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ABSTRACT

A method of sozlving wing-body problems for circular bodies
employing wings with supersonic edges has been developed. The
method is based on decomposing the wing-body combination into a
wing alone plus a number of Fourier component wing-body combina-~
tions corresponding to the Fourier series for the normal velocity
induced at the body surface .by the wing alone. The problem is then
solved for each component by a method based on Laplace transform
theory, and the method is t};en shown to be equivalent to a distributed-
solution method analogous to that used by Karman and Moore to solve
problems of bodies of revolution at supersonic sj’@eeds, Two sets
of universal functions are presented. The first set is used to obtain
the strength distribution of the fundamental solutions distributed
along the body axis, from which the entire interference pressure
field can be obtained. The second set permits a direct determina-
tion of the pressures acting on the body.

As an example in the use of the theory, calculations are car-
ried out for the technologically important case of a flat rectangular
wing mounted at zero incidence on a body at zero angle of attack.
The calculations are carried out for four Fourier components. It
was found that all four components were necessary to get good ac-

curacy in determining the pressures at some points in the field,



while only one component was required to get a fair determination
of the span loading of the combination. From the example much
insight into the mechanism of wing-body interference was obtained,
The use of the universal functions to obtain pressures due to pro-

tuberances on nearly cylindrical bodies is discussed.
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SYMBOLS

a body radius
AR wing aspect ratio
a5.(2), bZn(Z)’ CZn(Z) functions of z used in Appendix

C(z), C*(z)

C0, C 3“““"'_c

Fourier cosine transforms

polynomials in n

1 4
CZ’:< ) C4* s C6* polynomials in n
CP pressure coefficient
CPZ pressure coefficient of n'th Fourier component
n .
E error in determination of M,_(z)
E* error in determination of W, (z)
Ey Weber or Lommel-Weber function of order =/
fzn(z) amplitude of body normal velocity due to n'th Fourier
component
Fonls) Laplace transform of f, (s)
(2n-1) - ) ) ) .
g, (z) strength function for axial distribution of n'th Fourier
component
(2n-1 2n-1
G, )(s) Laplace transform of g(zn )(z)
hzn(z,r) cos 2n#® fundamental solution

1))

2n
o

Hankel function of first kind and 2n'th order

P2 I,,(%) amplitudes of integrands of Fourier integrals

I (2)

J-.,) (z)

J-‘Zn(z)

K*, K

modified Bessel function of first kind of order m

Anger function, equivalent to usual Bessel function for
integral values of

Bessel function of \first kind of order 2n

kernels of integral equations



SYMBOLS (Cont'd)

Km(z) modified Bessel function of second kind of order m

AL, lift on wing due to n'th Fourier component

M free-stream Mach number

m cotangent of leading edge sweepback angle, summation
index

MZn(Z) characteristic function

n number of Fourier component

el local static pressure

P, free-stream static pressure

Ap, loading per unit area due to n'th Fourier component

q free=stream dynamic pressure

qg* normal velocity at body surface due to wing potential

r, 9, = cylindrical coordinates

] complex variable of Laplace transform plane

S(z),S * () Fourier sine transforms

t complex variable,

VO free-stream velocity

WZn(Z) characteristic function

X,V % Cartesian coordinates

an(z) Bessel function of second kind of order 2n

OLB body angle of attack

a upwash angle of flow due to body

o wing angle of attack

Lo} velocity potential, interference perturbation velocity

potential



SYMBOLS (Cont'd)

ﬁ transformed interference potential

¢2n interference potential of n'th Fourier component
fzn Laplace transform of ¢2n

(bw wing alone velocity potential

§ variable of integration

p mass density in free stream

T upper limit of integration

g’ cosm1 1-22

F/ﬂ-l-/) gamma function, n!
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"I, INTRODUCTION

1.1 Preliminary Remarks

An bexplanation of the term "interference'' as used herein
will first be given. Consider a geometric body immersed in a fluid
field of infinite extent with a uniform velocity at distances infinitely
far from the bddyo As a result of the curvature of the paths of the
fluid particles in the field pressure gradients will be set up in the
fluid. Consider now a different body under similar circumstances.
A second pressure field will be associated with this body. If both
bodies are considered simultaneously to be in the fluid, the pres-
sure field set up will differ from the sums of the body-alone pres-
sure fields. The differenc.e arises from the fact that the velocities
set up by one body acting alone will not in general be tangential to
the other body. The difference between the joint pressure field
and the sum of the body-alone pressure fields is known as the inter-
ference pressure field. The term "interference' can be applied to
aerodynamic quantities such as lift, moment, drag, pressure, etc,

In cases where two distinct bodies are under consideration,
the definition of what constitutes the interference is not hard, How-
ever in cases where a complicated body is formed by the coales-
cence of two or more simpler bodies, the specification of the inter-
ference is quite arbitrary because the decomposition of the compli-

cated body into simpler bodies is not unique. For instance, a wing-
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body combination is formed from a wing alone and a body alone,
But the wing can be continued through the body in many ways with=
out affecting the external shape of the wing;body combination,
However it can be said that no matter how the wing alone is d;—;-frined,
the sum of the wing-alone, body-alone, and interference pressure
fields will be unique in so far as the external flow past the wing-
body combination is unique. It is reasonable, therefore, to define
the wing alone in the manner best suited to the problem at hand.

Aircraft designers have been cognizant practically from
the advent of the airplane of the important effects that interference
among the various parts of the airplane ;can have on its perform-
ance and efficiency. However for low-speed flight where the gov-
erning differential equation is Laplace's equation, no solutions for
a three-dimensional wing-body combination have yet been found.
This is a direct consequence of the mathématical complexity of
the problem. Practically the effects of interference were evalu-
ated by wind-tunnel tests of models of the design under considera-
tion. In many instances the aspect ratio of the wings was suffic-
iently large so that no important effects of interference were en-
countered, and frequently where adverse effects were met, they
could be alleviated by suitable fairing of the wing-body juncture,

However for supersonic aircraft the trend is toward wings of low
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aspect ratio for which interference effects can be very important.
Alsoc the properties of the governing differential equation are such
that some hope of obtaining mathematical solutions exists. For
these reasons the préble.‘ms of wing-body interference for super-
sonic flight ha>ve received much attention from aeronautical scien-
tists and engineers in recent years.

In attempting to solve the problems of fluid flow past bodies
at rest it is common to utilize the partial differential equations gov-
erning the velocity potential which exists for an inviscid fluid,
either compressible or inc;,ornpressible° In the incompressible case
the equation is Laplace's equation, For wings the problem is fur- .
ther linearized by specifying the boundary conditions for the potential
not at the wing surface but rather in a plane called the plane of the
wing. For compressible fluid the differential equation is non~linear,
and it is usually linearized on the assump‘ticn of small perturbation
velocities to give the wave equation. In this paper the wave equa-
tion will be used, the bbundary conditions for the wing will be ap-
plied in the plane of the wing, and the Body boundary conditions will

be applied at the surface of the unit cylinder.

1.2 Present Status of Problem
Cne of the boundary-value problems of interference that has
been attempted is that of supersonic flow past an inclined pointed

body of revolution with a flat rectangular wing (Reference 1). The
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wing was first assumed to be imbedded in the flow field of the body
alone and the pressures acting on it were determined. Then to get
the interference pressures on the body, the bﬁdy was assumed to be
imbedded in the flow field of the wing alone . As a result of these
assumptions, the results of Reference (1) represent a first approxi-
mation to the interference pressure field. In Reference (2) certain
errors of Reference (1) are corrected.

In order to gain insight into the phenomena of in‘terferenc‘e ,
several authors have sought to mak¢ interference problems moré
tractable by the expedient of sirhplifying either the geometry or the
differential équation, Following the first line of attack, Browne,
Friedman and Hodes in Reference (3) attempt the solution of the
 pressure field acting on a wing-body combination composed of a
flat triangular wing and a conical bedy having a common apex. The
~use of all-conical boundaries reducés the problem to one of conical
flow for which powerful methdds of solution are available (Refer-
ence 4), This combination is thus of considerable theofetical
jnter;est.

The second expedient of simplifying the differential equa-
tion has led to some simple and useful results. The velocity po-
tential for linearized supersonic flow is governed by ‘thé wave equa-

tion

‘ (Ma/)éz-?g‘x‘ éyzo
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where M is the free-stream Mach number. Under certain circum-
stances the first term of Equation (1) can be neglected compared
to the second and third terms so as to give Laplace's equation.
This simplification leads to so‘ncalled slender-body theory. The
assumption is valid in certain instances for Mach numbers near
unity and for bodies slender in the flight direction. Spreiter in
Reference (5) has discussed slender-body theory and has applied
it to triangular wings on pointed slender bodies of revolution. In
Reference (6) Spreiter has applied the theory to combinations with
cruciform wings.

In his doctoral thesis Morikawa (Reference 7) has presented
an approximate solution for the case of a rectangular wing and a
circular body both inclined at the same angle of attack, The meth-
od of solution is based on the use of vLaplace transform theory to-
gether with approximate expressions for the Green's function.
Morikawa .concludes "The analytical work has just begun on non-
planar problems'.

In Reference (8) Nielsen and Matteson present a numerical
technique for obtaining ﬁhe pressure field on the wing for a combina-
tion composed of a body at zero angle of attack and a wing for which
the interaction between upper and lower surfaces has no effect on
the interference.

In Reference (9) Lagerstrom and Van Dyke have discussed
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many aspects of the wing-body interference problem. In addition
to planar systems, they have considered non=-planar systems utiliz-
ing polygonal bodies. An approximate method based on strip theory
is given, and the more exackt methods available for circular bodies

are outlined.

1.3 Purpose of Present Study

It is the purpose of this report to continue the analytical
work that has already been started in the realm of non-planar prob-
lems. From the outset it was realized that the inherent analytical
difficulties of non-planar problems maké the prospect of obtaining
simple closed solutions remot? . The question thus reduces to one
of obtaining a solution in some other con.venient form. A Fourier
series solution giving good accuracy for a few terms was used.
The method of solu’tion' depends primarily on a set‘ of universal char-
acteristic functions solving) a wide class of interference problems
(as well as such problems as pressures due to protuberances .on
near-circular fuselages)., The propertiés of these functions are
discussed and their numerical values are tabulated for purposes
of computation. As an example of the application of the theory,
the technologically important case of a flat rectangula;"wing mounted
on a circular body at zérovangle of attack is carried ouf., From this

example some useful deductions concerning the mechanism of inter-

ference are obtained, Furthermore '"exact" solutions are very useful .
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as yardsticks by which to measure the degree of validity of the
semi-empirical methods of determining wing-body interference
that are arising, and to evaluate the correctness of their under-
lying assumptions. Throughout the thesis, the analytical com-

plexity of the problem should be borne in mind.
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II. FORMAL SOLUTION OF PROBLEM
2.1 Basic Preliminary Considerations

Prior to the direct mathematical formulation of the bound-
ary value problems considered herein, some physical discussion
of the problems will be given. Throughout the governing differen-
tial equation is Equation (1); and furthermore, the free-stream
Mach number is specialized to ﬁ without any loss of genér'at.’ii‘tyn
No effect of wing tips will be considered.

