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Abstract

Microscale and nanoscale mechanical resonators have been used in advanced technological appli-

cations, from high precision time keeping and mass sensing, to processing high frequency signals

in mobile communications. In the last few decades, they have been an important part of progress in

the field of quantum information and metrology and have been proposed as quantum memories or

transducers for measuring or connecting different types of quantum systems.

The field of cavity optomechanics and electromechanics is concerned with coupling the electro-

magnetic field of a resonant optical cavity or electrical circuit to mechanical motion. These systems

provide potential means to control and engineer the state of a mechanical object at the quantum level.

This thesis contains the description of mechanical systems in megahertz to a few hundred megahertz

frequency range formed by nano-fabricating photonic, phononic, and electrical circuits on a chip.

These structures are designed to provide a large radiation pressure coupling between mechanical

motion and electromagnetic fields to address and manipulate motional degrees of freedom. Qualita-

tively novel quantum effects are expected when one takes a step beyond linear coupling and exploits

higher order interactions. To that end, we integrate electrical, mechanical and photonic structures

in a multimode photonic crystal structure to observe “x2-coupling”, where the optical cavity fre-

quency is coupled to the square of the mechanical displacement. Moreover, we have developed

two integrated on-chip platforms based on Si3N4 and Si nanomembranes capable of interfacing su-

perconducting qubits and optical photons and realizing reversible microwave-to-optical conversion.

We employ radiation pressure to cool these mechanical resonators to their quantum ground state.

Finally, we demonstrate a form of electromechanical crystal for coupling microwave photons and

hypersonic phonons of frequency ωm/2π = 0.425GHz by capacitively coupling a phononic crystal

acoustic cavity to a superconducting microwave resonator. Moving to higher frequency acoustic

cavities not only facilitates the integration of electromechanical circuits and nanophotonic systems
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capable of operation in the resolved sideband limit of optomechanics for noise-free quantum signal

conversion, but it opens up the possibility of using phonons as information carriers via phononic cir-

cuits. Utilizing a two-photon resonance condition for efficient microwave pumping and phononic

bandgap shield to eliminate acoustic radiation, we achieve large cooperative electromechanical cou-

pling (C ≈ 30) and intrinsic decay time of 2.3 ms. Moreover, electrical read-out of the phonon

occupancy shows that the acoustic mode thermalizes close to its quantum ground-state of motion

(phonon occupancy nm = 1.5) at a fridge temperature of Tf = 10 mK. We conclude by consider-

ing several designs and fabrication improvements to the hypersonic electromechanical crystals that

would enable them to perform quantum conversion between the electrical and acoustic domain.
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Chapter 1

Introduction

1.1 Radiation Pressure

The exertion of the force upon the reflection of light from an object is termed radiation pressure.

This is an intriguing concept which was first proposed by Kepler in the 17th century as an expla-

nation for the orientation of comet tails. The tails, which are made from gas and debris separated

from the comet nucleus, are observed to always point away from the sun due to the forces from

the solar radiation [1]. Later, this phenomenon was quantified via the Maxwells equations [2] of

electromagnetism and was later included into Einstein’s formulation of special relativity. However,

the radiation pressure was considered a weak, perturbative effect the most context. The first unam-

biguous experimental demonstrations of radiation pressure force were performed by Nichols-Hull

and Lebedew [3,4] due to the required analysis for distinguishing the phenomenon from the thermal

effect which dominated the previous experiments. This consideration changed with the advent of

the laser in the field of optics. With the large and coherent optical powers made available by optical

lasers, the radiation pressure found its applications in several aspects, such as trapping and control-

ling of dielectric particles [5], cooling atomicmotion [6], and precisionmeasurement of gravitational

field in LIGO.

Later, in what would prove to be a groundbreaking experiment in the field of optomechanics,

Braginsky et al. demonstrated the role of radiation pressure and its ability to provide cooling of a

mechanical object coupled to an optical resonator [7,8]. In later experiments, these phenomena were

also observed for microwave coupled mechanical resonators [9]. Following that, Bragisnky, Caves,

and colleagues developed a framework to address the limits imposed by quantum fluctuations in ra-
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movable 
mirrorFixed mirror 

k

L

Figure 1.1: This example optomechanical system consists of a Fabry-Perot optical cavity formed
from two high-reflectivity mirrors. One mirror is kept fixed, while the other is free to move with
mechanical properties modeled by an effective spring force. Displacements of the movable mirror
change the optical cavity length L, with a corresponding shift to the optical resonance frequency.

diation pressure on how accurately the position of a mechanical resonator can be measured [10–12].

The interest in where a mechanical oscillator interacts with the electromagnetic field of an optical or

microwave cavity escalated with the development of micro- and nano-fabrication processes which

allowed us to exploit the nondissipative radiation pressure force for applications in fundamental

studies of quantum mechanics, quantum information processing, and precision sensing.

1.2 Optomechanical and Electromechanical Coupling

The basic optomechanical system consists of a mechanical oscillator coupled to an optical field. As

an example, consider an optical field bouncing off of a mirror attached to a mechanical oscillator.

The phase of the reflected wave is very sensitive to the mechanical displacement; thus, a sensitive

readout of the reflected phase allows sensitive inference of the mechanical position. This interaction,

and thus the sensitivity of readout, can be enhanced by coupling the mechanical motion to a high-Q

electromagnetic resonance, and thus increasing the strength of the interacting field. This situation is

shown in Fig. 1.1, where a movable mirror is placed at distance L from a fixed mirror. The motion

of the movable mirror modulates the optical path length L of the Fabry-Perot cavity and therefore

changes the fundamental resonance frequency of the optical cavity defined by fo = c/2L, where

c is the speed of light. Thus for intracavity light with a particular wavelength, the motion of the

mirror imparts a shift in both the optical intensity and phase. Furthermore, since reflection of light

from the mirror surface exerts a force due to radiation pressure, the optical field, in turn, modulates
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Figure 1.2: a, Schematic of a photonic crystal implementation of a multimode optomechanical sys-
tem. The structure consists of a pair of top and bottom photonic crystal slabs which are separated
from a central photonic crystal slab by nanoscale air slots. A pair of optical waveguide modes local-
izes around each nanoscale slot, propagating along the axial direction (x) of the structure. By varying
the photonic crystal unit cell along the length of the structure, one can form optical cavity modes
which are localized to a central “defect” region of the structure. b, Plot of the FEM-simulated ampli-
tude of the y-polarization of the electric field of the even cavity mode. c, Plot of the FEM-simulated
y-polarized electric field of the odd cavity mode.

the mirror position. Many optomechanical experiments rely on the canonical optical setup of a

Fabry-Perot resonator as shown in Fig. 1.1 with a movable mirror [13–15]. However, these are

not the only ways to realize the coupling of the mechanical motion to the resonant frequency of

an electromagnetic resonant structure. An example that employs novel coupling mechanisms can

be seen in Refs. [16–23] where the mechanical motion changes the capacitance of an LC circuit

(Electromechanics) and therefore the resonance frequency, imparting a phase shift on the outgoing

electric fields. Another example employs the patterning of a dielectric material such as Si to confine

and co-localize a mechanical resonance and optical fields (Optomechanical crystals) can be seen

in Refs. [13, 24–26]. While each implementation features unique advantages and disadvantages,

this thesis focuses first on optomechanical devices for their high degree of tailorability and ability

to support large mechanical frequencies, and electromechanical devices second due to their access

to low loss superconducting circuits and non-linear elements such as Josephson-junctions in circuit

QED toolbox for quantum information processing.
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Figure 1.3: Top: FEM simulation showing the in-plane electrical field of the fundamental optical
cavity mode. Bottom: FEM simulation of the displacement of the fundamental in-plane differential
mode of the structure. The mechanical motion, modifying the gap between the beams, shifts the
optical cavity frequency, leading to optomechanical coupling.

1.2.1 Optomechanical Devices

In analogy with electron bands for the electron waves propagating in a lattice, periodic modulation

of the index of refraction of a dielectric material, such as Si, leads to the formation of optical bands

and band gaps. In these structures, light cannot propagate in the band gaps. Introducing an artificial

defect in these periodic structure localizes the electromagnetic field in the defect region which can-

not propagate into the continuum inside the structure. These structures are called photonic crystal

cavities. If the photonic crystal structure is mechanically compliant, the mechanical motion results

in modulations of the optical cavity boundaries and stresses in the material, both of which contribute

to modulation in the effective dielectric constant of the optical mode and shifting the frequency of

the optical cavity. This leads to a coupling between the phase and intensity of the optical fields and

the mechanical motion.

In this work, we fabricate a quasi two-dimensional (2D) photonic crystal structure to create an

optical cavity supporting a pair of high-Q optical resonances in the 1500 nm wavelength band (see

Fig. 1.2). A two triangular array of circular holes is etched to the top and bottom slabs that are

separated by two nanoscale cuts from the central nanobeam which consists of elliptical holes. The

index variation in the structure from the etched holes and the nano-scale cuts, confines, and localizes

the optical modes in the air slots in the middle of the defect region. The index variation can be seen

in Fig. 1.2 (a) as nSi = 3.48 for the gray region, while white regions represent air or vacuum. All

three slabs of the structure are undercut and mechanically compliant. The mechanical resonance of

the silicon slabs modulates the boundaries of the optical modes and couples the mechanical motion

to the optical resonances.



5

coil

beamcoupler

Cs Cm

Ic

L
Cl

e

Figure 1.4: Electrical circuit diagram, where the circuit is inductively coupled to the feed line, L is
the inductance of the circuit, Cl, Cs are capacitances of the circuit and Cm is the motional capaci-
tance. The exaggerated simulated displacement of a mechanical mode of dielectric beam is shown.

Another type of optomechanical device used in this work (see Chapter 6) is the double-nanobeam

or zipper optical cavity (see Fig.1.3), which is made of silicon and consists of two nanobeams,

each supporting an optical mode placed side-by-side in y direction. For sufficiently small air-gap

between the two nanobeams, the single-beam modes hybridize into coupled modes shared between

both nanobeams. In particular, one of the hybridized modes would have large optical intensity in the

airgap leading into large optomechanical coupling between the hybridized mode and the differential

mechanical mode of the nanobeams.

1.2.2 Electromechanical Devices

As introduced at the beginning of this chapter, optical fields are not the only way to realize coupling

of themechanical motion to resonant frequency of an electromagnetic structure. In comparison to the

canonical Fabry-Perot cavity, where the mechanical motion changes the effective length of the opti-

cal cavity and shifts the optical resonance frequency, in the electromechanical system, the mechan-

ical motion can be used to change the capacitor gap of an LC resonant circuit and once again shifts

the resonance frequency of the circuit. The electromechanical system studied in this work is formed

by a dielectric mechanical oscillator capacitively coupled to a superconducting microwave resonant

circuit in such a way that the mechanical motion modulates the capacitance gap (see Fig.1.4). There

are two unique advantages to these electromechanical systems. First, the substrate is a dielectric ma-

terial. Our interest in using thin film dielectric material stems from the fact that these materials can

be patterned to simultaneously co-localize an optical mode and high frequency mechanical mode
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for an on-chip integration with superconducting circuits. Second, the resonant microwave circuit

is mechanically supported by a thin-film membrane, reducing the overall parasitic capacitance of

the microwave circuit. Moreover, out of many ways to realize a resonant circuit in the microwave

regime such as quarter or half wave coplanar waveguides, we utilize lumped element components

which can either capacitively or inductively couple to other microwave elements. This work and the

bulk of my thesis focuses on lumped element high impedance spiral microwave resonators due to

their low loss, compact geometry, and minimal capacitance.

1.3 Quantumapplications of Electromechanical andNanophotonic de-

vices

One of the key goals in quantum information processing is to develop an efficient link between

disparate quantum processing units. In this regard, optical signals propagating in optical fibers, par-

ticularly in the telecom band, are proposed as a communication channel to link different quantum

processing units. This is especially interesting in the context of providing an optical interface for the

superconducting quantum circuits given the tremendous success of circuit QED systems. Mechan-

ical systems have the potential as an intermediary between these otherwise incompatible quantum

systems. Electromechanics and optomechanics can provide efficient means of conversion between

different electromagnetic wavelength, utilizing a common mechanical oscillator to connect two op-

tical and microwave cavities. The mechanism has already been proposed in Ref. [27], and optical

to optical wavelength conversion [28] and microwave to microwave frequency conversion [29] as

well as reversible optical to microwave conversion at the classical level [30] have been demon-

strated. However, it still remains an open challenge to demonstrate optical to microwave frequency

conversion at the single photon level. One necessary requirement for quantum limited wavelength

conversion is to achieve a large cooperative regime where the rate of interaction between the elec-

tromagnetic cavities and the mechanical oscillator is more than the losses. Another requirement

is to prepare the mechanical resonator in the quantum regime (i.e., ground state). Moreover, the

mechanical resonator needs to operate in the resolved sideband limit of the two cavities [13].

Another example of application of the mechanical resonator in the quantum regime is their po-

tential for storage of quantum states due to their long coherence times. Moreover, mechanical ele-
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ments are more compact compared to their electromagnetic counterparts owing to the factor of 105

difference in the speed of light and speed of sound in solid state materials.

1.4 Thesis Outline and Structure

Mywork in the field of optomechanics and electromechanics has primarily involved the development

of several micro- and nano-scale device technologies based upon the silicon (Si) and silicon-nitride

(Si3N4) materials platform. Below I provide a brief description of the various device projects I was

involved with and an outline of the corresponding chapters in this thesis that deal with each type of

device.

In Chapter 2, I begin with a description of a two-dimension (2D) photonic crystal cavity struc-

ture that is designed to achieve large position-squared optomechanical coupling, which is particularly

interesting in the context of realizing quantum non-demolition measurement (QND) of phonon num-

ber [31–33]. Although the use of x2-coupling to prepare the mechanical object in a nonclassical state

remains an elusive goal due to the small coupling rate to the motion of the mechanical resonator, we

demonstrate position squared coupling which is five orders of magnitude higher than Fabry-Perot

membrane-in the-middle systems [34] and more than two orders of magnitude larger than volume

fiber-gap cavities [35]. Moreover, with this scale of x2 coupling it is feasible to consider a number of

other interesting experiments such as quantum measurement of phonon and photon shot noise [36],

or utilizing the interference of quantum noise in the bad cavity limit [37].

The bulk of this thesis deals with integrating superconducting microwave circuits with mechan-

ical objects. In this regard, I have developed two electromechanical platforms, one based on Si3N4

nanomembranes and the other based on silicon-on-insulator, and both capable of integration with

optomechanical devices. Both electromechanical platforms utilize planar capacitors with vacuum

gaps of a width of tens of nanometers and high impedance superconducting spiral inductor coils of

micron pitch critical for realizing efficient coupling to mechanical motion. I will begin by summa-

rizing the theoretical framework used to describe cavity electromechanical systems in Chapter 3. In

Chapter 4, I will present our results with silicon nitride nano-membranes for integrating supercon-

ducting microwave circuits with planar acoustic and optical devices and demonstrate back-action

cooling of a 4.5 MHz mechanical resonance to its quantum ground state.
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In Chapters 5 and 6, I describe our work on developing SOI-based electromechanical devices.

I begin in Chapter 5 with a description of the fabrication process that we developed for the creation

of high-Q microwave superconducting aluminum (Al) resonators on thin-film silicon membranes

which is compatible with both superconducting qubits and silicon photonics. Utilizing this novel

process, in Chapter 6, we demonstrate parametric radiation pressure coupling of a 10 GHz high-Q

microwave resonator with strong vacuum coupling to the motion of a 6 MHz resonance frequency

silicon micromechanical resonator. We again accomplish ground state cooling of the mechanical

resonator and reach nearly strong coupling between the microwave resonance and the mechanical

resonator. As a proof of concept we present the measurements of an integrated superconducting

electromechanical circuit and a ‘zipper’-cavity photonic crystal, where the mechanical resonator is

coupled simultaneously to both the optical and the microwave resonance, where we present and dis-

cuss some of the challenges associated with operating such optomechanical and electromechanical

devices together at a temperature of Tf = 10 mK.

Finally, in Chapter 7, I present the design, fabrication, and characterization of a SOI-based elec-

tromechanical device in which a pair of hybridized electrical microwave resonators are used to cou-

ple to a high frequency acoustic mode in the hypersonic frequency range (0.425 GHz). Utilizing a

two-photon resonance condition for efficient microwave pumping, we measure the intrinsic decay

rate, back-action induced decay rate and the occupancy of the thermal bath coupled to themechanical

resonator. We conclude in Chapter 8 by considering several designs and fabrication improvements

of the hypersonic electromechanical crystals that would enable them to perform quantum conversion

between the electrical and acoustic domain.
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Chapter 2

Position squared coupling in tunable
photonic crystal optomechanical cavity

The interaction between light and mechanics in a cavity-optomechanical system is termed disper-

sive when it couples the frequency of the cavity to the position or amplitude of mechanical motion.

To lowest order this coupling is linear in mechanical displacement; however, the overall radiation

pressure interaction is inherently nonlinear due to the dependence on optical intensity. To date, this

nonlinear interaction has been too weak to observe at the quantum level in all but the ultra-light

cold atomic gases [38], and typically a large optical drive is used to parametrically enhance the

optomechanical interaction. Higher order dispersive optomechanical coupling may also be promi-

nent. In particular, “x2-coupling” where the cavity frequency is coupled to the square of the me-

chanical displacement has been proposed as a means for realizing quantum non-demolition (QND)

measurements of phonon number [32,33,39], measurement of phonon shot noise [36], and the cool-

ing and squeezing of mechanical motion [40–42]. In addition to dispersive coupling, an effective

x2-coupling via optical homodyne measurement has also been proposed, with the capability of gen-

erating and detecting non-Gaussian motional states [43].

Despite significant technical advancesmade in recent years [34,35,44,45], the use ofx2-coupling

for measuring or preparing non-classical quantum states of a mesoscopic mechanical resonator re-

mains an elusive goal. This is a direct result of the small coupling rate to motion at the quantum

level, which for x2-coupling scales as the square of the zero-point motion amplitude of the me-

chanical resonator, x2zpf = ℏ/2meffωm, wheremeff is the motional mass of the resonator and ωm is

the resonant frequency. As described in Ref. [33], one method to greatly enhance the x2-coupling

in a multi-mode cavity-optomechanical system is to fine-tune the mode splitting 2J to that of the
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Figure 2.1: a,Double-slotted photonic crystal cavity with optical cavity resonances (a1, a2) centered
around the two slots, and three fundamental in-planemechanical resonances corresponding tomotion
of the outer slabs (b1, b2) and the central nanobeam (b3). Tuning the equilibrium position of the outer
slabs b1 and b2, and consequently the slot size on either side of the central nanobeam, is achieved
by pulling on the slabs (red arrows) through an electrostatic force proportional to the square of the
voltage applied to capacitors on the outer edge of each slab. b, Dispersion of the optical modes as
a function of x3, the in-plane displacement of the central nanobeam from its symmetric equilibrium
position. Due to tunnel coupling at a rate J the slot modes a1 and a2 hybridize into the even and
odd supermodes a+ and a−, which have a parabolic dispersion near the central anti-crossing point
(ω1 = ω2).

mechanical resonance frequency. In this chapter, we utilize a quasi two-dimensional (2D) pho-

tonic crystal structure to create an optical cavity supporting a pair of high-Q optical resonances in

the 1500 nm wavelength band exhibiting large linear optomechanical coupling. The double-slotted

structure is split into two outer slabs and a central nanobeam, all three of which are free to move, and

electrostatic actuators are integrated into the outer slabs to allow for both the trimming of the optical

modes into resonance and tuning of the tunnel coupling rate J(Figure2.1a). Due to the form of the

underlying photonic bandstructure the spectral ordering of the cavity supermodes in this structure

may be reversed, enabling arbitrarily small values of J to be realized.

2.1 Theoretical Background

Before we discuss the specific double-slotted photonic crystal cavity-optomechanical system studied

in this work, we consider a more generic multi-moded system consisting of two optical modes which

are dispersively coupled to the same mechanical mode, and in which the dispersion of each mode is
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linear with the amplitude coordinate x of the mechanical mode. If we further assume a purely optical

coupling between the two optical modes, the Hamiltonian for such a three-mode optomechanical

system in the absence of drive and dissipation is given by Ĥ = Ĥ0 + ĤOM + ĤJ :

Ĥ0 = ℏω1â
†
1â1 + ℏω2â

†
2â2 + ℏωmb̂†b̂, (2.1)

ĤOM = ℏ(g1â†1â1 + g2â
†
2â2)x̂ (2.2)

ĤJ = ℏJ(â†1â2 + â†2â1). (2.3)

Here, âi and ωi are the annihilation operator and the bare resonance frequency of the ith optical

resonance, x̂ = (b̂† + b̂)xzpf is the quantized amplitude of motion, xzpf the zero point amplitude

of the mechanical resonance, ωm is the bare mechanical resonance frequency, and gi is the linear

optomechanical coupling constant of the ith optical mode to the mechanical resonance. Without loss

of generality, we take the bare optical resonance frequencies to be equal (ω1 = ω2 ≡ ω0), allowing

us to rewrite the Hamiltonian in the normal mode basis â± = (â1 ± â2)/
√
2 as,

Ĥ = ℏω+(0)â
†
+â+ + ℏω−(0)â

†
−â− + ℏωmb̂†b̂

+ ℏ
(
g1 + g2

2

)(
â†+â+ + â†−â−

)
x̂+ ℏ

(
g1 − g2

2

)(
â†+â− + â†−â+

)
x̂, (2.4)

where ω±(0) = ω0 ± J .

For |J | ≫ ωm such that x̂ can be treated as a quasi-static variable [32,33], the Hamiltonian can

be diagonalized, resulting in eigenfrequencies ω±(x̂),

ω±(x̂) ≈ ω0 +
(g1 + g2)

2
x̂± J

(
1 +

(g1 − g2)
2

8J2
x̂2

)
. (2.5)

As shown below, in the case of the fundamental in-plane motion of the outer slabs of the double-

slotted photonic crystal cavity we have only one of g1 or g2 non-zero, whereas in the case of the

fundamental in-plane motion of the central nanobeam we have g1 ≈ −g2.

For a system in which the mechanical mode couples to the a1 and a2 optical modes with linear



12

dispersive coupling of equal magnitude but opposite sign (g1 = −g2 = g), the dispersion in the

quasi-static normal mode basis is purely quadratic with effective x2-coupling coefficient,

g′ = g2/2J, (2.6)

and quasi-static Hamiltonian,

Ĥ ≈ ℏ
(
ω+(0) + g′x̂2

)
n̂+ + ℏ

(
ω−(0)− g′x̂2

)
n̂− + ℏωmn̂b, (2.7)

where n̂± are the number operators for the a± supermodes and n̂b is the number operator for the

mechanical mode. Rearranging this equation slightly highlights the interpretation of the x2 optome-

chanical coupling as inducing a static optical spring,

Ĥ ≈ ℏω+(0)n̂+ + ℏω−(0)n̂− + ℏ
[
ωmn̂b + g′ (n̂+ − n̂−) x̂

2
]
, (2.8)

where the static optical spring constant k̄s = 2ℏg′ (n+ − n−) depends upon the average intra-cavity

photon number in the even and odd optical supermodes, n± ≡ ⟨n̂±⟩.

For a sideband resolved system (ωm ≫ κ), the quasi-static Hamiltonian can be further approxi-

mated using a rotating-wave approximation as

Ĥ ≈ ℏ[ω+(0) + 2g̃′(n̂b + 1/2)]n̂+ + ℏ[ω−(0)− 2g̃′(n̂b + 1/2)]n̂− + ℏωmn̂b, (2.9)

where g̃′ ≡ g′x2zpf = g̃2/2J and g̃ ≡ gxzpf are the x2 and linear vacuum coupling rates, respec-

tively. It is tempting to assume from Eq. (2.9) that bymonitoring the optical transmission through the

even or odd supermode resonances, that one can then perform a continuous quantum non-demolition

(QND) measurement of the phonon number in the mechanical resonator [39, 46–48]. As noted in

Refs. [32,33], however, the quasi-static picture described by the dispersion of Eq. (2.5) fails to cap-

ture residual effects resulting from the non-resonant scattering between the a+ and a− supermodes

which depends linearly on x̂ (last term of Eq. (2.4)). Only in the vacuum strong coupling limit

(g̃/κ ≳ 1) can one realize a QND measurement of phonon number [32, 33].

The regime of |2J | ∼ ωm is also very interesting, and explored in depth in Refs. [33, 49].
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Transforming to a reference frame which removes in Eq. (2.4) the radiation pressure interaction

between the even and odd supermodes to first order in g yields an effective Hamiltonian given

by [33, 50],

Ĥeff ≈ ℏω+(0)n̂+ + ℏω−(0)n̂− + ℏωmn̂b

+ ℏ
g̃2

2

[
1

2J − ωm
+

1

2J + ωm

](
â†+â+ − â†−â−

)(
b̂+ b̂†

)2

+ ℏ
g̃2

2

[
1

2J − ωm
− 1

2J + ωm

](
â†+â− + â†−â+

)2
, (2.10)

where we assume |g̃/δ| ≪ 1 for δ ≡ |2J |−ωm, and terms of order g̃3/(2J ±ωm)2 and higher have

been neglected. In the limit |J | ≫ ωm we recover the quasi-static result of Eq. (2.7), whereas in the

near-resonant limit of |δ| ≪ |J |, ωm we arrive at

Ĥeff ≈ ℏω+(0)n̂+ + ℏω−(0)n̂− + ℏωmn̂b + ℏ
g̃2

2δ

[
2sgn(J) (n̂+ − n̂−) (n̂b + 1)

+ 2n̂+n̂− + n̂+ + n̂−
]
. (2.11)

Here we have neglected highly oscillatory terms such as (â†+â−)2 and b̂2, a good approximation in

the sideband resolved regime (κ ≪ ωm, |J |). From Eq. (2.11) we find that the frequency shift per

phonon of the optical resonances is much larger than in the quasi-static case (g̃2/2|δ| ≫ g̃2/2|J |).

Although a QND measurement of phonon number still requires the vacuum strong coupling limit,

this enhanced read-out sensitivity is attainable even for g̃/κ ≪ 1. Equation (2.11) also indicates

that, much like the QND measurement of phonon number, in the near-resonant limit a measurement

of the intra-cavity photon number stored in one optical supermode can be performed by monitoring

the transmission of light through the other supermode [33, 50].
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Figure 2.2: a, SEM image of a fabricated double-slotted photonic crystal device in the SOI material
system. b, Zoom-in SEM image showing the capacitor gap (∼ 100 nm) for the capacitor of one of
the outer slabs. c, Zoom-in SEM image showing some of the suspending tethers of the outer slabs
which are of length 2.5 µm and width 155 nm. The central beam, which is much wider, is also shown
in this image.

2.2 Double-Slotted Photonic Crystal Optomechanical Cavity

A sketch of the double-slotted photonic crystal cavity structure is shown in Fig. 2.1a. As detailed

below and elsewhere [51], the optical cavity structure can be thought of as formed from two coupled

photonic crystal waveguides, one around each of the nanoscale slots, and each with propagation

direction along the z-axis. A small adjustment (∼ 5%) in the lattice constant is used to produce a

local shift in the waveguide band-edge frequency, resulting in trapping of optical resonance to this

“defect” region. Optical tunneling couples across the cental photonic crystal beam, which in this

case contains only a single row of holes, couples the cavity mode of slot 1 (a1) to the cavity mode

of slot 2 (a2).

The two outer photonic crystal slabs and the central nanobeam are all mechanically compli-

ant, behaving as independent mechanical resonators. The mechanical resonances of interest in this

work are the fundamental in-plane flexural modes of the top slab, the bottom slab, and the central

nanobeam, denoted by b1, b2, and b3, respectively. For a perfectly symmetric structure about the z-

axis of the central nanobeam, the linear dispersive coupling coefficients of the b3 mode of the central
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nanobeam to the two slot modes a1 and a2 are equal in magnitude but opposite in sign, resulting in

a vanishing linear coupling at the resonant point where ω1 = ω2 (c.f., Eq. (2.5)). Figure 2.1b shows

a plot the dispersion of the optical resonances as a function of the nanobeam’s in-plane displace-

ment (x3), illustrating how the linear dispersion of the slot modes (a1, a2) transforms into quadratic

dispersion for the upper and lower supermode branches (au, al) in the presence of tunnel coupling

J . The mechanical modes of the outer slabs (b1, b2) provide degrees of freedom for post-fabrication

tuning of the slotted waveguide optical modes, i.e., to symmetrize the structure such that ω1 = ω2.

This is achieved in practice by integrating metallic electrodes which form capacitors at the outer

edge of the two slabs of the structure as schematically shown in Fig. 2.1a.

The double-slotted photonic crystal cavity of this work is realized in the silicon-on-insulator

(SOI) material system, with a top silicon device layer thickness of 220 nm and an underlying buried

oxide (BOX) layer of 3 µm. Fabrication begins with the patterning of the metal electrodes of the

capacitors, and involves electron beam (ebeam) lithography followed by evaporation and lift-off

of a bi-layer consisting of a 5 nm sticking layer of chromium and a 150 nm layer of gold. After

lift-off we deposit uniformly a ∼ 4 nm protective layer of silicon dioxide. A second electron beam

lithography step is performed, aligned to the first, to form the pattern of the photonic crystal and

the nanoscale (∼ 90 nm width) slots which separate the central nanobeam from the outer slabs. At

this step, we also pattern the support tethers of the outer slabs and the cut lines which define and

isolate the outer capacitors. A fluorine based (C4F8 and SF6) inductively coupled reactive-ion etch

(ICP-RIE) is used to transfer the ebeam lithography pattern through the silicon device layer. The

remaining ebeam resist is stripped using trichloroethylene, and then the sample is cleaned in a heated

Piranha (H2SO4:H2O2) solution. The devices are then released using a hydrofluoric (HF)acid etch to

remove the sacrificial BOX layer (this also removes the deposited protective silicon dioxide layer),

followed by a water rinse and critical point drying.

A scanning electron microscope (SEM) image showing the overall fabricated device structure is

shown in Fig. 2.2a. Zoom-ins of the capacitor region of one of the outer slabs and the tether region

at the end of the nanobeam are shown in Figs. 2.2b and c, respectively. Note that the geometry of

the capacitors and the stiffness of the support tethers determine how tunable the structure is under

application of voltages to the capacitor electrodes. The outermost electrode of each slab is connected
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to an independent low-noise DC voltage source, while the innermost electrodes are connected to a

common ground, thereby allowing one to independently pull on each outer slab with voltages V1 and

V2. In this configuration, we are limited to increasing the slots defining the optical modes around

the central nanobeam.

2.2.1 Photonic bandstructure

To further understand the optical properties of the double-slotted photonic crystal cavity, we dis-

play in Fig. 2.3a the photonic bandstructure of the periodic waveguide structure. The parameters

of the waveguide are given in the caption of Fig. 2.3a. Here we only show photonic bands that are

composed of waveguide modes with even vector symmetry around the “vertical” mirror plane (σz),

where the vertical mirror plane is defined by the z-axis normal and lies in the middle of the thin-film

silicon slab. The fundamental (lowest lying) optical waveguide bands are of predominantly trans-

verse (in-plane) electric field polarization, and are thus called TE-like. In the case of a perfectly

symmetric structure, we can further classify the waveguide bands by their odd or even symmetry

about the “horizontal” mirror plane (σy) defined by the y-axis normal and cutting through the middle

of the central nanobeam. The two waveguide bands of interest that lie within the quasi-2D photonic

bandgap of the outer photonic crystal slabs, shown as bold red and black curves, are labeled “even”

and “odd” depending on the spatial symmetry with respect to σy of their mode shape for the domi-

nant electric field polarization in the y-direction, Ey (note that this labeling is to their actual vector

symmetry). TheEy spatial mode profiles at theX-point for the odd and evenwaveguide supermodes

are shown in Figs. 2.3b and c, respectively.

An optical cavity is defined by decreasing the lattice constant 4.5% below the nominal value of

a0 = 480 nm for the middle five periods of the waveguide (see Fig. 2.3d). This has the effect of

locally pushing the bands toward higher frequencies [55, 56], which creates an effective potential

that localizes the optical waveguide modes along the x-axis of the waveguide. The resulting odd

and even TE-like cavity supermodes are shown in Figs. 2.3d and e, respectively. These optical

modes correspond to the normal modes a+ and a− in Section 2.1, which are symmetric and anti-

symmetric superpositions, respectively, of the cavity modes localized around each slot (a1 and a2).

