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ABSTRACT 

Holomorphic functions (or maps) have been defined between Banach 

spaces by the use of a Taylor expansion involving Frechet derivatives. 

When the Banach spaces in question coincide with £(~), the space of 

linear operators over a Hilbert space ~. the set of holomorphic 

functions includes those arising from the Dunford functional calculus, 

but is certainly not limited to these. The holomorphic functions 

between Banach spaces share many of the properties of ordinary holo­

morphic functions from the complex plane [ into itself. However, in 

many aspects they behave differently. For example, the maximum modulus 

theorem implies that an ordinary holomorphic function with constant 

modulus must be a constant function. This is no longer true even for 

holomorphic functions of one complex variable taking values in a Banach 

space. In fact, the Thorp-Whitley Theorem states that if D is a 

domain in [, y a Banach space, and F: D + y holomorphic with 

II FUJII = 1 on D, then F is a constant function if its range contains 

a complex extreme point of the unit ball of y. 

It is natural to ask which holomorphic functions between Banach 

spaces have constant norm. For the case where F : D c [ + y, the 

problem was solved by Globevnik, who also specialized the result to the 

case F: D c ([ + £ ~). In addition, he determined under which conditions 

F might have constant norm in some norm equivalent to the given norm. 

This thesis solves the problem in the full case where F is now a 

holomorphic function between two Banach spaces. The following theorem 

analogous to Globevnik's is proved: 

Theorem. Let X., y be Banach spaces, f) a domain in X. and F: f) + y 
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holomorphic. Then jjF(x)ll will be constant for all x € ~ if and only 

if 

(i) The subspace e (F(x)) is independent of x € ~, 

i.e., e (F(x)) = e for all x € ~, 

(ii) F(x) - F(y) € e for all x, y e ~, 

where for u € ~ the set e(u) is defined to be 

e<u) = {v e JJI:!Ir > o such that ilu+ z:vll ~ lluJI for all z: e a:, iz:l ~d. 

An immediate consequence is that the Thorp-Whitley Theorem also holds in 

this generality, that is, when F is a function between arbitrary Banach 

spaces. 

When this theorem is applied to the case X = ~ = S: (J:O a simplified 

criterion is obtained. The norm constant functions are precisely those 

annihilated by certain projection operators on ~. As a corollary to 

this it is shown that the only holomorphic functions arising from the 

Dunford calculus with constant norm are the constant functions. In 

contrast to the above theorem, it is also shown that any holomorphic 

function F: ~ c S, Qi) -+ S:~) with Re(F) = 0 on ~ must be a constant 

function. A theorem analogous to Globevnik's for deciding when a 

function F: ~ c X -+ ~ can be norm constant under some equivalent norm 

is also obtained. 
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NOTATION 

Throughout this thesis, the following notation is used: 

~ is the field of complex numbers. 

X, y are Banach spaces. 

.,L Cit) 

M (~) 
n 

0~ (x, r) 

Conv(S) 

span(S} 

span(S) 

is a Hilbert space with inner product ( • , • ) . 

is the space of bounded linear operators on~. 

is the space of n X n matrices with complex entries. 

is the open ball centered at x of radius r. 

is the (not necessarily closed) convex hull of the set S. 

is the linear span of the set S. 

is the closed linear span of the set S. 

o(T) is the spectrum of T € .,L (~). 

Re(T) 

Im(T) 

Hol (~ ,y) 

e (z) 

1 * is the real part ofT € .,LQi), i.e., Re(T) = z-CT+T ). 

1 * is the imaginary part of T € .,L (:!{), i.e., Im(T) = Zi (T- T ) . 

see the bottom of page 5. 

see the bottom of page 12. 
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INTRODUCTION 

Banach space valued holomorphic functions of a complex variable 

having constant norm were first characterized by Globevnik [5] in 1975. 

The present work extends the study of norm constant functions to holo­

morphic functions from one Banach space into another. Specifically, it 

is shown that Globevnik 1 s original characterization remains valid in this 

more general setting. A consequence of this is that a norm constant 

holomorphic function from one Banach space into another cannot have a 

complex extreme point of any ball in its range unless the function itself 

is constant. This generalization of the Thorp-Whitley Theorem does not 

appear to follow from any extension of the usual proofs. Throughout this 

work the main tool is the set e(z) which measures ''how close" a point 

z is to being a complex extreme point. 

The characterization of norm constant functions is specialized to 

the case where both Banach spaces are J: Qi), the space of linear oper­

ators over a Hilbert space M. Here the norm constant functions are 

identified as those annihilated by certain projection operators. This 

characterization has a flavor similar to Globevnik's results for operator 

valued functions of a complex variable, but is essentially different 

since the coefficients of the power series expansion of operator valued 

holomorphic functions are no longer elements of J: Qi) in the more 

general setting. A consequence of the above result is that the only 

norm constant functions arising from the Dunford functional calculus are 

the constant functions. The problem of determining which holomorphic 

functions of operators can have constant real part is also solved. The 

latter result is somewhat surprising when compared to the characteriza­

tion of the norm constant functions. 
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The organization of this thesis is as follows. The necessary back­

ground material on holomorphic functions on Banach spaces is discussed 

in Chapter 1. Chapter 2 summarizes the previous work concerning norm 

constant holomorphic functions having domains in the complex plane. It 

also introduces the notion of a complex extreme point and the set eCz). 

The main results of the present work are contained in Chapter 3, where 

the norm constant holomorphic functions on Banach spaces are character­

ized. The latter half of the chapter discusses which holomorphic 

functions can be norm constant under some norm equivalent to the orig­

inal. In Chapter 4 the above results are specialized to holomorphic 

functions of operators. The conclusion discusses some open problems. 
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Chapter 1. Holomorphic Functions on Banach Spaces 

This chapter presents the aspects of the theory of holomorphic 

functions on Banach spaces relevant to this thesis. A detailed exposi-

tion of this theory will be found in Dineen [2], Nachbin [10], and 

Franzoni-Vesentini [3]. The basic idea is to use the multilinear maps 

between Banach spaces to define polynomials; these in turn are used to 

define power series and then holomorphic functions are defined in terms 

of convergent power series. 

Throughout this chapter, let X be a Banach space; Xp will denote 

the product space X X X X X X X X (p-times) with the norm 

II (x
1 

,x2 , ... , x )II = max II xnll· Let lJ also be a Banach space and let 
p l~n~p 

£P(X,lJ) denote the space of all continuous p-linear maps from xP into 

lJ· Endowed with the norm 

the space £P{X,lJ) is itself a Banach space. 

the space of linear maps from X to lJ; set 

When p 1 it is just 

0 
£ (X •lJ ) = lJ . 

Let A: X-+ lJ denote the map obtained by restricting A e £p(X,lJ) 

to the diagonal, i.e. 

"' A(x) = A(x,x, •.. ,x). 

Definition. A map P :X -+ lJ is a p-homogeneous polynomial if there is 

so that 
... 

p = A. 

pP(X,lJ) will denote the space of all p-homogeneous polynomials from 

X to lJ. 

Definition. P :X -+ lJ is a polynomial if there are P r e Pr (X •lJ) for 

0 < r < d so that 
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d 
L. P (x) for all x € X. 

r=O r 

This decomposition is unique. The (unique) largest integer d so that 

Pd ~ 0 is called the degree of P. The space of all polynomials from 

X into lJ will be denoted by p (X •l.J). For P € P(X •l.J) define 

JJPJJ = sup{Jl P(x)jjl x € X ,JJ xjj < 1} 

and observe that if P € pr(X,l.J) then JjP(x)jj ~ JJPij·JJxJJr. 

