— CR(X)-TI*(X,1) - X).
= (#Tor Pic’ X)2 <# Clg ) (X) (&, 1) UCp( )

Proof. (3.3) gives a short exact sequence of real vectorspaces

: .0
0 — (@Ap> — (PICClX> — (Pic’X), — 0. (3.24)
p R F /R

Due to the splitting provided by Proposition 3.8(iii) the above sequence yields an orthogonal

decomposition

(PiCCl(;X>R = <€9AP>R L (Pic®X)y (3.25)
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and we may regard &' := P U | J, D" as a further (R-)basis of H2M(X)R. (3.25) gives

R(X) = (det My, 5 (id))” - det ((P, #)Ar) e o

= € o o (1 2- e ! . e i "
= (det Mop 310" et (P, Prc) - [ T CAED) e (326

— _ Wd))? - d(p)—1 ( poop )
R(X) - (det Mo 2 (id log N det ({C},C" A

(X) - (det M 5 (id)) |p|( og Np) et ((C7,C%) 1<i,j<d(p)

where the last equation uses Proposition 3.8(ii). We evaluate the remaining factors separately.

First, since (3.3) is an integral exact sequence, det M s g (id) measures the discrepancy in

torsion between Pic’X’/Cly and its surrounding terms in (3.3), i.e. one has

1 Tor Pic’ X
#Tor Pic’ X Clp

det Mg o (id 1H271(X)R) =

Finally, recall the sequence (3.23) of the previous Lemma. Since mgy,) = 1 the set DP may

also be viewed as a basis of Ker 3. Besides, « is represented by the full intersection matrix

P P
<<C'Z- , Cj>m)1<i7j$d(p). It follows that

det (<c§,c§>m) _ yRer8

1<i,j<d(p) Im«

Lemma 3.9 completes the proof. O

3.4 The Fundamental Line

Consider the perfect 3x3-square from (8| Prop. 4.14.

RFdR XOC/R /Flln[ ] R RFD(X/]R,R(H)) Rrw(Xoc, Z(n))R (327)

| L

RT4r(Xo/R)/Fil"[—1] ——— RI(X,R(n))[1] ® RT (X, R(n)) ———— RT'w,(X, Z(n))r[1]

| J

RT(X,R(n))[1] ® RT(X,R(2—n))*[—4] —= RTw (X, Z(n))r[1]
The middle horizontal triangle is exact by the 9-Lemma. So, the fundamental line
A(X, n) = detzRFW,c(X, Z(n)) ® detzRFddR(X/Z)/Fn

has a trivialization

Ao(X,n) : R = A(X,n)®R.

By the work of the previous chapter the determinants of the complexes in diagram (3.27)

decompose entirely into motivic degree components in the presence of a section s : § — X

Y
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satisfying FPB(s,n). So, we may write
A(X,n) = A(S,n) @ '"AX,n) PR A(S,n—1)
as well as
Ao (X, 1) = Ao (8,1) @ Nep (X, n) 1 @ Ao (S, — 1), (3.28)

where 'A(X,n) and 'A, (X, n) denote the Z-line and its trivialization coming from the
l-part of the cohomology diagram induced by (3.27). We write Ay (X, n) € R*/{£1} for

the inverse of the generator of the inverse image of A(X,n) under A\, (X, n), i.e

Let '"Aoo(X, 1) and Ao (S, n) be defined analogously. (3.28) translates into

Aol = =50 e )

Flach and Morin have worked out A (S,n) in [8].
Theorem 3.12. (cf. [8] equ. (92) following Prop. 5.33) For n > 1 write
R"™(S) = vol (coker (HL"(S) LN H%"(S))) ,

where the volume is taken with respect to the integral structure of H%’”(S) coming from

Hllﬁn(s) ~ HO(F¢, (2mi)" 1 Z)g. Then

(i) T2
Ay (S, n) = ijil_n-Rl_"(S) forn <0
S
() 2

A (S n) _2( 1)n— 1, (27T)mn T€nR—S |DF‘f—n. Rn(S) forn>1

1n ’
H#TL

The remaining part of this section will be dedicated to the proof of the below analogue of

Theorem 3.12 for (the motivic degree 1 part of) arithmetic surfaces.

Theorem 3.13. With the notations from above and the preceding sections (as well as
Appendiz A.2 for (X)), one has

1 173,2—n
() 1AOO(X,n) _ 2€nll(X) # Tf
#IT%Q—n . #]_T%2—n

- R¥(X) forn <0

(i) Tor Pic’ X

-2
W) = IO (#200)REQ)

_ #UI(X/F) Q(X) R(X) I1
(#Tor Pic’ X)2

long -1 Hn] cp(X
p
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(iii) Suppose that the technical condition RP(X) (or the formula (2.39)) holds. Then

1 #T" 27r)2mg \ "1
1AOO(X,1’L)=26nl(X) s Xl 4n‘<(17r) > - RMX) forn =2
#iT T A(X)
Remark 3.14. An alternative expression for 'A(X, 1) in terms of Br X instead of ITI(X /F) can
be obtained using the comparison sequence induced by (2.26). When defining r—1 < ¢ < I(&X)
via the equation
2!/(M)=17e = HKer Tor Pic? ) * — HY(X)
Clp

then
Tor Pic’ X

-2
i, > R(X) Q(X).

A(X,1) = 27°4#Br X <#
Computing lAOO(X ,n) effectively means to compare the two integral structures on
Ry (X, Z(n))gr, one coming from the vertical and one coming from the horizontal dis-
tinguished triangle in (3.27) passing through RI'w .(X,Z(n))r. (2.36). To do this we will
provide explicit descriptions of the maps occuring in the long exact sequences associated
to (the A'-part of) (3.27) in terms of the integral bases specified in the preceding two

sections.

Contribution from 2-torsion. Before considering each case n = 1, n > 2, n < 0
separately we evaluate the contribution of the torsion parts of 'H" (X) and 'Hp!(X).
Note that for S these torsion groups explain the occurrence of the factor 2(=1)"7'" in the

formula for Ay, (S,n) with n > 1 since by Corollary A.16(i) and Corollary A.10

.

2 —fr—= <
XROW(S 2O _ (ocayasnr) g orn <O
X (RTw (Se,Z(n))) o= (M) F
5
Tz,lfn
% forn <0
— 5
- 2,n
D - > 1.

#T"
We will now evaluate the fl-part of the analogue of the quotient above for X. Corollary A.16(ii)
and Corollary A.9 show
X ("R'Tw (X, Z(n)))
X (PRTw (X, Z(n

("R'T'w (X, Z(n)))

1 3,n
26n1l(?<) T # Tfl
2,n 4,n

D)~
#I.H(X/F)( %)72 forn =1
for n # 1.



69

This explains the leading factors in the formulas of Theorem 3.13.

3.4.1 The Trivialization Factor for n =1

The below diagram depicts the relevant parts of the long exact sequences induced by the
Al-part of (3.27). It also displays zero-terms such as (1T%")]R if they carry information on the

involved integral structures and hence give rise to the numerical value of 1AOO(/"C ,n).

(TorPicOX) *
Clgp R
— B!
Hyp! (X)r ———— HY(X(C), Ox(c)) o=
(PiCOXcotor)R OQ—> IHI%I;}C(X)R —B2> Hl(X((C)’ OX((C))GR

J

BrX\* Pic®Xx

112
VN
alF
o
Tl
N———
=

(PiCOXcotor) R L) 1H%/,lc (X)R

2
l(hgzx,m*

Pictx \* Br X picox ) ¥
(Fr), @ () — (552 @ Wi(x/F)e
31 5
1HW,@(X>]R
41
1HW,C(X)R

Tor Pic® X Tor Pic® X
Clp R Clp R
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The quotient of the alternating product of torsion cardinalities associated to the two sequences
passing through Hy" (X) equals

or Picd X\ 2 or Picd X\ 2
s (#7) ) - e (#7500

The integral lattices of 1H5[’,716(X )r and IH%,}C(X )r characterized by the vertical maps, are
generated by &2 U Bl and £2* respectively. ag acts as the identity on 2. g} is the period

isomorphism. Therefore the trivialization factor becomes

Tor Pic’ X
Clp

Tor Pic®x\ 2 2
= #LI(X/F) (#an> det Mye1 g (#) - det Moy e ((hiz 1))")

- (/) (#

-2
"N (X, n) = #IL(X /F) <# ) -det Mg gio (B3) - det M s (a3)

Tor Pic’ X

-2
i, > QX)) - R(X).

In light of Proposition 3.11 this may be reformulated as

_#/P) 2 B 11 (0 oo 1Y,
- (#Tor Pic’ X)2 1;[ (1ng)dp ljljl () | ep(X).

