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ABSTRACT 

A linear space is an incidence structure of points and lines such 

that every pair of points is contained in a unique line. In the first 

two chapters of this thesis results are presented linking structural 

properties to arithmetic conditions on the number of points and lines. 

We provide a short new proof of Jim Totten's classification of all linear 

spaces for which the difference between the number of points and lines 

does not exceed the square root of the number of points. We extend this 

classification when the number of points is of a certain form. Also in 

these chapters we have similar classification results for more special­

ized finite geometrical structures such as (r,l)-designs. 

The la.st chapter is devoted to (k, u) -arcs. A (k, u) -arc in a finite 

projective plane is a set of k points meeting no line of the plane in 

more than u points. Elementary bounds upon k can be established and 

we call an arc with this maximum number of points perfect. An arc not 

properly contained in any other is called complete. Several construc­

tions are given for both perfect and complete arcs. The major results 

of this chapter concern the uniqueness of completions of a (k,u)-arc to 

a perfect arc. 



iv 

CONTENTS 

Acknowledgements ................................................ 
Abstract 

Introduction 

Chapter I. (r,l)...;.designs 

Section 1. 

Section 2. 

Section 3. 

Introduction 

Embeddings for v restricted 

Embeddings for b- v restricted 

Chapter II. Linear Spaces 

Section 1. 

Section 2. 

Section 3. 

Section 4. 

Introduction 

Totten's classification 

Further classification 

Extensions to A-spaces 

Section 5 .- Remarks 

Chapter III. (k, l-!) -arcs 

Section 1. Introduction 

Section 2. Elementary properties 

Section 3. Constructions 

Section 4. 

Section 5. 

References 

Uniqueness of completions 

(k,l-!)-arcs 

ii 

iii 

1 

5 

5 

8 

13 

17 

17 

20 

31 

39 

45 

48 

48 

51 

55 

61 

69 

76 



1 

INTRODUCTION 

A finite linear space is an incidence structure of finitely many 

points and lines in which two points determine exactly one line. In 

chapters 1 and 2 we investigate properties of linear spaces which can be 

deduced purely from relations upon the number of points, v, and the 

number of lines, b. 

We say that a linear space is embeddable in a projective plane if .it 

can be obtained from a projective plane by the deletion of some number of 

points. Lines may also be deleted if they are left with one or no points. 

In chapter 1 (r,l)-designs are considered. An (r~l)-design is a 

linear space in which every point lies on exactly r lines. A theorem 

2 
of Vanstone states that if v > (r- 1) for an (r,l)-design then it is 

embeddable in a projective plane of order r- 1. Besides providing a 

short proof of this result, we also prove the following stronger asser-

tion: 

Theorem A. An (r,l)-design satisfying b - v < r + 1, r > 5, is 

embeddable in a projective plane of order r- 1, for v > 1. 

In chapter 2 linear spaces in general are considered. Before 

mentioning the main results we must define some particular examples. 

Clearly the configuration of all points upon one line satisfies the 

axioms for a linear space. In general we assume b > 1 however. A 

near pencil is a linear space in which there is one line containing 

v- 1 points and v- 1 lines each containing two points. An affine 

plane of order n with a linear space at infinity is a finite affine 

plane to which up to n + 1 new points have been added. Each new point 
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is associated with a parallel class of the plane, a point being added to 

all the lines of its class. A structure of lines is imposed upon the new 

points such that every pair of new points lies on a unique line. In this 

way we obtain a linear space. For e xample, a projective plane can be 

obtained by taking an affine plane and adding at infinity the degenerate 

space of all points on one line. 

A classic theorem of de Bruijn-Erdos states that if a linear space 

satisfies b > 1 then b ~ v, with equality if and only if the space is 

either a projective plane or a near pencil. J. Totten extended this 

theorem in 1976 by classify ing all linear spaces satisfy ing b < v + IV. 

We give a new proof of this result which is considerably shorter than 

Totten's. 

Theorem B (J. Totten). A linear space with b > 1 and b < v + IV, 

n
2 

< v < (n+l)
2 

is one of the following: 

1. A near pencil. 

2. Embeddable in a projective plane of order n. 

3. An affine plane of order n with either a near pencil or projective 

plane at infinity. 

4. Lin's cross, the unique linear space with v = 6, b = 8, one line 

each of lengths 3 and 4, and six lines of length 2. 

We extend a special case of this theorem as follows: 

Theorem C. A linear space in which 
2 

v=n +n+l and 
2 

b < n + (2.147)n, 

b > 1 is either a near pencil or an affine plane of order n with a 

(possibly degenerate) linear space at infinity . 

In chapter 2 we also briefly consider the e x tension of these results 
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to :\-designs. A :\-design is an incidence structure in which every pair 

of points lies on exactly A lines. We find that a :\-design satisfying 

b < r(r-1)/:\ + 1 and r(r-2)/:\ + 2 ..:::_ v ~ r(r-1)/:\ + 1 in which no 

two lines meet in > A points is embeddable in a symmetric (v,r,:\)-design, 

for v sufficiently large. We close with several conjectures involving 

extensions of Totten's classification. 

In chapter 3 we turn our attention to structures in projective planes. 

A (k,~)-arc in a projective plane is a set of k points such that no 

line of the plane intersects the set in > ~ points. Barlotti has shown 

that a (k,~)-arc in a plane of order n must satisfy k < n~ - n + ~. 

We call an arc achieving this bound perfect. A (k,~)-arc not properly 

contained j.n any (k 1 .~)-arc is called complete. We list various known 

properties of perfect (k, 1J) -arcs and present several constructions for 

these. We also give a new construction for per~ect (k,2)-arcs in some 

translation planes. Our main result of this chapter is the following: 

Theorem D. A (k,~)-arc in a projective plane of order n satisfying 

k > n~ - n + ~ - (n- n/~ + 1) is completable in at most one way to a 

perfect arc. If k = n~ + ~ - 2n + n/~ - 1 then there are at most ~ + 2 

ways to complete it to a perfect arc. Moreover, if more than one way 

exists then a block design on the parameters 

b 1 = n (n - ~ + 1) 
2 ~ 

~ 

v' n + 1 - n/~ 

r 1 n/~ 

kl ~ 

A I 1 
exists. 
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We give examples of known low order arcs which intersect in this 

maximum number of points. 

In the last sections of this chapter we turn our attention to 

complete (k,~)-arcs. We prove 

Theorem E. A complete (k,~)-arc in a plane of order n must satisfy 

(k-l)(k-2 ) for n > ~(~-l) and n < (k-~+l)(k-~) + ~- 2 for n < ~(~-l) 
~(~-1) 2 ~(~-1) - 2 . 

n < 

This extends and improves a theorem of Bruen. Equality in the case 

~ = 2 implies the existence of a certain partial geometry. We also 

prove another bound for comple.te (k, ).1) -arcs for which equality holds 

only for a Baer subplane. 

A theorem of Segre states that in a desarguesian plane of order n, 

n even, a complete (k,2)-arc must satisfy k = n + 2 or k < n - In+ 1. 

We close chapter 3 by constructing low order cases of equality in the 

second bound using difference sets. We conjecture that our construction 

provides an infinite family of cases of equality. 
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Chapter I 

(r,l)-designs 

We begin our investigation of linear spaces in this chapter with the 

study of (r,l)-designs. We first define several concepts which will be 

used throughout this and the following chapters. 

A finite linear space is a finite set of points and a collection of 

subsets of points, called lines~ such that every pair of points is 

contained in exactly one line. We will denote a given linear space by J, 

the set of lines in the space. For - example 

Jl = {{1,3,5},{2,3,4},{1,4},{1,2},{4,5},{2,5}} 

is a linear space. In general v will denote the number of points and b 

the number of lines in a linear space. Obviously a single line containing 

all points satisfies the linear space requirements, and any number of one 

point lines can be introduced into a linear space without violating the 

axioms. To avoid these degeneracies we will assume b > 1, and that no 

line contains fewer than two points, unless specifically noted. 

We will use such phrases as "lies on," "passes through," "meets," and 

so on, in the obvious way, to denote various relationships between points 

and lines. The following notation will be used in connection with linear 

spaces. Lines will be denoted by ~l' ~2 , ... , ~b or in particular 

instances by ~. ~', or .R,". The length of a line is the number of 

points lying on it, denoted by k
1

, k
2 , ... , kb or simply k. Points 

will be variously referred to as x; y, p, or q. The number of lines 

containing a point is its degree, denoted by or 
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A linear space is the most general incidence structure which we will 

consider. We define (r~l)-designs~ the subject of this chapter, as 

simply linear spaces in which every point has degree r. 

for all x. 

That is r = r 
X 

A projective plane is a very special example of. an (r,l)-design 

which we will encounter often. We summarize here the results on projective 

planes that we will use. For more details see [18], pg. 173-188 or [27], 

pg. 89-95. A finite projective plane can be defined as a finite linear 

space in which every pair of lines meet in exactly one point; and, to 

avoid degenerate configurations, we also require that there exist four 

points no three of which are collinear. This non-degeneracy condition is 

assured if all lines have at least three points and b > 1. Hence in the 

text we will not, when showing that a given linear space is a projective 

plane, specifically note that this condition holds. 

A classic result in combinatorics states that in a finite projective 

plane every line contains a constant number of points, and every point 

lies on a constant number of lines. Moreover, these two constants are 

the same. In other words, calling this constant n + 1 (by convention 

and for convenience in later results) , every line contains n + 1 points 

and every point lies on n + 1 lines. The number n is referred to as 

the order of the projective plane. \.J'e speak of a projeative plane of 

order n. It can further be shown that a projective plane of order n 

contains 
2 

+ + 1 points and 
2 

+ 1 lines. Thus a projective n n n + n 

plane of order is a linear with b 
2 

+ + 1 and n space = n n 

2 
+ + 1. In fact, it is (n + 1 ,1)-design since point v = n n an every 

lies on n + 1 lines. For example 
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~2 = {{1,3,5},{1,2,6},{1,4,7},{2,3,4},{4,5,6},{2,5,7},{3,6,7}} 

is a projective plane of order 2. Note that every pair of lines meet and 

each point lies on 3 lines. We will find that projective planes will 

occur frequently in our theorems on both (r,l)-designs and linear spaces. 

This is because projective planes constitute one of only two classes of 

linear spaces for which b v. In fact, an equivalent definition of a 

projective plane is a linear space for which b = v and there exist four 

points, no three collinear. We will use this alternate definition as 

well as that given earlier. We will return to this subject in more detail 

in chapter 2. 

We will need the notion of linear space embeddabilit y . We say that 

~l is embeddable in J
2 

if by deleting some number of points from J
2 

(and lines when they are left with 0 or 1 points) we obtain J
1

. For the 

example spaces above, J
1 

is embeddable in J
2 

since the deletion of 

points 6 and 7 from J
2 

results in J
1

. 

We note that by judiciously deleting points from a projective plane 

of order n we obtain many (n + 1 ,1) -designs. We will find that with 

some restrictions on v all (n+l,l)-designs are obtained in this way. 

Before proceeding with the main results of this section we mention a 

simple fact that will be used frequently in this and the next chapter. 

If ~ is a line and x t ~ then r > 1 ~ 1, with equality if and only if 
x-

every line through x meets ~. This is because the lines joining x to 

the points of ~ must ali be distinct. Many of our counting arguments 

will be based on this simple principle. 
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Section 2: Embeddings for v restricted. 

Our first result on (r,l)-designs is the following, due to Vanstone. 

Theorem 1.1. An (r,l)-design for which 
2 

v:._(r-1) -1, r :._ 3, is 

embeddable in a projective plane of order r - 1. We allow for the 

possibility of one point lines in this theorem. 

The case 
2 

v > (r-1) of this theorem was first proved by Vanstone, 

[41]. We give here our own proof. 

Proof. We first mention that what follows holds true even in the presence 

of one point lines. It is necessary to note this since we will be proceed-

ing inductively, adding a point at a time, and we may introduce one point 

lines at some stage. 

Suppose we have an (r,l)-design with 
2 

v>(r-1) -1. Then no line 

has length > r, since every point has degree exactly r. 

Note that if v = r
2 

- r + 1 then for the r lines through a point, 

each length r or less, to cover 
2 

v = r - r + 1 points we must have 

every line through a point of length r. But a line of length r must 

be met by every other line (since all points have degree r) . Thus every 

pair of lines meets. Hence we have a projective plane of order r- 1. 

We now assume (r-1)
2 

- 1 
2 2 

r - 2r < v < r - r and split into two 

cases. 

Case 1: A line of length r exists. Then every line must meet a line of 

length r. Since every point on that line has degree r we can count the 

lines meeting it to obtain b = r(r- 1) + 1. We can now compute the 

following. 
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b 
L. k. vr, 

i=l 
1 

b 
L. k.(k.-1) = v(v-1), 

i=l 1 1 

The first is obtained by counting pairs, (x,£) such that x € £, 

in two different ways. The second comes from counting triples (x,y,£) 

such that x e £ and y € £. Thus 

v(v- 1) + vr. 

Now first suppose 
2 2 

( r- 1) < v < r - r. Theri we compute 

b 2 
L. (k.- ( r- 1)) 

i=l 
1 

b 
L. k~ 

i=l 
1 

b 2 b 
2(r-l) L. k. + (r-1) L. 1, 

i=l 
1 

i=l 

v(v- 1) + vr 
2 2 

2 ( r - 1) vr + ( r - 1) ( r - r + 1) , 

2 2 2 
= v(v-2r +3r-l) + (r-1) (r -r+l). 

This expression achieves its maximum over 
2 2 

( r- 1) < v < r - r at 

either endpoint. Hence 

b 2 2 2 2 22 L. (k.-(r-1)) =(r-1) ((r-1) -2r +3r-l) + (r-1) (r -r+l), 
i=l 

1 

2 
=(r-1) <b. 