A typical wing-body combination can be thought of as com-
posed of a nose, winged section, and afterbody as shown in Figure
(1). In general the body will be inclined at a1;1. angle of attack dif-
ferent from that of the wing, which may be cambered and twisted,
Over the nose of the combination the problem is essentially one
of a body of revolution, and it can be solved by the methods of
References (10) or (11). The essential boundary conditions are that
the flow be uniform in front of the nose, and that it be everywhere
tangent to the body; that is, %% be zero at the body surface,

No interference is encountered until the flow reaches the
winged portion of the wing-body combination since disturbances
can be propagated only downstream within their Mach cones, The
effect of interference will be felt on the body only behind the for-
ward boundary of the region of influence of the wiﬁgs on the body.

This forward boundary can easily be seen to correspond to the
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downstream helices originating at the leading-edges of the wing-
body junctures and lying on the body surface, intersecting all
parallel elements of the cylinder at the Mach angle., It is clear
that the helices intersect at the top and bottom of the body a dis-
tance wa VMZ—I/Z downstream from the leading edge of the junc-
ture, For greater distances downstream the wing influences the
body arocund its entire circumference.,

A further significant boundary for the winged part of the
combination is that delineating the region of influence of one half-
wing on the other. Consider a disturbance propagated from the
leading edge of the left wing-body juncture up the helix to the top
6f the body.. The disturbance can continue downward along the
helix or can leave the cylinder tangentially in the Mach cone from
the point of tangency. In general the shortest possible acoustical
path from the leading edge of one wing-body juncture to a point on
the opposite wing will be composed in part of a helical path on
the gylinder plus a straight path. A simple calculation gives the

following result for the forward boundary of the region of influence.

Zz2= (T~ cosd_%)d + Vx# a? (2)

The coordinate system is described in Figure (2). It is to be noted
that the forward boundary parallels the Mach line of the juncture

asymptotically for large X . It is significant that one of the essential
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boundaries in thé problem should be given by a transcendental
equation. This presages the analytical difficulties inherent in
the wing-body problem.

The afterbody of the combination is that part of the body
lying downstream of the helices originating at the trailing edges
of the wing-body junctures. In this region the effect of the wing
wake will be felt on the body. In general the wing wake will be
entirely non-uniform with respect to downwash, In effect, it is
equivalent to a continuation of the w‘ing’with both twist and cam-
ber, If the twist and camber were known, the interference be=
tween the afterbody and the wake could be determined., In general,
therefore, the afterbody interference pressure field will depend
on the interference between the body and wing. The complexity
of the afterbody problem is thus apparent. Only the winged sec-

tion will be analyzed in detail.

2.2 Boundary Conditions

Henceforth only configurations having a vertical plane of
symmetry will be considered. The question of a horizontal plane
of symmetry is not important since the problems to be considered
in this paper will be those for which the flow above the wing will
be independent of the flow beneath the wing. This is the case when

the wing leading and trailing edges are supersonic. If a subsonic
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side edge exists there will usually be a tip region where interaction
between the upper and lower wing surfaces is possible, but this re-
gion will only have an effect on the wing-body interference for low
values of the reduced aspect ratio, R \/-1\22:1— In cases where the
upper and lower wing‘ surfaces’cannot interact, the symmetry con-
ditions about the horizontal plane are unimportant. In fact if a flat
rectangular wing is inclined at a degree a on a body at zero angle
of attack, the pressures will be antisymmetric about the horizontal
plane. If however the wing is a wedge of half-angle a at zero angle
of attack on the body, then the pressures will bersymmetric. It is
clear that both problems are essentially the same, and it is only
necessary to solve the problem for one side of the wing in either
case since the solution for the other side follows from the known
symmetry properties., Attention will henceforth be focused in the
region above the horizontal plane through the body axis.

A decomposition of a very important class of boundary-value
problems into simpler problems has been suggested by Lagerstrom
and Van Dyke in Reference (9). It is assumed that the boundary
conditions can be specified on a plane for the wing and on a cylinder
for the body. Under these circumstances the problem of a body to-
gether with wing both inclined at different angles can be decomposed

as shown in Figure (3). Although it is not necessary that either ag

or ay, be uniform, such is usually the case. In the figure the wing
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has not been cut off because the effect of wing tips will not be con-
sidered. Except for very small reduced aspect ratios, the effect
of wing tips is a pure wing problem. Also no nose effect has been
included and the body is supposed to extend indefinitely far up-
stream. Neglecting the effect of the nose on wing-body interfer-
ence is permissible in all but a few instances. It is to be noted
that the condition (b) corresponds to the body=alone flow. In the
region to be occupied by the wing there is an upwash field where
the upwash varies spanwise but not chordwise. In condition (c)
a twisted wing having an equal and opposite angle of attack to the
upwash field has been introduced. Thus the complicated wing-
body problem has been decomposed into a2 body-alone problem (b)
plus two wing-body problems of the same type with the body at
zero angle of attack a;ld wings of the same planform but differing
in twist. The twist of (c) is the negative of a,» the upwash due to
the inclined body. Neglecting the effect of the body nose, this up-
wash field is given by the following equation for uniform apt

oG = %g (1 + 2 ) G)

e

X%
At the body the upwash angle is twice the angle of attack, the angle
of attack being measured from the z axis fixed in the body. The

type of problem exemplified by Figures (3a) and (3c) is the kind

considered in this paper. The mathematical formulation of this
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type of problem is now presented.

Consider a wing-body combination suéh as that shown in
Figure (2) subject to the condition that the wing leading edge be
supersonic. Continue the wing through fhe body from side to side
in some convenient manner and let ag be zero. The angle of at-
tack of the part of the wing blanketed by the body can be arbitrar-
ily specified in any convenient manner. Let ¢W be the perturba-
tion potential for the wing alone. C>onsider the decomposition of
the problem shown in Figure (4). For z { 0 in the wing-alone flow
field (i) the position where the cylinder would be corresponds to
a streamtube, However for z Q> 0 thé sidewash and downwash
due to the wing alone will cause flow normal to the position the
cylinder would occupy. This causes the apparent body to be some-
what distorted from the true cylindrical shape. This disfortion
is analogous to the apparent twist of a tailplane due to wing down-
wash. Since the distorted cyliﬁder must be returned to the true
cylindrical shape, an interference potential ¢. must arise. It must
cancel the normal velocity induced against the body by ¢W and at
the same time must not distort the wing shape. Fbr the body to
be a cylinder the first boundary condition is thus

L (f+p)=0; r=a @
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For the interference potential ¢ not to change the wing shape the

second boundary condition is

éé = O ). 6::-0)77'; (5)

o e

where 8 = 0, 7w defines the ''plane of the wing''. An additional
_boundary condition is necessary to preclude the possibility of up-
stream waves. These are mathematically possible because the
differential equation is invariant to a ;change in the sign of z, and
the boundary conditions specified so far do not differentiate be-
tween the plus and minus z directions. A convenient way to assure

only downstream waves is to specify
=0 ; 2so0 (6)

From physical considerations it also follows that _%% =0,z<£0
except possibly‘at the leading-edges of the wing-body junctures.
The boundary-value problem is a mixed one in that data
are prescribed on time-=-like surfacés (Equation (4) and (5) ) and a
space-like surface (Equation (6)). Since the afterbody probiem is
not considered, the wing is taken to extend downstream indefinitely
and the boundary conditions on the time-like surfaces are taken on
a semi-infinite interval. This suggests the use of Laplace trans-

form theory in the formal mathematical solution.
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2.3 Formal Mathematical Solution by Laplace Transform Theory
The problem of wingmbod')‘r interference explained in the pre-
ceding section-can be stated in the following manner assuming, as

previously mentioned, a vertical plane of symmetry.

Given: g{w(r,a,z); gg¢=0 ; &, (rez)= ¢w(r,vr—e,2)

Find: ¢ with [J ¢ = 0 such that

(i) ‘.a-—é-: - 3¢W

o r=/
or or °’
(i1) %% = © , 6=0,7 (7)
(iii) ¢ = O y Z £0

for the range of variables 0£zLe® 0£0Lw, 1{rg9 . The
radius has been taken as unity without any loss of generali‘ty;

In cylindrical coordinates the wave equation for ¢ is
¢"" T e 23 (8)
Operating on each term of the equation with the Laplace operator
- -4z
L( ) = f e ( ) dz
o

one obtains for the transformed potential f‘the partial differen-

tial equation

£r+%¢;‘+:’z-§;e-'azf;o - /



-16-
The particular solutions of Equation (9) applicable to the present
problem are linear combinations formed of products of trigono-
metric and Bessel functions
S m6 ' Im/’dr)

f = { cos mé Km (=P - (10)
where the arbitrary constants are functions of s, 'The functions
Im and K, are modified Bessel functions.

If the sine terms in Equation (10) are eliminated it is pos-
sible to satisfy Equation (7ii) by choosing integral values for m.
Furthermore By limiting the problem to wing-body combinations
with vertical planes of symmetry, the values of m are even inte-
gers., It can be shown from the asymptotic expansion that a term
of Equation (10) containing Im(sr) will represent a wave traveling
upstream in the direction of the characteristics z+r = constant.
Although a superposition of these waves can satisfy the third ’boun‘d-= (’
ary condition in certain instances, such a s-buperposition is unneces-
sary in the present case, Only the Bessel functions Km(sr) are
retained henceforth. The general form for the transformed inter-
ference potential is thus
eo e0
f = 2 Sy = T G coszne Kfom)
A=90 neo

The undetermined functions of s, C,,(s), are obtained by means
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of the remaining boundary condition, Equation (7i).
Because cof the vertical plane of symmetry, the normal ve-
locity induced against the body by the W‘ing éan' be expanded in a
cosine Fourier series of even multiples of 8 wherein the amplitudes
are functions of z,
o0
_é_‘_é_;._ ‘_.Q_i‘:!- = Z fm(z) Cosznée ; r=/ (12)
oer or n=o

With the definition
L[ % (*)] = Fnl<) (13)

there is obtained using Equation (11)

0 .
co « !
| 0):r=
é_f{ = F"" (<) cosane = ZCH@) cos2né "Kn{:- )jrel (14)
or n=o 'n=0 |

From this last equation the undetermined functions are finally found
to be

CZn('d)': Flh(d) L
~ Kap (2) (151

The potential in the s-plane is

o |
f: > Fin(»d) Ken(3r) cosame
n=0 _

0 Kap (9)

¢ is the inverse transform of[, or

, Ny oo ’
= L [ £, ) a7)
# Z__ 2n(4) Kan (47 cos2ne
h=o 4 Kap(2)
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Assuming the existence of ¢, Equation (17) gives the formal mathe-
matical solution of the boundary-value problem. If ¢ were to be
found in a table of Laplace transforms such as Reference (iZ), the
problem would be solved practically as well as formally. However
the possibility of finding ¢ is remote, and further manipgla‘tion of
Equation ‘(17) is required to get a practical solution, As will be
pointed oﬁ‘t, Equation (17) provides a practical method of determin-
ing the body pressuresi, but for a general point in the field a dif-
ferent approach is more convenient. The new approach, adapted
to numerical work, is simply a different mathematical formulation
of the problem leading, >of‘ course, to the same results as the La-

place transform theory.

