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ABSTRACT

In this thesis, I explore several avenues for learning about fundamental physics from
gravitational-wave (GW) observations. In particular, I focus on the phenomenological
study of basic properties of GWs in ways that require minimal assumptions about
the underlying nature of gravity. I place a special emphasis on GW polarizations, but
also consider their speed and possible dispersion. To constrain possible modifications
to general relativity, I develop data-analysis frameworks to measure these properties
with both transient and persistent signals detected by ground-based detectors. This
includes, among other results, the analysis of two LIGO and Virgo compact-binary
detections, GW170814 and GW 170817, to produce the first direct observational
statements about the local geometry of GW polarizations. I also present constraints
on the potential amplitude of nontensorial monochromatic signals from 200 known
pulsars in the Milky Way and describe in detail the methods used to obtain them.
Because stochastic signals will be a great resource for studying GW properties, I also
carefully review the assumptions that go into standard stochastic analyses and explore
their applicability beyond general relativity, concluding that those measurements will
have to be interpreted carefully to make meaningful statements about corrections
to Einstein’s theory. Besides the properties of the waves themselves, I also study
the prospect for using GWs as a means to uncover signatures of new ultralight
bosons—an exciting possibility that could bring particle physics into the reach of
GW astronomy. I explore the potential of current and future detectors to detect these
conjectured particles, concluding that third-generation instruments are certain to
place theoretically interesting constraints. Because little can be done in the absence of
signals, I also propose data-analysis methods to improve LIGO and Virgo’s chances
of detecting both transient and continuous signals. The latter have now been used to

diagnose real detection candidates on several occasions.
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Chapter 1

INTRODUCTION

On September 14, 2015, the LIGO instruments made history by detecting a passing
burst of gravitational waves. After almost exactly 100 years from their prediction
by Albert Einstein, this was the first time that these elusive spacetime ripples were
directly observed at Earth. The achievement crowned decades of effort by hundreds
of scientists in the field, and inaugurated a new era of observational physics and

astronomy.

In a sense, gravitational waves are to gravity what light is to electromagnetism. Both
are direct manifestations of one of the four fundamental forces (the strong and weak
nuclear forces being the other two) and, as such, carry in their nature invaluable
information about the most fundamental structure of the Universe. The similarities
are also observable: both kinds of waves travel at the same speed through empty
space and are created by the acceleration of some type of charge (electric charge for
light; gravitational charge, also known as “mass”, for gravitational waves). Gravity
being drastically weaker than electromagnetism, gravitational waves are much harder

to detect than light. Both are, nonetheless, ubiquitous in nature.

In another, richer sense, gravitational waves can be understood not as mere ripples of
a field in spacetime, but as ripples of spacetime itself. Space and time, as we learn
from Einstein’s general relativity, are dynamic entities that can bend and twist in the
presence of matter or energy—gravitational waves are perturbations in this curvature.
Accordingly, the main observable effect of these waves is to alternatively stretch and
squeeze lengths (producing a “strain”) as they whiz by at the speed of light[T] For
any conceivable source, however, these strains are unimaginably small, making their

detection a herculean task.

LIGO, the Laser Interferometer Gravitational-wave Observatory, was designed to
do just that. Its two instruments, one in Hanford, WA, the other in Livingston, LA,
are extremely sophisticated machines that can measure the imperceptible stretching
and squeezing caused by a passing gravitational wave. To achieve this, a laser beam
is split into two by a translucent mirror, which redirects the laser light down two

perpendicular arms 4 km in length; at the end of each arm, the laser is reflected

"For a technical characterization of the effect of gravitational waves, see Appendix
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back to the beam splitter, where it is recombined and sent out for readout. As
a gravitational wave goes by, it effectively changes the relative length of the two
arms—this modifies the distance traveled by light in the instrument and thus becomes
imprinted in its phase. Thanks to exquisite optical techniques (most importantly,
Fabry-Perot cavities) this method can be used to measure displacements orders of
magnitude smaller than the wavelength of the laser light. Advanced seismic isolation
and vacuum technology make this possible even in spite of the machine’s noisy

environment (wind, earthquakes, human activity, to name a few offenders).

At its peak, the first gravitational wave LIGO detected (nicknamed GW150914)
changed the lengths of the 4 km arms by a distance roughly a thousand times smaller
than the radius of a proton (~10~'® m). By thoroughly analyzing the 200ms-long
signal, we have learned it originated in the collision of two black holes over 1 billion
light-years away. As the two objects, each weighing more than 30 times the mass of
our Sun, plunged inexorably towards each other, they rattled the spacetime around
them and, in their final moments, produced more power than all of the stars in our
Universe combined. But the violent collision was invisible: all that energy, roughly
equivalent to three pulverized Suns, was released solely in gravitational waves, not
light. The echo of this cosmic crash eventually washed over Earth and was observed
by LIGO’s instruments. This was not only the first direct detection of gravitational

waves, but also of binary black holes.

The detection of GW150914 was only the beginning: since then over six more
events like it have been observed. Most remarkably, in August of 2017, LIGO
and its European counterpart, Virgo, made the first observation of the coalescence
of two neutron stars (GW170817). In that case, the gravitational signal was also
accompanied by exuberant emission across the electromagnetic spectrum, which
was recorded by 70 telescopes on the ground and in space. The historic discovery
confirmed the long-suspected relationship between gamma-ray bursts and neutron

star collisions, and delivered a wealth of astrophysical data.

Besides astrophysics, gravitational waves are also an exceptional resource for learning
about fundamental physics. This is so, first of all, because they allow us to observe the
most violent events in the universe, in regimes in which all of the fundamental forces
are active at their most extreme. The inside of a neutron star and the surroundings of
a black hole are both examples of exotic environments that cannot be replicated for
study in the laboratory. In particular, gravitational waves from black hole collisions

offer a uniquely clean probe of gravity in its most interesting, nonlinear regime,



which could offer invaluable clues about the nature of space and time.

Additionally, gravitational waves are direct manifestations of the dynamics of
spacetime itself and as such, hold in their basic properties important clues about how
the Universe is woven together. For instance, the polarization and speed of these
waves can reveal the geometric structure and symmetries underlying fundamental
physical laws. In the past few years, LIGO and Virgo observations have already
begun to inform these measurements. As an example, with the first detection we
were able to measure the dispersion of gravitational waves, allowing for the first
dynamical constraints on the mass of the graviton. Later, the gravitational and
electromagnetic waves from the neutron-star binary allowed us to place the first
direct observational bounds on the speed of gravitational waves. They also informed
us about the geometry of gravitational-wave polarizations, significantly adding to the
information previously gained with the first three-detector observation of a binary
black-hole (GW170814).

From a theoretical perspective, gravity remains the most mysterious of the four
fundamental forces. Furthermore, in spite of its prevalence in everyday life, gravity’s
intrinsic weakness makes it paradoxically hard to study. This makes gravitational-
wave observations all the more valuable: gravitational waves provide a unique window
into the dynamics of space and time that promises to point us to a better understanding
of gravity, possibly beyond Einstein’s theory. Furthermore, by allowing us to study
otherwise inaccessible exotic sources, they may also teach us about cosmology and

nuclear and particle physics.

In this thesis, I will explore some of these possibilities, including a discussion
of the first results on gravitational-wave polarizations and the prospects of using

gravitational waves to detect new particles. This is outlined below.



Chapter 2

OVERVIEW

In this thesis, I explore several paths for learning about fundamental physics using
gravitational waves. In particular, I treat the phenomenological study of their basic
properties in ways that require minimal assumptions about the underlying nature
of gravity. The main results and focus of this work concern gravitational-wave
polarizations. However, I also cover adjacent topics, including the possibility of

using gravitational waves to discover new particles beyond the standard model.

Little science can be done in the absence of signals. With that in mind, Chapter
[3land Chapter [] discuss data-analysis methods to improve the way ground-based
instruments make detections without requiring updates to the hardware. The first
one concerns signals from compact-binary coalescences, like those detected so far:
it shows how a Bayesian measure of signal coherence can increase the number of
detections made by LIGO, better distinguishing astrophysical signals from noise.
The second one concerns targeted searches for continuous gravitational waves from
known pulsars: it presents a technique to establish the significance of detection
candidates without idealizing detector noise—this is a big problem in the field, so

the method has already been used to diagnose outliers in real data.

We then move on to gravitational-wave polarizations in Chapters [5SH9] This includes
observational constraints on the local geometry of polarizations, which were obtained
from LIGO and Virgo’s compact-binary detections. Besides the treatment of transient
signals, I also present methods to detect and characterize continuous gravitational
waves from known pulsars without assuming their polarization geometry conforms
to general relativity. Those methods were applied in a search for signals in actual
data from Advanced LIGO’s first observation run (O1), the results of which are also

included here.

When detected, stochastic gravitational waves will also be another important resource
to study the fundamental nature of gravity. For this reason, in Chapter [I0|I carefully
review the assumptions that go into the traditional searches for these signals and
evaluate their applicability in the context of specific extensions of Einstein’s theory.
This study was motivated by the prospect of analyzing the polarization content of

the stochastic background and the realization that tacit assumptions could lead to



misinterpretation of the results.

Next, I offer a short treatment of gravitational-wave speed and dispersion in Chapters
and This includes a proposal for how to measure the speed of gravitational
waves using persistent signals from known pulsars, as well as how to measure
anisotropic dispersion relations with several compact-binary coalescences. These

discussions are only exploratory.

Finally, in Chapter [I3] I depart from the topic of gravitational-wave properties to
study the potential of ground-based detectors to discover new particles. In particular,
the presence of a yet-undiscovered ultralight boson could be revealed in continuous
gravitational-wave signals originated in the immediate vicinity of fast-spinning black
holes. I explore the prospect for detecting these signals by targeting known black

holes with second and third generation instruments.

A summary of each chapter is provided below:

Chapter : Enhancing confidence in the detection of gravitational waves from

compact binaries using signal coherence

We show that gravitational-wave signals from compact binary mergers may be better
distinguished from instrumental noise transients by using Bayesian models that look
for signal coherence across a detector network. This can be achieved even when the
signal power is below the usual threshold for detection. This method could reject the
vast majority of noise transients, therefore increasing sensitivity to weak gravitational
waves. We demonstrate this using simulated signals, as well as data for GW150914
and LVT151012. Finally, we explore ways of incorporating our method into existing

Advanced LIGO and Virgo searches to make them significantly more powerful.

Chapter E: Establishing the significance of continuous gravitational-wave de-
tections from known pulsars

We provide a much-needed efficient and robust way to empirically estimate the
background of searches for continuous gravitational waves targeted at known pulsars,
enabling estimates of detection significance that are valid in actual (non-Gaussian)
instrumental noise. The technique is based on “off-sourcing” the search, namely
blinding the data to actual astrophysical signals by assuming an incorrect sky location
for the target. We introduce the rationale behind this strategy, explore its theoretical

applicability and study its performance in real and simulated data. We find that oft-
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sourcing is an excellent tool, outperforming another standard method for estimating
search backgrounds. This method has already been put into practice for diagnosing

outliers in actual LIGO and Virgo searches.

Chapter : Probing gravitational wave polarizations with signals from compact

binary coalescences

Generic metric theories of gravity may predict up to six polarization modes for metric
perturbations: two tensor (helicity £2), two vector (helicity +1), and two scalar
(helicity 0) modes. In contrast, one of the key predictions of general relativity (GR)
is that metric perturbations possess only two tensor degrees of freedom. Therefore,
a detection of any nontensorial mode would be unambiguous indication of physics
beyond GR. In this technical note, we study the possibility of using networks of
ground-based detectors to directly measure gravitational-wave polarizations using
signals from compact binary coalescences. We present a simple data analysis method
to partially achieve this, assuming presence of a strong signal well-captured by a

template conforming to general relativity.

Chapter @: Constraints on gravitational-wave polarizations from compact-

binary coalescences

The observation of GW170814 and GW170817 has allowed us to gather the first
direct evidence that GWs come in the polarizations predicted by GR, as opposed to
the extreme alternatives of purely vector or purely scalar polarizations. This is an
important phenomenological check that the weak-field geometry of spacetime does
not deviate drastically from what Einstein predicted. Here we discuss these results

at length, including their limitations and interpretation.

Chapter Detecting beyond-Einstein polarizations of continuous gravitational

waves

The direct detection of gravitational waves with the ground-based detectors, like
Advanced LIGO, provides the opportunity to measure deviations from the predictions
of general relativity. One such departure would be the existence of alternative
polarizations. To measure these, we study a single detector measurement of a
continuous gravitational wave from a triaxial pulsar source. We develop methods to

detect signals of any polarization content and distinguish between them in a model



independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.

Chapter 8: Probing Dynamical Gravity with the Polarization of Continuous
Gravitational Waves

The direct detection of gravitational waves provides the opportunity to measure
fundamental aspects of gravity which have never been directly probed before,
including the polarization of gravitational waves. In the context of searches for
continuous waves from known pulsars, we present novel methods to detect signals
of any polarization content, measure the modes present and place upper limits
on the amplitude of nontensorial components. This will allow us to obtain new
model-independent, dynamical constraints on deviations from general relativity.
We test this framework on multiple potential sources using simulated data from
three advanced-era detectors at design sensitivity. We find that signals of any
polarization will become detectable and distinguishable for characteristic strains
h 2 3 x 107274/1 yr/T, for an observation time 7. We also find that our ability to
detect nontensorial components depends only on the power present in those modes,

irrespective of the strength of the tensorial strain.

Chapter @: First search for nontensorial gravitational waves from known pul-
sars

We present results from the first directed search for nontensorial gravitational waves.
While general relativity allows for tensorial (plus and cross) modes only, a generic
metric theory may, in principle, predict waves with up to six different polarizations.
This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations,
and does not rely on any specific theory of gravity. After searching data from the first
observation run of the advanced LIGO detectors for signals at twice the rotational
frequency of 200 known pulsars, we find no evidence of gravitational waves of any
polarization. We report the first upper limits for scalar and vector strains, finding
values comparable in magnitude to previously-published limits for tensor strain. Our

results may be translated into constraints on specific alternative theories of gravity.
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Chapter Measuring stochastic gravitational-wave energy beyond general

relativity

Gravity theories beyond GR can make very different predictions for the properties of
gravitational waves: their polarizations, dispersion, speed, and, importantly, energy
content are all heavily theory-dependent. All these features can potentially be probed
by measuring the stochastic gravitational-wave background. However, most existing
treatments of this background beyond GR overlook modifications to the energy
carried by gravitational waves, or rely on GR assumptions that are invalid in other
theories. This may lead to mistranslation between the observable cross-correlation
of detector outputs and gravitational-wave energy density, and thus to errors when
deriving observational constraints on theories. In this article, we lay out a generic
formalism for stochastic gravitational-wave searches, applicable to a large family of
theories beyond GR. We explicitly state the (often tacit) assumptions that go into
these searches, evaluating their generic applicability, or lack thereof. Examples
of problematic assumptions are: statistical independence of linear polarization
amplitudes; which polarizations satisfy equipartition; and which polarizations have
well-defined phase velocities. We also show how to correctly infer the value of
the stochastic energy density in the context of any given theory. We demonstrate
with specific theories in which some of the traditional assumptions break down:
Chern-Simons gravity, scalar-tensor theory, and Fierz-Pauli massive gravity. In each
theory, we show how to properly include the beyond-GR corrections and how to

interpret observational results.

Chapter : Measuring the speed of continuous gravitational waves

We explore how to directly measure the speed of gravitational waves by studying
continuous monochromatic signals (CWs), for example, from rapidly rotating neutron
stars. This technique relies on sensitivity to the Doppler modulation (in this context,
also known as “Rgmer modulation”) of the expected signal caused by Earth’s motion
with respect to the source. This is similar to the strategy used by Ole Rgmer in
1676 to produce the first quantitative estimate of the speed of light itself. We offer a
tentative demonstration of the method with a simplistic analysis. Although we do not
expect it to be competitive with the bound placed by the joint observation of GWs
and light from GW170817, this measurement would offer an independent alternative,

not limited by the same systematics.
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Chapter : Towards constraining generic gravitational-wave dispersion rela-

tions

In GR, GWs travel along null geodesics and are, thus, non-dispersive. However, this
prediction is a specific consequence of GR’s equations of motion and need not hold
in generic theories. In fact, modifications to the GW dispersion are equivalent to a
change in the wave equation for metric perturbations, which in turn derive from the
action of the theory and can take many forms, in principle. Here, we explore the
effect of an arbitrary dispersion relation on GW phenomenology. We heuristically
derive the observable effect of such a dispersion relation on the GW waveform and
apply the procedure to specific forms of the dispersion relation (massive graviton
and simplest anisotropic term). We discuss future data analysis implementations of

this result.

Chapter : Directed searches for gravitational waves from ultralight bosons

Gravitational-wave detectors could be used to search for yet-undiscovered ultralight
bosons, including those conjectured to solve problems in particle physics, high-
energy physics and cosmology. In particular, ground-based instruments could probe
boson masses between 10713 eV to 10712 eV, which are largely inaccessible to other
experiments. In this paper, we explore the prospect of searching for the continuous
gravitational waves generated by boson clouds around known black holes. We
carefully study the predicted waveforms and use the latest-available numerical results
to model signals for different black-hole and boson parameters. We then demonstrate
the suitability of a specific method (hidden Markov model tracking) to efficiently
search for such signals, even when the source parameters are not perfectly known
and in the presence of theoretical uncertainty. We empirically study this method’s
sensitivity and computational cost in the context of boson signals, finding that it
will be possible to target remnants from compact-binary mergers localized with at
least three instruments. For signals from scalar clouds, we also compute detection
horizons for future detectors (Advanced LIGO, LIGO Voyager, Cosmic Explorer
and the Einstein Telescope). Among other results, we find that, after one year of
observation, an Advanced LIGO detector at design sensitivity could observe these
sources up to no more than 100 Mpc for most parameters (at most close to 10°
Mpc), while Cosmic Explorer could reach up to ~10* Mpc. These projections should
be more reliable than previous estimates based on analytic approximations to the

signal power or idealized search strategies. Finally, we discuss specific implications
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for the followup of compact-binary coalescences and black-holes in x-ray binaries.
Along the way, we review the basic physics of the superradiance of bosons around
black holes, in the hope of providing a bridge between the theory and data-analysis

literatures.

We summarize the results and discuss future work in Chapter
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Chapter 3

ENHANCING CONFIDENCE IN THE DETECTION OF
GRAVITATIONAL WAVES FROM COMPACT BINARIES USING
SIGNAL COHERENCE

M. Isi, R. Smith, S. Vitale, T. J. Massinger, J. Kanner, and A. Vajpeyi, Phys|
Rev. D98, 042007 (2018), M.I. carried out the analysis and led the writing of the
manuscript, arXiv:1803.09783 [gr-qc] .

3.1 Introduction

A pair of neutron stars or black holes merges somewhere in the observable universe
roughly every 15-200s, releasing large amounts of energy in the form of gravitational
waves (GWs) [1-7]. One of the limiting factors in detecting such GW's with existing
detectors, like Advanced LIGO (aLIGO) and Virgo [8, 9], is data contamination by
instrumental noise transients (glitches) that may mimic astrophysical signals [10].
Glitches can lower the inferred statistical significance of GW signals, making their
detection more difficult. In this paper, we show how signal coherence may be used
to address this problem by significantly improving our ability to distinguish genuine

GW signals from glitches using Bayesian model comparison.

In particular, we demonstrate that Bayesian models—as proposed in [[11]—may
successfully distinguish real GWs from glitches by using the fact that the former must
be coherent across detectors, while the latter will generally not be. Here, coherence
means that a real GW must produce strain signals in different instruments that: (i)
are coincident in time (up to a time-of-flight delay); (ii) are well-described by a
compact-binary-coalescence (CBC) waveform; and (iii) share a phase evolution
consistent with a single astrophysical source. In contrast, glitches should not be
expected to fully satisfy these criteria. Making full use of this information (the
expected coherence of signals and incoherence of glitches) may allow us to detect

weaker signals than currently possible.

From a subset of glitches and detection candidates (triggers) from aLIGO’s first
observation run (O1), we find that: (a) the majority of glitches are markedly more

incoherent than coherent across detectors, irrespective of their loudness or the
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detection significance assigned by one of the main detection pipelines; (b) simulated
signals can be identified by their coherence, as long as they are distinguishable from
Gaussian noise in at least two detectors; and finally, (c¢) the “gold-plated” detection
GW150914 (detection significance > 5.107) [1]] and the “silver-plated” candidate
LVT151012 (detection significance ~ 2.10") [3] are both decidedly more coherent
than incoherent. This study of real data thus implies that the Bayesian comparison of
coherent and incoherent signal models has the potential to significantly improve the

sensitivity of CBC searches, even with currently available computational resources.

3.2 Searches

Templated searches for transient gravitational waves work by constructing a ranking
statistic based on matched filtering [[12H17]]. In principle, to make a rigorous statement
about the statistical significance of a pair of time-coincident triggers, it is necessary
to know the probability that a given event was produced by instrumental noise, rather
than an actual GW. This likelihood may be estimated empirically from the value of
the ranking statistic for a large representative set of triggers known with certainty to
be spurious. Such a set of signal-free triggers is denoted background, in contrast to

the foreground of candidates that may contain a signal.

Because detectors cannot be physically shielded from gravitational waves, ad hoc
data analysis techniques must be used to estimate the background. One such strategy
is to construct time slides by applying relative time offsets (longer than the light-travel
time between sites) between the data of different detectors [16, [17]. Detection
significance can then be inferred, in a frequentist way, by comparing the value of
the ranking statistic for a time-coincident foreground trigger to that of time-slid
background triggers. The rate at which background triggers are produced with a
given value of the ranking statistic is usually referred to as the false-alarm rate
(FAR).

Efficient signal detection requires a ranking statistic that extracts the most information
from the data, in order to discriminate between noise and weak astrophysical signals.
However, existing CBC searches are not optimal in this sense: they do not incorporate
knowledge of all features that may distinguish GWs from noise. Moving towards an
optimal statistic is a great challenge, but one large step is to demand that foreground
triggers in two or more detectors should be better described as coherent gravitational-
wave signals, rather than incoherent glitches. Importantly, it is not enough to provide

some measure of coherence: one must also prove that an incoherent model is not
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more successful at describing the data.

3.3 Coherence vs incoherence

To achieve this, we introduce the Bayesian coherence ratio (BCR): the odds between
the hypothesis that the data comprise a coherent CBC signal in Gaussian noise
(Hs), and the hypothesis that they instead comprise incoherent instrumental features
(Hp)—meaning each detector has either a glitch in Gaussian noise (Hg), or pure

Gaussian noise (Hy). For a network of D detectors:

ZS
BCR = nd 3.1)

21828 +(1-pzZN]’

where Z3 is the evidence for Hs, and Zl.G and Zl.N are, respectively, the evidences for
Hg,; and Hy; in the i™ detector. The arbitrary weights o and 3 parametrize our prior
belief in each model: @ = P(Hs)/P(H;) and B = P(Hg; | Hy) = 1 — P(Hn; | Hi)
for all i (see, e.g., Eq. (59) in [18]). These priors will be chosen to minimize overlap

between the signal and noise trigger populations; their importance is studied in detail
in Appendix 3.8

Evidences (marginalized likelihoods) are the conditional probability (P) of observing
some data (d;, for detector i) given some hypothesis (H). For the coherent-signal

hypothesis this is
Z° = P({d;}2, | Hs) (3.2)

- [ @1 p((a)2, 1 .94 00

The vector § represents a point in the space of parameters that describe the CBC signal,
such as the component masses and spins; the terms in the integrand are the prior,
p(§ | Hs), and the multi-detector likelihood, p({d; l.D: L 6, Hs) = ]_[l.D: ,p(d; | 6, Hs).
The specific functional form of the single-detector likelihood, p(d; | 5), is derived
from the statistical properties of the noise (e.g. a normal distribution for a Gaussian
process). The integral is performed numerically using algorithms like nested sampling
[19, 20]. In our case, the data d; are the calibrated Fourier-domain output of each

detector, but could generally be any sufficient statistic produced from it.

Because of their inherently unpredictable nature, it is impossible to produce a template
that a priori captures all features of a glitch. Therefore, we define a surrogate glitch

hypothesis by the presence of simultaneous, but incoherent, CBC-like signals in
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different detectors. Thus, for the i™ detector, the glitch evidence is
“=Pd; | Ho) (3.3)
= [ 9t 76 p@; 16 74c) 3,

where now we allow for a different set of signal parameters 55 at each detector We
will set p(6; | Ha) = p(f; | Hs) and p(d; | 6, Ha) = p(d; | 6 Hs), but this may
be relaxed to better capture specific glitch features, if necessary. The surrogate Hg
model captures the portion of glitches that lie within the manifold of CBC signals
and, in a sense, corresponds to the worst possible glitch—one that looks exactly like
coincident CBC signals. Variations of this strategy have been used before in the
analysis of compact binary coalescences [11]], minimally-modeled transients [24-26]],
and continuous waves [27-H29]]. Other searches also make use of likelihood ratios in

the detection process, but they do not rely on signal coherence (e.g. [13, [14]).

Finally, because we assume a perfect measurement of the detector noise power-
spectral-density (PSD), the Gaussian-noise evidence is just the usual null likelihood.

For our Fourier-domain data, this is just
Z = P(d; | Hy) = N(d)), (34)

where N(d;) is a multidimensional normal distribution with zero mean and variance
derived from the noise PSD [20]]. In principle, this could be easily generalized to

marginalize over poorly-known PSD parameters if needed.

3.4 Analysis

During O1, the two aLIGO detectors operated from September 12, 2015 to January
19, 2016. Ideally, we would like to compute the BCR for all triggers produced
during this period to show that it can efficiently discriminate between glitches and
CBC signals. However, computational limitations prevent this[? Instead, we pick
a subset of 983 multi-detector background binary-black-hole triggers identified by
PyCBC, one of the staple search pipelines [[15H17, 30]. We pick the background
triggers by sampling from the full trigger-set uniformly in the log of the inverse-FAR

'Note that (Hs and Hi are disjoint even if we do not explicitly exclude points from the parameter
space satisfying 6 = 6 for all i # j, because this condition defines a subspace that offers infinitesimal
support to the prior in 7—(1 (see [18} 21], or more general discussions in Ch. 4 in [22] or Ch. 28 in [23])).

2There are O(107) background triggers in O1. The run time on a single background trigger using
the LALINFERENCE implementation of nested-sampling is usually between 1 to 5 hours.
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(IFAR = 1/FAR) for IFARs in [ 5 x 107>, 10° ] yr, which is the total range reported

by the pipeline. This sampling allows us to analyze common (low IFAR) and rare
(high IFAR) background events.

To compute the evidences making up the BCR, Eq. (3.1)), we run the nested-sampling
algorithm implemented in the LALINFERENCE library on 4s-long data segments
containing each trigger [20,31]. Given the large number of triggers involved, this
would not be feasible without the reduction in the computational cost of Bayesian
inference provided by reduced order quadrature (ROQ) methods (see, e.g., [32]).
Using this technique makes no measurable difference for the values of the computed

evidences Bl

Templates are produced using IMRPHENOMP, a standard waveform family [32H335]].
We restrict the priors on the masses such that we only consider signals that are less
than 4s in duration, resulting in a chirp-mass range of 12.3My < M < 44.7M,,.
We further restrict the mass ratio to lie within 1 < ¢ < 8. The dimensionless spin
magnitudes are taken to be within [0, 0.89], and we consider all spin angles. The
prior on luminosity distance assigns probability uniformly in volume, with an upper
cutoff of 5 Gpc. These priors, as well as the priors for all other parameters, follow
the default for standard LALINFERENCE analyses with ROQ [20) 32]. The PSD used
for matched filtering is calculated using the BAyEsWAavE algorithm [25] 36]].

The search that originally produced our set of triggers considered a wider range
of masses and spins than we do in the BCR computation for the purpose of this
demonstration. To accommodate this, we prescreened the background to only allow
triggers with masses within our priors. It would be straightforward in principle
to broaden our constraints to encompass all triggers produced by the pipelines.
However, we refrain from doing so to keep our computational costs manageable.
Our preliminary analyses of slightly longer triggers (8s, 16s and 32s) yield results

qualitatively similar to those presented below.

We compare the BCRs from our background selection to several foreground triggers.
The foreground includes eight hardware injections, which were performed by
physically actuating the test masses of the detectors to simulate signals similar to
GW150914 [37]. We also analyze a set of 648 software injections: simulated signals

inserted in O1 data, with arbitrary sky location and orientation, and with masses

3For example, see Table IV in Appendix B of [3]], where Bayes factors computed with and without
ROQ can be compared (the values in that example are close, but not identical due to differences in
waveform approximants).
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Figure 3.1: BCR distributions. Histograms represent the survival function (1-
CDF) from our selection of 983 alLIGO O1 background triggers (gray), and 648
simulated signals (blue). Vertical lines mark the BCRs of eight hardware injections
(dashed green), LVT151012 (leftmost, orange line), and GW 150914 (thick red line).
Background triggers were selected to be uniformly distributed in log-IFAR, and 98%
yield log BCR < 0.

and spins that span our priors (in particular, the luminosity distance distribution is
uniform in volume with cutoff at 2.5 Gpc). On top of these artificial triggers, we also
compute the BCR for GW150914 [[1]] and LVT151012 [3]. The freedom provided by
the @ and S parameters in Eq. (3.1)) may be used to minimize the overlap between
the simulated-signal and background distributions; the results below correspond

to values of @ = 107® and 8 = 107*, but may be adjusted in future analyses (see
Appendix [3.§).

3.5 Results

Fig. [3.1] shows the BCR distributions obtained for background triggers and software
injections. The figure also displays the values obtained for GW150914, LVT151012
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and hardware injections, all of which show much stronger evidence for being
coherent CBC signals, rather than incoherent glitches (high BCR). We find a clear
separation between injections and background events—suggesting that the BCR
is good at distinguishing CBC signals from glitches. If we consider the intrinsic
probabilistic meaning of the BCR, a value of log BCR < 0 indicates a preference
for the instrumental-artifact hypothesis (Hj) over the coherent-signal one (Hs). As
expected, the vast majority (98%) of background triggers fall bellow this mark, while
the opposite is true for injections. GW150914 and LVT151012 yield log;, BCR
values of 8.5 and 3.8 respectively.

Fig.[3.2] shows the same populations from Fig. [3.1] plotted also as a function of the
network signal-to-noise ratio (SNR) recovered by our coherent Bayesian analysis.
Fig. 3.2 reveals that the BCR values of the signal population are correlated with
SNR, which reflects the fact that we are better able to evaluate the coherence of
signals that stand clearly above the noise floor. As a result, the separation between
our signal and glitch populations improves with SNR. Because this population of
background triggers was purposely selected to be uniform in log-IFAR, the gray
contours in Fig. 3.2] should not be taken to be representative of the actual glitch
distribution: this would include vastly more low-SNR triggers. In any case, BCR is

largely independent of SNR for background triggers.

There are three software injections with SNR > 12, but BCR < 1. This is due to
two characteristics that make the noise model preferable: (i) the ratio of SNRs in
two detectors is greater than three, and (i7) the signal in at least one detector is too
weak to be confidently discernible from Gaussian noise (SNR ~ 5.5). These rare
circumstances are caused by source locations and orientations unfavorable to the

detector network, and, as such, should be mitigated by adding more instruments.

Irrespective of its Bayesian interpretation, we may treat the BCR as a traditional
detection statistic to obtain a frequentist estimate of the significance of any given
foreground event based on the measured background (e.g. a p-value, or better, a
likelihood ratio). Again, our background triggers were selected to represent common
and rare events in equal numbers, so the distribution in Fig. @ need not be the
same as that of the entire background, and should not be used for this purpose.
However, as shown in Fig. we find that there is no evidence for strong correlation
between BCR and the IFAR assigned by the detection pipeline. This suggests that
the background BCR distribution shown in Fig. [3.1]is likely representative of the
whole. Furthermore, Fig. [3.3]implies that the BCR may be used to more easily reject
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Figure 3.2: BCR vs SNR distributions. Contours represent the normalized probability
density of selected background triggers (gray) and simulated signals (blue) in log-
BCR vs SNR space. The plot also shows eight hardware injections (green squares),
LVT151012 (orange star), and GW 150914 (red star). The curves shown on the
right (top) result from a Gaussian kernel-density estimation of the one-dimensional
distribution of log-BCRs (SNRs), obtained after integration over the x-axis (y-axis).
Background triggers were selected to be uniformly distributed in log-IFAR, and 98%
yield log BCR < 0 (threshold marked by a horizontal red line for convenience). The
SNR on the x-axis is the coherent matched-filter signal-to-noise ratio of the template
recovered with maximum a posteriori probability (maP) by our inference pipeline
(LALINFERENCE).
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Figure 3.3: BCR vs IFAR. BCR for the same data shown in Fig. plotted vs the
inverse false-alarm-rate (IFAR) assigned to each event by PYCBC, one of the staple
aLIGO search pipelines. There are six background triggers with BCR < 10~° which
fall outside the range of this plot; no foreground triggers are excluded from this plot.
High-significance events pile up on the right because their IFAR is a lower limit
determined by the most significant trigger in the background. This plot suggests the
BCR may be used to more easily reject incoherent glitches.

incoherent glitches, irrespective of IFAR, and thus increase our detection confidence
for marginal events like LVT151012.

3.6 Future implementation

Given its ability to separate signals from glitches, the BCR may supplement existing
search strategies and help increase their sensitivity, even with existing computational
resources. The most straightforward way to achieve this would be to run existing
CBC pipelines as usual, with an extra threshold on BCR (e.g. discarding any triggers
with, say, BCR < 1). Our results suggest that this would be an efficient way of
discarding the vast majority of instrumental artifacts, thereby increasing detection
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confidence of real signals [38]].

Computational costs would currently preclude obtaining BCRs for all triggers
(foreground and background) produced during a regular observation run, so this
extra step would have to be reserved for the most significant ones, as determined by
the main pipeline. However, processing all triggers would have the added advantage
of potentially enabling the detection of weak GW events that would otherwise be
missed (e.g. low-IFAR, but high-BCR, injections in Fig. [3.3). In the future, this
would also enable us to move beyond a simple BCR veto, and instead use large
numbers of simulated signals and background events to define empirical probability
distributions over a space of multiple figures of merit (e.g. BCR and SNR, as in
Fig.[3.2). This could be used to obtain likelihood ratios to categorize a trigger as
signal or noise—which can be shown to be an optimal strategy for classification
problems such as this, and have been used successfully by some existing searches
[13114)24]]. Future improvements in ROQ methods, like their implementation on

graphical processing units, will be vital in making this possible.

The values of the @ and 8 weights in Eq. (3.1)) have a strong effect on the shape
of the distributions of Fig.[3.2] as discussed in Appendix [3.8] While here we have
set them to values that yield a good separation between the signal and background
populations, future studies may systematically optimize these parameters using a
more comprehensive set of software injections and a large, representative set of
background triggers. This may be achieved via any standard optimization scheme
that attempts to minimize the overlap between the two populations. The values

would, of course, be fixed before analyzing any foreground data.

3.7 Conclusion

We have demonstrated that Bayesian models based on the coherence of GW triggers
across detectors may successfully distinguish between real CBC signals and transient
instrumental noise (Figs. and [3.2). We introduced a specific figure of merit,
the BCR, which responds to incoherent glitches in a way that is complementary
to that of standard CBC pipelines (Fig.[3.3)). Finally, we suggested a few avenues
for incorporating this (or similar) measure of coherence into existing GW search
strategies, the simplest of which would take the form of a new veto for detection
candidates. This could be implemented today to increase the number of gravitational
waves confidently detected by LIGO and Virgo, without needing to further improve

detector hardware.
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Versions of the ranking statistic used by PYCBC in recent analyses have incorporated
some measure of coherence [15]], and it remains to be seen whether this introduces
some correlation between BCR and IFAR in Fig.[3.3] Furthermore, while this study
focused on detection candidates produced by the two alLIGO detectors during O1,
we are currently investigating how the power of the BCR is affected by the addition
of new detectors, like Virgo. Finally, although here we focused on short-duration
(4s) triggers from high-mass binary-black-hole mergers, our preliminary results on

slightly longer (8s, 16s and 32s) show qualitatively similar behavior.
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3.8 Appendix: Effect of BCR weights

The weights (a, 8) that go into the calculation of the BCR in Eq. (3.1)) have a critical
impact on the degree of separation between the signal and glitch populations. Here
we elaborate on this point and show how we improve upon previous work by explicitly

taking advantage of the extra freedom afforded by these parameters.

From a Bayesian perspective, @ and S encode our prior beliefs on the relative
probabilities of each of the submodels that are compared in the computation of the
BCR: a determines by what factor the coherent-signal hypothesis (Hs) should be

favored over the instrumental-feature hypothesis (Hp),

, - POHS)
" PR

(3.5)

while S gives the probability of the glitch hypothesis (Hg) conditional on the
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Figure 3.4: Effect of weight on population separation. Color represents the difference
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in Eq. (3.8). This is shown as a function of the BCR prior weights, & (x-axis) and
B (y-axis), of Eq. (3.1)). All values are negative because the foreground always has
larger mean, so darker colors correspond to greater distance between the population
means.

assumption that there is an instrumental-feature to begin with,
B = P(Hg; | H) =1 - P(Hy; | Hi), (3.6)

for any dectector 7, as discussed in Sec.[3.3] The last equality in Eq. (3.6)) uses the fact
that we define the instrumental-feature hypothesis as the logical union of the glitch
and Gaussian noise (Hy) subhypotheses, i.e. H; = Hg V Hy, and that the latter are
logically disjoint, i.e. Hg A Hx = False, so P(Hx | Hg) = P(Hg | Hn) = 0.

It follows from the probabilistic interpretation of these parameters that their allowed
ranges are 0 < @ < coand 0 < B < 1. All results presented in the main text were

produced using the values
Main text: (a/ - 10,8 = 10-4) . 3.7)

This specific choice was made to yield a good separation between the background
and foreground populations, as reflected by Figs. [3.1]and [3.2] These values also
result in an overall normalization such that BCR = 1 gives the point at which both
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Figure 3.5: BCR (@ = 1, 8 = 0) vs SNR. BCR vs SNR for the same data shown in
Figs. but analyzed with (e = 1,8 = 0). For this choice of weights, the
BCR reduces to the Bayesian odds between signal and Gaussian noise, Eq. (3.9),
and scales with SNR according to Eq. (3.10), for both background (gray circles) and
foreground (blue hexagons). The SNR on the x-axis is the coherent matched-filter
signal-to-noise ratio of the template recovered with maximum a posteriori probability
(maP) by our inference pipeline (LALINFERENCE).

hypotheses are equally likely given our trigger set (i.e. the horizontal red line in Fig.
[3.2] roughly agrees with the intersection of the blue and gray curves on the right
panel).

To see how a and g impact the separation between the background and foreground
populations, consider as a proxy the distance between the mean BCRs for the two

populations. In particular, define the quantity

Av_¢ (log BCR) = <10g BCR<b>> - <log BCR<f>>, (3.8)

where the angle brackets on the right denote averaging over triggers, and the
superscripts “(b)” and “(f)” refer to “background” and “foreground” respectively.
This number then gives a measure of the vertical distance between the centers of the
distributions in Fig.[3.2] The effect of @ and 8 on this quantity is shown in Fig.[3.4]
where darker colors correspond to greater absolute mean distance. As expected from
Eq. (3.1I), the separation is a strong function of S, while it is largely independent

of a. It can also be seen from Eq. (3.1)) that @ should merely impact the overall
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normalization of the BCR, shifting all values up or down.

By tuning B we may thus control the degree of bias introduced in the computation of
the BCR. This can be used to correct for shortcomings in the definitions of the noise
submodels themselves, so as to best distinguish foreground and background. The
reason this is necessary in the first place is that not all glitches will conform strictly
to the “worst-glitch” hypothesis as we have defined it via Eq. (3.3)). For instance, the
distribution of glitch morphologies and SNRs need not conform to the parameter
priors assumed in the computation of Z%; instead of tuning the parameter priors, one

may correct for this effect via 8 (which is easier to implement).

Looking at Fig. [3.4] one may be tempted to substantially reduce 3 to maximize the
distance between the distribution means. However, the quantity plotted in Fig.[3.4]
Eq. (3.8), is insensitive to the fact that the two distributions do not retain their shape
when g is varied, and therefore is only useful as a proxy for population overlap when
looking at small changes in the weights. In other words, Fig. [3.4]fails to convey the
fact that there is a penalty in introducing too strong of a bias through . This is related
to the bias-variance tradeoff, well known in statistical inference (see, e.g., [39]). Let

us explore how this tradeoff is manifested throughout the range of valid values for 5.

On one end, setting 8 = 0 comes at the price of throwing away all information about
the incoherence of the trigger. As can be deduced from Eq. (3.1), in the limit of
vanishing 5 the BCR is nothing but the usual signal vs Gaussian-noise odds (BSN),

BCR(a = 1,8 =0) = 25/Z" = BSN, (3.9)

and the glitch model is totally ignored. For this choice of £, the BCR will just follow
the usual dependence of BSN on SNR (see, e.g., [40]),

log BSN o« SNR?, (3.10)

irrespective of whether the trigger is a glitch or a coherent signal, as shown in Fig.
[3.5] Although the distance between the means of the two populations in this figure is
large (as reflected also by Fig. for B — 0), this is only because, on average, the
background triggers in our set have lower SNR than the foreground.

On the other end, setting 5 = 1 is equivalent to ignoring the possibility that the trigger
was produced by Gaussian noise. In that case, the BCR reduces to the evidence
ratio between the coherent-signal and incoherent-glitch hypotheses, a quantity often

called “BCI” by gravitational-wave data analysts (assuming @ = 1):

BCR(a = 1,8=1)=25/2% = BCI. (3.11)
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Figure 3.6: BCR (@ = 1,8 = 1) vs SNR distributions. This plot is completely
analogous to Fig. but with (o = 1, 8 = 1) instead of (o = 107, 8 = 107*) [cf. Eq.
(3.1)]. For this choice of weights, the BCR reduces to the BCI, Eq. (3.T1), resulting
in greater overlap between the background (gray) and foreground (blue) distributions.
For more details about this plot, refer to the caption of Fig. @

The use of this quantity for glitch-discrimination purposes in CBC searches was
proposed in [11]. However, we find that it does not produce a sufficient separation
between the background and foreground populations, except for loud triggers. For
example, while (@ = 107%, 8 = 107) yields Fig.[3.2] (o = 1, 8 = 1) yields Fig.
From this plot, it is easy to see that the BCI is good at distinguishing loud incoherent

glitches from loud coherent signals, but is inconclusive for weak triggers.

We can check that changing g indeed affects primarily weak glitches by comparing
Fig. [3.7] to Fig. 3.3 BCR vs IFAR plots which were produced with 8 = 1 and
B = 107* respectively. The change in 3 from Fig. to Fig. causes low-IFAR
(low-SNR) glitches to yield significantly lower BCRs, while high-IFAR (high-SNR)
triggers are largely unaffected. Importantly, low-IFAR (low-SNR) signals are also

down-ranked after the change, but to a lesser degree on average; hence the separation
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Figure 3.7: BCR (@ = 1, 8 = 1) vs IFAR. This plot is completely analogous to Fig.
but with (@ = 1, = 1) instead of (& = 107°, 8 = 107*) [cf. Eq. (3.1)]. For
this choice of weights, the BCR reduces to the BCI, Eq. (3.11)), resulting in greater
overlap between the background (gray) and foreground (blue) distributions. For
more details about this plot, refer to the caption of Fig. @

in BCR improves, as can be seen by comparing the right panels of Fig. [3.6/and Fig.
3.2

To further quantify the effect of 8, we can also look at the fractional change in
log BCR when going from (e = 1,8 = 1) to (o = 1076, 8 = 107%),

A (logBCR) _ log BCR(107,10™%) — log BCI
|log BCI| | log BCI| ’

(3.12)

where vertical bars mark absolute values, and the BCI is defined by Eq. (3.I1). This
quantity is histogrammed in Fig. for the triggers in our set. The fact that the
change in g affects weak glitches more significantly than strong ones is reflected in the
bimodality of the gray distribution: the left (right) peak corresponds to triggers below
(above) an effective threshold of SNR ~ 9. On the other hand, the blue distribution
in Fig. [3.8 shows that most (although not all) signals are largely unaffected by the
change in 8, with a mean increase in BCR but long tails extending mainly to the left.
This large variance is due mostly to the weaker signals for which the BCR decreased

due to the change in f3.
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Figure 3.8: Effect of weights on logBCR. Histogram of the fractional change in
log BCR when going from (o = 1,83 = 1) to (o = 107%, 8 = 10%), Eq. (3.12). This
plot summarizes the differences between the BCRs shown in Figs. [3.2] & [3.3] and

those in Figs. [3.6/&[3.7}

By tuning the weights, we may attempt to find a sweet spot in which the bias

introduced is just enough to separate weak glitches from weak signals, without
confounding loud glitches with loud signals. The choice of Eq. (3.7) was found to be
close to this ideal, and achieves this by separating the weak glitches in our set from

the weak signals to an extent, largely without altering loud triggers (Figs. [3.1H3.3).
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Chapter 4

ESTABLISHING THE SIGNIFICANCE OF CONTINUOUS
GRAVITATIONAL-WAVE DETECTIONS FROM KNOWN
PULSARS

M. Isi, S. Mastrogiovanni, M. Pitkin, and O. J. Piccini, “Establishing the signifi-
cance of continuous gravitational-wave detections from known pulsars,” (2018),
M.I. conceived the project and led the writing of the manuscript.

4.1 Introduction

In addition to short-lived gravitational waves (GWs) from compact-binary coales-
cences like those observed so far [[1H3, 41, 42], ground-based detectors like the
Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [8] and
Virgo [9], are also expected to detect persistent, almost-monochromatic signals
[29] 143-47]. The primary potential source of such “continuous waves” (CWs) is
rapidly spinning neutron stars with an asymmetry in their moment of inertia [48]].
This includes galactic pulsars known from electromagnetic observations, which are
a main target for searches for continuous signals in LIGO and Virgo data [29, 49].
The detection of gravitational waves from any of these sources would provide a new
wealth of astrophysical information, as well as invaluable opportunities to learn about

fundamental physics (see, e.g., [S0] for a recent review).

There exist a number of efforts to detect gravitational waves from known pulsars
[29 147,151, 152]]. However, an outstanding problem affecting all of these searches
is the lack of a well-defined procedure to establish the statistical significance of
potential detections without making the assumption that the instrumental noise is
Gaussian and (semi-)stationary. Consequently, if evidence for a continuous wave
from a known pulsar was found today, we would be unable to establish, with certainty,
the probability for this to have arisen from a spurious noise artifact. The need for a
systematic and robust way of computing detection significance in the presence of non-
Gaussian noise has already become apparent with the appearance of hard-to-diagnose

outliers in recent searches in actual alLIGO data [|29, [53]].
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Establishing a robust procedure to assign significance is challenging because the
noise artifacts that limit the searches are intrinsically unpredictable and cannot be
modeled from first principles. Given this, we may instead attempt to empirically
determine the response of the different searches to real detector noise in the absence of
astrophysical signals. Armed with such knowledge, we would then be able to analyze
actual data, or “foreground”, and produce empirical likelihood ratios (or weaker
measures of detection confidence, like p-values) for the presence of an astrophysical
signal vs just instrumental noise, Gaussian or otherwise. This requires several
instances of “background”—that is, instrumental data that are known to contain no
astrophysical signals, while still retaining all statistical properties representative of

real instrumental noise.

Ideally, one would obtain background distributions by physically isolating the
instruments from the environment to shield them from actual signals. Because this
is impossible in the case of gravitational waves, we must attempt to replicate this
shielding digitally after the data have been recorded. Several techniques exist to
do this when looking for gravitational-wave transients, the most straightforward of
which is probably the use of “time slides”: the outputs of different detectors are
shifted relative to each other by time offsets longer than the light-travel time between
them [16, [17]. This ensures the spuriousness of any signal candidate left in the
multi-detector data thus produced, hence allowing us to estimate how likely it is for

noise to mimic a signal.

The direct analog of time slides in the context of continuous waves would be
“frequency slides”: a misalignment of the frequency-domain data of different
detectors. However, our ability to effect such frequency shifts is limited by the
frequency resolution of the searches (of the order of inverse observation time), and
the fact that the properties of actual instrumental noise are heavily dependent on
frequency—not only due to a frequency-dependent power spectral density, but also
to varying populations of narrow-band noise features. By the same token, time slides
themselves would not be feasible in transient analyses if the noise properties of the

detectors changed rapidly compared to the sampling time.

In light of this, here we propose a simple method for estimating the background of
searches for continuous gravitational waves by analyzing data assuming an incorrect
sky location for the targeted source. This “off-sourcing” takes advantage of the
expected Doppler modulation of the signal due to the relative motion of detector and

source to effectively blind the search to real astrophysical signals. We can use this to



30

produce a large number of independent noise-only instantiations of data, so as to
empirically estimate the background of a search and assign detection significances in
the presence of actual detector noise. We demonstrate that this method outperforms

another common strategy for estimating the background in realistic situations.

We begin in by providing relevant background about continuous waves and targeted
searches in Sec. .2l We then introduce the off-sourcing method and explore its
applicability in Sec.[4.3] We demonstrate the efficacy of the strategy in Sec. [4.4]
where we present several examples in both fabricated and actual detector noise. We
conclude in Sec.

4.2 Background

In this section, we review the basic morphology of continuous gravitational waves as
measured by differential-arm detectors, with an emphasis on the timing corrections
on which we will rely for off-sourcing (Sec.[d.2.1). We also make a special point of
discussing the relation between the frequency resolution at which a signal is sampled
and the ability to localize the source in the sky (Sec.[#.2.1). We next describe the key
properties of noise in existing ground-based instruments as they pertain to searches
for persistent signals (Sec.[d.2.2)). Finally, we provide an overview of the three staple
search methods for these signals in LIGO and Virgo data (Sec.[4.2.3)): the Bayesian
time-domain method, and the frequentist 5-vector and ¥ —statistic methods.

4.2.1 Continuous waves

Morphology

Continuous waves are nearly monochromatic gravitational perturbations with con-
stant intrinsic amplitude that are expected to be sourced by some rapidly spinning
bodies, like neutron stars. Within the context of standard physics, there are several
ways in which a neutron star could emit CWs, but the most favored is the presence of
a nonaxisymmetry in the star’s moment of inertia [54]. For this type of triaxial, non-
precessing source, such a GW will induce a strain in a differential-arm (quadrupolar)
detector, like LIGO or Virgo, which can be written as:

h(r) = ho%(l + cos? ) F.(t;¢) cos (1)

+ hg cos tFy(t;4) sin ¢(1), 4.1
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where the F(¢; ) and Fx(t; ) factors respectively give the instrument’s response
to the plus (+) and cross (x) GW polarizations, ¢ is the inclination angle between
the spin axis of the source and the observer’s line-of-sight, ¢(¢) is the phase of the

signal, and Ay is an overall amplitude related to the properties of the source by:

1671'2G EIZZ r%)t

hy =
ct r

4.2)

where r is the source distance, f; its rotation frequency around the principal axis z,

I the moment-of-inertia tensor and € = (I, — I,,)/I; the equatorial ellipticity [48].

The antenna patterns, F,(¢; ) and Fx(t;y), encode the amplitude modulation of the
signal due to the local geometric effect of a GW acting on a given detector. Thus,
they implicitly depend on the relative location and orientation of source and detector
by means of the source’s right-ascension «, declination ¢, and polarization angle .
The latter gives the orientation of the frame in which the polarizations are defined,
and we set it to be the angle between the line of nodes and the projection of the
celestial North onto the plane of the sky. While @ and ¢ are always well known, ¢
generally is not, which is why we show this argument explicitly. Importantly, the
antenna patterns acquire their time dependence from the rotation of Earth on its axis,

and consequently have a characteristic period of a sidereal day (~107> Hz).

For a simple triaxial source, the GW frequency f is twice the rotational value fio, SO

we can write:

$(1) = 2¢rat(1) + o, (4.3)
where ¢ is the rotational phase as measured via electromagnetic (EM) observations
and ¢y is a fiducial phase offset. The rotational frequency itself is almost constant,
with a small spin-down due to energy loss into the environment (via GWs and other
mechanisms), which means that the phase evolution can be well described by a
simple Taylor expansion on 7, the time measured by a clock inertial with respect to

the source:

N (J) f S »

o) = ZO Ty O =Tl (44)

Here Gl(j ) fy is the j™ time derivative of the GW frequency measured at the fiducial
time 7p, and N is the order of the series expansion (1 or 2 suffices for most sources).
Timing solutions are generally obtained through the pulsar timing package TEMPO2
[55, 156]]. These solutions present exquisite precision (frequency uncertainty of
10012 < 6 Jrot S 1078 Hz for most pulsars) and are the cornerstone of targeted

searches for continuous waves from known pulsars.
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The inertial time, 7 in Eq. (4.3), is usually taken to be the time measured by a clock
at the Solar System barycenter (SSB), which is itself assumed to be inertial with
respect to the pulsar. In that case, T can be written as a function of detector time, ¢,

by taking into account some well-known, time-dependent offsets:
7(t) = 1+ Ap(1) + As(?) + Apinary (1) + Ar(?) . (4.5)

Here Ag is the Solar-System Einstein delay; Ag is the Solar-System Shapiro delay;
Apinary i8 the delay originating from the motion of the pulsar in its binary (a term that
vanishes for isolated sources) [S7]; and Ag is the kinematic delay due to the relative

motion of the detector with respect to the source.

The timing correction of Eq. (4.5) is heavily dependent on the sky-location of the
targeted pulsar and will be the key to the off-sourcing method presented in Sec.d.3]
The dependence on sky location is dominated by the last term in Eq. (4.5]), Ag. This
is sometimes known as the “Rgmer delay” and encodes the Doppler modulation of
the signal:

Aﬂn:—g}?ﬂ, (4.6)

where 7(7) is a vector joining the SSB and the detector at any given time, Q is a
unit vector pointing from the SSB in the direction of the source[]and ¢ is the GW
speed. For practical purposes, 7 is usually computed by first splitting it into three
components:

F=Fo+7s+R, 4.7)

with 7 joining the SSB with the center of Sun, 7y joining Sun and Earth, and R
going from the center of Earth to the detector on the surface. One can then use Solar
System ephemerides, together with knowledge of the location of the detector on

Earth and the source in the sky, to compute the Rgmer correction at any given time.

The timing correction of Eq. (4.5]) can be understood as inducing extrinsic frequency
shifts to the signal, as seen by the detector. This is dominated by the Rgmer
term, Ag(t), which results in a modulation at the frequency of Earth’s orbital
rotation, wep ~ 2 X 1077 Hz, as well as subdominant daily effects due to its spin,
wsig = 27 /(sidereal day) ~ 7 x 107> Hz. In the frequency domain, the effect of this
correction is to spread the signal power across a narrow band centered on its intrinsic
GW frequency, with a characteristic width of Af ~ f - 10™* Hz. This frequency

modulation will be the key of our approach.

IThe source-location vector, Q, can be treated as constant over the timescale of our observations.
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Frequency and sky resolution

The sky resolution is the minimum angular separation in the sky at which two,
otherwise equal, sources could be distinguished. This is a function of the frequency

resolution at which the signal is sampled, namely:
of =1/T, (4.8)

for an observation time 7. This frequency bin is related to the minimum-resolvable
sky-bin by the sky-location—-dependent frequency modulation of Eq. (4.5)). Thus, the
angular resolution will be roughly given by the separation in the sky corresponding
to a Rgmer frequency shift of Af = 6 f. In other words, we may define a bin around
any point in the sky by the maximum angular distance one can move away from
that point before the frequency shift caused by the modulation of Eq. (4.6) reaches
a magnitude of 1/T. Thus, the characteristic size of a bin defined this way will

necessarily depend on the integration time.

Proceeding as above, we may cover the sky with a series of such sky bins to obtain a
“sky grid” representing the resolvability of points in the sky as a function of angular
location. Because the timing correction of Eq. (4.5) is dominated by Ag, which is
itself mostly due to Earth’s orbital motion, such a sky grid will be most naturally

defined in ecliptic coordinates to yield bin sizes given approximately by [38]:

1 1
. , 0=
Ngsin B Ngcos B

op = 4.9)

where 8 and A are respectively the ecliptic longitude and latitude, and the scale factor

is

_ J WorbRory T
c

for Ry, Earth’s orbital radius. As demonstrated in Fig. 4.1} the sky-grid can be

Ny (4.10)

easily computed using ecliptic coordinates (left panel) and then rotated to equatorial
coordinates (right panel). Note that this is a conservative sky-grid that implicitly
assumes the power of the signal may be split over at most two frequency bins as a
result of the timing correction—in practice, the characteristic size of the sky bins

may be reduced, but the scaling with f and T will always be as in Eq. (4.9).

4.2.2 Detector noise

The output of ground-based gravitational-wave detectors is vastly dominated by

instrumental noise [39, 60]. For this reason, the weak continuous signals discussed
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Figure 4.1: Left: Sky bins based on ecliptic coordinates for a search at a frequency
of 60 Hz and an integration time of 1024 s. Right: The same sky grid for the same
sky configuration in equatorial coordinates.

in Sec. d.2.1]are expected to become visible only after long periods of coherently-
integrated observation. Thus, understanding the statistical properties of the noise
is critical to successfully detecting these signals, irrespective of the specific details
underlying the search method of choice (cf. Sec.[d.2.3).

For the most part, the noise in a given detector is well described as a Gaussian
random process with a frequency-dependent (colored) power spectral density [S9,60]].
Gaussian noise has numerous convenient statistical properties that would drastically
simplify many of LIGO and Virgo’s analyses. However, this idealization is far from
perfect: the data are plagued with uncountable non-Gaussian features with a range
of spectral properties and durations. Among these, the most-often discussed are
probably the noise transients (“glitches”) that haunt searches for compact-binary
coalescences [61]. Yet, searches for continuous waves are most affected not by these
short-lived glitches, but rather by persistent narrow-band features (“lines”) [62].
Many of these spectral lines only become apparent after long-periods of coherent
observation, making their identification and eradication especially challenging.
Furthermore, their distribution over the sensitive frequency band of the detectors is

highly irregular and changes with time with the state of the instruments.

Fully-coherent searches for continuous waves tend to have very high frequency
resolution (of order 6 f ~ 10~/-1078 Hz), scaling directly with the integration time
(6f ~ 1/T). This fine resolution means that such analyses can fall victim to very
narrow (and weak) noise lines. Furthermore, as mentioned at the end of Sec.[4.2.1] a

pulsar signal will be spread over a band of width Af ~ f - 10~* Hz around its central
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GW frequency f. This means that attempts to find such a signal will be affected
by noise over a range of frequencies, wide with respect to the typical resolution
of the search. A persistent departure from Gaussianity in that frequency range
(e.g. a wandering instrumental line that happens to intermittently cross the targeted
band) will confound most searches, potentially yielding false positives (‘“outliers”).
Naturally, the number of outliers due to unmodeled noise found by the pipelines will
increase with the searched CW parameter space, as well as with observation time

(which increases the frequency resolution).

As in the case with the glitches affecting searches for compact binaries, lines and
other non-Gaussian features would not be an issue for continuous-wave searches if
there existed a robust way to model them and directly incorporate that knowledge into
the statistical analyses (cf. Sec. #.2.3|below). However, the noise artifacts in the set
that interests us are, by definition, impossible to fully model from first principles: any
particular noise source that is well-understood can usually be physically or digitally
removed, so that they are no longer of concern [62-635]; the remaining artifacts
are, therefore, those that are intrinsically unpredictable or so-far not understood.
Consequently, we are left to try to find ways to empirically estimate the true statistical
background (i.e. the probability distribution of false-positives) of a search in order to

assign significances to potential detection candidates.

4.2.3 Searches

Searches targeted at known pulsars make use of the simple form of the expected
signal, Eq. (.1)), to match-filter the data and determine the likelihood that a signal
is present. There exist three standard approaches of this kind: the time-domain
Bayesian method [31}, 57, 66, 67], the time-domain ¥ -statistic method [52, [68]],
and the frequency-domain Sn-vector method [69-71]. Due to the technical details
underlying each implementation, only the Bayesian time-domain method has been
broadly applied to a large number of targets [29]. Although the off-sourcing method
is applicable to all three of these techniques, in the following sections we will only
use the Bayesian and 5-vector searches for concrete examples. Regardless, here we

provide a brief overview of the basics of all three approaches for completeness.
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Bayesian approach

Bayesian statistics provide a complete and straightforward framework for computing
the probability that a given set of data contain a signal vs Gaussian noise, and
for inferring the parameters that best describe the signal if present. LIGO’s
implementation [51]] takes advantage of the fact that the phase evolution ¢(¢) is
known from electromagnetic observations to remove the high-frequency components
of the signal early in the process—this dramatically simplifies the Bayesian inference
step itself [67]].

First, the data are digitally heterodyned [57, [66] so that the signal they contain
becomes:
W (1) = h()e D = A1) + A¥(1)e 220, (4.11)

with * indicating complex conjugation, and
1 :
A(D) = ZFu(O)ho(1 + cos0) - %Fx(t)ho cos L. (4.12)

A series of low-pass filters are then applied to remove the second term in Eq. (@.11)),
which enables the down-sampling of the data by averaging over minute-long time
bins. As a result, A(¢) is the only contribution from the original signal left in our
binned data, B, which will now look like

Bexpected(tk) = A(t) + n(t), (4.13)

where n(ty) is the heterodyned, filtered and downsampled noise in bin k, which

carries no information about the GW signal.

Eq. (4.13) implies that B(#;) — A(#x) should have the statistical properties of noise,
and that Eq. (4.12) should be taken to be the template in our search. This knowledge
can be used to compute the marginalized-likelihood ratio (Bayes factor) that the data

contain a signal buried in noise (Hs), vs just Gaussian noise (H):

g - PBIHY)

N P | ) (4.14)

If the detector noise were indeed Gaussian, this single quantity would suffice to
define a detection criterion: a value greater than unity would indicate the signal
model is favored by that factor (in terms of betting odds), and vice versa. However,
since actual noise cannot be guaranteed to be Gaussian (and, generally, will not),
the probability ratio of Eq. does not inform us about the relative likelihoods
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of a signal vs actual (non-Gaussian) noise. To address this, one may attempt to
capture instrumental artifacts by defining a construction similar to Eq. but
using signal-coherence across detectors to distinguish spurious effects from actual
astrophysical signals [18], 27, [29]]. Nevertheless, it cannot be shown that any such
construction will always capture all the features of real instrumental noise (in the
language of formal logic, our hypothesis set is never complete). Therefore, we would
benefit from a method to empirically test the efficacy of our Bayesian constructions

at actually distinguishing signals from (non-Gaussian) detector noise.

S-vector approach

The frequentist 5-vector method [[69] builds a detection statistic using the sidereal
modulation given by the interferometer antenna response to the two CW polarizations,
encoded by F, x in Eq. @.1). Similar to the procedure outlined in Sec.[4.2.3] the
first step is to remove all the possible phase modulations, apart from the sidereal
ones caused by the antenna patterns. Depending on the type of search, this may
be achieved through different techniques, including subheterodyning, nonuniform
resampling, or a combination thereof [72, [73l]. After this step, the signal can be
modeled via two sidereal responses, A, /x(f) , analogous to F, /x(t) but which do not
depend on the polarization angle i (see [69] for more details). It can be shown that:
A(t) = Fi(t;¢ = 0) and Ax(r) = Fx(t; ¥ = n/4). By doing this, the signal assumes
the complex-valued form:

h(t) = Ho(n) [H+ (¥, m)A+(2) + Hx (¥, ) Ax(1)], (4.15)

where 7 is related to the ratio of the two polarization amplitudes given in Eq. (4.1)),

2CoSt

- __SoOst 4.16
1 1 + cos? 2 (4.16)

and with H, ), defined by

_ cos(2y) — in sin(2y)

V1+n? ,

_sin(2y) —in cos(2y)

H. =
g V1 +n?

Just as in the case of A(f) in Eq. (¢.12)), the frequency components of a signal

H,

described by Eq. (@.15]) are simply those corresponding to the sidereal modulations
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encoded in A, /x(#). These frequency components ( fsi-vec) are integer multiples of

the sidereal rotation frequency of Earth, namely:
fh e = faw + 27k wga , k = [<2,-1,0,1,2]. (4.17)

Therefore, any signal like Eq. (4.15) may be described as a vector in the space
spanned by the five 0-functions corresponding to the frequencies in Eq. (4.17).

To search for signals, the frequency domain GW data can be projected onto the
S-vector space to obtain a set of projections X. This resulting vector now lives in
the same space as the sidereal templates, which can be represented as 5-vectors
fL /x- We may those obtain the matched-filter between the data and the antenna
patterns by taking a simple scalar product between X and fl /x- By maximizing this

matched-filter, one obtains an estimator for the GW polarization amplitudes:
H+/>< == > (4.18)

which can be in turn used to define a detection statistic:

Ss = | AL HL? + | Ax|* Hy | (4.19)

After carrying out the above procedure for templates corresponding to different
parameters, detection candidates (i.e. values of the parameters that might match
a potential signal) are identified by their value of Ss5. In particular, the statistic is
required to exceed a threshold corresponding to a preset false alarm probability. To
do this, one must know or measure the distribution of Ss over noise. Traditionally
this has been computed analytically by assuming purely Gaussian noise with known

variance [69]].

Alternatively, since real data are not Gaussian, one may try to approximate the
background distribution by computing S5 over frequency bands far from the expected
signal (“off-frequency” analysis). The frequency regions should be far enough from
a possible CW signal such that only the noise contribution is present in the detection
statistic, and close enough to the analyzed band to share its statistical properties.
Given that the noise strongly frequency dependent, finding this sweetspot is far from
trivial (if at all possible) and one can never guarantee that the conditions required for

an unbiased estimation of the background are being satisfied.
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F -statistic

The F -statistic was first introduced in [52] for gravitational-waves searches from
neutron stars, and was later extended for other astrophysical objects [74} [75]. In
the case of Gaussian noise, the 7 -statistic is defined as the natural logarithm of the

maximum-likelihood ratio between the signal and noise hypotheses:

P(d | 6, Hs)

) 4.20
P@[7h) |, 20

F = max |In

where d is usually the calibrated detector data, and the maximization is over the
signal-template parameters, 6. 1t can be shown that the F statistic can be analytically
maximized over the “extrinsic parameters” (hg, ¥, ¢t and ¢g), thus reducing the
dimensionality of the numerical computations to the so-called “intrinsic parameters”
(@, 8, f and f). Since in a targeted search the intrinsic parameters are supposed to
be perfectly known, a targeted search based on the ¥ -statistic would reduce to the
computation of one value for F, which is later compared to the expected noise-only

distribution for Gaussian noise in order to assign p-value.

The analysis proceeds by match-filtering the data against four different templates, each
of them corresponding to a particular combination of intrinsic phase evolution and
sidereal modulation. The outcome of these four filters is the ¥ -statistic, which, if the
data are composed purely of Gaussian noise, can be shown to follow a y2-distribution
with 4 degrees of freedom [52]. Detection candidates (“‘outliers”) are selected
according to their false alarm probability, which can be computed analytically if one
assumes Gaussian noise. However, false-positive outliers arise when the noise is
not Gaussian, and thus not properly handled by Eq. (4.20). If this is the case and
one cannot trust the background distribution of the statistic to be simple y?2, this
distribution must be estimated empirically by producing sets of data known with

certainty to contain no astrophysical signals.

4.3 Method

Having reviewed the basics behind targeted searches for continuous waves, including
the difficulties inherent to non-idealized instrumental noise, we here introduce
off-sourcing as way to empirically assign detection significances. In Sec.d.3.1| we
describe the basic ideas behind this simple procedure and explain how it can be
easily applied to the Bayesian and 5-vector searches. In Sec.[#.3.2] we heuristically
explore the limits of applicability of this technique, concluding that off-sourcing is
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a viable method for estimating the background distribution of detection statistics,
as long as a few simple conditions are satisfied. This will be demonstrated in the

following section (Sec. 4.4) with concrete examples.

4.3.1 Off-sourcing

Lacking a satisfactory way to model all noise artifacts and their effect on CW searches
from first principles, we may instead attempt to empirically determine the distribution
of the different search statistics in response to real detector noise and in the absence
of astrophysical signals. As discussed in Sec.[4.1] a naive attempt at blinding the data
to astrophysical CWs using methods analogous to those used for CBCs is doomed to
failure. Therefore, we may instead look for a solution in specific properties exclusive

to real gravitational signals, as opposed to noise.

One example of such a feature is the requirement of consistency between the phase
evolution observed by EM astronomers and the sky location of the source: while
the two properties, as encoded in the signal itself, must necessarily agree in the case
of a real GW, there is no special link between them in the case of noise artifacts.
Furthermore, as explained in Sec.4.2.1] the location of the source is independently
imprinted in the morphology of the signal twice: in the amplitude modulation due to
the antenna patterns, Eq. (4.1)), and in the frequency modulation due to Rgmer and
other timing delays, Eq. (4.5)). Since these three properties (frequency, amplitude
modulation, and phase modulation) must all agree for an astrophysical signal, we may
ask: how likely is it for an instrumental artifact to randomly satisfy this condition

and thus mimic a real signal from a given source?

A priori, an instrumental artifact with frequency close to that expected from a
given source is no more likely to also show the amplitude and phase modulations
corresponding to the true location of the pulsar than those of any other arbitrary
sky location. In other words, there is no reason for instrumental noise at the target
frequency to “know” what the true sky location of the source is. By carrying out our
analysis assuming incorrect sky locations, we may blind ourselves to astrophysical
signals and empirically estimate the probability that instrumental artifacts in the
narrow frequency region corresponding to a given source also present the modulation

matching its location in the sky.

The above idea may be rephrased in the language of function spaces. Continuous
wave signals can be represented as vectors in the space of square-integrable functions

(L?) or, after discretization, the space of square-summable sequences (£2). We would
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like to estimate the overlap between the subspace of L? (or, rather, £%) occupied by
noise features and the much narrower one spanned by the signal template, Eq. (4.1).
We attempt to empirically achieve this by computing an inner product (defined by
the detection statistic itself) between the data and signal templates (basis elements)
corresponding to different sky locations. We expect this to work partly because
templates for different sky locations will be morphologically very similar to the true
template, while the same is not true for any arbitrary function. This also allows us to
explore the statistical properties of the noise in the same region of frequency space

occupied by the expected signal.

Implementation examples

Background distributions may be estimated via off-sourcing in the context of any of
the searches described in Sec.[#.2.3] This is true regardless of whether the search is
carried out in the time or frequency domains, for one or several detectors, maximizing
or marginalizing over nuisance parameters. This generality stems from the fact that
off-sourcing is largely insensitive to the specific details behind the computation, as

long as the sky location and phase evolution are assumed to be known.

