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ABSI'RACT 

The properties of the SU(2) and SU(3) lattice gauge theories are investi­

gated using the Real Space Monte-Carlo Renormalisation Group method. The 

"v3 block transformation" is found to be very efficient in this analysis. The 

non-perturbative ,'1-function is calculated for the SU(2) lattice gauge theory over 

a large range of couplings and along both the Wilson axis and the Jligdal­

Kadanoff improved action line . A possible explanation of the observed non­

perturbative features of the ,'1-function is given. The same data sample is used 

to calculate the improved action needed for better numerical simulations, and 

the results are compared with those obtained using the M:igdal-Kadanoff approxi­

mate renormalisation and Symanzik's perturbative improvement approach A 

similar but less extensive analysis is done for the SU(3) lattice gauge theory as 

well. 

The results indicate that even for the pure gauge theory, the present day 

Monte-Carlo calculations are far from establishing an agreement "'ith the 

expected asymptotic scaling. However, an improved action approach, com­

bined with the ,'1-function determined us'ing the Monte-Carlo Renormalisation 

Group technique, should make it possible to convincingly demonstrate the scal­

ing behaviour in near future. 
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Chapter 1 

INTRODUCTION 

The basic aim of High Energy Physics is to understand what the fundamen-

tal constituents of matter are and how they interact with each other. Among 

the well-known strong, electro-magnetic, weak and gravitational interactions, 

the latter three have been rather well understood. But the solution of the 

strong interaction problem has until now eluded the physicists . The only candi-

date field theory of strong interactions which is both renormalisable and con-

sistent with the known symmetry properties of the hadrons is Quantum 

Chromo-Dynamics (QCD). It is unambiguously defined and is capable of describ-

ing all the experimental data qualitatively. However, even more than a decade 

after it was first proposed, no one has been able to extract any numbers out of it 

for direct experimental comparison. 

1 QCD is a gauge theory describing the interaction between spin 
2 

quarks 

and massless vector gluons. The difficulty in understanding this theory stems 

from the fact that though the interaction is weak at short distances, a property 

known as asymptotic freedom 11], it grows strong at long distances . The 

observed spectrum consists not of free quarks and gluons, but only of colour 

singlet bound states called hadrons. In high energy experiments, at large 

enough momenta where the coupling is weak enough, one can use standard per-

turbation theory to calculate the consequences of QCD and these do agree ·with 

the experimental results qualitatively. But to make contact '\\'ith the reality one 

has to solve the problem of how the quarks and the gluons turn into hadrons as 

the coupling becomes stronger at lower momentum scales. Just using higher 

and higher order perturbation theory to account for stronger coupling is not 
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adequate . The renormalisation group equations show that all dimensionful 

quantities have the non-analytic dependence on the coupling of the form 

exp ( -g-2) . Moreover, QCD has a non-trivial topological structure [2] and there 

are configurations such as instantons which also contribute like exp ( -g-z.; to 

the path integral [3]. An understanding of these non-perturbative effects is 

essential in an attempt to understand the complex phenomena of confinement 

and chiral symmetry breaking. 

A formulation of QCD on the lattice provides a framework where all the non­

perturbative physics is accessible [ 4]. In particular, the phenomena of 

confinement and chiral symmetry breaking can be easily explained in the strong 

coupling limit. However, the connection to the continuum field theory can be 

made only in the limit of the lattice spacing going to zero. This occurs in the 

weak coupling limit and therefore one needs to take a smooth limit from the 

strong coupling region to the weak coupling region. Though an absence of a 

phase transition between these two regions can explain the presence of 

confinement and chiral symmetry breaking in the continuum field theory, an 

agreement with experimental results can only be obtained by an explicit compu­

tation in the weak coupling region. In the past few years, great progress has 

been made in this direction -with the help of high order strong coupling ex-pan­

sions and numerical computations in the intermediate coupling region. But still 

the results are far from the region where the renormalisation group equations 

can be used to scale them to their continuum value. The main problem is that 

there is no unique way of defining a lattice theory corresponding to a given con­

tinuum limit. A class of lattice theories, differing from each other by irrelevant 

lattice operators which vanish as the continuum limit is taken, can give the 

same continuum theory. Since the numerical calculations are severely limited 

by the available computer power, one needs to pick out from this class of 
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theories a particular one which is affected the least by the presence of the 

irrelevant lattice operators and hence allows a smoother extrapolation to the 

continuum. This is the object of Real Space Monte-Carlo Renormalisation Group 

(MCRG) . The formulation of lattice QCD is presented in Chapter 2 and the V:CRG 

method is described in detail in Chapter 3. 

Even in the absence of any quarks, QCD is a highly non-linear field theory of 

gluons interacting with each other. Phenomena such as confinement are 

expected to be present even in this truncated version of the theory and so the 

study of the pure gauge theory is a first step towards the understanding of the 

non-perturbative physics. This becomes even more compelling when one faces 

the fact that the numerical simulations with dynamical quarks are more compli­

cated and time-consuming . Hence the numerical studies here are restricted to 

the pure gauge theory only. The non-perturbative {1-function needed to scale 

the lattice results to continuum is computed in Chapter 4 for the SU(2) and 

SU(3) lattice gauge theories . Chapter 5 describes a first attempt towards 

finding a trajectory in the multi-dimensional coupling constant space , along 

which it would be smoother to take the continuum limit . 
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Chapter 2 

LATTICE GAUGE THEORIES 

2.1 : Quantum Held Theory on a Lattice 

A common disease of the continuum field theories is the ubiquitous pres­

ence of ultraviolet divergences. This singular small distance behaviour can be 

seen most easily in the perturbative expansion. To make any sense out of these 

theories, it is necessary to remove these infinities using some kind of regularisa­

tion prescription. Many such prescriptions exist in literature and the lattice is 

just one of them. However, it has an important advantage - that it makes the 

theory well-defined independent of the perturbation theory, unlike all the other 

kno-wn cut-offs. Such an unambiguous definition is necessary to study the non­

perturbative phenomena. On the lattice the internal degrees of freedom of the 

quantum field theory exist only on a discretised space-time. The Feynman Path 

Integral then uniquely defines the cut-off theory because the integration is now 

over a discrete set of variables instead of a space of functions. This makes the 

lattice formulation very well suited for the study of the non-perturbative 

phenomena both analytically and numerically. As usual, the continuum theory 

can be recovered by taking the cut-off to infinity or the lattice spacing to zero. 

Let S be the action for the field theory under consideration. Choose the 

units such that n=c =1. Then, in the Feynman Path Integral approach, there is 

a phase, e iS, associated with each path which takes the system from one state 

to another [ 1]. The total amplitude for a system to evolve from a given initial 

state to a particular final state is given by the sum of these phases over all pos­

sible histories of the system. There is a large amount of cancellation between 
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the interfering phases, and most of the contribution comes from the paths with 

stationary phases. This is more easily understood by going to the Euclidean 

time formulation of the field theory. The complex phase is transformed into an 

exponentially damping factor and the maximum contribution to the path 

integral comes from the region where the action is near its minimum. The field 

theory now becomes just a problem of statistical mechanics, and Monte-Carlo 

methods can be used to evaluate the path integral . The naive lattice formula-

tion is obtained by replacing the derivatives in the field theory by discrete 

differences. For example, the action for the f...r.p4 theory becomes, 

where x labels the lattice sites and f..L runs from 1 to 4 in four dimensions . The 

generating functional for this theory is, 

-S[9'] + 2; J(x)9'(x) 

Z[J] = j[dr.p]e z (2.1.2) 

The lattice regularisation destroys the Lorentz invariance of the theory in a 

strong manner and consequently the bare Lagrangian is not constrained to be of 

any particular form by renormalisability arguments . However, this is not 

expected to cause any serious problem and one hopes to recover the continuum 

limit smoothly as the lattice spacing a~o . 

The lattice formulation of the gauge theories is a little more tricky. In 

these theories, local gauge invariance is an intrinsic part of the dynamics and 

hence one does not want to lose it while formulating the theory on lattice. 

Explicit gauge invariance requires one to introduce the exponential of the path­

ordered line integral of the gauge field Ap.(x ), called the connection, between 

split point operators, 

K(1,2) 
2 

exp [ ig J dxJi. Ap.(x) J . 
1 

(2.1.3) 
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As shown by Wilson [2] and Polyakov [3], the exactly gauge invariant lattice 

theory is conveniently formulated in terms of these connections between adja-

cent lattice sites, U JJ-(x )c.SU(N) , 

(2.1.4) 

rather than the gauge fields AJJ-(x ). Here A,u(x) are the group matrices in the 

fundamental representationt and the variable U ,u(x) lives on the link going from 

the site x to the site x + J.L. The reversed link element is defined by, 

(2.1.5) 

The gauge invariant action is defined in terms of closed loops of these link 

matrices. The simplest choice is, 

S[U] = 2N E (1- Re Tr(Vplaq)), 
g 2 x,,u,v 

(2.1.6) 

where the traces are normalised to unity. In the limit of a--)0, the exponential 

in Eq.(2.1.4) can be expanded in powers of a and one can show that, 

4 
S[V] = ~ E Tr(F,uv(x)F.UV(x)) +Higher order terms in a, (2.1.7) 

4 :r; 

where the antisymmetric field tensor is defined by, 

The generating functional of the theory becomes, 

Z = f [dU] e-S[U], 

T In general, the representation of the group matrices depends on the representation of the 
quarks, but we assume that the quarks are in the fundamental represent ation. 

(2.1.8) 

(2.1.9) 
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where [dU] represents the gauge invariant Haar measure. 

It is important to note here that Eq.(2.1.6) is not the unique choice of the 

action. Loops of different shape and sizes can also reproduce Eq.(2.1.7) in the 

continuum limit. The different choices of action differ in the contribution of the 

higher order terms in the lattice spacing. Since these higher order terms are 

irrelevant in the continuum field theory, one can try to keep the effect of these 

unwanted lattice operators to a minimum by forming a judicious linear combina-

lion of different loops. This is the goal of MCRG. 

The question of introducing quarks on the lattice is even more subtle. The 

fermion degrees of freedom, ¥'(x), are defined on the lattice sites. Under a 

local gauge transformation G(x), U JJ-(x) and jtt(x) transform according to, 

¥'(x) __. G(x) ¥'(x) . (2.1.9) 

Hence the gauge invariant quantities are the Wilson strings, 

¥'(x) UJJ-(x) ......... Uv(y-v)v(y). (2.1.10) 

Now we can construct the gauge invariant ferrn.ionic action which ~ill reduce to 

f d4x )ii(x) (II +m) v(x) in the continuum limit, 

Sp ="I; [)ii(x)(r-?'p.)Up.(x)v(x+tt) + ~(x+tt)(r+?'p.)U~(x)v(x)] 
z,p. 

-I; ~(x)v(x). (2.1.11) 
% 

Preservation of the chiral symmetries of the continuum theory on the lattice 

would require r =0. However, in the continuum limit, this gives rise to 2d fer-

rnion flavours in d dimensions instead of one. In four dimensions, a partial 

diagonalisation can reduce this number to four [ 4], but no further reduction is 
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possible. Also, though each flavour has the correct magnitude of the triangle 

anomaly, the net anomaly cancels out because of contributions of the opposite 

sign. A way out is to take r .CO [ 4,5]. Then one indeed obtains only one fer­

mion flavour in the continuum limit, but on the other hand all the chiral sym­

metries get explicitly broken on the lattice. As pointed out by Nielsen and 

Ninomiya [6], this is a particular case of a more general problem, that with finite 

range interactions one cannot describe non-vector chiral symmetries on the lat­

tice '"ithout introducing extra unwanted fermion species of the opposite handed­

ness. In this dissertation, however, we will deal only with the pure gauge theory 

and avoid the fermion problem altogether . 

2.2 : Renormalisation and Approach to the Continuum 

A regularised theory with a finite cut-off can make sense in the continuum 

only if the physically measurable quantities do not depend on the cut-off in the 

limit of the cut-off going to infinity. This is the principle of Renormalisation 

Group (RG). Such a behaviour is possible only when the bare parameters in the 

action depend on the cut-off in a certain way. If one knows this dependence of 

the bare parameters on the cut-off, in terms of the scaling functions or the RG 

equations , then one might as well deal l'lith the theory having a finite cut-off 

instead of the continuum theory. This does not result in any loss of Ln.formation 

as long as one is interested in the behaviour of the theory below the cut-off. 

This is precisely the situation in trying to understand the low-lying hadron spec­

trum of QCD using numerical methods. 

Follov.ing Wilson [7], consider fluid dynamics as an illustrative example. 

The motion of the fluid on the macroscopic scale, for example waves with 

wavelengths of the order of metres, is described by hydrodynamics . On a much 
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smaller atomic scale, one sees the atomic structure of the fluid, and the physics 

at this scale must be described by the Schrodinger equation for the electrons 

making up the atoms. On a still smaller scale, one has to deal with the nuclear 

physics to understand how the nuclei of the atoms are made. However, in 

hydrodynamics, there is no reference to what is happening at atomic scales 

except through some of the parameters in the fluid equations, such as the den­

sity and the viscosity of the fluid. The description of the fluid at the scale of 

metres is completely independent of the description of water at the atomic 

scale, except for a few effective constants. These constants in the macroscopic 

theory can be determined by solving the theory at the next smaller scale of 

importance, namely the atomic scale . The parameters of the atomic scales ,.,.ill 

in turn depend on what is happening at the nuclear scale. But as long as one is 

dealing Yvith the macroscopic scale and knows the parameters determined by 

the physics at the atomic scale, one does not have to worry about what is going 

on at the nuclear scale . One does not have to solve the nuclear physics problem 

to determine the macroscopic parameters, as long as the parameters of the 

atomic scale are knovm, since the effects of the nuclear physics is already con­

tained in the parameters of the atomic physics. 

