Topics in Linear Spaces and

Projective Planes

Thesis by

Joel Christopher Fowler

In Partial Fulfillment of the Requirements
for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1984

(Submitted April 9, 1984)



ii
ACKNOWLEDGEMENTS

This thesis and the time I have spent at Caltech have been much more
than just requirements for a degree. My friends in the‘graduate program
as well as the mathematics faculty and secretaries have all made Caltech
a place that I am glad to have been a part of. 1In particular I would
like to thank Lillian Chappelle, who typed this thesis, for her patience
and help, and especially my advisor, Richard Wilson, for his guidance and

understanding throughout my study at Caltech.



iii
ABSTRACT

A linear space is an incidence structure of points and lines such
that every pair of points is contained in a unique line. In the first
two chapters of this thesis results are presented linking structural
properties to arithmetic conditions on the number of points and lines.
We provide a short new proof of Jim Totten's classification of all linear
spaces for which the difference between the number of points and lines
does not exceed the square root of the number of points. We extend this
classification when tﬁe number of points is of a certain form. -Also in
these chapters we have similar classification results for more special-

ized finite geometrical structures such as (r,l)-designs.

The last chapter is devoted to (k,u)-arcs. A (k,u)-arc in a finite
projective plane is a set of k points meeting no line of the plane in
more than u points. Elementary bounds upon k can be established and
we call an arc with this maximum number of péints perfect. An arc not
properly contained iﬁ any other is called complete. Several construc-
tions are given for both perfect and complete arcs. The major results
of this chapter concern the uniqueness of completions of a (k,u)-arc to

a perfect arc.
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INTRODUCTION

A finite linear space is an incidence structure of finitely many
points and lines in which two points determine exactly one line. 1In
chapters 1 and 2 we investigate properties of linear spaces which can be
deduced purely from relations upon the number of points, v, and the

number of lines, b.

We say that a linear space is embeddable in a projective plane if it
can be obtained from a projective plane by the deletion of some number of

points. Lines may also be deleted if they are left with one or no points.

In chapter 1 (r,l)-designs are considered. An (r,1)-design is a
linear space in which every point lies on exactly r lines. A theorem
of Vanstone states that if v > (r- l)2 for an (r,l)-design then it is
embeddable in a projective plane of order r - 1. Besides providing a
short proof of this result, we also prove the following stronger asser-

tion:

Theorem A. An (r,1)-design satisfying b - v <r +1, r>35, is

embeddable in a projective plane of order r -1, for v > 1.

In chapter 2 linear spaces in general are considered. Before
mentioning the main results we must define some particular examples.
Clearly the configuration of all points upon one line satisfies the
axioms for a linear space. In general we assume b > 1 however. A
near pencil is a linear space in which there is one line containing
v - 1 points and v - 1 lines each containing two points. An affine
plane of order n with a linear space at infinity is a finite affine

plane to which up to n + 1 new points have been added. Each new point
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is associated with a parallel class of the plane, a point being added to
all the lines of its class. A structure of lines is imposed upon the new
points such thaf every pair of new points lies on a unique line. 1In this
way we obtain a linear space. For example, a projective plane can be
obtained by taking an affine plane and adding at infinity the degenerate

space of all points on one line.

A classic theorem of de Bruijn-Erdos states that if a linear space
satisfies b > 1 then b > v, with equality if and only if the space is
either a projectiye plane or a near pencil. J. Totten extended this
theorem in 1976 by classifying all linear spaces satisfying b < v + .
We give a new proof of this result which is considerably shorter than

Totten's.

Theorem B (J. Totten). A linear space with b > 1 and b < v + /;,

nz_i v < (n-l-l)2 is one of the following:

1. A near pencil.

2. Embeddable in a projective plane of order n.

3. An affine plane of order n with either a near pencil or projective
plane at infinity.

4. Lin's cross, the unique linear space with v =6, b =8, one line

each of lengths 3 and 4, and six lines of length 2.

We extend a special case of this theorem as follows:

2
Theorem C. A linear space in which v = n2 +n+1 and b <n" + (2.147)n,

b > 1 1is either a near pencil or an affine plane of order n with a

(possibly degenerate) linear space at infinity.

In chapter 2 we also briefly consider the extension of these results
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to A-designs. A A-design is an incidence structure in which every pair
of points lies on exactly A 1lines. We find that a A-design satisfying
b <r(r-1)/A+1 and r(r-2)/A +2<v i'r(r-l)/A + 1 1in which no
two lines meet in > A points is embeddable in a symmetric (v,r,\)-design,
for v sufficiently large. We close with several conjectures involving

extensions of Totten's classification.

In chapter 3 we turn our attention to structures in projective planes.

A (k,u)-arc in a projective plane is a set of k points such that no

line of the plane intersects the set in > |y points. Barlotti has shown
that a (k,u)-arc in a plane of order n must satisfy k Lol -mn F W

We call an arc achieving this bound perfect. A (k,u)-arc not propefly
contained in any (k',u)-arc is called complete. We list various known
properties of perfect (k,p)-arcs and present several constructions for
these. We also give a new construction for perfect (k,2)-arcs in some

translation planes. Our main result of this chapter is the following:

Theorem D. A (k,W)-arc in a projective plane of order n satisfying
k>nu-n+yu- (n-—n/u-kl> is completable in at most one way to a
perfect arc. If k =nu + Py - 2n +n/pu - 1 then there are at most U + 2
ways to complete it to a perfect arc. Moreover, if more than one way

exists then a block design on the parameters

b'=—n-2-(n—%+l)
u

vi=n+1-n/u

r' = n/y

k' =q

At =1

exists.
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We give examples of known low order arcs which intersect in this

maximum number of points.

In the last sections of this chapter we turn our attention to
complete (k,u)-arcs. We prove

Theorem E. A complete (k,u)-arc in a plane of order n must satisfy

{Je=1) (k=2) u(u-1) (k=u+1) (k-1) u(u-1)
——ﬁzﬁ:is——-for n > > and n < n(u=1) 5 A

+ 8~ 2 fegra ¥

This extends and improves a theorem of Bruen. Equality in the case

u 2 implies the existence of a certain partial geometry. We also
prove another bound for complete (k,u)-arcs for which equality holds

only for a Baer subplane.

A theorem of Segre states that in a desarguesian plane of order n,
n even, a complete (k,2)-arc must satisfy k =n+2 or k <n - /o + 1.
We close chapter 3 by constructing low order cases of equality in the
second bound using difference sets. We conjecture that our construction

provides an infinite family of cases of equality.



Chapter I

(r,1)-designs
Section 1: Introduction.

We begin our investigation of linear spaces in this chapter with the
study of (r,1)-designs. We first define several concepts which will be

used throughout this and the following chapters.

A finite linear space is a finite set of points and a collection of
subsets of points, called lines, such that every pair of points is
contained in exactly one line. We will denote a given linear space by &,

the set of lines in the space. For example
F, = 11,3,5},{2,3,4},{1,4},{1,2},{4,5},{2,5}}

is a linear space. In general v will denote the number of points and b
the number of lines in a linear space. Obviously a single line containing
all points satisfies the linear space requirements, and any number of one
point lines can be introduced into a linear space without violating the
axioms. To avoid these degeneracies we will assume b > 1, and that no

line contains fewer than two points, unless specifically noted.

""passes through,'" "meets," and

We will use such phrases as ''lies on,
so on, in the obvious way, to denote various relationships between points
and lines. The following notation will be used in connection with linear

spaces. Lines will be denoted by Ql’ L 2. or in particular

gy wees Ay
instances by 2, &', or &". The length of a line is the number of
points lying on it, denoted by kl, k2, s sy kb or simply k. Points

will be variously referred to as x; y, p, or q. The number of lines

containing a point is its degree, denoted by res ry, rp, or Ig.
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A linear space is the most general incidence structure which we will
consider. We define (r,1)-designs, the subject of this chapter, as
simply linear spaces in which every point has degree r. That is r, =T

for all x.

A projective plane is a very special example of an (r,l)-design
which we will encounter often. We summarize here the results on projective
planes that we will use. For more details see [18], pg. 173-188 or [27],
pg. 89-95. A finite projective plane can be defined as a finite linear
'space in which every pair of lines meet in exactly one point; and, to
avoid degenerate configurations, we also require that there exist four
points no three of which are collinear. This non-degeneracy condition is
assured if all lines have at least three points and b > 1. Hence in the
text we will not, when showing that a given linear space is a projective

plane, specifically note that this condition holds.

A classic result in combinatorics states that in a finite projective
plane every line contains a constant number of points, and every point
lies on a constant number of lines. Moreover, these two constants are
the same. 1In other words, calling this constant n + 1 (by convention
and for convenience in later results), every line contains n + 1 points
“and every point lies on n + 1 lines. The number n is referred to as
the order of the projective plane. We speak of a projective plane of
order mn. It can further be shown that a projective plane of order n

. 2 . 2 . : g
contains n +n + 1 points and n +n + 1 lines. Thus a projective

: . . 2
plane of order n is a linear space with b =n +n + 1 and
2

v=n +n+1. In fact, it is an (n+1,1)-design since every point

lies on n + 1 1lines. For example



&y = {11,3,5}),{1,2,6},§1 .4,7},{2,3,4} ,14,5,6},12,5,7},13,6.7}}

is a projective plane of order 2. Note that every pair of lines meet and
each point lies on 3 lines. We will find that projective planes will
occur frequently in our theorems on both (r,l)-designs and linear spaces.
This is because projective planes constitute one of only two classes of
linear spaces for which b = v. 1In fact, an equivalent definition of a
projective plane is a linear space for which b = v and there exist four
points, no three collinear. We will use this alternate definition as

well as that given earlier. We will return to this subject in more detail

in chapter 2.

We will need the notion of linear space embeddability. We say that

&

1 18 embeddable in F, 1if by deleting some number of points from e

(and lines when they are left with 0 or 1 points) we obtain 31. For the

example spaces above, & is embeddable in 32 since the deletion of

1
points 6 and 7 from 32 results in 31.

We note that by judiciously deleting points from a projective plane
of order n we obtain many (n+1,1)-designs. We will find that with

some restrictions on v all (n+1,l)-designs are obtained in this way.

Before proceeding with the main results of this section we mention a
simple fact that will be used frequently in this and the next chapter.
If 2 is a line and x € £ then r, 3.|2|, with equality if and only if
every line through x meets 2. This is becausé the lines joining x to
the points of 2 must all be distinct. Many.of our counting arguments

will be based on this simple principle.
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Section 2: Embeddings for v restricted.
Our first result on (r,l)-designs is the following, due to Vanstone.

Theorem 1.1. An (r,l)-design for which v > (r- l)2 - Ly 2> 3, ds
embeddable in a projective plane of order r - 1. We allow for the

possibility of one point lines in this theorem.

The case v > (r- l)2 of this theorem was first proved by Vanstone,

[41]. We give here our own proof.

Proof. We first mention that what follows holds true even in the presence
of one point lines. It is necessary to note this since we will be proceed-
ing inductively, adding a point at a time, and we may introduce one point

lines at some stage.

Suppose we have an (r,l)-design with v > (r- l)2 -~ 1. Then no line

has length > r, since every point has degree exactly r.

Note that if v = r2 - r+ 1 then for the r 1lines through a point,
each length r or less, to cover v = r2 - r +1 points we must have
every line thfough a point of length r. But a line of length r must
be met by every other line (since all points have degree r). Thus every
pair of lines meets. Hence we have a projéctive plane of order r - 1.

We now assume (r- l)2 -1-= r2 - 2r < v < rz - r and split into two

cases.

Case 1: A line of length r exists. Then every line must meet a line of
length r. Since every point on that line has degree r we can count the
lines meeting it to obtain b = r(r-1) + 1. We can now compute the

following.



. = vr,

.
n Mo
~

'—l.
Mo

lki(ki—-l) = v(v-1),

The first is obtained by counting pairs, (x,%) such that x € %,

in two different ways. The second comes from counting triples (x,y,%)

such that x € £ and y € 2. Thus

% ki = v(v-1) + vr.

Now first suppose (r- l)zlf_v f_rz - r. Then we compute
b 9 b 9 b 5 b
Y (k,-(r-1))"= Tkt -2(r-1) Tk, + (r-1)° T 1,
. i : i : i .
i=1 i=1 . i=1 i=1
- 2,2
=v(v-1) +vr - 2(r-Dvr + (r-1)"(r - +1),
= v(v- 2r24-3r- 1) + (r- l)z(rz— r+1).
This expression achieves its maximum over (r- 1)2 <v f_rz - r at

either endpoint. Hence

b 2 2 2 2 2, 2

PN (ki— (r-1)"=(-1)"((r-1)"-2r"+3r-1) + (r-1)"(r -+ 1),
i=1

= (r- l)2 < b.

Thus some line, &, of length r - 1 must exist. Every point off
of 2 1lies on a unique line missing & (since every point has degree r
and £ has length r - 1). So £ and the lines missing & form a
parallel class, a set of disjoint lines exhausting all points. By count-
ing via the degrees of the'points on £ we have that £ meets
(r-1)(r-1) + 1 other lines. This leaves r - 1 lines disjoint from

2. Thus we have a total of r disjoint lines exhausting all points. We
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can now add a single point to all of these lines (it will thus have degree

r), and proceed inductively to eventually ob

jective plane of order r - 1.

Suppose Vv = (r—-l)2 -1 now.

If a line of length

tain b v and thus a pro-

r - 1 exists

then we can proceed as above to create a parallel class and add a point.