Thus some line, £, of length r - 1 must exist. Every point off 

of £ lies on a unique line missing £ (since every point has degree r 

and£ has length r- 1). So £ and the lines missing £ form a 

paraZZeZ class~ a set of disjoint lines exhausting all points. By count-

ing via the degrees of the points on £ we have that £ meets 

(r-l)(r-1) + 1 other lines. This leaves r -1 lines disjoint from 

~. Thus we have a total of r disjoint lines exhausting all points. We 
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can now add a single point to all of these lines (it will thus have degree 

r), and proceed inductively to eventually obtain b = v and thus a pro-

jective plane of order r - 1. 

Suppose 2 v=(r-1) -1 now. If a line of length r - 1 exists 

then we can proceed as above to create a parallel class and add a point. 

If no line length r - 1 exists then we have 

b 
0 < L (r-k.)((r-2)-k.), 

i=l 1 1 

b 
r(r- 2) L 1 

i=l 

b b 2 
2Cr-l) I: k. + I: k., 

i=l 1 i=l 1 

2 
r ( r - 2) ( r - r + 1) - 2 ( r - 1) vr + v ( v - 1) + vr , 

= 0, with 2 v=(r-1) -1. 

Thus every line has length r or r - 2. Letting r
1 

= # of lines 

through a point of length 

length r - 2 we have 

(r-l)r1 

1 Thus r = z-Cr+ 1), 1 

length r and b2 I! of 

r and r = # of lines through a point of 
2 

+ (r-3)r2 = v - 1 r 2 - 2r - 1. 

1 
r2 =z-Cr-1). Letting b

1 
= # of lines of 

lines of length · r - 2 we then have 

2 
b = r - r + 1, 

b 
I: k. 

i=l 1 
vr 

2 r(r - 2r}, 

These imply b
1 

= I(r- 1) (r- 2), b2 
1 2 
z-C r + r). In this case we 

have precisely the (r,l)-design examined by Bose and Shrikhande in [7]. 
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They prove that an (r,l)-design with v 
2 

r 2r and b 
2 

r - r + 1 

with lines only of size r and r- 2, other parameters r
1

, r
2

, b
1

, b
2 

as computed above, is embeddable in a projective plane of order r - 1 

for r f 7. The case r = 7 ~as disposed of separately by Paul de Witte 

in [47]. Thus this case is completed. 

Case 2: No line of length r exists. Then for r lines through a 

point to cover v > (r-1)
2

- 1 points (lines of length r-1 or less) 

we must have either: a) v 
2 

( r- 1) and all lines through a point have 

length r- 1; or b) v (r-1)
2

- 1 and each point lies on r- 1 

lines length r - 1, one line of length r - 2. 

So 

In the first case we then have all lines of length · r- 1. Thus 

- r. 

b 
b(r-1) L k. 

i=l 
1 

2 
vr = r(r-1). · 

We can now use a line of length r - 1 to create a 

parallel class of lines (as in Case 1). Here, however, the class will 

only contain r - 1 lines, since - r (not r
2

- r + 1 as previ-

ously). We adjoin a new point to these r- 1 lines and also include a 

singleton line on the new point (so it will have degree r). We can now 

proceed inductively. 

In the second case lines can only have length r - 1 or r - 2. We 

count as follows. 

# of lines of length r - 1 
v(r-1) 
r- 1 

2 v = r - 2r, 

since each of · v points lies on (r- 1) lines of length r - 1, while 

each line length r - 1 contains r such points. Similarly 

# of lines of length r - 2 
v • 1 
r- 2 = r. 
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Thus b = (/-2r) + r 
2 

r - r and we can proceed as in the 

previous paragraph. 

This concludes the proof of Theorem 1.1. 

We mention that this theorem can be improved by the use of more 

complicated methods. In (23] Vanstone and McCarthy prove that an 

( ) ( ) 2 1(( i r,l-designwith v > r-1 -4 8r-15) -3) is embeddable in a 

projective plane of order r - 1. Steven Dow in [13] has shown that an 

(r,l)-desig_n satisfying b r
2 

- r + 1 and v > (r- 1)
2 

- (2(r+ 2)~- 6) 

is embeddable in a projective plane of order r - 1. 
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Section 3: Embeddings for b - v restricted. 

It is our aim in this section to establish the following. 

Theorem 1.2. An (r,l)-design satisfy ing b - v < r + 1 and r > 5 is 

embeddable in a projective plane of order r- 1, for v > 1. Here we 

also allow for one point lines. 

Proof. First note that if a line length r exists then all lines must 

meet it and thus 
2 

b=r -r+l as before. Then b - v < r + 1 

implies 
2 v > r - 2r = (r-1)

2
- 1 and we can apply Theorem 1.1 We now 

assume no line of length r e xists. 

We show that some line of length .r - 1 ex ists. Let k be the 

maximum length of a line, ~ . Then we have that 

# of lines meeting ~ (r-l)k + 1. 

We count the number of lines missing ~ as follows. Through each 

of the v - k points off of ~ there are r - k lines missing ~ . 

Each of these lines contains at most k such points (since k is the 

maximum length of a line) . Thus 

Hence 

# of lines missing ~ > (v-ki(r-k) 

b > (r- l)k + 1 + (v-k) (r-k) 
k 

We now manipulate this expression 

b- v(r-k) > (r-l)k + 1- (r-k), 
k 

r~k(b- v) + b(l- r~k) > r(k-1) + 1. 

Using b - v < r + 1 and simplifying further gives 
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r~k(r+l) +b( 2~-r) > r(k-1) +1, 

2 2 
b > rk +2k-r +k 

2k-r 

provided 2k - r > 0. We can estimate v easily by examining the lengths 

of lines through a particular point. This yields 

v ~ r(k-1) + 1. 

We can now combine the estimates for b and v and use b- v < r + 1 

to obtain 

r + 1 > b - v > 

Writing k r - a, and simplifying, eventually yields 

0 > r(r(a- 1) - a
2 

- 1) + 2a. 

The assumption 2k - r > 0 implies r > 2a. We are attempting to show 

a = 1, i.e. a line of length r - 1 exists. Suppose not, i. e. a> 2. 

The above expression is increasing in r for r > 2a provided 

2a > (a
2 

+ 1) /2 (a- 1), which holds for a > 2. Thus 

2 2 
0 > r(r(a- 1)- a - 1) + 2a > 2a(2a(a- 1)- a - 1) + 2a, 

3 2 
0 > 2a - 4a , 

a contradiction for a > 2. 

Thus we have that a line of length r - 1 exists provided 2k- r > 0. 

Suppose that 2k - r < 0. Then consider the following. 

b 
0 < I: (k- k.) = bk - vr, 

i=l l . 

0 < r(b-v)- b(r-k), 

b(r-k) ~ r(b-v) ~ r(r+l), 

b < r(r+l)/(r-k). 
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Also from the first expression 

r 
v < bk/r < r(r+l) 

- - (r-k) 
k 

since 2k- r < 0 implies (r- k) > k. Thus since b . - v < r + 1 we 

have b < 2r + 2. Suppose that there exist four points no three collin-

ear. Then we can easily count that this set of points meets exactly 

4 ( r- 3) + 6 4r- 6 lines. But then b < 2r + 2 implies r < 4 

contrary to r > 5. If there do not exist four points no three collinear 

then either all points are collinear or all .points but one are collinear. 

In either case many one point lines will be present. If all points are 

collinear then we can easily compute that b = 1 + v(r- 1), in which 

case b- v < r + 1 implies v < 1 (for r > 5). If all points but one 

are collinear we can compute b v + ( v - 1) ( r - 2 ) + ( r - ( v-1) ) . This 

implies, together with b - v < r + 1, that v < 1. So we may assume 

2k- r < 0 and hence a line of length r - 1 exists. 

We recall the bound on b derived earlier in the proof. 

2 2 
rk +2k-r -r 

b > 
2k- r 

with k r - 1 this becomes 

r - 2 /-r-2/(r-2). 

Thus b > r 
2 

for > 5. - r r 

If b > 
2 

r - r + 1 then b - v < r + 1 implies v > 
2 - 2r r = 

2 
apply Theorem 1.1. (r- 1) - 1 and we can 
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If 
2 

b = r - r then 
2 

v > r - 2r - 1. We can use a line of length 

r - 1 to create a parallel class (as in the proof of Theorem 1.1) of 

r- 1 lines. A single new point is adjoined to these r- 1 lines 

together with a singleton line on the new point. We then have an 

2 
(r,l)-design with v = r - 2r and we can apply Theorem 1.1. This 

concludes the proof of Theorem 1.2. 
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Chapter II 

Linear Spaces 

Section 1: Introduction. 

In this chapter we consider linear spaces in general. For defini-

tions and notation used in this chapter see Chapter 1, Section 1. In 

addition to what is contained there we will also require several special 

examples of linear spaces. 

A near pencil is a linear space in which one line contains v - 1 

points and the remain ing lines each contain two points. Thus b v. 

An affine plane is a type of linear space very closely related to 

projective planes. For more details we refer the reader to [18] pages 

173-179. A f ini te affine plane is a finite linear space which satisfies 

"Play fair's Axiom": Given any line 9, and any point x t 9, there 

e xists exactly one line through x disjoint from 9- . 

It can then be shown that every line has the same numb e r of points, 

say n, and then also that ev.ery point has degree n + 1, b = n 
2 

+ n, 

and 
2 We refer v = n . to this as an affine plane of or der n. For 

e xample, 

Jl {{1,2,3}, {4,5,6 } , {7,8,9 } , {1,4,7}, 

{2,5,8}, {3,6,9}, {1,6,8}, {2,4~9 } , 

{3,5,7}, {2,6,7}, {3,4,8}, 1,5,9 }} 

is an affine plane of order 3. An affine plane of order n can equiva-

lently be defined linear space with 
2 

b 
2 

+ k . as a v = n = n n, = n , 
l 

for all i, and r n + 1 for all x . It is this second definition 
X 

that we will use most frequentl y . 
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Playfair's Axiom gives rise to parallel classes in an affine plane. 

A parallel class is a set of disjoint lines exhausting all points. In 

an affine plane of order n there are n + 1 parallel classes, no two 

sharing a line. These parallel classes exhaust all lines. For example, 

J
1 

above has the following four parallel classes. 

{{1,2,3}, {4,5,6}, {7,8,9}}, 

{{1,4,7}, {2,5,8}, {3,6,9}}, 

{{1,6,8}, {2,4,9}, {3,5,7}}, 

{{2,6,7}, {3,4,8}, {1,5,9} }. 

It should be noted that given a parallel class in a linear space a 

new space can be obtained by adding a single new point on the lines of 

the paral~el class. In this way v is increased by one and b is left 

unchanged. This means of extending linear spaces was used in the proofs 

of Theorems 1.1 and 1.2. 

Given an affine plane of order n we can obtain a projective plane 

of order n by adding n + 1 new points. We add a particular point to 

all the lines of one parallel class. We then place all n + 1 new 

points on a single new line. The new points are sometimes referred to as 

points at infinity, and the new line as a line at infinity. For example, 

given 3
1 

above we adjoin points 00 00 00 00 

1' 2' 3' 4 
at infinity to obtain 

J2 {{1,2,3,co
1

}, {4,5,6,co
1

}, {7,8,9, co
1
}, 

{1,4,7,co2}, {2,5,8,oo2}, {3,6,9,co2}, 

{1,6,8, oo
3

}, {2,4,9,oo
3

}, {3,5,7, co
3

}, 

{2,6,7, oo
4

} {3,4,8,co
4

}, {1,5,9,co
4

}, 

{co co co co}} 
1' 2' 3' 4 ' 

a projective plane of order 3. This correspondPnce can be reversed, 
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i.e., if n + 1 collinear points are removed from a projective plane of 

order n we obtain an affine plane of order n. 

The next class of examples is a generalization of this process. 

Note that, after the points at infinity have been adjoined to their 

respective parallel classes (and before the line at infinity has been 

added), to produce a linear space we need only impose a structure of 

lines upon the points at infinity which guarantees that any two of these 

points lie on a unique line. That is, we have an affine plane of order 

n with a linear space at infinity. For a projective plane the linear 

space at infinity is the degenerate configuration of all points upon one 

line. In general any linear sp~ce can be placed upon the points at 

infinity. Also we need not adjoin a full n + 1 points at infinity. 

To illustrate this process we adjoin three points to .d
1 

above and 

place a "triangle" at infinity to obtain the following linear space. 

J
3 

{{1,2,3,oo
1

}, {4,5,6,oo
1

}, {7,8,9, 00

1
}, 

{1,4,7,oo
2

}, {2,5,8,oo
2

}, {3,6,9, 00

2
}, 

{1,6,8,oo
3
}, {2,4,9,oo

3
}, {3,5,7,oo

3
}, 

{2,6,7}, {3,4,8}, {1,5,9}, 

{ool,oo2}' {ool,oo3}' {oo2,oo3}}. 

The results of sections 2 and 3 in this chapter can also be found 

in [ 14 ] and [ 16] . 
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Section 2: Totten's classification. 

Th.e most basic theorem on linear spaces is the following due to 

deBruijn and Erdos [9], 

Theorem 2.1 (deBruijn-Erdos, 1948). A linear space satisfies b > v 

with equality only if the space is either a near pencil or projective 

plane. 

This is the first in a series of theorems in which structural 

characteristics of a .linear space are deduced from arithmetic relations 

upon b. and v. 

For an affine plane 
2 

(b-v) =v. It is natural. to ask what linear 

spaces satisfy this relation. As with the deBruijn-Erdos Theorem there 

is a simple answer. Paul deWitte [46] proved the following: 

Theorem 2.2 (deWitte 1967). A linear space satisfying 
2 

(b- v) v is 

either an affine plane of order IV or an affine plane of order IV with 

a single point at infinity from which one (non-infinite) point has been 

deleted. 

We then ask about the linear spaces falling between the extremes of 

b- v = 0 and b- v =IV. In 1976 Jim Totten, [39] and [40], classified 

all linear spaces satisfying b < v +IV. 

Theorem 2.3 (Totten 1976). A linear space satisfying b < v + IV with 

2 2 
n < v < (n + 1) is one of the following: 

1. A near pencil. 

2. Embeddable in a projective plane of order n. 

3. An affine plane of order n with either a near pencil or projective 

plane at infinity. 
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4. Lin's cross, the unique linear space with v = 6, b = 8, one line of 

length 4, one of length 3, and six of length 2. 