"N (X, )



3.4.2 Trivialization Factors for n > 2

For n > 2 the Al-part of the diagram on cohomology induced by (3.27) becomes

(T2 i

(T3 "R @ (2" 0 'Ty"r —— (2™ @ Ty")x

% 0

Hgy HE™(X)

17 1 37 5%
Hyg Hy(X)r

( IT%Q*R)IE e ( IT%n)R >~ ( ITEH)R

( 1T%")R (TR

71
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The integral structure of 1H§’,jzc()( )r induced by the vertical sequence is generated by
B = BT™ y ™. The diagram shows that

1 # Ty -
1A00(X7n) = 219 #1T2,n .;11"4,71 ' ltfiz)R(X) ' det MB?ngdR(BQ)
X X
- Ip2n g lphn Ty (yyn-1 det My 545 (52) by (3.13)
X X
) #ITETL o 2mg n—1
=2 e <(1AZX) ) et Mz 5 (2) by 1
x X
. #ITE’R 9 2mg n—1
- 4172 ):/ZélT‘ln ' (<1ZZX) ) - det Men grin-1(p2) by Def. 3.5
x X
173,n —1
 oen i) # TE (27T)2mg n Con
2 . R"(X
k3 X
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3.4.3 Trivialization Factors for n <0

Finally, for n < 0 the A'-part of (3.27) equals

1pd,2—
(T "k

o _
HE™ (X) : Hy (X
HCQ,n(X) asg IH%/TLC (?)R
0
( IT%27TL)R @ ( IT%an)ﬁE =~ ( lT%27n)R
on &5
1HWTLoo(X)R
HZ™(X) = Hy" (X)r

(2)
J/(hB(Xﬂn))*

(1T%2—n)R o (ng o 1T%2_n)[>§ ~ (ng ) 171%2—71)]R

=|

1773,
HW?OO( )R

Hy (X)R

e

(IT%2771)R (IT%2717,)R'

The vertical sequence endows 1H3[’,Z(X )r and 1HI?,’I}TLC(X )r with integral structures generated
by B+ and ¢?7". So, since det Mg+ g+ (a2) = 1, the diagram shows

173,2—n
# 15
1p2,2-n 174,2—n
# 15 # 15

1Aoo(X, n) = 2Enll(X) M det MB+;n7C27'n (OZ3>
The proof of Theorem 3.13 is complete after observing that the commutative square involving
a3 shows

det Mpsin c2-n (5) = det Mgeon camn (R _))*) = RZ(X).
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3.5 The Correction Factor

Definition of C(X,n). Geisser has shown that the étale topology of a curve equals the
eh-topology of the corresponding reduced curve. Therefore the definition of C'(X,n) in [§]
Sec. 5.3, 5.4 simplifies for 7 : X — § as follows.

Definition 3.15. For each prime p and n € Z let
X(Xr,, On) = > (=1 (n — k) dimg, HY (G20, Qo ).

Xped /Ry
0<k<n,

JEZ

In particular, x(XF,, O,n) = 0 for all p whenever n < 0.

Conjecture/Definition 3.16. For any prime p and n € Z one has a distinguished triangle

in the derived category of Qp-vectorspaces

RTar(Xg,/Qp)/F"[~1] — RT(Az,,Qy(n)) — RU(XES,Qp(n)) — . (3.29)

In particular, there is a trivialization

Ap(X,n) (detszF(sz,Zp(n)))@p =, (dethRF(XI;Ed,Zp(n)) ®detileFddR(sz/Zp)/F")Q (3.30)

that specifies a power Ap(X,n) = detz, \p(X,n) € Q) /Z) of p. Weletcy(X,n) = pX(Xp, Om).
A, (X, n) and define the correction factor for X and n to be

C(Xvn) = H ’CP(X7n)’P'

p<ao

The proof of [8] Prop. 5.9 shows that c,(X,n) is trivial unless p < n + 1 or Af, is a bad
fiber. Thus, C(X,n) is well-defined. Moreover, one has C(X,n) =1 for n < 0 (cf. [8] Prop.
5.7).

The leading Taylor coefficient conjecture. Write (*(X,n) for the leading coefficient
of the Taylor expansion of ((X,s) at s = n. Define (*(Xy,n) and (*(X,n) analogously.
We can now formulate Flach’s and Morin’s conjectural description of (*(X',n) (cf. [8] Conj.
5.11).

Conjecture 3.17 (Leading Taylor Coefficient Conjecture TC(X ,n)). For any integer

n one has

C*(X,n) = C(X,n)Ap(X,n).
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Decomposition of C(X,n) into motivic degrees. Let

X(Xr,,0,n) = (=1)" Y (n—k)dimg, H'~* (2509, 0 )

Xged /Fp
0<k<n

ie. iX(XFp, O, n) is the sub-summation of those summands of x(&F,, O, n) for which j+k = i.
One has ix(X]Fp,(’),n) = 0 whenever i # 0,1,2 as desired. To define a decomposition
Ap(X,n) =Tl Z;/\p(./'l,’,n)(_l)i we will proceed as in Definition 2.31 and let

red red red red
xze X

= RO, Z,(n)™ = Z,(n) and PR m,Z,(n)" = Z,(n—1)

Sred
Fp

PRO7.Z,(n)
as well as
detz, "R'T (X5, Z,(n)) = detz, 7> RT(X59, Zy(n)) ® dety! RT(SES, Zy(n — 1)). (3.31)

Again, the complex RF(XE‘Cid,Zp(n)) does not necessarily decompose since X[;Eid is not
necessarily smooth, i.e. the symbol pRlF(XE?id,Zp(n)) itself is undefined. We introduce

(3.31) to force a splitting on the level of determinants

- (=17
detz, RT(XE, Zy(n) = &) (detzp PRI (25, zp(n))) .
i=0,1,2
Theorem 2.11 provides a motivic decomposition of RI'(Xz,,Zy(n)) after passing to the
p-adic completion. A decomposition of detz, RI'qqr (Xz,/Zp)/F™ is given in (2.51). So, every
term in (3.30) decomposes and we may define ‘A, (X,n) as the trivialization factor of the

. . ) .
fi-component of (3.30). Finally, after defining ‘c,(X,n) = p X(¥:Om) A (X n) and

‘X n) =[] l'ep(X,n),
p<00

we get the decomposition

C(S,n)C(S,n—1)
'o(x,n) '

C(¥,m) = [ e -
1€Z

(3.32)

Results for S. Flach and Morin have computed the correction factor for S assuming the

validity of a conjecture from p-adic Hodge theory.

Proposition 3.18. (cf. [8] Prop. 5.33) When assuming Conjecture Cpp(Qp(n)) in [24][App.C2/
for all local fields F, of F' one has

C(S.m) 1 forn <1
yn) =
(n—=1I"™ forn=>=1.
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Computation of C'(X,1). Fix a rational prime p. For any complex .# of sheaves on a
scheme 2~ we will use the notation

RI(%,7):=RT (3&” limff/p'> = lim RI(Z, .F /p°)
to denote p-adic completion?.

Theorem 3.19. Forn =1 the triangle (3.29) exists. Moreover, C(X,1) = 1.

Proof. Write X = Xz, and let Z = Xﬁd. Let ¢+ : Z — X denote the closed immersion of
the reduced special fiber. Write Z < Oy for the ideal sheaf of Z, i.e. there is a short exact
sequence

0 — 7Z — Ox — Oz — 0. (3.33)

Note that Z is the radical of (p) = pOx. Z is the disjoint union of fibers Z, = X]g?g) over each
prime p dividing p. Write pf, = pa(Zy) for their arithmetic genera.
For n = 1 the triangle (3.29) becomes

exp

Dy(1):  RT(Xg,, Ox,) <> RU(X,Gp) ®Q, — RI(Z,Gp)®Q, —  (3.34)

after shifting by one degree since RI'(Xg,, OXQp) is p-adically complete already. We will show
that the above triangle is exact, and moreover, compute the associated trivialization factor

A, (X, 1) by comparing it to the below distinguished triangle (3.36) of integral lattices.

Fix a power p*® of p. One checks on stalks that
1 — (1+2)/p* — (GCn/p*)" — 1:(Gp/p")? — 1 (3.35)

is a short exact sequence of abelian sheaves on X. Applying the derived global sections

functor and then passing to p-adic completions yields
RU(X,1+7I) — RI(X,Gp) — RI(Z,Gp) —> . (3.36)

The two right most complexes in (3.36) coincide with the integral structures of the two right
most complexes in (3.34). So, it remains to compare the integral lattice RT'(X,Oy) inside
RI'(Xg,, Ox,,) with RI'(X,1 + 7). A diagrammatic overview of this comparison as worked

out in the remainder of this proof is given in Remark 3.20 below.