If no line length r - 1 exists then we have
b
0< 2 (r-k)((r-2)-k,),
= i i
i=1
b b b 9
=r(r-2) 1,1 -2(r-1) _ k., + 2 k.,
. . 1 . 1
i=1 i=1 i=1

=0, with v = (r- l)2
Thus every line has length r or r -
through a point of length r and r, = # of
length r - 2 we have
rl & r2 = I
(r-—l)rl + (r-—3)r2 =v -
Thus r, = l-(r+l) ' r, = l-(r-—l) Let
1 2 > 2 2 '
length r and b2 = ## of lines of length 'r
2
bl + b2 =b =r1r -
b
rbl + (r- 2)b2 = 'Z ki =
i=1

1

These imply b -%(r— 1)(r-2), b

2

have precisely the (r,l)-design examined by

r(r- 2)(r2— r+1)-2(r-1)vr+v(v-1) +vr,

= L.

2. = # of lines

Letting 1

r

lines through a point of

2

l=1r -2r - 1.

b, = # of lines of

ting 1

2 we then have

+1,

r(rz— 2r).

vr

%(r2+-r). In this case we

Bose and Shrikhande in [7].
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They prove that an (r,l)-design with v = r2 - 2r and b = r2 -r+1
with lines only.of size r and r - 2, other parameters T1s Iy bl’ b2
as computed above, is embeddable in a projective plane of order r -1

for r # 7. The case r = 7 was disposed of separately by Paul de Witte

in [47]. Thus this case is completed.

Case 2: No line of length r exists. Then for r lines through a
point to cover v > (r- 1)2 - 1 points (lines of length r-1 or less)
we must have either: a) v = (r- 1)2 and all lines through a point have

(r—-l)2 - 1 and each point lies on r -1

length r - 1; or b) v

lines length r - 1, one line of length r - 2.
In the first case we then have all lines of length  r - 1. Thus

b 2
b(r-1) = J, ki =9 = ¥{r=1)". »
i=1

So b=r -r. We can now use a line of length r - 1 to create a
parallel class of lines (as in Case 1). Here, however, the class will
only contain r - 1 lines, since b = r2 - r (not r2— r+1 as previ-
ously). We adjoin a ﬁew point to these r - 1 1lines and also include a

singleton line on the new point (so it will have degree r). We can now

proceed inductively.

In the second case lines can only have length r -1 or r - 2. We

count as follows.

# of lines of length r - 1 = X%%;%l~= v ='r2 - 2r,

since each of v points lies on (r-1) 1lines of length r - 1, while
each line length r - 1 contains r such points. Similarly

# of lines of length r - 2 = Z_:; =r.
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Thus b = (rz—-Zr) +r = r2 - r and we can proceed as in the

previous paragraph.
This concludes the proof of Theorem 1.1.

We mention that this theorem can be improved by the use of more
complicated methods. In [23] Vanstone and McCarthy prove that an
(r,1)-design with v > (r- l)2 - %{(Sr— 15)%— 3) is embeddable in a
projective plane of order r - 1. Steven Dow in [13] has shown that an
(r,l)—desigp satisfying b = r2 - r+1 and v > (r- 1)2 - (2(r+~2)%— 6)

is embeddable in a projective plane of order r - 1.
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Section 3: Embeddings for b - v restricted.
It is our aim in this section to establish the following.

Theorem 1.2. An (r,l)-design satisfying b - v <r+1 and r >5 is

embeddable in a projective plane of order r - 1, for v > 1. Here we

also allow for one point lines.

Proof. First note that if a line length r exists then all lines must

meet it and thus b = r2 - r+1 as before. Then b - v £r+ 1

implies v z_rz - 2r = (r—-l)2 - 1 and we can apply Theorem 1.1 We now

assume no line of length r exists.

We show that some line of length r - 1 exists. Let k be the
maximum length of a line, 2£. Then we have that

# of lines meeting £ = (r- 1)k + 1.

We count the number of lines missing & as follows. Through each
of the v - k points off of £ there are r - k 1lines missing AX.

Each of these lines contains at most k such points (since k is the

maximum length of a line). Thus
# of lines missing % i_iX:E%;Eﬂil.
Hence
bi(r-l)k+1+w.

We now manipulate this expression

v(r-k)

b= =5

> (r-Dk +1 - (r-k),

T b-v) +b(1-55 > r(k-1) + 1.

Using b - v < r + 1 and simplifying further gives
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r—1_<—13(r+1) + b(zi_r) > r(k-1) + 1,
rk 22k -r >+

o
b — 2k-r

provided 2k - r > 0. We can estimate v easily by examining the lengths
of lines through a particular point. This yields

v j_r(k— 1) + 1.

We can now combine the estimates for b and v and use b=% % p+l

to obtain

2, 2
r+l>b -y B gy g,

Writing k = r - o, and simplifying, eventually yields

g > z{e(a~1) ~ ocz - 1) + 2a.

The assumption 2k - r > 0 implies r > 20. We are attempting to show
a=1, i.e. a line of length r - 1 exists. Suppose not, 1. e. o > 2.
The above expression is increasing in r for r > 2a provided

20, > (u2+-l)/2(a— 1), which holds for o > 2. Thus

0 > r(r(oc—l)—ocz— 1) + 20 > 20L(20L(oc—l)-o¢2—l) + 2o,

0 > 20(,3 - 4oc2,

a contradiction for o > 2

Thus we have that a line of length r - 1 exists provided 2k-r>0.

Suppose that 2k - r < 0. Then consider the following.

b
0 < & (k-k,) = bk - vr,
. 1 N

i=1

0 f_r(b-v) - b(r-k),

b(r-k) £ r(b-v) % rir+l),

b £ x{r+l)/(e=1k),



Also from the first expression
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v < bk/r f_zgggi%l . %—= S%%%%E-f_r +1,
since 2k - r <0 dimplies (r-k) > k. Thus since b - v <r +1 we
have b < 2r + 2. Suppose that there exist four points no three collin-
ear. Then we can easily count that this set of points meets exactly

bie—3) % 6= 42 — 6 Tines,

contrary to r > 5.

But then b 5_2r + 2

implies r < 4

If there do not exist four points no three collinear

then either all points are collinear or all points but one are collinear.

In either case many one point lines will be present.

collinear then we can easily compute that

case b - v <r+1 implies v
are collinear we can compute b
implies, together with b - v <

2k = r < 0 and hence a line of

We recall the bound on b

b

with k =1 - 1 this becomes

b >
— ‘r—-

2

Thus b ZE =F for ¢ Z_S.

If b z_rz - r +1 then

< Lk

r3—3r2+2r—2 _ r2

be=%¥%t+ 1

If all points are

b=1+v(r-1), in which

(for r > 5). 1If all points but one

v+ (v-1)(r-2) + (r- (v-1)). This

r +1, that v < 1. So we may assume

length r - 1 exists.

derived earlier in the proof.

rk2+2k—r2—r

>
2k - r

5 -r - 2/(r-2).

implies

(r—-l)2 - 1 and we can apply Theorem 1.1.
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If b=r -r then v>r - 2r - 1. We can use a line of length
r - 1 to create a parallel class (as in the proof of Theorem 1.1) of
r - 1 lines. A single new point is adjoined to these r - 1 lines
together with a singleton line on the new point. We then have an
2

(r,l)-design with v = r - 2r and we can apply Theorem 1.1. This

concludes the proof of Theorem 1.2.
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Chapter II

Linear Spaces
Section 1: Introduction.

In this chapter we consider linear spaces in general. For defini-
tions and notation used in this chapter see Chapter 1, Section 1. In
addition to what is contained there we will also require several special

examples of linear spaces.

A near pencil is a linear space in which one line contains v - 1

points and the remaining lines each contain two points. Thus b = v.

An affine plane is a type of linear space very closely related to
projective planes. For more details we refer the reader to [18] pages
173-179. A finite affine plane is a finite linear space which satisfies
"Playfair's Axiom'": Given any line £ and any point x ¢ & there

exists exactly one line through x disjoint from £.

It can then be shown that every line has the same number of points,
. ' 9
say n, and then also that every point has degree n + 1, b =n" + n,
and v = n°. We refer to this as an affine plane of order n. For

example,

§, = {{1,2,3}, {4,5,6}, {7,8,9}, {1,4,7},
{2,5,8), 13,60}, 11.6.8}, 12.4,9},

{3,5,7}, {2,6,7}, {3,4,8}, 1,5,9}}

is an affine plane of order 3. An affine plane of order n can equiva-
lently be defined as a linear space with v = nz, b = nz + n, ki =n
for all i, and r =n + 1 for all x. It is this second definition

that we will use most frequently.
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Playfair's Axiom gives rise to parallel classes in an affine plane.
A parallel class is a set of disjoint lines exhausting all points. 1In
an affine plane of order n there are n + 1 parallel classes, no two
sharing a line. These parallel classes exhaust all lines. For example,

Jl above has the following four parallel classes.

{{1,2,3}, {4,5,6}, {7,8,9}},
{{134,7}9 {2’5’8}9 {3’699}}3
{{1,6,8}, {2,4,9}, {3,5,7}},

{{2,6,7}, {3,4,8}, {1,5,9}}.

It should be noted that given a parallel class in a linear space a
new space can be obtained by adding a single new point on the lines of
the parallel class. 1In this way v 1is increased by one and b is left
unchanged. This means of extending linear spaces was used in the proofs

of Theorems 1.1 and 1.2.

Given an affine plane of order n we can obtain a projective plane
of order n by adding n + 1 new points. We add a particular point to
all the lines of one parallel class. We then place all n + 1 new
points on a single new line. The new points are sometimes referred to as
points at infinity, and the new line as a line at infinity. For example,

given 31 above we adjoin points B Ry Sy B at infinity to obtain

g, = {{1,2,3,wl}, {4,5,6,w1}, {7,8,9,wl},
{1,4,7,»,}, {2,5,8,=,}, {3,6,9,,},
{1,6.8,2.}, {2,4,9,2,}, {3,5,7,=,},
{2,6,7,2,} {3,4,8,=3, {1,5,9,»,1,
{2y 5y 52520

a projective plane of order 3. This correspondence can be reversed,
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i.e., if n + 1 collinear points are removed from a projective plane of

order n we obtain an affine plane of order n.

The next class of examples is a generalization of this process.
Note that, after the points at infinity have been adjoined to their
respective parallel classes (and before the line at infinity has been
added), to produce a linear space we need only impose a structure of
lines upon the points at infinity which guarantees that any two of these
points lie on a unique line. That is, we have an affine plane of order
n with a linear space at infinity. For a projective plane the linear
space at infinity is the degenerate configuration of all points upon one
line. 1In general any linear spgce can be placed upon the points at

infinity. Also we need not adjoin a full n + 1 points at infinity.

To illustrate this process we adjoin three points to .&l above and

place a '"triangle" at infinity to obtain the following linear svpace.

33 = {{192’3,001}3 {4’5’63001}’ {7:8,9,001},

(1,4,7,2,}, {2,5,8,%)}, {3,6,9,,},

{1,6,8,003}, {2,4,9,003}, {3,;,7,w3},
{2,6,7}, {3,4,8}, 1159k
{ool,oo?_}, {ool,oo3}, {ooz,oo3}}.

The results of sections 2 and 3 in this chapter can also be found

in [14] and [16].
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Section 2: Totten's classification.

The most basic theorem on linear spaces is the following due to

deBruijn and Erdos [9],

Theorem 2.1 (deBruijn-Erdos, 1948). A linear space satisfies b > v
with equality only if the space is either a near pencil or projective

plane.

This is the first in a series of theorems in which structural
characteristics of a linear space are deduced from arithmetic relations

upon b and wv.

y 2 ; ;
For an affine plane (b-v) = v. It is natural to ask what linear
spaces satisfy this relation. As with the deBruijn-Erdos Theorem there

is a simple answer. Paul deWitte [46] proved the following:

Theorem 2.2 (deWitte 1967). A linear space satisfying (b—-v)2 = v is
either an affine plane of order Vv or an affine plane of order Vv with
a single point at infinity from which one (non-infinite) point has been

deleted.

We then ask about the linear spaces falling between the extremes of
b-v=0 and b - v =Vv. In 1976 Jim Totten, [39] and [40], classified

all linear spaces satisfying b < v + Vv .

Theorem 2.3 (Totten 1976). A linear space satisfying b < v + /v with
n2 < v < (n4-1)2 is one of the following:

1. A near pencil.

2. Embeddable in a projective plane of order n.

s Aﬁ affine plane of order n with either a near pencil or projective

plane at infinity.
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4. Lin's cross, the unique linear space with v =6, b = 8, one line of

length 4, one of length 3, and six of length 2.

It should be noted in regard to the second category that many linear
spaces which are embeddable in a projective plane of order n do not
satisfy b < v + /v . To have b <v + Vv we may delete no more than
n + 1 points from a projective plane of order n. Up to n points may
be deleted without regard to their position (if n are deleted on a line
then the line is eliminated also, since it now contains only one point).
We may remove n + 1 points provided they are either all on a line or éll

but one are on a line (which is then eliminated as above).

In this section we give a new proof of this classification which is
much shorter than Totten's. Our approach is greatly simplified by the use
of linear algebra in Lemma 2.1. We first bring together severdl lemmas

which will be used throughout this section.

We henceforth assume throughout this section that & 1is a linear

space satisfying b < v + /v and n2 <v < (n+—l)2. Clearly then

Lemma 2.1. Let & have r, >n+1 for all x and kj <n + l. for
all j. Then every point x of degree > n + 1 1lies on some line .2 of
length n + 1 with rp =n+1 for all p € 2A\x. Such a line will be

called a special line through x.

Proof. We use a technique suggested to the author by R. M. Wilson (see

[14] and [45]). See [17] or [22] for the matrix theory we shall employ.