It should be noted in regard to the second category that many linear 

spaces which are embeddable in a projective plane of order n do not 

satisfy b < v + IV. To have b 2_ v + IV we may delete no more than 

n + 1 points from a projective plane of order n. Up to n points may 

be deleted without regard to their position (if n are deleted on a line 

then the line is eliminated also, since it now contains only one point). 

We may remove n + 1 points provided they are either all on a line or all 

but one are on a line (which is then eliminated as above). 

In this section we give a new proof of this classification which is 

much shorter than Totten's. Our approach is greatly simplified by the use 

of linear algebra in Lemma 2.1. We first bring together several lemmas 

which will be used throughout this section. 

We henceforth assume throughout this section that J is a linear 

space satisfying b < v + IV and 
2 2 

n < v < (n + 1) . Clearly then 

b - v < n. 

Lemma 2 .1. Let J have r > n + 1 for all X and k. < n + 1 for 
x- J 

all j. Then every point X of degree > n + 1 lies on some line Q, 

length n + 1 with r n + 1 for all p € £\x. Such a line will be 
p 

called a special line· through x. 

Proof. He use a technique suggested to the author by R. M. Wilson (see 

[14] and [45]). See [17] or [22] for the matrix theory we shall employ. 

Let N be the v X b incidence matrix of J. Then, indexing over 

points x, 

diag [ r - 1] + J 
X 

6 + J. 

of 
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It is easily verified that 

is the orthogonal projection from b 
JR onto the row space of N. By 

computing we also have 

where 

c = (1+ ~ (r -1)-l)-1 . 
all X X 

So P is given by 

Using the notation aS 
1 ~ r -1 

x€S x 
for subsets S, of points, the above 

expression becomes 

indexing over lines 9,. ' 
l 

Q = I - P. Thus rank(Q) 

9, . • 
J 

b 

The projection onto (row space (N)) 

v and 

Q = I - [a9, JI £ .] + c[a£ u.9, ] • 
l J i j 

..1.. 
is 

Consid~r now any point x and let Q
0 

be the principal submatrix of Q 

corresponding to the lines through x. Then on this principal submatrix 

So 

[a£ n £ ] 
i j 

dl" ag[ rv - _1_] + _1_ J 
~£ . r -1 r -1 · 

l X X 

di ag [ 1 - Z: 1 ] 
r -1 

p€ £ .\x p 
-

1
- J + c [ a n a n ] • r -1 x., x., 

- l 
X i j 

Note that since r > n + 1 for all x and k. < n + 1 for all j 
X- J 
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we have 

1 - ~ 1 > 0, 
.r -1 pe £ .\x p 

l 

with equality if and only if £. is special through x. 
l 

Now suppose r > n + 1 but no special lines through 
X 

x exist. 

Then strict inequality holds above so that 

diag [1- Z r 
1_1l 

p€£.\:x: p J 
l 

is positive definite. 

Then adding the positive semi-definite matrix 

a positive definite matrix, hence of full rank, r . 
X 

c[ a.Q, a.Q, ] still gives 
i j 

Subtracting the rank 

1 matrix 
-1 

(r - 1) J reduces the rank by at most one. 
X 

Thus 

r 
X 

1 < rank(Q
0

) .::_ rank(Q) b - v .::_ n, contrary to r > n+l. 
X 

Lemma 2.2. For n > 3, no lines of length > n + 1 exist unless J is 

a near pencil. 

Proof. We use the following result from [32]: If .Q, is a line of 

length k and M is the number of lines meeting .Q, (excluding £) then 

we have 
2 

M > k (v-k) 
v-1 

This can be proved as follows. Let ~ denote the sum over lines which 

meet L Then 

f. 1 = M, 

La(k.-1) 
l 

k(v-k), 

The second and third relations are obtained by counting the number of 

triples (x,y, £ 1
), x e £ 1 and y € £ 1

, with x e .Q, and y f. . .Q, in the 
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first case and x t £ and y t £ in the second. 

We can now estimate the variance, 

( L:k. ) 2 
0 <I: k~ - l 

l M 

Plugging in and simplifying yields 

2 
M > k (v-k) 

v -1 

Now, in particular, the existence of a line of length k implies 

b > 1 + k2(v-k) 
v -1 

Note that this expression is monotonically increasing in k for 

2 
0 ~ k ~ 3v . Let £ be a line of maximum length k. We consider two 

cases. 

Case 1: Then if k > n + 2 we have 

2 
b > 1 + (n+ 2)2 - (n+2) (n+l) 

v-1 

Also b < v + n so that by combining and simplifying 

This expression achieves its maximum on 
2 2 

n < v < n + 2n at v = n
2 

+ 2n 

provided 

2 
2 

3 
2 

3 2 
( n + 2 n) - ( ~ + 

2
n + 3) > ( ~ + 

2
n + 3) - n . 

This holds if and only if n
2

- n- 6 > 0, i.e. n > 3. So, for n > 3, 

we have 

2 2 2 2 3 2 
(n + 2n) - (n + 2n) (n + 3n + 6) + (n + 6n + lln + 9) ~ 0. 

This simplifies to 
2 

-2n - n + 9 ~ 0, a contradiction for n > 3. 



25 

Case 2: If two points lie off £ then the line containing 

them and £ together meet > 2(k-l) other lines. Thus 

4 
b > 2 (k- 1) + 2 > 3v 

By using b - v < n we then have 
v 2 

n > 3 ~ n /3, a contradiction for 

n > 3. So at most one point of ~ lies off £. Since b > 2, J must 

be a near pencil. 

The cases n = 1, 2 can easily be examined by hand. The only 

exceptional case found is Lin's cross for n = 2 (a line of length 

4 = n + 2 exists). 

Henceforth we assume that no line has length > n + 1. 

Lemma 2.3. Every pair of lines of length n + 1 must meet. 

Proof. ~uppose £1 and £2 have length n + 1 and do not meet. Then 

they are both met by (n + 1) 
2 

lines. Including .Q,l and £2 gives 

2 
So since b- v .:::_n, b > n + 2n + 3. v > n2 + n + 3. Thus since the 

maximum length of a line is n + 1, 

Lemma 2.1. 

r > n + 1 for all x, contradicting 
X 

Before proceeding further we dispose of the cases v n
2 + 1 and 

2 
v n . 

Lemma 2.4. If v = n 

plane of order n. 

2 
or then J is embeddable in a projective 

Proof. Note first that, in either case, if there are no points of degree 

< n + 1 we are done since: 1) If no points of degree > n + 1 exist we 

are done by Theorem 1.1; 2) If a point of degree > n + 1 exists then 

it lies on a special line, which must (by the degrees of the points on it) 
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2 
meet > n + n + 2 lines (including itself), contrary to b- v < n and 

2 
v<n +1. 

Thus we may assume some point x of degree < n + 1 exists. Then 

for the lines through x (necessarily of length < n + 1) to cover 

2 
or n points we must have r = n 

X 
and: 

then x lies on n lines of length n + 1; (b) If v 

(a) If v = n
2 + 1 

2 
n then x 

lies on n - 1 lines of length n + 1 and one line of length n. In 

either case all lines of length n + 1 must pass through x (otherwise 

r > n + 1). Hence x is the only point of degree < n + 1. We now 
X 

split into two cases. 

Case 1: v = n
2 + 1. Suppose some point y exists of degree > n + 1. 

Then the line, ~. joining x and y has length n + 1. It thus 

2 
meets > n + n + 1 other lines (including itself). But b- v ~ n, 

hence 
2 

b=n +n+l and all lines meet ~. So all points other than 

x and y have degree n + 1. Now pick some line ~· # ~ with x € ~·. 

Then y t ~· and ~· has length n + 1. Thus there is a line through 

y missing ~· (since r > n + 1) , 
y 

all of whose points then have degree 

> n + 1, cant rary to x and y being the only points of degree # n + 1. 

Thus x is the only point not of degree n + 1. We can then add a 

singleton line on x and apply Theorem 1.1. 

Case 2: 
2 

v = n . Suppose y is any point of degree > n + 1. Then if 

the line joining x and y were of length n + 1 it would meet 

> n
2 

+ n + 1 lines (as in the previous case), contradicting b - v < n. 

So all points of degree > n + 1 lie on the unique line of length n 

through x. All points off this line have degree n + 1 and hence lie 

on a unique line missing this line of length n. Thus a parallel class 
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of lines is created (as in the proof of Theorem 1.1) and a new point can 

be added giving v 
2 

n + 1. Now apply the previous case. 

We now assume v > n
2 + 2 and complete the proof of Theorem 2.3. 

Since the maximum length of a line is n + 1 and v > n
2 + 2 we have 

r > n + 1 for all x. So Lemma 2.1 applies. If no points of degree x-

> n + 1 exist we are done by Theorem 1.1. 

Henceforth we apsume some point of degree > n + 1 exists. We will 

call such points ideal points. A line which misses some line of length 

n + 1 - will be called an ideal line. Note that every point on an ideal 

line is ideal. We will find that ideal points are the points of the 

"spaces at infinity" in the statement of the theorem. 

If there is a unique ideal point, say x, then it must lie on all 

lines of length n + 1 (otherwise r > n + 1 will give a line through x, 
X 

missing the line of length n + 1, all of whose points will then be ideal). 

Thus J with x deleted has r = n + 1 for all p and no lines of 
p 

length > n, 

v = n
2 + 1 

2 
v > n i.e., an affine plane. 

points, contrary to 
2 

v > n + 2. 

So J originally had 

So there are at least two 

ideal points. By choosing a special line through one we have the exis-

tence of an ideal line through the other. Thus ideal lines exist. Also 

every ideal point lies on at least one ideal line. 

Let ~l be an ideal line of maximal length and x of maximal 

degree on ~1 . Let ~2 be a special line through x. Pick y € ~1\x 

of minimal degree, say r = n + 1 + z, 
y 

z > 1. 

We now count the lines meeting ~l or ~2 . by counting, respectively, 

the lines meeting . ~2\x, the lines meeting x, and the lines meeting 

~1\x and missing ~2 . This gives 
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We now estimate rx by choosing £
3 

to be an ideal line of max imal 

length f. £
1 

k = n + 1) 
2 

through y (such a line e x ists since 

and £4 to be a special line meeting 

£ n ,\', .J. n. by. Lemma 2 . 3, and £
3 

n £
2 

= n. , 2 4 T ~ ' ~ 

r > n + 1 and 
y 

£
3
\y. Then 

number of lines which meet £
2 

but not £
4

• Since points of £
2
\ x have 

degree n + 1 and £
4 

has length n + 1, this number will be r - (n + 1). 
X 

On the other hand, any point of £
3
\ £

4 
has at least k

2 
- k

4 
+ 1 lines 

through it missing £
4 

and meeting £
2 

(since it lies on £
3 

which meets 

£
4 

and misses £
2
). Thus 

So 

Hence 

We now count v by using the lines through y. The lines from y to 

£
2
\x have length at most n + 1. The other ideal lines through y , 

besides £
1

, have length at most k
3

. Thus 

Now b - v ~ n, so combining the two previous estimates gives, with some 

simplification, 

But £
1 

was chosen maximal ideal and z > 1. Thus we must have equality 

and either z = 1 or k
1 

= k
3

. 

Equality implies equality in all previous estimates. 
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Thus: 

1. All points of £
1
\x have the same degree, 

2. Every ideal line -1 £1 through y has the 

3. r = k + 
X 3 

n. 

4. All lines joining y to £2\x have length 

r 
y 

same 

n + 1 + z. 

length, k3. 

n + 1. 

Since all points of £
1
\x have the same degree they are interchangeable 

with y in the above argument. Thus we also have: 

5. Any line joining a point of £
1
\x to a point of £

2
\x has 

length n + 1. 

6. All ideal lines through some q € £1\{x~y} have the same length, 

k (as k
3 

for y) . By repeating the above argument on q, 
q 

r k + n = k + n. Hence every ideal line meeting \ in 
X q 3 

some point other than X has length k3. 

7. All lines meet £
1 

or £
2

. Thus, since £
2 

is special, all 

ideal lines meet £
1

. 

8. b 
2 

n + n + k
3 

+ z (k
1

- 1) , 

2 
v = n + k

1 
+ z (k

3
- 1). 

Before proceeding with the cases z = 1 and k
1 

= k
3 

we establish 

the following: A line of length n + 1 contains at most one ideal point. 

To see this, let x' and y' be ideal on £ of length n + 1. Let £ ' 

be special through y' and £" ideal through I 

X ' missing £ '. Then 

every line meeting £ ' meets £ (since points of £'\y' have degree 

n + 1). On the other hand through every point of £"\ x 1 there is at 

least one rine meeting £ ' and missing £ , imply ing £ " contains fewer 

than 2 points. 

Case 1: z = 1. Then every point of £
1
\x has degree n + 2. Lines 

joining some q € £
1
\{x,y} to £

3
\y cannot meet £

2
\ x (those have 
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length n + 1 and hence contain at most one ideal point, q). Thus 

rq > n + k
3

. Hence k
3 

= 2 

k
3 

= 2 by maximality of k
1
). 

(if no such q exists then k
1 

= 2, giving 

Let p = 9-
3
\y. Note that r =k +n=n+2 

X 3 

so that x is interchangeable with any point on 9-1 . Every ideal line 

meets 9-1 and every line meeting 9-
1 

has length k
3 

= 2. Thus the 

structure of ideal points and ideal lines is that of a near pencil with 

vertex p. Now 

b 
2 

(k
1

- 1) z + n + n + k
3 

2 
n + n + (k

1 
+ 1) , 

2 
n . v = (kl + 1) + 

Thus if the near pencil is deleted we obtain an affine plane (i.e., 

2 2 b = n + n, v = n , all points of degree n + 1). 