These polynomials are now used to define power series in a manner 

analogous to the usual construction of a power series. 

Definition. A power series F from X to lJ is a formal expansion 
co 

F = L. P where 
k=O k 

co 

Definition. The radius of convergence of a power series L. Pk is 
k=O 

R sup{r e IR+~~ Pk(x) converges uniformLy on IB(O,r) c:r,}. 
k=O 

For any x € IB(O,R), the power series F 

co 

co 

L. Pk defines a 
k=O 

function from X into lJ given by F(x) = L. Pk (x). No confusion 
k=O 

should arise from the fact that a power series and the function defined 

by it where it converges will not be distinguished in this thesis. 

Proposition 1.1 (Cauchy-Hadamard). The radius of convergence R of 
co 

L. Pk is given by 
k=O 

The completeness of lJ is essential in Proposition 1.1. Consider 

otherwise the following example. Let lJ be the space of all sequences 

~. e t having only finitely many non-zero terms, endowed 
1 
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with the sup norm. Consider the power series F: a:-+ y, F = 
k 

(O, ••• ,O,l;; ,0, ..• ). Clearly !IPk!l = 1 so that 

kth place 

F fails to converge except at l;; 0. 

00 

L: Pk 
k=O 
R = 1, 

These generalized power series have the uniqueness or analytic 

continuation property: 

Proposition 1.2. If there is an r > 0 so that the power series 
00 

F(x) = L Pk (x) 
k=O 

vanishes on 3(0,r), then p = 0 
k 

for all k. 

given 

but 

Classically, the coefficients of a power series could be obtained by 

repeated differentiations. This remains true in this setting. Let 

denote the nth Frechet derivative of F· 
' 

then 

00 

Proposition 1.3. Let F = 2: Pk be a power series from X into y 
k=O 

with radius of convergence R > 0. Then 

and 

F: 3(0 ,R) -+ y is infinitely Frechet differentiable 

n!P . 
n 

Holomorphic functions are now defined in terms of convergent power 

series. 

Definition. Let ~ be an open connected set in r. A function 

F: D -+ y is holomorphic if for each x
0 

e ~ there is a power series 
00 

Z:: Pk with positive radius of convergence R(x
0

) so that 
k=O 

00 

F(x) = L Pk(x- xo) for all X e 3(0,R(xo)) n ~. 
k=O 

This power series expansion is unique by Proposition 1.2. Open 

connected subsets of a Banach space will be called domains and the space 

of holomorphic functions from a domain ~ c r into lJ will be denoted 
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by Hol (\9 ,y). This definition of holomorphic is equivalent to, but not 

the same as, Hille's definition (see[8, p. 81]). 

A polynomial is always holomorphic on all of r. A power series 

with radius of convergence R > 0 defines a holomorphic function on the 

ball a(O,R). This latter fact is not entirely trivial and a proof may 

be found in Hille [8, p. 86]. 

When r = y = :_ ():{) the space of operators on a Hilbert space J:f, 

a particularly interesting class of holomorphic functions arises from 

the Dunford functional calculus. Recall that if D is a domain in ~ 

with aD consisting of a finite number of closed, disjoint, rectifiable 

Jordan curves, then the set 

~ = {T e J:(J:{) lcr(T) c D} 

is an open set in J: ():{) by the upper semicontinuity of the spectrum. 

Let f(s) be a complex valued holomorphic function defined on a neigh-

borhood of D. The Dunford calculus defines 

F(T) 
2

1
. J f(s)<o- T)-

1
ds 

Til aD 
for T € ~. 

To see that Fe Hol(\9,£(J:f)) simply expand (0- (T+T
0
))-l in a 

power series and substitute into the definition of F(T+ T
0

) to obtain 

that 

where 

co 

F(T + T0 ) = L Pk (T) 
k=O 

Pk(T) = 2;i ~D f(S)(si- TO)-l(T(O- TO)-l)kds. Since 

l!Pkll ~CIICO-T0 )-
1iik+l it follows from Proposition 1.1 that the power 

series has a positive radius of convergence, so F e Hol(\9 ,:_ (,Ji)). This 

class of holomorphic functions will be studied further in Chapter 4 . 
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In view of Proposition 1.3, F e Hol~ ,y) can be expanded in the 

following manner about each point x
0 

e ~: 

F(x) 

From this observation it is possible to obtain the following analogs of 

classical results: 

Proposition 1.4 (Cauchy Formulas). Let F e Hol~ ,y), then for any 

XO' y eX and r > 0 so that a<xo,r) c ~' we have that 

l!ulln 
n! U-l.U-

27Ti 

Corollary 1.5 (Cauchy Inequalities). For any x
0 

e ~ and r so that 

a (xo 'r) c ~ we have that 

-n--- n' I lid F(~)ll ~ ~ sup{iiF(x)ll X € o2(x0 ,r)}. 
r 

The case n = 0 of this corollary implies: 

Proposition 1.6 (Maximum Principle). If Fe Hol~,y) the function 

H(x) = IIF(x)ll cannot have a maximum at x
0 

e ~ unless H(x) is 

constant on a neighborhood of x. 

Or in a more useful form: 

Proposition 1.7. If F € Hol~,y) is bounded by M on o!B(x
0

,r) C.)l) 

and II F(x
1

)11 = M where x
1 

e a (x
0

, r), then II F(x)ll is constant on 

a (xo 'r). 

Now if F were complex valued, both of these Propositions could be 

strengthened to conclude that F(x) itself is constant. This is no 

longer true when F takes values in an arbitrary Banach space. The 
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reason for this is that there are nonconstant holomorphic functions that 

have constant norm. For example, take X = 1J = !- (U) where the Hilbert 

space ):{ has the orthonormal basis {en} n:l. Let P 1 and P 2 be the 

orthogonal projections on and respectively. Then 

F(T) = P1 + P2TP 2 has IIF(T)ll = 1 for all !!Til ~ 1, but F(T) is not 

constant. There are many other examples; the characterization of halo-

morphic functions having constant norm is the central problem of this 

thesis. 

Finally, it is necessary to discuss a phenomenon which occurs when 

the domain of a holomorphic function lies in an infinite dimensional 

Banach space. In this case it is possible for a function F € Hol(X,lJ) 

(i.e., F is "entire") to be unbounded on balls of finite radius. This 

is due to the noncompactness of the closed unit ball in an infinite 

dimensional Banach space. Loosely speaking, what happens is that there 

is a sequence in the unit ball which has no accumulation points. The 

holomorphic function can then be unbounded on this sequence without 

"destroying its holomorphicity." Consider the following example: 

Let co denote the Banach space of sequences of complex numbers 

x = (~ 1 .~ 2 , ... ) converging to zero with the sup norm. Let F: c0 ~ ~ 

be defined by 

F(x) 1 + ~ + ~ ~ + ••• 1 1 2 

00 k 
1+ 2:: <IT C). 

k=l j=l J 

This converges for all x € c
0

; to see that Fe Hol(c0 ,[) let 

where 

00 

F(x+y) = 2:: Pk(y) 
k=O 

then 
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It follows that the power series has positive radius of convergence and 

hence F € Hol(c0 ,~) since x e c
0 

was arbitrary. However note thatif 

k 
~ 

~ = (1,1, ... ,1,0, ... ) 

then II~~~ = 1 but F(~) = k + 1 so F is unbounded on {~} k:l. 