Let N be the v X b incidence matrix of &. Then, indexing over
points x,

NNT = diag[rx— 11 +J3 =40+ 7.
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It is easily verified that
P =N (W) LN
is the orthogonal projection from B£> onto the row space of N. By

computing we also have

e MR (X e Y N T
where
c=(1+ ) (rx— l)—l)_l.
all x
So P 1is given by
P =N - taahy,
N Y e R T O
Using the notation as = b — for subsets S, of points, the above
X€S "x

expression becomes
P=logng 1 - cloy oy 1,
L T

indexing over lines Ki, Qj. The projection onto (row space (N))'L is

Q=1I-"P. Thus rank(Q) =b - v and

Q=T = [aljlﬂ_] + c[aﬁ.ug.].
1 i7j
Consider now any point x and let Qo be the principal submatrix of Q

corresponding to the lines through x. Then on this principal submatrix

1

o 1
Loy g U = dlegley =g=gl + o5 4s
i 7] i x X
So
Q. = diag[l- & ! f = LT 4 elo, 05 ]
0 r -1 r -1 .72.°°
p€££\x P X i

Note that since L >n +1 for all x and kj <n+1 for all j
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we have

1- X r{lio,
peL\x “p

with equality if and only if Qi is special through x.
Now suppose T >n + 1 but no special lines through x exist.

Then strict inequality holds above so that

diag|l - b ;ljf
peL\x p

is positive definite.

Then adding the positive semi-definite matrix c[OLQ oy ] still gives
i

a positive definite matrix, hence of full rank, r_. Subtracting the rank
1 matrix (rX— l)_lJ reduces the rank by at most one. Thus

r.o- 1 j_rank(Qo) < rank(Q) =b - v <n, contrary to r. >n + L.

Lemma 2.2. For n > 3, no lines of length > n + 1 exist unless & is

a near pencil.

Proof. We use the following result from [32]: If ¢ 1is a line of
length k and M is the number of lines meeting £ (excluding 2) then

we have

% kz(v—k) )

2, v-1

This can be proved as follows. Let L. denote the sum over lines which

meet £. Then

(g
~
~
=

|
=
~

]
o
~
<

|
e
~

The second and third relations are obtained by countiﬁg the number of

triples (x,y,%'), x€ %' and y e &', with x € 2 and y ¢ 2 in the
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first case and x £ £ and y £ 2 in the second.

We can now estimate the variance,

Plugging in and simplifying yields

" kz(v—k) ‘

& v-1

Now, in pafticular, the existence of a line of length k dimplies

Note that this expression is monotonically increasing in k for

0 <k § %v . Let £ be a line of maximum length k. We consider two
cases.
Case 1: k f_%“]. Then if k > n * 2 we have
2 (n42)%(nt1)
b i 1+ (@m+2)" - _—VT— .

Also b < v +n so that by combining and simplifying

v2 - v(n24-3n4-6) + (n34-6n24-lln-k9) > 0.

This expression achieves its maximum on n2 <wv f_nz +2n at v =n + 2n
provided
2 n2 3n n2 3n 2
(n +2n)—(—2—+—§~+3)_>_(2—+2—+3)—n.

This holds if and only if n2 -n~6&6>»0, i.8. w23 Bo, for m *> J;
we have

(n2+2n)2 - (n24-2n)(n24-3n4-6) + (n3+-6n24-lln%-9)

| v
©

. . i 2 ok
This simplifies to -2n" - n + 9 > 0, a contradiction for n > 3.
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Case 2: k > %ﬂz. If two points lie off & then the line containing

them and £ together meet z_2(k-l) other lines. Thus

b>2(k=1) +2>3v.

2

By using b - v <n we then have n > >n /3, a contradiction for

w|<

n > 3. So at most one point of & lies off &. Since b > 2, & must

be a near pencil.

The cases n =1, 2 can easily be examined by hand. The only
exceptional case found is Lin's cross for n = 2 (a line of length

4 = n + 2 exists).
Henceforth we assume that no line has length > n + 1.

Lemma 2.3. Every pair of lines of length n + 1 must meet.

Proof. Suppose 21 and 22 have length n + 1 and do not meet. Then

they are both met by (n4-1)2 lines. Including Rl and 22
b z_nz +2n + 3. So since b -v <n, v z_nz + n + 3. Thus since the

gives

maximum length of a line is n + 1, . >n +1 for all x, contradicting
Lemma 2.1.
: < 2
Before proceeding further we dispose of the cases v =n + 1 and
2
v =n .

Lemma 2.4, If v = n2 or n2 + 1 then J§ 1is embeddable in a projective

plane of order n.

Proof. Note first that, in either case, if there are no points of degree
<n +1 we are done since: 1) If no points of degree > n + 1 exist we
are done by Theorem 1.1; 2) If a point of degree > n + 1 exists then

it lies on a special line, which must (by the degrees of the points on it)
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meet i_nz +n + 2 lines (including itself), contrary to b - v <n and
v E_nz + 1.

Thus we may assume some point x of degree <n + 1 exists. Then
for the lines through x (necessarily of length <n + 1) to cover
v = n2 +1 or n2 points we must have r,.=n and: (a) If v = nz + 1
then x lies on n lines of length n + 1; (b) If v = n2 then x
lies on n - 1 1lines of length n + 1 and one line of length n. 1In
either case all lines of length n + 1 must pass throughv x (otherwise
ro >n +1). Hence x 1is the only point of degree < n + 1. We now

split into two cases.

Case 1: v = n2 + 1. Suppose some point y exists of degree > n + 1.

Then the line, £, joining x and y has length n + 1. It thus

meets ivnz + n + 1 other lines (including itself). But b - v < n,
hence b = n2 +n + 1 and all lines meet £. So all points other than

x and y have degree n + 1. Now pick some line &' # 2 with x € 2'.
Then y £ 2' and 2' has length n + 1. Thus there is a line through

y missing &' (since ry >n + 1), all of whose points then have degree
>n + 1, contrary to x and y being the only points of degree #n +1.
Thus x 1is the only point not of degree n + 1. We can then add a

singleton line on x and apply Theorem 1.1.

Case 2: v = nz. Suppose y 1is any point of degree > n + 1. Then if
the line joining x and y were of length n + 1 it would meet

i_nz +n + 1 lines (as in the previous case), contradicting b - v < n.
So all points of degree > n + 1 1lie on the unique line of length n
through x. All points off this line have degree n + 1 and hence lie

on a unique line missing this line of length n. Thus a parallel class
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of lines is created (as in the proof of Theorem 1.1) and a new point can

be added giving v = n2 + 1. Now apply the previous case.

We now assume v Z_nz + 2 and complete the proof of Theorem 2.3.
Since the maximum length of a line is n + 1 and v > n2 + 2 we have
T >n +1 for all x. So Lemma 2.1 applies. If no points of degree

>n + 1 exist we are done by Theorem 1.1.

Henceforth we assume some point of degree > n + 1 exists. We will
call such points <deal points. A line which misses some line of length
n + 1-will be called an Zdeal line. Note that every point on an ideal
line is ideal. We will find that ideal points are the points of the

"'spaces at infinity'" in the statement of the theorem.

If there is a unique ideal point, say x, then it must lie on all
lines of length n + 1 (otherwise L >n + 1 will give a line through x,
missing the line of length n + 1, all of whose points will then be ideal).

Thus & with x deleted has rp =n+ 1 for all p and no lines of

length > n, v z.nz, i.e., an affine plane. So & originally had

2 : 2
v =n + 1 points, contrary to v >n + 2. So there are at least two

ideal points. By choosing a special line through one we have the exis-
tence of an ideal line through the other. Thus ideal lines exist. Also

every ideal point lies on at least one ideal line.

Let 21 be an ideal line of maximal length and x of maximal

degree on 21. Let 22 be a special line through =x. Pick y € Qi\x

of minimal degree, say ry =m+*1l#*+z, 22 l.

We now count the lines meeting 21 or %, by counting, respectively,

2

the lines meeting Ri\x, the lines meeting x, and the lines meeting

Qi\x and missing 22. This gives
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2
b >n" + r. + (kl-l)z.

We now estimate T, by choosing 23 to be an ideal line of maximal
length # 21 through y (such a line exists since ry >n + 1 and

k2 =n + 1) and 24 to be a special line meeting Qé\y. Then

22 n 24 # ¢, by Lemma 2.3, and £ N 22 =@, Ql[\ 2, = @¢. We count the

3 4

number of lines which meet 12 but not 24. Since points of Qé\x have

degree n + 1 and 24 has length n + 1, this number will be r - (n+1).

On the other hand, any point of 25\24 has at least k2 - k4 + 1 1lines

and meeting lz (since it lies on 2%, which meets

through it missing £ 3

4

24 and misses 22). Thus

£ (FD 2 (-l t 1 (kg-1) = kg - 1.

So

Hence

b z_nz +n + k., + (kl— 1)z.

3
We now count Vv by using the lines through y. The lines from y to
Qé\x have length at most n + 1. The other ideal lines through vy,

besides Ql, have length at most k3. Thus
2
w =L <n =+ (kl-l) + z(k3— 1)

Now b - v < n, so combining the two previous estimates gives, with some
simplification,

(k —k3)(z-—l) < 0.

1

But Ql was chosen maximal ideal and z > 1. Thus we must have equality

and either z =1 or kl = k3.

Equality implies equality in all previous estimates.
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Thus :
1. All points Qf Qi\x have the same degree, ry =n+ 1+ 2.
2. Every ideal line # 21 through y has the same length, k3.
e T, = k3 + fi,
4. All lines joining y to Qé\x have length n + 1.
Since all points of li\x have the same degree they are interchangeable
with y in the above argument. Thus we also have:
5. Any line joining a point of Qi\x to a point of Qé\x has
length n + 1.
6. All ideal lines through some q € Qi\{x;y} have the same length,
kq (as k3

r. = kq +n = k3 + n. Hence every ideal line meeting 21 in

for y). By repeating the above argument on (,

some point other than x has length k3.

Thus, since £, is special, all

7. All lines meet £, or & 5

ik 2°

ideal lines meet &

1°
8. b = n2 +n + k3 + z(kl— iy

v = n2 + kl-+ z(k3— 1).
Before proceeding with the cases z =1 and k., = k_, we establish

1 3

the following: A line of length n + 1 contains at most one ideal point.
To see this, let x' and y' be ideal on % of length n + 1. Let &'
be special through y' and 2" ideal through x', missing 2'. Then
every line meeting &' meets & (since points of &'\y' have degree

n + 1). On the other hand through every point of £'\x' there is at
least one line meeting %' and missing £, dimplying 2" contains fewer

than 2 points.

Case 1: z = 1. Then every point of Qi\x has degree n + 2. Lines

joining some q € Qi\{x,y} to Qi\y cannot meet Qé\x (those have
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length n + 1 and hence contain at most one ideal point, q). Thus

r >n +k,. Hence k, =2 (if no such q exists then k., = 2, giving

q 3 3 1

k3 = 2 by maximality of kl). Let p = Ké\y. Note that rX==k3+-n=rr+2

so that x 1is interchangeable with any point on Ql. Every ideal line

meets Ql and evéry line meeting Ql has length k3 = 2. Thus the

structure of ideal points and ideal lines is that of a near pencil with

vertex p. Now

o
I

2 2 )
(kl— 1)z +n” +n + k3 =n" +n + (kl4-l),

2
(kl4-l) + n .

v

Thus if the near pencil is deleted we obtain an affine plane (i.e.,

b = n2 +n, v = n2, all points of degree n + 1).

Case 2: 'k, = k,. Then every ideal line has length k (since all meet

1 3 3

21). As in Case 1, the lines joining some q € Qi\{x,y} to Qé\y

cannot meet Zé\x. Thus rq >n + k3. But x, chosen to be of maximal

degree on 21, has r . =n + k3. Thus all points of Ql have degree

n + k,. Also the line joining q to any other ideal point not on 2

3 1

misses 22 and is thus interchangeable with x; all ideal lines have

the same length and are thus interchangeable with £ Thus every ideal

1
line has length k

and every ideal point has degree n + k.. The line

1 1

joining any pair of ideal points is ideal. So the ideal points and lines

form a projective plaﬁé of order kl - 1. We have
2 2
b=n +n-+(kl—l) +(k1—l)+jh
v=n® 4 (g -1+ (g -1) + 1.

So the deletion of the ideal points and lines leaves an affine plane as

before. This concludes the proof of Theorem 2.3.
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Section 3: Further classification.

In this section we extend the classification of section 2 in the

y 2
particular case of v =n +n+ 1. We prove

Theorem 2.4. A linear space satisfying v = n2 +n+1 and b f_nz +
(2+c)n 1is either a projective plane of order n, an affine plane of
order n with a linear space at infinity, or a near pencil, where ¢

can be taken as .147899.

We first establish several preliminary lemmas. Henceforth let &
: 2
be a linear space with v =n +n +1 and b f_nz + (2+c)n for some

e <

N+

Lemma 2.5. No line of & has length > n + 1 unless & 1is a near

pencil.

Proof. From the proof of Lemma 2.2 we have that the existence of a line

of length k implies

2
p > 142 K
~ =]

we proceed as in Lemma 2.2. Let £ be a line of maximal length, k.

Suppose k > n + 2. We consider two cases.

N

Case 1: k < .

__'EV’. Then since kz(v-k) is increasing for 0 < lii-—v

3

we have

25 2
b > (042) (0 4ntl-(n42)) _ 2 L 30 41 _ 4/m

n24-n4-l— 1

a contradiction to the range of b for n > 2.

Case 2: k > %WJ. If there exist two points off of £ then the line

through them and 2 meet at least 2(k-2) other lines. Thus

b> (k=12 +2>%v = 20 + 30+ 4/3,
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a contradiction to the bound on b for n > 1. Thus at most one point

exists off of & and we have that & 1is a near pencil, since b > 1.

In view of Lemma 2.5 we may assume that no line has length > n + 1.
Using this and v = n2 +n + 1 we have that every point has degree
>n + 1, since fewer than n + 1 lines througﬂ a point (each of length
<n + 1) could not cover v = n2 +n + 1 points. We also have the

useful fact that a point has degree n + 1 if and only if it lies only

on lines of length n + 1.
Lemma 2.6. Some point of.degree n + 1 exists.