Case 2: . kl k3. Then every ideal line has length k3 (since all meet 

\)· As in Case 1, the lines joining some q € 9,1\{x,y} to 9,3\y 

cannot meet 9.,2\x. Thus r > n + k3. But x, chosen to be of maximal 
q 

degree on 9,1' has r = n + k
3

. Thus all points of 9,1 have degree 
X 

n + k
3

. Also the line joining q to any other ideal point not on 9,1 

misses 9,2 and is thus interchangeable with x· 
' 

all ideal lines have 

the same length and are thus interchangeable with 9-
1

. Thus every ideal 

line has length k
1 

and every ideal point has degree n + k1 . The line 

joining any pair of ideal points is ideal. So the ideal points and lines 

form a projective plane of order k1 - 1. We have 

b = n2 +n + (k
1

-1)
2 

+ (k
1
-l) + 1, 

v = n2 + (k
1

- 1) 2 + (k
1

- 1) + 1. 

So the deletion of the ideal points and lines leaves an affine plane as 

before. This concludes the proof of Theorem 2.3. 
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Section 3: Further classification. 

In this section we extend the classification of section 2 in the 

particular case of v 
2 

n + n + 1. We prove 

Theorem 2.4. A linear space satisfying 
2 

v=n +n+l and 

(2 + c)n is either a projective plane of order n, an affine plane of 

order n with a linear space at infinity, or a near pencil, where c 

can be taken as .147899. 

We first establish several preliminary lemmas. Henceforth let J 

be a linear sp.ace with 

1 
C < -2 . 

2 
v=n +n+l and 

2 
b < n + (2+c)n for some 

Lemma 2. 5. No line of J has l ength > n + 1 unless J is a near 

pencil. 

Proof. From the proof of Lemma 2.2 we have that the e x istence of a line ' 

of length k implies 

2 
b > 1 + k (v-k) 

v -1 

we proceed as in Lemma 2.2. Let ~ be a line of max imal length, k. 

Suppose k > n + 2. We consider two cases. 

Case 1: Then since 
2 

k (v- k) is increasing for 

we have 

(n+2)
2

(n
2
+n+l-(n+2)) 

b > 2 
n +n+l-1 

n
2 

+ 3n + 1 - 4/n 

a contradic tion to the range of b for n > 2 . 

Case 2: 
. 2 

k > 3v. If there e xist two points off of then the line 

through them and ~ meet at least 2 (k- 2) other lines. Thus 

b > (k- 1) 2 + 2 
4 > -v 
3 

4 2 4 3n + 3n + 4/3, 
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a contradiction to the bound on b for n > 1. Thus at most one point 

exists off of ~ and we have that J is a near pencil, since b > 1. 

In view of Lemma 2.5 we may assume that no line has length > n +1. 

Using this and 
2 

v = n + n + 1 we have that every point has degree 

> n + 1, since fewer than n + 1 lines through a point (each of length 

< n + 1) could not cover v = n 
2 

+ n + 1 points. We also have the 

useful fact that a point has degree n + 1 if and only if it lies only 

on lines of length n + 1. 

Lemma 2.6. Some point of degree n + 1 exists. 

Proof. Suppose not, then r > n + 2 
X 

for all x. Note . that a block, 

~ ' of length n + 1 exists since otherwise 

b 
bn > L. k. = [. r > ( n + 2) v 

i=l l X X 

implying 
2 

b > n + 3n + 2, a contradiction. 

2 
(n + 2) (n + n + 1) 

Now with r > n + 2 
X 

all x we have that ~ meets at least (n + 1) (n + 1) other lines. 

Additionally any point not on ~ lies on at least one line missing 

for 

L 

2 
Each such line has length at most n + 1. Hence at least n /(n+l) 

n-n/(n+l) lines which miss L By this b > 
2 

(n +2n+l) + n, a 

contradiction. 

Lemma 2.7. Every two lines of length n + 1 meet. 

Proof. Suppose ~1 and ~2 have length n + 1 and do not meet. Then 

any X € ~1 has degree > n + 2' since there are n + 1 lines joining 

X to the points of ~2 and \ is disjoint from ~2 . Thus through 

every X € ~1 there is a line ~(x) with x € ~(x) and I ~ C x ) I < n + 1. 

Every point on an ~ (x) has de gree > n + 2' since ~ (x) has length 

< n + 1, so there are at least I ~ Cx) I - 1 lines meeting ~ (x) but 
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missing ~1 . We consider two cases 

Case 1: I ~(x) I > n/2 for some x € ~l. Then note that \ and ~2 
together meet (n + 1) 

2 
lines. So 

b > (n+l)
2 

+ CI~Cx) l-1) > n
2 

+ 5/2 n 

contradicting b. 

Case 2: I~Cx) I < n/2 for every X € \ • Then for the lines through each 

such 
2 

1 points 3 X to cover v = n + n + we must have r > n + for 
X 

all X € ~1. Then, by counting the lines meeting ~1' we have 

b > (n + 1) (n + 2) > n 
2 

+ 3n, 

a contradiction. 

Note that if all lines have length ·n + 1 then every pair of lines 

meet . Thus J is a projective plane. We henceforth assume that some 

line of length < n + 1 exists. Lines of length n + 1 will be called 

long. Lines of length < n + 1 will be called short. 

We prove Theorem 2.4 by first showing that the number of lines of 

length n + 1 is > n
2 

+ 1 and then showing that this implies J is an 

affine plane of order n with a linear space at infinity. 

Let L = # of lines of length n + 1 and let the longest line not 

A 

of length n + 1 be ~. of length an, 0 < a< 1. Thus every line has 

length n + 1 or < an. By counting triples (x,y,~) with x € ~. 

y € ~. x # y we have 

Using v 

assuming a < 1, 

b 
(b-L)an(an-1) + Ln(n+l) > 2:: k. 

i=l 
1 

v(v-1). 

2 2 
n + n + 1, b < n + (2 + c)n and simplifying we have, 
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2 2 
2 l-2a -ca + (l+ac)n+l L>n +n( 

2
) 

2 
1- a n(l-a )+l+a 

So L > n
2 + 1 for 

2 2 
1 - 2a - ca ~ 0, equivalently 

We now take care of larger a. 

A A 

Let x be a point of degree n + 1. Then x t £. Since £ is 

short there exists a line through x (necessarily of length n + 1) 

A A 

missing £. Call this line £, and the lines through x meeting £ by 

... ' £ 
an 

Consider now 

(n+l-l)(n+l-1) + r 
X 

2 
=n +n+l 

and £. Together both meet 

lines. Through each point 

there is at least one line meeting £ and missing £
1 

(i.e., at least 

A 

one of then+ 1 lines from y to £must miss £
1

, since £through y meets 

£
1 

and misses£). Thus there are at least an- 1 lines meeting £ and 

* missing £1. Similarly if £ is a line meeting £ and missing \ 
there are at least I £*1 - 1 lines meeting £1 and missing £. Adding 

these up gives 

b > (n
2

+n+l) + (an-1) + Cl£'~1-1). 

Hence I£* I < (1 + c- a)n + 1. Thus any line meeting £ but missing 

£1 has length < (1+ c- a)n +1. This same argument holds 
-

i = 1, ... ' an. Now 

some £.' i = 1, 2, 
l 

If meets every 

I£' I > an+ 1. Hence 

suppose £' 

... ' an then 

... ' 

is any line meeting L 

1£' I < (l+c-a)n + 1 

£ an (in addition to £) 

1£' I = n + 1, by maximality of 

for any £.' 
l 

If £' misses 

by the above. 

then 

Thus we have shown that every line meeting £ has length n + 1 

or < (1 + c- a)n + 1. Let q be any point on £ and N 
q 

II of lines 

of length n + 1. through q other than £. Then since the lines through 



35 

q must cover all 2 v=n +n+l points we have 

( J 

2 
n - nN 

# of lines through q > q 
of length ~ (l+c-a)n+l - (l+c-a)n+l-1 

So 
n -N 

r-l > N+ q 
q - q (l+c-a) 

n- Nq 
(1 +c-a) 

summing over q € £ then gives 

Now LN 
q€9- q 

Using b < n 2 

Thus 

b - 1 > L ( r - 1) > 
q€9, q 

L. N ( 1 - 1 + 1 ) + 1 +~-a L 1. 
q€9- q c-a q€9-

L - 1 thus 

b .- 1 > (L- 1) ( c -a ) 
- l+c-a 

+ n(n+l) 
l+c-a · 

+ (2+c)n and solving for L gives 

for 

1 > n2 + n(l-(2+c) (l+c-a)) + l/( a - c). 
a-c 

2 
1 + c- a~ l/(2+c), i.e., a> (c +3c+l)/(c+2). 

Previously L > n
2 

+ 1 for a ~ ~c . We need only choose c so that 

these two ranges overlap. We can take any c such that 

2 c +3c+l /-1-
--~- < v·--

c + 2 2+C 

Equivalently, 0 > c4 . + 6c 3 + llc2 + Sc- 1. To within six decimal 

places we take c = .147899. 

We now complete the proof of Theorem 2.4 by showing that L > n
2 

+ 1 

implies that J is an affine plane with a linear space at infinity. We 

use Theorem 1.1, but in a dual form, that is, interchanging points and 

lines. The form we require reads (letting r = n + 1). 
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Theorem 1.1 1
• Let s

1
, ... , Sm be subsets of size n + 1 of some set 

S, 
2 

n + n + 1, such that every pair s.,s.,i:fj 
l J 

meet in a 

unique point. Then if m > n
2 

- 1 we can find subsets of s, ~' 

••• ' R 2 
n +n+l-m 

of size n + 1 such that 

R 2 } is a projective plane of order n. 
n +n+l-m 

To prove the above we simply note that with the roles of points and 

lines reversed, points being thought of as 11 containing 11 the lines with 

2 
which they are incident, we have an (n+l,l)-design on v=m > (n+l-1) -1 

11 points 11 and 
2 

b=n +n+l 11 lines. 11 We then apply Theorem 1.1 to 

this dual structure to obtain 11points 11 which can be adjoinecl to form a 

projective plane. These 11points 11 are the required sets 

Rl' ... , R2 
n +n+l-m 

To apply this to our structure, let 1
1

, 12 , ... , 1 2 be the 
n +t 

lines of length n + 1 of J. Wote that t < n + 1. If t = n + 1 we 

already have projective plane. Thus we may assume 1 < t < n. The short 

lines of J are 1. , 
l 

. 2 
l > n + t. 

By Lemma 2.7 every pair 

Additionally they are size 

1.' 
l 

n + 1 

1.' 
J 

1 < i < j ~ n
2 + t, must meet. 

subsets of a set of 
2 

v=n +n+l 

points. By applying Theorem 1.1 1 we then have the existence of sets 

... ' R 
n+l-t 

such that rr 

a projective plane of order n. 

Now consider any R .. Because 
l 

there is some point X in R. which 
l 

Consider any short line containing X 

short line. The pair {x, y} must be 

IR.I = n + 1 and n + 1 - t < n + 1 
l 

lies on no other R.' J 
j =F i. 

and let y be any point on that 

covered by some line of the 



projective plane IT . But 

that {x,y}':t £ . for j..:::_ 
J 

{x , y } 

2 
n + 
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is on a 

t. Also, 

short line of J already so 

by assumption, X lies on no 

R. 
J 

for j =f i. Thus {x,y} c R. . We have shown that any short line on 
- l. 

x must be contained in R .. 
l. 

Note that since no point x can lie on exactly one short line of 

J we have that every 

short lines. 

R.' 
l. 

1 < i < n + 1 - t contains at least two 

The above argument also shows that if t = n, and hence \ is the 

only line added to Q,l' ... ' Q, 2 to produce IT, then all short lines 
n +t 

are contained in \· With the removal of the points of Rl' and hence 

the short lines of J are left with linear space for which 
2 

' 
we a v= n 

' 
b = n

2 
+ n, all lines have size n (since IT is a projective plane 

£1 , ... ,£ 2 intersected~ in a single point), and all points have degree 
n +t 

n + 1. That is J is an affine plane of order n with a linear space at 

infinit y , the space at infinity being the short lines within R
1

. 

Thus it suffices to show that t = n.· We proceed as follows. Note 

that every point in an R. must be on some short line (since the pairs 
l. 

points covered by short lines in J must be covered b y the lines R. 
l. 

and vice versa). The short lines intersecting any R. in at least 
l. 

points induce a linear space structure on the n + 1 points of the 

in 

two 

R . • 
l. 

of 

IT, 

Thus we have, by the deBruijn-Erdos Theorem (Theorem 2.1.) that there are 

at least n + 1 short lines meeting any given R. in at least two points. 
l. 

Now consider ~. We have previously established that each of the 

remaining n - t R. contain 
l. 

> 2 short lines. Together with the n + 1 

short lines meeting R
1 

(these will be distinct from the others since 

they meet in at least two points) and the long lines we have 
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b > (n
2

+t) + (n+l) + 2(n- t) 
2 

n + 3n - t, 

a contradiction for t 1. We now suppose 2 < t < n - 1. 

t + 1 

Consider a particular R .• 
~ 

points not on any other 

It contains at least (n + 1)- (n- t) = 

R . ' 
J 

j -1 i. Let the set of such points 

within R. be C .. Thus lc. I > t + 1. As before any short line on a 
~ ~ ~ 

point of 

Case 1: 

c. 
~ 

The 

is contained entirely within 

points of c. are covered by 
~ 

a 

R .• 
~ 

We consider two cases. 

single short line. Then, 

since every pair of R. meet and t < n, there is y € R.\ C .. The line 
J 

joining each X € c . to 
~ 

Thus we obtain at least 

Case 2: The points of 

~ ~ 

':1 must be short and hence is contained in 

I c.l short lines contained in R .. 
~ ~ 

c. 
~ 

are covered by more than one short line. 

R . . 
~ 

Then 

we can appl~ the deBruijn-Erdos theorem to the linear space induced by 

short line intersections with the points of C. to obtain at least 
~ 

short lines meeting C .. Thus there are at least I c. I short lines 
. ~ ~ 

contained in R . . 
~ 

I c. I 
~ 

In either case we have at least lc. I > t + l short lines contained 
~ -

in each R. , 1 < i < n + l 
~ 

t. Including long lines we then have 

b > n 
2 

+ t + ( n + l - t) ( t + 1) > n 
2 

+ 3n - l 

for 2 < t < n - l, a contradiction. Thus t = n and J is an affine 

plane of order n with a linear space at infinity. This completes the 

proof of Theorem 2.4. 
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Section 4: Extensions to A-spaces. 