Let us first illustrate this by using the time-domain Bayesian search as a concrete
example. As outlined in Sec. #.2.3] this approach is split into two stages: (i)
heterodyning of the data to put the signal in the shape of Eq. (4.12)); and (ii) Bayesian
inference to compute the relative likelihood of a signal being present, Eq. (¢.14). It
is important for our purposes that information about the location of the pulsar is only
needed in the first step, making it straightforward to apply our suggested strategy.
In particular, we may intentionally heterodyne the data assuming an off-source
sky location, and then carry out the inference stage as usual, assuming the true
(“on-source”) sky location. Rather than being indicative of a signal, a large Bayes
factor obtained this way would necessarily reveal the presence of a noise artifact.
This process may be repeated for different sky locations to obtain an estimate of how

likely noise is to mimic a signal from this pulsar.

As another example, consider the frequency-domain 5-vector approach of Sec.[d.2.3]
In that case, we may also resample or reheterodyne the data assuming an off-source
sky-location during a preprocessing stage. This procedure is expected to spread the
power of a possible GW signal over many different frequency bins, making it too

weak to be detectable and thus blinding the analysis to it. Next, we compute the Ss
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statistic by using the 5-vector sidereal function A, /x(¢) computed for the on-source
sky position. We can then repeat these steps for many different sky locations to
obtain a collection of background values for the Ss statistic. This yields a noise-only
distribution for the Ss statistic that quantifies the probability for a noise disturbance

to mimic the sidereal antenna patterns corresponding to the true sky location.

4.3.2 Blinding and draw-independence

In order for the method above to work, we need to make sure that: (i) the different sky
locations used are actually distinct, so that the results can be treated as independent
draws of the probability distribution we are trying to estimate; and (ii) off-sourcing
really does blind the data to foreground signals. The first requirement is easy to
satisfy and translates into the need for picking sky locations with angular separations
greater than the worst (largest) sky bin resolvable by the search, as explained in Sec.
M.2.1] As we show below, the second requirement can also be satisfied by picking
off-source locations far-enough away from the true position of the source.

Signal contribution to off-source statistic

To understand this, let us examine the conditions under which off-sourcing effectively
removes contributions from real continuous waves. For simplicity, consider a
signal of fixed frequency (f) originating from some known location (Qqn). Now
imagine heterodyning the data containing it by using a mismatched timing correction
corresponding to some off-source sky location (Qof), as proposed in Sec. In
full analogy to Eq. (4.13)), we would then obtain binned data like:

B(t) = A 20 4 n(t) = N (1) + n(t), 4.21)

where we no longer take the instrumental noise n(f) to necessarily be normally

distributed, and where
AT(t; AQ) = 7(1; Qon) — (15 Qofp) (4.22)

represents the timing-correction mismatch between the two sky locations with angular
separation AQ = Q¢ — Qon [cf. Eq. @3)]. As a proxy for a generic search statistic,
consider the evaluation of a simple inner product between the data and the expected

template:

(B(1) | A0) = (n(@) | A@)) + (N () | AD)) - (4.23)
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Our goal is to estimate the distribution of the overlap between the noise and the
template, (n(z) | A(t)), by studying our proxy statistic, (B(z) | A(t)). Consequently,
we would like the contribution of the true signal, (A’(r) | A(z)), to Eq. (#.23) to be

sufficiently small to be effectively undetectable.

Explicitly, the contribution of the signal to the inner product of Eq. (4.23)) can be

written in terms of a time integral over the observation time 7,
T . R
(N (1) | A(t)) = ‘ / A*(r) 2T ATEAD G| (4.24)
0

where A%(t) = A*(t)A(t). The first key feature of this result is that a signal with
greater signal-to-noise ratio (SNR) will tend to contaminate the off-source statistic
more strongly. This is not at all surprising: a strong signal can be detected even if
there is a small error in its assumed sky location, because enough coherent power
can remain even after the timing correction spreads it over several frequency bins. In
fact, the contribution of Eq. (4.24) is bounded from above by the squared-norm of

the signal template,

T
(N'(0) | A@)) < (A(D) | A@)) = ‘ /O A (1) de|, (4.25)

which, for a flat power spectrum, is directly proportional to the square of the SNR.

The second relevant feature of Eq. (4.24)) is that the dependence of (A’() | A(¢)) on
sky location will be determined solely by the angular structure of Ar, and how well
that can be resolved given f and T (see Sec.[#.2.1)). The inequality of Eq. (4.29) is,
of course, saturated if and only if the off-source location is such that Ar(t; AQ) =0
at all times: this takes place, for instance, if the “off-source” location is really just the
original location of the source (AQ = 0). On the other hand, for most other values
of AQ and for the range of frequencies we are interested in, the exponential term
in Eq. (4.24)) is highly oscillatory—this means that we should expect (A’(7) | A(z))
to quickly vanish as we move away from the true location of the source. This is
consistent with the sky-bin definition given in Sec.[4.2.1] from which it is possible to
see that the sky-bin size decreases with increasing frequency.

Angular pattern and magnitude

The detailed angular structure of our proxy off-source statistic is represented in Fig.
4.2l To produce this plot, we began with a set of binned data, Eq. (4.13)), containing



44

45

—45

0 90 180 270 360

a (deg)

Figure 4.2: Value of the correlation term (colorbar) over the entire sky area for a
loud signal injected at (o = 22"35™40.73%, § = 39°40/44.76").

Gaussian noise and a very strong (SNR = 70) simulated signal from an arbitrary sky
location on the ecliptic plane (indicated by a magenta circle). We then reheterodyned
these data assuming different (off-source) locations covering the whole sky, and for
each instantiation computed the overlap (normalized cross-correlation),
(B'(1) | B(1)) (A'(@) | A(r))

(B(t) | B(t)) ~ (A@) | A@)’

between the off-source data, B’(¢), and the on-source data, B(¢). This quantity (shown

Overlap =

(4.26)

in color in Fig. 4.2)) represents the normalized contribution of the injected signal
to the off-source statistic for different sky locations, as desired. This is because

(W'(t) | n(t)) ~ 0 for Gaussian noise, yielding the approximate equality in Eq. (4.26)).

As expected, the contribution of the signal falls off steeply as we move away from
the source location: while the normalized overlap of Fig. equals unity if AQ = 0
(center of the magenta circle), it is orders of magnitude smaller for all other choices
of Q. The rest of the structure in this plot reflects the symmetries of the timing
correction Eq. (4.3)), which are themselves dominated by the Rgmer term in Eq. (4.6)):

locations across lines of fixed ecliptic latitude remain somewhat correlated to the
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integration. The overlap function drops within a larger distance with respect to 1 year
of integration. Right panel: Overlap function computed for a software injection with
the same parameters of the one generated for Fig. 4.2] for various integration times
(see legend). We see that shorter integration times will correspond to a wider sky

area in which the templates will have non-negligible overlap. The overlap function at
the source location (null distance) is not 1 dueto the presence of the noise.

on-source location, and the whole pattern is symmetric under reflections through
the ecliptic (see Sec. .2.1] for more details). This important observation means
that, for any given on-source location, we will want to sample our off-source points
from a grid covering only one of the ecliptic hemispheres. Another possibility is to
randomly pick points anywhere in the sky, while enforcing a minimum separation

determined by the decay of the overlap function in Fig.[4.3] For 6 months of data
analyzed coherently, this distance would have to be > 0.01 deg.

For a sufficiently loud signal, sky bins neighboring the source will yield contaminated
off-source data (i.e. data that still contain measurable coherent power due to the
on-source signal). Unlike the angular dependence, the overall magnitude of this
contamination will be determined by the SNR of the signal and, as such, will depend
on the integration time and intrinsic amplitude. For the same example as in Fig.[4.2]

Fig. [4.3] shows the rate at which the overlap with the on-source location decreases

45
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as one moves at constant ecliptic latitude away from the source and for different

integration times.

Because latitude is held constant in this plot, Fig. 4.3|represents the slowest-possible
decrease in the contamination by this source (cf. Fig.[4.2)). Furthermore, this example
was chosen to have very high SNR and to lie on the ecliptic plane, where the sky
resolution is poorer (cf. Sec. 4.2.T)—all of which makes this close to a worst-case
scenario. In spite of this, the overlap vanishes quite quickly, plateauing far away from
the source at a value of the order 0.01. For realistic CW signals (lower SNR) a 1%
overlap is small enough to make the contribution of the signal in Eq. (4.23)) negligible
with respect to the noise. Hence for 1 month of data integration or more, taking
as off-source sky resolution 1 deg is enough to remove any measurable correlation
between sky bins in any realistic situation. (Examples of this are given in Sec. [#.4|

below.)

Contaminated backgrounds

In any case, an analysis that draws part of the background from a measurably
contaminated region may underestimate the significance of the true signal, but never
overestimate it. This is because a contaminated background will show artificial
tails towards higher values of the detection statistic, due to coherent power left over
after off-sourcing in some of the “noise-only” instantiations. Thus, in a sense, such
an analysis would, at worst, be conservative. Yet, as we will show in Sec. [E], a
signal that is sufficiently loud to cause such contamination over a non-negligible
region of the sky will itself yield an on-source detection statistic that is significantly
higher than any of the contaminated-background tails. Therefore, the significance

(e.g. p-value) assigned to such a signal will be the same with or without the tails.

In any case, sky bins in the immediate vicinity of the source may always be removed
from the background estimation to prevent contamination. However, the excision of a
large area of the sky will have the detrimental consequence of effectively reducing the
number of independent sky bins available for background estimation. Furthermore,
such procedure is only justified if we (implicitly) assume that the on-source data do
contain an astrophysical signal. In a way, this is analogous to how a very loud CBC
signal may pollute the time-slid background in searches for transient gravitational
waves (e.g. see caption to Fig. 3 in [3]], or Fig. 7 in [[76]). In that case, the standard

procedure has been to first compute significances with the “polluted” background to
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determine whether the zero-lag detection candidate is a real signal and only if that is

the case remove it from the background?] The same can be done here if necessary.

In summary, we conclude that off-sourcing, as described in Sec. 4.3.1] is a viable
method for estimating the background distribution of detection statistics in targeted
searches for continuous waves, as long as off-source sky-locations are chosen such
that: (i) they are distributed over only half the sky; (i7) the angular distance between
them is no shorter than the sky-resolution of the search (cf. Sec. 4.2.1)). This will
guarantee that the different draws of the background distribution (obtained from
different off-source sky locations) are independent and uncontaminated by a true

signal, were it to be there.

4.4 Analysis

We study the efficacy of oft-sourcing (Sec.[4.3.1)) as a viable method to empirically
estimate the background distribution of detection statistics in targeted searches for
continuous gravitational waves from known pulsars. We do this in the context
of both the Bayesian (Sec. [4.2.3)) and frequentist 5-vector (Sec. 4.2.3) analyses to
demonstrate the generality of the approach. We discuss specific case-studies in Sec.
4.4.1| and systematically compare to different methods by computing false-dismissal
and false-alarm rates in Sec.

The following results make use of both simulated and actual noise from interferometric
detectors. In all cases, we begin with a set of data representing the (fabricated
or actual) output of a detector after applying the preprocessing required to target
some chosen pulsar (e.g. filtering and downsampling)—these are the on-source
data. We then proceed as described in Sec. d.3.1|to generate multiple new sets of
off-source data, and then evaluate the distribution of the detection statistic over all
such instantiations (excluding the original, on-source one). We can then compare the
value of the on-source statistic to the off-source background, as we would in a real

analysis.

4.4.1 Case studies

Here we provide several concrete examples of off-sourcing at work in the presence
of pure noise, realistic signals and strong signals, as summarized in Table[d.1] Back-

ground distributions are estimated from 10* off-source locations in the hemisphere of

These two kinds of background are known colloquially as with and without “little dogs”, since
this distinction first arose during the analysis of an injection in the direction of Canis Major [[7']|].
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the source. The simulations of Gaussian noise (Sec.[4.4.1)) were carried out assuming
an observation time of 6 months and PSDs corresponding to the alLIGO and Virgo
design sensitivities. With the exception of Fig. [#.4] the simulated data for LIGO
Hanford (“H”), LIGO Livingston (“L”) and Virgo (““V”) detectors were then analyzed
coherently with the Bayesian method of Sec. to obtain the signal vs noise
Bayes factors of Eq. (4.14)) as our detection statistic.

The examples with real instrumental noise correspond to LIGO’s first observation
run (O1). The data streams start on 2015 Sep 11 at 01:25:03 UTC for Hanford and
18:29:03 UTC for Livingston and finish on 2016 Jan 19 at 17:07:59 UTC at both
sites. The first example consists of data prepared for the pulsar PSR J19312+17, for
which search results were presented in [29]. All analysis settings are the same as in
[29]], except for a log-uniform prior in the signal amplitude (same as in [79]]). The
second example is for a hardware injection presented in [/8]. Both these examples
are offered merely to demonstrate the performance of off-sourcing under realistic

circumstances—we present no new observational results.

Pure Gaussian noise

We first demonstrate that off-sourcing works as expected in pure Gaussian noise and
in the absence of signal. In this case, the on-source data are just a set of samples
from a Gaussian distribution with zero-mean and standard deviation given by the
value of the detector PSD at the GW frequency expected from the targeted pulsar.
The off-sourcing process should correspondingly produce multiple instantiations
of independent Gaussian noise, a fact that should be reflected in the resulting
background distribution of the detection statistic. This distribution is shown in Fig.
for an example using the 5-vector statistic of Eq. (4.19). When computed over
Gaussian noise, it can be shown that this statistic must follow a I" distribution with 2
degrees of freedom [[69]]. Fig.[.4]shows that this is the case, in agreement with our
expectation that off-sourcing should produce independent draws from the background

distribution.

Injections in Gaussian noise

Ideally, the background distribution should be unaffected by the presence of a signal:
while the value of the on-source statistic should rise to reveal it, the off-source values

should be insensitive to it. We demonstrate that this is the case by injecting signals
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Figure 4.4: Histogram of the noise-only distribution obtained using the off-sourcing
method in case of Gaussian noise. Red line: best fit given by a I" distribution with
a = 1.95. In this test case the hypothetical source was assumed at a frequency
f ~ 108.85 Hz with a spin-down f ~ 107'7 Hz/s . The on-source position was
chosen on the ecliptic plane (@ = 22"35™40.73°, § = 39°40'44.76") as in the example
for the overlap function reported in Sec.

and the search was performed for a hypothetical GW detector at the position of the
LIGO Hanford site.

of different amplitudes in Gaussian noise. We simulate a signal from the Crab pulsar
(PSR J0534+2200) as seen by three advanced detectors (H1, L1, V1) at design
sensitivity over 6 months and recover it using the Bayesian method of Sec. {.2.3]

We first choose a realistic signal amplitude of iy = 1072°, which is weak enough to
be consistent with the latest upper limits for this source [29], but strong enough to
yield a nonnegligible network-SNR = 5 for the chosen PSDs and observation time.
The data containing the injected signal are then reheterodyned for 10* off-source
sky-locations to yield the survival functions (1-CDF) in Fig. 4.5 Each colored trace
in this figure represents the distribution of oftf-source background computed from the
Northern celestial hemisphere, excluding any points closer to the source than the

indicated angular distance, i.e. excluding points with (@, ¢) such that |@ — ax| < A
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Figure 4.5: Realistic Crab signal in Gaussian noise. We simulate a 6-month-long
signal with hy = 10726 (network SNR 5) and parameters consistent with the Crab
pulsar (PSR J0534+2200), inject it in Gaussian noise for aLLIGO and Virgo design
PSDs and recover it using the Bayesian analysis of Sec.[d.2.3| (see Table .T)). The
left panel shows the survival function (1-CDF) of log,, 8y, Eq. (@14), for the
off-sourced background produced from the injected data for different excision areas
around the source (different colors, blue and green overlap almost perfectly), as well
as from pure Gaussian noise (gray, thin histogram); the on-source statistic for the
injection is log Bff} = 2.5 (thick dashed line), higher than any of the 10* off-source
instantiations. The right panel shows the distribution of the off-source statistic over
the sky in a North-polar stereographic projection, with the Crab’s location marked
by the magenta crosshairs; the color of each hexagon gives the average of log,, BEI
over several sky bins.
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and |6 — 04| < A with a “x” indicating the true location of the Crab and A one of the
values given in the legend of Fig. .5} 0° (blue), 10° (green), 30° (yellow) or 90°
(red). In particular, the blue curve corresponds to background from points sampled
over the whole hemisphere, while the red curve corresponds to points sampled over

the half-hemisphere not containing the source.

In this case, the choice of sky-region does not have a strong effect on the background:
we may take advantage of the whole hemisphere, getting quite close to the source (as
allowed by the frequency resolution of this search). In fact, note that the blue and
green curves in Fig. [4.5|are essentially identical. For reference, the distribution of the
off-source statistic over the whole Northern sky (0° curve on the left) is represented
on the right panel of Fig. 4.5 via a stereographic map, with the true location of the

source indicated by magenta crosshairs.

As expected, the background produced via oftf-sourcing is practically indistinguishable
from results in pure Gaussian noise (gray, thin histogram). Indeed, these two samples
yield a Kolmogorov-Smirnov (KS) p-value of 0.77, favoring the hypothesis that they
were both drawn from a common distribution. This agreement is in spite of the fact
that the on-source statistic (red line) takes a significantly-increased value, revealing
the presence of the injection. Completely ignoring the intrinsic probabilistic meaning
of BEI, a background like the blue curve in the left panel of Fig. would allow us
to place a p-value of at most 10~ on the null hypothesis that the on-source data are

noise.

As anticipated in Sec. there is a limit to how loud the injection can be without
noticeably contaminating nearby sky-bins and, therefore, biasing the background
distribution obtained through off-sourcing. However, this threshold is quite high:
for the same detector configuration as above, we find that the injection must reach
hy ~ O (10_24), or a network-SNR ~700 at design sensitivity, before off-sourcing
is unable to effectively remove it. We show an example of this in Fig. @.6| for a
signal from the Crab pulsar with /g = 1.4 x 10724, which roughly corresponds to the
spin-down limit for this source [29] This time, as seen from the panel on the left,
the full-hemisphere off-sourcing distribution (blue curve) is visibly inconsistent with
a pure-Gaussian background (gray, thin curve), and a KS p-value of 10777 strongly
disfavors a shared distribution between the two sample sets. From the right panel, it is

clear that the culprits are noticeably-contaminated sky locations in the neighborhood

3For an isolated pulsar (no accretion), the spin-down limit is the maximum power that could
possibly be emitted in gravitational waves given the observed decay in the pulsar’s angular momentum.
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Figure 4.6: Very loud Crab signal in Gaussian noise. We simulate a 6-month-long
signal with hg = 1.4 X 1072 (network SNR 700) and parameters consistent with the
Crab pulsar (PSR J0534+2200), inject it in Gaussian noise for alLIGO and Virgo
design PSDs and recover it using the Bayesian analysis of Sec. d.2.3] (see Table
. The left panel shows the survival function (1-CDF) of log,, 85, Eq. (@14)), for
the off-sourced background produced from the injected data for different excision
areas around the source (different colors), as well as from pure Gaussian noise
(gray, thin histogram); the on-source statistic for the injection is log;, Bg =9 x 104,
which is vastly higher than any of the 10* off-source instantiations (off the scale).
The right panel shows the distribution of the off-source statistic over the sky in a
North-polar stereographic projection, and with the Crab’s location marked by the
magenta crosshairs; the color of each hexagon gives the average of log,, BEI over
several sky bins, in semi-log scale linearly interpolated between (—1, 1).
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of the source (magenta crosshairs). These polluted sky bins are arranged in the same
pattern predicted in Fig.[4.2] although under a different guise due to the logarithmic

color scale.

As discussed in Sec. f.3.2] background contamination can at worst cause us to
underestimate, never overestimate, the significance of a detection. However, this is not
the case in the example of Fig. |4.6{because the signal is too loud (log; BEI =9 x 104,
off the scale of the histogram in Fig. [4.6). This is a general feature: in Gaussian
noise, if a signal is loud enough to contaminate a large region of the sky, it will also

be louder than the loudest background produced from it.

Real noise

The above behavior is replicated in the presence of actual noise from LIGO and
Virgo, with the difference that the background naturally shows tails due to the
non-Gaussianities in the data. An example of this is shown in Fig. which was
produced using actual data from alLIGO’s first observation run, prepared for the
pulsar PSR J1932+17 and with both detectors analyzed coherently using the Bayesian
method of Sec.[d.2.3] As before, the left panel show the off-sourced background
distributions for different excision areas around the source (different colors). Note
that the excision process does not have any significant impact on the distribution,
which is what one would expect in the absence of a very loud signal at the on-source
location. The presence of artifacts in the data becomes apparent in the slower drop of
the survival function with respect to, e.g., Fig.[4.5] The on-source value of the signal
vs noise Bayes factor for this source was published in [29], and is marked here by a
vertical dashed line—clearly, there is no evidence for a signal in the data. As before,
the distribution of the off-source statistic over the Southern sky is represented on the
right-hand side of Fig.

To study the effectiveness of off-sourcing in detecting a signal in real noise, we
analyze data for the hardware injection referred to as “P03” in [/8]. Hardware
injections are produced by physically actuating on the test masses to mimic the effect
of a true gravitational wave, providing a valuable end-to-end test of the instrumental
calibration and analysis pipelines. In the case of P03, the signal was injected at
108.86 Hz with a loud amplitude of &y = 8.2 x 1072° (network-SNR = 50). As
shown on the left panel of Fig. this signal seems to be sufficiently strong to
slightly contaminate the sky bins in its immediate vicinity, but this pollution is easily
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removed via a narrow excision (compare the blue trace to the rest in Fig. 4.8)). In
any case, the value of the on-source Bayes factor for this signal is log;, BEI = 504,
which is significantly louder than the loudest background. Given that 10* off-source
noise instantiations were used to estimate the background, this implies that Fig. 4.§]
would allow us to claim a detection of P03 with p < 10~* (ignoring the probabilistic
meaning of BY).

4.4.2 Comparison to other methods

In order to determine whether off-sourcing offers an improvement over other strategies,
we must go beyond specific examples and study false-alarm and false-dismissal rates.
That is, respectively, how likely is off-sourcing to conclude that a noise artifact is a
signal (false alarm), and how likely is it to conclude that a signal is a noise artifact
(false dismissal), as a function of confidence level? We estimate those rates from
a large number simulations in simulated and actual noise and use them to directly
compare with the standard background-estimation method for the 5-vector search
(Sec.[4.2.3) We find that off-sourcing outperforms the usual methods in real LIGO
data.

False-dismissal rate

First, in order to study the false dismissal rate, for a selection of SNRs, we simulate
250 signals over the sky, with extrinsic parameters (¢, 1, ¢¢) picked randomly over
their allowed ranges. We then inject these in idealized (Gaussian) and actual Ol
noise for the LIGO Hanford and Livingston detectors (4 months observation time). In
the case of Gaussian noise, the frequency and spin-down parameters of the injections
were decided to be equal to the ones of P03, this choice will reflect only on size of
the sky-patches that we should use in the off-sourcing as pointed out in Eq. (4.9). On
the other hand, when using detectors real data, the frequency of the injections was
decided to be around 54.5 Hz, since we knew a priori that O1 data in this frequency
band was polluted by noise artifacts, especially in the Livingston detector [80],
making this a good frequency region to test the ability of off-sourcing to distinguish

between astrophysical GW signals and noise.

In each case, we analyze the resulting data using the method of Sec. to obtain
the on-source value of the detection statistic, as well as 2 x 10* off-source values to

produce a background drawn with a minimum distance of 0.01 deg between each
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Figure 4.7: Real O1 noise for J1932+417. Off-sourced background produced from real
O1 LIGO data prepared for PSR J1932+17, analyzed coherently with the Bayesian
method of Sec. d.2.3| (see Table d.1)). The left panel shows the survival function
(1-CDF) of logy BEI, Eq. (@.14), for the off-sourced background for different excision
areas around the source (different colors); the on-source statistic for this pulsar is
log;q BEI = 0.5 (vertical dashed line), as was reported in [29]]. The right panel shows
the distribution of the off-source statistic over the sky in a North-polar stereographic
projection, with the true location marked by the magenta crosshairs; the color of
each hexagon gives the local average of log,, BEI over several sky bins.
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Figure 4.8: Real Ol noise for a loud hardware injection (P0O3). Off-sourced
background produced from real O1 LIGO data prepared for hardware injection P03
[78]], analyzed coherently with the Bayesian method of Sec. [4.2.3] (see Table {.T]).
The left panel shows the survival function (1-CDF) of log;, 8y, Eq. @#I4), for
the off-sourced background for different excision areas around the source (different
colors); the on-source statistic for this pulsar is log;, BEI = 504 (off-scale). The right
panel shows the distribution of the off-source statistic over the sky in a South-polar
stereographic projection, with the true location marked by the magenta crosshairs;
the color of each hexagon gives the local average of log BEI over several sky bins.
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Figure 4.9: (Placeholder) Top panel: Outlier selection probability vs FAP threshold
in Gaussian noise. Middle panel: Same but done in non Gaussian noise using the off-
frequency method. Bottom: Same again but this time using the off-source method.

other. We then compute the number of detected signals as a function of false-alarm
probability, i.e. the number of injections recovered with a detection statistic that is
higher than or equal to the value corresponding to certain p-value, as established
from the empirically-estimated background. For comparison, we repeat the above
procedure but with a background generated via the standard “off-frequency” method
(mentioned in Sec.[4.2.3]and described in detail in [80]), instead of off-sourcing. In
both cases, the tails of the background distributions are extrapolated for very large

values of the detection statistic using an exponential-decay fit.

The results of this study are summarized in the receiver operating characteristic
(ROC) curves of Fig.[4.9] Each curve in that figure gives the normalized detection
rate (detection probability) as a function of p-value (FAP) for different values of
injected SNR (different colors and traces) and different methods used to estimate the
FAP. The top two panels display results obtained by using off-sourcing to generate
the background: the topmost one using simulated Gaussian noise, and the middle
one with actual detector noise. On the other hand, the third panel shows results
from the same set of actual detector noise, but with background estimated with the

off-frequency method standard in 5-vector analyses.

It is clear from Fig. [4.9] that, at any fixed SNR and FAP, off-sourcing performs

better in the presence of pure Gaussian noise (top panel) than actual LIGO noise
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Figure 4.10: Rejection probability of an outlier born from a persistent monochromatic
noise lines in raw data. Significance for selection estimated using a Gaussian model
for the noise (bottom) and the off-source method (top).

(bottom panel). For example, with these settings we are only 50% likely to detect an
SNR = 16 signal (green curve, down-pointing triangles) with FAP = 1076 (~50)
in real Ol noise, but we are 75% likely to detect it with the same confidence in
Gaussian noise. This is totally expected due to the fact that matched filtering is
optimal for stationary Gaussian noise and agrees with the test cases shown in Sec.
4.4.1)(e.g. compare Fig. [d.5to Fig. [4.8] with attention to the tails of the distributions).
The artifacts in real noise produce tails in the background distribution at higher

values of the detection statistic, hurting our chances to detect actual signals.

Most importantly, Fig. also shows that off-sourcing outperforms traditional
methods in the presence of actual instrumental noise, as can be seen by comparing
the center and bottom panels. For instance, the oftf-frequency method (center panel)
has essentially 0% chance of detecting an SNR = 16 signal at FAP = 107, which is
dramatically less than the 75% chance of detecting it via off-sourcing (center panel).

In fact, for these settings, off-sourcing is consistently superior at all SNRs.

False-alarm rate

Besides assigning high significance to real signals, off-sourcing should also be able
to robustly reject outliers arising from non-Gaussianities in the data. In other words,
it should have a low false-alarm rate at any given level of confidence, rejecting

artifacts with high probability. The study of noise features is a very general problem
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due to the wide morphological range of non-Gaussianities that can be found in the
data, which the same reason why modeling noise likelihoods from first principles
is impossible in the first place. This makes the benchmarking of noise-rejection

probability a challenging problem.

To address this, we use as proxy simulated monochromatic noise lines at frequencies
close to the targeted pulsar frequency. The putative source for which we were looking
was, again, a pulsar with the rotational parameters of PO3 and the sky position
a = 22M35M40.73%, § = 39°40'44.76”. In particular, we produce 300 datasets
with noise lines at fixed signal-to-noise ratios injected in Gaussian noise before
performing the search with 4 months of observation time. Each noise line is injected
with a frequency within 0.01 Hz of the targeted frequency, ensuring that the Rgmer
correction will cause it to contaminate the on-source analysis. This is due to the fact
for a putative source at f 108.85 Hz the frequency shift due to the Rgmer correction

will be at maximum [72]:
Af=f- 107 ~ 0.01Hz. 4.27)

We pick the specific frequency and phase of the noise lines from a uniform distribution.
After doing this, for every dataset we compute the significance of the outlier due
to the injected noise line using off-sourcing with the 5-vector method (Sec.4.2.3),
producing 10* realizations of the noise background using sky patches separated
with a minimum distance of 0.01 deg. We also evaluate the significance using the

theoretical formula assuming pure Gaussian noise (cf. Fig. 4.4)) [69].

We evaluate our method’s ability to identify noise artifacts by studying the rejection
probability as a function of the confidence threshold set to claim a detection—that
is, how likely the analysis is to reject the artifact as we decrease our tolerance for
false alarms (FAP). Figure Fig. 4.10] shows the results obtained empirically with
off-sourcing (top panel) and analytically assuming Gaussian noise (bottom panel).
The y-axis shows the percentage of noise lines which generate an outlier with a
significance equal or higher than the detection-confidence threshold shown on the
x-axis. In the ideal case, we would be able to perfectly measure the significance of an
outlier and the curves in Fig. 4.10] would simply be a straight line with slope —1. As
we can see, strong (SNR > 256) noise lines produce significant outliers if we assume
the background to be Gaussian; however, this is no longer true for off-sourcing. The
top plot clearly shows that the off-source can evaluate correctly the contribution of

the noise to the noise-only distribution.
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These tests can be extended to a general noise background. In principle, we can
model coherent instrumental noise as a linear combination of monochromatic noise
lines like those injected above. Every noise line will couple constructively or
destructively with the other noise lines during the Doppler corrections, adding up
to the overall contribution to the analysis. If the lines combined constructively, we
will obtain a case very similar to the one presented in Fig. i.10] but with a larger
effective signal-to-noise ratio for the noise lines. While, if the noise lines combines
destructively, then we will obtain a case very similar to the one presented in Fig.
M.10] but with a lower effective signal-to-noise ratio. The general case should lie

somewhere in between.

4.5 Conclusion

Off-sourcing can provide a much-needed efficient and robust way to empirically
estimate the background of searches for continuous gravitational waves targeted at
known pulsars, enabling estimates of detection significance that are valid in actual
(non-Gaussian) instrumental noise. This method has already been put into practice
for diagnosing outliers in actual LIGO and Virgo searches [29, 53], but a systematic
study of its performance was lacking from the literature. In this paper, we have
filled in this gap by introducing the rationale behind this strategy, exploring its
theoretical applicability and studying its performance in real and simulated data. We
find that off-sourcing is an excellent tool, outperforming another standard method for

estimating search backgrounds.

The procedure is simple: the original gravitational-wave data are time-corrected for
multiple off-source sky locations to obtain as many instantiations of noise-only data,
which are then analyzed by any of the usual searches with the same settings as the on-
source search (Sec.[d.3.T)). Under the right conditions, we show that the oft-sourced
data are blind to astrophysical signals while retaining the statistical properties of the
noise. This allows for the direct empirical estimation of the background distribution

of the different search statistics.

Two conditions need to be satisfied for off-sourcing to be effective: off-source sky
locations must (i) be resolvably different and (ii) be drawn from the same hemisphere
as the source. As long as this is true, off-sourcing will provide independent draws
from the background distribution (Sec. #.3.2). Furthermore, for realistic signal
amplitudes, the distribution will be uncontaminated by the presence of a signal at the

true on-source sky location. This is not true for extremely loud signals, but this is
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not a problem because in those cases the on-source statistic is always louder than the
background (Sec.#.3.2). The phenomenon is analogous to that observed with strong
signals in searches for compact binaries [3, [76]].

We illustrate the efficacy of off-sourcing with several examples in real and fabricated
data (Sec.[#.4.1)). This includes simulated Gaussian noise in the absence of signal
(Fig. @d.4), as well as in the presence of realistic (network-SNR = 5, Fig. [4.5) and
strong (network-SNR = 700, Fig. @.6) signals. We also demonstrate the method
in the presence of real LIGO O1 noise with data prepared for PSR J1932+17 [29]
and loud hardware injection [78]]. Source parameters for all these case studies are

summarized in Table &1l

Finally, we systematically study the performance of off-sourcing by looking at
false-dismissal and false-alarm rates (Sec.[4.4.2)). The former is quantified by the
receiver operating curve of Fig. 4.9 and the latter by the rejection-probability vs
confidence-level plot of Fig.[4.10] We find that off-sourcing outperforms the standard

method for computing significances in the context of the 5-vector search.
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Chapter 5

PROBING GRAVITATIONAL WAVE POLARIZATIONS WITH
SIGNALS FROM COMPACT BINARY COALESCENCES

M. Isi and A. J. Weinstein, “Probing gravitational wave polarizations with signals
from compact binary coalescences,” (2017), M.I. carried out the analysis and wrote
the manuscript, arXiv:1710.03794 [gr-qc] .

5.1 Introduction

The detection of gravitational waves (GWs) by the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) has enabled some of the first experimental
studies of gravity in the highly dynamical and strong-field regimes [1-4, 82]. These
first few detections have already been used to place some of the most stringent
constraints on deviations from the general theory of relativity (GR) in this domain,

which is inaccessible to laboratory, Solar System or cosmological tests of gravity.

However, it has not been possible to use LIGO signals to learn about the polarization
content of GWs [82]], a measurement highly relevant when comparing GR to many
of its alternatives [83) [84]]. In fact, all existing observations are so far consistent
with the extreme case of purely non-GR polarizations. The reason for this is that
the two LIGO instruments are nearly coaligned, meaning that they are sensitive to
approximately the same linear combination of polarizations. This makes it nearly
impossible to unequivocally characterize the polarization content of transient GW
signals like the compact-binary coalescences (CBCs) observed so far, at least not

without making assumptions about the way the signals were sourced [84, 85].

Existing observations that are usually taken to constrain the amount of allowed non-
GR polarizations can do so only in an indirect manner. For example, measurements
of the orbital decay of binary systems are sensitive to the total radiated GW power, but
do not probe the geometric effect (namely, the directions in which space is stretched
and squeezed) of the waves directly (see e.g. [86, 87], or [88}189] for reviews). In
the context of specific alternative theories (e.g. scalar-tensor) such observations
can indeed constrain the power contained in extra polarizations. However, such

measurements provide no direct, model-independent information on the actual
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polarization content of the gravitational radiation. Thus, there may be multiple
theories, with different polarization content, that still predict the correct observed

GW emitted power.

To see that the above is the case, consider a scenario in which GWs are emitted
precisely as in GR, but where the polarizations change during propagation: the phase
evolution would be similar to GR, but the geometric effect of the wave would be
completely different [90H93]]. (This polarization mutation could take place if the
linear polarization basis did not diagonalize the kinetic matrix of the theory, as is
the case for neutrino oscillations [94} 93], or for the circular GW polarization states
in dynamical Chern-Simons gravity [96].) Because the same limitations of pulsar
binary analyses apply to studies of the details in the phasing of signals previously
detected with LIGO and other traditional tests of GR (like Solar System tests) have no
bearing on GWs, there currently exist no direct measurements of GW polarizations.

Prospects for the direct measurement of GW polarizations are improved by the addition
of Advanced Virgo to the detector network. In principle, at least five noncoaligned
differential-arm detectors would be needed to break all the degeneracies among
the five nondegenerate polarizations allowed by generic metric theories of gravity
[97) 98], if transient signals are used [18, 99]. However, as we will show, the
current Advanced-LIGO-Advanced-Virgo network can already be used to distinguish
between some of the possible combinations of polarizations without the need to use

specific knowledge about the phase evolution of the source.

In this note, we present a simple Bayesian method to extract information about GW
polarizations directly from strong CBC signals by using the relative amplitudes and

timing at the different detectors.

5.2 Background
5.2.1 Polarizations

In all theories that respect Einstein’s equivalence principle, including GR, gravi-
tational interactions may be fully described via the universal coupling of matter
to a metric tensor [83, [100]. Because of this, it may be shown that, in any such
metric theory, a (nearly-)null plane GW may be encoded in at most six independent
components of the Riemann tensor at any given point in spacetime [83,197,98]. These
degrees of freedom give rise to six geometrically distinct polarizations, corresponding

to the six linearly independent components of an arbitrary metric perturbation.
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Figure 5.1: Effect of different GW polarizations on a ring of free-falling test particles.
Plus (+) and cross (Xx) tensor modes (green); vector-x (x) and vector-y (y) modes
(red); breathing (b) and longitudinal (I) scalar modes (black). In all of these diagrams
the wave propagates in the z direction. This decomposition into polarizations was
first proposed for generic metric theories in [98].

At any given spacetime point X, the metric perturbation may thus be written as
hap(%) = ha(%) €y (5.1)

for six independent amplitudes, h4(X), and six polarization tensors e“z , (implicit
sum over polarizations A). For instance, letting w, = w, X w,, be a spatial unit
vector in the direction of propagation of the wave, we may consider the set of linear

polarization tensors

e =W, QW — W, O W,, (5.2)
=W, W, + W, @ W,, (5.3)
e =W, QW, + W, @ W,, (5.4)
=W, W, +W. QW,, (5.5)
eb:wx®wx+wy®wy, (5.6)

el=w.ow.. (5.7)



66

Then Eq. (5.1)) implies that there exists some gauge in which, in a local Lorentz

frame with Cartesian coordinates along (W, Wy, W),

hy + hy hx hy

where the /4’s represent the amplitudes of the linear polarizations: plus (+), cross
(X), vector x (x), vector y (y), breathing (b) and longitudinal (I). The effect of each

of these modes on a ring of freely-falling particles is represented in Fig.[5.1]

Polarizations may be characterized by their behavior under Lorentz transformations,
and different theories may be classified according to the polarizations they allow, as
seen by different observers; this is known as the E(2) or Eardley classification [97,98]].
Five of these degrees of freedom (traceless and divergencessless) correspond to the
helicity +2, helicity +1 and helicity O states of a massive spin-2 particle (the graviton);
the remaining mode corresponds to a ghost-like degree of freedom associated with
the trace of the perturbation. The correspondence between geometric (Eardly’s
classification) and field-theoretic (Wigner’s classification) language is, however,
limited because the the E(2) classification is only semi-Lorentz-invariant (although

it is usually taken to hold, at least in the weak field regime) [98].

Einstein’s theory only allows for the existence of linear combinations of the tensor +
and X polarizations [83]]. On the other hand, scalar-tensor theories famously predict
the presence of some breathing component associated with the theory’s extra scalar
field [101]], as do some theories with extra dimensions [[102]. On top of tensor and
scalar modes, bimetric theories, like Rosen or Lightman-Lee theories, may also
predict vector modes (85,1103, 104)]. The same is true in general for massive-graviton
frameworks [[105]. Furthermore, less conventional theories might, in principle,
predict the existence of vector or scalar modes only, while still possibly being in
agreement with all other non-GW tests of GR (see e.g. [106], for an unconventional

example).

5.2.2 Antenna patterns

Because different polarizations have geometrically distinct effects, as illustrated in
Fig.[5.1) GW detectors will react differently to each mode. The strain produced by a

GW metric perturbation A, on certain detector / spatially located at x;, is given by

hi(t) = DY hap(t, x1) = ha(t, x;) D%, (5.9)
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The detector tensor, D?, encodes the geometry of the instrument and the measurement
it makes; for differential-arm detectors (sometimes called quadrupolar antennas,
because of the symetries of their angular response functions, cf. Fig.[5.2)), like LIGO
and Virgo, this is |

ab _ a b ajgb
Dt = > (dfd) - dfa)), (5.10)

where d, and d, are spatial unit vectors along the detector arms (with common origin
at the vertex x;). Although D is technically also a function of time due to the
motion of Earth with respect to the fixed stars, in practice it can be taken as constant

when treating short-lived CBC signals, as is done here.

The ha(t)’s are determined by a nontrivial combination of the source dynamics,
the details of the matter-gravity coupling, and the vacuum structure of the theory.

However, the response (antenna pattern) of detector I to polarization A,
A _ A
FA = Debel, (5.11)

depends only on the local geometry of the gravitational wave and the detector,
irrespective of the properties of the source. This decoupling makes the antenna

patterns a unique resource for studying GW polarizations directly.

The response functions, Eq. (5.11)), encode the effect of a linearly A-polarized GW
with unit amplitude, 74 = 1. Ground-based GW detectors, like LIGO and Virgo are
quadrupolar antennas that perform low-noise measurements of the strain associated
with the differential motion of two orthogonal arms. Their detector response functions
can thus be written as [[107-110]:

Fy = % (W dy)? = (W - dy)? = (Wy - d)® + (Wy - dy)’], (5.12)
F= (Wy - dy)(Wy - dy) = (W - dy)(Wy - dy), (5.13)

Fy= Wy d)(Ws - dy) = (Wy - dy)(w; - dy), (5.14)

Fy = (Wy - d)(W; - ) = (wy - dy)(W; - d) (5.15)

Fo = 5 [ 42 = (we-dy 4 (wy -4 = (wy-dy ], (5.16)
F = % (W, - do)® = (w. - dy)] . (5.17)

Here, as before, the spatial vectors d, d, have unit norm and point along the detector
arms such that d; = d, X d, is the local zenith; the direction of propagation of

the wave from a source at known sky location (specified by right ascension «, and
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declination ¢) is given by w_, and w,, w, are such that w, = w, X w,. We choose
w, to lie along the intersection of the equatorial plane of the source with the plane of
the sky, and let the angle between w, and the celestial north be y, the polarization

angle.

Because of their symmetries, the breathing and longitudinal modes are fully degener-
ate to networks of quadrupolar antennas (see e.g. Sec. VI of [85]). This means that
no model-independent measurement with such a network can possibly distinguish
between the two, so it is enough for us to consider just one of them explicitly; we
will refer to the scalar modes jointly by the subscript “s”. (This degeneracy may not

be present for detectors with different geometries 111} [112]].)

The response of a given differential-arm detector to signals of certain linear polariza-
tion and direction of propagation can be written, in the local Lorentz frame of the
detector itself, as [see e.g. Egs. (13.98) in [110] with ¢ — —¢ — 7/2, to account for
the different wave-frame definition]:

1
F (9,0 4)=- > (1 + cos® 19) cos 2¢ cos 2y

—cos ¢#sin2¢ sin 2y, (5.18)

1
F (9, o) = 3 (1 + cos® 19) cos 2¢ sin 2y

— cos ¥} sin 2¢ cos 2y , (5.19)

Fx(9, ¢, ) = —sin ¥ sin2¢p cos
+ sin ¢ cos ¥ cos 2¢ siny (5.20)

Fy(9, o, ) = sind sin 2 sin yr
+ sin ¥ cos ¥ cos 2¢ cos Y , (5.21)

1
Fop(d, ¢,4) = %3 sin® 9 cos 2, (5.22)

where ¢ and ¢ are the polar an azimuthal coordinates of the source with respect
to the antenna at any given time (with detector arms along the x and y-axes). The
tensor, vector and scalar nature of the different polarizations is evident in this form,
given how each mode depends on ¢ (i.e. how it transforms under rotations around
the direction of propagation).
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(a) Plus (+)

(c) Vector-x (x) (d) Vector-y (y)

(e) Scalar (s)

Figure 5.2: Angular response of a quadrupolar detector to each GW polarization.
The radial distance represents the response of a single quadrupolar antenna to
a unit-amplitude gravitational signal of a tensor (top), vector (middle), or scalar
(bottom) polarization, i.e. |F,| for each polarization A as given by Egs.
for ¥ = 0. The polar and azimuthal coordinates correspond to the source location
with respect to the detector, which is to be imagined as placed with its vertex at the
center of each plot and arms along the x and y-axes. The response is plotted to scale,
such that the black lines representing the detector arms have unit length in all plots.
The response to breathing and longitudinal modes is identical, so we only display it
once and label it “scalar”. (Reproduced from [18]].)
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Equations (5.18)—(5.22) are represented in Fig.[5.2] by a spherical polar plot in which

the radial coordinate corresponds to the sensitivity given by the magnitude |F4|,
shown for ¢ = 0. The angular response functions have quadrupolar symmetry around
the detector’s zenith, regardless of the helicitiy of the polarization itself. This figure
also makes it clear that differential-arm detectors will generally be more sensitive
to some polarizations than others, although this will vary with the sky location of
the source. For example, for all but a few sky locations, quadrupolar antennas will

respond significantly less to a breathing signal than a plus or cross signal.

Fig.[5.2] shows the response of a single differential-arm detector to waves coming
from different directions in the local frame of the instrument. However, we are usually
interested in the sensitivity of a network of detectors and its ability to distinguish the
different polarizations. To visualize this, define the effective response to each of the

helicities, for a given source sky-location (a, &) and detector I:

IF(@.0)] = yFl(@. 6 + Fl{a, 6, (5.23)

IFl(a, )| = \/Fxl(a, 57 + Fl(a, )2, (5.24)

IFl(a, 6)| = \/Fbl(a, 5 + Fl(a, 6)2 (5.25)
= V2|F(a.9)l.

for tensor, vector and scalar waves respectively. (Here, since we are not dealing with
any specific source, we define our polarization frame letting ¥ = 0.) For a network
of N detectors, we may then construct an effective response vector for each of the

polarization sets above,
Fir(a,0) = (IFh (@, 0)l, ... IF}} (@, 0)1) (5.26)

for H € {t, v, s}. Finally, we may compare the overall sensitivity of the network
to different polarizations by defining the overlap, as a normalized inner product

between two of these vectors.

For instance, to compare the effective scalar or vector network sensitivity to the
tensor one, we may look at the overlap factor:

Fr(@,0) - Fi(a, 9)
F(@,6) - F(, )

Funla, o) = (5.27)

which will take values greater (less) than unity if the response to polarizations H

is better (worse) than to tensor, with %/(@, 6) = 1 by construction. The scalar and
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Figure 5.3: Overlaps of LIGO-Virgo network effective antenna patterns. The
normalized inner-products of Eq. (5.27) for the three-instrument network. The top
plot compares scalar to tensor (%), and the bottom one compares vector to tensor
(Fv/1)- Blue (red) marks regions for which the effective nontentor response is greater
(Iess) than tensor. A map of Earth is overlaid for reference.

vector overlaps with tensor are displayed for the LIGO-Virgo network in the skymap
of Fig.[5.3] over a map of Earth for reference. Colored regions roughly correspond
to areas in the sky for which the tensor and nontensor responses of the network are
highly distinguishable. The patterns are anchored to angular locations with respect to
Earth (not the fixed stars) and are determined by the specific location and orientation

of the three detectors.

Averaged over all sky locations, the response of the network is worse for scalar
signals than tensor ones, which is apparent from the top skymap in Fig.[5.3and the
distribution in Fig.[5.4] This is expected given that each interferometer is individually
less sensitive to scalar waves, as seen in Fig.[5.2] On average, there is no significant

difference between vector and tensor responses.
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Figure 5.4: Overlaps of LIGO-Virgo network effective antenna patterns. The
normalized inner-products of Eq. (5.27) for the three-instrument network. The blue
(orange) histogram corresponds to the values shown in the top (bottom) panel of Fig.

B3

5.3 Method

Ideally, we would like to unequivocally measure the polarizations of the GW that
produced a given transient strain signal in our detector network. Formally, this would
mean finding which of the seven possible Bayesian hypotheses the data favor: pure
tensor (H;), pure vector (H,), pure scalar (H), scalar-tensor (Hy), vector-tensor
(Hyy), scalar-vector (Hsy), or scalar-vector-tensor (Hyy ). A comprehensive Bayesian
treatment of this polarization model-selection problem was presented in [18] for
the case of continuous signals from known pulsars, later applied to stochastic GW
backgrounds in [99], and could be easily by adapted to the case of transient signals

considered here.

Yet, a simple counting argument is enough to show that three detectors are not
sufficient to break all degeneracies between the five distinguishable GW polarizations
using transient signals [83,85]]. Therefore, with the current LIGO-Virgo network,
we expect the results of an all-encompassing model-selection analysis, as discussed
above, to be inconclusive or dominated by priors. Nevertheless, we may still attempt

to distinguish between some of the possible hypotheses.

As mentioned in the introduction, all LIGO-only observations so far are consistent

with the extreme scenario of GWs being composed of purely vector or purely scalar



73

polarizations. Therefore, here we will focus on the problem of directly distinguishing
between these theoretically far-fetched, yet phenomenologically valid, possibilities.
That is, we will study our ability to choose between H; vs H;, and between H,
vs H;. Importantly, this is qualitatively distinct from the more standard question
about the presence of small nontensorial components in addition to the tensor wave
predicted by GR. Although perhaps not as interesting as these “mixed” polarization
studies (which, as explained above, will not fully succeed with current detectors),
the problem of distinguishing between the “pure” polarization cases is well-defined

and experimentally valuable.

We would like to ask the question: is it geometrically possible that a given strain signal
observed in the LIGO-Virgo network was produced by a GW with %’imtion other
than GR’s tensor + and X? The only way for us to answer this question is to probe
the antenna patterns of our instruments, Eq. (5.11)), which are a direct manifestation
of local geometry only (polarizations and detector geometry), independent of source
or the details of the underlying theory (see Sec.[5.2.2). We may thus exploit the
difference in the response of the network to the different polarizations (Fig. [5.3).

One way to extract polarization information using the antenna patterns would be to
construct linear combinations of the detector outputs that are guaranteed to contain no
tensorial signal [85]. If coherent power (as seen by, e.g. a wavelet analysis) remains
in such a null-stream, then that signal could not have been produced by a tensor (GR)
wave. This approach has the strong advantage that it requires no knowledge of the
spectral features of the signal whatsoever. However, to construct null-streams one
needs to very accurately know the location of the source a priori, which is never the

case without an electromagnetic counterpart (or more detectors).

Alternatively, one could carry out a morphology-independent sine-Gaussian analysis
(e.g. using BaAyEsWave [ 113, [114]]) to reconstruct the best-fit unmodeled waveform
from the data, and use that to extract information about times of arrival, phase
offsets and relative amplitudes at different detectors. One could then just replace
the tensor antenna patterns used in the signal reconstruction by their scalar or vector
counterparts and see how well each case fits the data (as measured by a Bayes factor).
In such test, no polarization information is extracted from the phase evolution. In
particular, the waveform reconstruction is only used to infer the source location from
the time lag between detectors, and the best-fitting combination of antenna patterns
from the amplitudes and phases at peak energy. (See pedagogical example in Sec.

[5.3.1]below.) An analysis like this was implemented for scalar modes and applied to
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the GW150914 signal, yielding no conclusive results as mentioned above [82]].

However, all signals observed by LIGO so far are exceptionally well described by
GR CBC waveforms [2-4, 82]. This match is established on a case-by-case basis
through comparisons between the GR templates and morphology independent burst
reconstructions of the signal in the data and is largely independent of the polarization.
In fact, for any of these confident detections, the waveform reconstructed from burst
analyses is effectively identical to a GR template. As emphasized above, in the
pure-polarization test (Hs vs H, or H, vs H;) all that matters is that most of the
signal power is captured by the template, regardless of small potential mismatches in
the phasing. Therefore, we may carry out the same study proposed in the previous
paragraph using GR waveforms to fit the data, while replacing the tensor antenna

patterns with those of different polarizations.

In other words, when the signal is clearly well-captured by a GR template, we may
use that directly to extract polarization information from the antenna patterns in a
model independent way, without implicitly assuming that the GW that caused it was
tensor polarized as GR predicts. The waveform reconstruction will be dominated by
the measurement at the most sensitive detector, while the amplitude information is

encoded in the relations between measurements by different detectors.

Whether we use GR templates or a collection of sine-Gaussians to reconstruct the
waveform, the effect of changing the antenna patterns will always result in different
inferred sky location and orientation for the source. Yet, not all antenna patterns
will be equally consistent with the observed relative amplitudes, phase offsets and
delays between the signals in our three detectors—this will result in a poorer signal
likelihood, and hence odds favoring tensor vs nontensor. Precisely because the
waveform used to capture the signal is the same, we know that any difference between

the tensor and nontensor results must come from the antenna patterns (polarizations).

This approach does not extract any information from the specific phase evolution of
the signal and is insensitive to small changes in the waveform. Therefore, using a GR
template to measure the signal power is justified, and does not imply a contradiction
when testing for nontensorial polarizations. For the purpose of this study, the CBC
signal is just probing the impulse response function of our network, and the same
results would be obtained if the waveform were just a Delta function rather than a

chirp.
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5.3.1 Toy example

For concreteness, consider the example of an elliptically-polarized, two-component
GW (e.g. two tensor modes or two vector modes) with waveform roughly described
by a simple sine-Gaussian wavepacket, with some characteristic frequency € and
relaxation time 7. Letting # be the time measured at Earth’s center, then the strain

measured by a given detector / will be:
hi(t) = R [A (F{ +ieF! ) eiQ(f"O“”')] ¢~(t=0=31*/7?, (5.28)

where F| and F; are the responses of detector / to the two polarizations, A = |A]e/?
is a complex-valued amplitude, € is an ellipticity parameter controlling the relative
amounts of each polarization, and ‘R denotes the real part. Also, 7y marks the time

of arrival at Earth’s center, which is delayed with respect to each interferometer by
oty Zﬁ'XI/C, (5.29)

where fi is a unit vector from Earth to the source, and x; joins Earth’s center to the
detector (with magnitude equal to Earth’s radius). Here we are assuming that the
GW travels at the speed of light, c.

The signal of Eq. (5.28) may be written more simply as
hi(t) = Ay cos[Qr — Aty) + @] e 1A /T (5.30)

after defining the three main observables at each detector:

A = |Al|F] +ieF)], (5.31)
®; = ¢ + arctan(eF, /F}), (5.32)
Aty = 1o + 61 (5.33)

From the output of three detectors (H, L, V), we may implement a simple inference
analysis to extract these three numbers for the signal as seen by each instrument. The
times at peak amplitude provide the three Az;’s, while measurements of the phase
and amplitude at peak itself give the ®’s and A;’s respectively. As always, recovery

of all these parameters will be negatively affected by instrumental noise.

The three timing measurements alone suffice to recover the sky location of the
source, fi. With this knowledge, it is then possible to compute the values of all

the corresponding antenna response functions, and thus obtain predictions for the
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(F 11 +i eFZI ) factors for any given ellipticity. Ratios of amplitudes and phase differences
between detectors may then be used to infer measured values for these quantities, and
to then find the best fitting polarization model. This may be achieved, for instance,
via a maximum-likelihood analysis, effectively minimizing the distance between
vectors like those of Eq. and a similar one inferred from the data. (Note |A|,

¢0, and € are nuisance parameters, and can be marginalized over.)

Although for this example we used a simple sine-Gaussian wavepacket to measure
the signal, at no point did we make use of the specific details of this phase evolution.
The only requirement is that the GW have a well-defined peak, in order to extract
meaningful information about how the relative timing, phase and amplitude of this
peak as seen by different detectors. In particular, this analysis would work precisely
the same way if CBC-like chirp waveform were used, as long as most of the power in

the actual signal was indeed captured by such a template.

This toy analysis makes the dependence on A;, ®;, At; explicit. In reality, when study-
ing actual data, one would ideally implement a full Bayesian analysis, marginalizing
over all parameters to compute evidences for the different polarization hypotheses (H;,
H,, H;) and corresponding Bayes factors (likelihood ratios). This can be achieved
using a code like LALINFERENCE [20]]. The polarization information extracted by
this more rigorous analysis would still, nonetheless, effectively come from the values
of A;, @, At;. As emphasized before, this is the case whether one uses GR templates

or a collection of sine-Gaussians to capture the signal power.

5.4 Conclusion

By extracting polarization information from the antenna patterns we may directly
probe the geometry of the GW metric perturbation (i.e. the directions along which
space is stretched and squeezed by the passing wave) from its projection onto our
detector network. With transient signals, instruments at five or more different
orientations would be needed to break all degeneracies between the five independent
(as seen by differential-arm detectors) polarizations allowed by generic metric theories
of gravity. However, we may already distinguish between some of the possibilities
using the current LIGO-Virgo network. How well we can do this will depend on the

specific properties of each transient event (mainly, sky location).

The kind of geometric observational statement discussed in this note is independent
of any theory or source model and is only possible with the addition of Virgo to

the network. Although here we focused on the problem of distinguishing between
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“pure” polarization states (tensor, vector or scalar), the case of “mixed” polarizations
will be addressed in future work. More details and a demonstration of the analysis
proposed here on simulated signals will be provided soon in an expanded version of

this document.
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Chapter 6

CONSTRAINTS ON GRAVITATIONAL-WAVE POLARIZATIONS
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6.1 Introduction

Generic metric theories of gravity may predict up to six polarization modes for
metric perturbations: two tensor (helicity +2), two vector (helicity +1), and two
scalar (helicity 0) modes [97,98]. In contrast, one of the key predictions of general
relativity (GR) is that metric perturbations possess only two tensor degrees of freedom
[83,1115]. Therefore, a detection of any nontensorial mode would be unambiguous

indication of physics beyond GR.

Before the beginning of LIGO’s second observation run, some evidence that gravita-
tional waves (GWs) are described by the tensor metric perturbations of GR had been
obtained from measurements of the rate of orbital decay of binary pulsars, in the
context of specific beyond-GR theories (see e.g. [86, 87], or [88, 89] for reviews),
and from the rapidly changing GW phase of binary black-hole mergers observed
by LIGO, in the framework of parameterized models [1} 4, 82]. The addition of
Advanced Virgo to the network in 2017 enabled another, more compelling, way of
probing the nature of polarizations by studying GW geometry directly through the

projection of the metric perturbation onto our detector network [18, 85, 99, [116]].

The GW strain measured by a detector can be written in general as h(t) = FAhy, where
hy4 are the 6 independent polarization modes and F4 represent the detector responses
to the different modes A = (+, X, X, y, b,1). The antenna response functions depend

only on the detector orientation and GW helicity, i.e. they are independent of the
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Table 6.1: Polarization constraints from compact binaries (LIGO and Virgo).

GW170814 GW170817 GWI170817 (fixed sky)
log;o B(tensor vs vector)  2.5+0.2  0.72 +0.09 20.81 +0.08
log,, B(tensor vs scalar)  3.1+0.2 5.84 +0.09 23.09 +0.08

intrinsic properties of the source. We can therefore place bounds on the polarization
content of a given GW by studying which combination of response functions is
consistent with the signal observed [18, 79, 85,199,116, [117]. However, in order to
break degeneracies and constrain all distinguishable polarization combinations with
short compact-binary coalescences (CBCs), we would need at least 5 detectors, even
if the location of the source was known a priori—a network with fewer detectors
can only make partial statements about polarizations (see Chapter[S]). Furthermore,
as the two LIGO instruments have similar orientations, little information about

polarizations can be obtained using the LIGO detectors alone.

The first test on the polarization of GWs was performed for GW 150914 [82]]. The
number of GR polarization modes expected was equal to the number of detectors in
the network that observed the signal, rendering this test inconclusive. The addition
of Virgo to the network of GW detectors allowed for the first informative test of
polarization for GW170814 [5]. As described in Sec.[6.2] this analysis established
that the GW data was better described by pure tensor modes than pure vector or
pure scalar modes. A similar analysis was carried out for GW 170817, the binary
neutron star detected shortly after [6]. In that case, and as described in Sec.[6.3] the
identification of an electromagnetic counterpart allowed for much stronger results,
effectively rejecting the two pure-nontensorial models to any reasonable doubt [[118]].
Results for both events are summarized in Table

6.2 GW170814

On August 14, 2017, GWs from the coalescence of two black holes at a luminosity
distance of 5403?8 Mpc, with masses of 30.5f§:8 Mg, and 25.3:23 Mg, were observed
in all three LIGO and Virgo detectors. The signal was first observed at the LIGO
Livingston detector at 10:30:43 UTC, and then at the LIGO Hanford and Virgo

detectors with delays of ~8 ms and ~14 ms, respectively.

The signal-to-noise ratio (SNR) time series, the time-frequency representation of the
strain data and the time series data of the three detectors together with the inferred

GW waveform, are shown in Fig.[6.1] The different sensitivities and responses of the
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Figure 6.1: GW170814 as observed by LIGO Hanford, LIGO Livingston and Virgo.
Times are shown from August 14, 2017, 10:30:43 UTC. Top row: SNR time series
produced in low latency. The time series were produced by time-shifting the best-
match template from the online analysis and computing the integrated SNR at each
point in time. The single-detector SNRs in Hanford, Livingston and Virgo are
7.3, 13.7 and 4.4, respectively. Second row: Time-frequency representation of the
strain data around the time of GW170814. Bottom row: Time-domain detector
data (in color), and 90% credible intervals for waveforms reconstructed from a
wavelet analysis [25] (light gray) and GR templated models (dark gray), whitened
by each instrument’s noise.(Reproduced from [5]], see that Ref. for details on data
manipulation for this figure.)

three detectors result in the GW producing different values of matched-filter SNR in
each detector. A measurement of the signal amplitude by multiple (non-coaligned)

detectors is the first ingredient needed to study polarizations.

Until Advanced Virgo became operational, typical GW position estimates were highly
uncertain compared to the fields of view of most telescopes. The baseline formed
by the two LIGO detectors allowed us to localize most mergers to roughly annular
regions spanning hundreds to about a thousand square degrees at the 90% credible
level [119H121]]. Virgo adds additional independent baselines, which in cases such as
GW170814 can reduce the positional uncertainty by an order of magnitude or more

. Good sky localization is the second ingredient needed to study polarizations.

With the addition of Advanced Virgo we can probe, for the first time, gravitational-
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(a) Tensor

14h , 12h

(b) Vector

(c) Scalar

Figure 6.2: GW170814 skymaps. Reconstructed sky location under the assumption
of the three different polarization hypotheses. Color represents probability density,
as a function of equatorial coordinates in a Mollweide projection.
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Figure 6.3: GW170814 polarization-angle posteriors. Posterior probability density
in the polarization angle under the three different polarization assumptions. Note the
periodicities corresponding to the different helicities.

wave polarizations geometrically by projecting the wave’s amplitude onto the three
detectors. To do this, the coherent Bayesian analysis used to infer signal parameters
is repeated after replacing the standard tensor antenna response functions with those
appropriate for scalar or vector polarizations [116]. In our analysis, we are interested
in the geometric projection of the GW onto the detector network, and therefore the
details of the phase model itself are less relevant as long it is a faithful representation
of the fit to the data in Fig.[6.1] Hence, we assume a GR phase model.

We find Bayes factors of more than 200 and 1000 in favor of the purely tensor
polarization against purely vector and purely scalar, respectively. We also find that, as
expected, the reconstructed sky location, distance and orientation change significantly
depending on the polarization content of the source, with non-overlapping 90%
credible regions for tensor, vector and scalar (Fig.[6.2)). In particular, the posterior on
the polarization angle ¢ reveals the symmetries intrinsic to each helicity: periodic
over 7t /2 for tensor, periodic over & for vector, and totally insensitive to changes in ¢/
for scalar (Fig.[6.3). The inferred detector-frame masses and spins are always the
same, because that information is encoded in the signal phasing. An example of this
is shown in Fig. for the “chirp” mass, M = (m1m2)3/5(m1 +my)~'/3. The most
probable waveforms recovered under different hypotheses confirm that Virgo data is
the key differentiating factor (Fig. [6.5).

6.3 GW170817

On August 17, 2017 at 12:41:04 UTC, the Advanced LIGO and Advanced Virgo

gravitational-wave (GW) detectors made their first observation of a binary neutron
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Figure 6.4: GWI170814 chirp-mass comparison. Posterior probability densities
recovered for the detector-frame chirp mass M = (m1m2)3/ S(my + mz)_l/ > where m;
and m, are the two component masses. The different traces correspond to different
polarization hypotheses: on the left, vector (brown) and tensor (green); on the right
scalar (green) and tensor (brown). They are all equivalent.

star inspiral signal (GW170817) [6]. A representation of their data is given in Fig.[6.6]
Associated with this event, a gamma ray burst [[123]] was independently observed,
and an optical counterpart was later discovered [[124]]. The source was successively
associated with the galaxy NGC4993.

In terms of fundamental physics, these coincident observations led to a stringent
constraint on the difference between the speed of gravity and the speed of light,
allowed new bounds to be placed on local Lorentz invariance violations and enabled
a new test of the equivalence principle by bounding the Shapiro delay between
gravitational and electromagnetic radiation [[123]]. These bounds, in turn, helped to
strongly constrain the allowed parameter space of alternative theories of gravity that
offered gravitational explanations for the origin of dark energy [[125-131]] or dark
matter [[132].

GW170817 also offers important clues about GR polarizations. We carry out a test
similar to [5] (Sec.[6.2) by performing a coherent Bayesian analysis of the signal
properties using either the tensor or the vector or the scalar response functions.
We assume that the phase evolution of the GW can be described by GR templates,
but the polarization content can vary [[116]. The phase evolution is modeled with

the GR waveform model IMRPhenomPv2 and the analysis is carried out with
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Figure 6.5: GW170814 waveforms. Reconstructed waveforms with the maximum
a posteriori probability (MAP) under the assumption of fully tensor (blue), vector
(orange) or scalar (green) polarizations, as seen by each of the three detectors in the

network.



85

Normalized amplitude
0 2 4

|
00

LIGO-Hanford

o)}

5

100

50

500
N LIGO-Livingston
=
>
=
o 100
&
250

500

100

50

-30 20 -10 0
Time (seconds)

Figure 6.6: Time-frequency representations [122] of data containing the gravitational-
wave event GW170817 , observed by the LIGO-Hanford (top), LIGO-Livingston
(middle), and Virgo (bottom) detectors. Times are shown relative to August 17, 2017
12:41:04 UTC. The amplitude scale in each detector is normalized to that detector’s
noise amplitude spectral density. In the LIGO data, independently observable
noise sources and a glitch that occurred in the LIGO-Livingston detector have been
subtracted, as described in [6]. (Reproduced from [6].)
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LALINrFeERENCE [20]]. Tidal effects are not included in this waveform model, but this
is not expected to affect the results presented below, since the polarization test is
sensitive to the antenna pattern functions of the detectors and not the phase evolution

of the signal, as argued above.

If the sky location of GW170817 is constrained to NGC 4993, we find overwhelming
evidence in favor of pure tensor polarization modes in comparison to pure vector and
pure scalar modes with a (base ten) logarithm of the Bayes factor of +20.81 + 0.08
and +23.09 + 0.08 respectively. This result is many orders of magnitudes stronger
than the GW 170814 case both due to the sky position of GW170817 relative to the
detectors and the fact that the sky position is determined precisely by electromagnetic
observations. Indeed if the sky location is unconstrained we find evidence against
scalar modes with +5.84 + 0.09, while the test is inconclusive for vector modes
with +0.72 + 0.09. From this analysis, we also see that only the tensor hypothesis is

consistent with the location of the electromagnetic counterpart (Fig. [6.7).

The above results are to be expected given the marked difference in the network’s
sensitivity to signals with different polarizations in the direction of GW170817 (with
respect to the network at the time of arrival). This is demonstrated by Fig. [6.8]
which shows the location of NGC 4993 (cyan star) over each detector’s effective
response to tensor, vector or scalar signals (color). For the purpose of this figure,
we define the “effective response” as the quadrature sum of the antenna patterns
for each polarization of a given helicity evaluated at a given sky location [see
Eqgs. (5.23)—(5.23)]. This figure suggests that, had GW170817 been purely scalar or
vector, the detectors would have measured drastically different relative amplitudes.
In particular, the signal would not have been measured loudly in the LIGO detectors

and not at all in Virgo, as it was.

6.4 Conclusion

The observations of GW170814 and GW170817 have allowed us to gather the first
direct evidence that GWs come in the polarizations predicted by GR, as opposed
to the extreme alternatives of purely vector or purely scalar polarizations. This is
an important phenomenological check that the weak-field geometry of spacetime
does not deviate drastically from what Einstein predicted. The log likelihood ratios

(Bayes factors 8) encapsulating this conclusion are listed in Table [6.1]

However, we have not yet been able to address the case of mixed polarizations

(e.g. GR plus some small nontensorial component), most interesting to theorists
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(a) Tensor

(b) Vector

(c) Scalar

Figure 6.7: GW170817 skymaps. Reconstructed sky location under the assumption
of the three different polarization hypotheses. Color represents probability density,
as a function of equatorial coordinates in a Mollweide projection. Only the tensor
case agrees with the EM counterpart.
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Figure 6.8: Antenna patterns with GW170817 location. Effective detector response
to tensor (left), vector (center) and scalar (right) polarizations for the LIGO Hanford
(top), LIGO Livingston (center) and Virgo (bottom) detectors, with the location of
the electromagnetic counterpart of GW170817 (cyan star). The “effective antenna
patterns” are defined as in Eqgs. (5.23)—(5.25)). The coordinates in this plot are the

same as in Fig.[6.7}

developing extensions to GR. Even in the presence of an electromagnetic counterpart,
as for GW170817, it is not currently possible to break all degeneracies between
such mixed models by studying individual transient (i.e., short-lived) GW signals.
However, we may, in the future, extract interesting polarization information by means
of a rigorous Bayesian analysis of multiple CBC sources and, eventually, using extra
detectors, LIGO India and KAGRA [136]. Alternatively, when
detected, persistent GW signals will allow us to thoroughly probe the polarization
content of GWs, even with one or two detectors. This possibility is explored in the

following few chapters.
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Chapter 7

DETECTING BEYOND-EINSTEIN POLARIZATIONS OF
CONTINUOUS GRAVITATIONAL WAVES

M. Isi, A. J. Weinstein, C. Mead, and M. Pitkin, Phys. Rev. D91, 082002 (2015),
M.I. carried out the analysis and wrote the manuscript, arXiv:1502.00333 [gr-qc] .

7.1 Introduction

Since its introduction in 1915, Einstein’s theory of General Relativity (GR) has been
confirmed by experiment on every occasion [[84]. However, GR has not yet been tested
with great precision on scales larger than the solar system or for highly dynamical
and strong gravitational fields [[137]. Those kinds of rapidly changing fields give
rise to gravitational waves (GWs)—self propagating stretching and squeezing of
spacetime originating in the acceleration of massive objects, like spinning neutron

stars with an asymmetry in their moment of inertia (e.g., see [138, [139])).

Although GWs are yet to be directly observed]l] detectors such as the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) expect to do so in the coming
years, giving us a chance to probe GR on new grounds [140, [141]. Because GR does
not present any adjustable parameters, these tests have the potential to uncover new
physics [84]. By the same token, LIGO data could also be used to test alternative
theories of gravity that disagree with GR on the properties of GWs.

Furthermore, when looking for a weak signal in noisy LIGO data, certain physical
models are used to target the search and are necessary to make any detection possible
[137]. Because these are usually based on predictions from GR, assuming an
incorrect model could yield a weak detection or no detection at all. Similarly, if GR
is not a correct description for highly dynamical gravity, checking for patterns given

by alternative models could result in detection where no signal had been seen before.