Due to the non-monotonic decrease in the even waveguide supermode as one moves away from
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Figure 2.3: a, Bandstructure diagram of the periodic (along x) double-slotted photonic crystal
waveguide structure. Here we only show photonic bands that are composed of modes with even
vector symmetry around the “vertical” (σz) mirror plane. The two waveguide bands of interest lie
within the quasi-2D photonic bandgap of the outer photonic crystal slabs and are shown as bold red
and black curves. These waveguide bands are labeled “even” (bold black curve) and “odd” (bold red
curve) due to the spatial symmetry of their mode shape for the dominant electric field polarization in
the y-direction,Ey. The simulated structure is defined by the lattice constant between nearest neigh-
bor holes in the hexagonal lattice (a0 = 480 nm), the thickness of the silicon slab (d = 220 nm),
the width of the two slots (s = 100 nm), and the refractive index of the silicon layer (nSi = 3.42).
The hole radius in the outer slabs and the central nanobeam is r = 144 nm. The grey shaded region
represents a continuum of radiation modes which lie above the light cone for the air cladding which
surrounds the undercut silicon slab structure. The small blue circle indicates the crossing point of
the even and odd supermode waveguide bands. b, Normalized Ey field profile at the X-point of
the odd waveguide supermode, shown for several unit cells along the x guiding axis. c, Ey field
profile of the even waveguide supermode. Waveguide simulations of a-c were performed using the
plane-wave mode solver MPB [52, 53]. Normalized Ey field profile of the corresponding localized
cavity supermodes of d odd and e even spatial symmetry about the horizontal mirror plane. The
lattice constant a0 is decreased by 4.5% for the central five lattice constants between the dashed
lines to localize the waveguide modes. Simulations of the full cavity modes were performed using
the COMSOL finite-element method mode solver package [54].

the X-bandedge (c.f., Fig. 2.3a), we find that the simulated optical Q-factor of the even a+ cavity

supermode is significantly lower than that of the odd a− cavity supermode. This will be a key

distinguishing feature found in the measured devices as well.
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Figure 2.4: Symmetric tuning of the slot widths of the double-slotted photonic crystal cavity showing
a themeanwavelength shift and b the splitting 2J = ω+−ω− of the even and odd cavity supermodes
versus slot width s = s1 = s2. c-dAvoided crossing of the cavity supermodes obtained by tuning s1
while keeping s2 fixed at c s2 = 90 nm and d s2 = 95 nm. For all simulations in a-d the parameters
of the cavity structure are the same as in Fig. 2.3 save for the slot widths. The simulations were
performed using the COMSOL FEM mode solver [54].

2.2.2 Optical tuning simulations

The slot width in the simulated waveguide and cavity structures of Fig. 2.3 is set at s = 100 nm. For

this slot width we find a lower frequency for the even (a+) supermode than the odd (a−) supermode

at the X-point photonic bandedge of the periodic waveguide and in the case of the localized cavity

modes. Figure 2.4 presents finite-element method (FEM) simulations of the optical cavity for slot

sizes swept from 90 nm to 100 nm in steps of 1 nm, all other parameters the same as in Fig. 2.3. For

the slot widths tuned symmetrically (s1 = s2 = s), the mean wavelength of the even and odd cavity

supermodes and their frequency splitting 2J = ω+ − ω− are plotted in Fig. 2.4a and Fig. 2.4b,

respectively. As expected the mean wavelength drops for increasing slot width. The frequency

splitting, however, also monotonically decreases with slot width, going from a positive value for

s = 90 nm to a negative for s = 100 nm slots and crossing zero for a slot width of s = 95 nm. In

Figs. 2.4c and d the symmetry is broken by keeping s2 fixed and scanning s1; the cavity supermodes
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are driven through an anti-crossing with a splitting determined by the fixed slot width s2.

The spectral inversion of the even a+ and odd a− cavity supermodes predicted in Fig. 2.4b

originates in the unequal overlap of each mode with the air slots separating the two outer slabs from

the central nanobeam. The odd supermode tends to be pushed further from the middle of the central

nanobeam, having slightly larger overlap with the air slots. An increase in the air region for increased

slot size leads to a blue shift of both cavity supermodes. The odd mode having a larger electric field

energy density in the air slots than the even mode is more affected by a change in the slot widths.

Therefore, upon equal increase of the slot widths, the odd mode experiences larger frequency shifts

than the even mode, which results in a tuning of the frequency splitting. For particular geometrical

parameters of the central nanobeam [51], a change in the slot widths is sufficient to invert the spectral

ordering of the supermodes. This means that arbitrarily small splittings can potentially be realized.

2.3 Mechanical Resonances

Having considered the optical cavity modes of the double-slotted planar photonic crystal, we now

analyze the mechanical modes of the structure. In order to support mechanical resonances the pho-

tonic crystal slabs are suspended. The optical modes can interact with both flexural and localized

acoustic modes of the central nanobeam. In Sec. 2.3.1, we present the flexural modes of the structure.

We show that higher orders flexural modes are found to exist up to 1 GHz with significant optome-

chanical coupling, making them suitable for operation in the resolved sideband regime, where the

optical linewidth κ is much smaller than the mechanical frequency ωm [57]. In Sec. 2.3.2, we show

that the defect developed to form the optical cavity also gives rise to a localized acoustic resonance

of a few GHz frequency.

2.3.1 Flexural mechanical resonances

The outer slabs and nanobeambehave as three independentmechanical resonators supporting various

in-plane and out-of-plane flexural mechanical resonances. Here, we focus on the in-plane flexural

modes that are asymmetric with respect to the y = 0 planemirror operator (σy = −1), and symmetric

with respect to the x = 0 plane mirror operator (σx = +1), about the center of the structure. These

flexural modes are represented in Fig. 2.5 with exaggerated deformation profiles. Since our main
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Figure 2.5: Normalized displacement profile of a the in-plane slab modes and b the nanobeam first
and higher order in-plane flexural modes. The inset on top of b shows the profiles of |Ey|2 along
the waveguides for both the odd and even symmetry optical supermodes. The deformations are
exaggerated for clarity. The photonic crystal parameters are the same as in Fig. 2.3. The central
nanobeam is 731 nm wide and 24 µm long. The outer slabs are suspended by tethers of length
lt = 2.5 µm and width wt = 150 nm.

focus will be on the fundamental resonances, we denote the fundamental in-plane flexural modes

of the two outer slabs and nanobeam as b1, b2 and b3 respectively. Their respective frequencies are

denoted ωb1 , ωb2 and ωb3 .

In our design, the outer slabs are suspended by tethers of length lt =2.5µmandwidthwt =150 nm,

yielding fundamental in-plane flexural resonance of ωm/2π ≃ 6 MHz. As shown in Fig. 2.5 (a),

these modes correspond to a uniform displacement of the whole slabs. The displacement of one outer

slab causes a uniform change of the width of the adjacent slot, and hence a change of the optical su-

permode frequencies. The in-plane slabmodes provide degrees of freedom for the electromechanical

tuning of the slot widths.

In Fig. 2.5 (b), we plot the displacement profiles of the first three lowest frequency (10.8MHz,

56MHz and 130MHz) nanobeam in-plane flexural modes of symmetry {σx = +1, σy = −1}. The

y-polarized electric field profiles |Ey|2 are plotted in the inset for both the odd and even optical su-

permodes a±. The finite extent of the optical modes along the x-axis of the photonic crystal structure

limits the region of the nanobeam that will contribute to the optomechanical interaction. As a result,

the nanobeam displacement amplitude x3 can be approximated by a net effective displacement of

the whole nanobeam x̄3 ≈ x3, causing one slot width to change by an amount +x̄3 and the other to
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change by −x̄3. Because of this asymmetric displacement, the optomechanical couplings of these

flexural mode to the individual slot modes a1 and a2 are expected to be equal and of opposite sign.

This favors the quadratic and linear cross-mode interaction terms introduced in Eq. (2.9).

Higher order flexural modes of the nanobeam have been identified with frequencies up to 1GHz

and are summarized in Tab. 2.1. Assuming a moderate optical quality factor of Q = 5 × 105, the

resolved-sideband regime condition (κ < ωm) could be met with a flexural mode of frequency

ωm/2π = 400MHz.

2.3.2 Localized phononic crystal resonance

In Sec. 2.2.1 we described how to localize optical waveguide modes of the double-slotted photonic

crystal waveguide propagating by engineering a perturbation to the waveguide unit cell in the prop-

agation direction. In particular, we analyzed the photonic bandstructure of the waveguide unit cell

and designed a defect based on a combination of change in the lattice constant and change in the

central nanobeam hole aspect ratio. Here we study the phononic bandstructure of the nanobeam unit

cell and show that our choice of photonic crystal defect parameters makes the nanobeam compatible

with the localization of an GHz-frequency acoustic resonance.

Figure 2.6(a) and 2.6(b) show the FEM-simulated acoustic bandstructure of the nanobeam unit

cell and the frequency shift of the breathing mode band at the Γ-point as the nanobeam transitions

from the mirror unit cell geometry to the defect unit cell geometry. The breathing mode band is

shown as a solid red curve. The nanobeam unit cell and the corresponding normalized displacement

field profile Q(r) of the breathing mode are depicted in Figs. ‘2.6(e-g). The localized breathing

mode is drawn from the Γ-point of the bandstructure in order to have a significant optomechanical

coupling to the optical mode [58].

Figure 2.6(c) and 2.6(d) detail separately the shifts of Γ-point frequency of the breathing mode

Table 2.1: In-plane flexural modes of the nanobeam. We consider the modes with symmetric displacement
with respect to σx. The geometric parameters of the nanobeam are the same as in Fig. 2.3.

ωm/2π [MHz] 10.8 56 130 227 340 467 605 746 884 1025
xzpf [fm] 15.8 6.6 4.2 3.1 2.5 2.2 1.9 1.7 1.6 1.5
meff [pg] 3.1 3.4 3.6 3.9 3.9 3.8 3.8 3.8 3.8 3.6
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Figure 2.6: a,b Simulated phononic bandstructure of the nanobeam and defect mode drawn from the
Γ-point. The breathing mode band is specified by the solid red line. The even (red lines) and odd
(black lines) symmetry acoustic modes are defined with respect to σy mirror operator. a, Shift of
the Γ-point frequency of the breathing mode band for a defect formed by both variations in lattice
constant and ellipticity of holes. The defect parameters are the same as in Fig. 2.3. c, and d, show
the shift of the breathing mode frequency at the Γ point due to variations of the lattice constant
and of the holes aspect ratio, respectively. e) Mechanical beam and f normalized displacement
field Q(r) of the localized breathing mode. The color scale indicates the magnitude of Q(r). g,
Exaggerated deformation of the structure due to the breathing mode. All acoustic mode simulations
were performed using COMSOL [54].

caused by the perturbation in the lattice constant and hole ellipticity of the nanobeam. Increasing

the aspect ratio η will push the breathing mode frequency down into the band gap of the unperturbed

mirror cells, while decreasing the lattice constant slightly increases the frequency of the Γ-point

mode. As summarized in Fig. 2.6(a), the same defect used to localize the photonic crystal reso-

nances satisfies the conditions to localize a phononic crystal resonance. Note that, in contrast to

the mechanical flexural modes, the displacement of the localized breathing mode is symmetric with

respect to σy so the optomechanical coupling to this mode is expected to be the same for both a1 and

a2. Therefore, the breathing mode is expected to have negligible linear cross-mode and quadratic

coupling strengths. Nevertheless, the breathing mode presents the advantage of being well in the re-

solved sideband regime and could potentially be used as an auxiliary mechanical mode in multimode
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optomechanically induced transparency schemes, as proposed in Refs. [59, 60].

2.4 Optomechanical Coupling Relations

With knowledge of the optical and mechanical properties of the double slotted waveguide cavity,

we can now turn to the calculation of the different optomechanical coupling factors. We utilize

a perturbation theory of Maxwell’s equations [61] suitable for dealing with both spatial shifts in

the dielectric boundaries of the cavity structure as well as stress-induced modifications of the local

dielectric constant of the deformed structure. Applying first-order perturbation theory to the numeri-

cally computed unperturbed optical field profiles and mechanical field profiles allows us to evaluate

both the linear self-mode coupling g± and the linear cross-mode coupling g+− for the nanobeam

flexural modes [62]. Considering the perturbation theory to second-order yields the strength of the

quadratic coupling in our structure. Finally, we consider the modification of the coupling strengths

due to deviations of the structure from the symmetric equilibrium position of the central nanobeam

and outer slabs.

2.4.1 Linear self-mode optomechanical coupling

Maxwell’s equations in a source-free, linear dielectric medium yields the following eigenvalue equa-

tion for the electric field:

∇×∇× |E⟩ =
(
ω2

c

)
ϵ |E⟩ , (2.12)

where we have used the Dirac notation |E⟩ for the electric field E(r) eigenstate with harmonic

time dependence e−iωt. Here, c is the speed of light in vacuum, and ϵ(r) is a dielectric constant

which is a function of the spatial coordinate r (and most generally a tensor). We are interested in

the change in the modal frequency due to an infinitesimal perturbation δα to the dielectric structure.

The first-order correction term to the mode frequency is expressed as

δω(1) = −ω(0)

2

⟨E(0)| δα |E(0)⟩
⟨E(0)| ϵ(0) |E(0)⟩

, (2.13)

where ϵ(0)(r) is the unperturbed dielectric constant of the structure, |E(0)⟩ and ω(0) are electric field
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and frequency of the harmonic opticalmode of interest, ⟨E(0)| ϵ(0) |E(0)⟩ ≡
∫
V d3r

(
E(0) ·

(
ϵ(0)E(0)

)∗),
and δα depends upon the type of perturbation to the dielectric structure.

The change in dielectric constant due to mechanical displacement arises from two main contri-

butions. The first contribution is due to shifting of the interface boundary between two dielectric

media. In this case the dielectric function is a high-contrast step function which translates displace-

ments normal to the boundary into local modifications of the dielectric seen by the electric field.

As proposed by Johnson, et al., in [61], the appropriate perturbation theory in this so-called moving

boundary (MB) problem is given by

δω
(1)
MB = −ω(0)

2

∫
A d

2r(q · n) [∆ϵ|E(0)
∥ |2 −∆ϵ−1|D(0)

⊥ |2]
⟨E(0)| ϵ(0) |E(0)⟩

, (2.14)

where ϵ1(2) is the dielectric constant of medium 1 (2) at any point in the boundary surfaceA between

two media of differing dielectric constant, ∆ϵ = ϵ1 − ϵ2, ∆ϵ−1 = ϵ−1
1 − ϵ−1

2 , |E(0)
∥ | (|D(0)

⊥ |) is the

magnitude of the unperturbed electric (displacement) field polarized in the plane (out of the plane) of

the boundary surfaceA betweenmedium 1 andmedium 2, and n(r) is the outward unit vector normal

pointing from medium 1 into medium 2 on boundary A. Here, q(r) is the normalized displacement

field of the mechanical mode of interest with maximum displacement equal to unity, max |q(r)| = 1.

We can also define an effective mass of the mechanical mode in terms of q,

meff =

∫
V
d3rρ(r)|q(r)|2, (2.15)

where ρ is the mass density of the dielectric material defining the optomechanical structure. This

effective mass is the appropriate motional mass for evaluating the zero-point fluctuation amplitude,

xzpf =
√

ℏ/2meffωm , of the generalized amplitude coordinate corresponding to the point of maxi-

mum amplitude of the mechanical mode.

The second contribution to the linear self-mode coupling is due to the photoelastic effect, re-

sulting from the change of the dielectric constant due to the local strain induced by the mechanical

displacement. The first-order perturbation to the dielectric tensor is given by

δϵϵϵ = −ϵϵϵ(0)pS
ϵ0

ϵϵϵ(0), (2.16)
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where ϵϵϵ(0) is the unperturbed dielectric tensor, ϵ0 is the permittivity of free space, p is the fourth rank

photoelastic tensor, and S is the symmetric strain tensor. For an isotropic medium this simplifies to

δϵij = −ϵ0n
4pijklSkl, (2.17)

in index notation. In matrix form,

δϵϵϵ = −ϵ0n
4

×


p11Sxx + p12(Syy + Szz) p44Sxy p44Sxz

p44Sxy p11Syy + p12(Sxx + Szz) p44Syz

p44Sxz p44Syz p11Szz + p12(Sxx + Syy)

 .

(2.18)

The resulting first-order photoelastic (PE) correction to the optical frequency is

δω
(1)
PE =

ω(0)ϵ0n
4

2 ⟨E(0)| ϵϵϵ(0) |E(0)⟩

∫
V
d3r2

[
Re((E(0)

x )∗E(0)
y )p44Sxy

+ Re((E(0)
x )∗E(0)

z )p44Sxz + Re((E(0)
y )∗E(0)

z )p44Syz

+ |E(0)
x |2(p11Sxx + p12(Syy + Szz)) + |E(0)

y |2(p11Syy + p12(Sxx + Szz))

+ |E(0)
z |2(p11Szz + p12(Syy + Sxx))

]
. (2.19)

In the structures studied here, which are made by etching patterns into a thin-film of silicon, the only

two media are silicon and vacuum. As such, for the PE contribution to the linear self-mode coupling

we utilize the photoelastic tensor coefficients for silicon in evaluating the integral in the numerato:

p11 = −0.0101, p12 = 0.009 and p44 = −0.051.

We begin by considering the calculation of g+,b1 and g−,b1 for our double-slotted photonic crys-

tal device, i.e., the linear optomechanical couplings of the optical supermodes a+ and a− to the

fundamental in-plane flexural mode of either outer slab (we choose b1 in this case). Table 2.2 dis-

plays the numerically computed coefficients using the perturbation theory described above in terms
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of the unperturbed optical and mechanical fields. g+,b1 and g−,b1 can also be approximated by fitting

the anti-crossing curves of Fig. 2.4 using the dispersion relation given in Eq. (2.5). The approximate

dispersion relation fit values for the linear couplings are also shown in Tab. 2.2, and compare well

to the exact perturbation theory values.

The localized breathing mode of the central nanobeam was found by FEM simulations to be at

a mechanical frequency of ωm/2π ≈ 4 GHz, with linear coupling rates of g̃+/2π =249 kHz and

g̃−/2π =163 kHz to the a± supermodes, respectively, wherewe have used the notation g̃± = g±xzpf.

Table 2.2: Strength of the linear optomechanical coupling of the optical supermodes to the fundamental in-
plane flexural modes of the outer slabs for three different slot widths. The second and third columns display
the linear coupling strengths calculated numerically using the perturbation theory. The fourth column gives the
values of the optomechanical coupling constant obtained by fitting the anti-crossing curves shown in Fig. 2.4.
The geometric parameters of the nanobeam are the same as in Fig. 2.5.

First order perturbation theory Anti-crossing fit
Slot width g+,b1/2π g−,b1/2π [(g1,b1 + g2,b1)/2]/2π

[nm] [GHz/nm] [GHz/nm] [GHz/nm]
90 55.05 57.79 51.13
95 51.81 53.62 48.81
100 41.12 47.69 44.45

2.4.2 Linear cross-mode optomechanical coupling

By analogy with Eq. (2.13), the first order perturbation term for the linear cross-mode coupling gij ,

where i ̸= j, can be written as [63]

gij,k = −

√
ω
(0)
i ω

(0)
j

2

⟨E(0)
i | δαk |E

(0)
j ⟩(

⟨E(0)
i | ϵ(0) |E(0)

i ⟩
)1/2 (

⟨E(0)
j | ϵ(0) |E(0)

j ⟩
)1/2

. (2.20)

In the case of the double-slotted photonic crystal of this work, we have for the shifting bound-

aries contribution to the cross-mode coupling between the supermodes a+ and a− at the symmetric

({xk,eq} = 0) equilibrium position (center of the anti-crossing curve of Fig. 2.4):

g+−,k = −

√
ω
(0)
+ ω

(0)
−

2

∫
A d

2r(qk · n) [∆ϵ
(
E

(0)
∥,+

)∗
· E(0)

∥,− −∆ϵ−1
(
D

(0)
⊥,+

)∗
·D(0)

⊥,−](
⟨E(0)

+ | ϵ(0) |E(0)
+ ⟩

)1/2 (
⟨E(0)

− | ϵ(0) |E(0)
− ⟩

)1/2
. (2.21)



27

Note that for the flexural mechanical modes of the photonic crystal structure (either slab or central

nanobeam modes) we expect this to be the dominant contribution to the optomechanical coupling.

Expanding E+ = (E1 + E2)/
√
2 and E− = (E1 − E2)/

√
2 in terms of the slot modes, and

neglecting the cross terms such as E∗
1 ·E2 due to the small spatial overlap between the fields of the

modes localized in separated slots, we again obtain g+−,k = (g1,k − g2,k)/2.

Consider now the flexural modes of the central nanobeam. At the symmetric ({xk,eq} = 0)

equilibrium position, the nanobeam’s in-plane flexural modes are such that g1 = −g2. Therefore, at

the center of the anti-crossing curve g+− is maximal and equal to the linear coupling of the nanobeam

mode to the a1,2 slot modes. Table 2.3 shows the numerically computed linear cross-mode coupling

rate g̃ij = gijxzpf for the fundamental and higher order nanobeam in-plane flexural modes alongwith

their respective frequencies simulated for slot sizes s1 = s2 = 95 nm using Eq. (2.21). Due to the

tight localization of optical modes (see Fig. 2.5) we find there is still significant coupling to higher

order flexural modes of frequencies all the way up to 1GHz. For the numerical simulations of the a±

optical supermodes of the double-slotted photonic crystal structure we also find that the radiation-

limited optical quality factor is theoretically equal to 5 × 106 and 3 × 105 for the odd and even

modes respectively. Therefore, as noted earlier, we can expect mechanical modes of frequencies

ωm/2π > 300MHz to be in the resolved-sideband regime.

2.4.3 Quadratic optomechanical coupling

By extending the perturbation theory to the second order, it is also possible to calculate the x2-

coupling strength. We obtain, for a given optical mode ai,

δω
(2)
i =

3

8
ω(0)

∣∣∣∣∣ ⟨E(0)
i | δα |E(0)

i ⟩
⟨E(0)

i | ϵ(0) |E(0)
i ⟩

∣∣∣∣∣
2

− 1

2

∑
j ̸=i

ω
(0)
i

3

ω
(0)
j

2
− ω

(0)
i

2

∣∣∣⟨E(0)
j | δα |E(0)

i ⟩
∣∣∣2

⟨E(0)
j | ϵ(0) |E(0)

j ⟩ ⟨E(0)
i | ϵ(0) |E(0)

i ⟩
.

(2.22)

In the case of the supermodes a+ and a− of the symmetric double-slotted photonic crystal structure

({xk,eq} = 0), the first term vanishes and the only contribution to the x2-coupling comes from the

second term. For optical splittings such that 2J ≪ ω0,
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δω
(2)
+ ({0}) ≡+ ≈ −

ω
(0)
+

(ω
(0)
+ + ω

(0)
− )(ω

(0)
− − ω

(0)
+ )

(
ω
(0)
+

)2 ∣∣∣⟨E(0)
− | δα |E(0)

+ ⟩
∣∣∣2

⟨E(0)
− | ϵ(0) |E(0)

− ⟩ ⟨E(0)
+ | ϵ(0) |E(0)

+ ⟩
,

≈
g2+−
2J

.

(2.23)

In Eq. (2.23) we only consider the contribution from the fundamental optical cavity supermodes

because the frequency splitting between them is relatively small. Note that another approach [45]

has shown that using a large number of spatially overlapping optical modes rather than decreasing the

splitting of just two optical modes (as in our case) can also lead to significant x2-coupling strengths.

The values of g̃′ = g′(xzpf)
2 are summarized in Table 2.3 for the nanobeam in-plane flexural modes

up to 884MHz. Here we assume an optical a± supermode frequency splitting of 2J/2π = 1 GHz,

which is close to the minimum splitting based on the estimated optical quality factors which allows

the optical supermodes to be selectively excited and interrogated.

Table 2.3: Linear cross-mode optomechanical (vacuum) coupling rates g̃+− of the optical supermodes to the
nanobeam’s in-plane fundamental and higher order flexural modes. The x2-coupling rate g̃′+ is inferred using
Eq. (2.23) for a minimum splitting of 2J/2π = 1 GHz. The geometric parameters of the nanobeam are the
same as in Fig. 2.5.

ωm/2π [MHz] g̃+−/2π [kHz] g̃′+/2π [Hz]
10.8 1020 1000
56 402 160
130 271 73
227 208 43
340 167 28
467 126 15
605 81 7
746 44 2
884 20 0.4
1025 8 0.07

2.4.4 Coupling coefficients as a function of a static displacement of the nanobeam

In the analysis of the optomechanical coupling coefficients described above in Section 2.4.1-2.4.3 we

considered a symmetric double-slotted structure with equal slot widths s1 = s2 (equilibrium position

{xk,eq} = 0), and thus the calculations were done for the optical supermodes a±. In practice, we
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could find this symmetric condition by tuning one of the slabs to adjust the relative slots sizes until

the optical frequency spectrum was at the center of the anti-crossing curve as shown in Fig. 2.4.

Far away from the center of the anti-crossing, however, the optical supermodes correspond more

closely to the individual slot modes a1 and a2, and we expect different optomechanical coupling

strengths. Here we describe how the optomechanical coupling coefficients change upon a large,

static displacement of the central nanobeam which takes us far from the symmetric condition near

the center of the anti-crossing curve.

From the approximate analytical expression of the supermode dispersion (see Eq. 2.5), we derive

here approximate expressions for g±,b3(x3,eq), g+−,b3(x3,eq) and g′±,b3
(x3,eq) as a function of the

static displacement amplitude x3,eq of the fundamental nanobeam mode:

g±,b3(x3,eq) ≈
g1,b3 + g2,b3

2
±
(
g1,b3 − g2,b3

2

)
Z√

1 + Z2
, (2.24)

g+−,b3(x3,eq) ≈
(
g1,b3 − g2,b3

2

)
1√

1 + Z2
, (2.25)

g′±,b3(x3,eq) ≈ ±
g2+−,b3

2J

[
1√

1 + Z2

]3
, (2.26)

where Z = ((g1,b3 − g2,b3) /2J)x3,eq. Note g+−,b3 ≡ g+−,b3(x3,eq = 0) as per our previously

established convention.

As discussed in Sec. 2.3.1, x3,eq can be approximated by a static displacement x̄3 of the whole

nanobeam. Using the perturbative calculation of the optomechanical coupling coefficients from

the numerically simulated optical and mechanical fields one can then obtain g±,b3(x̄3), g+−,b3(x̄3)

and g′±,b3
(x̄3) by simulating a structure with the nanobeam displaced from its equilibrium position

by x̄3 (this becomes the new “unperturbed” structure in our perturbative calculations). Here we

consider a structure with nominal slot widths of s = 90 nm at equilibrium, and the displacement

of the nanobeam from its equilibrium position is swept from x̄3 = −3 nm to x̄3 = 3 nm in steps

of 0.5 nm. At each position we calculate the coupling coefficients between the optical supermodes

and the fundamental in-plane flexural mode of the nanobeam. The results of these simulations and

calculations are plotted in Fig. 2.7. A fit to the numerically calculated coefficients using Eqs. (2.24-

2.26) shows very good agreement.
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Figure 2.7: a, Linear self-mode optomechanical coupling, b linear cross-mode optomechanical cou-
pling, and c x2-coupling of the ω+(x̄3) supermode branch to the fundamental in-plane mechani-
cal resonances of the nanobeam (b3, red curve) and outer slabs (b1, blue curve; b2, green curve).
The asterisk (∗) correspond to numerical FEM simulations of the coupling rates using the pertur-
bation theory with different in-plane static displacement x̄3 of the nanobeam from its symmetric
equilibrium position. The geometrical parameters of the simulated double-slotted structure are
(a, r, s1, s2) = (480 nm, 0.3a, 90 nm+x̄3, 90 nm−x̄3). The solid lines are theoretical fits based
on Eqs. (2.24-2.26).

These results confirm our previous speculations that far from the symmetric equilibrium position

the linear optomechanical coupling is the dominant optomechanical interaction between the optical

supermodes and the flexural modes of the central nanobeam, while at symmetric equilibrium position

of the beam (x̄3 = 0) the optomechanical interaction is predominantly x2-coupling. The linear cross-

mode coupling between the optical supermodes is also maximal at x̄3 = 0. Experimentally, a static

displacement of the whole nanobeam by x̄3 can be mimicked by displacing both outer slabs in the

same direction by an amount x̄3. Conversely, a change in the equilibrium slot size can be achieved

by displacing both outer slabs in opposite directions. In our recent experimental realization of the

double-slotted photonic crystal cavity structure we used this tuning degree of freedom by integrating

a set of independent capacitors on the outer slabs. Note that the magnitude of the x2-coupling in

these simulations is limited by the large optical mode splitting (2J/2π = 117GHz) of the simulated

cavity. With the use of capacitive tuning methods much finer splitting can be realized in practice,

however, a larger slot structure was chosen for the simulations to reduce the required mesh size of

the structure and to allow for more coarse sweeping of the slot size.
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Figure 2.8: a-cOptical transmissionmeasurements versus the wavelength of the probe laser showing
the cavity mode anti-crossing and tuning of the photon tunneling rate. In these measurements the
probe laser wavelength (horizontal axis) is scanned across the optical cavity resonances as the voltage
across the first capacitor V1 is swept from low to high (vertical axis shows V 2

1 in V2, proportional
to slab displacement). The second capacitor is held fixed at V2 = 1V, b V2 = 15V and c V2 = 18V.
The color scalebar indicates the fractional change in the optical transmission level, ∆T , with blue
corresponding to ∆T = 0 and red corresponding to ∆T ≈ 0.25. From the three anti-crossing
curves we measure a splitting 2J equal to a 50 GHz, b 12 GHz, and c−25 GHz. d-f Corresponding
simulations of the normalized optical transmission spectra for the slot width s1 varied and the second
slot width held fixed at d s2 = 92 nm, e s2 = 95 nm and f s2 = 97 nm. The dispersion and
tunneling rate of the slot modes are taken from simulations similar to that found in Fig. 2.4. g and
h show the measured linewidths of the high frequency upper (black) and low frequency lower (red)
optical resonance branches as a function of V 2

1 , extracted from a and c, respectively. The narrowing
(broadening) is a characteristic of the odd (even) nature of the cavity supermode, indicating the
inversion of the even and odd supermodes for the two voltage conditions V2 = 1 V and V2 = 18 V.
The lines are guides for the eye.

2.5 Experimental measurements

Optical testing of the fabricated devices is performed in a nitrogen-purged enclosure at room tem-

perature and pressure. A dimpled optical fiber taper is to locally excite and collect light from the

photonic crystal cavity, details of which can be found in Ref. [64]. The light from a tunable, narrow-

bandwidth laser source in the telecom 1550 nm wavelength band (New Focus, Velocity series) is

evanescently coupled from the fiber taper into the device with the fiber taper guiding axis parallel

with that of the photonic crystal waveguide axis, and the fiber taper positioned laterally at the center

of the nanobeam and vertically a few hundreds of nanometers above the surface of the silicon chip.

Relative positioning of the fiber taper to the chip is accomplished using a multi-axis set of encoded
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DC-motor stages with 50 nm step resolution. The polarization of the light in the fiber is polarized

parallel with the surface chip in order to optimize the coupling to the in-plane polarization of the

cavity modes.

With the taper placed suitably close to a photonic crystal cavity ( 200 nm), the transmission

spectrum of the laser probe through the device features resonance dips at the supermode resonance

frequencies, as shown in the intensity plots of Figs. 2.8a-c. The resonance frequency of the cav-

ity modes are tuned via displacement of the top and bottom photonic crystal slabs, which can be

actuated independently using their respective capacitor voltages V1 and V2. The capacitive force

is proportional to the applied voltage squared [56], and thus increasing the voltage Vi on a given

capacitor widens the waveguide slot si and (predominantly) increases the slot mode frequency ai

(note the other optical slot mode also increases slightly). For the devices studied in this work, the

slab tuning coefficient with applied voltage (αcap) is estimated from SEM analysis of the resulting

structure dimensions and FEM electromechanical simulations to be αcap = 25 pm/V2.

We fabricated devices with slot widths targeted for a range of 75-85 nm, chosen smaller than the

expected zero-splitting slot width of s = 95 nm so that the capacitors could be used to tune through

the zero-splitting point. While splittings larger than 150 GHz were observed in the nominal 85 nm

slot width devices, splittings as small as 10GHz could be resolved in the smaller 75 nm slot devices.

As such, in what follows we focus on the results from a single device with as-fabricated slot size of

s ≈ 75 nm.