Write (27,O4) for the formal completion of X along Z and let 15 : Z — 2 denote the
inclusion into 2. Let Zy := ZO4 . One has Ty = imZ/Z* = limZ/p®. Moreover, the

Theorem on Formal Functions gives for any k > 0

RI(x,IF) ~ RT(2,1%)

2When applied to objects in a derived category lim is understood to mean the homotopy limit.
P
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since Z* is coherent. The transition to formal scheme theory equips us with a logarithm map
log : 1 +Z4 — Og which reduces to an isomorphism log : 1 + Z%- = 77, for sufficiently

large r. Consequently, for some fixed r, one has
RU(2,T') ~ RU(2', 1+ T%).
Next, consider the short exact sequences
1 — 1+78 — 1+7h — (1+Z) /(1 +I5Y) — 1
0 — I8 — 1h — Th/TEH — 0
for k =1,2,...,r — 1. One checks directly that
Th/Th — (L+Th) /A +TEY),  f o 14
is an isomorphism of sheaves. Therefore we obtain

detz, RU(2,Ty)  detz, RD(Z', 1+ Ty)
detz, RU(Z',Il)  dety RU(2,1+1T7)

where the above should be read as an equality of quotients of Zy-lattices inside the (1-
dimensional) Q,-vectorspaces detQpRF(%QP,I%Qp) and det@plﬁ(%@p, 1+I<%p) respectively.

Moreover, the long exact sequence associated to (3.33) equals

0 - I(X,T) - Oz, — Ok 2 HY(X,T) — H'(x,0x) - D k(p)*
plp

U H2(x,T) =5 H2(X,05) = 0
So, we obtain
detszr(%,O%) detZ RT'(x,Ox)

#k p —1
_ : 3.37
dety RO(Z . 1y)  dety RL(X,Z) H 1;3[ P (3:37)

It remains to relate the cohomology complexes of (1 4+ Z)/p® and (1 + Z4)/p®. By virtue of

the proper base change theorem the canonical morphisms of sheaves on Z
Go i "1+ 1)/p* — (1 +Zy)/p"
induce a compatible system of maps
RT(X,(14Z)/p®) = RU(Z,.*(141)/p*) % RY(Z,1% (14Z9)/p*) = RT(Z",(1+Z2)/p°%).
We will show later that the induced map between p-adic completions is an isomorphism:

lim RT(¢a) : RU(X,1+7I) => RI(2,1+Ty). (3.38)
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It will show that Ap(X, 1) must equal (3.37). This will finish the proof since it combines with

X(Xe,, 0,1) = > (=1)7 Y dimg, H/(Z,, Og,)

J plp
to the desired result
(—1)7
O(x,1) = MO0 A (1) = [ [[#H7(Z, 02,) TN =1,
Jo\»lp plp
The proof of (3.38) amounts to the algebraic exercise of verifying that taking mapping cones
of the multiplicative sheaf 1 + Z interacts well with transitioning to the formal (i.e. p-adic)

completion Zo- = limZ/p*® of the additive sheaf Z. Clearly, each ¢, and hence

lim¢, : im(1+7Z)/p" —— lm(l1+Zy)/p" = limlim(1+Z/p™)/p"

n n n n m

is injective. For surjectivity it suffices to show that for each pair of integers n, m there is an
N = n such that
L+D)/p™ — A +Z/p™)/p"

surjects. To do this it is enough to exhibit a constant ¢ such that for all N > ¢ one has
1+ =1+ pVeT.

Recall that for some s one has Z° < (p). Let f € Z and consider (1+ f)pN =1 +Zii1 (p;iv)fk~
Since ordp(p,j) >N —ifork <p'and f¥e (p)lfj one may choose ¢ = max; (z - l%J) O

Remark 3.20. The diagram below summarizes the comparison between RI'(X,Ox) and
RT (X,1+ Z) made in the proof. Also note that the p-adic completeness of the complexes in
Dp(1) is essential as otherwise there would be no way to relate RI'(Z",1+Z4°) to RI'(X,1+7T).

—~

RT(x,Oy) RT(x,1+ 1)

I
RT(Z,049) Jim BT(¢e) |

’ >prNp(p2_1)
RU(Z ,Iy) RU(2,1+Ty)

U dety, RT(2 Tg-)  dety, RT(2 14+Zg") U

detz, RD(2 I%.)  detz, RU(Z 1+1%,)
log =

RU(Z, 1% )

RI(Z,1+7T7).
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Remark 3.21. The presented proof does not use dim X = 2 at any point. So — when recalling
the more general definition of the correction factor in [8] — the above proof shows C(2",1) =1

for proper regular arithmetic schemes 2 of any dimension.

Remark 3.22. Since we already know C(S,1) = C(S,0) = 1 the above shows ‘C(X,n) = 1
1
for each 4 = 0,1,2. One has 'A,(X,1) = Hp‘p(Np)pg which cancels with p X(¥:O:1) —
P
Hp|p(Np) Pa,

Remark 3.23. We keep the notation of the proof and provide a more geometric version of
it for X with good reduction. In this case D,(1) decomposes entirely into motivic degree
components and it suffices to understand its A'-part. Write J = Jacy sz, for the Jacobian

variety of X. J is a projective abelian variety of relative dimension g over Oz, .

Let J — ]P’]Z\; be defined in terms of homogeneous equations in variables Tg,...,Tx. Let
O = Spec Oz, — J be its unit section. Choose local coordinates Xi,..., X, of J at O,
ie. Xy,...,X,is a set of generators of the maximal ideal m of the ring of regular functions
Oo = (O7)0 at O. Since Z is smooth its Jacobian variety J is obtained from reducing J
modulo p, i.e. J = Jp,. Write J and J for the formal groups of 7, J with respect to their
local coordinates {X;}1<j<g and {X;}1<j<g- The motivic degree-1-part of the H'-groups of

the long exact sequence belonging to Dy (1) is given by

exp

0 — H'(X,0)0Q, =% J(0)®Q, — JO)®Q, — 0. (3.39)

Since H'(x,0x) = H°(X,wx)* where wy denotes the canonical bundle of X the choice of
{X;}1<j<g corresponds to a choice of an integral basis of H(X,Ox) ® Q, = H'(Xg,, Oxg, )

and hence lets us identify its integral structure with @Z(Ozp).

Let p be the Jacobson radical of (’)ﬁd, ie. (’)ﬁd/p = @y k(p). We may assume O = [1 :
0:---:0],ie. T; € mforall 0 <i< N. Then the T; may be interpreted as power series
T, = Ti(Xl,...,Xg) € 65 = limOp/m® in the variables Xi,...,X,. This gives for any

exponent e > 1 a morphism of abelian groups
I — T (@hisjsg = Tilar,..oozy).

Formal Group Theory provides a logarithm map log : J — @g that restricts for sufficiently

large r > 0 to an isomorphism of abelian groups
log: J(p") — Gi(p)= @ ¢

The exponential map in (3.39) is the base change of the inverse of the above logarithm to Q.
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Therefore, the (non-exact) restriction of (3.39) to integral structures fits into the diagram

0——G(0) —" J(0g,) — J(OFT) ——0

A~

Gi(p) +—— T ()

Since, moreover, Gg /Gg k) > J ) /j (p"*1) for all k > 1, the trivialization

factor associated to (3.39) does not depend on 7 and agrees with the trivialization factor of

o_aj@)iaj@%)_ajwﬁ)_ao (3.40)

up to a factor of #G4(0)/G4(p) = (I'Iy, Np)? — which equals ]_[pha(Np)pg since we assume
Z to be smooth. So, it suffices to show that (3.40) is exact.

First, let t = [tg:t1: - 1 tn] € j@) be an integral point that is congruent to O modulo
p. The X; = X;(Ty : --- : T5,) are rational functions in the T; that vanish at O. Therefore we

have x; := X;(t) € p. We then have ¢(x;); = t proving exactness at the middle component.
Let now Z, = X x SpecZ/p™. By the Theorem on Formal Functions the categories of line
bundles on X and 2" are equivalent. So, one has J(0Oz,) = Pic’x = limPic®Z,,. Therefore

it suffices to show that each Pic’Z, surjects onto J (OF,) = Pic’Z. This in turn follows from

the long exact sequence associated to
Zn Z
1 — 14+p0z, — G — G, — 1

since H%(Z,1 + pOz,) = 0 because Z is one-dimensional. Note that exactness of (3.40) in
the special case of an elliptic surface is precisely [32] Ch. VII, Prop. 2.1 & 2.2.

