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ABSTRACT

This thesis deals with the conceptual and computational framework required to

use transcriptomes as effective phenotypes for genetic analysis. I demonstrate

that there are powerful theoretical reasons why Batesonian epistasis should feature

prominently in transcriptional phenotypes. I also show how to compute and interpret

the aggregate statistics for transcriptome-wide epistasis and transcriptome-wide

dominance using whole-organism transcriptomic profiles of C. elegans mutants.

Finally, I developed the WormBase Enrichment Suite for enrichment analysis of

genomic data.

RNA-seq as a tool has enormous potential because it relies on protocols that are

fast, simple and increasingly cheap. In spite of their potential, transcriptomes

have seen their use largely limited to single-factor experiments. Even when many

transcriptomes are collected, the main analytic approach is to apply clustering

algorithms that correlate responses but do not have any power to identify causal

mechanisms.

I demonstrate that if a complete genetic experimental design is used (in the form of

a full two-factor matrix), transcriptomes can establish genetic interactions between

a pair of genes without the need for clustering algorithms. Surprisingly, when

we performed epistasis analyses of hypoxia pathway mutants in C. elegans we did

not simply observe a generalized epistatic interaction between the mutants. In

fact, the transcriptomes recapitulated the same Batesonian epistatic relationship that

had been observed using classical phenotypes. In other words, we observed that

the transcriptomic phenotype of one gene can be masked by the transcriptomic

phenotype of a second gene, such that a double mutant of these two genes has

exactly the same phenotype as a single mutant of the epistatic gene. Motivated
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by this observation, we developed methods to recognize and interpret Batesonian

epistasis at the transcriptomic level. This method relies on the calculation of a single

aggregate coefficient that we named the transcriptome-wide epistasis coefficient.

The observation that Batesonian epistasis could be reproduced on a transcriptomic

level was surprising. To explain how transcriptome-wide epistasis can arise, I

studied a simplified model of transcriptional regulation using statistical mechanics.

These studies demonstrate that epistatic analysis is equivalent to a perturbative

analysis of the partition function of a promoter. Moreover, these studies revealed

that a sufficient condition for Batesonian epistasis to occur is if the two genes

encode variables that are transformed and multiplied together to form an effective

single compound variable. Finally, these studies clearly demonstrate the connection

between statistical (or generalized) epistasis and Batesonian epistasis and establish

a physical basis for genetic logic.

Genetic analyses of gene functional units can also be carried out using allelic series

in tandem with complementation (also known as dominance) tests. I developed a

statistical coefficient known as transcriptome-wide dominance to enable analyses

of allelic series using expression profiles. A crucial aspect of allelic series is the

ability to enumerate the independent phenotypes associated with an arbitrary set of

alleles. I developed the concept of phenotypic classes as a transcriptomic analogue

of classical phenotypes for this purpose. Briefly, a phenotypic class is a set of

transcripts that are differentially expressed in a specific set of genotypes. Thus,

an allelic series consisting of two mutant alleles (and a wild-type) can at most

result in 7 phenotypic classes. However, some of these phenotypic classes may

be artifactual as a result of the significant false positive and false negative rates

that are associated with RNA-seq. I developed a simple algorithm that tries to

identify phenotypic classes that are artifactual, though often these classes may also

be identified through a critical evaluation of their biological implications. I applied
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these concepts to a small allelic series of the dpy-22 gene, which encodes aMediator

subunit in C. elegans, and identified 3–4 functional units along with their sequence

requirements.

Finally, I developed the WormBase Enrichment Suite by implementing a hyper-

geometric test on the tissue, gene and phenotype ontology for C. elegans. The

importance of this tool derives mainly from its integration to WormBase, the repos-

itory of all C. elegans knowledge, which means that the databases that are tested

will undergo continuous improvement and curation, and thus will yield the most

accurate results.
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PREFACE

I have tried to organize this thesis in away that makes sense. Briefly, the thesis can be

viewed in three segments: Epistasis, complementation and software development.

In doing so, I have broken the chronological order of my work, but I do not see this

as a problem. Science is rarely linear, and it may often turn out that the last concepts

to be found are actually those concepts that allow us to make sense of everything

else. This has certainly been the case with my work.

In Chapter 1, the reader will find a brief overview of the problem facing transcrip-

tome genetics. This chapter encompasses a review of the relevant literature, but

beyond that, I have tried to make arguments I think are important. First, transcrip-

tome genetics has obviated the chasm between statistical epistasis and classical, or

Batesonian, epistasis. The confusion between the two (related) terms has been one

of the great misfortunes in the field of genetics, since it has hampered a significant

amount of work. I am glad to say that in this thesis I have achieved the unification

of both concepts, such that no confusion should happen. Second, although we now

know how to search signs of epistasis and dominance in transcriptomes, the issue of

counting phenotypic classes or modules is becoming increasingly ominous. Unless

and until we can confidently identify and purge spurious modules, we will not be

able to use these phenotypes to their full extent.

In Chapter 2, I have written a theoretical argument that is the basis for the rest of

the chapters dealing with epistasis. In this chapter, I prove that epistasis emerges

from statistical mechanics, such that even genes that have enormously complex

transcriptional mechanisms can in some cases exhibit Batesonian epistasis. This

chapter establishes genetics as a variational method with which to probe an unknown

partition function, enabling us to make statements about what values the partition



2

function is or is not allowed to take.

In Chapter 3, I develop the concept of transcriptome-wide epistasis and use it to

reconstruct the well-studied hypoxia pathway. In Chapter 4, I use the concept

of transcriptome-wide epistasis to identify a novel stage in the life cycle of the

roundworm C. elegans.

Chapter 5 deals with the issue of complementation, and its study through expression

profiles. In my opinion, this is the most complicated chapter in this thesis. I

struggled with every aspect of this project, but the result is, to my mind, pleasing.

Chapter 6 and 7 deal with the creation of the WormBase Enrichment Suite.

Throughout this thesis, I have tried to be pedagogical. If we don’t make efforts

to explain the computational methods we are developing, biology will pass from a

scientific discipline to an astrological pseudo-science, and we will fail to see the

true beauty in the stars above and instead imbue them with our human desires and

flaws, asking them to help us reach fame instead of helping us to solve the mysteries

that abound in our universe.
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C h a p t e r 1

INTRODUCTION

Abstract

Transcriptomes are microscopic phenotypes of enormous complexity. In spite

of this complexity, it is becoming apparent that transcriptomes follow the same

genetic rules as all other mesoscopic and macroscopic phenotypes. Due to

their complexity, the genetic rules that bind transcriptomes appear more com-

plicated. There is significant interest in developing statistical and biological

methods that can deconvolute transcriptomes to extract the maximum amount

of information encodedwithin them. Here, we review thebasic concepts that un-

derlie transcriptome genetics, identify confusions in the field and point towards

the emerging challenges and opportunities associated with these intriguing new

phenotypes.

Introduction

The recent explosion in genomic technologies has provided us with unparalleled

insight into the inner workings of cells. The cost of of sequencing continues to

drop, and new technologies are continuously increasing the number of samples that

can be sequenced. In turn, these massive datasets have promoted the appearance of

increasingly complex algorithms to make sense of them. A common tenet in these

methods has been to reduce the dimensionality of these datasets (dimensionality

refers to the number of measurements per sample) to look for trends in the data.

Though sometimes thesemethods are rooted in biological principles, more often they

come from algebraic methods that have no immediate connection to the underlying

biology. This means that although these methods may be quite powerful, the results
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may be hard to interpret in biological terms. Moreover, thesemethodsmay not utilize

the rich structure inherent to biological systems that could place strong constraints

on the problem under study to reduce the space of reasonable solutions.

Biological systems can be daunting in their complexity. In general, there is no way

to solve these complex systems from first principles, since the identity and activity

of each component is in general not known. For this reason, biologists developed

a set of methods, collectively referred to as genetic analyses, that do not make

many assumptions regarding the underlying molecular details. Genetics is limited

to making a limited set of true statements regarding certain kinds of molecular inter-

actions. Due to its limited scope, genetics is robust to biological variation. A major

goal over the last century has been to reconstruct the set of all genetic networks

that result in a specific phenotype in a specific condition (the genotype-phenotype

map). Though spectacular progress has been made in some cases (Costanzo et al.,

2016), we are still far from understanding genetic networks. Previously, generating

sufficient genotypes in model organisms to analyze any network in detail was a

bottleneck to perform thorough genetic reconstructions. However, with the advent

of genome engineering, generating specific mutants is rapidly becoming easier. On

the other hand, sensitive and fast phenotyping methods have lagged behind. A

possible solution to this problem is bulk expression profiling, but the complexity of

expression profiles had proved a daunting challenge for genetic analysis. Further-

more, expression profiles have brought to the forefront a major source of confusion

in genetics: The definition of genetic interactions.

Biologists identify genetic interactions between genes using a specificmethod called

epistasis analysis. The term ‘epistasis’ was used for the first time over one hundred

years ago byWilliamBateson (Bateson andMendel, 2009) to refer to the observation

that the distribution of offspring phenotypes from a double heterozygote cross did

not match the expected distribution prescribed byMendelian segregation of two loci.
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UnderMendelian laws, if two loci are associated with different phenotypes, crossing

double heterozygotes of these two loci should generate animals with four phenotypic

classes, with each class occurring in a 9:3:3:1 ratio. Bateson realized through

segregation analyses that in certain cases, the phenotypic class associated with the

double mutant was missing, and instead there was an excess of one phenotypic

class typically associated with homozygotes of one mutant allele, an effect similar

to Mendel’s observations of allelic dominance. He coined the term epistasis to

refer to the effect by which an allele at one locus, when present in two copies, can

completely mask the phenotypic effect of another allele at a separate locus.

Since he coined the term, Batesonian or classical epistasis has become a popular

tool amongst geneticists with which to identify genetic interactions. An important

caveat is that in order to perform an epistasis analysis, geneticists must restrict

themselves to alleles that are completely devoid of function. When this is the case,

the phenotypic transformation of the double mutant is used to construct a genetic

pathway (Avery and Wasserman, 1992; Huang and Sternberg, 2006) (see Fig. 11).

Classical epistasis has become a cornerstone of biology.

Classical epistasis means that the phenotype of the double mutant is exactly the

same as the phenotype of one of the single mutants. However, the problem can also

be recast in quantitative terms. Statistical geneticists defined generalized epistasis

as a systematic deviation between the observed values and a null model (usually

additive or log-additive) that can be corrected by adding a second order interac-

tion term (Fisher, 1919). In the terms of generalized genetics, epistasis in the

heterozygote crosses is measured in the systematic excess of one phenotypic class

and the systematic depletion of a second class. Notably, generalized epistasis is not

constrained in the values it can take, and it is not constrained to measurements of

population properties or properties of single individuals.
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As a result of its definition, the magnitude of generalized epistasis is completely

dependent on the null model selected by the researcher. Unlike physical models that

can be derived from first principles, statistical models of genetic interactions are

heuristic models that may ormay not represent themolecular interactions underlying

the system accurately. In this sense, second order ‘interaction’ terms are ad hoc

corrections, technically useful for machine-learning, but not instructive in terms

of understanding the genetic mechanisms at play. The conceptual proof for this is

simple: Imagine two different statistical models that describe how two genes interact

along a phenotype. Both models perform equally well. One of the models has a

statistically significant interaction (generalized epistasis) term whereas the other

does not. It is not possible to select one model over the other based on statistical

properties. In fact, based on model simplicity, we may even prefer the model with

fewer parameters, which could rule out the model that includes an epistasis term.

Like classical epistasis, generalized epistasis has become a useful concept in many

areas of biology. Unlike classical epistasis, generalized epistasis measurements have

not been restricted to those generated by null alleles; instead, generalized epistasis,

particularly in human genetics, is measured between any two molecular variants

at different loci measured under a specific null model. As a result of the subtle

differences between classical and generalized epistasis, there has been considerable

concern about the apparent disagreement between these two concepts (Phillips,

2008; Cordell, 2002; Lehner, 2011). In this review, we will show how generalized

and classical epistasis can be successfully unified. Moreover, this unification has

important ramifications for our ability to detect genetic interactions between two

mutants using in genome-wide studies.
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Motivation: A brief introduction to RNA-sequencing

RNA-sequencing (Mortazavi et al., 2008) is a powerful method that can measure all

the gene expression levels in an organism simultaneously. These measurements can

be made in bulk, from homogenized tissues or even from whole-organisms. Recent

technological breakthroughs have made measuring expression levels from single

whole organisms (Serra et al., 2018; Chan, Rando, and Conine, 2018; Lott et al.,

2011) or even single cells possible (Tang et al., 2009). As a result of its technical

advantages, RNA-seq has largely replaced microarrays as the method of choice to

monitor gene expression.

Since the advent of genome-wide measurement methods, the idea of a cell- or

organismal-state, defined by its gene expression levels, has drawn significant atten-

tion. Such states make sense in light of gene regulatory network theory, which posits

that the expression of many genes is coordinated by regulatory factors that, when

expressed, drive development forward (Britten and Davidson, 1969). A common

experimental design used to identify the genes that are controlled by a specific reg-

ulatory module is to measure a baseline (typically wild type) sample and a contrast

sample where the regulatory module has been perturbed (often through mutation).

These experimental designs identify differentially expressed genes between the wild

type and the mutant samples. These batteries can then be analyzed through ontolog-

ical enrichment analyses that attempt to integrate information from all the enriched

transcripts and identify the biological processes or signaling pathways contained

within this list (see for example Mi et al. (2009) and Angeles-Albores, N. Lee, et al.

(2016)). In spite of the enormous amount of quantitative information that RNA-seq

can provide about the genes that respond to a downstream perturbation, these single

factor experimental designs are generally used to select a small number of novel

downstream genes that can be studied to extend a pathway of interest. The problem

of how to analyze the rich datasets generated by RNA-seq has proved difficult, and
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no one answer will be suitable for all problems. Analyses of these datasets rely on

a combination of biological intuition, enrichment analyses or comparisons to other

existing datasets.

If we are willing to sacrifice the requirement for interpretability, these datasets

are still useful. Their practicality derives significantly from enormous advances

in library preparation methods (Picelli et al., 2014) and improved quantification

algorithms (Patro, Mount, and Kingsford, 2014; Patro, Duggal, et al., 2016; Bray

et al., 2016) that have made RNA-seq an eminently replicable protocol that is

fast to execute. As a result, transcriptomes can readily be used to compare the

extent to which two perturbations are similar through clustering methods. Thus,

transcriptomes could be thought of as extremely long barcodes that are associated

with specific, potentially hidden, variables. If two barcodes are similar, then it is

plausible to hypothesize that the perturbations applied to generate each barcode were

also similar, even though we may not understand what these barcodes mean or how

they were generated. However, it is not sufficient to develop algorithms that show

two perturbations are similar on average. To use transcriptomes for genetic analysis,

we need methods that quantitatively reveal what aspects of two transcriptomes are

similar, by how much and that allow us to understand why they are similar.

Genetic interactions detection through sequencing

A brief overview of the problem

Expression profiles are vectors where each entry corresponds to the expression level

of a single transcript. Conceptually, each entry could be treated as an independent

continuous phenotypes. Since continuous phenotypes can be used to detect statistical

epistasis, we could fit a statistical model to explain the expression level of this

transcript in each genotype measured (wild type, single and double mutants). This

statistical model will fit two parameters, βa and βb, that explain the individual effects
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of each null mutation, and a third parameter, ∆, quantifies the extent to which these

individual effects do not add when both null mutations are present at once (see

Fig. 11). Each parameter is associated with a p-value. These models are generated

for every measured transcript. The generated p-values should then be adjusted

for multiple comparisons (these adjusted values are referred to as q-values), and

parameters with q-values below a pre-specified threshold (often 0.1) are considered

statistically different from zero.

As a result, each transcript is associated with six values: the three model parameters

and their corresponding q values. At this point, the complexity of the problem is

obvious: Even if each parameter only acquires one of three values (-, 0, +), there are

27 possible parameter combinations (epistatic classes). Of these 27 classes, only

four classes could give rise to the classical epistasis regime (genetic suppression), so

only those 4 classes can give rise to a genetic diagram. One approach to visualize and

attempt to understand this complex space of epistatic combinations is to use heatmaps

to look for patterns and guide interpretation. This approachwas used in single-celled

organisms (Capaldi et al., 2008; Van Driessche et al., 2005; Sameith et al., 2015;

Van De Peppel et al., 2005), and more recently has been used to perform high-

throughput analyses of genetic interactions in mammalian cells (Dixit et al., 2016).

Regression models with interactions have also been successfully implemented using

whole-organism transcriptomic measurements (Angeles-Albores, Leighton, et al.,

2017).

The large number of parameter combinations is not the only (or major) drawback

to fitting models with interactions for every transcript. Another challenge is the

significant false positive and false negative rates for RNA-seq. RNA-seq studies

often accept an estimated false discovery rate of 10%, and, although false negative

rates are unknown, estimates are as high as 90% formammalian cells (Pimentel et al.,

2017). These rates seriously impair attempts to classify transcripts into any one of the
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27 possible classes. If parameters are controlled at a rate of 10%, then the probability

that at least one of the parameters in a dense class (classes where all 3 parameters

are + or -, not 0) has been falsely accepted is almost 27%. Thus, almost one in three

of the transcripts categorized into one of the 8 possible dense epistatic classes (+++,

- - -, ++-, etc. . . ) is misclassified and instead belongs to one of the twelve doublet

epistatic classes (++0, 0- -, etc. . . ). The situation becomes considerably worse once

we consider false negative rates, which are generally unknown but estimates range

up to 90% in mammalian systems (Pimentel et al., 2017). In general, false rates

greatly exacerbate the difficulties associated with analyzing transcriptomic datasets.

If all transcripts actually belonged to a single epistasis class to begin with, the

addition of statistical noise will split this class into many more classes that mimicry

complex interactions. The situation is further worsened by the fact that interaction

parameters can often be harder to measure than first order parameters. Classifying

transcripts into epistatic classes is a major obstacle for successful epistatic analyses,

and so far there has been little to no work done to assess which classes are real and

which are artifactual (some work has been done in the context of allelic series, see

page 14). Equally concerning is the fact that none of these epistatic classes can be

translated into genetic diagrams. These epistatic classes do not provide a biological

mechanism (genetic, biochemical or cellular) between the genes under study (see

Fig. 12).

Occam’s razor, information pooling and constrained epistasis

To extract biological mechanisms from transcriptome data, we must apply simplify-

ing constraints. If transcripts are to be classified into 27 possible epistatic classes,

we must develop methods to assess which of these classes have sufficient statistical

leverage to accept their existence (in other words, we need a statistical test that exam-

ines the null hypothesis that such a class could appear purely by chance). However,
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even if such a test were developed, we still require a method that allows us to sum-

marize the information in these modules, and which lets us build a genetic pathway

if the data suggests a pathway exists. A natural way to do this may be to use the

natural structure of biological networks to pool the information from all transcripts,

and test the interaction of this structure between the two mutants, instead of testing

the individual transcripts. Information sharing is a powerful concept that allows

us to incorporate more data points into a calculation, thus increasing our statistical

power for any single test, but it requires the data to be drawn from a structure that

permits sharing.

One such information sharing approachwas implemented inAngeles-Albores, Puck-

ett Robinson, et al. (2018) and Angeles-Albores, Leighton, et al. (2017). Briefly,

these studies obtained whole-organism bulk RNA-seq transcriptome profiles for

single and double perturbations and identified differentially expressed transcripts

in each condition relative to the wild-type. Next, transcripts that were differen-

tially expressed in all non-control conditions were aggregated and analyzed jointly

for systematic deviations from a linear pathway. This systematic deviation was

quantified in a single coefficient, called the transcriptome-wide epistasis coefficient.

This coefficient can be interpreted in terms of simple genetic pathways because

it can be used to test whether the perturbations result in a phenotypic transfor-

mation diagnostic of Batesonian epistasis. In this sense, the transcriptome-wide

epistasis coefficient represents a unification of generalized epistasis and classical

epistasis. This approach is powerful because it avoids multiple hypothesis testing

(a single interaction coefficient is tested), and it doesn’t rely on any one transcript

to draw conclusions. A significant advantage of this method is that these studies

were able to test and verify that the generalized epistasis measurements they made

were equivalent to Batesonian epistasis (in other words, the double mutant had the

same perturbations as one of the single mutants), culminating in a formal genetic
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pathway. Both studies assumed that the genetic interaction between two genes is

unimodal, in other words, these two genes do not interact along multiple pathways

with different strengths and valences. This last assumption may not always hold.

This strongly simplifying assumption contrasts with the previously referenced work

that assumes unbounded complexity for all genetic interactions. Neither is correct,

though it is our opinion that biological interactions tend to be much simpler than is

often assumed in genomic studies.

Beyond genetic interactions: Dominance studies to map gene functions

Although transcriptomes have been used as phenotypes for analysis of genetic in-

teractions for many years, their uses need not be restricted for theoretic analysis.

In population genetics, transcriptomes have been used as phenotypes with which

to identify expression quantitative trait loci in a number of organisms (Brem et al.,

2002; DeCook et al., 2006; Kirst et al., 2004; Schadt et al., 2003). Transcriptomes

can also be used to compare the genetical properties of different alleles of a single

gene (Angeles-Albores and Sternberg, 2018).

Allelic series require considerably more analysis than tests for genetic interactions.

To infer functional units from the activity of multiple allelic variants, the phenotypes

associated with each variant must be carefully enumerated. Alleles must be ordered

according to the phenotypic severity they cause when animals are homozygotes for

each variant, with a separate hierarchy drawn for each phenotype. Alleles must

also be ordered according to their dominance hierarchy over other alleles along each

phenotype by measured the phenotypes of trans-heterozygotes. Particular care must

be taken to ensure that the phenotypes of the trans-heterozygotes are not the result

of maternal effects by testing progeny generated from a second, reciprocal, cross.