This analogy holds for many physical systems. Generally they have many 

different physical scales and for each scale there is a separate set of parameters 

needed to describe the physics. The parameters of one length scale are deter­

mined from the parameters of the next smaller length scale . For field theories, 

the physical laws describing the different length scales do not change from scale 

to scale. The same field theory applies to all the scales. However, the para...rne­

ters appearing in the field theory do change from scale to scale; i.e ., they get 

renormalised. One can deal with the theory with a finite cut-off if these renor­

malised parameters at that scale are kno"Wn. 
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First let us discuss the "'Ar.p4 theory. lnstead of the bare coupling constant 

Ac>. there will now be a momentum dependent effective coupling Aef 1 ( Q) which 

will have to be used to calculate the vacuum expectation values with external 

momenta of order Q. To determine Aeff (Q), consider the diagrams contribut-

ing to the four-point function shown in Fig . 1. The first diagram contributes "'Ao 

to the four-point function. The second diagram contains the integral, 

(2.2.1) 

where q =q 1 +q 3. This integral contains a logarithmic divergence, coming from 

the region. I k I >>m ,q. This divergent part can be written as, 

co 

J d 4k 
Q k4 ' 

(2 .2.2) 

with Q>>m ,q. Though the various momentum intervals [ Q,2Q], [2Q,4Q], .... 

contribute equal and finite amount, the divergence arises because of the fact 

that there are infinitely many such intervals. The integral over each one of 

these momentum intervals represents the contribution of that momentum scale 

to the divergence. This divergent contribution is independent of the external 

momenta qi and hence can be combined with the bare parameter "'Ao to form an 

effective coupling Aei f ( Q), 

co 

AeJJ ( Q) = "'Ao + (canst.) Aff J r1J: . 
Q 

(2.2.3) 

Most of the divergent contribution can be absorbed into the definition Aeff (2Q), 

2Q 

AeJJ ( Q) = Aeff (2Q) + (canst.) "'A~ J ~ . (2.2.4) 
Q 

Up to the order of approximation we can neglect O(A.&) terms and replace A.~ by 

'A.i11 (2Q) in the above equation. Then the equation defines Aeff ( Q) in terms of 

AeJJ (2Q). This is what we set out to prove, namely, to find the new parameters 
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of the theory in terms of the ones at the next higher momentum scale. This 

relation can also be expressed in terms of a differential equation, 

d'Aeff(Q) _ ( ) 2 ( ) ( 3 ) 
d(lnQ) - - const. "NJJ Q + 0 ~ff . (2.2.5) 

In the pure gauge QCD, the only bare parameter is the coupling constant 

g 0 . A perturbative calculation shows that the renormalised coupling constant 

g =g (a) depends on the lattice spacing according to, 

(2.2.6) 

where the first two coefficients in the expansion are independent of the regulari-

sation scheme [8], 

(2.2.7) 

If A is some physical scale such as AQcD (denoted by AL for the lattice regulari­

sation), this relation can also be expressed as, 

(2.2.8) 

Any physical scale (inverse correlation length) in the lattice theory, m , behaves 

like a constant times A as the continuum limit is taken. Therefore, as one 

approaches the continuum limit the correlation length diverges in terms of the 

lattice spacing. In the language of statistical mechanics, this can be inter­

preted as approaching a critical point, corresponding to a second (or higher) 

order phase transition. One can therefore apply the various te~l:1ni.ques 

developed to study the critical phenomena in statistical mechanics to this field 

theory problem. 

For QCD, the fixed point lies at Yba:re =0, and the positive sign of {30 means 

that the coupling grows stronger at longer length scales. Although the physical 

I 
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quantities of the theory can be obtained only by going arbitrarily close to the 

fixed point, one can obtain qualitative and semi-quantitative information even 

far away from the fixed point. A convenient technique is the strong coupling 

expansion, which is the subject of discussion of the next section. It corresponds 

to taking a very coarse lattice and developing a perturbative expansion in g -l. 

Then one can try to see what happens as the lattice is made less and less coarse . 

If there is a trajectory in the coupling space which leads smoothly (i.e., no phase 

transitions) from this strong coupling behaviour to the weak coupling behaviour 

near the fixed point [9], the symmetry properties of the theory Vvill be the same 

in both the regions. Such an information is invaluable in understanding the 

phenomena such as confinement and chiral symmetry breaking. The strong 

coupling expansions have only a finite radius of convergence and the weak cou-

pling e>..'Pansions are only asymptotic. So at the present the best method to 

connect these two extreme regimes is numerical simulations. Another point of 

interest is that as long as one is satisfied with a certain amount of precision in 

the actual magnitudes of the physical quantities, one does not have to go arbi-

trarily close to the fixed point. This is because the fixed points have a certain 

scaling region around them, where the critical properties of the theory are 

already very close to their behaviour at the fixed point. In particular, it is g7n­

erally true that the various ratios r;: attain their critical values faster than the 

rate at which the renormalisation group invariant scale A approaches the 

behaviour expressed in Eq.(2.2 .8)1'. For efficient numerical simulations, it is 

extremely important to find out how far this scaling region extends from the 

critical point, and this can be studied systematically using MCRG. 

f The p~'"turbative corrections to the A-parameter in Eq. (2.2.8) are of the form 
( 1 + 0 (g ~)). But LlJ.e deviations of the dimensionless ratios from their fixed p oi.TJ.t values 
can be enressed as a power series in the ~verse correlation length and LlJ.ese are of the 
form (1+-0(a/ ~)) "'(l+O(exp(-g- ))) . 
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2.3: Strong Coupling Expansions 

When the coupling constant g is large, the Boltzmann factor in the generat-

ing functional can be expanded in a power series in terms of the parameter 

(3= 
2~. For the simple plaquette action, 
g 

z = f [dV] n ( ~ ILk~ (Re Tr(Vpzaq))k). 
plaq k . 

(2.3.1) 

This expansion is analogous to the high temperature expansion used in statisti-

cal mechanics. The expectation value of the observables of interest can now be 

computed by integrating this series term by term over the link matrices U JJ.(x ) . 

Each term in the series is a product of link variables and hence can be 

represented on the lattice as a graph. The integral over the group space then 

gives a non-vanishing contribution only when the group indices are contracted in 

a manner so as to form a group singlet at each link. The two lowest order non-

zero group integrals are : 

1 - o·l o .k N t J 

f - 1 dU U.· U · · · U - c · c· [ ] t] kl yz - N! ik ... y ;l .. . z , 

(2.3.2) 

(2.3.3) 

for a product of N SV(N) matrices Vvith cik ... y being the totally anti-symmetric 

tensor of rank N. 

For example, consider the expectation value of a simple plaquette, 

fJ l: Re Tr ( UpLa.q) 

<Tr(Upr.aq)> = 1 f [dV] Tr(Vpzaq) e pla.q 

1 
2 

j[dU] Tr(Vplaq) (fi
2

rr(Vpr.aq+VJLa.q)+0((32)) 
1 +0((3 ) 

(2.3.4) 

Similarly, for any other observable, the lowest order term comes from the graph 

in which the observable is minimally but completely "tiled" by simple plaquettes 
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(see Fig. 2). In particular, the expectation value of a Wilson loop behaves like 

( ~( 1 +o Nz))Arett in the lowest order. The higher order terms correspond to 
ZN 

the non-minimal surfaces and the higher representations tiling the observable . 

Since the expectation value of a large Wilson loop of size Rx T represents the 

free energy of a quark and an anti-quark separated by a distance R, 

<W(R,T)> "'exp[-V(R)T]; (2.3.5) 

the area law behaviour proved above corresponds to a linearly confining poten-

tial [2]. 

Higher order terms in the strong coupling expansion can be obtained by 

more sophisticated methods. They utilise character expansions on the group 

manifold and cluster expansions of statistical mechanics [ 10]. An importa..'lt 

property of these strong coupling expansions is that they have a finite radius of 

convergence. This is a consequence of the fact that both the range of the 

integration variables and the number of graphs at a fixed order in {3 are 

bounded [ 11]. In the strong coupling regime, this convergence property 

rigorously establishes the follo-wing results : 

(i) Exponential clustering of correlation functions or non-zero mass gap. 

(ii) Area law of the Wilson loop or linear confinement of quarks1 

Since the strong coupling region corresponds to a coarse lattice, the corre-

lation length here is smaller than the lattice spacing and the fields are dom-

inantly random. As one moves towards the region of smaller g, the fields at 

neighbouring sites start becoming more and more correlated and a "roughening 

transition" occurs. The strong coupling series fails to converge beyond this 

point [10]. This effect shows up as a strong dependence of the value of the 

observable on the number of terms retained in the expansion (see Fig . 3). 

Attempts have been made to extrapolate the series beyond its radius of 
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convergence, but they have not been very successful [ 10]. The best knovrn solu­

tion at present is to use numerical simulations in this intermediate region to 

interpolate smoothly between the strong and weak coupling results and it is the 

subject of discussion of the next section. 

2.4 : Present status of Numerical Simulations 

As mentioned earlier, the purpose of these numerical simulations is two-

fold . 

(a) To establish that one can smoothly go from the strong coupling region into 

the weak coupling region. Then the properties such as confinement, which 

exist in the strong coupling region, also hold in the weak coupling region. 

(b) To go sufficiently deep into the weak coupling region and calculate within a 

few percent the physical quantities such as the string tension and the 

hadron spectrum for direct comparison with the experimental data. This is 

necessary before one can claim that QCD is the theory of the strong 

interactions. 

Extensive numerical studies of the non-abelian lattice gauge theories [!..ave been 

made only fbr the SU(2) and SU(3) gauge groups. These Monte-Carlo simula­

tions have been fairly successful in realising the first objective, that for the pure 

gauge theory there is no phase transition in going from the strong coupling 

region to the weak coupling region [ 12]. There is a rapid crossover between 

these two regions due to the roughening transition mentioned earlier, but it 

does not destroy confinement, and the static quark-anti-quark potential does 

show a linear behaviour for large separations [ 13]. However, these results have 

been obtained near g 2,...,1.6 for the SU(2) theory and near g 2"' 1.0 for the 

SU(3) theory. This value of the coupling is very large and hence a satisfactory 
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analysis of the weak coupling behaviour, and a demonstration of scaling still 

remains to be done. 

The main limitation of these numerical simulations comes from the fact 

that the present day computers are capable of dealing with lattices only up to a 

certain finite size. One needs to take both the continuum and the infinite 

volume limit before obtaining any sensible results. If ~is the correlation length 

on the lattice, then one needs both a«~ and ~«L. The available computer 

power limits the value of L one can use, and this value is about 16 for the 
a 

present day computers. The gauge theory on a lattice of finite size behaves like 

the quantum field theory at a finite temperature [ 14]. QCD is not a confining 

theory at high temperatures, and so as~ becomes comparable to L, the lattice 

theory undergoes a finite temperature de confining transition [ 15]. This transi­

tion is of second order for the SU(2) theory and of first order for the SU(3) 

theory [16]. For ~"'L, the finite size effects spoil the behaviour of any observ-

able which depends on the fact that the theory is confining. Since the correla­

tion length varies exponentially vvith the coupling, Eq.(2.2.B), the range of cou-

plings explored beyond the crossover region has been very small so far. The 

value of the string tension and the decontinement transition temperature have 

been measured in this limited region, but these values do not scale according to 

the two-loop perturbative formula, Eq.(2 .2.B). Attempts have been made to 

measure the glue ball masses as well [ 17], but these are affected by systematic 

errors corning from the fact that it is very difficult to observe the signal from an 

exponentially decaying correlation function at large distances. Hence, the 

demonstration of scaling for the glue ball masses is much more complicated. 

Inclusion of quarks into the dynamics of QCD has even more problems. 

Because of the difficulties related with chiral symmetries, one has to work either 

with multiple flavours or with an action where the chiral symmetries are 
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explicitly broken by terms which vanish in the continuum limit. In the first 

case one loses all the effects of the anomaly while in the second case the 

approach to the continuum limit becomes more difficult. Moreover, Monte­

Carlo calculations involving dynamical ferrnions require at least an order of 

magnitude more computer time. Therefore, most of the work involving fer­

miens has been done in the valence approximation, where all the dynamical 

quark loops are neglected [ 18]. This approximation has its own systematic 

errors, which are expected to be small because of the success of the non­

relativistic quark model and large N properties of SU(N) theories in describing 

the hadrons . But there is no estimate of the magnitude of this error, and hence 

it is difficult to disentangle the effects corning from the fact that one is working 

in a region far from the critical point . Also -without dynamical quarks it is 

impossible to reliably study the phenomenon of chiral symmetry breaking. 

There are other sources of error as well, stemming from the fact that when light 

quarks are included in the theory, one has more parameters to play with (the 

bare quark masses), and very light particles such as pions get formed . The 

light particles are not very well simulated on small lattices and so one has to do 

an extrapolation from large fermion masses to smaller ones. 

Despite all these shortcomings, there seems to be a good qualitative agree­

ment between what is expected and what is observed [19]. The strong coupling 

expansions can fit the observed flavour non-singlet hadron spectrum reasonably 

well [5]. The agreement is improved by combining the strong coupling expan­

sions "\\i.th random walk techniques [20). The fit to the meson masses turns out 

to be very good, but the baryons are found to be too heavy. The Monte-Carlo 

simulations have shown that the baryons become lighter at weaker coupliP...gs, 

but they are still rather heavy in the region of couplings investigated, indicating 

that the strong coupling features have not completely disappeared. On the 
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other hand, these preliminary investigations have raised the hope that, by 

finding a better approach to the continuum limit, some day we may be able to 

conclude that QCD is the correct theory describing the strong interactions. 
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F1GURE CAPTIONS AND FIGURES 

[2.1]The diagrams contributing to Aef! in the "Arp4 theory. 

[2.2]The lowest order contribution in the strong coupling expansion of a Wilson 

loop. 

[2.3]Cornparison of the strong coupling results for the string tension [ 10] "\vith 

the Monte-Carlo data taken from the second reference in [13], for the SU(3) 

gauge theory. The arrow indicates the roughening transition. The curves 

are, from top to bottom, the oth, uth, 12th and lOth order strong coupling 

results. The straight line is the expected asymptotic behaviour in the weak 

coupling region. 
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Chapter 3 

MONTE-CARLO RENORMALISATION GROUP 

3.1 : Renormalisation Group and Fixed Point Theories 

As explained in the previous chapter, the renormalisation group (RG) 

expresses the relation between the parameters of an effective theory, obtained 

by integrating out the short distance behaviour of a more fundamental theory, 

and those of the theory at the next smaller length scale. The process of 

integrating out the short distance behaviour of the theory can be visualised as 

thinning the degrees of freedom in the partition function by performing a partial 

functional integration (or summation). Even though the original theory may 

have only a certain number of interactions, the iterations of the renormalisation 

process invariably generate an infinite number of interactions among the new 

variables of the theory. The basic assumption in what follows is that the 

effective interaction still remains local. 

To illustrate these ideas, consider the example of the Ising model. The ori­

ginal Hamiltonian has only nearest neighbour interactions. Now perform the 

sum over alternate spins in the partition function. This corresponds to a renor­

malisation group transformation by a scale factor ..J2. The new lattice is hyper­

cubic, but it now has more complicated interactions. As shovvn in Fig. 3.1, 

integrating out the spin A creates interactions between the diagonally 

separated spins B and C, and D and E. A four spin interaction between the 

spins B, C, D and E is also generated. If this process is iterated a few times, 

more and more complicated interactions will be generated [1]. The important 

point is that the strength of these new longer range interactions is much smaller 
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than that of the original nearest neighbour interaction. 

To see the same situation in momentum space, consider the A.rp4 theory. 

When the momenta beyond a certain cut-off, Pi >A. are integrated out from the 

theory, multi-point couplings are generated in the effective theory. For exam-

ple, Fig . 3 .2 shows how two four-point vertices can merge giving rise to a six-

point vertex. In field theory, these higher dimensional interactions are called 

non-renormalisable. They are absent from the original continuum theory and 

are suppressed by powers of A in the effective theory [2]. 

These simple examples illustrate that, when considering the process of 

renormalisation, one has to deal with an infinite dimensional coupling constant 

space. If the original theory is scale invariant, then the renormalisation group 

transformations will leave it scale invariant. This is the situation for the second 

order phase transitions in statistical mechanics and the continuum limit of lat-

tice theories. The correlation length, measured in the units of lattice spacing, 

diverges in these cases. In the infinite dimensional coupling constant space, 

this limit can be characterised as a subspace, called the critical surface, having 

t=oo. Tne renormalisation group transformations cannot take a point in this 

subspace out of it. The most likely situation is that when a number of renormal-

isation group transformations are performed, the various starting points on the 

critical surface converge to a particular point on the surface. Such a point is 

called a fixed point of the theory, since it is invariant under the renormalisation 

group transformation. In general, the critical surface can have more than one 

such fixed point, each with its own radius of convergence. However, if one 

starts slightly off this critical surface, i.e., t:;Coo, the renormalisation group 

transformations monotonically decrease the ratio S., taking the theory farther 
a 

and farther away from the critical surface. There can be more than one such 

unstable direction (which in the field theory are characterised by the 
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renormalisable interactions) orthogonal to the critical surface. Thus if we con­

sider the topology around the fixed point, it looks like a saddle point. The direc­

tions which get attracted to the fixed point are called irrelevant, while the direc­

tions along which the fixed point is unstable are called relevant . In addition to 

these, there can exist marginal directions, which are neither attracted nor 

repelled by the fixed point, but we neglect them for the time being . A typical 

situation of what happens under successive renormalisation group transforma­

tions is shown in Fig. 3.3. The fiow of the coupling constants converges towards 

a subspace characterised by the relevant parameters. Yfuen there is only one 

relevant parameter, this subspace is called the renormalised trajectory (RT), 

and it is the only direction of instability out of the fixed point. 