Definition. Let F e Hol~ •Y) and then the radius of 

boundedness of F at x
0 

is 

rb = sup{rii!Hx0 ,r) c~ and F is bounded on!B(~,s)Vs < r}. 

The above example also illustrates another complication: Even 

though F is entire, its local representation may require several power 

series. In this case, the radius of convergence of the power series 

expansion at zero was one. These two phenomena are related by the 

following proposition which concludes this brief introduction to the 

theory of holomorphic functions on Banach spaces. 

Proposition 1.8. Let rb(x) be the radius of boundedness of 

F e Hol~ •lJ) at x € ~, let R(x) be the radius of convergence of the 

power series expansion of F at x, and let d(x) be the distance 

from x to o~. Then 

min(R(x),d(x)) for all x € ~. 
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Chapter 2. Norm Constant Holomorphic Functions of a Complex Variable. 

In this chapter previous work on the characterization of holomorphic 

functions with constant norm is summarized. In particular the theorem 

of Thorp and Whitley [11] and some of the results of Globevnik [5,6] are 

presented. These deal exclusively with holomorphic functions having 

domains in the complex plane; however they provide models for more 

general theorems and introduce useful tools. One of these tools in 

particular will play an important role in this thesis and the latter 

part of this chapter is dedicated to it. 

The starting point for the characterization of holomorphic functions 

with constant norm is a theorem of E. Thorp and R. Whitley. Central to 

their theorem and to this thesis is the notion of a complex extreme point. 

Definition. Let K be a convex subset of Banach space X. A point 

x e K is 

(i) a real extreme point if {x + ty l-1 .2_ t .2_ 1} c K implies y = 0. 

(ii) a complex extreme point if {x+i;;yiO < 1~;;1 < l}c K implies 

y = 0. 

Geometrically, x is a real (resp. complex) extreme point of K if 

every real ( resp. complex) "disk" centered at x sticks out of K. 

Every real extreme point is a complex extreme point. To see that the 

converse is not true consider L1 (0,1) with Lebesgue measure. Every 

point with norm one is a complex extreme point of the closed unit ball; 

however, the unit ball has no real extreme points (see [11]). 

Complex extreme points play a major role in the characterization of 

norm constant holomorphic functions, as is already suggested by the 
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following observation. If X is not a complex extreme point of the 

closed unit ball of X and llxll = 1, then it is possible to construct 

a nonconstant holomorphic function f from the unit disk in u:: into 

the unit ball in X so that f(O) = X and llf(OII = 1 for Is I < 1. 

To do this, choose y eX so that llx+s~l ..::_1 for lsi ..::_1, and set 

f(S) = x + sY· If llf(s0 )11 < 1 for some ls0 1 < 1, then 

But llxll = 1 and so llf(s)ll = 1 for all ls i < 1. 

The Thorp-Whitley Theorem provides a "converse" to this example. 

Theorem 2.1 (Thorp-Whitley [11]). Let y be a Banach space, D a 

domainin «:,and feHol(D,y) with !lfCOII =l forall sED. If 

Range (f) contains a complex extreme point of the closed unit ball of y, 

then f(s) is constant on D. 

This theorem in particular implies that the strong maximum principle 

(i.e . II FC O II has an interior maximum implies F( S) constant) holds only 

for those Banach spaces y for which every vector of norm one is a 

complex extreme point of the closed unit ball, as is obviously the case 

when y a;. A simple proof of Theorem 2.1 was given by Harris [7] 

using the following lemma, which will also find use in this thesis. 

Lemma 2.2 (Harris [7)). Let w be a complex valued function holomorphic 

on the open unit disk in a; and satisfying lw(s)l < 1 for lsi < 1. 

Then 

I w ( 0) I + ;-j ~ I I w ( 0 - w ( 0) I ..::. 1 for o < l s i < 1. 

A proof of Theorem 2.1 now follows quite simply by assuming that f(O) 
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is a complex extreme point and setting w(S) = cp (f(S)) where cp is any 

linear functional on lJ of norm one. Then 

iifCO)+ A(f(S)- f(O))II < 1 for IAI < ~-~~~, 0 < lsi < 1 

since this inequality holds for all cp by Lemma 2.2. Hence f( s ) = f(O) 

in a small ball, and so by Proposition 1.2 the equality holds for all 

s € D. 

While little can be said of complex extreme points in an arbitrary 

* algebra, Akemann and Russo [1] have shown that in a c -algebra a 

with unit the set of complex extreme points of the closed unit ball 

coincides with the set of real extreme points. The latter were shown by 

Kadison [9] to be precisely the set 

* * {a € a I (1- aa ) x(l -a a) = 0 for all X € a} . 

* In particular, for the C -algebra £(H) of operators on a Hilbert space 

~. the real (and therefore complex) extreme points of the closed unit 

ball are the partial isometries and their adjoints (i.e. T € £(H) so 

* that T T * I or TT I). If ~ is finite dimensional the extreme 

points are simply the unitary operators. The end result of this is that 

there will always be many nonconstant holomorphic functions with constant 

* norm from any domain in ~ into any unitial c -algebra a. 

The problem of characterizing the holomorphic functions with 

constant norm from a domain in ~ into a Banach space lJ was solved by 

Globevnik [5]. His primary tool was the following: 

Definition. Let lJ be a Banach space, and z €1J. The set e,(z) ClJ 

is defined to be 
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e (z) {y elJI3:r > 0 so that llz+sYII.::.IIzll for lsi< r}. 

The set e (z) consists precisely of those y e lJ which "prevent" z 

from being a complex extreme point of the closed ball centered at zero 

of radius liz II· In particular, e (z) = {O} if and only if z is a 

complex extreme point of said ball. The set e(z) has many properties, 

foremost among them is that e (z) is a subspace of lJ. The properties 

of e(z) will be examined in detail in the latter half of this chapter. 

Theorem 2.3 (Globevnik [5]). Let lJ be a Banach space, D a domain in 

a:, and f e Hol(D,lJ). Then II f(s)ll is constant on D if and only if 

(i) the subspace e(f(£:;)) does not depend on 1:; € D, 

i.e. e(f(l:;))=e forall c:;eD. 

(ii) f(;) - f(r;) e e for all ;, £:; e D. 

This theorem has the following version of Theorem 2.1 as a corollary; 

note that the hypothesis has been slightly weakened. 

Corollary 2.4 (Globevnik [5]). Let lJ, D and f be as above and 

suppose that II f(s)ll = 1 for all £:; € D. If Conv(f(D)) contains a 

complex extreme point of the unit ball of lJ• then f(l:;) is constant on 

D. 

Finally, Globevnik's specialization of Theorem 2.3 to the case where 

lJ = J: (ji) the space of operators on a Hilbert space ):{ will be stated. 

Theorem 2.5 (Globevnik [6]). Let ):{ be a Hilbert space, D a domain in 

a; containing zero, and f e Hol (D ,J: (J:f)) given by f ( c:;) = z A c:;n ( c:; e D) 
n=O n 
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(i) If !l f(s)ll = 1 on some neighborhood of zero then 

* A Q =A P = 0 for n = 1, 2, 3, ... where P and Q are 
n n 

the spectral projections at 

tively. 