3.6 The Functional Equation

The correction factor for n > 2. For higher twists n > 2 the correction factor C'(X',n)

may be computed using the conjectural functional equation FE(X).

Theorem 3.24. Assume conjectures FE(X) and TC(X,n) hold. Then for n = 2 one has

I'@2—-n

N = 1)1 (n— 2\
o ) = ((n—=1)!-(n—2)1)"™. (3.41)

1 _
C(X,n) —i( T+

Similarly, when assuming TC(S,n) one has forn > 1

C(S,n) = (n—1)I=™
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and consequently
C(X,n) = ((n—1)(n—2)m=b

Proof. Let n = 2. Corollary 2.35 unfolds to
1 2-n pry 1 1 .1 o pros 1 1 1
A(X) 2 L5 (H (X)), 2—n) A (X, 2—n) = + A(X) 2 "Ly (H (X),n) Ax (X, n) C(X,n).

By virtue of Theorem 3.13 and Lemma 2.34 this simplifies to

L (HN(X),2—n)  Ag(X,2-n)

'C(x,n) = £'Ax)"

Li(H'(X),n) (X .n)
(2 —n)\™ [ (2mi)2matn-1\ "
_ —_G—IA(X)lfn' ((2ﬂ)2(n1)rr(z(n))> <(21A)(X)"_1>
_ g (T m\™
—+< I (n) ) ‘

Similarly, for n > 1 we obtain from the well-known functional equation FE(S)

1, TEA—n)TE(L—n)* Axp(S,1—n)
C(S,n) = £A(S)2 . & Fﬁ"{(n)rfg(n)s Wy

= 3 ﬂ'"féw ' an,llﬂ*(l—n) ° 1
= +(#Dr) ( F*(%) <(2 ) I'*(n) ) 2(—1)"’17(QW)mn—TEn—S(#DF)%—n

wl-ny\ " _1\1-2s
so-(n=H)rgenr (50 (n— 1)
* 2(-1)

2
() )T

7(_1)711“2(71)"7“ F*(l_%) ' 1
T2y ) o

I
-+
[\
T

3
+
Nl
+
4]
3
S~—
3
—
DN
3
~—
|
[ V)

=(n-—-1I"™

Note that the factor (1/2)” arises from the relation between leading Taylor coefficients
I'k(k) = (1/2)°ds=kl=() 7=k/2D% (}/9) (3.32) concludes the proof. O

In particular, C(S,n) = (n — 1)!7™ also holds for n > 1 when assuming T'C(S,n) instead of
the conjecture Cgp(Qp(n)) from p-adic Hodge Theory.

A simplified version of FE(X') for integers n = s. Flach and Morin provide a reformu-
lation of FE(X) for integer arguments in terms of a newly defined quantity z.(X,n) € R,
satisfying

Ap(X,2 —n)

:L’OC(X,n)2 = A (X

(3.42)
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The definition of z (X, n)? will not incorporate the full fundamental line, mirroring the fact
that the quotient on the right hand side is easier to evaluate than each term separately. We

will review it here and use it to compute x4 (X, n) independently of Theorem 3.13. Set

Ew(X/Z,n) := detz RT'w(Xy,Z(n)) ® detilRI‘ddR(X/Z)/F” &

(3.43)
det; ' RTywy (X0, Z(2 — 1)) ® dety RTaar(X/Z)/F>~".

This definition is made to have an isomorphism
¢ : A(X)Z,n) @ Eep(X/Zyn) —> A(X/Z,2 —n).
Observe that the distinguished triangle
RUqr (X0 /R)/F"[-1] — RI'p(X/g,R(n)) — RI'w(Xy,Z(n))r —  (3.44)

together with the duality (2.23) for Deligne cohomology gives a trivialization

0

EOO(X/Z, n)R detRRFD(X/R, R(n)) @ detﬂglRFD(X/R, R(2 — n))
detg RHom(RT'p(X /g, R(2—n)),R[-3]) ® dety'R'p(X/r,R(2—n))

(3.45)
detg RT'p(X /g, R(2—n)) ® dety' RT'p(X /g, R(2—n))

~ R.

0

0

We denote it by £, (X, n) : R —> E(X/Z,n)g and define z2,(X,n) € R*° via
En(X,n)(Z) = 22(X,n) - (X /Z,n)
as an equality of lattices in 2o (X /Z, n)g. Clearly 24, (X,2-n) = 2 (X,n)~!. One has

Proposition 3.25. (cf. [8] Prop. 5.28, Cor. 5.30) The diagram

PR

A(X/Z,n) @ Zp(X/Z,n) OR — 28 S A(X/Z,2 —n) @R
TAOO (Xn)®&xn(X,n) T/\OO(X,Q—n)
R®R R

commutes. Therefore — when assuming TC(X n) for all integers n — the functional equation
FE(X) holds for all integers s = n if and only if for all n

A(X)E - (X, m) - C(X,m) +A(x)2%" (X, 2 —n) - O(X,2 —n)
Top (X, M) - Top(X,2 —n) ’

(3.46)

Motivic decomposition of =, (X /Z,n). By the work of last chapter all determinants in

(3.43) admit motivic decompositions. So, we obtain further decompositions
B (X/Z,1) = Eoo(S/Z,1) ® 'Eeo(X/Z,n) ' @ Eer(S/Z,n — 1)

and
Too (X, 1) = 206(S, 1) - oo (X, n) 7 20 (S, n — 1).
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Proposition 3.26. Let n be any integer. One has
:L%O(S,n) = 2(*1)”r(2ﬂ_)ren+sfmn(#DF)TL,%.

Moreover, when assuming the technical condition RP(X) (or the formula (2.39)), one has

1 -1
A(X)"
1,.2 _
wOO(X’n) o (27r)2mg(n—1)

and consequently X
e

22, (X,n) = (@m0 D))

Proof. Tt suffices to consider n > 1 since x5 (S,1 —n) = 25(S,n)"! and 2 (X,2 —n) =
T (X, n) L. The second quasi-isomorphism of (3.45) is due to Poincaré Duality which holds
integrally; the third and the fourth follow directly from the determinant formalism. Therefore
the trivialization factors 2, (X, n) and 22 (S,n) arise fully from a comparison of the integral
structures of the complexes in (3.44) (and its analogue for S). The motivic degree 1 part of

its associated long exact sequence is
1, 1, 2,
0 — HWTLOO(X)R — Hdg(X)R — HDn(X) — 0,
which is exact integrally with respect to B"™. Consequently, for n > 2,

122 (X, n) = {45 (X) - det Mgn po(id)

1 n -
- W : 1t<(id)R(X) - det MBng,BdR(ld) by Lemma 3.4
1 n—1
A(X
- by (3.13).

(27T)2mg(n—l)

The 2-torsion of RI'yy (X, Z(n)) does not contribute due to Corollary A.9.

For S we begin noting that by Corollary A.16(i) one has for all n

i,m (71)i _1ynnten,.
N(RLw (S, 2(m)) = [T (#Tor HifZ, () = 200750,
1€Z

The long exact sequence associated to the analogue of (3.44) for S becomes
0 — Hy" (S)r — HIF(S)p — Hp"(S) — 0.

The implied integral structures are obvious. The outer cohomology groups contribute factors
of (2mi) &7 +5) and (27i)~(*~D{en+5) regpectively to 2 (S, n). The relative determinant
between the lattices Hggﬁ(S/Z) and HY(S,0Fr) = Op equals A(S)"" ! = (#Dp)"" 1. A
remaining factor of \/#Dp results from the comparison of O with the integral lattice of
the Minkowski space Fr. Therefore one obtains

2(—1)1_" 17”261_71 N\ —n(€nr+s)—(n— r+s n—
Sy @md) T D) 4 Dr
2

= 2(—1)nr(27r)ren+s—mn(#DF)n_%

oo (S, n)2 =
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as claimed. Finally, we combine this to

ZToo(S,n) T (S, n — 1)
L (X, n)

2(n—1) 1)2mg(n—1) n—
() '<%&&A):QMMWM“UI-

In particular, (3.42) holds for every motivic degree component separately. So, we can rederive
the formula for the correction factor (3.41) from (3.46).

IL‘?)O(X,TL) =

O

3.7 Summary of special value results

We may now combine Theorem 3.13 and Theorem 3.12 with the results on the correction
factor Theorem 3.19 and Theorem 3.24 to obtain closed formulas for the leading Taylor

coefficients of ((X,s). These are presented in the Theorem below.