2.4 Formal Solution by Method of Axial Distributions

In the foregoing section it was shown that the interference
perturbation velocity potential ¢ could be determined as a super-
position of potentials varying as cos2n@. Each of these potentials
can be interpreted as that for a wing-body cémbination, the one
correspondipg to n = 0 being axially symmetric. These wing-body
combinations when added together will pro&uce condition (ii) of
Figure (4). Thus the wing-body combinations will correct the dis-
tortion of,th‘e cylindricé.l body caused by the wing=alone pressure

field. Each of these Wing_body combinations would appear to be
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quasi-cylindrical. However since the boundary conditions are to
be applied on the cylinder, fhe problem is exactly cylindrical.
For n = 0 cos2n® is unity, and the wing-body gombination for this
case is axially symmetric. The geometry of the configuration is
shown kin Figure (5). The normal velocity at the cylindrical sur-
face, the pressure coefficients, and the potential all have no de-
pendence on 8. For n =1the corresponding properties of the w'ingm
body combination vary as cos20. Figure (5) also illustrates this
condition. It is to be noted however that the amplitudes of the
normal velocities and pressures vary in the downstream direction.

Karman and Moore in Reference (10) have; given a method
of determining the pressure field of an axially symmetric body at
zero angle of attack by distributing along the axis of the body a
certain fundamental solution in such strength as to satisfy the
boundary conditions at ‘the body g:,urface . It is significant to ask
Qhe‘ther or not it is possible to determine the potential and pres-
sure fields of the wing-body combinations.for n» 0 by means simi-
lar to those of Karmén‘and Moore, The question can be a‘nswered
in the affirmative, The method depend‘s on using a suitable funda-
mental solution,

The fundamental solutions sought are of the type varying
as cos2n@ and are thus of the form bz"(*lr) CoS2MNE where b;n (2,r/

is a function of z and r. The only condition on h(z,r) is given by
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Equation (7iii) since (7ii) is satisfied as before and Equation (7i)
is satisfied by distributing the fundamental solution in variable
strength along the \axis . It is known that functions of the form
(2-‘- l"') 2 where m is a positive odd integer will be imaginary
outside the downstream Mach cone from the origin and hence will
have no real contribution to the potential there. If now hzn (z, r)cosané
is substituted into the wave equation in cylindrical coordinates,

the function /72,, (‘l‘-, r) will be found to obey the differential equa-

tion
_;_z/'___g.n+ 1 dhan _ 4n® o~ Bzézn_ o
ar* Foor 2 da2* (18)

Particular solutions of Equation (18) containing a factor of the type

)% |
(-Z -r are given as

_ ' Y. 24
bntzD= (Y
r=-. (19)
z "
bz” (‘2‘)") = (}L rt)z”* 1/1 | .(ii)

Although either set of fundamental solutions should be feasible ,
the second set has a high order singularity on the Mach cone, It
is the first set that is direé’tly related to the Laplace transform
solutions. Derivatives of Azn‘t r‘)t‘osuio with respect either
to z or @ will be possible fundémental solutions, | It now remains

to be shown that these solutions can be distributed along the axis
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to satisfy Equation (7i),
Consider a point P as shown in Figure (6). The potential

¢,,(P) associated with the n'th Fourier component is

% (P} 2 2n- Yz

= (os2né J (20)
in —n 91,, (€)[(2- 8- ¢
A

where y {g) is the strength function for the axial distribution of
the fundamental solution, It is apparent that determining 9’2,., /é)
is tantamount to fmdlng ¢ZH(P) anywhere in the fle].d, presuming
the existence of g {;) . Before proceeding it is convenient to

change the limits of the integral by introducing the change
: » | )
G (§)= fen (§-1) | (21)

so that Equa‘tion (20) becomes

2n-/.

b (P = coszné _]
- (22
£, y Le-pe0tr] Y o
By differentiation one obtains
a¢ ) an- ,/1
[ X = - ]
/ cosand szaﬁ)ﬁ 3] 7§ (23
r=/
Equation (23) is a Volterra integral equation of the first kind with
<t

a kernel of the type K (2 '5) .. Assuming that the properties of
j&ﬂ(fj are such that the integrand is zero at the variable upper

limit where the kernel is zero (except for n = 0) there is obtained

2 24
'a‘{m: casan® ‘7"{"/3%[( ;"’)—/J Jf)'?-‘#( )
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There is a simple relationship between the components of the

integral equation as follows:

L[é"/ ] “""’Z[.Zw]/[k./ (25)

res
27742
where A’."/a- ;) & [(2‘ f"‘/) —_]

From the point of view of Laplace transform theory, Equation (24)/
is simply the convolution integral corresponding to Equation (25),
This simple duality between Volterra integral equations of the first
kind with the type of kernel discussed here and Laplace transform
theory supplies the formal coﬁnection between the two methods used
herein :to solve the wing-body interference problem. There is com-
plete one-to-one corresp\ondence between the Fouriéf components
of each method.

Now in the preceding section it was found (Equation (17)) that

L( M»)- cos 278 Fnl) $anl3) o oy

26
“Hanc) (2¢)
Noting (Reference (13)) that |
' ﬂ"/;

L.[‘KVQQ] 'LZET—ﬁz*z%)d]-‘dfb”*%)elﬁnﬁ”

= e

Equations (25), (26) and (27) yield

2h=/

6 /4)"2 ﬁ”// hnt) < __ o (28)
- 402// 'dﬁin'av

The inverse transform of the right-hand side of Equation (28) if it
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were known would be the stréng‘th being sought. Now the inverse
transform f, (z) of F, (s)is known and if the inverse transform
of -‘d‘".,/e‘ kz; fA) \e‘xisted and ‘w.ere known, a simple cbnm
. vo\lu‘tion based on EQuatipn (28) could be set up to determine gzn;(z) .
Heweve? if the complex im}ersion integral of the Laplace transform
theory is api:)lie'd 'té this function,] it can readily be seen from the

asymptotic form of the integrand that the integral is divergent, To

overcome this dlfflculty, recourse is had to integration by parts.

i G [ 9l oz
G ()= 3 £

and pefform Zn-1 integrations by parts of Equation (22). This yields
' 20='/n

2-r+/ )
- » ]
}5 (P = Cos2né yé /f/ [z fw) -r 4’_; 29)
anr an a 3”-/

S 0 $
Note that we could have started with this equation since physically
it represents the superposition along the axis of fundamental solu-
tions which are 2n-1 derivatives of the original fundamental solu-
tions. A simple convolution integral can now be obtained for

(20~1) o ,
.9217 (-Z) . Note also that 2n-1 differentiations amounts to one
integration for the case n = 0 so that the aforementioned difficulty

for this case is overcome., In 2 manner similar to that used to

obtain Equa‘tlon (28), ‘there is obtained

L Y

/M ¢) ; |
;/_] fé).. 2 /2»// 44-”/4)‘][A;°&;b) (30)
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This is the equation that has been used to determine the axial strength
' rai0-1) _
distributions. The convolution integral for 78 /&) Wwill now
be found.

The inverse transform of the quantity sF, (s) is known from

the given information.

-7 | /
L[ én/‘o)] = fz"’ (2 (31)

However the inverse transform of the second factor in Equation (30)

defines a hitherto untabulated function

- ! /

The MZn(z) functions will subsequently be developed in detail. The

convolution integral corresponding to Equation (30) can now be formed.

(2n-%/

.7zn (2) = 2 /zn’/ Jfa//f/Mlﬁ (a- §)"§(33Y

(e, rant)
The particular virtue of Equation (33) is that it gives the axial strength

function as a simple integral of a function known from the boundary
conditions together with a characteristic function independent of the
| (am-1)
boundary conditions. Once the strength function 9“' (&) has been
determined, the interference potential (or pressure) can be determined
from Equation (29) for any point in the field, This solves the boundary-

value problem. Before discussing in detail the M, (z) functions, some

discussion of pressure coefficient determination will be given,
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2,5 Determination of the Pressure Coefficients

The pressure coefficient is defined as

C, = P-R
Ya fVo?'

and on the basis of linear theory is given by

CP = =2 a%z
Vo

(34)
Using this result together with Equation (29) yields
2-r+i _ an=lf
CPM" 2 52.;7:’ rzn/' ) p) [(2 §el)-r ‘lf (35)
Vo r an an
o 2%

2,6 Alternate Method of Obtaining Body Pressu:n:e Coefficient

In the methods already described it was shown that by de-

4
termining first the function gﬂﬂ—/)fj for the desired Fourier
arn

component that the potential or pressure anywhere in the flow field
can be obtained. It is possible to go directly from the boundary
conditions to the pressure coefficient on the body if another set of

characteristic functions is introduced. Consider the interference

potential given by Equation (17)

én:.-. cos 2ne L™ [ Hnl? _"_(_ea_’_‘?.‘."_’-] (36)

From Equation (34) and the relationship

L _%_én = 4 L¢2n (37)
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it follows readily that

CPM = 2 c::}s 206{ 4';;‘"(4) L [ Bl ( k;.,&a)v- Acz., /_2] (38)
° Zn {0)

Let the inverse transform of the expression involving the Bessel
function be taken as the definition of a set of characteristic functions,

-/ ¢
W,,(2) =L [ Kopn () + Koy My (39)

kz;, (A)

vThen the equation for the body pressure coefficient given by Equation

(38) becomes

Cp = 2%, coszne _ 2coszn7§f /;)Wzg;-g)dg(ém)

2R Vo

It will be shown subsequently that the first term represents the ef-
fect of the disturbance right at the point (the so-called Ackeret value)
while the second term repres:ents the accumulated effect of all other
points suitably weighted in proportion to ‘}Jhe ir inflﬁence . In this
connection the WZn(Z) functions have a very simple physical sig-
nificance,

The Wo(zv) function has been investigated by G. N. Ward in
his paper on quasi-cylindrical flow, Reference (14); and it is the
symbol of Ward that hés been adopted here. The W, (z) functions
have interesting ma‘thematical and physical properties and will be
discussed later.

It has been shown that the pressure anywhere on the body
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due to any Fourier component can be evaluated as the simple inte-
gral given by Equation (40). The question arises as to whether or
not this direct method cannot be used to determine wing pressures,
Unfortunately while one set of characteristic functions is ample
for determining the body pressures, a separate set would be re-
quired for each spanwise position on the wing. It thus seems better
to proceed to the axial strength function through one set of charac-

teristic functions, and hence to the pressure at any point on the wing.,



-28-
III. PROPERTIES OF THE CHARACTERISTIC FUNCTIONS
3.1 Determination of MZn(Z) ‘Functions

The M, (z) functions have been defined as the inverse trans-
form of an expression involving the modified Bessel functions of the

second kind in accordance with the following equation:

M, !z)-L

ae /r,,, ¢<) (1

From this definition a Fourier integral representation for I\/Izn(z)\
will be obtained with the help of the complex inversion formula of
Laplace transform theory. It will be noted that the expression on
the right hand side of Equation (4l) exhibits singularities at the origin
¢

and at the zeros of /f2n () , which are all in the left half-plane,
The contour shown in Figure (7) is to the right of all the singulari-
ties and is the one used with the complex inversion formula (Refer-

ence (15)). ‘o
4
ol

’47;r7(i§) c?ZFL € d-
. e Ky, ()

- ¢ 60

(42)

Since there are no singularities of the function in the region bounded
by the contour of Equation (42) and a large semi-circle in the right
half-plane, by Cauchy's theorem the integral could be alternately
integrated over this semi-circle, Using the asymptotic expansion

‘
for kzn /4) as given in Reference (16), the asymptotic form of

the integrand is
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et

Serin TVE & [' + o (%) )

¥ RI2<€ O itis clear that the exponential dominant of the inte-

grand will make the integral over the semi-circle not only absolutely

convergent but convergent to zero. Therefore

M,,(2)=0 ; Rlz<o0 (44)

This fact is helpful in evaluating MZn(Z) for positive real values of z.
The conversion of Equation (42) into a Fourier integral is ac-
complished by a quarter revolution of the complex s plane into the

complex t plane,
t =is 45
(

It is readily shown that the contribution of the indentation to the in-
tegral is nil, and passing to the limit of zero on the contour radius

gives

MZn/E) =-L

Py ‘/t I (46)

€ fppl-it) ZVL tkz,,/_(z‘}
0

/°° -t f(i"') -we- f('/z-—y/

Making use of the following identities from Reference (17),

Kan (8 = Z (-0 [/ (&) v Yy (2)]

Kom -¢2) = _2»:(-/‘/"[. Ten(t) =& Ven (8)]
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and rationalizing the integrands, one obtains the Mzn(z) function as

a sum of a Fourier sine transform and Fourier cosine transformo.