(ii) If there is a o > 0 so that 

* An(I-E1_0)=0 for n=l,2,3, ... 

* are the spectral measures of A
0

A
0 

* and A0A0 respectively and I is the identity, then there 

is a neighborhood of zero on which II F(OII will be constant. 

* In particular, if 1 is an isolated point of o(A
0

A
0

) then condition 

(i) is both necessary and sufficient. 

In the above theorems, the domain of the holomorphic function has 

always been an open connected subset of ~. In the following chapters, 

the characterization of functions with constant norm will be extended to 

holomorphic functions whose domains are open connected subsets of 

arbitrary Banach spaces. One of the principal tools will be the set 

e(z). Some properties of it will now be derived for later use. All of 

these are due to Globevnik [5]. The proof of the first proposition has 

been included; the proofs of the others have a similar flavor. In what 

follows, let 1J be a Banach space, a the unit ball of 1J and 3 I 

the unit ball of 1J 1 
, the dual of 1J. 

Proposition 2.6. Let z e 1J, then y e e (z) if and only if a constant 

M exists so that 

for all cp e a 1 
• 
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Proof. If \c,o (y) \ ..:_ M(ll z\\ - \c,o (z) \) Vc,o € 3', 

then 
1 

is\ ..:_ M 

so that \\z+ sY\\ 2.\\zll for \s\ ..:_ ~ · 

Conversely, if r > 0 exists so that II z + sY\1 ..:. II z\1 for Is I < r 

then lc,o <z) + sc,o(y) I .2.llzll vis I .2. r, c,o € 3' 

so that 

Definition. Let z € lJ and y € e (z). Define 

Proposition 2. 7. Let z € lJ, then e (z) is a (not necessarily closed) 

subspace of lJ and II • II is a norm on e (z) . 
z 

Proposition 2.8. Let z € lJ• then liz+ x ll ~ 1\zll t[x € e,(z). 

The last two lerrnnas are 11stability 11 results for e (z) and are particu-

arly useful. 

Lerrnna 2.9. Let z € lJ· y € e(z) with IIY\Iz ..:. t· then e(z+y) = e(z). 

Lemma 2.10. Let S c lJ be such that every element of Conv(S) has 

norm one and e (z) = e Vz € S, then e (z) = e for all z € Conv(S). 

We conclude this chapter with some examples of e(z). 

Example 2.1. lJ = M2([) and z = (~ ~), (\~\ < 1). Direct computation 

shows that e (z) = { (~ ~) 1 a, b € a:}. 
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Example 2.2. lJ = M3(a:) with the usual norm and 

G 
0 

D (: :) z = a where < 1. 

y 

Then e (z) {G : :) a,b, c,d, e,f € ~} 
Example 2.3. Let lJ = ~ a Hilbert space and let v € ~' then 

e(v) = {0}. This is evident from the fact that 

Example 2. 4. Let ~l, ~ 2 be two Hilbert spaces and set lJ = s_ ~l G) ~ 2 ) 

and z =I 9 T where I is the identity on ~l and T € S-(~ 2 ), 

IITII < 1. 

Then e (z) = {S € S. (~l 9 ~ 2 ) ~~l c ker S}. This follows from considering 

II (I G) T + t; S)vll where v € ~ 1 . 
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Chapter 3. Norm Constant Holomorphic Functions on Banach Spaces. 

In this chapter several theorems are proved which characterize those 

holomorphic functions having constant norm. The first few of these 

theorems extend the results of Thorp-Whitley and Globevnik to holomorphic 

functions whose domains lie in some Banach space. The latter part of the 

chapter characterizes those functions which may have constant norm under 

some norm equivalent to the original norm. 

The first and most important of these results extends Theorem 2.3 to 

holomorphic functions whose domain need not lie in ~. 

Theorem 3.1. Let X and lj be Banach spaces, ~ a domain in X and 

F e Hol(J9 •lJ). The function II F (x)lj is constant on ~ if and only if 

the following two conditions are satisfied: 

(i) The subspace e (F(x)) does not depend on X € ~, i.e. 

e,(F(x))=e forall x€~. 

(ii) F(x) - F(y) e e, for all x, y € ~. 

Proof. To show necessity assume that II F(x)l! = 1 for all x € ~. 

Select x, y € ~ and r < 1 so that IS (x, r) c ~ and y € IS (x, r). The 

function h(z;;) (s e ~) is holomorphic on the disk 

{lsi < 1} and has the property that for any linear functional ~ of 

norm one 

JqJ <h < s)) I < 1 for I s I < 1. 

Applying Lemma 2.2 to the function s r+~(h(s)) yields that 

l~<h(O)) I + 
12-~~~ l~(h(s)) - ~(h(O)) I 2 1 
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or that 

jcp(h(r;)-h(O))j .:_ i-1~1 (1-jcp(h(O))j) for jr;j < 1. 

Since llh(O)jl 1, Proposition 2.6 implies that 

h ( r;) - h (O ) e e (h ( o ) ) for I r; I < 1. 

Letting r; = II y - ~~, this is equivalent to 

F(y) - F(x) e e (F(x)). 

Furthermore, if y is chosen so that r; = !IY - ~~ < 1/5 then 

II F(y) - F (x)jj F(x) < 1/2. 

By Lemma 2.9 

e(F(y)) =e(F(x)+(F(y)-F(x))) =e_(F(x)). 

(1) 

Hence e (F(x)) is constant on ~ since any x, y e ~ can be connected 

by a compact arc. For the same reason, inclusion (1) above holds for 

any x, y e ~. 

To prove the converse, let x, y e ~ and note that by Proposition 

2.8 

jjF(x)jl = IIF(y)+ (F(x)- F(y))jl ~_liF(y)jj 

since F(x) - F(y) € e(F(y)). Because it is also true that e = e(F(x)), 

the above inequality remains valid if x and y are interchanged. Thus 

IIF(x)jl = !IF(y)jl and the proof is complete. 

It is worth noting that because Proposition 2.8 states that 

II X + zll .:. II zll for all X € e (z), the following two weaker conditions 
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(i') e,(F(x)) does not depend on x €~, i.e. 

e (F(x)) = J for all X € ~ 

(ii') F(x) - F(y) € J for all x, y € ~ 

still imply that II F(x)!j is constant on ~. 

In the case where X = [, Theorem 3.1 reduces to Theorem 2.3; if 

in addition ~ = [, the Theorem 3.1 becomes the maximum modulus theorem 

for complex functions since every point s € [ has e<s) = {0}. 

A direct consequence of Theorem 3.1 is the following extension of 

Theorem 2 .1. 

Theorem 3. 2. Let X and ~ be Banach spaces, ~ a domain in X and 

FeHol(D,y) with jjF(x)jj =1 forall xe~. IfRange(F) contains 

a complex extreme point of the unit ball of ~, then F(x) is constant 

on ~. 

Proof. Recall that if F(x) is a complex extreme point of the unit ball 

of ~, then e (F(x)) = {O}. Apply Theorem 3.1. 

In particular, if ~ is a Banach space with the property that every 

vector of norm one is a complex extreme point of the closed unit ball of 

~ (for example, if ~ is a Hilbert space or~ ([) , then Theorem 3. 2 

implies that the only norm constant holomorphic functions taking values 

in ~ are constant functions. 