In the limit of ~-+oo, the underlying lattice structure of the theory becomes 

unobservable, and all the physical quantities depend only on the variable ~ · 

Therefore they either diverge or approach a constant value . In what manner 

they do so depends on their functional dependence on f This phenomenon is 

k:no"\\'Il as scaling in statistical mechanics. For example, for a ferromagnet near 

its Curie temperature,~ diverges like a power law, (T-Tc)-v. Therefore, other 

quantities such as magnetisation and specific heat also behave like a power of 

(T-Tc) · These powers of (T-Tc ), called the critical exponents, are physical 

observables and can be measured near the critical point of the theory . 

Different materials with different lattice structures will correspond to different 

points on the critical surface of the generalised infinite dimensional coupling 

space . They vvill be attracted to one or another fixed point on the critical sur­

face. Since the renormalisation group transformation does not change the crit­

ical behaviour of the theory, the fixed point will have the same critical behaviour 

as any other point on the critical surface which is inside its domain of attrac­

tion. Different theories which are attracted to the same fixed point will show 
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the same critical behaviour. This is lmown as the principle of universality. 

Thus to find the critical behaviour of a class of theories, all one has to do is to 

study the behaviour of the generalised theory near its fixed point. Since the 

critical behaviour of the theory depends only on the rate of divergence away 

from the critical surface, it depends only on the relevant parameters. There-

fore, for practical purposes, working near the fixed point actually helps because 

the effect of the irrelevant parameters is already negligible there, and one has 

to worry about only a small dimensional space of relevant parameters. The 

scaling behaviour and the critical exponents can be found by considering the 

linearised renormalisation group transformation in the vicinity of the fixed point 

[3]. This gives the leading behaviour in a certain region around the fixed point. 

The corrections to this leading behaviour, which include the effect of the margi-

nal operators , can be found by going beyond the linearised transformation [3]. 

The renormalisation group technique outlined above can be used to study 

the critical behaviour of any theory with a fixed point . Non-abelian gauge 

theories possess an ultraviolet fixed point (UVFP) at gba.re =0 "With the correla­

tion length diverging as rvexp ( 2;~ 2 ) [ 4]. Unlike the statistical mechanics 

problems, the singularity is not a power law type. It is an essential singularity 

(or an i.n_fini.te order phase transition) her.e . This does not invalidate the use of 

the technique. The flow away from the fixed point is at a constant rate and the 

leading corrections to the scaling behaviour are logarithms rather than power 

law like . This is actually an advantage because it makes the scaling region 

extend out to a large gba.re . 

The continuum non-abelian gauge theories have only one parameter, gba:re , 

and the~efore one expects only one direction of divergence, the renormalised 

trajectory, out of the UVFP. The theory is expected to be confining and so 

under the renormalisation group transformation one expects to flow from the 
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UVFP to the trivial infrared fixed point (IRFP) . This situation is depicted in Fig . 

3.4. The IRFP is completely stable and analogous to the T=oo trivial fixed point 

in the statistical mechanics problem. Near the UVFP, the rate of divergence 

along the RT can be obtained using the linearised transformation and it is given 

by the perturbative {3-function. But away from the UVFP, the presence of phase 

structures in the infinite dimensional coupling space can distort the RT. Such 

effects give a non-perturbative contribution to the {3-function and also make RT 

deviate from its linear shape . 

Near the UVFP one expects, in principle, very simple scaling properties for 

physical quantities; i.e., any mass behaves like a constant times AL, where AL is 

the only renormalisation group invariant mass-scale in the problem. In a lattice 

calculation performed at a large Ybare and on small lattices, irrelevant opera­

tors obscure this simple behaviour. The deviations depend both on the distance 

from the fixed point and on the proximity of phase structure in the infinite 

dimensional coupling constant space. These local structures can be avoided by 

using an improved action to approach the continuum limit. The aim is there­

fore to fL11d an action that has the least effect due to any phase structure and 

shows scaling at as large a scale as possible . 

3.2: The Real Space Monte-Carlo Renormalisation Group Method 

The MCRG method has been developed by Wilson, Kadanoff, Swendsen and 

Ma [5,6]. It is ideally suited for numerical analysis since the results are not 

very sensitive to the infrared (small lattice size) cut-off. Thus one can do reli­

able calculations both near the crossover region and in the wea.l<: coupling 

region. The non-perturbative {3-function so found can be used to extrapolate 

across the region where there are large corrections to the 2-loop perturbative 

result . This is important because otherwise one is forced to use the 
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perturbative expressions to extend the results of standard Monte-Carlo calcula-

tions done at large Ybare to the continuum limit; an assumption that, as the 

results v.ill show, is unjustified in the range of couplings explored. 

To discuss the MCRG method write the lattice action for any given gauge 

theory as, 

A[U] = 2: KaTa[U], (3.2.1) 
a 

where the link variables U are elements of the desired gauge group, ~ T a[ U]l is 

the set of all possible gauge invariant traces of Wilson loops and ~Ka l are the 

corresponding couplings. The change in notation here is for the sake of avoid­

ing complicated expressions . A[ U] is just the negative of the U dependent 

terms in S [ U] . The partition function for the Euclidean theory is then, 

Z = j[dU] eA[U] . (3.2.2) 

In a renormalisation group transformation, the degrees of freedom are thinned 

by averaging over the short distance fluctuations. This averaging, also called 

the block transformation, generates a new action on the coarser lattice, 

(3.2.3) 
/ a 

The link variables U1 on the blocked lattice are distributed such that, 

(3.2.4) 

where the block transformation is specified by the probability function P( U1, U) 

which defines the relationship between the original degrees of freedom and the 

block variables. This probability function has to be positive definite, is required 

to maintain local gauge invariance and satisfy, 

(3.2.5) 
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This condition, Eq. (3 .2.5), ensures that the two theories have the same partition 

function and therefore the same long distance behaviour. Various transforma­

tions have been suggested for the gauge theories, and they are described in 

detail in the next section. 

The RG transformation maps a given lattice theory (a point in the coupling 

constant space) onto another. Under successive RG transformations one gen­

erates a trajectory, a flow line of the action. It should be kept in mind that even 

if one starts out with a single coupling action, the procedure of successive block 

transformations generates all possible couplings on the lattice. It is in this 

infinite dimensional coupling constant space ~Kal. that the non-abelian gauge 

theories have an ultraviolet fixed point (UVFP) somewhere on the surface 

Yoare =0. The exact location of the fixed point and the RT depend on the 

transformation, while the relation between Yoa:re and the set ~Ka~ is found by 

examining the coefficient of the FJ.W F p.v term for a--.0. Under a scale change all 

actions that are not on the critical surface flow away from the UVFP towards 

Yoare -.oo along trajectories that approach the RT. The notion of a {3-function 

therefore exists only along a trajectory. The special status of the RT derives 

from the fact that it is linear near the UVFP and has smaller corrections due to 

finite lattice spa-cing a. Also along it the long distance behaviour of the contin­

uum theory is not modified by irrelevant lattice operators. 

An essential ingredient of the RG analysis is that the new couplings ~KJ ~ 

are analytic functions of the old ~Kal · Thus, as long as the range of the 

interactions stays local and smaller than the lattice size, the results of the K:CRG 

will be governed by the desired UVFP. In renormalisable field theories, the long 

distance behaviour is controlled by a few (one for QCD) relevant couplings. 

Since the ideal improved action is given by the basis vector defining the RT. it is 

hoped that a few local interactions will provide a good approximation to the RT. 
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ln general, points along a co-ordinate line, say Ka¢F =0, are not related by 

just a change of the scale since other couplings are generated nnder renormali­

sation. It is only in the continuum limit g ~o. that the {3-function along all tra­

jectories within the lliliversality class will agree with the perturbative result . 

This is not true at large g. However, Wilson [5] showed a way of calculating the 

,S-function at any arbitrary point that is attracted by the RT. This method is 

reviewed next. 

In Fig. 3 .5, the projection of trajectories onto a two coupling constant plane 

is shown. A and B are two starting points for trajectories that flow to the RT. 

By adjusting the point B, the nth blocked action, An is made to match the 

(n-l)th blocked action, B(n-1). Thus An and B(n-1) have the same correla­

tion length. Then the difference in couplings ~K~ - K~ ~ is the effect of a 

known scale change, i.e., the scale factor b of the transformation, because the 

correlation length decreases by a factor b at each blocking. This is precisely 

the {3-function. The equality of the actions An and B(n-1) is in practice 

asslUTied when a few ("'10) expectation values match. This assumption can be a 

posteriori justified if there is only one relevant coupling. In that case all expec­

tation values are correlated, and the matching of a few ·will guarantee that the 

rest do too. We have carried out this test by diagonalising the linearised 

transformation matrix Tap and looking at the eigenvalues, and the results do 

justify the assumption. Lastly, to avoid the effects of the infrared cut-off intro­

duced by a finite lattice, the comparison of the expectation values along the two 

trajectories is made for the lattices having the same physical size and boundary 

conditions. 

The cook-book recipe for calculating the ,S-function of the theory can be 

summarised as follows : 
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1) The starting couplings ~K~ ~and the lattice size (mb 4n) are selected. 

2) The system is first thermalised. Then the expectation values of the original 

and blocked Wilson loops are calculated for the n lattices. 

3) The starting couplings ~K~ j for the (mb 4(n-l)) lattice are selected. 

4) The corresponding expectation values for the n -1 lattices are calculated 

after thermalisation. These are compared to those obtained in step 2 for 

the same lattice size. 

5) Steps 3 and 4 are repeated until a matching of expectation values at a few 

different scales implies that the long distance behaviour of the two actions 

(K~ l and ~K~ l are related by a scale change of b. 

6) The {3-function is found by repeating steps 2 to 5 for a number of values of 

(K~ ~· Thus for the non-abelian gauge theories, the quantity calculated 

using MCRG is, 

6[3 = - a(2N;g-2) ·lnb 
a(lna) . 

(3.2.6) 

i.e., the discrete approximation to the {3-function at g, evaluated for a scale 

change of b. 

A necessary condition for the matching is that the two trajectories A and B 
/ 

track the RT. Even away from the fixed point, the RT is not expected to lose its 

attractive nature, though as one goes farther from the UVFP, it is likely that the 

radius of attraction of the RT decreases. Therefore, once the trajectories have 

come close to the RT, they v.i.ll flow together vvith it. To ensure that one remains 

within the domain of attraction, the starting couplings should be near the UVFP 

where the RT is attractive and the range of the interactions introduced in the 

MCRG process should stay smaller than the lattice size. Even then, for an arbi-

trary starting point, it is only after a certain number of scale changes by a fac-

tor of b that the irrelevant couplings obtain their fixed point values. It is 
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therefore customary to give maximum weight to matching on the smallest lat-

lice (thickest loops) . On the other hand, in a Monte-Carlo calculation the block 

variables are more correlated on coarser lattices. Thus one has to seek a 

compromise between the statistics and the convergence in the action. 

It is desirable to pick the line of starting actions !KA ~ as close as possible 

to the RT. There are several ways to find an approximation to the RT, as ,.,.ill be 

discussed in Chapter 5. One is to use perturbation theory near g "'0. This pro-

gramme has been implemented by Wilson [5] and by Symanzik [7]. The other is 

to use the Migdal-Kadanoff recursion relations [B]. 

linearised Transformation 

Near the fixed point one can consider the linearised transformation, T a{J• 

whose eigenvalues give the critical exponents. Universality in fixed point 

theories states that these exponents (physically measurable quantities) are 

independent of the transformation. The location of the fixed point and the 

topology of the critical surface near it, however, depends on the details of the 

transformation. For asymptotically free theories, the divergence away from the 

fixed point is at a constant rate and hence the leading eigenvalue of T a{J is 

expected to be 1. / 

In the MCRG method, even though all renormalised couplings of range 

smaller than the lattice size are automatically included, one does not keep track 

of them. The matrix Tap is instead calculated from fluctuations in the observ-

ables, n. as, 

af0a ao: 
ao;: aKt-l) · (3 .2.7) 

where the lattice has been blocked n times Each of the two terms on the 

right is a connected correlation function, i.e., 
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(3.2.8) 

In a practical calculation the number of operators evaluated are few and the 

correlation functions, Eq. (3.2.8). on blocked lattices require very high statistics. 

3.3: Block Transformations 

The fixed point, the renormalised trajectory and the calculational efficiency 

depend on the renormalisation group transformation. A good transformation 

will be the one for which the starting line of actions is close to the RT and the RT 

is fairly attractive in all physically relevant directions . For example, in the sim-

ple decimation transformation for the Ising model discussed earlier, the new 

block variables are the same as the old ones, only the interaction between them 

is different. Such a crude approximation leaves the correlation functions for 

the spins a unchanged, and therefore the scaling index ft associated with the 
ll 

spin variables is forced to have the value 0 . If the relevant fixed point of the 

theory has a different value for this scaling index, the flows generated by the 

decimation transformation will not be attracted by the RT and the transforma-

lion vvill be useless. Such an obvious flaw ca..TJ. be easily seen for a simple 

transformation like decimation, but for more complicated non-linear transfer-
/ 

mations it is generally the results that a posteriori justify that the transforma-

lion works correctly. In our case, the transformation used in the numerical 

simulations of the 4-dim non-abelian gauge theories was the "v'3 block transfer-

mation" proposed by Cordery. Gupta and Novotny [9]. But before we discuss it 

in detail. let us briefly discuss the other two transformations that have been sug-

gested by Wilson [5] and Swendsen [10]. 
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Wilson's Block Transformation 

This is a block transformation with b =2; i.e., the block site represents a 

total of 24= 16 sites on the original lattice. For the SU(2) theory, the block link 

variable is defined as the normalised mean of the eight link variables on the ori-

ginal lattice which connect the block y Vvith the block y +f.L (see Fig . 3.6) [5]. 

The link variables on the original lattice which form the block link do not have 

identical end points. Hence, the block link variables do not have a simple 

behaviour under gauge transformations. This is fixed by performing a partial 

gauge fixing within each block. We need one gauge degree of freedom to be left 

over for the block site as a whole; therefore the gauge fixing can be done only at 

15 of the sites inside each block. Thus there are 64-15=49 degrees of freedom 

per block. Only 32 of them are used in the construction of the block links . The 

remaining degrees of freedom inside each block are taken care of by a block 

version of Landau gauge fixing ; i.e ., the sum l: TrU J.L(x) over all the 32 links 
Z,J.L 

that are completely within the block, is maximised with respect to all gauge 

transformations within the block. More details can be found in the original 

paper[5]. 