(5) Men ()= S(z) + C (2)

' -, 00 . : ‘
) S)= 200" LTatcst s Yenhlsr?]
‘ Tr o C[ Yg':/t) + J;""/t)]

A :
(9 c(z) = 260" j 'LV t2) cosT = Taplt)simt] ocon 2
| 7T Jy L Yantt) + )]

From the simple symmetry properties of the sine and cosine trans-

forms it readily follows that
My,lzl= 2 C(z)= 2 S(2)
The cosine transform was used to determine Ms, (2),
- 2T v’ 8 cst-Tontt)sent]
o= ldcd
My, (2)=_ 20" [ Von (¥ 05T Jan casztd?

T Elhee) v T ()]

Ordinarily the calculation of a function from a Fourier inte-

(47)

gral is not convenient because of the infinite interval of integration.
unless the integrand rapidly becomes negligible or asymptotic to an
integrable function. The se;:ond case was encountered for M, (2).
The integral is split into a finite range plus an infinite range where
the asymptotic integrand is used. A sharp estimate of the error due
to substituting the asymptotic integrand was found.

Denoting the part of the integrand independent of the trigono-
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metric function by IZ (t), Equation (47) can be split up.
n

M?.n(i) = ff"} [/I /f/coszto'tf-jl' /t‘)cosa-tdt] (48)

The evaluation over the finite interval is simple. The asymptotic
form to be used for Izn(‘t) in the second integral is ob‘ta'med with
the help of the usual asymptotic expansions for the Bessel function

of the first kind. ,
” .
o~ ("/ I/__’[[Co * -E}-'f' Ct + P .
Ilﬂlt) 2z Yr @t) (20° (49)

with

2
4- | e
- (¢16n’-1) + 32
(iii) Cl = oo 72 (50)
n® t sesErn 737
. C. = 4096/ - 888/ - S
vl "3 784
) Cq = 65536~ 228,528 178,688 0 367,660 "+ 27, 889

6/44

The second integral can be estimated with the help of Equa-

tion (49) as

o0
/t)msez" It = /-// L EL‘EI_C_E dt (51)
fr Ve (2t)" *E )

where E depends on the order of the function (n') , the number of

~ terms of the asymptotic expansion (m), the upper limit of the finite
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range of integration (‘c“) , and the argument of the function (z).
- An up?er bound on E will be giveri,, The integrals involved in
Equation (51) can all be reduced to integrals of either Fresnel
type as tabulated in Reference (16).

In estimating the error £, it is first noted that for large t
the integrand I(t) becomes a monotonic decreasing funétion ap-
proaching zero asymptotically. Also the difference between Ln/{-}
and the first th terms of the asymptotic expansion decreases as t

increases as shown in Figure (8). The exact expression for the

error 1s o i m
E/ﬂ;m,?.i)’-“[ At - .‘:’2—} /_;77' Z (g:)" cos 2 oL 52)

=0

wherein the amplitude of the cosine wave is progressively de-
creasing. Since cos zt alternates regularly, the integral can be
represented by an infinite series of alternating sign and is less

in sum than the first term. Thﬂrefore

/E?’Zm,'gi)/ < /Iznl?)- (-é) (zz) If Cosz-z"/a/z‘

l Z/I It)- (-:)/—Z

This estimate gives a sharp and practical upper bound on the error

e Y

involved by replacing Izn(t) by the first im terms of the asymptotic

expansion, In the calculations the error was held to approximately
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-3
10 = or less throughout,

Certain observations concerning the error are clear. The
error decreases as € or m increases, but increases as & decreases.,
Since the coefficients Cr increase as n increases, it is clear that
more terms of the asymptotic series are required for a given ac-

curacy as the order of the function increases,

3.2 Properties of MZn(Z) Functions

Various properties of the MZn(Z) functions can be obtained
by the methods of Laplace transform theory. Expressions valid for
small and large values of the argument can be obtained, and the in~
tegral equation defining M, (z) can be obtained.

It is easily seen that the upper bound on the error as given
by Equation (53) is of little value for small values of z; In fact for
values of z much less than 0.1, the foregoing scheme of calculation
is impractical. This is a direct consequence of the fact that the
MZn( Z) functions have a squére root infinity at‘the origin., For the
purpose of obtaining Mzn(z) about the origin, an expansion has been:
used. In obtaining tilis expansion the asymptotic form of the trans-
form of M, (z) is determined, and from this the desired expansion

is obtained. With the definition

' - = / ‘ .
Mzn(ii =L [-de'dkz:; (4)] (54)

it is desired first to obtain the asymptotic series for the right-
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hand side., This is accomplished from known properties of the

Bessel functions.

Kenl¥ = =

A3

(-4

e km(e)ns [T [1+ Z("»‘-d@m‘-s‘)--‘(4m‘-rzr-//‘}] 56

24 res r., {ad)r

The desired asymptotic series is
<€K,, (0 TTA 07 (84) al (@4)* B

Obtaining the expansion of MZn(Z) about the origin is equivalent to

taking the inverse transform of Equation (57) term by term with

the result

Mg,,(a}::: —[’::..[__’_ - /’5”‘*31@ - 25"0’-33/7‘,«-33 2%
7 LV 9- 76

(58)
4096n 5888n% +5L6n 757 , %
Z [6553‘n+434/760-/2288n ] }
760 .
- 203,/¢817%4 30,009
' 645,120

It is readily apparent that the larger the order of the func-
tion, the more terms needed for a desired accuracy. Because of
algebraic éomplications it was not possible to deduce readily the
general form of the n'th term of the series. It is believed that the
radius of Convergen‘ce. pf the series is greater than zero, particu-
larly as the values determinéd by it are in agreement with those

calculated by the computation technique in the transition region,
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An attempt was made to determine an asymptotic series
for MZn(Z)" In cases where the transform has a simple expansion
about the origin, an asymptotic expansion for the original function
can be obtained (Reference (17)). However the expansion about
the origin of the modified Bessel function of the second kind is
extremely complicated involving products of the powers of z and
powers of log z. As a result only one asymptotic term was de-

termined., The following expansions about the origin were used.

KL grrs = glogsaee 09

~(zn?) )27 an~/

D R S
(2n7) s Vet

kz; (<) ~

(60)

Only the log terms are significant,
These results together with the results given in Reference (17)
yield the asymptotic term for the Mzn('z) functions.

nc”ﬂo(@!)'v -;éa | (61)

— - s
MZ”/E’) 16m/6n / __,_‘”*’ (62)

(Jﬂ.’/ 2601‘-/ =

For values of z of about 4 the asymptotic term for Mo(z) gives good
accuracy. However for the higher order functions the results are
of little value since the value of the function is negligible by the

time the asymptotic term is accurate. The integral equation for
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the MZn(Z) functions is complicated and singular, and is of little
interest.

The numerical values of the MZn(Z) functions are presented
in Table I, wherein the increments of the argument are chosen
solely with a view to being able to plot a graph of the function.
The error of the function is about .002 in the worse instances,
being generally considerably less. For small values of the argu-
ment the result of Equation (58) should be used.

A physical explanation of the MZn(Z) functions should make
them more tangible. Consider for a moment theﬁequality of Equa=-

tion (33).
9'2"") L
2n (8) =2 (2nl] - ( 6
ﬁn(e §) Man (§)d § ()

(en’) o

Let fon(B-F)z=0; 2+ § (64)

[ Hm(H)f =1

PR
such that M(f} is a Dirac delta function and fln (f)is a unit

(65)

step function., Then

211-1) ' |
gz(,, (2) = 2% 2n?] My, (2) (66)
(4n/!)

Thus MZn(Z) is the axial distribution of fundamental solution nec-

essary to produce a step in f2n(z), the amplitude function,
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3,3 Determination of Wzn(z) Functions

The determination of the WZn(Z) function was carried out
in 2 manner very similar to that for the MZn(Z) functions. Formal-
ly the WZn(Z) functions are defined as

~ | L |
Wap (2) = L7 Han(9) + Han 02 (67)
A /rz” (90) |

The function W (z) was presented by G. N. Ward in Reference (14).
The actual values of WO(Z) were obtained by the A.dmirélty Comput-
ing Service as the byproduct of the numerical solution of some inte‘»
gral equations (Reference (18)).

For the application of the complex inversion formula to

the determination of Wzn(z) consider Figure (7). The formula is
<ed
Wan(z)= - j e # [ Hin(9) + b ""_’/q’a (68)
[4

ks Iyl 74)

From the asymptotic form of the KZ (z) functions it is readily
n

shown that

Kapla)+ i (0) _
: Jah (0) °05) 3 14> (69)

~ so that if z is negative and real, the integral of Equation (68) over
the semi-circle of Figure (7) would be arbitrarily small as the

radius becomes large, Therefore

Wanl(e)= 0 ; z2<o (10)
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Again the conversion of the integral of Equation (68) into a
Fourier integral is accomplished by a quarter revolution of the s
plane into the t plane in accordance with Equation (45), However it
is first shown that the indentation of the original contour about the
singularity at the‘or‘igin produces no contribution as the indentation
shrinks to zero radius. Around the origin the integrand has;the

following approximate form:

2m ~fen!]
4 , -
€ ¥ [hntaitkta)] _ # (@ ann’=4(2) r2m)!
Kan o) - -l (4 wpip=7 , (71)
4"(—£) (2hd.
yhso ,
7
'ﬁzif'd) - L ‘

It follows that the contribution of the indentation is zero in the limit,
The quarter revolution of the s plane into the t plane converts

the modified Bessel functions into Hankel functions as follows:

- XY S 1.
Km(ze™ 2)= £T¢F P20 o o) 2 cYi®] oo

Under the transformation Equation (68) yields

=0
sz,,(z') = ZLW'/ e‘t:‘s[ K‘nu't}i-/(z:, (‘.tf/o’l" (74)
| o: o Ko, 1) |
e 2!—77'/ e"tz“[ Kapl-<t) + A},', VY 74 It
| ° Kant-ct)
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When use is made of Equation (73), and the resulting integrals
are separated into real and imaginary parts, only the real part

remains

. . .
V‘/z,,(z-lz 2Cez) =2 S (z) | (75)

3 ©o 2t
C(z) = -7;;/[[/-— 1 JCOSE-ZLJZ‘ (76)

J;f:/f/ # Yon (E)