The overall results are examined and the most parsimonious explanation is accepted

to draw functional units and establish their sequence requirements. The the number
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and resolution of the functional units that can be defined depends on the density of

the allelic series that is tested. For a more thorough introduction to dominance and

its role in allelic series, see Yook (2005).

As a result of the rigor required to analyze them, allelic series provides an excellent

testing ground in which to explore the potential, but also the shortcomings, of

transcriptomes as molecular phenotypes. To be successful, the analysis of even the

smallest allelic series must order the tested variants. Angeles-Albores and Sternberg

(2018) reported the first allelic series, to our knowledge, to be analyzed using

expression profiles in any organism. In this analysis, the transcriptomic analogue

of distinct phenotypes, phenotypic classes consisting of groups of differentially

expressed genes, were identified by labelling each gene with the genotypes where

it was differentially expressed. Subsequently, the expression level of these genes

in trans-heterozygotes was approximated by a linear combination of the expression

levels in each homozygote, with the weighting coefficients constrained to add to

unity. The weighting coefficients, bounded in this manner, reflect the dominance

of one allele over the other. These transcriptome-wide dominance coefficients are

analogous to the transcriptome-wide epistasis aggregate statistics derived in previous

studies (Angeles-Albores, Puckett Robinson, et al., 2018). The intersections from

the Venn diagram (see Fig. 13) are understood to occur as a result of the activity of

one or more functional units which may or may not have dosage-saturated activity

(this is inferred from the dominance behavior of the given intersection).

This study highlighted the importance of recognizing and characterizing the sta-

tistical artifacts that can occur in genomic datasets (see Fig. 14). The analyzed

dataset had sufficiently large false positive and false negative rates to generate arti-

ficial phenotypic classes that nevertheless could be identified and removed from the

analysis. Unlike epistatic classes, for which we do not have a sense of what classes

can most easily arise as a result of statistical artifacts, all the phenotypic classes
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Figure 13 Genes that are differentially expressed in genotypes containing mutant
(a, b) alleles relative to a wild type homozygote can be categorized into pheno-
typic classes. Each phenotypic class can in turn be associated with a dominance
behavior. The Venn diagram represents differentially expressed transcripts in each
genotype relative to the wild-type control. Each of the possible 7 intersections is
labelled with its dominance interpretation if the intersection is real. In this con-
text, semi-recessiveness means that one allele is partially or completely domi-
nant to the other along a continuous spectrum between 0 and 1. The dominance
sign between an allele and the heterozygote genotype indicates heterosis or over-
dominance.

arising from allelic series analyses can be readily interpreted in terms of inter-allelic

complementation, a phenomenon that is extremely well characterized in genetics.

Allelic series provide an excellent testing ground in which to explore algorithms to

partition transcriptomes into gene batteries that have sufficient statistical support,

since it is possible to have an intuition for artifactual classes.

Open problems and opportunities

RNA-sequencing is becoming increasingly easier and cheaper. RNA-seq offers a

powerful, unbiased approach to genetics that can be multiplexed in many systems

relatively easily. We expect that genetics using expression profiles will be an
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Figure 14 RNA-seq artifacts can greatly exaggerate apparent biological complex-
ity. We considered the case where we have two phenotypically identical alleles
that can be used to generate the genotypes a/a, b/b and a/b. In the absence of arti-
facts, the set of differentially expressed transcripts relative to a wild-type control
should be the same amongst all three genotypes. However, if measurement error
occurs, then instead of observing a single Venn intersection, we will observe seven
intersections. If these intersections are not identified as false, we would wrongly
conclude that allele a and b are not phenotypically equivalent, incurring in an er-
ror rate of 600%. Even in the case where the three genotypes are not equivalent,
statistical noise will tend to significantly increase the apparent biological com-
plexity present in the system (from 3 to 7 in this example). In general, statistical
artifacts are so common in genomic assays that they will tend to generate all the
possible intersections in a comparison. This highlights the need to apply simplify-
ing constraints on transcriptome data before interpreting the results.
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excellent first-pass assay because of the speed and sheer amount of information

associated with the generation of expression profiles. These properties make RNA-

seq particularly advantageous for groups that are studying relatively unknown genes

or genes with subtle phenotypes. RNA-seq may also be a powerful method to

complement genetics in emerging model organisms where conventional genetics

may be laborious and where researchers may wish to minimize the number of

experiments performed while maximizing the amount they can learn.

A major challenge moving forward will be mixed epistasis analyses with allelic

series. Such mixed analyses try to identify the sequence requirements of one gene

to participate in an epistatic interaction, and to test whether the observed epistatic

interaction between two genes reflects a single biochemical function or the joint

activity of distinct molecular properties. For example, in C. elegans the inhibition

of hif-1 by egl-9 is mediated partially by the hydroxylation of HIF-1 by EGL-

9, and partially through a hydroxylation-independent mechanism that is not well

understood (Shao, Zhang, and Powell-Coffman, 2009). The high false positive and

false negative rates inherent to RNA-seq means that all interactions amongst all

genes will appear to be the compounded result of many independent activities. The

solution to this problem will require methods that can incorporate information not

just between single and double mutants, or homozygotes and heterozygotes, but

amongst epistatic modules and dominance modules while searching for the most

parsimonious structure that can explain all the expression profiles.

A second challenge will be the association of gene batteries with other observable

phenotypes to develop signatures that allow us to read and interpret a transcriptome

in terms of biological covariates. In other words, we would like signatures that

allowed us to infer what the organism was doing when the RNA was extracted,

what pathways had been disrupted or activated, what cellular or morphological

phenotypes it exhibited. Such signatures could be derived by allowing organisms
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to undergo a specific life history, then extracting the transcriptome and associating

the differentially expressed genes in response to this life history relative to a control

history to derive a signature. Alternatively, single-cell or single-organism methods

may be able to track organisms, recording their behavior, before extracting their

RNA (Lane et al., 2017). These signatures, although useful, should not be treated as

causal, because the derivation of these signatures is through correlation. Deriving

causal signatures would be very interesting and potentially useful as well, since this

would make the discovery and association of novel pathways considerably easier. A

significant weakness of expression signatures is that they only make sense relative

to a baseline control, and therefore signatures can only be associated with events

that have a sufficient dynamic range relative to the baseline. Another problem with

signatures is the arbitrary definition, since they will inevitably be defined according

to a q-value cut-off. It seems reasonable to postulate that eventually we must

abandon the concept of differential expression: It is too brittle, too relativistic and

prevents us from thinking about the transcriptome as a complete object.

Without transcriptional signatures of some sort, understanding modules will be all

but impossible. Even with signatures, modules will be explained only phenomeno-

logically: We know this signature is correlated to this phenotype, therefore this

module is correlated to the same phenotype. With time, we may be able to under-

stand mechanistically why specific phenotypes are correlated with the expression of

specific genes. For the moment, such understanding seems far from our reach.

In the end, the major challenge for transcriptome genetics is likely to be our own

creativity. New phenotypes always have their difficulties and drawbacks, and expres-

sion profiles are no exception. Expression profiles will not, on their own, reconstruct

every network or solve all of biology. However, expression profiles are an object

of a new kind, with behaviors that we do not fully understand hiding novel biolog-

ical phenomena. It has become evident that genetics is applicable at an enormous
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range of phenotypes, from population phenotypes to organismal to macroscopic and

mesoscopic phenotypes. Transcriptomes represent a new phenotype at the micro-

scopic and genomic level. Perhaps surprisingly, these microscopic phenotypes, in

spite of all their complexity, seem to obey the genetic properties that bind all other

phenotypes. The challenge, then, is how to use transcriptomes to discover biological

principles that help us understand how the hierarchy of cells, organs, organisms and

populations emerges from the collective actions of a string of atoms.
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C h a p t e r 2

A STATISTICAL MECHANICAL THEORY OF GENETICS
USING GENE EXPRESSION PHENOTYPES

Abstract

Genetics is a powerful method that can be used to probe the molecular func-

tion of individual genes and to reconstruct genetic interaction networks. A

cornerstone of genetics is the concept of epistasis: The ability of the pheno-

type associated with a null allele of one gene to block the phenotype of a null

allele associated with a second gene. Epistasis is a widespread phenomenon in

biology, and it has been observed using phenotypes that span many orders of

magnitude in length-scales. In spite of its importance, a theoretical derivation

for why epistasis occurs at so many scales is lacking. Here, we use statistical

mechanics to derive epistasis from first principles.

Introduction

Imagine, if you will, a partition function of unbounded complexity. Imagine that

there are thousands of potential variables that could, but do not have to, participate

in the system. Further imagine that this system is not immediately experimentally

tractable: The number of particles in the system cannot be easily controlled, the

various energies, enthalpies and entropies of the system cannot be measured, and

an analytical function cannot be satisfactorily written from theoretical principles.

Such a problem might at first sight appear to be intractable through the methods of

statistical mechanics, or may require highly complex numerical methods to estimate

the properties of the partition function.

This thermodynamic regime is the regime occupied by many biological systems.
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Bacteria, archaea, fungi or animals consist of a large and unknown number of

particles (proteins) encoded within genes in a genome. Any one characteristic

(phenotype) in an organism is the result of a large and unknown number of particles

interacting in a large and unknown number of configurations.

For systems where little or nothing is known about the factors controlling a pheno-

type, biology relies on a powerful empirical method: genetics. Briefly, in classical

genetics, mutants of random genes are generated until a gene is found that, when

removed, causes a mutant phenotype. Mutants that exhibit the desired mutant phe-

notypes can be combined to generate double mutants and the phenotype of the

resulting double mutant is inspected. If the two genes under investigation exhibit a

phenomenon known as classical (or Batesonian) epistasis, then these two genes are

said to have a genetic interaction, and they can be ordered into a genetic pathway

where one gene activates or inhibits the second. Classical epistasis is not equivalent

to the concept of epistasis used in population genetics or human genetics (Cordell,

2002). In these fields, epistasis is represented by second order interaction terms

between arbitrary mutations in a linear or log-linear statistical model. There has

been significant work on the effect these second order terms have on these statistical

models (Crow, 2010; Mackay, 2014). However, these statistical models are not

grounded in a principled theory of genetic interaction and the presence or absence

of epistasis is dependent on the choice of statistical model (Cordell, 2002). In this

text, we restrict our studies to classical epistasis.

Genetics has been of major importance for finding the genes that control phenotypes

of interest and for ordering them into networks that are amenable for biochemical

or biophysical characterization. The choice of phenotype is important, and the

introduction of new phenotypes has led to significant breakthroughs. The pheno-

types used for genetic analysis include animal morphology (Brenner, 1974) and

development (Jürgens et al., 1984), behavior (Benzer, 1967), cellular differentia-
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tion, metabolism (Beadle and Tatum, 1941), and most recently gene expression

levels (Angeles-Albores et al., 2018; Hughes et al., 2000; Capaldi et al., 2008). The

ability of genetics to establish interactions between particles using phenotypes that

vary by 6–8 orders of magnitude of length scales has been extremely useful and

is deeply intriguing from a theoretical perspective. In spite of its strong logical

foundation and enormous empirical evidence of its usefulness, there is no general

theoretical description for why genetics is so effective.

Statistical Mechanics of Genetic Interactions

We will derive epistasis in gene expression phenotypes using a toy model for gene

expression (Garcia et al., 2007; Bintu et al., 2005). This model can be derived from

the assumption that the level at which a gene is expressed is directly proportional

to the probability that RNA Polymerase II is bound at that gene’s promoter. This

probability depends upon the RNA Polymerase levels, ρ, and on other factors,

{A, B, . . .} that can bind the promoter and RNA polymerase:

pbound(A, B, . . .) =
1

1 + 1
ρFreg(A,B,...)

. (2.1)

pbound(A, B, . . .) is the probability that RNA Polymerase is bound at the locus of

interest. Freg is a rational function,

Freg(A, B) = P(A, B)/Q(A, B).

It represents the effective number of RNA polymerases at the promoter of interest

and in general cannot be analytically determined for all but the simplest systems.

To ensure that Eq. 2.1 is a probability, the range of Freg is restricted to positive

real numbers. This factor is used to model a variety of transcription factors, such

as activators, or inhibitors, and the physical interactions between them. A and B
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represent the activities of the gene products of genes a, b. The variables X are

related to the physical number of proteins of X, Xprotein through the equation:

X =
Xproteine−εxd

NNS
.

Here, εxd refers to the energy of binding of protein X to DNA at the promoter

(in units of kBT), and NNS refers to the total number of non-specific sites on the

genome. A major assumption in deriving this equation is that all proteins are bound

to either the promoter or alternatively to non-specific sites in the genome. A further

assumption is that NNS � X .

We are interested in what occurs when either variable A, B or both A and B are set

to zero instead of the levels found in a non-mutant, or wild-type, reference organism

(Xwt). Specifically, we will explore the constraints on the functional form between

A and B such that the distribution of gene expression levels in a mutant lacking

protein A is completely independent of the levels of protein B, even though in the

general case of all non-zero levels of protein A, the probability of RNAP binding is

conditional on the levels of both A and B.

Experimentally, this is tested by generating single and doublemutants andmeasuring

the expression level of a reporter gene. We search for gene pairs, a and b, where the

expression level of a reporter in a mutant lacking protein A is equal to the expression

level of the reporter in a mutant lacking both proteins,

pbound(A = 0, B = 0) = pbound(A = 0, Bwt). (2.2)

This condition is trivially satisfied if B does not play a role in controlling the gene

expression level of the reporter, so we will only consider cases where perturbing the

value of B away from Bwt changes the expression levels of the reporter gene.
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The identity in Eq. 2.2 is called classical (or Batesonian) epistasis, and demonstrates

that a null allele of one gene (a) can mask the phenotype associated with a null allele

of a second gene (b). The gene that is masked is said to be hypostatic, while the

masking gene is epistatic. When a pair of genes shows epistasis, there is a genetic

interaction between gene a and gene b (note: the genetic interaction is not said to

occur between the two proteins). Since pbound depends on proteins A and B only

through Freg(·, ·), Eq. 2.2 can be re-written in terms of the regulatory function.

Freg(A = 0, B = 0) = Freg(A = 0, Bwt).

We can approximate the right hand side of this equation as a Taylor function of B

around 0, letting Freg(A = 0, B = 0) = φ:

φ = φ +
∑

i

∂i

∂Bi F(A = 0, B = 0)
Bi
wt

i!
.

This equation can be satisfied for arbitrary values of B if and only if:

∂i

∂Bi F(A = 0, B = 0) = 0. (2.3)

Thus, enforcing epistasis (Eq. 2.2) is equivalent to constraining all partial derivates

with respect to the hypostatic variable, B, of Freg at (0, 0) to sum to zero. Since Freg

is a rational function we can re-write Eq. 2.3 using the chain rule,

∞∑
i=1

[
∂iFreg

∂Pi

∂iP
∂Bi +

∂iFreg

∂Qi

∂iQ
∂Bi

]
A=0,B=0

= 0,

which reveals that all partial derivatives of P and Q with respect to B must be zero

at the point (A = 0, B = 0).

We cast the polynomials P and Q into the general form
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X =
∞∑

j,k=0
λX

jk A j Bk .

Using this general form, we will now find the constraints on λX
jk such that all the

partial derivatives of this polynomial family vanish when A = 0. From inspection,

all terms of order j ≥ 1 will be zero when A = 0. Then, it follows that if

λX
0,k = 0, ∀k > 0, all the partial derivates of P and Q with respect to B are 0 when

A = 0. Thus, if two genes, a and b satisfy Eq. 2.2 when they are mutated, then P

and Q can be written as:

X = λX
00 +

∞∑
j=1

λX
j0 A j +

∞∑
j,k≥1

λX
jk A j Bk . (2.4)

Where X is either P or Q. We refer to each term in Eq. 2.4 as a mesostate. Briefly,

a mesostate is a combination of microstates containing a defined set of species

with an unknown stoichiometric distribution. In Eq. 2.4 there are three mesostates.

If a mesostate is compatible with a set of epistatic relationships, then it must be

non-empty in either P or Q.

Epistasis is transitive

Suppose there are three genes, a, b and c encoding proteins A, B and C respectively.

Suppose further that epistasis analyses performed using a specific reporter as an

expression phenotype show that a is epistatic over b and b is epistatic over c. Is a

epistatic over c?

Once again, we let Freg be a rational function of the polynomials P and Q. The

general form of these polynomials is:

X =
∑
j,k,l

λX
jkl A j BkCl
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Since a is epistatic over b, it follows that λX
0,k,l = 0∀k > 0. Since b is epistatic over

c, it follows that λX
j,0,l = 0∀l > 0. Therefore, these polynomials can be written as

X = λX
000 +

∞∑
j=1

λX
j00 A j +

∞∑
j,k≥1

λX
jk0 A j Bk

+

∞∑
j,k,l≥1

λX
jkl A j BkCl . (2.5)

From this functional form, it is clear that a is epistatic over c. Therefore, epistasis is

transitive.

Epistasis is hierarchical

Suppose there are three genes, a, b and d encoding proteins A, B and D respectively.

Suppose further that epistasis analyses performed using a specific reporter as an

expression phenotype show that a is epistatic over b and d is epistatic over b. Must

it be the case that either a is epistatic over d, or d is epistatic over a?

Once again, we let Freg be a rational function of the polynomials P and Q. The

general form of these polynomials is:

X =
∑
j,k,l

λX
jkl A j Bk Dl

Since a is epistatic over b, it follows that λX
0,k,l = 0, ∀k > 0. Since d is epistatic over

b, it follows that λX
j,k,0 = 0, ∀l > 0. Therefore, these polynomials can be written as
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X = λX
000 +

∞∑
j=1

λX
j00 A j +

∞∑
j,k≥1

λX
jk0 A j Bk

+

∞∑
l=1

λX
00l D

l +

∞∑
k,l≥1

λX
0kl B

k Dl

+

∞∑
j,k,l≥1

λX
jkl A j Bk Dl . (2.6)

This functional form means that we cannot conclude anything about the epistatic

relationship between a and d without generating a double mutant of a and d.

The results from the preceding two sections mean that epistasis is similar to an

inequality statement. Therefore, we propose the notation:

a > b (2.7)

to represent the genetic epistasis of gene a over b as defined by Eq. 2.2.

Epistasis enables qualitative functional inferences

Suppose that two genes, a and b, a > b. Further suppose that the phenotypes can

be arranged in the following order:

pwt(Awt, B = 0) < pwt(A = 0, Bwt) = pwt(Awt, Bwt).

This order can be immediately rephrased in terms of Freg,

Freg(Awt, B = 0) < Freg(A = 0, Bwt) = Freg(Awt, Bwt).

Since Freg is a function of polynomials P and Q, both of which have the functional

form,

X = λX
00 +

∞∑
j=0

λX
j0 A j +

∞∑
j,k≥1

λX
jk A j Bk
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Since we know that at least one term in each mesostate of P andQ must be non-zero,

we conclude that the effective activity of A must be 0. With this information, the

family of functions P and Q that will satisfy this hierarchy is:

Q(Awt, Bwt) = λ
Q
00 +

∑
j

λQ
j0 A j +

∑
j,k≥1

λQ
jk A j

wt B
k
wt (2.8)

and

P(Awt, Bwt) = λ
P
00 +

∑
j,k≥1

λP
jk A j

wt B
k
wt . (2.9)

For these arguments to be true, it must also be the case that Bwt � Awt (equality

is only achieved in the case when either Bwt becomes infinite or Awt is zero).

Genetically, gene b is a net inhibitor of gene a, and gene a is a net genetic inhibitor

of our reporter phenotype.

We consider a different epistatic relationship between two different genes, c and d,

such that c > d and the phenotypes can be ordered:

Freg(Cwt,Dwt) < Freg(Cwt,D = 0) < Freg(C = 0,Dwt).

We recall that:

Freg(C = 0,Dwt) =
λP

00

λQ
00

A suitable family of functions for this hierarchy is:

Q(Cwt,Dwt) = λ
Q
00 +

∑
j

λQ
j0C j +

∑
j,k≥1

λQ
jkC j

wt D
k
wt (2.10)
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and

P(Awt, Bwt) = λ
P
00 +

∑
j,k≥1

λP
jkC j

wt D
k
wt, (2.11)

subject to the constraint:

0 <
∑
j,k≥1
(λQ

jk − λ
P
jk)C

j
wt D

k
wt . (2.12)

This family of functions allows us to conclude that gene c is a net genetic inhibitor

of our reporter phenotype, and d is a net promoter of the genetic activity of gene c.

Interpretation of epistasis for statistical mechanical systems

We have shown that classical epistasis is an identity between single and double

mutants (Eq. 2.2) that is the result of nested polynomials. To understand epistasis,

we introduce the concept of mesostates. We define mesostates as combinations

of microstates involving a defined set of species with an unknown stoichiometric

distribution. In Eq. 2.6, for example, is a sum of six mesostates. The first mesostate

represents promoter leakiness; the second consists of all microstates that depend on

the presence of protein A to form; the third consists of all microstates that depend

on the presence of proteins A and B to form; the fourth consists of all microstates

that depend on the presence of protein D to form; the fifth consists of all microstates

that depend on the presence of protein B and D to form; and the sixth consists of all

microstates that depend on the presence of proteins A, B and D to form. Epistasis

on its own cannot tell us how many microstates correspond to a single mesostate,

but it can tell us what mesostates are not accessible to the system, thus ruling out

families of microstates.

Throughout this text, we have assumed that our imaginary proteins participated

directly in binding to the promoter of interest. However, we can dispense with
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this requirement, and instead imagine that these proteins function as switches that

permit the existence of specific mesostates accessible to the promoter. This is the

reason why we refer to epistatic interactions as genetic interactions: Epistasis does

not provide any guarantee that the gene products ever interact physically, chemically

or even that they coexist in the same space at the same time.