Here we consider extensions of our results on linear spaces to more 

general incidence structures. We give here the essential definitions and 

results necessary for what follows. The reader is referred to [27], pp. 

96-122, [18], pp. 100-120, [11], [20], and [24] for more details. 

A A-space is a set of points and a collection of subsets of points 

called blocks such that every pair of points lies on exactly A blocks. 

These have been variously called in the literature A-linked designs [48], 

[49], pairwise balanced designs of index A [43], and B[K,A;v], [20]. 

They are dual structures to A-designs, [28] and [31]. We adopt the term 

A-space because of its similarity to linear space and its brevity. Thus 

a linear space is a 1-space. 

As before we will let b = # of blocks and v = # of points. 

Points will be denoted by x, y, p, q, etc. while blocks will be 

Block sizes will be k. and point degrees r as 
l X 

before. We assume that no block contains all points. 

All of our previous structures have generalizations in this setting. 

An (r,A)-design is a A-space in which all points have degree r. These 

generalize the (r,l)-designs of Chapter 1. Projective planes have their 

counterpart as well. A (v,k,A)-design, also called symmetric 

(v,k,A)-design is a (k,A)-design in which every block contains k 

points. We define A-space embeddability in exactly the same way as for 

linear spaces. 

The study of A-spaces is complicated by the fact that we have no 

counterpart of the deBruijn-Erdos theorem case of equality. It can be 

shown that b > v for a A-space but no characterization of the cases of 
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equality exists. At present only two classes of equality are known (it 

is conjectured that they are the only cases of equality). These are the 

(v,k,A)-designs, mentioned earlier, and a class of A-spaces obtained from 

(v,k,A)-designs by manipulating the blocks in a specified way. More 

information on this subject can be found in [28] and [31]. 

Theorem 1.1 has a generalization to (r,A)-designs. Vanstone and 

McCarthy (see [11] and [24]) proved the following. 

Theorem 2.5. An (r,A)-design satisfying r(r- 2)/A + 1 < v for which no 

two blocks meet in >A points, and no block has size less than A, is 

embeddable in a (v,r,A)~design. 

A A-space which satisfies these conditions on block intersections 

and sizes is sometimes called restricted. This condition is quite useful 

for it allows one to prove the following. 

Lemma 2.8. In a A-space for which no two blocks meet in >A points, if 

x is a point and B a block such that x ¢ B, then rx ~ IBI. Equality 

holds if and only if every block through x meets B in exactly A 

points. 

Proof. We count pairs (y,B•) with y e B n B• and X e B'. On one 

hand we can pick y € B in any one of IBI ways; there will then be 

A blocks B' on X and y. On the other hand there are r blocks on 
X 

x, each meeting B in at most A points y. Thus 

A I B I < r A. 
- X 

The lemma then follows and the case of equality is clear from the above 

argument. 
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For linear spaces this lemma is trivial and is used many times with-

out specific note being taken. For A-spaces, however, it is not true 

without the additional assumption bounding block intersections. Hith 

this lemma we can mimic many (but not all) of the techniques used on 

- linear spaces. 

He now proceed to the main result of this section. A special case 

of Totten's linear space classification, Theorem 2.3, is that a non-near 

pencil linear space with 
2 

b<n +n+l and 
2 

v > n + 1 is embeddable 

in a projective plane of order n. He now consider the extension of this 

to A-spaces with A > 1. 

He prove the foll~wing. 

Theorem 2.6. A A-space which satisfies b < r(r- 1)/A + 1, 

r(r- 2) /A + 2 < v, and r ~ 4A + 3, for which no two blocks intersect 

in >A points and no block contains fewer than A points, is embeddable 

in a (v,r,A)-design. 

Proof. The proof will proceed in several steps. He first show that no 

block has size >r. Let B be the largest block and p a point of 

smallest degree on B. First note th~t since no two blocks meet in >A 

points we have 

L: (r -1) 
X 

x€B (# of blocks meeting B) > A + 1. 

Combining this with b < r(r-1) + 1 A 
then gives 

r(r-1) > L (r -1). 
x€B x 

Thus if I B I ~ r + 1 we have that r < r - 1. Now every block not 
p 

passing through p must have size no more than r ' p 
by Lenrrna 2.8. The 
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lines through p have size no more than IBI, thus 

b 
I: k. < r (b - r ) + r I B I . 
i=l l - p p p 

Also every point off of B has degree at least IBI, while those 

on B have degree at least r . Thus 
p 

" r > Cv-IBI)IBI + IBir . 2... x- p 
X 

b 
But I: k. =I: rx, by counting pairs (x,B 1

) with x € B 1
• We 

· i=l l X 

then have 

r (b- r ) + r I B I > (v- I B I) I B I + I B I r , p p p p 

r (b- r ) > (v- I B I) I B I · 
p p 

The first expression achieves its maximum over r < r - 1 
p 

provided r - 1 < b/2, which is satisfied for r > 4A + 3 since 

b > v > r(r- 2)/A + 2. For IBI > r + 1, the second expression 

least (v- (r+l))(r+1) provided IBI < v- (r+1). So for 

IBI < v- (r+l) we have 

at 

is 

( r - 1) ( r ( r-l) - ( r - 1) ) > ( r ( r- 2) + 2 - ( r + 1) ) ( r + 1) . 
A A 

After much simplification this becomes 

2 
0 > r - r(4A+3) + 4A, 

r- 1 

at 

a contradiction for r > 4A + 3. Thus to have all blocks of size < r 

we need only dispose of the case IBI > v (r+l). Suppose not, i.e., 

IBI ~ v - r. Then if two points lie off of B they must each have 

degree > IBI > v- r by Lemma 2.8. They are together in A blocks. 

Thus 

b > 2(v- r) - A. 
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Applying b < r(r-1)/A + 1 and v > r(r-2)/A + 2 then gives 

0 > r
2 

- r(2A + 3) - (A 
2

- 3A), a contradiction for r > 4A + 3. Thus at 

most one point lies off of B. Since no block contains all points we 

have exactly one point, p, lying off of B. So IBI = v- 1 and 

r > v- 1. Since no two blocks meet in >A points we also have that 
p 

all blocks besides B have size < A+ 1. Now consider any x € B. We 

count pairs (y,B 1
) with y € B 1 and x € B 1 in two different ways to 

obtain 

(v- 1) + (r - l)A > (v- l)A, 
X -

r > (v- 1) (A~l) + 1. 
X - I\ 

Hence 

\' ( [ ( A-1 w rx > v- 1) v- l)(T) + 1] + (v- 1). 

But L r 
X 

X 

Thus 

X 

b 
Lk. < (b-l)(A+l) + (v-1). 

i=l l 

A-1 
(b-l)(A+l) + (v-1) > (v-l)[(v-1)(-A-)+1] + (v-1), 

which leads to a contradiction to the bounds on b and v when A > 1. 

Thus no block has size > r. 

Now consider any point x. We count the number of pairs (y,B 1
) 

with x € B 1 
, y € B 1 in two ways to obtain 

r (r-1) ~ (v-l)A, 
X 

using the fact that no block has size >r. This together with 

v > r(r- 2) /A -+ 2 then implies 

have degree >r. 

r > r, when A > 1. 
x-

So all points 

We now show that some block must have size r. If not then 
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b 
Lk. =L 

i=l l X 

r > vr. 
x-

We can then apply b < r(r- 1) /A + 1, v > r(r- 2) /A + 2 and simplify to 

obtain 0 > r(A- 1) + A, a contradiction. 

Let B be a block of size r. Then since every point on B has 

degree >r and blocks meet in at most A points we have 

r(r-1) 
(II of blocks meeting B) ~ A + 1. 

But b < r(r- 1)/A + 1 by assumption. Thus we have that all blocks meet 

B in exactly A points, with each point having degree r. But by the 

case of equality in Lemma 3.8 we also have that al1 points off of B 

have degree r exactly. Hence we have an (r,A)-design satisfying the 

conditions of Theorem 2.5. Thus it is embeddable in a symmetric 

(v,r,A)-design. 
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Section 5: Remarks. 

We note here some consequences of Theorems 2.3 and 2.4 involving the 

possible values of b for a linear space on a fixed number, v, of 

points. 

Suppose J< is a linear space on v points with 
2 2 

n + 2 < v < n + 2n. 

If b - v < n then J< is one of the linear spaces in Theorem 2.3. If 

J< is a near pencil then b := v. If J is embeddable in a projective 

plane then 
2 

b=n +n+l. If J is an ·affine plane of order n with a 

linear space at infinity then, with the space at infinity containing a 

points, 
2 

v = n + a and 
2 

b = n + n +a. This is because the linear 

space at infinity must be a near pencil or projective plane (by Theorem 

2.3), for which #of points=# of lines. Thus we have shown 

Corollary 2.1. A linear space on v points with n
2 

+ 2 < v < n
2 

+ 2n 

can only have number of lines b = v, 
2 

b=n +n+l, or b > v + n. 

In the cases 
2 

v = n 
2 

or n +.1 we have the same result except 

that we must allow 
2 

b = n + n as well, since an embeddable space on 

these numbers of points can have 
2 

n + n lines. 

The case v = 
2 

n + n + 1 we consider further. The above corollary 

gives b 
2 

+ n + 1 b > 
2 

+ 2n +1. We improve upon this in = n or n can 

a special case by using Theorem 2.4. 

Corollary 2. 2. 
2 

1 with 
2 

for Then Let v = n + n + n = m + m some m. 

for m > 6 a linear space on v points must have b 
2 

+ n + 1' = n 

b 
2 

+ 2n 1' b 
2 

+ 2n + m + 1. = n + or > n 

Proof. Let J< 
2 2 2 2 

be a linear space with v =n +n +1 = (m +m) + (m +m) + 1 

points and 
2 

b < n + 2n + m lines, m > 6. Then b < n
2 

+ (2.147)n 
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since 2 
(.147)n = (.147)(m +m) > m for m > 6. Hence we are in the case 

of Theorem 2.4. If b # n2 + n + 1 then we have an affine plane of order 

with a linear + 1 2 +m + 1 points infinity. Thus n space on n = m at 

b 2 + n + a, where is the number of lines in the infinity. = n a space at 

Since there 2 +m + 1 points in this then apply are m space we can 

Theorem 2.4 to obtain 
2 

a =m +m+l or 
2 

> m + 2m + 1. Thus 

2 2 2 2 . 
b = n + n + (m +m+l) or > n + n + (m +2m+l) and the result 

follows. 

There are several other recent results relating to questions of this 

kind. We cite several here, without proof. 

Theorem 2.7 (Erdos, Mullin, Sos, Stinson, [15]). A linear space on v 

points which is not a near pencil satisfies b > B(v) where 

f:: + 1 for 
2 

2 
2 

1 + n n + < v < n + n + 

B(v) for 
2 

- n + 3 
2 + 1 + n n < v < n 

~2 + n - 1 for 2 + 2. v = n - n 

A linear space with b = B(v) on v points is embeddable in a projective 

plane of order n 
2 

v = n - n + 2, or 

2 
v = n - a with i + a (2n- 3) - (2n2 - 2n) < 0. 

Theorem 2.8 (Stinson, deWitte [33]). A linear space with v > n
2 

and 

2 b < n + n + 1 is embeddable in a projective plane of order n. 

Theorem 2.9 (Stinson [34]). The only finite linear space on v points 

and 
2 b=n +n+2 lines with 

2 2 n +l < v < n +n+l has v = 10, 

b = 14 (and such a space exists). 
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Theorem 2.10 (Erdos, Fowler, Sos, Wilson [14]). For v sufficiently 

large, a linear space on b lines and v points exists for all b such 

that 

We close this chapter by conjecturing that, for n sufficiently 

large, a linear space satisfying 
2 2 

n - n + 2 < v < n + n + 1 and 

b - v < 2n - 2 can only arise as an affine plane of order n, from 

which some points have possibly been deleted, with a (possibly degenerate) 

linear space at infinity. 
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Chapter III 

(k,)l)-arcs 

Section 1: Introduction. 

In this chapter we restrict our attention to linear spaces which are 

finite projective planes. We investigate structures contained in these. 

In this section we define the terms which we will use. In particular 

instances we refer the reader to other sources for more details. 

For the definition and properties of a projective plane of order n 

see Chapter 1, Section 1. We will denote a projective plane of order n 

by IT 
n 

and its lines by 21' 22' ... ' £ 2 ' 
n +n+l 

points by 

p 2 
n +n+l 

It should be noted that several different projective planes of a 

particular order n may exist. That is, the geometry of points and 

lines in planes of the same order may be different. We will go into 

more details concerning this in later sections. 

A (k,)l)-arc, )l > 2, in a projective plane of order n is a set 

of k points which meets no line of the plane in more than )l points. 

We will denote the set of points in a (k,)l)-arc on occasion by A and, 

for convenience, sometimes refer to A as a )l-arc or simply arc. A 

line £ of the plane which meets an arc in m points will be called an 

m-secant. 

Note that if p is a point of a (k,)l)-arc, A, in a IT then the 
n 

n + 1 lines through p each meet A in at most )l - 1 points other 

than p. Thus 

k < (n+l)()l-1) + 1 n)l - n + )J. 
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Equality holds if and only if every line of IT 
n is either a 0-secant 

or a ~-secant. This bound and case of equality is due to Tallini-Scafati 

[35]. We call a (k,~)-arc with k = n~- n + ~ perfect. A perfect 

~-arc can be equivalently defined as a set of points having only 0-secants 

and ~-secants. A (k,~)-arc not properly contained in any (k 1 .~)-arc will 

be called complete. Our notation differs from the current literature in 

that perfect arcs here are referred to as maximal there. We feel that 

the term perfect is, in some sense, more descriptive of the extremal 

nature of (n~- n+~.~)-arcs. 

A separate notation is sometimes employed in the case ~ = 2. In a 

IT an (n+2,2)-arc, n even, or an (n+l,2)-arc, n odd, is called an 
n 

oval (we will see in section 2 that (n + 2 ,2)-arcs do not exist for n odd). 

For a survey of (k,~)-arcs we refer the reader to [2], [3], or [21]. 