Swendsen's Block Transformation 

This is also a b =2 blocking scheme. Here the block link variable is con-

structed out of nine path ordered products of the link variables on the original 

lattice [~0]. These nine paths connect the nearest neighbour block sites and a 

2-dim projection is shown in Fig . 3 . 7. Since all the nine paths have the same 

end points, no gauge fixing is needed in this scheme. The central path is topo-

logically different from the rest, and hence has to be considered ¥rith a different 

weight in the construction of the block link variable. Also out of the available ~9 

degrees of freedom, only 36 are used (9 paths per direction) in this 
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renormalisation group transformation. 

The v'3 Block Transformation 

Before describing the geometry of the transformation, let us first list the 

advantages of this transformation for a 4-d.im hypercubic lattice : 

i) The scale factor acts as the independent variable in the discrete derivative 

defining the {)'-function, so a small value b =v'3 is desirable. 

ii) The construction of the block variables utilises the maximum number of the 

degrees of freedom on the starting lattice, while preserving the hypercubic 

symmetry of the lattice. 

iii) There is no gauge fixing required in the construction of the block variables. 

iv) Matter fields (complex scalars) defined at the sites can also be simultane-

ously renormalised, while maintaining exact local gauge invariance of the 

theory. 

Now let us consider the construction of the "block link" variables between 

the block sites in this transformation. On a 4-dim hypercubic lattice, there are 

four 3-di._rnensional positively oriented cubes that originate from a given site. 

Since the body diagonals of these cubes form an orthogonal set, we use them to 
I 

define the block lattice. They can be expressed in terms of the original basis 

vectors ~ed as, 

el e3+ez+el = (0,1,1,1), 

e4+ez-el (1,0,1,-1)' 

e4-e3+el (1,-1,0, 1) ' 

e4+e3-e2 (1, 1, -1,0) . (3.3.1) 
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The renormalised lattice so obtained is hypercubical but rotated with respect to 

the original lattice. The next application of the RG transformation can be 

selected to undo this rotation by defining the second basis set to be, 

er e~ +eJ +eJ 3e 1 (3,0,0,0) . 

e~ 1 1 1 e 1 -e3 +e4 3e 2 (0,3,0,0) . 

e~ 1 + 1 1 e 1 ez -e4 3e 3 (0,0,3,0) . 

ef 1 1 + 1 e 1 -ez e 3 3e 4 (0,0,0,3) . (3.3 .2) 

With this construction, all the block sites are a subset of the original lattice. A 

block site on the renormalised lattice is an average of b 4 =9 sites on the original 

lattice. This unit of 9 sites on the original lattice can be thought of as the origi-

nal sites plus its 8 nearest neighbours. There exists the freedom of which of the 

9 sites to call the block site. We have exploited this by summing over all con-

structions of the blocked lattices, since it improves the statistics significantly. 

In order to impose periodic boundary conditions, one is constrained to start ''ith 

a lattice lvith dimensions that are an integer times a power of the scale factor b. 

Then a simple way of implementing the periodic boundary conditions on the 
I 

rotated lattice is to store it as a sub-lattice of the unrotated lattice, w-hich is 

larger by a factor of b. From Eq. (3.3.1), it can be seen that on a lattice that is 

an odd power of the scale factor b , the boundary conditions are skevred. This 

does not affect the calculation of the {3-function since there the lattices of the 

same size (therefore same boundary conditions) are compared. However, more 

care has to be taken when constructing the 1-step linearised matrix Tap to cal­

culate critical exponents since then the boundary conditions are different on 

the two lattices. A way to measure such an effect is to compare the 2-step 

linearised matrix (which gives a blocked lattice with the same boundary 
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conditions as the original one) with the product of two 1-step linearised 

matrices. This will also indicate the contribution of other finite size effects, for 

example the ones coming from the creation of interactions of longer range than 

the lattice size. 

The original lattice has 9 lattice sites associated with each block site on the 

renormalised lattice (the renormalised lattice site and its 8 nearest neigh­

bours). In order that each link be used in the construction of the block link, we 

need to associate the 36 positively directed links originating from the 9 sites 

with the 4 positively directed links out of the block site. Eight out of the 36 

links can be set equal to the identity by making a gauge transformation at the 8 

nearest neighbour sites. The remaining 28 when distributed among the 4 block 

links correspond to 7 possible links for each block link. These 7 links are shov.n 

as heavy lines in Fig. 3.6. The light-lined links in Fig. 3.6 have been gauge fixed 

to unity. In practice the gauge fixing is taken care of by constructing each of 

the 7 links as the path ordered product of the 3 links joining the sites on the 

renormalised lattice. For example, the link U 1 after gauge fixing is the same as 

the path ordered product U 6 · Ub · Uc prior to gauge fixing . One of these paths 

(labeled U7 ) does not connect nearest neighbour sites on the renormalised lat­

tice L 1, but goes alongkhe co-ordinate axis between nearest neighbour sites on 

the tvvice renormalised lattice L 2 (e.g. A and D). The remaining 6 topologically 

identical paths (links labeled U 1, .... U6 in Fig . 3.6) are the ones that connect 

the nearest neighbour sites on the renormalised lattice (A and B). and are used 

to construct the block link. The seventh path can be used in the next reduction 

but "\\'ith a different weight than the thick paths. We have chosen to ignore the 

seventh path altogether and thus we utilise 6 out of every 7 degrees of freedom 

on the original lattice . The gauge freedom left at the block sites allows this pro­

cedure to be repeated for successive applications of the RG transformation. 
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Having enumerated the paths and shown that their calculation is simple, we 

now describe the construction of the block link from these paths . A necessary 

requirement on the transformation is that the local gauge symmetry be 

preserved. Under a gauge transformation, a link variable, Uii, from site i to 

site j becomes 

u . ~ G· u.ct 
1.} 1. 1.} } (3.3.3) 

where Gt is the gauge transformation at the site i. Since the 6 paths have the 

same initial and final points, their mean, 

~ = 1 ~ t..J LJ ui , 
6 i=l 

(3 .3.4) 

has the same gauge transformation properties as the individual paths. In the 

weak coupling limit, averaging the gauge fields is the same as taking ~ to be the 

block variable . But for larger gba:re , ~ is not an element of the group and there-

fore has to be projected back onto the group manifold. This assumes that no 

dynamics is lost by throwing a•Nay the normalisationt. 

For abelian groups and in the special case of SU(2), just the chw_ge in nor­

malisation brings back ~ to the group manifold, i.e. 0 U1 = normalised(~). 
This construction can still be used for a discrete subgroup, such as the 

icosahedral subgroup for SU(2). All that has to be done is to convert the 

icosahedral elements into the SU(2) matrix representation after update but 

before blocking. In fact, we found that if this was not done then any transfor-

mation that preserves gauge invariance is like a decimation tra.."lsformation and 

the theory undergoes rapid disorder. This is discussed in detail later Vvith the 

data in section 4.3. 

fActually, scaling all the link va."'"iables by the same factor is tantamount to a redefinition of 
the reno~sed coupling consta...?Its. T'nerefore, some information about the norw...e.!isation 
does get absorbed in the definition of the renormalised couplings. 
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For SU(N), N>2. just discarding the normalisation does not bring 2: back to 

the group manifold . The projection then is defined as the matrix U1 which max-

imises Re Tr (2:t U1) [ 11]. Under a gauge transformation, 2:--+ Gl: ct implies that 

U1
--+ GU1 ct. and the local gauge in variance is preserved. By polar decomposi-

tion, 

(3.3.5) 

where D is a positive definite diagonal matrix and U, V are special unitary 

matrices. In the weak coupling region, the phase rp is almost zero and U1 is 

approximately the same as U. In general, however, the trace maximisation 

problem has to be solved. This calculation for the gauge group SU(3) is 

presented in the Appendix. In numerical simulations for SU(3), we tried using 

both U1 and U as the possible block link variables, and found that the 

difference in block loop expectation values at Kp=6 .0 was "'1-2% and decreased 

as Kp was increased. This subtlety is not important in the calculation of the {3-

function since the same approximation is used for both the lattices. 

Inclusion of Jlatter fields 

L~t us consider a theory of gauge fields coupled to matter fields rp(x) 

defined at the lattice sites. After the partial gauge fixL."lg at the 8 nearest neigh-

hours of the block site, there is no colour gauge field between the nine sites that 

form a block. These nine site variables can now be averaged to produce a block 

variable unambiguously. Thus the block variable rp 1(x) is , 

In the real theory of quarks and gluons , the fermions can be represented by 

complex scalar fields (pseudo-fermions) which have long range interactions. 
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This interaction range has an exponential damping coming from the quark mass . 

In the limit of large quark masses, the combined transformation should con­

verge to the fixed point corresponding to the pure gauge theory, since in this 

limit the quarks decouple from the theory. The interesting case is when the 

masses are small and especially the chirallimit. The results for the pure gauge 

theory Y~"ill bear any relation to this case only if we can make sure that no other 

fixed poLnt arises as a function of the mass and interchanges stabilityt \vith the 

fixed p oint of the pure gauge theory. Also one has to make sure that no long 

range interactions arise in the vanishing mass case, because such a result will 

\iolate LlJ.e fundamental assumption of locality of interactions on ·which the 

whole renormalisation group analysis is based. Thus the possibility of renor­

malisin.g the gauge field together ¥lith light matter fields needs to be checked. 

This is il:nportant because the final goal is to find an action that is improved Y~-ith 

respect to both the gauge and the matter fields; i.e., we desire the RT for the full 

theory. 

f This sit~ion is known to occur at d =4 LTI case of the C-expansion [3]. 
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APPENDIX 

PROJECTION OF A 3x3 COMPLEX MATRIX ONTO THE SU(3) MANIFOLD 

Let :E be any 3x3 complex matrix. The matrix :Et:E is then Hermitian and 

positive definite. It can be diagonalised by a unitary transformation, 

:Et:E = Y. D 2· vt , (A.l) 

where V is an SU(3) matrix and D is a positive definite diagonal matrix. Polar 

decomposition then yields , 

:E = P·H = U· Y.Dei9' . yt, (A.2) 

where P is a unitary, H is a Hermitian and U is a special unitary matrix. e irp is 

just a complex phase factor with ~ e::[-;, ~]. Both A and H have 9 degrees of 

freedom each and together they completely describe the 18 degrees of freedom 

of :E. Given any :E, the diagonalisation in Eq.(A.l) determines V and D . Then 

inverting Eq. (A. 2), 

(A.3) 

one can find U and~· 

Nov>' consider the problem of maximising ReTr(:EtU1) . Let the special uni­

tary matrix Q be defined as, 

Q (A. 4) 

Then, 

(A.5) 
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and, 

(A.6) 

Now consider the representation of the 3x3 matrices as three complex column 

vectors, 

Q = ( X Y 2 ) , De irp = ( A B C ) . (A.7) 

-+ -+ ~ 
Since Q is an SU(3) matrix, X, Y and L, are three orthogonal unit vectors 

-+ ... ). -r rti ~ related by Z = (Xx Y . The diagonal nature of D implies that A, J:J and Care 

also orthogonal vectors. Therefore, 

(A. B) 

-+ 
For any X, the quantity on the right-hand side is maximised when, 

(A.9) 

-+ 
Choosing this expression for Y, 

(A.lO) 

The first term on the right-hand side of the above equation is maximised when 
.,. .... -+ .... .... • 
A II X, while the second one is maximised when B II ( CxX) . Both of these 

conditions are simultaneously satisfied when Q is a complex diagonal matrix. 

Since Y and 2 are determined once X is , to complete the solution we have to 

find the phase characterising X. Let this phase be ei, and d 1,d2,d3 be the 

three eigenvalues of D. Then, 
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To maximise this quantity, differentiate with respect to 19 and obtain, 

(A.l2) 

This transcendental equation can be solved numerically to complete the solution 

for U 1. In practice, ip"'O implies 19"'0 and the iterative Newton-Ralphson 

method can be successfully used to find 19 within "'2-3 iterations . A good start-

ing guess for 19 is, 

(A.l3) 
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F1GURE CAPTIONS AND FIGURES 

(3.1]A decimation transformation for the Ising model. Crosses represent the 

spins on the original lattice which get integrated in the process of RG 

transformation. 

[3.2]The integration of high momentum contribution in the A. rp4 theory gives rise 

to six-point vertices in the effective theory. 

[3.3]The flow of coupling constants near the fixed point. 

(3.4]The renormalised trajectory for non-abelian gauge theories . 

[3.5]Th.e evolution of actions under the renormalisation tra...l'lsformation. The two 

actions !KA ~ and !KB ~ have the same long distance behaviour and their lat-

tice correlation length is related by the scale transformation b . 

[3.6]The block transformation proposed by Wilson. Dots and crosses represent 

the sites on the original and blocked lattice, respectively. The lines 

represent the links on the original lattice used in the construction of the 

block link. 

(3. 7]The block transformation suggested by Swendsen. The open circles 

represent the sites on th,e blocked lattice . A, B and C are three of the 

paths used in the construction of the block link. 

[3.8]The geometry of the -v'3 transformation. 
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Chapter 4 

THE {1-FUNCTION 

4.1: Scaling Limit and Finite Size Efiects 

The {5-function measures the rate of change of the coupling g with respect 

to the change in the ultraviolet cut-off a. The 2-loop perturbative result has 

already been mentioned in Eqs.(2 .2.6-2.2.7) and for the lattice theories it is con-

venient to rewrite it as, 

( 4.1.1) 

There are two possible reasons for the exact {5-function to disagree l'fith the 

above perturbative result in a region away from the fixed point at gba:re =0. The 

first one is that, since the expansion parameter gbare is large, there are higher 

order perturbative corrections to the 2-loop result. The more important cause 

is the non-perturbative one and depends on the topology of the group, the pres-

ence of non-trivial phase structure and a significant contribution from the 

irrelevant lattice operators . There are several approximate ways of mapping 

the phase structure in the extended coupling constant space (Monte-Carlo, 

mean field, strong coupling, ... ) in certain regions, but none of them pro-..ides a 

clue as to the quantitative size of the non-perturbative effects . In this respect 

MCRG is unique. By calculating the non-perturbative {3-fu.1"lction we not only 

know the corrections, but we also define what the scaling behaviour should be at 

large Ubrz:re . 

Eq.(4.1.1) shows that near Ubare =0 the rate of change of g - 2 is essentially a 

constant and given by, 2{50 . For SU(2) , the bare charge in the [Kp ,KA] action 
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K=-4-- 2 
gbare 
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Then integrating Eq.(4.1.1) one gets [1], 

2 
51 

2 2 K 
[ 67T K] 121 exp[ _ 3rr K + 10rr _A J 

11 11 11 K ' 

(4.1.2) 

(4.1.3) 

where AL is the renormalisation group invariant mass-scale for the lattice regu-

larisation scheme. For the SU(3) theory, the analogous 2-loop result for points 

on the Wilson axis is, 

(4.1.4) 

In a lattice calculation, any physical quantity with dimensions of mass, m, 

is calculated in units of the lattice spacing a; i.e ., one measures ma. If the 

continuum limit is taken keeping m constant, then ma varies as, 

ma = (const.) J (gbare) , (4.1.5) 

where the scaling function f (gbcrre) goes to zero in a well-defined manner as 

gbare --+0. The statement of scaling is that the function f (gbcrre) be the same for 

all dimensioni.ul physically measurable quantities. It is only in such a scaling 

region that one can define a universal {3-function. If different physical quanti-

ties scale differently in a given region, the results are not likely to have much 

relevance to the continuum behaviour of the theory. For example, in the strong 

coupling limit , both the string tension ua2 and the mass gap ma behave lL'ke 

ln (g2) , and therefore the "{3-fundions" for the t wo quantities differ by a factor 

of 2. 