2.5.1 Anti-crossing measurements

Figure 2.8 shows intensity plots of the normalized optical transmission through the optical fiber

taper when evanescently coupled to the photonic crystal cavity of a device with nominal slot width

s = 75 nm. Here a series of optical transmission spectrum are measured by sweeping the probe laser

frequency and the voltage V1, with V2 fixed at three different values. The estimated anti-crossing

splitting from the measured dispersion of the cavity supermodes is 2J/2π = 50 GHz, 12 GHz, and

−25 GHz for V2 = 1 V, 15 V, and 18 V, respectively. In order to distinguish between the odd and

even cavity supermodes at the anti-crossing point, we use the fact that both the coupling rate to the

fiber taper κe and the intrinsic linewidth κi depend upon the symmetry of the cavity mode. First,
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the odd mode becomes dark at the anti-crossing because it cannot couple to the symmetric fiber

taper mode. Second, in the vicinity of the anti-crossing point the linewidth of the odd mode narrows

while the linewidth of the even mode broadens. Far from the anti-crossing region, the branches are

asymptotic to individual slot modes and their linewidths and couplings to the fiber taper are similar.

These features are clearly evident in the optical transmission spectra of Figs. 2.8a-c, as well as

in the measured linewidth of the optical supermode resonances shown in Figs. 2.8g-h. Figure 2.8a

was taken with a small voltage V2 = 1 V, corresponding to a small slot width at the anti-crossing

point, and thus consistent with the even mode frequency being higher than the odd mode frequency

for small slot widths (c.f., Fig. 2.4b). The exact opposite identification is made in Fig. 2.8c where

V2 = 18 V is much larger, corresponding to a larger slot width at the anti-crossing point. Fig. 2.8b

with V2 = 15V is close to the zero-splitting condition. For comparison, a simulation of the expected

anti-crossing curves are shown in Figs. 2.8d, e, and f for s2 = 92, 95, and 97 nm, respectively.

Here we have taken the even superposition of the slot modes to have a lower Q-factor than the

odd superposition of the slot modes, and the coupling of the fiber taper to be much stronger to

the even mode than the odd mode, consistent with results from numerical FEM simulations. Good

correspondence with the measured transmission curves of Figs. 2.8a-c are found after accounting

for an overall 4.5 nm wavelength shift.

An estimate of the x2-coupling coefficient g′b3 can found from the simulated value of αcap and

a fit to the measured tuning curves of Fig. 2.8 away from the anti-crossing point. Consider the

anti-crossing curve of Fig. 2.8b with the smallest splitting. Far from the anti-crossing point the

tuning of the a1 and a2 slot modes are measured to be linear with the square of V1: ḡa1,V 2
1
/2π =

3.9GHz/V2 and ḡa2,V 2
1
/2π = 0.5GHz/V2. For the simulated value of αcap = 0.025 nm/V2 the cor-

responding linear dispersive coefficients versus the first slot width are ḡa1,δs1/2π = 156 GHz/nm

and ḡa2,δs1/2π = 20 GHz/nm. Noting that a displacement amplitude x3 for the fundamental

in-plane mechanical mode of the central nanobeam is approximately equivalent to a reduction in

the width of one slot by -x3 and an increase in the other slot by +x3, the linear optomechani-

cal coupling coefficient between optical slot mode a1 and mechanical mode b3 is estimated to be

ga1,b3 ≈ (ḡa1,δs1 + ḡa1,−δs2) = (ḡa1,δs1 − ḡa2,δs1) = 2π[136 GHz/nm2], where by symmetry

ḡa1,−δs2 = −ḡa2,δs1 . Along with a measured splitting of 2J/2π = 12 GHz, this yields through
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Figure 2.9: RF photocurrent noise spectrum for the optically transmitted light past the double-slotted
photonic crystal cavity. Here the applied voltage V2 = 1 V is held fixed and V1 is swept from just
below to just above the anti-crossing point of Fig. 2.8a. In these measurements the probe laser
power is 10 µW at the input to the cavity, the probe laser frequency is set on the blue side of the
upper frequency supermode resonance,∆L ≈ κ/2

√
3, and the fiber taper is placed in the near-field

of the photonic crystal cavity resulting in an on-resonance dip in transmission of approximately
∆T = 15%. The vertical axis in this plot is converted to a change in the slot width, δs1, using
the numerically simulated value of αcap = 0.025 nm/V2. The color indicates the magnitude of the
RF noise in dBm/Hz, where the colorscale from 0-14MHz is shown on the left of the scalebar and
the colorscale from 14-20 MHz is shown on the right of the scalebar (a different scale is used to
highlight the noise out at 2ωb3).

Eq. (2.6) an estimate for the x2-coupling coefficient of g′b3/2π ≈ 1.54 THz/nm2.

2.5.2 Transduction of mechanical motion

Figure. 2.9a shows the evolution of the optically-transducedmechanical noise power spectral density

(NPSD) near the anti-crossing region of Fig. 2.8a. In this plot s2 is fixed and s1 is varied over an

estimated range of δs1 = ±0.3 nm around the anti-crossing. Optical motion is imprinted as intensity

modulations of the probe laser which is tuned to the blue side of the upper frequency supermode.

Here we choose the detuning point corresponding to ∆L ≡ ωL − ω+ ≈ κ/2
√
3, where ωL is the
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probe laser frequency and κ is the full-width at half-maximum linewidth of the optical resonance.

This detuning choice ensures maximal, linear transduction of small fluctuations in the frequency of

the cavity supermode, which allows us to relate nonlinear transduction of motion with true nonlinear

optomechanical coupling [44, 45]. A probe power of Pin = 10 µW is used in order to avoid any

nonlinear effects due to optical absorption, and the transmitted light is first amplified through an

erbium-doped fiber amplifier before being detected on a high gain photoreceiver (transimpedance

gain 4 × 104, NEP= 2.5 pW/Hz1/2, bandwidth 125 MHz). The resulting radio-frequency (RF)

photocurrent noise spectrum is plotted in Fig. 2.9.

In order to identify the measured noise peaks, numerical FEM simulations of the mechanical

properties of the double-slotted structure were performed. Taking structural dimensions from SEM

images, the simulated mechanical frequency for the fundamental in-plane resonances of the two

outer slabs (b1 and b2) is found to be ωm/2π = 6MHz. An effective motional mass for the slab

modes of meff = 36 pg was determined by integrating, over the volume of the structure, the mass

density of the silicon slab weighted by the normalized, squared displacement amplitude of the slab’s

motion [65]. The corresponding estimate of the zero-point amplitude of the slab modes is given by

xzpf ≡ (ℏ/2meffωm)1/2 = 5.3 fm. The resonance frequency, effective motional mass, and zero-

point amplitude for the fundamental in-plane resonance of the central nanobeam (b3) are simulated

to be ωm/2π = 10MHz,m = 6 pg, and xzpf = 16 fm, respectively.

Comparing to Fig. 2.9a, the two lowest frequency noise peaks are thus identified due to the

thermal motion of the b1 and b2 modes of the outer slabs, with ωb1/2π = 5.54MHz and ωb2/2π =

6.34 MHz. The identification of the b1 mode with the lower frequency mechanical resonance is

made possible due to the increasing signal transduction of this resonance as s1 is increased above

the anti-crossing point. Since we are probing the upper frequency optical supermode, for s1 > s2

(δs1 > 0) the supermode is approximately a1 which is localized to slot 1 and sensitive primarily to

the motion of b1. We see an opposite trend for the b2 resonance, with larger transduction gain for

s1 < s2 (δs1 < 0).

The noise peak at ωm/2π = 8.73 MHz behaves altogether differently than the b1 and b2 reso-

nances. This noise peak is transduced with roughly equal signal levels for δs1 > 0 and δs1 < 0, but

significantly drops in strength for δs1 ≈ 0 near the anti-crossing. This is the expected characteristic
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of the b3 mode, where the dispersive linear optomechanical coupling to the b3 should vanish at the

anti-crossing point. Also shown in Fig. 2.9a is the noise at 2ωb3 ≈ 17.5MHz, which shows a weakly

transduced resonance with signal strength peaked around δs1 = 0. The suppression in transduction

of the noise peak at ωb3 concurrent with the rise in transduction of the noise peak at 2ωb3 is a direct

manifestation of the transition from linear (ga1,b3 or ga2,b3) to position-squared (g′b3) optomechanical

coupling.

2.5.3 Static and dynamic optical spring measurements

Our previous estimate of g′b3 from the anti-crossing curves relied on the approximate correspondence

between the static displacement of the outer slabs and the fundamental in-plane vibrational amplitude

of the b3 mode of the central nanobeam. A more accurate determination of the true x2-coupling

coefficient to b3 can be determined from two different optical spring measurements. Far from the

anti-crossing one can determine the linear optomechanical coupling coefficient between the optical

slot modes and the b3 mechanical mode from the dynamic back-action of the intra-cavity light field

on the mechanical frequency, which in conjunction with the measured anti-crossing splitting yields

g′b3 via Eq. (2.6). A direct measurement of g̃′b3 can also be obtained from the static optical spring

effect near the anti-crossing point as indicated in Eq. (2.8).

Figure 2.10a shows the dependence of the mechanical resonance frequency of the b3 mode of the

central nanobeam versus the laser detuning ∆L when the device is tuned far from the anti-crossing

point in Fig. 2.8a (V1 ≈ 12 V and V2 = 1 V). In these measurements the probe laser power is fixed

at Pin = 10 µW and the laser frequency is scanned across the upper optical supermode resonance,

which away from the anti-crossing point in this case is the slot-mode a1. In the sideband unresolved

regime (ωm ≪ κ), the dynamic optical spring effect has a dispersive lineshape centered around the

optical resonance frequency, with optical softening of the mechanical resonance occurring for red

detuning (∆L < 0) and optical stiffening occurring for blue detuning (∆L > 0).

A fit to the measured frequency shift versus ∆L is performed using the linear optomechanical

coupling rate g̃a1,b3 as a fit parameter. The resulting optomechanical coupling rate which best fits

the data is shown in Figure 2.10a as a red curve, and corresponds to g̃a1,b3/2π = 1.72MHz. Using

xzpf = 16 fm for the b3 mechanical mode, this corresponds to ga1,b3/2π = 107 GHz/nm. Note that
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Figure 2.10: a, Dynamic optical spring effect measured by exciting the upper frequency supermode
resonance far from the anti-crossing point (∼ a1 mode) [Pin = 10 µW, κ = 12.5 GHz, ∆T ≈
10%]. b, Static optical spring shift of the b3 resonance frequency versus laser detuning ∆L from
the upper (∼ a+) supermode resonance near the anti-crossing point (V1 is adjusted such that the
device is approximately 1 V2 from the anti-crossing point in Fig. 2.8a) [Pin = 50 µW, κ = 26 GHz,
∆T ≈ 25%]. In both a and b V2 is fixed at 1 V (see Fig. 2.8a) and the measured data (circles)
correspond to a Lorentzian fit to the resonance freqency of the optically transduced thermal noise
peak at ωb3 . In a the red curve is a fit to the data using a dynamical optical spring model [65] with
linear optomechanical coupling coefficient g̃a1,b3/2π = 1.72MHz. In b the red curve is a fit to the
data using a static spring model (c.f., Eq. (2.8) with x2-coupling coefficient g̃′b3/2π = 46Hz. In both
the spring models of a and b the intra-cavity photon number versus detuning n(∆L) is calibrated
from the known input laser power, cavity linewidth, and on-resonance transmission contrast.

this is slightly smaller than the value measured indirectly from the dispersion in the anti-crossing

curve of Fig. 2.8; however, that value relied on the simulated value for αcap, which is quite sensitive

to the actual fabricated dimensions and stiffness of the structure. For the smallest splitting measured

in this work (2J/2π = 12 GHz), we get an estimated value for the x2-coupling to the b3 mode from

the dynamic optical spring measurements of g̃′b3/2π = 245 Hz (g′b3/2π = 0.96 THz/nm2).

An entirely different dynamics occurs at the anti-crossing point where x2 optomechanical cou-

pling dominates. Optical pumping of the supermode resonances near the anti-crossing point gives

rise to a static optical spring shift which depends on the average, instantaneous value of the intra-

cavity photon number. Due to the opposite sign of the quadratic dispersion of the upper and lower

optical supermode branches, optical pumping of the upper branch resonance leads to a stiffening of

the mechanical structure whereas optical pumping of the lower branch leads to a softening of the

structure [44,66]. The measured frequency shift of the b3 mechanical resonance for optical pumping
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of the upper branch cavity supermode (the even a+ mode in this case) is shown in Fig. 2.10b for a

voltage setting on the capacitor electrodes of V1 = 10.6 V and V2 = 1 V. This position is slightly

below the exact center of the anti-crossing point of Fig. 2.8a so as to allow weak linear transduction

of the b3 resonance. A rather large supermode splitting of 2J/2π = 50 GHz was also chosen to

ensure that only the even a+ supermode is excited, and that the contribution to the optical trapping

(anti-trapping) by the lower branch a− resonance is negligible.

As per Eq. (2.8), themechanical frequency shift is approximately given by∆ωm(∆L) ≈ 2g̃′b3n+(∆L),

where n+(∆L) is the average intra-cavity photon number in the a+ supermode. Fitting this model

to the data measured in Fig. 2.10b yields a value of g̃′b3 = 46 Hz. This is slightly lower than

the 60 Hz value expected for a splitting of 2J/2π = 50 GHz and the linear coupling rate of

g̃a1,b3/2π = 1.72 MHz determined from the dynamical optical spring effect, but consistent with

our slight detuning of the structure from the exact center of the anti-crossing.
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Chapter 3

Theory of Sideband-resolved
Electromechanical System

This chapter will develop the basic theoretical framework to understand the electromechanical inter-

action specifically in the sideband resolved regime. A thorough development of the theory leading

up to what is required to understand the physics behind the measurements is presented.

3.1 Reflective coupling to a microwave resonator

We consider a resonator mode â at frequency ωr, which is coupled to a single waveguide with

coupling strength κe, and to the environment with the coupling strength κi (see Fig. 3.1). We follow

general input-output theory [67] to write the time derivative of the annihilation operator

˙̂a(t) = −
(
iωr +

κ

2

)
â(t)−

√
κeâin(t)−

√
κiâb,r(t)−

√
κeâb,wg(t), (3.1)

where κ = κe + κi is the total resonator linewidth, âin(t) represents the annihilation operator of

the coherent input mode, âb,wg(t) the waveguide mode operator, and âb,r(t) is the respective field

operator of the resonator environment. We take the Fourier transform to remove the time derivative,

and simplify to get the frequency dependence

â(ω) =
−√

κeâin(ω)−
√
κiâb,r(ω)−

√
κeâb,wg(t)

κ/2 + i(ωr − ω)
. (3.2)
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Figure 3.1: System modes, coupling rates and noise baths. In the reflective geometry the mi-
crowave cavity mode â is coupled to the coherent waveguide modes âin and âout with the external
coupling strength κe. It is also coupled to a bath of noise photons, ideally at the refrigerator temper-
ature nb,r, with the intrinsic coupling strength κi. In addition, the waveguide bath mode âb,wg can be
populated with thermal noise photons nb,wg, which also couples with κe. The mechanical resonator
mode b̂ is coupled to the microwave resonator with the parametrically enhanced electromechanical
coupling strength G. In addition, it is coupled to a bath of noise phonons, ideally at the refrigerator
temperature nb,m, with the intrinsic coupling rate γm,i.

The resonator output field is defined as

âout(ω) = âin(ω) +
√
κeâ(ω)

= âin(ω) +
−κeâin(ω)−

√
κeκiâb,r(ω)− κeâb,wg(t)

κ/2 + i(ωr − ω)
,

(3.3)

which we can use to calculate the complex scattering parameter as measured by a network analyzer

S11(ω) =
⟨âout(ω)⟩
⟨âin(ω)⟩

= 1− κe
κ/2 + i(ωr − ω)

, (3.4)

where the incoherent bath mode terms drop out. We use this function to simultaneously fit the real

and imaginary part of the measured cavity response and extract the intrinsic and extrinsic cavity

coupling rates.

3.1.1 Derivation of intra-cavity photon number

It is useful to define the intra-cavity photon number nd due to a classical coherent drive tone at

frequencyωd. This classical coherent drive is used to parametrically enhance the interaction between

the cavity and the mechanical oscillator as it will be explained later. We replace the field operators

in Eq. 3.2 with the classical amplitudes â(ω) → α(ω) and discard the resonator and waveguide bath

modes to get

nd = |αd|2 = |αin|2
4κe

κ2 + 4∆2
r,d

. (3.5)
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Here we have introduced the resonator drive detuning ∆r,d = ωr − ωd and the input photon flux

|αin|2 = Pin/(ℏωd). The power at the cavity input can be expressed as Pin = 10−310(A+Pd)/10 with

Pd being the drive power in dBm and A the total attenuation of the input signal in dB due to the

losses from the source to the sample.

3.1.2 Asymmetric lineshape

The measured spectra of the cavity does not always have the shape of a symmetric lorentzian and

shows fano-features. Fano line shapes generally originate from interference between a resonant

mode and a background mode [68]. Experimental imperfections, such as leakage or reflections in

the feedline circuit, can lead to such asymmetric cavity line shapes. We can model this effect by

introducing a complex valued external resonator to waveguide coupling parameter κ̄e = |κe|e−iq,

where q is a version of the Fano parameter. While small q values do not change the magnitude of the

inferred external coupling (or the drive photon number), they correctly model small asymmetries in

the Lorentzian cavity response [69]. For simplicity we define the generalized coupling κ̄e = κe− iq

and substitute into Eq. 3.4, to get the generalized resonator line shape

S11(ω) = 1− κe − iq

κ/2− i(ωr − ω)
. (3.6)

3.2 Derivation of cavity electromechanical response functions

In this section we follow previous work [21, 70–72] to calculate the coherent response and the full

noise spectrum of the system. In contrast to earlier treatments we also include thermal noise in the

feedline circuit, which gives rise to an increased mechanical occupation and an asymmetric cavity

noise line shape.

The Hamiltonian of the coupled microwave cavity-mechanical system (see Fig. 3.1) can be writ-

ten as

Ĥ = ℏωrâ
†â+ ℏωmb̂†b̂+ ℏg0â†â(b̂† + b̂), (3.7)

where b̂ (b̂†) is the annihilation (creation) operator of the mechanical mode at frequency ωm, and g0

is the electromechanical coupling strength, i.e., the resonator frequency shift due to a mechanical
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displacement corresponding to half a phonon on average. We excite the microwave resonator mode

using a strong drive tone at frequency ωd, detuned from the resonator frequency by∆r,d = ωr−ωd.

The linearized Hamiltonian in the rotating frame is then given as

Ĥ ′ = −ℏ∆r,dâ
†â+ ℏωmb̂†b̂+ ℏG(â† + â)(b̂† + b̂), (3.8)

whereG =
√
ndg0 is the parametrically enhanced optomechanical coupling strength. The linearized

Langevin equations are given as

˙̂a(t) = −
(
i∆r,d +

κ

2

)
â(t)− iG(b̂(t) + b̂†(t))−

√
κeâin(t)−

√
κiâb,r(t)−

√
κeâb,wg(t) (3.9)

˙̂
b(t) = −

(
iωm +

γm,i

2

)
− iG(â†(t) + â(t))−√

γm,ib̂b,m(t). (3.10)

Taking the Fourier transform and simplifying we obtain

χ−1
r (ω)â(ω) = −iG(b̂(ω) + b̂†(ω))−

√
κeâin(ω)−

√
κiâb,r(ω) (3.11)

χ̃−1
r (ω)â†(ω) = iG(b̂(ω) + b̂†(ω))−

√
κeâ

†
in(ω)−

√
κiâ

†
b,r(ω) (3.12)

χ−1
m (ω)b̂(ω) = −iG(â(ω) + â†(ω))−√

γm,ib̂b,m(ω) (3.13)

χ̃−1
m (ω)b̂†(ω) = iG(â(ω) + â†(ω))−√

γm,ib̂
†
b,m(ω), (3.14)

where we have introduced the uncoupled susceptibilities of the cavity and the mechanical mode

χ−1
r (ω) = κ/2 + i(∆r,d − ω) (3.15)

χ̃−1
r (ω) = κ/2− i(∆r,d + ω) (3.16)

χ−1
m (ω) = γm,i/2 + i(ωm − ω) (3.17)

χ̃−1
m (ω) = γm,i/2− i(ωm + ω). (3.18)

In the sideband resolved limit ωm ≫ κ,G, and for positive detuning of the drive tone ∆r,d ≈ ωm
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(red side pumping), the linearized Langevin equations can be written approximately as

â(ω) =
iGχmχr

√
γm,ib̂b,m(ω)− χr(

√
κeâin(ω) +

√
κiâb,r(ω) +

√
κeâb,wg(ω))

1 +G2χmχr
(3.19)

b̂(ω) =
−χm

√
γm,ib̂b,m(ω)− iGχmχr(

√
κeâin(ω) +

√
κiâb,r(ω) +

√
κeâb,wg(ω))

1 +G2χmχr
. (3.20)

Now we can calculate the cavity output mode:

âout(ω) = âin(ω) +
√
κeâ(ω)

= âin(ω)− (âin(ω) + âb,wg(ω))
κeχr

1 +G2χmχr
− âb,r(ω)

√
κeκiχr

1 +G2χmχr

+ b̂b,m(ω)
iG

√
κeγm,iχmχr

1 +G2χmχr
.

(3.21)

3.3 Electromagnetically Induced Transparency

We first calculate the coherent part of the system response using Eq. 3.21 and drop incoherent noise

terms to get

S11(ω) =
⟨âout(ω)⟩
⟨âin(ω)⟩

= 1− κeχr
1 +G2χmχr

. (3.22)

Substituting the bare response of the cavity and the mechanical oscillator we get the coherent EIT

response function valid for small probe drive strengths

S11(ω) = 1− κe

κ/2 + i(∆r,d − ω) + G2

γm,i/2+i(ωm−ω)

. (3.23)

In order to take into account potential interference with a continuum of parasitic modes, we can

follow the procedure outlined above. Substituting κe → κe − iq we get

S11,as(ω) = 1− κe − iq

κ/2 + i(∆r,d − ω) + G2

γm,i/2+i(ωm−ω)

, (3.24)

which can be used to fit asymmetric EIT spectra.
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3.4 Quantum derivation of observed noise spectra

Using the Fourier transforms defined above, we can write the spectral density of an operator Â as

SAA(t) =

∫ +∞

−∞
dτeiωτ

⟨
Â†(t+ τ)Â(t)

⟩
(3.25)

SAA(ω) =

∫ +∞

−∞
dω′

⟨
Â†(ω)Â(ω′)

⟩
. (3.26)

The auto-correlation function of the detected normalized field amplitude (or the photo current) of

the output mode Î(t) = âout(t) + â†out(t) is then given as

SII =

∫ +∞

−∞
dω′

⟨(
âout(ω) + â†out(ω)

)(
âout(ω

′) + â†out(ω
′)
)⟩

. (3.27)

Substituting âout(ω) and â†out(ω) from Eq. 3.21 we find a general expression for the single sided

noise spectrum

S(ω) = nb,wg

∣∣∣(1− κeχ̃r
1 +G2χ̃mχ̃r

)∣∣∣2 + nb,r
|κeκiχ̃r|2

|1 +G2χ̃mχ̃r|2
+ nb,m

κeγm,iG
2|χ̃m|2|χ̃r|2

|1 +G2χ̃mχ̃r|2

+(nb,wg+1)
∣∣∣(1− κeχr

1 +G2χmχr

)∣∣∣2+(nb,r+1)
κeκi|χr|2

|1 +G2χmχr|2
+(nb,m+1)

κeγm,iG
2|χm|2|χr|2

|1 +G2χmχr|2
.

(3.28)

Here, nb,wg and nb,r represent the bath of noise photons from the waveguide and the microwave res-

onator environment respectively; nb,m corresponds to the phonon bath at the mechanical frequency

(see Fig. 3.1). We assume thermal input noise correlations for all input noise terms, i.e., ⟨b̂b,m(ω)b̂†b,m(ω′)⟩ =

(nb,m+1)δ(ω+ω′), ⟨b̂†b,m(ω)b̂b,m(ω′)⟩ = nb,mδ(ω+ω′), ⟨âb,r(ω)â†b,r(ω
′)⟩ = (nb,r+1)δ(ω+ω′),

⟨â†b,r(ω)âb,r(ω
′)⟩ = nb,rδ(ω+ω′), ⟨âb,wg(ω)â†b,wg(ω

′)⟩ = (nb,wg+1)δ(ω+ω′) and ⟨â†b,wg(ω)âb,wg(ω
′)⟩ =

nb,wgδ(ω + ω′).

In the sideband resolved regime and positive detuning (red sideband pump) we can drop the

terms proportional to χ̃m and χ̃r. In order to represent a realistic experimental setup, we introduce

the fixed gain G in units of dB and the system noise temperature nadd in units of resonator quanta

and referenced to the cavity output. We can now write the full expression for the single sided power
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spectral density as measured by a spectrum analyzer, valid in the presence of all relevant noise baths

S(ω) = ℏωd10
G/10

[
nadd + nb,wg + (nb,wg + 1)

∣∣∣(1− κeχr
1 +G2χmχr

)∣∣∣2
+ (nb,r + 1)

κeκi|χr|2

|1 +G2χmχr|2
+ (nb,m + 1)

κeγm,iG
2|χm|2|χr|2

|1 +G2χmχr|2
]
. (3.29)

We minimize the number of free parameters by eliminating the resonator bath nb,r using the relation

κnr = κenb,wg + κinb,r. (3.30)

With the Eqs. 3.19 and 3.20 we can calculate [71] the mechanical occupation nm

nm = nb,m

(
γm,i

κ

4G2 + κ2

4G2 + κγm,i

)
+ nr

(
4G2

4G2 + κγm,i

)
, (3.31)

which we use to also replace the mechanical bath occupation nb,m in Eqs. 3.29.

3.4.1 Thermal waveguide noise

Thermal waveguide noise term could originate from a rise of the electronic temperature of the on-

chip feedline circuit.

Figure 3.2 a shows a comparison of noise spectra with and without waveguide noise. In the

presence of a broad band thermal input field, the background rises and the resonator noise peak

shrinks, even though the resonator noise bath is kept constant. The reason is that the cavity filters

the broad band input noise, effectively changing the background of the cavity noise peak. If the

waveguide noise bath matches the cavity noise bath, no cavity noise peak is observed even though

the cavity temperature is increased.

Compared to a model which attributes this background change to a modification of the amplifier

noise temperature or an increased attenuation at the output of the detection circuit, i.e., a change of

nadd only, we extract almost twice the cavity occupation nr using Eq. 3.29. This also affects the

lowest observed mechanical occupation and raises it. Figure 3.2 b shows the extracted noise baths

for the dataset measured at 26 mK.
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Figure 3.2: Noise Budget. a, Shown are solutions to Eq. 3.29 over the resonator bandwidth (left)
and the mechanical bandwidth (right). The different curves are plotted for a set of different noise
bath parameters, as indicated in the legend. b, The fitted noise occupancies nm, nr, and nb,wg are
shown together with the resonator bath nb,r.

3.4.2 Asymmetric noise spectra

In most electromechanical measurements the cavity noise bath exceeds the waveguide noise bath

for all relevant pump powers. In this case the microwave resonator bath nr manifests itself as a

broad band resonator noise peak on top of the background. This power dependent noise peak shows

a small asymmetry for the highest pump powers. Such an asymmetry is qualitatively expected from

interference between narrow band cavity noise and broad bandwaveguide noise. We follow a similar

procedure as outlined above and introduce a complex waveguide coupling constant to find better

agreement with the measured data in this κe → κe − iq in the first term proportional to nb,wg in

Eq. 3.29 and expand it. For κ2e ≫ q2 we can only keep q to linear order and simplify the expressions.

We can then write the asymmetric noise power spectrum with two additional terms as

Sas(ω) = S(ω)+ℏωd10
G/10(nb,wg+1)

[2qG2(ωm − ω)|χm|2|χr|2

|1 +G2χmχr|2
+
2q(∆r,d − ω)|χr|2

|1 +G2χmχr|2
]
. (3.32)

The additional two terms are odd functions with a vanishing integral. This ensures the same fit results

as obtained compared to using the symmetric model Eq. 3.29. Defined in this way, the asymmetry

scales with the waveguide noise bath and the Fano parameter q, which is independent of any other

parameters. We find excellent agreement between this model and the measured broad band noise

spectra at high pump powers (see chapter 3). It is important to point out that only the relevant bath

occupancies nm, nr, and nb,wg as well as q (in the case of the highest drive powers) are actual fit
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parameters, while all other relevant parameters should be extracted from - or verified in - independent

(low drive power) measurements.

3.4.3 Relation to the displacement spectrum

In the weak coupling regime we can relate the single sided displacement spectrum Sx(ω) using

S(ω)

ℏω
=

Sx(ω)

x2zpf

κe
κ
Γ+ (3.33)

with the photon scattering rate Γ+ ≈ 4G2/κ for the optimal detuning ∆r,d = ωm, and the factor

κe/κ taking into account the limited collection efficiency of photons leaving the cavity.

3.5 Low drive power limits

At low drive powers and sufficient shielding from room temperature Johnson noise, it is a very good

approximation to set nb,wg → 0. Eliminating the waveguide noise input allows for a significant

simplification of the power spectrum

S(ω) = ℏωd10
G/10

(
1 + nadd +

4κe(nrκ(γ
2
m,i + 4(ωm − ω)2) + 4nb,mγm,iG

2)

|4G2 + (κ+ 2i(∆r,d − ω))(γm + 2i(ωm − ω))|2
)
, (3.34)

with the mechanical noise bath nb,m related to the mechanical occupation nm in Eq. 3.31. The

chosen attenuation and shielding of input and output microwave lines connecting the sample to

room temperature Johnson noise limits the expected cavity occupation. (see for example Ref. [73]

for an independent temperature measurement in a similar setup). Under these assumptions, which

must be verified by low power measurements (constant background noise, no cavity noise peak), we

can simplify the power spectrum to the more standard form used in cavity electro- and optomechnics

S(ω) = ℏωd10
G/10

(
1 + nadd +

16nb,mκeγm,iG
2

|4G2 + (κ+ 2i(∆r,d − ω))(γm + 2i(ωm − ω))|2
)
. (3.35)

Without resonator occupation, Eq. 3.31 simplifies to

nm = nb,m

(
γm,i

κ

4G2 + κ2

4G2 + κγm,i

)
≈ nb,m

( 1

C + 1

)
, (3.36)
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where we introduced the cooperativity C = 4G2/(κγm,i) and assumed moderate coupling strength

4G2 ≪ κ2 in the last step.

3.6 Linear response limit - system calibration

For very small drive powers where C ≪ 1 we can simplify the expected thermal noise spectrum

further. Dropping terms associated with backaction allows to measure the displacement noise in a

self-calibrated way. This compact model is particularly useful to back out g0 and the system noise

temperature with a minimal number of assumptions.

Starting with Eq. 3.35 we can make the replacement nb,m ≈ nm and drop the backaction term

in the denominator. Both is valid for C → 0. We then insert G =
√
ndg0 with the drive photon

number defined in Eq. 3.5. We furthermore assume that the gain of the system is flat over the

relevant detuning such that we can introduce the directly reflected pump power measured at the

spectrum analyzer Pr = 10G/10Pout. The cavity output power is related to the cavity input power

via Eq. 3.4

|S11|2 =
Pout

Pin
=

4∆2
r,d + (κ− 2κe)

2

4∆2
r,d + κ2

. (3.37)

Finally, we can write the measured noise spectrum, normalized by the measured reflected pump tone

S(ω)

Pr
= O +

64nmκ2eγm,ig
2
0

(4∆2
r,d + (κ− 2κe)2)(κ2 + 4(∆r,d − ω)2)(γ2m,i + 4(ωm − ω)2

. (3.38)

Only directly measurable system parameters and the temperature of the mechanical mode need to be

known to extract g0 without any further assumptions about the particular gain, attenuation or noise

temperature of the chosenmeasurement setup. Knowing g0, it is easy to accurately back out the input

attenuation A = −66.3 dB and drive photon number nd (for example from an EIT measurement).

Furthermore, from the measured offset

O = (1 + nadd)
4κe

nd(4∆
2
r,d + (κ− 2κe)2)

(3.39)

we conveniently infer the system noise temperature in units of photons nadd ≈ 30. The system

gain G ≈ 46 dB is then easily determined from the not-normalized wide band background of the
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measured noise spectrum S(ω).
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Chapter 4

Electromechanics on Silicon Nitride
Nanomembranes

Here in this chapter, we explore Si3N4 nanomembranes as a low-loss substrate for integrating su-

perconducting microwave circuits and planar nanomechanical structures. In particular, we exploit

the thinness of the nanomembrane to reduce parasitic capacitance and greatly increase the attainable

impedance of the microwave circuit. We also use the in-plane stress to engineer the post-release

geometry of a patterned membrane [74, 75], resulting in planar capacitors with vacuum gaps down

to tens of nanometers. Combining the large capacitance of planar vacuum gap capacitors and the

low stray capacitance of compact spiral inductor coils formed on a Si3N4 nanomembrane, we show

theoretically that it is possible to realize large electromechanical coupling to both in-plane flexural

modes and localized phononic bandgap modes of a patterned beam structure.