Proof. Suppose not, then r >n + 2 for all x. Note that a block,

2, of length n + 1 exists since otherwise

Mo

bn >

k, =L 1, > (+2)v = (a+2) (@ +n+1)
X

i=1
implying b Z_nz + 3n + 2, a contradiction. Now with r > a4+ 2 for
all x we have that £ meets at least (n+1)(n+1) other lines.

Additionally any point not on £ lies on at least one line missing X.
Each such line has length at most n + 1. Hence at least nz/(n'+l) =

n-n/(n+1) lines which miss £. By this b Z_(n2-+2n4-l) +n, a

contradiction.
Lemma 2.7. Every two lines of length n + 1 meet.

Proof. Suppose Ql and 22 have length n + 1 and do not meet. Then

any x € 21 has degree > n + 2, since there are n + 1 lines joining

X to the points of Qz and 21 is disjoint from 22. Thus through

every x € Ql there is a line 2(x) with x € 2(x) and |2(x)| < n+l.

Every point on an £(x) has degree > n + 2, since 2(x) has length

<n + 1, so there are at least lQ(x)l - 1 1lines meeting 2(x) but
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missing 21. We consider two cases

Case 1: |2(x)| > n/2 for some x € 21. Then note that Ql and 22
together meet (n+l)2 lines. So
2 2
b > (m+1)" + (|[&x)|-1) >0 +5/2n
contradicting b.
Case 2: |2(x)| < n/2 for every x € 21. Then for the lines through each

2 . .
such x to cover v=n +n + 1 points we must have B >n + 3 for

all x € Qlf Then, by counting the lines meeting Rl, we have

b > (m+1)(n+2) > n? + ;9
a contradiction.

Note that if all lines have length n + 1 then every pair of lines
meet. Thus & 1is a projective plane. We henceforth assume that some
line of length < n + 1 exists. Lines of length n + 1 will be called

long. Lines of length < n + 1 will be called short.

We prove Theorem 2.4 by first showing that the number of lines of
length n + 1 1is z_nz + 1 and then showing that this implies & 1is an

affine plane of order n with a linear space at infinity.

Let L = # of lines of length n + 1 and let the longest line not
of length n + 1 be Q, of length on, O < o < 1. Thus every line has
length n + 1 or < on. By counting triples (x,y,%) with x € &,

y € 2, x#y we have

Mo

(b-L)on(on-1) + Lon(n+1) > ki = v(v-1).

1

i

Using v = n2 +n+1, b f_nz + (2+c¢)n and simplifying we have,

assuming o < 1,
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2 2
L z.nZ % o <l—2a —;a ) + (l+u§)n+l )
1=% n(l-a)+l+a
2 2 2 . wd
8o L>n #+1 for 1=20 =ca >0, equivalently w < (2+¢) “.

We now take care of larger «.

Let x be a point of degree n + 1. Then x £ 2. since & 4
short there exists a line through x (necessarily of length n + 1)
missing 2. Call this line &, and the lines through =x meeting ) by
2.5 2.5 ..., & . Consider now £ and &. Together both meet

1 2 on 1
(n+1-1)(n+1-1) + r = n2 +n +1 lines. Through each point y € Q\Ql
there is at least one line meeting £ and missing Ql (i.e., at least

one of the n + 1 lines from y to % must miss 21, since £ through y meets

21 and misses 2). Thus there are at least on - 1 lines meeting £ and

oo

missing Kl. Similarly if & is a line meeting £ and missing 21
there are at least IRK] - 1 1lines meeting 21 and missing £. Adding

these up gives
2 *
b > (n“+n+1) + (en-1) + (|2 |-1).

Hence |20|.i (1+c-a)n + 1. Thus any line meeting & but missing

2, has length < (l+c-o)n + 1. This same argument holds for any li’

i=1, ..., on. Now suppose &' is any 1line meeting &. If &' misses
some Qi, i=1,2, ..., on then |2'| < (1+c-a)n +1 by the above.
If L' meets every 21, 22, N Qan (in addition to %) then

|2'| > on + 1. Hence |2'| =n + 1, by maximality of 2.

Thus we have shown that every line meeting £ has length n + 1
or j_(l+—c— a)n + 1. Let g be any point on £ and Nq = # of lines

of length n + l_.through q other than 2. Then since the lines through
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2 :
q must cover all v =n +n + 1 points we have

2
# of lines through g 5 - _-an _ _n-Nq
of length < (l4c-0)n+l/ — (l+c-a)n+l-1 (1+c-0)
So
n—N
-1 > S
rq 1 __Nq + (o)
summing over q € £ then gives
b-1> L(r,-1) > LN (I-752) +1o L L.
qel q q€l 4 = qel
Now LN =1L -1 thus
q€l
c-q n(n+l)
b-12> (L l)(l+c-0t) = l+c-o °

Using b f_nz + (2+c)n and solving for 1 gives

L > n2 + n(l—(2+c) (1+C"OL)) + l/(OL— C) .
= [0 el &
2 ] 2
Thus L2>mn +1 for l+e~-0ax 1/{(2+¢), L.e., o> (e +3e+1)/(e+2).
Previously L i_nz +1 for @< ?ig . We need only choose ¢ so that

these two ranges overlap. We can take any c¢ such that

2 S—
¢ +3c+l < /’ 1
c+2 — "24c ’

Equivalently, O E_C4<+ 6c3 + llc2 + 5¢ - 1. To within six decimal

places we take ¢ = .147899.

2
We now complete the proof of Theorem 2.4 by showing that L >n + 1
implies that & 1is an affine plane with a linear space at infinity. We
use Theorem 1.1, but in a dual form, that is, interchanging points and

lines. The form we require reads (letting r =n + 1).
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Theorem 1.1'. Let S Sm be subsets of size n + 1 of some set

10 e
2 ; ; ; ;
Ss |Si =n +n + 1, such that every pair Si’ Sj’ i #3j meet in a

2
unique point. Then if m > n - 1 we can find subsets of S, Rl’

, «++5 R of size n + 1 such that {S,,S,5:.+,S SR ...,
RZ n2+n+l—m 1°72 m 1
R 2 } is a projective plane of order n.
n +n+l-m

To prove the above we simply note that with the roles of points and
lines reversed, points being thought of as "containing' the lines with
which they are incident, we have an (n+1,1)-design on v=m > (n+1- 1)2— 1

. 2 .
"points" and b =n" +n+ 1 "lines."

We then apply Theorem 1.1 to
this dual structure to obtain '"points'" which can be adjoined to form a

projective plane. These '"points'" are the required sets
J p P

R

1> +=es R

n2+n+l—m
To apply this to our structure, let 21, 22, ve sy % 9 be the
n +t
lines of length n + 1 of &. Note that t <n +1. If t=n+1 we

already have projective plane. Thus we may assume 1 < t < n. The short

. . 2
lines of & are Qi, i>n 4+ t.

By Lemma 2.7 every pair Qi’ Qj, 1 <i<j<n +t, must meet.

Additionally they are size n + 1 subsets of a set of v = n2 +n +1

points. By applying Theorem 1.1' we then have the existence of sets

Ri» Ry, wovs R0 such that I = {21,22,...,2 ’ ’Rl’RZ""’Rh+l—t} is
n +t
a projective plane of order n.
Now consider any Ri. Because IRiI =n+1 and n+1-t<n+1

there is some point x in R, which lies on no other Rj’ j#i.
i
Consider any short line containing =x and let y be any point on that

short line. The pair {x,y} must be covered by some line of the
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projective plane II. But {x,y} is on a short line of & already so
that {X?Y}‘E Qj for j f_nz + t. Also, by assumption, x lies on no
Rj for j # i. Thus {x,y}‘E_Ri. We have shown that any short line on
x must be contained in -Ri'
Note that since no point x can lie on exactly one short line of

& we have that every Ri, 1<i<n+1l-=-1¢t contains at least two

short lines.

The above argument also shows that if t = n, and hence R1 is the

only line added to Zl, vy R 2 to produce II, then all short lines
n <kt
are contained in Rl. With the removal of the points of Rl, and hence
the short lines of &, we are left with a linear space for which v = nz,
2

b=n" +4+n, all lines have size n (since Il is a projective plane

Lo se mmisd intersected R1 in a single point), and all points have degree

2
n +t

n+ 1. That is & is an affine plane of order n with a linear space at
infinity, the space at infinity being the short lines within Rl.
Thus it suffices to show that t = n.. We proceed as follows. Note
that every point in an Ri must be on some short line (since the pairs of
points covered by short lines in & must be covered by the lines Ri in II,
and vice versa). The short lines interéecting any Riv in at least two
points induce a linear space structure on the n + 1 points of the Ri.

Thus we have, by the deBruijn-Erdos Theorem (Theorem 2.1.) that there are

at least n + 1 short lines meeting any given Ri in at least two points.

Now consider Rl' We have previously established that each of the

remaining n - t R, contain > 2 short lines. Together with the n + 1
1 =5 :

short lines meeting R (these will be distinct from the others since

1

they meet in at least two points) and the long lines we have
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b > (af+t) + (n+1) + 2(a-t)

1
=
+
(O8]
=]

|
-+

a contradiction for t = 1. We now suppose 2 < t <n - 1.

Consider a particular Ri' It contains at least (n+1)-(n-t) =
t + 1 points not on any other Rj’ j # i. Let the set of such points
within Ri be Ci' Thus lCil >t + 1. As before any short line on a

point of Ci is contained entirely within Ri' We consider two cases.

Case 1: The points of Ci are covered by a single short line. Then,
since every pair of Rj meet and t < n, there is y € Ri\Ci. The line
joining each x € Ci to y must be short and hence is contained in Ri.

Thus we obtain at least |Ci| short lines contained in Ri'

Case 2: The points of Ci are covered by more than one short Line. Then
we can apply the deBruijn-Erdos theorem to the linear space induced by
short line intersections with the points of Ci to obtain at least ICil
short lines meeting _Ci. Thus there are at least !Cil short lines

contained in Ri'

In either case we have at least lCil > t + 1 short lines contained
in each Ri’ 1 <i<n+1-t. Including long lines we then have

b z_nz +t + (n+l-t)(t+1) Z_nz + 3n -1

for 2 <t <n -1, a contradiction. Thus t =n and & 1is an affine

plane of order n with a linear space at infinity. This completes the

proof of Theorem 2.4.
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Section 4: Extensions to A-spaces.

Here we consider extensions of our results on linear spaces to more
general incidence structures. We give here the essential definitions and
results necessary for what follows. The reader is referred to [27], pp.

96-122, [18], pp. 100-120, [11], [20], and [24] for more details.

A A-space is a set of points and a collection of subsets of points
called blocks such that every pair of points lies on exactly A blocks.
These have been variously called in the literature A-linked designs [48],
[49], pairwise balanced designs of index A [43], and BI[K,A;v], [20].
They are dual structures to A-designs, [28] and [31]. We adopt the term
A-space because of its similarity to linear space and its brevity. Thus

a linear space is a l-space.

As before we will let b = # of blocks and v = # of points.
Points will be denoted by X, V¥, P, 4, etc. while blocks will be
Bi, BZ’ g Bb. Block sizes will be ki and point degrees r, as
before. We assume that no block contains all points.

All of our previous structures have generalizations in this setting.-
An (r,A)-design is a A-space in which all points have degree r. These
generalize the (r,l)-designs of Chapter 1. Projective planes have their
counterpart as well. A (v,k,A)-design, also called symmetric
(v,k,A\)-design 1is a (k,A)-design in which every block contains k
points. We define A-space embeddability in exactly the same way as for

linear spaces.

The study of A-spaces is complicated by the fact that we have no
counterpart of the deBruijn-Erdos theorem case of equality. It can be

shown that b > v for a A-space but no characterization of the cases of



40
equality exists. At presént only two classes of equality are known (it
is conjectured that they are the only cases of equality). These are the
(v,k,A)-designs, mentioned earlier, and a class of A-spaces obtained from
(v,k,A\)-designs by manipulating the blocks in a specifiéd way. More

information on this subject can be found in [28] and [31].

Theorem 1.1 has a generalization to (r,A)-designs. Vanstone and

McCarthy (see [11] and [24]) proved the following.

Theorem 2.5. An (r,A)-design satisfying r(r-2)/A + 1 < v for which no
two blocks meet in >\ points, and no block has size less than A, is

embeddable in a (v,r,\)-design.

A A-space which satisfies these conditions on block intersections
and sizes is sometimes called restricted. This condition is quite useful

for it allows one to prove the following.

Lemma 2.8. In a A-space for which no two blocks meet in >A points, if
x 1is a point and B a block such that x ¢ B, then r, E_IB[. Equality
holds if and only if every block through x meets B in exactly A

points.

Proof. We count pairs (y,B') with y e BNl B' and x € B'. On one
hand we can pick y € B in any one of [Bl ways; there will then be
A blocks B' on x and y. On the other hand there are T blocks on

X, each meeting B in at most A points y. Thus
AB| < r A
— "X

The lemma then follows and the case of equality is clear from the above

argument.
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For linear spaces this lemma is trivial and is used many times with-
out specific note being taken. For A-spaces, however, it is not true
without the additional assumption bounding block intersections. With
this lemma we can mimic many (but not all) of the techniques used on

-linear spaces.

We now proceed to the main result of this section. A special case
of Totten's linear space classification, Theorem 2.3, is that a non-near
. . . 2 2 .
pencil linear space with b <n +n+1 and v >n + 1 is embeddable
in a projective plane of order n. We now consider the extension of this

to A-spaces with A > 1.
We prove the folldéwing.

Theorem 2.6. A A-space which satisfies b < r(r-1)/X +1,
r(r-2)/A+2 <v, and r > 44X + 3, for which no two blocks intersect
in >\ points and no block contains fewer than A points, is embeddable

in a (v,r,A)-design.

Proof. The proof will proceed in several steps. We first show that no
block has size >r. Let B be the largest block and p a point of
smallest degree on B. First note that since no two blocks meet in >X

points we have

r (r -1)
XEB *

(# of blocks meeting B) >+ 1.