Here, we have shown that classical genetics, which has had a rich history over the

past century and is a cornerstone of modern biology, is equivalent to a perturbative,

parameter-free study of the partition function of a thermodynamic system. Though

we have limited ourselves to applying this method to gene expression phenotypes,

this approach is generalizable, and in fact, is not even limited to biological systems.

We believe that the statistical mechanical basis for genetics explains its ability to

explain phenotypes that spanmany orders ofmagnitude in time, space andmolecular

complexity.
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C h a p t e r 3

RECONSTRUCTING A METAZOAN GENETIC PATHWAY
WITH TRANSCRIPTOME-WIDE EPISTASIS MEASUREMENTS

Angeles-Albores, David et al. (2018). “Reconstructing a metazoan genetic pathway
with transcriptome-wide epistasismeasurements”. In:Proceedings of theNational
Academy of Sciences 115.13, E2930–E2939. issn: 0027-8424. doi: 10.1073/
pnas.1712387115. eprint: http://www.pnas.org/content/115/13/
E2930.full.pdf. url: http://www.pnas.org/content/115/13/E2930.

Abstract

RNA-seq is commonly used to identify genetic modules that respond to pertur-

bations. In single cells, transcriptomes have been used as phenotypes, but this

concept has not been applied to whole-organism RNA-seq. Also, quantifying

and interpreting epistatic effects using expression profiles remains a challenge.

We developed a single coefficient to quantify transcriptome-wide epistasis that

reflects the underlying interactions and which can be interpreted intuitively.

To demonstrate our approach, we sequenced four single and two double mu-

tants of Caenorhabditis elegans. From these mutants, we reconstructed the

known hypoxia pathway. In addition, we uncovered a class of 56 genes with

hif-1-dependent expression that have opposite changes in expression in mu-

tants of two genes which cooperate to negatively regulate HIF-1 abundance;

however, the double mutant of these genes exhibits suppression epistasis. This

class violates the classical model of HIF-1 regulation, but can be explained by

postulating a role of hydroxylated HIF-1 in transcriptional control.
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Introduction

Genetic analysis of molecular pathways has traditionally been performed through

epistatic analysis. If the mutants of two distinct genes have a quantifiable phenotype,

and the double mutant has a phenotype that is not the sum of the phenotypes of

the single mutants, this non-additivity is referred to as generalized epistasis, and

indicates that these genes interact functionally. Such interactions can occur at the

biochemical level between their products or as a consequence of their functions (L. S.

Huang and Paul W Sternberg, 2006). Epistasis analysis remains a cornerstone of

genetics today (Phillips, 2008).

Recently, biological studies have shifted in focus from studying single genes to study-

ing all genes in parallel. In particular, RNA-seq (Mortazavi et al., 2008) enables

biologists to identify genes that change expression in response to a perturbation.

RNA-seq has been used to identify genetic modules involved in a variety of pro-

cesses, such as in the Caenorhabditis elegans linker cell migration (Schwarz, Kato,

and Paul W. Sternberg, 2012), planarian stem cell maintenance (Van Wolfswinkel,

Wagner, and Reddien, 2014; Scimone et al., 2014). The role of transcriptional

profiling has been restricted to target gene identification, and so far there are only a

few examples where transcriptomes have been used to generate quantitative genetic

models of any kind. In quantitative genetics, eQTL studies have established the

power of transcriptomes for genetic mapping (Brem et al., 2002; Schadt et al., 2003;

Li et al., 2006; King et al., 2014). Genetic pathway analysis via epistasis has been

performed in Saccharomyces cerevisiae (Hughes et al., 2000; Capaldi et al., 2008)

and in Dictyostelium discoideum (Van Driessche et al., 2005). Recently, Dixit et al

described a protocol for epistasis analysis in dendritic and K562 cells using single-

cell RNA-seq (Dixit et al., 2016). Epistasis analysis of single cells or single-celled

organisms is popular because of the concern that whole-organism sequencing will

mix information from multiple cell types, preventing the accurate reconstruction
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of genetic interactions. Using whole-organism transcriptome profiling, we have

recently identified a new developmental state of C. elegans caused by loss of a

single cell type (sperm cells) (Angeles-Albores, Leighton, et al., 2017), which sug-

gests that whole-organism transcriptome profiling contains sufficient information

for epistatic analysis. To investigate the ability of whole-organism transcriptomes to

serve as quantitative phenotypes for epistatic analysis in metazoans, we sequenced

the transcriptomes of four well-characterized loss-of-function mutants in the C. ele-

gans hypoxia pathway (Epstein et al., 2001; Shen, Shao, and Powell-Coffman, 2006;

Shao, Zhang, and Powell-Coffman, 2009; H. Jiang, Guo, and Powell-Coffman,

2001).

Metazoans depend on the presence of oxygen in sufficient concentrations to support

aerobic metabolism. Hypoxia inducible factors (HIFs) are an important group

of oxygen-responsive genes that are highly conserved in metazoans (Loenarz et al.,

2011). A commonmechanism for hypoxia-response induction is heterodimerization

between a HIFα and a HIFβ subunit; the heterodimer then initiates transcription

of target genes (B. H. Jiang et al., 1996). The number and complexity of HIFs

varies throughout metazoans. In the roundworm C. elegans there is a single HIFα

gene, hif-1 (H. Jiang, Guo, and Powell-Coffman, 2001), and a single HIFβ gene,

ahr-1 (Powell-Coffman, Bradfield, and Wood, 1998).

Levels of HIFα proteins are tightly regulated. Under conditions of normoxia, HIF-

1α exists in the cytoplasm and partakes in a futile cycle of protein production

and rapid degradation (L. E. Huang et al., 1996). In C. elegans, HIF-1α is hy-

droxylated by a proline hydroxylase (EGL-9) (Kaelin and Ratcliffe, 2008). HIF-1

hydroxylation increases its binding affinity to Von Hippel-Lindau tumor suppressor

1 (VHL-1), which in turn allows ubiquitination of HIF-1 leading to its degradation.

In C. elegans, EGL-9 activity is inhibited by binding of CYSL-1, a homolog of

sulfhydrylases/cysteine synthases; and CYSL-1 activity is in turn inhibited by the
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putative transmembrane O-acyltransferase RHY-1, possibly by post-translational

modifications to CYSL-1 (Ma et al., 2012) (see Fig. 31).

degradation

HIF-1

HIF-1-OH

RHY-1

CYSL-1

CYSL-1·EGL-9

EGL-9

VHL-1

hif-1rhy-1 vhl-1egl-9

Genetic Representation

Biochemical Representation

Figure 31 Genetic and biochemical representation of the hypoxia pathway in
C. elegans. Red arrows are arrows that lead to inhibition of HIF-1, and blue ar-
rows are arrows that increase HIF-1 activity or are the result of HIF-1 activity.
EGL-9 is known to exert VHL-1-dependent and independent repression on HIF-1
as shown in the genetic diagram. The VHL-1-independent repression of HIF-1 by
EGL-9 is denoted by a dashed line and is not dependent on the hydroxylating ac-
tivity of EGL-9. RHY-1 inhibits CYSL-1, which in turn inhibits EGL-9, but this
interaction was abbreviated in the genetic diagram for clarity.

Our reconstruction of the hypoxia pathway in C. elegans shows that whole-animal

transcriptome profiles can be used as phenotypes for genetic analysis and that epis-

tasis, a hallmark of genetic interaction observed in double mutants, holds at the

molecular systems level. We demonstrate that transcriptomes can aid in ordering

genes in a pathway using only single mutants. We were able to identify genes that

appear to be downstream of vhl-1, but not downstream of hif-1. Using a single set of

transcriptome-wide measurements, we observed most of the known transcriptional

effects of hif-1 as well as novel effects not described before in C. elegans. Taken

together, this analysis demonstrates that whole-animal RNA-seq is a fast and power-

ful method for genetic analyses in an area where phenotypic measurements are now

the rate-limiting step.
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Results

The hypoxia pathway controls thousands of genes in C. elegans

We selected four null single mutants within the hypoxia pathway for expression pro-

filing: egl-9(sa307), rhy-1(ok1402), vhl-1(ok161), hif-1(ia4). We also sequenced

the transcriptomes of two double mutants, egl-9; vhl-1 and egl-9 hif-1 as well as

wild type (N2). Each genotype was sequenced in triplicate using mRNA extracted

from 30 worms at a depth of 15 million reads per sample. Of these 15 million

reads, 50% of the reads mapped to the C. elegans genome on average. All samples

were analyzed under normoxic conditions. We measured differential expression of

19,676 isoforms across all replicates and genotypes (∼70% of the protein coding

isoforms in C. elegans; see Basic Statistics Notebook). We included in our analysis

a fog-2(q71) mutant we have previously studied (Angeles-Albores, Leighton, et al.,

2017), because fog-2 is not reported to interact with the hypoxia pathway. We

analyzed our data using a general linear model on logarithm-transformed counts.

Changes in gene expression are reflected in the regression coefficient β, which is

specific to each isoform within a genotype (excluding wild type, which is used

as baseline). Statistical significance is achieved when the q-value of a β coeffi-

cient (p-values adjusted for multiple testing) are less than 0.1. Transcripts that are

differentially expressed between the wild type and a given mutant have β values

that are statistically significantly different from 0 (i.e. greater than 0 or less than

0). β coefficients are analogous to the logarithm of the fold-change between the

mutant and the wild type. Larger magnitudes of β correspond to larger perturba-

tions (see Fig. 32). When we refer to β coefficients and q-values, it will always

be in reference to isoforms. However, we report the sizes of each gene set by

the number of differentially expressed genes (DEGs), not isoforms, they contain.

For the case of C. elegans, this difference is negligible since the great majority

of protein-coding genes have a single isoform. We have opted for this method of

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/1_basic_stats.html


41

referring to gene sets because it simplifies the language considerably. A complete

version of the code used for this analysis with ample documentation, is available at

https://wormlabcaltech.github.io/mprsq.

Wild-typeMutant A

Read Sequencing

Read quantification
(Kallisto)

Differential Expression
(Sleuth)

Downstream Analyses

Principal Component
Analysis

Enrichment Analysis

Epistasis
Coefficient

Figure 32 Analysis workflow. After sequencing, reads are quantified using
Kallisto. Bars show estimated counts for each isoform. Differential expression is
calculated using Sleuth, which outputs one β coefficient per isoform per genotype.
β coefficients are analogous to the natural logarithm of the fold-change relative to
a wild type control. Downstream analyses are performed with β coefficients that
are statistically significantly different from 0. q-values less than 0.1 are considered
statistically different from 0.

Transcriptome profiling of the hypoxia pathway revealed that this pathway controls

thousands of genes in C. elegans (see Table 31, see SI File 1 for a complete list

https://wormlabcaltech.github.io/mprsq
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of differentially expressed genes). The egl-9(lf) transcriptome showed differential

expression of 2,549 genes. 3,005 genes were differentially expressed in rhy-1(lf)

mutants. The vhl-1(lf) transcriptome showed considerably fewer DEGs (1,275),

possibly because vhl-1 is a weaker inhibitor of hif-1 than egl-9 (Shao, Zhang,

and Powell-Coffman, 2009). The egl-9(lf);vhl-1(lf) double mutant transcriptome

showed 3,654 DEGs. The hif-1(lf) mutant showed a transcriptomic phenotype in-

volving 1,075 genes. The egl-9(lf) hif-1(lf) double mutant showed a similar number

of genes with altered expression (744 genes). We do not think that this transcrip-

tional response is the due to transiently induced hypoxia during harvesting. If the

wild type strain had become hypoxic, then the hif-1(lf) genotype should show sig-

nificantly lower levels of nhr-57, a marker that increases during hypoxia. We do

not observe altered levels of nhr-57 when comparing the wild type and hif-1(lf)

mutant, nor between the wild type and egl-9(lf) hif-1(lf) double mutant. Finally, the

egl-9(lf), vhl-1(lf), rhy-1(lf) and egl-9(lf); vhl-1(lf) mutants did show altered nhr-57

transcript levels (see Quality Control Notebook, SI Figure 1). Of the differentially

expressed genes in hif-1(lf) mutants, 161/1,075 were also differentially expressed

in egl-9(lf) hif-1(lf) mutants, which suggests these transcripts are hif-1-dependent

under normoxia. For the remaining genes, we cannot rule out cumulative effects

from loss of hif-1, strain-specific eQTLs present in the strain background or that

loss of egl-9 suppresses the mutant phenotype. We designed our experiments to

probe the constitutive hypoxia response, and not the effects of hif-1 under normoxia,

which we did not foresee. As a result, we have limited resolving power to explain

the transcriptome of hif-1(lf) mutants.

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/5_quality_check.html
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Genotype Differentially Expressed Genes

egl-9(lf) 2,549
rhy-1(lf) 3,005
vhl-1(lf) 1,275
hif-1(lf) 1,075
egl-9(lf); vhl-1(lf) 3,654
egl-9(lf) hif-1(lf) 744
fog-2(lf) 2,840

Table 31 Number of differentially expressed genes in each mutant strain with re-
spect to the wild type (N2).

Principal Component Analysis visualizes epistatic relationships between geno-

types

Principal component analysis (PCA) is used to identify relationships between high-

dimensional data points (Yeung and Ruzzo, 2001). We used PCA examine whether

each genotype clustered in a biologically relevant manner. PCA identifies the vec-

tor that explains most of the variation in the data; this is called the first principal

component. PCA can identify the first n components that explain more than 95% of

the data variance. Clustering in these n dimensions can indicate biological relation-

ships, although interpreting principal components can be difficult. In our analysis,

the first principal component discriminated mutants that have constitutive high lev-

els of HIF-1 from mutants that have no HIF-1, whereas the second component was

able to discriminate between mutants within the hypoxia pathway and outside the

hypoxia pathway (see Fig. 33; fog-2 is not reported to act in the hypoxia pathway

and acts as a negative control; see Genetic Interactions Notebook).

Reconstruction of the hypoxia pathway from first genetic principles

To reconstruct a genetic pathway, we must assess whether two genes act on the same

phenotype. If they do not act on the same phenotype (twomutations do not cause the

same genes to become differentially expressed relative to wild type), these mutants

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/2_predict_interactions.html
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Figure 33 Principal component analysis of various C. elegans mutants. Genotypes
that have an constitutive hypoxia response (i.e. egl-9(lf)) cluster far from geno-
types that do not have a hypoxic response (i.e. hif-1(lf)) along the first principal
component. The second principal component separates genotypes that do not par-
ticipate hypoxic response pathway.

are independent. Otherwise, we must measure whether these genes act additively

or epistatically on the phenotype of interest; if there is epistasis we must measure

whether it is positive or negative, in order to assess whether the epistatic relationship

is a genetic suppression or a synthetic interaction. To allow coherent comparisons

of different mutant transcriptomes (the phenotype we are studying here), we define

the shared transcriptomic phenotype (STP) between two mutants as the shared set

of genes or isoforms whose expression in both mutants are different from wild-type,

regardless of the direction of change.
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Genes in the hypoxia mutant act on the same transcriptional phenotype

All the hypoxia mutants had a significant STP: the fraction of differentially ex-

pressed genes that was shared between mutants ranged from a minimum of 10%

between hif-1(lf) and egl-9(lf); vhl-1(lf) to a maximum of 32% between egl-9(lf) and

egl-9(lf); vhl-1(lf) (see SI Table 1). For comparison, we also analyzed a previously

published fog-2(lf) transcriptome (Angeles-Albores, Leighton, et al., 2017). The

fog-2 gene is involved in masculinization of the C. elegans germline, which enables

sperm formation, and is not known to be involved in the hypoxia pathway. The

hypoxia pathway mutants and the fog-2(lf) mutant also had STPs (8.8%–14%).

Next, we analyzed pairwise correlations between all mutant pairs. We rank-

transformed the β coefficients of each isoform between the STP of two mutants,

and plotted the transcript ranks between genotypes (see Fig 34). Although hif-1 is

known to be genetically repressed by egl-9, rhy-1 and vhl-1 (Epstein et al., 2001;

Shen, Shao, and Powell-Coffman, 2006), all the correlations between mutants of

these genes and hif-1(lf) were positive (see Genetic Interactions Notebook). We

reasoned that this apparent contradiction could be due to either strain-specific ef-

fects in our N2 background (an artifactual signal) or that it could reflect a previously

unrecognized aspect of HIF-1 biology. This motivated us to look for genes that

exhibited verifiable extreme patterns of anomalous behavior and led us to propose

a new model of the hypoxia pathway (see Identification of non-classical epistatic

interactions).

Transcriptome-wide epistasis

Ideally, any measurement of transcriptome-wide epistasis should conform to certain

expectations. First, it should make use of the regression coefficients of as many

genes as possible. Second, it should be summarizable in a single, well-defined

number. Third, it should have an intuitive behavior, such that special values of the

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/2_predict_interactions.html
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Figure 34 Interacting genes have correlated transcriptional signatures. The rank
order of transcripts contained in the shared transcriptional phenotype is plotted for
each pairwise combination of genotypes.Correlations between in-pathway geno-
types are strong whereas comparisons with a fog-2(lf) genotype are dominated by
noise. Comparisons between some genotypes show populations of transcripts that
are anticorrelated, possibly as a result of feedback loops. Plots are color-coded
by row. Comparisons with genotypes with a constitutive hypoxia response are in
blue; comparisons with genotypes negative for hif-1(lf) are black; and comparisons
involving fog-2(lf) are red. X- and y-axes show the rank of each transcript within
each genotype.
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statistic have an unambiguous interpretation.

We found an approach that satisfies all of the above conditions and which can be

graphed in an epistasis plot (see Fig 35) In an epistasis plot, the X-axis represents

the expected β coefficient for given gene in a double mutant a−b− if a and b interact

log-additively. In other words, each individual isoform’s x-coordinate is the sum of

the regression coefficients from the single mutants a− and b−. The Y-axis represents

the deviations from the log-additive (null) model, and can be calculated as the

difference between the predicted and the observed β coefficients. Only isoforms

that are differentially expressed in all three genotypes are plotted. This attempts to

ensure that the isoforms to be examined are regulated by both genes. These plots

will generate specific patterns that can be described through linear regressions.

The slope of these lines, to which we assign the mathematical notation s(a, b), is

the transcriptome-wide epistasis coefficient. Importantly, the transcriptome-wide

epistasis coefficient is fundamentally distinct from Pearson or Spearman correlation

coefficients and need not have a simple linear mapping. In other words, negative

correlation coefficients do not imply a specific sign of the epistasis coefficient, and

vice versa. For suppression to occur, for example, the only requirement is that the

phenotype of the double mutant should match one, and only one, of the two single

mutants. The value of the correlation coefficient is not relevant.

Transcriptome-wide epistasis coefficients can be understood intuitively for simple

cases of genetic interactions if complete genetic nulls are used. If two genes act

additively on the same set of differentially expressed isoforms then all the plotted

points will fall along the line y = 0. If two genes act positively in an unbranched

pathway, then all the mutants should have the same phenotype. It follows that data

from this pathway will form line with slope equal to −1
2 . On the other hand, in the

limit of complete genetic inhibition of b by a in an unbranched pathway (i.e., a is

in great excess over b, such that under the conditions measured b has no activity),
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the plots should show a line of best fit with slope equal to −1. Genes that interact

synthetically (i.e., through an OR-gate) will fall along lines with slopes > 0. When

there is epistasis of one gene over another, the points will fall along one of two

possible slopes that must be determined empirically from the single mutant data.

We can use both singlemutant data to predict the distribution of slopes that results for

the cases stated above. Thus, the transcriptome-wide epistasis coefficient integrates

information from many different isoforms into a single number (see Fig. 35).

In our experiment, we studied twodoublemutants, egl-9(lf) hif-1(lf) and egl-9(lf); vhl-1(lf).

Wewanted to understand howwell an epistatic analysis based on transcriptome-wide

coefficients agreed with the epistasis results reported in the literature, which were

based on qPCR of single genes. Therefore, we determined the epistasis coefficient

of the two gene combinations we studied (egl-9 and vhl-1, and egl-9 and hif-1). In

addition to computing an epistasis coefficient from these factors, we would like to

know which gene is suppressed in the double mutant. Suppression means that the

double mutant should have exactly the phenotype of one and only one mutant, we

can simulate the double mutant by replacing the double mutant data with either of

the two single mutants and matching the simulated result to the observed result.

The result that most closely matches the real data will reveal which gene is being

suppressed, which in turn allows us to order the genes along a pathway.

We measured the epistasis coefficient between egl-9 and vhl-1, s(egl-9 vhl-1) =

−0.41 ± 0.01 (see Epistasis Notebook). Simulations using just the single mutant

data showed that the double mutant exhibited the egl-9(lf) phenotype (see Fig. 35).

We used Bayesian model selection to reject a linear pathway (odds ratio (OR)

> 1092), which leads us to conclude egl-9 is upstream of vhl-1 acting on a pheno-

type in a branched manner. We also measured epistasis between egl-9 and hif-1,

s(egl-9, hif-1) = −0.80 ± 0.01 (see SI Figure 2), and we found that this behavior

could be predicted by modeling hif-1 downstream of egl-9. We also rejected the null

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/6_epistasis.html
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hypothesis that these two genes act in a positive linear pathway (OR> 1093). Taken

together, this leads us to conclude that egl-9 strongly inhibits hif-1.

Epistasis between two genes can be predicted using an upstream component

Given our success in measuring epistasis coefficients, we wanted to know whether

it would be possible to predict the epistasis coefficient between egl-9 and vhl-1

in the absence of the egl-9(lf) genotype. Since RHY-1 indirectly activates EGL-

9, we reasoned that the rhy-1(lf) transcriptome should contain almost equivalent

information to the egl-9(lf) transcriptome. Therefore, we generated predictions of

the epistasis coefficient between egl-9 and vhl-1 by substituting in the rhy-1(lf) data,

predicting s(rhy − 1, vhl − 1) = −0.45. Similarly, we used the egl-9(lf); vhl-1(lf)

double mutant to measure the epistasis coefficient while replacing the egl-9(lf)

dataset with the rhy-1(lf) dataset. We found that the epistasis coefficient using

this substitution was −0.38 ± 0.01. This coefficient was different from −0.50 (OR

> 10102), reflecting the same qualitative conclusion that vhl-1 represents a branch

in the hypoxia pathway. We were able to obtain a close prediction of the epistasis

coefficient for two mutants using the transcriptome of a related, upstream mutant.