Moreover, when combining the second equality in Theorem 3.13(ii) with Lemma 2.2(ii) one

obtains

_ M@ Do) MU RE) 7,

L*(Hl(X)7 1) T (X, 1) (#Tor Pic? X )2

which is precisely the leading Taylor coefficient part of the Birch and Swinnerton-Dyer
conjecture for the abelian variety Pic®X (cf. [35] equ. (1.5)). We may thus summarize the

special value results of this chapter as follows.

Theorem 3.27. Let the notation be as per this and the preceding chapter. We make the
standard assumptions that L(X,n) and B(X,n) hold for all integers n. Suppose w: X — S
has a section s : S — X satisfying FPB(s,n) for alln = 2. Then

(i) VO(X,n) is equivalent to

m(1l — g) forn <0
m(l—g)—1 forn =0
ordg—n((X,s) =< r+s—1—1k PicX forn=1, (3.47)
-1 forn =2
0 forn > 2

or to
—1—1k PicX for n=1
ords—n((X,s) =4 —1 forin—1]=1 . (3.48)
0 forn—1|>1
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(ii) TC(X,1) is equivalent to

2"(2m)*® ‘ (#Tor Pic’x)? .R(S)Q
(#ur)2V#Dr #UI(X/F)-Q(X) R(X)

Forn <0, TC(X,n) is equivalent to

C*(Xv 1) =

2,2—n 4,2—n _n _n
ety H#ILE R>"(S)R""(S)

C* X,n — 2(7‘7[ — — . —
( ) #T%2 ~#T%2 R2 n(X)

We now suppose that the technical condition RP(X) (or the formula (2.39)) holds.
When further assuming FE(X), the pair of conjectures TC(X,n) and TC(X,2 —n)
implies

1 for 1

ms 3.49
(n—=1) (n=2))m"D for n>2 (3.49)

C(X7 n) = {
When assuming FE(X) and (3.49) then, for n > 2, TC(Xn) is equivalent to

¢*(X,n) =20

oy T #TE <(” —1)!(n — 2)!>m(g_1) A(x) RM(S)R"1(S)
HTHTE\ (2m)20 D) RA(X)

(iii) VO(X,1) is equivalent to the vanishing order part and TC(X,1) is equivalent to the
leading Taylor coefficient part of the Birch and Swinnerton-Dyer conjecture for the

Jacobian of the generic fiber X.
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Appendix A

Computational Material

A.1 The motivic cycle complexes Z(n)

In this section we will review the construction of Bloch’s motivic cycle complexes Z(n) =
Z(n)?* for arithmetic schemes 2.

Simplicial structures. The standard co-simplex A is the category of finite ordinal numbers
[n] = {0,...,n} with order preserving maps as morphisms. A simplicial object A of a category
C or a C-simplex is a functor A : A°? — C. We write A,, := A([n]) and think of A as the
diagram

N e
AggAQEEAl:%AO

Simplicial objects are relevant since they may be viewed as generalizations of chain complexes.

Indeed, in abelian categories these two notions are equivalent (cf. [25] Thm. 2.7).

Theorem A.1. (Dold-Kan-Correspondence) Let A be an abelian category and write Simp(.A)
for the category of A-simplices and Csq(A) for the category of chain complexes of A supported

in non-negative degrees. There is an equivalence of categories
DK : Simp(A) — C>o(A), A= (4,,d;) — DK(A) = (DK(A).,d)
where DK(A),, = /=y Kerd}, and 0, = (—1)"d? : DK(A),, — DK(A),_1.

The standard co-simplex A may be regarded as a full subcategory of the category of arithmetic

schemes by setting

Zltili€ )] g oo 2l ta)

A" =Spec &———— = ~n T -
Zie[n] ti —1 Zz‘:O ti—1
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In fact, each 0 : [m] — [n] gives rise to a canonical morphism of schemes A™ — A™ induced

by tj

ti, =

— Zie&*l(j) t;. A face of A™ is a subvariety defined by a set of equations of the kind
=1, =0.

Arithmetic cycles. Let 2 be an arithmetic scheme of pure (Krull) dimension d.

Proposition/Definition A.2.

(1)

(i)

(iii)

(i)

For any arithmetic scheme U and any integers i,n = 0 let Azij =U xz7 A'. U* attains
a cosimplicial structure from A®. Next, let Z"(U,i) denote the abelian group freely
generated by all n-cycles of Azil, i.e. by all irreducible subschemes of AZ, of codimension

n that intersect all faces of A" properly.

The proper intersection condition ensures that the inverse image of each map 0 : Azi/, -
AZ, gives a well-defined map 0=1 : Z™"U,j) — Z™(U,i) between cycle groups. We
denote the corresponding simplex of abelian groups by Z™(U, e).

Let n = 0. The presheaf U — Z™(U, i) of abelian groups on 2 is already sheaf. We
denote it Z7-(—,1i), or just Z"(—,i) if 2 is clear from context. We write Z7-(—,e)
for the associated simplex of abelian sheaves. We define Bloch’s cycle complex Z(n) =
Z(n)gf to be the chain complex of abelian sheaves on the étale site of 2~ that arises
Jfrom the Dold-Kan correspondence applied to the simplex Z7-(—,e) after reindexing

via @ < 2n —e. More concisely,
Z(n)” := DK( 2% (—,2n —)).
Z(n)x is cohomologically concentrated in degrees < n + d. If d > n it is even

concentrated in degrees < 2n.

Forn < 0 one defines Z(n) := @, ij(ugﬁ)[—l] where jp : Z'[1/p] = £ denotes the

canonical open embedding.

For any n and m > 0 one defines Z/m(n) := Z(n)/m = Z(n) @“ Z/m, i.e. Z/m(n) is
the mapping cone of the complex Z(n) > Z(n).

Remark A.3. The indexing in the definition of Z(n) agrees with Bloch’s use of Z(n) as well

as with the use in [8]. So, we will frequently call Z(n) Bloch’s cycle complexes. Geisser [12]

and Levine [18] use different indexing to obtain a cycle complex — here denoted Z(n) — that
relates to Bloch’s complex via Z(n)? = Z(d — n)? [2d].

Conjecture A.4. Let n = 0.

(1)

(Beilinson-Soulé) Z(n)? is cohomologically concentrated in non-negative degrees.
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(i) If Z is regular then Z(n)? is cohomologically concentrated in degrees < n.

Geisser has shown Conjecture A.4(ii) for smooth arithmetic schemes 2~ (cf. [11] Cor. 4.2).

Moreover, if n = 0,1, it is known for any scheme 2 as it is clear from

Proposition A.5.
(i) One has Z(0) ~ Z[0] and Z(1) ~ G,,[—1].

(ii) Let 2 — S be regular and p invertible on S. Then, if Conjecture A.4(ii) holds true
one has Z/p" (n) ~ ,ug)r".

Even without knowing the Beilinson-Soulé conjecture one may define the motivic cohomology
complex RI'(Z",Z(n)) using K-injective resolutions of Z(n) (as defined in [33]).

A.2 (Gg-equivariant cohomology

Write Z(n) for the Gg-module (27i)"Z. For any Gg-space X let I'}, denote the constant
sheaf functor for Gr-equivariant sheaves on X. In other words, I'}; is given by the adjunction
I'% + T(X,—). We write Z(n)* = I'tZ(n) and omit the superscript if X is clear from

context. Also, write

0 if n even B 1 0 ifi=n mod?2 B )
€n = en=1—€n, €in=¢€_pn= o €in=1—¢€n.
" 1 ifn odd " " v 1 ifi#n mod?2 o o

For any infinite place v of F' write X, = Ar xp, SpecC. Real embeddings and pairs of
complex conjugate embeddings of F' will be denoted by o and {7, 7} respectively and we let
X(r7) = X7 U X7 Finally, let

I(0) := # of connected components of X,(R) = X&®; and I(Xx) = Zl(a).

In this section we will establish the following computational
Lemma A.6. One has

(i) [0 fori <0
Zrents fori=0
H'(Ggr, X(C),Z(n)) = { 2™ @ (Z/2)" X fori=1
Zrents @ (2/2)1Y) fori =2
(2,)2)1%) fori>=3

(”) 1 >n pa O fOTi<
H'"(Xyp, 77" R Z(n)) = { (Z/2)"X) fori >
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(iii) One has Hiy (X, Z(n))cotor = Zn+8 ZM9 7T ¥s for i = 0,1,2. Moreover,

(Z/2)"X) forn=0andé, +1<i<n+1
Hy (X, Z(n))tor = 3 (Z/2)"Y) forn <0 andn+3<i<e, +1
0 otherwise

We begin with some preliminary remarks. Fix a real embedding o of F' and write X = X,.
Let m : X — X /Gg be the natural projection. Write U = X\X%. We have a diagram of

Open-Closed-Decompositions.