¥* ©o '
i ' .
S =5 [ Yant on ()3 Bl Tl
e LY
° T Zptt)+ Y0t
For purposes of computation either the sine or cosine trans-
form can be used, although use was actually made of the cosine

transform. The numerical determination of the Wzn(z) functions

was carried out in @ manner similar to that for the MZn(Z) functions.

z_* o
W, (Z) = 7.%../ _lmli)w.sefa’f-f%—[_z;’{tjas;tdf (78)
< T

*

with 7, t)= | — 2/77‘?' _ (79)
Tz, 08 + Ve (&)

The asymptotic expression used for the integrand is

* * #*
l;”/f) = _C:z__ + _Sf_-_ PR (80)
(ZZL)I. (204 .
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with
¢ = - (8% 3z)

P ¢+
C, = ~(96n " 16y ¢3/g) -

The second integral of Equation (78) evaluated by means of the

asymptotic series is

oo m o« 2 »
[Liwesstst= 3 C;njggj_'é_;_df.,.E (mm) o
k' r=o T (Zt) '

The integrals involved in Equation (82) reduce éither to 5(.‘ or
Ci integrals instead of Fresnel integrals. The numerical values
of ‘theseA, bo‘th from Reference (19), were used in the computation.
Again the error E* was easilgr estimated and the magnitude was

held to about 10'”3 o

3.4 Properties of Wzn(z) Functions

In the study of the mathematical properties of the Wzn(z)
functions, their expansions about the origin were found, and asymp-
totic results were ob?ainedl.° Some interesting mathematical_pro‘per
ties of the zeros of W, (z) were found. Although the integral equa-
tions for Wy,(z) were developed, no differential equation nor re-

currence formula was found. A simple physical explanation of the
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W,,(z) functions exists,
Th‘-e expansion about the origin of‘W‘2 (z) is equivalent to
: n

]
taking the term by term inverse transform of App(2) + Kap (4)
' vk&‘n (<)

in its asymptotic form. The asymptotic form is

kzn“)-'- kl;'") ~ LrY | 16n~3 71 . (83)_
— Sl ) o 80 =2 J L A - ,
Kan ) z/'o) 8 /4‘) .

Taking the inverse transform term by term gives for WZn(Z) the

vre sult

/) ¥ -3 ~ 2
Wile) = £ + @52 @3,
- (#89%2329%63) 3, (%8 ut//4ﬂ+gz)i+(84)
768 '768 |
+ 336 Vé-apsed % 872572 1899 z5, . .-
/22,8 80

- Ward in Reference (14) states that for W (z) the expansion is the
Taylor expansion with radius of convergence 2. Because of alge-
braic difficulties, the general term of Equation (84) was not deduced,
For reasons méntioned in connecticn with Nizn(z) only one
term is obtained for the asymptotic expression of WZn(Z) . The
asymptotic expansion of WZn(Z) is obtained by using the following

result for the expansion about the ofigin of the transform.

K anl®)¥Kap (4]
a2 e - (2_) Io]/'ﬂ)"'" ") (85)
Kan t0) & p‘(zmw
n¥ko
.In accordance with the results of Carslaw and Jaeger (Reference

(17)), only the last term produces an asymptotic term.
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" 8 [(#nt2] s 1
Wan (% PYanti) 247" /'Z) jPFEC )

We @) ~ ’é‘z (87)

In general the asymptotic expressions are of little value in numeri-
cal work as the function is usually very small before they are valid.
The convolution formula that expresses the relationship be-
twéen the transform of a product and the product of the transforms
yields the integral equations for the WZn(z) functions. For n&e 0,

these relationships hold.

n-tte. 20=Y% an-%h a0V an-=/,
L [20%een) ¢ (onaE202) | = -2Mlne W2 haul)
vire 42"
-2 an-%h an-Y2 an-%h
L [ 202 (2+2) + (1-#7)2 (z+z) ] = -2/”(m+y,)z [x, h—k l'-')]
f“ -4 2=/ (89
It is then an easy result of the convolution formula that
z n—‘& 20~ %, 20~ _3/1
L [_2/)(2— §) r2- §:2) + 6'/7—/}(2- &)z~ §+2)J Wap /;)Q/ j
an-Uz, 2m-t/a an-¥3 (90)

= an[ 2@*2)] = (#0-)E(2vr) 3 nito

Equation (90) is a singular Volterra integral of the first kind with
vWZn(§ ) as the unknown function. For n = 0 the equation is not true

because of a divergent integral and another result must be found.
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Analogous to Equation (88) and (89)

L 247 g eA ,-4 | 1
(m) | Ko (<) (91)

and /. (/_;2_'_:) = - ed[(old)*kelf4)1 (92)

With these results, the convolution formula gives a simpler inte-

gral equation for W_(z).

2 B owi(e-§)de= [T
s >

Again the integral equation is a singular one of Volterra's first kind.

Numerical integration of Equation (90) would be an alternate
way of determining the WZn(Z) functions, and an attempt was made
to compute them using this method. The Tayior series was used
to obtain the first few values of the function, and the integral equa-
tion was used to extend the range of definition of the function., The
cumulative effect of errors cause the process to become inaccurate
after a few steps. An unsuccessful attempt was made to develop a
simple stable method before recourse was had to the method of cal-
culation already described,

vThe numerical values of the WZn(Z) functions are presented
in Table II. The increments of the argument were chosen with a
view to constructing graphs of the functions. The error was held

to about .002, being in general less. Any obvious numerical errors
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were corrected, and any small errors that may remain are of
sufficiently small magnitude to have no effect on the engineering
accuracy of the results, For small values of the argument, the
Taylor series and calculation method were in accord in the tran-
sition region., Further evidence of the correctness of the calcu-
lations is furnished by the properties exhibited by the zeros of
WZn(Z)"

The zeros of the functions were equal in number to the order
of the function. (Cnly after the last zero does the asymptotic term
have any meaning)., Furthermore to the accuracy of the calculations
the zeros wereequally spaced, but whether this is an exact mathe-
matical fact could not be ascertained. However the equal spacings
of the zeros confirm the good accuracy of the calculations.

As previously I:nentioned, the WZn(Z) functions have a direct
physical significanée from which their overall mathematical pro-
perties can be estimated., Specifically the WZn(Z) function can be
interpreted as proportional to the body pressures produced by a
unit disturbance (delta functionpin the amplitude function on(Z)°

Let

f.,(fl=0 5 F#o (94)

£—>o

and . 3
Lo Lﬁnffjdf= 2 | (95)
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Then applying Equation (40) to a point not at the origin

Cem = - 2 co‘.S/Zﬂa W, (2) ; r=t.0 (96)
o .

The statement made above follows frorﬁ Equation (96). The func-
tion Wzn(zas) is thus an influence coefficient being the influence
on ‘thé pressure at z of a disturbance at g o

Several important physical facts follow from the numerical
values of .Wzn(‘z) . The pressure amplitude on the body due to a
disturbance fzn(;)coSZﬂs is a damped oscillation approaching
zero asymptotically, passing through zero pressure precisely Z2n
times, and with the points of zero pressure equally spaced. The
effect of a pressure disturbance for n = 0 (axially symmetric pres-
sure distul;bance) damps to about 4 percent of its maximum value
a distance of seven body radii downstream, whereas for n = 5 the
same damping occurs in 2 body radii. The effect of higher har-
monics to damp out quickly on the body in the downstream direc-

tion is thus apparent.
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IV, APPLICATICN OF METHOD TO RECTANGULAR
WING-BCDY COMBINATION

4.1 Wing=-Alone Potential

The actual non-planar system for which the interference
pressure field will be calculated is that shown in Figure (3a); nameu
ly, that of a circular body at zero incidence with a flat rectangular

wing at incidence a The wing alone is taken to extend straight

Wwe
through the body from side to side, and the Mach number is taken
as \[E_ without loss of generality so that the Mach lines will fall
at forty-five degrees to the axes,

Since the wing-alone in the region of the body is assumed
independent of wing-tip effects, the flow due to the wing alone is

two-dimensional and will be given by Ackeret's theory (Reference

(20)). The potential for the upper half plane is

ﬁv: Vo2 ; ¥2% (97)

m: VOE-I—"(wVO(i"y); y‘* (98

where VOaW(zmy) is the perturbation potential due to the wing.

The potential causes uniform downwash and no sidewash,

4,2 Fourier Amplitudes of the Body Normal Velocity
‘The f,,(z) functions of Equation (12) must now be determined,

With y = r sin 6 and r = 1, Equations (97) and (98) give

a&w_a s r=l0o ; SinE>E

—r (99)
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d$w =—aVsm&;r=i; sinelz (100)

or

The results are shown in Figure (9). The on(Z) functions are given

by the following integrals from Fourier series theory.
sin" 2
]C z) = 2 ' 101
o (2) 7 J,, oAy VW, sirn & dE (101)
sin~'2 |

(2 = .7:’_4.:/ oty Y St & cos2n6 6 (102)
o

Carrying out the integration yields the specific functions for this

—

combination,

fol2)= 2Vt - ym5a] ; 2 41

(103)
fo(i):' 2 Vo Y ; 2%/
- (104)
£ :Z%“w[ cas(zn-)f_ coslant)ff 2z 7.
/7 w (2m=¢) 2774/ ;ﬂ“/] / (105)

8/ n#o

7‘420(*}-"'- —4%G‘w ; z},/)- 7 # 0 (106}
7 Fr*=1)

c.as%:‘m:

where

It is conveﬁient that these functions are known in closed form, but
where the functional forms are unobtainable, the numerical methods

of harmonic analysis can be used,



~48-

For the recfangu].ar wing there is no sidewash outside the
region of influence of the wing tips, and hence there is no contri-
bution of the sidewash to the normal velocity at the body surface.
However for wings with swept leading edges this is no longer the
case, The values of the Fourier amplitudes for the general case
of supersonic edges are given in the Appendix. Through the use of
this Appendix, the problem carried through here for a rectangular
wing can be carried through for a triangular wing with supersonic

leading edges.

4.3 Axial Strength Distributions
The axial strength distributions have been computed using
Equation (33), For the values of f, (z) given previously, the de-

rivatives are

[
fm(i) — 42 Ccos[z» “’5-,"/"2‘]3 Z2< | (07)

Vo & .
7rw V.i-2*>
0 .
f,’z,, (2) = o &>/ (108)
V%cyﬁy-

As long as z€ 1 the singﬁlarity of fzr'l(gy will not be manifest,
However the square root singularity of M;_(z- e') will arise, The
numerical integrativen through such simple singularities causés no
difficulty ’(but increases the amount of work), However at z =1 the
singularities of fzr{(g) and NIZn(Z‘“g) come into confluence to produce

. L _ . (2n=1)
a logarithmic singularity in the strength function 72” {'Z'} .
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It is readily shown that for values in the neighborhood of unity, the

@n~)
dominant part of 2 (& is

an 7 ‘
2°(200) (0 1q) fog |1- 2/
(#n!) / f/ 7 109

as z =1 from either side.,

The necessity of the 2n-1 integrations by parts of Equation
(20) resulting in Equation (29) is now clear, If a fundamental solu-
tion of the kind given by Equation (19) had .been used, the strength
functionswould have had non-integrable singularities. Even after
Z2n-1 integration the strength function contains a _singularity, fortu-
nately integrable.

(an=1)
Some values of gz" (&) are plotted in Figure (10). This

plot shows the singularities passing through z = 1.