Transcriptomic decorrelation can be used to infer functional distance

So far, we have shown that RNA-seq can accurately measure genetic interactions.

However, genetic interactions do not require two gene products to interact biochem-

ically, nor even to be physically close to each other. RNA-seq cannot measure

physical interactions between genes, but we wondered whether expression profiling

contains sufficient information to order genes along a pathway.

Single genes are often regulated by multiple independent sources. The connection

between two nodes can in theory be characterized by the strength of the edges

connecting them (the thickness of the edge); the sources that regulate both nodes
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Figure 35 (A) Schematic diagram of an epistasis plot. The X-axis on an epistasis
plot is the expected coefficient for a double mutant under an log-additive model
(null model). The Y-axis plots deviations from this model. Double mutants that
deviate in a systematic manner from the null model exhibit transcriptome-wide
epistasis (s). To measure s, we find the line of best fit and determine its slope.
Genes that act log-additively on a phenotype (Ph) will have s = 0 (null hypoth-
esis, orange line); whereas genes that act along an unbranched pathway will have
s = −1/2 (blue line). Strong repression is reflected by s = −1 (red line), whereas
s > 0 correspond to synthetic interactions (purple line). (B) Epistasis plot showing
that the egl-9(lf); vhl-1(lf) transcriptome deviates significantly from a null addi-
tive. Points are colored qualitatively according to density (purple—low, yellow—
high) and size is inversely proportional to the standard error (S.E.) of the y-axis.
The green line is the line of best fit from an orthogonal distance regression. (C)
Comparison of simulated epistatic coefficients against the observed coefficient.
Green curve shows the bootstrapped observed transcriptome-wide epistasis coef-
ficient for egl-9 and vhl-1. Dashed green line shows the mean value of the data.
Simulations use only the single mutant data to idealize what expression of the
double mutant should look like. a > b means that the phenotype of a is observed
in a double mutant a−b−.
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(the fraction of inputs common to both nodes); and the genes that are regulated

by both nodes (the fraction of outputs that are common to both nodes). In other

words, we expected that expression profiles associatedwith a pathwaywould respond

quantitatively to quantitative changes in activity of the pathway. Targeting a pathway

at multiple points would lead to expression profile divergence as we compare nodes

that are separated by more degrees of freedom, reflecting the flux in information

between them.

We investigated this possibility byweighting the robust Bayesian regression between

each pair of genotypes by the size of the shared transcriptomic phenotype of each

pair divided by the total number of isoforms differentially expressed in either mutant

(NIntersection/NUnion). We plotted the weighted correlation of each gene pair, ordered

by increasing functional distance (see Fig. 36). In every case, we see that the

weighted correlation decreases monotonically due mainly, but not exclusively, to a

smaller STP (see Decorrelation Notebook).

We believe that this result is not due to random noise or insufficiently deep sequenc-

ing. Instead, we propose a framework in which every gene is regulated by multiple

different molecular species, which induces progressive decorrelation. This decorre-

lation in turn has two consequences. First, decorrelation within a pathway implies

that two nodes may be almost independent of each other if the functional distance

between them is large. Second, it may be possible to use decorrelation dynamics to

infer gene order in a branching pathway, as we have done with the hypoxia pathway.

Classical epistasis identifies a core hypoxic response

We searched for genes whose expression obeyed the two epistatic equality relation-

ships, hif-1(lf)=egl-9(lf) hif-1(lf) and egl-9(lf)=egl-9(lf); vhl-1(lf), since these equali-

ties define the hypoxia pathway. We excluded genes whose expression deviated from

this relationship by more than 2 standard deviations or that had opposite changes in

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/10_decorrelation.html
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Figure 36 Transcriptomes can be used to order genes in a pathway under certain
assumptions. Arrows in the diagrams above are intended to show the direction of
flow, and do not indicate valence. A. A linear pathway in which rhy-1 is the only
gene controlling egl-9, which in turn controls hif-1 does not contain information
to infer the order between genes. B. If rhy-1 and egl-9 have transcriptomic effects
that are separable from hif-1, then the rhy-1 transcriptome should contain contri-
butions from egl-9, hif-1 and egl-9- and hif-1-independent pathways. This path-
way contains enough information to infer order. C. If a pathway is branched both
upstream and downstream, transcriptomes will show even faster decorrelation.
Nodes that are separated by many edges may begin to behave almost indepen-
dently of each other with marginal transcriptomic overlap or correlation. D. The
hypoxia pathway can be ordered. We hypothesize the rapid decay in correlation is
due to a mixture of upstream and downstream branching that happens along this
pathway. Bars show the standard error of the weighted coefficient from the Monte
Carlo Markov Chain computations.
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direction. Using these criteria, we identified 1,258 genes in the hypoxia response.

Tissue Enrichment Analysis showed that the intestine and epithelial system were

enriched in this response (q < 10−10 for both terms), consistent with previous re-

ports (Budde and Roth, 2010). Gene Enrichment Analysis (Angeles-Albores, N.

Lee, et al., 2018) showed enrichment in the mitochondrion and in collagen trimers

(q < 10−10) (see Enrichment Analysis Notebook and SI Figures 3 and 4). This re-

sponse included 15 transcription factors. Even though HIF-1 is an activator, not all

of these genes were up-regulated. We reasoned that only genes that are up-regulated

in HIF-1-inhibitor mutants are candidates for direct regulation by HIF-1. We found

264 such genes.

Feedback can be inferred

While some of the rank plots contained a clear positive correlation, others showed

a discernible cross-pattern (see Fig. 34). In particular, this cross-pattern emerged

between vhl-1(lf) and rhy-1(lf) or between vhl-1(lf) and egl-9(lf), even though vhl-1,

rhy-1 and egl-9 are all inhibitors of hif-1(lf). Such cross-patterns could be indicative

of feedback loops or other complex interaction patterns. If the above is correct,

then it should be possible to identify genes that are regulated by rhy-1 in a logically

consistent way: Since loss of egl-9 causes rhy-1 mRNA levels to increase, if this

increase leads to a significant change in RHY-1 activity, then it follows that the

egl-9(lf) and rhy-1(lf) should show anti-correlation in a subset of genes. Since we

do not observe many genes that are anti-correlated, we conclude that is unlikely that

the change in rhy-1mRNA expression causes a significant change in RHY-1 activity

under normoxic conditions. We also searched for genes with hif-1-independent,

vhl-1-dependent gene expression and found 71 genes (SI File 1).

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/3_ea_of_hypoxia_data.html
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Identification of non-classical epistatic interactions

hif-1(lf) has traditionally been viewed as existing in a genetic OFF state under

normoxic conditions. However, our dataset indicates that 1,075 genes show altered

expression when hif-1 function is removed in normoxic conditions. Moreover, we

observed positive correlations between hif-1(lf) β coefficients and egl-9(lf), vhl-1(lf)

and rhy-1(lf) β coefficients in spite of the negative regulatory relationships between

these genes and hif-1. Such positive correlations could indicate a relationship

between these genes that has not been reported previously.

We identified genes that exhibited violations of the canonical genetic model of the

hypoxia pathway (see Fig. 37; also Non-canonical epistasis notebook). We searched

for genes that changed in different directions between egl-9(lf) and vhl-1(lf), or,

equivalently, between rhy-1(lf) and vhl-1(lf) (we assume that all results from the

rhy-1(lf) transcriptome reflect a complete loss of egl-9 activity) without specifying

any further conditions. We found 56 that satisfied this condition (see Fig. 37, SI

File 1). When we checked expression of these genes in the double mutant, we found

that egl-9 remained epistatic over vhl-1 for this class of genes. This class of genes

may in fact be larger because it overlooks genes that have wild-type expression in an

egl-9(lf) background, altered expression in a vhl-1(lf) background, and suppressed

(wild-type) expression in an egl-9(lf); vhl-1(lf) background. As a result, it could

help explain why the hif-1(lf) mutant transcriptome is positively correlated with its

inhibitors.

Although this entire class had similar behavior, we focused on two genes, nlp-31

and ftn-1 which have representative expression patterns. ftn-1 is described to be

responsive to mutations in the hypoxia pathway and has been reported to have

aberrant behaviors; specifically, loss of function of egl-9 and vhl-1 have opposing

effects on ftn-1 expression (Ackerman and Gems, 2012; Romney et al., 2011).

These studies showed the same ftn-1 expression phenotypes using RNAi and alleles,

https://wormlabcaltech.github.io/mprsq/analysis_notebooks/7_hifoh.html
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Figure 37 A. 56 genes in C. elegans exhibit non-classical epistasis in the hypoxia
pathway, characterized by opposite effects on gene expression, relative to the wild
type, of the vhl-1(lf) compared to egl-9(lf) (or rhy-1(lf)) mutants. Shown are a ran-
dom selection of 15 out of 56 genes for illustrative purposes. B. Genes that behave
non-canonically have a consistent pattern. vhl-1(lf) mutants have an opposite ef-
fect to egl-9(lf), but egl-9 remains epistatic to vhl-1 and loss-of-function mutations
in hif-1 suppress the egl-9(lf) phenotype. Asterisks show β values significantly
different from 0 relative to wild type (q < 10−1).

allaying concerns of strain-specific interference. We observed that hif-1was epistatic

to egl-9, and that egl-9 and hif-1 both promoted ftn-1 expression.

Analysis of ftn-1 expression reveals that egl-9 is epistatic to hif-1; that vhl-1 has

opposite effects to egl-9, and that vhl-1 is epistatic to egl-9. Analysis of nlp-31 reveals

similar relationships. nlp-31 expression is decreased in hif-1(lf), and increased in

egl-9(lf). However, egl-9 is epistatic to hif-1. Like ftn-1, vhl-1 has the opposite

effect to egl-9, yet is epistatic to egl-9. We propose in the Discussion a novel model

for how HIF-1 might regulate these targets.
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Discussion

The C. elegans hypoxia pathway can be reconstructed de novo from RNA-seq

data

We have shown that whole-organism transcriptomic phenotypes can be used to

reconstruct genetic pathways and to discern previously uncharacterized genetic in-

teractions. We successfully reconstructed the hypoxia pathway including the order of

action of the genetic components and its branching pattern. These results highlight

the potential of whole-animal expression profiles for dissecting molecular pathways

that are expressed in a large number of cells within an organism. While our results

are promising, it remains to be seen whether our approach will also work for path-

ways that act in a few cells. We selected a previously characterized pathway because

C. elegans is less amenable to high-throughput screens compared to cultured cells.

That said, the striking nature of our results makes us optimistic that this technique

could be successfully used to reconstruct unknown pathways.

Interpretation of the non-classical epistasis in the hypoxia pathway

The 56 genes that exhibit a striking pattern of non-classical epistasis suggest the

existence of previously undescribed aspects of the hypoxia pathway. Some of these

non-classical behaviors had been observed previously (Ackerman and Gems, 2012;

Romney et al., 2011; Luhachack et al., 2012), but no satisfactory mechanism has

been proposed to explain them. Previous studies (Romney et al., 2011; Ackerman

and Gems, 2012) suggested that HIF-1 integrates information on iron concentration

in the cell to determine its binding affinity to the ftn-1 promoter, but could not

definitively establish a mechanism. It is unclear why deletion of hif-1 and deletion

of egl-9 both cause induction of ftn-1 expression, but deletion of vhl-1 abolishes this

induction. Moreover, Luchachack et al (Luhachack et al., 2012) have previously

reported that certain genes important for the C. elegans immune response against
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pathogens reflect similar non-canonical expression patterns. Their interpretation

was that swan-1, which encodes a binding partner to EGL-9 (Shao, Zhang, Ye,

et al., 2010), is important for modulating HIF-1 activity in some manner. The lack

of a conclusive double mutant analysis in this work means the role of SWAN-1 in

modulation of HIF-1 activity remains to be demonstrated. Other mechanisms, such

as tissue-specific differences in the pathway (Budde and Roth, 2010) could also

modulate expression, though it is worth pointing out that ftn-1 expression appears

restricted to a single tissue, the intestine (Kim et al., 2004). Another possibility is

that egl-9 controls hif-1 mRNA stability via other vhl-1-independent pathways, but

we did not see a decreases in hif-1 level in egl-9(lf), rhy-1(lf) or vhl-1(lf) mutants.

Another possibility, such as control of protein stability via egl-9 independently of

vhl-1 (Chintala et al., 2012) will not lead to splitting unless it happens in a tissue-

specific manner.

One parsimonious solution is to consider HIF-1 as a protein with both activating and

inhibiting states. In fact, HIF-1 already exists in two states in C. elegans: unmodi-

fied HIF-1 and HIF-1-hydroxyl (HIF-1-OH). Under this model, the effects of HIF-1

for certain genes like ftn-1 or nlp-31 are antagonized by HIF-1-hydroxyl, which is

present at only a low level in the cell in normoxia because it is degraded in a vhl-1-

dependent fashion. This means that loss of vhl-1 stabilizes HIF-1-hydroxyl. If vhl-1

is inactivated, genes that are sensitive to HIF-1-hydroxyl will be inhibited as a result

of the increase in HIF-1-hydroxyl, despite the increased levels of non-hydroxylated

HIF-1. On the other hand, egl-9(lf) abrogates the generation of HIF-1-hydroxyl,

stimulating accumulation of non-hydroxylated HIF-1 and promoting gene expres-

sion. Whether deletion of hif-1(lf) is overall activating or inhibiting will depend

on the relative activity of each protein state under normoxia (see Fig. 38). HIF-1-

hydroxyl is challenging to study genetically, and if it does have the activity suggested

by our genetic evidence this may have prevented such a role from being detected.
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Genotype

egl-9 HIF-1

HIF-1

HIF-1 activates/
HIF-1-OH represses

wild type HIF-1 HIF-1-OH

egl-9; vhl-1 HIF-1 activates/
HIF-1-OH represses

hif-1
Depends on specific activities/
concentrations at S.S.

egl-9; hif-1
Depends on specific activities/
concentrations at S.S.

vhl-1 HIF-1 HIF-1-OH HIF-1-OH represses

Interpretation

ftn-1

ftn-1
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Figure 38 A hypothetical model showing a mechanism where HIF-1-hydroxyl an-
tagonizes HIF-1 in normoxia. A. Diagram showing that RHY-1 activates EGL-9.
EGL-9 hydroxylates HIF-1 in an oxygen-dependent manner. HIF-1 is rapidly hy-
droxylated and the product, HIF-1-OH is rapidly degraded in a VHL-1-dependent
fashion. EGL-9 can also inhibit HIF-1 in an oxygen-independent fashion. In our
model, HIF-1 and HIF-1-OH have opposing effects on transcription. The width of
the arrows represents rates in normoxic conditions. B. Table showing the effects of
loss-of-function mutations on HIF-1 and HIF-1-OH activity, showing how this can
potentially explain the ftn-1 expression levels in each case. S.S = Steady-state.
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No mimetic mutations are known with which to study the pure hydroxylated HIF-1

species, and mutations in the Von Hippel-Lindau gene that stabilize the hydroxyl

species also increase the quantity of non-hydroxylated HIF-1 by mass action.

Because HIF-1 is detected at low levels in cells under normoxic conditions (Wang

and Semenza, 1993), total HIF-1 protein levels are assumed to be so low as to be

biologically inactive. However, our data show 1,075 genes change expression in

response to loss of hif-1 under normoxic conditions, which establishes that there is

sufficient totalHIF-1 protein to be biologically active. Our analyses also revealed that

hif-1(lf) shares positive correlations with egl-9(lf), rhy-1(lf) and vhl-1(lf), and that

each of these genotypes also shows a secondary negative rank-ordered expression

correlation with each other.

A homeostatic argument can be made in favor of the activity of HIF-1-hydroxyl.

The cell must continuously monitor multiple metabolite levels. The hif-1-dependent

hypoxia response integrates information from O2, α-ketoglutarate and iron concen-

trations in the cell. One way to integrate this information is by encoding it within the

effective hydroxylation rate of HIF-1 by EGL-9. Then the dynamics in this system

will evolve exclusively as a result of the total amount of HIF-1 in the cell. Such a

system can be sensitive to fluctuations in the absolute concentration of HIF-1 (Goen-

toro et al., 2009). Since the absolute levels of HIF-1 are low in normoxic conditions,

small fluctuations in protein copy-number can represent a large fold-change in HIF-1

levels. These fluctuations might not be problematic for genes that must be turned

on only under conditions of severe hypoxia—presumably, these genes would be

activated only when HIF-1 levels increase far beyond random fluctuations.

For yet other sets of genes that must change expression in response to the hypoxia

pathway, it may not be sufficient to integrate metabolite information exclusively via

EGL-9-dependent hydroxylation of HIF-1. In particular, genes that may function
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to increase survival in mild hypoxia may benefit from regulatory mechanisms that

can sense minor changes in environmental conditions and which therefore benefit

from robustness to transient changes in protein copy number. Likewise, genes

that are involved in iron or α-ketoglutarate metabolism (such as ftn-1) may benefit

from being able to sense, accurately, small and consistent deviations from basal

concentrations of these metabolites. For these genes, the information may be better

encoded by using HIF-1 and HIF-1-hydroxyl as an activator/repressor pair. Such

circuits are known to possess distinct advantages for controlling output robustly to

transient fluctuations in the levels of their components (Hart, Antebi, et al., 2012;

Hart and Alon, 2013).

Our RNA-seq data suggests that one of these atypical targets of HIF-1 may be RHY-

1. Although rhy-1 does not exhibit non-classical epistasis, all genotypes containing

a hif-1(lf) mutation had increased expression levels of rhy-1. We speculate that if

rhy-1 is controlled by both HIF-1 and HIF-1-hydroxyl, then this might imply that

HIF-1 auto-regulates both positively and negatively.

Strengths and weaknesses of the methodology

We have described a set of methods that can in principle be applied to any multi-

dimensional phenotype. Although we have not applied these methods to de novo

pathway discovery, we believe that they will be broadly applicable to a wide variety

of genetic problems. One aspect of our methodology is the use of whole-organism

expression data. Data collection from whole-organisms can be rapid with low

technical barriers. On the other hand, a concern is that whole-organism data will

average signals across tissues, which would limit the scope of this technology to the

study of genetic pathways that are systemic or expressed in large tissues. In real-

ity, our method may be applicable for pathways that are expressed even in a small

number of cells in an organism. If a pathway is active in a single cell, this does
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not mean that it does not have cell-non-autonomous effects that could be detected

on an organism-wide level. Thus, pathways that act in single cells could still be

characterized via whole-organism transcriptome profiling. If the non-autonomous

effects are long-lasting, then the profiling could take place after the time-of-action

of this pathway. In fact, this is how the female-like state in C. elegans was recently

identified (Angeles-Albores, Leighton, et al., 2017): fog-2 is involved in translation

repression of tra-2 in the somatic gonad, thereby promoting sperm formation in

late larvae (Clifford et al., 2000). Loss of this gene causes non-cell-autonomous

effects that can be detected well after the time-of-action of fog-2 in the somatic

gonad has ended. Therefore, we believe that our methodology will be applicable to

many genetic cases, with the exception of pathways that acts in complex, antago-

nistic manners depending on the cell type, or if the pathway minimally affects gene

expression.

Genetic analysis of transcriptomic data has proved challenging as a result of its com-

plexity. Although dimensionality reduction techniques such as PCA have emerged

as powerful methods with which to understand these data, these methods generate

reduced coordinates which are difficult or impossible to interpret. As an example,

the first principal component in this paper (see Fig. 33) could be interpreted as HIF-1

pseudo-abundance (Lönnberg et al., 2017). However, another equally reasonable,

yet potentially completely different interpretation, is as a pseudo-HIF-1/HIF-1-OH

ratio. Another way to analyze genetic interactions is via general linear models

(GLMs) that include interaction terms between two or more genes. GLMs can

quantify the genetic interactions on single transcripts. We and others (Dixit et al.,

2016; Angeles-Albores, Leighton, et al., 2017) have used GLMs to perform epis-

tasis analyses of pathways using transcriptomic phenotypes. GLMs are powerful,

but they generate a different interaction coefficient for each gene measured. The

large number of coefficients makes interpretation of the genetic interaction between
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two mutants difficult. Previous approaches (Dixit et al., 2016) visualize these co-

efficients via clustered heatmaps. However, two clusters cannot be assumed to be

evidence that two genes interact via entirely distinct pathways. Indeed, the non-

classical epistasis examples we described here might cluster separately even though

a reasonable model can be invoked that does not require any new molecular players.

The epistasis plots shown here are a useful way to visualize epistasis in vectorial

phenotypes. We have shown how an epistasis plot can be used to identify inter-

actions between two genes by examining the transcriptional phenotypes of single

and double mutants. Epistasis plots can accumulate an arbitrary number of points

within them, possess a rich structure that can be visualized and have straightfor-

ward interpretations for special slope values. Epistasis plots and GLMs are not

mutually exclusive. A GLM could be used to quantify epistasis interactions at

single-transcript resolution, and the results then analyzed using an epistasis plot (for

a non-genetic example, see Angeles-Albores, Leighton, et al. (2017)). A benefit of

epistasis plots is that they enable the computation of a single, aggregate statistic that

describes the ensemble behavior of a set of genes. This aggregate statistic is not

enough to describe all possible behaviors in a system, but it can be used to establish

whether the genes under study are part of a single pathway. In the case of the

hypoxia pathway, phenotypes that are downstream of the hypoxia pathway should

conform to the genetic equalities, egl-9(lf) hif-1(lf) = hif-1(lf) AND egl-9(lf); vhl-1(lf)

= egl-9(lf). Genes whose expression levels behave strangely, yet satisfy these equal-

ities are downstream of the hypoxia pathway. These anomalous genes cannot be

identified via the epistasis coefficient but the epistasis coefficient does provide a uni-

fying framework with which to analyze them by constraining the space of plausible

hypotheses.