4.1 Device Design

The key elements of the membrane microwave circuits studied in this chapter are shown schemat-

ically in Fig. 4.1(a). The circuits are created through a series of patterning steps of an aluminum-

coated 300 nm thick Si3N4 nanomembrane, and consist of a mechanical beam resonator, a planar

vacuum gap capacitor, a spiral inductor (L), and a 50 Ohm coplanar waveguide feedline. The vac-

uum gap capacitor, formed across the nanoscale cuts in the membrane defining the beam resonator,

is connected in parallel with the coil inductor to create an LC resonator in the microwave C band.

Each LC resonator sits within a 777 µm ×777 µm square membrane and is surrounded on all sides

by a ground plane. The coplanar waveguide feedline is terminated by extending the center conduc-
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Figure 4.1: Device design. a, Schematic of the membrane electromechanical circuit. b, Unit cell of
the phononic crystal nanobeam. c, Acoustic band diagram of the phononic crystal nanobeam with
a = W = 2.23 µm, Wx = Wy = 1.52 µm, and WAl = 170 nm. The nitride membrane thickness
and aluminum wire thickness are tmem = 300 nm and tAl = 65 nm, respectively. The acous-
tic bandgap is shaded in blue, with the localized breathing mode frequency indicated as a dashed
line. d, Plot of the FEM-simulated breathing mode profile. Mechanical motion is indicated by an
exaggerated displacement of the beam structure and by color, with red (blue) color indicating re-
gions of large (small) amplitude of the motion. e, Electrical circuit diagram, where Ic is the current
through the reflective coupler, L is the coil inductance, Cl is the coil capacitance, Cs is additional
stray capacitance, and Cm is the motional capacitance. The simulated displacement of the in-plane
fundamental flexural mode of the beam is shown. f, Inductance (L) and capacitance (Cl) of a planar
square coil inductor of constant areaAcoil = 87 µm×87 µm and variable wire-to-wire pitch p. Wire
width and thickness are 500 nm and 120 nm, respectively. Method of moments [76] numerically
simulated values are shown as open circles (inductance) and open squares (capacitance). Calcula-
tions using an analytical model of the planar coil inductor [77] are shown as a solid line. Vertical
lines are shown for coils with a characteristic impedance of Zo = 1 kΩ, 5 kΩ, and 20 kΩ, with the
coil self resonance frequency indicated in brackets. g, FEM simulations of the modulated capaci-
tance Cm (blue symbols) and the electromechanical coupling g0/2π (red symbols) of the in-plane
fundamental flexural mode (circles) and the phononic crystal breathing mode (squares) as a function
of the capacitor gap size s. Solid curves indicate a 1/s fit to the capacitance and coupling data.
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tor from one side of the membrane to the other, where it is shorted to the ground plane. Electrical

excitation and read-out of the LC resonator is provided by inductive coupling between the center

conductor and the spiral inductor. Note that although thinner membranes could have been used, our

choice of a 300 nm thick membrane allows for compatibility with single-mode near-IR photonic

devices, and is guided by an ultimate goal of integrating planar optical components with electrome-

chanical ones as per Ref. [26].

The electromechanical coupling between the beam resonator and the LC circuit in general de-

pends upon the particular resonant mode of the beam, and is given in terms of the linear dispersion

(gEM) of the microwave circuit resonance frequency (ωr) with respect to modal amplitude coordinate

u,

gEM =
∂ωr

∂u
= −η

ωr

2Cm

∂Cm

∂u
. (4.1)

Here Cm is the vacuum gap capacitance across the beam, Ctot is the total capacitance of the cir-

cuit, and η ≡ Cm/Ctot is the motional participation ratio. In the case of uniform in-plane beam

motion, and assuming Cm behaves approximately as a parallel plate capacitor, the cavity disper-

sion simplifies to gEM = η (ωr/2s0), where s0 is the nominal capacitor gap size. The vacuum

coupling rate, describing the interaction between light and mechanics at the quantum level, is given

by g0 ≡ gEMxzpf, where xzpf = (ℏ/2meffωm)1/2 is the zero-point amplitude, meff is the motional

mass, and ωm is the mechanical resonance frequency of a given mechanical mode of the beam.

In this work we consider a patterned beam resonator of widthW = 2.23 µm and length lbeam =

71.4 µmwhich supports two in-plane resonant modes which can be coupled efficiently to microwave

or optical cavities [26]. The beam unit cell, shown in Fig. 4.1(b), has a lattice constant a and contains

a central hole of widthWx and heightWy. A pair of upper and lower aluminum wires of thickness

65 nm and width 170 nm at the edges of the beam form one half of the vacuum gap capacitor

electrodes. Simulations of the mechanical modes of the beam are performed using a finite-element

method (FEM) solver [54], and include the internal stress of the nitride film (σ ≈ 1 GPa).

The simulated fundamental in-plane flexural mode of the patterned and wired beam, a displace-

ment plot of which is inserted into the microwave circuit of Fig. 4.1(e), occurs at a frequency of

ωm/2π = 4.18 MHz. As shown in Fig. 4.1(c,d), a higher frequency mode also results from Bragg
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diffraction of acoustic waves due to the patterning of holes along the beam’s length. In the structure

studied here the nominal hole parameters are chosen to be a = 2.23 µm andWx = Wy = 1.52 µm,

which results in a 100MHz phononic bandgap around a center frequency of 450MHz. A defect is

formed in the phononic lattice by increasing the hole width (Wx) over the central 12 holes of the

beam, resulting in a localized “breathing” mode of frequency ωm/2π = 458 MHz that is trapped

on either end by the phononic bandgap. From the simulated motional mass of both mechanical res-

onances, the zero-point amplitude is estimated to be xzpf = 8.1 fm and 4.2 fm for the flexural and

breathing modes, respectively. As motional capacitance scales roughly with mechanical resonator

size, realizing large electromechanical coupling to nanomechanical resonators depends crucially on

minimizing parasitic capacitance of the microwave circuit as per Eq. (4.1). Utilizing a planar spiral

inductor coil of multiple turns greatly increases the coil inductance per unit length through mutual

inductance between coil turns, and consequently, reduces coil capacitance. One can determine the

capacitance (Cl) and inductance (L) of a given coil geometry by numerically simulating its self res-

onance frequency with and without a known small shunting capacitance. Figure 4.1(f) displays a

method of moments numerical simulation [76] of the self resonance frequency (ωcoil) of a series of

square planar coil designs with constant area (Acoil = 87 µm ×87 µm) but varying wire-to-wire

pitch p, or equivalently, coil turns n. Here we assume a coil wire width and thickness of 500 nm and

120 nm, respectively, deposited on top of the 300 nm nitride membrane. While the coil capacitance

is roughly constant at Cl ≈ 2 fF, the coil inductance varies over 3 orders of magnitude, in good

agreement with an analytical model for planar inductors [77]. An additional stray capacitance of

Cs ≈ 2.4 fF is estimated for the full integrated microwave circuit.

Figure 4.1(g) displays the simulated motional capacitance and vacuum coupling rate versus ca-

pacitor slot size s for both the flexural and breathing modes of the beam resonator assuming a coil of

pitch p = 1 µm (n = 42, L = 68 nH,Cl = 2.1 fF, ωcoil/2π = 13.68GHz). Here, ∂Cm/∂u is calcu-

lated for each specific mechanical mode utilizing a perturbation theory depending on the integral of

the electric field strength at the dielectric and metallic boundaries of the vacuum gap capacitor [78].

For a gap size of s = 80 nm, the vacuum coupling rate is estimated to be g0/2π = 58 Hz (240 Hz

for η = 1) for the flexural mode and g0/2π = 8 Hz (65 Hz for η = 1) for the breathing mode.

Note that here we assume the outer electrode of the vacuum gap capacitor extends along the entire
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length of the beam in the case of the flexural mode, whereas for the breathing mode we limit the

outer capacitor electrode to the central 6 lattice constants of the beam where the breathing mode

has significant amplitude. Also, for the breathing mode simulations the two vacuum gap capacitors

are assumed to be connected in parallel, which doubles the vacuum coupling rate due to the mode

symmetry.

4.2 Circuit properties

4.2.1 Coil simulation

Our device is fabricated and simulated on a 300 nm thick and (777 µm)2 large Si3N4 membrane.

The coil wire is 500 nm wide and 120 nm thick, with a 1 µm pitch, 42 turns forming a square

with lateral length of only 87 µm, well in the lumped element limit. According to finite element

simulations, which include wire cross-overs, the coil is inductive up to its self resonance frequency

of νsrf = 13.38GHz, where the half wavelength roughlymatches the total wire length of l = 7.7mm.

We repeat this simulation with a small additional shunt capacitor of known value (∆C = 0.1 fF) and

extract the new self resonance frequency νsrf,2. Solving the two simple relations ωsrf = (LCl)
−1/2

and ωsrf,2 = (L(Cl + ∆C))−1/2, we extract L = 68 nH and Cl = 2.1 fF. These results are valid

close to, but below, the self resonance frequency of the coil. In this limit we realize a maximum

impedance of Z0 =
√

L/Cl ≈ 5.7 kΩ, far exceeding the vacuum impedance Zvac ≈ 377 Ω, and

approaching the resistance quantum Rq = h/(2e)2 ≈ 6 kΩ.

4.2.2 Full circuit parameters

Knowing the inductance L of the fabricated inductor, as well as the actually measured resonance

frequency of ωr/(2π) = 7.965GHz, yields a total capacitance ofCtot = Cl+Cm+Cs = 5.87 fF and

a total circuit impedance ofZtot = 3.4 kΩ (see Fig. 7.6). Themodulated capacitanceCm is a function

of the capacitor slot size, which we estimate from SEM images to be on the order of s ≈ 80−100 nm.

Numerical finite element simulations yield a nanobeam capacitance ofCm ≈ 1.4 fF for this gap size

(see Fig. 4.1), which gives a participation factor of η ≈ 0.25.

Using a self resonance frequency simulation of the full electrical circuit including Cm, we can
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attribute the remaining stray capacitance of Cs ≈ 2.4 fF to the coil to capacitor wiring (57 %), the

presence of a second resonant circuit (14 %), the coupling wire (7 %), and non-ideal crossovers

(7 %). The remaining 0.35 fF (15 %) we attribute to frequency dependence, packaging and our

uncertainty of the relative permittivity of silicon nitride at low temperature ϵr ≈ 8. As expected, for

these full circuit simulations we extract the same inductance L as for the coil only simulations. The

value ofL = 68 nH is consistent with both, the modifiedWheeler and the current sheet method [77],

to within ±2 nH.

4.2.3 High frequency mechanical mode

In order to estimate the electromechanical coupling of the high frequency acoustic mode, we con-

sider that the identical microwave circuit is coupled to both sides of the nanobeam. Here the outer

capacitor length is taken to match the acoustic defect region of 2 × 3 lattice constants. We find a

reduced participation ratio η = 0.11 due to the reducedCm in this case. Further improvements in re-

ducing the circuit’s stray capacitance will have a big impact for efficient coupling to high frequency

modes.

4.3 Device Fabrication

4.3.1 Wafer preparation

After a thorough RCA clean we grow a 300 nm thick film of stoichiometric Si3N4 at a temperature

of 835 C, using low pressure chemical vapor deposition on both sides of a doubly polished 200 µm

thick, high resistivity (> 10 kΩ-cm), Si ⟨100⟩ wafer. After cooldown, the dielectric film has a stress

of ≈ 1 GPa due to the differential expansion coefficient. We spin a protective layer of photoresist

and dice the wafer in 10 mm ×10 mm chips.

4.3.2 Membrane patterning

The chips are cleaned using weak sonication in ACE and IPA and prebaked at 180 ◦C for 2 min on

a hotplate. We then spin the front side with ZEP 520A at 4000 rpm (for protection), bake at 180 ◦C

for 2 min, spin the back side with ZEP 520A at 2000 rpm and bake at 180 ◦C for 2 min. Patterning
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of the 16 membrane areas of size 1 mm ×1 mm each is done with 100 keV electron beam exposure

with a 200 nA electron beam, 50 nm fracturing size, and a dose of 250 µC/cm2 on the chip back

side. This layer is carefully aligned to the chip corners. We develop with ZND-N50 for 2.5 min

and rinse in MIBK for 0.5 min. This is followed by an ICP-RIE etch of the silicon nitride in the

developed areas, using a C4F8/SF6 (34/12 sccm) plasma, generated with an ICP power of 1000 W,

RF power of 30 W and a DC bias of 84 V, at a pressure of 15 Torr and a temperature of 25 ◦C for

7 min 15 s. We finish this layer by a thorough cleaning of the chips using weak sonication in TCE,

IPA, ZDMAC, ACE, and IPA.

4.3.3 Nanobeam patterning and membrane pre-etching

This layer initially follows the same procedure to pattern the top side of the chip (no resist on the

back side) with the nanobeams, pull-in cuts, and the global and pattern alignment markers of size

(20 µm)2, with these process parameters: 300 pA beam, 2.5 nm fracturing, 275 µC/cm2 dose, and

7 min 50 s etch time. We then use an o-ring sealed holder to expose only the back side of the chip

to 30 % KOH in water at 85 ◦C (stir bar at 400 rpm). This anisotropic Si wet etch is stopped when

the wafer becomes semi-transparent (dark orange) in the membrane area, when illuminated with an

LED on the sealed side of the chip. The color indicates a silicon thickness of ≈ 5 µm which is

usually achieved after 2.5 h of etching. After cleaning the chip in ultra-pure deionized water and

IPA, we wet etch both the front and back side of the chip in 30 % KOH in water at 65 ◦C (stir bar

at 100 rpm) for 70 s. This partially undercuts (≈ 100 nm) the nanobeams for a clean subsequent

inverse shadow evaporation process [78], used to pattern the small gapped capacitors. The chips are

then rinsed in hot water and fresh piranha solution (mix 45 mL H2SO4 with 15 mL H2O2 at 85 ◦C

with stir bar at 300 rpm) for 8 min followed by a water and IPA rinse.

4.3.4 Capacitors and ground plane

This layer patterns all of the electrical circuit, except for the coil wires. We start with a prebake

at 180 ◦C for 2 min, and spin the front side with ZEP 520A at 2000 rpm, followed by another

bake at 180 ◦C for 2 min. We use 100 keV electron beam lithography to pattern the ground plane

and transmission lines (200 nA beam, 50 nm fracturing, 290 µC/cm2 dose with PEC), as well as
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the capacitor wires, and the wires connecting the capacitors with the coil end and center (10 nA

beam, 10 nm fracturing, 275 µC/cm2 dose). This layer is carefully aligned to the etched negative

markers from the previous step. We develop the chips in the same way and use a O2 plasma ash

process (50 sccm O2, 0.74 bar, 13.56 MHz, 35 W, 2 min) to descum the surface before deposition

of aluminum. For the deposition we use an electron beam evaporator (0.3 nm/s, 65 nm thickness at

1 · 10−7 mbar to 2 · 10−7 mbar). We then do a lift-off process in 80 ◦C NMP for> 1 h and carefully

rinse in ACE and IPA.

4.3.5 Scaffolding layer

Now we pattern a scaffolding layer to fabricate the cross-overs. After prebaking, we spin LOR 5B

at 3000 rpm and bake at 180 ◦C for 5 min, followed by spinning PMMA 950k A2 at 4000 rpm

and baking at 180 ◦C for 5 min. We then beam write the negative pattern of the cross-over support

structure using aligned electron beam lithography (200 nA beam, 25 nm fracturing, 1000 µC/cm2

dose). The resist is developed using MIBK:IPA (1:3) for 1 min, and rinsed in IPA for 30 s. We

then wet etch the scaffolding layer using MF-319 for 8 s, followed by a water rinse and IPA which

stops the etch. Finally we remove the remaining PMMA layer with ACE (30 s) and reflow the LOR

cross-over support layer on a hot plate at 200 ◦C for 10 min. This creates a structurally stable arc

shaped cross over scaffolding.

4.3.6 Coil wire patterning

In order to pattern the narrow pitch coils, we spin PMMA 495 A8 at 2000 rpm, bake, spin PMMA

950k A2 at 2000 rpm and bake again. Then we lithographically define the coil wires, which overlap

the capacitor wires (10 nA beam, 10 nm fracturing, 1800 µC/cm2 dose) and develop the resist as

described previously. Development is followed by the same plasma ashing, deposition of aluminum

(1 nm/s, 120 nm, p≈ 2 · 10−7 mbar), and lift off, during which the NMP (at 80 ◦C, 3 h) dissolves

the LOR scaffolding layer.
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4.3.7 DC contact wire

After a careful rinse with ACE and IPA we reproduce the previous layer recipe to pattern a small

(500 nm×4 µm) DC contact wire that symmetrically covers all overlap regions between capacitor

wire and coil wire (two per coil and capacitor). Here we use an in-situ ion gun etch process (normal

incidence with 4 cm gridded Kaufman source, 400 V, 21 mA for 5 min) right before the aluminum

deposition of thickness 140 nm, in order to establish reliable contact. Contact is tested after lift-off

on DC test structures of the same contact size located in the center of the chip. High resistance

contacts with low capacitance at microwave frequencies would lead to additional parasitic in-series

capacitances of the fabricated circuit.

4.3.8 Release

For the final release step we prepare a silicon enriched solution of TMAH to selectively etch the

silicon without aluminum corrosion [79,80]. We use a custom built reactor vessel with thermometer

port and a hotplate with magnetic stir bar to mix 60 g of TMAH (25 %, 6N) and 250 g water, and

then add 5.12 g of silicon powder (-325 mesh, 5N) and stir at 300 rpm. After the chemical reaction

calms down we start heating the solution up to 80 ◦C. When the solution is clear, we wait for 1 h and

prepare a clear mixture of 5.21 g of TMAH (25%, 6N) and 2.11 g of the oxidizing agent ammonium

persulfate in a small beaker. We add the mixture to the solution (stir bar at 1000 rpm), wait 10 min

to 15 min, reduce the stir speed and add the sample in a vertical position. The sample is securely

clamped, but with the membranes open to a steady flow of solution on the back and front side of the

chip. We keep the solution at 80 ◦C and wait for the membranes to become fully transparent (1 h to

2 h). As a last step we carefully remove the sample, rinse it throughly in hot water, cold water, IPA,

ultra purified IPA, and dry it using a CO2 critical point dryer.

4.4 Coherent electromechanical response

Sweeping a narrowband microwave source across the 6 GHz-12 GHz frequency range, and measur-

ing in reflection, we find a high-Q, strongly coupled microwave resonance at ωr/2π = 7.965 GHz

corresponding to the larger coil of 42 turns. This is very close to the expected LC resonance fre-



59

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

0

20

40

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦
◦◦◦
◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

-10

0

10

-1000 -500 0 500 1000

-120

-100

-80

-60

-40

-20

0

±   (kHz)

a b
8 Hz

c d

C

ωd ωp ωr

∆p,d δ

¢r,d        ≈ !m

103

10-1

104
105 106

107

100

101

102

103

104

105

106

Pd (dBm)
-30 -20 -10 0 10 20

nd

γm,i/2¼  (Hz)

G/2¼  (Hz)

∙e/2¼ (Hz)

∙/2¼  (Hz) |S
11

|

Pd    = {31 dBm

°
m
/
2¼

 (
H

z)
δω

m
/2
¼
 (

H
z)

-7 -6 -5 -4 -3 -2

¢r,d/2¼     (MHz)

-0.2 -0.1 0 0.1 0.2

-18

-16

-12
-14

{21 dBm

{11 dBm

{1 dBm

9 dBm

19 dBm

Figure 4.2: Coherent response. a, Schematic of the two-tone EIT spectroscopy measurement. b,
Measured (blue points) probe spectra for different drive powers, all with a fixed drive detuning
of ∆r,d ≈ ωm = 4.815 MHz. Each spectrum is offset by −16.5 dB for better visibility. Fits to
measured spectra using Eq. (3.24) are shown as solid red curves. Inset shows a zoomed-in view of
the lowest power measurement with a mechanical linewidth of γm/2π = 8 Hz. c, Extracted system
parameters (symbols) as a function of drive power using Eq. (3.24) to fit the measured spectra. Error
bars correspond to a 95 % confidence interval in the fit to the measured spectra. d, Mechanical
linewidth γm (top) and the mechanical frequency shift δωm due to the optical spring effect (bottom)
versus drive detuning ∆r,d at a fixed intra-cavity drive photon number. Shown are the fit values
from the measured probe spectra for two different fridge temperatures, Tf = 11 mK (blue circles)
and Tf = 114 mK (red circles). The drive photon number at Tf = 11 mK (Tf = 114 mK) is equal
to nd = 2350 (5980). The solid line curves are a fit to the damping and spring shift using a radiation
pressure back-action model as per Ref. [81].

quency based upon the above simulations, indicating that the stray and motional capacitance of the

circuit are close to the expected values. Using a two-tone pump and probe scheme we are able to

study the coherent interaction between the microwave electrical circuit and the coupled nanobeam

mechanical resonator. In the driven linearized limit [82], the circuit electromechanical system is

approximately described by an interaction Hamiltonian HOM = ℏG(â†b̂ + âb̂†), where â (â†) is

the microwave photon annihilation (creation) operator for the LC resonator mode of the circuit and

b̂ (b̂†) are the phonon annihilation (creation) operators of the mechanical resonance. G = g0
√
nd

is the parametrically enhanced electromechanical coupling strength, with nd corresponding to the

number of intra-cavity microwave drive photons inside the resonator. As schematically indicated in

Fig. 4.2, pumping with a strong drive at a detuning ∆r,d ≡ ωr − ωd ≈ ωm from the LC resonance

of the circuit produces a two-photon resonance condition with a second (weaker) probe tone as it

is swept across the microwave resonance. Interference in the reflected probe signal occurs between

that part of the probe field which enters the microwave resonator and is directly re-emitted, and that
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part of the probe field which enters the cavity, interacts with the mechanical resonator, and is then

re-emitted from the cavity. Probing this interference as a function of the probe detuning δ yields the

optomechanical analog of electromagnetically induced transparency (EIT) [83, 84].

For red-sideband pumping (∆r,d ≈ ωm) the expected probe reflection spectrum is given by

Eq.3.24. In this workwe focus on the fundamental in-plane flexural mode of the beam. The phononic

crystal breathing mode at a frequency of 450MHz is not accessible in our current single microwave

resonator circuit given the high drive power required to excite the circuit at the large cavity detuning

required for two-photon resonance. In future work a double resonant system [85] may be employed

to overcome this limitation and allow for efficient excitation and detection of high frequency me-

chanical resonators such as the breathing mode. By stepping the pump detuning frequency (∆r,d)

and sweeping the probe signal across the cavity resonance, an EIT-like transparency window in the

microwave cavity response is found at a drive detuning of 4.4815 MHz, close to the theoretically

simulated resonance frequency (4.18MHz) of the fundamental in-plane flexural mode. Figure 4.2(b)

shows a series of measured probe spectra (blue points) at different applied drive powers for a drive

detuning fixed close to the two-photon resonant condition of ∆r,d/2π ≈ ωm = 4.48 MHz. Fits to

the measured spectra are performed using Eq. (3.24) and plotted as solid red curves in Fig. 4.2(b).

From each fit we extract the loaded microwave resonator properties (κ, κe, ωr), the parametric cou-

pling rate (G), the mechanical frequency (ωm), and the intrinsic mechanical damping rate (γm,i).

These fit values are plotted versus drive power in Fig. 4.2(c). The microwave cavity parameters

(κ/2π ≈ 1.28MHz, κe/2π ≈ 0.896MHz) are found to be approximately constant over 5 orders of

magnitude in drive power, up to an intra-cavity photon number of nd ≈ 2× 106. For nd ≳ 2× 106

the intrinsic damping of the cavity begins to rise, and above nd ≈ 4× 107 (Pd = 19 dBm) the LC

circuit goes normal. Conversion from drive power to intra-cavity photon number nd is performed

using the thermometry calibrations described in the next section. At low drive power (C ≲ 100) the

fits yield high confidence estimates of both C and γm,i, with the intrinsic mechanical damping of

the resonator estimated to be γm,i/2π = 8 Hz at the lowest drive powers (see inset to Fig. 4.2(b)).

At high drive powers (C ≳ 100) the transparency window saturates and becomes too broad to ac-

curately determine either C or γm,i. As such we only provide fit estimates for C and γm,i below a

cooperativity of 100. Figure 4.2(d) shows a plot of the measured mechanical frequency shift (δωm)
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and damping (γm ≡ γm,i + γEM) versus drive detuning ∆r,d. Here we adjust the drive power as

a function of drive detuning so as to maintain a constant intra-cavity drive photon number, and fit

the transparency window using a Fano lineshape (see SI). Data was taken at Tf = 11 mK as well

as at an elevated fridge temperature of Tf = 114 mK. The intra-cavity drive photon number in

both cases was chosen to yield a peak cooperativity of order unity. We observe broadening of the

mechanical linewidth that peaks at a detuning ∆r,d equal to the mechanical resonance frequency,

and stiffening (softening) of the mechanical mode for drive detuning above (below) the mechanical

resonance frequency. Plots of the theoretical damping and frequency shift due to radiation pressure

backaction [81] are shown as solid back curves in Fig. 4.2(d). We find a parametric coupling rate

G/2π = 1.80 kHz (2.98 kHz) and intrinsic mechanical damping rate γm,i/2π = 7.7 Hz (14 Hz)

that fit both the damping and spring shift curves at Tf = 11 mK (114 mK), in close agreement with

the estimated values from the fixed detuning data in Fig. 4.2(b).

4.5 Mode thermometry and backaction cooling

Measurement of the mechanical resonator noise is used to calibrate the delivered microwave power

to the circuit and study the backaction cooling of the mechanical resonator. In the resolved sideband

limit (ωm/κ ≫ 1), efficient scattering of drive photons by mechanical motion occurs for ∆r,d =

±ωm, in which either anti-Stokes (∆r,d = ωm) or Stokes (∆r,d = −ωm) scattering is resonant

with the cavity. Blue detuned pumping at ∆r,d = −ωm results in Stokes scattering of the drive

field, down-converting a photon to the cavity resonance and emitting a phonon into the mechanical

resonator in the process. Red detuned pumping at ∆r,d = ωm, as illustrated in Fig. 4.3(a), leads to

predominantly anti-Stokes scattering in which a drive photon is up-converted to the cavity resonance

and a phonon is absorbed from the mechanical resonator. The per-phonon anti-Stokes scattering

rate for this pumping geometry is ΓAS ≈ 4G2/κ, to a good approximation equal to the backaction

damping rate γEM which leads to cooling of the mechanical resonator [70].

Figure 4.3(b) shows a plot of the measured area underneath the Lorentzian noise peak of the

fundamental in-plane mechanical resonance versus fridge temperature. Here, data for blue detuned

(∆r,d = −ωm) driving has been averaged over several different temperature sweeps, with the area

at each temperature normalized to units of phonon occupancy (nb,m) using the high temperature
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Figure 4.3: Mechanical displacement noise a, Schematic showing the pump detuning and scat-
tered microwave signals used to measure the mechanical resonator’s displacement noise. b, Plot of
the measured mechanical resonator bath phonon occupation (nb,m) and effective temperature (Tm)
as a function of the fridge temperature (Tf ). Each data point corresponds to the average inferred
occupancy for blue detuned driving (∆r,d = −ωm) at low cooperativity (C ≪ 1). Error bars cor-
responding to the standard deviation in the inferred occupancy over several temperature sweeps.
Calibration in units of occupancy is performed using a fit to Eq. (4.2) as described in chapter. 3. The
gray dashed lines show the expected Bose-Einstein distribution (nm = (exp ( ℏωm

kBTf
)− 1)−1) assum-

ing perfect thermalization to the fridge. c, Plot of the dynamic backaction cooling of the mechanical
resonator versus drive power at three different fridge temperature: Tf = 235 mK (nf,m = 1100;
open circles), Tf = 114 mK (nf,m = 530; open squares), and Tf = 26 mK (nf,m = 120; open
triangles). Data points showing the estimated average phonon occupancy of the fundamental in-
plane flexural mode at ωm/2π ≈ 4.48 MHz (nm) are shown as blue symbols, whereas data points
for the estimated microwave cavity photon occupancy at ωr/2π = 7.498 GHz (nr) are shown as
orange symbols. The corresponding effective mode temperature, Tm, of the flexural mechanical
mode is also shown on the right vertical axis. The solid line blue curves correspond to a model for
the expected mechanical mode occupancy using the a fit to the measured drive power relation forG
and the microwave cavity parameters from coherent two-tone spectroscopy, the intrinsic mechani-
cal damping from low power thermometry measurements, and a fit to the power dependence of the
microwave resonator occupancy. d,Measured anti-Stokes noise displacement spectrum for several
different drive powers at Tf = 26 mK (blue data points). Fits to the measured spectra are shown as
red solid lines. Extracted values for nm and nr are indicated and correspond to the results presented
in panel (c). Zoom-ins of the cavity noise and measured noise peaks are shown as insets.



63

measurement (Tf = 235 mK) as a reference point. In these measurements the drive power was

kept at a low enough value to ensure C ≪ 1 and negligible backaction damping or amplification.

The mechanical flexural mode is seen to thermalize with the fridge temperature all the way down

to Tf ≈ 25 mK, at which point the mechanical mode temperature saturates. The source of this

temperature saturation in the mechanics is not fully understood, but is thought to be due to coupling

to two-level systems (TLS) in the amorphous Si3N4 membrane [86]. These TLS can be driven

by the microwave input signal into an elevated temperature state, and, as presented in the SI, can

also strongly couple with the high impedance microwave cavity resonance. This latter property

may interfere with the mechanical transduction process, leading to unreliable thermometry of the

mechanical mode.

For a known temperature of the mechanical resonator, one may also employ the above low-

cooperativity thermometry measurement to calibrate the vacuum coupling rate g0 between the me-

chanics and the microwave circuit [87]. As the reflected drive signal and the scattered photons by

the mechanical mode experience the same amount of gain, normalizing the measured reflected noise

spectrum (S(ω)) by the measured reflected drive tone amplitude (Prefl) yields a Lorentzian of the

following form for a drive detuning of∆r,d = ωm,(see Chapter 2):

S(ω)

Prefl
≈ O +

16g20κ
2
e

((κ− 2κe)2 + 4ω2
m) (κ2 + 4(ωm − ω)2)

×
4nb,mγm,i

γ2m,i + 4(ω − ωm)2
. (4.2)

The background offset O yields the added noise of the measurement amplifier chain; nadd ≈ 30 for

our current set-up. Integrating the normalized spectral density for the reference fridge temperature

of Tf = 235 mK (nf,m = 1100), and assuming nb,m = nf,m, yields a vacuum coupling rate of

g0/(2π) = 41.5Hz, comparable to that estimated from numerical simulation (58Hz for s = 80 nm).

With g0 calibrated, the conversion factor between drive power and intra-cavity drive photon number

can now be determined from the coherent two-tone spectroscopy measurements of G = g0
√
nd, as

displayed in Fig. 4.2(c).

Increasing the drive power to large cooperativity levels results in backaction cooling of the me-

chanical resonator for detuning ∆r,d = ωm. Figure 4.3(c) plots the measured occupancy of the

mechanical resonator versus drive power for three different fridge temperatures, Tf = 235, 114,

and 26 mK. For the lowest of these temperatures (Tf = 26 mK), the measured noise power spec-
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tral density from low to high drive power is shown in Fig. 4.3(d). At low drive powers we find

excellent agreement between the inferred nm and the bath occupancy corresponding to the fridge

temperature, nf,m, for all three temperatures. At intermediate drive powers the mechanical mode

is both damped and cooled according to nm = nf,m/(C + 1). At the highest drive powers we

measure both an increase in broadband added noise and Lorentzian microwave cavity noise. We

attribute this excess noise to absorption of the input microwave drive. These two additional noise

inputs can lead to noise squashing in the measured output spectrum and heating of the mechanical

resonator [71, 84, 88, 89]. Using a model that includes microwave (thermal) noise in the input line

(nb,wg) and in the microwave cavity (nb,r) we fit the measured spectra at higher drive power for

the mechanical mode occupancy nm (blue symbols) and the microwave cavity noise occupancy nr

(orange symbols). The lowest mechanical occupancy is found to be nm = 0.58 for a drive pho-

ton number of nd = 106 and a fridge temperature of Tf = 26 mK, and is similar to the lowest

occupancies realized to date for other backaction cooled electromechanical resonators [84, 90, 91].