4,4 Pressure Distributions of Fourier Components
’ (20-1)

2 (&) is tantamount

to getting the pressure coefficient anywhere in the field for any one

Obtaining the strength functions g

of the Fourier components., Equation (35) has been used for this

purpose, the integration being performed graphically.

/

The pressures due to all the components are finite evéry-

(em~1) )
” (&) has a logarith-

where. Although the strength function qg

mic singularity, and the other part of the integrand has a square
root singularity, the integral is always finite even at the confluence

of the singula.rvi‘tieso The detailed pressure distributions will be
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presented under Discussion, For large values of z-r+l and n
care must be taken in the numerical integrations to get accurate
pressure results near the body. In this region, where the pres-
sure coefficients are small, the W, (z) method gives more ac-

curacy than the M, (z) method for less work.

4.5 Approximate Expressions for the Pressure Coefficients for
Large and Small Values of z. '

It is possible to find approximate expressions for the pres-
sure coefficients for large and small values of z, This is best ac-
complished by the methods of Laplace transfofm theory, methods
already used to get expansions for W, (z) and Mzn(z) for large and
small values of the argument. From the practical point of view,
the method depends on being able to transform the f'zn(z) functions
to the s-plane, and being able to obtain asymptotic expansions for
the transforms.

Starting with Equation (17) for the interference potential

- @ |
- <, or)
¢"‘L Z Fan' 4 _/_“_’L{'_—- coo2n O (110)
n=e -4 KM (2)

and making use of Equation (34), one obtains

Cp === 2 COS" 2ﬂ0‘.-, Fa'll") /an/A"_/] (111)
an Vo [ Ko ()

First the analytic form of F, (s) is determined. The integrals of
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Equations (101) and (102) are substituted into the definition of the

Laplace transform

B, () = /; 5-420 (2)d2 (112)

and the order of integration is reversed., After one integration

there is obtained

W‘ Y
- 04 O |
Eh/'o} = _____Zdw‘d%/ € 4.6 coorn® 98 (113)
7- ©
and
1r )
-—db 4im O
5(4) = q;varo € simnedé , (114)
o

Equations (113) and (114) are integrated by means of a single trigo-
nometric substitution and of certain integral formulas from Watson,

Reference (16), »
U : |
J:{z-) f cos (V6 - & 51n8)d 6 (115)
Q

Y~

and -
s
’ ° L} d .
E—J(-Z) 77_/ sin(J6~ s ), (116)
Q

Watson calls the J-;) {Z) function the Anger function, which reduces
to the usual Bessel function for integral values of-x) . Watson
calls the function E‘)(z) the Weber function, whereas Jahnke and

Emde (Reference (21)) call it the Lommel-Weber ifunction. The
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integration of Equation (113) gives

(117)

Fant §) =- ‘;d“’ V"[J;n_, /¢'§)- T2nes /‘Og)
Sl Byl §)0i Eamat i 8)]

The functions J;(-Z) and E‘.v (z) are respectively odd and even for
odd integral values of ¢ , and obey the following recurrence rela-

tionships:

2To02) = T 02 — Tgu ()
2 Egz)= Epyrz) - Eu(2)

(118)
(119)

Equation (111) can now be written

-l ’ |
Ce, = + 4oy Cas2n6 [ l/ r Eza(s‘a)-:-c'];:;( "4’] "'4":’) (120)
-0

*

)

Co= 2y LT Eotis)1cdotca) ][ Kolor)
Ap= < Awk Elocslcacj[m‘ -

Fortunately the transforms have simple asymptotic expansions

for large s, and expansions for CPZn for small z are readily ob-

<

tained. In obtaining the asymptotic expansions, use is made of
* the results of Watson,Reference (16), p. 309, for the Weber func-

tion E

-.J(Z) and the Anger function Id'(z). The simple asymptotic

result is y .
4 o y N 0 / R / 1,)
EZHI‘.’)*‘Tznl")~‘ ”hl"/ b gl --E. "“6_(29__:_ oo of 9 n‘#o
T e a0 g4 /7 (122)
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The Hankel function is &ominated by a negative exponential in the
right half plane and hence can be ignored in the expansion, With
the aid of Equation (122) the entire asymptotic result can be written

down.

-B(r=1)

[E'z,-, (co) ¢ Jp lc‘o)][ Kinfor) [ 20 * /

— LA
< k;n{d) [‘43

(123)

60 t-r)=(3rv) ] ; h#o
Brat

Formally taking the inverse transform of Equation (123) will give
a result for the pressure coefficient Cp,  that is in accord with

the calculated solution. The following Laplace ‘tréﬁsforrﬁs are used.

-t =d(r=1) =g r=/
L e (124)
PER (z r+/) ; 22/
L-/ e..,g( 2L r=f
<% { z-r-;-f) g2 =/ (125)

The final result for the expansion of the pressure coefficient for

small values of z-r+l is

., =

fc(w CaSZnG (B-r+: r+:)
(126)

‘ 3 /e
[/‘ﬂzfl-’/ "/3’*’)](1_-'3.‘).'. N ; 2>/r- //
F6r n¥o

(p,=0 ; 2Z2&r~1 ;n#e (127)
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For n = 0 the results must be halved,

Equations (126) and (127) disclose several iﬁteresting re=
sults. . For r = 1 the first two terms are the same for all the
Fourier components. This can fnean only that the range of val-
idity of the result must decrease as n increases since the présn
sures are in fact finite everywhere for the wing-body combination.,
The lines z-r+l equal a constant correspond to the downstream
characteristics, and on the basis of the first term the pressures
near the origin of z damp along the characteristics inversely pro-
portional to the square root of the radius. This: phenomenon turns
out to be a good approximation for a large region for n = 0, but is
of little value for the higher order Fourier components. The re-
sult shows ﬁo increase in damping as n increases, It will sub-
sequently be shown tha‘é the pressure coefficient based on Acker-
et's theory is a better approximation to the true solution for small
values of z on the bo‘dyc However the present solution has the ad-
vantage that it predicts the mathematical form of the solution for
small vaiues of zn-r+_1 for points off the body as well as those on
the body.

To obtain approximate values of CPZn for large values of
z, it is necessary to expand the transforms of Equations (120) and
(121) about the origin. For the Fourier components of order greater

than zero, it is to be expected that the asymptotic results will be
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valid only after the last zero of the pressure coefficient. Only
for n = 0 will the asymptotic result be of much value. One asymp-
totic term for Cp,, will now be given.
The first step in obtaining the asymptotic term is to ex-
pand the transform about the origin and find the first term giving

an asymptotic result, This term is given as

' m -z +7
f':;n () Kon o) . Lo 7{5) /o9~ (128)
Kan C2) 7T ($n* ///w//"
B Kol Yo foga
ko (4) Y/ (129)

These terms produce the following asymptotic results for CPZn

with the aid of Carslaw and Jaeger, Reference (17)}

, . LM =28 :
sz,, ~ —32%ycos2né (r +r )(en) (130)
. /
72 ’”;;n‘-/)/zﬁ-l/ >zt
Cp ~ +%w | | f (131
) T %w

=
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V. RESULTS AND DISCUSSION

5.1 Interference Pressure Distributions of the Fourier Components

The results presented and discussed herein are for a circu=
lar body of unit radius at zero angle of atté.ék with an inclined flat
rectangular wing. The chord of the wing is four body radii, and
the span of the wing is arbitrary since no tip effects are considered,

The pressure distributions associated with the interference
potential ¢ are presented in the Figures (11) to (14) for the first four
Fourier compdnents. ’The pressures are presented for four values
of r so that the span loading curves for each Fourier component
could be established. With regard to the first component for n = 0,
the axially symmetric component, Figure (11) shows that it pro-
duces interference pressures of invariable sign. The abscissa
has been so chosen thé.t it measures distances behind the Mach line
lying on the wing and originating at the leading edge of the wing-body
junéture, The discontinuities in slope of the pressure distributions
at z-r+l=1 are a consequence of the fact that the body becomes total-
ly immersed in the wing-alone flow field at z = 1. The higher Four-
ier components tend to neutralize this discontinuity in slope, since
the pressure distribution should be émooth here for the actual wing-
body combinatién.,

It is apparent that the pressure distribution is propagated

outward from the body along the downstream characteristics and
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that a damping of the pressure occurs. For small values of
z-r+1, the pressure coefficients are in good accord with the ap-
proximate results of Equation (126). On the basis of this equa~
tion the pressure coefficients should vary inversely as the square
root of r in the r’egion of validity of the expansion for small z-r+l.
A glance at the figure reveals this to be approximately the case
even in regions where the approximate result for small z-r+l is
no longer valid. However for large values of z, the asymptotic
result, Equation (131), predicts that no variation with r will oc-
cur., If the vélue of r is held constant, and z is increased suf-
)ficiently the pressure distribution should approa;:h that for the
wing«bbdy juncture. Even within the range of the figure, this
tendency is seen. Thus the damping of the pressure with r var-
ies with the inverse sciuare root of r for small values of z-r+l,
to no damping for fixed r and large values of z.

Some significance can be attached to the first term of the
approximate result of Equation (126) for small values of z-r+l,
at least for the body. It turns out to be the first term in the ser-
ies expansion for the pressure computed on the basis of the Ack-
eret theory of Reference (20). It is to be expected that the pres-
sures on the body should be given accurately by Ackeret's theory
for small enough values of z, since the curvature of the body

will have no important effect, The domain of dependence for a
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point on the body with a small z coordinate will be nearly plane,
and the body normal velocity will not vary laterally because of
the axial symmetry so that two-dimensional conditions are closely
approximated. If the local flow angle (due to the wing-alone flow

field) is a, then on the basis of Ackeret's theory

Co = 2% (132)
VM~

For n = 0 the result given by Equation (132) is

S

+“W(I— ’_il ° zél

e J
C’% - i n i (133)
& A w ; z2/
r

This result has been incorporated intoc Figure (11), and the agree-
ment between it and the true solution is very close for z& 1. If now

the expression for CPO is expanded in a power series, the result is

Cpor. 4-°(w(z~'&_’_?-_4;._...) (134)
T Z )

The first term of this result is just that given by the first term of

Equation (126) for r = 1. While the Ackeret value as given by Equa-

tion (133) is a better approximation than the Laplace transform

result of Equation (126), it is valid only on the body and does not

predict the mathematical form of the solution on the wing for small

values of z-r+l.

Another significance can be attached to the Ackeret values

4



~59-
of the pressure coefficient as given by Equation (133). It is exactly
the same as ‘thé first term in Equation (40) for calculating the pres-
sures by means of the WZn(Z) functions. The second term of the
same equation, the convclution integral, is the cumulative effect
of all the pressure disturbances in front of the point in question,
and is the difference between the Ackeret value and the true value
in Figure (11). It is clear that the net effect of all the non=-local
disturbances is sufficient to make the value of CPO approach zero
as z approaches infinity, rather than the constant value the Ackeret
theory predicts.,

The guestion arises whether or not the simple asymptotic
result for CPO for large z given by Equation (131) is valid, A ten-
dency for the downstream pressures to attain this result for all the
values of r is shown by Figure (11).