There are several other combinatorial structures (not necessarily 

contained in a projective plane) that we will also need. 

Later in this chapter we will encounter (b,v,r,k,A)-designs. For 

more details see [18], pp. 100-120, or [27], pp. 96-116. A (b,v,r,k,A)-

design, also called a balanced incomplete block design or simply block 

design, A > 0 and k < v - .1, is a set of v points and a collection 

of b subsets of points, called blocks, such that every point lies on r 

blocks, every block contains k points, and every pair of points lies on 

exactly A blocks. It can then easily be shown that bk = vr and 

r(k- 1) A(v- 1). Another fundamental result on block designs is 

Fischer's Inequality which states that b > v (note that the case A = 1 

is a consequence of the deBruijn-Erdos Theorem). The synnnetric (v,k,A)-

designs of Chapter 2 can be equivalently defined as block designs for 
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which b = v. 

A partial geometry is a set of points and a collection of subsets 

of points, called lines, such that every point lies on r lines, every 

line contains k points, every pair of points is contained in at most 

one line, and, if £ is a line and p ¢ £ then there are exactly a 

lineS £I SUCh that p € 9. I and £I fl £ =f f/J' for fixed COnStantS 

r, k, and a. For more information on partial geometries see [6]. 
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Section 2: Elementary properties. 

Here we present established results on (k,~)-arcs which will be 

needed later in this chapter. 

The concept of duality will be quite useful. We touched on , this 

subject briefly in Chapter 2. Given a structure of points and lines, 

with some notion of incidence, the dual of this structure is obtained by 

calling the lines points, the points lines, and reversing the relation­

ship of incidence. Old points (which are now lines) contain the old 

lines (now points) with which they were previously incident, and old 

lines lie on the points they contained, 

For example consider the following incidence structure with lines 

,Q'l, £2 , · · ·, £
7 

and points 1, 2, ... , 7. 

Q,l {1,2,4}, Q,2 

£
4 

{ 4 , s , 7} , £
5 

{2,3,5}, Q,3 

{1,5,6}, Q,6 

{3,4,6}, 

{2,6,7}, 

Q,7 = { 1 '3 '7}. 

The dual of this structure has lines 1, 2, ... , 7 and points 

£
1

, £
2

, ... , t
7 

with 

1 

3 

5 

{\,£s,£7}, 2 

{£2,£3,£7}, 4 

{ £2 ' £4 ' £s}, 6 

{ \' Q,2 'Q,6} , 

{ Q,l ' Q, 3 ' Q, 4} ' 

{£3 ,£5, £6}' 

We will be using duality primarily in connection with projective 

planes. Note that by the symmetry of the axioms of a projective plane, 

with respect to points and lines, the dual of IT 
n 

is also a projective 
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plane of order n, denoted by II I • 

n 
The above example is a particular 

case of this for n = 2. 

Any set of lines in 

arc A in II we define 
n 

the set of points in 

intersect A (in II). 
n 

II' 
n 

Now suppose A is a 

meets A in at least one 

II is a set of points in II I • Given a (k,)J)-n n 

the dual arc, denoted by A •·, in II' to be 
n 

which correspond to lines of II which do not n 

perfect )1-arc in a II . Then every line which 
n 

point meets it in )1. Thus if p t A the 

lines through p meeting A divide A into disjoint sets of )1 points. 

Thus tf of lines through p meeting A = I Aj /)1 = n + 1 - n/)1, since A 

is perfect. Now r 
p 

n + 1 hence we have shown that the number of lines 

missing A through p t A is n/)1. In other words, the dual arc A' 

possesses only 0-secants and (n/)1)-secants (points of A become 0-secants 

in II'). Thus the dual of a perfect )1-arc is a perfect (n/)1)-arc, in the 
n 

dual plane. We also have the necessary condition for a perfect )1-arc in 

a II , )lin (this shows that, as mentioned earlier, there are no 
n 

(n + 2 ,2)-arcs in a II ' n 
for n odd). The above results are due to Cossu 

and can be found in [10]. 

We shall be concerned with arc completions. A complete (k,)J)-arc 

A
1 

is said to be a completion of a (k', )1) -arc A
2 

if A
1 

:::> A
2

. Our first 

theorem on completions is the following, due to Barlotti [1], concerning 

arcs which are one point short of perfection. 

Theorem 3.1. For )1 > 2 an (n)J-n+)J-1,)1)-arc in a II 
n 

has a perfect 

completion. An (n+l,2)-arc in a II ' n 
n even, has a perfect completion. 

Proof. Suppose A is an (n)J- n+ )1- 1,)1)-arc. For any point p let 

a. = U of i-secants through p. Then if p € A 
1 
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]J 

La. 
i=l l 

n + 1, 

]J 

~ (i-l)a. 
i=l l 

n]J - n + ]J - 2. 

Combined these imply -]Ja - (]J-l)a -
1 2 

- 2a - a = -1. 
]J-2 ]J-1 

Since 

a. > 0 and an integer we then have a 1, a. = 0 for i < ]J - 2 
l- ]J-1 l 

and a = n. Thus each point of 
]J 

A lies on n ]J-secants and one (]J-1)-

secant. Hence we can count If of (]J- 1) -secants = IAI • 1/(]J-1) = n +1. 

Since only 0-secants, (]J- 1)-secants, and ]J-secants exist we have 

that for p f. A 

(]J-l)a 
1 

+ ]Ja 
]J- 11 

n]J - n + 11- 1. 

If a > 0 
w-1 

for every point p f. A then every point of TI 
n 

(including those in A) lies on at least one of the n + 1 .<11 - 1) -s ecants. 

Because every pair of lines meets we have that for a line t which is 

not a (]J- 1) -secant each p € £ is covered by exactly one (1.1- 1) -secant 

(since j £j = n + 1 and there are only n + 1 (1.1- 1)-secants total). In 

other words, any point lying on a non- (1.1- 1) -secant is coverE:d by exactly 

one (1.1- 1) -secant. Thus if p is the intersection point of t\vO (1.1- 1)-

secants it must lie on all (1.1- 1) -secants. Thus p 1 can be added to A 

to product a perfect w-are. 

Note that for an (n + 1, 2) -arc, with n even, we have every point 

lying on at least one 1-secant immediately, since n + 1 is odd. We can 

then apply the above argument to obtain a perfect completion. Thus the 

second assertion is proved. 

By the above \ve may assume that a 
]J-1 

0 f or some p f. A. Then 
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~a = n~- n + ~- 1. 
~ 

Thus n + 1 = 0 (mod ~). Now let £ be a (~- 1)-secant. As before, 

for any p € £\A we have 

(~- 1) a 
1 

+ ~a 
~- ~ 

n~ - n + ~- 1. 

But n + 1 = 0 (mod ~) , thus the above equation implies 

a = 0 (mod ~). 
~-1 

For each p € £\A a > 0 
~-1 

since is a 

(~- 1)-secant. Hence a~-1 > ~ for each of the (n + 1) - (~- 1) points 

of £\A. We can then count the (~- 1)-secants by their intersections 

with £ to obtain 

If of (~- 1)-secants > (n + 2- ~) (~- 1) + 1. 

But we have already counted the number of (~- 1) -secants as n + 1. 

Hence (n + 1) > (n + 2- ~) (~- 1) + 1. This simplifies to 

0 < (~- 2) (~- (n + 1)), a contradiction for ~ > 2, and the result 

follows. 

We mention a further result of this type due to B. J. Wilson. In 

2 
[42] he shows that an ((n - n- 4)/2,n/2)-arc, in a 

and even, can be completed to a perfect (n/2)-arc. 

TI ' n 
with n > 8 
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Section 3: Constructions. 

In this section we mention several constructions for perfect arcs. 

To do this we will require a more detailed description of some particular 

kinds of projective planes. 

A desarguesian projective pl ane is one in which the Axiom of 

Desargues holds. The exact statement of this axiom is not necessary for 

our discussion, more details can be found in [18], pp. 167-188. For our 

purposes we need only the fact that desarguesian planes can be described 

using vector spaces over finite fields. 

Let GF(n) be the finite field of n elements, for n a prime 

power. Let V (n) 
k 

denote the k dimensional vector space over GF(n). 

A classic theorem of geometry states that a desarguesian projective plane 

of order n can be thought of as having as points the 1-dimensional 

subspaces of V
3

(n), and as lines the 2-dimensional subspaces of V
3

(n), 

with containment as incidence. This plane is often denoted by PG
2

(n). 

Note that this implies that a desarguesian plane can only have prime 

power order. 

Using this description we have many ovals in desarguesian planes 

using the following construction, see [21] chapters 7 and 8. Let 

{ (x
1 

,x
2 

,x
3

) : xi e GF(n) } , n a prime power. Denote points of 

not all x. ::, 0. 
l 

be a 

quadratic form in x
1

, x
2

, x
3

. We say that Q is non-singular when no 

substitution x . 
l 

with the matrix 

ail zl + 
3 

[aij] i ,j=l 

of variables z. for the 
l 

non-singular, produces a quadratic form in 

fewer than three variables. For more information on quadratic forms see 

[17] or [22]. 
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Theorem 3.2. Let Q(x
1

, x
2

,x
3

) be a non-singular quadratic form. Then 

A= {((x1 ,x2 ,x)) Q(x
1

,x2 ,x
3

) = O,xi € GF(n)} is an (n+l,2)-arc in 

PG2 (n), n a prime power. 

Using this we then immediately have ovals for n odd. Applying 

Theorem 3.1 gives ovals for n even. In fact all ovals for n odd in 

PG2(n) arise in this way (see [29]). 

Another equivalent description of a desarguesian projective plane is 

through the affine plane embedded in it (see Chapter 2, Section 1). A 

desarguesian affine plane of order n (n necessarily a prime power) can 

be represented as follows. Points are all pairs (x,y) with X and 

in GF(n). Lines are all sets L {(x~y) : y mx + c} and 
m,c 

L = {(x,y) : x = c}, for m and c in GF(n). We will denote a 
oo, c 

desarguesian affine plane of order n by AG2 (n). 

The set {Lm,b: b € GF(n)} is a parallel class of AG2 (n). Thus 

the "points at infinity" that can be adjoined to parallel classes of 

AG
2

(n) to produce a projective plane of order n correspond to fixed 

slope values m (including the parallel class of "infinite" slope 

{L
00 

b: b € GF(n)}). The correspondence between projective and affine 
' 

planes shows that AG
2

(n) is embedded in PG
2

(n). Any construction of 

y 

arcs in the affine plane carries over into the projective plane. For our 

next construction, due to Denniston [12], it is more convenient . to work 

in AG2 (n). 

Let n = 2r and ~In, m 
say ~ = 2 , m < r. We construct a perfect 

We will use several properties of finite fields. 

For more details see [21], Chapter 1. 

We first establish some facts regarding quadratic polynomials over 
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Let f(x) 
2 

= ax + bx + c for some a, b, c in with 

a I 0 and b I 0. Then since x~ x
2 

is an automorphism of GF(2r), 

f(x) - c = ax
2 

+ bx is an endomorphism of the additive group of GF(2r), 

with kernel {O,b/a}. Hence Range (f(x)- c) is a subgroup of index 2 of 

the additive group of GF(2r). Each value in the range is taken on twice. 

Thus Range (f(x)) is a coset of a subgroup of index 2. 

Let {a,h,b} r::_ GF(2r) be such that a, b, hI 0 and 

2 2 
b ¢Range (ax +hx). Thus f(x) =ax +hx .+b I 0 for any x. Consider 

now ¢(x,y) = ax
2 

+ hxy + by
2 

We claim that ¢(x,y) = 0 if and only if 

x = y = 0. One implication is obyious. Now if ¢(x,y) 0 and y = 0 

then obviously x = 0. If y I 0 then we have 0 = a(x/y)
2 

+ h(x/y) + b, 

a contradiction to the choice of a, h, and b. 

Let ¢(x,y) be as above and H a subgroup of order 2m of the 

additive group of GF(2r). Let A { (X , y) : ¢ (X , y) € H} . We shOW that 

A 
m 

is a perfect (2 )-arc in We will show that every line meets 

A in either 0 or 2
m . 

polnts. 

For a particular line ~ let G~ be the set of values (with multi­

plicities) that ¢(x,y) takes over the points of ~. We wish to show 

Suppose ~ is of the form L 
0

. Then 
m, 

G~ = {x2 (a+hm+bm2): x € GF(2r)}. Since ¢(x,y) = 0 if and only if 

x = y = 0 we have 
2 

a + hm + bm I 0. Thus since is an auto-

morphism of GF(2r), G~ = GF(2r) (all multiplicities one). So 

If ~ = L 
00 ' 0 

then G~ and for the same reasons 
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or L with x,c c -1 0. Then 

is obtained by substituting y = mx + c or x = c in ¢(x,y) and 

letting ·x (or y) range over all values in GF(2r). That is, G~ is 

the range of a quadratic polynomial. Note that (0 ,0) i ~ thus 0 f_ G~ . 

For ~ = L the coefficient of 
2 

in f is + hm + bm 
2 and hence X a 

m,c 

#0. For ~ = the coefficient of 
2 

is b ' thus -10. L y 
oo , c 

If the coefficient of X (or y) in f is 0 
r then Range (f) = GF(2 ) , 

again since 
2 

X f-7 X is an automorphism of But 0 rf_ G. Thus 

(or y ) has a non-zero coefficient, so that f is an endomorphism with 

non-trivial kernel and our previous discussion applies. G = Range (f) 
£ 

is a coset of a subgroup of index 2' say G, of the additive group of 

X 

GF(2r). Now 0 
rf- G£ ' hence G -1 G£ and we have GF(2r) = G U G~ . By the 

structure of additive subgroups of GF(2r) we have that jc II HI = IHI 

or tiHI. If I G () HI = IHI then IG £ n HI = 0. If I G n HI = il HI =2m 

then the other half of the elements in H are in G£' each with multi-

Hence every line meets A in 0 or 2m points. The line at 

infinity which we adjoin to AG
2

(2r) to obtain PG
2

(2r) misses A 

entirely . So we have 

Theorem 3.3. A perfect ~-arc exists in PG
2

(n), n even, if and only if 

~In. 