Measurements at the lowest fridge temperature of Tf = 11 mK resulted in inconsistent and fluctu-

ating cooling curves, attributable we believe to drive-power-dependent coupling of individual TLS

to the microwave cavity.

4.6 Vacuum Rabi splitting and ac Stark tuning of a nanoscopic two-

level system

The demonstrated motional sideband cooling is facilitated by the small capacitor gap size, the high

impedance, and small stray capacitance of the electrical circuit. These are very desirable properties in

the context of quantum electrodynamics (QED), e.g. with atomic systems. The vacuum fluctuations

of the tested resonator give rise to a large root mean square voltage of Vvac =
√
ℏωr/(2Ctot) =

ωr

√
ℏZtot/2 ≈ 21 µV. With a gap size of only s ≈ 80 nm, the electric field across the capacitor Cm

is as large as Evac ≈ 260 V/m, about 103 times larger than in typical coplanar waveguide resonators

and > 105 times that of typical small 3D microwave cavities of similar frequency. For the largest

pump photon numbers nd ≈ 4 · 107 we apply an rms voltage of Vmax ≈ 1.7 kV, corresponding to

a maximum field strength of Emax ≈ 21 GV/m. To our knowledge this is a record high value for a

low loss superconducting microwave resonator.
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Figure 4.4: a, Color plot of the measured reflection S11 (blue is high, yellow is low) of a weak
coherent probe tone ωp as a function of the drive power Pd for 4 different drive detunings ∆r,d.
Dashed lines show uncoupled (white) and coupled TLS-resonator eigenvalues. b,Measured eigen-
frequencies extracted from a double Lorentzian fit (circles), theory (solid lines) and the bare res-
onator frequency (dashed line) for different negative ∆r,d = (−8.5,−7.5,−6.5,−5.5) MHz and
positive ∆r,d = (4.5, 5.5, 6.5, 7.5) MHz drive detunings. c, Measured spectrum (blue) and double
Lorentzian fit (red) for∆r,d = −6.5MHz and three different drive powers; see vertical dotted lines
in panel a.

Large vacuum fields enable efficient dipole coupling g0,tls = E⃗ · d⃗ to microscopic systems with

small dipole moments d⃗, such as molecular two level systems (TLS) [86], single atoms, or charge

quantum dots. We demonstrate this by observing coherent coupling between the resonator vacuum

field and a nanoscopic TLS on the substrate (see Fig. 4.4). The demonstrated ac-Stark control of this
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nanoscopic system complements previous strain based control techniques [92], and will be useful

to suppress the negative impact of TLS in engineered solid state quantum systems. The quantum

nonlinearity of the TLS furthermore represents a unique calibration tool, which is generally missing

in electro- and opto-mechanical systems. More importantly, it could point the way to how to better

understand the origin and location of TLS, which are believed to be the limiting factor not only for

ground state cooling of electromechanical systems but more generally for improving the integration

density of low loss superconducting circuits.

In order to observe vacuum Rabi mode splitting, we reduce the probe power significantly such

that the probe photon number np ≪ 1. In order to control the interaction, we use a second off-

resonant drive tone at frequency ωd to Stark-shift the TLS into and out of resonance with the res-

onator. For sufficient detuning ∆tls,d ≡ ωtls − ωd we can adiabatically eliminate direct transitions

of the TLS [93] and define the new Stark-shifted TLS frequency as

ω̃tls ≈ ωtls +
Ω2
R

2∆tls,d
, (4.3)

with ΩR = 2g0,tls
√
nd the Rabi frequency due to the off-resonant drive tone.

Using this linearized model we find very good agreement for different drive detunings ∆r,d ≡

ωr − ωd and drive strength in the range |ΩR/(2∆tls,d)| < 1 for which the linearization is valid, see

Fig. 4.4. The attenuation A = −66.8 dB, entering via the drive photon number nd, is the only fit

parameter and agrees with our previous calibration to within 0.5 dB. The presented Stark-shift mea-

surements therefore independently confirm the previously calibrated drive photon numbers and the

electromechanical coupling g0. Similar Stark-shift calibrations are quite common in superconduct-

ing qubit experiments [94]. Opto- and electromechanics experiments on the other hand typically

lack the necessary strong vacuum nonlinearities for an absolute calibration with the vacuum field.

It is now clear that the presence of a coupled TLS can strongly modify the resonator lineshape.

This could explain why at low drive powers, where the TLS happens to be close to the resonator

frequency, the electromechanical transduction efficiency is reduced and the mechanical occupancy

appears to be lower than expected (see Fig. 4.3 (c) ). Although the studied TLS should be far detuned

in the relevant power range, there may be other weakly coupled TLS which do not Stark tune as

easily, but still absorb and scatter photons at a high rate. At high drive powers on the other hand, all
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TLS are either saturated due to the high intra-cavity photon numbers, or far detuned from the drive

and resonator frequencies.

On resonance, the vacuum Rabi split linewidths are approximately given by an equal mixture

of resonator and TLS linewidth, which we use to estimate γtls/(2π) = 1.3MHz. We extract a TLS

coupling of g0,tls/(2π) = 0.9 MHz from the minimum separation of the measured spectroscopic

lines (see Fig. 4.4 c). This puts our system very close to the strong coupling limit g0,tls ≥ (κ, γtls).

We can also put a lower bound on the electric dipole moment of this TLS |d| ≥ 0.7Debye depending

on the TLS orientation and the exact position on the capacitor.

This value is comparable to many atomic, nano- and microscopic systems, where strong cou-

pling is not readily observed. The presented techniques therefore open up new possibilities to realize

hybrid systems and can help study the loss mechanism that plagues superconducting quantum pro-

cessors more directly, selectively, and with higher sensitivity.



68

Chapter 5

Electromechanics on
Silicon-On-Insulator

5.1 Introduction

In this chapter, we develop a new fabrication process for the creation of high-Q microwave super-

conducting aluminum (Al) resonators on thin-film silicon membranes suitable for integration with

mechanical and photonic devices. Compared to the silicon nitride Si3N4 nanomembrane, the higher

dielectric index of silicon membrane makes them more suitable for photonics application within the

communication wavelength band. Simultaneously, the platform is compatible with superconducting

qubit. Moreover, the silicon has a crystalline structure and is known to have less defects compared

to amorphic structure of Si3N4 membrane, allowing for fabrication of higher quality microwave and

mechanical cavities. As a proof of concept, we demonstrate parametric radiation pressure coupling

of an 8.9 GHz microwave superconducting resonator to the motion of a 9.7MHz silicon microme-

chanical resonator. The electromechanical circuit, shown schematically in Fig. 5.1(a), consists of a

high-impedance microwave coil resonator capacitively coupled to the fundamental in-plane differ-

ential mode of a pair of patterned silicon slabs. Although not a feature exploited in the present study,

the patterned slabs also form a slotted photonic crystal cavity which supports an optical resonance

in the 1500 nm telecom wavelength band [78,95,96]. In principle, this mechanical resonator (what

we hereafter refer to as the “H-slot” resonator) could simultaneously couple to optical photons in

the photonic crystal cavity and microwave photons in the superconducting microwave resonator.

We present the preliminary results measured from “H-slot” resonator and the fabrication process is

discussed.
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Figure 5.1: a, FEM simulation of the differential mechanical mode. In this work, l = 13.5 µm,
wt = 440 nm, and lt = 4 µm. These values give a simulated mechanical mode frequency of
ωm/2π = 9.76 MHz. b, Plot of FEM simulation values of Cm versus slot size d. c, Plot of FEM
simulation values of g0 versus slot size d for: (i) Cs = Cl = 0 fF corresponding to an ideal η = 1
(blue squares) and (ii) Cl = 3.05 fF and Cs = 1.13 fF from FEM simulations of the circuit (black
diamonds). For these plots, the resonance frequency is fixed at the measured frequency of ωr/2π =
8.872 GHz. At the estimated capacitor gap of d ≈ 60 nm from SEM images, the theoretical values
of the motional capacitance and the vacuum coupling rate are Cm = 2.76 fF and g0/2π = 29.3 Hz,
respectively.

5.2 Design

The H-slot mechanical resonator is depicted in Fig. 5.1(a), where finite-element method (FEM)

numerical simulations [54] are used to solve for the fundamental in-plane mechanical motion of

the structure. The resonator is formed from a Si layer of 300 nm thickness, and consists of two

patterned slabs that are separated by a central nanoscale slot and tethered on each end to a central

clamp point. As mentioned, the hole patterning in the two slabs produces a localized photonic crystal

cavity. The hole patterning on the left side of the H-slot resonator forms a photonic crystal optical

waveguide which can be used to efficiently excite the optical cavity. Aluminum electrodes are fed

into the H-slot resonator from the right side of the structure, and span the outer edges of the two slabs

forming one half of a vacuum gap capacitor [labeled Cm in Fig. 5.1(a)]. The length (l = 13.5 µm)

of the photonic crystal slabs is chosen long enough to support a high-Q optical mode and to realize a

motional capacitance on the scale of a few femtoFarad. The width (w) of the photonic crystal slabs

is chosen to accommodate a number of photonic crystal periods that should (again) provide high

opticalQ, but otherwise is minimized to limit the motional mass of the resonator. The slab photonic
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crystals are supported by tethers whose length (lt = 4 µm) and width (wt = 440 nm) produce a

simulated mechanical frequency of ωm/2π ≈ 9.76 MHz for the fundamental in-plane differential

mode, compatible with resolved-sideband pumping through the coupled microwave circuit.

The simulated effective mass and zero-point amplitude of the differential mode are meff =

42.9 pg and xzpf = 4.5 fm, respectively. These figures include the aluminumwires (width= 250 nm,

thickness = 60 nm) that form the vacuum gap capacitor. By using a tuning fork design in which

the upper and lower slabs are coupled together at each end through the central tether clamp points,

acoustic radiation out the ends of H-slot resonator can be greatly reduced. Optimization of the

tether clamp point geometry yields a numerically simulated mechanical quality factors as high as

Qm = 3.7× 107. As shown in Chapter 3, the vacuum electromechanical coupling rate of the H-slot

mechanical resonator to the microwave coil resonator is given by

g0 = xzpf
∂ωr

∂u
= −ηxzpf

ωr

2Cm

∂Cm

∂u
, (5.1)

where u is the generalized amplitude coordinate of the fundamental in-plane differential mode of

interest, xzpf =
√
ℏ/(2ωmmeff) is the zero-point amplitude of the mechanical resonance, η =

Cm/Ctot is the participation ratio of the motional capacitance (Cm) to the total capacitance of the

circuit (Ctot = Cm+Cl+Cs). In addition to the motional capacitance, the total circuit capacitance

consists of the intrinsic self-capacitance of the inductor coil (Cl) and any additional stray capaci-

tance of the circuit (Cs). This ratio — and hence the electromechanical coupling — is maximized

for small Cs + Cl and large Cm. We achieve a relatively small value of coil capacitance by using

a tightly wound rectangular spiral inductor [22, 77] with wire width of 550 nm and wire-to-wire

pitch of 1 µm. A simulation of the entire circuit layout, including nearby ground-plane, coupling

wire, and connecting wires between the coil and the motional capacitor yields an additional stray

capacitance of Cs = 1.13 fF. For a coil of 34 turns, with an estimated inductance of L = 46.3 nH

and capacitance Cl = 3.05 fF, connected in parallel to a motional capacitance of Cm = 2.76 fF

corresponding to a vacuum gap of d = 60 nm, the microwave resonance frequency of the coupled

circuit is estimated to be ωr/2π = 8.88 GHz. Using these circuit parameters in conjunction with a

perturbative calculation [78,97] of (1/Cm)∂Cm/∂u based upon FEM simulations of the differential

mechanical mode and the electric field distribution in the vacuum gap capacitor yields a calculated
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vacuum electromechanical coupling strength of g0/2π = 29.3 Hz. The trend of both Cm and g0

with gap size d is shown in Fig. 5.1(c).

The devices studied in this work are fabricated from 1 cm × 1 cm chips diced from a high-

resistivity silicon-on-insulator (SOI) wafer manufactured by SOITEC using the Smart Cut pro-

cess [98]. The SOI wafer consists of a 300 nm thick silicon device layer with (100) surface ori-

entation and p-type (Boron) doping with a specified resistivity of 500 Ω-cm. Underneath the device

layer is a 3 µm buried silicon dioxide (SiO2) BOX layer. The device and BOX layers sit atop a

silicon (Si) handle wafer of thickness 675 µm and a specified resistivity of 750 Ω-cm. Both the Si

device layer and handle wafer are grown using the Czochralski crystal growth method.

5.3 Fabrication process of superconducting electromechanical circuit

on silicon-on-insulator

Fabrication of the coupled coil resonator and H-slot resonator can be broken down into the following

steps.

5.3.1 Device Patterning

In step (2), we pattern the H-slot resonator using electron beam (e-beam) lithography in ZEP-520A

resist, and etch this pattern into the Si device layer using an inductively coupled plasma reactive ion

etch (ICP-RIE). After the ICP-RIE etch, we clean the chips with a solvent chain (TCE, Acetone and

IPA each for 4 mins) and a 12 sec buffered hydrofluoric acid (BHF) dip.

5.3.2 Capacitor Electrodes and Ground Plane

This layer patterns all of the electrical circuit, except for the coil wires. We start with a pre-bake at

180 ◦C for 2 min, and spin the front side with ZEP 520A at 2000 rpm, followed by another bake

at 180 ◦C for 2 min. We use 100 keV electron beam lithography to pattern the ground plane and

transmission lines (200 nA beam, 50 nm fracturing, 290 µC/cm2 dose with PEC), as well as the

capacitor wires, and the wires connecting the capacitors with the coil end and center (10 nA beam,

10 nm fracturing, 275 µC/cm2 dose). This layer is carefully aligned to the alignment markers.
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Figure 5.2: a, SEM image of the fabricated microwave coil resonator and H-slot mechanical res-
onator. The H-slot resonator region is colored red and the undercut region is outlined in yellow. The
coupling wire is colored turquoise. b, A zoomed in SEM image of the H-slot mechanical resonator.
Inset: a close-up of the 60 nm wide capacitor gap formed by a 250 nm wide Al electrode on the
photonic crystal slab and a 550 nm wide Al electrode on the outer Si support membrane. Both wires
are 60 nm thick, as is the ground plane. c, Cross-section image showing the suspended membrane
with a coil on top. The Al forming the coil is 120 nm thick. The 3 µm thick dark area underneath
the Si membrane is the undercut region where SiO2 has been etched away. The bottom layer is the
Si handle wafer.

We develop the chips in the same way and use a O2 plasma ash process (50 sccm O2, 0.74 bar,

13.56 MHz, 35 W, 2 min) to descum the surface before deposition of aluminum. For the deposition

we use an electron beam evaporator (0.3 nm/s, 65 nm thickness at 1 · 10−7 mbar to 2 · 10−7 mbar).

We then do a lift-off process in 80 ◦C NMP for > 1 h and carefully rinse in ACE and IPA.

5.3.3 Scaffolding layer

Now we pattern a scaffolding layer to fabricate the cross-overs. After pre-baking, we spin LOR

5B at 3000 rpm and bake at 180 ◦C for 5 min, followed by spinning PMMA 950k A2 at 4000 rpm

and baking at 180 ◦C for 5 min. We then beam write the negative pattern of the cross-over support

structure using aligned electron beam lithography (200 nA beam, 25 nm fracturing, 1000 µC/cm2

dose). The resist is developed using MIBK:IPA (1:3) for 1 min, and rinsed in IPA for 30 s. We

then wet etch the scaffolding layer using MF-319 for 8 s, followed by a water rinse and IPA which

stops the etch. Finally we remove the remaining PMMA layer with ACE (30 s) and reflow the LOR

cross-over support layer on a hot plate at 200 ◦C for 10 min. This creates a structurally stable arc

shaped cross over scaffolding.
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5.3.4 Coil wire patterning

In order to pattern the narrow pitch coils, we spin PMMA 495 A8 at 2000 rpm, bake, spin PMMA

950k A2 at 2000 rpm, and bake again. Then we lithographically define the coil wires, which overlap

the capacitor wires (10 nA beam, 10 nm fracturing, 1500 µC/cm2 dose) and develop the resist as

described previously. Development is followed by the same plasma ashing, deposition of aluminum

(1 nm/s, 120 nm, p≈ 2 · 10−7 mbar), and lift off, during which the NMP (at 80 ◦C, 3 h) dissolves

the LOR scaffolding layer.

5.3.5 DC contact wire

After a careful rinse with ACE and IPA we reproduce the previous layer recipe to pattern a small

(500 nm×4 µm) DC contact wire that symmetrically covers all overlap regions between capacitor

wire and coil wire (two per coil and capacitor). Here we use an in-situ ion gun etch process (normal

incidence with 4 cm gridded Kaufman source, 400 V, 21 mA for 5 min) right before the aluminum

deposition of thickness 140 nm, in order to establish reliable contact. Contact is tested after lift-off

on DC test structures of the same contact size located in the center of the chip. High resistance

contacts with low capacitance at microwave frequencies would lead to additional parasitic in-series

capacitances of the fabricated circuit.

5.3.6 Anhydrous HF Release

In a final step , we release the structure by using an anhydrous vapor hydrofluoric (HF) acid etch

using the SPTS uEtch system. This etch is used to selectively remove the underlying BOX layer

without attacking the Al metal or Si device layers. Not only is the removal of the SiO2 BOX layer

desirable from the standpoint of allowing the mechanical structure to move, but we have found that

the presence of the underlying BOX layer results in a significant amount of electrical loss in the

microwave resonator. Measurements of both co-planar waveguide and lumped element microwave

resonators have shown that the microwave Q-factor is substantially degraded (resonances are dif-

ficult to detect; Qr ≲ 100) with the BOX layer present. Stripping off the Si device layer and

forming microwave resonators directly on the BOX layer marginally improves the microwave Q-

factor (Qr ≈ 300), whereas stripping off both the device layer and BOX layer realize microwave



74
Layers

L1: markers

Chip Cleaning

TCE, 5’ at power 2
ACE: 3’ at power 2
IPA: 2’ at power 2
O2 Plasma ash, 5’, 70% power, 0.7mBar, ∼50 sccm flow.
BHF dip: 12” HF, 10” water, 5” water, dry

Spin & Bake

Prebake: 2’ at 180C / Cooldown roughly 3’
Resist: ZEP 520A
Spin: 2000 rpm, 1500 rpm/s, 60”
Bake: 2’ at 180 ± 2 C / 1’ cooldown

Beam write, markers 10 nA beam, 10 nm fracturing
295 uC/cm^2, global align

Develop 2.5’ ZEDN50, 30” MIBK rinse

Cleaning O2 Plasma ash, 2’, 70% power, 0.7mBar, ∼50 sccm flow.
BHF dip: 12” HF, 10” water, 5” water, dry

Evaporation 5 nm Cr (0.05 nm/s), 100 nm Gold (0.3 nm/s), 10 nm Cr, 20 nm Gold

Lift Off 40’ NMP at 150 C (hot plate), pipette, 60’ NMP at 150 C (hot plate) in holder (vertical)
Rinse and pipette in NMP individually, rinse in Acetone and IPA

L2: Patterning Si Membrane

Chip Cleaning O2 Plasma ash, 5, 70% power, 0.7 mBar, ∼50 sccm flow.
BHF dip: 5” HF, 10” water, 5” water, dry

Spin & Bake

Prebake: 2’ at 180C / Cooldown roughly 3’
Resist: ZEP 520A
Spin: 5000 rpm, 1500 rpm/s, 60”
Bake: 2’ at 180 ± 2 C / 1’ cooldown

Beam write, holes / nanostrings / trenches 300 pA beam, 2.5 nm fracturing / 300 pA, 2.5 nm / 10 nA, 10 nm
holes: 390 uC/cm^2 / nanostring: 220 uC/cm^2 with PEC / trenches: 245 uC/cm^2 (global align)

Develop 2.5’ ZEDN50, 30” MIBK rinse

Etch 39 sccm C4F8, 12 sccm SF6, stabalize bias to 72-73 V DC bias,22 W RF forward power, 600W ICP,
20C Table Temperature, 5 min 45 sec

Chip Cleaning
remove thermal paste with tce and wipe, 2 min tce (US1 hold with tweezer)
30 min hot (HP at 150 deg) nmp, ace and ipa rinse
O2 Plasma ash, 5’, 70% power, 0.7mBar, ∼50 sccm flow.

Undercut BHF dip: 5” HF, 10” water, 5” water, dry

L3: Groundplane, TL,
capacitors, crosswire, bondpads,
DC test and coupler wires

Spin & Bake

Prebake: 2’ at 180C / Cooldown roughly 3’
Resist: ZEP 520A
Spin: 2000 rpm, 1500 rpm/s, 60”
Bake: 2’ at 180 ± 2 C / 3’ cooldown

Beam write: ground plane, transmission lines,
coupler wires, dc wires and coil cross wires

ground plane: 201 nA beam, 50 nm fracturing / 295 dose (with simple PEC)
all wires: 10 nA beam / 10 nm fracturing / 295 dose (couplers global aligned, others with pattern markers)

Develop 2.5’ ZEDN50, 30” MIBK rinse

Cleaning O2 Plasma ash, 2’, 70% power, 0.7mBar, ∼50 sccm flow.
Buffered HF dip: 1’ 30” BHF, 5’ water, 10’ water, careful blowdry

Evaporation 3 min Ti on wall (0.2 nm/s) for better vacuum
60 nm Al (0.2 nm/s)

Lift Off in NMP (preheated, hotplate at 150C) for at 1 h then pipette and change to second preheated beaker.
Another 3 h then pipette again. Ace rinse, IPA rinse, check, Rinse and dry

L4: scaffolding layer for air bridges

Spin & Bake prebake 2 min 180C, LOR 5B - 3000 RPM, 1500 ramp, 5 min hot plate bake at 180 C
PMMA 950k A2 - 4000 RPM, 1500 ramp, 6 min hot plate bake at 180 C

Beam write: device outline and cut outs 201 nA beam, 25 nm fracturing / 800 dose (no PEC)
Develop 1 min MIBK:IPA (1:3), 30 sec IPA
Wet etch MF319: 6” (exact), Water: 5”, IPA 10”
Clean Acetone: 45”, IPA rinse (10”)
Reflow on HP, 200 C for 5 min uncovered, and 5 min covered with Al cover, cooldown 3’

L5: coils

Cleaning no cleaning

Spin & Bake

2 min. hotplate bake at 180 C, 3 min cooldown, PMMA 495k A8, 2000 rpm, 1000 rpm/s, for 60”,
2 min. bake on hotplate at 180 C, 3 min cooldown,
PMMA 950k A2, 2000 rpm, 1000 rpm/s for 60”,
2 min bake on hotplate at 180C

Beam write: coils wires and qubit capacitors 10 nA beam, 10 nm fracturing / 1500 dose (no PEC)
Develop 1 min MIBK:IPA (1:3), 30 sec IPA
Cleaning O2 Plasma ash, 2’, 70% power, 0.7mBar, ∼50 sccm flow., HF vapor 2x tiny flashes
Evaporation 3 min Ti on wall (0.2 nm/s) for better vacuum, 120 nm Al (1 nm/s)

Liftoff
in NMP (preheated, hotplate at150C) for at 1 h, then pipette
change to second preheated beaker.
Another 3 h then pipette again. Ace rinse, IPA rinse, check, rinse and dry

L6: Band aids

cleaning no cleaning

Spin & Bake
2 min prebake on hot plate at 180 C, 3 min cooldown,
PMMA 495k A8, 2000 rpm, 1000 rpm/s, for 60”, 2 min bake on hotplate at 180 C, 3 min cooldown,
PMMA 950k A2, 2000 rpm, 1000 rpm/s for 60”, 2 min bake on hotplate at 180C, 3 min cooldown

Beam write: band aids and undercuts 10 nA beam, 10 nm fracturing, 1000 dose for Ion gun area
10nA beam, 10 nm fracturing, 400 dose for undercut area

Develop 1 min MIBK:IPA (1:3), 30 sec IPA
Cleaning O2 Plasma ash, 2’, 70% power, 0.7mBar, ∼50 sccm flow
Evaporaion ION gun 5 min, 400 V, 21 mA, 0 degree, then 3 min Ti on wall (0.2 nm/s) for better vacuum, 140 nm Al (1 nm/s)

Lift Off

in NMP (preheated, hotplate at150C) for at 1 h,
then pipette and change to second preheated beaker,
Let it be in solution 1-2 h and then pipette again.
Ace rinse, ipa rinse, check, rinse dry

Table 5.1: step by step fabrication process of aluminum(Al) on Silicon-on-insulator process involv-
ing anhydrous HF vapor release of the substrate

resonators with Qr ≈ 4 × 104 when fabricated directly on the Si handle wafer. The release of the

structure is facilitated by patterning an array of small (100 nm diameter) holes into the Si device

layer during step (1). The array of release holes are on a 2 µm pitch and cover the region containing
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Figure 5.3: Schematic of the electromechanical circuit andmeasurement setup. The electromechani-
cal circuit (yellow) is inductively coupled to a 2µmwide wire (turquoise) which shorts to ground and
reflects the signal. Acronyms: SGi = microwave signal generator, VNA = vector network analyzer,
SA = spectrum analyzer, LNA = low-noise amplifier, HEMT = high-electron-mobility transistor
amplifier.

the coil and H-slot resonator. A timed etch of 75 min is used to remove ≈ 6 µm of SiO2, result-

ing in complete removal of the BOX layer underneath the microwave circuit. A scanning electron

microscope (SEM) image of the fully released structure is shown in Fig. 5.2(a). Zoom-in images

of the H-slot mechanical resonator and undercut inductor coil are shown in Figs. 5.2(b) and (c),

respectively.

5.4 H-Slot Resonator Measurements

Electromechanical measurements of the fabricated coil resonator are performed in a dilution refrig-

erator down to a temperature of Tf ≈ 11 mK. Microwave signals are launched onto the SOI chip

using a 50 Ω co-planar waveguide. The co-planar waveguide is terminated by extending the cen-

ter conductor with a 2 µm wide wire and then shorting it into ground. The wire is passed within

9 µm of the side of the inductor coil [see Fig. 5.2(a)], thus providing large inductive coupling to the

microwave resonator. A region extending roughly 10 µm from the edge of the surrounding ground

plane of the co-planar waveguide an inductive coupling wire is also undercut and the BOX layer

fully removed. Read-out of the reflected microwave signal is performed using the measurement

scheme shown in Fig. 5.3. The input line is thermalized at each stage of the fridge with a series of
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Figure 5.4: a, Phase and amplitude response of the microwave resonator at fridge temperature Tf ≈
11 mK and on-resonance cavity photon number of np = 3.3. The intrinsic loss rate κi and external
coupling rate κe are extracted by fitting the curves with a modified Lorentzian cavity model to take
into account the asymmetry in the background frequency response. b, Schematic showing two-tone
EIT measurement procedure. A strong drive tone at frequency ωd is placed on the red sideband
of the microwave cavity and the cavity response is swept by a weak VNA probe at ωp. c, Plot of
the measured EIT spectra at a series of drive intra-cavity photon numbers for a fridge temperature
of Tf ≈ 11 mK. From top to bottom: nd = 484 (orange curve), 1.20 × 105 (maroon curve), and
2.38 × 106 (blue curve). Note for the blue curve at nd = 2.38 × 106, a weakly coupled auxiliary
mechanical mode can be observed. The frequency range between the vertical red dashed lines,
surrounding the auxiliary mechanical resonance, were omitted for fitting purposes. d, Plot of the
fit values from the measured EIT spectra using Eq. (3.24) for cavity coupling rates (top), intrinsic
damping (middle), and parametrically enhanced coupling rate (bottom). Error bars correspond to a
95% confidence interval in the estimated fit parameter.

attenuators to eliminate Johnson thermal noise from the room temperature environment, yielding a

calibrated input line attenuation ofA = −73.9 dB. The reflected signal is redirected using a pair of

circulators at the mixing chamber stage of the fridge and then sent into an amplifier chain consisting

of a HEMT amplifier at the 4K fridge stage and a low-noise amplifier at room temperature. The total

amplifier gain is 52 dB, with an equivalent added microwave noise photon number of nadd ≈ 30.

Figure 5.4(a) shows the measured magnitude and phase of the reflected microwave signal ver-

sus frequency from a vector network analyzer (VNA) used to probe the electrical properties of the

device. The microwave resonance frequency is measured to be ωr/2π = 8.872 GHz, in close cor-

respondence to the resonance frequency based upon the simulated values of the coil inductance and

the motional and stray capacitance of the circuit. At the lowest base temperature of our fridge,

Tf ≈ 11 mK, we measure an intrinsic microwave cavity loss rate of κi/2π = 1.8 MHz at an

intra-cavity photon number on resonance of np = 3.3, corresponding to an internal quality factor of
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Qr,i = 4890. The external coupling rate to the resonator is measured to beκe = 2.7MHz, putting the

device well into the overcoupled regime. We note that for similar coil resonators (without an H-slot

resonator and coil cross-overs) which were coupled more weakly using a transmission as opposed

to reflection geometry, we have observed internal quality factors as high as Qr,i ≈ 2 × 104, close

to the measured Q-values for resonators fabricated directly on the Si handle wafer. The additional

source of the microwave loss will be explained in the next chapter.

To characterize the mechanical properties of the H-slot resonator, and determine the strength

of its radiation pressure coupling to the microwave coil resonator, we perform two-tone pump

and probe measurements as illustrated in Fig. 5.4(b). Here, a strong drive tone of power Pd is

applied at frequency ωd on the red motional sideband of the microwave cavity resonance while

a weak probe tone is scanned across the cavity resonance. Interference between the anti-Stokes

sideband of the drive tone and the weak probe tone results in a form of mechanically-mediated

electromagnetically-induced transparency (EIT) [63, 83, 84], which for pump detuning near two-

photon resonance (∆r,d ≡ ωr − ωd ≈ ωm) yields a reflection spectrum given by Eq. (3.24). A

subset of the measured spectra over a range of drive powers are shown in Fig. 5.4(c) around the

EIT transparency window. The drive detuning at two-photon resonance corresponds to the mechan-

ical resonance frequency, and is found to be ωm/2π = 9.685 MHz, very close to the numerically

simulated resonance frequency of the in-plane differential mode of the H-slot resonator. The coop-

erativity associated with the coupling of the microwave cavity field to the mechanical resonator is

given by C ≡ 4G2/κγm,i, where γEM ≡ 4G2/κ = 4ndg
2
0/κ is the back-action-induced damping

of the mechanical resonator by the microwave drive tone. At low drive powers corresponding to

C < 1, we observe a narrow dip at the center of the broad microwave cavity resonance. As the drive

power is increased andC > 1 the dip becomes a peak in the reflected signal and the bandwidth of the

transparency window increases with pump power. At the highest powers we observe a substantially

broadened transparency window, where we observe the presence of a second, spurious mechanical

resonance about 2.4 kHz below that of the strongly coupled resonance. We attribute this spurious

resonance to weak hybridization of the extended membrane modes of the undercut SOI with the

localized in-plane differential mode of the H-slot resonator.

Ignoring the spurious mechanical mode, we fit the measured EIT spectra using Eq. (3.24 and
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Figure 5.5: a, Schematic showing the time-domain mechanical ring-down protocol, wherein a strong
blue pulse at ωpulse = ωr + ωm populates the mechanics and a weak probe tone at ωp = ωr − ωm

is used to monitor the energy in mechanical resonator. Inset: schematic showing the frequency
and scattering of the applied tones used to ring-up and monitor the mechanical resonator. Here,
ΓS ≈ (4npulseg

2
0/κ)(nm + 1) [ΓAS ≈ (4npg

2
0/κ)nm] is the Stokes [anti-Stokes] scattering rate of

the pulse [probe] tone, where npulse [np] is the intra-cavity pulse [probe] tone photon number. b,
Time-domain mechanical ring-down measurement at Tf ≈ 11mK. A steep decay resulting from the
leakage of photons from the cavity is followed by a slow decay dominated the intrinsic mechanical
damping of the resonator is observed.

extract the microwave cavity parameters (κi, κe, ωr), the intrinsic mechanical damping (γm,i), the

mechanical resonance frequency (ωm), and the parametrically-enhanced electromechanical coupling

rate (G =
√
ndg0). Figure 5.4(d) plots each of these fit parameters versus drive power and intra-

cavity drive photon number (nd). κi is found to weakly rise with nd, most likely due to heating

of the SOI membrane resulting from absorption of the microwave pump. For intra-cavity photon

number nd ≳ 5× 106, we no longer observe a microwave resonance, suggesting that absorption of

the microwave pump causes the superconducting circuit to go normal. Fitting the measured curve

of G versus pump photon number yields an estimate for the vacuum electromechanical coupling

rate of g0/2π = 24.6 Hz, in good correspondence with the simulated value of 29.3 Hz. The slight

discrepancy is likely attributable to an under-estimation of the true capacitor gap size due to overhang

of the Al electrode into the gap. For a 70 nm dielectric gap, consistent with an additional 10 nm

overhang of Al estimated from cross-sectional images of similar devices, the simulated vacuum

coupling rate drops to g0/2π = 24.4 Hz

At low drive powers, the EIT transparency window bandwidth is dominated by the intrinsic

mechanical linewidth, γm,i. However, we observe a frequency jitter of the mechanical resonance

frequency. The range of the frequency jitter is of the order of several Hz on the second timescale,

and saturates at approximately 20 Hz for timescales on the order of tens of minutes. The source of
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the mechanical frequency jitter is unknown, but may be related to the excess heating we observe at

the lowest fridge temperatures as described below. The resolution bandwidth of the VNA is also

limited to 1Hz, and combined with the frequency jitter leads to significant distortion and blurring of

the measured EIT spectrum at low drive power as can be seen in the top plot of Fig. 5.4(c). Estimates

of γm,i and the corresponding cooperativity C are thus unreliable from the EIT spectra alone.