Until relatively recently, the rapid generation and molecular characterization of

null mutants was a major bottleneck for genetic analyses. Advances in genomic
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engineering mean that, for a number of organisms, production of mutants is now

rapid and efficient. As mutants become easier to produce, biologists are realizing

that phenotyping and characterizing the biological functions of individual genes is

challenging. This is particularly true for whole organisms, where subtle phenotypes

can go undetected for long periods of time. We have shown that whole-animal

RNA-sequencing is a sensitive method that can be seamlessly incorporated with

genetic analyses of epistasis.

Methods

Nematode strains and culture

Strains used were N2 (Bristol), JT307 egl-9(sa307), CB5602 vhl-1(ok161), ZG31

hif-1(ia4), RB1297 rhy-1(ok1402), CB6088 egl-9(sa307) hif-1(ia4), CB6116

egl-9(sa307);vhl-1(ok161), Lines were grown on standard nematode growth media

Petri plates seeded with OP50 E. coli at 20°C (Brenner, 1974).

RNA isolation

Lines were synchronized by harvesting eggs via sodium hypochlorite treatment and

subsequently plating eggs on food. Worms were staged and based on the time after

plating, vulva morphology and the absence of eggs. 30–50 non-gravid young adults

were picked and placed in 100 µL of TE pH 8.0 (Ambion AM9849) in 0.2 mL PCR

tubes on ice. Worms were allowed to settle or spun down by centrifugation and

∼ 80 µL of supernatant removed before flash-freezing in liquid N2. These samples

were digested with Recombinant Proteinase K PCR Grade (Roche Lot No. 03115

838001) for 15 min at 60° in the presence of 1% SDS and 1.25 µL RNA Secure

(Ambion AM7005). 5 volumes of Trizol (Tri-Reagent Zymo Research) were added

to the RNA samples and treated with DNase I using Zymo Research Quick-RNA

MicroPrep R1050. Samples were analyzed run on an Agilent 2100 BioAnalyzer

(Agilent Technologies). Replicates were selected that had RNA integrity numbers
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equal to or greater than 9.0 and without bacterial ribosomal bands, except for the

ZG31 mutant where one of three replicates had a RIN of 8.3.

Library preparation and sequencing

10 ng of total RNA from each sample was reverse-transcribed into cDNA using the

Clontech SMARTer Ultra Low Input RNA for Sequencing v3 kit (catalog #634848)

in the SMARTSeq2 protocol (Picelli et al., 2014). RNA was denatured at 70°C

for 3 min in the presence of dNTPs, oligo dT primer and spiked-in quantitation

standards (NIST/ERCC from Ambion, catalog #4456740). After chilling to 4°C,

the first-strand reaction was assembled using a LNA TSO primer (Picelli et al.,

2014), and run at 42°C for 90 minutes, followed by denaturation at 70°C for 10

min. The first strand reaction was used as template for 13 cycles of PCR using the

Clontech v3 kit. Reactions were purified with Ampure XP SPRI beads (catalog

#A63880). After quantification using the Qubit High Sensitivity DNA assay, a 3 ng

aliquot of the cDNA was run on the Agilent HS DNA chip to confirm the length

distribution of the amplified fragments. The median value for the average cDNA

lengths from all length distributions was 1,076 bp. Tagmentation of the full length

cDNA was performed using the Illumina/Nextera DNA library prep kit (catalog

#FC-121–1030). Following Qubit quantitation and Agilent BioAnalyzer profiling,

the tagmented libraries were sequenced on an Illumina HiSeq2500machine in single

read mode with a read length of 50 nt to a depth of 15 million reads per sample.

Base calls were performed with RTA 1.13.48.0 followed by conversion to FASTQ

with bcl2fastq 1.8.4.

Read alignment and differential expression analysis

We used Kallisto (Bray et al., 2016) to perform read pseudo-alignment and per-

formed differential analysis using Sleuth (Pimentel et al., 2016). We fit a general
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linear model for an isoform t in sample i:

yt,i = βt,0 + βt,genotype · Xt,i + βt,batch · Yt,i + εt,i (3.1)

where yt,i was the logarithm transformed counts of isoform t in sample i; βt,genotype

and βt,batch were parameters of the model for the isoform t, and which could be inter-

preted as biased estimators of the log-fold change; Xt,i,Yt,i were indicator variables

describing the experimental conditions of the isoform t in sample i; and εt,i was

the noise associated with a particular measurement. After fitting the general linear

model, we tested isoforms for differential expression using the built-in Wald-test in

Sleuth (Pimentel et al., 2016), which outputs a q-value that has been corrected for

multiple hypothesis testing.

Genetic Analysis, Overview

The processed data were analyzed using Python 3.5. We used the Pandas, Mat-

plotlib, Scipy, Seaborn, Sklearn, Networkx, PyMC3, and TEA libraries (McKinney,

2011; Oliphant, 2007; Pedregosa et al., 2012; Salvatier, Wiecki, and Fonnesbeck,

2015; VanDerWalt, Colbert, andVaroquaux, 2011; Hunter, 2007; Angeles-Albores,

N. Lee, et al., 2016; Waskom et al., 2016). Our analysis is available in Jupyter

Notebooks (Pérez and Granger, 2007). All code and processed data are available at

https://github.com/WormLabCaltech/mprsq along with version-control in-

formation. Our Jupyter Notebook and interactive graphs for this project can be

found at https://wormlabcaltech.github.io/mprsq/ in html format. Raw

reads were deposited in the Short Read Archive under the study accession number

SRP100886 and in the GEO under the accession number GSE97355.

Weighted correlations

Correlations between mutants were calculated by identifying their STP. Transcripts

were rank-ordered according to their regression coefficient, β. Regressions were

https://github.com/WormLabCaltech/mprsq
https://wormlabcaltech.github.io/mprsq/


66

performed using a Student-T distribution with the PyMC3 library (Salvatier, Wiecki,

and Fonnesbeck, 2015) (pm.glm.families.StudenT in Python). If the correla-

tions had an average value > 1, the average correlation coefficient was set to 1.

Weights were calculated as the number of genes that were inliers divided by the

number of DEGs present in either mutant.

Epistatic analysis

The epistasis coefficient between two null mutants a and b was calculated as:

s(a, b) =
βa,b − βa − βb

βa + βb
(3.2)

Null models for various epistatic relationships were generated by sampling the single

mutants in an appropriate fashion. For example, to generate the distribution for two

mutants that obey the epistatic relationship a− = a−b−, we substituted βa,b with βa

and bootstrapped the result.

To select between theoretical models, we implemented an approximate Bayesian

Odds Ratio. We defined a free-fit model, M1, that found the line of best fit for the

data:

P(α |M1,D) ∝
∏

(xi,yi,σi)∈D

exp [
(yi − α · xi)

2

2σ2
i

] · (1 + α2)
−3/2

, (3.3)

where α was the slope to be determined, xi, yi are the of each point, and σi was the

standard error associated with the y-value. We used equation 3.3 to obtain the most

likely slope given the data, D, via minimization (scipy.optimize.minimize in

Python). Finally, we approximated the odds ratio as:

OR =
P(D |α∗, M1) · (2π)1/2σα∗

P(D |Mi)
, (3.4)

where α∗ was the slope found after minimization, σ∗α was the standard deviation of

the parameter at the point α∗ and P(D |Mi) was the probability of the data given the

parameter-free model, Mi.
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Enrichment analysis

Tissue, Phenotype and Gene Ontology Enrichment Analysis were carried out using

the WormBase Enrichment Suite for Python (Angeles-Albores, N. Lee, et al., 2018;

Angeles-Albores, N. Lee, et al., 2016).
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C h a p t e r 4

THE CAENORHABDITIS ELEGANS FEMALE-LIKE STATE:
DECOUPLING THE TRANSCRIPTOMIC EFFECTS OF AGING

AND SPERM STATUS

Angeles-Albores, David et al. (2017). “The Caenorhabditis elegans Female-Like
State: Decoupling the Transcriptomic Effects of Aging and Sperm Status.” In:G3
(Bethesda, Md.) 7.9, pp. 2969–2977. issn: 2160-1836. doi: 10.1534/g3.117.
300080.

Abstract

Understanding genome and gene function in a whole organism requires us

to fully comprehend the life cycle and the physiology of the organism in ques-

tion. Caenorhabditis elegansXXanimals are hermaphrodites that exhaust their

sperm after 3 days of egg-laying. Even though C. elegans can live for many days

after cessation of egg-laying, the molecular physiology of this state has not been

as intensely studied as other parts of the life cycle, despite documented changes

in behavior and metabolism. To study the effects of sperm depletion and aging

of C. elegans during the first 6 days of adulthood, we measured the transcrip-

tomes of 1st day adult hermaphrodites; 6th day sperm-depleted adults; and at

the same time points, mutant fog-2(lf) worms that have a feminized germline

phenotype. We found that we could separate the effects of biological aging

from sperm depletion. For a large subset of genes, young adult fog-2(lf) ani-

mals had the same gene expression changes as sperm-depleted 6th daywild-type

hermaphrodites, and these genes did not change expression when fog-2(lf) fe-

males reached the 6th day of adulthood. Taken together, this indicates that

changing sperm status causes a change in the internal state of the worm, which

we call the female-like state. Our data provide a high-quality picture of the

https://doi.org/10.1534/g3.117.300080
https://doi.org/10.1534/g3.117.300080


73

changes that happen in global gene expression throughout the period of early

aging in the worm.

Transcriptome analysis by RNA-seq (Mortazavi et al., 2008) has allowed for in-

depth analysis of gene expression changes between life stages and environmental

conditions in many species (Gerstein et al., 2014; Blaxter et al., 2012). Caenorhab-

ditis elegans, a genetic model nematode with extremely well defined and largely

invariant development (Sulston and Horvitz, 1977; Sulston, Schierenberg, et al.,

1983), has been subjected to extensive transcriptomic analysis across all stages of

larval development (Hillier et al., 2009; Boeck et al., 2016; Murray et al., 2012) and

many stages of embryonic development (Boeck et al., 2016). Although RNA-seq

was used to develop transcriptional profiles of the mammalian aging process soon

after its invention (Magalhães, Finch, and Janssens, 2010), few such studies have

been conducted in C. elegans past the entrance into adulthood.

A distinct challenge to the study of aging transcriptomes in C. elegans is the

hermaphroditic lifestyle of wild-type individuals of this species. Young adult

hermaphrodites are capable of self-fertilization (Brenner, 1974; Corsi, Wightman,

and Chalfie, 2015), and the resulting embryos will contribute RNA to whole-

organism RNA extractions. Most previous attempts to study the C. elegans aging

transcriptome have addressed the aging process only indirectly, or relied on the use

of genetically or chemically sterilized animals to avoid this problem (Murphy et al.,

2003; Halaschek-Wiener et al., 2005; Lund et al., 2002; McCormick et al., 2012;

Eckley et al., 2013; Boeck et al., 2016; Rangaraju et al., 2015). In addition, most

of these studies obtained transcriptomes using microarrays, which are less accurate

than RNA-seq, especially for genes expressed at low levels (Wang et al., 2014).

Here, we investigate what we argue is a distinct state in the C. elegans life cycle.
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Although C. elegans hermaphrodites emerge into adulthood replete with sperm,

after about 3 days of egg-laying the animals become sperm-depleted and can only

reproduce by mating. This marks a transition into what we define as the endogenous

female-like state. This state is behaviorally distinguished by increased male-mating

success (Garcia, LeBoeuf, and Koo, 2007), which may be due to an increased attrac-

tiveness to males (Morsci, Haas, and Barr, 2011). This increased attractiveness acts

at least partially through production of volatile chemical cues (Leighton et al., 2014).

These behavioral changes are also coincident with functional deterioration of the

germline (Andux and Ellis, 2008), muscle (Herndon et al., 2002), intestine (McGee

et al., 2011) and nervous system (J. Liu et al., 2013), changes traditionally attributed

to the aging process (T. R. Golden and Melov, 2007).

To decouple the effects of aging and sperm-loss, we devised a two factor experiment.

We examined wild-type XX animals at the beginning of adulthood (before worms

contained embryos, referred to as 1st day adults) and after sperm depletion (6 days

after the last molt, which we term 6th day adults). Second, we examined feminized

XXanimals that fail to produce spermbut are fully fertile if supplied spermbymating

with males (see Fig. 41). We used fog-2 null mutants to obtain feminized animals.

fog-2 is involved in germ-cell sex determination in the hermaphrodite worm and

is required for sperm production (Schedl and Kimble, 1988; Clifford et al., 2000).

C. elegans defective in sperm formation will emerge from the larval stage as female

adults. As time moves forward, these spermless worms only exhibit changes related

to biological aging. As a result, fog-2(lf) mutants should show fewer gene changes

during the first 6 days of adulthood compared to their egg-laying counterparts that

age and also transition from egg-laying into a sperm depleted stage.

Here, we show that we can detect a transcriptional signature associated with loss of

hermaphroditic sperm marking entrance into the endogenous female-like state. We

can also detect changes associated specifically with biological aging. Biological
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aging causes transcriptomic changes consisting of 5,592 genes in C. elegans. 4,552

of these changes occur in both genotypeswe studied, indicating they do not depend on

sperm status. To facilitate exploration of the data, we have generated awebsite where

we have deposited additional graphics, aswell as all of the code used to generate these

analyses: https://wormlabcaltech.github.io/Angeles_Leighton_2016/

.

fog-2 (+) fog-2 (-)

1 day
old adult

6 day
old adult

Egg-laying

Mate Seeking Mate Seeking

Mate Seeking

Figure 41 Experimental design to identify genes associated with sperm loss and
with aging. Studying the wild-type worm alone would measure time- and sperm-
related changes at the same time, without allowing us to separate these changes.
Studying the wild-type worm and a fog-2(lf) mutant would enable us to measure
sperm-related changes but not time-related changes. By mixing both designs, we
can measure and separate both modules.

Materials and Methods

Strains

Strains were grown at 20°C on NGM plates containing E. coli OP50. We used

the laboratory C. elegans strain N2 as our wild-type strain (Brenner, 1974). We

also used the N2 mutant strain JK574, which contains the fog-2(q71) allele, for our

experiments.

https://wormlabcaltech.github.io/Angeles_Leighton_2016/
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RNA extraction

Synchronized worms were grown to either young adulthood or the 6th day of

adulthood prior to RNA extraction. Synchronization and aging were carried out

according to protocols described previously (Leighton et al., 2014). 1,000–5,000

worms from each replicate were rinsed into a microcentrifuge tube in S basal

(5.85 g/L NaCl, 1 g/L K2HPO4, 6 g/L KH2PO4), and then spun down at 14,000 rpm

for 30 s. The supernatant was removed and 1mL of TRIzol was added. Worms

were lysed by vortexing for 30 s at room temperature and then 20 min at 4°. The

TRIzol lysate was then spun down at 14,000 rpm for 10 min at 4°C to allow removal

of insoluble materials. Thereafter the Ambion TRIzol protocol was followed to

finish the RNA extraction (MAN0001271 Rev. Date: 13 Dec 2012). 3 biological

replicates were obtained for each genotype and each time point.

RNA-Seq

RNA integrity was assessed using RNA 6000 Pico Kit for Bioanalyzer (Agilent

Technologies #5067–1513) andmRNAwas isolated usingNEBNext Poly(A)mRNA

Magnetic Isolation Module (New England Biolabs, NEB, #E7490). RNA-Seq li-

braries were constructed using NEBNext Ultra RNA Library Prep Kit for Illumina

(NEB #E7530) following manufacturer’s instructions. Briefly, mRNA isolated from

∼ 1 µg of total RNA was fragmented to the average size of 200 nt by incubating at

94°C for 15 min in first strand buffer, cDNA was synthesized using random primers

and ProtoScript II Reverse Transcriptase followed by second strand synthesis us-

ing Second Strand Synthesis Enzyme Mix (NEB). Resulting DNA fragments were

end-repaired, dA tailed and ligated to NEBNext hairpin adaptors (NEB #E7335).

After ligation, adaptors were converted to the ‘Y’ shape by treating with USER

enzyme and DNA fragments were size selected using Agencourt AMPure XP beads

(Beckman Coulter #A63880) to generate fragment sizes between 250 and 350 bp.
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Adaptor-ligated DNA was PCR amplified followed by AMPure XP bead clean

up. Libraries were quantified with Qubit dsDNA HS Kit (ThermoFisher Scientific

#Q32854) and the size distribution was confirmed with High Sensitivity DNA Kit

for Bioanalyzer (Agilent Technologies #5067–4626). Libraries were sequenced on

Illumina HiSeq2500 in single readmode with the read length of 50nt followingman-

ufacturer’s instructions. Base calls were performed with RTA 1.13.48.0 followed by

conversion to FASTQ with bcl2fastq 1.8.4.

Statistical Analysis

RNA-Seq Analysis.

RNA-Seq alignment was performed using Kallisto (Bray et al., 2016) with 200

bootstraps. Differential expression analysis was performed using Sleuth (Pimentel

et al., 2016). The following General Linear Model (GLM) was fit:

log(yi) =β0,i + βG,i · G+

βA,i · A + βA::G,i · A · G,

where yi are the TPM counts for the ith gene; β0,i is the intercept for the ith gene; βX,i

is the regression coefficient for variable X for the ith gene; A is a binary age variable

indicating 1st day adult (0) or 6th day adult (1); G is the genotype variable indicating

wild-type (0) or fog-2(lf) (1); βA::G,i refers to the regression coefficient accounting

for the interaction between the age and genotype variables in the ith gene. Genes

were called significant if the FDR-adjusted q-value for any regression coefficient

was less than 0.1. Our script for differential analysis is available on GitHub.

Regression coefficients and TPM counts were processed using Python 3.5 in a

Jupyter Notebook (Pérez and Granger, 2007). Data analysis was performed using

the Pandas, NumPy and SciPy libraries (McKinney, 2011; Van Der Walt, Colbert,

and Varoquaux, 2011; Oliphant, 2007). Graphics were created using the Matplotlib
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and Seaborn libraries (Waskom et al., 2016; Hunter, 2007). Interactive graphics

were generated using Bokeh (Bokeh Development Team, 2014).

Tissue, Phenotype and Gene Ontology Enrichment Analyses (TEA, PEA and

GEA, respectively) were performed using the WormBase Enrichment Suite for

Python (Angeles-Albores, N. Lee, et al., 2016; Angeles-Albores, N. Lee, et al.,

2018). Briefly, theWormBase Enrichment Suite accepts a list of genes and identifies

the terms to which these genes are annotated. Terms are annotated by frequency of

occurrence, and the probability that a term appears at this frequency under random

sampling is calculated using a hypergeometric probability distribution. The hyper-

geometric probability distribution is extremely sensitive to deviations from the null

distribution, which allows it to identify even small deviations from the null.

Data Availability

Strains are available from the Caenorhabditis Genetics Center. All of the data and

scripts pertinent for this project except the raw reads can be found on our Github

repositoryhttps://github.com/WormLabCaltech/Angeles_Leighton_2016.

File S1 contains the list of genes that were altered in aging regardless of genotype.

File S2 contains the list of genes and their associations with the fog-2(lf) pheno-

type. File S3 contains genes associated with the female-like state. Raw reads were

deposited to the Sequence Read Archive under the accession code SUB2457229.

Results and Discussion

Decoupling time-dependent effects from sperm-status via general linearmodels

In order to decouple time-dependent effects from changes associated with loss of

hermaphroditic sperm, we measured wild-type and fog-2(lf) adults at the 1st day

adult stage (before visible embryos were present) and 6th day adult stage, when all

wild-type hermaphrodites have laid all their eggs (see Fig 41), but mortality is still

low (< 10%) (Stroustrup et al., 2013). We obtained 16–19 million reads mappable

https://github.com/WormLabCaltech/Angeles_Leighton_2016
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Figure 42 A. Differentially expressed isoforms in the aging category. We identified
a common aging expression signature between N2 and fog-2(lf) animals, consist-
ing of 6,193 differentially expressed isoforms totaling 5,592 genes. The volcano
plot is randomly down-sampled 30% for ease of viewing. Each point represents
an individual isoform. βAging is the regression coefficient. Larger magnitudes of
β indicate a larger log-fold change. The y-axis shows the negative logarithm of
the q-values for each point. Green points are differentially expressed isoforms;
orange points are differentially expressed isoforms of predicted transcription fac-
tor genes (Reece-Hoyes et al., 2005). An interactive version of this graph can be
found on our website. B. Enriched tissues in aging-associated genes. Tissue En-
richment Analysis (Angeles-Albores, N. Lee, et al., 2016) showed that genes as-
sociated with muscle tissues and the nervous system are enriched in aging-related
genes. Only statistically significantly enriched tissues are shown. Enrichment Fold
Change is defined as Observed/E xpected. hmc stands for head mesodermal
cell.

https://wormlabcaltech.github.io/Angeles_Leighton_2016/
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to the C. elegans genome per biological replicate, which enabled us to identify

14,702 individual genes totalling 21,143 isoforms (see Figure 42a).

One way to analyze the data from this two-factor design is by pairwise comparison

of the distinct states. However, such an analysis would not make full use of all the

statistical power afforded by this experiment. Another method that makes full use of

the information in our experiment is to perform a linear regression in 3 dimensions

(2 independent variables, age and genotype, and 1 output). A linear regression with

1 parameter (age, for example) would fit a line between expression data for young

and old animals. When a second parameter is added to the linear regression, said

parameter can be visualized as altering the y-intercept, but not the slope, of the first

line in question (see Fig. 43a).