An examination of Figures (12), (13), and (14) for n =1, 2,
and 3 respectively, reveals a systematic variation in the pressure
distributions as n increases, As n increases there is a general
decrease in the magnitude of the pressure coefficients particularly
for large values of z=r+l. This, of course, is necessary for con-
vergence. A rough idea of the dependence of the magnitude of the
pressure coefficients on n ‘can be given fc;.r the body. On the basis
of Equation (40) CPZn varies directly as f, (z) for large values of

z since fpn(2z) is constant for z& 1. Furthermore on(Z) varies
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nearly inversely as n?

in this region with the result mentioned
above. The discontinuities in the slope of the pressure distribution
at values of z=r+1 of unity are still apparent, but to a lesser degree
than for n = 0. The rapid oscillations in pressure near z-r+l=1

are necessary to cancel a steplin pressure on the body as will be
pointed out. One of the most significant changes as n increases

is the increase in the number of zeros of the pressure distribution .
This is a direct consequence of the natu_re‘ of the characteristic
functions., For instance in discussing the W (z) function it was
pointed out that a unit disturbance varying as cos2n@ has precisely
Zn zeros. The significance of the increased num’ber of zeros is that
the contributions to the span loading of the higher Fourier compon-
ents will be much less proportionately than their contributions to
the pre.ssures , a fact that is of prime importance in determining
the number of Fourier components that must be used.

It was hoped that the higher order Fourier componentls would
damp.faster in the characteristic directions than the Fourier com-
ponents for n = 0 or n = 1, so that only very few components would
be needed to obtain accurate pressure distributions on the wing
away from the juncture of the wing with the body. However this
effect is not of any significance. In fact the damping effect is

greatest in the downstream direction rather than in the character-

istic directions.
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The range of validity of the results given by Equation (126)
for small values of z-r+l decreases rapidly as n increases, Figure
(12) for n = 1 illustrates this point clearly when compared to Figure
(11) for n = 0. The same comparison reveals that the Ackeret re-
sult for n = 1 is a good estimate of the overall trend on the body
for z € 1, but it deviates considerably from the true solution in sev-
eral places. A consideration of the boundary conditions at the body
surface will explain the reason. Consider a body surface point
having a small z coordinate, and focus attention on its domain of
dependence on the body for z 2 0. This domain of dependence is a
near-plane, and if the normal velocity induced by the wing has no
6 dependence, then the two~dimensional Ackeret theory will give
a good approximation. However for n® 0, there is a dependence on
6 of the normal velocity so that the plane is essentially corrugated
in the 0 direction. If the effect of the lateral corrugations were
taken into account by using supersonic wing theory, good approxi-
mation should be obtained for values of =z ( 1 since the solution for
n = 0 demonstrated that the effect of the body curvature was not
very important for such small values of z.

For large values of z the asymptotic results of Equation
(130) are not very significant except for n = 0. For n 2 0, there
are zeros in the pressure distribution and the value of Cp2y, is very

small before the asymptotic formula is valid,
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5,2 Wing-Body Juncture Pressure Distribution Based on Four
Fourier Components

The pressure distribution for the wing-body juncture based
on four Fourier components are presentéd in Figure (15), From
this figure a number of significant results can be obtainedo The
pressures due to the n = 0 and n = 1 components are large for all
values of z shown in the figure., Those for n = 2 are appreciable
up to about z = 3; those for n = 3 to about z = 2. This behavior il-
lustrates that great accuracy for small values of z can be had only
by increasing the number of the Fourier components, whereas good
accuracy can be had for moderate values of z with relatively few
components. Fortunately it is easy to qbtain a good approximation
for small values of z for the net effect of all the harmonics so that
the necessity of taking many Fourier components is easily circum-
vented,

Figure (15) shows that the general effect of interference at
the wing-body juncture is to reduce the magnitude of the pressure
coefﬁncients due to the wing alone, Only at z =0 and z = @ is the
effect of the interference nil. The reason for the behavior near
z = 0 is simple, For small values of z in the juncture the body is
effectively an infinite vertical wall, a perfect reflection plane.
Therefore the preséure should be that for the two-dimensional fecm
tangular wing which is identical to the wing alone. As a result the

interference has zero contribution here to the pressure., As the
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value of z increases there is a general decrease in the magnitude
of the pressure coefficients due to the effect of interference until
the pressure disturbances originating on the opposite half-wing
can be felt. As discussed previously, a value of z = 7w must be
attained before the opposite half-wing becomes effective at the
wing-body juncture. Behind this point the magnitude of the pres-
sure coefficient is observed to increase. In fact as the rearward
distance increases indefinitely the magnitude of the pressure co-
efficient in the juncture tends to increase to the two-dimensional
value again. This effect is not unreasonable since the wing is of
infinite lateral extent and the body is finite in radius for this con-
dition, .The tendency of the magnitude of the pressure to increase
near z = 7 is taken as an indication of the plausibility of the cal-
culated results.

The behavior of the pressure distribution fof small values
of z requires clarification. A.l‘though the component pressure dis-
tributions exhibit erratic behavior near z = 1, the resultant pressure
distribution must be smooth here since this point can be distinguished
in no way for the wing-body combination. The effect is purely a re~
sult of the choice of the wing alone, Further light will be shed on
this matter in connection with the discussion of the pressure distri-
bution for the top of the combination. For small values of z more

components are necessary for good accuracy, and in fact the point
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z = 0 in the wing-body ‘junc‘ture is the focal point of convergence
for the solution., Practically the solution in this region can be ob=-
tained by continuing the solution for larger z into the known value
at z = 0., Better still the solution can be joined smoothly to the
solution valid for small z that will now be developed.

It will be recalled that the effect of body curvature was not
sufficiently great for values of z € 1 to cause any large differences
between the true solution for n = 0 and the Ackeret solution. This
suggested the use of supersonic wing theory to obtain approximate
solutions in this region when the problem involve;d a dependence on
8. By the use of this device an approximate solution valid for small
z can be obtained which represents thé interference pressure dis-
tribution due to all the Fourier components. For this purpose the

fundamental formula of supersonic wing theory is required.

¢/X,l/,2/= "'.;",'.[[ #y {é,:j) a’?dj
- Vi(z-§)= ty-2)5- - §)*

Here ¢ is the potential at a point (x,y,z) due to a prescribed dis-

(135)

tribution of q>y over the y = 0 plane, the integration being performed
over the domain of dependence of the point. For the present wing-
body combination the value of ¢y is sinusoidal and for sufficiently

small values of z is given by

fy = oy Vo § | (136)
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in the domain of dependence shown in Figure (16). With the x,y,zr

axis orientation as shown in the figure

LN E‘-; |
f‘/’J 9, &) = 'iﬁ;_-‘-/f § /f(" (137)

[ ; ’/C;‘f)t" g;

The result for the pressure coefficient is

This result has been included in Figure (15), and it is clear that

the net result due to four Fourier components can be smoothly joined

to it,

5.3 Pressure Distribution at Top of Wing-Body Combination
The results for the pressure distribution at the top of the

body are shown in Figure (17). The pressure distribution due to the
wing alone has a step at z = 1. Those due to the Fourier components
are essentially the same as those for the wing-body juncture except
that the signs of the odd components have been reversed.

| ‘Several important effects are exhibited in Figure (17). Be-
tween z = 1 and z = w/2 the four Fourier components have essentially
reduced.the step in the pressure distribution due to the wing alone
to zero. This is precisely what should occur from a priori consid-
erations. It has been pointed out that for the complete wing-body
combination, the effect of interference cannot be felt on the. top of

the body for values of z less than /2. The step introduced at z =1
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is purely a result of the particular choice of the wing alone, and
cannot occur for the real wing-body combination. If more com-
ponents were calculated, it would develop that a spine near z =1
would occur, but the area under the spine would decrease to zero
and the spine height would approach a constant finite value as the
number of harmonics increased without limit . This so-=called
Gibbs phenomenonis without physical importance here. This pres-
sure distribution for z» 7/2 can be joined smoothly to the value of
zero at z = w/2.

The general behavior noted above is further evidence of
the plausibility of the calculated results. Furthermore it sheds
some light on the number of Fourier components that must be used
to obtain an acceptable solution for most of the combination. At
the wing-body juncture it was noted that the sum of the Fourier com-
ponents must add up to a smooth function for z = 1. However by
changing the sign of the odd components, the same components must
annihilate a step in the pressure distribution at the top of the body
between z = 1l and z = 7/2. To do this with less than three or four
Fourier components is clearly difficult. On the other hand these
results indicate that if good results are to be obtained everywhere
with one or at most two terms of some series solution, a different
definition of the wing alone giving nc step in the pressure distribu-

tion on the body must be used or some very clever choice of an
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auxiliary solution to eliminate the step in pressure must be dis=-

covered. To find such a solution would be difficult, to say the least,

5.4 Wing Pressure Distributions

The interference pressure distributions added to the wing-
alone pressure field give the pressure distribution for the com-
bination. In fact just thi€ process is ‘illustra‘ted in Figure (15) for
~the wing-body juncture.. The procedure and the shape of the curves
is substantially the same for other wing spanwise positions. The
results, which have bezn smo.othed, are presented in Figure (18).
The important effect of interference on the pressure distribution
in the wing-body juncture is immediately apparent. For spanwise
positions further out a lesser portion of the chord is subject to in-

terference so that the net effect on the loading is less,

5.5 Wing-Body Combination Span Loadings

The integration of the pressure distributions already pre-
sented to obtain the span loading for any wing-body combination
having particular values of chord-radius ratio and wing-alone as-
pect ratio can be readily accomplished. The results’ for the particu-
lar wing-body combination chosen in this report are interesting and
illustrate several important effects. For purposes of defining the

span loading the fc”.}awing equation is used,

L
% = / { a 4;_} o (139)
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In this equation AL, is the lift on the combination up to a distance
c downstream of the leading edge of the wing due to the n'th F§urier
component, and CPZn is the corresponding pressure coefficient for
the upper surface, The quantity in brackets will be called the span
loading., First the span loading due to the various Fourier com-
ponents will be presented, and then the complete span loading for
the combination will be discussed., In Figure (19) the span loadings
for the various Fourier components for n = 0 ton = 2 are presented.
It is emphasized that the loadings are for a downstream distance
of 4 body radii and correspond to the trailing-edge location of the
wing. For n = 0 a uniform pressure field exists on the body and
produces a uniform loading there. However as the spanwise distance
increases there is a dropping off of the loading due primarily to
the decrease in the chord over which the interference pressures act.
The value of r = 5 corresponds to the condition where the Mach line
from the leading edge of the juncture crosses the trailing edge.,
Since f:he sign ofr CPO is everywhere positive, the corresponding
loading is negative representing an unfavorable effect of interfer-
ence on lift.

An examination of the curve of Figure (19) for n = 1 shows
a very marked decrease in the span loading compared ton =0,
On the bod;y the pressure coefficients vary as cos 2n6, and this

effect alone would cause a decrease in lift on the body inversely
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proportional to nzo Remembering also that the Fourier amplitudes
of the normal velocity at the body surface due to the wing alone be-
come constant at values appro'ximately inversely proportional to
nz, it is clear that the lift on the body due to any particular harmon-
ic should vary approximately inversely as n4,, This makes for a
rapid Convergence of the span loading results for the body., It
should also be borne in mind that the interference span loading is
only a fraction of the total lift on the combination,

With regard to the span loading on the wing of the combin-
ation, Figure (19) shows a rapid decrease in span loading as n in-
creases. In fact for this particular case it is cleaf that if only
one Fourier component were considered, satisfactory results would
be obtained. While there is a general decrease in the overall mag-
nitudes of the pressure coefficients CPZn as n increases, there is
another effect that is important in reducing the span loading of the
higher Fourier components, This effect is the increase in the num-
ber of zeros of CPZn as n increases, While the oscillations in CPZn
are very important in decreasing the span loading of the higher
Fourier components, they are of lesser importance in reducing the
contribution to the pressure distribution of the combination of the
Fourier components. However it can be said on the basis of the

calculated results that whereas approximately four Fourier com-

ponents were necessary for good accuracy of the pressure coeffic-
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ients, only one or at rhost two are necessary for good accuracy
of the span loading.