The statement of asymptotic scaling is that the measured f (gbrz.re) be the 

same as the right-hand side of Eqs. ( 4.1. 3-4. 1.4). For example, when the 
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logarithm of the string tension is plotted as a function of g-2, then the asyrnp-

totic slope of the curve is expected to be -1/ {30 . Therefore, in order to expect 

asymptotic scaling, the first term in Eq. ( 4 .1.1) should dominate even at gba:re "'1. 

This is not necessarily true in a real theory. For instance, it is known that for 

the SU(2) theory, Eq.(4.1.3) is not obeyed near the crossover region, when KA is 

not very small [ 1). However, as shown by Grossman and Samuel using large N 

resummation of the perturbation theory [2] , it is possible to find a scaling func­

tion, which agrees well -with the Monte-Carlo data of Ref. [ 1). It is , 

2 51 2 
A [ 67T K ]m [ 37T K J 
La a':o 0 eff exp -ll eff • (4.1.6) 

where Kef f satisfies, 

(4.1. 7) 

Since for small KA, the Eqs.(4.1.6-4.1.7) do reproduce Eq.(4.1.3), we have here an 

example, where there is scaling but not asymptotic scaling. 

In our calculation of the non-perturbative {J-function we measure deviations 

from the 2-loop result and determine what the true scaling behaviour should be. 

Such a measurement can be used to check for any phase structure in the lattice 

theory and to determine the region of asymptotic scaling. The measured b.{3 

(see Eq.(3.2.6)) is shown in Figs. 4.1 and 4.2 and is to be used as follows : The 

change in the lattice mass between Kp-b.Kp and Kp, vvith b.Kp evaluated at Kp. 

should be v'3 . This independence from perturbative results is essential since 

we do observe signi.L"icant deviations from it. 
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Finite Size Effects 

A word about finite size effects is necessary, since the numerical simula­

tions are done on a finite size lattice . In addition to taking the continuum limit, 

one has to also take the limit where this infrared cut-off goes to zero. In real 

calculations the ultraviolet and the infrared cut-offs are separated by only an 

order of magnitude, and hence an unambiguous statement about scaling can be 

made only when one has understood how the finite size of the lattice has afiected 

the results . 

In finite temperature field theories, the temperature acts as an infrared 

cut-off on the theory. It is knmvn that the counter-terms needed to regularise 

the theory at the ultraviolet end are the same for both T=O and T;t-0 [3]. The 

perturbative {3-function can be defined, for example in the minimal subtraction 

scheme [ 4] , such that it depends only on the singular behaviour of the theory. 

Therefore, though there are finite corrections to various physical quantities at 

T~O. the perturbative {:5-function can be defined to be the same as the one for 

T=O. 

In an MCRG calculation, the finite size effects inevitably change the meas­

ured expectation values because of the creation of interactions of loD..ger ra..flge 

than the lattice size. These effects are more visible on the smaller blocked lat­

tices. An attempt to get rid of these effects on a quantity such as like the {3-

function is made by comparing the expectation values only on the lattices hav­

ing the same size and the same boundary conditions. Suppose that the two 

starting points ~KA ~ and !KB ~ happen to lie on the same fiow line. Then the two 

actions l'lill be the same at every stage of matching. Though the expectation 

values v.ill not be the same as the ones measured on an infinite lattice, they ·will 

be affected in the same manner by the finite size effects, and the {:5-function 

measured on a finite lattice l'lill be the same as the one measured on an infinite 
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lattice. 

In practice, however, the two starting points ~KA l and ~K8 l do not lie on 

the same flow line. Hence a finite number of blocking steps cannot make the 

blocked actions on the two lattices exactly the same. The attractive nature of 

the RT makes the two actions ~KA l and ~K8 l come close together (see Fig. 3.5), 

but since the flow lines cannot intersect, it is only in the limit of an infinite 

number of blocking steps that the two blocked actions become identical. The 

infrared cut-off independent {3-function is thus defined as the one corresponding 

to the matching of the long distance behaviour of the two theories. 

With a finite number of blocking steps, the residual fll'lite size effects are a 

consequence of incomplete convergence to the RT. As pointed out by ·wilson [5], 

these residual finite size effects decrease rapidly as one approaches the RT. 

For a fixed infrared cut-off, these residual effects vanish as the ultraviolet cut-off 

A-H)o; i.e., when one can iterate the blocking process indefinitely. The renormal-

isation process removes all the divergent part of the ultraviolet cut-off depen-

dence. Hence, these residual effects can be interpreted as the fll'lite parts of 

the regulated integrals, which vanish in the limit A-HX>. For the pll!'e gauge 

theory, the ultraviolet divergence is logarithmic and the non-divergent cut-off 

dependent terms vanish like 0( ~). Thus in the perturbative region, a block­
A 

ing by a scale factor b reduces the finite size effects by a factor b 2. In a region 

away from the fixed point, however, the finite size effects depend on how rapidly 

one converges to the RT, and this has to be numerically investigated by studying 

the no:J.-leading eigenvalues of the linearised transformation matrix T a.{J · In 

practice, however, one ca_11. safely assume that the finite size effects are negligi-

ble when the matching process works at two different levels of blocking simul-

taneously; i.e., when the convergence to the RT is complete v.ithL."l. statistical 

errors. 
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4.2: Lattice Parameters and Statistics 

The lattice size has to be an integer power of the scale factor times a con­

stant. So we selected the two lattice sizes to be g4 and (3vl3)4 on the basis of 

the available amount of computer time and the preliminary result of Wilson [5] 

on an 84 lattice. He found that the expectation value of the simple plaquette on 

the 14 lattice was adequate to establish a matching of the blocked actions. The 

reason for accepting matching on the basis of a single operator is that the 

theory is expected to have only one relevant coupling. We shall provide a pos­

teriori evidence for this in the data. However, we did calculate a number of 

operators. They were : 

(a) the simple plaquette, 

(b) the 6-link rectangular (6p ), 1-shaped (6l) and t¥risted loops (6t), 

(c) the J=1, J=3/ 2 and J=2 representations of the simple plaquette for 

SU(2), and the 6, 8, 10, 15, and 15' representations of the simple plaquette 

for SU(3) . 

The crossover from strong to weak coupling for a given size Wilson loop is a func­

tion of the coupling. This change is very sharp for non-abelian gauge theories 

and the larger loops exhibit the change at smaller values of g 0a:re. One can 

therefore achieve maximum sensitivity in the matching by using operators 

whose block expectation values are in the crossover region. Also since the ideal 

{5-function is measured along the RT, the operators which are used in the match­

i.D.g process should have ma_xLrnum projection along the RT, and as little conta_rni­

nation as possible from the irrelevant lattice operators. In principle this can be 

achieved by finding the eigen-vectors of the transformation matrix TaP· and in 

absence of any such information the perturbative results can be a good guide 

[6]. We evaluated small loops only because we eA.'Pected a match.L11g on the 14 

and may be on a ( vl3)4 lattice. The higher dimensional representations were 
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selected to check if they are important in the renormalised action. 

SU(2): 

The action for the SU(2) lattice gauge theory in the 

[KF,KA ,K31 z,K6P ,K6l•K6tJ space is defined in terms of the plaquette variables 

up and the three 6-link loops ( 6p. 6l, 6t) as, 

S = KF ~TrUP + K6P ~TrU6P + K6l ~TrU6l + K6t ~TrU6t 

(4.2.1) 

Here all traces are normalised to unity and the SlLTTIS are taken over all sites and 

positive orientations of the loops. 

We decided to investigate the theory along 

(i) the Wilson axis, where most of the Monte-Carlo calculations have been per­

formed, and 

(ii) the Migdal-Kadanoff improved action line (called M-K from here on) defined 

by, KA = -0.24KF [6], since at large gba.re there is evidence for it to be 

attractive and u..>J.iversal. 

The ra11_ge of couplings investigated along these lines was determined from the 

point of calculational efficiency. The limitation at larger gba:rr> is that the block 

expectation values become very small since the action evolves beyond the cross­

over into the strong coupling region. Consequently, to obtain a reliable match­

ing, a very large statistical sa_rnple is required. At weaker gbr::.re, the starti.:.'"lg 

action is not very close to the RT and a reliable matching cannot be done. Also 

the critical slowing down makes the statistics worse. We therefore restricted 

ourselves to the intermediate coupling region. The expectation values on the 

blocked lattices were then near their crossover region, increasing the sensitivity 
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of the matching to a change in KF · 

The update was done using the Metropolis algorithm [7] in which the link to 

be updated was selected at random. At each link update 5 hits were made . 

The matrices were expressed as 

(4.2.2) 

and the 4 real numbers CLj_ were stored. For the full group update the hit 

matrices were constructed by choosing ao uniformly in a range [ 1,1-o] and 

then the Cl.j_ were chosen uniformly on a sphere of radius v'(1-aJ) . The value of 

o was selected to give an acceptance rate of < 50%. In case of the icosahedral 

subgroup one of the 12 elements closest to the identity was used as a hit matrix. 

To decrease the effects of statistical correlation of data, we calculated the 

observables after every 5 sweeps. Also, all possible 34 (9 such), ( v'3)4 (81 such) 

and 14 (729 such) lattices were constructed. Even though the variables on 

these are correlated, we found that there still is a large increase in the statistics 

for a small increase in the CPU time. Two tests were made to check if the data 

were statistically independent. One was to divide the data into bins of 100 

configurations each and calculate the errors from the binned data. The other 

was to calculate the auto-correlation coefficients C1 , 

C = <O(i)O(i+y)> 
1 <O(i)O(i)> ' 

(4.2.3) 

and defh"le the auto-correlation length 1 by C1 =0.1 . This provides more infor-

mation tt>...an averaging successive pairs of data points until the standard de\'ia-

tion begins to fall by a factor of v'2. 

The first 2500 sweeps on each 94 lattice and the first 2000 sweeps on each 

(3v'3)4 lattice were discarded to ensure thermalisation. The data sa..lTiple ·was 

1000 to 2500 configurations on the g4 lattices and 2000 to 4000 on the (3v'3)4 
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lattices. 

SU(3): 

The action for the SU(3) lattice gauge theory in the 

[Kp,K6 ,KA ,K6p ,K6l ,K6t] space is defined to be, 

3 2 1 J " 9 2 1 + K6 E[ 2(TrUp) - 2 TrUP + KA L.J 8 1 TrUP I -8]] . (4.2.4) 

Again the traces are normalised to unity and the sums are taken over all sites 

and positive orientations of the loops . 

We investigated this theory along the Wilson axis only, since most of the 

other Monte-Carlo calculations have been made along this line. 

Once again the update was done using the Metropolis algorithm [7] in which 

the link to be updated was selected at random. At each link update 20 hits were 

made. The first 500 sweeps were discarded to ensure thermalisation. The data 

sample for the 94 lattices at Kp=6.5(7.0) consisted of 593 (560) configurations 

separated by 15 update sweeps. The configurations on the (3v3)4 lattices 

were separated by 10 update sweeps and their number varied bet\·{een 650 e.nd 

1150. 

4.3: Analysis and Results for SU(2) 

We first discuss the calculation. in which the gauge group SU(2) was approxi-

mated by its icosahedral subgroup in order to reduce the co!!lputer time. T..11e 

first possibility we tried was to choose the block variable U1 to be one of the six 

paths that maximised Tr ( U12: U/). This is a decimation transformation and we 
i 

found that for the points on the Wilson ru...i.s, the change b.Kp for a scale change 
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of v3 was much larger than that predicted by Eq.(4.1.1). Also the difference 

increased v .. ith increasing Kp. This construction was thereafter rejected. Ke>..i. 

we enlarged the group space available to U1 to all the 120 elements. Even in 

this case the data showed very clearly that keeping the blocked variable "1\ithin 

the icosahedral group led to rapid disordering . Finally, we allowed U1 to take 

any value inside the full SU(2) group. In this last case, after a few blockings the 

averaged icosahedral subgroup matrices cover the full group : consequently, the 

memory of the original discrete elements is washed out. 

We also compared the results of the full group versus the icosahedral sub­

group update. The blocking was done using the full group for both the cases. 

We found that at Kp=5.2 on the M-K line the results were identical. Therefore, 

we continued to use the icosahedral update "1\ith the full group blocking because 

of a factor of ....,3 in update speed. 

The errors in most of the block variables were reduced to < 1%, as shown in 

the example of matching the 94 lattice at Kp=4.0 with the (3v3)4 lattice at 

Kp=3.52 on theM-Kline in Table 4.1. On the 14 lattices all the operators could 

not be matched simultaneously. On these lattices the 6-link operators are 

bigger than the lattice size and were found to be rather insensitive to changes in 

Kp. Also both the 6-link operators and the higher spin operators had larger 

errors. Therefore, the matching was done mainly on the basis of the simple pla­

quette in the fundamental and the adjoint representations. On the ( v3)4 lat­

tices, ho·wever, it was possible to match all the operators at the same time a."ld 

therefore all of them were considered in the matcbng process. In most cases 

we could not simultaneously match observables on both the 14 and ( v3)4 lat­

tices and found a larger value of !J.Kp from matching on the ( v3)4 lattice. At 

present we cannot isolate the errors due to residual finite size effects, incom­

plete convergence of actions and limited statistical accuracy. We therefore 
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estimate !::.Kp separately for the matching on the 14 and ( v/3)4 lattices. ?...n 

interesting feature of our data is that the values of l::.Kp determined from 

matching on the (3-v/3)4 and ( v/3)4 lattices approach the limiting value from 

above, while those obtained from matching on the 34 and 14 lattices approach 

from below. This can be seen from the example in Table 4.1 by trying a 

gedanken calculation to obtain matchings at different levels . Such an effect is 

likely to be a result of the alternating boundary conditions in the blocking pro-

cess; i.e ., the first blocking rotates the blocked lattice Vvith respect to the origi-

nal lattice and the second blocking realigns the axes V~ith those of the original 

lattice. Because of this we are able to see the convergence towards the limiting 

value of l::.Kp more clearly au."ld the two sets of results should provide bounds on 

the actual value of !::.Kp. The results along the Wilson line using the 120 element 

subgroup update are shown in Fig. 4.1 and those along the M-K line obtained 

using the full group update are shown in Fig. 4.2. 

Several noteworthy features of these results are : 

(a) The !::.Kp along the Wilson axis dips well below the 2-loop value at Kp=2.5. 

When the Monte-Carlo results are combined Vvith the {3-function obtained in the 

strong coupling regiont (see Fig. 4.3), the behaviour appears to be oscillatory. 