Although a simple linear model is oftentimes useful, sometimes it is not appropriate

to assume that the two variables under study are entirely independent. For example,

in our case, three out of the four timepoint-and-genotype combinations we studied

did not have sperm, and sperm-status is associated with both the fog-2(lf) self-sterile

phenotype and with biological age of the wild-type animal. One way to statistically

model such correlation between variables is to add an interaction term to the linear

regression. This interaction term allows extra flexibility in describing how changes

occur between conditions. For example, suppose a given theoretical gene X has

expression levels that increase in a fog-2-dependent manner, but also increases in an

age-dependent manner. However, aged fog-2(lf) animals do not have the expression

levels of X that would be expected from adding the effect of the two perturbations;

instead, the expression levels of X in this animal are considerably above what is

expected. In this case, we could add a positive interaction coefficient to the model to

explain the effect of genotype on the y-intercept as well as the slope (see Fig. 43b).

When the two perturbations affect a single genetic pathway, these interactions can

be interpreted as epistatic interactions.
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Figure 43 Explanation of linear regressions with and without interactions. A. A lin-
ear regression with two variables, age and genotype. The expression level of a hy-
pothetical gene increases by the same amount as worms age regardless of geno-
type. However, fog-2(lf) has higher expression of this gene than the wild-type at all
stages (blue arrow). B. A linear regression with two variables and an interaction
term. In this example, the expression level of this hypothetical gene is different be-
tween wild-type worms and fog-2(lf) (blue arrow). Although the expression level of
this gene increases with age, the slope is different between wild-type and fog-2(lf).
The difference in the slope can be accounted for through an interaction coefficient
(red arrow).
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For these reasons, we used a general linear model with interactions to identify a

transcriptomic profile associated with the fog-2(lf) genotype independently of age,

as well as a transcriptomic profile of C. elegans aging common to both genotypes.

The change associated with each variable is referred as β; this number, although

related to the natural logarithm of the fold change, is not equal to it. However, it

is true that larger magnitudes of β indicate greater change. Thus, for each gene we

performed a linear regression, and we evaluated the whether the β values associated

with each coefficient were significantly different from 0 via a Wald test corrected

for multiple hypothesis testing. A coefficient was considered to be significantly

different from 0 if the q-value associated with it was less than 0.1.

A quarter of all genes change expression between the 1st day of adulthood and

the 6th day of adulthood in C. elegans

We identified a transcriptomic signature consisting of 5,592 genes that were dif-

ferentially expressed in 6th day adult animals of either genotype relative to 1st day

adult animals (see S1). This constitutes more than one quarter of the genes in

C. elegans. Tissue Enrichment Analysis (TEA) (Angeles-Albores, N. Lee, et al.,

2016) showed that nervous tissues including the ‘nerve ring’, ‘dorsal nerve cord’,

‘PVD’ and ‘labial sensillum’ were enriched in genes that become differentially ex-

pressed through aging. Likewise, certain muscle groups (‘anal depressor muscle’,

‘intestinal muscle’) were enriched. (see Figure 42b). Gene Enrichment Analysis

(GEA) (Angeles-Albores, N. Lee, et al., 2018) revealed that genes that were dif-

ferentially expressed during the course of aging were enriched in terms involving

respiration (‘respiratory chain’, ‘oxoacid metabolic process’); translation (‘cytosolic

large ribosomal subunit’); and nucleotide metabolism (‘purine nucleotide’, ‘nucleo-

side phosphate’ and ‘ribose phosphate’ metabolic process). Phenotype Enrichment

Analysis (PEA) (Angeles-Albores, N. Lee, et al., 2018) showed this gene list
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was associated with phenotypes that affect the C. elegans gonad, including ‘gonad

vesiculated’, ‘gonad small’, ‘oocytes lack nucleus’ and ‘rachis narrow’.

To verify the quality of our dataset, we generated a list of 1,056 golden standard

genes expected to be altered in 6th day adult worms using previous literature reports

including downstream genes of daf-12, daf-16, and aging and lifespan extension

datasets (Murphy et al., 2003; Halaschek-Wiener et al., 2005; Lund et al., 2002;

McCormick et al., 2012; Eckley et al., 2013). Of 1,056 standard genes, we found

506 genes in our time-responsive dataset. This result was statistically significant

with a p-value < 10−38.

Next, we used a published compendium (Reece-Hoyes et al., 2005) to search for

known or predicted transcription factors. We found 145 transcription factors in the

set of genes with differential expression in aging nematodes. We subjected this list

of transcription factors to TEA to understand their expression patterns. 6 of these

transcription factors were expressed in the ‘hermaphrodite specific neuron’ (HSN),

a neuron physiologically relevant for egg-laying (hlh-14, sem-4, ceh-20, egl-46,

ceh-13, hlh-3), which represented a statistically significant 2-fold enrichment of this

tissue (q < 10−1). The term ‘head muscle’ was also overrepresented at twice the

expected level (q < 10−1, 13 genes).

The whole-organism fog-2(lf) differential expression signature

We identified 1,881 genes associated with the fog-2(lf) genotype, including 60 tran-

scription factors (see S2). TEA showed that the terms ‘AB’, ‘somatic gonad’, ‘uterine

muscle’, ‘cephalic sheath cell’, ‘spermathecal-uterine junction’, and ‘PVD’ were en-

riched in this gene set. The ‘somatic gonad’ and ‘spermathecal-uterine junction’

are both near the site of action of fog-2(lf) (the germline) and possibly reflect phys-

iological changes from a lack of sperm. Phenotype ontology enrichment analysis

showed that only a single phenotype term, ‘spindle orientation variant’ was enriched
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in the fog-2(lf) transcriptional signature (q < 10−1, 38 genes, 2-fold enrichment).

Most genes annotated as ‘spindle orientation variant’ were slightly upregulated,

and therefore are unlikely to uniquely reflect reduced germline proliferation. GO

term enrichment was very similar to the aging gene set and reflected enrichment in

annotations pertaining to translation and respiration. Unlike the aging gene set, the

fog-2(lf) signature was significantly enriched in ‘myofibril’ and ‘G-protein coupled

receptor binding’ (q < 10−1). Enrichment of the term ‘G-protein coupled receptor

binding’ was due to 14 genes: cam-1, mom-2, dsh-1, spp-10, flp-6, flp-7, flp-9,

flp-13, flp-14, flp-18, K02A11.4, nlp-12, nlp-13, and nlp-40. dsh-1, mom-2 and

cam-1 are members of the Wnt signaling pathway. Most of these genes’ expression

levels were up-regulated, suggesting increasedG-protein binding activity in fog-2(lf)

mutants.

The fog-2(lf) expression signature overlaps significantlywith the aging signature

Of the 1,881 genes that we identified in the fog-2(lf) signature, 1,040 genes were also

identified in our aging set. Moreover, of these 1,040 genes, 905 genes changed in

the same direction in response to either aging or germline feminization. The overlap

between these signatures suggests an interplay between sperm-status and age. The

nature of the interplay should be captured by the interaction coefficients in our

model. There are four possibilities. First, the fog-2(lf) worms may have a fast-aging

phenotype, in which case the interaction coefficients should match the sign of the

aging coefficient. Second, the fog-2(lf) worms may have a slow-aging phenotype,

in which case the interaction coefficients should have an interaction coefficient that

is of opposite sign, but not greater in magnitude than the aging coefficient (if a gene

increases in aging in a wild-type worm, it should still increase in a fog-2(lf) worm,

albeit less). Third, the fog-2(lf) worms exhibit a rejuvenation phenotype. If this is

the case, then these genes should have an interaction coefficient that is of opposite
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sign and greater magnitude than their aging coefficient, such that the change of these

genes in fog-2(lf)mutant worms is reversed relative to the wild-type. Finally, if these

genes are indicative of a female-like state, then these genes should not change with

age in fog-2(lf) animals, since these animals do not exit this state during the course

of the experiment. Moreover, because wild-type worms become female as they age,

a further requirement for a transcriptomic signature of the female-like state is that

aging coefficients for genes in this signature should have genotype coefficients of

equal sign and magnitude. In other words, entrance into the female-like state should

be not be path-dependent.

To evaluate which of these possibilities was most likely, we selected the 1,040 genes

that had aging, genotype and interaction coefficients significantly different from zero

and we plotted their temporal coefficients against their genotype coefficients (see

Fig. 44a). We observed that the aging coefficients were strongly predictive of the

genotype coefficients. Most of these genes fell near the line y = x, suggesting that

these genes define a female-like state.

We considered how loss-of-function of fog-2 and aging could both interact to cause

entry into this state. We reasoned that a plausible mechanism is that fog-2 pro-

motes sperm-production, and aging promotes sperm-depletion. This simple path-

way model suggests that a double perturbation consisting of aging and loss of

function of fog-2 should show non-additivity of phenotypes (generalized epistasis).

To test whether these two perturbations deviate from additivity, we generated an

epistasis plot using this gene set. We have previously used epistasis plots to measure

transcriptome-wide epistasis between genes in a pathway (Angeles-Albores, Puck-

ett Robinson, et al., 2018). Briefly, an epistasis plot shows the expected expression

of a double perturbation under an additive model (null model) on the x-axis, and

the deviation from this null model in the y-axis. In other words, we calculated the

x-coordinates for each point by adding βGenotype + βAging, and the y-coordinates are



86

A

B

Low S.E 

High S.E 

Figure 44 fog-2(lf) partially phenocopies early aging in C. elegans. The β in each
axes is the regression coefficient from the GLM, and can be loosely interpreted as
an estimator of the log-fold change. Loss of fog-2 is associated with a transcrip-
tomic phenotype involving 1,881 genes. 1,040/1,881 of these genes are also al-
tered in wild-type worms as they progress from young adulthood to old adulthood,
and 905 change in the same direction. However, progression from young to old
adulthood in a fog-2(lf) background results in no change in the expression level of
these genes. A. We identified genes that change similarly during feminization and
aging. The correlation between feminization and aging is almost 1:1. B. Epistasis
plot of aging versus feminization. Epistasis plots indicate whether two genes (or
perturbations) act on the same pathway. When two effects act on the same path-
way, this is reflected by a slope of −0.5. The measured slope was −0.51 ± 0.01.
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equal to βInteraction for each isoform. Previously we have shown that if two genes or

perturbations act within a linear pathway, an epistasis plot will generate a line with

slope equal to −0.5. When we generated an epistasis plot and found the line of best

fit, we observed a slope of −0.51±0.01, which suggests that the fog-2 gene and time

are acting to generate a single transcriptomic phenotype along a single pathway.

Overall, we identified 405 genes that changed in the same direction through age or

mutation of the fog-2(lf) gene and that had an interaction coefficient of opposite sign

to the aging or genotype coefficient (see S3). Taken together, these observations

suggests that these 405 genes define a female-like state in C. elegans.

Analysis of the female-like state expression signature

To better understand the changes that happen after sperm loss, we performed tissue

enrichment, phenotype enrichment and gene ontology enrichment analyses on the

set of 405 genes that we associated with the female-like state (see Fig. 45). TEA

showed no tissue enrichment using this gene-set. GEA showed that this gene list

was enriched in constituents of the ribosomal subunits almost four times above

background (q < 10−5, 17 genes). The enrichment of ribosomal constituents

in this gene set in turn drives the enriched phenotypes: ‘avoids bacterial lawn’,

‘diplotene absent during oogenesis’, ‘gonad vesiculated’, ‘pachytene progression

during oogenesis variant’, and ‘rachis narrow’. The expression of most of these

ribosomal subunits is down-regulated in aged animals or in fog-2(lf) mutants.

Discussion

Defining an Early Aging Phenotype

Our experimental design enables us to decouple the effects of egg-laying from aging.

As a result, we identified a set of almost 4,000 genes that are altered similarly be-

tween wild-type and fog-2(lf) mutants. Due to the read depth of our transcriptomic

data (20 million reads) and the number of samples measured (3 biological replicates
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Figure 45 Phenotype and GO enrichment of genes involved in the female-like
state. A. Phenotype Enrichment Analysis. B. Gene Ontology Enrichment Analy-
sis. Most of the terms enriched in PEA reflect the abundance of ribosomal subunits
present in this gene set.
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for 4 different life stages/genotypes), this dataset constitutes a high-quality descrip-

tion of the transcriptomic changes that occur in aging populations of C. elegans.

Although our data only capture ∼ 50% of the expression changes reported in earlier

aging transcriptome literature, this disagreement can be explained by a difference in

methodology; earlier publications typically addressed the aging of fertile wild-type

hermaphrodites only indirectly, or queried aging animals at a much later stage of

their life cycle.

General linear models enable epistasis measurements

We set out to study the self-fertilizing (hermaphroditic) to self-sterile (female-like)

transition by comparing wild-type animals with fog-2(lf) mutants as they aged. Our

computational approach enabled us to separate between two biological processes

that are correlated within samples. Because of this intra-sample correlation, iden-

tifying this state via pairwise comparisons would not have been straightforward.

Although it is a favored method amongst biologists, such pairwise comparisons

suffer from a number of drawbacks. First, pairwise comparisons are unable to draw

on the full statistical power available to an experiment because they discard almost

all information except the samples being compared. Second, pairwise comparisons

require a researcher to define a priori which comparisons are informative. For ex-

periments with many variables, the number of pairwise combinations is explosively

large. Indeed, even for this two-factor experiment, there are 6 possible pairwise

comparisons. On the other hand, by specifying a linear regression model, each

gene can be summarized with three variables, each of which can be analyzed and

understood without the need to resort to further pairwise combinations.

The C. elegans female-like state

Our explorations have shown that the loss of fog-2(lf) partially phenocopies the

transcriptional events that occur naturally as C. elegans ages from the 1st day
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of adulthood to the 6th day of adulthood. Moreover, epistasis analysis of these

perturbations suggests that they act on the same pathway, namely sperm generation

and depletion (see Fig. 46). Self-sperm generation promotes the hermaphrodite

state, whereas sperm depletion marks entry into the female-like state. Given the

enrichment of neuronal transcription factors that are associated with sperm loss

in our dataset, we believe this dataset should contain some of the transcriptomic

modules that are involved in these pheromone production and behavioral pathways,

although we have been unable to find these genes.

Behavioral and physiological changes uponmating are not unknown in other species.

In particular, in the fruit fly Drosophila melanogaster, sex peptide present in the

male seminal fluid is known to drive changes in gene expression (H. Liu and Kubli,

2003; Xue and Noll, 2000; Avila et al., 2011; Heifetz et al., 2014; Rezával et al.,

2014; Mack et al., 2006) as well as behavior. More recently, sperm was found to be

necessary to drive changes in aggression in the fruit fly (Bath et al., 2017). These

changes are often reversible upon the disappearance of seminal fluid or sperm. In

the case of C. elegans, we have observed that sperm loss is associated with gene

expression changes that probably reflect physiological changes in the worm. Our

experimental design did not include a test for reversibility of these changes. The

possibility of a rescue experiment with males raises interesting possibilities: What

fraction of the changes observed upon loss of self-sperm are reversible? Do male

seminal fluid or male sperm cause changes beyond rescue?

The C. elegans life cycle, life stages and life states

C. elegans has a complicated life cycle, with two alternative developmental pathways

that have multiple stages (larval development and dauer development), followed by

reproductive adulthood. In addition to its developmental stages, researchers have

recognized that C. elegans has numerous life states that it can enter into when
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Figure 46 A. A substrate-dependent model showing how fog-2 promotes sperm
generation, whereas aging promotes sperm depletion, leading to entry to the
female-like state. Such a model can explain why fog-2 and aging appear epistatic
to each other. B. The complete C. elegans life cycle. Recognized stages of C. el-
egans are marked by black arrows. States are marked by red arrows to empha-
size that at the end of a state, the worm returns to the developmental timepoint
it was at before entering the state. The L2d state is an exception. It is the only
stage that does not return to the same developmental timepoint; rather, the L2d
state is a permissive state that allows entry into either dauer or the L3 stage. We
have presented evidence of a female-like state in C. elegans. At this point, it is un-
clear whether the difference between hermaphrodites and females is reversible by
males. Therefore, it remains unclear whether it is a stage or a true state.
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given instructive environmental cues. One such state is the L1 arrest state, where

development ceases entirely upon starvation (Johnson et al., 1984; Baugh and

Sternberg, 2006). More recently, researchers have described additional diapause

states that the worm can access at the L3, L4 and young adult stages under conditions

of low food (Angelo and Gilst, 2009; Seidel and Kimble, 2011; Schindler, Baugh,

and Sherwood, 2014). Not all states ofC. elegans are arrested, however (see Fig. 46).

For example, the L2d state is induced by crowded and nutrient poor conditions (J.W.

Golden and Riddle, 1984). While within this state, the worm is capable of entry

into either dauer or the L3 larval stage, depending on environmental conditions.

Thus, the L2d state is a permissive state, and marks the point at which the nematode

development is committed to a single developmental pathway.

Identification of theC. elegans life states has often been performed bymorphological

studies (as in the course of L4 arrest or L2d) or via timecourses (L1 arrest). However,

not all states may be visually identifiable, or even if they are, the morphological

changes may be very subtle, making positive identification difficult. However, the

detailed information afforded by a transcriptome should in theory provide suffi-

cient information to definitively identify a state, since transcriptomic information

underlies morphology. Moreover, transcriptomics can provide an insight into the

physiology of complex metazoan life states. By identifying differentially expressed

genes and using ontology enrichment analyses to identify gene functions, sites of

expression or phenotypes that are enriched in a given gene set, we can obtain a

clear picture of the changes that occur in the worm analogous to identifying gross

morphological changes.

RNA-seq is a powerful technology that has been used successfully in the past as

a qualitative tool for target acquisition, though recent work has successfully used

RNA-seq to measure genetic interactions via epistasis (Dixit et al., 2016; Angeles-

Albores, Puckett Robinson, et al., 2018). Here, we have shown that whole-organism
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RNA-seq data can also be used to successfully identify internal states in a multi-

cellular organism.
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C h a p t e r 5

USING TRANSCRIPTOMES AS MUTANT PHENOTYPES
REVEALS FUNCTIONAL REGIONS OF A MEDIATOR

SUBUNIT IN C. ELEGANS

Angeles-Albores, David and Paul W Sternberg (2018). “Using Transcriptomes
as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in
Caenorhabditis elegans.” In: Genetics, genetics.301133.2018. issn: 1943-2631.
doi: 10.1534/genetics.118.301133.

Abstract

Although transcriptomes have recently been used as phenotypes with which

to perform epistasis analyses, they are not yet used to study intragenic func-

tion/structure relationships. We developed a theoretical framework to study

allelic series using transcriptomic phenotypes. As a proof-of-concept, we apply

ourmethods to an allelic series of dpy-22, a highly pleiotropicCaenorhabditis el-

egans gene orthologous to the human gene MED12, which encodes a subunit

of the Mediator complex. Our methods identify functional units within dpy-22

that modulate Mediator activity upon various genetic programs, including the

Wnt and Ras modules.

Introduction

Mutations of a gene can yield a series of alleles with different phenotypes that

reveal multiple functions encoded by that gene, regardless of the alleles’ molecular

nature. In Caenorhabditis elegans, allelic series have characterized genes such as

let-23/EGFR, lin-3/EGF and lin-12/NOTCH (Aroian and Paul W Sternberg, 1991;

Ferguson and Horvitz, 1985; Greenwald, Paul W. Sternberg, and Robert Horvitz,

1983). Allelic series provide a way to probe genes where biochemical approaches

https://doi.org/10.1534/genetics.118.301133
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would be difficult, slow or uninformative with regards to the biological phenomenon

of interest. Their power derives from the ability to draw broad conclusions about

the gene of interest in terms of gene dosage and functional units, to the extent

that these two factors are separable, without regard to the molecular identity of the

mutations that created these alleles. Here, gene dosage is defined as the combined

effects of transcriptional and translational expression, gene product localization,

and biochemical kinetics of the final gene product in situ. To study allelic series,

we must first enumerate the phenotypes each allele affects, and subsequently order

the alleles into severity and dominance hierarchies per phenotype. The resulting

hierarchies enable us to better understand how a given gene, which may be highly

pleiotropic, can give rise to highly specific mutant phenotypes when mutated in just

the right way.

Biology has moved from expression measurements of single genes towards genome-

wide measurements. Expression profiling via RNA-seq (Mortazavi et al., 2008)

enables simultaneous measurement of transcript levels for all genes in a genome,

yielding a transcriptome. These measurements can be made on whole organisms,

isolated tissues, or single cells (Tang et al., 2009; Schwarz, Kato, and Paul W.

Sternberg, 2012). Transcriptomes have been successfully used to identify new

cell or organismal states (Angeles-Albores, Leighton, et al., 2017; Villani et al.,

2017). Transcriptomic states can be used to perform epistatic analyses (Dixit et al.,

2016; Angeles-Albores, Puckett Robinson, et al., 2018a), but have not been used to

characterize allelic series.

We have devised methods for characterizing allelic series using RNA-seq. To test

these methods, we selected three alleles (Zhang and Emmons, 2000; Moghal and

Paul W. Sternberg, 2003) of a C. elegans Mediator complex subunit gene, dpy-22.