There exist efforts to test GR by looking at the deviations of the parametrized

post-Newtonian coeflicients extracted from the inspiral phase of compact binary

I'This analysis was carried out before LIGO’s first detection of gravitational waves on September
14, 2015. This notwithstanding, its conclusions remain valid and relevant to the extent that they were
not superseded by the analysis in Chapter which grew out of this study.
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coalescence events [21) (142, [143]]. Besides this, deviations from GR could be
observed in generic GW properties such as polarization, wave propagation speed or
parity violation [84, 85 [144]]. Tests of these properties have been proposed which
make use of GW burst search methods [[145]].

In this paper, we present methods to search LIGO-like detector data for continuous
GW signals of any polarization mode, not just those allowed by GR. We also compare
the relative sensitivity of different model-dependent and independent templates to
certain kinds of signals. Furthermore, we provide expected sensitivity curves for
GR and non-GR signals, obtained by means of blind searches over LIGO noise (not

actual upper limits).

Section[7.2]provides the background behind GW polarizations and continuous waves,
while Secs. and [7.4] present search methods and the data analysis procedures

used to evaluate sensitivity for detection. Results and final remarks are provided in

Secs. [7.5| & [7.6| respectively.

7.2 Background
7.2.1 Polarizations

Just like electromagnetic waves, GWs can present different kinds of polarizations.
Most generally, metric theories of gravity could allow six possible modes: plus (+),
cross (X), vector x (x), vector y (y), breathing (b) and longitudinal (I). Their effects
on a free-falling ring of particles are illustrated in Fig. Transverse GWs (+, X
and b) change the distance between particles separated in the plane perpendicular to
the direction of propagation (taken to be the z-axis). Vector GWs are also transverse;
but, because all particles in a plane perpendicular to the direction of propagation are
equally accelerated, their relative separation is not changed. Nonetheless, particles
farther from the source move at later times, hence varying their position relative
to points with both different x-y coordinates and different z distance. Finally,
longitudinal GWs change the distance between particles separated along the direction

of propagation.

7.2.2 Signal

Because of their persistence, continuous gravitational waves (CWs) provide the
means to study GW polarizations without the need for multiple detectors. For the

same reason, continuous signals can be integrated over long periods of time, thus
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Table 7.1: LIGO detectors [147/][[148]]

LHO LLO VIR

Latitude (1) 46.45°N  30.56°N 43.63° N
Longitude (¢) 119.41°W 90.77°W 10.5°E
Orientation (y)  125.99° 198.0° 71.5°

improving the likelihood of detection. Furthermore, these GWs are quasi-sinusoidal
and present well-defined frequencies. This allows us to focus on the amplitude

modulation, where the polarization information is contained.

CWs are produced by localized sources with periodic motion, such as binary systems
or spinning neutron stars [146]. Throughout this paper, we target known pulsars
(e.g., the Crab pulsar) and assume an asymmetry in their moment of inertia (rather
than precession of the spin axis or other possible, but less likely, mechanisms) causes
them to emit gravitational radiation. A source of this type can generate GWs only
at multiples of its rotational frequency v. In fact, it is expected that most power be
radiated at twice this value [54]. For that reason, we take the GW frequency, vgy, to
be 2v. Moreover, the frequency evolution of these pulsars is well-known thanks to

electromagnetic observations, mostly at radio wavelengths but also in gamma-rays.

Simulation of a CW from a triaxial neutron star is straightforward. The general form

of a such a signal is:

h(t) = D Ap(t:0la, 8,4 ¢,v,€) hy(t 1 ho, po, v, 7, V), (7.1)
p

where, for each polarization p, A, is the detector response (antenna pattern) and
hy, a sinusoidal waveform of frequency vy = 2v. The detector parameters are: A,
longitude; ¢, latitude; y, angle of the detector x-arm measured from East; and &,
the angle between arms. Values for the LIGO Hanford Observatory (LHO), LIGO
Livingston Observatory (LLO) and Virgo (VIR) detectors are presented in Table
The source parameters are: i, the signal polarization angle; ¢, the inclination of
the pulsar spin axis relative to the observer’s line-of-sight; /¢, an overall amplitude
factor; ¢g, a phase offset; and v, the rotational frequency, with v, ¥ its first and
second derivatives. Also, « is the right ascension and ¢ the declination of the pulsar

in celestial coordinates.

Note that the inclination angle ¢ is defined as is standard in astronomy, with ¢ = 0 and
¢ = m respectively meaning that the angular momentum vector of the source points

towards and opposite to the observer. The signal polarization angle ¥ is related to
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Table 7.2: Axis polarization () and inclination (¢) angles for known pulsars [149]].

lﬁ (deg) L (deg) lﬁ (deg) L (deg)

Crab 1240 61.3 J0205+6449 90.3 091.6

Vela 130.6 63.6 JO537-6910 131  92.8
J1930+1852 91 147 B0540-69 144.1 929
J2229+6114 103 46 J1124-5916 16 105
B1706-44 163.6 53.3 B1800-21 44 90
J2021+3651 45 79 J1833-1034 45 854

the position angle of the source, which is in turn defined to be the East angle of the

projection of the source’s spin axis onto the plane of the sky.

Although there are hundreds of pulsars in the LIGO band, in the majority of cases
we lack accurate measurements of their inclination and polarization angles. The few
exceptions, presented in Table were obtained through the study of the pulsar spin
nebula [[149]]. This process cannot determine the spin direction, only the orientation
of the spin axis. Consequently, even for the best studied pulsars, ¢ and ¢ are only
known modulo a reflection: we are unable to distinguish between ¥ and —¢ or
between ¢ and  — ¢. As will be discussed in Sec. our ignorance of ¢ and ¢ must

be taken into account when searching for CWs.

Frequency evolution

In Eq. (7.1), h,(t) is a sinusoid carrying the frequency modulation of the signal:

h,(t) = a, cos (¢(t) + ¢, + ¢§W) (7.2)
o(1) = 4n (vtb + %f/tg + éi}tﬁ) + 5™, (7.3)

where ty is the Solar System barycentric arrival time, which is the local arrival time ¢
modulated by the standard Rgmer Ag, Einstein Ag and Shapiro Ag delays [S6]:

th =1+ Ag + A + Ag. (7.4)

The leading factor of four in the r.h.s. of Eq. comes from the substitution
Vgw = 2v. For known pulsars, ¢ is the phase of the radio pulse, while ¢§W is the
phase difference between electromagnetic and gravitational waves. Both factors
contribute to an overall phase offset of the signal (¢™ + ¢§W). This is of astrophysical
significance since it may provide insights about the relation between EM & GW

radiation and provide information about the physical structure of the source.
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The a, and ¢, coefficients in Eq. (7.2)) respectively encode the relative amplitude
and phase of each polarization. These values are determined by the physical model.

For instance, GR predicts:
ar = ho(1 +cos?0)/2, ¢, =0, (7.5)

ax = hpcost, ¢y = —m/2, (7.6)

while ay = ay = a, = 0. On the other hand, according to G4v [106]:
ax = hgsine, ¢ = —1/2, (7.7)

ay = hpsinccost, ¢x = 0. (7.8)

while a; = ax = ap = 0. In both cases, the overall amplitude /¢ can be characterized
by [54, 57, 106]:
4n’G I v?
= €,
o

ho (7.9)

where r is the distance to the source, I, the pulsar’s moment of inertia along the
principal axis, € = (I — I,y)/I; its equatorial ellipticity and, as before, v is the

rotational frequency. Choosing some canonical values,

ho ~4.2%x107%

I, [ v ]Zlkpc € (7.10)

10288 kg m? L100Hzl  r 10°¢

it is easy to see that GWs from triaxial neutron stars are expected to be relatively
weak [150]. However, the sensitivity to these waves grows with the observation time

because the signal can be integrated over long periods of time [S7].

As indicated in the introduction to this section, we have assumed CWs are caused by
an asymmetry in the moment of inertia of the pulsar. Other mechanisms, such as
precession of the spin axis, are expected to produce waves of different strengths and
with dominant components at frequencies other than 2v. Furthermore, these effects
vary between theories: for instance, in G4v, if the asymmetry is not perpendicular to
the rotation axis, there can be a significant v component as well as the 2v component.
In those cases, Eqgs. do not hold (e.g., see [54] for precession models).

Amplitude modulation

At any given time, GW detectors are not equally sensitive to all polarizations. The

response of a detector to a particular polarization p is encoded in a function A,(¢)



94

depending on the relative locations and orientations of the source and detector. As

seen from Eq. (7.1), these functions provide the amplitude modulation of the signal.

A GW is best described in an orthogonal coordinate frame defined by wave vectors
(Wx, Wy, W), with w, = w, X w, being the direction of propagation. Furthermore,
the orientation of this wave-frame is fixed by requiring that the East angle between
w, and the celestial North be . In this gauge, the different polarizations act through
six orthogonal basis strain tensors [[107, [108]]{?]

1 0 0 010

e =10 -1 o, e =[1 0 0], (2.3)
0 0 0 000
00 1 000

e =10 0 0, =10 0 1f, (4.5)
100 010
100 000

eh =10 1 0, ey =V2[0 0 0, (6,7)
000 00 1

with j, k indexing x, y and z components. These tensors can be written in an

equivalent, frame-independent form

e =W, Q W, — Wy ®W,, (7.17)
e’ =W, @ Wy + Wy, ® Wy, (7.18)
=W, W, + W, @ W,, (7.19)
=W, W, +W, W, (7.20)
=W, W, +W, W, (7.21)

e =V2(w,@w,). (7.22)

If a detector is characterized by its unit arm-direction vectors (d, and d,, with d; the
detector zenith), its differential-arm response A, to a wave of polarization p is:

1
Ap=5(di@d,~d,®d,): ¢ (7.23)

2The normalization for e! used here is unique to this chapter: in the rest of this thesis we define
el = diag(0,0,0, 1), i.e. without the V2 prefactor.
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where the colon indicates double contraction. As a result, Egs. (2-13) imply:

Av= 3 v A0 = (W dy — (wy 4wy, (724)
A = (W, - AWy - ) = (wy - d)(w, - d,), (7.25)

Ax = (We - d)(W, - d) = (wy - d,)(w, - d,) (7.26)

Ay = (Wy - )W, - d) = (wy - d)(w, - dy), (.27)

Ap =3 [0ve = (v dy P+ (wy -~ (wy @], (728)
Al = \% [(w, - d)* = (w, - d,)?]. (7.29)

Accounting for the time dependence of the arm vectors due to the rotation of the
Earth, Egs. can be used to compute A,() for any value of 7. In Fig.
we plot these responses for the LIGO Hanford Observatory (LHO) observing the
Crab pulsar, over a sidereal day (the pattern repeats itself every day). Note that the b
and 1 patterns are degenerate (A, = —\/QA, which means they are indistinguishable

up to an overall constant.

Although the antenna patterns are /-dependent, a change in this angle amounts to
a rotation of A, into Ay or of A, into Ay, and vice-versa. If the orientation of the
source is changed such that the new polarization is ¥’ = ¥ + Ay, where i is the
original polarization angle and Ay € [0, 27], it is easy to check that the new antenna

patterns can be written [108]]:

Al = Ay cos2AY + Ay sin 2Ay, (7.30)
Al = Ay cos2Ay — A, sin 2Ay, (7.31)
Al = Accos Ay + Ay sin Ay, (7.32)
A’y = Ay cos Ay — A, sin Ay, (7.33)
Al = Ay, (7.34)

A= A, (7.35)

and the tensor, vector and scalar nature of each polarization becomes evident from

the y dependence.
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Figure 7.1: LHO response A,(t), Eq. (7.23)), to different polarizations from the Crab

(PSR J0534+2200), from 00:00 UTC to 24:00 UTC.
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Figure 7.2: Simulated GR (left) and G4v (right) heterodyned Crab signals as seen by
LHO. The templates are generated from Eq. (7.37) with the model parameters given
in Eqs. (7.5H7.8) and setting iy = 1, ¢9 = 0. The solid curves represent the real
(blue) and imaginary (red) parts, while the dashed curve corresponds to the complex

norm.
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7.3 Method

7.3.1 Data reduction

For some set of interferometric data, we would like to detect CW signals from a
given source, regardless of their polarization, and to reliably distinguish between
the different modes. Because detector response is the only factor distinguishing CW
polarizations, all the relevant information is encoded in the amplitude modulation
of the signal. As a result, it suffices to consider a narrow frequency band around
the GW frequency and the data can be considerably reduced following the complex
heterodyne method developed in [66] and [S7]].

A signal of the form of Eq. (7.1]) can be rewritten as

h(t) = A@)e?D + A*(1)e ¢, (7.36)
1 .,
A1) = 5 ) ape P P A1), (7.37)
p=1

with = indicating complex conjugation and ¢(¢) as given in Eq. (7.3)). Note that we
have slightly simplified the notation in Eq. (7.37) by renaming ¢5" — ¢o. Also,
the summation is over only five values of p because the breathing and longitudinal

polarizations are indistinguishable to the detectors.

The key of the heterodyne method is that, since we can assume the phase evolution
is well-known from electromagnetic observations (ephemerides obtained through
the pulsar timing package TEMPO?2 [56]), we can multiply our data by exp [—i¢(?)]

(heterodyning) so that the signal therein becomes
W (1) = h(t)e Y = A1) + A*(r)e™ 240 (7.38)

and the frequency modulation of the first term is removed, while that of the second
term is doubled. A series of low-pass filters can then be used to remove the
quickly-varying term, which enables the down-sampling of the data by averaging
over minute-long time bins. As a result, we are left with A(z) only and Eq.
becomes the template of our complex-valued signal. One period of such GR and
G4v signals coming from the Crab are presented as seen by LHO in Fig.

From Eq. we see that, in the presence of a signal, the heterodyned and

down-sampled noisy detector strain data By, for the k' minute-long time bin (which

3For the definitions used in all other chapters, the relation is Ay = —A; (see previous footnote).
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Figure 7.3: Real part of LIGO Science Run 5 Hanford 4km detector (H1) minute-
sampled data prepared for the Crab spanning approximately two years. A signal in
these data would be described by Eq. (7.39).

can be labeled by GPS time of arrival) are expected to be of the form:

5
1 o
Bexpected(tk) = E Z ap(tk)el¢p+l¢0Ap(tk) + n(ty), (7.39)
p=1
where n(ty) is the heterodyned, averaged complex noise in bin &, which carries no
information about the GW signal. As an example, Fig. [7.3| presents the real part of
actual data heterodyned and filtered for the Crab pulsar. We can clearly see already

that the data are non-stationary, an issue addressed in the Sec.[/.3.2|and Appendix

[

7.3.2 Search

Given data in this form, we analyze it to obtain the parameters of a signal that would
best fit the data and then incorporate the results into the frequentist analysis described
in Sec. Regressions are performed by minimizing the y? of the system (same as
a matched-filter). For certain template 7'(t;), this is:

N

2 _ 2, 2
x" =) [Tt - Bl /oy, (7.40)

k=0
where o is the estimate standard deviation of the noise in the data at time #;. In
the presence of Gaussian noise, the y? minimization is equivalent to a maximum

likelihood analysis.

Any linear template 7 can be written as a linear combination of certain basis

functions f;, so that T'(¢) = Z d; f;(t) and each g; is found as a result of minimizing

1
(7.40). For instance, T(f;) could be constructed in the from of Eq. (7.37). In such
model-dependent searches, the antenna patterns are the basis set, i.e. {f;} = {A4,},
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and the @; weights correspond to the a, exp (i¢,) prefactors. (From here on, the tilde

denotes the coeflicient that is fitted for, rather than its predicted value.)

The regression returns a vector a containing the values of the @;’s that minimize
Eq. (7.40). These quantities are complex-valued and encode the relative amplitude
and phase of each contributing basis. From their magnitude, we define the overall

recovered signal strength to be:
hec = |a]. (7.41)

The significance of the fit is evaluated through the covariance matrix C. This can be
computed by taking the inverse of AT A, where A is the design matrix of the system
(built from the f; set). In particular, we define the significance of the resulting fit
(signal SNR) as

s =Va'Cca, (7.42)

where T indicates Hermitian conjugation.

y*-minimizations have optimal performances when the noise is Gaussian. However,
although the central limit theorem implies that the averaged noise in should
be normally distributed, actual data are far from this ideal (see Fig.[7.3). In fact,
the quality of the data changes over time, as it is contingent on various instrumental
factors. The time series is plagued with gaps and is highly nonstationary. This makes

estimating o nontrivial.

As done in regular CW searches [150], we address this problem by computing the
standard deviation for the data corresponding to each sidereal day throughout the
data run, rather than for the series as a whole. This method improves the analysis
because the data remains relatively stable over the course of a single day, but not
throughout longer periods of time (see Appendix [7.7). Furthermore, noisier days
have less impact on the fit, because o in Eq. will be larger. The evolution of
the daily value of the standard deviation for H1 data heterodyned for the Crab pulsar
is presented in Fig.[7.4]

Model-dependent

In a model-dependent search, a particular physical model is assumed in order to
create a template based on Eq. (7.37)). In the case of GR, if  and ¢ are known, it is
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Figure 7.4: Daily standard deviation of S5 H1 data heterodyned for the Crab pulsar

(Fig.[7.3).
possible to construct a template with only one complex-valued free parameter /g:

%(1 +cos? 1) A (1; )+

=1

Tor(1) = ho

+ cos LAX(t;w)e_i”/z], (7.43)

where the factor of 2 comes from the heterodyne, cf. Eq. (7.37). Similarly for G4v:
~ 1 .

Tgay(t) = hoi [sinL e ™2 Al(t; ) + sin ¢ cos LAy (t; x//)] , (7.44)

Analogous templates could be constructed for scalar-tensor theories, or any other
model. In the former case, there would be a second free parameter to represent the

unknown scalar contribution.

However, as mentioned in Sec. [/.2] even in the case of the best-studied pulsars
we know ¢ only in absolute value. This ambiguity creates the need to use two
model-dependent templates like Egs. [7.44): one corresponding to ¢ and one to
n — 1. Note that the indeterminacy of ¢ is absorbed by the overall phase of g, so it
has no effect on the template. Thus, if the ambiguity in ¢ is accounted for, the overall
signal strength A and the angle ¢( can be inferred directly from the angle and phase
of hrec = ho.

In most cases, ¥ and ¢ are completely unknown. It is then convenient to regress to each

antenna pattern independently, allowing for two free parameters. This can be done
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by computing the antenna patterns assuming any arbitrary value of the polarization

angle, say ¥ = 0. Indeed, Eqs. (7.30H/.35) guarantee that the subspace of tensor,
vector or scalar antenna patterns for all y is spanned by a pair of corresponding

tensor, vector or scalar antenna patterns assuming any particular .

In the case of GR, this means we can use a template
Tor(?) = @+ AL (14 = 0)/2 + axAx(t; ¢ = 0)/2 (7.45)

with two complex weights @’s to be determined by the minimization. In the presence
of a signal and in the absence of noise, Egs. indicate that the values
returned by the fit would be a function of the actual, unknown ¢ and ¢:

@,y = a,(1)e' cos 2y — aX(L)ei¢°_i”/2 sin 2y, (7.46)

ax = ax()e' P72 cos 2y + a,(1)e'? sin 2y, (7.47)

with the a(¢)’s as given in Egs. (7.5][7.6).

Again, a (semi-) model-dependent template, like Eq. (7.45)), can be constructed for
any given theory by selecting the corresponding antenna patterns to be used as basis
for the regression. For G4v, this would be:

Tay(t) = @ Ax(t;¢ = 0)/2 + d’yAy(t;w =0)/2 (7.48)

with two complex weights @’s to be determined by the minimization. As before, in
the presence of a signal and in the absence of noise, Eqs. (7.32][7.33) indicate that
the values returned by the fit would be a function of the actual, unknown ¢ and ¢:

@y = ay ()2 cosy — ay(t)ei¢° siny, (7.49)
@, = ay(L)ei"’O cos ¥ + a(1)e'? "2 siny. (7.50)

In this case, we cannot directly relate our recovered strength to /g and the framework
does not allow to carry out parameter estimation. The proper way to do that is
using Bayesian statistics, marginalizing over the orientation parameters. Since we
are mostly interested in quantifying our ability to detect alternative signals rather
than estimating source parameters, we do not cover such methods here. However, it
would be straightforward to incorporate our generalized likelihoods (as given by our

templates) into a full Bayesian analysis (cf. [S7]).
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Model-independent

In a model-independent search, the regression is performed using all five nonde-
generate antenna patterns and the phases between the A,’s are not constrained.

Thus,
5

Tinaep(t) = ) dpA(0). (7.51)

p=1
Because we do not consider any particular model, there is no information about
the relative strength of each polarization; hence, the d,’s are unconstrained. Again,

Egs. (7.30H7.33) enable us to compute the antenna patterns for any value of .

By calculating the necessary inner products, it can be shown that a regression to the
antenna pattern basis,
{A-H A><7 AX7 Ay, Ab} H (7'52)

is equivalent to a regression to the sidereal basis,
{1, coswt, cos2wt, sinwt, sin2wt}, (7.53)

where w = 27/(86164 s) is the sidereal rotational frequency of the Earth. This is an

orthogonal basis which spans the space of the antenna patterns. In this basis,

5
Tindep(t) = ) @i fi(t). (7.54)
i=1
with f; representing the set in (7.53)). This is the same basis set used in so-called

S5-vector searches [69]].

Because they span the same space, using either basis set yields the same results
with the exact same significance, as defined in Eq. (7.42). Furthermore, the weights
obtained as results of the fit can be converted back and forth between the two bases

by means of a time-independent coordinate transformation matrix.

A model-independent search is sensitive to all polarizations but is prone to error due
to noise when distinguishing between them. It also has more degrees of freedom
(compared with a pure-GR template) that can respond to noise fluctuations, resulting
in a search that is less sensitive to pure-GR signals. However, the analysis can
be followed by model-dependent searches to clarify which theory fits with most

significance.
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Figure 7.5: Significance, Eq. , vs recovered strength, Eq. , for searches
over 5000 noise-only H1 S5 Crab instantiations using model-dependent Eq. (7.43))
(left), semi-dependent Eq. (7.43) (center), and independent Eq. (7.54)) (right) tem-
plates. The model-dependent case assumes fully known ¢ and . Note that the
number of degrees of freedom in the regression is manifested in the spread, which
is due to noise: templates with a single degree of freedom are less susceptible to
noise and the spread is minimal. The two plots on the left were generated using a
GR template, but similar results are obtained for G4v.
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S

Figure 7.6: Example plot of p = 1 — CDF vs the recovery significance for a particular
template. A loud injection in noise is manifested as an outlier (star) over the
noise-only background (red). Note that the injection is plotted arbitrarily at p = 107,
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Figure 7.7: Neyman plot of recovered signal strength h,.. (left) and significance
s (right) vs injected strength hi,;. In this case, GR signals are recovered with GR
templates, but results are qualitatively the same with G4v injections recovered
with G4v templates, or either kind of injection recovered with model-independent
templates. The collection of points at &;,j = O is noise-only and the detection
threshold (horizontal line) is placed above a;, = 99.9% of them. The shaded band
includes ay, = 95% of the data points above the threshold and it is centered on their
best-fit line. The fit forced null y-intersect.

7.4 Analysis

We wish to detect any CW signal originating in a given pulsar, regardless of its
polarization in a model-independent way. We can then determine whether the
measured polarization content agrees with theoretical predictions. This information
can be used to obtain frequentist confidence levels for a potential detection and to
generate upper limits for the strength of signals of any polarization potentially buried
in the data.

In order to test the statistical properties of the noisy data filtered through our templates,
we produce numerous instantiations of detector noise by taking actual data processed
as outlined in Sec. [7.3]and reheterodyning over a small band close to the frequency
of the original heteredoyne. Any true signal in the data stream is scrambled in the
process and what remains is a good estimate of the noise. This allows us to perform
searches under realistic conditions with or without injections of simulated signals,

while remaining blind to the presence of a true signal.

By heterodyning at different frequencies, we are able to generate a large number of
instantiations of the data. Because our S5 datasets span roughly 1.9 years and are

sampled once per minute, our bandwidth is 8.3 x 1073 Hz with a lowest resolvable
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frequency of 1.7 x 1078 Hz. This means we could theoretically reheterodyne our
data at a maximum of 8.3 x 1073/1.7 x 1078 ~ 4.9 x 10° independent frequencies.
In our study, we picked 10* frequencies in the 10~7 — 10~ Hz range, avoiding the

expected signal frequency of ~ 10~ Hz (period of a sidereal day) and its multiples.

We quantify the results of a particular search by looking at the obtained recovered
signal strength, Eq. (7.41), and significance, Eq. (7.42). As expected, these two
parameters are strongly correlated (Fig. [7.5). However, the significance is, in the
presence of Gaussian noise, a direct indicator of goodness-of-fit and can be used to

compare results from templates with different numbers of degrees of freedom.

By performing searches on multiple instantiations of noise-only data, we construct
cumulative distribution function (CDF) probability plots showing the distribution of
recovered signal strength, Eq. (7.41)), and significance, Eq. (7.42)), corresponding to
a given template. Such plots give the probability that the outcome of the regression
is consistent with noise (i.e. provide p-values). As shown in Fig. an instantiation
that contains a loud injected signal becomes manifest in this plot as an outlier. This
sort of plot can also be used when searching for an actual signal in the data—namely,
when looking at the original, non-reheterodyned series. In that case, the 1 — CDF
curve can be extrapolated or interpolated to find the p-value corresponding to the

significance with which the injection was recovered.

After injecting and retrieving increasingly loud signals with a given polarization
content in different background instantiations, we produce plots of recovered strength
vs injected strength (/e VS hiyj) and significance vs injected strength (s vs hjp;).
Recall that injections are of the form of Egs. [7.44). Examples of such plots are
presented in Fig. These plots, and corresponding fits, can be used to assess the
sensitivity of a template to certain type of signal, define thresholds for detection and
produce confidence bands for recovered parameters. (In the frequentist literature,

these plots are sometimes referred to as Neyman constructions [151]].)

We define a horizontal detection threshold line above an arbitrary fraction ay
(e.g., an = 99.9%) of noise-only points (i.e. points with &;,; = 0, but Aec # 0), so that
data points above this line can be considered detected with a p-valueof p = 1 — o,
(e.g., p = 0.1%). For a particular template, this fractional threshold can be directly
translated into a significance value s, (€.2., S99.99, = 2.5). The sensitivity of the
template is related to the number of injections recovered with a significance higher
than s, . Therefore, for a given a;,, a lower s,, means higher sensitivity to true

signals.
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For the results of each template, the fractional threshold «,, can also be associated to
a strain value. We define this to be the loudness of the minimum injection detected
above this threshold with some arbitrary upper-limit confidence ayp. This value can
be determined from the s vs hj,j plot by placing a line parallel to the best fit but to

the right of a fraction ay, of all data points satisfying O < hj,;. The intersection
Qup
min’

of this line with the a;, line occurs at hi,j = h which is the strain value above
which we can have ayp confidence that a signal will be detected (i.e. recovered with

significance s > s,, ).

We refer to hi‘;‘; as the expected sensitivity or strain detection threshold at a;. This
value allows not only for the definition of upper limits for the presence of signals,
but also the comparison of different model dependent and independent templates.
See Fig. for a juxtaposition of the results of matching and nonmatching

model-dependent templates for the case of the Crab pulsar.

The efficiency of a template is also quantified by the slope of the /. vs hjyj best-fit
line, which should be close to 1 for a template that matches the signal. We perform
this fit by taking into account only points above the a;, line and forcing the y-intersect
to be null. The deviations from this fit are used to produce confidence intervals for the
recovered strength. This is done by defining a band centered on the best-fit line and
enclosing an arbitrary fraction ay (e.g., ap = 95%) of the data points, corresponding
to the confidence band placed around best-fit line. The intersection between this
band and a horizontal line at some value of A, yields a confidence interval for the
true strength with ay, confidence. Note that deviations above and below the best-fit
line are taken independently to obtain asymmetric confidence intervals. The same
analysis can be done on the s vs hj,; plots, taking into account proper scaling of the

best-fit slope.

In general, when performing injections we pick parameters with a uniform distribution
over the uncertainty ranges of location and orientation values obtained from the ATNF
Pulsar Catalog [152]. When there is no orientation information, we must draw ¢ and
¢ from the ranges [—n/2, 7/2] and [0, 2] respectively. Note that standard searches
consider tensor signals (2¢/-dependent) only and therefore assume ¥ € [-n/4, 7 /4];
however, a bigger range must be used when taking into account vector signals
(y-dependent). The reason these ranges need not cover the full [0, 7] range is that a
change in ¢ of /2 for tensor and & for vector signals is equivalent to a change of

signal sign. Therefore, this is taken care of by varying the overall phase ¢ € [0, 7].

We tested the aforementioned methods on LIGO data taken by the Hanford and
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Figure 7.8: GR (top) and G4v (bottom) injection results of search over LIGO S5 H1
data heterodyned for the Crab pulsar. Plots show significance, Eq. (7.42), vs injected
strength. Color corresponds to the template used for recovery: GR, green; G4v,
red; model-independent, blue. This particular search was performed using 10*
instantiations, half of which contained injections using the values of ¢ and ¢ given in
Table[7.1] The model-dependent templates assumed the same same ¢ as the injections.
Horizontal lines correspond to a detection threshold o, = 99.9%.
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Livingston detectors over LIGO Science Run 5 (S5). During this run, which
took place from November 2005 through September 2007 (GPS times 815155213
- 875232014), the three LIGO detectors operated in data-taking mode at design
sensitivity, collecting a year of coincident detector data. The root-mean-square strain
noise of the instrument reached values as low as 3 x 10722 for bands of 100 Hz over
the most sensitive frequencies [153]. LIGO S5 data has been recently released to the

public and is accessible online through the LIGO Open Science Center [[154].

In particular, we looked at data for 115 pulsars, obtained by reducing S5 H1, H2 and
L1 strain data as outlined in Sec. But for the inclusion of PSR J0024-72040
and the exclusion of PSR J2033+17 and Vela, these are the same heterodyned time
series analyzed in reference [150]. However, that study presented Bayesian upper

limits to the presence of GR signals and did not consider alternative polarizations.

7.5 Results

Here we present the results of a study of the signal sensitivity of the analysis procedure
described in Sec. using the data described at the end of Sec. We perform a
“closed box™ analysis, using only reheterodyned data, which are insensitive to the
presence of actual signals, and simulated signal injections. A full “open box™ analysis,
using Bayesian methods to produce model-dependent and model-independent signal

detection confidence bands or upper limits, is in preparation.

In particular, we produced 10* reheterodyned instantiations of data for each pulsar
by picking linearly spaced frequencies in the 1077 — 10~ Hz range (cf. sec. .
Half of those were injected with simulated signals of increasing strength. The
data were then analyzed with each template (GR, G4v and model-independent),
producing plots like those in Fig. For the Crab pulsar, since the source orientation
information is known, the full model-dependent templates, Egs. [7.44), were
used; otherwise, the semi-model-dependent templates, Egs. [7.48)), were used.
The whole process was carried out for both GR and G4v injections. In all cases, we
set ay = 99.9% and ayp = 95.0%.

7.5.1 Crab pulsar

Results for searches over H1 S5 data prepared for the Crab pulsar (v = 30.22 Hz,
vgw = 60.44 Hz) are presented in Fig. The results using templates matched to

the injections are compared to those of the model-independent (left) and nonmatching
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Figure 7.9: Slope of the s vs hj,; best-fit-line (left and center) and significance
detection threshold at a, = 99.9% (right) vs GW frequency and for GR and G4v
injections on S5 H1 data for 115 pulsars. Color corresponds to search template: GR,
green; G4v, red; and model-independent, blue. Note that for both kinds of injections,
the model-independent points overlap the matching template.

templates (right). The expected sensitivities, as defined in Sec.[7.4] for each injection
template and search model are provided in Table Recall that the Crab is a
special case, since its orientation in the sky is well-known, which enables us to use
full model-dependent templates, Eqs. (7.43] [7.44). However, searches for actual
signals would still have to make use of two templates for each theoretical model
because of the ambiguity in ¢ described in Sec.[7.2.2] In order to avoid doing this, a

semi-model-dependent or model-independent search could be carried out instead.

A number of interesting observations can be drawn from Fig.[7.8 and Table[7.3] As
inferred from the values of /y,;,, the model-independent template is roughly 25%
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Table 7.3: Summary of expected sensitivity for the Crab pulsar S5 H1 searches
(an = 99.9%, ayp = 95.0%). Rows correspond to injection type and columns to
search template. The rotational frequency of the Crab is v = 30.22 Hz and, therefore,
vow = 60.44 Hz.

GR G4v Independent

GR 3.41x107% 749x107% 420x 1072
Gdv 890x 1072 330x1072 4.15x107%

less sensitive than the matching one, regardless of the theory assumed when making
injections. This is understood by the presence of four extra degrees of freedom
in the model-independent template, compared to the single tunable coefficient
in the full model-dependent one. If instead the semi-model-dependent template
with two degrees of freedom is used, the improvement with respect to the model-
independent search goes down to 15%. In any case, the accuracy of matching and
model-independent searches, given by the width of the confidence bands, are almost

identical.

Model dependent templates are significantly less sensitive to nonmatching signals.
Table|/.3|indicates that model-dependent templates are 120-170% less sensitive to
nonmatching signals than their matching counterpart. A consequence of this is the
existence of a range of signals which would be detected by templates of one theory,
but not the other (see Figs. &[7.8d). This is particularly interesting given that
previous LIGO searches assume GR to be valid and use a template equivalent to
Eq. (7.43). Therefore, our results suggest it is possible that those searches might have
missed fully-non-GR signals buried in the data (see Sec.[/.6|for further discussion).

7.5.2 All pulsars

The Crab pulsar is only one of the 115 sources we analyzed. The results, presented
in Figs. & generally confirm the observations anticipated from the Crab.
While model-independent searches are of the same accuracy as matching semi-
model-dependent ones, their strain detection threshold is louder due to the extra
degrees of freedom (Fig.[7.9¢). Consequently, model-independent templates demand
a higher significance to be able to distinguish a signal from noise. The detection
thresholds for GR and G4v templates are of the same magnitude, since both have the
same number of degrees of freedom. Among all the 115 pulsars, the sources with
best expected sensitivities to GR and G4v signals were PSR J1603-7202 and PSR
J1748-2446A respectively (see Table [7.4)).
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Figure 7.10: S5 H1 expected sensitivity (strain detection threshold at a;, = 99.9%
with ayp = 95.0% confidence) vs GW frequency for 115 pulsars. Color corresponds
to search template: GR, green; G4v, red; and model-independent, blue. The gray
line is the anticipated sensitivity of a standard Bayesian search, Eq. .
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with ayp = 95.0% confidence) vs GW frequency for 115 pulsars. Color corresponds
to search template: GR, green; G4v, red; and model-independent, blue. The gray
line is the anticipated sensitivity of a standard Bayesian search, Eq. .
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Table 7.4: Best expected sensitivities for S5 H1 searches (a, = 99.9%, ap = 95.0%).
Rows correspond to injection type and columns to pulsar name (PSR), rotation
frequency (v) and strain detection threshold for matching dependent (A4ep) and
independent (/jndep) templates.

PSR v (Hz) hdep hindep

GR  J1603-7202 67.38 4.77x107%° 5.53x 1072
Gdv  J1748-2446A 86.48 4.96x1072° 5.81 x 10720

The key results of our study are summarized in Fig. for H1 and Fig.
for L1. These plots present the expected sensitivity (strain detection threshold at
an = 99.9% with ay, = 95.0% confidence) vs GW frequency (vgw = 2v). The
outliers seen in Figs. correspond to pulsars whose value of vgw are very
close to instrumental noise spectral lines associated with violin resonances of the

detectors’ test mass pendulum suspensions.

For the matching or model-independent templates, the resulting data points trace
the noise curve of the instrument; however, due to the long integration time, we are
able to detect signals below LIGO’s standard strain noise. The gray curve shown in
Figs.[7.10] [7.1T]represents the expected sensitivity of a regular Bayesian GR search
(e.g., [150]). This is proportional to the amplitude spectral density of the detector
and inversely proportional to the square root of the observation time. The particular
empirical relationship used to generate the curve in Figs. [7.10] & [7.11]is:

(hmin) = 10.8vS(/)/T, (7.55)

with S,,(f) the noise power spectral density and 7 the total observation time (527
days for S5 H1 and 405 days for S5 L1) [S7]]. This formula enables the comparison
of the methods presented here with the expected performance of standard Bayesian

searches.

By the same token, we can define a figure of merit p for our searches by the ratio:

p(VGW) = hmin/ VSn(VGW)/T- (7.56)

The average of this value over all pulsars, (o), can be semiquantitatively compared
to the 10.8 prefactor in Eq. (7.55). The equivalence is not direct because, besides the
intrinsic differences between Bayesian and frequentist approaches, Eq. was
obtained by averaging the results of 4000 simulated searches [S7], while we include

just the 115 pulsars at hand. The values of {(p) for our S5 H1 & L1 analyses are
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Table 7.5: Average sensitivity ratios {p), Eq. (7.56), for S5 H1 (first value) and S5 L1
(second value) searches. Rows correspond to injection type and columns to search

template.
GR G4v Independent
GR 16.11 14.65 5853 51.890 18.83 17.15
G4v 61.21 5506 1842 16.76 21.24 19.32
50 40
10 [ 1 GR 35t J [ 1 GR
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Figure 7.12: Histograms of the figure of merit p, Eq. , for our searches over
S5 H1 (top) and L1 (bottom) data sets with GR (left) and G4v (right) injections,
corresponding to 115 pulsars. Color corresponds to search template: GR, green;
G4v, red; and model-independent, blue.
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Table 7.6: Sensitivity ratio p, Eq. (7.56) evaluated at the Crab’s GW frequency, for
S5 H1 (first value) and S5 L1 (second value) searches. Rows correspond to injection
type and columns to search template.

GR \ Gdv | Independent

GR 20.75 1040 | 4552 27.15 | 2554 1194
G4v 54.06 20.30 | 20.07 996 | 2521 11.52

presented in Table [7.5] and Fig. The specific values for the Crab pulsar are

shown in Table[7.6] A smaller p indicates better performance.

As mentioned above, the remarks made about the Crab pulsar hold for most other
sources, except that detectability is slightly lower because orientation parameters
are unknown. In all cases, the matching template is the best at recovering signals,
followed closely by the model-independent one. Searches that assume the incorrect
model are substantially less efficient and their /i, vs vgm curves do not follow
the instrumental noise line. This is reflected, for instance, by the figures of merit
presented in Table[7.5]

7.6 Conclusions

We have developed novel model-independent methods to search for CW signals
coming from targeted sources in LIGO-like interferometric data. These searches are

able to detect signals of any polarization content with high significance.

In order to test our methods in the presence of realistic noise conditions, we
implemented a procedure to produce thousands of noise-only instantiations from
actual data. We then proceeded by injecting and retrieving increasingly loud signals

of different polarization content.

We studied 115 pulsars using S5 data from the LIGO Hanford and Livingston
detectors. Although the methods are general, we restricted our study to two theories
that predict starkly different GW polarization contents (GR and G4v).

Our results indicate that assuming the wrong theoretical model greatly reduces the
sensitivity of a search to signals buried in the data. Yet, our model-independent
searches are almost as effective as the model-dependent templates that match the
kind of signal injected (i.e. when the models used for injection and search are the
same). This means that our model-independent templates can be used to find signals

of any polarization without additional computational requirements.
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We are able to reach sensitivities comparable to previous studies, although slightly
worse than those presented in [150]]. This is probably due to our making use of a

single detector and to differences between frequentist and Bayesian approaches.

We have shown that, for some combinations of detectors, sources, and signal strengths,
G4v signals are invisible to GR templates and viceversa. Therefore, it is possible
that, if GWs are composed uniquely of vector modes, previous LIGO searches, which

assume GR, may have missed their signals.

It is clear that the next step in this study consists of incorporating our model-
independent templates into the Bayeasian machinery used in standard LIGO Scientific
Collaboration searches. This will allow us to properly marginalize over all nuisance
parameters and to produce multi-detector model-dependent and model-independent
signal detection confidence bands or upper limits. We will also employ methods
to constrain other theories (e.g., scalar-tensor) in the event of a model-independent

detection.

Acknowledgments

The authors would like to thank Holger Pletsch for helpful discussions. M. Pitkin is funded
by the STFC through grant number ST/L000946/1. LIGO was constructed by the California
Institute of Technology and Massachusetts Institute of Technology with funding from the
National Science Foundation and operates under cooperative agreement PHY-0757058. This
paper carries LIGO Document Number LIGO-P1400169.

7.7 Appendix: Statistical properties of LIGO data

The y? minimization is equivalent to a maximum likelihood procedure only in the
presence of Gaussian noise. When this requirement is not satisfied, the regression is
still valid, but the y? values resulting from the fit will be distributed in a nontrivial way,
rather than the y? distribution expected in the case of Gaussian noise. Furthermore,
the relationship between the covariance matrix of the system and the standard
uncertainties of the recovered coefficients becomes unclear. Therefore, it is important
to statistically characterize the data and understand the limitations of our assumption

of Gaussianity.

When taken as a whole, LIGO detector noise does not conform to a stationary
Gaussian distribution. This can be visually confirmed by means of a histogram, as
shown in Fig. for the case of S5 H1 data prepared for the Crab. The divergence
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Figure 7.13: Normalized histogram of the real part of S5 H1 data heterodyned for
the Crab in linear (left) and logarithmic y scales. A Gaussian curve with the same
standard deviation is plotted in red for comparison.

from Gaussianity is evident from the long tails, seen most clearly in the log-y version
of the plot. As expected, the data fail more rigorous standard Gaussianity tests, such
as the Kolmogorov-Smirnov (KS) or the Anderson-Darling (AD) tests.

However, it is possible to split up the data into day-long (or shorter) segments, as was
described in Sec.[/.3.2] so as to study the Gaussianity of the data on a day-to-day
basis. The results of the KS and AD tests for each day-segment, together with
those for reference Gaussian noise series, are presented in Figs. [7.14a] and [7.14b|
respectively. The KS test returns the p-value for a null hypothesis that assumes the

data are normally distributed; therefore, a lower p-value implies a higher probability
that the data are not Gaussian [155]. The AS test returns a figure of merit which is
indirectly proportional to the significance with which the hypothesis of Gaussianity
can be rejected; therefore a higher AS statistic implies a higher probability that the

data are not Gaussian [156]).

It can be seen from the results of these tests that the statistical properties of the
segments vary considerably from day to day. This could have been guessed from the
non-stationarity of the data in Fig. [7.3] the daily variation of the standard deviation
(Fig. and other irregularities of the data. Nonetheless, most of the segments
seem to pass the Gaussianity tests, with some remarkable exceptions around the days
250—400 of the run. This corresponds to the spiking observed in the heterodyned
data (GPS times 8.4 x 10% — 8.5 x 10% in Fig. [7.3).

In order to confirm that our assumption of Gaussianity is not too far from reality, we

repeated our analysis (see Sec. on sets of synthetic Gaussian noise. In order to do
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for the Crab (blue). The results for corresponding sets of Gaussian noise are presented
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this, for each pulsar we generated streams of complex-valued data randomly selected
from a normal distribution with the same standard deviation as the corresponding
original LIGO data set. These series replaced the instantiations of reheterodyned data,
but the search process was otherwise unchanged. The results of this comparison for
S5 H1 are shown in Figs. [7.15] where we juxtaposed expected sensitivities obtained
using Gaussian noise and actual LIGO noise (cf. Sec.[/.5). These plots confirm that,
indeed, we obtain qualitatively the same results with Gaussian noise as with actual
LIGO data.
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Figure 7.15: Expected sensitivity (a, = 99.9%, ayp = 95.0%) vs GW frequency.
Comparison between fabricated Gaussian noise and actual LIGO noise. Searches

were made with semi-model-dependent templates, Egs. [7.48). The colored
stars correspond to actual LIGO H1 noise (cf. Fig. [7.10), while the black dots
correspond to fabricated Gaussian noise.
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Chapter 8

PROBING DYNAMICAL GRAVITY WITH THE POLARIZATION
OF CONTINUOUS GRAVITATIONAL WAVES

M. Isi, M. Pitkin, and A. J. Weinstein, Phys. Rev. D96, 042001 (2017), M.I. carried
out the analysis and wrote the manuscript, jarXiv:1703.07530 [gr-qc] .

8.1 Introduction

The recent detection of gravitational waves (GWs) by the advanced Laser Inter-
ferometer Gravitational-Wave Observatory (aLIGO) heralds the beginning of the
long-awaited era of GW astronomy [, 2]. One of the main goals of this field is to
use GWs as a probe of fundamental physics in the highly dynamical and strong-field
regimes of gravity, as predicted by the general theory of relativity (GR). The first few
GW detections have already been used to place some of the most stringent constraints
on deviations from GR in this domain, which is inaccessible to laboratory, Solar

System or cosmological tests of gravity.

However, it has not been possible to use LIGO signals to learn about the polarization
content of GWs [82], a measurement highly relevant when comparing GR to many
of its alternatives [|83, [84]. The reason for this is that the relative orientation of the
two LIGO detectors makes it nearly impossible to unequivocally characterize the
polarizations of transient GW signals like the compact-binary coalescences (CBCs)
observed so far. In fact, at least five noncoaligned quadrupolar detectors would be
needed to break the degeneracies of all five nondegenerate polarizations allowed by

generic metric theories of gravity [97, 98]].

Existing observations that are usually taken to constrain the amount of allowed non-
GR polarizations can do so only in an indirect and strongly model-dependent manner.
For example, measurements of the orbital decay of binary systems are sensitive to
the total radiated GW power but do not probe the waves directly (see e.g. [86, 87, or
[88,189] for reviews). In the context of specific alternative theories (e.g. scalar-tensor)
such observations can indeed constrain the power in extra polarizations; however,
they provide no direct, model-independent information on the actual polarization

content of the gravitational radiation. Thus, there may be multiple theories, with


http://dx.doi.org/10.1103/PhysRevD.96.042001
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different polarization content, that still predict the correct observed GW emitted
power. Because other traditional tests of GR (like Solar System tests) have no bearing

on GWs, there currently exist no direct measurements of GW polarizations.

Unlike CBC transients, continuous gravitational waves (CWs) are, by definition,
long-lasting narrow-band signals. Although they have not yet been observed [29, 43
47], CWs are expected to be emitted by stable systems, like spinning neutron stars
with an asymmetric moment of inertia [48]. If detected, such signals would allow
for tests of gravity complementary to those achievable with transients, including the
study of GW polarizations [[109].

In [109] we showed that it is possible to search for CWs in a polarization-agnostic
way and to disentangle the polarization content if a signal is present. However, the
data analysis methods proposed were based on a frequentist approach to statistics and
suffered from the associated limitations. In this paper, we reframe the ideas of [[109]
in a more sophisticated Bayesian framework that allows us to achieve the following

novel goals:

1. Model-independent detection: determine whether a set of GW detector data,
prepared for any given known pulsar and from one or multiple detectors,
provides evidence for the presence of an astrophysical signal of any polarization

content.

2. Model selection: in the presence of a signal, determine whether the data favor
GR or a generic non-GR model, as well as comparing specific alternative
theories among themselves and to GR; combine data for multiple sources into

a single statement about the validity of GR.

3. Inference: if the data favor the presence of a GR signal, place constraints on

specific alternative theories using the tools of Bayesian parameter estimation.

Furthermore, while [[109] treated only the case of a single detector, we are now able

to consider the generic case of a network of detectors.

We present Bayesian methods to achieve the three goals above in the context of
searches targeted to known pulsars and present sensitivity estimates for the advanced
detector era, including the first generic estimates of sensitivity to nontensorial CW
polarizations ever published. In Sec. 8.2} we review the basics of beyond-Einstein

polarizations and the targeted pulsar CW search. In Sec.[8.3] we phrase our problem
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Figure 8.1: Effect of different GW polarizations on a ring of free-falling test particles.
Plus (+) and cross (Xx) tensor modes (green); vector-x (x) and vector-y (y) modes
(red); breathing (b) and longitudinal (1) scalar modes (black). In all of these diagrams
the wave propagates in the z direction. This decomposition into polarizations was
first proposed for generic metric theories in [98].

in the language of model selection and explain the construction of hypotheses that
will allow us to distinguish GR from non-GR signals. In Sec.[8.4] we specify the
details of our analysis, and we explain our results in Sec.[8.5] Finally, we summarize

our findings and explain caveats in Sec. [8.6]

8.2 Background
8.2.1 Polarizations

GWs can be decomposed into different polarizations, which arise from the linearly
independent components of the three-dimensional, rank-two tensor representing the
spatial metric perturbation [98]]. A generic metric theory of gravity may thus allow
any combination of up to six independent modes: plus (+), cross (X), vector x (x),
vector y (y), breathing (b) and longitudinal (1). The effect of each of these modes is
represented in Fig. [8.1] The rotational properties of the fields underlying any given
theory determines which polarizations the theory supports: + and X correspond to
tensor fields (helicity +2), x and y to vector fields (helicity +1), and b and 1 to scalar
fields (helicity 0).

The components of the tensor and vector pairs are not separable, in the sense that
a signal model that includes one element of the group must also include the other
(e.g. it is not possible to have a model that allows plus + but not X), because the
distinction between + and X, or x and y, is contingent on the frame of reference (e.g.

relative orientation of source and detector).

Einstein’s theory only allows the existence of the + and X polarizations. On the other
hand, scalar-tensor and massive-graviton theories may also predict the presence of
some b and/or 1 component associated to the theory’s extra scalar field [84]. On top

of tensor and scalar modes, bimetric theories, like Rosen or Lightman-Lee theories,
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also predict vector modes [85)]. Furthermore, less conventional theories might, in
principle, predict the existence of vector or scalar modes only, while still possibly
being in agreement with all other non-GW tests of GR (see [106] for an example).
Although all these different theoretical frameworks serve as motivation for our study,
our approach to the measurement of GW polarizations is phenomenological and,
thus, theory-agnostic (Sec. [8.3). It is important to underscore that the detection of a
GW signal with a non-GR polarization, no matter how small, is sufficient to falsify

GR (note the converse is not true, however).

Because different polarizations have geometrically distinct effects, GW detectors will
react differently to each mode. This is manifested in the detector response function
F), for each polarization p, which encodes the effect of a linearly p-polarized GW
with unit amplitude, s, = 1. Ground-based GW detectors, like LIGO and Virgo are
quadrupolar antennas that perform low-noise measurements of the strain associated
with the differential motion of two orthogonal arms. Their detector response function
can thus be written as [[107-110]:

Fom s [0v @) = v dy) = (g A+ vy @], @D
Fe = (Wy - d)(W, - ) = (W, - d))(w, - ), 8.2)

Fo= (- do)(W, - d) = (w, - d)(w, - d,), 8.3)

Fy = (%) - do)(w, - d) = (wy - d,)(w, -d,), (8.4)

Fy = % [(We - do)? = (W - dy)* + (wy - do)* = (wy - dy)?], (8.5)
Fi= 5 (v = (v a2 (8.6)

Here, the spatial vectors d,, d, have unit norms and point along the detector arms
such that d, = d, X d, is the local zenith; the direction of propagation of the wave
from a source at known sky location (specified by right ascension «, and declination
0) is given by w;, and w,, w, are such that w, = w, X w,. We choose w, to lie
along the intersection of the equatorial plane of the source with the plane of the sky

and let the angle between wy, and the celestial north be , the polarization angle.

Because of their symmetries, the breathing and longitudinal modes are fully degener-
ate to networks of quadrupolar antennas (see e.g. Sec. VI of [85]). This means that
no model-independent measurement with such a network can possibly distinguish
between the two, so it is enough for us to consider just one of them explicitly. We

will refer to the scalar modes jointly by the subscript “s”.
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The response of gravitational detectors to signals of a given polarization and direction
of propagation can be represented, as in Fig. [8.2] by a spherical polar plot in which
the radial coordinate corresponds to the sensitivity given by Eqgs. (8.148.6). In the
frame of a given detector, this can be written as [see e.g. Egs. (13.98) in [110] with

Y = —n/2, to account for the different wave-frame definition]:

Fo(9,¢:0 = 0) = —% (1 + cos? ﬁ) cos 20, 8.7)
Fx(9, ¢ ;¢ =0) = —cos¥sin2¢p, (8.8)
Fx(9,¢;¢ =0) = —sin¥sin2¢, (8.9)

Fy(9, ¢3¢ = 0) = sin?) cos ) cos 2¢, (8.10)
Fop(9, ¢3¢ =0) = x% sin® 9 cos 2, (8.11)

where ¢ and ¢ are the polar an azimuthal coordinates of the source with respect to
the antenna at any given time (with detector arms along the x and y-axes), and we
have fixed the wave frame so that = 0. The representation of Fig.[8.2]makes it clear
that quadrupolar detectors will generally be more sensitive to some polarizations
than others, although this will vary with the sky location of the source. For example,
for all but a few sky locations, quadrupolar antennas will respond significantly less

to a breathing signal than a plus or cross signal.

For a given detector, polarization angle and sky location, the antenna patterns of Egs.
(8-1H8.6) become simple, distinct functions of time determined by the rotation of
the Earth. This can be pictured by noting that, as the Earth spins on its axis, the
angular location of the source with respect to detector will change, tracing an arc on
the surfaces of Fig.[8.2] with varying radial distance. As we explain in Sec. the
F,’s of polarizations with different rotational properties can be distinguished even
in the absence of information on the source orientation; for the minority of cases
in which such information exists, it can be taken into account to better distinguish

among specific signal models (see Sec. [8.4).

Because their characteristic period (a sidereal day) is much longer than the CBC
timescale (order of minutes or less), the F),’s are treated as constants in transient
searches; however, this simplification is not valid for CW searches, since their
coherent-integration time can be of the order of months to years. As we have pointed
out before, this can be used to distinguish the polarization content of a signal [109].
Assuming wave frequency and speed are the same for all modes, the only differences
between CWs of different polarizations arise from the sidereal-period amplitude

modulations caused by each antenna pattern.
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Figure 8.2: Angular response of a quadrupolar detector to each GW polarization.
The radial distance represents the response of a single quadrupolar antenna to
a unit-amplitude gravitational signal of a tensor (top), vector (middle), or scalar
(bottom) polarization, i.e. | F,| for each polarization p as given by Egs. (8.7H8.T1).
The polar and azimuthal coordinates correspond to the source location with respect
to the detector, which is to be imagined as placed with its vertex at the center of each
plot and arms along the x and y-axes. The response is plotted to scale, such that the
black lines representing the detector arms have unit length in all plots. The response
to breathing and longitudinal modes is identical, so we only display it once and label
it “scalar”.

8.2.2 Continuous waves

Signal

A CW is an almost-monochromatic gravitational perturbation with constant intrinsic
amplitude and phase evolution ¢(¢). For arbitrary polarization content, such a GW

will induce a strain in a quadrupolar detector which can be written as:

OEIWAGINON (8.12)
p

where the sum is over the five independent polarizations, p € {+, X, X, y, s}; the
F)’s are those of Eqgs. (8.TH8.5)) and thus implicitly depend on the relative location
and orientation of source and detector by means of ¢, a and J; the ), term encodes
the amplitude and phase of the wave before being projected onto the frame of the

detector:
hy(1) = ap,cos (¢(r) + @), (8.13)

where a,, is a time-independent amplitude with a functional dependence on source
parameters determined by each particular theory of gravity; ¢(¢) the phase evolution,
a consequence of the dynamics of the source in that theory; and ¢, a phase offset for
each polarization. The polarization amplitudes a, and phases ¢, may take arbitrary

values depending on the specific theory of gravity and emission mechanism.
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In GR, there are several ways in which a neutron star could emit CWs, but the most
likely is the presence of a nonaxisymmetry in the star’s moment of inertia [54]. For

this type of triaxial, nonprecessing source, GR predicts:

hy(t) = hoé(l + cos? 1) cos ¢(t), (8.14)
hy(t) = hg cos ¢sin ¢(z), (8.15)
hy = hy = hg = h; =0, (8.16)

where ¢ is the inclination angle between the spin axis of the source and the observing

line-of-sight, and Ay is an overall amplitude given by:

1672G €l f2,
ho =

(8.17)

c* ro’
where r is the source distance, f; its rotation frequency around the principal axis z,
I the moment-of-inertia tensor and € = (I, — I,,)/I; the equatorial ellipticity. For
the triaxial case, the GW frequency f is twice the rotational value f;, so that we
can write:

B(t) = 2¢r0t(t) + dGW-EM)» (8.18)

where ¢, is the rotational phase as measured via electromagnetic (EM) observations
and ¢Gw-gwm) is a potential, constant phase offset between the GW and EM signals
that can be absorbed into the definition of the ¢,’s in Eq. (8.13).

Note that other emission mechanisms may result in GW radiation at f = f;o [[146], or
even noninteger powers fio [157H159]. Furthermore, alternative theories of gravity
may (and, in general, will) support signals at any harmonic. Although in this paper
we only consider the case in which only the second rotational harmonic appears in
the GW phase, the analysis can be easily generalized to also include contributions

from the fundamental and other multiples of f;o; (see Sec. [8.6).

Targeted search

We would like to search a given set of data (from one or more detectors) for CW
signals coming from a specific candidate pulsar which has already been observed
and timed electromagnetically. Timing solutions are obtained through the pulsar
timing package TEMPO2 [55/156]. We want to achieve this regardless of polarization

content, and to reliably distinguish between the different modes present.
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If we assume all polarizations share the same phase evolution, then detector response is
the only factor distinguishing CW polarizations and, thus, all the relevant information
is encoded in the sidereal-day-period amplitude modulation of the signal. This
allows us to focus on a narrow frequency band around the expected GW frequency
by processing the data following the complex-heterodyne method presented in [66]
and [57]. This procedure is summarized below.

A signal like Egs. (8.12] [8.13) can be rewritten in the form:

h(t) = A@)e "V + A (1) 0, (8.19)
IS
A = 5 ) aper Fyltic v, . 6), (8.20)
p=1

with = indicating complex conjugation and ¢(¢) given by a Taylor expansion around
J =2 frot’
¢(t) = 27T (ZﬁotT + ﬁ‘Oth + ) . (821)

where 7 is itself a function of time given by:
T(t) =t + AR + Ag + As + Apinary - (8.22)

Above, 7 is the time measured by a clock inertial with respect to the pulsar; ¢ is the
time as measured at a given detector; Ar is the Roemer delay; Ag is the Solar-System
Einstein delay; Asg is the Solar-System Shapiro delay; Apinary is the delay originating
from the motion of the pulsar in its binary (a term that vanishes for isolated sources)
[S7].

It is important to remember that, the F),’s are functions of the source orientation and
sky location relative to the detector, so we have made this dependence explicit in
Eq. (8.20) by writing F,(t) as F,(tx; ¥, @, §). Also, recall that these functions have

a characteristic period of a sidereal day (~107> Hz).

Because the phase evolution ¢(), including all corrections from Eq. (8.22)), is known
(with known uncertainties) from electromagnetic observations, we can digitally

heterodyne the data by multiplying by exp [—i¢(¢)] so that the signal therein becomes:
W (1) = h(t)e D = A1) + A*(1)e™ 200 (8.23)

and the frequency modulation of the first term is removed, while that of the second
term is doubled. A series of low-pass filters can then be used to remove the quickly

varying term, which enables the down-sampling of the data by averaging over
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minute-long time bins. As a result, A(z) is the only contribution from the original
signal left in our data, and hence we can use Eq. (8.20)) as the template for our search.
Note that, although we started with real-valued data, after this process the data are

now complex.

From Eq. (8.23) we see that, in the presence of a signal, the heterodyned and
down-sampled noisy detector strain data By for the k™ time bin (which can also be
labeled by the Earth-frame GPS time-of-arrival at the detector, #) are expected to be

of the form:
Bexpected(tk) = A(t) + n(t), (8.24)

where n(ty) is the heterodyned, filtered and downsampled noise in bin k, which
carries no information about the GW signal. Note then that By (¢;) — A(fx) should be
expected to have the statistical properties of noise, a fact that will be used below in

defining likelihoods.

8.3 Method
8.3.1 Model selection

We use the tools of Bayesian model selection (also known as second-level inference)
to determine whether the data contain a signal and, if so, whether that signal agrees
with the GR prediction or not. Our procedure is hierarchical and consists of the

following stages:

1. detection: select between signal and noise models;
2. test of GR: if a signal is present, select between GR and non-GR models;

3. upper limits: if GR is favored, place upper limits on nontensorial strain

amplitudes, in the context of specific alternative polarization models.

This subsection covers only the first two items in this list, since the placement of
upper limits belongs in the section on parameter estimation. We treat the case of a
single data set in[8.3.T]and [8.3.1] and we show how to combine results from multiple
analyses in[8.3.T} we offer some considerations about how to approach the problem

of non-Gaussian noise in [§.3.1]
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Hypotheses

For any given pulsar, we would first like to use reduced (i.e. heterodyned, filtered
and downsampled) GW data to decide between the following two logically disjoint
hypotheses:

1. noise (Hy): no signal, the data are drawn from a Gaussian distribution of zero

mean and some (possibly slowly varying) standard deviation;

2. signal (Hs): the data contain noise drawn from a Gaussian distribution and a

signal with the assumed phase evolution and any polarization content.

In order to perform model selection, we need to translate these hypotheses into the
corresponding Bayesian models; this means setting a likelihood function derived
from the expected noise properties and picking a multidimensional prior distribution
over all parameters. It is important to underscore that a Bayesian model is defined by

the choice of these two probability distributions.

For Hy;, the construction of the likelihood is straightforward. First, let o be the
standard deviation of the detector noise at or near the expected GW frequency; then,

for each complex-valued data point By, Gaussianity implies:

1 | By |?
p(Bi | o, HN) = 53 XP |~ : (8.25)
To g

Here, and throughout this document, a lower-case p is used for probability densities,

while an uppercase P is used for discrete probabilities.

If the data are split into Ns segments of lengths s; (j = 1,..., Ns) over which the
standard deviation o; is assumed to remain constant, we can analytically marginalize
over this parameter to obtain a likelihood for the entire data set B in the form of a
Student’s ¢-distribution [51) 157]]:
=S
P(B | Hy) = ]_[A Z B (8.26)
k=k;

with A; = (s; — 1)!/27%, k; = 1 + Zi:] Sn-1, Kj = kj +s; — 1 and s9 = 0. Data

streams from Np detectors can be analyzed coherently by generalizing this to:

—Sij
ND NSl g

P(B | Hy) = ]—“_[A,, Z|B,k| , (8.27)

i=1 j=1 k=k;
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where i indexes detectors, B; ; = B;(#;) is the datum corresponding to the i™ detector
at time 7, and A; ;, ; j and K ; are defined analogously to s;, k; above. The splitting
of the data into segments of constant standard deviation may be achieved with a
strategy similar to the Bayesian-blocks algorithm of [[160], and explained in detail in
[51].

Note that the likelihood p(B | 6, ‘H) of some hypothesis H, is the probability of
observing the data B assuming 9 is true and given a specific choice of free parameters
6 from the model’s parameter space ®. However, in the case of the noise (“null”)
hypothesis, as defined by the Student’s ¢ likelihood above, there are no free parameters.
Consequently, ® = @ and p(B | 6, Hn) = P(B | Hy).

The case of Hs requires more careful attention. One could be tempted to use Eq.
(8.24) to define a likelihood like Eq. (8.27) with the substitution |Bi| — |By — A|,
for Ay = A(ty) including all polarizations like in Eq. (8.20)); the priors would reflect
uncertainties in measured source parameters and extend over reasonable ranges for
a, and ¢,. However, for most realistic prior choices, that would correspond to a
hypothesis that assigns most of the prior probability to regions of parameter space for
which a,, # 0 for all p, thus downweighting more conservative models (including GR)
that we would like to prioritize. This is simply because the subspace in parameter
space corresponding to any of these smaller subhypotheses (which, for example, fix
one of the a,’s to be zero) has infinitely less volume (i.e. it offers infinitesimally
less support) than its complement; hence any practical choice of prior probability
density will also assign this subspace infinitely less weight, and so the prior for the

corresponding subhypothesis will be vanishingly small.

Formally, the inadequacy of the naive construction of Hs as proposed in the previous
paragraph is related to the logical independence of nested hypotheses. We refer to
this important point multiple times in the following sections; in particular, we discuss
it in the context of odds computations in the text surrounding Eq. (8.38). We refer
readers not familiar with this line of reasoning to a similar discussion in [21], or,
more generally, to Ch. 4 in [22] or Ch. 28 in [23].

Instead, we will construct Hs from two logically disjoint component hypotheses:

1. GR signal (Hgr or Hy): the data contain Gaussian noise and a tensorial signal
with the assumed ¢(¢);

2. non-GR signal (H,gr): the data contain Gaussian noise and a signal with

non-GR polarization content, but with the assumed ¢(¢).
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The tensorial hypothesis is embodied most generally by a signal model such that
1 . )
A1) = B [a+€l¢+F+(t§ Y =0)+ axe"pxe(t;w = 0)] 5 (8.28)

where a., ax, ¢, and ¢« are free parameters, and we pick a specific polarization
frame by setting ¥ = 0 (we are allowed to do this because of a degeneracy between
¥ and a,, ax explained in Appendix [8.7). An alternative parametrization can be
derived from the triaxial emission model of Eqs. (8.14H8.16), namely

1 . [1
Agr(?) = 5hoe”f’o 5(1 + cos> O)F,(t;0) — i cos tFy(t;4) |, (8.29)

where the free parameters are now hyg, ¢o, ¢t and ¢ [in the notation of Egs. (8.13}(8.20),
¢+ = ¢o and ¢« = ¢ — m/2]. This is the parametrization used in most traditional
GR-only searches (see e.g. [29,51]).

The templates of Eq. (8.28)) and Eq. (8.29) span the same signal space; therefore, if
we pick parameter priors properly related by their Jacobian, the respective hypotheses
(H; and Hggr) will be logically equivalent (i.e. H; = Hgr). However, we will
sometimes want to restrict ¢ or ¢ in Eq. (8.29) to incorporate measurements of the
source orientation (see Table 3 in [49]) and compare those results to the unconstrained
model of Eq. (8.28). In such cases, H; and Hgr are no longer equivalent: the former
corresponds to a free-tensor signal, while the latter now corresponds to a GR triaxial
signal for some given source orientation [i.e. a signal with the functional dependence
on ¢ and ¢ of Eq. (8.29)]. Because of lack of any orientation information, this is
a distinction without a difference for most pulsars. (See Appendix for more
details.)

The non-GR hypothesis, Hygr, can itself be seen as a composite hypothesis encom-
passing all the signal models that depart from GR in some way, i.e. models that
include polarizations other than + and X. We denote such subhypotheses with a
subscript listing the polarizations included in the signal. For example, “st” (meaning
“scalar plus tensor”) corresponds to a model with unrestricted scalar and tensor

contributions:

1 . .
As(t) = 5 [a,e'® Fu(t:¢ = 0) + axe' ™ Fu(1:y = 0)

+ age' " Fy(t;y = 0)] . (8.30)

With this notation extended to the names of the relevant hypotheses, we may then
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write Hygr as the logical union (“or” junction, V)

7’{nGR = 7{5 \4 7-(V \ 7’{st \4 7—{SV \ 7’[tv \ 7’{stv
= \/ Hu, (8.31)

meM

where, for convenience, we have defined the non-GR subscript set M:
M ={s, v, st, sv, tv, stv}. (8.32)

Just as before, we may equivalently use the triaxial parametrization, Eq. (8.29), for

the tensor modes in the non-GR hypotheses by instead defining M as
M ={s, v, sv, GR+s, GR +v, GR + sv}, (8.33)

where, for example, GR+s denotes a signal template like
Agras(t) = e 0 5(1 + cos“ O)F,(t;¢) —icos tF(t; )
1 .
+ 5ape " Fy(t:0), (8.34)

and similarly for GR+v and GR+sv, with the added vector modes. Again, the two
definitions of M, Eqs. (8.32}[8.33)), are equivalent unless orientation information is

incorporated in the way explained above.

By the same token, the signal hypothesis can be built from the logical union of Hgr
or H;, and H,Gr:
Hs = Horp V Hoor = \/ Ho, (8.35)

meM

with M defined similarly to M, but also including the tensor-only hypothesis, Hgr
or Hi:

M = M U {GR/t}. (8.36)

The validity of Eqgs. (8.31][8.35)) is contingent on the mutual logical independence
of all the H,,’s. This requirement is satisfied by construction, since each of the
H,,’s is defined to exclude regions of parameter space that would correspond to
other hypotheses nested within it (e.g. Hgrys is defined over all values of the scalar
amplitude except ag = 0, to avoid including Hgr). In practice, however, it is not
necessary to explicitly exclude these infinitesimal regions of parameter space, as will

be explained in the following section.
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Figure 8.3: Computation of Og. First, the Bayes factor B8 is obtained from the data B
and corresponding priors p(6|H,,) for each model m € M, by evaluating the integral
of Eq. (8.40) using a nested sampling algorithm that samples over 6 (step indicated
by integral sign); these values are then added and multiplied by P(H,,)/P(Hn) to
obtain Oli, as in Eq. (8.43)). (Note that here we have set P(H,,)/P(Hx) = 1/7, as

explained Sec. ) The computation of OgGRR is analogous.

Odds

We can construct a Bayesian model for Hg starting from its components: for each
subhypothesis H,, for m € M, we use a likelihood function like Eq. (8.27) with the
substitution |B; x| — |Bix — Am.ikl, i-e.

ND NSI _*Yi,j
p®B 16,7, =] | ﬂ Aij Z 1Bisc = Amiaf’ (8.37)
i=1 j= k=k;,j

(where A, « is the template corresponding to model m, for detector i and time-bin
k), and suitable priors on the model parameters 5,,1 € ®,,; then, we combine the
posteriors with priors on the models themselves to obtain the posterior for Hs. This
last step allows us to incorporate our a priori beliefs about the validity of each of the
components. This procedure is represented schematically in Fig. and fleshed out

below.

The choice of model priors can be made clearer by considering the posterior
probability for the signal model. Given some set of detector data B and underlying
assumptions / (suppressed from the following expressions), the posterior probability
for Hs is:

P(Hs | B) = Z P(H,, | B) (8.38)

meM
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by Eq. (8.35)) and because the components are all logically independent [i.e. H,,, A
H,n, = False, hence P(H,,, A H,y, | B) = 0 for any my, my € M such that m; # my].
Note that this is true even for hypotheses that may contain each other as special cases.
For instance, even though the GR template can be obtained from GR+s by setting the
scalar amplitude to as = 0, the points in the GR+s parameter space satisfying this
condition define an infinitesimally-thin slice in parameter space that offers no support
to the prior distribution and is thus assigned no weight (see similar discussion in
[21]).
We can expand each term on the RHS of Eq. (8.38)) using Bayes’ theorem:

P(Hs | B) = Z P(H,,)P(B | ‘H,)/P(B). (8.39)

meM

Each of the terms on the RHS is made up of three factors: a marginalized likelihood

P(B | H,,), a prior on the model P(#H,,), and a normalization constant P(B).