X0 ', X U (A1)

Pl

X 'y X /Gr+1—U/Gr

where, by abuse of notation, we denote the closed and open embedding on both levels by ¢

and j. One observes directly that the analogues of proper base change
e = med® and 0w, = mei® = (=)0
hold. Moreover, one has the following classical results.
Proposition A.7. (cf. [13] Prop. 3.1) Let a = a(o) and | = l(o) denote the number of
connected components of U and X% respectively'. Then
(i) U/Gr is connected and X /Gr has Euler characteristic 1 — g.
(1)) 0<I<g+1

(iii) 2 if X/Gr is orientable
W) a =
1 otherwise

(iv) Ifa=1thenl#g+1. Ifa=2thenl+#0 andl =g+ 1 mod 2.

Moreover, each pair (a,l) satisfying the constraints (ii)-(iv) arise in the above way from some

real smooth proper curve.

Proof of Lemma A.6.
Computation of RI'(Gg, X(C),Z(n)). One has the decomposition

RI(Gr, X(C), Z(n) = @ RI(Gr. Xo,Z(n)) ® @ BI(Cr, X(rr), Z(n)
o {r7}
= @ RI(Gr, X, 2(n)) ® (270)" @B RU(X{r.7)/G, 2).
o {r7}

(A.2)

'Note that @ and ! do in fact depend on the real embedding o as can be seen from the elliptic curves over
Q[+/5] given by y* = 2 + /5x — 1.
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The last equality follows since G acts freely on X, =. Since X{; 7,/Gr = X; the cohomology
of RI'(X{;7}/GR,Z) is well-understood. In particular, it has no torsion. We will now analyze
the first summand of (A.2). We fix a real embedding o and adopt the notations of the

comments preceding the proof.

The diagram

()%

Shap(Gr, X

Sh(X/Gi)

) 5T Modgya, AbGrps (A.3)

commutes since F(X)%® = (m,F)(X/GRr) for any Gg-equivariant sheaf F' on X. In particu-
lar,

RT(GR, X, Z(n)X) ~ RI'(X/Ggr, Rm.Z(n)%).
We will compute the right hand side.

Proposition A.7 shows that either X is the disjoint union of two copies of X /Gg or 7 : X —
X /GR is the orientation cover of X /Gr. Moreover, since X /Gp is either non-orientable or
1 > 0 one has Ho(X/Gr,Z) = 0. Also X&r = (SH)",

We analyze the restrictions of RmZ(n) to the closed and to the open part separately. One
has
*m % = (2)R* T = (2) " %6y = Hom (Tay Z, Ty —)
= F;GRHomGR(Zv —-) = ;GR(_)GR'
Therefore
*RmyZ(n)X = R(i*mI%)Z(n) = I'%.c, RT(Gr, Z(n)).

To compute the Galois cohomology complex we use the standard projective resolution

 —5(n)[Gr) 5 Z(n)[Gr] ~=5 Z(n)[Gr] “E— Z(n) —— 0,

where ¢ € Gg denotes complex conjugation. Apply Homgg, (—,Z(n)). Dropping the first

term yields the complex

2€en 2€n 7 2€n
ey

0 Z Z

which is quasi-isomorphic to Z @ @, Z/2[en, — 2k]. In summary, we obtain

* Ry Z(n)X =T% 6, 2% @ P Mo, Z/2[en — 2k]. (A.4)
k>1

The restriction of Rm,Z(n)X to the open part needs to be analyzed stalkwise. For z € X
let G, < Ggr denote its stabilizer and write T = 7(x) € X/Ggr. One has (Rm4Z(n))z ~
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RT(Gy,Z(n);) (cf. [8] Lem. 6.1). Consequently, for x € U we obtain (Rm,Z(n))z ~ Z, proving
that j* Rm.Z(n) ~ RmyZ(n)V is concentrated in degree 0. Therefore all of 72! R Z(n) is
supported on X%, In view of (A.4) the distinguished truncation triangle for (7<% 7>1)
equals

mZ(n)X — RmZ(n)* — @ il%e,Z/2[en —2k] — .
k=1

We apply RI'(X/Gr,—) and obtain

RT(X /G, mZ(n)) — RI(Gg, X,Z(n)) — @ RI(X9%,Z/2)[e,, — 2k] — . (A.5)
k=1

We make a distinction of cases to evaluate the cohomology of the left-most complex. We will

arrive at .
HY(X/)Gr,mZ(n)X) |i=0|i=1|i=2
a=1 Z, 79
T a9 |z | 2o (A.6)
a=1 79 Z
n odd
a=2 79 Z,

First, let n be even. Then m,Z(n)¥X = ZX/C® and the first part of table (A.6) is immedi-

ate.

Now suppose 7 is odd. Computing stalks shows i*7,Z(n)* = 0 and consequently 7,Z(n)X =

Jim«Z(n)V. Therefore, the connecting morphisms of (A.5) must vanish. If a = 2 then

JimeZ(n)V = §ZY/G% . The long exact sequence associated to
0— §ZU/Cr _, 7X/Cr __, ; 7XR
gives
0 = HY(X/Gg, jiZ) - Z 2> 7' — H (X /G, iZ) — Z9 —> 7! — H*(X /Gy, jiZ) — 0.

A is the diagonal embedding. H'(X%® Z)/Im(«) is generated by a copy of S' in X & that
divides X into two components since such a loop will be trivial in the fundamental group
of X and hence X/Gg. We infer H*(X /Gy, j#Z) = 79 and H?(X /Gg, 1 Z) = Z. This yields
the last row of (A.6).

Let now n be odd and a = 1. It follows from the classification of compact surfaces with
boundary that X /G is the [-times punctured connected sum of k = g+ 1 —1[ many projective
planes. The precise value for k follows from the equality of the two expressions for the Euler
characteristic 2 — k — [ = 1 — g of X/GR. It is now a standard exercise to compute the Cech

cohomology groups of jim,Z(n)Y.2 It yields the remaining row of (A.6).

Now, (i) follows from the long exact sequence of cohomology associated to (A.5).

20ne may choose 2k + 20 + 2 = 2(g + 1) many simply connected open neighborhoods covering X /Gr such
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Computation of RI'(X/Ggr,7”"R7.+Z(n)). The analogous computation for Tate coho-

mology is simpler since one has on stalks

(RR.Z(n))s = RE(Ga Z(n)a) = { Dren B2len =2t e N
Consequently j* RT.Z(n)X = 0 proving
R7.Z(n)~ = i, i*R7Z(n)~ = P i.T% e, Z/2[en — 2K] (A.8)
keZ
and
RU(X /Ggr, 7" "R7.Z(n)) = P RT(XY%,7,/2)[e,, — 2K]

k€Z, en—2k<—m

P RT (X%, Z/2)[—n — 2k).
k=1

Part (ii) follows.

Computation of Rl (X, Z(n)). Recall that RT'yy (X, Z(n)) is defined via the distin-
guished triangle

RTw (X, Z(n)) —> RT(Gg,X(C),Z(n)) — RL(X(R), 7" "Rr.Z(n)) —> .

We decompose it analogously to (A.2) and — together with (A.5) — we get for n = 0

3
+

€

RT(X/Ggr,m+Z(n)) — RTw (X /Gr,Z(n)) — (-2_9 RT(X%% 7/2)[e, — 2k] —
k=1

The long exact sequence on cohomology together with (A.6) proves the first case of (iii). For

n < 0 we similarly get the distinguished triangle

_nten

@ RU(X%,2/2)[~n — 2k — 1] —> RUy (X /Gz, Z(n)) —> RU(X /G, mZ(n)) —>
k=1

The remaining cases of (iii) follow. ]

The analogous results for S(C) are much simpler to prove. We write ig : S(R) < Sy, and
i¢ : Soo\S(R) < Sy for the closed immersions of the collection of all real points and pairs of

complex conjugate points respectively.