To directly measure the intrinsic damping rate γm,i we perform a mechanical ring-down mea-

surement as shown in Fig. 5.5. Here, a strong blue-detuned pulse tone at frequencyωpulse = ωr+ωm

is applied for 1 s to amplify the thermal mechanical motion of the mechanical resonator through dy-

namic back-action [99–101]. A weak red-detuned probe tone at ωp = ωr − ωm is applied to the

microwave cavity in order to read-out the phonon occupancy of the resonator after the blue detuned

pulse is turned off. A spectrum analyzer with resolution bandwidth set to RBW= 1 kHz is used

to measure the motionally scattered photons near the cavity resonance from the pulse and probe

tones, providing a time domain signal proportional to the mechanical resonator phonon occupancy

as shown in Fig. 5.5(b).

Fitting the decay of the spectrum analyzer signal after the pulse tone is turned off, and after the

initial rapid decay of pulse photons from the cavity, yields a mechanical damping rate of γm/2π =

0.72 Hz. Note that as the probe tone power of −20 dBm corresponds to an intra-cavity photon

number of only np ≈ 300, the dynamic back-action damping of the probe is small but non-negligible

at γEM/2π ≈ 0.16 Hz. The corresponding intrinsic mechanical damping rate is thus approximately,

γm,i/2π ≈ 0.56 Hz, corresponding to a mechanical quality factor of Qm = 1.7× 107.

The red-sideband pump configuration (∆r,d = ωm) used to measure the EIT spectra also cools

the mechanical resonator. Using a spectrum analyzer to measure the anti-Stokes scattered drive

photons near the microwave cavity resonance, as shown schematically in Fig. 5.6(a), and calibrating

the measured noise spectrum allows one to infer the average (noise/thermal) phonon occupancy

(nm) of the mechanical resonator as a function of the drive power. This sort of mechanical mode

thermometry [22, 84] at the lowest fridge temperature of Tf ≈ 11 mK shows large fluctuations

in the inferred mechanical mode temperature (Tm = 20 − 200 mK), as a function of both time

and drive power. The source of this anomalous mechanical mode heating is not well understood at

this point, but may be related to coupling between the driven microwave resonator and two-level
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Figure 5.6: a, Schematic showing thermometry measurement scheme, wherein a red detuned
drive tone is used to simultaneously cool and measure the average energy in the mechanical res-
onator through anti-Stokes scattering proportional to phonon occupancy of the resonator. ΓAS ≈
(4ndg

2
0/κ)nm is the cavity-enhanced anti-Stokes scattering rate of the drive tone proportional to nm.

ΓS ≈ (4ndg
2
0/κ)(κ/4ωm)2(nm+1) is the cavity-suppressed Stokes scattering rate of the drive tone

proportional to nm + 1. b, Cooling curve obtained by fitting the measured microwave noise spec-
trum using a model which includes noise squashing and heating effects due to thermal noise in the
microwave cavity and the input coupler. Spectra are taken at a fridge temperature of Tf = 211 mK.
Blue circles correspond to the inferred average mechanical mode occupancy (nm) from fits to the
measured noise (see inset). Grey triangles are the fit input waveguide (nb,wg) and cavity (nb,r) ther-
mal noise occupancies from the measured noise background level. The dashed line indicates the
predicted occupancy as given by nf,m/(1 + C), where C is determined from the EIT fit values for
the vacuum coupling rate (g0/2π = 25.1 Hz) and the intrinsic damping rate (γm,i/2π = 25.7 Hz)
taken at a fridge temperature of Tf ≈ 211 mK. c, Plot of the measured noise spectral density (black
curve) andmodeled noise background (green curve) atPd = 22 dBm. The orange curve corresponds
to the expected spectral noise density due to the waveguide bath (nb,wg) alone while the navy curve
shows the expected contribution from the resonator bath (nb,r). The global offset of nadd + 1 is
shown as a grey dashed line.

systems (TLS) [102] present in the native oxide on the surface of the silicon device [103–105]. TLS

can not only absorb energy from the microwave drive, but also may hybridize with the microwave

cavity and influence the transduction of mechanical motion yielding artificially high or low inferred

mechanical mode occupancy [22].

To better characterize the back-action cooling of the mechanics, we performed a cooling sweep

at a fridge temperature of Tf ≈ 211 mK, where the anomalous heating effects seen at Tf ≈ 11 mK

are less significant in comparison to the thermal bath of the fridge. A plot of the inferred mechanical

mode occupancy (nm) and corresponding mode temperature (Tm) versus the drive power applied

on the red-sideband (∆r,d ≈ ωm) is shown in Fig. 5.6(b). At low drive powers where C ≪ 1

and back-action cooling is expected to be negligible, we find that the mechanics thermalizes to
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an occupancy very close to the mechanical thermal occupancy at the fridge temperature, nf,m =

453. For comparison a plot of the ideal cooling curve, nm = nf,m/(1 + C), due to radiation

pressure back-action is shown as a dashed curve in Fig. 5.6(b). Here we use an intrinsic damping rate

(γm,i/2π = 25.7Hz) and vacuum coupling rate (g0/2π = 25.1Hz) inferred fromEITmeasurements

at Tf ≈ 211 mK. The measured mechanical mode occupancy is in good agreement with theory,

except at powers Pd > 10 dBm where we again observe anomalous heating effects. Nonetheless,

we are able to perform well over a decade of cooling and reach occupancies as low as nm ≈ 16.

In addition to the measured Lorentzian noise peak of the mechanical resonance, we also observe

broadband noise which increases with the drive power. Figure 5.6(c) shows a plot of the measured

broadband noise (back curve) at the highest intra-cavity drive photon number of nd = 4.75 × 106.

This broadband noise does not seem to be phase noise of our microwave source as addition of a

narrowband input filter had no effect on the measured noise spectrum. Assuming that the noise

is associated with an elevated electrical noise temperature of the device, we include both an in-

put waveguide thermal noise occupancy (nb,wg) and a cavity thermal noise occupancy (nb,r) to our

model. Taking the waveguide and cavity to be at the same noise temperature (i.e., nb,wg = nb,r)

yields a flat reflection noise spectrum as shown in Fig. 5.6(c). Fitting the noise background at each

drive power yields an estimate for the cavity and waveguide noise photon numbers, which are shown

versus drive power as grey triangles in Fig. 5.6(b). The inferred effective noise temperature of the

microwave cavity at the highest drive power isTr ≈ 1K, close to the critical temperature for Al [106]

and consistent with the circuit going normal at higher drive powers.

Enhancement in the back-action cooling and electro-mechanical cooperativity of the current

devices can be realized most straightforwardly through reduction in the microwave resonator loss.

Significant reduction in the microwave loss and heating effects should be attainable through the

use of higher resistivity Si [104, 105]. The vacuum electro-mechanical coupling rate may also be

increased to g0/2π ≈ 100 Hz through optimization of the circuit layout and the mechanical mode

to reduce stray capacitance, reduction of the capacitor gap to reported values of d ≈ 30 nm [78] and

increasing the zero point amplitude of the mechanical mode.
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Chapter 6

Nano-String Electro-Opto-Mechanical
Transducer

6.1 Introduction

As discussed in previous chapter, to achieve ground-state cooling of the mechanical resonator, we

need to improve both the quality factor of the microwave resonator as well as enhance the elec-

tromechanical coupling. To achieve this, we first discuss the microwave loss sources and present

an improved design of the silicon membrane, allowing us to achieve higher microwave quality fac-

tor, as high as Qr ≈ 100k. Secondly, we present a mechanical resonator with much less effective

motional mass, allowing us to reach single photon electromechanical coupling g0/2π ≈ 200Hz.

6.2 Improvement on Microwave Quality Factor

SOI presents a unique platform for integrating microwave, mechanical, and optical circuits. This is

particularly interesting in the context of recent proposals and experimental efforts to utilize mechan-

ical elements as quantum converters between microwave and optical light [30, 83, 107–110]. But

eliminating the additional source of loss for the microwave circuits is required before using SOI as

a platform useful for quantum measurement. To reduce the sources of loss in the released silicon

membrane, we used the high resistivity silicon wafer at the device layer. The resistance of the silicon

membrane directly relates to the amount of impurities in the silicon structure which can perform as

sources of loss either through TLSmechanism or a leakage current. The ‘H-Slot’ resonator presented

in the previous chapter was fabricated on silicon with much lower resistivity ( 700 Ω). Therefore,
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we used a SOI wafer with resistivity R > 5 kΩ.cm to improving the resistance by an order of mag-

nitude. Additionally we noticed that the losses are magnified substantially by placing the circuit

close to the SiO2 etch front, owing to the fact that amorphous materials like SiO2 induce losses by

driving transitions of two-level systems (TLS). To alleviate this, we increased the under-cut area

around the microwave resonator further to about 20µm into the ground plane. Figure 6.1(a) shows a

microwave resonator fabricated on high resistivity SOI and a fully released membrane. To charac-

terize the losses, we fabricated a series of resonator inductively coupled to a 50 Ω waveguide with

various coupling to the input feed line. To avoid frequency crowding we have varied the resonance

frequency between 8.8 GHz and 10 GHz. We measure the quality factor of these resonator utilizing

a vector network analyzer and extract the internal and external coupling to the microwave feed line

from the phase and amplitude response of each resonator. Figure 6.1(b) shows internal microwave

quality factor Qi (external quality factor Qe) of these resonator measured at single photon power.

Almost all the microwave resonators have an internal quality factor exceeding 100k, improving by

factor of≈ 30 compared to the microwave resonator made on low resistivity silicon and without the

modified ground plane.
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Figure 6.2: a, FEM Simulation of the mechanical breathing mode of the ‘nano-string’ resonator
with red(blue) showing the region with maximum(minimum) deformation of the mechanical mode.
The length of the moving arms are l = 20µm and each arm has the widthw = 150nm and are
fully covered with aluminum. b, Showing the moving capacitance Cm versus gap size. c, shows
the single photon electromechanical coupling assuming a microwave resonator with inductance of
L=43nH and microwave circuit parasitic capacitance Cs = 3.01 fF.

6.3 Mechanical Design

Other than the microwave cavity losses, the ‘H-Slot’ resonator also suffered from the low elec-

tromechanical coupling owing to the low zero point motion of the mechanical oscillator xzpf and big

motional capacitors gap, which resulted in requiring additional driving power to back-action cool

the mechanical resonator. Zero-point amplitude of the mechanical motion depends crucially on the

mechanical frequency and the effective motional mass of the mechanical resonator. To reduce the

effective mass of the mechanical oscillator, we have significantly reduced the width of the moving

arms of the mechanical cavity. Figure 6.2(a) shows the FEM simulation of the breathing mode of

the mechanical resonator with the width ofw = 150nm fully covered with aluminum with thickness

tAl = 60nm and length of l = 20µm. The small extensions on the two sides of the mechanical res-

onator are mirror cells with the length l = 7µm to reduce the parasitic coupling of the mechanical

resonator to the rest of the released Silicon membrane and isolating the mechanical mode. The me-

chanical mode has the frequency ωm/2π = 6MHz, and the effective massmeff = 1.6 pg, resulting

in zero-point amplitude of xzpf = 35 fm. Fig. 6.2(b,c) shows the moving capacitance and single
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Figure 6.3: a, A scanning electron microscope (SEM) image of Nano-string. The aluminum is in
white and the released silicon membrane is in black. As it can be seen the etch front of the released
membrane extended far back into the ground plane surrounding the electromechanical device reduc-
ing the effect of the lossy SiO2 on the microwave circuit. b, A zoom in image of the nano-string
mechanical device. Aluminum electrodes (in white) cover the whole arms of the mechanical res-
onator. The aluminum electrodes are separated by gap of 70 nm. At cold temperature due to the
tensile stress of the aluminum electrodes and the compressive stress of the released membrane the
gap shrinks to 45 nm.

photon electromechanical coupling g0/2π of the ‘Nano-String’ resonator versus gap sizes.

A scanning electron microscope image of the fabricated device is shown in Fig. 6.3. As it can

be seen, the etch front of the released membranes extends far back into the ground plane to reduce

the effect of the lossy SiO2 on the superconducting microwave circuit.

6.4 Nano-String Measurements

The measurement of the nano-string electromechanical microwave resonator is done in a dilution

fridge at temperature ofTf ≈ 10mK. Themicrowave resonance frequency ofωr/2π = 10.780GHz

is measured with external coupling strength of κe/2π = 60 kHz in close correspondence to the

simulated resonance frequency from FEM simulation in Sonnet [76]. However, the internal quality

factor of the microwave resonator is power dependent. We measure an internal microwave cavity

loss of κi/2π = 260 kHz at single intra-cavity photon number np = 1 and κi/2π = 82 kHz at

intra-cavity photon number of np = 1000 approaching critically coupled regime.

We find themechanical frequency by stepping a strong pump detuned from themicrowave cavity

while scanning the microwave cavity with a weak probe tone. When the detuning of the drive power

is equal to the mechanical frequency ∆r,d = ωd − ωr = ωm, a transparency window shows up in
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Figure 6.4: a, Color plot of normalized coherent response of the microwave cavity versus the drive
pump detuning from the microwave cavity. The pump is at 22 dBm of power. b, The reflection
spectrum of the microwave cavity at∆r,d = ωr − ωd = ωm.

the coherent reflection response of the microwave cavity analogous to the electromagnetic induced

transparency (EIT) [83, 84, 111].

6.4.1 Electromagnetically Induced Transparency and Electromechanical Coupling

To characterize the mechanical properties of the ’Nano-String’ mechanical resonator as well as the

strength of the coupling to the microwave cavity, we again perform the two-tone pump-probe mea-

surement. A strong drive tone of powerPd is applied at frequency ωd = ωr−ωm on the red motional

sideband of the microwave cavity resonance while a weak probe tone scans across the microwave

cavity resonance. Interference of the reflected probe signal occurs between that part of the probe

field that enters the microwave resonator and is directly re-emitted, and that part of the probe field

that enters the cavity, interacts with the mechanical resonator and is then re-emitted from the cavity.

For the case of the red side-band pumping the reflected spectrum is given by equation Eq. (3.24).

The measurements spectra are plotted in Fig. 6.5(a). We use the fit to the spectra to extract the

back-action induced linewidth γEM and parametrically enhanced electromechanical couplingG. Fig-

ure 6.5(b) shows the measured parametrically enhanced electromechanical coupling G for various

drive powers Pd. The parametrically enhanced electromechanical coupling relates to single photon

coupling by G =
√
ndg0. Calibrating the input power at the sample input and calculating the in-

tra cavity photon number of the microwave resonator, we measure single photon electromechanical

coupling g0/2π = 230 Hz corresponding to a gap size of roughly 50 nm.
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Figure 6.5: a, Plot of EIT measured spectra at a series of pump drive power Pd. The measured
data are shown as blue dots and the fit to the data are shown as orange lines. b,Measured enhanced
electromechanical couplingG/2π for various powers of drive tone. The measured values are shown
as blue circles and a linear fit is used to extract the g0.

6.4.2 Mechanical Ringdown measurement

We use mechanical ringdown measurement to extract the intrinsic linewidth of the mechanical res-

onator. This measurement is independent of the mechanical frequency jitter and allows us to directly

measure the intrinsic damping rate of the mechanical resonator. In this measurement, we use a strong

blue pulse detuned from the microwave cavity by a mechanical frequency to amplify the mechanical

resonator motion (lasing) and populate it with phonons. Then we use a weak red tone to read-out to

probe the amplitude of the mechanical motion as a function of the time. Fig. 6.6 shows the mechan-

ical ringdown measurement of the Nano-String mechanical resonator.

In this measurement the blue tone at -5 dBm and pulse width of 500 ms is used to populate the

mechanical resonator with phonons and red tone at power -36 dBm is used to monitor the decay

of the mechanical amplitude. We fit an exponential curve to the measured decay curve to extract

the total damping rate γm. Subtracting the red side band back-action induced mechanical damping

allows us to directly measure the intrinsic mechanical damping rate γi. The intrinsic damping for

this device is measured to be γi = 2.83 Hz, resulting in mechanical quality factor Qm = 2.1M.

6.4.3 Strong Coupling limit

At high enough power, the back action induced mechanical damping rate exceeds all other sources of

the loss in the system (i.e. γem > κ, γi). The crossover for our Nano-String device occurs at power
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Figure 6.6: Plot of mechanical ringdown measurement of Nano-String electromechanical cavity. A
strong blue pulse at ωpulse = ωr + ωm and power -5 dBm populates the mechanics for 500 ms and
a weak probe tone at ωp = ωr − ωm and power -36 dBm is used to monitor the energy in mechan-
ical resonator. The back-action induced damping rate is calculated from the EIT measurement and
subtracted from the total damping rate of the mechanical resonator γm.

of 24 dBm, corresponding to microwave intra cavity photon number nd = 196000 and enhanced

parametric coupling ofG ≈ 134 kHz. This is a point at which the electromechanical system enters a

strong coupling regime. At this power, the eigen modes of the driven electromechanical system are

hybrids of mechanical and electromagnetic resonances and the damping rate for each of the modes

approaches (κ+γem)/2. This coupling results in the splitting of the original modes. Figure 6.4(a,b)

shows the anti-crossing and normal mode splitting of the microwave cavity mode as we tune the

mechanical response into the microwave cavity close to the strong coupling regime.

6.4.4 Incoherent Response of the Electromechanical Circuit and Mechanical Ther-

mometry

To infer the average noise/thermal phonon occupancy nm of the mechanical resonator as a function

of the drive power, we again use the red sideband configuration of the EIT measurement. In the case

of red detuned pumping, the pump photons are mechanically up-converted to the cavity resonance

and absorb a phonon through the process. We use a spectrum analyzer to measure the amplitude of

the scattered drive photons near the frequency of the microwave resonator. The per photon scattering

rate is equal to the back-action induced damping rate of the mechanical resonator due to the presence

of the pump. Calibrating out the gain of the measurement setup, the added noise of the amplifier

and the read-out efficiency of the signal, the area under the observed signal in the spectrum analyzer

is proportional to the occupancy of the mechanical resonator. A plot of the inferred mechanical

mode occupancy versus the intra-cavity photon number is shown in Fig. 6.7. As we increase the
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Figure 6.7: Plot of the inferred mechanical mode occupancy from a fit to the mechanical mode
thermometry spectra nm versus intra-cavity photon number nd. The light blue line is mechanical
mode bath occupancy of nf,m = 100, corresponding to ambient temperature Tf,m = 30 mK. Blue
squares correspond to inferred mechanical mode occupancy from the thermometry measurement
and the dashed gray line shows the expected ideal cooling curve. The red circles are the inferred
microwave resonator noise occupancy nr and the red-dashed line is a polynomial fit to the data.

power of the red detuned pump, the rate of scattering photons into the microwave cavity increases

which subsequently increases the cooling rate of the mechanical resonator. During this process the

mechanical resonator is coupled to an ambient fridge bath Tf,m with the intrinsic damping rate γi and

effective zero temperature bath of the coherent drive pump with back-action induced damping rate

of γem. In the steady state while we are operating below the strong coupling regime, the mechanical

occupancy can simply be obtained by nm = nf,m/(1 + C), where C is the cooperativity and is

defined by γem/γi.

At low drive power where C < 1 the effect of the drive tone is negligible and the mechanical

resonator is assumed to be thermalized to its ambient dilution fridge mechanical bath nf,m. For

the ‘Nano-String’ electromechanical resonator, the ambient mechanical bath is measured to be at

nf,m = 100 corresponding to the ambient fridge temperature of Tf,m ≈ 30 mK. A dashed-gray

line is used to show the expected cooling curve of the mechanical resonator versus the intra cavity
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photon numbernd. For this curve, we use the independently verified parametersG, κ, γi. As it can be

seen, the measured mechanical occupancy is in good agreement with the expected occupancy. At the

highest drive powers wemeasure Lorentzianmicrowave cavity noise, which leads to noise squashing

in the measured output spectrum and heating of the mechanical resonator [84]. To calculate the

mechanical occupancy at these powers, we use the Eq. (3.31) derived in chapter 3.

Compared to the ‘H-Slot’ electromechanical resonator, with the improved single photon elec-

tromechanical coupling of g0/2π = 230 Hz and the on the intrinsic microwave resonance loss rate,

we are able to reach C = 1 at nd = 2 photons and ground-state cooling at nd = 200 photons. The

minimum mechanical occupancy measured in this experiment is nm = 0.1 phonons. However, at

intra cavity photon number nd = 1000 photons, we observe the anomalous pump induced heating

effects increasing the microwave cavity noise occupancy.

6.5 Nano-String Electro-Opto-Mechanical Transducer

Our results with Nano-String electromechanical resonator indicates that SOI represents a unique

platform for integrating microwave, mechanical and optical circuits. This is particularly interesting

in the context of utilizing the mechanical elements as quantum converters between the electrical and

optical photons. In this section, I talk about the design and fabrication of an integrated platform

for converting optical photons and microwave photons which is based on the Nano-String design

principles. The key aspect of this platform is the shared mechanical mode between the optical res-

onator and the microwave electrical circuit. The coupling between the microwave resonator and

the mechanical element is capacitive (similar to Nano-String mechanical resonator) in which the

deformation of the structure to mechanical motion modulates the capacitor gap and similarly the

microwave resonance frequency. On the optical side, the motion of the mechanical resonator mod-

ulates the effective dielectric constant of the optical modes and subsequently modulates the optical

resonance frequency. In the following subsection, I will talk about the main aspects of the design in

more detail.
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Figure 6.8: a, shows the schematics of the elements of the Nano-String Electro-Opto-Mechanical
Transducer. On the left side the zipper optomechanical cavity is attached via a mechanical stub to an
electromechanical Nano-String resonator. The Zipper optical cavity is patterned with circular holes
with a defect to form an optical cavity at the center. The optical cavity has the length of lo = 19.5 µm
and width ofW = 550 nm resulting in a differential mechanical mode at 7.0 MHz. The length of the
Nano-String electromechanical cavity is slightly larger at le = 20.4 µm due to aluminum electrodes
that cover the outer sides of the beams. The mechanical stub between the two sides couple the two
mechanical modes. The coupling strength between the two sides can be adjusted by varying the
width of the mechanical stub. With the chosen width of w = 100 nm the coupling between the
two mechanical mode is approximately 1.09 MHz resulting in in mechanical frequency 8.09 MHz
(5.91 MHz) for Even (Odd) mechanical modes. b, shows an exaggerated displacement deformation
of the symmetric mechanical mode of the structure where the red(blue) color shows the area with
maximum (minimum) displacements.

6.5.1 Mechanical Mode Design and Analysis

The Opto-Electro-Mechanical transducer consists of a doubly-clamped zipper optical cavity [112]

which is connected by a mechanical stub to Nano-String electromechanical resonator and clamped at

both ends. The length of the zipper optical cavity and Nano-String electromechanical resonator are

chosen such that they result in a degenerate mechanical frequency for breathing (differential mode of

each side) mode. In this situation, the mechanical mode of the zipper optical cavity and Nano-String

electromechanical resonator will hybridize to form an even and odd symmetry mechanical modes

that is shared with both the electrical circuit and the optical cavity. The strength of the coupling

and consequently frequency splitting between the two mechanical modes can be adjusted by the

width of the mechanical stub. The mechanical simulation of the structure is done by Finite-Element

Method (FEM) using COMSOLMultiphysics software [54]. The even and odd hybridized mechan-

ical modes are at 8.09 MHz and 5.91 MHz mechanical frequency and have zero point amplitudes of
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Figure 6.9: a, shows the schematics of the elements of the Nano-String Electro-Opto-Mechanical
Transducer. On the left side the zipper optomechanical cavity is attached via a mechanical stub to an
electromechanical Nano-String resonator. The Zipper optical cavity is patterned with circular holes
with a defect to form an optical cavity at the center. The optical cavity has the length of lo = 19.5 µm
and width ofW = 550 nm resulting in a differential mechanical mode at 7.0 MHz. The length of the
Nano-String electromechanical cavity is slightly larger at le = 20.4 µm due to aluminum electrodes
that cover the outer sides of the beams. The mechanical stub between the two sides couple the two
mechanical modes. The coupling strength between the two sides can be adjusted by varying the
width of the mechanical stub. With the chosen width of w = 100 nm the coupling between the
two mechanical mode is approximately 1.09 MHz resulting in in mechanical frequency 8.09 MHz
(5.91 MHz) for Even (Odd) mechanical modes. b, shows an exaggerated displacement deformation
of the symmetric mechanical mode of the structure where the red (blue) color shows the area with
maximum (minimum) displacements.

xzpf = 11.2, 14.2 fm, respectively.

The aluminum electrodes on the outer edge of the Nano-String electromechanical resonator form

amotional capacitance which is in parallel to a high impedance spiral inductor similar to Nano-String

electromechanical resonator which would enables us to easily achieve electromechanical coupling

on the order gem/2π = 100 Hz. On the other hand, the patterning of the zipper optical cavity

confines the optical fields at the center where the differential mode has the maximum displacement.

With the relatively large refractive index of the silicon, vacuum optomechanical coupling on the

order of gom/2π = 1MHz [113] are expected.

6.5.2 Design of the Optical Cavity and the Optical Coupler

As described, the zipper optomechanical cavity is patterned in such a way that supports an opti-

cal mode at 1550 nm wavelength band. The design of the optical cavity is identical to the device

presented in Ref. [113]. The optical coupling to the device and read-out are done using an optical
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Figure 6.10: a, Show a zoom-out scanning electron microscope image of the device. A coil inductor
is capacitively coupled to theNano-String elctromechanical resonator which ismechanically coupled
to a ‘zipper’ optomechanical cavity. The optical coupling to the device is done using a tapered optical
coupler which terminates with highly reflective photonic crystal end-mirror. b,A zoomed-in version
of the device showing the optomechanical cavity and the ‘Nano-String’ electromechanical resonator.
The Al wires forming the motional capacitance are in white.c) A zoom-in SEM image of the optical
cavity and the optical coupler.

waveguide placed on the side of the zipper optomechanical cavity.

FEM simulation of the optomechanical zipper cavity is plotted in Fig. 6.9(a). The color depicts

the normalized electromagnetic energy density. The waveguide is terminated by highly reflective

photonic crystal end mirror to excite and collect light efficiently from the side coupled optical cavity.

Placing the waveguide in the near field of the optical cavity allows for evanescent coupling between

the waveguide and the optomechanical cavity with the coupling strength of κe,o and external quality

factor Qex,o.

Tuning the separation of the optical waveguide from the optical cavity W , we can control the

coupling strength. The optical coupler presented in this chapter is placed 370 nm away from the

optical cavity resulting in Qex,o = 520× 103. The width of the waveguide is adiabatically tapered

to allow for efficient input-output coupling to a lensed fiber, as shown in the SEM as described in

Ref. [114].
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6.5.3 Fabrication

Fabrication of the ‘Nano-String’ Electro-Opto-Mechanical transducer is done on the top device later

of a SOI wafer as discussed in detail in chapter (5). Before releasing the Si membrane, we follow

the processes described in Ref. [101] to define a mesa region of the chip to which a tapered lensed

can access, as can be seen in the SEM of the device shown in Fig. 6.10(a).

6.5.4 Experimental Setup

The measurements of the fabricated SOI chip are performed in a dilution refrigerator down to a

temperature of Tf = 10 mK. The sample is mounted on a printed circuit board (PCB) consisting

of multiple 50 − Ω coplanar waveguides. Each coplanar waveguide of the PCB is wire-bonded to

another coplanar waveguide on the chip.

The coplanar waveguides are terminated by extending the center conductor with a 2 µm wide

wire and then shorted to the ground. The wire is passed within the near field of the coil inductor,

providing large inductive coupling of the strength κex,e = 100 kHz to the electromechanical circuit.

The input microwave signal is attenuated through each stage of the dilution refrigerator to eliminate

Johnson thermal noise from the room temperature environment. The total calibrated attenuation of

the measurement setup is A = 76.5 dB. The reflected microwave signal is redirected using a pair

of circulators at the mixing chamber of the dilution refrigerator and then sent to the amplifier chain

with the total gain of G = 56.7 dB. The amplified signal is then measured using a Vector Network

Analyzer (VNA) or spectrum analyzer.

The PCB is mounted on a copper column assembly to allow for in-situ optical fiber coupling. We

utilize an end-fire coupling scheme to probe the optomechanical ‘zipper’ cavity. The lensed fiber tip

is clamped down on a position encoded piezo xyz-stage inside the dilution refrigerator allowing for

nano-positioning of the fiber with respect to the sample. The lensed fiber used for this experiment

has the focal length l = 15 µm and a beam waist of 2.5 µm.

At room temperature, we roughly align the fiber to within few hundred microns of the tip of the

tip of the optical waveguide coupler. After cooling the experimental setup from the room temper-

ature, we monitor the reflected optical power on a photo detector as we slowly move the fiber to

match the height of the device layer. The distinct reflection of the device layer allows for iteratively
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Figure 6.11: a, Shows a schematic of the optical measurement. A laser at frequency ωd is scanned
across the optical cavity. b, The normalized reflected spectrum of the optical cavity measured from
a photodetector. The optical cavity is observed at a wavelength of 1537.6 nm and has quality factor
Qo = 154 × 103. The coupling the optical cavity is Qex,o = 6.4 × 106. c, shows a schematic of
two-tone EITmeasurement procedure from the electrical side of the transducer. A strong microwave
drive tone at ωd is placed on the red sideband of the microwave cavity and the cavity response is
swept by weak VNA probe at ωp d, The amplitude response of the microwave resonator. The cavity
frequency, intrinsic loss rate κi,e and external coupling rate κex,e are extracted by fitting the curve
with Lorentzian cavity model. e, The mechanical response to the optical signal laser, through the
reflected optical signal field as measured on the spectrum analyzer for the first mechanical mode at
ωm/2π = 6.1241 MHz. f, The plot of EIT spectra as measured by VNA for the first mechanical
mode. g, The mechanical response of the second mechanical mode to the optical field. The mechan-
ical mode is observed at mechanical frequency ωm/2π = 8.3463MHz. h, The plot of EIT spectra
for the second mechanical mode of the structure

adjusting the fiber position and optimizing the coupling to the device.

6.5.5 Optical Characterization

The optical characterization of the our device is done by sweeping the laser frequency across the

optical resonance (Fig. 6.11a) while detecting the reflected light in a photodetector. This light is

simultaneously sent to a wavemeter to record the absolute wavelength and accurately determine the

linewidth and the center frequency of the resonance. A spectrum of the optical cavity is shown in

Fig. 6.11(b). For the device presented in this chapter, the optical cavity is observed at the wavelength

of λo = 1537.6 nm and has the quality factor of Qo = 154 × 103. The coupling rate to the optical

is κex,o/2π = 30.4MHz corresponding to external quality factor Qex,o = 6.4× 106.
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6.5.6 Electrical Characterization

Similar to ‘Nano-String’ electromechanical resonator, coherent electrical response of the device is

measured by sweeping a narrow band microwave source across the 6-12 GHz frequency range and

measuring in reflection through the VNA (Fig. 6.11c). We find a high-Q microwave resonance at

frequency ωe/2π = 10.6645 GHz. We fit a Lorentzian to the amplitude response of the microwave

cavity and extract the external coupling κex,e = 94.6 kHz and intrinsic loss rate of κi,e = 101.1 kHz.

6.5.7 Mechanical Characterization

The characterization of the mechanical modes are done independently from both the electrical and

optical side.