The marginalized likelihood (also known as evidence) is computed from the data:

P(B | H,) = / DB | e Hi) p(By | Hy) Ay (8.40)

where p(B | ém, H,,) is itself the likelihood. The evaluation of the multidimensional

integral of Eq. is the most computationally intensive part of our analysis (see
Sec.[8.4] for details).

We are free to choose the model priors (discussed in Sec. [8.4), as long as we satisfy
the constraint:

P(HN) + Z P(H,,) = 1. (8.41)
meM
This is a statement about the exhaustiveness and disjointedness of the hypotheses

we are considering: we assume that reality will agree with one and only one of the
hypotheses at hand. (As we will see in Sec.[8.6] this assumption might not hold; for
example, the noise may not be Gaussian.) The particular choice of prior for each
model will encode our expectations about the corresponding theory (before seeing

the data), and thus allow for some degree of subjectivity.

Note that we cannot directly compute P(B) in a straightforward manner and without
assuming that our hypothesis set is indeed exhaustive (which is not the case for
non-Gaussian detector noise, see Sec.[8.3.1). However, the need for this computation
can be avoided by looking at relative probabilities, i.e. odds. The odds for Hs vs Hy
is defined as:

P(Hs | B)

S —_—
= Py [ B)

(8.42)
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Using Bayes’ theorem again and canceling the P(B) factors, this simplifies to:

OS — ZP(Wm)P(B | 7_{m) _ Z P(q_(m)
N P(HN)P(B | Hy) P(HN)

B (8.43)
meM

where, in the second equality, we have used the definition of the Bayes factor:

i = PBIH)

;= —P(B KA} (8.44)

for any two hypotheses H;, H;.

The odds in Eq. (8.43)) can be used as a detection statistic to determine whether it is
likely that the data contain a signal (of any polarization) or not. Once the presence of
a signal has been established, a similar ratio can be constructed to assess agreement
with GR:

nGR _
OGR -

P(Hycr | B) _ Z P(Hin) BgR (8.45)

P(Hgr | B) P(Hgr)

m#GR
This ratio encodes the relative probability that there is a GR violation. Because it is
now assumed that there is a signal in the data, P(Hy) = 0 and the model priors must

instead satisfy:

Z P(H,,) = 1. (8.46)

meM

We can reduce the number of computations needed to obtain OEI and OgﬁR by using
the fact that:
,_PBIH) _PB|H) PB|Hy _ B\

B = = = —.
7 PB|H)  PB|HN) PB|H) gl

(8.47)

This means that we need to evaluate an integral like Eq. (8.40) seven times per set
of data, to compute By for each m in M. Those seven numbers, together with the

evidence for Hy;, are enough to compute all the quantities of interest.

Instead of asking about a generic deviation from GR, we may also compare GR to a
particular alternative theory. For such purpose, we will usually assign equal prior
weight to GR and its alternative to compute:

. P(H;) _
OéR = P(Hgr) BéR = ‘BéR’

(8.48)

where H; may be any of the hypotheses in M or an even more specific hypothesis.

(The latter case demands an extra execution of the inference code.)
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Multiple data sets

So far we have assumed that the data B, corresponding to one or more GW detectors,
can be analyzed coherently; however, there are cases in which we would like to
combine results from sets of data analyzed incoherently. Examples are data sets
corresponding to different sources or observation periods. Our Bayesian framework
makes it possible to combine the respective odds in order to make an overall model

selection statement (in our case, about the presence of signal or the validity of GR).

For instance, we may analyze data for Np pulsars and ask about the probability that any
of them contain a signal; treating each as an independent observation, the combined
probability can be constructed from the odds above. Letting Hs., Hn, respectively
denote signal and noise hypotheses for the i source, while Hs,,, corresponds to a
signal being present in any of the sources and Hy,, corresponds to Gaussian noise in
data for all sources:

(Ne) 3y P(Hsw, |B) _ 1~ P(Hy, | B)
Nan P(q_{Nall | B) P(q_{Nau | B)

Np
— I 1 = n I S
P(A; H, | B) | [Py, 1B)
_ ﬁ P(Hs, | B) + P(Hy, | B) |
= P(Hy, | B:)
e
= [ (0% +1)[-1. (8.49)
Li=1

where we have used the exclusivity and exhaustiveness of the signal and noise
hypotheses, i.e.

P(Hs,, | B) + P(H, | B) = 1, (8.50)

all
P(Hs, | B;) + P(Hx, | Bi) =1, (8.51)

with i indexing data sets. Note that the data sets for different sources (B;’s) are not
conditionally independent under Hs,,, or Hy,,. Also, Eq. (8.49) does not enforce the
requirement that, if signals are present in multiple sources, they all correspond to the
same model from Eq. (8.36)); such a constraint could be implemented at this stage,

but is more easily enforced by examining individual values of Off when necessary.

The construction of Eq. (8.49) implicitly assigns model priors to each of the meta-
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hypotheses Hs,,, and Hy,, such that:

P(Hs,,) _ [ P(Hs) | 1]NP _1

P(Hn,) [ P(HN) ’
where we have assumed the priors for signal vs noise are equal for all sources, i.e.
P(Hs,;) = P(Hs) and P(Hx,) = P(Hn) for all i. When making combined statements
for multiple sources, we may wish to choose P(Hs)/P(Hx) such as to produce any
desired value of P(Hs,, )/ P(Hn,), say P(Hs,,,) = P(Hn,,). Furthermore, one may

any

(8.52)

wish to weight each pulsar differently within Hs,, by incorporating information
about the source distance (or other parameters) into the priors via a parametrization
like Eq. (8.17); this may improve the sensitivity of the ensemble odds to weak signals
in the set, as suggested in [[161]. However, using such a parametrization generally
implies committing to a specific gravitational theory (or family of theories). We

choose not to take such approach in this study.

Besides combining data for multiple pulsars, for a given source, we could also
(incoherently) combine the results of analyses using data from different observation
periods. Since the astrophysical CWs we are considering should either be present
in all Mg observation runs or in none of them, the relevant odds, generalizing Eq.
(8.43)), are:
igg - P IB) _ 5o P(F, |B)
P(Hx [B)  Zi P(F|B)

— Z P(B | 7_{m)P(q-(m)
P(B | Hx)P(Hn)

meM
P(H) T
=N gy 8.53
,,;4 P(?‘(N) B ( N)] ( )

where we have again used B = {B; }j.szl to refer to the totality of data, with j indexing
observation runs. The independence of the B;’s, conditional on H,, and Hy, is
applied on the last line to write the result in terms of the individual Bayes factors for

each run, (B{(I’)j.

Similarly, we can use multiple data sets to make a single statement about deviations
from GR. Once we have made Np detections from different sources, the odds for a

GR violation is:

P(Hy) T
(Np) AnGR — m m ) . 4
OGR ;Z P(q_{GR) !:1[ (BGR)Z ’ (8 5 )

where, again, i indexes sources; this is a generalization of Eq. (8.45). (See Sec. IIID

of [21]] for an analogous derivation.)
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Non-Gaussian noise

Up to this point, like most other CW studies, we have assumed that the detector noise is
Gaussian. However, although previous work has indicated that this is generally a very
good approximation [29,[109], it is not exactly true for actual detector noise (for some
frequencies more so than others). Happily, most of the model selection statements
expounded so far are valid also in the presence of non-Gaussian instrumental noise,

after some light reinterpretation.

If the assumption of Gaussianity does not hold, the hypotheses constructed in Sec.
[8.3.1] are no longer exhaustive: the data may not only be explained by Gaussian
noise or a signal (GR or otherwise), but also by non-Gaussian artifacts that are
impossible to satisfactorily model. Nevertheless, the computation and interpretation

of evidences and odds remain unchanged for all the hypotheses under consideration.

Because “noise" no longer just means “Gaussian noise", OEI (which compares the
signal model vs Gaussian noise) has to be treated more carefully for detection
purposes. Indeed, instrumental features that are clearly non-Gaussian (e.g. a loud,
narrow-band artifact wandering across the frequency of interest) will generally result
in a relatively large value of O, even if there is no detectable astrophysical signal in
the data. This issue affects the standard GR searches as well [29], although perhaps

to a lesser degree due to the reduced signal parameter space.

It is possible to mitigate this problem by constructing a hypothesis that captures
some key characteristic of instrumental features and helps discriminate those from
real astrophysical signals. Perhaps the best way to do this is to take advantage of the
fact that an astrophysical CW must manifest itself coherently across detectors, while
the same is not true for detector artifacts [27]]. We can thus define an instrumental
feature hypothesis (H;) to encompass the cases in which the data are composed of
Gaussian noise or features that look like astrophysical signals but are not coherent
across detectors (viz. they do not have a consistent phase evolution and they are best

described by different waveform parameters).

Formally, we define H; by:

Np

Hi= [\ (Hs, v Hy,), (8.55)

d=1

where the subscript d identifies detectors, and A is the logical “and” junction. This

definition does not explicitly encompass instrumental features that are coherent across
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some subset of the detectors. Also, note that Eq. (8.55) implicitly contains a term
equivalent to the usual noise hypothesis Hyx = A\, Hn,. Similarly, it also contains a
term corresponding to the presence of signals in all detectors (/A ; Hsy). Importantly,
such an incoherent term is not equivalent to the coherent signal hypothesis Hs, as
given by the multidetector likelihood of Eq. (8.37):

Np
Hs # [\ Hsa. (8.56)

d=1
While the evidence integral of Eq. (8.40) factorizes into single-detector terms for
Hy (due to the null parameter space), the same is not true for Hs. Furthermore,
because it does not demand detector coherence, the RHS of Eq. (8.56) is associated
with a considerably larger parameter space than the LHS. Thus, in the presence of
an astrophysical signal, model selection will favor Hg due to its smaller Occam’s

penalty. The same is true, of course, when comparing Hs to H as a whole.

From Eq. (8.55)), it is straightforward to write the evidence for Hj as

Np
P(B | H) = | | [PB | Hs,)P(Hs, | H)
d=1
+ P(By | Hn,)P(H, | H)] (8.57)

and use this to construct the odds comparing against Hs:
S
_ P(Hs) By

of = .
PO T, | Pers, | #0)(BY: - 1) + 1

(8.58)

Here we have used Eq. (8.57), together with the fact that P(Hs, | Hi) + P(Hn,, |
Hi) = 1 and PB | Hx) = [[; P(B | Hnyg), to write OIS as a function of the
detector-coherent signal vs noise Bayes factor BY, the single-detector signal vs noise
Bayes factors B3 and model priors P(Hs), P(H;) and P(Hs, | Hi).

As usual, we are free to choose the model priors to give more or less weight to
different hypotheses. For example, we recover the choice of [29] (Appendix A3) by
setting P(Hs, | H;) = 0.5 for all d and P(Hs) = P(Hj) x 0.5™> such that:

Np
O} =nBY - In (B +1). (8.59)
d=1

(When comparing to Appendix A3 of [29], however, note that in that work “I" is
used to denote both the background information and the “incoherent-signal-or-noise"
hypothesis, which can be identified with our #j.)
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There is reason to believe that In OIS, with model priors as in Eq. (8.59)), is quite
good at picking out instrumental features, even for data from just two instruments
[29]. (Note that we would expect the discriminatory power of In OIS to grow with the
number of detectors available.) However, at the end of the day, we can never be fully
confident that H; will indeed capture all nonastrophysical disturbances. To address
this, we may always treat In 01§1 and In OIS as any generic detection statistic and use

estimates of the background distribution to establish significance.

8.3.2 Parameter estimation

Besides choosing between different models, we can use Bayesian statistics to obtain
posterior probability density functions (PDFs) on the parameters of a given template
(first-level inference). In the absence of a loud signal, this can be used to obtain

credible intervals that yield upper-limits on the amplitudes of GR deviations.

For a model H with N parameters, an N-dimensional posterior PDF covering the

parameter space ® can be obtained from Bayes’ theorem:

p(B | 6,H) p(6 | H)
PB|H)

for § in ©, and with p(é | H) the prior over @. To obtain a one-dimensional PDF for

(6| B, H) = (8.60)

a single parameter (call it 6;), the N-dimensional distribution must be marginalized

over all nuisance parameters (viz. all parameters except 6;):
p0:1B.H) = [ p(@1B.H) &0,
®l
« [ p®18.30 p(@1 00" 6 861
®I

where 0 < j < N, such that j # i, and ® denotes the parameter space ® with the
i™ dimension removed. Note that the equality has been replaced by a relation of
proportionality because we have excluded the evidence P(B | H) from the expression.
(Although of great importance for model selection, this quantity is uninteresting for
the purposes of parameter estimation and can be treated as a simple normalization
constant.) As discussed in Sec. [8.4] we evaluate Eq. (8.61]) with the same algorithm

used to compute the evidence.

Eq. (8.61) can be used to place upper limits on model parameters; in particular, we
will use it to place limits on the amplitude of GR deviations. Consider, for instance,

the case of a scalar-tensor theory that can be encapsulated by our GR+s model as
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GR

Figure 8.4: Model priors. Distribution of prior probability over subhypotheses for
the construction of Og (left) and OgGRR (right), according to Egs. (18.43|) and (]8.45[)

respectively. For OEI, we assign equal weight to the Hy (white) and Hs (gray); as in
Eq. (8.64), we make no a priori distinction between non-GR models (solid) and GR
(hatched). For OgﬁR, we set equal prior probability for Hgr and Hygr, distributing
the prior equally among non-GR models, as in Eq. (8.60)).

described in the previous section; the 95%-credible upper limit on the strength of the
breathing mode is 7°%, defined by:

h?S%

0.95 = / p(hs | B, Horss) dhs, (8.62)
min(/g)

where min(/;) is the minimum value of /g allowed by the prior.

Note that there may be reasons to compute posteriors under different priors than when
computing Bayes factors. In particular, it is conventional to present upper limits
obtained using a uniform prior over some broad range of the amplitude parameters.
With a uniform prior, the posterior is trivially related to the likelihood. This approach

produces a more conservative upper limit than other choices, e.g. a Jeffreys prior
(see Appendix [8.8)).

8.4 Analysis

We quantify our ability to use Bayesian model selection to detect CW signals and
determine their polarization content as described above. To do this, we use one year
of simulated data from three advanced interferometric detectors at design sensitivity:
LIGO Hanford (H1), LIGO Livingston (L1) and Virgo (V1). Detector noise is
simulated by drawing from a Gaussian distribution with zero mean and variance
corresponding to the power spectral density (PSD) of each detector at the GW
frequency of the pulsar. (Previous work has shown that these are good assumptions
for actual reduced detector data [29,[109]].)
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As mentioned in the previous section, the key step in our analysis is the computation
of the evidence integral of Eq. (8.40) for the hypotheses under consideration (one
noise model, plus seven signal submodels; see Sec. [8.3.1)). We carry this out using a
version of the Bayesian inference code used for the targeted pulsar search in [28] 51]],
which we modified to handle signals from theories other than GR. This inference code
is itself built on the implementation of Skilling’s nested-sampling algorithm [19] in
the LALINFERENCE package [20], part of the LIGO Algorithm Library Suite [162].
This is the same inference software used for CBC analyses, including GW 150914
[31].

In computing likelihoods, we take source location, frequency and frequency deriva-
tives as known quantities (relevant uncertainties are negligible for this analysis).
Unless otherwise stated, priors uniform in the logarithm are used for amplitude
parameters (hp or h),’s), since these are the least informative priors for scaling
coefficients (also known as “Jeftreys priors") [163]]; we make the somewhat arbitrary
choice of restricting the strain amplitudes to the 10728-1072* range (this is of little
consequence for model selection, as explained in Appendix [8.8)). Flat priors are
placed over all phase offsets (¢o and all the ¢,’s).

All plots for the Crab pulsar (PSR J0534+2200) in Sec. [8.5]are produced using known
values of its orientation parameters, cos ¢ and ¥, and with the triaxial parametrization

of tensor modes; for other pulsars, however, the free-tensor parametrization is used
instead. (See Sec.[8.3.TJand Appendix [8.7])

We follow common practice by adopting the principle of indifference (see e.g. Ch. 5

of [22]]) in assigning equal prior probability to the signal and noise models, i.e. we let
P(Hs) = P(Hn) = 1/2. (8.63)

We must also decide how to split the prior among the different H,,’s when computing
Og and OE%R. In the former case we choose to distribute the prior weight uniformly

among all signal models, so that:
P(H,,) = [M|7' /2= 1/14, (8.64)

with |[M| = 7 the cardinality of M [i.e. the number of signal models that go into
the construction of Hs, see Eq. (8.36)]. In the latter, however, we prioritize GR by
setting:

P(Hcr | Hs) = 1/2, (8.65)
P(H, | Hs) = M| /2 =1/12. (8.66)
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This distribution is illustrated schematically in Fig. [8.4] Note that these are not
the only justifiable options; for example, we might want to prioritize Hgr when
constructing Hs in order to better handle a noise background that does not conform
to our assumption of Gaussianity. (Other strategies to tackle non-Gaussian noise
are discussed in Sec.[8.3.1]) In any case, the code is sufficiently flexible to make
different choices for the model priors if desired.

To study our method in the presence of signal, we perform several injections of
scalar, vector and tensor polarizations (and combinations thereof) for all the 200
pulsars analyzed in [29]. The simulated signals have a range of signal-to-noise ratios
(SNRs), which we proxy below by their effective strain amplitudes. We define these
in terms of the a,,’s from Eq. (8.13)) by:

h = \Ja® + a2, (8.67)

hy = \Ja2 + a2 (8.68)
hs = a, (8.69)

for tensor, vector and scalar signals respectively. Each simulated signal is generated
with a random value of the nuisance phase parameters (¢g or ¢,’s). GR injections are
always carried out using the triaxial template of Eq. (8.29), with random orientation
parameters (¢ and ¢) when those are not known. Location is always taken to be fixed

at the known value for each pulsar.

8.5 Results
8.5.1 Model selection

Signal vs noise

We first show that OEI, as defined in Eq. (8.43)), can be used to discriminate signals
of any polarization from Gaussian noise, without significant loss of sensitivity to
GR signals. The black histogram in Fig. [8.5] shows the distribution of the natural
logarithm of this quantity (henceforth, “log-odds”), obtained from the analysis of
an ensemble of noise instantiations corresponding to a single source—in this case,
the Crab pulsar. For comparison, the gray (unhatched) histogram in Fig. [8.5]is the
analogous distribution for In BSR [note that BSR = OSR if we assign equal priors to
the GR and Gaussian noise models, cf. Eq. (8.43) with m = GR]; this is the value

computed in regular, GR-only targeted pulsar searches, although with different signal
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Figure 8.5: Signal vs noise log-odds background distributions for any-signal and GR
hypotheses. Histograms of In OEI (black line, hatched) and In OSR (gray line) over
an ensemble of 1000 simulated noise instantiations corresponding to the Crab pulsar.
For each instantiation, three time series of Gaussian noise were produced using the
design noise spectra of H1, L1 and V1, as outlined in Sec. 8.4} the data are analyzed
coherently across detectors. (Note that here In OgR =1In BIEI}R, since we assign equal
weight to both models.)

GR GR+s GR+v GR+sv s v t sV st vt svt

Figure 8.6: Signal vs noise log-Bayes background distributions for all subhypotheses.
Violin plots representing histograms of the log-Bayes of several models vs noise,
computed over an ensemble of 1000 simulated noise instantiations each corresponding
to H1, L1 and V1 design data prepared for the Crab pulsar; the data are analyzed
coherently across detectors. The labels on the x-axis indicate which hypothesis is
being compared against noise; the “GR” label indicates tensor modes parametrized
by Eq. (8.29) with fixed ¢ and ¢. Black lines mark the range and median of each
distribution. (The gray histogram in Fig. corresponds to the leftmost distribution
here.)
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amplitude priors [29]. Note that odds carry an intrinsic probabilistic meaning in
terms of gambling probabilities, and a background histogram like this is not required

to interpret their value (see e.g. [22]).

For both quantities shown in Fig. [8.5] a negative value marks a preference for the
noise model (Hy;, as defined at the beginning of section [8.3.1)). However, note that a
conservative (as determined by the priors) analysis should not be expected to strongly
favor Hy;, since the presence of a weak signal below the noise threshold cannot be
discarded; this explains why the ranges in the plots of Fig.[8.5|do not extend to more
negative values. Generally speaking, the magnitude of the signal prior volume (viz.
the volume of parameter space allowed by the signal model, weighted by the prior
function) will determine the mean of background distributions like Fig. [8.5] which
will be more negative the greater the signal volume. This is a manifestation of an

implicit Occam’s penalty.

The relationship between the Bayes factors for different signal hypotheses vs noise
is illustrated in Fig.[8.6] which shows violin plots representing the noise-ensemble
distributions of In B for all models discussed in @ The values for m €
{s,v,sv,GR, GR + s, GR + t, GR + sv} are combined to produce In Olf} in Fig.
As explained above, the “GR" label indicates that the tensor modes have been
parametrized using the triaxial model of Eq. (8.29)), with orientation parameters fixed
at the known values for the Crab pulsar; on the other hand, the “t" label corresponds
to the free-tensor template of Eq. (8.28). We include both parametrizations to
demonstrate the effect of assuming a triaxial emission mechanism and restricting the

orientation of the source (see also Appendix [8.7).

Interestingly, Fig. reveals the relationship between In 8 and the number of
degrees of freedom (a proxy for the prior volume) of model m: models with

more degrees of freedom have a greater prior volume and are correspondingly

m

N
the Occam’s penalty automatically applied by the Bayesian analysis (see e.g. Ch. 28

downweighted, resulting in more negative values of In B(; this is a manifestation of
in [23]]). We underscore that this feature arises naturally from the computation of the

evidence integral, and not from manually downweighting either model a priori.

If the data contain a sufficiently loud signal of any polarization, the evidence for
Hs will surpass that for Hy, and this can be used to establish a detection. Fig.
shows the response of In OEI and In BSR to the presence of GR and non-GR
signals. In particular, the second panel in Fig. shows results for injected signals

of the vector-only model of [[106], but the behavior would be the same for scalar-only
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Figure 8.7: Expected sensitivity to GR and vector injections. Log-odds of any-signal
(Hs, black circles) and GR (Hgr, gray triangles) vs noise (Hy) hypotheses, as a
function of injection amplitude, for signals corresponding to both GR (left) and the
vector-only model from (right). The any-signal odds are defined in Eq. (8.43).
Each of the 500 points corresponds to a data instantiation (one time series for each
detector: H1, L1 and V1) made up of Gaussian noise plus a simulated Crab-pulsar
signal of the indicated strength. The injections were performed with random values
of the nuisance phase parameters, and the data were analyzed coherently across
detectors. A logarithmic scale is used for the y-axis, except for a linear stretch
corresponding to the first decade.

Figure 8.8: Expected sensitivity to scalar-tensor injections. Log-odds of any-signal
(Hs, left), GR (Hgr, center) and GR+s (Hgr+s, right) hypotheses vs noise. The
any-signal odds are defined in Eq. (8.43)). Each plot was produced by analyzing 2500
instantiations of data (one time series for each detector: H1, L1 and V1) made up
of Gaussian noise plus a simulated Crab-pulsar GR+s signal of the indicated tensor
(x-axis) and scalar (y-axis) amplitudes. The color of each hexagon represents the
average value of the log-odds in that region of parameter space; color is normalized
logarithmically, except for a linear stretch in the (-1, 1) range.
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Figure 8.9: Signal log-odds vs GW frequency for noise-only data. Circles mark
the mean of the distribution of In OEI, as a function of the expected GW frequency
for each pulsar in our set; vertical lines indicate one-sided standard deviations for
each source. Each data point and corresponding bars summarize the shape of a
distribution like Fig. [8.5]for each of the pulsars, but produced from only 100 runs
per source. The effective noise amplitude spectral density VS, (ASD, red curve),
corresponding to the harmonic mean of each detector PSD, is overlaid for comparison
(scaling obtained from a linear regression).

signals. The general features of these plots confirm our expectations that for weak,
subthreshold signals, the analysis should not be able to distinguish between the signal
and noise models, yielding a Bayes factor close to unity (more precisely, a value
of In OEI consistent with the background distributions of Fig. . Note that, in
agreement with Fig. the noise baseline for In OEI lies below that of In BSR, due

to its greater prior volume.

For stronger (detectable) signals, the basic form of our likelihood functions, Eq.
(8.25)), leads us to expect In Oli to scale linearly with the square of the signal-to-noise
ratio (SNR):

B ~ (B Ave — [Awe/2) /o o (hini/r)’ (8.70)

where the variance o2 proxies the PSD and we let Ayp be the time-series vector
corresponding to the maximum probability template; for a stationary PSD, this
implies In B o hiznj, as observed in Fig. The spread around the trendline is due
to the individual features of each noise instantiation and (much less so) to numerical
errors in the computation of the evidence, Eq. (8.40). For details on numerical

uncertainty, see Appendix [8.9]

From the left panel of Fig. we conclude that In Off} can be as good an indicator
of the presence of GR signals as In BgR itself; this implies that we may include
non-GR polarizations in our search without significantly sacrificing sensitivity to GR

signals. However, the power of In 01§1 lies in responding also to non-GR signals. As
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an example of this, the right panel in Fig.|8.7|shows In Og and In BSR as a function of

the amplitude of a fully non-GR injection. Here, we have chosen to inject a particular

model of vector signal developed in [106]], but the results are generic.

Note that, for sufficiently loud signals, Hgr becomes preferable over Hy (hence
In BSR > (), even when the injection model does not match the search; this is
because the noise evidence drops faster than GR’s and becomes very small (i.e. the
data do not look at all like Gaussian noise, although they do not match the expected
GR signal well either). The particular SNR at which this occurs will depend on
the overlap between the antenna patterns of the injection and those of GR, and will

consequently vary among sources.

For the interesting case of scalar-tensor theories (here, templates composed of GR
plus an extra breathing component, and denoted “GR+s"), the behavior is slightly
different. This is both because GR+s has an extra amplitude degree of freedom (as)
and, as discussed in Sec. because Hgr can be recovered as a special case of
Hgr+s (namely, when a; — 0). In Fig. we present the log-odds of signal vs
noise hypotheses as a function of injected GR (x-axis) and scalar (y-axis) strengths.
These plots divide the hs—h plane in roughly two regions where the associated signal
model (Hs, Hgr or Hgr+s) is preferred (black) and where it is not (red). The latter
corresponds to the area of parameter space associated with subthreshold signals that

cannot be detected.

As expected, the best coverage is obtained when analyzing the data using the model
matching the injection, GR+s, (rightmost plot) or the all-signal model (leftmost plot).
In both these cases, the results improve with either scalar or tensor SNR. In contrast,
the GR analysis (center plot) is sensitive to tensor strain, but, as evidenced by the
extended red region in the central plot, it misidentifies strong scalar signals as noise.
Nevertheless, if the scalar component is larger than ~5 x 1072°, the GR analysis
will disfavor the noise hypothesis, even for a small tensor component, as in the right
panel of Fig. this is the same behavior observed in Fig. In contrast, the
any-signal analysis is sensitive to the total power of the injected signal, regardless of

polarization.

We have produced distributions of background In OEI, like those of Fig. for all 200
known pulsars in the sensitive band of the three detectors under consideration (same
set analyzed in [29]. In Fig. these are represented by their respective means
and one-sided standard deviations as a function of the pulsar’s GW frequency. The

frequency dependence is explained by variations in the instrumental noise spectra.
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This is explained by the fact that, for a particular prior choice, more information
is gained from the data if the noise floor is lower: with less noise it is possible to

discard the presence of weaker signals, so the value of In Off} decreases.

GR vs non-GR

In the presence of a signal, OE%R, as defined by Eq. (8.45)), indicates whether there
is reason to believe there is a GR violation or not. Because there could always be an
unresolvably small departure from GR, we do not expect our analysis (with priors as
chosen) to ever strongly favor the GR hypothesis; rather, in the presence of a GR
signal we will find that In OgﬁR remains relatively close to zero, simply meaning
that there is no strong evidence for or against non-GR features. This is indeed the
behavior observed in the left panel of Fig. where In OE%R is shown to be roughly
insensitive to tensor injection amplitude. For values of & below certain threshold
(which, in this case, is around 3 x 10727), the search does not detect a signal and,
consequently, no information is gained for or against Hgg, i.e. In Og(}iR ~ 0. The
difference between the two populations (below and above threshold) is determined

mainly by the choice of amplitude priors.

The behavior of OgﬁR is less ambiguous in the presence of a non-GR signal.
For instance, if the data contain a detectable signal that completely lacks tensor
components, then OE%R will unequivocally reflect this. This is evidenced by the
growth of In OgGRR with injected nontensorial SNR in the right panel of Fig. m In
other words, while the analysis is inconclusive for GR injections because it cannot
discard the presence of subthreshold non-GR components hidden by the noise, vector
signals are are clearly identified as not conforming to GR. This is a reflection of the
fact that, as mentioned in the introduction, any evidence of a nontensorial component
is fatal for GR, but absence of non-GR components does not mean Einstein’s theory

is necessarily correct.

nGR
GR

component with a combination of features from both panels of Fig.[8.10] As an

As might be expected, O, responds to non-GR signals that include a tensor
example, the left plot of Fig. shows OE%R in the presence of GR+s injections, as
a function of injected tensor and scalar amplitudes. This plot can be split into three
clearly demarcated regions: one in which the signal is not detected (light red, bottom
left), one in which the signal is detected and the non-GR model is preferred (black,
top), and one which the signal is detected but where the evidence for a deviation
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Figure 8.10: Categorizing tensor and vector injections (Hagr Vs Hgr). Non-GR vs
GR log-odds, as a function of effective injection amplitude, for both GR (left) and
the vector-only model from (right). Each of the 500 points corresponds to a
data instantiation (one time series for each detector: H1, L1 and V1) made up of
Gaussian noise plus a simulated Crab-pulsar signal of the indicated strength. The
injections were performed with random values of the nuisance phase parameters,
and the data were analyzed coherently across detectors. Note that, on the right, a

logarithmic scale is used for the y-axis, except for a linear stretch corresponding to
the first decade.
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Figure 8.11: Categorizing scalar-tensor injections (Hygr & Hcor+s Vs Hgr). Log-
odds comparing the non-GR and GR+s hypotheses to GR. The non-GR odds is
defined in Eq. (8.43). Each plot was produced by analyzing 2500 instantiations of
data (one time series for each detector: H1, L1 and V1) made up of Gaussian noise
plus a simulated Crab-pulsar GR+s signal of the indicated tensor (x-axis) and scalar
(y-axis) amplitudes. The color of each hexagon represents the average value of
the log-odds in that region of parameter space; color is normalized logarithmically,
except for a linear stretch in the (—1, 1) range.
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Figure 8.12: Ensemble non-GR vs GR log-odds. Non-GR vs GR log-odds computed
from data for multiple sources vs the number of sources in the set. Each light-gray
trace marks a possible progression of the ensemble log-odds as new sources are
added; the red line corresponds to the best quadratic fit. For each pulsar, we chose an
arbitrary data instantiation containing a GR (left) or GR+s (right); GR signals are
restricted to 10727 < ki, < 10726, while GR+s signals also satisfy 0.3 < hg/h; < 1.
We compute the value of In OgGRR for each signal in the set and combine them
according to Eq. (8.54)) to obtain the ensemble value plotted in the y-axis.

from GR is not clear due to the predominance of the tensorial component (darker red,
bottom right). The first corresponds to the subthreshold population on either side of
Fig. while the second and third correspond to the above-threshold populations
on the right and left sides of Fig. [8.10|respectively; indeed, note that a horizontal slice
taken over the red region of the left plot produces a series of points like those in the
left panel of Fig.[8.10] For reference, Fig.[8.11]also includes the direct comparison
of GR+s and GR on the right.

We can make a stronger statement about the agreement of the data with GR by
making use of signals from multiple sources, as discussed in Sec. [8.3.1] The power

of combining multiple signals is illustrated in Fig. , where In OE%R, as defined

in Eq. (8.54), is plotted vs number of GR (left) and GR+s (right) signals detected.

Note that this presumes that, for each source, the presence of a signal has already

nGR
OGR ’

here, is a good way of summarizing the information contained in the data about

been established from the value of In OIS'I. Computing the ensemble In as done

the relative likelihoods between the two models, but it provides no information not

already present in the set of individual single-source odds.
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8.5.2 Parameter estimation

When no conclusive evidence for a CW is found in the data, we are still interested
in placing upper limits on the strength of possible signals (up to some credibility),
and this is done as explained in Sec.[8.3.2] By the same token, if a signal consistent
with GR is detected, we can always place an upper limit on the amplitude of non-GR

modes, even if the odds indicate there is no clear sign of a GR violation.

For instance, we can get a quantitative estimate of our sensitivity to scalar modes
from a given source by looking at the distribution of 4°%, defined in Eq. (8.62),
computed for a set of noise-only data instantiations. Such distribution for the Crab
pulsar is presented in the left panel of Fig. Similarly, the right panel presents
estimates for the sensitivity to vector modes coming from the Crab pulsar, assuming
a vector-tensor model. In this case, however, the quantity plotted is the upper
limit on total, effective vector strain amplitude &y, Eq. (8.68). These plots include
distributions produced using the same log-uniform prior used to obtain Bayes factors,
as well as more conservative ones obtained using uniform amplitude priors (see
Appendix . In either case, the magnitude of /°% is comparable to that of h>%.

Interestingly, our ability to measure scalar and vector amplitudes is unaffected by the
presence of other modes. We illustrate this for the Crab pulsar in Fig. [8.14] which
results from analyzing data with GR+s (left) and GR+v (right) injections. There
we plot 42°% as a function of scalar and tensor injection amplitudes on the left, and

h2>% as a function of vector and tensor injection amplitudes on the right. From these

95 95%
hs o hv o

plots, one can conclude that and are sensitive only to the corresponding

scalar and vector components, and not by 4. (It is worth emphasizing that the upper

954 954
h>™ hy™

limits, and , are well-defined even when the non-GR component is strong

enough to be detected, as is the case for the darker-colored regions.)

As shown previously in the literature, the mean of distributions like those of Fig.
MWHI scale with W , where S, (f) is the effective PSD of the detector noise
at the expected GW frequency f, and T is the integration time (cf. Eq. (26) and Fig.
1 of [57]). Because of this, the mean of this distribution will vary with the source’s
expected GW frequency, as shown in Fig.[8.15] Following convention, these upper
limits are computed using uniform amplitude priors, which means they are a factor
of a few less stringent than those obtained with a log-uniform prior (see Fig.[8.13]and
Appendix 8.8)). Also, for completeness, Fig. also includes the expected tensor
upper limits, ht95%. Note that those values are not the same as would be obtained

by the standard GR-only search, because that analysis looks at the triaxial /g of Eq.
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Figure 8.13: Expected Crab non-GR upper limits in absence of signal. Histogram of
95%%-credible upper limits for the scalar (left) and vector (right) amplitudes, for a
set of 1000 noise-only data sets, computed using priors uniform in the amplitude
(black) or uniform in the logarithm of the amplitude (hatched gray); the differences
between these two priors are discussed in detail in Appendix [8.8] Each instantiation
(one time series for each detector: HI, L1 and V1) is made up of simulated Gaussian
noise with standard deviation given by the advanced design PSDs. Scalar and vector
upper limits are produced using the GR+s and GR+v models respectively.
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Figure 8.14: Expected Crab scalar and vector upper limits in presence of GR+s and
GR+v signals. Shading represents the 95%-credible upper limit for the scalar (h>%,
left) and vector (h35%, right) amplitudes vs the amplitude of injected GR (x-axis) and
corresponding non-GR (y-axis) components. Each plot was produced by analyzing
2500 instantiations of data (one time series for each detector: H1, L1 and V1) made
up of Gaussian noise plus a simulated Crab-pulsar GR+s (left) or GR+v (right) signal
with indicated strains. The color of each hexagon represents the average value of the
upper limit in that region of parameter space.
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Figure 8.15: Expected upper limits in absence of signal vs GW frequency. Circles
mark the mean of the distribution of th% (top), h35% (middle) and ht%% (bottom), as
a function of expected GW frequency for each pulsar in our set; vertical lines mark
one-sided standard deviations for each source. Each data point and corresponding
bars summarize the shape of a distribution like those of Fig. [8.13] but produced
from 100 noise instantiations each. The scalar, vector and tensor upper limits were
produced assuming st, vt and t models respectively. We use uniform priors in all
amplitude parameters (see Fig. [8.13]and Appendix [8.8).
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upper limit for each pulsar. The top plot shows ratios for ht95% (black), h$% (light
gray, hatched), and h?f% (dark gray); the bottom plot shows ratios for h35% (black),
h)>% (light gray, hatched), and 4)°% (dark gray). Vertical dashed lines mark the
mean of each distribution.

(8.29), rather than A;.

In order to compare our sensitivity to the different polarizations, in Fig. [8.16] we
histogram the tensor and vector upper limits as a ratio of the scalar upper limits—this
includes the 2>% and h°% values shown in Fig. as well as the limits on the
individual amplitudes from which they are constructed (h?f%, h?f%, h,?S% and th%).
The mean of these distributions (vertical dashed lines in Fig. indicate that, for
most pulsars, the scalar upper limit is slightly larger in magnitude than those for
the +, X, x or y modes; this systematic effect is a manifestation of the decreased
sensitivity of quadrupolar detectors to scalar waves, which was discussed in Sec.
(see, in particular, Fig. . The fact that the difference between h?S% and
ht95%, or h>% is less pronounced can be easily be explained as a statistical factor
arising from the definitions of 4 and A, as square-roots of sums of squares, Eqs.
[8.68). Both these scalings are discussed in more detail in Appendix [8.10]

8.6 Summary

We have developed a Bayesian framework to detect CW signals from known sources
regardless of polarization content, to disentangle the modes present in a given signal,
and to constrain the amplitudes of extra polarizations that may be hiding under the
noise. We have implemented this as an extension of LIGO’s Bayesian targeted CW

search pipeline [51] and thus benefit from the power of the nested sampling algorithm



156

on which it is based.

We have tested our methods on one year of simulated noise for three advanced-era
detectors at design sensitivity (H1, L1, V1), and prepared for a set of multiple known
sources in their frequency band. This allows us to estimate our future sensitivity to
CW polarizations, in this most optimistic case. Under these conditions and for the
Crab pulsar in particular, we expect signals of any polarization to become detectable
for characteristic strain amplitudes & 2 3 x 10727 (Figs. [8.7and [8.8)); this threshold
will vary among sources, due to differences in position (sky location and orientation)
and detector PSD at the expected GW frequency (cf. e.g. Fig.[8.9). Furthermore, the
value of this threshold will decrease linearly with the square-root of the observation
time [57]].

A signal louder than the detection threshold will allow us to determine whether its
polarization content is consistent with GR or not, and the strength of this statement
will depend almost exclusively on the power of the non-GR component (Figs. [8.10]
and[8.T1)). In other words, from a model-selection standpoint, the non-GR hypothesis
will only be unequivocally favored if the total power in non-GR modes is greater than
the threshold value, regardless of the strength of the GR modes. However, for signals
that do not satisfy this, we may always place upper limits on nontensorial amplitudes
and thus constrain deviations from GR; for instance, Fig. @] presents the most
optimistic projections for 95%-credible upper limits for scalar and vector amplitudes
of CW signals from all pulsars in our set (% ~ 4 x 10727 and h>% ~ 3 x 10727,
in the best case). As far as we are aware, these are the first generic estimates of

sensitivity to scalar and vector polarizations ever published [T]

From our projected upper limits, we have found that, at design sensitivity, the
LIGO-Virgo network will be generally less sensitive to continuous scalar signals than
to the individual vector or tensor modes by factors of 0.45—-0.7, depending on the
location of the source (Fig. @; this diminished sensitivity to scalar modes stems
from the quadrupolar nature of the detector antenna patterns (Fig. [8.2]and Appendix
[8.10). Also, our injection studies indicate that the upper limits on the amplitudes of
nontensorial modes will be roughly unaffected by the presence or absence of a tensor
signal in the data (Fig. [8.14).

Although the results presented here made use of simulated Gaussian noise, the

procedure is identical for actual detector data. Furthermore, the assumption of

Note that sensitivity estimates presented in [109] were restricted to the specific vector-only
model of [[106]
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Gaussianity has been shown to hold relatively well for real CW data [109], so the
actual sensitivity limits should not be far from those presented here. If the data are
strongly non-Gaussian, however, one must be careful in using In OEI for detection

purposes and may instead wish to adopt one of the strategies suggested in Sec. [8.3.1]

Another important limitation of our results is that here we only consider CW signals
emitted at f = 2 fio, While it is to be expected that other mechanisms (within GR
or not) allow emission at other harmonics, f = f; in particular. Yet, the only
change required to account for this is to modify the template in Eq. (8.12) to include
terms at different harmonics; the ability to do this already exists within our current
infrastructure. We also assume that other aspects of the waves, like their speed,
remain in agreement with the GR prediction, an assumption that will be relaxed in a

future study.
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8.7 Appendix: Tensor models

A conceptual distinction can be drawn between the triaxial GR model and a free-
tensor model that includes + and X but does not restrict their relative amplitudes
(denoted “t”). The former has four free parameters (overall amplitude, hq; overall

phase, ¢o; inclination, ¢; polarization, ¢/) and corresponds to a signal template of the
form [same as Eq. (8.29)]:

1 : 1
Agr(t) = Ehoe"”" 5(1 + cos? )F.(t;0) — i cos tFy(t;0) ] . (8.71)

This is a reparametrization of the free-tensor model, which also has four parameters

(plus amplitude, a,; cross amplitude, ax; plus phase, ¢ ; cross phase, ¢«) and whose
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Figure 8.17: Effect of changing polarization angle. Norm of the complex plus (a’,,
solid line) and cross (a’, dashed line) weights after rotating the source by Ay in the
plane of the sky, i.e. letting  — ¥’ = ¥ + Ay; this transformation is expressed in
Eqgs. (]8_775]) and m In this case, we start from a;, = 1, ax = 0 and ¢ = 0.

template is [same as Eq. (8.28)]:
1 . .
A2) = 3 lare'? Fi(t;y = 0) + axe'™ Fe(t;y = 0)] . (8.72)

If  and ¢ are known, it is clear that the two models are different, since Hgr has two
free parameters (hg, ¢o) and H; has four (a, ax, ¢+, ¢x). If the orientation is not
fixed, however, the two models span the same signal space. This is because there is
a degeneracy between ¢ and a., ax due to the way the antenna patterns transform

under changes in ¢:
Fo(t;4") = Fo(t;¢) cos 2Ay + Fu(t; ¢) sin 2Ay, (8.73)
Fu(t;9") = F(t; ) cos 2Ay — F(t;¢) sin 2Ay, (8.74)

with ¢’ = + Ay. Egs. (8.73) and (8.74)) can be derived from Eqgs. (8.1]) and (8.2)
respectively, as in [[108] (or see, e.g., Sec. 9.2.2 in [48]). Consequently, changing

¥ — ¥’ in Eq. is equivalent to leaving y fixed [at, say, ¥ = 0 as in Eq. (8.72))]

while replacing the plus and cross complex amplitudes by:

d, e = a e cos 2y — axe'? sin 2Ay, (8.75)

dle'%% = aye'® cos 2AY + a,e'?* sin 2Ay. (8.76)

This is illustrated in Fig.
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Figure 8.18: Tensor posteriors in presence of signal. Posterior PDFs for parameters
of Hgr (left) and H; (right) with fixed (top) and unfixed (bottom) source orientation
(¥, v). Each panel consists of a corner plot displaying the two-dimensional posteriors
for each pair of parameters as indicated by the x and y labels, with the diagonals
showing a histogram of the one-dimensional PDF for each parameter [i.e. the 1D
PDF obtained after marginalization of the multidimensional posterior PDF all other
quantities, as in Eq. (8.61))]. The data analyzed contain signals with parameters
indicated by the red lines; note that C; = ho/2 is the quantity that was actually used
to parametrize GR triaxial amplitudes in the code [51]]. In both (a) and (b), cos
and ¢ are fully known, and their resolution in these plots is limited by binning only.
These plots were produced using the CORNER.PY package [[164]].
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Figure 8.19: Effect of inclination. Posterior PDFs for parameters of Hgr with
unfixed source orientation (i, ¢). Each panel consists of a corner plot displaying the
two-dimensional posteriors for each pair of parameters as indicated by the x and y
labels, with the diagonals showing a histogram of the one-dimensional PDF for each
parameter. The data sets analyzed contain signals with parameters indicated by the
red lines; note that C; = ho/2 is the quantity that was actually used to parametrize
GR triaxial amplitudes in the code [S1]. On the left, the injected signal corresponds
to a face-off source (cost ~ —1), making it difficult to constrain the polarization
angle ¢; on the right, the injection has similar amplitude but corresponds to an
edge-on source (cost ~ 0), making it easy to constrain ¢ [modulo 7 /2 due to the
2Ay dependence of Egs. (8.73) and (8.74)]. These plots were produced using the
CORNER.PY package [164]].

These rotational properties are easily understood by recalling that GW polarizations
can be defined in any frame, although a given signal might look more or less simple
given the choice of frame. Egs. (8.73)) and (8.74) provide the transformation between

frames that are coaligned except for a rotation of Ay around their z-axes. Because
waveform predictions, e.g. Eq. (8.71)), are made in specific frames, it is important to
orient the wave frame appropriately when working with a given theory and emission

mechanism. However, if the signal parametrization is independent of any theory, e.g.
Eq. (8.72), one is free to pick any frame (i.e. any ).

The relationship between the different tensor model parameters is reflected in the
posterior probability plots of Fig.[8.18 For fixed orientation, both the triaxial (a) and
free-tensor (b) analyses accurately determine the amplitude and phase of the injected
signal. In panel (b), a; and ay are constrained to lie within a region consistent with

hiznj =a? +a and a, /ax = (1 +cos? 1)/(2 cos 1), for an effective injection amplitude
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Figure 8.20: Free-tensor vs GR. Natural logarithm of the Bayes factor comparing H;
to Hgr, as a function of GR injection amplitude for fixed (left) and unfixed (right)
source orientation. On the left, the analysis correctly gives preference to Hgg for
signals above the detection threshold; on the right, however, the analysis is unable to

satisfactorily distinguish between H; and Hgr, due to the orientation degeneracies
discussed in Appendix

given by hiznj = h3(1 +cos? 1)* /4 + hj cos? ¢, as in Eq. (8:67). When the orientation is
allowed to vary, we observe the expected correlations between the recovered triaxial
amplitude and the orientation parameters in panel (c); in this case, ¢ and cos ¢ will

also become correlated, as better shown in Fig.

The degeneracy between ¢ and a, ax is particularly evident in Fig.[8.18d] where the
one-dimensional PDF for ¢ shows that this parameter cannot be constrained, even
for a loud signal. Furthermore, joint posteriors between ¢ and a, & ay confirm that
this is due to the degeneracy from Egs. (8.75) and (8.76), as seen by comparing these
two-dimensional PDFs to Fig. Physically, this is a consequence of the fact that

we are free to orient the polarization frame as we wish.

Because their signal templates are degenerate when ¢ and ¢ are allowed to vary, the
distinction between Hgr and H; is not really meaningful for unfixed orientation.
This can be seen from the values of In BER in the cases of known and unknown
orientations, as in Fig. On the left panel, Hgr is defined with specific values
of ¢ and cos ¢ that match the injections; on the right, the Hgg priors allow ¢ and
cos ¢ to range over their full ranges, and the injections are performed with random
values of both. When the orientation is fixed, Hgr will always be preferred to H; for
resolvable signals because of its lower Occam’s penalty; however, that is not true

for unfixed orientation. Note that, in the strictest sense, the two hypotheses are not
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logically equivalent unless their parameter priors are related by the Jacobian of the
coordinate transformation between the two parametrizations, Egs. B.72); only
in that case all regions of signal space are treated equally by Hgr and H,. This
explains the variation in values of In BER on the right of Fig.

If one knew the source orientation and one believed that the only viable mechanism
for producing CWs at the assumed frequency in GR is the triaxial model embodied by
Eq. (8.71)), then one could include the free-tensor hypothesis and all of its derivatives
(i.e. t, st, vt, stv) in the non-GR set M, on top of {s, v,sv, GR + s, GR + v, GR + sv}.
Doing so would mean treating a tensor-only signal that does not conform to Eq.
as evidence of a GR violation, rather than of a different emission mechanism
within GR. Given the many simplifications intrinsic to the triaxial model, however,
having that much confidence in its validity seems unwarranted; hence we choose to

not take that approach.

8.8 Appendix: Amplitude priors

Previous CW Bayesian searches targeted to known pulsars have always applied
a flat prior on the signal amplitude parameter [29]]. This is because flat priors,
if wide enough, cause the posterior to be only determined by the likelihood (up
to normalization), yielding more conservative upper limits on the signal strength.
Furthermore, unlike with priors uniform in the logarithm of the quantity, upper limits
derived with flat priors will generally not depend on the limits set by the prior (again,
assuming the range allowed extends from zero amplitude to some large value that

does not truncate the likelihood).

Upper limits obtained using log-uniform priors (uniform in the logarithm of the
quantity) will, generally, be dependent on the range of the prior, although not strongly.
For example, consider a one-dimensional problem on some positive parameter x.
For simplicity, further assume we have a flat likelihood between x = 0 and an upper
cutoff at x = xpax; then, xpax Will necessarily also be an upper bound for the posterior.
Because the likelihood is uniform, below the cutoff the posterior will be determined,

up to normalization, by the prior only, i.e. for x < Xpax,

p(x | B,H) o p(x | H). (8.77)

Now consider a log-uniform prior p(x | H) « d(log x) o 1/x, with a lower bound

Xmin, such that O < xpin < Xmax. Because such prior is uniform in the log x, this
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implies that the 95%-credible upper limit on x will be given by:

log K% = log Xmin + 0.95(10g Xmax — 10g Xmin)

= log (x§28 /<0051 ). (8.78)

min

Since xmax is set by the likelihood (by construction), if the prior is changed by

rescaling xni, by a factor «,

Xmin — xr/nin = @ Xmin, (879)
then, for a given set of data, the upper limit becomes x,°, satisfying:
x25°70/x95% — 00.05. (880)

Thus, the dependence of the upper limit on the range defined by the log-uniform prior
is quite weak, as illustrated in Fig.[8.21] This explains why upper limits obtained
with a log-uniform prior differ only by a factor of a few from those obtained with a
flat one, as seen in Fig.[8.13]

However, the flat priors do not properly represent our ignorance of the scale of
the signal amplitude. This problem manifests itself in negative Bayes factors that
too quickly favor the noise hypothesis if no loud signal is clearly present, rather
than reflecting our expectation that a signal might be hiding under the noise. This
can be seen in Fig. where we show the distributions of In BSR, obtained for
several noise-only data instantiations for the Crab pulsar, corresponding to flat and
log-uniform priors in the GR amplitude parameter, /g; a uniform prior results in
lower values of In BSR that strongly favor Hy. This behavior is not specific to the
GR model.

For most of our analysis, we choose to apply priors uniform in the logarithm of all
amplitude quantities. However, for the sake of consistency with previous searches
and in order to make our limits more conservative, we also present upper limits

produced using flat amplitude priors, as shown in Fig. [8.13]

8.9 Appendix: Numerical error

The fractional numerical error in the computation of the natural logarithm of the

evidence by nested sampling is usually estimated by:

o[InP (B | H)| ~ VH/Nive, (8.81)
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Figure 8.21: Log-uniform prior and upper limits. For a 1D random variable x, we
show the probability densities corresponding to a uniform likelihood with upper
cutoff log xpmax = —22 (red) and log-uniform priors with different lower cutoffs
(log xmin = —25 for box 1, log xmin = —26 for box 2 and log xpi, = —27 for box 3).
Vertical dashed lines mark areas of equal probability mass for each distribution. The
combined effect of the likelihood and each of the prior distributions is to produce
95%-credible upper limits on x with values shown in the legend. The value obtained
using only the likelihood corresponds to that obtained with a uniform prior with
a broad enough range. As expected from Eq. (8.80), the upper limit is not very
sensitive to the lower bound set by the prior.

where Njjye is the number of of live points and H is the information gained in the

analysis:

. @|B,H) -
HE/p(QlB,?‘() m 22245 (8.82)
© p(6 | H)

a quantity that is easy to estimate from the output of the nested sampling code
[19. 163].

An example of the actual statistical error as function of SNR is presented in Figs.
[8.23] and [8.24] where the injected GR signal amplitude serves as proxy for p (for
fixed PSD). From these plots it becomes apparent that, although the actual error
might exceed the estimator of Eq. (8.81)), its absolute magnitude is quite small and
should not affect our results. In any case, Eq. (8.81) indicates that any level of
accuracy may be achieved by increasing the number of live points (at the cost of

increased computational burden). For more details on the numerical error of the
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Figure 8.22: Log-uniform vs flat amplitude priors. The logarithm of the GR vs noise
Bayes factor is computed for 1000 instantiations of Crab pulsar noise. For the GR
amplitude &g, we apply priors uniform in the quantity (black) and uniform in the
logarithm of the quantity (hatched gray). The flat prior causes one to more strongly
favor the noise model, due to a larger implicit Occam’s penalty.

nested sampling algorithm in LALINFERENCE, we refer the reader to Sec. IVB of
[L1].

8.10 Appendix: Upper-limit ratios

When comparing upper limits for the different modes, as in Fig. two scalings
become apparent: first, the +, X, x, and y upper limits are, on average, more stringent
than those for the scalar polarization by a factor of ~1.8; second, the upper limits
on h; (hy) are a factor of ~1.3 larger than those on the individual + and X (x and y)

amplitudes.

The scaling between the scalar upper limit and those for the other individual strain
amplitudes can be accounted for by the decreased sensitivity of quadrupolar GW
detectors to scalar waves. For a single instrument (that is, not a network), this can
be appreciated visually from Fig. [8.2] by noting that for most sky locations the

magnitude of the scalar response is considerably less than for the other modes.

To properly evaluate the effect of the detector geometry on the analysis, however,
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Figure 8.23: Numerical error in Bayes factor computation. The logarithm of the GR
vs noise Bayes factor is computed 500 times for different values of injected GR signal
amplitude. The noise realization is not varied between computations with the same
injection strength, only the seed for the random number generator used by the nested
sampling algorithm. The red bars mark one standard deviation around the mean.

it is necessary to look at the relative SNRs of unit-amplitude scalar, vector and
tensor GWs from a given source, as they are received by the detector network
under consideration (H1, L1, V1) after some fixed observation time. Assuming
all detectors have comparable noise levels, the network SNR can be proxied by

the root-mean-square (RMS) amplitude of the effective network antenna patterns,

defined by
1 T
Fims = JT /0 > P20, (8.83)
d

for each polarization p, some long observation time 7', and where the sum is over

detectors d. [Here we have fixed the source and detector parameters so that the F),’s
of Eqgs. (8.IH8.5) are now just simple functions of time.] We may then compute this
for all five polarizations and for multiple sources to obtain a sky-average of the ratio
of the scalar RMS antenna pattern to those of the other polarizations. We find this

ratio to be roughly ~0.55 for all polarizations, in agreement with Fig.[8.16| since we

Frms }95%
)~ (2 ) (8.84)
Fl‘l’nS h?s%

p, net

should expect
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Figure 8.24: Observed error and prediction. Error in the computation of the
logarithm of the GR vs noise Bayes factor as a function of injected GR signal
amplitude. The solid, black curve corresponds to measured standard deviations from
the computation of In BSR 500 times per injection strength (red bars in Fig. .
The dashed, gray curve shows the theoretical prediction for the error in the logarithm
of the evidence, Eq. (8.8T).

where the average (-) is taken over multiple sources distributed across the sky.

The relation between the A (hy) upper limits and those for their component amplitudes,
+ and X (x and y), can be easily understood by noting that, if using flat priors and in the
absence of signal, the marginalized posteriors for each of the component amplitudes
(hy, hx, hx, hy) will roughly be described by a one-sided normal distribution.
Consequently, it can be shown that posterior for the square-root of the sum of the
squares of two of these quantities will be given by a chi distribution with two degrees
of freedom. Considering the definitions of Egs. [8.68)), it is straightforward
to show (numerically or analytically) that this explains the observed factor of ~1.3
difference between £°% (h°™) and K% or ™ (> or th%).
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Chapter 9

FIRST SEARCH FOR NONTENSORIAL GRAVITATIONAL
WAVES FROM KNOWN PULSARS

B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev!
Lett. 120, 031104 (2018), M.I. carried out the analysis and wrote the manuscript,
arXiv:1709.09203 [gr-qc] .

9.1 Introduction

The first gravitational waves (GWs) detected by the Advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) and Virgo have already been used to place
some of the most stringent constraints on deviations from the general theory of
relativity (GR) in the highly-dynamical and strong-field regimes of gravity [1-4]].
However, even though some partial progress has been made with the observation
of GW170814 [5, 116]] and in spite of the wealth of new information provided by
GW170817 [6,123]], it has not yet been possible to unambiguously confirm GR’s
prediction that the associated metric perturbations are of a tensor nature (helicity +2),
rather than vector (helicity +1), or scalar (helicity 0) [82]. This is unfortunate, since
the presence of nontensorial modes is a key prediction of many extensions to GR
[83.184,197,98,1166]. Most importantly, the detection of a scalar or vector component,
no matter how small, would automatically point to physics beyond Einstein’s theory
(83, 184].

In order to experimentally study GW polarizations directly, one needs a local
measurement of their geometric effect (i.e. which directions are streched and
squeezed) that breaks degeneracies between the five distinguishable (to differential-
arm instruments) modes supported by a generic metric theory of gravity [97, 98]].
For transient waves like those detected so far, this cannot be fully achieved with the
LIGO-Virgo network, as at least five noncooriented differential-arm antennas are
required to break all such degeneracies [84, 85]. Constraints on the magnitude of
non-GR polarizations inferred from indirect measurements, like the rate of orbital
decay of binary pulsars, are only meaningful in the context of specific theories (see
e.g. (86, 87], or [88,189] for reviews).


http://dx.doi.org/ 10.1103/PhysRevLett.120.031104
http://dx.doi.org/ 10.1103/PhysRevLett.120.031104
http://arxiv.org/abs/1709.09203
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Theory-independent polarization measurements could instead be carried out with
current detectors in the presence of signals sufficiently long to probe the detector
antenna patterns, which are themselves polarization-sensitive [18}, 199, [107, [109].
Such is the case, for instance, for the continuous, almost-monochromatic waves
expected from spinning neutron stars with an asymmetric moment of inertia [48]].
Known galactic pulsars are one of the main candidates for searches for such signals in
data from ground-based detectors, and analyses targeting them have already achieved
sensitivities that are comparable to, or even surpass, their canonical spin-down limit
(i.e. the strain that would be produced if the observed slowdown in the pulsar’s

rotation was completely due to gravitational radiation) [29].

However, all previous targeted searches have been, by design, restricted to tensorial
gravitational polarizations only. This leaves open the possibility that, due to a
departure from GR, the neutron stars targeted in previous searches may indeed be
emitting strong continuous waves with nontensorial content, in spite of the null

results of standard searches.

In this paper, we present results from a search for continuous GWs in alLIGO data
that makes no assumptions about how the gravitational field transforms under spatial
rotations and is thus sensitive to any of the five measurable polarizations allowed by
a generic metric theory of gravity. We targeted 200 known pulsars using data from
aLLIGQ’s first observation run (O1) and assumed GW emission at twice the rotational

frequency of the source.

Our data provide no evidence for the emission of gravitational signals of tensorial or
nontensorial polarization from any of the pulsars targeted. For sources in the most
sensitive band of our detectors, we constrain the strain of the scalar and vector modes
to be below 1.5 x 10726 at 95% credibility. These are the first direct upper limits
for scalar and vector strain ever published and may be used to constrain beyond-GR

theories of gravity.

9.2 Analysis

We search alLIGO O1 data from the Hanford (H1) and Livingston (L.1) detectors
for continuous waves of any polarization (tensor, scalar or vector) by applying the
Bayesian time-domain method of [S7]], generalized to non-GR modes as described in
[18]] and summarized below. Our analysis follows closely that of [29] and uses the

exact same interferometric data.
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Calibrated detector data are heterodyned and filtered using the timing solutions for
each pulsar obtained from electromagnetic observations. The maximum calibration
uncertainties estimated over the whole run give a limit on the combined H1 and L1
amplitude uncertainties of 14%—this is the conservative level of uncertainty on the

strain upper limits [29} [167].

The data streams start on 2015 Sep 11 at 01:25:03 UTC for H1 and 18:29:03 UTC
for L1 and finish on 2016 Jan 19 at 17:07:59 UTC at both sites. The pulsar timing
solutions used are also the same as in [29] and were obtained from the 42-ft telescope
and Lovell telescope at Jodrell Bank (UK), the 26-m telescope at Hartebeesthoek
(South Africa), the Parkes radio telescope (Australia), the Nancay Decimetric Radio
Telescope (France), the Arecibo Observatory (Puerto Rico) and the Fermi Large
Area Telescope (LAT).

As described in detail in [[18], we construct a Bayesian hypothesis that captures
signals of any polarization content (our any-signal hypothesis, Hs) by combining
the sub-hypotheses corresponding to the signal being composed of tensor, vector,
scalar modes, or any combination thereof. Each of these sub-hypotheses corresponds
to a different signal model; in particular, the least restrictive template includes

contributions from all polarizations and can be written as:
h(t) = )" Folts o, 6,0)hp(0), 9.1)
P

where the sum is over the five independent polarizations: plus (+), cross (X), vector-x
(x), vector-y (y) and scalar (s) [98]. The two scalar modes in the most common
strain-basis, breathing and longitudinal, are degenerate for networks of quadrupolar

antennas [84], so we do not make a distinction between them.

Each term in Eq. is the product of an antenna pattern function F), and an
intrinsic strain function /,. We define the different polarizations in a wave-frame
such that the z-axis points in the direction of propagation, x lies in the plane of the
sky along the line of nodes (here defined to be the intersection of the equatorial plane
of the source with the plane of the sky) and y completes the right-handed system,
such that the polarization angle ¢ is the angle between the y-axis and the projection
of the celestial North onto the plane of the sky (see e.g. [168]). We can thus write
the F),’s as implicit functions of the source’s right ascension a, declination ¢ and
polarization ¢. (For the sources targeted here, @ and ¢ are always known to high

accuracy, while ¢ is usually unknown.) The antenna patterns acquire their time



171

dependence from the sidereal rotation of the Earth; explicit expressions for the F),’s
are given in [18, [107-110].

For a continuous wave, the polarizations take the simple form:

h,(t) = a, cos(é(t) + @), 9.2)

where a,, is a time-independent strain amplitude, ¢(¢) is the intrinsic phase evolution
and ¢, a phase offset for each polarization. The nature of these three quantities
depends on the specifics of the underlying theory of gravity and the associated
emission mechanism (for different emission mechanisms within GR, see e.g. [146|
157,[158])). While we treat a,, and ¢, as free parameters, we take ¢(t) to be the same
as in the traditional GR analysis [29]:

N a(j) fo

#(0)=2n ),

( [t — Tp + 6t(0)]V*Y, (9.3)
j=0

where a,‘f ) fo is the j™ time derivative of the GW frequency measured at the fiducial
time Tp; 6¢(¢) is the time delay from the observatory to the solar system barycenter
(including the known Rgmer, Shapiro and Einstein delays) and can also include binary
system corrections to transform to the time coordinate to a frame approximately
inertial with respect to the source; N is the order of the series expansion (1 or 2 for

most sources).

The GW frequency f is related to the rotational frequency of the source f;, which
is in turn known from electromagnetic observations. Although arbitrary theories
of gravity and emission mechanisms may predict gravitational emission at any
multiple of the rotational frequency, here we assume f = 2 f;, in accordance with
the most favored emission model in GR [48]]. This restriction arises from practical
considerations affecting our specific implementation and will be relaxd in future

studies.

For convenience, we define effective strain amplitudes for tensor, vector and scalar

modes respectively by

h = a% + a>2<, 9.4)
hy = a2 + az, 9.5)
hs = as, (9.6)

in terms of the intrinsic a, amplitudes of Eq. (9.2). These quantities may serve as

proxy for the total power in each polarization group.
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Table 9.1: Existing orientation information for pulsars in our band, obtained from
observations of the pulsar wind nebulae (see Table 3 in [49]], and [149, [169]] for
measurement details).

L ¥
J0534+2200 62°.2+1°9 35°2+1°5
JO537-6910 92°.8+0°.9 41°.0+£2°.2
J0835-4510 63°.6+0°.6 40°.6+0°.1
J1833-1034 85°.4+0°.3 45° £ 1°
J1952+3252 N/A -11°.5+8°.6

One may recover the GR hypothesis considered in previous analysis by setting:

a = ho(1 +cos?0)/2, ¢ = do, (9.7)
ax = hgcost, ¢x = ¢po — /2, (9.8)
ax = ay = as =0, 9.9)

where ¢ is the inclination (angle between the line of sight and the spin axis of the
source) and hg, ¢g are free parameters. (As with ¢, ¢ is unknown for most pulsars.)
This corresponds to the standard triaxial-star emission mechanism (see e.g. [54]]).
We use this parameterization only when we wish to incorporate known orientation
information as explained below; otherwise, we parametrize the tensor polarizations

directly in terms of a,, ax, ¢+ and ¢«.

Templates of the form of Eq. (9.1)), together with appropriate priors, allow us to
compute Bayes factors (marginalized likelihood ratios) for the presence of signals
in the data vs Gaussian noise. We do this using an extension of the nested
sampling implementation presented in [28] (see [18] for details specific to the
non-GR polarizations). The Bayes factors corresponding to each signal model may
be combined into the odds OI§I that the data contain a continuous signal of any

polarization vs Gaussian noise:
O3 = P(Hs | B)/P(Hy | B), 9.10)

i.e. the ratio of the posteriors probabilities that the data B contain a signal of any
polarizations (Hs) vs just Gaussian noise (Hy). We compute these odds by setting
model priors such that P(Hs) = P(Hy); then, by Bayes’ theorem, OI§I = BEI, with
the Bayes factor

B3 = P(B | Hs)/P(B | Hy). 9.11)
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Built into the astrophysical signal hypothesis, Hs, is the requirement of coherence
across detectors, which must be satisfied by a real GW signal. In order to make
the analysis more robust against non-Gaussian instrumental features in the data,
we also define an instrumental feature hypothesis, HHj, that identifies non-Gaussian
noise artifacts by their lack of coherence across detectors [27, 29]. In particular, we
define Hj to capture Gaussian noise or a detector-incoherent signal (i.e. a feature that
mimics an astrophysical signal in a single instrument but is not recovered consistently
across the network) in each detector [18]. We may then compare this to Hs by means
of the odds OIS. For D detectors, this is given by:

D
log OIS = log Bﬁ} - Z log (B;‘; + 1), (9.12)
d=1

where BI?TZ is the signal vs noise Bayes factor computed only from data from the
d™ detector. This choice implicitly assigns prior weight to the models such that
P(Hs) = P(H;) x 0.5P [18]. For an in depth analysis of the behavior of the different
Bayesian hypotheses considered here, in the presence absence of simulated signals

of all polarizations, we again refer the reader to the paper methods [[18]].

We compute likelihoods by taking source location, frequency and frequency deriva-
tives as known quantities. In computing Bayes factors, we employ priors uniform
in the logarithm of amplitude parameters (hy or h,’s), since these are the least
informative priors for scaling coefficients [[163]; we bound these amplitudes to the
10728-107%* range || On the other hand, flat amplitude priors are used to compute
upper limits, in order to facilitate comparison with published GR results in [29]. In

all cases, flat priors are placed over all phase offsets (¢ and all the ¢,’s).

For those few cases in which some orientation information exists (see Table [9.1]
in Supplementary Material), we analyze the data a second time using the triaxial
parametrization of tensor modes, Eqgs. (9.7)) and (9.§)), taking that information into
account by marginalizing over ranges of cos ¢ and ¢ in agreement with measurement
uncertainties. Following previous work [29]], we only consider orientation constraints
obtained from pulsar wind nebulae. However, pulsar orientations can also be inferred
from other measurements, especially if the object is in a binary (e.g. [170H172]).

We will consider incorporating such constraints in future searches.

I'The specific range chosen for the amplitude priors has little effect on our results, as explained in
Appendix B of [18]]
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Figure 9.1: Log-odds vs GW frequency. Log-odds comparing the any-signal
hypothesis to the instrumental (top) and Gaussian noise (bottom) hypotheses, as a
function of assumed GW frequency, f = 2 fio, for each pulsar. Looking at the top
plot for log,, OIS, notice that the instrumental noise hypothesis is clearly favored for
all pulsars except one, for which the analysis is inconclusive. (This is J1932+17, the
same non-significant outlier identified in [29].) These results were obtained without
incorporating any information on the source orientation and are tabulated in Table
[B.2)in the Supplementary Material. Expressions for both odds are given in Eq. (9.10)

and Eq. (9.12).

9.3 Results

We find no evidence of continuous-wave signals of any polarization, tensorial or
otherwise, from any of the 200 pulsars analyzed. Odds and 95%-credible upper
limits are summarized in the Supplementary Material: Table [B.I] for pulsars with
measured orientations (using the triaxial parameterization of tensor modes) and in
Table for all pulsars without incorporating any orientation information (using
the unconstrained parameterization of tensor modes). Odds values are reported
with an error of 5% at 90% confidence; errors on the upper limits due to the use of
finite samples in estimating posterior probability distributions are at most 10% at

90% confidence, which is slightly less than the 15% error expected from calibration
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Figure 9.2: Log-odds distributions. Distributions of log-odds comparing the
any-signal hypothesis to the instrumental (ordinate axis, right) and Gaussian noise
(abscissa axis, top) hypotheses for all pulsars. This plot contains the same information
as Fig.[9.T]and displays the same non-significant outlier. These results were obtained
without incorporating any information on the source orientation and are tabulated
in Table[B.2]in the Supplementary Material. Expressions for both odds in this plot
are given in Eq. (9.10) and Eq. (9.12). We underscore that, although this plot looks
similar to Fig. 2 in [29]], the signal hypothesis here incorporates scalar, vector and
tensor modes, in all their combinations.
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Figure 9.3: Sub-hypothesis odds. Box plots for the distribution of the signal vs noise
log-odds for each of the sub-hypotheses considered, for all of the pulsars analyzed.
The sub-hypotheses are: (st), vector-tensor (tv), scalar-vector-tensor tensor-only (t),
scalar-only (s), vector-only (v), scalar-vector (sv), scalar-tensor (st), vector-tensor
(vt), and scalar-vector-tensor (stv); these are all combined into the signal hypothesis
(S). The quantity represented is log;( By, which is the same as log,( O if neither
H,,, nor Hy are favored a priori (hence the label on the ordinate axis). The horizontal
red line marks the median of the distribution, while each gray box extends from
the lower to upper quartile, and the whiskers mark the full range of the distribution
of log,y Oy for the 200 pulsars analyzed. These results were produced without
incorporating any information on the source orientation, and are tabulated in Table
[EZ] in the Supplementary Material.

uncertainties.