Combining this with b E_Ei%?il + 1 then gives

r(r-1) > 4L (r_-1).
— X
xX€EB

Thus if |B] > r +1 we have that rp < r - 1l. Now every block not

passing through p must have size no more than rp, by Lemma 2.8. The
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lines through p have size no more than IBI, thus
b
Lk, <r(b-r) +r_|B|.
i=ll— p P p

Also every point off of B has degree at least |B|, while those

on B have degree at least rp. Thus

Ezrx_z (v- |B])|B] + ]B‘rp.

b
But X k, =2 r_, by counting pairs (x,B') with x € B'. We
X

then have

rp(b—-rp) s rplBl i_(v—-lB])‘Bl + lB|rp,

rp(b— rp) (v- |B])|B].-

| Vv

The first expression achieves its maximum over r < r - 1 at r-1

provided r -1 f_b/Z, which is satisfied for «~r 3_4X + 3 since

b >v i_r(r— 2)/A + 2. For IBl >r + 1, the second expression is at

least (v- (r+1))(r+1) provided |B| <v - (r+1l). So for

IBI_i v - (r+1) we have

(r-DEER - o1y > Xy 1) e+ D).

After much simplification this becomes

0 > r? - r(4r+3) + 42,

a contradiction for r z_4k + 3. Thus to have all blocks of size <r

we need only dispose of the case lBl >v - (r+1). Suppose not, i.e.,

|B] > v - r. Then if two points lie off of B they must each have

degree Az_|B| >v -1 by Lemma 2.8. They are together in A blocks.

Thus
b » 2{w= 1) ~ ks
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Applying b < r(r-1)/A +1 and v > r(r-2)/XA + 2 then gives
0 i_rz - r(22A+3) - (Xz— 3\), a contradiction for r > 4X + 3. Thus at
most omne boint lies off of B. Since no block contains all points we
have exactly one point, p, lying off of B. So |B| =v -1 and
rp > v - 1. Since no two blocks meet in >A points we also have that

all blocks besides B have size < A + 1. Now consider any x € B. We

count pairs (y,B') with y € B' and x € B' in two different ways to

obtain
(v-1) + (rx— DA kel (v-1)A,
A=1:
rX _>_ (V—l)(T) + 1.
Hence
- A-1
b r > (v- l)[(v-—l)(—7f§-+l] + (v-1).
X
~ b
But L r = Lk, < (b-1)(A+1) + (v-1).
X . i—
X i=1
Thus

(b-DG+1) + (v-1) > v-DIv-DEH +11 + (v-1),
which leads to a contradiction to the bounds on b and v when A > 1.
Thus no block has size >r.

Now consider any point x. We count the number of pairs (y,B')

with x € B', y € B' in two ways to obtain
rX(r— 1) > (v-1A,

using the fact that no block has size >r. This together with
v > r(r-2)/A + 2 then implies t >r, when A > 1. So all points

have degree >r.

We now show that some block must have size r. If not then
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b
b(r-1) > Lk, =L r_ > vr.
— . i X —
i=1 X

We can then apply b < r(r-1)/A +1, v > r(r-2)/A + 2 and simplify to

obtain 0 > r(A-1) + A, a contradiction.

Let B be a block of size r. Then since every point on B has

degree >r and blocks meet in at most A points we have

r(r-1)

5 F L

(# of blocks meeting B) >

But b j_r(r— 1)/ + 1 by assumption. Thus we have that all blocks meet
B in exactly A points, with each point having degree r. But by the
case of équality in Lemma 3.8 we also have that al}t points off of B

have degree r exactly. Hence we have an (r,\)-design satisfying the
conditions of Theorem 2.5. Thus it is embeddable in a symmetric

(v,r,A)—design.
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Section 5: Remarks.

We note here some consequences of Theorems 2.3 and 2.4 involving the
possible values of b for a linear space on a fixed number, v, of

points.

Suppose & dis a linear épace on v points with n2 +2<v f_n24-2n.
If b-v<n then & is one of the linear spaces in Theorem 2.3. If
& 1is a near pencil then b =v. If & 1is embeddable in a projective
plane then b = n2 +n+1. If & 1is an affine plane of order n with a
linear space at infinity then, with the space at infinity containing «
points, v = n2 + o and 'b = n2 +n + a. This is because the linear
space at infinity must be a near pencil or projective plane (by Theorem

2.3), for which # of points = # of lines. Thus we have shown

Corollary 2.1. A linear space on v points with n2 + 2 £ ¥ < n2 + 2n

can only have number of lines b = v, b = n2 +n+1, or b>v +n.

2 2
In the cases v =n or n +.1 we have the same result except

that we must allow b = n2 + n as well, since an embeddable space on

» 2 ;
these numbers of points can have n~ + n lines.

The case v = n2 +n + 1 we consider further. The above corollary
gives b = n2 +n+1 or b z_nz + 2n + 1. We can improve upon this in

a special case by using Theorem 2.4.

Corollary 2.2. Let v = n2 +n+1 with n = m2 + m for some m. Then

. : 2
for m > 6 a linear space on v points must have b =n +1n +1,

b = n2 +2n + 1, or b > n2 4+ 2n +m+ 1.

Proof. Let & be a linear space with v:=n2-+n-+l =(m2-+m)2-+(m2-+m)-+l

points and b f_nz + 2n +m lines, m > 6. Then b f_nz + (2.147)n
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since (.147)n = (.l47)(m24-m) >m for m > 6. Hence we are in the case
of Theorem 2.4. If b # n2 + n + 1 then we have an affine plane of order
n with a linear space on n +1 = m2 +m + 1 points at infinity. Thus
b = n2 +n + o, where o is the number of lines in the space at infinity.
Since there are m2 + m + 1 points in this space we can then -apply
Theorem 2.4 to obtain o = m2 +m+ 1 or z_mz + 2m + 1. Thus
b = n2 +n + (m244m+-l) ot z_nz +n + (m2+-2m+~l) and the result

follows.

There are several other recent results relating to questions of this

kind. We cite several here, without proof.

Theorem 2.7 (Erdos, Mullin, Sé6s, Stinson, [15]). A linear space on Vv

points which is not a near pencil satisfies b 3_B(V) where

n2 +n+1 for n2 + 2 < v < n2 +n+1

B(v) = anz +n for n2 — .+ 3_i v < n2 +1

[?Z +n-1 for v = n2 -n + 2.
A linear space with b = B(v) on v points is embeddable in a projective
plane of order n when n2 <v E_nz +n+1, v-= n2 -n+ 2, or
2 , 7. 2
v=n -0 with o + a(2n-3) - (2n"-2n) < 0.

Theorem 2.8 (Stinson, deWitte [33]). A linear space with v Z_nz and

b < n2 +n + 1 is embeddable in a projective plane of order n.

Theorem 2.9 (Stinson [34]). The only finite linear space on Vv points

and b = n2 4+ n + 2 1lines with n2 1l % wR n2 +n+1 has v = 10,

b = 14 (and such a space exists).
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Theorem 2.10 (Erdos, Fowler, Sés, Wilson [14]). TFor v sufficiently

large, a linear space on b lines and v points exists for all b such
L3
that v+v® <b< () -4 b=()-2, or b=C().
We close this chapter by conjecturing that, for n sufficiently
large, a linear space satisfying n2 ~m+ZLwyE&n $n+l and
b - v <2n - 2 can only arise as an affine plane of order n, from

which some points have possibly been deleted, with a (possibly degenerate)

linear space at infinity.
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Chapter III

(k,u)-arcs
Section 1: Introduction.

In this chapter we restrict our attention to linear spaces which are
finite projective planes. We investigate structures contained in these.
In this section we define the terms which we will use. 1In particular

instances we refer the reader to other sources for more details.

For the definition and properties of a projective plane of order n
see Chapter 1, Section 1. We will denote a projective plgne of order n
by Hﬁ and its lines by 21, 12, veey 2 9 , points by P1s Pos wees
n +n+l
pn2+n+l‘
It should be noted that several different projective planes of a
particular order n may exist. That is, the geometry of points and

lines in planes of the same order may be different. We will go into

more details concerning this in later sections.

A (k,u)-are, u > 2, in a projective plane of order n is a set
of k points which meets no line of the plane in more than U points.
We will denote the set of points in a (k,u)-arc on occasion by A and,
for convenience, sometimes refer to A as a u-arc or simply arc. A
line £ of the plane which meets an arc in m points will be called an

m-secant.

Note that if p is a point of a (k,u)-arc, A, in a Hn then the
n + 1 lines through p each meet A 1in at most U - 1 points other
than p. Thus

k < (n+1)(u-1) +1 =nu-n + u.
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Equality holds if and only if every line of Hn is either a O-secant
or a lU-secant. This bound and case of equality is due to Tallini-Scafati
[35]. We call a (k,p)-arc with k =nu - n + 1 perfect. A perfect
M—arc can be equivalently defined as a set of points having only O-secants
and p-secants. A (k,u)-arc not properly contained in any (k',u)-arc will
be called complete. Our notation differs from the current literature in
that perfect arcs here are referred to as maximal there. We feel that
the term perfect is, in some sense, more descriptive of the extremal

nature of (nu-n+yu,u)-arcs.

A separate notation is sometimes employed in the case p = 2. 1In a
Hn an (n+2,2)-arc, n. even, or an (n+1,2)-arc, n odd, is called an
oval (we will see in section 2 that (n+2,2)-arcs do not exist for n odd).

For a survey of (k,u)-arcs we refer the reader to [2], [3], or [21].

There are several other combinatorial structures (not necessarily

contained in a projective plane) that we will also need.

Later in this chapter we will encounter (b,v,r,k,A)-designs. For
more details see [18], pp. 100-120, or [27], pp. 96-116. A (b,v,r,k,A)-
design, also called a balanced incomplete block design or simply block
design, X >0 and k <v -1, is a set of v points and a collection
of b subsets of points, called blocks, such that every point lies on r
blocks, every block contains k points, and every pair of points lies on
exactly A blocks. It can then easily be shown that bk = vr and
r(k-1) = A(v-1). Another fundamental result on block designs is
Fischer's Inequality which states that b > v (note that the case A =1
is a consequence of the deBruijn-Erdos Theorem). The symmetric (v,k,A)-

designs of Chapter 2 can be equivalently defined as block designs for
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which b = v.

A partial geometry is a set of points and a collection of subsets
of points, called lines, such that every point lies on r lines, every
line contains k points, every pair of points is contained in at most
one line, and, if 2 is a line and p £ % then there are exactly «
lines &' such that p € 2' and &'N 2 # @, for fixed constants

r, k, and «a. For more information on partial geometries see [6].
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Section 2: Elementary properties.

Here we present established results on (k,u)-arcs which will be

needed later in this chapter.

The concept of duality will be quite useful. We touched on this
subject briefly in Chapter 2. Given a structure of points and lines,
with some notion of incidence, the dual of this structure is obtained by
calling the lines points, the points lines, and reversing the relation-
ship of incidence. 01ld points (which are now lines) contain the old
lines (now points) with which they were previously incident, and old

lines lie on the points they contained.

For example consider the following incidence structure with lines

Ql’ 22, 5 HE 3 27 and peints 1y 25 wwes 7=
8, = 11,2,8}, 8, =1{2,3,5}, 2, = {3,4,6],
%, = 14,57}, % = {1,5,6}, & ={2,6,7},
%, = 11,3,7}.
The dual of this structure has lines 1, 2, ..., 7 and points
21, 22, o £7 with
&= {21,25,27}, 2 = {21,22,26},
3= {8,,8,,0.), 4= {2,8,,0,0,

5 = {Qz,ﬂa,ﬁs}, 6 = {23’25’26}’

7= {24,26,27}.

We will be using duality'primarily in connection with projective
planes. Note that by the symmetry of the axioms of a projective plane,

with respect to points and lines, the dual of Hn is also a projective
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plane of order n, denoted by Hé. The above example is a particular

case of this for n = 2.

Any set of lines in Hn is a set of points in Hé. Given a (k,u)-
arc A in Hn we define the dual are, denoted by A", in H; to be
the set of points in Hé which correspond to lines of Hn which do not

intersect A (in Hn).

Now suppose A 1is a perfect U-arc in a Hn. Then every line which
meets A 1in at least one point meets it in u. Thus if p £ A the
lines through p meeting A divide A into disjoint sets of U points.
Thus # of lines through p meeting A = IA|/U =n+1-n/y, since A
is perfect. Now rp =n + 1 hence we have shown that the number of lines
missing A through p £ A is n/p. In other words, the dual arc A'
possesses only O-secants and (n/u)-secants (points of A become O-secants
in H;). Thus the dual of a perfect u-arc is a perfect (n/p)-arc, in the
dual plane. We also have the necessary condition for a perfect p-arc in
a Hn’ u|n (this shows that, as mentioned earlier, there are no
(n+2,2)-arcs in a Hn, for n odd). The above results are due to Cossu

and can be found in [10].

We shall be concerned with arc completions. A complete (k,u)-arc
Al is said to be a completion of a (k',n)-arc 'Az if A112_A2. Our first

theorem on completions is the following, due to Barlotti [1], concerning

arcs which are one point short of perfection.

Theorem 3.1. For U > 2 an (ap-n+u-1,u)-arc in a Hn has a perfect

completion. An (n+1,2)-arc in a Hn’ n even, has a perfect completion.

Proof. Suppose A is an (nu-n+u-1,u)-arc. For any point p let

a; = # of i-secants through p. Then if p € A
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B

L a, =n + 1

i=1

2

L (d-1)a, =nd - n +py - 2.

=1 &
Combined these imply ~Ha; - (u- l)a2 — e — ZaU_2 - au—l = -1. Since
a; > 0 and an integer we then have au—l =1, a; = B for 4dLi=12

and au = n. Thus each point of A 1lies on n u-secants and one (u-1)-

secant. Hence we can count # of (u-1)-secants = |A] *1/(u-1) =n + 1.