Such a behaviour can be understood in terms of the phase structure in the 

extended coupling constant space. As shovm in Fig. 3 .4, phase structures dis-

tort the RT fioVving from the UVFP to the IRFP. If the phase structure repels the 

RT, then in the region BC, the fiow along the RT gets sandwiched between tv,-o 

repelling regions and slows down. This results in a dip in the {5-function. After 

passing the point B. however, the fiow along RT speeds up, because it gets 

repelled by the phase structure and attracted by the IRFP. The result is a 

T This was obtai..'1.ed from L'he results of [9] by impoS::.."Jg L'he co::J.cEtio:J. L'hat L'he physical st_ring 
tension does not change when the lattice spacing a. is cha..T'!ged. 
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bump in the {3-function. Such a repelling phase structure is known to e>..ist in 

the [Kp,KA] space (see Fig . 5.3) and has been interpreted as causing the cross­

over region at Kp=2.2 [10], characterised by a bump in the specific h eat. As 

expected, the {3-function in Fig . 4.3 does show a bump on the strong coupling 

side of this crossover region and a dip on the ·weak coupling side of it. 

(b) For larger Kp on the Wilson axis, the measured !:::.Kp is Vvithin "'10% agree-

ment of the asymptotic scaling. However, the {3-function seems to be rising 

above the 2-loop value up to Kp=3 .5. In case of an incomplete convergence of 

the two starting actions !KA ~ and !K8 L the l:::.Kp obtained as suming that the 

matching takes place on the 14 lattice, is expected to be a lower bound for the 

limiting value [8]. An easy way to see this is to try shifting the trajectories in 

Fig. 3.5. Therefore, we are led to believe that there are substantial higher loop 

and non-perturbative corrections to the 2-loop result in the so-called weak cou-

pling region. This implies that checks of QCD require a very careful calculation 

of the {3-function to define scaling. 

(c) There appears to be another smaller wiggle in the {3-function around Kp"'3.0 

on the Wilson axis. It is Vvithin the error bars and therefore all by itself would 

not have been significant. But when combined Vvith an independent measure-

ment of the specific heat [11] , which shows a smaller bump ar ound Kp=2.55 
I 

(see Fig. 4 .4), it implies the existence of another crossover region, though not as 

strong as the first one. Perhaps there are more such vviggles, smaller fu'"ld 

smaller in size as one proceeds towards the fixed point, maki.!.l_g the {3-function 

look like a damped oscillator. Their decreasi!.l_g size and increasi!1_g statistica l 

errors due to critical slmving dmvn make them invisible . Such a conclusion has 

indeed been arrived at by Caneschi, Halliday and Sch>\irnmer [12]. They inter-

pret the crossover region as the result of condensation of monopoles and closed 

loops of flux corresponding to the centre Z(2) of SU(2) . The int roduction of KA 
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singles out such topological objects of the size of a plaquette. As the coupling 

becomes weaker, thicker loops and bigger topological objects can get formed, 

but the change will no longer be as drastic as the one the first time these 

objects appeared. Therefore the VYiggles will get smaller. Another way of say­

ing this is that, if one extends the action in the space of adjoint (and higher) 

representations of bigger loops, though the phase structures will extend out to 

larger Kp, they will be farther away from the Wilson axis . 

(d) The above conclusion is rather drastic and if true will force us to re\.iew the 

standard approach to the continuum limit. Therefore , we need to make sure 

that these wiggles are not caused by some spurious effects. One of the probable 

cause of spurious effects is the deconfinement transition. This transition is 

second order in case of the SU(2) theory, and therefore slows dovvn the motion 

through the phase space considerably. The order parameter for this transition 

is the expectation value of the Wilson line <L>; i.e., the path ordered product of 

link matrices closed by the periodic boundary conditions on the lattice. We 

monitored its absolute value and the results are shown as squares in Figs. 4.1 

and 4 .2. Near the tra..r1sition the statistics become worse , and the discrepancy 

between the Mp values determined from the match..ings on the ( v'3)4 and the 

14 lattices increases . However, <I L I> does not show any rapid behaviour a.11d 

some of the ''iggles on the Wilson axis are even outside the region of tra.n.sition. 

Also as will be seen in the next chapter, no Vliggles are seen in the improved 

action determined using the same data sample. There the phase structure is 

avoided by going into a multi-dimensional coupling constant space . Therefore, 

it is likely that the vviggles are the result of working in a restricted coupling con­

stant space. 

(e) The Mp along the M-K line does not show any obvious wiggles. There is a 

rise in AKp at Kp=3 .1, which can be interpreted as caused by the strong 
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coupling effects . Since the M-K line lies farther away from the phase structure , 

these results support our previous claim that the Vviggles are caused by the 

phase structure in the extended coupling constant space. The discrepancy 

between the DJ(F values determined from the matchings on the ( v3)4 and the 

14 lattices increases for KF>4.0. This is the combined effect of the incomplete 

convergence to the RT and poorer statistics due to critical slowing down. Even 

at the largest value of KF that we have worked with, the agreement vvith the 

asymptotic scaling is not good. This is not unexpected since KA is large in this 

region. However, the most interesting feature is that the results agree very 

well with those predicted by Grossman and Samuel (cf. Eqs .(4.1.6-4. 1.7)) . 

throughout the range of couplings investigated. This whole analysis implies that 

the non-perturbative effects caused by the phase structures can be highly 

reduced and scaling observed, by choosing an appropriate action to work v.ith. 

As a final check, we are currently running the programmes on an 184 lattice 

using the new 64 node concurrent processor constructed at Caltech. If the Vl'ig­

gles do not move and the results agree 1\-ith those obtained on a 94 lattice here, 

it would imply that the non-perturbative behaviour is not caused by tLn.ite size 

effects and an improved action approach is needed to see the scaling beha-viour. 

We also calculated the eigenvalues of the linearised transformation matrix, 

T a.P• using 1280 configurations at KF=5 .05 on the M-K line. Wilen opJy the 

[KF , KA] operators were used, the leadin..g eigenvalue vras 1.04, 0.92 and 0.96 

at the 2nd, 3rd and 4th blocking, respectively. The non-leading eigenvalue ·v.-~s 

less thaD. 0.1 at all the three stages . In the [KF , KA , K 6P] s_?ace the lear!i~g 

eigenvalue was 0.92, 0. 79, and 1.16 at the 2nd, 3rd and 4th blocking, respe~­

tively. The non-leading eigenvalue was smaller than 0.4 at all the three steps. 

Though limited statistics restricted us from enlarging the space any further , 

these results provide a good check on the efficiency of the v3 blocking 
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transformation. In particular, we can see that the RT is more atlractive in the 

directions representing the higher representation operators, than in the direc­

tions representing the 6-link operators. 

4.4: Results for SU(3) 

The results for llKF have been obtained at KF=6.5 and 7.0 along the Wilson 

axis. The block variables from the 94 starting lattice at KF=7.0 were compared 

with those from the (3v3)4 starting lattices at KF=6.51 and 6.54. The block 

variables from the (3v3)4 starting lattices at KF=6.03 and 6.06 provided upper 

and lower bonnds for the g4 starting lattice at KF=6.5 as shmm in Table 4.2. As 

was the case in SU(2), here also the convergence towards the limiting value of 

MF showed an alternating behaviour. The values of MF determL.'led by linear 

interpolation are, 

0.48±0.02 KF=7.0 

6.KF = 0.46±0.01 : KF=6.5 . 

(4.4.1) 

(4.4.2) 

The corresponding 2-loop perturbative results are 0 . 48~ and 0.4-37, respectively. 

As expected, the phase structure in the extended coupling constant space 

causes the {)'-function to dip below the perturbative result on the v,rea..l{ couplLT'lg 

side of the crossover region. It remains to be checked whether or not more vvig­

gles occur for still weaker couplings. 

There were two very significant differences between SU(2) a..'ld SU(3). The 

auto-correlation ler1gth 1 for the block variables on the 14 lattices (defined by 

C
7
=0.1) was "'3-4. This is a factor of ,...,5 smaller than the SU(2) value. The 

more important difference was the vastly improved quality of matching for 

SU(3). The variables on the 14 and the ( v3)4 lattices could be simultaneously 

matched and even the variables on the 34 lattices showed rough agreement. 
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This implies that for SU(3) , the RT is reached approximately after one bloc king 

transformation starting from the simple plaquette action. The improved action 

analysis in the next chapter also arrives at the same conclusion. 
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FIGURE CAPTIONS AND FIGURES 

[ 4.l]~KF along the Wilson axis for the SU(2) theory. The crosses are based on 

the matching on the 14 lattice, while the circles are for the matching on the 

( v3)4 lattice. The dashed line is the 2-loop perturbative result. Also 

shown as squares are the expectation values of the absolute magnitude of 

the Wilson line. Their errors are smaller than the size of the squares. 

[ 4.2]~KF along the M-K line for the SU(2) theory. The crosses are based on the 

matching on the 14 lattice, while the circles are for the matching on the 

( v3)4 lattice. The dashed line is the 2-loop perturbative result. The dot­

ted line is the result of Grossman and Samuel. Also sh0"\\"11 as squares are 

the expectation values of the absolute magnitude of the Wilson line. Their 

errors are smaller than the size of the squares. 

[ 4.3]The Monte-Carlo results combined with the strong coupling ones for ~KF 

along the Wilson axis for the SU(2) theory. 

[ 4.4]The specific heat for the SU(2) theory measured along the Wilson axis. This 

figure is taken from Ref.[9]. 
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TABLES 

94 LATTICE KF = 4.0 KA = -0.96 

Latt size Fund 6p 61 6t Adj J=3/2 

9 .6796(00) .4974(001) .5305(01) .4933(001) .3519(01) .1341 (01) 

3v'3 .6027(02) .3816(004) .4498(03) .4303(003) .2607(03) .0814(02) 

3 .5479(06) .3170(009) .3828(09) .3586(010) .2033(06) .0518(03) 

v'3 .4673(27) .2418(038) .3064(31) .2978(034) .1345(20) .0243(06) 

1 .5889(51) .5748( 114) .4957(57) .4858(168) .3105(53) .1745(41) 

(3v3) 4 LAITICE KF = 3.52 KA = -0.8448 

ILatt size Fund 6p 61 6t Adj J=3 / 2 

3v3 .6436(01) .4472(02) .4815(02) .4408(02) .3032(0 1) .0993(01) 

3 .5416(05) .3112(07) .3775(06) .3569(07) .1983(05) .0499(02) 

v3 .4672(18) .2391(24) .3052(21) .2967(25) .1355( 13) .0255(05) 

1 .5913(41) .5548(36) .4916(36) .4576(63) .3169(42) .1817(31) 

Table 4.1 : The expectation values of operators on the 94 lattice and blocked lat­

tices at KF=4.0 on the M-K line. The matching coupling on the (3v3)4 lattice 

was KF=3 .52 on the M-K line . The data sample consisted of 1500 configurations 

on the g4 lattice and 3000 configurations on the (3v3)4 lattice. T:.t1e stat is tical 

errors are shoV\'Il in parentheses . 

/ 
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Lattice Operator (3-v'3)4 lattice 94 lattice (3-v/3)4 lattice 
Size KF=6 .03 KF=6.5 KF=6.06 

plaq 0.6385( 1) 
6p 0.4435(2) 
61 0.4777(2) 

g4 6t 0.4385(2) 
6 0.3312(2) 
8 0.3690(2) 
10 0.1418(2) 
plaq 0 .5986(5) 0.5518(4) 0.6018(4) 
6p 0.3907(7) 0.3230(6) 0.3952(5) 
61 0.4256(7) 0.3915(5) 0.4297(5) 

(3-v/3)4 6t 0.3832(8) 0.3718(6) 0.3875(6) 
6 0 .2847(6) 0.2278(5) 0.2884(4) 
8 0.3216(6) 0.2639(5) 0.3253(5) 
10 0.1101(4) 0.0709(3) 0.1126(3) 

p1aq 0.4845( 13) 0.4928(09) 0.4900(09) 
6p 0.2512(15) 0.2586(12) 0.2575( 11) 
61 0 .3164( 14) 0.3235( 11) 0.3226(10) 

34 6t 0 .2962( 15) 0.2998(12) 0.3027(11) 
6 0.1662(11) 0.1718(08) 0.1708(08) 
8 0.1983(11) 0.2047(09) 0.2033(08) 
10 0 .0410(05) 0.0427(04) 0.0430(04) 

p1aq 0.4041(28) 0.4064(24) 0.4147(21) 
6p 0.1804(29) 0.1833(26) 0.1906(22) 
61 0.2404(30) 0.2445(25) 0.2514(22) 

(v3)4 6t 0.2279(32) 0.2336(27) 0.2394(24) 
6 0.1063( 18) 0.1069(15) 0.1132(14) 
8 0.1326(20) 0.1333( 17) 0.1403(15) 
10 0.0186(06) 0.0185(05) 0.0208(05) 

plaq 0.4607(61) 0.4695(60) 0.4806(45) 
6p 0.3765(40) 0.3885( 42) 0.3853(33) 
61 0 .3401(52) 0.3500(50) 0.3569(40) 

14 6t 0 .3077(64) 0.3256(70) 0.3171 (52) 
6 0.1790(48) 0.1839(46) 0.1948(38) 
8 0.2011 (53) 0.2071(50) 0.2184(41) 
10 0 .0703(27) 0.0718(26) 0.0788(22) 

Table 4.2 : The matching of expectation values for KF=6.5 on the Wilson 
axis for the SU(3) theory. The statistical errors are shovm in 
parentheses. 
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Chapter 5 

IMPROVING THE ACTION 

5.1 : Various approaches to improvement 

In present Monte-Carlo simulations, the size of the lattice one can work "\'lith 

is limited by the available computer power. Since one does not have any sys-

tematic way of estimating the finite size effects in such calculations, one needs 

to ensure the condition ~«L. Then because of the fact that the value of 1:!. is 
a 

limited by the computer capabilities, one is forced to choose ~"'a. When one 

works ~ith the simple plaquette action, this gives rise to serious finite spacing 

effects; i.e., the bare coupling is too large and one is working ¥.ith an action far 

from the continuum limit. There is a rapid crossover from the strong coupling 

to the weak coupling behaviour which shows up as a sharp bump in the specific 

heat. Beyond this bump, the range of couplings one can explore, while main-

taining ~<<L, is very small. The objective of improving the action is to modify 

the action such that, even though ~"'a, the extrapolation to the continuum is 

smoother. In such a case, the bump in the specific heat becomes less pro-

nounced and moves towards the strong coupling region; i.e., the roughening 

transition occurs for a smaller value of l. Hence the range of couplin:::s one 
a 

can use to check scaling increases. It should be noted that though g0a.re is still 

too large in this region, the mass ratios are likely to be close to their contLJ.uum 

values. The absolute scale ca.'l. then be fixed using the non-perturbe.tive {5-

function, which can be numerically measured independent of the finite size 

effects. 
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To find an action which is close to the continuum limit, one needs to remove 

the effects of irrelevant lattice operators (the ones which vanish as the contin­

uum limit is taken). Since the choice of the lattice action is not unique, 

namely, Wilson loops of different shapes and sizes can be used as the action 

which becomes F JWFJ..Lv in the continuum limit, a suitable linear combination of 

the Wilson loops can produce an action which is less contaminated by the 

irrelevant operators. If this is systematically done, then even though t"'a, the 

action can be very close to the continuum limit. The fact that we are working 

with large gba:re means that we are effectively trying to simulate the long dis­

tance behaviour of the theory. This can be implemented making use of the 

theory of Renormalisation Group. Several approaches exist in the literature. 