We now present a new construction of ovals in a certain class of 

non-desarguesian projective planes called translation planes. We refer 

the reader to [25] for a more complete account. 'Ide need only the follow-

ing description of some affine translation planes. 

Let 
s 

n = p for p a prime, and mls. Let 
m 

p -1 
{ u. } . 1 

l l= 
be some 
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fixed set of non-negative integers with mlu. 
l 

points to be all (x,y) with s x, y E GF(p ) 

for all i. Then taking 

and lines as all 

L 
m,c 

{(x,y):y 
ui 

mxp +c with x,y EGF(ps) and index(m)= i (mod(pm-1))} 

or L = { (x y) : x = c} 
00, c , for m 

affine translation plane of order 

and 

s 
p . 

c in 
s GF(p ); we obtain an 

Parallel classes, as in the 

desarguesian affine plane, are collections of lines of fixed "slope." 

We now let J be a translation plane of order s 
p , as described 

a 
above. Consider the set B = {(x,xp) : x E GF(ps)} for some fixed non-

negative integer a. We examine how B intersects the lines of J. 

a a 
The lines L 

O,c 
intersect B in points (x,xp ) with y = xp c. 

Since x ~ xp is an automorphism of GF(ps) there will only be one such 

x. Thus the lines L 
O,c 

intersect B in one point only. Similarly the 

lines L meet B in one point only. 
oo, c 

a 
The lines L m # 0, 00 intersect B in points (x,xp with m, c' 

, 
a u. 

pj l 
xp mxp + index (m) i (mod m - 1). Because X~ is = y = c, - p X an 

a u. 
GF(ps) xp xp l 

automorphism of for. any j we have that f (x) is 
a u. l 

an endomorphism. Hence the number of solutions of xp mxp + c is 
a 

· the same as the number of solutions to xp 

u. 
p l 

mx when c E Range (f) 
a Ui 

and 0 if c t Range (f). That is, besides x = 0, 
p -p 

x = m. By 

the multiplicative structure of GF(ps) (cyclic), this equation has 

either 0 or 
a u. s <I p - p ll, p - 1) solutions, using parentheses to denote 

the greatest common divisor of two numbers, depending on whether 

a ui s (I P - P I , p - 1) I index (m) or not. But 
a u. s <IP -p ll,p -1) 

la-u.l Cla-u.l,s) 
l s l 

(p -l,p -1) p - 1. Thus we have for m # 0 
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0 if c t Range (f) 

1 if c € Range (f) 
(I a-u. I , s) 

but (p l -1) { index (m) 

IBn 1 1 m,c 
p 

a u. 

Cla-u.l,s) 
l 

if c € Range (f) but 

Cla-u.l,s) 
(p l -1) I index (m) 

where 
p l 

f (x) = x - mxp while 1 B n 1
00 

1 = I B n 1
0 

I 
'c 'c 

1 for all c. 

Now specialize to the case p = 2 and suppose the u. which determine 
l 

J are such that there exists a such that (I a-u. I ,s) = 1 for all 
l 

i = 1, 2, ... , 2m - 1. Then we have 2s points in J (affine plane of 

s 
order 2 ) having only 0, 1, and 2-secants. In adjoining points at 

infinity to make a projective plane we can add to B the points corre-

sponding to the two parallel classes {1 : c oo ,c 

{1
0 

: c e GF(2s)} 
,c 

s 
to produce a (2 + 2,2)-arc in a translation plane of 

order 2s. Thus we have the following 

Theorem 3.4. A translation plane of even order, described as above, for 

which there exists some a such that (I a- u.l ,s) = 1 for all i 
l 

contains an oval .. 

We mention other results, without proof, concerning the existence of 

perfect arcs. 

In [36] and [38] J. A. Thas constructs, for q a power of 2, 

2d-l d d-1 d-1 . 
perfect (q - q + q , q ) -arcs ln certain translation planes of 

order 
d 

q • Also due to Thas we have 

Theorem 3.5 (Thas [37]). In PG
2

(q), q > 3, there are no perfect 

3-arcs. 

It is conjectured that no perfect ~-arcs exist for ~ odd, except 

for ~ = n and n + 1 in a IT . 
n 
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Section 4: Uniqueness of completions. 

We now present results on uniqueness of completions. Our first 

result is the following. 

Theorem 3.6. Let A be a (k,~)-arc in a n . Then if 
n 

k > n~ - n + ~ - (n- n/~) there is at most one way of completing A to 

a perfect arc. 

Proof. Suppose Tl and T2 are both sets of points in n such that 
n 

AU Tl and AU T2 are both perfect jJ-arcs. Without loss of generality 

assume T
1 

n T2 0. 

Pick some p € T. Then, because p is external to the perfect 

jJ-arc A J T
2

, p lies on n/~ lines e x ternal to AU T
2

. Each of 

these n/~ lines, however, must meet the perfect ~-arc AU T
1 

in ~ 

points. They are disjoint from A hence 

Hence 

IAI = (njJ-n+~)- IT
1

1 ~ n~- n + jJ- (n-n/jJ+l), 

and the theorem follows. 

The case of equality in the above theorem deserves further comment. 

Suppose IAI n~ - n + lJ - (n- n/~ + 1) and there are at least two ways 

to complete A to a perfect arc. Then the above proof shows that the 

lines through some p € T
1 

missing A cover all points of T
1

. If we 

take as blocks the lines meeting T
1 

in > 1 point and as points the 

points of T
1 

we then have that every pair of points (of T
1

) lies in a 

unique block, every point of degree n/jJ, and every line of length ~. 

This is a block design with parameters v = n + 1 - n/JJ, k = jJ, A = 1, 
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r = n/}.l, 
n n 

b = 2(n- "iJ +1), (calculating b from the other parameters by 
1J 

using the relations for a block design stated in section 1). Fischer's 

Inequality then implies 
2 

n > 1J Thus the bound of Theorem 3.6 can be 

improved by one if 
2 

n < 1J • 

By using duality we can further improve the bound. Let A be a 

}.l-arc in a II n' !AI = n}.l- n + 1J- z, for some z' with two comple-

tions, Tl and T2, to perfect }.l-ares, JT1 J = IT21 = z, T
1 

n T2 = rJ • 

Theorem 4.6 then states that z > n + 1 - n/}.l. Consider the duals of the 

arcs Au T
1 

and AU T
2

. By the discussion in section 2, (AU T
1

) 1 

and (Au T ) I . 2 will both be perfect n/}.l-arcs in II I • 

n 
The points which 

are shared by these two dual arcs are the lines external to both A J T
1 

and AU T2 in Tin. The points in (AU T
1

) 1 \ (AU T2) 1 are those 

lines external to Au T
1 

but meeting AU T
2

. Given that there are z 

points in T
2

, each of which lies on n/}.l lines external to AU T
1

, 

each line of which contains 1J points of T2 , we have 

This immediately implies 11
2

Jnz. But also (A u T ) I n (A J T ) I 

1 2 

is an (n/}.l)-arc in TI 1 with two different completions to perfection, 
n 

for 

and (A J T2) 1
\ (AU T

1
) 1

• Thus by Theorem 3. 6. 

2 
nz/11 

Note that if 2 
1J < n 

2 2 
1J > n, 1J 

2 
z > 1J 

3 2 
1J /n + 1J /n. 

while 

Thus this bound is only an 

improvement for 

11
3

/n + 11
2

/n > n- n/11 + 1. 

2 
1J > n. 

We also note that since (A 'J T ) I 
1 

is a perfect (n/}.l)-arc we have 
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n(~) - n + cfr) > I (Au Tl) '\(Au T2) I I 
2 z < n]J - ]J + ]J. 

2 nz/ ]J , 

Again, an improvement over the obvious bound z .:_ n]J - n + ]J for 

2 
]J > n only. These results can be stated in terms of intersecting 

perfect arcs. To summarize what we have shown, 

Theorem 3.7. 

intersect in 

l. If 
2 

lJ < n 

Two perfect (n]J- n+]J,]J)-arcs in a 

n]J - n + ]J - z points must have 

II ' n 
2 

]J lnz 

then n]J - n + ]J ~ z ~ n + 1 - n/]J. 

which 

and 

Equality on the 

lower bound implies the e xistence of a block design with parameters 

n n 1 n/]J, k A. 1, n/]J, b • v = n + - ]J, r = = -(n + 1- -). 
]12 ]J 

2. 
2 2 3 2 2 

If ]J > n then jJ - ]J /n + ]J /n < z < n]J - ]J + ]J. Equality 

the lower bound implying the existence of a block design with 
2 

on 

parameters v=n+l-]J, k=n/]J, .\ =1, b=-~-(n+l-]J), r=Jl. 

For 2 ]J > n this establishes a fairl y limited range for the number 

of points in which two perfect ]J-ares can meet. In particular two ]J-ares 

with 
2 

]J > n cannot be disjoint. 

To illustrate this theorem we consider the case n = 16. Then JJin 

implies ]J = 2, 4, or 8. By applying Theorem 3.7 we have 

1) Two perfect 2-arcs can only meet in 0 to 9 points. 

2) Two perfect 4-arcs can only meet in 0 to 37 points. 

3) Two perfect 8-arcs can only meet in multiples of four 

from 48 to 84 points. 

We now return to the extremal case of these bounds and prove the 

following. 
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Theorem3.8. AjJ-arc A with IAI =njJ-n+jJ- (n+l-n/!J), !Jin, 

2 
lJ < n, can be completed to a perfect arc in at most lJ + 2 ways. 

Proof. Let T
1

, T
2

, ... , Tm be completions of A to perfection. Then 

by Theorem 3.6 the T. 
l 

are pairwise disjoint. 

We count the lines intersecting the set of points 

AU T
1 

U T
2 

U ... u T By the proof of Theorem 3.6, and 
m 

IT.I = n 
l 

+ 1 - n/!J for all i' the line 9, joining a point 

point of some T. must contain only one point of T. and 
l l 

of A. But then, since AU T. is a perfect jJ-arc for all 
J 

of A to a 

jJ - 1 points 

j we must 

have 9, meeting T.' j =f i' in a single point. Hence through p € T . 
J l 

there are n + 1 - n/jJ lines, each meeting every other T. in one point 
J 

and A in (lJ- 1) points. This leaves n/!J lines through p missing 

all T., j =f i, and A. These are the lines of the design on the points 
J 

of T. (mentioned after Theorem 3.6). Thus, by the parameters of that 
l 

_E:_(n + 1- ~) 
2 jJ 

jJ 
design, there are 

T., j =f i. This accounts for 
J 

lines through a T . . missing 
l 

2 
m(n/jJ (n + 1- n/!J)) lines. 

A and all 

There are 
2 

(n + 1- n/!J) lines joining points of T. 
l 

to points of 

T., j =f i. These lines meet A in (lJ- 1) points. 
J 

It remains to count the lines meeting A but no 

n + 1 - n/jJ lines from any p € A to points of some 

T .• 
l 

T. 
l 

all T.). 
l 

Thus there are n/jJ lines through p missing all 

containing lJ points of A. Thus there are 

There are 

(and hence to 

T. ' l 
each 

2 
nJAI/!J = n/!J (njJ-2n+jJ+n/jJ-l) lines meeting A and missing all T .• 

l 
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So we have 

n2 + n + 1 = total # of lines, 

n 2 
> m(2) (n + 1- n/]J) + (n + 1- n/]J) 

]J 

n 
+ 2(n]J- 2n + ]J + n/]J- 1). 

]J 

We then obtain, after some manipulation, 

2 3 2 
n(]J +]J-1)- (]J - ]J - ]J) m < 

n(]J- 1) + ]J 

2 2 
]J + 2 + _1_ - ]J (]J - ]J + 1) 

]J-1 n ( ]J- 1) + ]J 

Thus since ]J > 2 we have m < ]J + 2. 

We mention that the 
2 

(n + 1- n/]J) lines which cut across all 

give rise to a transversal design (see [44]) on the points of 

T 
i 

U T and hence to a see of m - 2 mutually orthogonal 
m' 

latin squares of order n + 1 - n/]J. Thus we have 

Corollary3.1. A]J-arc, A, with IAI=n]J-n+]J-(n+l-n/]J) with 

m completions to a perfect arc implies the existence of m - 2 mutually 

orthogonal latin squares of order n + 1 - n/]J. 

We can also dualize a ]J-arc A, 
2 

J.1 > n, with 

I I 2 3 2 
A = nj.l - n + J.1 - (]J - ]J /n + ]J /n), the bound of Theorem 3.7, with m 

completions to perfection to obtain an (n/]J)-arc A1 with 

IAI = n(n/]J)- n + (~)- (n+l-n/(n/]J)) and m completions to perfec­
]J 

tion. Thus we can apply Theorem 3.8 and Corollary 3.1 to obtain 

Corollary 3.2. A ]J-arc A, J.1
2 

> n, with 

I 2 3 2 
lA = nj.l- n + ]J- (JJ -]J /n+]J /n) has at most n/]J + 2 completions to 

a perfect arc. The existence of m such completions implies the exis-

tence of a set of m - 2 mutually orthogonal latin squares of order 

n + 1 - J.l. 
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We mention, without proof, some further results concerning the case 

of equality in Theorem 3.6 for desarguesian planes. These can be proved 

using a technical result, Theorem 1 in Thas' [37]. Let A be a ~-arc in 

PG
2 

(n) with 

jAj = n]J - n 

T
1 

and T2 two completions of A to a perfect ~-arc, 

n/~. Then A can 

be partitioned into sets ... u s 
]J-1, js. I = n + 1 - n/]J, 

l. 

with the following properties. Any line meeting two of the sets 

Tl, T2, sl, s2, ... , sJJ-1 intersects each of these ]J + 1 sets in 

exactly one point. Any line containing two points of one of these sets 

contains ]J points of that set and no points of the others. The points 

of any one of these sets together wi~h the lines meeting only that set 

form a block design on the parameters 
2 

b = n/]J (n + 1- n/]J), 

v = n + 1- n/]J, r = n/]J, k = ~. A= 1. The lines meeting all of 

these sets (necessarily each in one point) and the points in 

T
1 

U T2 U s
1 

U • • • U S]J~l gives rise to a transversal design (see [44]) 

and hence to a set of ]J - 1 mutually orthogonal latin squares of order 

n + 1 - n/]J. The above remarks imply that the union of any n of 

We devote the remainder of this section to considering instances of 

arcs with at least two completions to a perfect arc. Because of the 

relatively small number of perfect ]J-ares known for ]J > 2 we have few 

examples of equality in the bounds of Theorem 3.7. 