Consider now the followine examples: 

Example 1. Let X = ~ = M2 (ll:), let ~ be the unit ball of M
2 

([) and 

set 

T (~11 ~12} 
~21 ~22 
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Define F € Hol~,y) by 

F(T) (1 0 
0 c ). 

'->22 

0 1 0 0 
From Example 2.1, e(F(T)) = span{(

0 0
),(

0 1
)} for all T € ~, hence 

Theorem 3.1 implies that Jl F(T)JJ =' 1 for all T e ~ as can be verified 

directly. Note also that since the complex extreme points of the unit 

ball of M2 (~) are the unitary matrices, the hypothesis of Theorem 3.2 

fails to hold. 

Example 2. Let J:l
1 

and u2 be two Hilbert spaces, X = .£: (!{ 
1
), 

y = .£: (1{ 1 (£) u2), and ~ = {T eX I!! Til < 1}. Set Tik: .£: Qik) ~ .£: (1{ 1 (£) 1! 2 ) 

(k = 1, 2) to be the canonical injections. Let I be the identity 

operator on u
1

• Define F € Hol~ ,y) by F(T) 

by Example 2.4, 

for all T € ~. Again, Theorem 3.1 implies that II F(T)II = 1 on ~. 

Note that since the range of F does not include any partial isometries 

nor their adjoints, the hypothesis of Theorem 3.2 fails to hold for this 

example as well. 

As was true in the case where X a:, the hypothesis of Theorem 3.2 

can be weakened somewhat. 

Theorem 3. 3. Let X and y be Banach spaces, ~ a domain in X and 

F e Hol~, y) satisfying II F(x)ll = 1 for all x e ~. If Conv(F(~)) 

contains a complex extreme point of the unit ball of y, then F(x) is 

constant on ~. 
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The proof of this theorem depends on a rather surprising lemma; it 

was originally observed by Thorp-Whitley [11] in the case l = ~. 

Lennna 3. 4. Let X, lJ, ~ and F be as in Theorem 3. 3. Then every 

element in Conv(F~)) has norm one. 

Proof. Let y € Conv(FG9)), then there are points x
1

, •.. , xn in ~ 
n 

and positive numbers t
1

, ••. , tn with L t. = 1 so that 
j=l J 

n 
y L t.F(x.). 

j=l J J 

Select a linear functional r:p on lJ of norm one so that r:p(F(x
1
)) 1. 

Now define G € HolG9,«:) by 

G(x) =q>(F(x)). 

Then I G(x) I ~ lr+>ll • II F(x>ll = 1 for all x € ~. 

Furthermore, IG(x)l attains a maximum at x = x
1 

€ ~ so that Proposi­

tion 1.7 implies that IG(x) I =1 for all x € ~. By Theorem 3.2, G(x) 

itself is constant on ~. hence 

n 
r:p (y) L t. ~p (F(x.)) = 1. 

j=l J J 

Since lfi'll 1 it follows that I! Yll > 1. On the other hand 

n 

llY\1 .2_ L t.!IF(x.)ll 1 
j=l J J 

Thus II Yll = 1 and the proof of the lennna is complete. 

Proof of Theorem 3.3. By Theorem 3.1 and Lemma 3.4 the range of F 

satisfies the hypothesis of Lennna 2.10. Thus e(y) =e. for all 

y € Conv(FG9)). The fact that Conv(F~)) contains a complex extreme 
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point of the closed unit ball of lJ implies that e, = {0 } . As before, 

this forces F(x) to be constant on ~, completing the proof. 

It is interesting to observe that if a nonconstant function 

F € HolG9,1J) has constant norm on an open subset of ~, then by a 

straightforward application of the Hahn-Banach Theorem (combined with 

Theorem 3.2 and Proposition 1.2) F cannot have any zeros on ~. 

Furthermore, it is clear that any nonconstant Fe Hol{J9,1J) with a 

zero in ~ cannot be norm constant on any open subset of ~ for any 

norm on lJ equivalent to the original. This suggests that if the range 

of F is "sufficiently" removed from zero then there should be some 

norm and some open subset of ~ for which F is norm constant. This 

was first shown to be true by Globevnik [4] in the case where X [. 

The following theorem establishes the result in the general case. The 

basic approach of the proof remains the same. 

Theorem 3.5. Let X, lJ be Banach spaces, ~ a domain in X containing 

zero, and F € HolG9.1J) a nonconstant function. Then 

F(O) ~ span {F( x)- F(O) I x € ~ } 

if and only if there exists an equivalent norm 

open set U. c ~ so that 

Ill· Ill on lJ and an 

Ill F(x) Ill is constant for all x e u.. 

The proof of this theorem depends on the following two lemmas. 

Lemma 3. 6. Let X, lJ, and ~ be as above, and F e Hal G9, lJ) such 

that 

jjF(x ) \1- c > 0 for all x € U. 



for some open subset tl of ~. 

Then 
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where x
0 

€ ~, and r.p is a linear functional on lJ of norm one such 

that F(x
0

) ~ ker cp. 

Proof. Let x
0 

e l.,l. By the Hahn-Banach Theorem there is a linear 

functional cp of norm one such that cp (F(x
0
)) = c. 

Since jcp(F(x) )j 2_ IIC!'!l • II F(x)ll = c for all x € tl it follows from 

Proposition 1.7 and Theorem 3.2 that cp(F(x)) = c for all x € tl and 

thus that :p (F(x)) = c for all x e ~ by Proposition 1. 2. In particular 

this implies that F~) c F(x
0

) + ker q:> and F(x
0

) ¢ ker cp by construc­

tion. 

Lennna 3. 7. Let X,, 1J and ~ be as before, and F e Hol~,lJ) such that 

F~) c H where H is a closed hyperplane in 1J disjoint from zero. 

Then for every x
0 

e ~, there is a ball 3 (x
0

, r) and a norm Ill· Ill on 

lJ equivalent to the original so that 

Ill F(x) Ill= 1 for all x €3(x
0

,r). 

Proof. Write H = y
0 

+ ker !f) where cp is a linear functional on 1J 

and y
0 

~ kercp. Let cp(y
0

) =c. Given x
0 

e ~' choose a positive r 

less than the radius of boundedness of F at and let 

Define a new norm on lJ by 

Ill Y Ill = max{li#, lcp ~y) I}. 
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Clearly Ill • Ill is a norm; furthermore 

and 

so that Ill • Ill and II • II are equivalent norms. To show that 

Ill F(x) Ill= 1 on 3(x0 ,r), first note that F(J9) c H implies that 

for all x € ~. 

If in addition x € 3(x
0
,r), then II F(x)ll 

M 
< 1 so that Ill F(x) Ill 1 

for all x € 3(x
0

,r), as desired. 

Proof of Theorem 3.5. Suppose first that 

F(O) t S = span{F(x)- F(O) I x € ~}. 

Then by the Hahn-Banach Theorem it is possible to find a closed hyper-

plane H containing S which is disjoint from F(O), i.e. 

F(J9) c F(O) + H where F(O) t H. 

By Lemma 3. 7, around each point x
0 

e ~ there is an open ball 3 (x
0

, r) 

and a norm Ill • Ill on y equivalent to II • II so that Ill F(x) Ill = 1 

on 2 (x0 , r). 