The main quantity of interest is log; OIS, defined in Eq. (9.12), since it encodes the
probability that the data contain a signal vs just instrumental noise (Gaussian or
otherwise). This quantity, together with the log-odds for signal vs Gaussian noise, is
presented as a function of assumed GW frequency for each pulsar in Fig. and
histogrammed in Fig.[9.2] Importantly, the outliers in Fig.[9.1|lose significance once
log;, OIS is taken into account; indeed, Figs. and reveal the usefulness of
log;, OIS in increasing the robustness of the search against non-Gaussian instrumental

artifacts.

Based on the intrinsic probabilistic meaning of log, OIS in terms of betting odds,
it is standard to demand at least log; OIS > 1 to conclude that the signal model is
favored (see e.g. the table in Sec. 3.2 of [173], or Jeffrey’s original criteria in [174]] or
[L75]). Since none of the odds obtained meet this criterion, we conclude that there is
no evidence for signals from any of the pulsars targeted. In most cases, log, OIS <0
and the noise model is clearly favored; the single exception is J1932+17, for which
log, OIS ~ 0, so that we can make no conclusive statement about which hypothesis
is preferred. (The presence of this non-significant outlier is to be expected, as it was
already identified in [29].)
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The distribution of the odds corresponding to the subhypotheses making up Hs
is summarized in the box plots of Fig.[9.3] These correspond to tensor-only (t),
scalar-only (s), vector-only (v), scalar-vector (sv), scalar-tensor (st), vector-tensor
(vt), and scalar-vector-tensor (stv) models. The mean of these distributions decreases
with the number of degrees of freedom in the model, which is to be expected from
the associated Occam penalties [18]. The right-most panel in Fig. [0.3] shows the
distribution of log;, Og, which results from the combination of all the other odds;

this is the same quantity histogrammed on the abscissa of Fig.

In the absence of any discernible signals, we produce upper limits for the magnitude
of scalar, vector and tensor polarizations, with a 95% credibility. As usual in
Bayesian analyses, upper limits are obtained by integrating posterior probability
distributions for the relevant parameters up to the desired credibility (see e.g. [L18]]).
Using the effective amplitude definitions of Eqs. (9.4)—(9.6), these quantities are
presented in Fig. 0.4] as a function of assumed GW frequency and in explicitly
in the Supplementary Material. The plotted upper limits are computed under the
assumption of a signal model that includes all five independent polarizations (Hsyt);
limits obtained assuming other signal models may be found online in[?} Previous
work has demonstrated that the presence or absence of a GR component does not
affect the non-GR upper limits (Fig. 13 in [18]).

As expected, the upper limits presented here are comparable in magnitude to the
upper limits on the GR strain obtained by the traditional searches [29]. However,
constraints on the scalar amplitude are, on average, around 20% less stringent than
those on the vector or tensor amplitudes. This is a consequence of the fact that, for
most source locations in the sky, the LIGO detectors are intrinsically less sensitive to

continuous waves of scalar polarization [[18]].

Technically, traditional all-sky searches for continuous GWs are also sensitive to
nontensorial modes, because they are generally designed to look for any signal of
sidereal and half-sidereal periodicities in the data, without assuming knowledge of
phase evolution or source sky-location [43, 145, 46,1176, 177]. However, as can be
seen by comparing the magnitude of all-sky upper limits (e.g. Fig. 9 in [43]]) to those
in shown here in Fig.[9.4] the sensitivity of these searches would be substantially
poorer than that of a targeted search like this one—if only because they are not
targeted to a specific source. This is especially true if the search is optimized for a

given signal polarization (e.g. circular combination of plus and cross).

2https ://dcc.ligo.org/LIGO-P1700009/public
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Figure 9.4: Non-GR upper limits vs GW frequency. Circles mark the 95%-credible
upper limit on the scalar, th% (top), and the effective vector, h35% (middle), and
tensor ht%% (bottom) strain amplitudes as a function of assumed GW frequency for
each of the 200 pulsars in our set. The upper limits are obtained assuming a signal
model including all five independent polarizations (Hy), and incorporating no
information on the orientation of the source (Table in Supplementary Material).
The effective amplitude spectral density (ASD) of the detector noise is also displayed
for reference; this is the harmonic mean of the H1 and L1 spectra; the scaling is

obtained from linear regression to the upper limits.



179

94 Conclusion.

We have presented the results of the first direct search for nontensorial gravitational
waves. This is also the first search for GWs targeted at known pulsars that is sensitive
to any of the five measurable polarizations of the gravitational perturbation allowed
by a generic metric theory of gravity. From the analysis of O1 data from both alLIGO
observatories, we have found no evidence of signals from any of the 200 pulsars

targeted.

In the absence of a clear signal, we have produced the first direct upper limits for scalar
and vector strains (Fig.[9.4] and tables in the Supplementary Material). The values of
the 95%-credible upper limits are comparable in magnitude to previously-published
GR constraints, reaching 7 ~ 1.5 x 10726 for pulsars whose frequency is in the most

sensitive band of our instruments.

Our results have been obtained in a theory-independent fashion. However, our upper
limits on nontensorial strain can be translated into model-dependent constraints
by picking a specific alternative theory and emission mechanism. To do so, one
should use the upper limits produced under the assumption of a signal model that
incorporates the polarizations matching those allowed by the theory one wishes
to constrain; these may not necessarily be those in Fig. [9.4] (e.g. for limits on a
scalar-tensor theory, one needs upper limits from H). However, this also requires
non-trivial knowledge of the dynamics of spinning neutron stars under the theory of

interest.

While it is conventional to compare the sensitivity of continuous wave searches
to the canonical spin-down limit for each pulsar, it is not possible to do so here
without committing to a specific theory of gravity. This is because doing so would
require specific knowledge of how each polarization contributes to the effective GW
stress-energy, how matter couples to the gravitational field, how the waves propagate
(dispersion and dissipation), and what the angular dependence of the emission pattern
is. However, analogues of the canonical spin-down limit for specific theories may be
obtained from the results presented here by using the strain upper limits obtained
assuming the sub-hypotheses with polarizations corresponding to that theory, as

mentioned above.

We have demonstrated the robustness of searches for generalized polarization states
(tensor, vector, or scalar) in GWs from spinning neutron stars. Furthermore, even

in the absence of a detection, we were able to obtain novel constraints on the strain
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amplitude of nontensorial polarizations. In the future, once a signal is detected,
similar methods will allow us to characterize the gravitational polarization content
and, in so doing, perform novel tests of general relativity. Although this search
assumed a GW frequency of twice the rotational frequency of the source, this

restriction will be relaxed in future analyses.
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Chapter 10

MEASURING STOCHASTIC GRAVITATIONAL-WAVE ENERGY
BEYOND GENERAL RELATIVITY

M. Isi and L. C. Stein, “Measuring stochastic gravitational-wave energy beyond
general relativity,” (2018), ML.I. conceived the project, carried out most calculations
and led the writing of the manuscript, arXiv:1807.02123 [gr-qc] .

10.1 Introduction

Besides transient signals, like those detected so far [[1H6, [178] by the Advanced
Laser Interferometer Gravitational-wave Observatory (aLIGO) [8] and Virgo [9]],
gravitational-wave (GW) detectors are also expected to be sensitive to a persistent
stochastic background [179H186]. This background signal is expected from pri-
mordial cosmological processes [[187-197] or the incoherent addition of myriad
individually-unresolvable astrophysical sources, like compact binary coalescences
[198-203]] or exotic topological defects [206-209]]. Among many other rich scientific
goals (see [210] for a review) detection of a stochastic background would provide
an invaluable opportunity to study the fundamental nature of gravitational waves as

they propagate over cosmological distances.

In the past decade or so, the formalism underlying stochastic GW searches has been
extended to theories of gravity beyond general relativity (GR), primarily to account
for the potential presence of nontensorial polarizations. Generic metric theories of
gravity allow for up to six polarizations, corresponding to scalar (helicity 0), vector
(helicity £1) and tensor (helicity +2) metric perturbations [97, 98]]. The effect of
these extra polarizations on the stochastic background has been studied in particular
for theories with scalar modes [211-213]], and in general for all possible modes in a
theory-agnostic way [107,214]. The problem of detecting nontensorial modes in the
background has been studied in the context pulsar timing [[111, 112,215, 216] and
GW measurements using astrometry [217]. Beyond these proposals, a comprehensive
data analysis framework has been recently implemented to search LIGO and Virgo
data for GWs of any polarization, tensorial or otherwise, and some first upper limits

have been placed on their amplitudes [99, [117]].


http://arxiv.org/abs/1807.02123
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The goal of searches for stochastic backgrounds, within GR or beyond, is to measure
the amount of energy that the Universe contains in the form of gravitational waves.
Consequently, treatments of stochastic GW signals are predominantly parametrized in
terms of their effective energy-density spectrum [Qgw, defined in Eq. (10.29)) below].
Such parametrization is only possible thanks to a standard set of assumptions about the
properties of gravitational waves, the detectors, and the statistics of the background
itself. Although generally justified within GR, the fundamental structure of beyond-
GR theories may not always warrant all (or any) of those standard assumptions—even
without considering modifications to specific emission mechanisms, or expected
source populations. One must therefore be careful in applying the usual premises to
searches for stochastic waves that aim to be theory agnostic, and should be aware
that adopting any of these assumptions may come with additional observational

restrictions.

Perhaps the most important example of an assumption that has been dubiously
applied beyond GR concerns the form of the effective stress-energy of GWs. Multiple
studies of stochastic signals beyond GR assume that the fractional energy density
spectrum in GWs is related to the wave amplitudes in the same way as it is in GR
[107, 112,213,214, 216-218]]. Yet, as pointed out in [219], the expression for the
effective GW stress-energy need not be the same in all theories of gravity. This
means that it is inadvisable to parametrize putatively model-independent searches for
beyond-GR backgrounds assuming the GW energy density has the same functional
form as in GR: doing so will result in the use of a quantity that should not generally
be interpreted as the energy density in GWs. This is not only misleading but, most
importantly, can lead to incorrect comparisons between observational limits and

theoretical predictions.

Besides this, some of the simplifying assumptions about the properties of the
stochastic background that are usually justified in GR are not acceptable in general,
and should not be extended to model-independent analyses. This is the case even
without considering changes to the potential sources of the background in beyond-
GR theories, which may themselves break more of the assumed symmetries. For
instance, it is not reasonable to always assume that the usual linear GW polarization
amplitudes will be statistically independent, as this will not be true unless the chosen
polarization basis diagonalizes the kinetic matrix of the underlying theory of gravity.
Similar arguments can be made about the assumptions that the polarizations are

equipartitioned, or even that they have well defined phase velocities—Iet alone that
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they propagate at the speed of light.

In view of this, our goal is to straighten out the framework underlying searches for
stochastic gravitational backgrounds, to make it formally valid and easily applicable
to a large family of theories beyond GR. In Sec.[10.2] we lay out a generic formalism
for such searches, review the most commonplace assumptions in standard analyses,
and evaluate their degree of applicability to other frameworks; along the way, we
also clarify some relevant differences in conventions used by the theory and data
analysis literatures. In Sec.[I10.3] we provide a series of examples of theories that
break the premises behind one or more of these assumptions and show the impact this
has on the analysis—we focus on differences in the predicted form of the effective
GW stress energy, but also discuss other problematic points. In particular, we
use these examples to show how to go from the action defining a theory to (/) a
relation between the fractional GW energy density spectrum and the correlation of
polarization amplitudes, and (2) to the cross-correlation of GW detector outputs—
which is the relevant observable for ground-based detectors. We review the derivation
for general relativity in Sec.[I0.3.1] and then move on to Chern-Simons gravity in
Sec.[10.3.2] scalar-tensor theories in Sec.[10.3.3] and Fierz-Pauli massive gravity in
Sec.[10.3.4] Finally, we offer a summary and conclusions in Sec.[10.4]

10.2 Formalism

In this section, we provide the framework required to search for stochastic GW
backgrounds without assuming GR is correct. In Sec.[[0.2.1] we review the four-
dimensional Fourier transform of a generic GW, lay out its decomposition into
polarizations, and provide some useful identities for later use in Sec. [I0.3] In
Sec.[10.2.2] we focus on the properties of stochastic backgrounds, carefully reviewing
the assumptions made in traditional analyses to determine whether they hold in
theories beyond GR. In Sec.[10.2.3] we describe the measurement process, including
complications that may arise in generic theories. Finally, in Sec. we sketch
the calculations needed to relate the effective stochastic GW energy in any given

theory to the polarization amplitudes measurable by a detector.

Here, and throughout this Chapter, spatial three-vectors are identified by an arrow
(e.g. I_c)), or a circumflex accent if they have unit norm (e.g. 12). Four-vectors and
higher-rank tensors are denoted by boldface, or abstract index notation (e.g. k or k).
For tensor coordinate components, spacetime Greek indices (a, 3, v, . . . ) take values

in the range 0-3, while spatial Latin indices (i, j, k, ...) span 1-3. We use metric
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signature +2, using g, for generic background metrics and 7, for the Minkowski
metric. Our conventions for the Levi-Civita tensor follow [220]: €,5ca = v/—glabcd]
where g is the determinant of the metric, and [abcd] is the Levi-Civita symbol,
with [0123] = +1; similarly, €;x = /y[ijk] where y is the determinant of the
spatial metric, and [123] = +1. We normalize (anti-)symmetrizations as idempotent

projection operations, €.g., T(ap) = (Tap + Tpa) /2 and Tjap) = (Tap, — Tpa) /2.

10.2.1 Decomposition of the metric perturbation

In any metric theory of gravity, as long as the observation region is small compared
to the curvature radius, an arbitrary GW metric perturbation A,,(X) at a spacetime

point X may be expressed as a plane-wave expansion by the compact expression:

1 - o —
hap(X) = > / hap(K)e™* dk, (10.1)

integrating over all directions of propagation, and over both positive and negative
frequencies. Here /1, (k) is the complex-valued Fourier amplitude for the wave-vector
k = (w/c, I;); we let w = 27 f be the angular frequency, and k = |/€| k= _|/€| nl
the spatial wave-vector, implicitly defining 7 as the sky location of the source. To
simplify our notation in Eq. (I0.1), we have defined the four-dimensional integral

over the measure
dk = 2¢ 6(|k|? = |ko|?) || dk = dw di, (10.2)

where §(x) is the Dirac delta function, and the last equality assumes an implicit
integration over the magnitude of k. In order to write this, we assume that there is
just one dispersion relation, w = a)(lz) = wy, that determines the modulus of k and
implicitly defines |l;w| = |l;|(w) The dispersion relation is specific to the theory of

gravity: for example, wy = cllz | and |12w| = w/c in GR.

With the integration measure defined as in Eq. (10.2), in a local Lorentz frame (so
thatx-y = X-y — x0y0), Eq. (1I0.1I) can be recast in a form most common in stochastic
GW literature (see, e.g., [183, 185} 1222]):

hap(t, X) = / / Rap(f, R) e 2TV g q £ (10.3)
—oco o sky

where v, = |l_<) Jw|™! is the (potentially frequency-dependent) phase velocity of the

wave (v, = ¢ in GR). Finally, to guarantee that /,,(x) be real, we must necessarily

ISome theories violate this assumption; for example, bimetric gravity [221]] has one massless and
one massive gravitational wave mode—we will allow for this briefly in Sec.|[10.2.3|only.
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have

B (f2 1) = hap(— 1> R), (10.4)

where the asterisk indicates complex conjugation. In Appendix[I0.5] we elucidate the
equivalence between Eqs. (10.1)) and (10.3), derive the second equality in Eq. (10.2))

and discuss differences between our Fourier conventions and those from the field

theory literature.

For any given frequency and direction of propagation, the Fourier amplitudes may
be written as a linear combination of at most six tensors corresponding to the six
polarizations supported by generic metric theories of gravity [97, 98], even if the
wave speed is slightly different from the speed of light [83]. Therefore, the most
generic gravitational wave in this large category of theories may be written as a
function of six independent amplitudes. We may, therefore, define six orthogonal

polarization tensors, e, . such that
hap(K) = ha(k) el (), (10.5)

where the sum is over six polarizations indexed by A, and the /4(k)’s are the Fourier
transforms of the six scalar fields, /14(x), encoding the amplitude of each mode, as
defined by means of Eq. (10.1])

In order to study interactions between waves and detectors, it is usually convenient
to pick a “synchronous” gaugg? such that the perturbation is purely spatial in the
frame of interest (A, = 0), and correspondingly so are the polarization tensors. For
instance, in an orthogonal frame in which the z-axis is aligned with the direction of
propagation (so that k; = 53;‘ in that frame), we may write the six degrees of freedom
as
hy + hy hy hy
(hij) =| hx hy —hy  hy |, (10.6)
hy hy hy

in terms of the linear tensor polarizations (+, X), linear vector polarizations (X, y),

and scalar breathing (b) and longitudinal (1) modes.

For the purpose of analyzing the output of multiple GW detectors, it is often

convenient to write the polarization tensors in terms of unit vectors tangent and

’In a diffeomorphism invariant theory, one may always gauge transform into synchronous gauge
by solving an initial value problem. If the theory is not diff-invariant, the Stiickelberg trick can be
used to restore the symmetry and then gauge transform. We provide an example of this in Sec.[10.3.4]
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normal to the celestial sphere at each sky location. A standard linear polarization

basis is given by

el () = Galit) Po(R) — Ba(R) Bi(1), (10.72)
e, (1) = Ga() O(R) + () Pi(i), (10.7b)
X ,(R) = Pa() kp(R) + ka(R) dp(), (10.7¢)
() = 0a(R) kp(R) + ka(R) B(R), (10.7d)
€2, () = Ba() o(R) + 0u(R) B(R). (10.7¢)
el () = ka(R) kp(R), (10.7f)

where §(#1) and $(#) are respectively the celestial polar and azimuthal coordinate
vectors for a given source sky location determined by 7i; by design, these vectors
satisfy A(72) x ¢(i) = —k(A) = A. Other frame choices are possible, and multiple

conventions abound in the literature.

As an example of the polarization decomposition of Eq. (10.5]), consider theories
in which gravitational perturbations carry spin-weight 2, like GR. In that case, we
may choose to work with the two transverse-traceless linear polarization tensors

corresponding to the plus (+) and cross (x) amplitudes shown in Eq. (10.6), and
Eq. (10.5) becomes simply:

b () = T () €3,(A) + () €, () (10.8)

Because the linear polarization tensors are real-valued by definition [cf. Eq. (10.7)],
the reality condition for the amplitudes, Eq. (10.4), implies

T (= fo 1) = Iy (fo ). (10.9)

Alternatively, instead of the linear modes of Eq. (I0.6), we could choose to work
with eigenmodes of the helicity operator, i.e. the right- and left-handed circular
polarization tensors (denoted “R” and “L” respectively). These modes satisfy an
eigenvalue equation

e/ ket =iss ety (10.10)
for A e {R,L} (not summed on the RHS), where we have defined the factor eg /1, = +1,
with the plus (minus) sign corresponding to the R (L) mode. Then, the circular

polarization tensors can be written in terms of the ones for plus and cross as

1

€R/L = @ (e+ + ieR/LeX) . (10.11)
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Using the circular tensors as a basis, we would write, instead of Eq. (10.8),
hap(K) = hr(K) €5,,(7) + hi(k) e, (), (10.12)

and the reality condition, Eq. (10.4)), would now imply (note the “L/R” subscript on
the right hand side)

hrjL(=f,7) = hy g (f. 1), (10.13)

instead of Eq. (1I0.9). The circular polarization modes can be similarly defined for
the vector polarizations to obtain eigenmodes of helicity +1. On the other hand, the

scalar modes have helicity 0, so in a sense are already circular.

For future reference, note that the spin-weight 2, spin-weight 1 and the transverse
spin-weight O linear polarization tensors are normalized as usual such that, for a

given direction of propagation,
et =26 (10.14)

for A € {+, X, x,y, b}, and 544" the Kronecker delta; on the other hand, the
longitudinal tensor satisfies (e')/(e?);; = ¢'A. Similarly, the spin-weight 2 circular

polarization tensors of Eq. (I0.TT]) satisfy
(eAiy el =260 (10.15)
The basis tensors for the circularly-polarized vector modes also satisfy Eq. (10.15).

Although the two linear and circular bases discussed above are probably the most
common in the GW literature (modulo normalizations), we are of course free to pick
any other. For instance, in the analysis of differential-arm instruments, it is generally
convenient to instead work with the traceless linear combination of A, and A, since
that is what such detectors can measure. Similarly, different theories may also define
their own preferred polarization bases, given by the choice that diagonalizes their

kinetic matrices.

10.2.2 Stochastic signals

In the case of stochastic signals, the Fourier amplitudes, &; i(k), are, by definition,
random variables and, as such, can be fully characterized by the moments of some
(multivariate) probability distribution. Most standard searches for a stochastic GW
background make the following assumptions about the random process that produced

these amplitudes (see, e.g., [222] for a review): the random process is () Gaussian,
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ergodic, and stationary, with no correlation between amplitudes from different
sky locations or (V) polarizations, and with equipartition of power across
polarizations; furthermore, the process is commonly (although not universally)
assumed to be isotropic. We break down these assumptions below and introduce

some important definitions along the way.

Stochastic backgrounds are expected to arise from primordial cosmological pro-
cesses [187H197], or by the incoherent superposition of a great number of signals
from contemporary astrophysical events [198-H210]. The assumption (i) that the
astrophysical background is produced by a Gaussian random process is motivated by
the central limit theorem—this guarantees that the properties of any large number
of incoherently-added GW signals will be normally distributed, regardless of the
specific characteristics of any given source. A similar argument can be applied to
primordial signals by considering the independent evolution of waves from causally-
disconnected regions [[184]. Although waves from inflation will technically have
non-Gaussianities, they will be small as long as inflation satisfied the slow-roll
approximation [[184, 197, 223]].

For Gaussian processes, all properties of the probability distribution are determined by
its first two moments (correlation functions)—namely, the mean and power spectrum
(respectively, the one- and two-point correlation functions). The first moment of the
distribution, the mean (A(f)), will not appear explicitly in any of the expressions
below, so we ignore it]¥] Here and below, the expectation value, denoted by angle
brackets (-), corresponds to ensemble averages, as well as space/time-averages by
assumption (i7) of ergodicity. The expectation of ergodicity itself comes from the
assumption that the Universe is homogeneous (for more discussion on this topic, see
[197]).

The second moment of the distribution will end up being an important observable.
In order to write down an expression for it, we can make use of assumptions and
(tv). First, stationarity (iii) is motivated by the fact that observation times (order of
months to years) are extremely small relative to the dynamical timescales intrinsic to
the cosmological processes that could change the properties of the background (order
of billions of years); therefore, any changes in the stochastic background would be

unnoticeable to us. Formally, stationarity means that the first moment is constant,

3Some authors explicitly set this value to zero because the contribution from a nonvanishing
mean would take the form of a coherent offset in the Fourier amplitudes as a function of frequency,
which not only would be hard to justify physically, but would also hardly classify as “stochastic” (see,
e.g., [185]1222]).
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while the second moment depends only on time differences (see, e.g., [224]). As a
consequence, the Fourier transform of a stationary random variable can be shown to
be such that amplitudes at different frequencies will be statistically independent and,
therefore, uncorrelated (Appendix [10.6).

Next, the assumption (iv) that amplitudes from different sky locations will be
uncorrelated is justified for primordial waves because signals from different points in
the sky are only coming into causal contact now at Earth, under ordinary topological
assumptions. One could potentially search for nonstandard spatial topologies in a
sufficiently “small” universe through angular correlations in gravitational waves [225]],
in much the same way as in the cosmic microwave background (CMB) [226, 227].
A small universe with nonstandard spatial topology would induce circles of excess
correlation in both the CMB and gravitational-wave background. As there has been
no evidence of this phenomenon in the CMB, in this Chapter we consider primordial

signals from different sky directions to be uncorrelated.

For contemporary (“astrophysical”) backgrounds, comes from the assumption
that the contributions from multiple sources throughout the sky (say, binary systems)
are added “incoherently”—that is, sources are not perfectly aligned and timed as
would be needed for signals from different directions to reach us with matching
phase and amplitude evolution. Even though such astrophysical sources were in
causal contact at some point in the past, they are embedded in chaotic astrophysical
environments (with e.g. turbulent magnetohydrodynamics) with Lyapunov times
sufficiently short that in practice, they can be treated as uncorrelated. In principle,
strong gravitational lensing may introduce correlations between sky bins into the
stochastic background, whether primordial or contemporary, but we can expect this
effect to be negligible in practice [228]].

With assumptions and in place, we may write the second moment of the
amplitude distribution in the form (Appendix [I0.6)):

(Rp(k) ha(K)) = %6(f — F)6(A - ) San(K). (10.16)

This equation defines the one-sided cross-power spectral density, Saa/(K) = Saa-(f, i),
for two signals, /14 ,4-(K), sharing a wave-vector k but with potentially different po-
larizations A and A’. For linear polarizations, this quantity satisfies Sqa-(f, 1) =
Sara(—f, i), because of the reality condition of Eq. (10.4). Since we are usually

interested in the total measured power at a given frequency, regardless of sky direction,
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we also define the integral of Sq4-(k) over the sky,
Saa(f) = / Saar(f,n)di, (10.17)
sky

which carries units of strain? /Hz. For A = A’, this is nothing more than the one-sided
power spectral density (PSD) in polarization A, which we denote Sa(f) = Saa(f).
In general, for any real-valued random variable X(z), the PSD can be approximated

as twice the square of the band-limited Fourier transform [224]],

2| pT/2 _
SX(f):}i_rﬂof /m X(r) ¥ ds

2
) (10.18)

in practice always computed for some long but finite integration time, 7', on the order
of months to years for observations of the stochastic background. As usual, the factor
of 2 in Eq. (I0.18)) accounts for the fact that this is the one-sided PSD, S(f) = S(|f]).

Assumption (v) that the different polarizations are statistically independent may be
used to discard off-diagonal terms in the cross-power spectrum, so that Sx4/(f) =
044'Sa(f). However, one must be careful with this simplification: the assumption is
valid if and only if one works in a polarization basis that diagonalizes the kinetic
matrix of the theory. Importantly, as we will show with specific examples, such a
basis need not be the linear polarization basis used in most GR analyses. Even when
working within GR, it is generally better, from a theoretical standpoint, to work in
terms of the circular modes, as they are eigenstates of the helicity operator, and they

might be produced with different intensities in the early universe [229-231]].

Besides assuming that the polarizations are uncorrelated, it is also common to assume
that there is equipartition of power between them, assumption (vi) in our list above.
Under this presumption, the background is said to be unpolarized and the polarization
PSDs may be written in terms of the toral GW spectral density, S(f) = > Sa(f),
such that S4 = S(f)/N, where N is the number of polarizations allowed to propagate
in a given theory. In general, this assumption is only justified if the polarizations
both diagonalize the kinetic matrix and interact similarly with matter, so that they are
sourced in equal amounts. This not always the case: for example, in both massive
gravity [105) 232] and dynamical Chern-Simons gravity [96, 233], 234], different
polarizations couple to sources with different strengths.

Finally, the simplest searches for a stochastic background also adopt assumption
(vii) of isotropy, in which case S(f, ) = S(f)/4n, by Eq. (I0.17). In GR, if one
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disregards the proper motion of the solar system, this assumption is expected to hold
well for most foreseeable sources of a stochastic background detectable by existing
ground-based observatories, since they are expected to originate from cosmological
distances [[184] [185] [222]]. [| For cosmological sources, isotropy is likely also a good
assumption in many beyond-GR theories; however, isotropy should not be expected to
hold in theories with a preferred frame, which are intrinsically anisotropic [236-243]].
For simplicity, the rest of this document will treat only the case of an isotropic
background, but this does not affect the spirit of the results, which can be easily
generalized to the anisotropic case. For predictions of the angular power spectrum of
astrophysical GR backgrounds see [244]], and for corresponding observational limits

that do not assume isotropy see [2435]].

Assuming both an isotropic background and (v)) uncorrelated polarizations, on
top of stationarity and uncorrelated sky bins, Eq. (10.16) can be written

directly in terms of the power spectral density,

(Ra(K)ha (k') = éé(f — (A = /)5 aarSa(f). (10.19)

If one further assumed equipartition, S4(f) would be replaced with S(f)/N, as
explained above. This is the form of the expression most common in recent literature

about detection of stochastic gravitational-wave backgrounds (e.g., [222]).

10.2.3 Detection

Because the output of ground-based GW detectors is largely dominated by stochastic
instrumental and environmental noise [10, 246], it is not possible to measure the
power spectrum of the polarization amplitudes, S4(f), directly with a single detector
at any level of interest. However, this quantity may be inferred by looking instead at
the cross-correlation of the output of two or more instruments (see, e.g., [222] for a

comprehensive review of data analysis methods).

We assume that each GW detector has a purely linear response to gravitational waves.
Therefore, in the Fourier domain, the response of detector / to a plane wave /1,5(K)

must be expressible as
hi(k) = Di"(K) hap(K). (10.20)

for some tensor ﬁ?b(k) = D;’b( f, i) representing the detector’s frequency- and

direction-dependent transfer function. This tensor encodes all relevant information

4The same will not necessarily be true for LISA, which will be sensitive to galactic stochastic
sources, like the “confusion noise” from white-dwarf binaries [235]].
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about the detector and the physics of the measurement process [247-254] (for
considerations specific to gravity beyond GR, see e.g. [18, 98, 108, (110} 215} 2535])).
The detector’s output /2;(k) (e.g. the calibrated current out of a photodiode) is a gauge-
invariant observable. However, the metric perturbation /,(k) is gauge-dependent;
therefore, the detection tensor D;’b (k) must also depend on the gauge choice, so that

the overall gauge dependence on the RHS of Eq. (10.20) exactly cancels.

Assuming a basis of polarization states A that have well defined phase velocities
(i.e. they diagonalize the kinetic matrix of the theory), we may use Eq. (10.20)
to write the Fourier transform of the signal at detector 7 explicitly as a sum over

polarizations and an integral over sky directions,
hi(f) = / DUENF ) ha(f, ) e IR di, (10.21)
A

defining the Fourier-domain response functions as the contraction between the
detector and polarization tensors, F IA( f,in) = l~);lb (f,n) efb(ﬁ), which must also be

gauge-dependent.

The time-domain analogue of Eq. (10.20) is given by a convolution,

h[(l, )_51) = / D?b([) hab(t -7, )?1) dr, (10.22)

(o)

with X; the location of detector I, and D;”’ () its impulse response. Since D?b (k) is
gauge-dependent, the same must be true for D?b (#). For an ideal differential arm-
length instrument, it is easiest to write down this detector tensor in a synchronous
gauge (ho, = 0O in the detector frame), wherein the end test masses’ coordinate
locations will not change [220]. In such a gauge, the resulting differential-arm

detector tensor is the purely geometric factor
| NN
Das(t) = 5 (%% = Fuls) (10.23)

with X and ¥ spacelike unit vectors pointing along the detector arms. For real
interferometric detectors, like LIGO and Virgo, Eq. (10.23) is valid only in the
small-antenna limit (arm length << GW wavelength) [250-254].

For any realistic detector, the tensor of Eq. (10.23) will vary in time due to the
motion of the instrument with respect to the inertial frame of the wave (e.g. due to
Earth’s rotation, for ground-based observatories). However, for the cases we are

interested in, we can take this variation to be slow with respect to the period of the
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waves, so that it can be ignored if Eq. (I0.21)) is implemented via short-time Fourier
transforms. In this ideal “slow-detector’” limit, we may then treat the response as time-
and frequency-independent to write D*(k) = D9%(t) = D%, and so Eq. (1021)

simplifies to

hi(f) = / D FMNA) ha(f, ) e Y 4, (10.24)
A

with the frequency-independent antenna patterns defined in full analogy to our
definition of F IA( f, i) above,

Fi(n) = DY e (n). (10.25)

For details on this simplification, and nuances applicable to anisotropic backgrounds,
see Sect. IV in [256].

In the Fourier domain, the cross-correlation between the output of two detectors may
then be written in terms of the second moment of the distribution of polarization

amplitudes as

(I Hin(r1) = [ andi' Y (R300540) (10.26)

AA’

x FrAMR)F (i) e karr—ka¥n)

where, again, assumption of ergodicity is tacitly implied. If we also assume,
as we will throughout this paper, that the background is stationary and
isotropic, and that sky bins are uncorrelated, we may then use Eq. to
simplify this to

(R R() = 500 = S AT, (10.27)

where we have defined the generalized overlap reduction function for polarizations
A, A’ and detectors I, I,

’ 1 n s A A " AN —2mi Fh-EAA
r4.(f) = y / di FrAR)F (R)e™ e (10.28)

in terms of the phase factor §IA}’,“/( =X/ vg‘ - X/ ng’ which acquires a potential
frequency dependence through the phase velocities. If there is one dispersion relation
shared by all polarizations (true throughout the rest of this paper), the exponent in
Eq. can be written as —27i f7 - ﬁ{*' = —ik - AX;p, in terms of the separation
between detectors AX;;r = X7 — Xp. The overlap reduction functions encode all

relevant information pertaining GW polarizations and speed, as well as detector
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geometry. The specific definition and normalization chosen here are intended to
facilitate generalization of the analysis beyond GR, and are not necessarily standard

(see, e.g., Sect. 5.3 of [222] for a review of these functions and their properties).

Because the noise in different instruments will generally be statistically independent
[[10} 246, by cross-correlating the output of a pair of detectors, one may directly
measure the signal cross-correlation of Eq. (10.27)), and hence infer the polarization
power spectra Sa4-(f) (as proposed by [[179, [180], and studied in multiple works
since). In a theory that allows for N independent polarizations, there will be up to
N(N + 1)/2 different Sq4- terms (only N if the correlation matrix is diagonal), and
at least as many detector pairs (“baselines”) will be needed to break all degeneracies

between them.

10.2.4 Energy density

Searches for a stochastic gravitational-wave background attempt to measure the
Universe’s total energy density in gravitational waves as a function of frequency.
However, inferring this quantity from direct observables requires theoretical assump-
tions. Furthermore, the equivalence principle precludes being able to localize energy
density in gravitational waves, so this is in fact an effective energy density. We
elaborate on these important points below and sketch the general procedure to link
the effective GW energy density to observables at the detector in (almost) any given

theory. Concrete examples of how to apply this are provided in Sec.[10.3]

With an eye to cosmology, the quantity of interest in stochastic searches is usually
chosen to be the log-fractional spectrum of the effective GW energy density [180—

1831 [1835l],
1 dpgw

Peritical d1n f ’
with pgw the effective GW energy density as a function of frequency, and pcritical the

Qew(f) =

(10.29)

critical density required to close the universe,

3c2H§
Pecritical = W ) (10.30)
where H) is the present Hubble parameter [[185]. Presenting results of a stochastic
background search in terms of this quantity facilitates their cosmological interpre-
tation. More importantly, using an energy density (however parametrized) allows
for direct comparison with theoretical models: in order to predict the properties of

the GW background, one computes the typical GW power emitted by the system
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Figure 10.1: Key quantities appearing in stochastic searches, and how they are
related to each other. The relationships between them are theory-dependent. The
primary observable is the detector cross-correlation, but inferences are often stated
in terms of the fractional cosmological GW energy density, or a parametrization
thereof. Arrows point from more fundamental quantities to derived quantities.

of interest (e.g., compact binaries, cosmic strings, or primordial fluctuations) and
then obtains an energy spectrum by incoherently adding many such contributions
(e.g., using the quadrupole formula with merger rates from population synthesis)
[187H210].

However, GW detectors do not measure the effective physical GW energy density,
but rather the amplitude of the waves at each instrument. In particular, searches
for a stochastic background are sensitive to the (incoherent) strain amplitude power,
Eq. (10.16). This will remain true for future detection methods, like space missions
or pulsar timing. In the case of ground-based observatories, as outlined in Sec.[10.2.3]
the stochastic strain amplitudes are probed through the cross-correlation of detector
outputs across a network, Eq. (10.26). Thus, whatever the detection method, we will
need an object that relates gravitational-wave amplitudes to energies—a mapping

that is theory-dependent.

The frequency-domain effective stress-energy tensor (ESET) for gravitational waves
lets us translate between the more accessible two-point amplitude correlation function,
Eq. (10.16), [or the two-detector-output cross-correlation, Eq. (10.26))] and the GW
contribution to the energy density, Eq. (I0.29). In GR the ESET is given by a
simple expression first derived by Isaacson [257, 258] (see Sec. [10.3.1] below),
which enables stochastic searches to be parametrized directly in terms of Qgw(f)
[180-183) [185]. Interestingly, the same relationship has been assumed to hold
in most stochastic GW data analysis schemes that allow for departures from GR
(107,112,213, 1214,216-218]], even though the Isaacson formula will not necessarily
hold in arbitrary theories [219]. Using the Isaacson formula when inappropriate will
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lead to a mistranslation between detector cross-correlations and GW energy densities.
This is not only misleading, but can also lead to errors when deriving constraints on

theories from observations.

In the context of any specific theory of gravity, the ESET can be derived directly
from the action. The ESET is given by a space-time average of the variation of the

second-order perturbation of the action with respect to the background (inverse)

metric [219]], o
TS = <<——2 O >> (10.31)

\/W 5g(0)ab
where the double angular brackets (-)) indicate an averaging procedure over a
spacetime region on the order of several wavelengths (e.g. Brill-Hartle averaging,
though other procedures [259]] agree when there is a separation of length scales). We
briefly summarize the approach here; we refer the interested reader to [219] for more

exposition.

The second-order Lagrangian Lgf) is obtained from the action S|[g, y/] after perturbing
the metric g, and other dynamical fields  via

gap = 80+ ehl) + E2nY) + O(€), (10.32)
l// = I/I(O) + 617[/(1) + 6217[/(2) + 0(63), (1033)

and collecting terms in the action order-by-order in the small parameter €. This gives

the expansion

Slg,v] = SV, ] (10.34)
+ eSU[HD, ;6O 40
+ ESA[I2,y 02 40y O] 1 O ),

where 4> means both A1) and 1® are present. Atorder €°, the action S() generates
the ordinary nonlinear background equations of motion for g and . At order
€', the action SW is purely a “tadpole” term which vanishes when (g(©, @) are
on shell, and therefore does not contribute to any equations of motion. The same
is true for the second-order perturbations (A%, ), which appear linearly in S®.
However, (b)), (1) appear quadratically in S»: the quadratic action S® then
generates the linear equations of motion for (A", y1) when varied with respect to
(hD, y(D)Y; at the same time, the variation with respect to g(©) will be a quadratic
functional of (M, (1), and results in the ESET.
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From now on we drop the order-counting superscript, letting 7 = A1, since we will
not encounter A%, In a local Lorentz frame whose time direction is aligned with the

Hubble flow, we can define the position-space effective GW energy density as
paw = T [h, h, (10.35)

where the double argument [/, /1] is just to remind us that 7°T is a quadratic functional
of h. To use Eq. (10.29)), we want pgw in momentum space, so we need to make use of
a plane-wave expansion like Eq. (T0.T)). The result will always be a momentum-space

integral of the form
paw(x) = / dkdk' Q"(I K) (o (~K) hea(K)) 44, (10.36)

where the (gauge-dependent) tensor Q“*“? encodes information about the kinetic
matrix of the theory in momentum space, and we have used Eq. (I0.4) to write
hap(K) = ﬁzb(—k). Notice that here we have replaced the spacetime averaging of
Eq. (10.37)) with ensemble averaging, based on assumption (i7) ergodicity. When the
two-point function (ﬁ;(k)fz A(K")) is of the form of Eq. (I0.16), the double integral
will collapse to a single integral, and the physical energy density will be related
to the power spectral density Ss4-(k), with some potentially nontrivial frequency
dependence arising from Q¢ (we will see several examples below).

When this double integral collapses to a single integral, we can then define the
fractional energy density per frequency bin via

oGw = / dch}wdf - / j’?ﬁ?%. (10.37)
With this definition of dpgw/d In f, and the relationship between the energy density
Eq. (10.36) and a two-point function like Eq. (TI0.16), it will be possible to relate the
power spectral density S44-(K) to the cosmological fractional energy density Qgw(f),
Eq. (10.29). The relationships between all these key quantities are illustrated in

Fig.[10.1}

Once we have this, we may work directly with Qgw(f); in particular, data analysis

searches usually assume a power-law model like

Qaw(f) = (i) , (10.38)
R

for some spectral index @, and ) the characteristic amplitude at some arbitrary

reference frequency fy. This is how LIGO generally parametrizes its searches, e.g.

[186]; for a discussion of the validity of this parametrization, see [260].
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10.3 Example theories

In this section, we show how different gravitational theories imply different functional
relations between the effective fractional energy density spectrum, Qgw(f) in
Eq. (10.29), the strain cross-power spectrum, S(f) in Eq. (10.16)), and, consequently,
the cross-correlation between detector outputs, Eq. (10.26) As discussed in Sec.[10.2.3]
this last quantity is the relevant observable for ground-based instruments, on which
we focus. The relationships between all the key quantities are illustrated in Fig. [10.1]
Along the way, we also discuss the expected statistical properties of the polarization
amplitudes under each framework, as required purely by the basic structure of the

theory (that is, not considering specific source models).

We first demonstrate the procedure by rederiving the standard GR expressions from
the Einstein-Hilbert action (Sec. [[0.3.T)), and then offer a series of beyond-GR
examples for which the analogous result is different: we consider the case of
Chern-Simons gravity, a theory which is not parity-symmetric (Sec. [10.3.2)); this is
followed by Brans-Dicke gravity, the prototypical example of a scalar-tensor theory
(Sec.[10.3.3); finally, we study Fierz-Pauli gravity (Sec.[10.3.4), in which the graviton
is endowed with a mass. The last two examples support nontensorial modes of the
metric perturbation (see Sec. [10.2.1).

For all the examples we consider, we find it reasonable to simplify our equations by
assuming the stochastic background is () Gaussian, (ij) ergodic, stationary and
isotropic, with no correlation between different sky locations. In all cases,
then, we find that we can write the cross-correlation between the output of two ideal

differential-arm detectors / and I’ in the form

3H?
0|3‘5(f — ) D BaH) Qa(N) THAL), (10.39)
A

(ki (ORiS)) = g
where the sum is over some polarization basis A that diagonalizes the kinetic matrix
of the theory. Here the I‘IAI,( f)’s are the generalized overlap reduction functions
of Eq. (10.28)), Q4(f) is the effective fractional energy spectrum in polarization A
defined by analogy to Eq. (10.29), and E4(f) is a model-dependent factor encoding
deviations from GR. In Einstein’s theory, Z4(f) = 1 for tensor polarizations and

vanishes otherwise, as we show below.

Many of the results in this section are derived on a flat background and will therefore
be erroneous in a cosmological setting. However, because of the vast separation of

scales between the gravitational wavelength Agw and the Hubble parameter today Hy,
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the error between the flat space results and the cosmologically-correct results will
be of fractional order O(AgwHy/c). This correction has been explicitly computed
in GR [261], and while we are not aware of the same computation in beyond-GR
theories, it should remain true as long as the theory of gravity respects the separation

of scales.

10.3.1 General relativity

The vacuum Einstein field equations can be derived from the Einstein-Hilbert (EH)

action,

Sgq = K/dX\/—_gR , (10.40)

where k = ¢*/(167G), g is the determinant of the metric g5, and R is the
Ricci scalar [220]. We may now expand the metric around some background,
8ab = g[(l(})]) + €hgp + ..., as in Eq. (10.32). The source-free linearized equations of
motion, on a flat background (so that Riemann vanishes), and in the transverse-
traceless gauge (V,h*’ = 0 and h%, = 0), take the simple form

Ohap = 0, (10.41)

where O = V%V, is the d’Alembertian with respect to the background metric.
Equation leads to the standard geometric optics approximation to GW
propagation, from which it follows that GWs show no birefringence and always
propagate at the speed of light.

Focus now on the second-order perturbation of Eq. (I0.40). On a flat background,
the second-order Lagrangian density is given by [219, 262]

% (Vailbc) (Vph?) — % (Vahed) (Va }‘lcd)

Lig=xV"g
g (1) (7B)| (1042)

where all derivatives are taken with respect to the background metric g,;, and

hap = hap — gaph,. /2 is the trace-reversed metric perturbation. This piece of the

Lagrangian density corresponds to S® in Eq. (10.34).

We now apply the transverse-traceless gauge conditions and evaluate the perturbations
on-shell (that is, we enforce the first-order equations of motion). Then, varying with

respect to the inverse background metric, g%, as in Eq. (TI0.31)), we obtain, far away
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from sources,

4
TR — 3ZCTG<(Vahchthd)). (10.43)

This is the well-known expression for the effective stress-energy carried by a
gravitational wave, first derived by Isaacson (and, consequently, known as the
Isaacson formula) [257, 238]].

We may now use Eq. (10.43) to relate S(f) and Qgw(f), as outlined in Sec. [10.2.4
The Isaacson expression implies that, in a local Lorentz frame,

2
C l"
paw =Too = g5—=(dhi; o)), (10.44)

where we have used the fact that the transverse-traceless metric perturbation will be
purely spatial. Plugging in the plane-wave expansion of Eq. (10.1)), using the reality
condition of Eq. (I0.4), and invoking (i) ergodicity, we may rewrite this as

2

POV = 12873G

dkdk wo'’ <izj.}(—k) i (k’)>
x o K+K)x (10.45)

This means that, in GR and in our gauge, pgw takes the form of Eq. (I0.36) with

2
Q“Gll’{'d = —12;;3Gg”"gbdww’. (10.46)
It is convenient at this point to expand the Fourier amplitudes into polarizations.
Because GR is parity-symmetric, in this theory all modes are generated and propagate
equally, so one is free to choose between linear and circular polarizations; however,
working with the former is slightly simpler because the corresponding polarization
tensors, Eqgs. (10.7a) and (10.7b)), are real-valued. Then, summing over A, A’ €

{+’ X}’

2

12873G

paw = [ o (B0 )

x e’y et X, (10.47)

We now use the fact that the Fourier amplitudes are given by a random process to
simplify our expression for pgw via Eq. (10.16). Following common practice and
for the sake of simplicity, we will assume that the stationary Gaussian background

is also (vii) isotropic and unpolarized, with equal contributions from the linear
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polarizations. Letting the total PSD in tensor polarizations be S; = S; + Sk with
S, = S« = §;/2, this means

1
Saar(f,n) = 8_7_(5AA’St(f)- (10.48)

Again, the assumption (vi) of equipartition is justified because GR conserves parity.
The correlation of the Fourier polarization amplitudes, Eq. (I0.19), then becomes

(AR (K)) = = 5(f = 10~ oaxS(f). (1049

With this in place, and noting that Eq. (T0.14) implies ea;;e/ = 4 when summing
over A = {+, X}, the effective energy density of Eq. (10.47) simplifies to

7TC2

* 2
POW = 25, Si(Hfdf. (10.50)

Comparing with Eq. (I0.37), we can immediately read off dpgw/dIn f, and then,
from the definition of Qgw(f), Eq. (10.29), we conclude

2

Sr(f) = o 2|f|3

Qaw(f)- (10.51)
As discussed in Sec.[10.2.3] the actual observable for stochastic-background searches
in data from ground-based observatories is the cross-correlation between the outputs
of pairs of detectors. For an isotropic background, this is given by Eq. (I0.27), which
can be written in terms of the fractional energy density by means of Eq. (10.51):

3 t
. 2|f|35(f ) Qaw(H) Iy, (10.52)

where we have defined the total tensor overlap-reduction function as I" 1 =00+

(R (H)hp(f)) =

[777(f). This is the desired expression relating the observable strain cross-correlation
to the fractional effective-energy density spectrum, that will be predicted by theory.
Eq. (10.52) is used in most LIGO and Virgo searches for a stochastic background,
via parametrizations like the Qgw(f) power-law of Eq. (10.38)). Comparing to
Eq. (10.39), and recalling Qgw = Q. + Qy with Q, = Qy = Qgw/2, we see that in

GR, E(f) = 1 for tensor polarizations, and vanishes otherwise, as expected.

10.3.2 Chern-Simons gravity

Chern-Simons (CS) theory is an extension of GR with motivations ranging from

anomaly-cancellation in curved spacetime, low-energy limits of both string theory
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and loop quantum gravity, effective field theory of inflation, and more [233),263-273]].
The theory is characterized by the presence of a parity-odd, axion-like scalar field,
which couples to curvature through a parity-odd interaction (see [96] for a review).
The ESET in this theory was derived in [219], in an asymptotically-flat spacetime
and approaching future null infinity (.#*). As noted before, by promoting flat-space
results to a cosmological setting, we are making an extremely small error of fractional
order O(AgwHy/c). Below, we provide a sketch of this derivation and show what

the result implies for the stochastic background.

As a consequence of its lack of parity symmetry, CS gravity generally predicts
birefringent propagation and generation of the metric perturbations, so that one
of the circular tensor polarizations is amplified at the expense of the other [274].
Consequently, as is true for any theory lacking parity symmetry, it is not appropriate
to assume that the stochastic background is unpolarized [275]]. Furthermore, as
we will see, the nondynamical version of the theory predicts an expression for the
effective GW stress-energy different from the Isaacson formula of Eq. (10.43)), and
consequently differs from GR via a factor of Z(f) # 1 in Eq. (10.39).

In the absence of matter, CS gravity is given by the Einstein-Hilbert action of
Eq. (10.40), plus terms describing the axion-curvature coupling (Sjy), and dynamics
(Sy) of the scalar field & [96, 233]],

Scs = Sgn + Sine + Sy, (10.53)
Sine = % / dxy=g 9 'RR, (10.54)
Sy = —g /dxﬁgab (Va?) (V) . (10.55)

In the above, « is the constant determining the coupling of the CS field to the
gravitational sector, while 8 controls the kinetic energy of the scalar; *RR is the

Pontryagin density, which is defined in terms of the Riemann tensor, R,p¢q4, by
1
‘RR = Eeabef RupeaR;, (10.56)

with €,p.4 the Levi-Civita tensor. This term is parity-odd, and gives CS gravity much

of its richness.

Studying the dynamics of the theory, one may show that gravitational waves in CS
gravity will present the same tensor (spin-weight 2) propagating degrees of freedom
as in GR [233,1234]. On a flat background and in Lorenz gauge (Vo h = 0), metric
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perturbations follow the first-order equations of motion [96 219],

- 1. _ -
Ohay == 1)+ % [Vcﬁvduhe(ae“’eb) (10.57)

+ VVabe g ¥ (7,50 = 940,f)]

where we split ¢ into a smooth background piece 9 and a perturbation , and Tg) is

the stress energy sourced quadratically by 3,
- ~ ~ 1 ~ ~
Ty =p [(Vaﬂ) (Vo) = 58a» (VD) (Vcﬁ)] : (10.58)

Again on a flat background, CS gravity admits an approximately traceless gauge [219]],
so that /., can be replaced by hy, in these equations, as was done for GR in Eq. (T0.4T).

In the weak-coupling limit (i.e. @V < kAgw, for GW perturbation wavelength
Agw = ¢/ f), it can be shown that the quadratic Lagrangian density corresponding to
S@ in Eq. (T0.34) can be written as [219]

£ =12 ALl (10.59)

where Lgl){ is the effective Lagrangian density derived from the Einstein-Hilbert

action, Eq. (10.42), and

% _ _ _ _
ALE = TN € (V¥ 0V, Vel f + VIR VaVohre) . (1060)

From this we may derive the effective GW stress-energy, and relate the energy to the
strain cross-correlation, for both the nondynamical and dynamical versions of the

theory, as outlined in Sec.|10.2.4

Nondynamical theory

The nondynamical version of CS gravity is obtained from Eqgs. (10.53))—(10.53) by
setting 8 = 0. This removes the dynamics of the scalar field, fixing it to some a
priori value. Furthermore, in the canonical embedding of this theory [96], we set

the field’s gradient to be purely timelike in some global frame,

Vol = ule,, (10.61)

for some constant u. When expanding A, as a power series in « in the weak coupling
limit, the first-order equations of motion on a flat background, Eq. (10.57/)), reduce to
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a simple wave equation, O/, = 0 + O(a?), as in GR. This implies that the Lorenz
gauge is compatible with synchronous gauge (i.e., we can satisfy both V¥, =0

and hg, = 0 in the same frame).

In spite of its name, there is nothing special about the canonical embedding other
than its simplicity [96]]. Although in the following we assume this particular form
for the background scalar field, the qualitative features of our result should be similar
in general, possibly with extra terms stemming from any non-zero higher-order

derivatives of 9.

In the canonical embedding of nondynamical CS gravity, it can be shown that the
only non-GR contribution to the on-shell ESET comes from the second term in
Eq. (I0.60), in regions at a great distance from the source [219]. Consequently, we
can write:
(CS) _ 1(GR) (CS)
r,” =T, +AT, ™, (10.62)

where TCESR) is the Isaacson tensor from Eq. (10.43), and ATCESS) is the surviving
contribution from Eq. (10.60), with components

0% . .
AT;SSS) = ﬂ«eijkv(th—vv)vkho'j» (10.63)

in the global frame. The corresponding non-GR energy density, Ap(CS) = ATég S,

over a flat background is

Ap(CS) — (’-1\1-'(’-(:1\12/(/0a)lEl'jkkllC ei(k+k’)-x

8n2uc?
x <ﬁ;‘f (=K) hy ,-(k')> , (10.64)

after expanding over plane-waves in a synchronous gauge, as done in Eq. (10.45),
and using the reality condition of Eq. (10.4)) to substitute ﬁig(k) — E?f(—k). In the
notation of Eq. (T0:36), Q! = Qk¢? + AQ“**?, where in dCS and in our gauge
choice, the components of the correction are given by

-l

AQPY —
8772,uc2g

PYeii! wa . (10.65)

We want to expand the perturbation into polarizations, as we did for the GR case in
Eq. (10.45). However, it would be inconvenient to do so in terms of the linear plus
and cross modes, since these are not actual eigenmodes of the kinetic matrix in CS

gravity, and hence their amplitudes will generally be correlated [274]. Instead, we



205

will work with the right- and left-handed modes of Eq. (T0.TT]), which do diagonalize
the CS kinetic matrix. Letting Ae {R, L}, then

I / dkdK wo'|o' |78 (A1) ()

8m2uc
x (3(-K)h (k) &K, (10.66)

Here we have used the fact that, to first order, the GW dispersion relation in canonical

nondynamical CS gravity is the same as in GR, so that k] = |w’|lAclf .

As a consequence of the birefringence of GWs in CS gravity, it is also no longer
reasonable to assume an unpolarized background; rather, we should expect
Sr(f) # SL(f). (Although in the canonical embedding there is no amplitude
birefringence in GW propagation, wave generation should still be expected to break
parity symmetry.). However, we are justified in taking the two polarizations to be
uncorrelated in this basis, i.e. Srp.(f) = SLr(f) = 0, which is not true in the linear

basis.

With the above considerations in mind, we may write the correlation factor in terms
of the PSD in each mode as in Eq. (10.19), so that Eq. (10.66) becomes (v" — —w):

ian? A
Ap(©S) = s / dfdalw’S;(f) 644 €7 ky

x (A ) (el (10.67)
With the help of Egs. (10.13) and (T0.10), this simplifies to our final expression for
the additional energy density, after integrating over the source direction 7:

a8n’

pc?

AP = - /0 ISP = ST £ . (10.68)

Writing the GR contribution also in terms of circular polarizations and adding it to
the purely-CS part, it is then straightforward to obtain the total energy density in

nondynamical CS gravity:

T

2 [e)
_ e ) ) 2
pow = 1< /0 ZA] () Sa(F) £2df (10.69)
where the sum is over circular polarizations, and for convenience we defined

G
() =1- 32nzs/§%f , (10.70)
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with g1, = +1, as in Eq. (I0.10). Because the energy is diagonal in the circular
modes, this may also be written as pgw = pr + pL, With each term defined as the

corresponding summand (pulling the sum up front) in Eq. (10.69).

Using the definition of the fractional energy density spectrum, Eq. (10.29), this

means that the strain power in each polarization can be written as

2

3H,
SiN = 3 s (D) (10.71)

where Qg/1.(f) represents the energy density in each polarization, defined in full
analogy to Eq. (10.29) such that Qgw = Qr(f) + QL(f). The observable cross-
correlation between the output of two detectors, Eq. (I0.27)), can then be written as
in Eq. (10.39)), if we choose the circular tensor polarization basis and let

_ aG
2i(f) = /lAl(f) ~ 1+ SZnZSAﬁf, (10.72)

with the approximation being valid in the weak-coupling limit that we have been
working in (@/u < kc/f). As expected, the usual GR expression of Eq. (10.52)) is
recovered in the limit that the coupling of the scalar field vanishes (@ — 0), if we

further assume Sg = SL..

Dynamical theory

Perhaps surprisingly, the case of dynamical CS gravity is simpler for our purposes.
This is because, in the dynamical theory, the functional form of the effective GW
stress-energy tensor (about flat spacetime and with V&) — 0 far away from sources) is
given by the Isaacson formula of Eq. (10.43)), as in GR [219]. This notwithstanding,
dynamical CS gravity still breaks parity symmetry, featuring birefringent propagation
and generation of gravitational waves. Therefore, just as in the nondynamical theory,
it would not be justified to take the stochastic background to be unpolarized. Instead,
using the circular polarization states, in which the CS kinetic matrix diagonalizes,

we find that in the dynamical case

2

7% 7 ’ 3H0 ’ A
(DA (F) = oz o = PN TF). (10.73)

with A € {L, R}, but now allowing Q; # Qg. Here we also have Zi(f) =1, as
in GR. With at least two detector pairs (e.g. LIGO-Livingston—Virgo, and LIGO-

Hanford—Virgo), it should be possible to use this to measure the energy density
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in each circular mode. Eq. (1I0.73) may also be used to parametrize a polarized
background in GR, and hence probe polarized cosmological backgrounds like those
predicted in [229].

10.3.3 Scalar-tensor theories

Scalar-tensor (ST) theories are defined by the presence of one or more scalar fields
that couple to the gravitational sector nonminimally. From a field-theoretic point
of view, this family of theories is a natural extension of GR, and, as such, has been
extensively studied [101, 276H282]]. Scalar-tensor theories are also well-motivated
as effective field theories encapsulating the low-energy behavior of quantum gravity
completions, like string theory [283H286] or braneworld scenarios [287,288]]. These
theories also have important applications to cosmology [289, 290].

The literature contains several formulations of ST theories, with varying degrees
of generality and complexity. For simplicity, we will focus on the most basic case,
which was introduced by Brans and Dicke in an attempt to make Einstein’s theory
fully compatible with Mach’s principle [101]. Scalar stochastic GW backgrounds
have been previously studied in the context of this theory [211]—we revisit some of
those results here from the ESET point of view presented in Sec. [10.2.4]

The vacuum action for Brans-Dicke scalar-tensor gravity can be expressed as

Sst = K/dX\/—_g

for a scalar field ¢, some constant wgp, and where, as before, k = ¢*/(167G)

¢R - ‘L’T?)V“c/)vacp : (10.74)

and R is the Ricci scalar. Matter will follow geodesics of the metric associated
with Eq. (10.74); this representation is known as the Jordan frame of the theory.
Notice that the scalar field has a “scaling symmetry,” where if we take ¢ — C¢
for some nonzero real constant C, this constant can be absorbed into «. If the
scalar field asymptotes to a constant ¢ far away from all sources, we can use this
scaling symmetry to change the value of ¢ to whatever is most convenient for our
calculations, e.g. we can set ¢g = 1 (note that [211] chooses a different asymptotic

value).

Alternatively, it is often useful to recast the ST action in a conformal frame in which
the scalar is only minimally coupled to the metric sector. This can be achieved by
defining the conformal metric:

¢
—gub - 10.75
¢og b ( )

gab =
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In terms of this metric and a redefined scalar field ¢, Brans-Dicke theory can be

recovered from the action

Ssr =« [ ixyTF IR -2 Tu]. (10.76)

where the under-tilded quantities are to be computed using the metric of Eq. (10.75).
The new scalar field ¢ is related to ¢ from Eq. (10.74) by

¢/ o = e 200, (10.77)
ao = (3 + 2wpp)” 2, (10.78)

where ¢ is some constant analogous to ¢o. Because of its resemblance to the
Einstein-Hilbert action of Eq. (10.40)), this is known as the Einstein representation
of the theory. As we will see, Eq. is more convenient for theoretical
manipulations than Eq. (10.74)—although it should be kept in mind that matter

follows geodesics in Eq. (10.74), but not in Eq. (10.76)).

As usual, we will perturb the Jordan metric and field to first order by letting

8ab — &Gab+ hap and ¢ — ¢o + 56, with hyp, < gup and 5¢p < ¢y, like in Eq. (10.32).
For convenience, we will also define

= —0¢/do. (10.79)

Equivalently, we may perturb the Einstein-frame quantities by writing g,, — gap+hap

and ¢ — ¢ + 0¢. The two perturbations will be related by the transformation of
Eq. (10.77), yielding to first order:

bab = hap — Dgap, (10.80a)
()

o= — (10.80b)
2a’0

8ab = 8ab - (10.80c¢)

Studying linearized perturbations in the Jordan frame, it is possible to show that
there exists a gauge in which the vacuum linear equations of motion reduce to simple
wave equations, Ok, = 0 and OO = 0, with the trace of the perturbation satisfying
h = 2® [276]]. This implies that the metric perturbation may be locally decomposed
into spin-weight 2 and spin-weight O contributions, in the spirit of Eq. (10.5)), such
that

hap(K) = hi(K)e!, (7) + hx(K)eX, () + D(k)e®, (7) (10.81)
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with the polarization tensors as given by Eqs. (10.7a), (I0.7b)) and (10.7¢)). It is easy
to check, using the linear transformations of Eq. (10.80), that in the Einstein frame

this is equivalent to a gauge in which the trace-reversed Einstein metric is given by

the same expression as the Jordan metric, i.e.
hab = lab = i 11ab/2 = hap - (10.82)

Consequently, A, is divergenceless (Vh,, = 0), although it is not traceless
(h=h=2®).

We will now derive an expression for the GW effective stress-energy in the Einstein
frame, and will then re-express this in terms of the Jordan quantities that are
measurable at the detector. The reason for this choice is that, by definition of the
Einstein frame, the metric and scalar field separate in the action of Eq. (10.76)). This
nice feature not only makes our computations easier, but also those in the modeling
of observational scenarios for the stochastic background—which will generally also
offer a prediction of the energy spectrum in the Einstein frame. In any case, there is

no difference between the Jordan and Einstein energies to linear order, as given by
Eq. (10.80).

From the variation of the second-order perturbation of the Einstein-frame Lagrangian
density, Eq. (10.76), with respect to the inverse background metric, g’”, we can
show, as in Sec.[[0.2.4] that the effective GW stress-energy tensor will be given by
two terms:

(ST) _ ~(EH) (ST)
TOD = 70 4 ATD, (10.83)

The first, I{EEH) , is the contribution from the Einstein-Hilbert part of the action in
Eq. (10.76)—this is analogous to TébGR) in Eq. (10.43)), but is not identical to it due to
the presence of the scalar and the necessarily different gauge choice with 2 = 20. In
fact, starting from the quadratic Lagrangian density of Eq. (10.42)), after evaluating
on shell, it may be shown that

15" = 5{(VaheaVoh = 29,09, (10.84)

in a synchronous gauge for /., (Appendix [[0.7). Recall that the metric perturba-
tion appearing in this equation can be equivalently taken to be the trace-reversed
perturbation in the Einstein frame, or the regular perturbation in the Jordan frame

(hap = hap), because we are working to linear order [Eq. (T0.82)].
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The second contribution to the stress energy comes from the variation of the second
term in Eq. (10.76)), and can be shown to be

ATSD = (3 + 2wpp )k (V. OV, 0Y), (10.85)

after applying the equations of motion (Appendix [I0.7.1)). In both Egs. (10.84)
and (10.85)), we have simplified the notation by letting V — V, because these

derivatives are taken with respect to the background metric, g,» = gqp to linear order
[Eq. (10.80c))]. Adding together the two contributions, we obtain the total Einstein

frame stress energy:
ST) _ K c
T = 5 {VaheaVuht) + 2 (1 + wpp) (Va@Vs®)) . (10.86)
This agrees with the expression originally found in [276] by a different procedure.

As in previous sections, we may now expand the corresponding effective energy

density, pgw = Too, into plane-waves to obtain an expression like Eq. (10.36) with
abed _ pyabed abed

Q" = QY + AQ“ and

2 ’
cCww
AQ™! = - +1) g™ g, 10.87
283G (wep +1)8% ¢ ( )
where we have used the fact that ® = g%h,;,/2, as implied by Eq. (T0.81). The

energy density can also be written explicitly in terms of the polarization amplitudes

as
PGW = _% /alv(alv(,ww’e"(“k')'x X (10.88)
C

D A (I (Rha)
A

with a sum over the polarizations A € {+, X, b}. To make the notation more compact,
we have also defined the auxiliary factor
(3 + ZQ)BD) if A=bh,

Ap = (10.89)
1 if A=+ X.

For more details, see Appendix

We must now make some assumptions about the statistical properties of the Fourier
amplitudes. As before, we will assume the simplest case of an isotropic
background, with (v)) uncorrelated polarizations and sky-bins. We can then use
the corresponding expression for the correlations, Eq. (10.19), to get:

el 0
paw = = EA] /O df f2AaSa(f) . (10.90)
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From the definition of the fractional energy spectrum, Eq. (10.29), this in turn implies

[cf. Eq. (10.37)]

2

3H
Salf) = M—&Pa:mm, (10.91)

where Q4 represents the energy content in polarization A, with Qgw = >, Q4 for
A € {+, X, b}, because we took the different modes to be uncorrelated. This is

justified because the kinetic matrix of the theory is diagonal for A € {+, X, b}.

We may use this expression for the power spectral density in each polarization to
write the observable cross-correlation between the output of a pair of detectors (/
and I’). Using the cross-correlation expression of Eq. (10.27), we find again that we
can write this as in Eq. (10.39) with a summation over polarizations A € {+, X, b},

and the factor

_ _ (3 +2wpp)™' if A=,
Ea(f) =23 = (10.92)
1 if A=+ X.

The GR result of Eq. (I0.52)) is recovered, as expected, in the limit that wgp becomes
infinitely large.

10.3.4 Massive gravity

From a field theory perspective, general relativity is nothing but the theory of a
nontrivial massless spin-2 particle—the graviton. Therefore, theories of massive
gravity, which endow the graviton with a mass, are a natural (and, in some sense,
the simplest) extension of Einstein’s theory (see [105) 232] for reviews). In its most

basic form, linearized massive gravity is given by the Fierz-Pauli (FP) action [291],
Srp = SO} + S, (10.93)
where 81(5211 is the quadratic piece of the Einstein-Hilbert action of Eq. (10.40), and

S, is the Fierz-Pauli mass term,

1
Su= 5k / Axy=F (2 haphea g1 (10.94)

for a graviton mass m = hu/c, and where h,j, is a linear perturbation over the
background metric g5, as before. For background diffeomorphism invariance, we
explicitly include the /=g term in Eq. (10.94)), though the background metric in this
action should be thought of as Minkowski (yet potentially in curvilinear coordinates).

Extending this linear theory to a more general, nonlinear one is far from trivial (for

reviews see e.g. [103} 232]). Therefore, we will focus only on the linear theory



212

of Eq. (10.93), and will only comment on the relevance of the linearized analysis
for the nonlinear completion at the end of this section. Until then, we will write

“massive gravity” to mean Fierz-Pauli theory.

Massive gravity has many interesting features, including the fact that it supports five
independent GW polarizations corresponding to the helicity states available to a
massive particle: two tensor modes (helicity +2), two vector modes (helicity +1),
and one scalar mode (helicity 0). Over a flat background, these degrees of freedom
propagate following the Klein-Gordon equations of motion describing a massive
graviton,

(u - ,ﬂ) hap = 0, (10.95)

and are divergenceless and traceless,

V.h* =0, (10.96a)
h=g"%h,=0. (10.96b)

These three equations follow from the variation of Eq. (10.93)) with respect to the
inverse metric perturbation 4? [[105], 232] and contain all relevant properties of
GWs in this theory. Equation (10.93) immediately gives the dispersion relation
w? = Ak + ).

Before proceeding, we must discuss the length scales which appear in this calculation.
Around a flat background, there are only two length scales of importance: the
wavelength of radiation, Agw, and the graviton’s Compton wavelength, A,, = h/mc.
Generally speaking, the relevance of corrections to GR due to a nonvanishing graviton

mass will depend on the value of the ratio of these two,

Agw _ cu
=22 = = 10.97
o)== 507 (10.97)
or, equivalently, the ratio of the norm of the wave’s spatial wavevector to its angular
frequency,
|k|c
=— =V1l-a2. 10.98

This last quantity is just the graviton group velocity in natural units, which is the same
as the ratio of the speed of light to the graviton phase velocity (8 = ve/c = ¢/v)).
We should expect to recover GR results for vanishing graviton mass, when u — 0
and, consequently, « — 0 and 8 — 1. Note that for propagating GW modes, we
must have @ < 1, and consequently, £ is real-valued.
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When we move to the cosmological setting (or a more general curved background),
there is a third length scale at each point: the curvature radius of the background, Lgg.
In order for the Brill-Hartle averaging procedure to be valid, we need a separation
of scales, Agw < Lpg, since the B-H average makes errors of order Agw/Lpg
(this is clearly satisfied when comparing the LIGO/Virgo frequency band with the
cosmological curvature radius cH; 1. Now, in the following, we want to keep the
dependence on u, so we keep terms at the length scale 4,,. This is only compatible
with the B-H averaging procedure if we demand the additional separation of scales
A < Lpg.

We now return to a flat background to develop the results which we later promote to
a cosmological background. In a generic frame (that is, without special boosts) with
rectangular coordinates, and with the z-axis aligned along the wave’s direction of
propagation, the equations of motion can be shown to restrict the components of a
massive GW to be of the form (Appendix [[0.8.1):

B —Bhx ~Bhy  —Bh
1
() = | Pl 3@t s I (10.99)
~Bhy hy 3@’ —hy hy
_IBhl hx hy h

for the five linear polarization amplitudes /4, with A € {+, X, X,y, 1}. Here, we have
parametrized the single scalar mode allowed by the theory in terms of the longitudinal
amplitude (rather than the breathing amplitude, or some linear combination thereof),
treating it as the fundamental degree of freedom[y It is straightforward to check
that the metric of Eq. (10.99) is traceless and divergenceless, as required by the
equations of motion (Appendix [I0.8.T)). The GR case is recovered in the limit of
vanishing graviton mass, if we also re-enforce the requirements of transversality and

tracelessness by setting /iy = hy = hy = 0.