Outstanding amongst them are the Migdal-Kadanoff approximate renormalisa­

tion scheme, Symanzik's perturbative improvement programme and the Monte­

Carlo Renormalisation Group, which is the subject of study here. Before we dis­

cuss these different techniques, let us note some important points : 

(a) The shape of the renormalised trajectory depends on the renormalisation 

group transformation used for integrating out the short distance behaviour 

of the theory and obtaining the effective long range interaction. So the 

different schemes may give rise to different trajectories along which the 

continuum limit would be smoother. 

(b) On the lattice, the set of all Wilson loops is overclosed; i.e., the number of 

Wilson loops is much larger than the number of irrelevant lattice operators. 

Therefore, to eliminate the effect of irrelevant lattice operators, one does 

not have to work ·with all possible ·wilson loops. A linearly independent sub­

set will do. For instance, it has been shown in all orders of perturbation 

theory [ 1] that, out of the three 6-link Wilson loops, only two are lLl'learly 

independent. The coefficient of the 1-shaped loop can be set to zero, 
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without loss of generality . 

(c) The simple plaquette action satisfies physical positivity of the transfer 

matrix. But when operators of dimension 6 or higher are added to it, the 

physical positivity of the theory is lost in general. This occurs because the 

new terms couple link variables separated by more than one lattice spac-

ing. It is still possible to define the transfer matrix [2]. But the 

occurrence of complex eigenvalues gives rise to damped oscillatory 

behaviour of the correlation functions, and the spectral decomposition of 

two-point functions gets contributions with negative weight. However, it 

can be shmm that the positivity is lost only at energies of the order of the 

cut-off [2]. The effect becomes unimportant at weak couplings, and the 

positivity is restored in the continuum limit. 

lfigdal-Kadanotl Approximate Renormalisation 

Let us start with the single plaquette action on the original lattice, 

(5 .1.1) 

where, Xr ( U) is the trace of U in the irreducible representation r of the group, 

and d,. = Xr (1) is the- dimensionality of the representation. The gauge invariant 

action is a class function; i.e., it does not depend on the degrees of freedom 

which can be gauged away. The set of all characters forms a complete orthogo-

nal basis for a "Fourier" series expansion of any class function, 

eAp1~(U;a.) = ~ Fr(a) ci,. Xr(U) . (5.1. 2) 
T 

The orthogonality relation for the characters can be used to invert this expres-

sion and obtain Fr (a) in terms of the single plaquette action. 
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To obtain the effective action at larger scales, A ( U ),a), we have to perform 

the group integration over an appropriate set of links . In general. such an 

integration of short distance behaviour of the theory causes all types of gauge 

invariant loops to appear in the new action. However, for 2-dim gauge theories, 

the integration over alternate lines of links can be carried out exactly, resulting 

in a recursion relation between Fr (f..a) and Fr (a) [3 ,4]. The new action is then 

restricted to the space of single plaquettes. In higher dimensions, it is not pos-

sible to carry out an exact integration because of the interactions of the links in 

the directions transverse to the plane of decimation. But an approximate 

result can be obtained by moving these transverse interactions to neighbouring 

planes and then performing the same integrations as in the 2-dim case . 

Migdal's scheme [3] corresponds to first moving the plaquette interactions so 

that the orthogonal planes do not have any links in common, performing the 

integration over alternate lines of links in all directions, and then recombining 

the split plaquette interactions on the blocked lattice (Fig . 5.1). Kadanoff's 

scheme [ 4] corresponds to moving either the transverse or the longitudinal 

interactions so as to decouple them and then performing the integration over 

alternate links . Also the procedure is carried out over all the directions in sue-

cession (Figs . 5.2 and 5.3). Both these approximations c~T"l be described by a 

single generalised recursion relation, 

(5.1.3) 

Migdal 's result corresponds to b =0 [3] and Kadanofi's result corresponds to 

b =2 [ 4]. It is worth noting that when the above result is fu'Hlytically continued 

to the case of infinitesimal scale change, A.= 1 +t, the dependence on b disap-

pears and both the schemes become identical [5]. 



- 81-

The projection of the effective action generated by a renormalisation group 

transformation on the space of single plaquette actions is a rather crude 

approximation. It works well in the strong coupling region [ 4], because there 

~<a and long range interactions contribute very little. But in the weak coupling 

region the recursion relation fails to produce the correct {3-function. On the 

contrary, only the numerical coefficients of the {3-function turn out to be wrong 

and the property of asymptotic freedom is maintained [3]. In other applica­

tions, this approximation misses the order and the critical exponents of the 

phase transitions, but still succeeds in finding the critical couplings to a good 

accuracy [3,4,6]. 

The phase diagram of the SU(2) lattice gauge theory in the space of single 

plaquette actions has been studied by numerically iterating the recursion rela­

tion [6]. The amazing agreement of these results -with the Monte-Carlo data [7] 

implies that this method might provide a good estimate for the renormalised 

trajectory. Indeed Bitar, Gottlieb and Zachos [6] did fLTld a trajectory to which 

all the renormalisation flows converged (see Fig . 5.4). It is roughly described 

by, 

(5.1.4) 

in the region, 1 <KF<4. The important result here is that the trajectory moves 

off into the negative KA plane in order to avoid the phase structure present in 

the positive KA plane . 

Later it was noticed that essentially the same result ca..'l. be obtained in the 

·w·eak coupling region by finding an action which retains its form LL.'":der the 

Migdal-Kadanoff recursion relation [5]. Such an action, stable under the averag­

ing process of the renormalisation group transformation, is the generalisation of 

a periodic Gaussian to the group manifold, in analogy Vvith the central limit 
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theorem of statistics [B]. For SU(3), the renormalised trajectory in the weak 

coupling region is then found to be [5], 

K6 = -0.20 Kp , KA = -0.69 Kp. (5.1.5) 

Symanzik' s Perturbative Improvement Programme 

The Migdal-Kadanoff renormalisation scheme does not produce the long 

range interactions which are generated by a block transformation. Therefore, 

though the above trajectories do a good job of circumnavigating the phase struc-

ture of the lattice gauge theories in the strong coupling region, they do not get 

rid of irrelevant lattice operators obscuring the continuum behaviour of the 

theory. This job can be accomplished by performing a perturbation expansion 

in the lattice spacing a, and then including suitable longer ra.I"..ge interactions in 

the action to systematically get rid of the unwanted higher d.i...rnension terms [9]. 

Let us start with the simple plaquette action (cf. Eq.(2.1.6)). An expansion 

in the lattice spacing a gives, 

where D P. is the covariant derivative. The first step in improving this classical 

action is to cancel off the O(a6 ) term. This can be accomplished in a variety of 

ways. Two of the possibilities are [10], 

A[ U] = z:: Re [ ~ I; TrUp~.a.q - / 2 I; TrU5;; ] , (5 .1.7a) 

2N 1 "' J A[U] = 2 Re [ l:;TrUp~.a.q + T2 LJTrU8t , 
g 

(5.1.7b) 

where the sums are over all sites and all positive orientations of the loops. The 

various loops used here are shovm in Fig. 5.5. This sL'Tlple modification of the 

classical action results in the tree-level or leading log improvement of the full 
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quantum action [ 10]. AJ:. far as the ease of numerical simulation is concerned, 

the first choice is the more convenient one and so we '\\'ill slick with it. 

To improve the action at higher loop levels, one has to ensure that the con-

tinuum and lattice expressions for the expectation value of any Viilson loop 

match [ 11]. This is equivalent to saying that after the corrections for the 

difference in the lattice and continuum measures are made , the lattice propaga-

tor for the field, 

(5.1.8) 

bas no corrections to the O(k-2) behaviour of the continuum propagatort . 
...... 

Here, k JJ. is the Fourier transform of the discrete derivative, 

(5.1. 9) 

The tree-level improvement in Eq.(5.1.7) gels rid of all the ln(ka) dependence 

of the propagator [10]. One loop improvement corresponds to removing all 

~kt and (k2)2 terms from the propagator, and it can be achieved by including 
p. 
a non-planar 6-link operator '\Vilh coefficient 0 (g 2) [ 11]. The coefficients of the 

simple plaquette and 6-link rectangular operators also change by O(g 2). For 

the numerically evaluated coefficients, one should look up Ref.[11]. 

Renorm.alisation Group Improvement 

This is the approach followed by Wilson in his original paper [ 12]. The cal-

culation proceeds similarly to the previous case. There the c:ite.!"io::l for 

improving the action was the restoration of Lorentz invariance, which is ensured 

by removal of terms other than O(k-2) from the propagator. However, here 

f gz~ri).bE:,[ that the LTJ.vz-se p:ropa~atg,r for a scalar free particle on L"t].e lattice behaves ne, 
a ~sm (kp.a) = k + O(!c a ). 

p. 
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the criterion changes to the functional form of the ex-pectation value of the Wil-

son loop (or equivalently the propagator adjusted for the change in the integra-

tion measure) remaining invariant under the renormalisation group transforma-

tion. 

Once a particular renormalisation group transformation is chosen, 

(5.1.10) 

it can be converted into a relation A1(k) = Rb(A(k)), using weak coupling 

expansion and Fourier transforms. Then the coefficients of the improved action 

can be fixed by the condition that the functional form of the propagator is the 

same on both the original and the blocked lattice. Obviously, the form of the 

improved action is dependent on the particular renormalisation group transfer-

mation used, but this is no surprise. For the SU(2) theory, ·wilson determined, 

for the renormalisation group transformation he used (cf. section 3.3), the 

renormalisation group improved action to be [12], 

A[U] = 42 [4.3?6~TrUptaq - 0.252~TrU6p - 0.17~TrU6tJ. (5.1.11) 
g 

Similar calculation is in progress for the -v'3 blocking tra..?J.sformation used here. 

There is one important drawback of these latter two approaches. Because 

of the fact that they are based on perturbative ar1alysis, they completely miss 

the non-perturbative effects related to the non-trivial topology of the group. In 

the lattice theories, such effects typically manifest themselves as a phase struc-

ture in the extended action space involving higher dimension"'l representatio:J.S 

of the group. For example, the SU(2) action in the adjoint representation 

describes the 0(3) gauge theory, which is identical to the SU(2) theory as far as 

the perturbative behaviour is concerned. But we know that the behaviour of the 

two theories are drastically different from each other at long distances (one 
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obeys area law for large Wilson loops; the other doesn't). because of the 

difference in the topology characterised by the centre Z(2) . This difference 

shows up as the non-trivial phase structure in the [Kp,KA] plane. Present 

Monte-Carlo calculations are being done in a region quite close to this phase 

structure. and therefore it is important to take into account the effects of such 

phase structures when finding an improved action. The Migdal-Kadanoff 

approach does succeed in finding the effect of the phase structures on the 

improved action, but it suffers from the lack of long distance interactions in the 

improved action. What we need is a combined approach which can take into 

consideration both the non-perturbative and the long range interactions. This 

is the subject of study for the rest of the chapter and as Vlill be evident from the 

results; the Monte-Carlo renormalisation group analysis indeed achieves both 

the objectives. 

5.2 : Improvement using Monte-Carlo. Renormalisation Group 

Under a renormalisation group transformation, all starting trajectories 

close to the RT converge toward it. Since the ideal improved action is just the 

basis vector defining the RT, to find the improved action, all one has to do is to 

determine the renormalised action generated in an M:CRG calculation. Such an / 

action typically involves an infinite number of couplings. From the standpoint 

of numerical efficiency, however, one needs to find an action that is both local 

(involves only small Wilson loops) and close to the RT. In this section, an itera­

tive procedure for implementing this idea is described [13]. The numerical 

results presented in the next section Vlill show that the method is quite success­

ful, and also provides information on the distance of the starting action from the 

RT and the rate of convergence towards it. 
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The distance of the starting action from the RT is given by the magnitudes 

of the irrelevant lattice operators. As one performs renormalisation group 

transformations, the effect of these operators decreases . Therefore, the first 

block transformation is the one most sensitive to the effect of the irrelevant 

operators, and, to find the RT accurately, one should find the flow of the renor-

malised action at the first step in the blocking procedure. On the other hand, if 

the starting action is too far away from the RT, one block transformation ·will not 

take it sufficiently close to the RT, and several iterations vvill be needed to find a 

good approximation to the RT. 

Consider an arbitrary line YZ (Fig. 3.5) in a two coupling constant space 

[K1,K2] and assume that it lies inside the domain of attraction of the RT. Then, 

to find the RT, one would like to follow the evolution of the starting action {KA l 

under the renormalisation group transformation, i.e., determine the couplings 

at the points A 1, A2, etc. In the MCRG calculation for the {1-function, one does 

not determine the renormalised action. One just finds another point {K8 l on 

the line yz that is related to the point {KA l by a fixed scale transformation. 

This is achieved by matching the long distance behaviour of the two theories. In 

this process, expectation values of several (as many as we care to evaluate) 

operators for points {K8 l and {KA
1l are calculated. Note that these have/been 

measured on lattices which have the same size and boundary conditions. If the 

two actions are the same (i.e ., same e:ll.:pectation values), then the line YZ ·would 

be a flow line and the first step in the iteration is complete. Otherv,ise, we we..:.1t 

to find the action !KA
1l which is closer to the RT. 

AsslL'TI.e that all the expectation values, Oi, are a..11.alytic functions of the 

couplings. Then to first order the expectation values calculated at !K3 l can be 

expanded about those at !KA
1l as, 

(5.2.1) 
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o<Oi> 
The rate of change, oK- , is the connected correlation function <:OiOj :>. 

) 

Thus we get, 

(5.2.2) 

From this equation we can calculate the difference in the couplings, 

(5.2.3) 

by a simple matrix inversion. A consistency check is to expand <Oi >At about 

(5.2.4) 

and compare the two ~lJ<,;- l - Their closeness to each other cail be used as a 

check to ensure the validity of the linear extrapolation, and the mean ~D..K;-l are 

correct to znd order. To show the statistical accuracy and stability of the 

linear approximation, we use various starting points ~KB l for the same ~KA l and 

check whether they all yield the same ~.6.Rj j . This, in practice, does not involve 

additional computer time since in doing an MCRG calculation of the {5-fu..n.ction a 

number of nearby points ~KB l are already explored. We repeated this process 

for several points fKA l and determined the change in the various ratios Ki I Kp 

as a function of Kp. This prm.ided information on the shape of the RT a...'1.d also 

showed which couplings are L."llportant in a given region. 

If after the first step the change f.6.J0l is small. and the new couplifl_gs are, 

K .l = K!J - A !/_ ) - ) UD.; • (5.2.5) 

then all the data at !K8 l can be re'\v-eighed by the difference in the Boltzma.n.n 

factor to get a distribution at !K1 j. This is possible if the data sample at fK8 l 

is large enough so as to have enough data at configurations which have a large 
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probability of occurrence at ~K1 j . If the reweighing gives a statistically 

significant sample. then one can go back to Eq. (5 .2.2) and calculate the new 

change in the couplings and proceed iteratively until the method converges or 

the extrapolation fails . 

In case the method fails at step n (which can include the first). a fresh set 

of expectation values is generated by a new MC simulation with the best guess 

for the new couplings at that stage. If this indeed is an improved action, then 

the new ~D..JS·l would be smaller. The power of this method is in its recursive 

nature, and using it iteratively the RT can be found very accurately for any RG 

transformation and for any value of the coupling. 