To prove the converse, suppose that there is an open neighborhood 

U. and a norm Ill • Ill on y equivalent to II •II so that 

Ill F(x ) Ill = C > 0 on ll· 

Apply Lemma 3.6 to obtain that for some x
0 

€ ~ 
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F(J}) c F(x0 ) + H where F(x
0

) t H, 

or equivalently that 

S = span {F(x)- F(x
0

) I x € j\)} c H. 

Notice first that F(O) t S since 

and second that S = span{F(x)- F(O) I x € j\)} 

since F(x) - F(O) = F(x) - F(x
0

) - (F(O)- F(x
0
)). 

Thus F(O) ¢ span{F(x)- F(O) I x € j\)} and the theorem is proved. 

It is worth remarking at this point that Theorem 3.5 remains valid 

if the condition 

F(O) ~ span{F(x)- F(O) lx € .19} 

is replaced by 

where is any element of j\) • This is particularly of interest when 

It is quite easy to provide examples of holomorphic functions F 

with the property that 

F(O) f. span{F(x)- F(O) I x € .19}. 

In fact, Theorem 3.5 is in some sense remarkable because so many 

functions can be made norm constant by choosing a new norm equivalent to 

the old one. Because Lemma 3.7 is constructive, the new norm can actually 

be found explicitly if F is not very complicated. Consider the follow-

ing examples. 
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Example 3. Let X = 1J = M
2 

(a:) and let ~ be the unit ball of ~(a:). 

Define F € Hol (J\) •lJ) by 

F (T) = ( 1 0) + (1 0) T f T e ,(\ 0 1 0 0 or ~· 

Set 
E.: l E.:2 

S = span{F(T)- F(O) IT € ~} = {(
0 0 

) lt.:
1 

, t.;
2 

e a:}. 

It is clear that F(O) = I ~ S, so that F can be made norm constant. 

To determine this new norm Ill • Ill , define a linear functional c:p by 

and ( • , • ) 
2 

is the inner product on a: . The subspace S is annihi-

lated by c:p, so it satisfies the requirements of Lemma 3. 7. Since 

M = sup{i!F(T)IIIIITII < 1} = 2, the new norm is given by 

IIITIII = max{~,I(Te2 ,e 2)1}. 

It is easy to see that Ill F(T) Ill = 1 for T e ~. 

Example t,. Let X = lJ = J: (J:f.) when J:f. is a separable Hilbert space 

with orthonormal basis {en}:=l· Let U € J:(J:f.) be the unilateral 

shift (i.e. Uen = en+l). Define Fe Hol(£(J:f.),J:(J:f.)) by 

where I is the identity. 

* F(T) = ai + UT - TU (a -1 0) 

Let S = span{F(T)- F(O)} = span{UT- Tu*IT € ,s:(J:j.)}. The linear 

functional c:p(T) = (Te
1

,e
1

) annihilates S and cp(F(O)) =a so that 

F(O) t S. Once again the hypotheses of Theorem 3.5 are satisfied. To 

obtain the new norm, note that 

M= sup{i!F(T)II\IITII < 1} < lal +2 
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so that the norm Ill • Ill is given by 

= {J111L ( Te1 , e1) } 
Ill T Ill max Tal+Z' a 

Again, it is easy to verify that Ill F(T) Ill = 1 for II til < 1. 

Another question that arises is the nature of the relationship 

between Theorem 3.1 and Theorem 3.5. Specifically, a function satisfying 

the conditions of Theorem 3.1 must also satisfy that of Theorem 3.5. 

This can be shown directly. 

Proposition 3.8. Let X, y be Banach spaces, ~ a domain of X 

containing zero, and let F € HolW,y) be a nonconstant function 

satisfying: 

(i) e(F(x)) =e. for all x € ~ 

(ii) F(x)- F(y) € e. for all x, y € ~. 

Then F(O) f. span{F(x)- F(O) I x € ~}. 

Proof. Since e. is a subspace by Proposition 2. 7, 

span{F(x)- F(O) I X € ~} c e 

because of hypothesis (ii). The difficulty now is that e is not 

closed. 

Since F is nonconstant, it may be assumed without loss of 

generality that F(O) f 0. Now recall that by Proposition 2.6, 

X € e = e (F(O)) if and only if there is an M so that 

lcr (x) I .2_ M<ll F(O)!l - lq> (F (O)) I) 



28 

for all linear functionals on y of norm one. In particular, if cp is 

chosen so that 

cp(F(O)) 

then 

span{F(x)- F(O)} c: e c ker cp. 

Hence F(O) i. span{F(x)- F(O) \x € .J9}. 
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Chapter 4. Norm Constant Holomorphic Functions of Operators. 

In this chapter the results of the previous chapter are specialized 

to the case in which both Banach spaces are ~(~), the space of bounded 

linear operators on a Hilbert space ~. In this setting it is shown 

that a holomorphic function will have constant norm if and only if it 

satisfies relatively simple algebraic conditions. Attention is also 

given to the class of holomorphic functions arising from the Dunford 

functional calculus. All functions in this class with constant norm are 

shown to be constant. Finally, the holomorphic functions having constant 

real part are determined. Actually, the results of this chapter are 

* * valid for any C -algebra although they are stated only for the C -algebra 

The main result is the following analog of Theorem 3.1. 

Theorem 4.1. Let ;» be a Hilbert space, ~ a domain in ~(JO contain-

ing zero, and F e Hol~,~(lf)) with IIF(O)II 1. 

(i) If there is an open neighborhood u. of zero in ~ on which 

II F(T) II = 1 then for all T e ~ 

* * [F(T)- F(O)] Q = [F (T) - F(O) ] p = 0, 

where p and Q are the spectral projections at 1 of 

* * F(O)F(O) and F(O) F(O) respectively. 

(ii) If there is a o > 0 such that for all T e ~ 

[F(T)- F(O)] (1- c
1

_
0

) 

where {EA} and {GA} 

* * [F(T) - F(O) ] (1- E
1

_
0

) = 0, 

are the spectral measures of 

* * F(O)F(O) and F(O) F(O) respectively, then there is an 

open neighborhood of zero on which i!F(T)i! = 1. 
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Again, as in Theorem 2.5, if 1 is an isolated point of the spectrum of 

* F(O)F(O) , condition (i) is both necessary and sufficient. The role of 

0 in Theorem 4.1 is not essential: A translation argument shows that 

0 may be replaced throughout by any T0 e ~ . 

The first half of this theorem is a coasequence of Theorem 3.1 in 

conjunction with the following two lemmas. 

* * * Lemma 4.2. Let A €.,L(U), then e(A) =e(A) ={TIT ee(A)}. This 

lemma follows immediately from the fact that !lA* + s'l11 = !lA+ "fT*jJ. 

* Lemma 4.3. Let A €.,L(U) and v €~ so that A Av = v. Then 

e (A) v = {Tv IT e e (A)} = { o}. 

Proof. Let T € e(A), then there is an r > 0 such that 

JlA + sTII 2IIAJI for all I;; with I I;; I < r. But then 

JJAv + I;;Tvll .2_ JJA + STII • JJvJJ IIAvjJ if lsi < r, so that Tv € e(Av). 

By Example 2.3 e(Av) = {0}, hence Tv = 0. 

Proof of part (i) of Theorem 4.1. Let A = F(O); since IIAJI = 1, 1 is 

* * in the spectrum of both AA and A A. If 1 is in the point spectrum 

of one operator, it is in the point spectrum of the other, so there are 

only two cases to consider: 1 is in the point spectrum of both operators, 

or it is in the continuous spectrum of both. In the latter case, 

P = Q = 0 and there is nothing to prove. It is therefore assumed that 

* * 1 is an eigenvalue of both AA and A A. 