To obtain the span loading for the combination it is neces-
sary to consider the contributions of the body alone and the Four-
ier components. This has been done in Figure (20) which pre-
sents the complete combination span loading basea on one Fourier
component and on four Fourier components. The span loading in-

" cludes no tip effects, but these can be readily introduced if de-
sired., The contribution due to the wing-alone pressure field is

the two dimensional value on the wing, but on the body there is a
general loss of lift at the trailing edge position because the wing~
alone pressure field cannot act on the body unless z ) sin8,

(Some of this loss would be recovered on the afterbody, if any).
The effect of the Fourier components is to cause a loss of loading
everywhere, as the figure shows. The net result for 4 components
is not greatly different than for one component, and for most prac-
tical purposes one component would have been sufficient.

The question arises as to whether the effect of interference
is favorable or unfavorable for the combination, and for the body
and wing, However before a satisfactory answer to this question
can be given, some reference loading must be established for pur-
poses of comparison., For this purpose two extremes have been

chosen: (1) the blanketed area of the wing is supposed to act effec-

tively at ayy and ( 2) the blanketed area of the wing is supposed to act



=71l=
effectively at zero angle of attack. For these two extremes, two
reference span loading curves can be obtained. It is noted that
these two definitions correspond to the cases where the body is
a perfect pressure reflecting surface, a vertical wall, and to the
case where there i.s no reflection at the body.

A comparison of the loading curve for the combination
with that based on the first definition, which corresponds to the
wing alone as used here, shows that the interference is unfavorable
everywhere, In fact the lift on the body is much smaller than
What it would be for the blanketed area acting at ayy . This de-
crease is the result of two effects, the adverse gé‘ometric effect
of the body in displacing the wing-alone pressure field backwards
and the adverse effect of the Fourier components. The loss of
lift on the wing is the result of the fact that a circular body is
clearly not a perfect reflection plane as evidenced by the fact that
the Fourie.r components cause a loss of lift.

. While an interpretation of the loading for the combination
with the reference loading based on the first definition shows un-
favorable effects of interference, the results give an unrealistic
picture since they are based on an optimistic reference loading,
It is hardly to be expected that the blanket wing area will act ef-

fectively at ay. In fact a value of a = 0 for the blanketed area
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is much closer to the aerodynamic facts. An examination of Figure
(20) reveals that the reference loading based on the second definition
is much closer to the true loading of the combination than that based
on the first definition. The differences between the combination
loading and the second reference loading can be explained on physi-
cal grounds . Consider only the wing for the moment., The combina-
tion loading is greater than the reference loading, which is based on
no reflection by the body of pressﬁfe disturbances originating on the
wing. The body reflects some of these disturbances back and causes
an increase in wing loading. In fact a comparison of the true load-
ing with the first reference loading, which corresponds to perfect
reflection by the bo&y, and the second refberence loading which cor-
responds to no reflection by the body shows that the body is somewhat
less than 40 percent effective as a reflector as far as the wing is
concerned,

A physical explanation of the mechanism by which wing lift
is carried onto the body can be given in much the same way Lager-
strom and Van Dyke in Reference (9) have discussed the carrying of
lift over from the wing onto polygonal bodies. Let the wing be at
positive angle of attack so that its upper surface is a source of nega- |
tive pressure disturbances. These pressure disturbances are in
part reflected and in part transmitted at the body. The reflected

part acts to increase the wing lift. The reflected pulses must travel
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upward around the body as they move downstream. In the process
the pulses lose lifting potential because of a geometric effect and
an aerodynamic effect, The distance around the body is further
than the distance through it, and by the time the pulses reach the
top of the body their lifting effect has been delayed in space and
time. This geometric effect is the delayed reaction pointed out
by Lagerstrom and Van Dyke. It can be offset by properly de-
signing the afterbody. The aerodynamic effect is simply a decrease
in the lifting pressure of the pulses as they travel around the body.
This causes a further loss of loading at the top of the cylinder as
contrast to the wing-body juncture where the reflection phenomenon
causes an increased body lift for a small distance inboard of the
juncture,

Whether or not the combination loading will be greater or
less than the reference loading for the second definition depends
on whether the adverse effect on interference for the body is more
than offset by the favorable effect for the wing. Geometrically it
depends on two parameters, the wing chord-body radius ratio,
and the wing aspect ratio. For the example considered herein
the lift of the combination was slightly greater than that of the ref-
erence loading based on the blanketed wing area at zero angle of

attack,
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5.6 Application of W, (z) Function to Protuberance Pressures
for QJuasi=Cylindrical Bodies

The W,_(z) functions have useful applications other than
wing-body interference. In fact G. N. Ward in Reference (14) uses
the W (z) function to calculate the pressure on a quasi-cylindrical
body of revolution due to surface disturbances which are distur-
bances of revolution. However with the W,(z), Wy(z), Wé(z) » Wg(z)
and Wm(z) functions now tabulated, the disturbance may now depend
on 6. In fact all that is now necessary is that the disturbances have
horizontal and vertical planes of symmetry. The disturbance at
any body location can then be expanded in a Fourier Series in cosZn®
on the interval 0 to was has been done for the interference problem,
Equation (40) can then be used to determine the contributions of the
Fourier components to the body pressul‘;eso If the configuration
in question does not possess a horizontgl plane of symmetry, the
Wzn(z) function can still be applied 'tq the part of the configuration
for ’which the upper and lower halves are aerodynamically indepen-
dents Not only can the case of protuberances on quasi-cylindrical
bodies be ‘tr»eatedby»the W ,,(z) functions, but also the case of
supersonic inle.ts insofar as the inlets meet the symmetry conditions.
5.7 Cther Problems Amenable to Treatment by the Methods

Presented Herein -
The problem of a body at zero angle of attack with a rectangu-

lar wing at incidence has been solved. From the pressure distribu-
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tions for this case a number of results can be derived. First,

the lift and moment results can be determined as a function of

both the wing aspect ratio and the ratio of wing chord to body di=
ameter, the two parameters that completely characterize the
wing-body combination, The pressuré distributions can also be
used to determine the minimum drag coefficient of a combination
the wing of Whi;h has a polygonal cross-section. The pressure
distributions can be interpreted as those due to the deflection of a |
rectangular control surface with a sealed gap.

One of the important problems which is the natural com-
plement of that solved herein, is the determinatio%ﬁ of the pressures
acting on the combination due to unit deflection of the body. (Those
due to unit deflection of the wing have been given khere) . This
problem is different from the one already solved in that the inter-
ference will not be confined to that part of wing behind the Mach
line originating at fhe leading edge of the juncture., Instead the
body will induce upflow across the wing approximately in accordance
with Equation (3), and depending on the length of the body in front
of the wing, all or part of the wing may be affected. As shown in
Figure (3), the problem can be decomposed into several problems
(of which the problem solved here is one) including one with the
body at zero angle of attack and with the wing twisted. The poten-

tial due to the twisted wing can be determined by the usual formula
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of supersonic wing theory, Equation (135). If the twisted wing
is taken as the wing alcone, then a set of Fourier amplitude func-
tions similar to those used here can be determined, With these
new amplitude functions, the interference pressure field can be
calculated just as in the example considered here, If the new
afngﬂitude functions cannot be obtained in closed form, they can
always be obtained numerically by harmonic analysis. Once the
pressure distribution due to unit angle attack of the body is cal-
culated, the lifting pressures can be readily obtained for a com-
bination with the body and wing at different angles of incidence,
The methods developed here can also be used to determine
the pressures due to interference between a circular body and a
wing with supersonic edges. For the case of a straight leading
edge the Fourier amplitude functions are given in the appendix.
Several extremely important classes of interference prob-
lems require the solution of the wing-body problem as a necessary
preliminary to their own solution. Specifically these are the prob-
lems ozé wing~-tail interference and afterbody pressure distributions. .
In Reference (22) Lagerstrom and Graham have developed methods
for estimating the fiqw behind the wing of a wing~body combination,
These start from a knowledge of the span loading at the wing
trailing edgéo Since @ingmbody interference can have an important
effect on this span loading, the wing-body problem must be treated

first,
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VI, CONCLUDING REMARKS

The results that have been presented and discussed in the
previous section will not be recapitulated, but rather a few general
remarks together with a few suggestions for future work will be
given,

In this paper considerable work has been done to get as
exact a solution to a wing-body problem as possible. While the
numerical results themselves are of cvonsiderable interest, it is
felt that the value of the work goes further. For one thing much
insight has been gained into the actual mechanism of interference.
Also exact methods for solving other problems have been devel-
oped., Furthermore the exact results will provide a basis for
checking the assumptions underlying approximate methods and,
when compared with eéperimental results, will provide a basis
for assessing the effects of viscosity on the pressure distributions.
The viscous effects will be large for large angles of attack,

Although considerable work is involved in obtaining the
complete pressure distributions on a wing-body combination, it
should be borne in mind that asking for the pressure distribution
is a large order in itself. Considering the complexity of the prob-
lem, it is fortunate that any soluticn at all can be found. From
the practical point of view, however, the computations can be

performed almost entirely by computers., Considering also the
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vast number of engineering hours that go into the design of a2 com-=-
plete missile or airplane configuration, some work in determining
the pressures acting on the configuration is warranted, However
for many purposes an exact solution to the wing=body problem is
not necessary. In fact there is at present a very urgent need for
a simple approximate method for estimating the pressures acting
on wing-body comBina‘tions in the region where slender-body theory
is known to be inapplicablemuavmethod that will give results of en=
gineering accuracy., [t is only hoped that the work here will give
some ‘clue how such an urgently needed approximate method can

be developed,
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AFPPENDIX

Fourier Velocity Amplitudes for Swept Wings
The amplitudes for the Fourier cbmponents of the normal
velocity at the body for a flat swept wing are given here. Reference
should be made to Figure (21) for the coordiné‘te system and wing
geometry. The origin of the coordinate system is taken in front
of the leading edge of the wing-body juncture for convenience only,
The normal velocity at the body surface, g¥* , can be expanded in a
Fourier series of even multiples of 8§ with amplitudes depending
on z,
% - o@
gTrz)= Yodw > Ty, t2) cosanéd

Y :

. h=o
Decomposing cZn(Z) into parts due to the downwash and sidewash

gives the following equation for &, (z)

Cn(@) = Gy (2)+ by, (2)

where azn(z) is the sidewash contribution and b, (z) is the down-

wash contribution. The following results have been obtained:
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TABLE I

Values ofbﬁzn(z}
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TABLE II
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n=90

Figure 5. Wing-Body Combinations Corresponding
to First Two Fourier Components
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ure 16, Coordinate System for Equation (135)

. ———

migure 21, Coordinate System Used in Appendix
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