Mediator is a macromolecular complex with ∼ 25 subunits (Jeronimo and Robert,

2017) that globally regulates RNA polymerase II (Pol II) (Allen and Taatjes, 2015;
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Takagi and Kornberg, 2006). The Mediator complex has at least four biochemi-

cally distinct modules: the Head, Middle and Tail modules and a CDK-8-associated

Kinase Module (CKM). The CKM associates reversibly with other modules, and

appears to inhibit transcription (Knuesel et al., 2009; Elmlund et al., 2006). In C. el-

egans development, the CKM promotes the formation of the male tail (Zhang and

Emmons, 2000) (through interactions with theWnt pathway), as well as formation of

the hermaphrodite vulva (Moghal and Paul W. Sternberg, 2003) (through inhibition

of the Ras pathway). Null alleles of dpy-22 are likely to be lethal, based on embry-

onic lethal phenotypes observed after RNAi (Wang et al., 2004; Lehner et al., 2006)

and the severe phenotypes of a strong dpy-22 hypomorphic allele, dpy-22(e652)

(homozygous hermaphrodites are very sick) (Riddle et al., 1997). Homozygotes of

allele dpy-22(bx93), which encodes a premature stop codon Q2549Amber (Zhang

and Emmons, 2000), appear grossly wild-type, though this allele does not have

complete wild-type functionality, since it fails to fully complement the Muv pheno-

type of another allele, sy622, in a sensitized let-23 background. In contrast, animals

homozygous for a more severe allele, dpy-22(sy622) encoding another premature

stop codon, Q1698Amber (Moghal and Paul W. Sternberg, 2003), are dumpy (Dpy),

have egg-laying defects (Egl), and have multiple vulvae (Muv) (Fig. 51). In humans,

MED12 is known to have a proline-, glutamine- and leucine-rich domain that in-

teracts with the WNT pathway (Kim et al., 2006). However, many disease-causing

variants fall outside of this domain (Yamamoto and Shimojima, 2015). In spite of its

causative role in a number of neurodevelopmental disorders (Graham and Schwartz,

2013), the structural and functional features of this gene are poorly understood, par-

tially because genetic approaches towards studying pleiotropic genes have proved

difficult in the past, highlighting the need for new methods.
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Figure 51 Protein sequence schematic for DPY-22. The positions of the nonsense
mutations used are shown.

Methods

Strains used

Strains usedwereN2wild-type (Bristol) (Brenner, 1974), PS4087dpy-22(sy622) (Moghal

and Paul W. Sternberg, 2003), PS4187 dpy-22(bx93) (Zhang and Emmons, 2000),

PS4176 dpy-6(e14) dpy-22(bx93)/+ dpy-22(sy622) (Moghal and Paul W. Stern-

berg, 2003), MT4866 let-60(n2021) (Beitel, Clark, and Horvitz, 1990), MT2124

let-60(n1046gf) (Beitel, Clark, and Horvitz, 1990) and EW15 bar-1(ga80) (Eisen-

mann et al., 1998). Lines were grown on standard nematode growth media (NGM)

Petri plates seeded with OP50 E. coli at 20°C (Brenner, 1974).

Strain synchronization, harvesting and RNA sequencing

With the exception of strain MT4866, strains were synchronized by bleaching P0’s

into virgin S. basal (no cholesterol or ethanol added) for 16–18 hours. Arrested

L1 larvae were placed in NGM plates seeded with OP50 at 20°C and grown to

the young adult stage (assessed by vulval morphology and lack of embryos). We

discovered that MT4866 dies upon L1 starvation for this period of time. As a re-

sult, we synchronized this strain by double bleaching. Animals were picked if they

were young adults, regardless of whether any vulval or morphological phenotypes

were present. RNA extraction and sequencing was performed as previously de-

scribed by Angeles-Albores, Puckett Robinson, et al. (2018a) and Angeles-Albores,

Leighton, et al. (2017). Briefly, young adults were placed in 10 µL of TE buffer, and

digested using Recombinant Proteinase K PCR Grade (Roche Lot 656 No. 03115
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838001) incubated with 1% SDS 657 and 1.25 µL RNA Secure (Ambion AM7005).

Total RNA was extracted using the Zymo Research Directzol RNA MicroPrep Kit

(Zymo Research, SKU R2061). mRNAwas subsequently purified using a NEBNext

Poly(A) mRNAMagnetic Isolation Module (New England Biolabs, NEB, #E7490).

Sequencing libraries were generated using the NEBNext Ultra RNA Library Prep

Kit for Illumina (NEB #E7530). These libraries were sequenced using an Illumina

HiSeq2500 machine in single-read mode with a read length of 50 nucleotides.

Read pseudo-alignment and differential expression

Readswere pseudo-aligned to theC. elegansgenome (WBcel235) usingKallisto (Bray

et al., 2016), using 200 bootstraps and with the sequence bias (�seqBias) flag. The

fragment size for all libraries was set to 200 and the standard deviation to 40. Quality

control was performed on a subset of the reads using FastQC, RNAseQC, BowTie

and MultiQC (Andrews, 2010; Deluca et al., 2012; Langmead et al., 2009; Ewels

et al., 2016).

Differential expression analysis was performed using Sleuth (Pimentel et al., 2017).

We used a general linear model to identify genes that were differentially expressed

between wild-type and mutant libraries. To increase our statistical power, we pooled

young adult wild-type replicates from other published (Angeles-Albores, Puckett

Robinson, et al., 2018a; Angeles-Albores, Leighton, et al., 2017) and unpublished

analyses adjusting for batch effects. Briefly, batch effects were controlled by includ-

ing the identity of the person who collected the worms and the method by which the

libraries were generated as covariates.å

False hit analysis

To accurately count phenotypes, we developed a false hit algorithm (Algorithm 1).

We implemented this algorithm for comparisons of three genotypes using Python.

Such an experiment can result in 128 possible combinations of phenotypic classes
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(ignoring size). This large number of models necessitates an algorithmic approach

that can restrict the number of models. Our algorithm uses a noise function that

assumes false hit events are non-overlapping (i.e. the same gene cannot be the result

of two false positive events in two or more genotypes) to determine the average noise

flux between phenotypic classes. These assumptions break down if false-positive or

negative rates are large (>25%).

To benchmark our algorithm, we generated one thousand Venn diagrams at ran-

dom. For each Venn diagram, we calculated the average false positive and false

negative flux matrices. Then, we added noise to each phenotypic class in the Venn

diagram, assuming that fluxes were normally distributed with mean and standard

deviation equal to the flux coefficient calculated. We input the noised Venn diagram

into our false hit analysis and collected classification statistics. For a given signal-

to-noise cutoff, λ, classification accuracy varied significantly with changes in the

total error rate. In the absence of false negative hits, false hit analysis can accu-

rately identify non-empty genotype-associated phenotypic classes, but identifying

genotype-specific classes becomes difficult if the experimental false positive rate is

high. On the other hand, even moderate false negative rates (> 10%) rapidly de-

grade signal from genotype-associated classes. For classes that are associated with

three genotypes, an experimental false negative rate of 30% is enough on average to

prevents this class from being observed.

We selected λ = 3 because classification using this threshold was high across a

range of false positive and false negative combinations. A challenge to applying

this algorithm to our data is the fact that the false negative rate for our experiment is

unknown. Although there has been significant progress in controlling and estimating

false positive rates, we knowof no such attempts for false negative rates. It is unlikely

that the false negative rate for our study is lower than the false positive rate, because

all genotypes except the controls are likely underpowered. We used false negative
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rates between 10–20% for false hit analysis. All analyses returned the same final

model.

We asked whether re-classification of some classes into others could improve model

fit. We manually re-classified the (dpy-22(sy622),dpy-22(bx93))-associated and the

(dpy-22(bx93), trans-heterozygote)-associated classes into the bx93-associated class

(which is associated with all genotypes), and compared χ2 statistics between a re-

classified reduced model (χ2 = 72) and a reduced model (χ2 = 130). Based on the

lower χ2 of the re-classified reduced model, we concluded that it is the most likely

model given our data.
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Algorithm 1 False Hit Algorithm. Briefly, the algorithm initializes a reduced
model with the phenotypic class or classes labelled by the largest number of
genotypes. This reduced model is used to estimate noise fluxes, which in turn
can be used to estimate a signal-to-noise metric between observed and modelled
classes. Classes that exhibit a high signal-to-noise are incorporated into the re-
duced model.
Data: Mobs = {Nl}, an observed set of classes, where each class is labelled by l ∈ L

and is of size Nl . fp, fn, the false positive and negative rates respectively. α,
the signal-to-noise threshold for acceptance of a class.

Result: Mreduced , a reduced model that fits the data.
begin

Define a minimal model, K
Refine the model until convergence or iterations max out
i ← 0
Kprev ← ∅
while (i < imax) | (Kprev , K) do

Kprev ← K
Define a noise function to estimate error flows in K F← noise(K, fp, fn)
for l ∈ L do

Calculate signal to noise for each labelled class False negatives can
result in λ < 0 λl ←Mobs,l/Fl if (λ > α) | (λ < 0) then

Kl ←Mobs,l
end

end
i + +

end
end
Mreduced = K
return Mreduced

Dominance analysis

We modeled allelic dominance as a weighted average of allelic activity:

βa/b,i,Pred(da) = da · βa/a,i + (1 − da) · βb/b,i, (5.1)

where βk/k,i refers to the β value of the ith isoform in a genotype k/k, and da is the

dominance coefficient for allele a.

To find the parameters da that maximized the probability of observing the data, we
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found the parameter, da, that maximized the equation:

P(da |D,H, I) ∝
∏
i∈S

exp−
(βa/b,i,Obs − βa/b,i,Pred(da))

2

2σ2
i

(5.2)

where βa/b,i,Obswas the coefficient associatedwith the ith isoform in the trans-het a/b

and σi was the standard error of the ith isoform in the trans-heterozygote samples as

output by Kallisto. S is the set of isoforms that participate in the regression (seemain

text). This equation describes a linear regression which was solved numerically.

Code

Code was written in Jupyter notebooks (Pérez and Granger, 2007) using the Python

programming language. The Numpy, pandas and scipy libraries were used for

computation (Van Der Walt, Colbert, and Varoquaux, 2011; McKinney, 2011;

Oliphant, 2007) and the matplotlib and seaborn libraries were used for data visual-

ization (Hunter, 2007; Waskom et al., 2016). Enrichment analyses were performed

using the WormBase Enrichment Suite (Angeles-Albores, N. Lee, et al., 2016;

Angeles-Albores, Puckett Robinson, et al., 2018b). For all enrichment analyses, a

q-value of less than 10−3 was considered statistically significant. For gene ontology

enrichment analysis, terms were considered statistically significant only if they also

showed an enrichment fold-change greater than 2.

Data Availability

Raw and processed reads were deposited in the Gene Expression Omnibus. Scripts

for the entire analysis can be found with version control in our Github reposi-

tory, https://github.com/WormLabCaltech/med-cafe. A user-friendly, com-

mented website containing the complete analyses can be found at

https://wormlabcaltech.github.io/med-cafe/. Raw reads and quantified

abundances for each sample were deposited at the NCBI Gene Expression Omnibus

(GEO) (Edgar, Domrachev, and Lash, 2002) under the accession code GSE107523

https://github.com/WormLabCaltech/med-cafe
https://wormlabcaltech.github.io/med-cafe/
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107523).

Results

RNA-sequencing of three dpy-22 alleles and two known interactor genes

Wecarried outRNA-seq on biological triplicates ofmRNAextracted fromdpy-22(sy622)

homozygotes, dpy-22(bx93) homozygotes, and wild type controls, along with qua-

druplicates from trans-heterozygotes of both alleles with the genotype

dpy-6(e14) dpy-22(bx93)/+ dpy-22(sy622). We also sequenced mRNA extracted

frombar-1(ga80) (the β-catenin ortholog inC. elegans), let-60(n2021) and let-60(n1046gf)

(the Ras ortholog in C. elegans) mutants in triplicate because these genes have been

previously described to interact with dpy-22 to form the vulva (Moghal and Paul W.

Sternberg, 2003) and the male tail (Zhang and Emmons, 2000). Sequencing was

performed at a depth of 20 million reads per sample. Reads were pseudoaligned

using Kallisto (Bray et al., 2016). We performed a differential expression using a

general linear model specified using Sleuth (Pimentel et al., 2017) (see Methods).

Differential expression with respect to the wild type control for each transcript i in a

genotype g is measured via a coefficient βg,i, which can be loosely interpreted as the

natural logarithmof the fold-change. Transcriptswere considered to have differential

expression between wild-type and a mutant if their false discovery rate, q, was less

than or equal to 10%. We used this method to identify the differentially expressed

genes associated with each mutant (Table 51; Basic Statistics Notebook) Supple-

mentary File 1 contains all the beta values associated with this project. We have also

generated a website containing complete details of all the analyses available at the

following URL: https://wormlabcaltech.github.io/med-cafe/analysis.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107523
https://wormlabcaltech.github.io/med-cafe/notebook/basic.html
https://wormlabcaltech.github.io/med-cafe/analysis
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Genotype Differentially Expressed Genes

dpy-22(bx93) 266
dpy-6(e14) dpy-22(bx93) / + dpy-22(sy622) 2,128
dpy-22(sy622) 2,036
bar-1(ga80) 4613
let-60(n2021) 509
let-60(n1046gf) 2526

Table 51 The number of differentially expressed genes relative to the wild-type
control for each genotype with a significance threshold of 0.1.

Figure 52 Principal component analysis of the analyzed genotypes. The analysis
was performed using only those transcripts that were differentially expressed in
at least one genotype. The plot shows that the trans-heterozygotes phenocopy the
dpy-22(bx93) homozygotes along the first two principal dimensions.

Principal component analysis visualizes the allelic dominance of thedpy-22(bx93)

allele over dpy-22(sy622)

As a first step in our analysis, we performed dimensionality reduction on the tran-

scriptomes we sequenced using Principal Component Analysis (PCA). Briefly, PCA

identifies the vectors along which there is most variation in the data. These vectors

can be used to project the data into lower dimensions to assess whether samples

cluster, though interpreting the biological reasons for this clustering can be chal-

lenging. To perform PCA, we selected only those transcripts that were differentially
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expressed in at least one genotype, and used the β coefficients associated with these

genes to perform PCA. Projecting the data into two dimensions maintains 65% of

the variation. The first dimension separates the gain and loss of function let-60

mutants. The second dimension separates the dpy-22 mutants (Fig. 52). On the

PCA plot, the trans-heterozygote mutants appear to phenocopy the dpy-22(bx93)

mutants, recapitulating previous experiments that showed the dpy-22(bx93) allele

to be dominant over the dpy-22(sy622) allele.

Three dpy-22 genotypes have shared transcriptomic phenotypes

We would like to understand the degree and nature of the dominance between

these dpy-22 alleles. To construct a severity and dominance hierarchy, we must

establish how many transcriptomic phenotypes are represented among the three

dpy-22 genotypes, and of those phenotypes, how many of them are shared tran-

scriptomic phenotypes (STPs). Shared transcriptomic phenotypes are defined as

the set of genes that are commonly differentially expressed in two mutant genotypes

relative to a wild-type control, regardless of the direction of change, as defined

previously (Angeles-Albores, Puckett Robinson, et al., 2018a). We use the term

in the plural version, because the shared genes may represent multiple independent

modules that formally constitute different phenotypic classes.

We identified significant pairwise STPs between all dpy-22 mutants. The tran-

scripts that were differentially expressed in dpy-22(bx93) homozygotes were almost

all differentially expressed in dpy-22(sy622) homozygotes (189/266) and in trans-

heterozygotes (192/266). On the other hand, although dpy-22(sy622) homozygotes

and trans-heterozygotes exhibited a similar number of differentially expressed genes,

less than half of these were shared between the two genotypes.
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a/a a/b

b/b

Alleles a and b are 
semidominant at this class.
Functional unit is sensitive to 
dosage

DNA
FR 1 FR 2

Determine differentially 
expressed transcripts 
relative to a wild type 
control

Perform a dominance 
analysis for all classes 
present in at least two 
genotypes.
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and sequence requirements 
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observed intersections or 
classes

Determine which classes 
are real

Phenotyping

Experimental Design
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hierarchy
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Figure 53 Flowchart for an analysis of arbitrary allelic series. A set of alleles is
selected, and the corresponding genotypes are sequenced. Independent pheno-
typic classes are identified, and classes that are the result of noise are discarded
via a false hit analysis. For each phenotypic class, the alleles are ordered in a dom-
inance/complementation hierarchy, which can then be used to infer functional re-
gions (FR) within the genes in question.

False hit analysis identifies four non-overlapping phenotypic classes

Severity and dominance hierarchies must be calculated with respect to each indepen-

dent phenotype associated with the alleles under study. A challenge with expression

profiles is to identify these independent phenotypes. We reasoned that comparing

the expression profiles of the two dpy-22 homozygotes and the trans-heterozygote

would naturally partition the expression profiles into groups that would constitute

phenotypic classes. However, a three-way comparison can give rise to 7 (23 − 1)

possible groupings: transcripts perturbed in only a single genotype (3), transcripts
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perturbed in two genotypes (3) and transcripts perturbed in all three genotypes (1).

A shortcoming of RNA-seq is that it is prone to false positive and false negative

artifacts, and these artifacts could be numerous enough to cause the appearance of

certain groups that would not be there otherwise. In other words, we might find

a subset of genes that are differentially expressed in a single genotype, but if this

subset is small enough, we ought to be concerned that this subset is caused by

false positive hits within this genotype or false negative hits in the other genotypes.

This thought experiment highlights the need to assess which groups have sufficient

statistical support to consider as phenotypic classes.

We developed a method to assess whether groups in a Venn diagram are likely to be

the result of statistical artifacts. Briefly, the algorithm works by first assuming all of

the data is the result of false positive and false negative hits except for the group of

transcripts that is differentially expressed in most genotypes. Then, using estimates

for the false positive and negative response, we calculate the expected sizes of all

the groups after adding noise under this model. If an observed group is much larger

than expected by noise, we refine the data model to accept the group. This process

is iterated until the data model converges. We called this method a false hit analysis.

We used false hit analysis to identify four non-overlapping phenotypic classes

(Fig. 53). We use the term genotype-specific to refer to groups of transcripts

that were perturbed in one mutant genotype. We use the term genotype-associated

to refer to those groups of transcripts whose expression was significantly altered

in two or more mutants genotypes with respect to the wild type control. The

dpy-22(sy622)-associated phenotypic class consisted of 665 genes differentially ex-

pressed in dpy-22(sy622) homozygotes and in trans-heterozygotes, but which had

wild-type expression in dpy-22(bx93) homozygotes. The dpy-22(bx93)-associated

phenotypic class contains 229 genes differentially expressed in all genotypes. The

dpy-22(bx93)-associated class included re-classified transcripts that had been found
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to be differentially expressed in the dpy-22(bx93) homozygote and one other geno-

type, because these were very likely to be the result of false negative hits in the

missing genotype, and re-classifying these transcripts improved our model substan-

tially. We also identified a dpy-22(sy622)-specific phenotypic class (1,213 genes)

and a trans-heterozygote-specific phenotypic class (1,302 genes; see the Phenotypic

Classes Notebook).

Severity hierarchy of a dpy-22 allelic series

Having separated the expression profiles into phenotypic classes, we can ask what

the severity hierarchy is between the dpy-22(bx93) allele and the dpy-22(sy622)

allele. Broadly speaking, there are two ways to assess severity. First, we can ask

which allele causes more mutant phenotypes or phenotypic groups as a homozygote

(allelic pleiotropy). Alternatively, we can identify the allele which causes the

greatest change in expression in a homozygote at each shared phenotype among the

homozygotes of both alleles, which we refer to as allelic magnitude. An important

caveat is that magnitude only makes sense if the homozygotes of each allele are well

correlated (i.e., they have a linear relationship with small spread). If the phenotypes

have zero or negative correlation between two homozygotes, then the two alleles

under inspection are not of the same kind, i.e., they cannot both be loss-of-function

alleles or gain-of-function alleles for this phenotype, though the converse is not

necessarily true.

The dpy-22(sy622) homozygote shows more differentially expressed genes that par-

ticipate in a greater number of phenotypic classes relative to the dpy-22(bx93)

homozygote. Thus, the dpy-22(sy622) allele is a more pleiotropic mutation than the

dpy-22(bx93) allele. Since the homozygotes of each allele only share a single pheno-

typic class in common, we need only assess magnitude along this single phenotype.

To calculate a magnitude coefficient, for genes in the dpy-22(bx93)-associated phe-

https://wormlabcaltech.github.io/med-cafe/notebook/phenotypic_classes.html
https://wormlabcaltech.github.io/med-cafe/notebook/phenotypic_classes.html
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Figure 54 Shared Transcriptomic Phenotypes amongst the dpy-22 genotypes are
regulated in the same direction. For each pairwise comparison, we found those
transcripts that were commonly differentially expressed in both genotypes relative
to the wild-type control and plotted the β coefficients for each. We performed a
linear regression on each plot to find the line of best fit (broken blue line). Only
the comparison between dpy-22(sy622) and dpy-22(bx93) homozygotes was used
to establish that the magnitude of the dpy-22(sy622) allele is greater than the mag-
nitude of the dpy-22(bx93) allele. The other comparisons are shown for complete-
ness.

notypic class, we plotted the β coefficients from the dpy-22(sy622) homozygote

against the β coefficients from the dpy-22(bx93) homozygote (see Fig. 54) and

performed a linear regression to find the slope of this line. Using this method,

we found that the dpy-22(bx93) homozygote has a magnitude that is 62% ±2%

of the dpy-22(sy622) homozygote. Taken together, these results suggest that the

dpy-22(sy622) allele represents a more severe alteration-of-function mutation than

the mutation within the dpy-22(bx93) allele.
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Phenotypic Class Dominance

dpy-22(sy622)-specific 1.00 ± 0.00
dpy-22(sy622)-associated 0.48 ± 0.01
dpy-22(bx93)-associated 0.82 ± 0.01

Table 52 Dominance analysis for the dpy-22/MDT12 allelic series. Dominance
values closer to 1 indicate dpy-22(bx93) is dominant over dpy-22(sy622), whereas
0 indicates dpy-22(sy622) is dominant over dpy-22(bx93).