We must now determine the functional form of the GW effective stress-energy tensor
in FP theory. Varying the effective Lagrangian density from Eq. (10.93)) with respect
to g?%, as in Eq. (T0.31)), we may write the effective GW stress-energy tensor in

massive gravity as (Appendix [10.8.2)

(FP) _ 4+(EH) (FP)
TP = 70 4 ATOP, (10.100)

SImportantly, note that our definition of the longitudinal mode follows the standard in the GW
literature, and does not necessarily agree with the conventions from the massive-gravity theory
literature, e.g. Ref. [232] defines the longitudinal tensor as proportional to our elab - eg /2, instead
of just eL b
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. . EH
As in previous examples, 7EH)
ab

is derived from the Einstein-Hilbert piece of the
action, but now evaluated with the new on-shell condition Eq. (10.95)), rather than

the GR requirement of Eq. (10.41)). This gives
13" = S(Vah Vhea ) (10.101)
+ Kﬂ2<<hdahbd + thgathdhcd» :

The second term in Eq. (10.101)) is derived from the Fierz-Pauli mass term of
Eq. (10.94) and reduces to

ATy = —K#2<<hdahbd + igabh“’hcd», (10.102)

for on-shell perturbations (Appendix [10.8)). This result includes no derivatives of
the metric, as is to be expected from Eq. (10.94). Perhaps surprisingly, the mass

terms appearing Eq. (10.101)) and Eq. (10.102) exactly cancel, resulting in the same
functional form for the ESET as in GR,

K
TP - §<<VathVbhcd>>. (10.103)

This result is in agreement with one derived in [292] based on Noether’s theorem on
a Minkowski background (though note that Ref. [292] had a slightly different mass
term, but this difference cancels out after evaluating the ESET on shell). Despite
the fact that the two functionals have the same on-shell expressions, the solutions
hap» on which they will be evaluated differ, because they satisfy different linearized
equations of motion, Eq. (10.41)) vs Eq. (10.95). We caution that, as discussed at the
end of this section, the Isaacson expression Eq. should not be expected to
hold in a nonlinear completion of the theory over arbitrary backgrounds.

Decomposing the metric components into plane-waves, the above expressions imply
that the energy density pgw = Tpo, in some frame, may be written as in Eq. (10.36))
with Q4>¢d = Qé%cd. Breaking up the Fourier amplitudes into polarizations and
applying all the usual assumptions (i)—(vii) about the background, it may then be
shown that we can use Eq. (1I0.19) to write the energy density in terms of the
polarization PSDs as (Appendix [10.8.2):

T

el e
pow = /O ;mf)SA(f) £2df . (10.104)



215

where the sum is over the five linear polarizations A € {+, X, X, y, 1} as they appear in
Eq. (10.99), and we have defined

1 if A=+ X,
Aa(f)=1a*> ifA=xy, (10.105)
2ot ifA=1.

Clearly, higher powers of @ will be strongly suppressed in the limit of small mass
we are working in, but leave them in for now nonetheless. Note again that we have
assumed that the polarization amplitudes of Eq. (10.99) are statistically independent
because they are the fundamental degrees of freedom that diagonalize the kinetic

matrix of the theory.

With this expression for pgw in hand, the definition of the fractional energy density
spectrum, Eq. (10.29), then implies that

272°|fP

Qew(f) = 31
0

D (NSalf), (10.106)
A

and, as we have done in previous sections, we may call each summand in this
equation Qu(f), with Qgw(f) = X2 4 Qa(f), so that we can write the corresponding
polarization spectral density as

2

3H,
&m=%ﬁwﬂﬂmm. (10.107)

We now want to relate the GW energy density to the cross-correlation of the outputs
of two interferometric detectors. Instead of Eq. (10.99)), we would like to be able to
write the GW as a purely spatial metric perturbation (4o, = 0) in arbitrary frames
(i.e. without the need for special boosts). This is so we can have the perturbation be
purely spatial in the proper frame of the detector, which would then allow us to use
our usual expression for the detector tensor, Eq. (I0.23)), when computing the output

of a measurement.

In GR, the required gauge freedom is afforded by diffeomorphism invariance, which
is not directly available to us in massive gravity [105, 232]. However, we may
circumvent this restriction by introducing auxiliary fields into the action, designed
to reintroduce gauge freedom to the theory (the so-called Stiickelberg trick). We
would then obtain a generalized version of massive gravity that is invariant under
infinitesimal coordinate transformations, and which reduces to the usual theory after

fixing to a particular gauge (see Appendix [10.8.1).
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We refer to the gauge that returns the FP action of Eq. (10.93)) as the unitary gauge,
as opposed to the synchronous gauge, in which the metric perturbation can take a
purely spatial form without special boosts. In this gauge, a measurement via an
interferometric detector in the small-antenna limit can be represented by the double
contraction of the metric with the detector tensor of Eq. (10.23)), and the metric
perturbation can be decomposed as in Eq. (10.6), as explained in Sec.[10.2.3]

Unfortunately, the synchronous polarizations will not be statistically independent in
the linear basis of Eq. (10.6), which is commonly used in data analysis (e.g. [99]). In
fact, the 6 polarization amplitudes in the synchronous gauge, /4, can be obtained from
the 5 in the unitary gauge of Eq. (10.99), hp, via a (polarization-basis-dependent)

transformation matrix, M 4?2, given by

100 0 0
01 0 0 0
00 a* 0 0
B\ _
Ma)=10 0 0 o2 o | (10.108)
00 0 0 -%a?
00 0 0 o

so that iy = MAB hp, and where A € {+, X, X, y, b, 1} indexes synchronous polar-
ization amplitudes hs € {hy, hx, hx, hy, ho, I}, while B € {+, X, X, y, 1} indexes
unitary polarization amplitudes hp € {hy, hx, hy, hy, hi}. Had we started with a
basis for the unitary metric components different than Eq. (10.99)), all our results
would still apply after redefining M. AB accordingly. We provide an explicit expression
for h,p in terms of the unitary amplitudes in Eq. in Appendix [[0.8.1] The
fact that the 5 unitary amplitudes determine 6 synchronous amplitudes makes it

immediately clear that the latter are not statistically independent.

Taking advantage of the synchronous gauge to compute detector responses and taking
the unitary polarizations to be uncorrelated, the cross-correlation of two detector
outputs may be written directly in terms of the fractional energy spectrum for each
unitary polarization via Eq. (10.107

(R (H)hr (f1)) = 5( fof )Z Qs(f) (10.109)

3H
4 2|f|3
X A5 (HIMap(f) Map() T4 (1),

with Ag(f) as in Eq. (I0.103)), M as in Eq. (10.108)), and ' H,(f) the generalized
overlap reduction functions for the synchronous polarizations. These functions
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are defined as in Eq. (10.28), with a delay factor corresponding to v, = ¢/
[cf. Eq. (T0.98)], i.e.

. Axqp Axpp 1
;‘11/4 _ XI1 /l _ a2~ XI1 (1 _ 5“2)’ (10.110)
C c

after expanding for small @. The resulting overlap-reduction functions will not be the
same (even ignoring differences in normalization) as those used in existing stochastic
searches beyond GR [99, [117], because those assume v, = c. However, we should
expect that to be a good approximation as long as the extra delay in the time of flight
due to the nonvanishing mass, 6. IAIf" = —%CZZAX[[// ¢, is small with respect to the
timing accuracy of the instruments. For a treatment of overlap-reduction functions

without ignoring this correction, see [213].

Regardless of whether we neglect dispersive corrections to the overlap-reduction
functions or not, it turns out that, for differential-arm detectors, we have that
an | (2644 = 1) T if Aor A% in {b,1},

, = (10.111)
" oA A/FA 175 otherwise,

as long as differences in the phase velocities of different polarizations are negligible

(which is exactly the case for the Fierz-Pauli theory). This relation may be used to
put our result of Eq. (10.109) in the form of Eq. (10.39) with

1 if Ain {+, x},
Ea(f) = a? if Ain {x,y}, (10.112)
L2e?+1)7 ifA=1

plus terms of order ® and higher. Here, Z4(f) goes smoothly to the GR limit as
a — 0 (vanishing graviton mass) for the tensor and vector modes. However, notice
that Z;(f) — % (rather than vanishing) in this same limit. This is reminiscent of
the vDVZ (van Dam, Veltman, Zakharov) discontinuity [293|294] (see also [295]]

for a similar effect, and [232] for more discussion). For interesting details on the

derivation of Egs. (10.109)—(10.112)), we refer the reader to Appendix

Relation to nonlinear massive gravity

There is no problem in thinking of the action Eq. (I0.93) as describing a linear

spin-2 field A, on a curved background g,;,. However, if we want A, to represent
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metric fluctuations of the gravitational field, the theory must have a nonlinear
completion, which is known to have several problems (see e.g. [[105, [232] for more
discussion). One which we have already mentioned [below Eq. (10.112))] is the
vDVZ discontinuity, by which the limit of vanishing graviton mass u — 0 does not

recover GR (e.g., the scalar degree of freedom does not decouple).

Another major problem is the Boulware-Deser ghost [296]], which must be excised
order-by-order in the graviton self-interaction. Controlling this ghost degree of
freedom to all orders is possible with a specific set of self-interactions, known as
de Rham-Gabadadze-Tolley (ARGT) massive gravity [297]]. This has been extended
to a theory of two interacting metrics by Hassan and Rosen [221]], which has dRGT
as a careful scaling limit. Bigravity propagates one massive and one massless spin-2
field (7 total degrees of freedom), whereas taking the dRGT limit eliminates the
massless mode (leaving only 5 dynamical degrees of freedom, as in the linearized

theory).

Indeed when expanded about a Minkowski background to linear order (quadratic
in the Lagrangian), dRGT agrees with Fierz-Pauli theory. This might lead one
to believe that the preceding FP analysis can be directly lifted to dRGT, or even
to bigravity, but this conclusion is unwarranted. The quadratic Lagrangian about
nontrivial background-field configurations [298H302] can look rather different from

the simple FP Lagrangian[°]

In fact, the difference from the FP Lagrangian is crucial for the health of such
theories, because otherwise the nonlinear theories would also exhibit problematic
phenomenology, like the vDVZ discontinuity. However, healthy nonlinear massive
gravity theories are protected from vDVZ phenomenology by the Vainshtein screening
mechanism [303]]. The Vainshtein mechanism leads to a nontrivial, nonlinear field
configuration (like a condensate) with a new length scale, the Vainshtein radius.
Within this radius, the effective couplings for the massive degree of freedom can be
very different from what is seen when expanded about the Minkowski background,

thus reverting to the phenomenology of general relativity.

In short, the ESET for nonlinear massive gravity on a general background (e.g. one

®For a special subclass of “proportional” background configurations in bigravity [299} [302], two
linear combinations of the two metrics’ perturbations can be combined into the massless and massive
eigenstates which diagonalize the kinetic matrix of the quadratic Lagrangian. In this case, the massive
mode does have a FP Lagrangian. However, this is likely a special case—as far as we have been able
to discern, the transformation to the mass eigenstates has not been performed for a more general
background.
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exhibiting Vainshtein screening) should be considered an open problem. It seems

unlikely that the FP result lifts to the general massive gravity result.

10.4 Conclusion

The detection of a stochastic gravitational-wave background will provide a unique
opportunity to study the properties of gravitational waves as they propagate through
cosmological distances, and will thus be an invaluable tool to study extensions
of general relativity. Properly interpreting the theoretical implications of such a
detection will require a detailed understanding of the assumptions that go into the
usual searches for a stochastic background, and how the measurement process might
be modified in theories beyond general relativity. Towards that goal, in this Chapter
we have laid out the formalism underlying searches for stochastic signals in a generic
fashion that makes it easily applicable to a large family of theories. We have also
surveyed the standard set of assumptions that go into these searches, evaluating their

generic applicability, or lack thereof.

First and foremost, we find that most existing treatments of stochastic backgrounds
beyond GR fail to consider possible modifications to the effective stress-energy carried
by a gravitational wave of a given amplitude and frequency [107, 112, 213,214,216~
218]]. This is important because the goal of searches for stochastic backgrounds,
within GR or beyond, is precisely to measure the amount of energy that exists in the
form of stochastic gravitational waves. Accordingly, data analysis strategies tend
to be parametrized directly in terms of an effective energy spectrum, Eq. (10.29).
However, this is only possible if one knows the relation between the energy density
and the observables at the detector (e.g. the cross-correlation of strain detector
outputs)—this will depend on the specific structure of the underlying theory of
gravity, and in general need not be the same as in GR. Therefore, parametrizing
model-independent searches for backgrounds beyond GR as traditionally done will
result in the use of a quantity that should not generally be interpreted as the GW
energy density, and may thus lead to incorrect comparisons between theory and
experiment. Instead, we find it advisable to parametrize theory-agnostic searches
using the power spectrum of polarization amplitudes, Eq. (10.16]), which have a
(mostly) model-independent interpretation. One can always translate amplitudes into

effective energies for any specific theory, as sketched in Sec.[10.2.4]

We also reviewed the standard set of simplifying assumptions that the stochastic

background is (f) Gaussian, (7)) ergodic, and stationary, with no correlation
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between amplitudes from different sky locations or () polarizations, and with
equipartition of power across polarizations; and also, commonly (although not
universally) assumed to be isotropic. While we find that the first four of these
premises are generally applicable beyond GR, the same is not true for the rest—this is
without considering changes to the potential sources of the background in beyond-GR
theories, which may themselves break more of the assumed symmetries. In particular,
it is not reasonable to always assume that the usual linear GW polarization amplitudes
of Eq. will be statistically independent and have well-defined phase velocities,
as this will not be true unless the chosen polarization basis diagonalizes the kinetic
matrix of the underlying theory of gravity. Similarly, one should be careful in
assuming that power will be equipartitioned among polarizations, even for modes
with the same spin-weight, as parity-asymmetric theories may predict differences in
the generation and propagation of modes with different helicities. Deviations from

isotropy should be expected in theories with intrinsically preferred frames.

Finally, we have provided specific examples of beyond-GR theories in which these
traditional assumptions break down, and in which the GR expression for the stress-
energy of a gravitational wave may receive a correction: Chern-Simons gravity,
scalar-tensor theories, and massive gravity. For all these theories, we find that
the cross-correlation of the outputs of two ideal differential-arm detectors can be
written in terms of the effective GW stress-energy as in Eq. (10.39)), with different
E(f) factors encoding how each theory departs from GR. This set of examples is
not intended to be exhaustive, but merely to show that it is possible to construct
viable theories that violate standard assumptions in stochastic searches. This will be
important in the interpretation of results like [99, [117]] once a stochastic signal is
detected.
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10.5 Appendix: Plane-wave decomposition

Begin with our compact expression for the plane-wave expansion of the metric
components, Eq. (10.1):

1 . L
hap(X) = o / hap(K)e™* dk, (10.113)

with the integral over the four-wave-vector k as prescribed by our definition of dk in

Eq. (10.2),
dk = 2¢ 6(|k|* = |ke|?) [k dK . (10.114)

This definition of the four-dimensional Fourier transform is designed to yield
Eq. (10.3), and thus follows the convention of recent stochastic GW background
literature (e.g. [183, 185} 222]). This choice, however, differs from the Lorentz-
invariant measure most common in field theory (see e.g. Eq. (3.18) in [304] or Eq.
(4.4) in [303]),

dkoer = c6(|k|? - [ky|?) dk/(27)
= |k|dk/2/(2n)*. (10.115)

Note that this difference in measures results in a difference in conventions for the
Fourier amplitudes. Specifically, this means that A(k) o |l§|ﬁ(k)QFT (the factor of

proportionality depends on prefactors outside of the integral).

With the help of Eq. (10.114), Eq. (I0.113) can be immediately rewritten as an
explicit integral over the four-vector kK, transforming each component independently,

c [ - o - 5 o
ha() = / Fap(R)e™ S(RIZ = 7o) 71 k. (10.116)

Here /?w =k (w) encodes the functional dependence of k onw imposed by the specific
dispersion relation required by the underlying theory of gravity—in GR, this is just
the usual demand that |I_<)w| = w/c). For clarity, we may split the 4-vector Kk into

frequency and spatial lz—vector,
R l (o] (o] - N EEN
hap(t, %) = — / / / hap(w, k) €370
T J_o JS2J0
x S5(|k|* = |ko|?) |k d|k| d dw, (10.117)
where we have written the spatial three-integral in polar coordinates such that

dk = k|2 d|k|dk, (10.118)
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with angular domain over the 2-sphere, S2. In this step, we have also used the fact

that |l_c)| is non-negative by definition to set its integration limits.

We may now use the fact that, for any continuously differentiable function g(x) with

real roots x;,

s = ) 5=, (10.119)

i

to further simplify the integrand to

— 1 © © 7 g i -)._;5_
hab(ta x) = E/ '/SZ‘/O h(lb(w’ k)e (k wt)

1 T TSN
X —0(|k| = |kol) || d|k| dk dw, (10.120)
w
where the integration limits have allowed us to ignore the negative root, |l_<)| = —|l;w|.

It is now straightforward to carry out the integral over the norm |l;| to obtain:
- 1 ® 4 > - ~
hap(t, X) = — / / hap(w, k)e**Ddkdw, (10.121)
2 —oo0 J§2

where now & is necessarily on shell (|l_c)| = |l_c)w|). Writing this in terms of f = w /27,
A =—k and Vp = |I_c) Jw|™!, we immediately recover Eq. (10.3)), as promised,

hap(t, %) = / / hap(k, A)e ST gad £ (10.122)
—oo Jsky
thus justifying the second equality in Eq. (10.2)),

dk = dwda. (10.123)

10.6 Appendix: Correlation and spectral density

We will reproduce the standard result that assumptions of stationarity and

of uncorrelated sky locations allow us to write the cross-correlation of the Fourier

amplitudes as in Eq. (10.16),
7* 7 ’ 1 ’ ~ At
(ha() har(K) = S6(f = f1) 82 = ') Spa (K), (10.124)

with S44/ the cross-power spectral density of stochastic signals of polarizations A
and A’.

The second delta function in Eq. (10.124)) is just a direct statement of assumption

(i), so focus on the rest of the equation by suppressing the dependence on /1. We are
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then left with simple one-dimensional Fourier transforms in the expression for the

cross-correlation,

(ha(P)ha(f))) = < / ha(t)e*™/ds (10.125)

X / ha(t)e 2T "'dt’>.

Defining 7 = ' — ¢, this can be put in the form:

() = [ [ haohate s o) (10.126)

x e 2T 2m( = qrdy |

Now note that the term in brackets is simply the correlation of h4(t) and ha/(¢'),

which by assumption of stationarity depends only on the time difference 7, i.e.
(ha®ha(t + 1)) = (ha(0)ha (7)) (10.127)

where we have set t = 0 for concreteness. We may therefore carry out the integral

over t to obtain
(Ry(H)ha(f)) = 6(f = f) / (ha(0Yha (1)) e/ 7dr . (10.128)

Now, the Wiener-Khinchin theorem [224] guarantees that, if the cross-correlation
is continuous, we can always define a function of frequency to give the Fourier
transform of the cross-correlation (the integral above); that can be taken as the

definition of the one-sided cross-power spectral density,

Sxy(f) =2 / (X(0)Y (1)) e 27 dr, (10.129)

for any two stationary random processes, X(¢) and Y (¢), and where the prefactor is
chosen so that S(f) = S(| f]) is the one-sided spectral density. All this means is that

we may write
o ~ 1
(Ba(F) har(£)) = 58(f = F)San(), (10.130)

or, restoring the 72 dependence,

(Rip(k) ha (K)) = %5(f — £)8(A — )San(K) . (10.131)
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10.7 Appendix: Scalar-tensor computations

Here we provide details on the computations of the ESET and correlation functions in
Brans-Dicke gravity (Sec.[I0.3.3). In order to do so, first consider the transformations
between the Jordan and Einstein frames. By definition of the Einstein frame, in a

generic scalar-tensor theory these can be written as (e.g. Eqgs. (34)—(36) in [84])

gab = A%(¢)gav (10.132a)
¢=A"(p), (10.132b)

for some auxiliary function A(¢). We can then use this to define the coupling a(¢) as

_dlnA(p)

a(p) iy

(10.133)

To recover the Brans-Dicke theory, we simply expand this coupling to linear order by
setting
a(p) = ap = Qwpp +3)7'/%, (10.134)

so that In A(¢) = ap(¢ — ¢o) for some fiducial value ¢, and Eqgs. (10.132)) become
(Jordan to Einstein)

gap = €20 g (10.135a)
¢ = e 20l (10.135b)

For later convenience, define 6¢ = ¢ — ¢g and rescale the Jordan field by letting
¢ — ¢/po for some background value ¢y. After doing so, Eqgs. (I0.133) imply
(Einstein to Jordan)

8ab = igab, (10.136a)

- $o

op = —M . (10.136b)
261’()

With the above notation in place, let us perturb the two metrics and scalar fields to first
order, and then obtain the relationship between the perturbations in the two frames.
Letting gqp — gap + hap and ¢ — ¢o + 0¢ in the Jordan frame, and g,p — gup + hap

and ¢ — ¢o + d¢ in the Einstein frame, we can then apply the transformations from

Eq. (10.136) to write

8ab + hap = 8" (B0 + 66) (8ab + hap)
~ ab + (hab + 8av0P/ o) - (10.137)
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Collecting terms of the same order, this implies that, to first order in the perturbations,

8ab = gab (10.138a)
hap = hap + 2006¢8ab » (10.138b)
O =2ap0¢, (10.138¢)

where we have defined ® = —d¢/ ¢ for convenience. Using this definition to replace
the second expression by %, = hap — Pgap, it becomes clear these are Eqs. (10.80)

provided in the main text.

10.7.1 Effective stress-energy tensor

We wish to compute the effective GW stress energy in the Einstein frame. We will do
so by taking advantage of the gauge proposed in [276], in which the trace-reversed

Einstein-frame perturbation, &y, satisfies

=20, (10.139a)
ab =0, (10.139b)

and follows simple free-wave equations of motion,

Ohay =0, (10.140a)
od®=0. (10.140b)

In this gauge, the Einstein-frame trace-reversed metric perturbation is equal to the
regular (non-trace-reversed) perturbation in the Jordan frame: ~l_1ab = hgp. Thus, ~/_1ah

may be decomposed into synchronous polarizations as in Eq. (10.8T).

To obtain an expression for the GW stress energy in the Einstein frame, we may
follow the procedure outlined in Sec. [[0.2.4]starting from the action of Eq. (10.76).
Perturbing the metric and scalar as described above, and discarding terms higher

than second order, we may obtain the quadratic Lagrangian density corresponding to
S® in Eq. (10.34),
£0 = 2O 4 g [-25°V(66) V(59)] (10.141)

where ;g& is the Einstein-Hilbert piece of Eq. (10.42)), but in terms of g h. The
variation of this quantity with respect to 7%’ and §¢ will lead to the ESET per
Eq. (I0.31). This will be given by a contribution from the Einstein-Hilbert part of
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the action (the Ricci terms above), and another from the rest. We will call those two

terms IQ(EH) and AZ‘gT) respectively, so that Z‘S}T) = I[EEH) + AIQZT).

Focus first on the EH term. This will not be the identical to Eq. (10.43)) in GR, because
there will be an extra contribution from the nonvanishing trace of %5, Eq. (I0.139a).
To compute it, we may take a shortcut and begin from an expression obtained
MacCallum and Taub for the effective EH quadratic Lagrangian contributing to the
GW stress-energy far away from the source [262]. The corresponding stress-energy

tensor can be written as

| s ooerd Lo o7
ISZH) = K<<§Vab6dvbbcd - Vcbdavcbbd - Zvabvbb

1_ - - 1_ -, _ -
+ Evchabvcb + 8ab (Evehfcvfbec

| I
7 Vehea VR + gve@ve@) >> . (10.142)

This expression is valid whenever separation of length-scales allows for a clear
definition of the waves over some background. In GR, application of the equations of
motion in a transverse-traceless gauge reduces Eq. to the Isaacson formula,
Eq. (10.43). We proceed similarly here but keeping the trace, using Eqs. (10.140)

and (10.139).

First note that the second term in Eq. (10.142)) may be re-written by integrating
by parts “under the average.” This is because the Brill-Hartle average of a total
derivative is smaller by a factor of order O(Agw/ Lave) than non-vanishing averages,
where L,y is the averaging length scale (see e.g. Sect. IIA in [219]). This then
implies that

(~VahocVha") = €(V*Vahpe) 1a") (10.143)

Agw
1+O(L )

ave

Therefore, the second term in Eq. (10.142)) vanishes via the equations of motion
[Eq. (10.140a)], up to this order. The same logic may be applied to all terms in the
second and third lines of Eq. (10.142), which will vanish due to Eq. or
Eq. (I0.139b). We are then only left with the first and third terms in Eq. (10.142).
The first term is just the same quadratic contribution that appears in Eq. (10.43) for
GR. Meanwhile, the third term involves the trace of f_lab’ and may thus be written in
terms of the scalar field using Eq. (10.1394). The contribution of the Einstein-Hilbert
part of the action to the ESET, Eq. (10.142), in ST gravity then reduces to

1 - -
13" = SV Vhea) = K(VuDT50) (10.144)



227

Switch now to the contribution from the kinetic term of the scalar field, AIS?T).
This will be obtained from the corresponding part of the quadratic Lagrangian of
Eq. (I0.141), namely AL® = —2,=gkg"V,(6¢)V(6¢). The variation of this

quantity may be written as

SALP
S gab

= k=8 [8avg"’ — 6071 | Voo Vadep, (10.145)

using the usual fact that 64/=g = —/=8 ga»0 g“b /2, and explicitly symmetrizing the
variation of the metric. Therefore, Eq. (I0.31)) implies that

AT = 2K<<(—5ab§aﬁ + 26%5%) V50 Vlg590>>
=4V, 00 Vpop), (10.146)
where one the first term vanished due to Eq. (10.140D), by integration by parts under

averaging as before.

We may now write an expression for the total effective stress energy of a scalar-tensor
GW in the Einstein frame:

T =700 4 AT (10.147)
_ 1 redyo . 1, -2
=K 2Vall Vb,’:lcd + ) 1 Va(DVbCD ,

where we have used the fact that §¢ = ®/(2ay) to first order, Eq. (10.138c)). This

may also be written in terms of the Brans-Dicke parameter using the definition of ay,
Eq. (10.134)), to obtain our final result presented in Eq. (10.86).

10.7.2 Energy density spectrum

Taking the time-time component of Eq. (10.86) and assuming (i7) ergodicity, we
immediately obtain an expression for pgw in a local Lorentz frame (g,» = 1,p) from

Eq. (10.86),

K - -
paw =755 [(0:77 0,1} ) + Hwpp + 1)(0, D3, D), (10.148)

or equivalently, because @ = S“bbab/Z by Eq. (10.81),

K P ..
paw = 25 [¢%e/ + (wpp + 1) g g"]

X (0;hijOhir) - (10.149)
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Expanding out ;; into plane-waves, pgw can then be put in the form of Eq. (10.36))
with Q?*“¢ as in Eq. (10.87) of the main text.

For convenience, denote each of the two terms in Eq. (10.148) ppy and psr
respectively, so that pgw = pgu + pst- Making use of all the usual assumptions
(i)—(vij) about the background, we can use Eq. (I0.19) to write pgy in the same form

A .

except that now the sum is over A € {+, X, b} with S, = Sg by Eq. (10.81)). For psr,
a similar derivation to the one for pgy gives the analogous result that

2 0
pst = % (2 + 2wpp) / So(f)f2df . (10.151)
0

Adding both contributions together, we may then write the total energy spectrum
compactly as we did in Egs. (10.89) and (10.90) in the main text.

10.8 Appendix: Massive gravity computations

Here we provide more details for the computation of the GW stress-energy density
and correlation functions presented in Sec.[10.3.4] In Appendix [[0.8.1] we derive
the expressions for the unitary and synchronous metric components, presented
respectively in Eqs. (10.99) and (10.108) in the main text. In Appendix [10.8.2]
we obtain an expression for the ESET in Fierz-Pauli massive gravity, and one for
the energy density pgw in terms of the unitary PSDs, making use of statistical
assumptions about the background. Finally, in Appendix [I0.8.3] we compute an
expression for the cross-correlation of the output of two differential-arm detectors in
the form of Eq. (10.39). We will make repeated use of the massive Klein-Gordon
equation of motion of Eq. (10.95)), as well as the fact that the metric perturbation

must be divergenceless, Eq. (10.964), and traceless, Eq. (10.96b)). Throughout this
appendix, “massive gravity” refers to the Fierz-Pauli theory of Eq. (10.93).

10.8.1 Polarizations
Unitary gauge

We would like to decompose a massive plane GW into a basis of polarization tensors.

In GR, diffeomorphism invariance guarantees that we may always find a gauge in
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which the perturbation is purely spatial, as in Eq. (10.6). Although this is not possible
in FP gravity, we may still write a generic metric perturbation propagating in the

z-direction, h,,, as

h()() /’lo 1 hOZ h03

ho ho+he  hy  h
(huy)=| 10 070 e I (10.152)
h20 h)( hb - h+ hy

and then apply the constraints from Eqgs. (10.96)) to cut down the number of degrees

of freedom.

First, for a GW with wave-vector k¢, Eq. (10.96a) implies k“h,; = 0. Thus, picking

a frame in which the wave travels in the z-direction,
(kH) = (w/c, 0, 0, |1€|), (10.153)
lack of divergence, together with symmetry, must mean
how = hyuo = —Bha, = —Bhys ., (10.154)
with S as in Eq. (10.98)). Eq. also implies that
hoo = —Bh3o = —Bhoz = B has . (10.155)
However, tracelessness, Eq. (10.96b), also demands
h=n""hy, =—hoo +2hy + = 0. (10.156)

Therefore, if we choose to get rid of the time-time degree of freedom by writing
hoo = 2hy + hy, Eq. (10.96) requires

1
2o+ I = B2 = =3 (/32 - 1) h, (10.157)

so we will only need one scalar polarization. This could have been anticipated from
the fact that a symmetric rank-2 tensor in four dimensions can have at most ten
independent components, five of which are necessarily constrained by Eq. (10.96)),
leaving only five degrees of freedom. These correspond to the five possible helicities

of a massive spin-2 particle.

Choosing to work in terms of the longitudinal scalar amplitude, our final expression

for the metric perturbation in the unitary gauge native to FP gravity is Eq. (10.99),
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i.c.
B*h —Bhx —Bhy —Bh
—Bhy —1a’h +h h hy
() = | 2 T2 x e L : (10.158)
_ﬁhl hx hy hl

where we have used the fact that (8% — 1) = > by Eq. (10.98).

For later convenience, note that the metric perturbation of Eq. (10.158)) satisfies

hP (KR, (K') = 2 > Calw, ') ha(k) Hy(K), (10.159)
A

with a sum over unitary polarizations A, and for some frequency-dependent normal-

ization coefficients C4 defined by

1 if A=+ X,
Ca(w,0') = {1 -pp if A=x,y, (10.160)
SU=BBY-3(B-p) ifA=1.
The form of these coefficients should not come as a surprise, since they are just terms
of the form e?,,e4%”, analogous to those in Eq. (T0.14), times extra factors arising

from the trace and timelike components of Eq. (10.158]). Note that C4 acquires its
frequency dependence via 8 and ', Eq. (10.98).

Synchronous gauge

As mentioned in Sec.[I0.2.3] it is easiest to compute the influence of a gravitational
wave on a LIGO-style detector in the synchronous gauge, because the coordinate
locations of the mirrors do not change in this gauge [220]]. However, massive gravity
lacks the linearized diffeomorphism freedom needed to transform into synchronous
gauge. Fortunately, we circumvent the lack of linearized diffeomorphism invariance
in massive gravity by using the Stiickelberg trick: we can add extra auxiliary fields to
write the FP action, Eq. (10.93), as a gauge-fixed version of a gauge invariant theory
[306]. After adding the Stiickelberg fields, &,, we will have the usual freedom to

carry out infinitesimal coordinate transformations,
hab = hap + Va&p + Vpéa, (10.161)

We will want to choose the fields &, such that we can go from the unitary gauge A, of

Eq. (10.158)) to a synchronous gauge %, in which Ag, = 0. To do this, pick the same
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frame as before, in which k is given by Eq. (I0.153)), and use linearity to consider
the transformation of the degrees of freedom in Eq. (10.158)), {A., hx, hx, hy, i}, one
by one. Below, we will temporarily let c = 1 and k = |l;| for simplicity, but the final
result of Eq. (10.173) is insensitive to this. For simplicity, we also let g,» = n4p-
(For more details on the application of this technique to massive gravity, see e.g.
Sect. 2.2.2 in [[105]] or Sect. IV in [232]].)

Because the two tensor degrees of freedom, /. and hy, only appear in the spatial
part of Eq. (10.158), these modes already satisfy the synchronous gauge condition.
Next consider the vector-x amplitude, /y: to determine the transformation that would
make its contributions to time-like components in Eq. (10.158)) vanish, suppose the

unitary perturbation is given simply by

0 —Bhy 0 O
—Bhy O 0 Iy
h,,) = , 10.162
(i) 0 0 0 0 ( )
0 hy 0 0

and let the single degree of freedom be a simple plane-wave, hy = A, sin(wt — kz).
The goal is to find the form of &, in Eq. (10.161) that yields /g, = 0 in this frame.
For instance, for the time-time component, Eq. (10.161)) and our requirement that
hoo = 0 imply

0ép=0 = & =0. (10.163)
In the last step, we integrated over time and used gauge freedom to pick initial
conditions in which &y(X) = 0 for all X, so that we can ignore the integration constant.

Similarly, using this result for & and demanding /g; = 0, we can also conclude that

Eq. (I0.161) requires
hotr + 00é1 + 0160 = 0 = 0,61 = Bhx, (10.164)
which we can integrate, as we did above, to get
& = —gAx cos(wt — kz). (10.165)

Since this is the only nonvanishing component of the Stiickelberg field relevant to
the vector-x amplitude, Eq. (10.161)) implies that

hiz = h31 = hy+ 061 = (1 —,6’2) hy, (10.166)
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and h,, = 0 otherwise, for a unitary metric perturbation whose only non-zero
components come from Ay, as we supposed above in Eq. (10.162). It can be shown

that the same exact argument, applied to &y instead of Ay, yields an analogous result,
hos = hy = hy + 8.6 = (1 —,82) hy, (10.167)

if we had started with a unitary metric perturbation whose only non-vanishing degree

of freedom was hy.

The case of the longitudinal amplitude, Ay, is slightly more complicated, but can be

handled in the same way. Suppose the perturbation is given simply by

:Bzhl 0 0 —ﬁhl
0 1(B-1)n 0 0
(hyy) = (6= h - : (10.168)
0 0 1(B-1)m 0
—Bh 0 0 h

and let iy = A; sin(wt — kz), as we did above for Ay (and, implicitly, Ay). In this case,
the requirement that igo = 0 implies, via Eq. (10.161)), that

1
hoo + 20080 = 0 = &y = —Eﬁzhl, (10.169)

and so, integrating over time, we conclude that
ﬁ2
& = —Ajcos(wt — kz), (10.170)
2w

where we have neglected integration constants, as before. Now, the result for & and
the requirement that /193 = 0 mean that Eq. (10.161)) also implies

3
h03 + (9063 + 83&) =0 = (9053 = (ﬂ - %) h, (10171)

and so, integrating over time,

2
f-L(2-

l) Ajcos(wt — kz). (10.172)
w

Since &) and &3 are the only nonvanishing components of the Stiickelberg field
relevant to the longitudinal amplitude, Eq. (I0.161)) implies that

1
hit = hyp = hyp = hyp = > (,32 — 1) h, (10.173)

2
B33 = has + 20,63 = (,82 _ 1) I, (10.174)
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for a unitary metric whose only non-zero components come from /4, as we supposed

above in Eq. (10.168).

Putting back all degrees of freedom together, we obtain our final expression for the

metric perturbation in a synchronous gauge,

0 0 0 0
0 hy—1a’h h 2h
()= | T2 I | (10.175)
h)( _h+_§a h] a hy
0 o?hy a’hy a*h

with @ as in Eq. (10.97). In the limit of no graviton mass (@ — 0), we manifestly
recover the transverse-traceless expression familiar from GR without the need for
further gauge fixing.

Finally, it will be useful to define a transformation matrix to go from unitary to
synchronous polarization amplitudes. The unitary amplitudes are simply the degrees
of freedom appearing in Eq. (10.158)), while the synchronous ones are just

0 0 0 0
0O hy+nh h h
() =| . 0770 = = (10.176)
0 bx bb - b+ lly
0 hx fly h

in full analogy to Eq. (10.6). Comparing this definition to Eq. (10.173), it can be
easily shown that the transformation matrix M, AB satisfying hy = M, AB hp is given by

Eq. (10.108).

10.8.2 Effective stress-energy tensor

We wish to obtain an expression for the ESET of GWs in Fierz-Pauli massive gravity,
following the procedure outlined in Sec.[[0.2.4] To do so, begin with the total FP
action of Eq. (10.93), Spp = Sgu + Sy, with S the Einstein-Hilbert action of
Eq. (10.40), and S,, the contribution from the scalar field given by Eq. (10.94)). All
computations in this section will be carried out in the unitary gauge native to FP
gravity, Eq. (10.99), since those polarization amplitudes are the fundamental degrees
of freedom that we can take to be uncorrelated in this theory (since they diagonalize

its kinetic matrix).

We will consider the two terms in the FP action separately. As in the scalar-tensor
case (Appendix [I0.7), we may obtain the contribution from the Einstein-Hilbert part
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by starting from the MacCallum-Taub expression for the stress energy, Eq. (10.142).
Unlike for scalar-tensor, however, we may now ignore all terms showing the trace
and let Ay, = hyp, thanks to Eq. (T0.96b). With these simplifications, Eq. (T0.142)

becomes

1
Ty, = K<<§Vah“’vbhcd ~ VehaaV<hy' (10.177)

1 ‘ 1 .
+ gab (Evehfcvfhz - ZVethVeh“’)>>.

The first term in this expression yields the Isaacson tensor obtained in GR, Eq. (10.43)),
except now the sum must include all five polarizations allowed in Eq. (10.99)), not
just the transverse-traceless ones. The second term may be rewritten via integration

by parts “under the average,” as discussed around Eq. (I0.143), so that it becomes’|
(~VehaaVhp") = 1 {haahy®) + (avg. error), (10.178)

after applying the equations of motion, Eq. (10.93). A similar argument shows that
the third term vanishes due to Eq. (10.96a), while the fourth and final term takes a

similar form as the second one,
=V oheaVeRYYy = P {h“heg) + (avg. error) . (10.179)

Altogether, this means that the contribution to the ESET from the Einstein-Hilbert

part of the action is

K
T = S (Vah Vohea) (10.180)

+ KU Chaahp® + Lgaph™hea) .

Now focus on the contribution from S,, in Eq. (10.94)). This action is already the
quadratic action S® needed for Eq. (T0.34), namely

1 .
L,(f) = ZKﬂzhabhcdﬁ(gabgcd - gacgbd), (10181)

where we have explicitly written out the antisymmetrized terms. We have also written

h*® with indices up, to match the index position convention used in [219] and thus

TThe error here arises from the level at which total derivatives average out to over the length Lyye.
Naturally this length needs to be very large compared to the gravitational wavelength, but its hierarchy
with the Compton wavelength is more subtle. To justify keeping the 1 terms, we need the averaging
error to be small compared to the u? terms.
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in deriving Eq. (I0.142) [ The variation of this quantity with respect to the inverse

metric can be shown to be

5Ly
P gcd

1P V=g [heaha® + §8eahanh®™], (10.182)

where we have used the fact that 6gu, = —8uc(684)gap, ON—=8 = —V=28 8ar08°? /2,
and that, on shell, the perturbation is traceless by Eq. (10.96b). The contribution of
S, to the stress energy may be obtained directly from this variation using Eq. (10.31):

1 :
ATL?;P) = _Kﬂz«hdahbd + Zgabhcdhcd» . (10.183)

Adding both contributions computed above, the total ESET in massive gravity,
T = TSH) + ATSZP), is then

K
Tup = 5<<Vah“’vbhcd>>, (10.184)

as presented in Egs. (10.100)—(10.103]). We further discuss the interpretation of this

result in the main text.

We now compute an expression for pgw as a function of the PSD of the unitary
polarization amplitudes of Eq. (10.158)) [Eq. (10.99)) in the main text]. Expanding
the metric perturbation into plane waves in the local Lorentz frame of the detector
(with gap = 14p), as in Eq. (10.1)), and taking the time-time component of the ESET,

we get

K
paw = 75 (0,h"P 8, hap) (10.185)

-k 1

= 2—024_”2 / <ilzﬁ(_k)ila:3(k/)> ei(k+k’)-xww/a‘lza‘lzl,

assuming (7)) ergodicity as usual. The second equality was obtained by proceeding
identically as in GR (Sec.|10.3.1). The contraction inside the angular brackets can
be rewritten in terms of the unitary polarizations using Eq. (10.159),
(Fap (1R (6)) = 3" Cate, ) (10.186)
X (ha(-K)ha(K))).

8This is a somewhat subtle point, since a wrong index position generates implicit dependence on
the (inverse) metric. Ultimately it does not matter whether A, or h%? is treated as the fundamental
variable, so long as the same choice is made for all parts of the action when performing the variation
with respect to g%,
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for a sum over the degrees of freedom A of Eq. (I0.99), and C,4 as defined in
Eq. (10.160).

Making use of all the usual assumptions (f)—(vii) about the background, we can then
use Eq. (10.19)) to write pgw as

nc? [
pow = 7 /0 ;lA(f)SA(f)fzdf, (10.187)

for A4(f) = Ca(f, f), and Sa(f) the PSDs of the unitary polarization amplitudes.
Here we have assumed that the polarization amplitudes in the unitary gauge are
statistically independent, which is justified because, unlike the synchronous ampli-
tudes, they diagonalize the kinetic matrix of the theory. Note that we recover the GR
expression, Eq. (10.50), in the limit of vanishing «, if we also force Ss(f) = 0 for
nontensorial modes, which is appropriate if these additional degrees of freedom are
frozen out [[105]].

10.8.3 Cross-correlation

Here we derive an expression, in the form of Eq. (10.39), for the cross-correlation
of detector outputs as a function of the fractional energy spectrum of massive
gravitational waves, Eq. (10.106). Going back to Eq. (I0.26), we may write the
cross-correlation of the outputs of two detectors as

(i Hir(r1) = [ anai (B 00ha ) (10.188)
x FyA L () T e,

where the under-tilded quantities are defined in the synchronous gauge of Eq. (10.175]).
The reason we carry out the expansion in terms of the synchronous amplitudes is that
only in the synchronous gauge may we write out the detector response by applying
Eq. (I0.23). However, we need a relation in terms of the unitary degrees of freedom,
which diagonalize the kinetic matrix of the theory—we obtain such an expression

below.

First, assuming a (i7f) stationary and isotropic background, with (iv) uncorrelated
sky bins, we may rewrite the above equation as (see Appendix [I0.6])

(PR () = 67 = 1) (Ba(Hbar(F)

x T2 (), (10.189)
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where we have pushed all the directional dependence into the generalized overlap re-
duction functions, FA;AI,( f), of Eq. (10.28)). Using the transformation of Eq. (10.108)),

we can now write this directly in terms of the unitary polarization amplitudes,

(i (D () = 6(f = 1) (ip(Fhw () (10.190)
’ AN’
X Ma®(f) Ma " (/)T77,(f).
Here we have explicitly denoted the frequency dependence in M, AB (f), which is
acquired implicitly via @ in Eq. (10.108]). Because the unitary polarizations can be
taken to be () statistically independent, we may rewrite the above equation as a

single sum over B,
~y 1
(B (Dhr (1)) = 56 = f) ; S5(/) (10.191)

X Map(f) Mars(f) T2 (1) .

Using Eq. (10.107), this may be written directly in terms of the fractional energy
spectrum for each unitary polarization as in Eq. (10.109).

Without more information about the detectors, Eq. would be our final
result for massive gravity. However, we may further simplify this for the case of
a differential-arm instrument that effects a measurement via the detector tensor of
Eq. (10.23)). In that case, it may be shown from the definition of the antenna patterns,
Eq. (10.25)), that F Ib(ﬁ) =-F }(ﬁ) (e.g. [18]). This means that the generalized overlap
reduction functions, Eq. (10.28), for the breathing and longitudinal modes will not
be diagonal. In fact, this is evident from our expression for the 4" factors for

I
differential-arm detectors, Eq. (T0.ITT)), which follows directly from FP(2) = —F;(A).

Using Eq. (TI0.1TT)) and the definitions of Ag(f) and M4p(f), from Eq. (10.105)) and
Eq. (I0.108) respectively, our final result for the cross-correlation of the detector

outputs of two differential-arm detectors takes the form of Eq. (10.39) with Z4(f)
implicitly defined by

Z5(f)TE,, = 5 (HMas(f)Ma (AT (). (10.192)

This reduces to the main result of Eq. (10.112), to quadratic order in a.
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Chapter 11

MEASURING THE SPEED OF CONTINUOUS GRAVITATIONAL
WAVES

11.1 Introduction

General relativity (GR) predicts that, far away from sources and other regions
of strong spacetime curvature, gravitational waves (GWs) propagate along null
geodesics of the background metric (see, e.g., Sec. 35.3 in [220]). This implies
that, in this geometric-optics limit, GWs must travel at the speed of light (¢, = ¢).
However, this fact is a consequence of the specific structure of the equations of
motion imposed by GR and, hence, need not hold for arbitrary theories of gravity
[83]]. Specific examples of modifications of GR that predict ¢, # ¢ are massive
gravity theories or, more generally, theories in which spacetime is endowed with

prior geometries (e.g. bimetric theories) or extra dimensions (see, e.g., [84, 103]).

Until recently, direct model-independent constraints on the speed of GWs were hard
to come by. In fact, before the observations by LIGO and Virgo, the only serious
contender came from energetic cosmic rays: if it was the case that ¢, < ¢, these
particles should have been slowed down on their way to Earth due to gravitational
Cherenkov radiation, not reaching the observed energies (the idea goes back to
at least the 1980s [307, 308]]). Recent constraints placed in this manner implied
c—cg <2%x1075¢ (¢ — ¢ < 2% 107¢), assuming the cosmic rays are galactic
(extragalactic) in origin [309].

Other constraints were derived under the framework of linearized massive gravity,
but were not direct observations of the GW speed. This includes so-called “static”
constraints obtained from limits on a Yukawa coupling in the Newtonian potential
of objects in the solar system [310, 311], as well as “dynamic” constraints from the
energy loss in pulsar binaries [292]. More recently, constraints on the graviton mass
were also derived from the lack of superradiance in supermassive black holes [312],
but these are also highly model-dependent. In all these cases, an implied bound on
the GW speed can be derived by assuming a specific form for the GW dispersion

relation.

The first GW detection, GW 150914, placed stringent constraints on the mass of the
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graviton from the observed lack of dispersion in the signal waveform. However,
this was still not a direct measurement of the GW speed, as it could identify only
deformations in the shape of the expected signal, not changes in its overall time of
arrival. As long as the wave train traveled undisturbed (i.e., “undispersed”), this test

would not have been able to detect ¢g # c.

LIGO and Virgo observations did eventually provide the first clear measurement of the
GW speed. The first such result was obtained in [313] through a Bayesian analysis of
the relative time of arrival of three binary-black-hole signals (GW 150914, GW151226,
GW170104) at different detectors. The bound obtained was 0.55¢ < ¢, < 1.42¢ at
90% credibility. This was quickly and dramatically surpassed by the joint observation
of GW and electromagnetic (EM) radiation from the binary-neutron-star merger,
GW170817. Contingent on some assumptions regarding the relative emission time
of the GW and EM signals, as well as the properties of the intergalactic medium,
GW170817 allowed us to place a bound of -3 x 10™15¢ < cg—c < TX 107 16¢
[123]—a fantastic improvement over previous constraints. As a caveat, note that
these bounds may be circumvented if delays between the GW and EM signals are
allowed to be greater than 10 s, or if the EM radiation can precede the gravitational
emission [314H316].

Here we explore another possibility for directly measuring the speed of gravity that
will become available once we detect continuous monochromatic signals (CWs), for
example, from rapidly rotating neutron stars. This technique relies on sensitivity to
the Doppler modulation (in this context, also known as “Rgmer modulation™) of the
expected signal caused by Earth’s motion with respect to the source. This is similar
to the strategy used by Ole Rgmer in 1676 to produce the first quantitative estimate
of the speed of light itself [317]. Although we do not expect it to be competitive
with the bound place by GW 170817, this measurement would offer an independent
alternative, not limited by the same systematics.

11.2 Background
11.2.1 Signal

The projection of a continuous (quasimonochromatic) GW onto a detector can be
written as (see Chapters and [8] for more exposition):

h(t) = F(t)as cos ¢(t) + Fx(t)ax sin ¢(t), (11.1)
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where the F; and Fy factors respectively give the instrument’s response to the plus
(+) and cross (x) GW polarizations and ¢(¢) is the phase of the signal. The a., /x
factors give the amplitude of each polarization and depend both on the intrinsic
emitted power and the radiation angular pattern. For the canonical triaxial-ellipsoid
source (e.g. a spinning neutron star with a small asymmetry in its moment of inertia)
these are given by
a, = hO% (1+cose). (11.2)
ax = hpcost, (11.3)

in terms of the source inclination, ¢, and intrinsic amplitude . For the purpose of

analyzing the data, it is convenient to factorize this signal as [S7, 67]:
h(r) = A@0)e D + A*(1)e 00, (11.4)

having defined the “heterodyned signal”,

1
A1) = B [a+Fi (1) — iax Fx(1)], (11.5)
with an asterisk (*) indicating complex conjugation.

The phase of the signal can be approximated via a Taylor expansion on the source
frequency, v[|and by using the fact that for this kind of quadrupolar source we expect
(1) = 2¢r01(), Where ¢ is the angular phase of the rotating source. That way, we
can write:

1 1
o(t) = 4n | vty + Ewg + gi/'tz + o, (11.6)

where ¢q is a fiducial phase offset and where the “barycentric time” ¢, is itself a
function of detector time ¢ that gives the time by a clock inertial with respect to
the source. In searches targeted at known pulsars, the rotation frequency and its

derivatives are known thanks to exquisitely-precise pulsar timing techniques [55}56].

11.2.2 Barycentering

The time of arrival of GW phase-fronts at a detector on Earth is recorded in a local
frame that is not an inertial frame with respect to the source. Therefore, the measured
signal from a persistent GW is modulated in frequency by Doppler and relativistic
effects. We can implement this through a time-of-arrival function [56] that, assuming

our detector lies on Earth’s surface, can be expressed as [S6]]

t(t) =t + Ap(t) + Ag(t) + Ag(t) + Ag(2) (11.7)

[T L]

'In other chapters, we have denoted the source frequency by “fi,,” instead of “v”.
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where Ag is the “Einstein delay”, Ag the “Shapiro delay”, Deltap(t) the “binary
delay” and Ag the “Rgmer delay”. Eq. (11.7) effectively transforms detector time,
t, into time at the solar-system barycenter (SSB), #;,, which is itself assumed to be

inertial with respect to the source [S0].

The Einstein delay accounts for the relativistic time dilation between the local Lorentz
frame (LLF) of the SSB and that of a detector on Earth’s surface, amounting to a
secular lag of ~0.5syr~! between the two clocks [318].The Shapiro delay results
from the bending of the waves due to the spacetime curvature around the SSB and,
as such, depends on the location of all the major bodies in the solar system at the
time of arrival [319]]. The binary term encodes all potential effects due to the source
being in a binary system [320]. None of these three effects depend explicitly on the
speed of gravity or have sufficient impact on the measurement to be relevant for our

purposes. For simplicity, we shall assume our target is isolated.

The only term left, the Rgmer delay, is the key to our study. This is simply the
classical time it takes the signal to travel between the detector and the SSB [56, 318]]:

AR(D) = ==, (11.8)
Cg

where 7 is the location vector of the detector with respect to the SSB, 7 is a unit
vector pointing from the SSB towards the source and ¢, is the GW speed. This term
results in a modulation driven by Earth’s yearly motion around the SSB and, to a
lesser extent, by its daily rotation around its spin axis. Notice that here, unlike in Ag
and Ag, the dynamical speed of a gravitational perturbations appears explicitly in the
denominator. Thus, a change in GW speed should be directly measurable through

the Rgmer delay.

11.2.3 Searches

We will focus on targeted CW analyses, in which the intrinsic phase evolution of the
signal can be assumed to be known, for example, thanks to EM observations (see
the Background section in Chapter [§). With knowledge of the phase evolution, one
can simplify the problem by digitally heterodyning (i.e. multiplying by a complex
exponential with phase evolution matching the expected signal) the time-domain
GW data so that the signal they contain becomes [37, 66]:

W (1) = h()e D = A1) + A¥(1)e 220, (11.9)

with A(¢) as in Eq. (I1.5).
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A series of low-pass filters can then be applied to remove the second term in Eq. (T1.9)),
which enables the down-sampling of the data by averaging over minute-long time
bins. As a result, A(?) is the only contribution from the original signal left in our

binned data, B, which will now look like
B(tx) = A(tk) + n(tx), (11.10)

where n(f) is the heterodyned, filtered and downsampled noise in bin k, which
carries no information about the GW signal. From Eq. (I1.5)), note that A(r) evolves
only slowly, with a period of a one and half a sidereal day, and that all high-frequency

components intrinsic to the GW signal have been removed by the data reduction
process, i.e. ¢(¢) does not appear in Eq. (IT.10).

At this step, Bayesian inference, or any other regression technique (e.g. y? minimiza-
tion, as used below) may be used to retrieve the signal from the noise. Heterodyning
makes this process much more efficient by reducing the size of the data to be analyzed,
but it relies on precise knowledge of the phase evolution, including the barycentering
delays.

11.3 Method

Our goal is to measure the GW speed, cg, starting from data that has been preprocessed
as described in Sec. @under the assumption that ¢ = ¢. To do this, consider that
if ¢, # ¢ the cancellation of the phase in Eq. (IT.9) will be imperfect. In particular,
there will be a remainder in given by the c,-dependent terms in the Rgmer delay of

Eq. (TT.8).

Letting A¢ = ¢, — ¢, for ¢., and ¢, respectively the true and assumed phase
evolutions, from Eq. (I1.12) and Eq. (T1.7) we will have:

A@(t) = 4r (F-ﬁ)(l—l)(v+i/t+li/'t2)+(?-ﬁ)2 1.1 l(v’+i/'t)
cg ¢ 2 cg 2|2
ST I T T I O
+(F - 7A) (c_g_?)gvl (11.11)

or, defining 6 = ¢/c, and Agr = 1 + F(1) - it/ c,
AG(1) = 4 [AR, 6-1) (v 4t + %wz) +1A2, (52 - 1) G+ (11.12)

a3, (6 - 1) 9]
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After low-pass filtering (Sec.[I1.2.3), the signal in the data will take the form:

W (1) = M) (11.13)

instead of simply A(z) as in Eq. (TT.10).

Eq. implies that ¢, # ¢ causes the expected signal to retain some fast phase
evolution (encoded in A¢), instead of only the daily modulation due to the antenna
patterns in Eq. (T1.5). The frequency of the leftover phase modulation will be given
by the intrinsic GW frequency, ~2v, with additional components at Earth’s orbital
frequency (wop = 2 X 1077 Hz) due to Ag. For example, for signals from the Crab
pulsar (PSR J0534+2200) we expect 2v = 60 Hz, which is much faster than the
frequency characteristic of the antenna patterns, wgjq = 27 /(sidereal day) ~ 7 x 107
Hz. (See Background section in Chapters [7] and [§] for in-detail discussions of the

antenna pattern functions.)

Remarkably, this allows us to use the data that has already been heterodyned and
reduced assuming ¢, = c¢ to detect whether GW speed deviates from the speed
of light, without requiring to go back to raw LIGO data (which would have been

computationally costly).

Computing the Rgmer delay

In order to model and fit for the phase evolution of the signal in Eq. (IT.13), it is
necessary to know the Rgmer delay for every time bin, and for any value of cg.
To compute Ag to sufficient precision, the location of the detector and the source
with respect to the SSB must be well known. This requires consulting solar system
ephemerides, which can be obtained through the HORIZONS system developed by
the Solar System Dynamics Group of the Jet Propulsion Laboratory [321] ] Note that
ephemerides come in different versions and one must make sure to use the same one
for the ¢, # c analysis as in the original data reduction assuming ¢, = c. Otherwise,

ephemerides errors might be mistaken for deviations in the GW speed.

From the solar-system ephemeris, one obtains the location of the geocenter, 7g, with
respect to the SSB as a function of time. To compute Ag in Eq. (IT.8), we need

the location of the detector on the surface, 7, which can be computed by adding the

2Solar-system ephemerides from JPL are included as part of the LIGO Algorithm Library and
can be accesed through the LALBARYCENTER routine, which has the added advantage of being
pre-corrected to be a function of signal arrival GPS time [162].
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vector from the geocenter to the observatory s:
F=Fg+5§ (11.14)

Clearly, § depends on the latitude and longitude of the site and varies with time as
Earth rotates in its axis over a sidereal day. On top of this, we must also factor in the

precession and nutation of Earth’s axis.

The other component of the Rgmer delay is the source-direction vector, 7i. In celestial
coordinates (ICRSP), this is given by [56]

A A - 1 - A -
n=no+ut— (§|,UJ.|2”0+,U||,UJ.) £, (11.15)
where the time ¢ is measured with respect to the ICRS standard, and

COS /4 COS Ox
fig = | sin a4 cos 54 |, (11.16)

Sin 0%

with @, and ¢, the right ascension and declination of the source in ICRS. The
additional terms encode corrections due to the proper motion of the source in the
plane of the sky (z,) and along the line of sight (). These extra corrections
tend to be small: for instance, in the case of the Crab pulsar u, = 13 mas yr~! and

us = 7 mas yr~! [152]. We will neglect these small terms here.

Putting all these pieces together, we can compute Eq. (11.8)) as a function of time.
This will show significant variation over a sidereal day and a sidereal year due to
Earth’s motion on its spin and orbit, as shown in Fig. [[T.T)). With this information, it
is straightforward to compute the phase evolution given in Eq. and shown in
Fig. for various values of 6 = ¢/c,. This, in turn, is used to compute the ¢, # ¢
signal template of Eq. (I1.13)), which is needed for searches and injections. The real
and imaginary parts of such templates are represented in Fig. where we have
simulated a signal from the Crab pulsar as seen by the LIGO Hanford (H1) detector.
As expected from the discussion above, changes in GW speed are manifested only in

the phase evolution of the signal, and not the amplitude (Fig. [[T.4).

11.4 Analysis

In order to quantify how well we can detect variations in GW speed, we fabricate

several instantiations of data with noise corresponding to the sensitivity of the H1

3International Celestial Reference System [322].
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Figure 11.1: Rgmer delay between the Crab pulsar and the LIGO Hanford detector
over 1 sidereal day.
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Figure 11.2: Phase evolution of signal (radians) over one sidereal day for different &
after heterodyning, Eq. (IT.T2). When ¢ = 1, i.e. ¢, = c, the phase is constant (red).
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detector, Eq. (TT.13), real (top) and imaginary (bottom) parts. Color corresponds to
different values of 6 = ¢/c,.
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Figure 11.4: The amplitude modulation of the signal is unaffected by changes in GW
speed, by the fact that curves are identical irrespective of the value of 6 = ¢/c,.

detector during Initial LIGO’s sixth science run (S6) [323]]. Into these, we inject
simulated signals from the Crab pulsar corresponding to different GW speeds. We
then attempt to recover the correct value of 6 = ¢/c, for different strengths of injected
signal. We use both noise extracted from LIGO data and random Gaussian noise
of comparable standard deviation. The former are obtained by the reheterodyning
procedure outlined in Chapter[7]so that the search is blind to astrophysical signals.

We focus on the case 6 > 1,1i.e. ¢, < c.

The search is performed by use of a matched filter: for each injection, we compute the
cross-correlation between the injected data and a template assuming different values
of the speed parameter, 6,.. (Fig.[I[1.5a). Of course, in the absence of noise, the
match is perfect and we are able to recover the injected value of the speed parameter
(6inj) flawlessly, no matter the amplitude of the injected signal (Fig.[TT.5b). When
noise is present, the quality of the match depends on the signal-to-noise ratio (SNR).

The results of the analysis for different injection strengths are shown in Fig. [11.6]
For a strong-enough signal, we are able to recover all values of ¢,,; quite well.
However, when the signal is of the order of the noise (standard deviation ~10723),
the peak-finding method fails and returns the values at the boundaries of the search
range (horizontal lines in Fig. [I1.6). Note that LIGO data does not seem to behave

significantly different from Gaussian noise, as expected (see Appendix in Chapter|/).

The goodness-of-fit in the recovered value of ¢ for a given injection strength is
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Figure 11.7: Histograms of RMSE for recovery of signals with 6 = 1.0, 1.01 at
strong (left) and weak (right) injection strengths. For a strong signal we are able to
recover ¢ + 0.0005, while for the weak case there are clear systematic errors.

evaluated through the root-mean-square error, i.e.

RMSE = > (611 ~ 6rec)?/N (11.17)

where N is the number of different injected signals (different 0;,;’s) for a given hy.
Repeating the same search multiple times but with varying noise, we obtain the
uncertainty on our measurement of ¢ for certain SNR. For a strong signal, we are
able to recover 6 up to +0.0005 (Fig.[I1.7a). However, when the signal is of the
order of the noise, it is clear that the peak-finding procedure introduces systematic

errors that push 6, towards the boundary of the search range.

11.5 Conclusions

We explored the possibility of measuring the speed of gravity using continuous
gravitational waves. The key to the strategy is the Rgmer modulation caused by
Earth’s relative motion with respect to the source, which depends inversely on the GW
speed. In the context of searches targeted at specific sources, like pulsars, we showed
how signal templates would have to be modified to account for ¢, # c. We also
demonstrated that we can carry out a measurement of the speed using data that has
been manipulated in standard ways assuming ¢, = ¢, making the computations more
computationally efficient. Finally, we implemented a simple frequentist technique
to recover the GW speed from simulated signals. From injections on Gaussian and
blinded LIGO-S6 data we determined that, for a very loud signal, we should be able
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to measure c/c, down to levels of ~1073 with a statistical error of 5 x 10™*. This
would not be competitive with existing constraints obtained from GW170817, but
would provide an independent measurement with different systematics. In any case,
further investigation is required to corroborate these results and gauge our ability to
make this measurement with weaker signals. Although we made some preliminary
progress towards a full Bayesian implementation of this measurement in [324], a

full-fledged analysis is work in progress.
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Chapter 12

TOWARDS CONSTRAINING GENERIC
GRAVITATIONAL-WAVE DISPERSION RELATIONS

12.1 Introduction

In general relativity (GR), gravitational waves (GWs) travel along null geodesics
(|p|2 = (0, for the graviton four-momentum p) and are, thus, non-dispersive. However,
this prediction is a specific consequence of GR’s equations of motion and need not
hold in generic theories. In fact, modifications to the GW dispersion are equivalent
to a change in the wave equation for metric perturbations, which in turn derive from

the action of the theory and can take many forms, in principle.

The simplest modification to the GW dispersion relation is that of a massive graviton:
2
g b
excellent review on massive gravity, including a discussion beyond the linear regime).

|p|2 = —mj, in a local Lorentz frame (LLF) with metric signature +2 (see [232] for an
Other popular dispersion relations incorporate more complex behaviors through
additional momentum-dependent terms, which can parametrize desirable features
like violations of Lorentz invariance ([236-243)1325]]). LIGO and Virgo have placed
bounds on the mass of the graviton starting with the detection of GW 150914 [82] and
on Lorentz invariance with GW 170104 [4], the latter based on the phenomenological
model of [325]]. More generally, the dispersion could incorporate terms that depend
not only on the magnitude of the wave’s momentum (wavevector) but also its direction

and spatiotemporal location, with functional relations of arbitrary complexity [326].

Here, we study the effect of an arbitrary dispersion relation on GW phenomenology.
In Sec.[12.2] we provide some background information on post-Newtonian (PN) and
inspiral-merger-ringdown (IMR) waveforms. In Sec.[[2.3] we derive the observable
effect of such a dispersion on the GW waveform following the heuristic methods
of [325) 327], with the main result being Eq. (I12.43). In Sec.[12.4] we apply this
expression to specific forms of f(p) (massive graviton, simplest anisotropic term).

12.2 Background

In this section, we review the basics of waveforms from compact-binary coalescences

(CBCs) in GR as a background to the modifications to be examined in following
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sections. The summary of post-Newtonian (PN) waveforms follows Chapter 4.1 in
[328].

12.2.1 Post-Newtonian waveforms

Consider two compact objects, with masses m; and m; and no spins, orbiting each
other and slowly inspiraling in as the system loses energy through gravitational
radiation. In the Newtonian approximation (OPN), the dynamics of an inspiral can be
treated, like the traditional two-body problem, by means of the equivalent one-body
problem in the center of mass frame. Using Kepler’s laws and standard expressions
for quadrupolar radiation in GR, the GW waveform for a non-cosmological, non-

precessing source can be written:
1
ho(t) = A(T) 5(1 + cos? 1) cos D(7), (12.1)

hx(t) = A(t) cost sin®(7), (12.2)

for the plus (+) and cross (X) polarizations, defined in a frame aligned with the
orbital angular momentum (polarization angle ¢ = 0), and with time parameter 7.
The terms that depend on the inclination angle, ¢, encode the quadrupolar symmetry
of the angular emission pattern—in particular, the fact that this is the [ = m = 2

mode of the metric perturbation.

Meanwhile, the amplitude factor depends on the masses of the binary components

A(T) = R (%)Z, (12.3)

r \ ct

and can be written as:

where r is the distance to the source, and we have defined R = GM /c2 as the

lengthscale corresponding to the chirp mass M, itself given by

_ (mimy)?

M5 :lu3M2 ,
mp +my

(12.4)

in terms of the reduced mass u = mymy/(m; + my) and the total mass M = m; + my.

The phase evolution is approximated by ®(7) = 2z f(7) 7, with

3 5
1(5 1\38(R)®
=—|=—=-—1 |— 12.5

A 7r(2567') (c) ’ (125
The time parameter, 7 = 1, — ¢, is the time to coalescence. The time of coalescence #.

can be formally defined as the value of ¢ for which our approximation to the frequency
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diverges. Physically, 7. marks the moment when the quasi-circular approximation
breaks down and the inspiralling objects merge. Also note that, if ¢ refers to the
time at the source, then at the detector the waveform should be parametrized by the

retarded time tee =t — 1/c.

To generalize the above discussion to far-away sources, consider that all quantities
measured at the detector will be cosmologically redshifted with respect to the local
frame of the source. Detector-frame frequencies and times can be obtained from the
source-frame ones via redshift factors of (1 + z). In particular, using geometrized
units (G = ¢ = 1), all quantities with dimensions of [mass]” will be multiplied by
a factor of (1 + z)" in going from the emitter to the detector frames. That way, the
comoving distance r becomes the luminosity distance d; = r(1 + z), the emitted
frequency f, becomes the detected frequency f; = f.(1 + z)~! and the source-frame
chirp mass M, becomes the detector-frame chirp mass My = M(1 + z). This last
quantity is the chirp mass that would be inferred from Eq. (12.3]) were redshift not

taken into account.

Finally, it is of interest to compute the Fourier transform (FT) of the above signal.
Expanding h(¢) around the time 7 and setting f = f(7), the stationary phase
approximation (SPA) allows us to write the FT, i(f), in the form:

ADwip)

NG

where, for an inspiral-only signal, the amplitude and phase functions in the emission

h(f) = (12.6)

frame are respectively:

~ 4 M. ) 2
A(f) = S 2020 (7Mf)?, (12.7)
s ! 5
P(F) = 27r/ (t — to)df + 21 fte + Pp. (12.8)
£

Here ap and Z( y.) are defined by the cosmological metric explored below, while the
offset ¥ is related to the waveform phase at coalescence @, by ¥y = —®, — 7/4.

Frequencies and masses subscripted by “e” are measured at the emitter, while

unsubscripted ones are the redshifted values seen by the detector.

12.2.2 Phenomenological waveforms

While the above two expressions are only valid in the adiabatically-Newtonian regime,

we can make use of inspiral-merger-ringdown (IMR) waveforms that cover all stages
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of the binary evolution [329]. Phenomenological IMR waveforms tuned to numerical

relativity (NR) can be parametrized in an SPA-inspired fashion:

h(f) = Aegr(f)e ¥, (12.9)
(f/fmerg)_7/6 ) f < fmerg
Aci(f) = C(F/ froerg) " s frnere < f < fring > (12.10)

W~£(f’ ﬁing, O-) ’ fring < f < fcut

7
Weir(f) = 2nfte +¥o + ) fEI. (12.11)
k=0

In these expressions, the notation has been simplified by letting f — f. Furthermore,
Jmerg and fiine Tepresent the characteristic frequencies marking the beginning of the
merger and ringdown stages respectively, while f.,¢ corresponds to the point where
the waveform is terminated. Also, C is an overall normalization that can be obtained
by matching the inspiral section of the waveform to the its PN approximation; in the
case of an optimally-oriented binary (i.e. aligned with the detector), this is:

C (12.12)

5 -1 1
_ Mﬁfmerg 5_7] 2
B 24

xir
for the asymetric mass ratio n = mymo/M?>. The last line of Eq. (12.10) is a
Lorentzian L(f, fring) Weighted by a constant w such that:

o ( ﬁing )_2/3

(12.13)

w=—
2 fmerg
1 o

L s Jring, ) = 7— .
U Jines )2 3 T Tl + 0718
Finally, and most importantly, the yx coefficients in Eq. (I2.T1)) are phenomenological

(12.14)

phase parameters obtained by matching to NR waveforms.

Note that more recent parametrization incorporate better description of the ringdown
by supplementing the Lorentzian with an exponential decay [33]34]. The ability to

incorporate precession due to component spins has also been added [33]].

12.3 Phenomenology

We wish to compute the waveform of a gravitational wave (GW) following a generic

dispersion relation of the form:

Ipl* = guwp"p” = —f(P), (12.15)
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where f(p) is, for the moment, an arbitrary function of the four-momentum p, and
so that GR is recovered for f(p) = 0.

A modified dispersion relation, like Eq. (12.15]), will manifest itself as a frequency-
dependent phase shift in the observed gravitational waveform.

12.3.1 Redshift and dispersion

We would like to consider cosmological sources, so it is necessary to consider a

background Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:
ds? = -2 + &*(0) [d V2 22(y) (d02 + sin20 d¢2)] . (12.16)

This metric presents a Killing tensor K, = a?(¢) (g.v + U, U, ), with U = (1,0,0,0)

the four-velocity of a comoving observer. Therefore, the quantity
K* = K,op'p” = a*(1) [gmp"pv + (guvU“pV)z] (12.17)
is conserved along the trajectory of a particle with 4-momentum p.