Optical characterization of the mechanical motion is done by parking the optical probe laser

detuned from the optical cavity and observing the transduction of the reflected optical fields using

the photo-diode. In this scheme, the mechanical motion is imprinted as intensity modulations of

the probe laser. Here, we choose the detuning point corresponding to ∆L = ωL − ωo = κo/2
√
3

where ωL is the probe laser frequency. This detuning choice ensures (maximal) linear transduction

of small fluctuations in the frequency of the optical cavity resonance and allows us to relate linear

transduction of the motion to optomechanical coupling rateGo. In this measurement, a probe power

of PL = 200 nW is used to avoid any nonlinear effects due to optical absorption and the reflected

light is first amplified through an erbium-doped fiber amplifier (EDFA) before being detected on

a high-gain photo-reciever. The resulting photo-current signal is sent to a spectrum analyzer. The

FFT of the measured electrical signals for the mechanical modes are plotted in Fig. 6.11 (e,g). The

mechanical modes are observed at frequency of ωm,1/2π = 6.1241 MHz and ωm,2/2π = 8.3463

MHz very close to the expected frequency from the FEM simulations.

The optomechanical coupling rates, Go, are measured by the mechanical response to the signal

laser. We keep the optical power constant at PL = 200 nW, while we take measurements at several

different detunings ∆L. The radiation pressure force causes an optical spring effect, resulting in a

frequency shift of the mechanical resonance [13] according to the equation :

δωm = |Go|2Im
[

1

i(∆L − ωm) + κo/2
− 1

−i(∆L + ωm) + κo/2

]
. (6.1)
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By fitting the frequency shift of the mechanical resonances and calibrating the intra-cavity photon

number due to the presence of the laser probe, we obtain single photon optomechanical coupling of

g0,o1 = 80.4 kHz and g0,o2 = 80.4 kHz for the first mechanical mode at 6.1241 MHz and second

mechanical mode at 8.3463 MHz mechanical modes respectively.

We use the two tone pump-probe scheme to study the coherent interaction between the mi-

crowave electrical circuit and the coupled mechanical resonator. Using the same method as in sec-

tion (6.4.1), we use weak probe tone across the microwave cavity while stepping a strong pump drive

red detuned from the cavity to accurately measure the mechanical frequency. When the detuning

from the microwave matches the mechanical frequency, the circuit produces a two-photon resonance

condition with the weak probe tone as it is swept across the microwave resonance. Interference in

the reflected probe signal occurs between the photon that is reflected directly from the microwave

cavity and the photon that interacts with the mechanical resonator and is re-emitted from the cavity.

Figure 6.11(f,h) shows the plot of the coherent response of the electromechanical circuit when the

detuning from the cavity are 6.1241 MHz and 8.3463 MHz, respectively, indicating the coupling to

the same mechanical mode as the zipper optomechanical cavity.

To extract the parametrically enhanced electromechanical coupling, we fit the coherent response

of the cavity with the Eq. (3.24). Repeating the same measurement for various powers of the drive

tone allows us to extract the vacuum electro-mechanical coupling g0,e for each mechanical mode

and is found to be g0,e1 = 100 Hz and g0,e2 = 87 Hz for the first and the second mechanical mode

of the transducer.

6.5.8 Effect of Optical Light on the Superconducting Microwave Circuit

The integration of an electromechanical and optomechanical circuit place us in a unique position to

study the effects of the optical light on the superconducting microwave circuit. In this measurement,

the optical laser is on resonance with optical cavity while we scan the superconducting microwave

resonator with a weak probe through VNA.

Figure 6.12(a), shows the coherent response of the microwave cavity as measured with and with-

out the presence of the optical light. The microwave loss rate increases greatly with the presence

of optical light even with optical small laser powers down at 100 nW. The mechanism can be in-
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Figure 6.12: a, The electrical response of microwave cavity with and without the presence of optical
light. In this measurement, the fiber is coupled to optical waveguide and the laser is on resonance
with the optical cavity. With 100 nW of optical power at the sample input, the microwave quality
factor degrades by a facor of 5. b, Diagram showing the positioning of the lensed optical fiber (not
to scale) with respect to the superconducting electromechanical circuit. The red region showing the
scattered photon from the optical fiber. c, A color plot of the microwave resonator quality factor
versus the vertical distance of the fiber from the optical waveguide and the optical power.

tuitively understood in that each optical photons incident on the superconducting aluminum wires

have enough energy to locally break the cooper pairs. This results in a formation of locally non-

superconducting region which consequently increases the loss rate and shifts the frequency of the

microwave cavity resonance. The sources of these scattered photons can be either through the leak-

age from the optomechanical cavity and the tapered optical waveguide or the light directly scattered

from the fiber. To identify the source of the parasitic incident light, we moved the fiber laterally

away from the waveguide, while measuring the quality factor of the microwave resonator as a func-

tion of the displacement and the optical power (see Fig. 6.12(b)). The results of this measurement

are shown in Fig. 6.12(c), indicating a weak dependence on the lateral distance of the fiber from the

optical waveguide. This result indicates that the scattered light from the optical fiber are the main

source for the loss rate of the microwave circuit, since the optical coupling to the waveguide drops

rapidly when the lateral distance becomes more than the beam waist of the optical beam, which

conforms to the result of the FEM simulation shown in Fig. 6.9(a).
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Chapter 7

High-Frequency Mechanics on Silicon
on Insulator

7.1 Introduction

So far we have demonstrated superconducting microwave resonators employing nanoscale vacuum-

gap capacitors and reaching vacuum coupling levels as large as a few hundred Hz to MHz-frequency

mechanical oscillators. These devices have been utilized for a variety of applications ranging from

conversion between microwave and optical photons [27, 30] to the generation and detection of

squeezed states of mechanical motion [19, 90, 91]

Similar work in the optical domain has sought to increase the radiation pressure within optical

resonators by scaling the optical mode volume down to the nanoscale [82]. An example of this

is the optomechanical crystal (OMC) [97], in which optical and acoustic fields are co-localized at

the wavelength scale due to Bragg scattering in a periodically patterned host material, and vacuum

coupling rates of g0 ∼ 1 MHz between near-infrared photons and X-band microwave phonons

has been realized. Owing to the factor of ∼ 105 between the speed of light and sound in solid-

state materials, optical photons and microwave phonons are matched in wavelength, enabling the

construction of integrated photonic and phononic circuits which can be used to route signals around

on a chip or to inter-convert optical and acoustic waves [115–118]. For quantum applications, high

frequency microwave acoustic devices also have several advantages; lower thermal excitation levels

and lack of fringing fields in vacuum reduce decoherence and cross-talk. For these reasons, the

integration of Josephson-junction based superconducting quantum circuits [119] and microwave

acoustic devices is actively being explored [120–128].
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A significant challenge in this effort is to obtain large, decoherence-free motional coupling.

The use of piezoelectric materials [129], as in wireless communication systems [130], can enable

MHz-rate coupling levels suitable for quantum information processing [115, 124–128, 131, 132].

The piezoelectric coupling, however, cannot be turned off nor is it perfectly mode selective, and

polycrystalline piezoelectric materials can harbor lossy defects [133]. Both these effects can lead to

parasitic electrical or acoustic damping and decoherence. Parametric radiation pressure coupling

can be dynamically controlled and can avoid some materials issues as it is relatively materials

agnostic, but it is challenging to reach the requisite level of coupling due to the large mismatch

in microwave electromagnetic and acoustic wavelengths. Using an aluminum (Al) on silicon-on-

insulator (SOI) process which has been effective in forming low-loss superconducting quantum cir-

cuits [134], here we demonstrate an electromechanical resonator that utilizes hypersound frequency

(≳ GHz) [135] phononic crystals to engineer the localization and parametric coupling of mechan-

ical motion at ωm/2π = 0.425 GHz to an integrated superconducting microwave high impedance

circuit. This electromechanical crystal (EMC) structure, akin to the optical OMCs, achieves simul-

taneously the large photon-phonon coupling (g0/2π = 17.3 Hz) and minimal acoustic damping

(γm,i/2π = 68 Hz) required of quantum electromechanics applications.

7.2 Design

The electromechanical crystal studied in this work is formed from superconducting Al wiring on

a patterned sub-micron thick silicon (Si) membrane, and consists of three primary elements: (i) a

central nanobeam phononic crystal cavity and capacitor with nanoscale vacuum gap, (ii) an acoustic

shield with a phononic bandgap for all polarizations and propagation directions of acoustic waves,

and (iii) a nanoscale-pitch spiral coil inductor with minimal stray capacitance and large intrinsic

impedance.

7.2.1 Electromechanical Crystal Design

Here we focus on the design of the nanobeam cavity. Figure 7.1(a) depicts the patterned nanobeam

cavity geometry andAlwiring layout of the vacuum-gap capacitor. The resulting hypersonic ‘breath-

ing’ acoustic cavity mode is also shown, visualized as an exaggerated deformation of the beam struc-
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Figure 7.1: a, Schematic of the central nanobeam region showing the breathing mode. Mechanical
motion is indicated by an exaggerated displacement of the beam structure, with red (blue) color
indicating regions of large (small) amplitude of the motion. The Al capacitor electrodes (grey) are
connected in parallel to a coil inductor of inductance L and parasitic capacitance Cs. b, Unit cell
of the nanobeam phononic crystal lattice with Si device layer (Al electrode) shown as blue (grey).
c, Acoustic band structure for an infinitely periodic nanobeam phononic crystal with parameters:
an = 1.55 µm, Wn = 900 nm, Wx = 600 nm and Wy = 1.45 µm. The Si device layer and Al
electrode thicknesses are tSi = 220 nm and tAl = 60 nm, respectively. The red and blue curves
correspond to symmetric and antisymmetric modes with respect to the x-z symmetry plane. The
band from which the breathing mode is formed is shown as a solid red curve. d, Participation ratio
(η) and zero-point motion amplitude (xzpf) of the breathing mode as a function of number of unit
cells in the beam for a fixed parasitic capacitance Cs = 3.1 fF and a vacuum gap size of 45 nm. e,
Motional capacitance, Cm, and zero-point coupling, g0, of the electrical circuit as a function of the
gap size. Here the coil inductance, L, is adjusted for each gap to keep the LC-resonance frequency
fixed at ωr,0 = 10.77 GHz.

ture. Referring to the nanobeam unit cell and acoustic bandstructure of Figs. 7.1(b-c), this breathing

mode is formed from an acoustic band (solid bold red curve) near the Γ-point at wavevector kx = 0.

For a lattice constant of an = 1.55 µm, beam width ofWn = 600 nm, silicon membrane thickness

tSi = 220 nm and Al wire thickness tAl = 60 nm, numerical finite-element method (FEM) simula-

tions place the Γ-point frequency of the breathing mode band at ωm/2π = 0.425 GHz. Although

other acoustic bands (dashed curves) are also present, the relative isolation of the breathing Γ-point

modes in reciprocal space still allows for the formation of highly localized cavity modes near the

band-edge. Several subtle features of the nanobeam design are key to realizing large electromechan-

ical coupling, the magnitude of which is given by [136],
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g0 = −ηxzpf
ωr,0

2Cm

∂Cm

∂u
, (7.1)

where ωr,0 is the resonance frequency of the coupled LC circuit, u is the displacement ampli-

tude of the acoustic mode of interest, xzpf is the zero-point amplitude of this mode, and Cm is the

vacuum-gap capacitance affected by the beams motion. η is a motional participation ratio defined

by η = Cm/Ctot, where Cs is the stray and Ctot = Cs + Cm the total capacitance of the LC

circuit. Firstly, a minimum motional mass (meff) is desired to increase the zero-point amplitude

(xzpf = [ℏ/2meffωm]1/2). In the case of the patterned nanobeam this corresponds to minimizing the

thickness of the Si and Al layers and minimizing the width of the beam features. Secondly, a large

participation ratio is desired in the presence of minimum realizable stray capacitance. Owing to the

use of a Γ-point acoustic mode the electromechanical coupling from each unit cell is additive and

increasing the number of unit cells in the acoustic cavity results in an increased motional capacitance

and participation ratio. FEM simulations of xzpf and η versus the number of nanobeam unit cells are

shown in Fig. 7.1(d) for a stray capacitance Cs = 3.1 fF and a fixed vacuum gap s = 45 nm. Here,

Cs is dominated by the stray capacitance of the planar spiral coil inductor forming the LC resonator.

Figure 7.1(e) shows the resulting simulated vacuum coupling rate versus gap size of the breathing

mode for a nanobeam structure consisting of 11 unit cells. Beyond 11 unit cells we find the acous-

tic mode becomes too sensitive to disorder, and tends to breaks up into localized resonances when

fabricated.

7.2.2 Phononic Bandgap Acoustic Shield

As mentioned above, the nanobeam phononic crystal does not have a full phononic bandgap in the

vicinity of the breathing mode. In order to provide additional acoustic isolation from the surround-

ing Si membrane and substrate the nanobeam cavity and vacuum-gap capacitor are embedded in the

middle of a ‘cross-pattern’ phononic bandgap crystal [137]. A unit cell of the cross shield, shown in

Fig. 7.2(a), consists of a large square plate region with four narrow connecting tethers. Through ad-

justment in the width of the square plate, and length and width of the connecting tethers, a substantial

bandgap can be opened up between the low frequency tether modes and the localized modes of each
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Figure 7.2: a, Schematic and dimensions of a unit cell in the phononic crystal shield (mirror cell)
surrounding the nanobeam central cavity. b, Acoustic band structure of the acoustic shield for mirror
unit cell parameters: am = 5.13 µm, Wm = 2.1 µm, = 360 nm and tSi = 220 nm. The acoustic
band gap is shaded in blue and the localized breathing mode frequency is marked with a dashed red
line. c, Logarithmic scale color plot of the acoustic energy density for the nanobeam breathing of (a)
embedded in the acoustic shield of (b). Acoustic energy density, ρ, is normalized to its peak value,
ρ0, located in the nanobeam. Displacement of the structure is also used to visualize the breathing
mode profile.

square plate. A FEM-simulated acoustic bandstructure of an optimized cross structure is shown in

Fig. 7.2(b), where a bandgap of nearly 0.1 GHz around the breathing mode frequency of 0.425 GHz

is obtained. Embedding the nanobeam phononic crystal cavity in the middle of a cross phononic

crystal, Fig. 7.2(c) shows a simulation of the resulting radiation pattern of the localized breathing

mode. As can be clearly seen, the energy density of the breathing mode reduces dramatically upon

entering the acoustic shield, dropping by 10 orders of magnitude in only a few periods.

7.2.3 Mechanical-Q Simulation

Periodic structures can be made to have a phononic band gap where mechanical energy loss by lin-

ear elastic coupling to the environment can be made arbitrary small. To prevent the radiation of

the mechanical energy to the surrounding substrate we first have to minimize the interaction of the

mechanical resonator (here electromechanical nanobeam) to its surrounding substrate. Lack of the

mechanical band gap for the mechanical mode means that the localized mechanical mode of the

beam can couple with propagating modes of equal frequency due to imperfections in the structure

that can cause acoustic scattering and break the beam symmetry. Additionally, there are always

“body modes” of the membrane which purely exist because of the boundary condition of the mem-

brane (and thus are not captured by the band-structure). If the exterior boundary of the membrane

allows for the energy in the propagating and body modes to be lost, the modes that couple to the
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Figure 7.3: a, FEM Simulation of the mechanical beam resonator surrounded by 2 period phononic
band gap structure, silicon membrane and a perfectly matched layer (PML). Color indicated the nor-
malized mechanical energy density with red (green) color indicating the areas with highest (lowest)
mechanical energy density. b, Simulated radiational mechanical quality factor versus the number of
the periods of the phononic band gap shield.

localized mechanical mode will act as a parasitic loss channel for the localized mode. To prevent

and minimize the interaction of the localized mechanical mode of the beam with the surrounding

silicon membrane, we have embedded our mechanical beam resonator in a phononic band gap struc-

tures with 5 periods (see Fig. 7.2). To model the mechanical damping of the localized ‘breathing’

mode due to acoustic radiation we include a large circular “pad” around the structure which is a do-

main that should absorb all the outgoing acoustic waves. This domain is called a perfectly matched

layer (PML). What distinguishes a PML domain from an ordinary absorbing/lossy material is that

all the waves incident upon the PML from a non-PML media do not reflect at the interface, hence

the PML strongly absorbs all outgoing waves from the interior of the computational region. An

example of the FEM simulation is shown in Fig. 7.3a. In this image the nanobeam acoustic res-

onator and a 2 period phononic shield are surrounded by an inner circular membrane of normal

Si material and outer, larger circular PML domain also made of Si. The color indicates the nor-

malized acoustic energy density of the breathing mode throughout the structure. As shown, with

using just 2 periods for the phononic shield, the radiated mechanical energy density is suppressed

by ≈ 100 dB. Fig. 7.3b shows the simulated radiation-limited quality factors of the breathing mode

of the mechanical resonator versus the number of phononic shield periods surrounding the mechan-
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Figure 7.4: In the reflective geometry the microwave cavity mode â1(â2) is coupled to the coherent
waveguide modes âin and âout with the external coupling strength κe,1(κe,2). It is also coupled to a
bath of noise photons, ideally at the refrigerator temperature nb,r1(nb,r2), with the intrinsic coupling
strength κi,1(κi,1). The mechanical resonator mode b̂ is coupled to the microwave resonator with
the parametrically enhanced electromechanical coupling strength G. In addition, it is coupled to a
bath of noise phonons, ideally at the refrigerator temperature nm,bath, with the intrinsic coupling rate
γm,i.

ical nanobeam. All the finite element method simulations of the mechanical nanobeam are done

using COMSOL Multiphysics [54]. The mechanical simulation use the full anisotropic elasticity

matrix where (C11, C12, C44) = (166, 64, 80) GPa and assumes a [100] crystalline orientation for

the x-axis (direction along the length of the nanobeam).

7.3 Derivation of two-mode electromechanical response

A final design consideration relates to the large hypersound frequency of the breathing mode. Cou-

pling this mode to a microwave circuit of comparable frequency introduces a large effective de-

tuning in the parametric interaction, greatly increasing the required microwave pump power. We

circumvent this problem by using a multimode microwave cavity [85] consisting of two coupled

single-mode LC resonators. In this scheme, one of the electromagnetic modes is resonant with the

microwave pump tone, while the second mode is detuned by the acoustic mode frequency.

We follow previous work [21,70–72,85,136] to calculate coherent response and full noise spec-

trum of the electromechanical system.
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7.3.1 System Hamiltonian of two-mode microwave electromechanical system

The Hamiltonian of the coupled microwave electromechanical system (see Fig. 7.4) can be written

as

Ĥ = ℏωr,0â
†
1â1 + ℏωr,0â

†
2â2 + ℏJ(â†1â2 + â†2â1) + ℏωmb̂†b̂+ ℏg0â†1â1(b̂

† + b̂), (7.2)

where âj(â†j) are the annihilation (creation) operator of the bare microwave cavity modes with bare

frequency ωr,0, b̂(b̂†) are the annihilation (creation) operator of the mechanical mode, J is the cou-

pling between the two microwave cavity, and g0 is the single photon coupling between the mi-

crowave cavity 1 and the mechanical mode. We diagonalize the hamiltonian by introducing the

even and odd superposition of the microwave cavity modes of the form â± = â1±â2√
2
.

The new Hamiltonian is now written as

Ĥ ′ = ℏωr,+â
†
+â++ℏωr,−â

†
−â−+ℏωmb̂†b̂+ℏ

g0
2
(â†+â−+ â†−â++ â†+â++ â†−â−)(b̂

†+ b̂), (7.3)

where the new supermode frequencies are ω± = ωr,0 ± J . We excite the microwave resonators by

using a strong coherent drive at frequency ωd detuned from the microwave resonators frequency by

∆r±,d = ωr± − ωd. Thus we can write the hamiltonian in the rotating frame

ˆ̃H = −ℏ∆r+,dâ
†
+â+−ℏ∆r−,dâ

†
−â−+ℏωmb̂†b̂+ℏ

g0
2
(â†+â−+â†−â++â†+â++â†−â−)(b̂

†+b̂). (7.4)

Assuming a strong red detuned drive from the higher frequency microwave cavity and∆r+,d ≈

ωm ≫ ∆r−,d we can linearize the hamiltonian in the rotating frame to obtain

ˆ̃H = −ℏ∆r+,dâ
†
+â+ − ℏ∆r−,dâ

†
−â− + ℏωmb̂†b̂+ ℏG(â− + â†− + â†+ + â+)(b̂

† + b̂), (7.5)

where G = g0
2
√
nd,− and nd,− corresponds to intra-cavity photon number of the lower frequency

microwave cavity defined by

nd,− =
Pd

ℏωd

4κe,−
κ2− + 4∆2

r−,d

, (7.6)

where Pd is the power at the cavity input, expressed by Pd = 10−310(A+Pin)/10 with Pin the drive
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power in dBm and A the total attenuation of the input line in dB. For the Hamiltonian in Eq. (7.5),

the linearized Langevin equations are given as

˙̂a−(t) = −
(
i∆r−,d +

κ−
2

)
â−(t)− iG(b̂(t) + b̂†(t))−√

κe,−âin(t)−
√
κi,−âr−,b(t), (7.7)

˙̂a+(t) = −
(
i∆r+,d +

κ+
2

)
â+(t)− iG(b̂(t) + b̂†(t))−√

κe,+âin(t)−
√
κi,+âr+,b(t), (7.8)

˙̂
b(t) = −

(
iωm +

γm,i

2

)
− iG(â+(t) + â†−(t))−

√
γm,ib̂b,m(t). (7.9)

Here, âb,r± are annihilation operators of themicrowave baths coupled to the even and oddmicrowave

cavities. Now, taking the Fourier transform of the linearized Langevin equations and simplifying

we obtain

χ−1
r−(ω)â−(ω) = −iG(b̂(ω) + b̂†(ω))−√

κe,−âin(ω)−
√
κi,−âr−,b(ω), (7.10)

χ−1
r+(ω)â+(ω) = −iG(b̂(ω) + b̂†(ω))−√

κe,+âin(ω)−
√
κi,+âr+,b(ω), (7.11)

χ−1
m (ω)b̂(ω) = −iG(â−(ω) + â†−(ω) + â+(ω) + â†+(ω))−

√
γm,ib̂b,m(ω), (7.12)

where χr± and χm are the uncoupled susceptibilities of microwave cavities and mechanics defined

by

χ−1
r±(ω) = κ±/2 + i(∆r±,d − ω), (7.13)

χ−1
m (ω) = γm,i/2 + i(ωm − ω). (7.14)

In the sideband-resolved limit ωm ≫ κ±, G and for positive detuning of the drive tone with

respect to the high frequency microwave cavity∆r+,d ≈ ωm(red side pumping), we have χmχr− ≪

χmχr+. Thus the linearized Langevin equation can be simplified further and written approximately



108

as

â+(ω) =
iGχr+χm

√
γm,ib̂b,m(ω)− χr+(

√
κe,+âin(ω) +

√
κi,+âr+,b(ω))

1 +G2χr+χm
(7.15)

â−(ω) = −χr−(
√
κe,−âin(ω) +

√
κi,−âr−,b(ω)), (7.16)

b̂(ω) =
−χm

√
γm,ib̂b,m(ω)− iGχmχr+(

√
κe,+âin(ω) +

√
κi,+âr+,b(ω))

1 +G2χr+χm
, (7.17)

where we have dropped the terms proportional χmχr−. Since the mechanical transduction of the

microwave signal is now observable for even mode microwave cavity, from here on we only focus

on response from the evenmodemicrowave cavity. Using the Input-Output formalism and Eq. (7.15)

we get

âout(ω) = âin(ω) +
√
κe,+â+(ω),

= âin(ω)− κe,+
χr+âin(ω)

1 +G2χmχr+
−

√
κe,+κi,+χr+âr+,b(ω)

1 +G2χmχr+
+ b̂b,m(ω)

iG
√
κe,+γm,iχmχr+

1 +G2χmχr+
.

(7.18)

7.3.1.1 Electromagnetically Induced Transparency

We first calculate the coherent part of the output signal by using Eq. (7.18) and dropping the inco-

herent terms to get

S11 =
⟨âout(ω)⟩
⟨âin(ω)⟩

= 1− κe,+χr+

1 +G2χmχr+
, (7.19)

and substituting for the bare microwave and mechanical cavity susceptibilities we get the coher-

ent electromechanical analogue of the electromagnetic induced transparency valid for small probe

powers,

S11 = 1− κe,+

κ+/2 + i(∆r+,d − ω) + G2

γm,i/2+i(ωm−ω)

. (7.20)

7.3.1.2 Quantum derivation of observed noise spectra

To calculate the incoherent noise spectra of the mechanical resonator we write calculate the auto-

correlation of the detected normalized field amplitude (or the photo current) Î(t) = âout(t)+ â†out(t),

SII =

∫ +∞

−∞
dω′

⟨(
âout(ω) + â†out(ω)

)(
âout(ω

′) + â†out(ω
′)
)⟩

. (7.21)
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Substituting for âout(ω) and â†out(ω) from Eq. (7.18) and using thermal noise correlation for input

noise terms (i.e. ⟨b̂b,m(ω)b̂†b,m(ω′)⟩ = (nm,bath+1)δ(ω+ω′), ⟨b̂†b,m(ω)b̂b,m(ω′)⟩ = nm,bathδ(ω+ω′),

⟨âr+,b(ω)â
†
r+,b(ω

′)⟩ = (nb,r++1)δ(ω+ω′), ⟨â†r+,b(ω)âr+,b(ω
′)⟩ = nb,r+δ(ω+ω′), ⟨âin(ω)â†in(ω

′)⟩ =

δ(ω + ω′)), the power spectral density is

SII(ω) =
∣∣∣(1− κe,+χr+

1 +G2χmχr+

)∣∣∣2+(nb,r++1)
κe,+κi,+|χr+|2

|1 +G2χmχr+|2
+(nm,bath+1)

κe,+γm,iG
2|χm|2|χr+|2

|1 +G2χmχr+|2
.

(7.22)

The mechanical occupancy can also be calculated by using Eq. (7.15) and Eq. (7.17) as in Ref. [71]

nm = nm,bath

(
γm,i

κ+

4G2 + κ2+
4G2 + κ+γm,i

)
+ nr,+

(
4G2

4G2 + κ+γm,i

)
. (7.23)

7.4 Microwave Circuit properties and coil design
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Figure 7.5: a, A schematic of the full electromechanical circuit. The microwave circuit is made of
aluminum shown in gray color and the silicon membrane is shown in blue. The two LC microwave
resonators consist of a high impedance coil which is capacitively coupled to a high frequency me-
chanical beam. Moreover, the microwave resonators are inductively coupled to each other. Tuning
the distance between the two coils d allows for control over the strength of the coupling between
the two LC resonators. Additionally, positioning of the two LC resonator system with respect to
the branching point of the coupler wire allows for fine tuning of coupling of the even and odd su-
permodes to the microwave feed line. b, Shows the frequency splitting of the even and odd super
modes 2J = ωr,+ − ωr,− versus the distance between the coils. c, External coupling of even (odd)
κe,+(κe,−) to the microwave feed line versus the separation between branching point of the coupler
wire and the center of the two LC resonators δ.
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The electromechanical circuit is composed of two identical LC coil resonators, each capaci-

tively coupled to a mechanically compliant nanobeam supporting a mechanical mode with slightly

different frequencies of 420 MHz and 425 MHz. Fig. 7.5a shows a schematic of the microwave

electromechanical circuit. The coil Al wires are 500 nm wide and 120 nm thick, with a 1 µm pitch

and 35 turns forming a square of dimension 74 µm×74 µm. According to the finite element simula-

tions, the coils have a self resonance frequency at ωsrf/2π = 13.98 GHz. This simulation includes

the cross-overs and the coupler wires. Using the modified Wheeler formula [77], the self inductance

of the coil is L = 41.8 nH. Using the simple relation ωsrf = (LCl)
− 1

2 , we obtain the total stray

capacitance of Cs = Cc + Cp = 3.1 fF, where Cc is the parasitic capacitance from the coil induc-

tor and Cp is the extra parasitic capacitance due to the extra wiring. The modulating capacitance

Cm for different gap size of the electrodes is shown in Fig. 7.1(d). From the measured g0 in our

experiment we estimate the capacitor gap to be s ≈ 40 nm, from which we estimate the modulating

capacitance to be Cm = 2.1 fF. This yields a participation factor of η ≈ 0.4 and a bare LC coil

resonance frequency of ωr,0/2π = 10.77 GHz (when adding the estimated motional capacitance to

stray capacitance Cs of the coil and extra wiring). Using the simulated value of 2J , we estimate

ωr,+ = 10.9975 GHz and ωr,− = 10.5625 GHz.

The two mechanical beams are designed to have the same length and gap size such that the

modulating capacitance and the frequency of both microwave resonators are identical. By placing

the two microwave resonator near each other, the two coils are inductively coupled forming an even

and odd symmetry microwave supermodes. By adjusting the distance between the two inductors, we

can control the strength of the mutual inductance hence, controlling the frequency splitting between

the even and odd microwave mode. Figure 7.5(b) shows the frequency splitting between the two

microwave modes as a function of the distance between the coil inductors. For the device presented

in this manuscript, the distance is chosen to be d = 12 µm yielding a simulated frequency splitting

of 2J/2π = 415 MHz between the microwave modes. Moreover, the placement of the two induc-

tors with respect the branching point of the coupler wire denoted by δ allows us to independently

control the coupling of the microwave supermodes to the microwave feed line. Fig. 7.5(c) shows the

coupling of the even and odd microwave modes to the microwave feed line versus the displacement

of the coil inductors δ. For the chosen δ = 16.5 µm, we expect the coupling of κe,+/2π = 102 kHz



111

4 K 7 mK300 K

HEMTLNA

-30dB

-20dB -30dB
SG1

VNA

SA

'

Ic

M

Lc

Lc

Cc

Cc

Cm

Cm

SG2

Figure 7.6: The output tone of a microwave signal generators (SG1 and SG2) and the output tone
of a vector network analyzer (VNA) are combined at room temperature, attenuated, routed to the
sample at about 7 mK and inductively coupled to the LC circuit on the silicon membrane. We detect
the reflected output tone which is routed and isolated with two microwave circulators and after
amplification with a high electron mobility transistor amplifier (HEMT) at 4K stage, switchable
pump tone cancelation (dashed lines), and further amplification with a low noise amplifier (LNA).
The measurement is done either phase coherently with the VNA, or we detect the incoherent power
spectrum with the spectrum analyzer (SA).

for the even mode at higher frequency and κe,−/2π = 9.6 MHz for the odd mode at lower fre-

quency. All the microwave LC resonator simulations are performed using the SONNET software

package [76]. In these simulations we have assumed a relative permittivity of ϵSi = 11.7 for the

silicon membrane.

7.5 Experimental Setup

For measuring the coherent and incoherent response of our circuit, we combine the output of a vector

network analyzer with two other microwave sources and feed the microwave signals to the base plate

of a cryogen free dilution refrigerator at Tf ≈ 10 mK using coaxial cables with feedthroughs and

attenuators for thermalization at each temperature stage yielding total attenuation of A = 76 dB

and suppressing room temperature Johnson noise (see Fig. 7.6) to about nnoise = 0.05 photons.

We couple to the sample in a reflective geometry using a circulator and a low loss copper printed



112

circuit board (PCB). On the PCB and the chip we use 50 Ω coplanar waveguides (CPW) to route

the microwave tones to the membrane with very little reflections (< 25 dB). Near the LC circuit,

we extend the center conductor of the CPW waveguide and short it to ground with a narrow wire

passing near the inductor coils and inductively couple to the microwave resonators.

On the output side, we use an isolator for isolating the sample from the 4 K stage noise. Niobium

titanium superconducting cables are used to connect the isolator directly to a low noise, high electron

mobility transistor amplifier (HEMT) at 4 K stage. The microwave signal is again amplified with a

low noise room temperature amplifier (LNA). In order to suppress spurious response peaks for high

drive power measurements, we cancel the high drive power tone by adding a phase and amplitude

adjusted part of the pump tone to the output signal before the room temperature amplifier, as shown

in Fig. 7.6. After the final amplification we use an electronically controlled microwave switch to

distribute the signal to either the spectrum analyzer or the second vector network analyzer port. The

total gain of the system is G = 57.6 dB.