Let Lt be an open neighborhood of zero in ~ on which II F(T)jj 1. 

Then Theorem 3.1 together with Lemma 4.2 implies that 

e (F(T)) = e for all T € Lt 

F(T) - F(S) € e for all T, S € Lt 
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and 

* * * e (F(T) ) = e (F(T)) = e for all T € U. 

* * F(T) - F (S) * € {:' 
'-' for all T, S €U,. 

Let u € Range(P) and v € Range(Q), then u, v are eigenvectors of 

* * AA and A A respectively. 

Application of Lemma 4.3 yields 

ev=e(A)v {O} 

and 

* * e u = e (A )u = { 0} • 

* * Hence [F(T)- F(S) ]v = [F(T) - F(S) ]u = 0 for all T, S € U.. In 

particular this implies that for all T € u. 

* * [F(T)- F(O) ]Q = [F(T) - F(O) ]P = 0. 

Applying Proposition 1. 2 to the holomorphic functions [F(T) - F(O) ]Q 

* and P [F (T) - F(O)] it follows that both vanish identically on all of 

~. which completes the proof of the first part of Theorem 3.1. 

The proof of the second part of Theorem 4.1 does not appeal to 

Theorem 3.1. It is proved directly, proceeding along the same general 

lines as Globevnik's proof of Theorem 2.5 [6]. The estimates, however 

are somewhat more complicated. The proof relies on the following lemma 

which is stated without proof. 

Lemma 4. 4 (Globevnik [6]). Let T € .S: ():l) and {E1.J and {c1_J be the 

* * spectral measures of TT and T T respectively, and let a< S. If 

Proof of part (ii) of Theorem 4.1. For simplicity set Q = 1 - c1_6 

and P = 1 - E
1

_
6

. By hypothesis there is a positive R less than the 
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radius of boundedness of F at zero so that for any v € Range(Q) and 

* * u € Range(P), F(T)v = F(O)v and F(T) u = F(O) u for all T with 

!ITII < R. By Lemma 4.4 F(O)v € Range(P) and thus 

* * * F(T) F(T)v = F(T) F(O)v = F(O) F(O)v 

if II~~ < R and v € Range (Q). For w e lf, w = v + u with v = Qw 

and u = (I- Q)w so that 

IIF(T)wjl
2 = (F(T)*F(T)v,v} + (F(T)*F(T)v,u} 

* * + (u,F(T) F(T)v} + (F(T) F(T)u,u} 

* * = (F(O) F(O)v,v} + (F(O) F(O)v,u} 

* * + (u,F(O) F(O)v} + (F(T) F(T)u,u}. 

* * But (F(O) F(O)v,u} = 0 since Range(Q) is invariant under F(O) F(O), 

so that 

2 * * II F(T)wjl = ( F(O) F(O)v, v} + ( F(T) F (T) u, u} 

* 2 * 211 F(O) F(O)II •llvJI +II F(T) F(T)ujl •II uJI· 

* To estimate II F(T) F(T)ujl , choose an r < R; then II F(T)II and 

II F(T) ± F(O)II are bounded on ~ (0, r). Let M( r) be a bound for all 

* three on this ball. Since u € Range(Gl-o)' II F(O) F(O)ujl 2 (1- o )ll uJI' 

so that 

. * * * * IIF(T) F(T)ujl 2IIF(O) F(O)ujl +II (F(T) F(T)- F(O) F(O))ujl 

* * 2 (1- o )lluJI +II (F(T) + F(O) )(F(T)- F(O))ull 

* * + II (F(T) F(O)- F(O) F(T) )ujl 

2 (1- o )ll uJI + II F(T) + F(O)II • II F(T)- F(O)II •II ull 

* * + II F(T) - F(O) II • II F(O)II • II ull + II F(T)- F(O)II •II F(O)II • II uJI 

2 (1- o)lluJI + M(r)I!FCT)- F(O)II ·lluJI + 2IIFCT)- F(O)I!·IIuJI 

= (1- o)lluJI + (M(r) + 2)IIF(T)- F(O)!I ·lluJI· 
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An application of Schwarz's Lemma to the holomorphic function 

F(T) - F(O) gives 

Hence 

and 

IIF(T) *F(T)~I < (1- o)ll~l + (M(r) + 2)M;r)IITII ·llull 
,, 

(1- o)ll ~~ + M(r)ll Til • 11 ~~ 

II F(T)wjl
2 ~II vJI

2 
+ (l- o)ll ~1 2 

+ M(r)ll Til ·II ~1 2 

= llwll2 + (M(r)IITII- o)ll~l2· 

If r 0 =min(r,o/M(r)), thenforall T with JITIJ~r0 , IIF(T)II~l. 

Since II F(O)II = 1 Proposition 1. 7 implies that II F(T)II = 1 for all T 

with II~~ 2._ r 0 . This completes the proof of Theorem 4 .1. 

Theorem 4.1 can be used effectively to determine whether a specific 

function in Hol (l.9 ,s_ (Jf)) has constant norm on some open ball. Further-

more, it provides a lower bound for the radius of this ball, namely 

. ( or ) 
rO = ffiln r,M(r)(M(r)+2) ' 

where r is any positive number less than the radius of boundedness of 

F at zero and 

M(r) = sup{IIF(T)II •IIF(T)± F(O)!I\T € B(O,r)}. 

However, this lower bound is generally quite poor as can be seen in the 

examples which follow. 

The first example was analyzed in part in Chapter 3. 

Example 1. 
2 Let )i = !E , and 
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The spectral projections at 1 in this case are both P1 and clearly 

for all T 

* * [F(T)- F(O) ]P1 = [F(T) - F(O) )P1 = 0. 

* Since 1 is an isolated point of o(F(O) F(O)), Theorem 4.1 implies 

that II F(T)II = 1 on some ball centered at zero. Obviously this ball can 

be taken to have radius 1. Compare this to the lower bound given by 

Theorem 3.1: Here r can be taken arbitrarily large, o arbitrarily 

close to 1, and M(r) = max(2,r). Thus 1 
is at most 4· 

Example 2. Let ~ be a separable Hilbert space with orthonormal basis 

{en}:=l' let U € .£:~) be the unilateral shift (i.e., Uen = en+l) and 

let P
1 

be the orthogonal projection onto span(e
1
). Set 

* F(T) = P
1 

+ UTU . 

The corresponding spectral projections are both P
1 

and the hypothesis 

of Theorem 4.1 are obviously met. Thus II F(T)II is constant on some ball 

centered at zero. While the radius of this ball can be taken equal to 

one, is never larger than 
1 
4' just as in the previous example. 

Example 3. Let ~ and {en}:=l be as above, let D be the diagonal 

operator defined by 

De 
n 

and let Pk be the orthogonal projection onto span(e
1

, .•. ,ek). 

Consider the holomorphic function 
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* This time 1 is no longer an isolated point of a(F(O) F(O)). 

Direct calculation shows that 

P where m 
m 

So if o < 1/(k+ 1) then m > k and 

[1/o]. 

Hence by Theorem 4.1, for every positive integer k, [IFk(T)!i = 1 on 

some ball centered at zero. To estimate the radius of this ball, note 

1 that is again arbitrary, 0 and M(r),.... max(r,3). Thus r = -- ro k+l 

is never larger than 1 Again, this is far from being sharp. For 5 (k+l). 

example, when k = 1, II Fl (T)[I = 1 for all II Til < 1/2. 