A slightly different method has been used by Swendsen [14] to find the 

improved Hamiltonian for the 2-dim Ising model. He used the expectation 

values at points ~KA l and ~KA 1 ~ to find ~D..Kj l. These points have the same phy­

sical size and boundary conditions. Moreover, since the statistical data at these 

two points are correlated, the errors are smaller. In his analysis, the new cou­

plings were found essentially by reweighing the data by the difference in the 

Boltzmann factor till the expectation values matched. For the 2-dim, Ish"lg 

model there is no problem 'With the statistical strength of the data. since one 

can sLrnulate the system at the critical point directly/ But in other cases, as 

mentioned earlier, the results are not reliable when the {D..Kj l are large . The 

reliability of the results can be checked by calculatL11g the con..!'lected correla­

tion functions and verifying how well the consistency condition (Eqs.(5.2 .2) fu"ld 

(5.2.4)) is satisfied. The method described in tb.is :::ection pr oves to be better 

for two reasons : 
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(i) The points lK8 j can be chosen such that the ~M; j are small. 

(ii) The accuracy of the lD.~ j can be explicitly verified by checking how well 

the different tK8 ~ points produce the same answer. 

5.3: Results for SU(2) 

We did not estimate the error in tD..K;· ~ for each point ~K8 l at fixed !KAl. 

Instead, after using the consistency check, Eqs. (5.2.2) and (5.2.4), to define the 

useful set of points tK8 L the statistical error was estimated by simply treating 

each of those points as independent. A more careful analysis would require one 

to assign relative weights to the different points !K8 l based on their statistical 

weight and the change ~D.~~. At this stage, the systematic errors from the 

number of operators kept are far more severe. The validity of the results v.ill 

therefore have to be tested by repeating the calculation using the improved 

action determined here. 

The action in the [Kp, KA, K3/2, Kap, K6l, Kat] space is defined in Eq. 

(3.1.1). We used 7 starting points !KA j along the M-K line and 5 along the Wilson 

axis. The number of points !K8 ~ that satisfied the consistency condition for 

each ~KAL ranged from 7 to 15 as listed in the tables. 

I 

In deciding what operators to keep we noticed a decoupling between the 

higher spin representations and the 6-link loops. For example, the addition of 

K3/ 2 largely affected Kp and KA , and the addition of Kat mostly affected Kp 

and K5p. Both the statistics (due to critical slowing dOivn) and the dista.'1ce 

from the RT become worse as gba:re is decreased. Because of this the total 

number of operators that could be determined accurately also decreased as Kp 

increased. This is at present a limitation since the renormalised couplings 

depend on the number of operators used. However, v-.ithin each set of couplings 

included we found a definite pattern, and by considering various !KA ~ we are 
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able to make statements about the RT. 

In Table 5.1, the effect of keeping various combinations of operators is 

sho-wn for KF=3 . 7 on the M-K line. Next , the improved action in the the 

[KF,KA ,K5p] space is displayed in Table 5.2 as a function of KF· We show the 

effects of adding K 3/ 2 and K 6t to this set in Tables 5.3 and 5 .4, respectively . 

This makes up the largest set of operators that we could use in the improved 

action analysis with the present data. 

In the central range of the couplings explored by us, the flows from both the 

Wilson axis and the M-K line, when projected in the !KF,KAl plane, converge to 

an approximate trajectory given by KA "' -0.16 KF. The Grossman-Samuel (3-

function (cf. Eqs.(4.1.6-4.1.7)) is almost fiat along this line; i.e., there are no 

corrections to the 1-loop asymptotic value. This is indeed the behaviour 

expected from the RT, a fast and smooth approach to the fixed point. 

The trajectory shifts by a significant amount upon the addition of K 3/ 2 . KA 

takes on a larger negative value while K3/ 2 provides a compensating positive 

term. The projection of the improved action is now very close to the result 

found using the M-K approximation [6]. This suggests that the corresponding 

RT's lie close together in this region. Our results show that in this region K 3/ 2 

contribution cannot be neglected even though it is small ( "'5%) , and we conclude 

that it is necessary to include higher representations in the improved action. 

The results showed a dramatic improvement when the 6-lin__l<: planar loop 

coupling K6P was added. In the [KF,KA,K3/ 2 ,K6p] space, the spread of points 

obtained -with different !K8 l became small and the !!J.~ l obtained from Eqs. 

(5.2.2) and (5.2.4) converged. As gba:re was made smaller, the ratio K6P I KF 

increased and seemed to be approaching the tree-level improved value -0.05 

[ 10, 11], while the effect of the higher representations decreased. The other two 

6-link couplings K6t and K6z had positive coefficients with Kst being more 
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stable. As shov.n in Table 5.4, the inclusion of K 6t made the coupling K6P much 

more negative and the strength of K 6t decreased with increasing KF . 

An advantage of this method is that both the perturbative (6-link couplings) 

and non-perturbalive (higher representation couplings) effects can be analysed 

simultaneously. The fact that the Wilson and M-K actions lie on opposite sides of 

the RT for the coupling KA and yet both of them converge to approximately the 

same trajectory after the first iteration, implies that the points fKA
1l are close 

to the RT, in the limited coupling space we have explored. We are therefore 

able to map an approximate RT over a large range of couplings and the results in 

Tables 5.2 , 5.3 and 5.4 show that it is not linear just beyond the crossover region. 

We found that, for a given starting fKA L the renormalised coupling KP was 

much smaller than the value of Kf for which the long distance behaviour of the 

theory differs from Kfo by the scale factor of the RG transformation. To see 

this, compare the difference between Kfo and K} in Tables 5.1, 5.2, 5. 3 and 5.4 

and the value of MF found in the MCRG calculation. This feature is consistent 

with the observation that, if we try to match the variables on the (3..J3)4 lat­

tices, the fj_KF so obtained would be large. Such a large discrepar1cy implies 

that the starting points fKA l are far from the RT. 

The calculation of the improved action is very sensitive to the number of 

operators included. To improve the statistics and to check the stability of the 

improved action obtained here, we are currently running the programme on an 

184 lattice. 
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5.4 : Results for SU(3) 

The results in the [KF,K6p ,K6l,Kst ,K6,KA] space are shown in Table 5.5. 

We were able to use only four (3v3) 4 lattices for both Kt=6.5 and 7.0. These 

are much fewer Ks points than those used in the SU(2) case; hovvever, the con­

sistency condition worked well and the coefficients of all the 6 operators could 

be determined in the improved action. The small magnitudes of all the new 

couplings in KA 
1 

supports our previous claim that the simple plaquette action is 

quite close to the RT. 

The higher dimensional representations and the 6-link operators were again 

found to be decoupled. The 6-link operators had the sru."'le signs that they had 

for SU(2), and the higher representation operators had the same signs as 

predicted in Ref.[5] (cf. Eq.(5.1.5)). The small contribution of the higher 

representation operators means that the effect of the non-trivi.al phase struc­

ture is smaller here than in the SU(2) case. This is a surprising result, since for 

SU(3) the phase structure in the [KF , KA] plane is known to lie closer to the 

Wilson axis than for SU(2) [15]. 

5.5 : Conclusions 

We briefly enumerate the main results and lessons of this v1hole analysis : 

1) An MCRG calculation does not require much more time than a..11.y other reli­

able Monte-Carlo calculation. Dedicated super computers or special pur­

pose computers are required for both. 

2) The ,/3 transformation is very efficient for the 4-dirn gauge theories. Its 

peculiar geometry is not a drawback. 
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3) Both for SU(2) and SU(3), the non-perturbative {3-function differs from the 

2-loop result at the "'10% level. because of the phase structure in the 

extended coupling constant space. This is true well beyond the crossover 

region. Therefore, to check the scaling of long distance observables . o:1e 

should use the results of an MCRG calculation. 

4) A good estimate for the renormalised trajectory can be found using the 

iterative method proposed. The RT for SU(2) interpolates between the 

results of Migdal-Kadanoff approximate renormalisation and S;rmanzik's 

perturbative improvement programme. The results for SU(3) show that, 

starting Vvith the Wilson action, the RT is reached after just one bbck 

transformation. 

5) An improved action approach is a must to see scaling and to approach the 

continuum limit faster. 

Lastly we outline how MCRG can be used to calculate the long dista.._T]_ce pro­

perties of QCD. The discussion will be restricted to the pure gauge theory; fer­

miens can be put in as external sources to obtain the results in the valence 

approximation in the standard way. 

An improved action obtained from an MCRG calculation is used to update an 

(N v'3)4 lattice. The lattice size N v'3 is selected after taki:n.g into account all 

finite size effects; i.e., the largest correlation length should be a factor of rv3 

smaller than it. On the basis of the auto-correlation leP..gth and the meas:J.re­

ment to update tL>ne, co:r~figurations separated by a certain nlL>nber of update 

sweeps are blocked dov.-n to N 4 lattices. The important point here is that the 

theory on the N4 lattice has the same loD..g distance behaviour as the original 

theory, but the irrelevant short distance operators are suppressed. The ratio 

of the lattice correlation length to the lattice size remains unchanged since both 

are reduced by the same v'3 scale factor. The block variables are now used for 
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constructing appropriate interpolating field operators and calculating their long 

distance correlations . 

The completion of the MCRG procedure yields both the {3-function needed to 

check scaling and an improved estimate of the renormalise d trajectory. This 

last step, which includes generating configurations on an N 4 lattice for comp ar­

ing the block variables, is "'30-50% overhead on the (Nv3)4 update time. This 

calculation is currently in progress . 
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TABLES 

Improved action couplings 

No. of ~K8 j 

pts. used Kp KAIKp Ks;2/ Kp Kepi Kp Ketl Kp Ketl Kp 

12 2.614(7) -.167(1) 

12 2.741(7) -.233( 1) .056(1) 

11 2.783(6) -.229(2) .055(1) -.0056(6) 

11 2.048(8) -.236(3) .054(3) -.080( 1) .142(2) 

2 2.193(1) -.006(1) 

11 2.660(4) -.165( 1) -.0061(6) 

2 1.58(2) -.106( 1) I .182(4) 

8 1.968(5) -.177(2) -.082(2) I .150(2) 

2 1.032(4) -.182(2) I .109(4) 1 .136(7) 
/ 

6 1.42(2) -.207(3) -.131(1) I .071(2) .106(3) 

6 1.51(1) -.287(8) .069(7) -.123(1) I .067(1) .100(2) 

Table 5.1 : Various projections of the renormalised SU(2) action for the 

starting action Kp=3. 7 along the M-K line. The errors Ln parentheses are 

calculated assuming each fK8 l point to be independent. 
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Projection of the improved action in the [KF ,KA ,K6P] space 

Starting No. of fKB ~ KF KAIKF K6p1 KF 

action ~KA ~ pts . used 

3.7 (M-K) 11 2.660(4) -.165(1) -.0061(06) 

4.0 (M-K) 12 2.923(5) -.154(3) - .0186(16) 

4 .35(M-K) 12 3.225(7) -.144( 1) - .0283(07) 

4.7 (M-K) 15 3.504(6) -.135(1) - .0323(03) 

5.05(M-K) 12 3 .807(5) -.131(1) -.0367(02) 

5.2 (M-K) 13 3 .915(6) -.129( 1) -.0370(03) 

5.5 (M-K) 9 4.181(7) -.130(1) - .0381(03) 

2 .5 (W) 10 2.491 (5) -.145( 1) I -. 0041(06) 

2 .75 (W) 15 3 .007(6) -.140(2) -. 0216(15) 

3 .0 (W) 15 1/ 3.476(9) - . 124(1) I - .0335(06) 

3.25 ( Vl) 15 3.936(7) -.114(1) I -.0392(02) 

3 .5 (W) 13 4.43(1) -.112( 1) - .0427(02) 

Table 5.2 : Projection of the renormalised SU(2) action for different 

starting actions. The errors in parentheses were calculated assuming 

each fK8 ~ point to be independent. 
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Projection of the improved action in the [KF,KA ,K312,K6P] space 

Starting No. of !KB ~ KF KAIKF K3;2/ KF K6p1 KF 

action !KA ~ pts. used 

3.7 (M-K) 11 2. 783(6) - .229(2) .055(1) -.0056(06) 

4.0 (M-K) 12 3.091(7) -.221 (3) .050( 1) -.0178(15) 

4.35(M-K) 12 3.42( 1) - .211(2) .044( 1) -.0268(11) 

4.7 (M-K) 14 3. 73( 1) -.202(3) .041(2) -.0305(04) 

5.05(M-K) 12 4 .07(2) - .196(3) .037(2) -.0345(03) 

5.2 (M-K) 11 4.18(2) - .193(3) .036(2) -.0348(03) 

5.5 (M-K) 9 4.44(3) -.186(7) .029(3) -.0359(05) 

2.5 ( W) 8 2.571(5) -.195(1) .043(1) I -.0036(03) 

2.75(W) 14 3.16(1) -.199(3) .042(2) I 
Q9Q'"'(• -\ -. - a, 101 

3.0 (W) 12 / 3.69(1) -.190(4) .040(2) I -.0314(07) 

3.25 ( W) 14 4.12(2) -.160(5) I .025(3) -.0374(04) 

3.5 ( W) 13 4.71(2) - .168(5) .028(3) -.0402(04) 

Table 5.3 : Projection of the renormalised SU(2) action for different 

starting actions. The errors in parentheses were calculated assu...mi.ng 

each !KB ~ point to be independent. 
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Projection of the improved action in the [KF,KA ,K6P ,K6t] space 

Starting No . of fK8 ~ KF KAIKF K 6p1 KF K6tl KF 

action fKA ~ pts. used 

3.? (M-K) 8 1.968(5) -.1 ??(2) -.082(2) .150(02) 

4.0 (M-K) 11 2.19(1) -.153(3) - .090(1) .130(2) 

4.35(M-K) 12 2.46( 1) -. 145(2) -.093( 1) .11?(1) 

4.? (M -K) 13 2.68( 1) -.135(2) - .097( 1) .118(1) 

5.05(.M-K) 11 I 2.93(1) -.131(1) -.095( 1) .106(1) 

5.2 (M-K) 11 3.03(2) -.129(1) - .09?(1) .10?(1) 

5.5 (M-K) 9 3.21(1) -.134(2) -.095( 1) .104(1) 

2.5 (W) ? 1. ??4(8) -.139(2) -.081 (2) .157(2) 

2.75 ( rv) 14 I 2.195(9) -.131(2) -.096(1) .138(2) 

3.0 (W) I 14 I 2.55( 1) -.109(2) I -.102( 1) .126(1) 

3.25 ( W) 13 I 2.91(1) -.106(2) -.104( 1) .119(1) 

3.5 (W) 14 I 3.35( 1) -.10?(2) - .100(1) .106(1) 

Table 5.4 : Projection of the renormalised SU(2) action for different 

starting actions. The errors in parentheses were calculated assuming 

each fK8 ~ point to be independent. . 
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Projection of the improved action for SU(3) in the 

[Kp,K6p ,K6l,K6t ,K6,KA] space 

Coupling Kp=6.5 Kp=7.0 

Kp 5.99(07) 5.53(04) 6.47(16) 5.96(19) 

K 6p/ Kp -.033( 1) -.038(1) -.035(2) -.040(2) 

K6l/ Kp I 
.015(3) .014(2) 

K6tl Kp .041( 1) .025(4) .041(1) .027(2) 

K5/Kp -.014(7) -.003(1) 

KA/Kp 
I 

-.030(4) -.019(4) 
I 

-.028( 1) -.024(1) 

Table 5.5 : Projection of the renormalised SU(3) action for different 

starting actions along the Wilson axis. The errors in parentheses were 

calculated assuming each fKB ~ point to be independent. 