7.6 Fabrication

Figure 7.7(a) shows a scanning electron microscope (SEM) image of a fabricated version of the

double-cavity device. This device is fabricated using an Al-on-SOI process introduced in Ref. [23]

and Chapter (4) and consists of two LC lumped element microwave resonators which are inductively

coupled to each other and capacitively coupled to a pair of hypersonic phononic crystal cavities of

slightly different (5MHz) design frequency. The Al layer is deposited using electron-beam evapora-

tion, and patterning of the Si membrane and Al wiring is performed using electron beam lithography

and a combination of plasma dry etching and lift-off. A SOI wafer with high resistivity (≳ 5 kΩ)

Si device and handle layers is used to reduce the microwave losses, and the buried-oxide (BOX)

layer underlying the Si device layer is removed using an anhydrous hydroflouric acid vapor etch

to avoid Al etching and stiction during the membrane release. Removal of the BOX layer is per-

formed over an extended region covering the entire double-cavity structure in order to avoid the

significant microwave losses in the BOX layer. Figure 7.7 shows a zoomed-in SEM image of one

of the nanobeam acoustic cavities, indicating the placement of the Al capacitor electrodes and the

approximately 70 nm vacuum-gap measured at room temperature.
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Figure 7.7: a, Zoomed-out SEM image of the entire double-cavity device fabricated on a SOI mem-
brane. The two Al spiral coils, labeled coil 1 and coil 2, are shunted via the vacuum-gap capacitor of
two independent nanobeam acoustic cavities which are embedded inside acoustic shields. Inductive
coupling between the two coils is set by the gap d. External coupling of the two coils to a 50-Ω
microwave drive line is performed by shorting the end of a CPW and splitting the current in the
center trace into two paths (shunting wire shown in orange). The offset δ from the center of the coils
where the wire path splits in two results in asymmetric coupling to the two coils, allowing for an
adjustable amount of coupling between the even and odd supermodes of the coupled LC resonators.
Parameters for this device are d = 12 µm and δ = 16.5 µm, resulting in a simulated coil coupling
of 2J/2π = 415 MHz and external coupling rates of κe,−/2π = 9.6 MHz (κe,+/2π = 102 kHz)
for the odd (even) mode. The bare (decoupled) frequency of the LC resonators is designed to be
ωr,0/2π = 10.86 GHz for a capacitor vacuum gap of s = 70 nm. b, Zoomed-in SEM image of
the nanobeam phononic crystal region of the acoustic cavity coupled to coil 2. The Si device layer
and Al electrodes appear dark and light grey, respectively. A mirror cell of the surrounding acous-
tic bandgap shield is shaded in blue. Inset: SEM of a unit cell of the nanobeam phononic cavity
indicating the s = 70 nm gap size at room temperature.

7.7 Measurement of Electromechanical Coupling andAcoustic Damp-

ing

As detailed in the caption of Fig. 7.7, microwave signals are launched onto a 50-Ω coplanar waveg-

uide (CPW) on the SOI chip, the center conductor of which is extended and shorted to the ground in

the near-field of the cavity. Electrical excitation of the circuit is provided by inductive coupling to

the two spiral inductors, which for asymmetric placement of the shorting wire (see Fig. 7.7(a)) can

lead to stronger loading of the anti-symmetric, lower frequency supermode which is used for pump-

ing of the circuit. Read-out is performed in reflection. Vector network analyzer (VNA) microwave

delay measurements of the device in Fig. 7.7 are plotted in Figs. 7.8(a) and 7.8(b), showing the pres-

ence of a heavily loaded low-Q resonance at ωr,−/2π = 10.5788 GHz and a more weakly coupled
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Figure 7.8: a, VNAmeasurement of the time delay response of the lower frequency, odd-symmetry-
like microwave resonance centered at ωr,−/2π = 10.5788 MHz. b, Delay measurement of
the higher frequency, even-symmetry-like resonance centered at ωr,+/2π = 10.9930 MHz. c,
Schematic showing the drive and probe frequencies and relevant LC resonance detunings used in the
two-tone microwave spectroscopy measurements. Here, ωd is the drive frequency, which is placed
near the low frequency LC resonance (ωr,−) and close to resonance with the lower motional side-
band (red sideband) of the high frequency LC resonance (ωr,+). The high frequency cavity response
is registered by sweeping the frequency (ωp) of the weak probe tone. d, Color plot of the measured
normalized reflection spectrum, |S11|, of a weak coherent probe tone as a function of the detuning
(∆r+,d) of the strong drive tone. e, Plot of the measured probe tone spectrum around the high fre-
quency LC resonance for a drive detuning at two-photon resonance,∆r+,d ≈ ωm = 424.7MHz. In
(d) and (e) the strength of the drive tone corresponds to an intra-cavity photon number in the lower
LC anti-symmetric resonance of nd,− = 2.25× 105.

high-Q resonance at ωr,+/2π = 10.9930 GHz. With a measured splitting of∆±/2π = 414.2MHz

in close correspondence to the design tunnel-coupling rate of 2J/2π = 415 MHz, the local modes

of this device can be assumed to be strongly hybridized. Fitting the measured delay curves to a

Lorentzian lineshape, we infer a total damping rate of κ+/2π = 230 kHz and an external cou-

pling rate of κe,+/2π = 85 kHz for the microwave mode at ωr,+. For the more strongly loaded

resonance at ωr,− we measure κ−/2π ≈ κe,−/2π = 8.9 MHz. The asymmetry and magnitude of

the external coupling of both resonances are again close to the design values for the even and odd

modes of the two coil resonator of Fig. 7.5. In order to probe the acoustic properties of the EMC

we use a two-tone pump and probe scheme [83, 84, 111] illustrated schematically in Fig. 7.8(c).

In this scheme a strong drive tone (ωd) is applied at a variable detuning from the lower frequency

microwave resonance while a weaker probe tone (ωp) is scanned across the upper frequency mi-

crowave resonance. At two-photon resonance when the pump-probe difference frequency matches

that of the capacitively-coupled acoustic mode frequency, ωp − ωd = ωm, beating of the drive and

probe tones inside the microwave cavity coherently drive the acoustic mode, leading to interference

effects in the externally detected probe tone spectrum due to emission of motional sidebands of the
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Figure 7.9: Pulsed excitation and read-out measurement of the ringdown of the acoustic energy in the
nanobeam mechanical resonator. In this measurement the drive tone at 6 dBm power corresponding
to intra-cavity photon number of nd,− = 1.42 × 105 is kept on after the excitation and the decay
includes back action damping due to the drive tone. The initial steep decay results from the leakage of
the photons from the microwave cavity. The decay rate of the mechanical resonator γm is extracted
by fitting an exponential curve to the slow decay section of the signal versus time.

intracavity drive field. This results in the emergence of a transparency window in the reflected probe

spectrum due to the acoustic ‘dark state’, similar to the phenomena of electromagnetically-induced

transparency in atomic physics. In the weak-coupling, sideband-resolved limit the reflected probe

spectrum is given by Eq. (7.20). Figure 7.8(d) shows a color plot of a series of probe scans as the

pump detuning is stepped in frequency, showing the emergence and anti-crossing of an acoustic

dark state resonance near ∆r+,d/2π = 424.69 MHz. A plot of the reflected probe spectrum for

∆r+,d/2π = ωm/2π = 424.7 MHz and nd,− = 2.25 × 105 photons is shown in Fig. 7.8(e). Fit-

ting Eq. (7.20) to the measured probe spectrum we find a total linewidth of γ/2π = 6.8 kHz for

the acoustic mode. This linewidth contains contributions from electromechanical back-action (γem),

intrinsic energy damping of the acoustic mode (γm,i), and any pure dephasing of the acoustic mode.

As frequency jitter is observed in the dark state resonance of the probe spectrum at low pump

power, a more direct measure in the time-domain of the intrinsic acoustic damping and the elec-

tromechanical back-action is employed. As in the EIT-like spectroscopy, here we apply a 100 ms

two-tone pulse to ring up the mechanics with a strong drive tone at ωd = ωr,+ − ωm and a weak

probe tone at ωp = ωr,+. Detection of the acoustic mode occupancy is performed with a read-out

pulse in which the weak probe tone is turned off and motionally scattered photons from the strong

drive tone (still at ωd = ωr,+ − ωm) are detected on a spectrum analyzer in zero-span mode with

center frequency at ωr,+ and resolution bandwidth (RBW) set to 30 kHz (≫ γ/2π). An exam-
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Figure 7.10: a, Pulsed excitation and read-out measurement of the ringdown of the acoustic energy
in the nanobeam resonator. Here ringdown occurs ‘in the dark’ with all microwave fields off. b,
The measured energy decay rate of the acoustic resonator, γ, as a function of the power of the drive
tone. Here the drive tone is kept on after excitation and the energy decay includes parametric back-
action (and parasitic) damping due to the drive tone. The vacuum electromechanical coupling g0 is
extracted by fitting the measured decay rate γ versus the estimated intra-cavity photon number of
the drive tone (nd,−).

ple of the the time-domain measurement is plotted in Fig. 7.9. Figure 7.10(a) shows a plot of the

measured ringdown of the acoustic mode energy as a function of the delay, δt, between the end of

the ring up pulse and the beginning of the read-out pulse (see inset). This ‘ringdown in the dark’

measurement yields the intrinsic energy damping rate of the mechanics, which for the breathing

mode at ωm/2π = 424.7MHz is measured to be γm,i/2π = 68 Hz (phonon lifetime τ = 2.3 ms),

corresponding to a Q-factor of 6.25× 106.

To extract the back-action induced damping rate of the breathing mode, the read-out pulse de-

lay is set to δt = 0 and the motionally scattered photons within the read-out pulse are measured

as a function of time. Fitting an exponential decay curve to the time-varying detected read-out sig-

nal on the spectrum analyzer for varying read-out pulse powers, Fig. 7.10(b) plots the back-action

damped acoustic energy decay rate, γm = γm,i + γem, versus pulse amplitude in units of intra-

cavity photon number, nd,−. As the back-action damping rate for red-sideband pumping is given

by γem ≈ 4g20,±nd,−/κ+, the slope of this plot yields a vacuum electromechanical coupling rate

for the breathing mode of g0,±/2π = 17.3 Hz (corresponding to g0/2π = 34.6 Hz). Referring to

Fig. 7.1(d), this value is substantially larger than that expected for the vacuum-gap size of s = 70 nm

measured via SEM at room temperature. We attribute this difference to a shrinking of the gap to

s ≈ 40 nm due to an increase in the tensile strain of the Al wires on the nanobeam as the device

is cooled to cryogenic temperatures. This is consistent with the observation that devices with gaps
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smaller than s ≲ 60 nm at room temperature did not show any acoustic resonances when cooled

down (the lack of a second acoustic resonance in the device studied here being an example).

7.8 Mechanical Frequency Jitter

As captured by the cooperativity, C ≡ γem/γm,i, the long phonon lifetime and large electromechan-

ical back-action measured in Fig. 7.10 indicate that coherent manipulation of the breathing mode

via microwave drive fields is possible. For quantum applications one is also interested in the quan-

tum cooperativity defined as Ceff ≡ C/nb, where nb is a noise occupancy (Bose factor) of the bath

coupled to the acoustic mode. Ceff > 1 allows for coherent manipulations of the mechanics on a

timescale faster than decoherence caused by the bath, or in terms of dissipative processes, back-

action cooling of the mechanical mode to its quantum ground state. Characterization of the noise

baths coupled to the EMC are explored here by monitoring the noise power spectrum generated

on the upper motional sideband of a pump tone at ωd = ωr,+ − ωm (as in the read-out pulse of

the ringdown measurements, but with the spectrum analyzer swept over a finite span with narrow

RBW).

Plotted in Fig. 7.11(a) is the noise power spectral density (NPSD)measured at the upper motional

sideband of the pump tone (≈ ωr,+). In this plot the blue shaded spectrum labelled Sth is the back-

action damped noise spectrum of the breathing mode, magnified by a factor of ×40 for visibility.

The measured linewidth of this spectrum is 6.7 kHz, substantially larger than the estimated linewidth

from back-action and intrinsic damping alone ([γm,i + γem]/2π ≈ 2 kHz). This broadening of the

mechanical spectrum is due to time-averaging of the aforementioned frequency jitter. Although a

microscopic understanding of the source of the measured frequency jitter is beyond the scope of this

work, an estimate of the time scale of the jitter noise can be determined using the method described

in Refs. [138, 139] in which a weak coherent tone is applied close to the upper motional sideband.

The resulting NPSD is shown in Fig. 7.11(a), where the spectrum is separated into a broad thermal-

like spectrum (Sbb; red curve) and a narrower spectrum around the applied coherent tone (Snb; green

curve). Acoustic frequency fluctuations faster than the instantaneous linewidth (given by γm,i+γem)

contribute toSbb, whereas slower frequency fluctuations add to the narrow spectrumSnb, fromwhich

we estimate that 15% (58%) of the measured total linewidth is a result of fast (slow) frequency jitter
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noise. see section. 7.8.1 for details.

7.8.1 Analysis

Our analysis of the frequency noise of the breathing mode follows that from Refs. [138, 139]. A

main takeaway from the referenced work is that frequency fluctuations slower than the decay rate of

the the mechanical resonance (δω ≪ γm), can be considered as slow fluctuations in the mechanical

susceptibility leading to slow variation in amplitude and phase of the driven response. Thus an ap-

plied near resonant tone is spectrally broadened around its frequency ωF . For frequency fluctuations

faster than the decay rate of the mechanical oscillator (δω ≫ γm), the driving term quickly looses the

memory of the driving frequency and becomes more similar to the thermal spectrum with the only

difference being that the amplitude of the signal is dependent more on the driving amplitude than the

temperature of the mechanical oscillator. Therefore, fast fluctuations in the mechanical oscillator

frequency lead to added noise over the entire broadened mechanical response.

Figure 7.11a shows the narrowband (slow) and broadband (fast) spectra of the mechanical fre-

quency response in the presence of a weak coherent tone applied near resonance. We denote the area

of the narrowband and broadband peaks bySnb andSbb, respectively. We can estimate the broadband

component of the frequency jitter of the mechanical oscillator by measuring the area underneath the

narrowband and broadband peaks and using the relation

γ̃m
γm

≈ 1 +
Sbb

Sδ

(
1− Snb

Sδ

)
, (7.24)

where γ̃m is the broadened mechanical linewidth and Sδ corresponds to the area underneath the

applied coherent tone in the absence of mechanical interaction, measured by detuning the tone fre-

quency away from the mechanical resonance.

7.9 Mechanical Thermometry

Calibration of the reflected signal amplification (along with the electromechanical back-action rate)

allows us to relate the area under the NPSD spectrum Sth to an estimate of the noise phonon occu-

pancy of the breathing mode, nm [82]. A plot of the inferred nm versus drive photon number nd,−
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Figure 7.11: a, Measured electrical NPSD spectrum at the upper LC resonance (ωr,+) under red-
detuned pumping with drive frequency ∆r+,d ≈ ωm and nd,− = 4.3 × 105, with and without an
additional weak tone at ωr,+/2π + 4 kHz. With the weak tone off, the measured NPSD is just
that of the back-action damped acoustic resonance (Sth; blue curve, magnified by ×40). With the
weak tone on, the measured noise spectrum can be separated into two distinct components, a broad
thermal-like spectrum Sbb (red curve) and a narrow noise peak around the weak coherent tone Snb
(green curve). b, Back-action cooling curve showing measured phonon occupancy versus drive
tone power for a pump frequency ∆r+,d ≈ ωm. Dashed grey curve corresponds to expected back-
action cooling curve for bath temperature Tb = 500 mK. Inset: measured NPSD at a drive power
of nd,− = 7.1 × 104. c, Calibrated noise power in units of breathing mode phonon number, nm,
versus time during a red-detuned (ωd = ωr,+ − ωm) drive pulse. Here a pulse train with pulse
period Tper = 30 ms and on-pulse length Ton = 15 ms is utilized. Pulse amplitude corresponds to
an intra-cavity drive photon number nd,− = 7.1× 104. The solid red curve shows a heating model
fit to the data with pump-induced hot bath occupancy nH = 8.9. See Sec. 7.9.1 for details of the
heating model

is shown in Fig. 7.11(b). Although significant back-action cooling [70] is expected based upon the

measured cooperativity, the variation in nm versus drive power is highly irregular. The breathing

mode starts out hot at low power, following a weak cooling trend with large fluctuations between

different drive powers. Repeated measurement of nm at a single drive power also show fluctuations

(see red data points at nd,− = 7.1×104 in Fig. 7.11(b)). In order to confirm that the breathing mode

is thermalized close to the fridge temperature in absence of microwave driving of the circuit, we plot

in Fig. 7.11(c) the total measured acoustic noise power versus time as the red-sideband cooling pump

tone is pulsed on. The calibrated breathing mode occupancy at the onset of the pulse is measured

to be nm = 1.5 (mode temperature Tm ≈ 40 mK), and then heats over several milliseconds up to

an occupancy nH = 8.9. Over a train of pulses the value of nH is seen to fluctuate on timescales

of a few seconds to minutes, with a variance consistent with the continuous-wave mode occupancy

measurements.
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7.9.1 Heating Model

The heating curve observed in Fig. 7.11(c) fits well to the phenomenological heating model in-

troduced in Ref. [140]. This model assumes the coupling between the mechanical oscillator and

three different thermal baths. First, the red side-band drive turns on the radiation pressure coupling

between the mechanical oscillator and the effective zero-temperature coherent drive with rate γem

cooling the mechanical oscillator. Second, the mechanical oscillator itself is coupled to the ambient

fridge bath with occupancy nm,bath at an intrinsic rate γm,i and third, it is coupled to a pump induced

hot bath with occupancy nm,p and coupling rate γp. Moreover, to best capture the dynamics of the

heating curve, it is assumed that the hot bath has a finite equilibration time. Thus the red curve fitted

to the data assumes that a fraction of the hot thermal bath turns on almost instantaneously, while

the remainder has a slow exponential increase to its steady state value. Thus we can write a simple

phenomenological rate equation:

ṅm = −γnm + γpnm,p(1− δbe
−γst) + γm,inm,bath, (7.25)

where γ = γm,i + γem + γp, δb is the slow growing fraction of nm,p and γs is the turn-on rate.

Assuming a constant γp, this rate equation has a simple solution of the form

nm(t) = nm,bathe
−γt + nH(1− e−γt) + nδ(e

−γst − e−γt), (7.26)

where nδ and nH are defined by

nδ =
γpnpδb
γs − γ

(7.27)

nH = γ−1(γpnp + γm,inm,bath). (7.28)
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Chapter 8

Conclusion

Radiation pressure has been used to effectively couple the quantum motion of mechanical elements

to the field of optical and microwave light. Integration of all three degrees of freedom (i.e., me-

chanical, optical, and microwave) would enable a quantum interconnect between the microwave

and optical quantum systems. This dissertation is the culmination of a concentrated effort towards

developing an integrated platform compatible both with superconducting qubits and photonics oper-

ating at communication wavelength band. The design, fabrication, and characterization of integrated

electromechanical circuits capable of coupling to photonic crystal cavities based on silicon nitride

nanomembranes and free standing silicon membranes formed from a silicon-on-insulator wafer are

presented.

Utilizing Si3N4 nanomembranes as a substrate for superconducting microwave circuits, we

demonstrate the formation of a high impedance circuit element with large per photon electric field

strength. In this work, the reduced thickness and low dielectric constant of the nanomembrane help

realize a microwave resonator with an estimated vacuum field strength as large as Evac ≈ 260 V/m.

This feature gives rise to a large electromechanical coupling that we observe to the fundamental

flexural mode of an integrated phononic crystal nanobeam. Dynamical backaction cooling via a

strong microwave drive tone results in an occupancy of nm = 0.58 for the 4.48MHz flexural mode

of the beam, limited here by heating of the circuit due to absorption of the microwave drive at the

highest powers while measured in a dilution refrigerator at Tf = 10 mK. Substantial further re-

duction in the coil and stray capacitance should be possible through tighter coil wiring and a more

optimized layout of the capacitor wiring, respectively, greatly reducing the required drive power

(and the corresponding heating) for backaction cooling to the quantum ground state.
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I describe our work on developing aluminum-on-silicon fabrication process for creation of a

high-Q aluminum (Al) superconducting microwave resonator on thin film silicon membranes in

Chapter.5. Utilizing this novel fabrication process described in Chapter. 6, we demonstrate a high

impedance, high-Q 10 GHz coil resonator that is coupled capacitively with a large participation ratio

to a≈ 6MHz micro-mechanical resonator. We use two-tone microwave spectroscopy and radiation

pressure back action to characterize the coupled electromechanical system in the dilution refrigerator

and we measure the vacuum electromechanical coupling rate of g0/2π = 230 Hz to the mechanical

resonator with the high Q-factor of Qm = 2.1× 106. Utilizing microwave radiation pressure back-

action cooling of the mechanical resonator, we realize a minimum phonon occupancy of nm = 0.1

phononwith only 3×103microwave photons. Thus, SOI represents a unique platform for integrating

microwave, mechanical, and optical circuits, which is particularly interesting in the context of recent

proposals and experimental efforts to utilize mechanical elements as quantum converters between

the microwave and optical photons [30, 83, 107–110, 141]. For this application one has three main

metrics of interest: conversion efficiency, conversion bandwidth, and added noise. All three param-

eters rely on realizing a large optomechanical and electromechanical vacuum coupling rate. In the

case of optomechanical coupling, the relatively large refractive index and elasto-optic coefficients of

Si have enabled substantially larger optomechanical coupling, at the level of g0/2π = 1MHz [25],

in comparison to other thin-film photonic devices such as those formed in silicon nitride [75]. More-

over, the relatively low optical loss of silicon (Si) in the telecom band [142, 143], in comparison to

GaAs for instance [115, 144], is key in reducing the parasitic heating of the mechanical resonator,

which ultimately limits the added noise in the conversion process [28,140]. In addition, the demon-

stration of relatively large electromechanical coupling, comparable to the state of the art aluminum

drumhead resonators [84, 145], low microwave resonator loss, and very low mechanical damping,

indicates that efficient and low noise microwave photon-phonon conversion is possible on a SOI

platform.

However, in order to utilize these devices as a part of hybrid quantum circuits architecture, ca-

pable of interfacing superconducting qubits and optical photons, GHz level mechanical resonance

frequency is required to operate in the sideband-resolved limit of optomechanics [82], a crucial pa-

rameter regime for realizing noise-free microwave to optical quantum signal conversion [28, 146].
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Toward this effort, the use of piezoelectric materials can enable MHz-level electromechanical cou-

pling and operation at GHz-level frequencies. The piezoelectric coupling, however, cannot be turned

off, nor is it perfectly mode selective, and poly-crystalline piezoelectric materials harbor lossy de-

fects in comparison to the radiation pressure parametric coupling which can be dynamically con-

trolled. Both these effects can lead to parasitic electrical and acoustic decoherence. In comparison,

parametric radiation pressure coupling can be dynamically controlled and is relatively materials ag-

nostic. To that end, utilizing the aluminum (Al) on silicon process which has been effective in form-

ing low-loss superconducting quantum circuits, we demonstrate a form of electromechanical crystal

for coupling microwave photons and hypersonic phonons by embedding the vacuum-gap capacitor

of a superconducting resonator within a phononic crystal acoustic cavity. Utilizing a two-photon

resonance condition for efficient microwave pumping and a phononic bandgap shield to eliminate

acoustic radiation, we demonstrate large cooperative coupling (C ≈ 30) between a pair of electrical

resonances at ωr,0 ≈ 10GHz and an acoustic resonance at ωm/2π = 0.425GHz. Electrical read-out

of the phonon occupancy shows that the hypersonic acoustic mode has long intrinsic energy decay

time of 2.3ms and thermalizes close to its quantum ground state of motion (occupancy nm = 1.5) at

a fridge temperature of Tf = 10 mK. Despite this, the measured noise power spectral density of the

mechanical mode indicates the broadening of the spectrum due to frequency jitter and anomalous

mechanical heating.

The source(s) of the frequency jitter and the heating observed in the current device is not well

understood at this point; however, there are a few candidate sources to consider. Two-level tunnel-

ing systems (TLS) [133] found within amorphous surface oxide layers are known to cause excess

damping and noise in microwave superconducting quantum circuits [103]. TLS also couple to strain

fields, and the high frequency of the hypersonic breathing mode may lead to coupling (via nonlinear

phonon-phonon or TLS-phonon scattering) to the same TLS bath as that of the microwave pump.

The observed fluctuation in the breathing mode occupancy is also reminiscent of the bursty nature

of quasi-particle (QP) generation measured in thin films of superconducting aluminum [147, 148]

due to high energy particle impacts. Modeling of the interaction of QPs with sub-gap electromag-

netic radiation indicates that even weak microwave probe fields can lead to non-equilibrium QP and

phonon distributions above that of the thermal background [149]. Both TLS and QP considerations
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Material Tc (K) ∆ (µeV) τQP,max

Al 1.11 168 3.5 ms
Nb 9.2 1395 1 ns
TiN 0.7-4.5 100-650 200 µs
NbTiN 14.5 2200 1 ns

Table 8.1: Typical parameters of critical temperature Tc, superconducting energy gap ∆ and the
relaxation time of the quasi particle for various materials.

indicate that moving to a different superconducting material with short QP relaxation time and a

clean surface — such as NbTiN [150] — may significantly reduce acoustic mode heating and fre-

quency jitter. Table 8.1 lists the relaxation time of QPs in different materials in comparison to the

aluminum [147]. An additional attribute of NbTiN is its large kinetic inductance [151], which can

be employed to further reduce parasitic capacitance and increase the electromechanical coupling.

Moreover, the electromechanical crystal (EMC) presented here offers the prospect of high band-

width transduction in theMHz range required for integration with superconducting qubits. Improve-

ments in circuit design can help further increase the backaction rate and the operational bandwidth.

One approach would be to use a lower frequency drive or a DC source [122, 152] as the parametric

pump (effectively replacing the lower frequencymicrowave resonance in the current devices), which

could dramatically reduce the heating caused by absorption of drive photons. A simple scaling of

the device used here indicates that for an applied bias of 10 V, electromechanical coupling at the

MHz-level should be possible to acoustic modes at frequencies up to several GHz.
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Appendix A

Mathematical Conventions

A.1 Fourier Transform

We use the following convention for the Fourier transform. Given an operator Â we define

Â(t) =
1√
2π

∫ +∞

−∞
dωe−iωtÂ(ω) (A.1)

Â(ω) =
1√
2π

∫ +∞

−∞
dteiωtÂ(t) (A.2)

Â†(ω) =
1√
2π

∫ +∞

−∞
dteiωtÂ†(t) (A.3)(

Â(ω)
)†

= Â†(−ω). (A.4)

A.2 Definition of Spectral Densities

The power spectral density of an operator Â can be written as

SAA(t) =

∫ +∞

−∞
dτeiωτ

⟨
Â†(t+ τ)Â(t)

⟩
, (A.5)

and utilizing Fourier transform defined above, we can re-define the power spectral density of an

operator Â in terms of frequency as

SAA(ω) =

∫ +∞

−∞
dω′

⟨
Â†(ω)Â(ω′)

⟩
. (A.6)
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Thus, we can write the auto-correlation of the detected normalized field amplitude (or the photo

current) Î(t) = âout(t) + â†out(t) as

SII =

∫ +∞

−∞
dω′

⟨(
âout(ω) + â†out(ω)

)(
âout(ω

′) + â†out(ω
′)
)⟩

. (A.7)

A.3 Some Useful Commutation Relationships

˙̂
A(t) =

i

ℏ

[
Ĥ, Â(t)

]
(A.8)[

â, â†
]
= 1 (A.9)[

â†â, â
]
= −â (A.10)[

ââ†, â
]
= â† (A.11)
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Appendix B

Dilution Fridge Experimental Setup

The cryogenic setup used for the experiments in this thesis is equipped with cryogenic microwave

components that route the microwave signal from room temperature to the cryogenic base environ-

ment at 10 mK temperature and back. Such a cryogenic environment requires careful selection of

microwave components that are compatible with the cryogenic environments and their quality are

not degraded due to the low temperature of the environment. Moreover, it is important to consider

heat-loads and the microwave power dissipation at each stage to ensure the proper operation of the

DR (dilution refrigerator).

In this appendix, I mainly focus on noise reduction of the attenuation microwave input signal and

subsequent low noise amplification of the measured response from the device under test (DUT) to

compensate insertion losses and the input attenuation. At room temperature, all microwave signals

from the RF-sources and the vector network analyzer are combined with a ZC4PD-153-S+ power

divider and combiner before entering the cryogenic part of the microwave setup. With RF semi-rigid

coaxial cables and high vacuum feed through connectors, the microwave signals are routed to the

10mK base stage. It is important to attenuated the microwave signals gradually at each stage, to

attenuate the thermal noise before the DUT at the 10 mK base stage. However, the attenuation of

the signal must be done gradually such that the dissipated power at each stage of the DR does not

exceed the cooling power at each stage. Additionally, the cables material are chosen such that they

do not make a thermal contact between each stage of the DR unit.

After filtering of the thermal noise, microwave signals are forwarded to the sample via RA-

DITEK cryogenic circulator with 8-12 GHz bandwidth. RF circulators are magnetic passive non-

reciprocal devices which transmit the signals in a circular way (1 → 2, 2 → 3, 3 → 1), and the
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reverse direction is blocked with an isolation of about 15-20 dB. We use a flexible cable and MMPX

microwave connectors to send the signal to PCB with 50Ω impedance coplanar waveguides. The

waveguides are wire bonded to another 50 Ω coplanar waveguides on the sample. To couple to

microwave devices on the chip, we extend the center conductor of the microwave feed line and

short it to the ground near the microwave resonators. This provides inductive coupling between the

microwave feed-line and the microwave resonator. The response from the microwave resonator is

reflected back and gets separated from the input signal via the microwave circulator and is routed to

the output port of the DR.

On the output side, we use another circulator for isolating the sample from the noise coming

from the output port from the higher stages of the DR. Moreover, due to low power levels of the

microwave response from the sample, it is important to avoid any lossy equipment before amplifying

the response from the sample. We use NbTi superconducting cables to directly route the microwave

signals from the output of the circulator to 4K stage. The signal is then amplified using the Caltech

CIICRYO1-12A HEMT amplifier. The HEMT amplifier used here has a gain of 31 dB and an

effective noise temperature of 4 K between 8-12 GHz microwave frequency. The signal is then

routed to outside of the DR unit and gets amplified again to compensate for the input attenuation

of the input signal. For electromechanics experiments, due to the requirement of strong microwave

drive tone to enhance the electromechanical interaction, we need to cancel the pump before the room

temperature amplifier to operate at its dynamic range and avoid spuriousmicrowave responses on the

microwave signal. In order to suppress spurious response peaks for high drive power measurements,

we cancel the high drive power tone by adding a phase and amplitude adjusted part of the pump tone

to the output signal before the room temperature amplifier. Depending on the specific measurement

the response is routed to a microwave switch to distribute the signal to either the spectrum analyzer

or the second port of the vector network analyzer.

B.1 Input Thermal and Phase noise

The noise affecting our experiments has a broad variety of sources. In this section, I discuss only

the most relevant noise types, which are Thermal John-Nyquist and Phase noise. Other source of

noise such as electronic 1/f noise are usually small at 8-12 GHz microwave frequencies. The phase
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noise results from the frequency jitter of the microwave sources. The typical phase noise of the

microwave sources used in our experimental setup is below -120 dBc/Hz for carrier offset of about

1 MHz. Even for the highest power level of microwave drive tone and relative detuning of 4 - 6

MHz from the microwave resonator, the phase noise is about -200 dBm and negligible to affect the

measurements. On the other hand, the effects of thermal noise on the sample can only be mitigated

by careful attenuation of the input signal and amplification of the output microwave response.

Every lossy linear system introduces thermal nose from an ambient environment. For a single

mode attenuator in thermal equilibrium with a reservoir, the thermal occupancy is given by Bose-

Einstein relation:

Nth =
ℏω

eℏω/kBT − 1
, (B.1)

where T is the temperature of the ambient environment. For a lossy system with a bosonic mode

the input-output relation gives [153]

Sout =
1

L
Sin +

(
1− 1

L

)
Nth. (B.2)

In our experimental setup the cables, feed-through connectors, attenuators and circulators intro-

duce thermalized losses and thermal noise. The relation introduced above allows us to estimate the

degree of thermalization in each stage of the dilution refrigerator and the additional thermal noise.

Taking into account the losses from the cables, feed throughs, attenuators and circulators, the ther-

mal noise from 300 K at microwave frequency of ω/2π = 10 GHz is about -226 dBm/Hz resulting

in average thermal noise occupancy of n̄th ≈ 0.004 quanta, allowing single photon operations at the

MXC plate (Tf = 10 mK).

B.2 Output Amplifiers

The additional noise introduced by an amplifier in the linear operation can be regarded similar to

Eq. (B.2), where we replace the losses by gainG = 1/L. The additional noise from the amplifier is

given by

Sout = GSin + (G− 1)Nadd, (B.3)
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@ Freq = 10 GHz
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Figure B.1: Schematic setup of the dilution refrigerator. The colored boxes indicate the various
dilution refrigerator temperature stages. Estimated thermal microwave noise from input lines in
units of dBm/Hz and equivalent noise quanta is is written for each temperature stages.

whereNadd contains both the contribution from the thermal noise and the electronic noise from the

amplifier. The HEMT amplifier in our setup has an effective noise temperature of 4 K for microwave

frequencies 8-12 GHz.
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