Lemma A.8. One has

that no four of them have common non-trivial intersection and such that each boundary of X /Gr intersects
precisely two open neighborhoods. The resulting Cech complex has three terms and one verifies by direct

computation that each of its its cohomology groups is torsion-free. We leave further details to the reader.
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(1) 0 fori<0
HY(Gg,S(C),Z(n)) = { Z"™&+s  fori=0
(Z)2)"n fori=1

(i) .
- 0 <
HZ(SOO,T>nR?F*Z(n)) _ { fOT 1

=

(iit) One has Hiy(So, Z(n))cotor = Z" 4,0 for i = 0,i # 0. Moreover,

(Z/)2)" form=0and €, +1<i<n+1, i=n mod 2
Hiy (S, Z(n))tor = { (Z/2)" forn<0and n+3<i<e +1, i#n mod 2

0 otherwise

Proof. We follow the proof of Lemma A.6. As S, = Sp x SpecC = SpecC is just a point

F,o

the analogue of (A.1) collapses to the identity of a one-point space. When combining the

analogues of (A.2) and (A.4) we immediately arrive at
R Z(n)%(© = (ie)al%s\ g Z ® (im)s (F;( Z™ ® Ty D Z/2[en — 2k] ) (A.9)
k>1

Applying RI'(Sy, —) yields

RT(Gr, S(C),Z(n)) = Z"""* & @ RT(S(R), Z/2)[en — 2k].
k=1

Part (i) follows. Next, mimicking the computations (A.7) and (A.8) yields

R#,Z(n)%©) ~ (i)« D5y @D Z/2[en — 2K]. (A.10)
keZ

(ii) follows after truncating and applying RI'(Sy, —).

For (iii) consider the distinguished triangle defining RT'yw (S, Z(n)). For n = 0 one gets

nten
RTw(Si, Z(n)) ~ Z'""* ® @ RI(S(R),Z/2)[en — 2k].
k=1
Similarly, for n < 0 one has
’ﬂ+en
EI—) RIT'(S(R),Z/2)[-n—2k—1] — RT'w(Sx, Z(n)) — Z"** —

proving the final part of the claim. O
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Corollary A.9. Write 1Z(X) = l(X) —r. One has 1H§V(SOO,Z(n))Cotor ~ 7Z™9.0 fori =
1,7 # 1. Moreover,

(Z/2)"  forn=0andeé, +1<i<n+1
lHIZ;V(Xmaz(”))tor =2 (Z/2)"™ forn<0andn+3<i<e +1
0 otherwise

In particular,

in (71)1
X ("R'Tw (X, Zn) = [T (#Tor 'H7L () =1
1€Z
Corollary A.10. For all integers n one has

i,m (71)i _1)nnten,.
V(R (S, 2(m))) = [ | (#Tor HifZ, () = 200750,
1€Z

A.3 Comparison between motivic and completed motivic co-

homology

Recall the triangle (2.26). Building on the work done in the last section we will show that the
term 77" R7,Z(n)* (© controlling the discrepancy between motivic and completed motivic

cohomology allows a decomposition into motivic degrees analogous to Theorem 2.11.

Lemma A.11. Let 7y : Xy — S be the structure map of Xon. Suppose e has a section
S+ Sop = X, or, equivalently, I(o) > 0 for every real place o. Then — in the derived
category of abelian sheaves on Sy, — the compleves R, Z(n)%©) and R7,Z(n)%©[-1] split
off as direct summands of Ry « R7.Z(n)*(©) .3 When writing "R 1 « R7Z(n)*© for the

remaining summand we arrive at the canonical decomposition
Rrtoo « R Z(n) YO =~ R Z(n)% O @ "R 71 o R7LZ(0) Y O[1] ® R7.Z(n—1)%O[-2]
or, equivalently,

Rrs s R7LZ(n) ~ (i) PZ/25®[e,—2k] @ PR 700w R7LZ(0)[-1] @ (i)« PDZ/2°® [e,—2k—1]
keZ keZ

Proof. The equivalence of the two decompositions is (A.10); we will prove the latter. We adopt

the notations of the proof of Lemma A.6. We will also need the restrictions g = 70| x(r)

and sg = seo|g(r)- By virtue of (A.8) one has

keZ keZ keZ

3Beware the two different roles of the letter 7. 7o is derived from the structure map X (C) — S(C)
while 7y is the Tate modification of the morphism of topoi Sh(Gr, X(C)) — Sh(Xx) induced by the natural
projection X (C) — Xw.
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So, it suffices to show that Z/25®) and 7Z/25®)[-1] split off as direct summands of
Rrg «Z/ 25(R)  The category of constant sheaves on the finite point space S (R) is equivalent
to the category of abelian groups via the global sections functor. Therefore we have to prove

a decomposition of the form
RT(X(R),Z/2) ~ RT(S(R),Z/2) ® "R'T(X(R),Z/2) ® RT(S(R),Z/2)[—1].

Using the derived functor formalism as in the proof of Theorem 2.8 the identity mrsg = id
shows immediately that RT'(S(R),Z/2) splits off as direct summand of RT'(X(R),Z/2) (see

also Remark 2.9). Moreover, Poincaré duality gives
RT'(X¥(R),Z/2)" ~ RT'(X(R),Z/2)[1] and RT'(S(R),Z/2)" ~ RT'(S(R),Z/2).

Therefore RI'(S(R),Z/2)[—1] ~ RIL'(S(R),Z/2)[1]" splits off of RI'(X(R),Z/2) as well.
RT'(S(R),Z/2) and RI'(S(R),Z/2)[—1] must in fact be distinct direct summands for degree

reasons. ]

X(©)

Evidently the same proof holds for any truncation of R7.Z(n) . Therefore, the decompo-

sition of Theorem 2.11 extends to completed motivic cohomology.

Corollary A.12. Suppose m: X — S has a section s : S — X satisfying FPB(s,n) for all
integers n = 2. Then the complezes Z(n)® and Z(n — 1)5[=2] split off as direct summands
of RW*Z(n)Y in the derived category of sheaves on the Artin-Verdier étale site X = Xg; of
X. When writing "R m.Z(n)*[~1] for the remaining summand we arrive at the canonical

decomposition
RrZ(n)¥ ~ Z(n)° @ "R'm.Z(n)¥[-1] @ Z(n — 1)°[-2]. (A.11)

Remark A.13. The decomposition (2.14) of Theorem 2.11 cannot generally hold without
assuming the existence of a section. Indeed, if the generic fiber X = Xr does not have an
F-rational point then [(X) = 0 and consequently H*"(X) = H*"(X) for all i,n. However,
we will see below that H"(X) = H*"(S) = 0 for i > 7, n > 1 while at the same time
H(S) = (Z/2)" n for i = 5, n > 1.

If a section exists, then [(X) can be understood in terms of the Jacobian J = Jac X of the

generic fiber. In fact, one has

Proposition A.14. Let X be a smooth proper real algebraic curve. Write J = Jac X (C)
and let | be the number of connected components of X(R). If 1 > 0 then

HY(Gg,J) = (Z/2)" "

Proof. Combine [13] Prop. 1.1, Prop. 1.3, and Prop. 3.2(2). O
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Computation of torsion parts. We will conclude with a summary of all information
on torsion for motivic and completed motivic cohomology. Recall the notations T?i’n =
Tor H*™(?)coqiv for 7 = 5,5, X, X and 1T;’" — Tor H"™(?)eoqiy for 7 = X, X.

Proposition A.15. Suppose w: X — S has a section s : S — X satisfying FPB(s,n) for
all integers n = 2. Write 1(X) = I(X) —r. Then T§", Tgn and 'TY", 1T%n are given as in
the tables below.

T
i 1<0fi1=1|1=2|i=3| 4<1
R
T§
0 0 0 ~Clp | ~ up (2/2)7%
n =
0 0 | Clp | up 0
|0 e | ap | BrO @y
n =
0 | up | Clp | 0 0
i 1<0|2=1]1=2|3<ig<n+1|n+2<1
i,m
Tg
17 27 €in €in
| o m | @ | @
1n 2,n Cin
0 | T | T2 | (Z/2)" 0
] 1<n+2|n+3<i<1 =2 1=3 4<1q
T
S
0 0 ~ Tz,l—n - Ti,l—n 7,/2)7€in
e | |
T€in L= L=
0 (Z)2) T2 T 0
11,
T . . . .
- 1< 1 =2 1=3 1=4 1=5
Tin
X
L1 4,2—n 1 3,2—n ! 2,2—n (x)
a0 T T2 = (Z/2)
174,2—n 173,2—n 172,2—n
0 | ' T3 T2 0
;.0 ;.0 1
I 0 Toré:;;f X g;g NToré:i;: X (2/2) 1(X)
-0 :.0
0 TorC}?l;;: X ]_H(X/F) Tor(lj’l;f X 0
12,n 13,n lpdn (x)
|0 T2 T2 T | (2/2)
12,n 13,n 14,n
0 T2 T2 T 0
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1pi,n
Ty . .
i 1<1|i=234|5<i<n+l | n+2<1
T¥
| o | [ e
0 TS| (z/2)" 0
1T)zén
, i<n+2 | n+t3<i<1l| =234 5 <1
1Tz,n
X
R e o
n
1(x) 16—i,2—n
0 (Z/2) s 0

In particular, RT(S,Z(n)) and "R'T'(X,Z(n)) are perfect complexes.