For the case of a graviton of (local) energy E = p°c, emitted radially at (f = te, ¥ = ye)

and received at ( = 1,, ¥ = 0), we have that
E
p = (po’p)(’ 0’ O) = (_ap)(’ 0’ 0) , (1218)
c
so Eq. becomes:

K? = d*(t) [—cz (p0)2 +a*(t) (p¥)* + ? (po)2 = [az(t) p"]2 = (p)()2 . (12.19)

In other words, p, = a’(t) pX is conserved (but not p¥). Taking advantage of this,

we can write:

Px = az(t) p¥= Pylte) = az(te) p¥(te) (12.20)
Using this result, Eq. (12.15]) implies:

800 (PO)Z +eu (P =~f(p) = -EX7 4+ =~f(p). (1221)

which yields the following three equivalent expressions:

E = e f(p) + a(0) (p1)”. (1222)
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X = —a  ()+JE2c 2 - £(p), (12.23)

Py = —a(t)y|E*c™2 — f(p). (12.24)

Note these are all implicit relations between p and E because, in its most generic

form, f(p) may contain terms dependent on both p and E.

12.3.2 Delay

Consider a wave packet emitted radially towards the observer from a source at y = ye.
The group velocity is given by Eq. (I12.18):

Vg = (:1—); = %% :le% =CZPEX :cz%, (12.25)
where y marks the packet’s location, A is an affine parameter and p, K are respectively
the four momentum and wave vector associated with the wave. (Note that the factor of
c in the third equality appears simply because p° = dx°/dA and x° = ct.) Because of
the expanding background, w and k¥ are not constant; to make the time dependence
explicit, use Eq. (12.20) to write Eq. (12.25)) as:

dy 2 ky

T T 2@ ot ky)

(12.26)

and recall w(t; k,) is given by means of the result for the energy derived above,

Eq. (12.21)), with E = 7iw as usual.
We recover GR by setting f(p) = 0, which means:

~ P+ OR) =0 = —w P ra i)k, =0 = k, = —a(t)wc !,

(12.27)

where I picked the negative root because the wave propagates toward the origin; thus,
for GR, Eq. becomes the familiar result for the cosmological redshift:

d c

i I (12.28)

dt |gr  a(?)
Consider now a wave packet of energy E’ emitted radially from y. at time #, and
second one with energy E emitted from the same location at time 7, = #, + At.. We
can integrate Eq. (I2.26) for each wave packet and equate both expressions. For the

first one we have simply:

t
Xe = 7K, / dr a”2(t) [w(t; k;()]_l, (12.29)
t’

€



258

while for the second one:

t;+At,

fa
Xe = c2kX/ dt a2 (H)w (1 ky)= csz/ dt a”>(Hw ™' (t; k)
te Lo

[+Afe

_ 2
=cky

1 ti+AL,
/ dt a2 (Hw™ ' (t; k) - / dt a2 (w™ ' (t; k)
t/ ’

(<] (<]

1, +At,
+ / dt a2(H)w™ (1 kX)] (12.30)
t,

a

Assuming a(t) does not change significantly in the short times Az, and At,, this may

be approximated as:

’

ta
/ dt a2 (Hw ™ (t; ky) — Ate a ()™ (£ k)

%

o2
Xe = k)

+ Aty a ()™ (1L kX)] , (12.31)

Equating these two expressions for y., we obtain the key result

a*(t)w(t: k f
At, = w'/ dr (1_2(1)
X e

aX(t]) w(t]: k)

ky kg
w(t; k) w(t; ky)

00 ot k) (1232

Now, in GR, f(p) = 0 means —w?c™2 + a‘z(t)k)z( = 0, so we can write:
w(t)|gr = ckya (1), (12.33)
kylor = at)w(t)e™ = w(ta)c™ (12.34)

where, in the last equality, we have used the fact that the present scale factor is
defined to be unity: a(t,) = ag = 1. The GR expressions can be used to get a general
prescription for cases in which the departure from GR is small (f(k)/|k|?> << 1). In

that case, we can write w and k, as expansions around the GR value:

cky cky
w(t; k) = 20 [1+0,(t; ky)| = ol [1+ 6,(t; wy)], (12.35)
k= a(ta)w(cta) (1 + %) - % (1 + 5,%), (12.36)

for dimensionless perturbations 6., and 6x, If we then apply the redshift formula

14z = a,/ae, the time delay between the two wave—packets simplifies to (suppressing



259

the functional dependence of d,,):

a(tl) dr a(t) a(t)
Aty = Ate (1 +2)* —= + / -
1= A+ 7 N T @@ |t r oy o+ oy
dt
:Ate(1+z)+/— [(1-0,)-(1-6,)], (12.37)
a(t)
and we obtain the final expression for the delay in the time of arrival of the two wave
packets:
dr
Aty = Ate (1 +2) + / o [60(t; wa) — 8u(t; w})] - (12.38)
a

Note that I have written 6,,(f; w,) rather than 6,,(; k) because k, is related to w, by

means of Eq. (12.36)). In general, one obtains 6,,(t; w,) by plugging in Eq. into
the expression for d,,(t; k )(); however, because we are only interested in first—order
deviations to the phase, it suffices to use the GR relation k), = w,/c. In other words,
I define: 6,(f; w,) = 04, (t;5ky = wa/c)

Formally, this is valid because we can characterize the modification to the dispersion
by some small parameter €, the precise form of which depends on the particular
theory and that must exist if the deviation is to be perturbative. If this is the case,

then we can write:

W X WGR [1 + 0,(t; k)()]
= WGR [1 + e f(t; kx)]
~ war |1+ €f(t; kyorll + €g(wa)])]
~ wer |1+ €f(1; kyar) (1 + €h(t; wy))]
~ wer |1+ €f(t; kyor)]

= war [1 + 0w (t; kyor)| (12.39)

keeping terms to first order in € and with the functions f(#;ky) = Ocw|c—,
g(wy) = aek)(L:o and h(t;w,) = 0O f(t;kX)L:O derived from the appropriate
series expansions. Thus, we are indeed justified in writing Eq. (12.38) with
Ou(t; w,) = 0, (t; k) = wa/c).
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12.3.3 Phase shift

We can translate the time delay of Eq. (I2.38) into a phase shift by means of Eq. (12.8).
Modifying the notation slightly (exchanging f <> f), the Fourier phase is given by

fa )
Y(fa) =2n (ta — tc,a)df;l + 27Tf:atc,a + ¥
fea
7 )
=27 (ta — tca)(1 + Z)_ldfe + 27 fatca + Yo, (12.40)
fee

where, in the last line, I have written out the integral in terms of the emitted

frequencies. Identifying Az, = #, — f. 5, be can now use Eq. (12.38) to write:

fe )
W(f) =Y +2x fute + 271/ Ated fot
foe

fe
1+Z/ / (t) 6f(t fa) 6f(t fa,c)] dtdfe,

fe _
=Yy + 27 fot. + Zn/ Atedfe+
fee

Ja
+2n /f a / ol [67(t; fa) = 64(t; fuc)] ded fi, (12.41)

C

where I have defined 6 (¢; f.) = 0., (¢; 27 f2). (Note that, if we instead defined 6 by
f = for(1 +dy¢), then 6 = 6,,.) Consequently, we can again simplify our notation
(fa — f) to write:

Y(f) = Yaor(f) + A¥Y(f), (12.42)

with the deviation from GR given by

AP(f) = /f / ' (67t F) = 625 f2)] ded f. (12.43)

This phase shift can now be used to obtain the generic waveform implied by f(p),
starting from the corresponding GR waveform. Note that this modification can be

applied to the whole waveform, even trough the merger and ringdown stages, like in
Eq. (12.9).
12.4 Examples

In this section, we derive the phase shift corresponding to example dispersion

relations: a massive graviton and the simplest possible anisotropic correction.
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12.4.1 Massive graviton

In a theory in which the graviton is endowed with a mass m, (e.g. [291]), the

linearized GW dispersion relation over the FLRW metric becomes

2 m2c?

2
w _
- ta 2(0)k2 + ;2 =0, (12.44)

and, accordingly, the angular frequency can be written as:

chy ||, @AOmc cky [ 1ak0)me? |
a(t) k2 n? a(t) 2 k2 n

w =

(12.45)

where I have assumed that the graviton wavelength far exceeds the GW wavelength
(dg > A) and kept only terms to first order in mg to obtain the second relation. Using
this, we can now write w = wgr(1 + d,,) as in Eq. (12.35)), with
1 a*(t) m*c? N a®(t) m*c*

0, (1; = — ~
( wa) 2 k)z( hz 2 hzwg

(12.46)

where I have replaced k, with its GR value, i.e. k,, — w,/c, to keep terms only of
first order in mé (as justified above). Plugging this into Eq. (12.43)), we obtain the
desired phase shift:

foph
Al/’(f)Z// 2n a*(t)ym*c* 1 (i—i)dtdf

at) 2 K2 fz fc
m a(t)dté ( fc) f
~ méc3 D
421+ 2 (f E_Z) (12.47)

where I have defined D as in [327]], namely:

D=(1+2)0 / " ar. (12.48)

One could choose to stop here. However, inspection of Eq. (I2.11)) reveals that terms
linear in f are degenerate with 7., while those independent of f can be absorbed by
the fiducial phase Wy. Ignoring those degenerate terms, our final expression of the

massive graviton phase shift is then:

2 3
D 1 D 2
g -2 2 (12.49)

1+z?_ 1+z/1§’

Ay(f) =
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Figure 12.1: Dispersed (dashed) and undispersed (solid) example waveforms.

for Ag = h/(mgc) and A = ¢/ f. The effect of this extra phase shift is represented in
Fig. for a very large dispersion of AY = 30Hzf~!.

This is equivalent to the result from [327]. Indeed, after restoring factors of c,
Egs. (3.8¢) and (3.9) in [327] imply:

DM ¢ _wD 4
A2(l+)aMf 1+za

APwin = —Bu~! = (12.50)

where I have used 8 = ﬂzDM//lé(l +z)and u = M f/c, as defined in .

12.4.2 First anisotropic term

The simplest anisotropic modification to the dispersion relation can be obtained by
defining adding a term of the form ¥ - k, for an arbitrary spatial vector :

2
a0k +vX =0, (12.51)

c2
where vX = vik;/(k/k i) = —vin; for i = —k giving the location of the source in the
sky. Since, vX is constant by construction, this extra term behaves in the same way as
that for the massive graviton and is thus degenerate with it when looking at a single

source at a time. Explicitly, the phase shift for this sort of anisotropic dispersion will
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be

¥ D 1
dr 14z f°

in full analogy to Eq. (12.49). As before, this result hinges on the assumption that the

Ay (f) = -

(12.52)

extra term in the dispersion relation (in this case, vX) can be treated as a perturbation

over the GR solution.

The degeneracy between this anisotropic effect and a massive graviton can be broken
by simultaneously analyzing multiple events coming from different locations in the
sky. In order to do this, it is necessary to coherently study all detected events in a
joint Bayesian-inference analysis—this is computationally challenging with current
techniques, but feasible if the signals are short.

12.5 Conclusion

We have generalized previous work in [325,[327] to provide a recipe for the observable
waveform-dephasing effect corresponding to a generic dispersion, Eq. (12.15)), with
corrections f(p) depending arbitrarily on the graviton four-momentum p. The steps
are outlined in Sec.[I2.3.2] with the main result being Eq. (I12.38) and Eq. (12.43).
We demonstrated the application of the recipe with two simple examples (massive
graviton and a simple anisotropic dispersion). In the future, this recipe could be used
to implement data analysis techniques to constrain arbitrary dispersion relations, as
has been done for a massive graviton [82] and a Lorentz-violating correction [4].
The implementation of this test for very complex corrections (high number of terms

in f(p)) might require new computational techniques.

As an important caveat, not that the derivations provided here, as those in 325} [327],
relied on heuristic arguments considering the group velocities of two gravitons in a
thought experiment. It would not be surprising if a proper analysis, solving the wave
equation corresponding to an arbitrary dispersion relation for the right boundary
conditions, yielded different results—in fact, early work seems to indicate that this
might be the case [330].
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Chapter 13

DIRECTED SEARCHES FOR GRAVITATIONAL WAVES FROM
ULTRALIGHT BOSONS

M. Isi, L. Sun, R. Brito, and A. Melatos, “Directed searches for gravitational waves
from ultralight bosons,” (2018), M.I. conceived the project and led the writing of
the manuscript, arXiv:1810.03812 [gr-qc] .

13.1 Introduction

After decades of dedicated effort, the Advanced Laser Interferometer Gravitational-
wave Observatory (aLIGO) [331] and Advanced Virgo [332] detectors have in-
augurated gravitational-wave (GW) astronomy with the observation of several
compact-binary coalescences (CBCs) [1-6}178]]. Arguably, one of the most exciting
prospects in this new era of astronomy is to use gravitational waves to learn about
fundamental physics. Common examples of this are attempts to probe the nature of
gravity by testing general relativity [82),333]], or to probe the nature of nuclear matter
through the neutron-star equation of state [6} 334, 335]]. Another exciting possibility
is that of using gravitational waves to learn about particle physics. In particular, it
may be possible to search for new ultralight bosons with gravitational-wave detectors,
a prospect that has recently garnered much attention [336-343]]. In this paper,
we explore the potential of achieving this using directed searches for continuous

gravitational waves with ground-based detectors.

There are strong theoretical reasons to believe in the existence of new weakly-
interacting, ultralight scalar (spin 0) or vector (spin 1) particles. The prime example
of this is the axion, a (pseudo-)scalar particle originally proposed to explain the
strong constraints on the existence of charge-parity (CP) violating terms in the strong
nuclear force sector [344-346]]. This quantum-chromodynamics (QCD) axion is
among the best-motivated extensions of the standard model, but there are others.
For example, string theory predicts the existence of a variety of axion-like particles
(potentially including the QCD axion) with masses populating each decade between
10733 eV and 1079 eV as a result of the compactification of extra spatial dimensions

[347]. Similarly, a hidden sector of light vector particles also naturally arises in
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compactifications of string theory [348]. Besides motivations from particle and
high-energy physics, these bosons are also popular dark matter candidates (see
e.g. [349-351]).

Because of their weak couplings to the standard model and their vanishingly-
small mass, all these proposed new particles would be extremely hard to detect by
conventional means. In particular, all existing constraints on the existence of the
QCD axion rely on its expected coupling to standard model particles, a property that
is heavily model-dependent [352]]. Such observations loosely constrain the mass of
the QCD axion to be < 1073 eV [353]], but values of order 10719 eV or lower are
favored by theory [336]]. For other kinds of conjectured ultralight bosons, whose
potential interactions with the standard model are very weak or inexistent, constraints

and detection can only provided through their gravitational coupling.

Given the substantial challenge in detecting ultralight bosons, there has been
considerable excitement about the proposal to look for these particles by taking
advantage of the universal character of gravitational couplings. The idea hinges
on the phenomenon of superradiance [354-358]], by which macroscopic clouds
of these bosons should form around rapidly spinning black holes (BHs) and, in
turn, produce a varied set of observational signatures [336-343],359-363]]. Indeed,
constraints based on BH spin measurements of x-ray binaries have already been put,
and exclude roughly the mass interval [1072, 107!1] eV for non-interacting massive
scalar fields [340, 360] and [10‘13, 10‘”] eV for non-interacting massive vector
fields [343),1360]. Constraints derived from observations of x-ray binaries should
however be interpreted with caution, since there is large uncertainty about the age
and history of these systems, as well as caveats about the systematics affecting their

spin measurements [364, 365]].

A much more clean observational signature is the emission of potentially-detectable
gravitational waves at a frequency of roughly twice the boson mass [339-343]]. As it
turns out, this means that clouds formed around stellar mass BHs should emit signals
within the most sensitive band of ground-based detectors, probing boson masses
in the theoretically interesting mass-range of the order of 10~!3 eV through 10~!!
eV [339,342].

In this paper, we explore the prospect for the direct detection of continuous gravita-
tional waves emitted by boson clouds. In particular, we focus on searches in data
from present and future ground-based detectors directed at known BHs. As the main

observational scenario, we consider the followup of remnants from compact-binary
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coalescences detected through gravitational waves, but also examine BH candidates
known from electromagnetic observations. Besides treating the data analysis, we
study in detail the morphology of boson signals and use numerical calculations,
combined with the latest analytic results, to estimate their amplitude and other
relevant features. This allows us to more accurately predict the potential signals that
may be expected from clouds around a given BH. In the case of scalar clouds, we
use those estimates to obtain detection horizons for second-generation and proposed
third-generation instruments. Along the way, we review the theoretical basics of
BH-boson superradiance in a language that we hope facilitates future work by

gravitational-wave analysts interested in the topic.

In Sec.[13.2] we review the theory of boson clouds around BHs and the gravitational-
wave emission mechanism. In Sec.[13.3|we discuss at length the specific morphology
of the expected signals, as seen by ground-based detectors. In Sec.[I3.4] we introduce
hidden Markov model tracking as an ideal strategy to search for these signals, validate
the method and estimate the sensitivity through Monte-Carlo simulations; we also
discuss implications for the followup of compact-binary mergers and x-ray binaries

as potential sources. Finally, we provide a summary and conclusions in Sec. [[3.5]

13.2 The boson cloud

The physics of boson fields around BHs has been extensively studied in different
limits using both analytic and numerical methods [336,342,|347,1357,1358.,1366-3/1].
We summarize those results below, in a way that is best suited for the data-analysis
framework introduced later in the paper. We explain how a macroscopic boson cloud
spontaneously arises around fast-spinning BHs and proceeds to emit large amounts

of gravitational radiation, providing some essential mathematical detail.

Consider first a Kerr BH of mass M and angular momentum J. The characteristic
length associated with the BH mass will be r, = GM/ c?, or half the Schwarzschild
radius. The other characteristic length, given by the BH spin, is the usual Kerr
parameter, a = J/(Mc), from which we can in turn define the dimensionless spin,
x = ac*/(GM). In terms of these quantities, the radius of the hole’s outer horizon,

in Boyer-Lindquist coordinates, is

ry =Tyg (1+\/1—)(2) =rgly, (13.1)

where 7, is defined here to be dimensionless. At this location, the BH will then have
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a frame-dragging angular speed (with respect to infinity) of

1c c —
QpH = LA S— — QgH, (13.2)

2rg 1+ 41— 2 7%
where Qpy is defined here to be dimensionless. (See, e. g., [372]] for a recent review

of the Kerr metric.)

Now, imagine that, beyond the usual particles in the standard model, there exists an
ultralight boson of mass
my = pfc?, (13.3)

where u is the boson’s rest energy. The corresponding length and time scales are
given by the Compton wavelength, A, = 271, = h/(myc), and angular frequency,
wy = ¢/, = p/h. As soon as the BH is born (perhaps, as a result of stellar
collapse or a binary coalescence) the usual quantum fluctuations in the boson field
will cause pairs of particles to spontaneously appear in the hole’s vicinity, causing
a number of them to unavoidably fall in. What happens next will depend on the
properties of the BH and the infalling excitations: under most circumstances, the
particle will simply disappear behind the horizon never to return; however, for the
right sets of parameters, the excitation in the boson field will scatter off the BH
with a boost in amplitude, effectively increasing the number of particles (occupation
number) around the BH [354+356), (358, 1373H375]].

From the second law of BH thermodynamics [356] (or more generic kinematic
arguments [347, 358, 1375]), we may expect the boson-wave amplification to occur

when the following superradiance condition is satisfied:
wy/m < QpH, (13.4)

where m is the (magnetic) quantum number corresponding to the projection of the
particle’s fotal angular momentum along the BH spin direction. This amplification
extracts energy from the BH just as in the classical Penrose process [354]], which is
itself another manifestation of BH superradiance (see [358]] for a review). Because
of the field’s nonzero mass, a scattered boson will generally tend to be bound to
the BH, attracted by its gravitational pull. Consequently, scattered particles may
remain confined in that region, facilitating successive scatterings and the associated

compounded amplification of the field. This process is similar to the “BH bomb”

Meaning, as soon as it is sufficiently close to the ideal Kerr metric.
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devised by Press and Teukolsky [355]], with the mirror replaced by the boson mass
[367H369,376-378].

We may anticipate that the boson confinement will be maximal when the field and
BH have comparable characteristic lengthscales, i.e. 4, ~ r,. If this is the case, then
the field amplitude will grow at an exponential rate in a (quasi-)bound state around
the BH (Sec.[I3.2.1). As the field grows, it draws energy and angular momentum
from the BH until the condition of Eq. (13.4) is no longer satisfied. Because the field
is bosonic, there are no limits to the occupation number of any given energy level:
the number of particles in a superradiant state will grow exponentially to form a
macroscopic “cloud”, with a mass of up to order ~10% of the BH’s [379, 380]. This
cloud will slowly fade away, as its energy is radiated away in the form of gravitational

waves over very long timescales compared to the superradiant rate (Sec. [13.2.2)).

13.2.1 Black-hole and boson interactions

Energy levels

The qualitative picture laid out above is backed up by analytic and semi-analytic
calculations of boson fields over a Kerr background [336, 342, 1347, 357,358, 1366~
369]. In the nonrelativistic (a/j < 1) regime implied by Eq. (13.4)), the influence of
the BH is effectively reduced to a simple inverse-radius gravitational potential. This
potential causes the bosons to present quasi-bound energy eigenstates essentially
identical to those in the hydrogen atom, but with gravity replacing electromagnetism
as the relevant interaction. More carefully solving the Schrodinger equation over a
Kerr background, one indeed finds that, in this regime, the system has hydrogenic
energy levels [366, 368],

1 2
Eﬁzﬂ(1—§%+...), (13.5)

forn = n + [ + 1 the principal quantum number, » the radial quantum number, and /
the orbital azimuthal quantum number[’] As usual, we have |j —s| </ < j + s and
—j < m < j, where j and s are respectively the total and spin angular-momentum
quantum numbers. All superradiant levels are hydrogenic with a spectrum well-

described by Eq. (13.5) [369]. The quantity « in Eq. (13.5) plays exactly the same

2 Although the spin parameter does not appear at leading order in a [369], the fact that the BH
is spinning does affect the angular part of the boson eigenfunctions: these have to be described
using spin-weighted spheroidal, rather than spherical, harmonics [342] (see Sec.[13.3). Higher-order
corrections to the energy eigenvalues, including corrections due to the BH spin, can be found in [361].
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role as the fine-structure constant in the hydrogen atom, and takes the value of the

ratio of the two relevant lengthscales (or, equivalently, timescales):

re GMmy, GM
—_— D ————— = — N 13.6
Ay c h c3 ©u (13.6)

[0

where 1, = A,/(2x). Importantly, Eq. (I3.4) implicitly constrains & as a function of
the BH spin. If we want superradiance to take place, then Eq. (13.4) and Eq. (13.2)

demand: 1
| _
a<§mX(1+,/1—X2) <%, (13.7)

where the second inequality is obtained by noting 0 < y < 1. Because m < j, this

condition justifies working in the nonrelativistic, @ < j, limit in the first place [336].

Cloud growth

Unlike the hydrogen atom, however, the BH-boson system is non-Hermitian due
to the ingoing boundary condition for waves at the horizon. This means that the
occupation number of the different energy eigenstates need not be constant—in fact,
they will most certainly not be so for the superradiant states we are interested in. For
small @ /m, the occupation number| of a given quantum state will grow exponentially

at a rate that may be analytically approximated as [343} 1366, 368]:

Ui = 202772457, (mQpn — w,) Citmn, (13.8)

with Cjj,, a dimensionless factor, and 7, the dimensionless radius defined in Eq.
(I3.1). In the case of a scalar boson, the orbital angular momentum is necessarily
the total angular momentum (j = /), and it can be shown that 366, 368]]:

I 2

QD121 + 1)!

4r?
k2 (1 - XZ) + C_2+ (mQBH - wu)z} .

(scalary _ 22221+ n + 1)
jlmn (L 4+ 1))

l
<] |
k=1

Expressions for vector Cjj,, up to leading order in « can be found in Appendix A of

(13.9)

[343]]. The validity of this approximation in the regime of interest has been confirmed

numerically for scalars [369]] and, more recently, vectors [360, 371} 381-383]].

Irrespective of boson spin, there are three key features of the occupation growth rate,
" in Eq. (13.8)), that can be distilled from the above results:

3The rate of change of the occupation number is twice that of the field amplitude, which is itself
given by the imaginary part of the wavefunction frequency: I' = 2 Im(w).
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1. the sign of I depends solely on (mQpy — w,), implying that indeed energy
levels satisfying Eq. (13.4) will grow exponentially, while others will be
depleted;

2. I' is a high power of a, growing with the sum j + /;

3. for a fixed angular momentum (j, /) and «, I" decreases rapidly with n.

Because we are working in the small-« limit, these three facts mean that, for a given
system (i.e. a given « and ), the fastest growth will occur for the fundamental radial
harmonic of the level with the smallest possible total angular-momentum, j, that still
supports a magnetic number, |m| < j, sufficiently large to satisfy Eq. (I13.4)). In other
words, if the boson has spin-weight s = 0, 1, the level with the fastest superradiant

growth in a given system will have angular quantum numbers {j, [, m} given by
j=1+s=m=ceil(e/Qpn), (13.10)

where “ceil” stands for the operation of rounding up to the closest integer. In

particular, the fastest-possible level over all values of @ and y will then be
j=l+s=m=1,n=0. (13.11)

Given this, it follows from Eq. that vector clouds will tend to grow significantly
faster than scalar ones (IV)/T®) ~ o72).

Final state

As the particle number grows, the energy and angular momentum required to populate
the boson energy levels are extracted from the BH[* Consequently, the BH quickly
loses mass and spin until Eq. is asymptotically saturated and the growth rate,
Eq. (13.8), vanishes. As implied by Eq. (I3.7), the spin of the BH at the end of this

process will then be
_ _daym (13.12)
xf = 4a}20 +m?’ '

where a is given by Eq. (I3.6)) for the final BH mass. If no other processes (like
accretion) take place in the relevant timescale, the final mass of the cloud (M,) will

simply be given by the difference between the initial (A4;) and final (M) BH masses.

4 As this happens, Eq. (13.4) guarantees that the BH area increases, satisfying the second law of
thermodynamics [3561 3735]].
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If only one level is populated, then it may be shown that this will be approximately
[342]

M. = M; - My ~ M2 (13.13)
m
with the last equality being valid for @ < 0.1.
A more exact value for this quantity may be obtained by numerically solving a set
of difference equations, e.g. Egs. (17)—(21) in [357], assuming a quasi-adiabatic

evolution. If superradiant growth is the dominant factor, so that we can ignore other

processes like GW emission and accretion, these are just

M = T M., (13.14a)
M, =-M, (13.14b)
J = —mT ;' M, (13.14c)
Jo=—J, (13.14d)

where dots indicate time derivatives, (M, J) and (M., J.) are the instantaneous mass
and angular momentum for the BH and boson cloud respectively. In the following
sections, we will use the exact value for M, computed this way to characterize the
signal. In any case, it may be shown that the boson cloud may reach a size of at most
M. =~ 0.1 x M; [379,380].

The time it takes a single-level cloud to grow to its full size is simply the time it takes
the BH to reach the spin of Eq. (13.12). In the absence of significant interaction with
the environment (e.g. through accretion or strong gravitational-wave emission), this

is inversely linked to the “instability timescale” implied by of Eq. (13.8]), namely
Tinst = 1/ T jimn - (13.15)

This corresponds to an e-folding in the occupation number of level (j, /, m, n). In the
nonrelativistic limit (¢ < 1), Tips¢ can be approximated for the dominant scalar level
(I=m=1,n=0)by [342]

9
© M o\ (0.1\ 1
Tir?st ~ 27 days (IOMO) (;) ;, (1316)

which is generally slower than the timescale for the dominant vector level (j = m = 1,
n = 0), approximated by [343]]
™ L

Tinst ~

7
) (E) l (13.17)

2 minutes (
10

10 My,
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in the same small-a limit.

As it turns out, gravitational interactions between levels might prevent the simul-
taneous population of more than one state [336]. Whether this is true or not, the
hierarchy of involved timescales also suggests that we need only consider single-level
clouds. For instance, for most parameters, the [ = m = 2 scalar level has an instability
timescale larger or comparable to the depletion timescale of the fastest-growing level
[ = m =1, so we should expect the latter to be unoccupied by the time the former
reaches any significant size. The same holds for vectors, as discussed in [343]]. This
means that we need only consider a single level at a time: as soon as the BH is born,
the fastest-growing level will be quickly populated; because the field has integer spin,
there is no limit to how many particles can occupy it, and the growth will continue
until the BH reaches the spin of Eq. (I3.12)); the next level, with second-largest T,
will begin to grow only after the first one is depleted (through gravitational wave

emission, as discussed below, or any other reason).

All of the results in this section were obtained from perturbative analyses that consider
the nonrelativistic behavior of a boson field over a static Kerr background. These do
not take into account effects like back-reaction of the field onto the background metric,
gravitational wave emission by the boson condensate, or interaction between energy
levels. However, the validity of Eqs. (13.3)—(13.8) is confirmed by full numerical
relativity simulations for the case of vector fields [370, 371,379, 384].

13.2.2 Gravitational-wave emission

Once the boson cloud has reached a macroscopic size, it will emit a significant
amount of gravitational radiation. There are three main mechanisms by which this
may happen: (i) emission due to annihilation of bosons into gravitons; (ii) boson
transitions between energy levels, analogous to electron jumps in the hydrogen atom:;

and (iii) abrupt collapse of the cloud due to particle self-interactions (“bosenova”).

Due to the high occupation numbers involved, the first two processes can be described
purely classically, with GW emission stemming from a time-varying quadrupole
(and higher-multipoles, to a lesser degree) in the cloud’s stress energy. Transitions
only become important if more than one level is occupied with comparable numbers.
Therefore, it could take over thousands of years after the birth of the BH for such
a signal to become detectable [339, |340]], making transitions interesting for very
old BHs only. Unfortunately, the typical duration of transition signals would be

of order years or shorter [339], which makes their observation from old potential
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sources highly unlikely. Meanwhile, bosenovae are only relevant in the presence
of large boson self-interactions [385, [386l]; in particular, they are not expected to
occur for the QCD axion [339]. In any case, the typical duration of bosenova signals
would be of the order of milliseconds and the numerical simulations required to
produce their waveforms are still in their infancy [385) 386]—this makes bosenovae
a possibly relevant for unmodeled-burst analyses (e.g., [113} 387, 1388]]), rather than

the continuous-wave searches we are concerned with.

Given the above considerations, we restrict ourselves to annihilation signals, which
are the best understood and most relevant for ground-based detectors. To understand
this, consider a BH that has been maximally spun down due to the growth of the boson
cloud surrounding it. We should expect this cloud to be composed of a vast number
of particles in a coherent state corresponding to the fastest-growing energy level, as
determined by Eq. (13.8). Indeed, we may think of the cloud as a macroscopic object
with particle density given by the norm of the boson wavefunction, and rotating with
angular frequency w; = mQgy, as implied by saturation of Eq. (13.4). Treating this
object purely classically, we may then expect the cloud to radiate gravitational waves

at twice its rotational frequency [48].

A detailed description of the cloud’s gravitational-wave emission can be obtained
by using the Teukolsky formalism to solve the linearized Einstein equations for the
cloud’s stress energy, given by the wavefunction of the relevant quantum state [342].
As aresult, one indeed finds that the cloud emits gravitational waves with angular
frequency

o = 2wy, (13.18)

and that the emission pattern is described by a set of spin-weighted spheroidal
harmonics corresponding to the spin of the final BH, with azimuthal numbers [ > 2,
and magnetic quantum number fixed to m = 2m (see Sec. [13.3.1). Both vectors
and scalars emit GWs with the same angular pattern (for a given j and m), with the

fastest-growing level radiating mostly in the [ = /i = 2 mode.

The gravitational power radiated in each angular mode / may be written as
. ~ 1S ¢\ M. 2
Eowl,in )= ——=—| (=] A% (@ x), 13.19
w2 (S (5 apar v
where My and r, = GMy/ c? are respectively the mass and lengthscale of the final
BH, and Aj; (a, x;) is a dimensionless factor. For scalars, we compute the Aj;’s

numerically using BH perturbation theory as in [342][ but this is not currently
>Note that A = |Z| x (M?/M,), for | Z| as defined in [342]].
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feasible for vectors. Regardless of boson spin, as long as Eq. (13.7) is satisfied, the
emitted power will be a steep function of « [337, 1339, 342]]. In fact, for small @, the
power emitted in the dominant angular mode (I = 2) by the fastest-growing scalar
level (I = m =1, n = 0) may be roughly approximated as [357]

i a \16
ESy ~7x10%erg/s (o) 42, (13.20)

and for the fastest-growing vector level (j = m = 1,1 =n = 0) as [343]

_ a 12
Eggvzleo“%rg/s(m) X2 (13.21)

The difference in the & dependence in these two expressions arises from the fact that
the fastest vector level has no orbital angular momentum (/ = 0), and so lies closer to

the BH yielding a more compact cloud.

The energy in the gravitational radiation is drawn from the cloud itself, which slowly
fades away as its component particles annihilate into gravitons [336, 339]. As a
result, the signal will be almost monochromatic, with a slowly decreasing amplitude

and slowly increasing frequency. The evolution of both these quantities is tied to the
timescale implied by Eq. (13.19),

TGW = MCCZ/E(}w. (1322)

This “gravitational-wave timescale” is just the time it takes for half of the rest-energy
of the cloud to be radiated away, and can be thought of as the typical duration of
the signal. Using the approximations of Eq. (I3.13) and Eq. (13.20), we get for the

dominant scalar level in the nonrelativistic limit, a signal duration of

15
©) ~6.5%10* M o1 13.23
TGW DX yr IOMQ 5 )(i. ( . )

Similarly, using Eq. (13.21])), for the dominant vector level we get

11
W) M \(0.1)" 1
~1d — —. 13.24
fow ay(IOMO)(a) Xi (13.24)

Clearly, the vector processes tend to take place at a much faster pace than scalar ones,
as expected from the higher radiated power. In both cases, however, the duration
of the signal is significantly shorter than the time it takes for the cloud to grow, as
given by Eq. (I3.13). This an important, general feature that justifies the separate

treatment of the early growth and late emission stages in the first place.
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13.3 The signal

Having reviewed the physics of boson clouds around BHs in Sec.[13.2] we will now
focus on the properties of the gravitational signal produced by one of these systems,
as seen by differential-armlength detectors on the ground. Given that we only expect
one quantum state to be significantly populated at any given time, we will restrict
our discussion to signals from single-level clouds. In any case, the signal from a
multilevel cloud can be produced trivially by the addition of several single-level
waveforms described below, assuming negligible interaction between levels. We
describe the signal morphology in Sec. [I3.3.1] and elaborate on the most salient
features in Sec.[13.3.21

13.3.1 Waveform

Consider a cloud made up of bosons in a single quantum state that has just stopped
growing, after drawing enough energy and angular momentum from its host BH to
saturate Eq. (I3.4). In that case, as anticipated in Sec.[I3.2.2] we expect the cloud to
emit a continuous gravitational signal with a small spin-up and amplitude depending
on the properties of both BH and boson. The strain signal, /;, seen by a given
differential-armlength detector, I, can be written in the usual form as a sum over
polarizations,

k(1) = FL(t) a, cos ¢(r) + FL(r) ax sin ¢(2), (13.25)

where the Flf ’s are the antenna-response functions of detector / to signals of plus (+)
and cross (X) polarizations (see, e.g., Appendix B in [168]] for explicit expressions).
These depend implicitly on the relative location and orientation of the detector and
the source, usually parametrized by its right ascension (a,), declination (d4), and
polarization angle (). This last parameter determines how the frame in which the
polarizations are defined is oriented in the plane of the sky; for our purposes, this
will be the angle between the spin of the BH and the projection of the celestial North

onto the plane normal to the line of sight.

The polarization amplitudes, a, and ax, are made up of contributions from several
angular multipoles, indexed by the wave azimuthal number, [>2 j, and with fixed

magnetic number, /1 = 2m,

acpe== > o [ 20 = 25150 (13.26)
I>21
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with the plus (minus) sign on the right-hand side corresponding to the + (X)
polarization [342]. Because the boson cloud does not emit GWs isotropically, these

amplitudes depend on the orientation of the source relative to the detector.

The angular dependence is encoded in Eq. (I3.26)) via the spin-weighted spheroidal
harmonics [389]], which are analogous to the usual spin-weighted spherical harmonics
but account for the nonsphericity of the space around the Kerr BH. As such, these

are functions of BH spin, signal frequency and orientation with respect to the source:
sSiﬁl(D = SSim(a(D/C’ CoS L)’ (1327)

where for us the spin weight is always s = —2, as needed to describe GWs. The
inclination ¢ is defined as the angle between the BH spin and the line of sight. We

compute these eigenfunctions numerically using Leaver’s method [390, 391]].
The characteristic amplitude of each mode can be written as

N 4
@ _ ¢ M. 1

hy = — —— A (@, xi), 13.28
’ G MJ%’H 212 f2r 1l xi) ( )

where the dimensionless factor Aj;, encodes the relative amount of energy that
the source deposits in each mode, as in Eq. (13.19). Assuming the BH has been
fully spun down by the cloud, this is only a function of the initial BH spin and the
fine-structure constant @, and can be computed numerically from BH perturbation
theory following [342]. In the nonrelativistic limit (¢ < 1), this can be approximated
by [337,1340, 357]

1S = 8% 1072 (%) (%)7 (Mrm) (L) (13.29)

for the dominant scalar mode ({ =m =1,n =0, [=m= 2), and by [343]]

3 M a \3 (Mpc) (x — xr
Y~ dx 10724 | 2 (—) ( ) 13.30
0 ¥EX 10Mm, | \o1) \ 77 0.1 (13.30)

for the dominant vector mode (j = m = 1, n = 0, [ = /i1 = 2), corresponding to the
approximations in Eq. and Eq. respectively. Equations Eq. (13.29)
and Eq. (13.30) include an explicit spin-dependent correction factor to account for
the dependence of the mass cloud on a, with y itself a function of a defined in Eq.
(I3.12). Although not fully accurate, these expressions will be useful when studying
the scalings of the expected signal amplitude—especially in the case of vectors, for

which the A factors have yet to be computed numerically.
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In both the scalar and vector cases, the amplitude of the signal will decrease as a
function of time, starting from the peak values given by Eq. (13.28)). This is due
to the progressive dissipation of the boson cloud sourcing the GW signal. This

weakening occurs over a timescale of the order of the signal duration, Eq. (13.22)).

In a frame inertial with respect to the source, the phase evolution of the signal
corresponds to a simple monotone that may potentially evolve slowly in frequency.
In the frame of the detector, extra timing corrections are needed, so that, in terms of
the time r measured at Earth, the phase evolution can be written as

N 5l) f .

o(t) =2r ) == [t — 1t +51(t)]) + g, (13.31)

(7 +1)!

j=0
where Bl(j ) f is the j® time derivative of f, the GW frequency measured at fiducial
time 7y, and ¢ is a phase offset. The timing corrections 6#(¢) account for delays due
to the relative motion of the source and detector, general- and special-relativistic
effects, as well as potential corrections due to the presence of a companion if the

source is part of a binary (e.g. [[75}1320, 392]).

As implied by Eq. (13.18), the source-frame frequency will be givenby f = &/(2n) =
wj /7. Noting that w; ~ w, by Eq. (13.5), this may be approximated as a function of
BH mass and fine-structure constant as

a 10Mg )\ [ @
~ L L6451 (—) . 13.32
! Trg Z( M ) 0.1 ( )

This means that stellar-mass BHs should support boson clouds that emit gravitational
waves at frequencies within the sensitive band of existing and planned ground-based

detectors.

Once the superradiance instability has shut down, the GW signal will expect a (slight)
positive change in frequency (a “spinup”). This is expected on purely classical
grounds, as is typical of any gravitationally-bound system (as in the characteristic
“chirp” of compact-binary coalescences). The value of Gt(l) f = f can be computed
from the rate of change in the cloud’s binding energy [343]]. For scalars, Eq. (13.20)
implies a signal frequency derivative (see Appendix

2
” 10M. 19
f(s)z3><10_14Hz/s( MG) (%) X2, (13.33)

while, for vectors Eq. (I3.21)) implies [343]

. 10M5 \* 15
f(V)z1x10'6Hz/s( MQ) (%) -3 (13.34)
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The frequency drift is faster for vectors, as corresponds to quicker cloud dissipation.
Besides this spinup, we will also want to allow for higher-order derivatives of
the frequency in Eq. (13.31) to incorporate potential perturbations caused by the
astrophysical environment, presence of a companion, level interactions, or theoretical

uncertainty.

13.3.2 Projected properties

We are interested in making statements about the presence of ultralight bosons based
on searches for GW signals from known BHs. This means that we need to know
what strain frequencies and amplitudes we may expect from our target BH, without
knowing the true mass of the boson (if it exists). In principle, a particular BH could
support clouds for a range of boson masses, which we will parametrize implicitly
via the fine-structure constant, @ of Eq. (13.6). Although a particular single-level
cloud is expected to emit a GW quasimonotone, an unknown @ means that we could
expect signals at a variety of frequencies. This is clear from Eq. (I3.20), in the
small-e limit, or more generally from the fact that the A;;, factors in Eq. (13.28)
will be nonzero for a range of a’s. In other words, a given BH could “resonate” with
different bosons, allowing us to probe a (narrow) range of particle masses; hence

there is a band of signal frequencies to be potentially expected from a given BH.

In this section, we study in detail the properties of continuous signals that can be
expected from clouds around a given BH. Although so far we have kept the discussion
general, we now focus on scalars to provide concrete examples. We use numerical
techniques to compute the power emitted by different systems, obtaining estimates
that should be more reliable than previously published projections. In particular,
for each value of @ and initial BH parameters, we numerically solve the differential
equations governing the evolution of the cloud to obtain the final BH parameters, as
in [357]]. We then use the numerical results of [342] for the Aj,;, factors to compute
the radiated amplitude by means of Eq. (13.28)). Unfortunately, at the moment, it is
not possible to do this for vectors, since the corresponding perturbative calculations

are significantly more difficult and have yet to be carried out.

To summarize the key points from the discussion below: any given BH can allow
us to probe a narrow range of boson masses set by its mass and, to a lesser extent,
its spin (Figs. [I3.1HI3.3); heavier BHs will “resonate” with lighter bosons and
produce louder signals at lower frequencies (Fig. [I3.4); and signals from heavier

BHs (lighter bosons) will both grow and vanish more slowly, resulting in smaller
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Figure 13.1: Strain amplitude vs frequency for example black hole (scalar cloud).
The x-axis shows different frequencies at which we might expect a GW signal from
a scalar (/ = m = 1, n = 0) cloud around a BH with initial mass of M; = 60 M and
initial spin y; = 0.70. The colored curve shows the corresponding characteristic
amplitude, hg in Eq. (13.28) assuming r = 5 Mpc, parametrized by the fine-structure
constant, @ in Eq. (I3.6), as indicated by the colorbar. For reference, the other
curve shows the small-a approximation of Eq. (13.29)), including the spin correction
responsible for the amplitude turnover. Points to the left of the vertical dotted line
have Tjpg > 1 yr.

frequency derivatives (Figs. [I3.6HI3.8)). We expect similar conclusions to hold for

vectors, except that the overall radiated power will be stronger and the timescales

shorter, cf. Eq. (13.8) and Eq. (13.21).

Amplitude and frequency

Begin with the example of a BH with initial mass M = 60 M and dimensionless spin
x = 0.70, parameters consistent with the remnant from LIGO’s first detection [1]].
Assume that the BH is then maximally spun down by the presence of a scalar cloud,

and consider the amplitude of GWs emitted immediately after. We will assume the
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cloud is dominated by the fastest-growing energy level (I = m = 1, n = 0), and
restrict ourselves to the dominant GW mode (I = /7 = 2). For concreteness, place
the source 5 Mpc away and consider the amplitude of the signal as seen from Earth
for different values of @. Our BH could potentially support clouds emitting GWs at
different frequencies and with different amplitudes, depending on the true value of

the boson mass.

The above fact is clearly illustrated in Fig. which shows the characteristic
amplitude of waves produced by clouds around our example BH for different
initial values of . In the best case scenario for this BH, if there existed a boson
with g ~ 4 x 10713 eV such that @ ~ 0.179, then we would observe a signal
with characteristic strain amplitude hy ~ 5.2 x 1072°(5Mpc/r) at f ~ 191 Hz,
corresponding to the peak in Fig.[I3.1] For this value of the boson mass, at the end
of the superradiant process the BH will have reached a final spin of y = 0.62, having

lost 1.7% of its mass to the cloud.

Fig. [[3.T] also implicitly defines the range of frequencies of interest for searches
directed at this BH to be, say, within 150 Hz and 200 Hz. This range could be broader
or narrower, depending on the sensitivity of the search and how long one waits from
the birth of the BH to make an observation. For instance, points to the left of the
dotted gray line correspond to boson masses for which the signal would take longer
than 1 year to reach the amplitude shown (more on timescales in Sec. [I3.3.2] below).
According to Eq. (13.7), the maximum value of « for this source is ~0.2, for which
the amplitude vanishes. Note that, because u depends linearly on «, this means that

any given BH will allow us to probe a very narrow range of boson masses.

While the overall shape of the curve in Fig. will be generally the same for all
BHs, the location and width of the peak will be a strong function of the initial BH
mass and spin. This is represented in Fig.[13.2] in which we have fixed the BH
distance and spin to the values above, but allowed its mass to vary. Color in this
figure represents the strain amplitude of GWs emitted at a given frequency (y-axis)
as a function of initial BH mass (x-axis), while the gray dashed line marks the peak
amplitude for a given BH mass. Although « is not explicitly shown, it should be clear
from Fig. that moving vertically towards higher frequencies and amplitudes
corresponds to increasing a. In fact, a vertical cut of Fig.[I3.2]at M; = 60 M would

yield Fig. [[3.1]
Fig. [I3.2] shows that heavier BHs can support clouds that emit GWs at lower

frequencies but greater amplitudes. This was expected from the discussion in Sec.
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Figure 13.2: Strain amplitude at different GW frequencies vs initial black-hole mass
for fixed initial spin (scalar cloud). Color shows the characteristic strain amplitude,
Eq. (13.28), from a scalar cloud (I = m = 1, n = 0) that would be emitted at different
frequencies (y-axis), i.e. for different @’s (not shown), vs BH mass (x-axis). The gray
dashed line marks the peak amplitude. The source is assumed to lie at r = 5 Mpc,
with initial spin y; = 0.70. For ease of display, we set an arbitrary lower cutoff of
ho > 10730: amplitudes for points in the bottom purple region vanish asymptotically
for lower f, while amplitudes for points in the top gray region vanish identically
since superradiance cannot occur for those parameters. Points below the dotted gray
line have 7, > 1 yr. A vertical cross-section at M = 60 M, (vertical dotted line)

yields Fig. [13.1}
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Figure 13.3: Strain amplitude at different GW frequencies vs BH initial spin for fixed
mass (scalar cloud). Color shows the characteristic strain amplitude, Eq. (13.28)),
from a scalar cloud (I = m = 1, n = 0) that would be emitted at different frequencies
(y-axis), i.e. for different a’s (not shown), vs BH initial spin (x-axis). The gray
dashed line marks the peak amplitude. The source is assumed to lie at r = 5 Mpc,
with mass M = 60 My. For ease of display, we set an arbitrary lower cutoff of
ho > 1073%: as can be inferred from Fig. amplitudes for points in the bottom
purple region vanish asymptotically for lower f, while amplitudes for points in
the top gray region vanish identically since superradiance cannot occur for those
parameters. A vertical cross-section at y; = 0.70 (vertical dotted line) yields Fig.
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[13.2.2; (i) heavier BHs are also larger, and so must be the boson cloud surrounding
it, thus yielding lower GW frequencies; and (ii) heavier BHs result in a heavier cloud,
as dictated by Eq. (13.13)), which will in turn radiate more strongly, per Eq. (13.19).
Because the overall radiated power decreases with BH mass, this also means that
the band of detectable frequencies is narrower for lighter BHs, which is also visible
in Fig.[13.2] The fact that the peak frequency (dashed line) decreases linearly with
BH mass was already anticipated in Eq. (13.32). This can be understood from the
observations that (i) f ~ w/m ~ 2/1, and that (ii) 1, ~ r, for the boson and BH
sizes to match and maximize superradiance. As one moves vertically up the plot
(increasing f or, equivalently, «), the emitted power vanishes abruptly at a point
defined by the saturation of Eq. (I3.7); in this case, because y; = 0.70 and m = 1,
this corresponds to @ = 0.2. Finally, as in Fig. [I3.1] points below the dotted gray
line would take longer than 1 year from the birth of the BH to reach the displayed

amplitudes.

The properties of the GW emission will also vary with the initial spin of the BH.
This is illustrated in Fig. [13.3] in which we have fixed the BH distance and mass
(M; = 60 M), but allowed its initial spin to vary. As in Fig. color represents
the characteristic strain amplitude emitted at a given frequency (y-axis) for different
values of the initial spin (x-axis); again, the dashed line traces the peak amplitude.
It is no surprise to find that BHs with greater initial spins yield louder GWs: the
faster the BH is spinning before the superradiant process kicks off, the longer the
cloud may grow without saturating Eq. (13.4)) and, consequently, the more mass it
will extract before its growth stalls. The fact that higher-spin BHs result in heavier
clouds is reflected in Eq. (13.13)), and the corresponding dependence of 4 on y; can
be glimpsed from Eq. (I3.20), which is valid for @ < 1. Similarly, for a fixed initial
BH mass, a faster initial spin results in a lighter final BH [see Eq. (I3.13)) again],
and so yields higher GW emission frequencies per Eq. (I3.32). As in Fig.[[3.2] the

upper frequency cutoff is given by Eq. (13.12).

As suggested by Fig. and Fig. [I3.3] the characteristic GW amplitude emitted by
a boson cloud as a function of frequency may show interesting structure as the initial
BH mass and spin are varied. However, in many situations, it suffices to know the
expected amplitude of the peak emission from a given system. This information is
summarized in Fig.[13.4] which displays the characteristic amplitude and frequency
for the optimal cloud as a function of BH mass, and for different values of the initial

spin. The curves in the bottom panel can be understood as constant-spin cuts of the
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Figure 13.4: Optimal strain frequency and amplitude vs initial BH mass for different
initial spins (scalar cloud). Frequency (top) and characteristic amplitude (bottom) of
the strain produced by the best-possible cloud (best-possible @) as a function of initial
BH mass. Different curves correspond to different initial spins, showing that higher
spins result in stronger emission. We assume that the source is situated at r = 5 Mpc,
and that the scalar cloud is dominated by the fastest level (/ = m = 1, n = 0). The
intersection of the y; = 0.70 line with a vertical cut at M = 60 M, (dotted vertical
line) give the amplitude and frequency of the peak in Fig. [13.1] (dotted horizontal
lines).
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Figure 13.5: Optimal strain amplitude vs initial BH parameters (scalar cloud). Color
gives the characteristic strain amplitude emitted by the best-possible cloud matched
to a BH with the indicated initial mass (x-axis) and spin (y-axis). Horizontal cuts
yield the curves shown in the bottom panel of Fig.[13.4] The intersection of the
dotted white lines (M; = 60 My, x; = 0.70) corresponds to the peak of Fig. [I3.1]
Gray lines mark i, = 1 day and i, = 1 yr for reference.

full mass-spin plane shown in Fig.[I3.3] As for the other colormaps, the dotted white
lines in that plot mark the values of our example BH (M; = 60 M, x; = 0.70), which
can at best yield an amplitude of /g = 5.2 x 10726(5 Mpc/r) (peak of Fig. .
Gray lines mark representative values of the instability timescale of Eq. (13.13)) (see
Sec.[13.3.2). Fig.[13.4)and Fig. [I3.5|once again reflect the fact that greater strains
are obtained for heavier BHs with larger initial spins. Some representative values
are shown in Table[I13.1] where the bold row corresponds to the intersection of the
dotted lines in Fig.[13.2]

Timescales

The figures discussed so far provide important information about the expected strain

as a function of frequency when searching for signals from a given BH, but it is
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Table 13.1: Parameters of optimal scalar cloud for representative BHs. A “k” next to
a value stands for “x103”. The bold row corresponds to the intersection of the dotted

lines in Fig.[13.2]

M;  xi U @; S ho Tinst  TGW
Mg 10-Bev Hz SMpc/r day yr
3 090 122 0273 58k 4x107%° 0.1 2
10 090 36 0273 1.7k 1x107% 03 6
60 070 4.0 0.179 191 5x107* 39 8k
60 090 60 0273 290 7x10® 2 38
200 085 1.6 0243 77 1x107* 12 511
300 095 14 0311 66 8x1072* 4 40
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Figure 13.6: Signal growth and duration timescales for example BH (scalar cloud).
Curves show the signal duration (purple, top), Eq. (I3.15)), and growth (orange,
bottom), Eq. (13.22)), timescales for a scalar cloud (I = m = 1, n = 0) as a function
of the fine-structure constant @ from Eq. (I3.6). The BH is assumed to have an
initial mass of M = 60 M and spin of y = 0.70. The vertical dashed line marks
the value « that yields peak emission for such BH, for which i, = 39 days and
16w = 7.5 x 103 yr. Note that values of @ > 0.2 preclude superradiance given this

spin, cf. Eq. (13.7).
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important to also consider the timescales introduced in Sec. [[3.2] There are two
timescales associated with the gravitational signal: the time it takes to reach its peak

amplitude and its duration thereafter.

The signal-growth timescale depends strongly on «, as is illustrated in Fig.
(orange curve) for our example BH (M = 60 M, y = 0.70). This high sensitivity
on « means that, when analyzing real data, it will be important to only consider
values of the boson mass that could have yielded a detectable signal given the age of
the BH being targeted. In particular, strain upper-limits can only be meaningfully
translated into boson-mass constraint if the BH is sufficiently old to support a cloud
that would emit gravitational waves of such amplitude. If a search is carried out
before such time, one should instead look for a weaker and still growing signal. This

will be especially important for young BHs.

For instance, for the BH in Fig. @] this means that, to constrain the presence of the
best-matching boson (vertical dashed line: @ ~ 0.179, i.e. u ~ 4 x 10~13eV), one
must wait at least 1 month from the moment the BH is born before looking for a
GW signal in the data. During that first month, the cloud is still growing and the
signal has not reached its peak (1o ~ 5.2 x 1072, according to Fig. , meaning it
might be too weak and unstable for detection. Thus, absence of a detectable signal
during that initial period would not be evidence against the existence of the boson.
The same is true for any other value of «, but the peak strains will be weaker (cf. Fig.
[13.1)) and the times required to reach them possibly much longer (if @ < 0.179, for
our example with y; = 0.70).

The second relevant timescale, the signal duration, is also strongly dependent on «.
This is also illustrated in Fig. (purple curve) for our example BH (M; = 60 M,
xi = 0.70). For the boson that best matches this BH (o ~ 0.179), the characteristic
duration of the signal is ~7.5 x 10 yr. Similarly to the situation described above,
absence of a detectable signal long after this would rof constitute evidence against the
existence of such a boson. This is because, if one waits too long, the fastest energy
level will have been depleted, and one should instead look for signals corresponding
to the next level, cf. Eq. (I3.TT)). This feature is especially important when targeting
old BHs.

Both timescales are a function of BH mass, as reflected in Fig.[I3.7]and Fig.[I3.§]
and scale inversely with BH spin. The color in Fig. and Fig. corresponds to
the growth and duration timescales respectively, both assuming a spin of y = 0.70.
The horizontal dashed line marks & = 0.179, the value of the fine-structure constant
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Figure 13.7: Superradiant-instability timescale (scalar cloud). Color shows the
characteristic growth time, Eq. (I3.13), for a scalar cloud (/ = m = 1, n = 0) as
a function of BH mass (x-axis) and fine-structure constant (y-axis). The BH is
assumed to have an initial spin of y = 0.70. The highlighted contours correspond to
Tinst = 1 day (top, thin) and 7jpg = 1 yr (bottom, thick). The vertical dotted line gives
the instability timescales for M = 60 M. The horizontal dashed line corresponds to
the value of « that yields optimal GW emission for a BH with initial spin y = 0.70.
Note that values of @ > 0.2 preclude superradiance given this spin, cf. Eq. (13.7).

that yields peak emission for a BH with that spin. Meanwhile, a vertical cut along
the dotted lines (M = 60 M) would produce the orange and purple curves in Fig.
[13.6] respectively for Fig. and Fig.[I3.8] Although both timescales vary widely
for different a’s, for any given system (M, y, @), Ting is always orders of magnitude
shorter than Tgw which allows the treatment of the cloud growth and signal emission

as two different regimes, as explained in Sec.[I3.2]

13.4 Directed searches

There are multiple observational signatures of BH superradiance that could be used
to probe the boson-mass space 360-363, . Among all these, we
will focus on the prospect for direct detection of the continuous gravitational waves
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Figure 13.8: Signal duration timescale (scalar cloud). Color shows the characteristic
signal duration, Eq. (13.22)), for a scalar cloud (I = m = 1, n = 0) as a function of
BH mass (x-axis) and fine-structure constant (y-axis). The BH is assumed to have
an initial spin of y = 0.70. The vertical dotted line gives the instability timescales
for M = 60 M. The horizontal dashed line corresponds to the value of « that
yields optimal GW emission for a BH with initial spin y = 0.70. Note that values of
a > 0.2 preclude superradiance given this spin, cf. Eq. (13.7).

expected from these sources (Sec. @) In particular, we will restrict ourselves to
searches directed at specific well-localized targets, rather than searches covering the
whole sky (see, e.g., [73] for a review of continuous-wave searches). This means that
we are interested in studying known (potential) BHs that could have the right mass,
spin and age to possibly harbor a radiating boson cloud. In order to apply existing
search strategies, we would also like the cloud to be stable enough to make sure the
signal lasts sufficiently long and evolves slowly enough to be considered “persistent”

(we sharpen these criteria below).

Because the properties of the central BH can be measured a priori, directed searches
can potentially make unambiguous statements about the existence of ultralight bosons
without relying on BH population models, which carry much uncertainty. If a signal

were found from a given target, detailed measurements of its morphology (see Sec.
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[13.3.1)) would provide invaluable information about the mass and dynamics of the
new particle. On the other hand, if a signal were not found, knowledge of the BH
parameters could allow us to place stringent constraints on the existence of bosons in
the corresponding mass range. Furthermore, having a specific sky location allows
us to probe deeper in the noise and explore a greater range of parameters to farther
distances. This comes at the price, of course, of the restriction to BHs that are already
known, which may limit the use of the method in practice if no suitable BHs are

discovered to target.

In the following, we introduce hidden Markov model (HMM) tracking as an ideal
method to carry out directed searches for these signals (Sec.[13.4.1). We evaluate
its sensitivity with Monte-Carlo simulations and use the results to estimate the
scalar-cloud detection horizons for future detectors (Sec.[13.4.2). This discussion
is agnostic as to the origin of the target BH, assuming only a known location and
reasonably constrained intrinsic parameters. The conclusions are, therefore, generally
applicable to any known stellar-mass BH, but we devote special attention to remnants
from compact-binary mergers and holes in x-ray binaries (Sec. [I3.4.3). As we
discuss below, vector signals present unique data-analysis and theoretical challenges,

so we focus mainly (though not uniquely) on scalars.

13.4.1 Search method

Hidden Markov model tracking is an efficient search strategy for detecting quasi-
monochromatic gravitational waves [394, 395]]. It was developed with rapidly-
spinning neutron stars in mind and has been applied in searches directed at several
targets [6,1396-398]. This strategy is well suited to searches for gravitational waves
from boson clouds because its computational efficiency enables the coverage of a
wide range of signal parameters, and because it does not rely on restrictive waveform
models. Furthermore, it allows small deviation from restrictive waveform models,
unlike other coherent or semi-coherent search methods that rely on Taylor-series-
based matched filters and are, thus, more model-restricted (e.g., [399, 400]). This
makes it ideal to search for signals over a broad frequency band (cf. Fig. [I3.1)), even
when the location of the source is only loosely known and when there is potential

uncertainty in the signal morphology.
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Algorithm overview

The goal of HMM tracking is to find the most likely path that a putative signal takes
in the time-frequency plane, contingent on the observed noisy data [394, 395]. To do
so, it divides the f-f plane into pixels, assuming the signal is monochromatic over a
period Tg;ife and splitting the frequency axis into bins of width A f = 1/(2T4yis). The
signal power in each bin is then estimated coherently using the F -statistic [[74, 399,
a frequency-domain estimator that accounts for the motion of the Earth and is widely
used in continuous-wave searches [75]]. At each time step i, this statistic is computed
for each discrete frequency bin j by coherently integrating over the time interval
(t;, t; + Tarify). Henceforth “ f; j” denotes the central value of the signal frequency, fp,
in the jth bin[ If the total observation time is T,ps, then the values of F(fy) for the
Nr = Tops/ Tarire blocks of duration Tyt are combined incoherently as described in
[394,1395].

Based on this information, the HMM algorithm computes the likelihood of different
signal paths, assuming the signal can only transition between adjacent frequency
bins from one time step to the next. For application to boson signals, we assume the
transition probability Ay, ., between frequency bins fo; and fo; to be

Agp. fAZAfAfAZE, (13.35)

j+1.J0; 0jJ0; = o

and to vanish otherwise (see [394, 395]] for details). The choice of Eq.
amounts to favoring signals with a positive frequency derivative, in agreement with
the signal model of Sec. m We choose a uniform prior Il = Né "on f; over
the frequency band being searched, where Ny is the total number of frequency
bins. The result of the HMM tracking algorithm is summarized by a figure of merit
representing the significance of the optimal path relative to all others (see [395,3960]).
This quantity can then be treated as a regular (frequentist) detection statistic, and its
background can be computed over several noise-only instantiations data to assign

detection significances.

Frequency-derivative tolerance

Although, in principle, this method would be able to handle signals with arbitrary

frequency evolutions, allowing for large frequency drifts (f) comes with a significant

®Here we follow the HMM-tracking literature by using “f;” to denote the estimator for the
(unknown) frequency of the signal, rather than “f” for frequency in general [394,[395].
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reduction in sensitivity. In order to allow for a maximum frequency derivative

max( f) we must choose Tyt < Af/| max(f)|, so as to guarantee that
1+ Trift .
/ dr’ (1)
t

for 0 < t < Typs and where the frequency resolution is set to Af = (2Tdrift)_1, as

< Af, (13.36)

mentioned above. Therefore, tracking a signal with higher f requires reducing the
coherent-integration time over which the ¥ statistic is computed, which in turn

diminishes the sensitivity of the search [393].

The implementation of the ¥ -statistic-based HMM used by the LIGO and Virgo
Collaborations can currently track quasimonochromatic signals with derivatives
of at most f ~ 1078 Hzs™! [395]]. This is more than enough to accommodate the
majority of scalar signals [Eq. (13.33)], but puts most (although not all) of the vector
parameter space out of reach [Eq. (13.34))]. Detecting shorter-lived signals may be
possible by extending the current method to track not only the signal frequency,
but also its first time derivative with a two-dimensional HMM as in [[395]]. Such a
strategy would also naturally handle noticeable decays in signal amplitude over the
observation run. The adaptation of the methods in [395] to boson signals will be
subject of future work[’]

Computing cost

The computing time for one central processing unit (CPU) over a total observing

time Typs in a frequency band from finin to fmax is given by [393]
T = 2kBNigo TaristTobs Tgprr Nsky (finax — finin) (13.37)

where Tspr is the length of the short Fourier transforms (SFTs) used to compute the
¥ -statistic [[74], Nif, is the number of interferometers, Ngky is the number of sky
locations, S is the percentage of time that the interferometers collect data (“duty
cycle”), and « is the time to compute the F -statistic per template per SFT. The value
of k depends on Tspr and the CPU architecture; we adopt the recent estimate that
k =4x 1078 s for Tspr = 1800s.

"The HMM tracking based on 1-s short Fourier transforms described in [398]] can be used to
search for long-duration transient signals with timescales of order ~ 10?~10* s. The timescale of a
vector signal is much longer than that, hence longer short Fourier transforms are needed. However,
the Doppler modulation due to the motion of the Earth with respect to the solar system barycenter is
not negligible when the length of short Fourier transforms is longer than ~ 10-100 s [400].
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Figure 13.9: HMM sample tracking paths. Injected fy(¢) (light curves) and optimal
Viterbi paths (dark curves) for the injected signals with (a) weaker random walk
|0 f] < 0.1Af and (b) stronger random walk |6 f| < 0.5Af. The top panels show the
random walk ¢ f added to the injected signals at each step, which is too small to
be seen by eye in the bottom panel of (a). The horizontal axis is in units of HMM
steps with each step spanning for T4:if; = 8 d. Good matches are obtained in both
(a) and (b) with £, = 0.16A f and 0.50A f, respectively. Injection parameters are in
Table and the injected signal strain is sp = 5 x 10726,

We normally divide the full frequency band into multiple 1-Hz subbands to allow
parallelized computing. For example, if we have 10? cores running in parallel, a
search for T,y = 80 days over frequency band spanning 100-200 Hz in two detectors
and with a fixed sky location (Ngy = 1) takes about 7 min to complete. This

estimation is consistent with the real cost of our simulations below.

13.4.2 Sensitivity estimates

We would like to study the sensitivity of ground-based detectors to continuous GW
signals from boson clouds around known BHs. For this purpose, we simulate signals
consistent with the morphology described in Sec. [I3.3.T)and study how well they
can be recovered using the HMM tracking (Sec.[I3.4.2). We then translate expected
strain sensitivities into detection horizons for boson signals with current and future
ground-based detectors (Sec.[I3.4.2). Finally, we explore the impact of uncertainties
in the source’s sky location (Sec.[13.4.2).
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Table 13.2: Injection parameters.

Parameter Symbol Value
Initial Frequency Join; 201.2Hz
First derivative of for,;  fiy 1 x 10712 Hzs™!
Right ascension o 23h23m26.0°
Declination Ox 58°48'0.0”
Inclination cost [-1, 1]
Polarization 4 [0, 27]
Initial phase (O [0, 27]

Gaussian noise ASD S}ll/z(f) 4 x 1074 Hz™1/?

Table 13.3: Search parameters.

Parameter Symbol Value
Search frequency band f 201-202 Hz
Coherent time Tarift 8d

Bin size Af 7.23x 107" Hz
Total observing time Tobs 80d
Number of steps Nr 10

Strain sensitivity

To study our sensitivity to waves from boson clouds, we inject synthetic signals with
parameters consistent with the morphology described in Sec. [I3.3.T]into simulated
Gaussian noise corresponding to two aLLIGO detectors at design sensitivity [401]. The
signal frequency and frequency derivative were chosen to be roughly in agreement
with an optimal scalar cloud around the example BH discussed in Sec. [13.3.2}—that
is, M; = 60 Mg and y; = 0.70, consistent with the GW150914 remnant [31]. On top
of an overall positive frequency drift, we let the signal frequency jump randomly
at eight-day steps to simulate small uncertainties in the signal model, i.e. we add
a random frequency fluctuation ¢ f at each time step. We vary the magnitude of
0 f, as well as the intrinsic amplitude A, for different injections. We choose source
inclinations randomly such that cos ¢ is uniformly distributed over the range [—1, 1],
while we pick polarization angles ¢ and initial phases @y uniformly over [0, 27].
Unless otherwise stated, we fix the sky location to the values in Table (See Sec.
[13.3.1] for definitions of all the signal parameters.) The HMM tracking is conducted
with the settings shown in Table[3.3] directed at the true sky location of the injection.
We choose Typs = 8 d assuming f ) < 10712 Hz/s, in agreement with the scenario

considered above.
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Figure 13.10: Receiver operator characteristic (ROC) curves for the injections with
parameters in Table [I3.2] The four curves (from top to bottom) correspond to
the four representative wave strains ho/lO_26 = 5, 4, 3, and 2. The horizontal
and vertical axes indicate the false alarm probability P, and detection probability
1 — Pg, respectively. Each curve is based on 200 realizations with randomly chosen
polarization and inclination angles and initial phase.

To demonstrate that HMM can accurately reconstruct boson signals, Fig. [13.9]
presents two tracking examples for injected signals with sy = 5 x 1072 and
parameters in Table The frequency random walks are such that |6 f| < 0.1Af
and |0 f| < 0.5Af for panels (a) and (b), respectively. The optimal HMM paths
(dark curves) match the injected path fy(¢) (light curves) closely: the root-mean-
square error (RMSE) between the optimal HMM paths and the actual signals are
£=1.16x10""Hz = 0.16A f for panel (a) and 3.65 x 10~" Hz = 0.50A f for panel
(b). These small discrepancies are mostly due to the frequency discretization carried
out by the HMM algorithm.

We next quantify the efficiency of HMM tracking at detecting signals of different
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amplitudes. For concreteness, we assume a small uncertainty in the signal model
by setting |6 f| < 0.1Af, as in Fig. Figure shows the receiver operator
characteristic (ROC) curves for injected signals with four values of A, ranging from
2 x 10726 to 5 x 10726, For each signal amplitude, these curves show the detection
probability (1 — P4, where Py is the false-dismissal probability) as a function of
required false-alarm probability threshold (P,). For instance, if we demand a false
alarm probability P, = 1%, we can expect to detect a signal with /iy = 4 x 10726
(5 x 1072%) with 84% (98%) of the time.

The detection threshold in continuous-wave searches is traditionally defined to be
95% false-dismissal rate at 1% false-alarm probability [[75,396]]. In our case, for an
observation time of Tps = 80 days with two aLIGO design detectors, this corresponds
to a strain amplitude of th% = 4.7 x 102° for unknown inclination. Based on this,
we will consider boson signals “detectable” if they reach an amplitude of th% or

higher for the observation conditions.

From the empirical result that th% = 4.7 x 10726 obtained for the simulations above,
it is straightforward to estimate how the sensitivity of the search would scale for
different detector networks and observation times. The sensitivity scaling will be
given by [395]]

B> (f) o Nigy 2S(F)'7? (TarinTows) ™* (13.38)

ifo
assuming a network of Njg, detectors with power-spectral density (PSD) Sy(f) at the
signal frequency[®| Using this, Fig.[I3.11] presents projected 95%-confidence strain
upper limits, th%, for different detectors as a function of GW frequency (assuming
there is no detection). We show results for alLIGO design sensitivity (gray), as
well as proposed third-generation detectors: LIGO Voyager (yellow), LIGO Cosmic
Explorer (purple) and Einstein Telescope in the “D” configuration (red) [402-4035].
All curves in Fig. [I3.11] were produced assuming Nif, = 1 and Tops = 1 year, but
it is straightforward to rescale them for different configurations using Eq. (13.38).
Finally, note that these curves were obtained by effectively marginalizing over source
orientation: they represent the value of th% marginalized over the distributions
of cost and ¢ in the ranges shown in Table m To obtain the values of th%

corresponding to optimal source orientation, one should divide the curves of Fig.

by a factor of ~2.8 [396].

8This requires that all detectors have comparable sensitivities given by Sy, ( f); were this not the
case, the Ni;ol/ 28,(f)!/? factor would have to be replaced by the effective PSD Seq(f)1/2, which is
given by the harmonic mean of the PSDs for each detector.
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Figure 13.11: Sensitivity vs GW frequency for different detectors. Value of th%
marginalized over source orientation for design aLIGO (gray), LIGO Voyager
(yellow), LIGO Cosmic Explorer (purple) and the Einstein Telescope (red). All
curves assume one year of continuous observation by a single detector of the indicated

type.