Since only O-secants, (u- l)-secants, and lU-secants exist we have

that for p £ A

(u- l)au—l + uau = |A[ =qnUu -n+u-1.

If‘ au—l >0 for every point p ¢ A then every point of Hn |
(including those in A) lies on at least one of the n + 1 (u- 1)-secants.
Because every pair of lines meets we have that for a line £ which is
not a (U- 1)-secant each p € & is covered by exactly one (u- 1)-secant
(since |2| =n + 1 and there are only n + 1 (u-1)-secants total). 1In
other words, any point lying on a non-(u- 1)-secant is covered by exactly
one (u-1)-secant. Thus if p' is the intersection point of two (u-1)-

secants it must lie on all (u-1)-secants. Thus p' can be added to A

to product a perfect p-arc.

Note that for an (n+1,2)-arc, with n even, we have every point
lying on at least one l-secant immediately, since n + 1 1is odd. We can
then apply the above argument to obtain a perfect completion. Thus the

second assertion is proved.

By the above we may assume that au—l =0 for some p £ A. Then
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for that point

a =nu-n + - 1.
M u M M

Thus n + 1= 0 (mod u). Now let £ be a (U-1)-secant. As before,

for any p € 2\A we have

(u- l)a“_l + pap =nu-n+u-1.

But n + 1= 0 (mod 1), thus the above equation implies

= 0 (mod u). For each p € NA a >0 since £ is a

au—l u-1

(- 1)-secant. Hence au—l > u for each of the (n+1) - (u-1) points

of 2N\A. We can then count the (u- 1l)-secants by their intersections
with £ to obtain

# of {fi=l)~secants > (n+2=wy(p~1) + L.

But we have already counted the number of (u-1)-secants as n + 1.
Hence (n+1) > (n+2-p)(u-1) + 1. This simplifies to
0 5.(u—-2)(u—-(n-+l)), a contradiction for u > 2, and the result

follows.

We mention a further result of this type due to B. J. Wilson. 1In
[42] he shows that an ((nz—-n-4)/2,n/2)—arc, in a Hn’ with n > 8

and even, can be completed to a perfect (n/2)-arc.
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Section 3: Constructions.

In this section we mention several constructions for perfect arcs.
To do this we will require a more detailed description of some particular

kinds of projective planes.

A desarguesian projective pZané is one in which the Axiom of
Desargues holds. The exact statement of this axiom is not necessary for
our discussion, more details can be found in [18], pp. 167-188. For our
purposes we need only the fact that desarguesian planes can be described

using vector spaces over finite fields.

Let GF(n) be the finite field of n elements, for n a prime
power. Let Vk(n) denote the k dimensional vector space over GF(n).
A classic theorem of geometry states that a desarguesian projective plane
of order n can be thought of as having as pointé the l-dimensional
subspaces of V3(n), and as lines the 2-dimensional subspaces of V3(n),
with containment as incidence. This plane is often denoted by PGz(n).
Note that this implies that a desarguesian plane can only have prime

power order.

Using this description we have many ovals in desarguesian planes
using the following construction, see [21] chapters 7 and 8. Let
V3(n) = {(xl,xz,x3) PRy € GF(n)}, n a prime power. Denote points of
PGz(n) by <(Xl’x2’x3)>’ not all X, = 0. Let Q(Xl’XZ’XB) be a

quadratic form in X1s Xy, Xg. We say that Q 1is non-singular when no
ituti = - -
substitution xi ailzl aiZZZ ai323,
3
i,j=1

of variables z; for the X

]

with the matrix [a non-singular, produces a quadratic form in

13
fewer than three variables. For more information on quadratic forms see

[177) "o [22].
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Theorem 3.2. Let Q(xl’XZ’X3) be a non-singular quadratic form. Then
A= {((xl,xz,x3)): Q(xl,xz,x3) = O,xi € GF(n)} is an (n+1,2)-arc in

PGZ(n), n a prime power.

Using this we then immediately have ovals for n odd. Applying
Theorem 3.1 gives ovals for n even. In fact all ovals for n odd in

PGZ(n) arise in this way (see [29]).

Another equivalent description of a desarguesian projective plane is
through the affine plane embedded in it (see Chapter 2, Section 1). A
desarguesian affine plane of order n (n necessarily a prime power) can
be represented as follows. Points are all pairs (x,y) with x and vy
in GF(n). Lines are all sets Loo*= {(x,y) : v = mx + c} and

b

L o T {(x,y) :x=1=c}, for m and c¢ in GF(n). We will denote a

desarguesian affine plane of order n by AGz(n).

The set {Lm :b € GF(n)} is a parallel class of AGz(n). Thus

,b
the '"points at infinity" that can be adjoined to parallel classes of
AGZ(n) to produce a projective plane of order n correspond to fixed
slope values m (including the parallel class of "infinite' slope

{Lw,b :b € GF(n)}). The correspondence between projective and affine
planes shows that AGz(n) is embedded in PGz(n). Any construction of
arcs in the affine plane carries over into the projective plane. For our
next construction, due to Denniston [12], it is more convenient to work

in AG, (n).

Let n = 2" and uln, say U = 2m, m < r. We construct a perfect

(k,Zm)—arc in AG (Zr). We will use several properties of finite fields.
. 2

For more details see [21], Chapter 1.

We first establish some facts regarding quadratic polynomials over
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GF(Zr). Let f(x) = ax2 + bx + ¢ for some a, b, ¢ in GF(Zr) with
a#0 and b # 0. Then since x> x2 is an automorphism of GF(Zr),
f(x) - c= ax2 + bx 1s an endomorphism of the additive group of GF(Zr),
with kernel {0,b/a}. Hence Range (f(x) - c) is a subgroup of index 2 of
the additive group of GF(Zr). Each value in the range is taken on twice.

Thus Range (f(x)) is a coset of a subgroup of index 2.

Let {a,h,b} < GF(Zr) be such that a, b, h # 0 and
b £ Range (ax24-hx). Thus f(x) = ax2 + hx +b # 0 for any x. Consider
now ¢(x,y) = ax2 + hxy + by2. We claim that ¢(x,y) = 0 if and only if
x =y = 0. One implication is obvious. Now if ¢(x,y) =0 and y =0
then obviously x = 0. If y # 0 then we have 0 = a(x/y)2 + h(x/y) + b,

a contradiction to the choice of a, h, and b.

Let ¢(x,y) be as above and H a subgroup of order 2™ of the
additive group of GF(Zr). Let A = {(x,y) : ¢(x,y) € H}. We show that
A 1is a perfect (Zm)—arc in AG2(2r). We will show that every line meets

: m .
A in either 0 or 2 points.

For a particular line & let GQ be the set of values (with multi-
plicities) that ¢(x,y) takes over the points of 2. We wish to show

G, 0 1| = 2™,

Suppose & is of the form Lm 0" Then
L)
GK = {x2(a4-hm4-bm2) 1 x € GF(Zr)}. Since ¢(x,y) =0 if and only if
x =y =0 we have a + hm + bm2 # 0. Thus since x> x2 is an auto-

morphism of GF(Zr), GQ = GF(Zr) (all multiplicities one). So

|6, 0 w| = 2™,

If . = L, 0 then GQ = {by2 iy € GF(ZY)} and for the same reasons

as above IGQFW H| = g,
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Now let £ be of the form L or L with ¢ # 0. Then G
m,C Xy C 2
is obtained by substituting y = mx + ¢ or x =c¢ in ¢(x,y) and
letting 'x (or y) range over all values in GF(2r). That 1is, G2 is
the range of a quadratic polynomial. Note that (0,0) £ & thus O ¢ GQ.

For 2 =1 & the coefficient of x2 in £ 4is a + hm + bm2 and hence

m,

#0. For & =1L . the coefficient of y2 is b, thus #0.

b

If the coefficient of x (or y) in £ is O then Range(f)==GF(2r),
again since xbP x2 is an automorphism of GF(Zr). But O ¢ G. Thus x
(or y) has a non-zero coefficient, so that f is an endomorphism with
non-trivial kernel and our previous discussion applies. G2 = Range (f)

is a coset of a subgroup of index 2, say G, of the additive group of

GF(2"). Now 0 ¢ G,, hence G # G, and we have GF(2") = GUG,. By the
structure of additive subgroups of GF(2') we have that [G N u| = |H|

1 ki m
or F|i|. 1f |¢NH[ = [H] then |6, NH|=0. If |6N H|= §|H)=2
then the other half of the elements in H are in Gz, each with multi-
plicity 2. Thus |G, N H| = [8] = 2™

Hence every line meets A in 0 or 2™ points. The line at
infinity which we adjoin to AGZ(Zr) to obtain PGZ(Zr) misses A
entirely. So we have
Theorem 3.3. A perfect p-arc exists in PGZ(n), n even, if and only if
uln.

We now present a new construction of ovals in a certain class of
non-desarguesian projective planes called translation planes. We refer

the reader to [25] for a more complete account. We need only the follow-

ing description of some affine translation planes.

m
-1
Let n =p° for p a prime, and m|s. Let {ui}i=l be some
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fixed set of non-negative integers with mlui for all i. Then taking

points to be all (x,y) with x, y € GF(ps) and lines as all
u
L= {y):y = m’

i
. + c with x,y'eGF(pS)and index (m) = i(mod(pm—l))}

or L, = {(x,y) :x =c} for m and c in GF(p°),; we obtain an

affine translation plane of order pS. Parallel classes, as in the

desarguesian affine plane, are collections of lines of fixed '"slope."

We now let J Dbe a translation plane of order ps, as described
a
above. Consider the set B = {(x,xp ) i xX € GF(pS)} for some fixed non-

negative integer a. We examine how B intersects the lines of J.

a a
The lines LO " intersect B in points (x,xp ) with y = xp = &,
- 4
Since x> xp is an automorphism of GF(pS) there will only be one such
X. Thus the lines LO 2 intersect B in one point only. Similarly the
|

lines L " meet B in one point only.
b

a
The lines Lm L D # 0, o, dintersect B in points (x,xp ) with

a ui = J
Xp =y = mXp + i (mod me-l). Because x = xp is an

Il

c, index (m)

i
. i

automorphism of GF(pS) for any j we have that f(x) = ¥ - %P is

a u;
an endomorphism. Hence the number of solutions of x? = mxP +g is

a ui
"the same as the number of solutions to xp = mxp when c¢ € Range (f)
a_ Yi

f P =

and 0 if c ¢ Range (f). That is, besides x = 0, m. By

the multiplicative structure of GF(pS) (cyclic), this equation has

S

u
a ; . .
either 0 or (|p -p 1|,p - 1) solutions, using parentheses to denote

the greatest common divisor of two numbers, depending on whether

y us u,
(lpd—-p 1l,ps--l)lindex (m) or not. But (lpa— P ?|,ps- 1) =

[a—uil e (la—uil,s)
(p -1,p°-1) = p - 1. Thus we have for m # 0~
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(b if ¢ ¢ Range (f)
(’a—u.|,s)

1 if ¢ € Range (f) but (p * -1) { index (m)
BN L | = (la-u,|,s)
m,c : ¢
o) if ¢ € Range (f) but
(Ia—ui] )S)
(p —l)lindex (m)
\
a uy
where f(x) = x°* - mxP , while [BN L | = |BN L | =1 for all c.
©,c O;c

Now specialize to the case p =2 and suppose the Uy which determine
J are such that there exists a such that (la— ui|,s) =1 for all
1 & 1, 24 ennsy 2™ — 1. Then we have 2° points in J (affine plane of
order 28) having only 0, 1, and 2-secants. In adjoining points at
infinity to make a projective plane we can add to B the points corre-
sponding to the two parallel classes {Loo ¢ € GF(ZS)} and

’

{LO c: c € GF(ZS)} to produce a (254-2,2)—arc in a translation plane of

order 2°. Thus we have the following
Theorem 3.4. A translation plane of even order, described as above, for
which there exists some a such that (|a-—ui|,s) =1 for all i
contains an oval.

We mention other results, without proof, concerning the existence of
perfect arcs.

In [36] and [38] J. A. Thas constructs, for ¢ a power of 2,

2d-1 d d-1
q =

-1 : , .
perfect ( +q »q )-arcs in certain translation planes of

order qd. Also due to Thas we have

Theorem 3.5 (Thas [37]). 1In PGz(q), q > 3, there are no perfect

3-arcs.

It is conjectured that no perfect p-arcs exist for u odd, except

for ¥ =n and n +1 in a Hn.
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Section 4: Uniqueness of completions.

We now present results on uniqueness of completions. OQur first

result is the following.

Theorem 3.6. Let A be a (k,u)-arc in a Hn. Then if
k >ny -n+ p- (n-n/u) there is at most one way of completing A to

a perfect arc.

Proof. Suppose Tl and T2 are both sets of points in Hn such that

AU Tl and AU T2 are both perfect p-arcs. Without loss of generality

g.

assume Tl n T2

Pick some p € T. Then, because p is external to the perfect

pu-arc A J T2, p lies on n/y lines external to AU T2. Each of

these n/u lines, however, must meet the perfect p-arc AU Tl in u

points. They are disjoint from A hence

Ty > 1+ (u-1@/w.
Hence

|A] = (ap-n+p) - |T

1| <nu-n+u- (a-n/u+l),

and the theorem follows.

The case of equality in the above theorem deserves further comment.
Suppose 1A| =nu-n+u- (n-n/p+l) and there are at least two ways
to complete A to a perfect arc. Then the above proof shows that the

lines through some p € Tl missing A cover all points of Tl. If we

take as blocks the lines meeting Tl in >1 poinﬁ and as points the

points of T, we then have that every pair of points (of Tl) lies in a

1

unique block, every point of degree n/i, and every line of length - u.