We now consider a special class of holomorphic functions of 

operators, namely those functions arising from the Dunford functional 

calculus. It was shown in Chapter 1 that such functions arise from a 

complex valued function f holomorphic on the closure of a domain D 

in [. For T with a(T) c D, F is defined by 

F(T) 

F will be holomorphic on ~ = {T e J: (Jf) [a(T) c D}. Such functions will 

be referred to as Dunford functions. If a Dunford function F has 

II F(T)II = 1 on ~, then F(T) will be constant on ~ by Theorem 3. 2. 

For if r; € D, then I;; I € ~ and F(i;;I) = ei8I, a complex extreme 

point of the closed unit ball. Even more is true. 

Proposition 4. 6. If F € Hol (J\) ,J: ~)) is a nonconstant Dunford function, 

then F cannot have constant norm under any norm equivalent to the usual 

norm. 
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Proof. First note that if 

F (T) 
1 -1 

-2 . f f (z:) (z:I- T) ds 
'TTl. oD 

then F( ~I) = f( ~)I for all ~ I € ~. Since F is nonconstant, so is 

f and ~ . z: € D can be chosen so that f(~) # f( Z: ). Then 

F(SI) - F(~I) = (f(Z:)- f(~))I so that F(~I) € span{F(T)- F(0) IT € ~}. 

The result now follows by applying Theorem 3.5 to the function 

G(T) = F(T +~I) which is holomorphic on a domain containing the origin 

and has G(O) € span{G(T)- G(O)}. 

Another interesting class of holomorphic functions of operators is 

that of functions F with 1 * Im(F(T)) = 0 (Im(T) = 2i (T- T ) ) . By analogy 

with the norm constant functions, it is conceivable that there would be 

many nonconstant functions satisfying this condition. The analogy is of 

course inaccurate, as the following theorem confirms. 

Theorem 4.7. Let ~ be a domain in lf and Fe Hol(l9,£:():l:)) satisfying 

Im(F(T)) = 0 for all T e ~. Then F(T) is constant on ~. 

Proof. Since Im(F(T)) = 0 on ~. F(T) is selfadjoint for all T € ~. 

Define a new function G € Hol(J9,.;L():l:)) by 

G(T) (F(T)- ii) (F(T) + ii) -l. 

Since F (T) is selfadjoint, G(T) is unitary for all T € ~. In 

particular, G is a norm constant function whose range includes a 

complex extreme point of the closed unit ball, so G(T) is constant by 

Theorem 3.2 and hence F(T) must also be constant on ~. 

The conclusion of Theorem 4.7 remains valid if it is assumed that 

Im(F(T)) = C or Re(F(T)) = C on ~ instead of Im(F(T)) = 0. 
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Theorem 4.7 is so much stronger than Theorem 4.1 or Theorem 3.1 because 

the analogy between holomorphic functions F with constant norm and 

those with Im(F(T)) = 0 is inaccurate. Requiring the imaginary part 

of an operator to be zero imposes a great deal of structure on the 

operator (i.e., it must be selfadjoint). On the other hand, requiring 

an operator to have norm one imposes no structure whatsoever on the 

operator. 

A final point worth discussing is the relation of Theorem 4.1 to 

the results of Chapter 3. Recall that the proof of the second part of 

Theorem 4.1 was direct and did not appeal to any of the results of the 

previous chapter. Ideally, a proof of Theorem 4.1 part (ii) would use a 

lemma such as the following: 

Lemma. Let F € Hol G.9 ,J: (Jf)) satisfy the hypothesis of Theorem 4.1 (ii), 

then 

e,(F(T)) J< for all T e ~ 

and 

F(T) - F(S) € J< for all T, S € ~. 

The proof would then be completed by invoking Theorem 3.1. Unfortunately 

the author has been unable to prove a lemma such as the above. However, 

it is a simple matter to use Theorem 3.5 to show that such a function 

must have constant norm in some norm equivalent to the original. 

Propos it ion 4. 5. Let ~ c J: (){) be a domain containing zero and 

F € Hol(t9,J:(l4)) satisfying the hypothesis of Theorem 4.1 (ii), then F 

must have constant norm in some norm equivalent to the usual operator 

norm. 
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Proof. By Theorem 3.5, it suffices to show that 

F(O) ~ span{F(T)- F(O) jT € J9}. 

To do this consider the linear map from ~~) into itself given by 

The kernel of this map includes F(T) - F(O) for all T e J\1, but not 

* F(O) since 1- c
1

_
0 

is a nonzero spectral projection for F(O) F(O). 

The result now follows easily. 

This proposition suggests an alternate proof of the second part of 

Theorem 4.1: it only remains to show that the norm in Proposition 4.5 

is the usual operator norm. However, as can be seen from the construe-

tion of the norm in Lemma 3.7, this appears to require proving first 

that jj F(T)jj is bounded by 1, so that we seem to return to the 

direct proof of Theorem 4.1 (ii). 
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Conclusion 

There are several other questions related to norm constant holo-

morphic functions and/or maximum modulus theorems in other settings which 

still do not have satisfactory answers. Some of these will be briefly 

mentioned here. 

The first involves the generalization of the Schwarz-Pick inequality. 

The classical result states that if w is a holomorphic function from 

the complex unit disk into itself, then for all C, ~ in the unit disk, 

l w(C)-w(~)~ < js-~j 
1-WTITw( C) 1-tc · 

Nontrivial equality holds only when w is a fractional linear transfer-

mation of the form 

w(C) l-r r • 
"'0"' 

An analog of this inequality holds in ~(~). Let 

Then TB is a map of the unit ball 3 of ~ Cl:O into itself which plays 

the role of the fractional linear map above. If F € Hol(~,~) then the 

following generalization of the above inequality holds for all A, B € ~: 

The problem is to determine those functions F for which nontrivial 

equality holds. This is equivalent to determining for which F the 

function 

H(A) 
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will have constant norm. Neither Theorem 3.1 nor Theorem 4.1 provide a 

satisfactory answer to this question. It was this problem that originally 

motivated the author to study norm constant holomorphic functions. 

Another unsolved problem involves a "maximum modulus theorem" in a 

completely different setting. Let f € Hol(D,£(~)) where D is a 

domain in the complex plane. Suppose that the spectrum a(f(~)) achieves 

its maximum on D at ~O in the sense that for all ~ € D 

a(f(~)) <;_ a(f(~0 )). Does it follow that a(f(~)) is independent of ~? 

This question was first posed by A. Brown and R. Douglas in 1966. Unfor­

tunately none of the methods of this thesis shed any light on this 

interesting problem. 

The usefulness of e (z) in dealing with problems involving complex 

extreme points suggests the following definition: 

J(z) = {y € rl3:r > 0 such that llz+tyll ~ llzll for -r < t < r}. 

The set J(z) measures "how close" z is to being a real extreme point 

of the ball in x; of radius llz!l. While J(z) does not appear to 

behave as nicely as e(z), it is conceivable that J(z) would neverthe­

less be a useful tool in problems dealing with real extreme points. 

Finally, there remains the question brought up at the end of 

Chapter 4: Is it possible to give a proof of part (ii) of Theorem 4.1 

which utilizes the more general theorems of Chapter 3? 
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