The sky position of the source with respect to the detector does not impact the
search sensitivity significantly because the variation due to the antenna pattern is
averaged out when the integration time is much longer than a day. We verify this
by injecting signals with /g = 5 x 1072° at different sky positions, and with all
other parameters as in Table[13.2] As before, the HMM tracking is conducted with
the settings shown in Table [I3.3] directed at the true sky location of the injection.
The detection efficiencies for each sky location are listed in Table[I3.4] As before,
each row is based on 200 realizations with randomly chosen cos ¢, ¥, and ®g. The

standard deviation of detection efficiencies at these eight sky positions is only 0.02.

Detection horizons for scalar clouds

It is useful to translate the projected strain sensitivities of Fig.[I3.11]into detection
horizons for boson signals from BHs with different parameters. The detection

horizon is the farthest distance up to which we should expect to be able to detect an
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Figure 13.12: Detection horizons for scalar clouds (aLIGO and LIGO Voyager).
Maximum-detectable luminosity distances (color) for optimal scalar clouds (I =
m=1,n =0, =/ = 2) around BHs with the indicated initial mass (x-axis)
and spin (y-axis) for different detectors. White contour lines indicate the values
of the corresponding boson rest-energy u/eV. The shaded region (top-left) marks
parameters that would yield signals evolving prohibitively fast (fier > 107%) for
existing search methods, based on Eq. (I3.33). The dotted white lines highlight the
mass and spin (60 Mg, 0.70) of the GW150914-like example discussed repeatedly
in the main text. Values correspond to HMM tracking for one year of continuous
observation by a single detector, accounting for signal redshifts and variability in
maximum Ty allowed by the expected signal, cf. Eq. (13.36).
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Figure 13.12: Detection horizons for scalar clouds (Cosmic Explorer and Einstein
Telescope). Maximum-detectable luminosity distances (color) for optimal scalar
clouds (! =m = 1,n =0, [ = i = 2) around BHs with the indicated initial mass
(x-axis) and spin (y-axis) for different detectors. White contour lines indicate the
values of the corresponding boson rest-energy u/eV. The shaded region (top-left)
marks parameters that would yield signals evolving prohibitively fast (fi; > 107%)
for existing search methods, based on Eq. (13.33). The dotted white lines highlight
the mass and spin (60 M, 0.70) of the GW150914-like example discussed repeatedly
in the main text. Values correspond to HMM tracking for one year of continuous
observation by a single detector, accounting for signal redshifts and variability in
maximum Ty allowed by the expected signal, cf. Eq. (13.36).



300
Table 13.4: Detection efficiency vs sky location (hg = 5 x 10729)

Right ascension  Declination Detection efficiency

23h 23m 26.0s 58°48’0.0” 0.98
23h23m 26.0s  —59°35’0.0” 0.97
23h 23m 26.0s 00°02’0.0” 0.92
23h 23m 26.0s 88°48'0.0” 0.98
23h23m 26.0s  —89°18'0.0” 0.98
05h 23m 26.0s 58°48’0.0” 0.98
11h 23m 26.0s 58°48’0.0” 0.98
17h 23m 26.0s 58°48'0.0” 0.99

optimal boson signal—namely, a signal from a boson cloud that perfectly matches its
host BH (to maximize intrinsic strain) and is optimally oriented with respect to the
detector (to maximize measured strain). Consequently, horizons are a measure of how
well we can do in the best-case scenario and are, thus, not generally representative
of most detections (see e.g. [406] for an overview of distance measures in GW
astronomy)—ryet, they are a straightforward proxy for the reach of our instruments
to this type of source. We compute this quantity for scalar clouds based on the
results from Sec. [13.3.2} we defer computation of horizons for vector clouds until
better numerical estimates of their intrinsic amplitudes become available and analysis

methods suitable for higher frequency derivatives are developed.

Figure [13.12] shows the horizon luminosity distance (color) for scalar signals as a
function of initial BH mass M; and spin y;, for (a) design Advanced LIGO, (b) LIGO
Voyager, (c) LIGO Cosmic Explorer, and (d) the Einstein Telescope. White contours
indicate the values of the boson rest-energy u (eV) that we would be able to probe
with a BH of that mass and spin. The shaded region marks values for which we
expect the signal to evolve too rapidly for current data analysis techniques to handle,
based on Eq. (13.33) and Eq. (13.36)). Note that this varies slightly among plots due
to minor differences in redshift. In all cases we assume one year of uninterrupted

observation by a single detector.

The horizon plots were obtained by finding the luminosity distance at which
an optimal cloud for the given BH parameters would become barely detectable,
i.e. ho(dy) = th%( Jaet) for detector-frame signal frequency fjer. In order to obtain
the relevant value of th%, we rescale the curves of Fig. using Eq. to
account for variations in Ty This is needed because the expected fje varies widely

over the parameter space, affecting the maximum-allowed coherence time, cf. Eq.
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(13.36) 7] We also take into account the fact that both frequencies and frequency
derivatives get redshifted as the signal makes its way to Earthi.e. fiaet = fare(142)7!
and fier = fare(1+2)72 for a BH at redshift z and source-frame frequency firc. Finally,
we rescale the curves in Fig.[I3.T1]to obtain values corresponding to optimal source

orientation, as explained above. All these different factors modulate the intrinsic
strain inferred from Fig. [13.5]to yield Fig.[13.12]

For all detectors, the horizon generally increases with initial BH mass and spin, as
expected from Fig. [I3.5] Furthermore, higher masses and spins are expected to
yield smaller f ’s, which enables longer coherent times (longer Tg;ifi’s) and, thus,
slightly higher sensitivity, cf. Eq. (13.38)). Yet, this tendency is offset by the fact that
heavier systems yield lower frequencies (Fig.[[3.4), causing the horizon to quickly
drop as signals reach the lower end of the detector’s sensitive band (cf. Fig. [I3.T1).
Moreover, signals from clouds around heavier BHs can more easily get redshifted
out of the band. At the other end of the spectrum, the instruments we consider tend
to be more sensitive at higher frequencies, but these correspond to lower masses and,
thus, lower radiated power (for a given ;). On the other hand, increasing the BH
spin yields both higher GW amplitudes and, to an extent, frequencies. Unfortunately,
however, lower masses and higher spins also result in high f’s that make much of

that part of parameter space inaccessible to current methods (shaded regions).

All this means, roughly, that the farthest horizons will be obtained for BHs with
masses in the range 10> < M;/My < 103 and spin as high as possible, corresponding
to boson masses within 10714 < u/eV < 107! (depending on ;). Even outside
this range, these horizons are significantly more distant than the sources at which
these searches are generally directed, which tend to lie within the Milky Way (see
e.g. [73])

As a concrete example, consider again a GW150914-like remnant with M; = 60 M
and y; = 0.70. As we saw back in Sec.[13.3.2] this BH would be best matched by a
scalar boson with 1 = 4x 10713 eV. A scalar of that mass would yield an optimal cloud
(I = m =1, n = 0) that radiates gravitational waves (I = m = 2) at a source-frame
frequency of 191 Hz with characteristic amplitude kg = 5.2 x 1072%(5Mpc/dy),
corresponding to the peak in Fig.[I3.1] From the intersection of the dotted lines in
Fig. we see that such a signal would be detectable, at most, up to 11 Mpc

°In an actual analysis, we might want to set a Ty shorter than that implied by Eq. in
order to allow for theoretical uncertainty in the predicted value of the frequency derivative.

10 Assuming standard ACDM cosmology with present parameters: Q,, = 0.308, Qx = 0.692,
Qi =0.0, h = 0.678 [407].
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Table 13.5: Scalar-cloud horizons (Mpc) for representative BHs (boson and signal
parameters shown in Table [T3.1).

M; (Ms) xi aLIGO  Voy CE ET
3 090 0.2 0.4 2 2
10 0.90 3 6 35 24
60 0.70 11 49 3x10% 1x10?

60 0.90 58 2x 102 1x10° 7x10?
200 085 2x10*2 6x10*2 5x10° 1x103
300 095 5x102 2x10° 2x10* 4x103

away with one alLIGO detector at design sensitivity observing continuously for 1
yr—or, equivalently, ~20 Mpc for three such detectors. This agrees with previous

estimates in [340].

Prospects are even better for third-generation detectors, with farther horizons over
most of the parameter space. However, as is evident from the dark regions in
Fig.[13.12] this is not true for higher masses because all instruments we consider
sacrifice sensitivity at lower frequencies in favor of higher ones (Fig.[13.11); as a
result, a second-generation network would be preferable in that region of parameter
space. This notwithstanding, third-generation detectors would offer significant
improvements for mostly any target with M; < 10°My. In particular, we find
that LIGO Cosmic Explorer could reach ranges of over 10* Mpc (z 2 1.4) for
fast-spinning BHs over a range of masses (Fig.[I3.12c). The Einstein Telescope
could also reach such distances, but for a more limited choice of parameters, and
would have shorter reach for most of the sources we consider; on the other hand,
this instrument would outperform all others at higher masses (lower frequencies).
Some representative values are presented in Table [I3.5]to ease comparison between

instruments.

Effect of sky-location uncertainty

We would like to understand the effect of uncertainty in the source sky location on the
HMM tracking, mainly motivated by the prospect of following up compact-binary
mergers. In order to find a continuous signal coming from some area in the sky,
we would have to analyze the gravitational-wave data with the HMM multiple
times assuming slightly different sky locations to tile the patch where the source is

thought to lie. The number of iterations (the number of “templates”) needed, Nsyy, is
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Figure 13.13: Sky resolution. Color shows detection efficiency (1 — Py, for P; the
false-dismissal probability) as a function of offsets in right ascension (x-axis) and
declination (y-axis) with respect to the true location for injections with sy = 5x 10726
(left) and kg = 2 x 10~2% (right). All other injection parameters are as in Table[13.2]
and search settings are shown in Table [I3.3] The left (right) plot was interpolated
from a square grid with 5 (7) sky locations on each side.

determined both by the size of the target area and by the sky resolution of the analysis,
which is in turn tied to the frequency resolution of the search and the amplitude of

the signal.

To estimate Ngy, we run two sets of simulations by injecting signals with Ay =
5% 1072 and hy = 2 x 102 into fabricated Gaussian noise for two aLIGO detectors
at design sensitivity. All other parameters, including the sky location, are as listed in
Table[I3.2] HMM searches are then conducted using the settings shown in Table[I3.3]
but for a grid of sky locations in the neighborhood of the injected signal. In other
words, for each injection amplitude (29 = 5 x 10726 or Ay = 2 x 107>) and for each
sky location assumed by the search, we inject a signal with random orientation and
phase, but location fixed to the value in Table[I3.2], we repeat this 200 times to obtain

detection probabilities for each of the search locations.

The results of this study are summarized in Fig. [I3.13] for both the soft (left panel)
and loud (right panel) injections. Color in these figures encodes the detection
efficiency (1 — P,) for searches assuming a sky location indicated by their offset
in right ascension (Aa,) and declination (Ad,) with respect to the true location
(Aayx = Ady = 0). The white (black) contours mark points at which signals were
detected 90% (50%) of the time at 1% false-alarm probability. Notice that, for

the weaker signal, the 90%-contour encloses an area of ~0.01 deg? around the true
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location, while for the stronger signal this is roughly four orders of magnitude larger.
We may take the size of the 90% contours as indicative of the spacing of the sky grid
needed to capture a signal.

In an actual search, we need Ny ~ 103 sky templates per deg? to detect a weak signal
near the detection limit. The sky resolution generally agrees with other coherent or
semi-coherent CW search methods [408,,'409]. Here we discuss the search feasibility
given the required number of sky templates. As a representative example, consider
that the existing three-detector network (Advanced LIGO and Advanced Virgo)
was able to localize the binary-neutron start merger GW170817 to a sky region
spanning ~30 deg? with 90% credibility [6]. Based on Fig. we would then
need Ny ~ 10* sky templates to obtain 90% detection efficiency of a signal with
hy = 5 x 10726 lying somewhere inside the GW170817 90%-credible region; by
contrast, Ngy ~ 3 would suffice for a signal with sy = 2 X 10723, Based on estimates
for standard computing architectures and algorithm settings, finding a signal at 200
Hz with g = 5 x 10726 in a ~30deg?-region (T,ps = 80d, Nir, = 2) would take
5 days of computing on 1k CPUs, which is feasible but not cheap. Note that Ngy
scales as f2 [408-411], so more templates will be required at higher frequencies.
Because computing cost scales directly with Ngky, the burden will be vastly reduced
once more gravitational detectors join the network and the sky locations reach the
projected O(1 deg?) [412].

13.4.3 Potential sources

The discussion thus far has been largely unconcerned with the kind of BH being
targeted. In this section, we flesh out the implications of the above conclusions

for two types of promising sources: remnants from compact-binary mergers (Sec.

[13.4.3) and BHs in x-ray binaries (Sec.[13.4.3).

Merger remnants

As pointed out before [340, 343], nearby CBC remnants would be ideal targets for
searches for gravitational signals from ultralight bosons. Because we witness their
birth first hand, the age of remnant BHs is perfectly known and their mass and
spin well constrained. This would enable accurate estimation of the continuous-
signal amplitude that should be expected for any given « (Sec.[13.3.2), allowing
us to potentially place interesting constraints on the existence of matching bosons.
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Furthermore, the location and orientation inferred from the initial chirp would allow

us to take advantage of existing infrastructure for directed searches for continuous
waves in LIGO and Virgo data (Secs. [13.4.1]and [13.4.2).

Ideally, we would follow up any and all mergers, as soon as a reasonable time has
passed for the cloud to form (Sec.[13.3.2). In practice, however, we may be limited
by the uncertainty in the sky location. Signals detected with only two instruments
will be too loosely localized to allow for followup (e.g., LIGO’s first detection was
localized to sky region of ~260 deg? [1]]). Fortunately, as we saw in Sec. the
localization provided by a three-detector network would already be manageable with
existing computational resources (e.g. ~28 deg? for the binary neutron star [6])). This
will be further improved when more, and more sensitive, detectors join the effort:
a network including LIGO India [[133}/134]] and KAGRA [135/1136], on top of the
three existing detectors operating at design sensitivity, is expected to routinely locate
events to an area of order ~1 deg® [412]. Regardless of the number of instruments,
events with an electromagnetic counterpart (e.g., mergers involving a neutron star)

will always be sufficiently well localized.

Extracting information about bosons from one of these observations would also
require good knowledge of the remnant distance and orientation. This is required
to translate strain (hg) constraints into limits on radiated-power (Egw), which can
then be turned into statements about the existence of a boson with a given mass
[cf. Egs. (13.19) and (13.28))]. In particular, if the source were too far away, the signal

from the hypothetical cloud would be undetectable at Earth, rendering constraints

on its amplitude moot. Thus, if the distance is not determined by other means
(e.g. association with a host galaxy), the implications for bosons will be contingent

on the uncertainty in the luminosity distance inferred from the CBC observation.

In the case of a scalar cloud, for most remnant masses and spins, the source would
have to be relatively close for the signal to be detectable by ground-based detectors
(Fig. [I3.12). For a second-generation network at design sensitivity, the horizon
would lie below 100 Mpc X v/Njs, for most signal parameters (Fig.|13.12a). Given
that we have yet to observe a BH merger that close [1-6, [178]], this projection is not
too auspicious. Yet, note that the horizon can reach close to 103 Mpc X VNjgo in
some regions of parameter space—although taking advantage of this with existing
algorithms would require a population CBCs yielding remnants with M > 100 M
(f < 1078 Hz/s). Estimates of rates from BH population models were provided in
[340] based on the nonrelativistic approximation to the amplitude Eq. (13.29).
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As we saw in Sec.[13.4.2] prospects are better for next-generation detectors, especially
Cosmic Explorer (Fig. [I3.12c). Even then, good reach to remnants with M ~
O(10My) would require spins roughly > 0.85, possibly less depending on the
mass. Although we have not yet observed any such events [1-6, [178]], numerical-
relativity simulations routinely produce remnants with such spins [413-416]. Note
that the horizons for boson signals are always significantly closer than those for

compact-binary coalescences [402].

The vector case is slightly different. Detection horizons are in principle considerably
farther for vector clouds due to the intrinsically higher radiated power (see Sec.
[13.2.2), making most remnant masses and spins accessible. However, more radiated
power also means shorter cloud lifetimes and, consequently, faster rates of change
for the signal amplitude and frequency [cf. Eq. (13.34))]. For much of the parameter
space, the expected signal would then evolve too rapidly for existing continuous-wave
algorithms to handle (see discussion in Sec.[I3.4.2). Therefore, the more powerful
and quickly-evolving vector signals would currently not be detectable, effectively
reducing our horizon to such sources. Detection rates for vectors taking this into

account were estimated in [343]] by using the nonrelativistic approximation of Eq.

Even for scalar signals, the restriction to small frequency derivatives is quite
detrimental, preventing us from accessing higher boson masses (lower BH masses).
Because the estimates of Eq. (I3.33)) and Eq. (13.34) are only approximate, there
is still sense in searching for signals with f > 1078 Hzs™! in the shaded regions
of Fig. [[3.12}—although a negative result would be harder to interpret as evidence
against the existence of a boson in that mass range. As suggested above, this is strong
motivation to adapt analysis techniques that can handle quickly evolving continuous

signals to make them suitable for boson searches—this is work in progress.

Finally, note that we expect to infer the remnant mass and spin from the CBC signal
with enough precision to obtain a reasonably accurate prediction of the cloud GW
amplitude for any given boson mass. For instance, the mass and dimensionless
spin of the GW 150914 remnant were each measured with one-sided relative errors
of under 10% at 90% credibility, which is sufficiently narrow to make a followup
search possible (Sec.[13.4.2). The characteristic magnitude of such errors is expected
to be significantly reduced for detections at higher signal-to-noise ratio, which
should be commonplace once the current network achieves design sensitivity and for

next-generation detectors (see, e.g., (412,417, 418]).
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In any case, a simplistic way to deal with parameter uncertainty would be to compute
the optimal strain for a cloud around a BH corresponding to the upper bounds of
the mass and spin credible intervals. A value computed that way would itself be
an upper limit on the boson strain, because this quantity scales directly with mass
and spin (Fig.[13.5). Alternatively, a rigorous statistical analysis would take in the
full-dimensional posterior probability density on the BH parameters (intrinsic and
extrinsic) and marginalize over all parameters to obtain a posterior on the expected
boson strain as a function of @. The development of this more sophisticated strategy

is work in progress.

X-ray binaries

Another type of potentially interesting targets is known BHs in x-ray binaries (see
e.g. [419,420] for reviews treating such systems). The relevance of x-ray binaries to
this research program has been pointed out since the outset (e.g. [336,1338.,1339,343]).
They have the advantage of being much closer and better-located in the sky compared
to the CBC remnants, with good measurements of their mass and, in some cases,
spin [421]]. In fact, some limits on the boson-mass space have already been
placed contingent on these measurements, roughly excluding the mass interval
10712 < u/eV < 107! for scalars [340] and 1073 < u/eV < 107! for vectors
[343]. Unfortunately, there is large uncertainty about the age and history of these
systems, as well as important caveats about the systematics affecting their spin
measurements [364) [365]. Furthermore, the effect of the active astrophysical
environments surrounding these BHs is only understood at the order-of-magnitude
level [339] 1343, 1361]]. For all these reasons, boson constraints derived from existing

observations of x-ray binaries should be interpreted with caution.

There are also data-analysis challenges intrinsic to signals coming from sources in a
binary system: the Doppler modulation due to the motion of the source within the
binary causes the signal power to spread over multiple frequencies. The signal power
must then be collected from “orbital sidebands” that span a frequency band B given
by [394]

B~ 4nf°—fj’, (13.39)

c
where qg is the binary’s projected semimajor axis, P its orbital period, and c is the

speed of light. Frequency-domain matched filters, like those presented in [394, 422]],

can be applied to sum up the distributed signal power using (imperfect) knowledge of
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Table 13.6: Cygnus X-1 parameters.

Parameter Symbol Value Ref.
Mass (M) M 14.8+1.0 [420,423]
Spin X >0.95 [420]
Right ascension @y 19h58m228 [424]
Declination Ox 34°12’0.6” [424]
Inclination (deg) L 27.1 £0.8 [423]]
Distance (kpc) r 1.861’8:%% [420]
Orbital period (days) P 5.6 [423],1425]]
Proj. semimajor axis (Rg) ao 31.65"% [4235]

the orbital parameters. Those methods would generally demand B < 0.5 Hz in order
to achieve the required sensitivity (see Sec.[13.4.2). Besides, it becomes prohibitively
expensive to detect a weak signal from a binary if the orbital parameters (e.g., P,
ap, and time of passage through the orbit’s ascending node 7p) are poorly measured.
More details can be found in Sec. III B of Ref. [422].

As an example, consider the nearby Cygnus X-1 binary, which has been proposed
as an interesting target for boson searches [338]]. If we take source parameters in
Table and assume fy ~ 1 kHz given M = 15M, then the power of a signal from
Cygnus X-1 would span a frequency band B ~ 2 Hz. In addition, the uncertainty
in ap is non-negligible and the knowledge of Tp is limited. Unfortunately, for
most of the interesting x-ray systems, the orbital parameters are not well measured
electromagnetically, and the sidebands would be broader than ~1 Hz. This means
that, for now, the strain upper limits that can be placed on such sources using the

existing methods will be too loose to be of interest.

13.5 Conclusion

Black-hole superradiance could be the key that allows gravitational-wave detectors to
uncover evidence of new ultralight bosons beyond the standard model, thus extending
the reach bringing particles physics within the reach of gravitational-wave science.
In this paper, we explored the prospect for achieving this exciting goal by looking for
the continuous gravitational signals expected from scalar and vector clouds, using

searches directed at known BHs.

We began by reviewing the physics of boson clouds (Sec.[13.2)) and examined in
detail the properties of continuous signals from clouds around a known BH (Sec.

[13.3). In doing so, we hoped to provide a bridge between the theory and data-analysis
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literatures. We then used numerical techniques, combined with the latest analytic
results, to compute the features of gravitational waves emitted by scalar clouds
around BHs with different initial parameters (Figs. [I3.THI3.8).

We put forward the use of hidden Markov model (HMM) tracking [6} 394396
as an ideal method to carry out directed searches for boson signals (Sec. [[3.4.1].
This strategy is well suited to searches for gravitational waves from boson clouds
because its computational efficiency enables the coverage of a wide range of signal
parameters, and because it does not rely on restrictive waveform models. This makes
it ideal to search for signals over a broad frequency band (cf. Fig.[I3.1)), even when the
location of the source is only loosely known and when there is potential uncertainty

in the signal morphology. We demonstrated this through a series of Monte-Carlo

simulations (Sec. [[3.4.2).

From our simulations, we obtained an empirical estimate of the sensitivity of directed
searches to boson signals in data from future ground-based detectors: aLIGO design,
LIGO Voyager, LIGO Cosmic Explorer and the Einstein telescope (Fig.[13.TT)). For
scalar clouds, we translated the expected strain sensitivities into detection horizons
for those four detectors (Fig.[I3.12), assuming one year of observation by a single
detector. We found that, for a second-generation network at design sensitivity, the
horizon would lie below 100 Mpc X VN, for most signal parameters; prospects are
better for next-generation detectors, especially Cosmic Explorer, for which horizons
could reach up to ~10° Mpc. Generally speaking, these horizons lie much farther
than the sources at which continuous-wave searches are generally directed [75], but
significantly closer than horizons for compact-binary coalescences [402]. Some

representative values are shown in Table [I3.1]

In computing signal amplitudes from scalar clouds, we numerically solved the
evolution equations governing cloud growth and made use of numerical estimates
from BH perturbation theory to obtain the radiated power [342]]. Furthermore, to
estimate horizons, we incorporated the effect of redshifts on the signal frequency
and frequency derivative. We also took into account that the settings of the search
algorithm should be varied across parameter space for optimal performance. This
allowed us to obtain sensitivity estimates that should be more reliable than previously

published projections.

Finally, we discussed implications for the followup of remnants from compact-binary
coalescences (Sec. [[3.4.3)), as well as BHs in x-ray binaries (Sec. [13.4.3). We
explored the impact of uncertainties in the source’s sky location and showed that
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HMM tracking will be able to efficiently cover the localization credible-regions
obtained from CBC signals with a network of at least three detectors. We also
discussed the challenges intrinsic to vector signals, which make their analysis difficult
in spite of their higher radiated power. We emphasized the strong motivation to
extend existing search techniques to handle signals with higher frequency derivatives,
so as to bring a significant portion of the scalar and vector signal space into reach. The
implementation of such techniques, as well as development of statistical strategies to

rigorously handle uncertainty in BH parameters, is work in progress.
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13.6 Appendix: Frequency drift

The gravitational self-energy of the cloud affects the boson’s eigenfrequencies and,
consequently, the gravitational wave frequency. As the cloud dissipates due to
gravitational emission, this causes an increase in the emitted signal frequency, similar
to what happens in a compact-binary coalescence. Therefore, we may treat the
system adiabatically to obtain the frequency drift from the radiated power. This

computation was presented in [343] for vectors, and we reproduce it here for scalars.
The gravitational self-energy of a bound state per particle is given by

U= g™ p(r, 6, ¢) m(r) 3

; 13.40
M, . (13.40)
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where my, is the mass of the boson field, M, the overall mass in the cloud, p(r, 6, ¢)

is its density and m(r) is the the mass of cloud enclosed in the radius r, namely

m(r) = / o(r, 0, ¢) &°x . (13.41)
0
The rate of change of the GW frequency can then estimated by [343]]
f= ! x 20U, (13.42)
 2nh . '

As the cloud dissipates, the total mass of the system decreases, causing the binding

energy to increase (U, < 0) and the GW frequency to increase.

The dominant scalar field mode can be approximated by the £ = m = 1 hydrogen
wave function, with a density p given by Eq.(11) in Ref. [357]. After some algebra

one finds that, at leading order in «,

N 93 ca’ Egw 93 A M, 1
© 1024 G M2 1024 G M2 tgw’

f (13.43)
where we have used M. = —Egwc ™2 and Egw = M.c?/tgw. Using Eq. (I3.13) to
approximate M, ~ aM,; y; (valid in the limit @ < 1 for m = 1) and Eq. (13.23)) to
write Tgw ~ GM?/(0.025M.a'*c?), we get

X2 (13.44)

: 10Mg\? [ @ \19
N 14 © 2
F~3%x10""Hz/s ( ) ( )
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Chapter 14

CONCLUSION

In this thesis, I have explored several avenues for learning about fundamental physics
from gravitational-wave (GW) observations. Because little can be done in the absence
of signals, I also developed data-analysis methods to improve LIGO and Virgo’s
chances of detecting both transient and persistent signals. Below, we reiterate the

key results for each chapter and discuss future related work.

We began in Chapter[3|by demonstrating the potential of measures of signal coherence
for enhancing confidence in detections of compact-binary coalescences. Our approach
is extremely successful at identifying instrumental artifacts, and can thus vastly
increase the inferred significance of weak signals. Further work is needed to gauge
the gains afforded by Bayesian coherence in relation to the newest statistical analyses
implemented by LIGO and Virgo during the second observation run. In the future,
we will extend our methods to handle an arbitrary number of detectors and will
work with other members of the LIGO and Virgo Collaborations to incorporate these

techniques into the staple searches (this joint project is ongoing).

In Chapter ] we explored how to improve our ability to detect persistent GWs from
known pulsars. We introduced a robust technique to empirically compute false-alarm
probabilities for searches targeted at such sources, without assuming the instrumental
noise is Gaussian. This work filled an important gap in the field, which generally
lacked robust strategies for determining the significance of continuous-wave detection
candidates without idealizing the noise. Our method has already been applied to
follow up several detection candidates in actual analyses of LIGO data and will

continue to be used in future runs.

In Chapter [5] we began our study of the basic properties of GWs. We showed that it
is possible to measure the local geometric structure of GW polarizations by using
transient signals seen by multiple detectors. We argued that we can (partially) do
this without much worrying about the detailed phase evolution of each polarization.
However, this comes with the limitation of only being able to distinguish between
“extreme” scenarios, in which the signal is purely tensor, purely vector or purely
scalar. The implementation of techniques to address the case of mixed polarizations

(e.g. tensor plus some small nontensor component) is currently work in progress.
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Although that case is most interesting to theorists developing extensions to general
relativity, we will not be able to take full advantage of those methods until more

detectors join the global network.

In Chapter [6 we presented the first direct observational statements about the
local geometry of GW polarizations. These were obtained from GW 170814 and
GW 170817 using the methods of Chapter[5] We concluded that GWs are more likely
to come in the polarizations predicted by general relativity, as opposed to either of
the two fully-nontensorial alternatives. We evaluated this via Bayes factors, but also

presented ancillary evidence, like reconstructed sky locations.

Persistent GW's would be a far better resource for probing GW polarizations than
transients. We first demonstrated this in the context of searches targeted at known
pulsars in the study of Chapter|/| Those methods, that were tested on initial LIGO
data, grew into the full-fledged Bayesian analysis presented in Chapter [§] This
multi-stage Bayesian infrastructure can detect signals of any polarization (consistent
with relativity, or otherwise) and, in the presence of a signal, can also assess
agreement with general relativity and place upper-limits on the power of nontensorial
components. The method was successfully applied to data from Advanced LIGO’s
first observation run to obtain direct constraints on nontensorial strain amplitudes for
200 pulsars, as discussed in Chapter[9] I am currently working on expanding the
implementation to handle signals at the first, not just the second, harmonic of the
pulsar rotation frequency. The analysis of data from Advanced LIGO and Virgo’s

second observation run is in progress.

The statistical approach I developed for the case of continuous waves can be
straightforwardly applied applied to other signal morphologies. For instance, I have
contributed to the implementation of this strategy for the case of stochastic GW
backgrounds [10]. An analysis of such a background would be sensitive to alternative
polarizations produced at the source or generated during the propagation of the
signal on its way to Earth, while relying on very few assumptions. In Chapter 10} we
explored the impact of these assumptions on the scope of the analysis, with examples
in the context of specific theories. Our conclusions are important in interpreting the

results of analyses of data from present and future detectors, like [[117].

It is easy to imagine that, due to effects beyond general relativity, GWs could travel
in vacuum at speeds other than the speed of light, potentially also showing dispersion
or birefringence. Some of these effects are already under study by LIGO, most

notably the possibility of a massive graviton. In Chapter [[ ] we explored how to
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measure GW speed using continuous waves from known pulsars. In Chapter[12] we
briefly examined the possibility of detecting complex modes of GW propagation,
like anisotropic dispersion relations. This is a fertile avenue of research, and much

more work is required in this direction.

Finally, the study of gravity itself is not the only kind of fundamental science that can
be done with GWs. In Chapter[I3] we explored the exotic, yet compelling, possibility
of discovering new particle physics with GW detectors. Specifically, we focused on
the prospect of directed searches to detect continuous GWs from ultralight-boson
condensates around spinning black-holes. We show that existing data-analysis
techniques may be applied for this purpose, and show that future-generation detectors

will be able to set interesting constraints on the existence of such bosons.

The topics covered in this thesis represent only a sliver of what can be potentially
learned about fundamental physics with gravitational waves. Besides the detailed
analysis of the properties of exotic sources and other topics not covered here, the
possibilities for doing fundamental science in general will soon increase dramatically,
as we transition into the era of precision GW astronomy. In the upcoming years,
existing GW detectors will achieve their design sensitivities and will be joined by new
observatories in India and Japan. These ground-based instruments will subsequently
be complemented in space by Laser Interferometer Space Antenna (LISA), a joint
ESA & NASA mission which will have access to lower sections of the GW spectrum.
Meanwhile, still lower GW frequencies will be probed by pulsar timing arrays. All
this, plus continued partnerships with electromagnetic and neutrino observatories,
means that we will soon be inundated with an unprecedented panoply of data surely
holding many fundamental clues about nature. Our exploration of the universe

through gravitational waves has just begun.
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Appendix A

MEASURING A GRAVITATIONAL WAVE

A.1 Frames and gauges

The detector response for LIGO is usually computed in one of two coordinate
systems: the transverse-traceless (TT) gauge and the local-Lorentz frame (LLF) of
the beamsplitter. In reality, in both cases we use a frame (in the special-relativistic
sense) centered on and comoving with the beamsplitter (corner station), with the x-
and y-axes along the detector arms. The difference is in the gauge for the metric—that
is, equivalently, in the specific way the coordinates are laid down. Given this, a more
specific name for what is usually just denoted “LLF” would be “the Fermi-normal

coordinate system in the detector frame,” cf. Eq. (13.73) in [220]].

Note there’s a third, more correct option: the proper frame of the beam-splitter, which
is analogous to the LLF, except one does not assume the masses are freely falling,
i.e. we perturb over the background Earth’s spacetime curvature, rather than the
Minkowski metric. To lowest order, this just modifies the gop term to be something
like —(1 — 2®), where ® is the Newtonian gravitational potential. Something similar
could be done for the TT gauge. In any case, the spatial terms in the proper frame of
the beam splitter will be the same as in nonaccelerated LLF or TT, depending on the

gauge. See Box 37.1 in [220] for more exposition.

In the TT gauge, to linear order in the perturbation, the metric takes the form of
8ab = Nab + hap (see, e.g., Eq. (27.80) in [426]]). Using geodesic deviation, it may
then be shown that the coordinate locations of the masses do not change with time
as the wave goes by, i.e. they remain at fixed coordinates L, measured from the
beam-splitter. However, the proper distances between the masses and the beamsplitter
do change. This is manifested in the propagation of light, which gets red/blue shifted
as it propagates up and down the tubes (see Exercise 27.19 in [426]). The phase-shift
measurable by the detector can be obtained by solving for the phase in the cavity,
using the fact that k, and k, are conserved (but note the same is not true for k* and
k?!), and that the coordinate locations of the masses do not change. The result is
given in Eq. (27.89) of [426]].

In the LLF, the metric is just the flat metric, g,, = 14», up to corrections of order
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h x (L/A)>—very small for LIGO and Virgo (see, e.g., Eq. (27.93) in [426]). These

corrections also control the effect of the GW perturbation on the laser light in the
cavities, which is consequently very small (unlike in TT). While the effect on the
light is of order < h, the relative motion of the masses due to geodesic deviation is
of order . We can get the phase shift measured by the instrument by treating light as
usual in a Newtonian setting (i.e., no gravitational redshift, or any other complicated
effects) with masses moving with an effective acceleration given by 4 through the

equation of geodesic deviation. The result is given in Eq. (27.96) of [426].

In summary: in the TT gauge, the masses do not move, but light gets blue and
redshifted, leading to a change in accumulated phase; in the LLF (Fermi-normal)
gauge, there’s no effect on the light, but the masses move and so change the roundtrip
time and accumulated phase; as expected, both observables are the same, no matter

which gauge is used to compute them.

Importantly, also note that the LLF gauge is valid only in the small-antenna limit.
Otherwise, the local semi-Newtonian viewpoint breaks down and, mathematically,
the expansion in powers of L /A fails to converge. Meanwhile, the TT gauge is usable
always (as long as there’s separation of scales, so we can separate the wave from the

background in the first place).

From the above analysis it is also clear why our instruments are designed to measure
separations between different points in space and not, say, difference in the ticking
rates of clocks: locally, effects of the GW on the time (non-synchronous) components
of the metric are vanishingly small. Consequently, this is why we analyze the

geodesic deviation and focus on the electric components of the Riemann tensor,

Roio;-

A.2 Detector output

In the LLF gauge (when it is valid), the effect of the GW on the test masses can
be approximated via the equation of geodesic deviation: we compute the electric
components of the Riemann tensor, Ry,o;, at the origin (beam-splitter) to get the
acceleration of the test masses with respect to the origin

d2 i ' 1 d2A.. .
F = —ROinxJ = E delJ xj, (Al)




after defining A;; as (negative) twice the double time-integral of Ry;o;.

x' = x'(0) + Ax'(t), and integrating the above equation twice, then:
i1 ‘
Ax' = EA,']'XJ(O),

For two arms, this implies

AL=X-Y
= (L + X;AX") — (L + ;AYY)
= X;AX' - T;AY!

= -L (X’Xf —YIYJ) Ajj
2

Let

AL 1 A AT ASA T
A=22_2 (X’X/ _ Y'Y/) Ajj
L 2
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Letting

(A.2)

(A.3)

(A4)

for the two arms X and Y. It can be shown, e.g. from Eq. (27.96) in [426]], that

detectors measure a phase shift in the laser light such that A¢ o« LA. For more details
see Egs. (9.50) and (27.89) in [426], and the text above Eq. (13.95) in [1L10].
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TABULATED RESULTS: FIRST SEARCH FOR NONTENSORIAL GRAVITATIONAL
WAVES FROM KNOWN PULSARS

Here we present tabulated results from the analysis discussed in Chapter [9]

Table B.1: Results obtained using orientation information (see Chapter@ for details).

fow log BIR  log B3R+ log BIRH log BIR*Viog By, log BY, log Y | log 01§1 log OIS th% th% ht%%
(Hz) x10726

J0205+6449 30.41 -0.19 -0.07 -0.32 -0.26 0.06 -0.09 -0.10 -0.12 -0.53 14.79 7.99 3.70
J0534+2200 59.33 | -0.19 -0.40 -0.76 -0.88 -0.25 -0.55 -0.74 -0.47 -0.74 1.74 1.69 2.99

J0835-4510 22.37 | -0.06 -0.15 -0.29 -0.37 -0.07 -0.21 -0.26 -0.19 -0.67 16.66 13.78 15.27

J1709-4429 19.51 -0.07 -0.02 -0.10 -0.07 0.01 -0.05 -0.04 -0.05 -0.60 61.33 36.31 34.34
J1952+3252 50.59 | -0.24 -0.43 -0.81 -0.98 -0.23 -0.58 -0.77 -0.50 -0.80 2.00 1.53 1.49
J2229+6114 3872 | -0.24 -0.40 -0.62 -0.77 -0.19 -0.45 -0.61 -0.43 -0.81 3.36 2.70 2.92

Table B.2: Results obtained without using orientation information (see Chapter @ for details).
fow log By logBY logBl logBy logBy logBY logByf log0s logOF | h%  pP%  p>%
(Hz) x10726

J0023+0923 655.69 | -027  -057 -056 076 -0.79  -1.05 -124 |-065 089 |[330 262 276
J0024-7204AA | 1083.79| 0.07 -0.27 -0.17 -0.21 -0.14 -0.47 -0.46 -0.20 -0.55 10.44 6.56 7.33
J0024-7204AB | 539.86 | -0.25  -0.55 049 072 -0.70 093 -1.08 |-0.60 -0.84 |338 253 278
J0024-7204C 34742 | -0.29 -0.68 -0.62 -0.86 -0.92 -1.24 -1.49 -0.73 -0.91 2.46 1.62 1.86
J0024-7204D | 373.30 | -0.05  -032 069 -028  -0.76  -0.89  -092 |-045 -069 |453 255 149
J0024-7204E 565.56 | -0.24 -0.57 -0.64 -0.74 -0.92 -1.12 -1.38 -0.67 -0.87 3.91 2.45 1.95
J0024-7204F | 762.32 | 025  -0.58 053 -078  -0.78 -1.07 -123 |-064 08 |360 272 286
J0024-7204G 495.00 | -0.28 -0.38 -0.61 -0.57 -0.88 -0.84 -1.16 -0.59 -0.81 3.21 2.86 2.12
J0024-7204H | 622.99 | -024  -047  -037  -0.66 -0.60 -079 -1.01 |-053 -0.78 |[359 294  3.16
J0024-72041 573.89 | -0.26 -0.51 -0.42 -0.73 -0.65 -0.89 -1.11 -0.58 -0.80 3.38 2.50 2.68
J0024-7204] 952.09 | -022  -036  -022  -051 -049 -054 -0.69 |[-040 -0.70 | 544 440 = 4.60
J0024-7204L 460.18 | -0.27 -0.64 -0.65 -0.85 -0.93 -1.22 -1.45 -0.72 -0.90 2.85 1.90 1.86
J0024-7204M 543.97 | -0.28 -0.66 -0.39 -0.84 -0.63 -0.93 -1.19 -0.61 -0.81 2.84 1.90 2.86
J0024-7204N 654.89 | 0.02 -0.43 -0.56 -0.35 -0.53 -0.93 -0.92 -0.42 -0.68 6.51 3.20 2.49
J0024-72040 756.62 | -0.06 -0.63 -0.41 -0.58 -0.49 -0.95 -0.98 -0.48 -0.79 6.77 2.34 3.37
J0024-7204Q 495.89 | 0.02 -0.56 -0.56 -0.45 -0.56 -1.05 -0.97 -0.46 -0.81 3.92 1.70 1.77
J0024-7204R | 574.64 | -024 056  -0.54 072 078 099 -126 |-0.63 -0.84 |[3.64 250  2.54
J0024-7204S 706.61 | -0.19 -0.59 -0.46 -0.71 -0.64 -0.97 -1.13 -0.58 -0.79 4.95 2.55 3.10
J0024-7204T 263.56 | -0.29 -0.71 -0.60 -0.90 -0.87 -1.17 -1.44 -0.72 -0.90 2.19 1.60 1.84
J0024-7204U 460.53 | -0.11 -0.69 -0.53 -0.72 -0.65 -1.11 -1.17 -0.58 -0.79 4.60 1.67 2.30
J0024-7204W 850.22 | -0.14 -0.59 -0.52 -0.65 -0.69 -1.04 -1.18 -0.58 -0.83 5.99 2.63 3.13
J0024-7204X 419.15 | -0.20 -0.64 0.24 -0.79 -0.00 -0.35 -0.56 -0.19 -0.47 3.57 1.76 2.97
J0024-7204Y 910.47 | -0.03 -0.56 -0.44 -0.56 -0.51 -0.96 -0.98 -0.47 -0.70 7.78 2.90 3.63
J0024-7204Z 439.13 | -0.27 -0.53 -0.62 -0.74 -0.89 -1.09 -1.33 -0.67 -0.85 2.81 2.24 2.00
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J0030+0451 411.06 | -0.29 -0.67 -0.53 -0.84 -0.85 -1.08 -1.34 -0.69 -0.86 2.27 1.81 2.24
J0034-0534 1065.43| -0.23 -0.32 -0.49 -0.48 -0.70 -0.77 -0.96 -0.50 -0.93 4.54 4.62 3.93
J0102+4839 674.74 | -0.25 -0.18 -0.63 -0.43 -0.88 -0.82 -0.98 -0.50 -0.73 3.27 3.65 2.08
J0205+6449 30.41 0.06 -0.09 -0.42 -0.10 -0.30 -0.52 -0.53 -0.22 -0.57 18.98 10.65 6.87
J0218+4232 860.92 | -0.15 -0.53 -0.48 -0.62 -0.60 -0.94 -1.10 -0.54 -0.80 5.73 3.24 343
J0340+4130 606.18 | -0.20 -0.57 -0.54 -0.69 -0.72 -0.97 -1.17 -0.60 -0.88 4.16 2.74 2.66
J0348+0432 51.12 -0.26 -0.61 -0.35 -0.79 -0.64 -0.89 -1.09 -0.58 -0.79 3.38 2.42 3.79
J0407+1607 77.82 -0.27 -0.56 -0.68 -0.76 -0.94 -1.15 -1.39 -0.69 -0.89 2.79 2.35 1.86
J0437-4715 347.38 | -0.30 -0.53 -0.63 -0.81 -0.93 -1.11 -1.39 -0.69 -0.88 1.98 2.30 1.85
J0453+1559 43.69 -0.23 -0.52 -0.37 -0.70 -0.61 -0.80 -0.99 -0.54 -0.80 5.02 3.64 5.25
J0534+2200 59.33 -0.25 -0.55 -0.48 -0.74 -0.68 -0.91 -1.16 -0.60 -0.82 3.36 3.50 3.77
J0605+37 733.15 | -0.26 -0.56 -0.56 -0.79 -0.82 -1.05 -1.25 -0.65 -0.85 3.23 2.84 2.79
J0609+2130 3591 0.25 -0.32 -0.38 -0.03 -0.10 -0.67 -0.38 -0.14 -0.67 24.86 11.57 9.43
J0610-2100 517.96 | -0.08 -0.40 -0.59 -0.44 -0.67 -0.92 -0.99 -0.49 -0.72 4.56 3.26 2.54
J0613-0200 653.20 | -0.25 -0.47 -0.52 -0.64 -0.73 -0.97 -1.15 -0.59 -0.81 3.25 2.80 3.11
J0614-3329 635.19 | -0.21 -0.58 -0.39 -0.73 -0.62 -0.88 -1.08 -0.56 -0.83 3.98 2.32 3.44
J0621+1002 69.31 -0.22 -0.33 -0.60 -0.48 -0.84 -0.82 -1.02 -0.54 -0.78 4.15 3.60 3.04
J0636+5129 697.12 | -0.21 -0.57 -0.54 -0.70 -0.74 -1.04 -1.26 -0.61 -0.83 4.30 2.78 2.71
J0645+5158 225.90 | -0.30 -0.71 -0.41 -0.98 -0.72 -1.01 -1.30 -0.66 -0.85 2.24 1.39 1.98
JO711-6830 364.23 | -0.28 -0.47 -0.58 -0.70 -0.92 -1.05 -1.24 -0.64 -0.84 2.35 2.48 2.14
J0721-2038 128.68 | -0.28 -0.64 -0.27 -0.84 -0.53 -0.85 -1.11 -0.56 -0.78 2.53 1.81 2.70
JO0737-3039A 88.11 -0.27 -0.54 -0.58 -0.80 -0.84 -1.08 -1.27 -0.66 -0.85 2.92 2.32 2.35
J0742+66 693.06 | -0.26 -0.45 -0.39 -0.68 -0.67 -0.83 -1.11 -0.55 -0.77 343 3.15 3.09
JO751+1807 574.92 | -0.23 -0.57 -0.35 -0.72 -0.54 -0.83 -1.10 -0.54 -0.86 3.71 2.53 3.34
J0835-4510 22.37 -0.07 -0.21 -0.18 -0.26 -0.28 -0.39 -0.44 -0.25 -0.69 34.36 26.64 27.79
J0900-3144 180.02 | -0.17 -0.36 -0.40 -0.51 -0.61 -0.71 -0.88 -0.47 -0.84 10.42 14.95 11.27
J0908-4913 18.73 -0.06 -0.12 -0.11 -0.17 -0.17 -0.23 -0.29 -0.16 -0.68 65.88 67.51 62.92
J0931-1902 431.22 | -0.30 -0.64 -0.68 -0.85 -0.91 -1.23 -1.51 -0.74 -0.92 2.40 1.84 1.86
J0940-5428 22.84 0.07 -0.17 0.26 -0.07 0.26 0.04 0.11 0.10 -0.46 46.73 28.61 35.09
J1012+5307 380.54 | -0.31 -0.64 -0.22 -0.84 -0.49 -0.78 -1.07 -0.53 -0.81 2.15 1.86 2.52
J1016-5819 22.77 -0.11 -0.21 -0.16 -0.30 -0.28 -0.39 -0.49 -0.26 -0.83 26.39 27.41 25.31
J1016-5857 18.62 -0.05 -0.12 -0.16 -0.16 -0.21 -0.29 -0.32 -0.18 -0.73 75.57 64.39 48.88
J1017-7156 855.24 | -0.21 -0.32 -0.53 -0.48 -0.73 -0.76 -0.94 -0.50 -0.78 5.49 4.58 3.13
J1022+1001 121.56 | -0.27 -0.61 -0.68 -0.78 -0.95 -1.16 -1.43 -0.71 -0.89 2.52 1.90 1.52
J1024-0719 387.43 | -0.23 -0.70 -0.45 -0.87 -0.67 -1.07 -1.29 -0.63 -0.92 3.12 1.43 2.59
J1028-5819 21.88 -0.10 -0.25 -0.15 -0.32 -0.27 -0.42 -0.49 -0.27 -0.68 31.41 23.66 28.95
J1038+0032 69.32 -0.15 -0.59 -0.60 -0.68 -0.73 -1.11 -1.22 -0.60 -0.81 4.72 2.32 2.36
J1045-4509 267.59 | -0.30 -0.41 -0.64 -0.66 -0.95 -1.00 -1.25 -0.64 -0.82 1.94 2.13 1.67
J1055-6028 20.07 -0.07 -0.18 -0.03 -0.23 -0.12 -0.24 -0.27 -0.15 -0.68 50.87 39.90 46.08
J1105-6107 31.65 -0.17 -0.15 -0.42 -0.31 -0.61 -0.55 -0.71 -0.37 -0.71 11.59 10.69 6.60
J1112-6103 30.78 -0.14 -0.32 -0.16 -0.43 -0.29 -0.47 -0.53 -0.31 -0.86 13.70 8.79 10.14
J1122+78 476.01 | -0.23 -0.12 -0.63 -0.29 -0.86 -0.67 -0.90 -0.43 -0.66 3.85 3.19 1.89
J1125-6014 760.35 | -0.26 -0.50 -0.52 -0.67 -0.77 -0.93 -1.15 -0.61 -0.81 3.15 3.52 3.05
J1142+0119 394.07 | -0.30 -0.46 -0.54 -0.73 -0.81 -0.93 -1.20 -0.62 -0.92 2.28 2.24 2.40
J1231-1411 54291 | -0.29 -0.52 -0.52 -0.76 -0.82 -0.98 -1.25 -0.64 -0.86 2.55 2.54 2.72
J1300+1240 321.62 | -0.27 -0.53 -0.64 -0.73 -0.94 -1.06 -1.29 -0.67 -0.98 2.40 2.40 1.87
J1302-3258 530.38 | -0.25 -0.46 -0.68 -0.71 -0.88 -1.00 -1.31 -0.64 -0.90 2.98 2.77 1.81
J1302-6350 41.87 -0.21 -0.45 -0.40 -0.58 -0.59 -0.76 -0.99 -0.51 -0.78 5.75 4.40 4.52
J1312+0051 473.03 | -0.21 -0.65 -0.59 -0.82 -0.80 -1.14 -1.31 -0.66 -0.91 3.62 1.76 2.17
J1327-0755 746.85 | -0.22 -0.58 -0.50 -0.75 -0.72 -1.01 -1.23 -0.61 -0.83 4.17 2.44 3.26
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J1410-6132 39.96 -0.08 -0.34 -0.29 -0.37 -0.38 -0.61 -0.67 -0.35 -1.05 10.13 6.10 5.12
J1418-6058 18.08 0.08 -0.10 0.00 -0.01 0.11 -0.10 -0.04 -0.00 -0.62 96.91 76.92 97.41
J1446-4701 911.29 | -0.24 -0.41 -0.46 -0.60 -0.71 -0.82 -1.01 -0.54 -0.88 4.45 4.29 3.47
J1453+1902 345.29 | -0.20 -0.45 -0.43 -0.61 -0.66 -0.76 -0.98 -0.52 -0.74 3.33 2.63 2.53
J1455-3330 250.40 | -0.17 -0.69 -0.66 -0.82 -0.77 -1.18 -1.46 -0.66 -0.85 2.99 1.53 1.77
J1509-5850 22.49 -0.02 -0.23 -0.26 -0.24 -0.30 -0.48 -0.48 -0.26 -0.72 53.44 24.53 21.80
J1518+4904 48.86 -0.25 -0.46 -0.54 -0.66 -0.81 -0.91 -1.14 -0.60 -0.86 3.99 4.25 3.09
J1524-5625 25.57 -0.06 -0.22 -0.28 -0.27 -0.37 -0.53 -0.55 -0.30 -0.69 32.75 19.68 15.48
J1531-5610 23.75 -0.11 -0.26 -0.30 -0.33 -0.42 -0.54 -0.63 -0.34 -0.73 27.14 22.35 16.68
J1537+1155 52.76 -0.25 -0.55 -0.36 -0.74 -0.60 -0.86 -1.08 -0.56 -0.82 3.13 2.53 4.25
J1545-4550 559.40 | -0.21 -0.55 -0.59 -0.72 -0.78 -1.05 -1.21 -0.63 -0.83 3.78 2.59 2.23
J1551-0658 281.94 | -0.28 0.14 -0.49 -0.06 -0.80 -0.18 -0.52 -0.22 -0.51 2.35 2.91 2.02
J1600-3053 555.88 | 0.11 -0.55 -0.61 -0.43 -0.53 -1.11 -1.02 -0.42 -0.97 5.29 2.63 2.38
J1603-7202 134.75 | -0.06 -0.73 -0.62 -0.71 -0.68 -1.30 -1.33 -0.59 -0.83 4.09 1.49 1.64
J1614-2230 634.76 | -0.27 -0.57 -0.31 -0.78 -0.55 -0.83 -1.01 -0.55 -0.79 3.07 2.70 3.65
J1618-3921 166.84 | -0.30 -0.69 -0.61 -0.91 -0.90 -1.23 -1.51 -0.73 -0.91 2.10 1.48 1.59
J1623-2631 180.57 | -0.30 -0.68 -0.52 -0.94 -0.81 -1.06 -1.40 -0.69 -0.90 2.05 1.73 2.01
J1630+37 602.75 | 0.33 -0.61 -0.58 -0.23 -0.26 -1.12 -0.74 -0.24 -0.49 5.82 2.36 2.66
J1640+2224 632.25 | -0.23 -0.54 0.37 -0.69 0.13 -0.23 -0.42 -0.09 -0.36 3.64 2.64 4.33
J1643-1224 43275 | -0.25 -0.48 -0.57 -0.63 -0.81 -0.92 -1.18 -0.61 -0.80 2.98 2.57 2.22
J1653-2054 484.36 | -0.03 -0.57 -0.60 -0.53 -0.64 -1.14 -1.09 -0.51 -0.77 4.46 2.22 1.98
J1708-3506 44394 | -0.28 -0.48 -0.59 -0.70 -0.83 -0.94 -1.21 -0.63 -0.84 2.40 2.65 2.02
J1709+2313 431.85 | -0.26 -0.62 -0.51 -0.80 -0.77 -1.06 -1.29 -0.65 -0.85 2.69 1.94 2.45
J1709-4429 19.51 0.01 -0.05 -0.15 -0.04 -0.12 -0.22 -0.20 -0.10 -0.61 90.99 66.52 49.59
J1710+49 621.07 | -0.23 -0.61 -0.58 -0.78 -0.83 -1.15 -1.33 -0.66 -0.87 3.73 2.19 243
J1713+0747 437.62 | -0.28 -0.64 -0.09 -0.83 -0.31 -0.66 -0.82 -0.43 -0.71 3.11 1.86 3.48
J1718-3825 26.78 -0.12 -0.03 -0.32 -0.15 -0.42 -0.34 -0.44 -0.23 -0.75 18.84 22.36 14.69
J1719-1438 34541 | -0.25 -0.65 -0.57 -0.85 -0.78 -1.11 -1.33 -0.67 -0.86 2.96 1.74 2.17
J1721-2457 571.98 | -0.27 -0.49 -0.54 -0.70 -0.81 -0.97 -1.20 -0.62 -0.88 2.67 2.83 2.39
J1727-2946 73.85 -0.14 -0.51 -0.60 -0.56 -0.72 -0.94 -1.11 -0.55 -0.83 4.64 3.24 2.52
J1729-2117 30.17 -0.17 0.03 -0.38 -0.12 -0.54 -0.32 -0.51 -0.24 -0.67 10.28 12.97 8.17
J1730-2304 246.22 | -0.31 -0.66 -0.70 -0.88 -1.04 -1.23 -1.61 -0.76 -0.95 1.88 1.65 1.45
J1731-1847 853.04 | -0.15 -0.48 -0.33 -0.61 -0.51 -0.81 -0.89 -0.47 -0.75 5.78 3.37 4.14
J1732-5049 376.47 | -0.18 -0.66 -0.70 -0.81 -0.86 -1.26 -1.45 -0.68 -0.99 3.48 1.67 1.50
J1738+0333 341.87 | -0.12 -0.52 -0.64 -0.60 -0.74 -1.00 -1.13 -0.57 -0.86 3.81 2.20 2.06
J1741+1351 533.74 | -0.29 -0.69 -0.05 -0.88 -0.37 -0.63 -0.91 -0.44 -0.67 2.54 1.74 3.61
J1744-1134 490.85 | -0.19 -0.36 -0.35 -0.52 -0.57 -0.70 -0.85 -0.46 -0.87 3.75 2.72 3.05
J1745+1017 754.11 | -0.27 -0.59 -0.57 -0.84 -0.85 -1.14 -1.34 -0.68 -0.91 3.08 2.22 2.64
J1745-0952 103.22 | -0.30 -0.48 -0.65 -0.74 -0.92 -1.01 -1.28 -0.66 -0.89 2.27 2.23 1.88
J1748-2446A 172.96 | -0.29 -0.66 -0.63 -0.89 -0.85 -1.18 -1.46 -0.72 -0.91 2.21 1.56 1.67
J1748-3009 206.53 | -0.28 -0.09 -0.61 -0.42 -0.90 -0.69 -0.91 -0.46 -0.79 2.28 2.47 1.62
J1750-2536 57.55 -0.21 -0.53 -0.47 -0.69 -0.69 -0.97 -1.16 -0.58 -0.82 4.53 2.95 3.17
J1751-2857 510.87 | -0.22 -0.54 -0.37 -0.72 -0.60 -0.84 -1.08 -0.55 -0.82 4.08 4.02 4.58
J1753-1914 31.77 0.14 -0.33 -0.24 -0.22 -0.18 -0.55 -0.48 -0.21 -0.56 15.43 9.33 9.74
J1753-2240 21.02 0.08 -0.20 -0.14 -0.09 -0.07 -0.36 -0.25 -0.13 -0.64 63.40 31.89 36.62
J1756-2251 70.27 -0.19 -0.47 -0.49 -0.57 -0.71 -0.89 -1.09 -0.55 -0.81 4.24 3.52 3.05
J1757-27 113.08 | 0.02 -0.63 -0.40 -0.55 -0.41 -1.03 -0.92 -0.43 -0.69 3.80 2.15 2.65
J1801-1417 551.71 | -0.18 -0.62 -0.41 -0.77 -0.53 -0.99 -1.04 -0.55 -0.84 4.42 2.17 3.26
J1801-3210 268.33 | -0.24 -0.72 -0.51 -0.87 -0.73 -1.16 -1.35 -0.67 -0.86 2.66 1.45 2.01
J1802-2124 158.13 | -0.31 -0.53 -0.72 -0.77 -0.99 -1.19 -1.39 -0.71 -0.90 1.96 1.85 1.41
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J1804-0735 86.58 -0.26 -0.63 -0.56 -0.85 -0.82 -1.10 -1.32 -0.67 -0.97 3.00 1.83 2.46
J1804-2717 214.06 | -0.31 -0.44 -0.15 -0.65 -0.42 -0.56 -0.81 -0.43 -1.17 2.02 1.97 2.31
J1809-1917 24.17 -0.07 -0.24 -0.24 -0.29 -0.33 -0.47 -0.56 -0.29 -0.68 32.86 20.26 19.52
J1810+1744 1202.82] -0.20 -0.35 -0.52 -0.51 -0.72 -0.81 -1.02 -0.52 -0.79 6.01 4.86 4.04
J1811-2405 751.71 | -0.21 -0.43 -0.55 -0.62 -0.81 -0.98 -1.19 -0.58 -0.78 4.30 3.37 2.61
J1813-1246 41.60 -0.19 -0.42 -0.55 -0.55 -0.71 -0.83 -1.02 -0.54 -0.80 5.52 4.90 4.02
J1813-2621 45147 | -0.25 -0.69 -0.59 -0.85 -0.88 -1.17 -1.42 -0.70 -0.91 2.83 1.85 2.24
J1823-3021A 367.65 | -0.28 -0.57 -0.54 -0.81 -0.83 -1.09 -1.29 -0.66 -0.90 2.26 2.14 2.18
J1824-2452A 654.81 | -0.25 -0.47 -0.34 -0.62 -0.56 -0.65 -0.87 -0.50 -0.72 3.76 3.33 3.38
J1825-0319 439.22 | -0.24 -0.44 -0.58 -0.62 -0.80 -1.01 -1.17 -0.60 -0.82 3.12 2.53 2.04
J1826-1256 18.14 -0.03 -0.10 -0.01 -0.12 -0.02 -0.09 -0.14 -0.07 -0.64 87.34 83.25 100.73
J1826-1334 19.71 -0.06 -0.10 -0.02 -0.16 -0.10 -0.13 -0.19 -0.11 -0.64 65.37 59.45 85.41
J1828-1101 27.76 -0.11 -0.06 -0.12 -0.17 -0.21 -0.19 -0.27 -0.16 -0.58 19.63 18.77 18.38
J1832-0836 735.53 | -0.20 -0.55 -0.55 -0.72 -0.78 -1.02 -1.20 -0.61 -0.83 4.28 2.76 2.80
J1833-0827 23.45 -0.08 -0.28 -0.20 -0.36 -0.29 -0.49 -0.54 -0.30 -0.70 29.20 17.97 27.18
J1837-0604 20.77 -0.08 -0.25 -0.14 -0.28 -0.22 -0.38 -0.45 -0.24 -0.68 49.15 25.10 39.34
J1840-0643 56.21 -0.26 -0.45 -0.58 -0.66 -0.82 -0.94 -1.18 -0.61 -0.83 3.55 3.11 3.02
J1843-1113 1083.62| -0.22 -0.44 -0.52 -0.61 -0.71 -0.90 -1.11 -0.57 -0.86 5.49 4.94 3.84
J1845-0743 19.10 -0.06 -0.14 -0.14 -0.19 -0.21 -0.27 -0.33 -0.18 -0.74 68.50 49.13 57.96
J1853+1303 488.78 | -0.29 -0.58 -0.49 -0.79 -0.79 -0.99 -1.26 -0.65 -0.86 2.70 2.19 2.84
J1853-0004 19.72 -0.07 0.00 -0.12 -0.08 -0.19 -0.14 -0.21 -0.11 -0.65 58.67 57.30 64.98
J1856+0245 24.72 -0.09 -0.27 -0.23 -0.33 -0.30 -0.51 -0.57 -0.30 -0.69 33.13 16.98 24.27
J1857+0943 372.99 | -0.26 -0.47 -0.09 -0.66 -0.38 -0.51 -0.75 -0.39 -0.76 2.70 2.29 3.27
J1903+0327 930.27 | -0.17 -0.39 -0.52 -0.51 -0.69 -0.88 -0.97 -0.52 -0.75 5.41 3.77 3.33
J1903-7051 555.88 | -0.23 -0.60 -0.38 -0.78 -0.63 -0.94 -1.15 -0.58 -0.78 3.89 2.17 2.89
J1909-3744 678.63 | -0.25 -0.56 -0.61 -0.74 -0.83 -1.10 -1.35 -0.66 -0.85 3.68 2.77 2.24
J1910+1256 401.32 | -0.28 -0.49 -0.52 -0.67 -0.80 -0.92 -1.16 -0.61 -0.87 2.60 2.34 2.45
J1910-5959A 612.33 | -0.17 -0.57 -0.61 -0.73 -0.81 -1.10 -1.25 -0.62 -0.87 4.80 2.44 2.22
J1910-5959C 378.98 | -0.04 -0.56 -0.62 -0.54 -0.63 -1.05 -1.15 -0.52 -0.76 4.30 2.12 1.90
J1910-5959D 221.35 | -0.26 -0.54 -0.68 -0.76 -0.96 -1.12 -1.38 -0.68 -0.89 2.61 1.93 1.48
J1911+1347 432.34 | -0.26 -0.60 -0.49 -0.77 -0.74 -0.99 -1.21 -0.63 -0.84 2.73 2.20 2.33
J1911-1114 551.61 | -0.23 -0.25 -0.59 -0.39 -0.78 -0.75 -0.97 -0.49 -0.75 3.83 3.61 2.60
J1915+1606 33.88 -0.17 -0.34 -0.38 -0.46 -0.49 -0.65 -0.82 -0.43 -0.76 10.05 6.78 7.07
J1918-0642 261.58 | -0.30 -0.54 -0.73 -0.77 -0.99 -1.21 -1.51 -0.72 -0.89 1.93 1.97 1.35
J1923+2515 527.96 | -0.29 -0.66 -0.63 -0.87 -0.92 -1.21 -1.47 -0.72 -0.92 2.52 1.86 2.03
J1925+1721 26.43 -0.13 -0.26 -0.18 -0.36 -0.35 -0.42 -0.54 -0.30 -0.67 19.36 18.54 22.34
J1928+1746 29.10 -0.15 -0.37 -0.30 -0.49 -0.46 -0.61 -0.78 -0.41 -0.73 10.80 9.07 11.19
J1932+17 47.81 -0.20 -0.52 0.78 -0.71 0.68 0.30 0.25 0.35 0.01 6.01 3.06 6.80
J1935+2025 24.96 -0.09 -0.29 -0.27 -0.33 -0.34 -0.54 -0.61 -0.32 -0.74 30.68 16.69 21.37
J1939+2134 1283.86| -0.23 -0.44 -0.49 -0.60 -0.73 -0.89 -1.10 -0.56 -0.83 5.17 4.63 4.37
J1943+2210 393.38 | -0.29 -0.66 -0.57 -0.90 -0.87 -1.20 -1.41 -0.71 -0.90 2.38 1.64 1.95
J1944+0907 385.71 | -0.25 -0.60 -0.53 -0.80 -0.77 -0.97 -1.28 -0.64 -0.82 2.74 1.94 2.26
J1946+3417 630.89 | -0.05 -0.58 -0.55 -0.57 -0.61 -1.04 -1.12 -0.52 -0.76 5.13 2.53 2.68
J1949+3106 152.23 | -0.32 -0.68 -0.66 -0.90 -0.97 -1.19 -1.53 -0.75 -0.92 1.76 1.52 1.67
J1950+2414 464.60 | -0.21 -0.34 -0.49 -0.48 -0.68 -0.73 -0.97 -0.50 -0.72 3.62 2.87 2.55
J1952+3252 50.59 -0.23 -0.58 -0.52 -0.77 -0.77 -1.07 -1.24 -0.63 -0.89 4.07 2.75 3.03
J1955+2527 410.44 | -0.30 -0.62 -0.38 -0.83 -0.69 -0.94 -1.17 -0.62 -0.87 2.23 2.24 2.88
J1955+2908 326.10 | -0.28 -0.26 -0.68 -0.51 -0.92 -0.91 -1.16 -0.56 -0.77 2.47 2.37 1.62
J1959+2048 1244.24| -0.22 -0.48 -0.47 -0.63 -0.70 -0.91 -1.03 -0.56 -0.82 5.53 4.51 4.34
J2007+2722 81.64 -0.30 -0.26 -0.46 -0.48 -0.75 -0.55 -0.85 -0.48 -0.78 2.56 3.77 3.61
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fow log BY logBY logBy logBY logBy logBY\ log By log OI§I log OIS hQ>% hY>% 3%

(Hz) «10-26
J2010-1323 382.90 | -0.22 -0.58 -0.54 -0.76 -0.76 -1.05 -1.31 -0.63 -0.82 2.91 1.94 2.24
J2017+0603 690.56 | -0.03 -0.44 -0.43 -0.39 -0.40 -0.80 -0.76 -0.39 -1.08 5.57 3.34 3.39
J2019+2425 508.32 | -0.22 -0.45 -0.42 -0.60 -0.63 -0.82 -1.02 -0.53 -0.82 5.92 6.74 6.83
J2033+1734 336.19 | -0.29 -0.57 -0.52 -0.79 -0.81 -1.08 -1.27 -0.66 -0.87 2.68 1.99 2.20
J2043+1711 840.38 | -0.26 -0.08 -0.58 -0.32 -0.83 -0.60 -0.86 -0.42 -0.68 3.59 4.53 2.64
J2043+2740 20.81 -0.05 -0.07 -0.13 -0.13 -0.18 -0.19 -0.25 -0.14 -0.65 46.55 47.49 42.33
J2047+1053 466.64 | -0.27 -0.54 -0.65 -0.75 -0.97 -1.15 -1.31 -0.68 -0.89 2.57 2.34 1.70
J2051-0827 443,59 | -0.29 -0.60 -0.69 -0.79 -0.93 -1.19 -1.42 -0.71 -0.90 2.46 2.07 1.76
J2124-3358 405.59 | -0.24 -0.53 -0.60 -0.69 -0.84 -1.04 -1.27 -0.64 -0.86 3.05 2.27 1.90
J2129+1210A 18.07 -0.00 -0.12 -0.03 -0.12 -0.05 -0.13 -0.15 -0.08 -0.63 91.59 73.71 98.25
J2129+1210B 35.63 -0.18 -0.42 -0.37 -0.56 -0.56 -0.74 -0.94 -0.48 -0.76 9.66 6.67 7.57
J2129+1210C 65.51 -0.25 -0.57 -0.58 -0.75 -0.76 -1.08 -1.25 -0.65 -0.86 3.91 2.52 3.07
J2129+1210D 416.42 | -0.22 -0.67 -0.64 -0.80 -0.84 -1.21 -1.34 -0.68 -0.87 3.39 1.72 2.09
J2129+1210E 42997 | -0.28 -0.43 -0.49 -0.62 -0.68 -0.83 -1.09 -0.56 -0.81 2.41 2.43 2.61
J2129-5721 536.72 | -0.23 -0.53 -0.55 -0.72 -0.81 -1.02 -1.19 -0.62 -0.81 3.62 2.48 2.42
J2145-0750 124.59 | -0.30 -0.53 -0.68 -0.76 -0.98 -1.15 -1.42 -0.70 -0.88 2.14 1.99 1.85
J2214+3000 641.18 | -0.27 -0.48 -0.14 -0.70 -0.42 -0.64 -0.77 -0.43 -0.69 3.07 2.85 391
J2222-0137 60.94 -0.19 -0.51 -0.61 -0.62 -0.77 -1.06 -1.22 -0.60 -0.81 5.16 2.72 2.72
J2229+2643 671.63 | -0.27 -0.41 -0.51 -0.66 -0.78 -0.88 -1.10 -0.58 -1.01 2.87 3.12 2.96
J2229+6114 38.72 -0.19 -0.45 -0.48 -0.61 -0.67 -0.90 -1.06 -0.54 -0.86 8.63 6.46 4.41
J2234+06 559.19 | -0.28 -0.60 -0.55 -0.81 -0.82 -1.08 -1.24 -0.67 -0.86 2.66 2.22 2.54
J2235+1506 33.46 -0.21 -0.47 -0.41 -0.60 -0.58 -0.84 -0.98 -0.52 -0.79 7.22 5.17 7.54
J2241-5236 914.62 | -0.23 -0.54 -0.51 -0.73 -0.71 -0.95 -1.17 -0.60 -0.83 4.49 3.08 3.69
J2302+4442 385.18 | 0.21 -0.48 -0.72 -0.27 -0.52 -1.03 -0.90 -0.34 -1.20 4.40 2.40 1.57
J2317+1439 580.51 | -0.23 -0.63 -0.43 -0.76 -0.71 -0.99 -1.19 -0.61 -0.85 3.59 2.03 291
J2322+2057 41594 | -0.28 -0.52 -0.65 -0.78 -0.86 -1.08 -1.36 -0.67 -0.86 2.45 2.24 2.03
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