This is a block design with parameters v =n + 1 - n/u, k =u, A =1,
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r =n/y, b= l%{ne-%-+l), (calculating b from the other parameters by

M
using the relations for a block design stated in section 1). Fischer's

Inequality then implies n z_uz. Thus the bound of Theorem 3.6 can be

improved by one if n < uz.

By using duality we can further improve the bound. Let A be a
U-arc in a Hn’ |A| =nd-n+y-2z, for some =z, with two comple-

tions, T, and T to perfect p-arcs, |T.| = |T

1 2° 1

Theorem 4.6 then states that z >n + 1 - n/u. Consider the duals of the

=z, TlﬂT = @

2l 2

arcs AU Tl and AU T

and (AlJ_TZ)' will both be perfect n/py-arcs in H;. The points which

5 By the discussion in section 2, (AU Tl)'

are shared by these two dual arcs are the lines external to both A J Tl

and AU T, in Hn. The points in (AU Tl)'\(A.U Tz)' are those

2

lines external to AJ T. but meeting AU T Given that there are 2z

1 2"

points in T each of which lies on n/u lines external to AU T

2’ l,.

each line of which contains u points of T2, we have
[(aU TP\ (AU 1) | = nz/n’,

This immediately implies uzlnz. But also (AU Tl)' N aAdJ Tz)'
is an (n/y)-arc in HA with two different completions to perfection,
(AU Tl)'\(A;U T2)l and (A J Tz)'\(AiJ Ti)'. Thus by Theorem 3.6.

nz/u? = |(AU Tl)'\(AU' Tz)'l >n-n/(n/p) +1,
z > UZ ‘— U3/n + uz/n.

Note that if UZ <mn then UZ - p3/n + uz/n <n -n/yu+1, while
2 2 3 2 i s
for yv“ >n, W -y /n+ 1y /n>n-n/yg+ 1. Thus this bound is only an

. _ 2
improvement for U= > n.

We also note that since (AU Tl)' is a perfect (n/u)-arc we have
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n n ' ' 2
bazc o~y —_ > =
n( -n+ G > [(AU THN(AU T)'| = nz/y’,
z < nu - uz + U.
Again, an improvement over the obvious bound z < nu - n + u for
2

B~ > n only. These results can be stated in terms of intersecting

perfect arcs. To summarize what we have shown,

Theorem 3.7. Two perfect (nu-n+y,U)-arcs in a Hn’ uln, which
intersect in nUu - n + U - z points must have uzinz and

1. 1If uz <n then nu-n+py>z>n+1- n/u. Equality on the

lower bound implies the existence of a block design with parameters

n
u2

ve=n+l-nfm, k=u, A=1, r=a/y, b=S@ri-D.

2. If uz > n then ‘uz = u3/n + uz/n fz<fny - uz + Y. Equality on

the lower bound implying the existence of a block design with
2
parameters v=n+1 -y, k=n/y, A =1, b= %r(n+-l— W, r=u.

For uz > n this establishes a fairly limited range for the number

of points in which two perfect u-arcs can meet. In particular two l-arcs

; 2 ' S
with U~ > n cannot be disjoint.

To illustrate this theorem we consider the case n = 16. Then uln

implies uy = 2, 4, or 8. By applying Theorem 3.7 we have
1) Two perfect 2-arcs can only meet in 0 to 9 points.
2) Two perfect 4-arcs can only meet in O to 37 points.

3) Two perfect 8-arcs can only meet in multiples of four

from 48 to 84 points.

We now return to the extremal case of these bounds and prove the

following.
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Theorem 3.8. A p-arc A with |A| =nl -n+yu- (a+l-n/p, u|n,

2 ;
U < n, can be completed to a perfect arc in at most | + 2 ways.

Proof. Let T T - Tm be completions of A to perfection. Then

l’ 2’

by Theorem 3.6 the Ti are pairwise disjoint.

We count the lines intersecting the set of points
AU Tl U T2 U eee U Tm. By the proof of Theorem 3.6, and
|Ti[ =n + 1 -n/y for all i, the line £ joining a point of A to a
point of some 'Ti must contain only one point of Ti and Y - 1 points
of A. But then, since AU Tj is a perfect U-arc for all j we must
have £ meeting Tj’ j # i, in a single point. Hence through p € Ti
there are n + 1 - n/y lines, each meeting every other Tj in one point
and A in (p-1) points. This leaves n/u lines through p missing
all Tj’ j # 1, and A. These are the lines of the design on the points
of Ti (mentioned after Theorem 3.6). Thus, by the parameters of that
design, there are E%(nﬁ-l—-%) lines through a Ti .missing A and all

u

Tj’ j»# i. This accounts for m(n/uz(n-+l-n/p)) lines.

There are (n-+l-—n/u)2 lines joining points of Ti to points of

Tj, j # i. These lines meet A in (u-1) points.

It remains to count the lines meeting A but no Ti. There are
n+1-n/y lines from any p € A to points ofvsome Ti (and hence to
all Ti)' Thus there are n/p lines through p missing all Ti’ each
containing Y points of A. Thus there are

n]AI/U = n/uz(nu— 2n+u+n/pu-1) lines meeting A and missing all Ti.
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So we have

]

n2 +n+1 total # of lines,

| v

m(%) (n+1-n/w) + (n+1- n/U)z
u

+ %(nu— 2n+p+n/u-1).
U

We then obtain, after some manipulation,

%, 2
I W -p+1)

2 3 .2
s H+u-1)- (W -y" -
p-1  n(u-1) +u

- n(u-1) +u

= =u+2 +

Thus since Y > 2 we have m < u + 2.

We mention that the (n+1- n/u)2 lines which cut across all Ti
give rise to a transversal design (see [44]) on the points of
Tl U T2 U eee U Tm’ and hence to a set of m - 2 mutually orthogonal

latin squares of order n + 1 - n/u. Thus we have

Corollary 3.1. A py-arc, A, with [A| =nu-n+u-(n+l-n/p) with

m completions to a perfect arc implies the existence of m - 2 mutually

orthogonal latin squares of order n + 1 - n/y.

We can also dualize a p—arc A, pz >n, with

IAI =nu -n+ Y - (uz- p3/n+u2/n), | the bound of Theorem 3.7, with m
completions to perfection to obtain an (n/u)-arc A' with

]AI = n(n/y) - n + (%) - (n+l-n/(n/u)) and m completions to perfec-—
tion. Thus we can apply Theorem 3.8 and Corollary 3.1 to obtain

Corollary 3.2. A u-arc A, 112 > n, with

|Al =nut-n+ - (pz— p3/n+p2/n) has at most n/u + 2 completions to
a perfect arc. The existence of m such completions implies the exis-
tence of a set of m - 2 mutually orthogonal latin squares of order

n+1- .
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We mention, without proof, some further results concerning the case
of equality in Theorem 3.6 for desarguesian planes. These can be proved
using a technical result, Theorem 1 in Thas' [37]. Let A be a p-arc in
PGZ(n) with T and T two completions of A to a perfect p-arc,

1 2

IA] =ny-n+y-(a+l-n/p, ITlI = JT =n+1-n/y. Then A can

|

be partitioned into sets A = S 0 S, U eeo 0

1 9 ISil =n+1 - n/y,

SU—l’
With the following properties. Any line meeting two of the sets

Tl’ TZ’ Sl’ SZ’ S Su—l intersects each of these M + 1 sets in
exactly one point. Any line containing two points of one of these sets
contains | points of that set and no points of the others. The points
of an& one of these sets together with the lines meeting only that set
form a block design on the parameters b = n/uz(ni-l-ﬂn/u),
v=n+1l-n/y, r=n/yg, k=3, X=1. The lines meeting gll of
these sets (necessarily each in one point) and the points in

Tl O % U Sl U eee il Su;l gives rise to a transversal design (see [44])
and hence to a set of pu - 1 mutually orthogonal latin squares of order

n +1 - n/y. The above remarks imply that the union of any n of

as su—l is a perfect p-arc in PGz(n).

We devote the remainder of this section to considering instances of
arcs with at least two completions to a perfect arc. Because of the
relatively small number of perfect p-arcs known for Y > 2 we have few

examples of equality in the bounds of Theorem 3.7.

Consider Denniston's construction of perfect u-arcs in PGz(n) for
n even (Theorem 3.3). It can be shown, using arguments similar to those
employed in the proof of the construction and facts concerning solutions
of quadratic equations over finite fields (see [21], Chapter 1) that for

d(x,y) = ax2 + hxy + byz, chosen as in Theorem 4.3, the number of
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solutions (x,y) of ¢(x,y) = o for some fixed o is n +1 if o # 0
and 1 if o = 0. Thus if Hl and H2 are two subgroups of the

additive group of GF(n), IH = [HZI = U, and A1 and A, are the

1| 2

perfect p-arcs produced in using @(x,y) and Denniston's construction,

we have that lAlﬂ A| = (|Hlﬂ H|-1)(m+1) +1 = lHlﬂ Hzl(n+1) - n

Al
and |A£\A21 = (pu- |Hlf1 H2|)(n4-l). This gives a large class of p-arcs,
Alfﬁ A s with two completions to a perfect arc. However, two additive
subgroups of GF(n), n even, can meet in at most half their elements.

Hence |H1(1 H,| <u/2 in the above and we cannot obtain equality in

N
Theorem 3.7.

It is also possible to use the construction of Thas [36], mentioned
near the-end of Section 3. In the case uz =n, n even, we can obtain
intersecting p-arcs as follows. We refer directly to the construction
there (not given in detail in this thesis). The reader should see [36] to
follow our comments. By picking two different points Py and p, to
produce u-arcs A énd A it can be shown that, using the properties of

1 2

ovoids, if and p, are collinear with a point of the ovoid

P1
determining the arcs then |A1f1 Ayl = U, IAi\AZI = u3 - uz; and
if Py and p, are not collinear with a point of the ovoid then
. 2 3 2
IAlll Azl =y -y, ]Ai\A2| =y~ - 2u° + 2yu. The bounds of Theorem 3.7
imply |A£\A2| i_uz - 4+ 1 so that we fall far short of the extremal

case.

For Y = 2 we have more success. Our bounds imply that two ovals,
n even, can intersect in at most (n+2)/2 points. By using trial and
error and Denniston's construction ovals A1 and A2 in PG2(8) can be
found such that IAlf\ A2| =1, 2, 3, and 5.. We also have the duals to

these.
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In [19] M. Hall catalogues the ovals in PG2(16). By looking through
his list we can easily find ovals intersecting in 9, 8, 7, 6, and 5

points. We can then dualize these to obtain intersecting 8-arcs.

With regard to Theorem 3.8, in PG2(4) a set of 3 = (n+2)/2
points can be found with three different completions to an oval. This is
the maximum number of completions possible since the exact bound on m

in the proof of Theorem 3.8 gives m < 3 precisely for u =2 and n=4.
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Section 5: Complete (k,u)-arcs.

Here we consider small complete (k,u)—-arcs. Our first result is the -

following.

Theorem 3.9. A complete (k,u)-arc in a Hn must satisfy n f_ﬁki%%é%ggl,
u(p-1) (k—p+1) (k-u) _ : u(p-1)

for n > 5 , and n < 1 G=1) + u 2 for n < 2 .

This theorem improves the bound given by Bruen in [8], which is only
applicable to planes of square order with u < n (see also [4]). Our

proof is also substantially shorter.

Proof. Let A be a complete (k,u)-arc in a Hn. Let £ be a line
which meets A in a maximum number of points less than u. Suppose

AN 2| =z < p.

Since A 1is complete the points of f£\A must be covered by at
least one l-secant. Any U-secant passing through a point of A must
intersect A% in U points. We count the maximum number of p-secants
to A\%. The lines of I~ intersecting the k - z points of A L
induce a linear space on those points. Letting ki = the length of the
i-th line of this linear space and t = # of pu-secants to A\2 we have,

since this is a linear space on k - z points,

tu(u-1) < Lk (k,=1) = (k-2)(k-z-1),
i

(k-2z) (k-2z-1)
=BT T

There must be sufficient p-secants to A\& to cover the n +1 - z

points of 2\A. Thus

(k-2) (k-2z-1)
n+1l-2¢< 1G=1) 5
< (k-z) (k-z-1)

& TreT + (z-1).
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Now 1 <z <yu - 1. The above expression achieves its maximum over

2 2
this range at z =1 for k Z_LL§i4L and at z = u -1 for k < lLEi;L.
Thus we have

2
(k-1) (k-2) 41
n f_———TIGI:IT—, for k > 5 s
2
(k—p+1) (k-11) e +1
< 4~ £
n < DG u 2, for k < 5
2+—l
Now if k < E 5 the second bound holds.and we then have, substi-
tution for k,
2 2
+1 +1
E=-wy G-
n < 2 2 + W= 24
A H(p-1)
which simplifies to n E_Ei%fllu Thus if n > Eﬁ%fll- we cannot have
2+1 ' 2+l
k % H 5 and hence the first bound (for k i_E~??—) holds. 1If
2
n E_Eiggll- and n > (k_ﬁ?i25§_U) + 4 - 2 then necessarily k E—U ékl
(by our earlier bound). Hence we have
2 2
+1 +1
(y_é__ utl) (“—2—- )
n > T - 29
u(u-1)
which simplifies to n >-E£%F£l, contrary to n S_Ei%fllu This

establishes the two bounds in the statement of the theorem.

We mention that the derivation of the bound implies that equality in

the case n > ES%;ll can only hold for u = 2. We consider this case of

equality in the above theorem for Y =2 (andn > 1). Let A be a

(k-1) (k-2)

5 Then the points of

complete (k,2)-arc in a Hn with n =
HA\A fall into two categories; those.on no l-secants, and those on at

least one l-secant. Those in the second category,by equality in the above

argument, must lie on only one 2-secant and hence on k -2 l-secants.
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Consider the incidence structure, {, with Points = points of

H;\A on no l-secants and Lines = 2-secants of Hn. We easily have that

k, _ k(k-1)

# of lines in P = (2) = > and that each point of # 1lies on k/2

lines of .