Proof. The vanishing of le\}n and lTé" for i < 1 and i < 0 respectively has been established

in Proposition 2.20. The torsion groups for n = 1 and near-central ¢ have already been

computed in in the proof of Proposition 2.17. The remaining entries are easily obtained from
Z(0) ~ Z, Z(1) ~ G,,[—1] and Artin-Verdier duality. Throughout, use the triangle (2.26) to

translate between motivic and completed motivic cohomology.

Corollary A.16. One has

(1)

[ | (#Tor H"(S)) 0

€7

(i)

I1 (#Tor 1Hiv”(2c))(_”i _

€L

-

O

nnNren #Tz71_n
o(=1)n 25y ﬁ forn <0
S
ne 2"
2(—1)n(%_1)r # éin for n=>1
\ #T§7
1 Tor Pic' X 2
=1
gmcom Fay ) o
12,n . 14
9—en'i(X) #* % # % forn #1
X

A.4 Supplementary material for derived de Rham cohomol-

ogy

In this section 7 : X — S will denote any map of schemes.
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Construction of the cotangent complex Lx/g. An adjunction 7't U between cate-
T
gories A, B — which we write as A7—= B - gives rise to a simplicial structure (7, U). on
U

the endofunctor category End B as follows. The adjunction data may be thought of as a pair

of natural transformations
a:idy — UT and p:TU —idp
that satisfy the compatibility relations
(BxT)o(T+*«a)=idp and (Uxp)o(axU)=idy.

We define (T,U),, = (TU)"*! and let the (co)boundary maps be given by the natural

transformations
(TU) « B« (TU)"" . (TU)" T — (TU)", (TU) T« a« U(TU) : (TU)* — (TU)"™ 1,

Repeated application of  gives a canonical map (T, U)s — idp, i.e. a unique compatible

collection of natural transformations (7', U),, — idg.

Now, fix a scheme X and let Sh(Xz,,) and Shgi,..(Xzar) denote the topoi of sheaves of sets
and rings on the Zariski site Xz, of X. We fix O € Shging(Xzar) and let Sheo . (Xzar)
denote the topos of O-algebras on Xz,.. We will apply the previous construction to the

adjunction
i

-1
Sh(Xzar) <:>O Sho.ae(Xzar) ,

where the functor O[—] = SympO(~) assigns to any sheaf of sets F on Xz, the sheaf of
O-algebras O[F]| which is the sheafification of the presheaf that assigns to each Zariski-open
U < X the O(U)-algebra freely generated by F(U) regarded as a set. Let Po(—) denote the
resulting End Shp_a ), (X7ar)-simplex.

If X comes with a structure map « : X — S the above construction may be carried out
for O = 7710g. Applying the resulting functors to the 77!Og-module Ox yields the
Shy—104a1(XZar)-simplex pXs —104(Ox). Each PiX/S has an algebraic de Rham reso-

. X/S ° ° 3
lution P; /S, QP.X/S/rl(’)S = QP.X/S/rIOS' So, we obtain a complex of Sh;—10¢ a1, (X7Zar)-

simplices

== s =3 Vs = Vxss
2 0

1

L]
X/

P, ggpj/s SQPlx/S :?QPX/S

0

==} p,)"/ == P}/’ ——= p*/*
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The rows Q’; x/s of Q;X s may be regarded as P.X /S _modules and we may use the morphism
P.X/S — Ox to define

Tk k
LX/S = QP.X/S @/s OX

P
as a simplicial object of Sho  yea(Xzar)-

Write L];(/S = DK(i’)“(/S) for the complex of Ox-modules associated to f/lj(/s via the Dold-
Kan correspondence. Ly /g := Lﬁ(/s is the cotangent compler of m : X — §. One has
Lk s = A\ Lx)s. We write

LQB{/S = f 3(/5 = JDK <Q;3.X/s Pg?/s OX)

for the totalization of the double complex arising from Q;X/S ® Ox after applying the

Dold-Kan correspondence to its rows. Moreover, we define a filtration
— Fj o >m _ >
F™ .= FllmLQX/S = JLX% = fDK (QP.’,?/S P(;)/S OX)

and write LQ?}IS = LQY g/ F™ = LQ;(/S/FH’”LQ;(/S as well as gr'" LOY o = Fm/Fmtl

The de Rham conductor A(X). The de Rham or Kato conductor of ' : X — Z
A(X) = H (#Hl(‘Xv Q;(',tors))(il)Z € QX
€7
encapsulates the discrepancy between algebraic de Rham and derived de Rham cohomology
(cf. Proposition 2.23(iii)). Since 2% ., is concentrated on the non-smooth points of X’ the
conductor A(X) depends only on the bad fibers of X. In many instances it can be computed

explicitly. We give one example.

Proposition A.17. Let ©' : X — 7Z have semistable reduction at every prime p. Write
ip : Zy — X for the closed embedding of the subscheme of singular points Z, of the special
fiber X, into X. Then

QX/Z,tors =0 and Q%(/Z = @ (’LP)* Z/p
p

In particular,

Ax) = [ [p*7.

Proof. First, observe that Z = Up Z, < X must be a finite collection of closed points.
Let x be a singular closed point of X and let T — X be a corresponding geometric point.

Semistability means that
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i.e. étale locally at T the differentials of X coincide with the differentials of the scheme
ZI: ) ]
wnp

Xy = Spec over 7Z at its singular point O = (u,v,p). So, when writing f(u,v) = uv —p,

the claim follows from the direct computations

Ox zdu ® Oy zdv
(QXO/Z)O,tors - F(XU’ QXO/Z)tOI“S = < A2 i > =0
tors

df
and
O _
2 2 X,z ~
(QXO/Z)O = F(XO, QXQ/Z) = W du A dv = Z/p
ou’ v

O

This exercise may be repeated for singularities described by different equations f. A general
formula for A(X) — which involves Swan characters of Galois representations given by the

l-adic étale cohomology of Xz — has been found by Bloch in [3], Prop. 1.1.

A.5 Overview of computed cohomology groups

The following tables summarize the results for the ranks of the cohomology groups associated
to X as computed in Chapter 2 and pair them with the corresponding cohomology groups
for S (see [8] Sec. 5.8 for their derivations). As indicated before, we observe in all cases a

decomposition pattern as it is implied by decompositions of the kind
Hy™(X) = Hy"(S) @ 'Hy"(X) @ Hy " 7!(S).

We also provide torsion information for motivic and Weil-étale motivic cohomology groups.

A.5.1 Rank tables

Ranks of Deligne cohomology.

dimg H5"(S
.R?nm i=0 | i=1|i=2 | i=3
dimp H3"(X)
€pr + 8
n<0 "
€pr + 8 mg €T + S (A 12)
r+s '
n=1
r+ s r+ s
€T + S
n =2 "
EnT + S mg €pr + 8




Ranks of Hjj, (X, Z(n)).
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dimg Hy? (S
N RHXZ;OO((X)) i=0 |i=1| i=2
TR Wi (A.13)
€T + 8
any n B
EpT+S| Mg | €xr + S
Ranks of de Rham cohomology.
dimg H7(S
o Hn (5) i=0li=1|i=2
dimg Hjj (&)
H*(F¢,C)%= m
T (A.14)
H*(X(C),Oxc)"® || m | mg
H*(F¢,C)%= m
n =2
H*(X(C),C)% m | 2mg | m
Ranks of compact support cohomology.
dimg H2" (S
) ® lcn() 1=1 1=2 1=3 1=4
dimg He'' (X)
€Epr + 8
n <0 _
€EnT + S mg €T+ S
r+s—1
n=0 (A.15)
r+s—1 mg s
1
n=1
rkPicX |r+s—1
n =2
1
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Ranks of Weil-étale cohomology with compact support.

rk H" (S
fff() i=1 i=2 i=3 i=4 |i=5
rk Hy (X)
€pr + 8 €T+ 8
n <0
€pr + 8 €pr + 8 EnT + S €T + S
r+s—1 r+s—1
A tr4s—1 +
r+s— m r+s— m s s
g g (A.16)
) m—1 1
/]’L:
m—1 |rkPicX+m—1|rkPicX+r+s—1|r+s—1
m
n=2
m 2mg m—1 1
m
n>2
m 2mg m

A.5.2 DMotivic and Weil-étale motivic cohomology tables

The entries of the following tables are valid up to 2-torsion.
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