Consider Denniston's construction of perfect ]J-ares in PG
2

(n) for 

n even (Theorem 3.3). It can be shown, using arguments similar to those 

employed in the proof of the construction and facts concerning solutions 

of quadratic equations over finite fields (see [21], Chapter 1) that for 

2 2 
¢(x,y) = ax + hxy +by , chosen as in Theorem 4.3, the number of 
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solutions (x,y) of cjl(x,y) a for some fixed a is n + 1 if ry, -1 0 

and 1 if a= 0. Thus if Hl and H2 are two subgroups of the 

additive group of GF(n), IH1 1 IH21 = ]J, and t\ and A2 are the 

perfect )J-ares produced in using tP(x,y) and Denniston's construction, 

(]J-IH
1

n H2 1Hn+l). This gives a large class of ]J-ares, 

A
1 

n A2 , with two completions to a perfect arc. However, two additive 

subgroups of GF(n), n even, can meet in at most half their elements. 

Hence I H
1 

n H
2

1 .:5_ ]J/2 in the above and we cannot obtain equality in 

Theorem 3. 1. 

It is also possible to use the construction of Thas [36], mentioned 

near the end of Section 3. In the case 
2 

]J = n' n even, we can obtain 

intersecting )J-ares as follows. We refer directly to the construction 

there (not given in detail in this thesis). The reader should see [36] to 

follow our comments. By picking two different points and p2 to 

produce ]J-ares A
1 

and A
2 

it can be shown that, using the properties of 

ovoids, if and 

determining the arcs then 

are collinear with a point of the ovoid 

2 
- ]J ; and 

if p
1 

and p
2 

2 

are not collinear with a point of the ovoid then 

1 t\ n A2 1 = JJ - ]J, 
3 = ]J 2i + 2].1. The bounds of Theorem 3. 7 

imply IA
1
\A

2
1 > ].12 - ]J + 1 so that we fall far short of the extremal 

case. 

For )J = 2 we have more success. Our bounds imply that two ovals, 

n even, can intersect in at most (n + 2) /2 points. By using trial and 

error and Denniston's construction ovals t\ and A2 in PG2 (8) can be 

found such that I Al n A21 = 1' 2' 3' and 5. We also have the duals to 

these. 
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In [19] M. Hall catalogues the ovals in PG
2

(16). By looking through 

his list we can easily find ovals intersecting in 9, 8, 7, 6, and 5 

points. We can then dualize these to obtain intersecting 8-arcs. 

With regard to Theorem 3.8, in PG
2

(4) a set of 3 = (n+2)/2 

points can be found with three different completions to an oval. This is 

the maximum number of completions possible since the exact bound on m 

in the proof of Theorem 3.8 gives m < 3 precisely for ~ = 2 and n= 4. 
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Section 5: Complete (k,~)-arcs. 

Here we consider small complete (k,~)-arcs. Our first result is the 

following. 

Theorem 3.9. A complete (k,~)-arc in a 

for n > ]J(~-1) 
2 ' 

and n < 

IT must satisfy 
n 

for n < 

< (k-l)(k-2) 
n - ~(~-1) ' 
~(~-1) 

2 

This theorem improves the bound given by Bruen in [8], which is only 

applicable to planes of square order with ~ < n (see also [4]). Our 

proof is also substantially shorter. 

Proof. Let A be a complete (k,~)-arc in a IT . 
n 

Let £ be a line 

which meets A in a maximum number of points less than ~. Suppose 

jAn £ j =z < ~. 

Since A is complete the points of £\A must be covered by at 

least one ~-secant. Any ~-secant passing through a point of ~\A must 

intersect A\£ in ~ points. We count the maximum number of ~-secants 

to A\ L The lines of IT intersecting the k - z points of 
n 

induce a linear space on those points. Letting k . = the length 
l 

i-th line of this linear space and t = II of ]J-secants to 

since this is a linear space on k- z points, 

t~(~-1) < Z:.k.(k.-1) = (k-z)(k-z-1), 
- i l l 

t < (k-z)(k-z-1) 
~(~-1) 

A\ £ 

A\ £ 

of the 

we have, 

There must be sufficient ]J-secants to A\ £ to cover the n + 1 - z 

points of £\A. Thus 

n + 1 _ z < (k-z)(k-z-1) 
~(~-1) 

n < (k-z) (k-z-1) + (z _ l). 
~(~-1) 



Now 1 < z .2_ f.l-

this range at z = 1 

Thus we have 

n < 

Now if 

tution for k, 

which simplifies to 

/+1 k < and hence 
2 

n < )J(f.l-1) and n > 
2 
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1. The above expression achieves its maximum over 

for k > /+1 and at z = fl - 1 for k < f.l
2 

+ 1 
2 2 

n < (k-l)(k-2) 
- )J()J-1) for 

> )J2 + 1 
k 2 

(k-)J+l)(k-)J) 
)J()J-1) + )J- 2, for 

the second bound holds.and we then have, substi-

2 2 
()J +1_ )J +l) ()J +1_ )J) 

2 2 
---)J-(;-)J--::-:1 ):---~- + )J - 2 ' n < 

n < )J(f.l-1) 
- 2 Thus if n > f.l(f.l-1) 

2 
we cannot have 

2 
the first bound (for k > )J + 1) holds. If 

2 

(k-)J+l) (k-)J ) + )J - 2 then necessarily k > f.l
2 

+ 1 
)J(f.l-1) 2 

(by our earlier bound). Hence we have 

which simplifies to 

2 2 
cfl +1_ f.!+l) c)J +1_ )J) 

n > 
2 2 

---f.l-(;-f.l----:1 ),.......:.:... __ + fl - 2 ' 

n > f.l()J-1) 
2 ' 

contrary to n < f.l()J-1) 
- 2 . This 

establishes the two bounds in the statement of the theorem. 

We mention that the derivation of the bound implies that equality in 

the case n > f.l()J-1) 
2 

can only hold for 

equality in the above theorem for )J 

complete (k,2)-arc in a II 
n 

with n = 

fl = 2. We consider this case of 

2 (and n > 1) . Let A be a 

(k-l)(k- 2) 
2 

Then the points of 

II\ A fall into two categories; those on no 1-secants, and those on at 
n 

least one 1-secant. Those in the se cond cate8ory , by equality in the ab ove 

argument, must lie on only one 2-secant and hence on k - 2 1-secants. 
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Consider the incidence structure, P, with Points= points of 

IT \A on no 1-secants and Lines = 2-secants of IT . We easily have that 
n n 

tl of lines in 

lines of P. 

? = k(k-1) 
2 

and that each point of P lies on k/2 

We can further compute the number of points on a line as follows. 

If 9, is a 2-secan t then there are ck;
2

) = (k- 2) (k- 3) /2 other 

secants meeting 9, (these are generated by the k- 2 points of A not on 

9-). Each intersection point of one of these with 9, produces a point 

with > 1 2-secant, hence exactly k/2 2-secants (since there are only 

two kinds of points external to A). So the (k- 2) (k- 3) /2 2-secants 

meeting 9, intersect 9, in bundles of k/2- 1. Thus 

k - 3. 

Hence each line contains k- 3 points. We can now count the 

number of points in P. Since each point lies on k/2 lines, each line 

contains k- 3 points, and P has k(k- 1)/2 lines we have 

(tl of points in r) (k(k-l~j;)(k-3) = (k-l)(k- 3). 

Note that any pair of points of r lies on at most one line of ~-:>. 

Suppose 9, is a line of P and p a point of P with p i. L Then p 

lies on k/2 2-secants. Now 9, intersects A in two points, say p
1 

and The lines of IT 
n 

joining 

(since plies only on 2-secants). The remaining 

and p
2 

~~- 2 
2 

must be 2-secants 

2-secants through 

p rrieet 9, (necessarily in points of ? since they lie on at least two 

2-secants, 9, and the 2-secants through p). Thus we have shown that a 

point p and a line 9,, of r, with p i. 9, together meet (k.:.. 4) /2 

lines of P. 
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We have shown that ~J is a partial geometry (see Section 1). Thus a 

complete (k,2)-arc in a II 
n 

with n = (k- 1) (k- 2)/2 implies the exis-

tence of a partial geometry with parameters 

II of points (k- 1) (k- 3) ' 

II of lines k(k- 1) /2' 

II of points on a line k - 3, 

II of lines on a point k/2, 

a (k- 4)/2. 

We cannot find examples of this since this would require a plane of 

non-prime power order. 

We now prove one additional bound for complete (k,~)-arcs. This is 

an improvement over Theorem 3.9 for values of ~ close to n. 

Theorem 3 .10,. A complete (k,~)-arc in a II must satisfy: 
n 

2 + n + 1 < (n+l-~)k(k-1) + k 
n ~(~-1) . 

Proof. Let A be a complete (k,~)-arc in a II . 
n 

Then, as in the proof 

of Theorem 3.9, the k points of A generate at most k(k-1)/~(~- 1) 

~-secants. Each of these ~-secants covers n + 1 - ~ of the points of 

II \A. 
n 

These ~-secants cover a maximum number of points of 

are disjoint outside of A. That is, 

~ of points covere~ < (n+l-~)k(k-1) 
by ~-secants ~(~-1) 

But since A is complete all of the 
2 

n + n + 

II \A must be covered and thus the theorem follows. 
n 

1 - k 

II \A if they 
n 

points of 

We consider the case of equality in Theorem 3.10. By the proof, a 

(k,~)-arc A achieving equality must have only 0-secants, 1-secants, and 
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~-secants. Also every pair of ~-secants must meet within A (otherwise 

they will meet outside of A creating a point of IT \A covered by at least 
n 

two ~-secants). Thus the incidence structure of A and its ~-secants 

satisfies: Every pair of points determines a ~-secant and every pair of 

~-secants meets (in a point of A). Thus A and its ~-secants are a 

subplane of order ~ - 1 of n . 
n 

Now let Q, be a tangent to A, p Q, n A. Since A is a subplane 

of order ~ - 1 we have that 

. 2 
(If of ~-secants) = (~-1) + (~- 1) + 1 

2 
~ -~+1. 

Through p, ~ of these will pass. The remaining 2~ + 1 will 

meet Q, in points outside of A. Since A is complete each of these n 

points of t\ A will be covered by at least one ~-secant, and by equality 

in the bound, by no more than one ~-secant. Hence 

n 
2 

2~ - 1 = (~- 1) . 

Thus n is a square and ~ = /n + 1. A subplane of order In in a 

plane of order n is called a Baer subplane. Hence equality in Theorem 

3.10 holds if and only if A is a Baer subplane. 

We now turn our attention to the following result of Segre [30]. 

Theorem 3.11. A (k,2)-arc in PG
2

(n) with k > n - ~ + 1 for n 

even, or k > n- ln/4 + 7/4 for n odd can be uniquely completed to an 

oval. 

We do not prove this here. It requires the Hasse-Weil Theorem of 

algebraic geometry. The interested reader should see [30] or [21], 

pp. 221-240. 

We construct here complete (k,2)-arcs in PG
2

(n) with 
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k = n - ~ + 1, for n even. These are the largest possible, by 

Theorem 3.10. We will require an alternate description of PG
2

(n) 

using difference sets. For more details see [5], [26], or [18], pp. 120-

166. 

A desarguesian projective plane of order n can be described as 

follows. Let points be all elements of the group ~n2+n+l' Lines will 

be all translates of a fixed set D~ ~n2+n+l' In! = n + 1. D is an 

example of a difference set. Note that the mapping of points p ~ p + i 

for any i preserves collinearity. Mappings of this type ate called 

collineations of the plane. 

Consider now a desarguesian projective plane of order n (neces-

sairly a prime power) and square, presented as a difference set D in 

Note that we can factor 
2 

n + n + 1 = (n + rn + 1) (n - rn + 1) 

since n is a square. Partition the set of points in the plane into 

sets A., j 
J 

0, 1, ... ' n + rn 

Aj = {i i = j (mod n + /i1 +1)} s_ ?ln2+n+l · 

Thus lA. I= n- rn + 1 for all j. 
J 

Now suppose !A. n D! < 2 for all j. Then since lines are all 
J -

translates of D we have that each A. is an (n- ~+1,2)-arc. We 
J 

claim additionally that each A. 
J 

is a complete 2-arc, for n even. 

Suppose not; without loss of generality say ~ U {s} is a 

(k,2)-arc. Then by Theorem 3.11 A
0 

U {s} is uniquely completable to an 

oval. In fact ~ itself is uniquely completable to an oval, by 

Theorem 3. 6 and the fact that (n + 2) /2 < n - /i1 + l for n > 2. Thus 

any point not on a 2-secant to A
0 

is in the completion (since otherwise 
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we would have more than one completion, one with the point in, the other 

with it out). But note that p 1-7 p + (n + lfi +1) is a collineation of 

the plane which fixes Since s lies on no 2-secants to 

(A
0 

U {s} is a 2-arc), s + (n + lfi + 1) lies on no 2-secants to 

In fact we then have that all points in A.' 
l 

where s € Ai, lie on no 2-secants to A
0

• Thus all of these points 

must be in the completion of A
0 

to an oval. But I A
0 

U Ai I = 

2(n- /ll +1) > n + 2, a contradiction. Hence AO is complete. 

Thus we have shown that if \A. n D\ < 2 
J 

for all j then every A. 
J 

is a complete (n- rn +1,2)-arc. 

We can verify by hand, using the difference sets listed in [5], that 

for n = that this procedure does produce 

2-arcs. Note that this is true even for odd n. We can only prove that 

the 2-arcs are complete (using the above argument) for n even, however. 

We conjecture that in general this procedure always produces 2-arcs. In 

any event we have shown that complete 2-arcs exist meeting the bound of 

Theorem 3 .11 for 
2 2 

n=2,4, and 
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