We can further compute the number of points on a line as follows.
If 2 is a 2-secant then there are (kgz) = (k-2)(k-3)/2 other
secants meeting £ (these are generated by the k- 2 points of A not on
2). Each intersection point of one of these with & produces a point
with >1 2-secant, hence exactly k/2 2-secants (since there are only
two kinds of points'external to A). So the (k-2)(k- 3)/2' 2-secants

meeting £ intersect £ in bundles of k/2 - 1. Thus

. _ (k=2)(k=3)/2 _ ,
(# of points of P‘on ) = 21 =k - 3.

Hence each line contains k - 3 points. We can now count the
number of points in . Since each point lies on k/2 1lines, each line
contains k - 3 points, and £ has k(k-1)/2 1lines we have

(# df points in ) = (k(k—li;;)(k—B) = (k-1)(k-3).

Note that any pair of points of § lies on at most one line of .
Suppose £ 1is a line of  and p a point of  with p £ 2. Then »p
lies on k/2 2-secants. Now £ intersects A in two points, say 129
and Py- The lines of Hn joining p to 12 and Py must be 2-secants
(since p lies only on 2-secants). The remaining %-— 2 2-secants through
p meet £ (necessarily in points of { since they lie on at least two
2-secants, % and the 2-secants through p). Thus we have shown that a
point p and a line &, of P, with p ¢ % together meet (k-4)/2

lines of .
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We have shown that  is a partial geometry (see Section 1). Thus a
complete (k,2)-arc in a Hn with n = (k-1)(k-2)/2 implies the exis-

tence of a partial geometry with parameters

# of points (k-1)(k-3),

# of lines = k(k-1)/2,
# of points on a line = k - 3,
# of lines on a point = k/2,

a=(k-4)/2.

We cannot find examples of this since this would require a plane of

non-prime power order.

We now prove one additional bound for complete (k,u)-arcs. This is

an improvement over Theorem 3.9 for values of U «close to n.

Theorem 3.10. A complete (k,u)-arc in a Hn must satisfy:

(n+1-w)k (k-1)

2
+n+1<
poTa =T u(e-1)

+ k.

Proof. Let A be a complete (k,u)-arc in a Hn. Then, as in the proof
of Theorem 3.9, the k points of A generate at most k(k-1)/u(u-1)
JU-secants. Each of these p-secants covers n + 1 - u of the points of
H;\A. These p-secants cover a maximum number of points of HA\A if they

are disjoint outside of A. That is,
(# of points covered " (n+l-wWk(k-1)
\ by u-secants — u(u-1)

.

But since A 1is complete all of the n2 +n +1 -k points of

H;\A must be covered and thus the theorem follows.

We consider the case of equality in Theorem 3.10. By the proof, a

(k,y)-arc A achieving equality must have only O-secants, l-secants, and



73
U-secants. Also every pair of l-secants must meet within A (otherwise
they will meet outside of A creating a point of HA\A covered by at least
two U-secants). Thus the incidence structure of A and its j-secants
satisfies: Every pair of points determines a u-secant and every pair of
U-secants meets (in a point of A). Thus A and its u-secants are a

subplane of order u -1 of Hn'

Now let £ be a tangent to A, p = £ A. Since A is a subplane

of order u - 1 we have that
: 2 2
(# of p-secants) = (u-1)" + (u-1) +1 =y~ - pu +1.

Through p, U of these will pass. The remaining uz -2y +1 will
meet £ in points outside of A. Since A 1is complete each of these n
points of f\A will be covered by at least one u-secant, and by equality'

in the bound, by no more than one u-secant. Hence
2 2
n=uy -2u-1= (u-1)".

Thus n 1is a square and M = v/n + 1. A subplane of order vn in a
plane of order n is called a Baer subplane. Hence equality in Theorem

3.10 holds if and only if A 1is a Baer subplane.

We now turn our attention to the following result of Segre [30].

Theorem 3.11. A (k,2)-arc in PGz(n) with k >n-+vn +1 for n
even, or k >n - v/n/4 + 7/4 for n odd can be uniquely completed to an

oval.

‘We do not prove this here. It requires the Hasse-Weil Theorem of
algebraic geometry. The interested reader should see [30] or [21],

pp. 221-240.

We construct here complete (k,2)-arcs in PGZ(n) with
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k =n-+vn+1l, for n even. These are the largest possible, by
Theorem 3.10. We will require an alternate description of PGZ(n)
using difference sets. For more details see [5], [26], or [18], pp. 120-
166.
A desarguesian projective plane of order n can be described as
follows. Let points be all elements of the group Zn2+n+1' Lines will

be all translates of a fixed set D |Dl =n+1. D is an

c
= Zp24n41°
example of a difference set. ©Note that the mapping of points pr p + i

for any 1 preserves collinearity. Mappings of this type are called

collineations of the plane.

Consider now a desarguesian projective plane of order n (neces-

sairly a prime power) and square, presented as a difference set D 1in
y :

Zn2+n+l' Note that we can factor n-  +n +1= (n+ v/on+1l)(n- va +1)

since n 1is a square. Partition the set of points in the plane into

sets Aj, j=0,1, ..., n+vn

=349 *+ 41 = 13 E =
Aj {i:1 j (mod n4—/5-+1)} — Zn2+n+l'

Thus |A.| =n - vyn +1 for all j.

Now suppose lAj N D‘ < 2 for all j. Then since lines are all
translates of D we have that each Aj is an (n-vn+1,2)-arc. We

claim additionally that each A.j is a complete 2-arc, for n even.

Suppose not; without loss of generality say AO'J {g} is a
(k,2)-arc. Then by Theorem 3.11 AO U {s} 4is uniquely completable to an
oval. 1In fact AO itself is uniquely completable to an oval, by

Theorem 3.6 and the fact that (n+2)/2 <n - vyo +1 for n > 2. Thus

any point not on a 2-secant to A.O is in the completion (since otherwise
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we would have more than one completion, one with the point in, the other
with it out). But note that pr p + (n+v/n +1) is a collineation of

the plane which fixes AO. Since s lies on no 2-secants to A.o

(AO U {s} is a 2-arc), s + (n++v/n +1) lies on no 2-secants to

A+ (n+vn +1)= A

0 0" In fact we then have that all points in Ai’

0 Thus all of these points

must be in the completion of A, to an oval. But IAO U Ail =

where s € Ai’ lie on no 2-secants to A

2(n-vn +1) >n + 2, a contradiction. Hence AO is complete.

Thus we have shown that if IA. N D| < 2 for all j then every A,
J = J
is a complete (n- vh +1,2)-arc.

We can verify by hand, using the difference sets listed in [5], that
for n = 22, 32, 42, 52, 72, 82, 92 that this procedure does produce
2-arcs. Note that this is true even for odd n. We can only prove that
the 2-arcs are complete (using the above argﬁment) for n even, however.
We conjecture that in general this procedure always produces 2-arcs. In
any event we have shown that complete 2-arcs exist meeting the bound of

Theorem 3.11 for n = 22, 42, and 82.



(1]

(5]

(6]

(7]

(9]

[10]

[11]

(12]

[13]

(14]

[15]

(5]

76

References

. Barlotti, Su {k,n}-archi di un piano lineare finito, Boll. Un.

Mat. Ital. 11(1956), 553-556.

. Barlotti, Some classical and modern topics in finite geometrical

structures, A Survey of Combinatorial Theory (North-
Holland Publishing Company, 1973), 1-14.

. Barlotti, Results and problems in galois geometry, Ann. Discrete

Math. 6(1980), 1-5.

. Barnabei, D. Searby, and C. Zucchini, On small {k;q}—arcs in

planes of order q2, J. Comb. Theory A 24(1978), 241-246.

. D. Baumert, Cyclic Difference Sets (Springer-Verlag Lecture Notes

in Mathematics 182, 1971).

C. Bose, Strongly regular graphs, partial geometries, and
partially balanced designs, Pac. J. Math. 13(1963), 389-
419.

C. Bose, and S. S. Shrikhande, Embedding the complement of an

oval in a projective plane of even order, Discrete Math.
6(1973), 305-312.

A. Bruen, Lower bounds for complete {k;n}-arcs, J. Comb. Theory A
33(1982), 109-111.

. G. de Bruijn, and P. Erdos, On a combinatorial problem, Akad.

van Weten. Amsterdam, Proc. Sect. Sciences 51(1948), 1277-
1279.

Cossu, Su alcune propieta dei {k,n}-archi di un piano proiettivo
sopra un corpo finito, Rend Mat. e. Appl. 20(1961), 271-
277

De Clerck, and J. A. Thas, Note on the extension of restricted
(r,A\)-designs, Ars Comb. 7(1979), 261-263.

.H.F. Denniston, Some maximal arcs in finite projective planes,

J. Comb. Theory A 6(1969), 317-319.

. Dow, An improved bound for extending partial projective planes,

Discrete Math. 45(1983), 199-207.

. Erdés, J. C. Fowler, V. T. S3s, and R. M. Wilson, On 2-designs,

to appear in J. Comb. Theory A.

. Erdos, R. C. Mullin, V. T. S6s, and D. R. Stinson, Finite linear

spaces and projective planes, Discrete Math. 47(1983),
49-62.



(16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

[30]

[31]

[32]

[331]

77

. C. Fowler, A short proof of Totten's classification of restricted
linear spaces, to appear in Geom. Ded.

R. Gantmacher, The Theory of Matrices, Volume One (Chelsea Pub-
lishing Company, New York, 1960).

. Hall, Combinatorial Theory (Blaisdell, Waltham, Mass., 1967).

. Hall, Ovals in the desarguesian plane of order 16, Ann. Mat. Pura
Appl. 102(1975), 159-176.

. Hanani, Balanced incomplete block designs and designs, Discrete
Math. 11(1975), 255-269.

W.P. Hirschfeld, Projective Geometries over Finite Fields
(Clarendon Press, Oxford, 1979).

. E. Hohn, Elementary Matrix Aglebra (MacMillan, 1958).

. McCarthy, and S. A. Vanstone, Embedding (r,l1)-designs in finite
projective planes, Discrete Math. 19(1977), 67-76.

. C. Mullin, and S. A. Vanstone, The approximation of SBIBD's by
regular pairwise balanced designs: Case A > 2, Proc.
Third Manitoba Conf. on Num. Math. (1973), 409-418.

G. Ostrum, Finite Translation Planes (Springer-Verlag Lecture
Notes in Mathematics 158, 1970).

. R. Rao, Cyclical generation of linear subspaces in finite geom—
etries, Combinatorial Mathematics and Its Applications,
Proc. Chapel Hill Conf. (1967), 515-535.

. J. Ryser, Combinatorial Mathematics (M.A.A. Carus Monograph No.
14, Wiley, New York, 1963).

. J. Ryser, An extension of a theorem of de Bruijn and Erdos on
combinatorial designs, J. Algebra 10(1968), 246-261.

Segre, Ovals in a finite projective plane, Can. J. Math. 7(1955),
414-416.

. Segre, Introduction to galois geometries, Atti. Accad. Naz.
Lincei Mem. 8(1967), 133-236.

. M. Singhi, and S. S. Shrikhande, On the A-design conjecture,
Utilitas Math. 9(1976), 301-318.

. G. Stanton, and J. G. Kalbfleisch, The A- u problem, A =1, u = 3,
Proc. Second Chapel Hill Conf. on Comb., Chapel Hill
(1972), 451-462.

. R. Stinson, A short proof of a theorem of de Witte, Ars Comb. 14
(1982), 79-86. '



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

R.

. A.

. A,

. A.

de

. de

78

Stinson, The non-existence of certain finite linear spaces,
Geom. Ded. 13(1983), 429-434.

. Tallini-Scafati, Sui {k,n}-archi di un piano graphico finito,

Atti. Accad. Naz. Lincei Rend. 40(1966), 373-378.

Thas, Construction of maximal arcs and partial geometries,
Geom. Ded. 3(1974), 61-64.

Thas, Some results concerning {(q+l) (n-1);n}-arcs and
{(q+1) (n-1) + 1;n}-arcs in finite projective planes of
order q, J. Comb. Theory A 19(1975), 228-232.

Thas, Construction of maximal arcs and dual ovals in transla-
tion planes, Europ. J. Comb. 1(1980), 189-192.

. Totten, Basic 'properties of restricted linear spaces, Discrete

Math. 13(1975), 67-74.

. Totten, Classification of restricted linear spaces, Can. J. Math.

28(1976); 321-333,

. Vanstone, The extendibility of (r,l)-designs, Proc. Third

Manitoba Conf. Num. Math. (1973), 409-418.

. Wilson, Incompleteness of (nq+n-q- 2,n)-arcs in finite pro-

jective planes of even order, Math. Proc. Camb. Phil.
Soc. 91(1982), 1-8.

. Wilson, An existence theory for pairwise balanced designs,

I. Composition theorems and morphisms, II. The structure
of PBD-closed sets and the existence conjectures, J. Comb.
Theory A 13(1972), 220-272.

. Wilson, Concerning the number of mutually orthogonal latin

squares, Discrete Math. 9(1974), 181-198.

Wilson, On the theory of t-designs, Proc. Waterloo Silver
Jubilee Conf. on Comb. (1983), to appear.

Witt, Combinatorial Properties of Finite Plans (Doctoral
Dissertation, University of Brussels, 1965), Cf. Zbl. 135
(1967), 13-14. '

Witte, The exceptional case in a theoremof Bose and Shrikhande,
J. Aust. Math. Soc. A 24(1977), 64-78.

. Woodall, Square A-linked designs, Proc. London Math. Soc. 20

(1970), 669~-687.

. Woodall, Square A-linked designs: A survey, Combinatorial

Mathematics and Its Applications, Proc. Oxford Conf. 1969
(Academic Press, 1971), 349-355.