Dominance hierarchy of a dpy-22 allelic series

Wemeasured allelic dominance for each class using a dominance coefficient (seeMeth-

ods). The dominance coefficient is a measure of the contribution of each allele to

the total expression level in trans-heterozygotes. By definition, the dpy-22(sy622)

allele is completely recessive to dpy-22(bx93) for the dpy-22(sy622)-specific phe-

notypic class. To determine the dominance coefficient for the remaining phenotypic

classes, we first selected the transcripts within those classes, and asked what linear

combination of the homozygotic β coefficients best approximated the β coefficients

of the trans-heterozygote, subject to the constraint that the sum of the weights for

the two homozygotes should be equal to unity. We solved this problem by finding

the maximum likelihood estimate for these weights. Using this method, we found

that the dpy-22(sy622) and dpy-22(bx93) alleles are semidominant (dbx93 = 0.48)

to each other for the dpy-22(sy622)-associated phenotypic class. The dpy-22(bx93)

allele is largely dominant over the dpy-22(sy622) allele (dbx93 = 0.82; see Table 52)

for the dpy-22(bx93)-associated phenotypic class.

Phenotypic classes reflect morphological phenotypes

We performed enrichment analysis of anatomical, phenotypic and gene ontology

terms using theWormBase Enrichment Suite (Angeles-Albores, N. Lee, et al., 2016;

Angeles-Albores, Puckett Robinson, et al., 2018b). The dpy-22(bx93)-associated

phenotypic class was enriched in genes involved in ‘immune system processes’
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(q < 10−5), and was enriched in genes expressed in the ‘intestine’ (q < 10−4). The

dpy-22(sy622)-associated class was enriched in genes expressed in the ‘cephalic

sheath cell’ (q < 10−4). Using ontology enrichment analysis from the WormBase

Enrichment Suite, we found that the dpy-22(sy622)-associated class is enriched in

histones and histone-like proteins (‘DNA packaging complex’ q < 10−3) as well

as genes involed in ‘immune system processes’ (q < 10−5). The dpy-22(sy622)-

specific classwas enriched in genes that have expression in the ‘intestine’ (q < 10−7),

‘muscular system’ (q < 10−3) and ‘epithelial system’ (q < 10−2). The genes in this

class are known to cause bacterial lawn avoidance when knocked down or knocked

out (q < 10−2). Finally, GO enrichment showed that the dpy-22(sy622)-specific

class is specifically enriched in ‘structural constituents of cuticle’ (q < 10−12),

and in genes involved in respiration (q < 10−6). This last result recapitulates

the fact that dpy-22(sy622) homozygotes show a severe Dumpy phenotype. The

trans-heterozygote specific class was enriched in genes expressed in ‘male’ animals

(q < 10−63) and genes expressed in the ‘reproductive system’ (q < 10−21). GO

enrichment of genes in the trans-heterozygote specific class showed enrichment of

the genes involved in the ‘regulation of cell shape’ (q < 10−6) and in a variety

of terms involving phosphate metabolism, such as ‘nucleoside phosphate binding’

(q < 10−5), ‘dephosphorylation’ (q < 10−3) or ‘phosphorylation’ (q < 10−2),

suggesting that this class may be enriched in genes involved in signal transduction

though the reason for this enrichment remains unclear. The dpy-22(bx93)-specific

class did not show enrichment on any test, consistent with our interpretation that

this class is the result of random false positive hits.

Predicted interactions of Mediator with Wnt and Ras pathways in C. elegans

Previous work in C. elegans (Moghal and Paul W. Sternberg, 2003; Zhang and

Emmons, 2000) has implicated dpy-22 as an inhibitor of the Wnt and Ras path-
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ways during the formation of the vulva and the male tail. We obtained expression

profiles for bar-1(ga80) mutants as well as loss-of-function and gain-of-function

Ras mutants, let-60(n2021) and let-60(n1046gf) respectively. We predicted that the

dpy-22(sy622)-specific phenotypic class would exhibit the most significant overlap

(assessed by a hypergeometric enrichment test) with differentially expressed genes

in let-60(n1046gf) mutants, whereas the dpy-22(bx93)-associated phenotypic class

would exhibit the most significant overlap with bar-1(ga80) mutants.

The dpy-22(bx93)-specific class did not show a transcriptomic signature associated

with either the Wnt or the Ras pathway, consistent with our interpretation of this

class as false positive (Fig. 55). All other classes showed significant enrichment

with genes perturbed in bar-1(ga80). Similarly, let-60(n2021) showed enrichment

in all real phenotypic classes, with the exception of the trans-heterozygote specific

class. Contrary to our hypotheses, differentially expressed genes in let-60(n1046gf)

did not show significant overlap with the dpy-22(sy622)-specific phenotype, but they

did show significant overlap with all remaining real phenotypic classes.

Discussion

A conceptual framework for analyses of allelic series using transcriptomic

phenotypes

Although transcriptomic phenotypes have been used for epistatic analyses (Dixit

et al., 2016; Angeles-Albores, Puckett Robinson, et al., 2018a; Angeles-Albores,

Leighton, et al., 2017), they have not been used to study gene function in the context

of an allelic series. Outstanding challenges for transcriptomes in allelic series were

how to count or identify distinct phenotypes within the different transcriptomes,

how to order alleles in a severity hierarchy and how to order alleles in a dominance

hierarchy. In this work, we present solutions to these problems, and propose a set

of unifying concepts that we believe will be useful for future analyses. We re-
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Figure 55 dpy-22 phenotypic classes are statistically significantly enriched for
signatures of let-60 (ras) and bar-1 (wnt) signaling. We tested whether the over-
lap between the differentially expressed genes in bar-1(ga80), let-60(n1046gf) or
let-60(n2021) and the dpy-22 phenotypic classes was statistically significant us-
ing a hypergeometric enrichment test. Since the hypergeometric enrichment test is
very sensitive to deviations from random, and since we suspect that there may be a
broad genotoxic response to all mutants, we used a statistical significance thresh-
old of p < 10−10 (dashed black line).

analyzed an allelic series of the Mediator subunit gene dpy-22 that had been studied

previously (Moghal and Paul W. Sternberg, 2003), recapitulating and extending

previous results as a proof of principle for our methodology. In our results, we

derived a set of methods that do not rely on the nature of the mutations. In the

subsequent discussion, we use the fact that the mutations we used were truncations

to derive further insights into the functional units present in this gene.

To interpret our phenotypic classes in a biological context, we investigated whether

these phenotypic classes containedRas andWnt expression signatures. Our attempts

were partially successful, but a more rigorous analysis awaits the availability of a

larger mutant set to establish empirically the overlap that is biologically significant.

In part, we reason that some genes may form part of a broad stress response. If that

were the case, many mutants may share similar transcriptomic signatures.



118

Phenotypic classes and their sequence requirements

Because the mutations we used are truncations, our results suggest the existence of

various functional regions in dpy-22/MDT12 (Fig. 56). These functional regions

could encode protein domains with biochemical activity, or they could encode

biochemically active amino acid motifs, such as nuclear localization sequences or

protein binding sites. These functional regions could confer stability to the protein,

thereby regulating its levels. As a caveat, we note that we have interpreted the effects

these mutations have in terms of their putative effects at the protein level. In the

case of our alleles, the relevant homozygotes had wild-type dpy-22 mRNA levels,

suggesting that these mutations do not affect the stability of the mRNA.

The dpy-22(sy622)-specific phenotypic class is likely controlled by a single func-

tional region, functional region 1 (FR1). Sequence necessary for wild-type FR1

functionality is encoded between amino acid positions 1 and 2,549, since this is the

sequence that is intact in the bx93 allele. We speculate that this functional region

may be the reason that bx93 is unable to complement theMuv phenotype of sy622 in

a sensitized let-23 background, since trans-heterozygotes in this background exhibit

a semidominant Muv phenotype. The dpy-22(sy622)-associated phenotypic class

is likely controlled by a second functional region, functional region 2 (FR2), and

some necessary sequences for wild-type function are encoded between amino acid

positions 1,698 and 2,549, but additional sequence could lie between amino acids

1 and 1,698. It is unlikely that FR1 and FR2 are identical because their dominance

behaviors are very different. The dpy-22(bx93) allele was largely dominant over

the dpy-22(sy622) allele for the dpy-22(bx93)-associated class, but gene expression

in this class was perturbed in both homozygotes. The perturbations were greater

for dpy-22(sy622) homozygotes than for dpy-22(bx93) homozygotes. This behavior

can be explained if the dpy-22(bx93)-associated class is controlled jointly by two

distinct effectors, functional regions 3 and 4 (FR3, FR4, see Fig. 56). Such a model
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would propose that the sequences necessary for FR3 functionality are within the in-

terval 1 and 2,549, and some sequences necessary for FR4 functionality are encoded

between positions 2549 and 3499. This model explains how expression levels of

the bx93-associated phenotypic class in the trans-heterozygote are complemented

to the levels of the bx93 homozygote, because FR3 is complemented in trans, but

FR4 is defective. Thus, FR3 encodes a functionality that is not dosage-dependent.

One possibility is that FR3 is equivalent to FR1 or FR2, and FR4 modifies activity

of either of these regions at a subset of loci. A rigorous examination of this model

will require studying many alleles that mutate the region between Q1689 and Q2549

using homozygotes and trans-heterozygotes.

We also found a class of transcripts that had perturbed levels in trans-heterozygotes

only; its biological significance is unclear. Phenotypes unique to trans-heterozygotes

are often the result of physical interactions such as homodimerization, or dosage

reduction of a toxic product (Yook, 2005). In the case of dpy-22/MDT12 orthologs,

these explanations seem unlikely since DPY-22 is a monomeric subunit of the

CKM. Another possibility is that the trans-heterozygote-specific class is the result

of complex tissue cross-talk. Massive single-cell RNA-seq ofC. elegans has recently

been reported (Cao et al., 2017), and this tool could provide valuable information

regarding this hypothesis. Another possibility is that the cis-marker we used for

the bx93 allele, dpy-6(e14), which we assumed to be recessive in all phentoypes,

actually has dominant transcriptomic phenotype.

Occam’s razor

Transcriptomic phenotypes generate large amounts of differential gene expression

data, so false positive and false negative rates can lead to spurious phenotypic classes

whose putative biological significance is misleading. Such artifacts are particularly

likely when a phenotypic class is small. Notably, errors of interpretation cannot be
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FR1
FR2
FR3 FR4

bx93
Q2549

sy622
Q1698

dpy-22(sy622)-specific trans-heterozygote-specific

1,302

dpy-22(bx93)-associated

229

dpy-22(sy622)-associated

FR1
665

FR2
1,213

FR3/4

DPY-22

Figure 56 The functional regions associated with each phenotypic class can
be mapped intragenically. The number of genes associated with each class is
shown. The dpy-22(bx93)-associated class may be controlled by two functional
regions. FR1 is a dosage-sensitive unit. FR2 and FR3 could be redundant if FR4
is a modifier of FR2 functionality at dpy-22(bx93)-associated loci. Note that the
dpy-22(bx93)-associated phenotypic class is actually three classes merged to-
gether. Two of these classes are DE in dpy-22(bx93) homozygotes and one other
genotype. Our analyses suggested that these two classes are likely the result of
false negative hits and genes in these classes should be differentially expressed in
all three genotypes, so we merged these three classes together (see Methods).
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avoided by setting a more stringent q-value cut-off: doing so will decrease the false

positive rate, but increase the false negative rate, which will in turn produce smaller

phenotypic classes than expected. Ourmethod tries to avoid this pitfall by using total

error rate estimates to assess the plausibility of each class, though a major drawback

is that it relies on a subjective estimation of the false negative rate. These conclusions

are of broad significance to research where highly multiplexed measurements are

compared to identify similarities and differences in the genome-wide behavior of a

single variable under multiple conditions.

We have shown that transcriptomes can be used to study allelic series in the context

of a large, pleiotropic gene. We identified separable phenotypic classes that would

otherwise be obscured by other methods, correlated each class to a functional region,

and identified sequence requirements for each region. Given the importance of allelic

series for characterizing gene function and their roles in specific genetic pathways,

we are optimistic that thismethodwill be a useful addition to the geneticist’s arsenal.
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C h a p t e r 6

TISSUE ENRICHMENT ANALYSIS FOR C. ELEGANS
GENOMICS

Angeles-Albores, David et al. (2016). “Tissue enrichment analysis for C. elegans
genomics”. In: BMC Bioinformatics 17.1, p. 366. issn: 1471-2105. doi: 10.
1186/s12859-016-1229-9.

Abstract

Background Over the last ten years, there has been explosive development in

methods for measuring gene expression. These methods can identify thousands

of genes altered between conditions, but understanding these datasets and forming

hypotheses based on them remains challenging. One way to analyze these datasets

is to associate ontologies (hierarchical, descriptive vocabularies with controlled

relations between terms) with genes and to look for enrichment of specific terms.

Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not

include anatomical information.

Results We have developed a tool for identifying enrichment of C. elegans tissues

among gene sets and generated a website GUI where users can access this tool.

Since a common drawback to ontology enrichment analyses is its verbosity, we

developed a very simple filtering algorithm to reduce the ontology size by an order

of magnitude. We adjusted these filters and validated our tool using a set of 30 gold

standards from Expression Cluster data in WormBase. We show our tool can even

discriminate between embryonic and larval tissues and can even identify tissues

down to the single-cell level. We used our tool to identify multiple neuronal tissues

that are down-regulated due to pathogen infection in C. elegans.

https://doi.org/10.1186/s12859-016-1229-9
https://doi.org/10.1186/s12859-016-1229-9
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Conclusions Our Tissue Enrichment Analysis (TEA) can be found within Worm-

Base, and can be downloaded using Python’s standard pip installer. It tests a

slimmed-down C. elegans tissue ontology for enrichment of specific terms and

provides users with a text and graphic representation of the results.

Background

RNA-seq and other high-throughput methods in biology have the ability to iden-

tify thousands of genes that are altered between conditions. These genes are often

correlated in their biological characteristics or functions, but identifying these func-

tions remains challenging. To interpret these long lists of genes, biologists need

to abstract genes into concepts that are biologically relevant to form hypotheses

about what is happening in the system. One such abstraction method relies on Gene

Ontology (GO). GO provides a controlled set of hierarchically ordered terms (The

Gene Ontology Consortium, 2000; The Gene Ontology Consortium, 2015) that

provide detailed descriptions about the molecular, cellular or biochemical functions

of any gene. For a given gene list, existing software programs can query whether

a particular term is enriched (Mi, Dong, et al., 2009; McLean et al., 2010; Huang,

Lempicki, and Brad T Sherman, 2009; Pathan et al., 2015). One area of biological

significance that GO does not include is anatomy. One way to address this short-

coming is to use a ‘tissue ontology’ that provides a complete anatomical description

for an organism (e.g.‘tissue’, ‘organ’ or ‘specific cell’), in this case for C. elegans.

Such an ontology has been described previously for this organism (R. Y. N. Lee and

Sternberg, 2003). Cells and tissues are physiologically relevant units with broad,

relatively well-understood functionalities amenable to hypothesis formation. The

C. elegans database, WormBase (Howe et al., 2016), maintains a curated list of gene

expression data from the literature. Here we provide a new framework that analyzes

a user-input list for enrichment of specific cells and tissues.
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Another problem frequently associatedwithGO enrichment analysis is that it is often

difficult to interpret due to the large number of terms associated with a given gene

(which we refer to as ‘result verbosity’). DAVID, a common tool for GO enrichment

analysis, clusters enriched terms into broad categories (Huang, Brad T. Sherman,

et al., 2007), whereas PANTHER (Mi, Dong, et al., 2009; Mi, Muruganujan,

and Thomas, 2013) attempts to solve this issue by employing a manually reduced

ontology, GOslim (pers._ comm., H. Yu and P. Thomas). To reduce verbosity, we

have filtered our ontology using a small set of well-defined criteria to remove terms

that do not contribute additional information. To our knowledge, such filtering

has not been performed in an algorithmic fashion for a biological ontology before;

indeed, DAVID does not employ term trimming a priori of testing, but rather fuzzy

clustering post testing to reduce the number of ontology terms. Other pruning

methods do exist (see for example (J. W. Kim, Caralt, and Hilliard, 2007; Garrido

and Requena, 2012)), but the pruning is query-dependent or generates a brand

new ‘brief ontology’ which satisfies a set of logic relationships and has certain

connectivity requirements. We do not propose to regenerate a new ‘brief ontology’,

but instead we use our approach to select those nodes that have sufficient annotated

evidence for statistical testing. We believe our trimming methodology strikes a good

balance between detailed tissue calling and conservative testing.

We have developed a tool that tests a user-provided list of genes for term enrichment

using a nematode-specific tissue ontology. This ontology, which is not a module of

Gene Ontology, is verbose. We select nodes from the ontology for statistical testing

using an algorithmic approach, outlined below, that reduces multiple hypothesis

testing issues by limiting testing to terms that are well-annotated. The results are

provided to the user in a GUI that includes a table of results and an automatically

generated bar-chart. This software addresses a previously unmet need in the C. ele-

gans community for a tool that reliably and specifically links gene expression with
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changes in specific cells, organs or tissues in the worm.

Results

Generating a Gene-Tissue Dictionary by Specific Node Selection

Reducing term redundancy through a similarity metric

For our tool, we employ a previously generated cell and tissue ontology for C. el-

egans (R. Y. N. Lee and Sternberg, 2003), which is maintained and curated by

WormBase. This ontology contains thousands of anatomiy terms, but not every

term is equally well-annotated. As a first step to generate our tissue enrichment

software, we wished to select tissue terms that were reasonably well-annotated, yet

specific enough to provide insight and not redundant with other terms. For exam-

ple, nematodes have a number of neurons that are placed symmetrically along the

left/right body axis, and are functionally similar. These left/right neuronal pairs

(which are sisters in the ontology) have almost identical annotations, with at most

one or two gene differences between them, and therefore we cannot have statistical

confidence in differentiating between them. As a result, testing these sister terms

provides no additional information compared with testing only the parent node to

these sisters. To identify redundancy, we defined two possible similarity metrics

(seeMethods section and Figure 61) that can be used to identify ontology sisters that

have very high similarity between them. Intuitively, a set of sisters can be considered

very similar if they share most gene annotations. Within a given set of sisters, we

can calculate a similarity score for a single node by counting the number of unique

annotations it contains and dividing by the total number of unique annotations in

the sister set. Having assigned to each sister a similarity score, we can identify

the average similarity score for this set of sisters, and if this average value exceeds

a threshold, these sisters are not considered testable candidates. An alternative

method is check whether any of the scores exceeds a predetermined threshold, and
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Figure 61 Schematic representation of trimming filters for an acyclical ontology.
a. The parent node (green) contains at least as many annotations as the union of
the two sisters. These two sisters share annotations extensively, as expressed by
the overlap in the Venn diagram, so they qualify for removal. b. Nodes with less
than a threshold number of genes are trimmed (red) and discarded from the dic-
tionary. Here, the example threshold is 25 genes. Nodes ε, ζ, η, shown in red are
removed. c. Parent nodes are removed recursively, starting from the root, if all
their daughter nodes have more than the threshold number of annotations. Nodes
in grey (ε, ζ, η) were removed in the previous step. Nodes α, β shown in red are
trimmed because each one has a complete daughter set. Only nodes γ and δ will
be used to generate the static dictionary.

if so remove this sister set from the ontology. We referred to these two scoring

criteria as ‘avg’ and ‘any’ respectively.

Terminal branch terms and parent terms can be safely removed in an

algorithmic fashion

Another problem arises from the ontology being scarcely populated. Many nodes

have 0–10 annotations, which we consider too few to accurately test. To solve

this issue, we implemented another straightforward node selection strategy. For a

given terminal node, we test whether the node has more than a threshold number of

annotations. If it does not, the node is not used for statistical testing. The next higher

node in the branch is tested and removed recursively until a node that satisfies the

condition is found. At that point, no more nodes can be removed from that branch.

This completion is guaranteed by the structure of the ontology: parent nodes inherit
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all of the annotations of all of their descendants, so the number of annotated terms

monotonically increases with increasing term hierarchy (see Figure 61). In this way,

we ensure that our term dictionary includes only those tissues that are considered

sufficiently well annotated for statistical purposes.

Additionally, we reasoned that for any parent node if all its daughters were selected

for testing, there was no additional benefit to test the parent. We removed parent

nodes from the analysis if all their daughter nodes passed the annotation threshold

(see Figure 61). We called this a ceiling filter. Applying these three filters reduced

the number of ontology terms by an order of magnitude.

Filtering greatly reduces the number of nodes used for analysis

By itself, each of these filters can reduce the number of nodes employed for analysis,

but applying the filters in different orders removes different numbers of nodes (not all

the filters are commutative). We chose to always execute annotation and similarity

thresholding first, followed by the ceiling filter. For validation (see below) we made

a number of different dictionaries. The original ontology has almost 6,000 terms

of which 1675 have at least 5 gene annotations. After filtering, dictionary sizes

ranged from 21 to a maximum of 460 terms, which shows the number of terms in a

scarcely annotated ontology can be reduced by an order of magnitude through the

application of a few simple filters (see Table 61). These filters were used to compile

a static dictionary that we employ for all analyses (see Validation of the algorithm

and parameter selection section for details). Our trimming pipeline is applied as

part of each newWormBase release. This ensures that the ontology database we are

using remains up-to-date with regards to both addition or removal of specific terms

as well as with regard to gene expression annotations.
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Table 61 Parameter specifications and number of tissues for all dictionaries. The
‘Method’ column refers to the trimming criterion for the similarity metric. We
used two such criteria, ‘any’ and ‘avg’.‘any’: For a given sister set, if any sister
had a similarity exceeding the corresponding threshold, all sisters were removed
from the final dictionary. ‘avg’: For a given sister set, if the average similarity
across all the sisters in the set was greater than the corresponding threshold, all
sisters were removed from the final dictionary.

Annotation Cutoff Similarity Threshold Method No. Of Terms in Dictionary
25 0.9 any 460
25 0.9 avg 461
25 0.95 any 466
25 0.95 avg 468
25 1.0 any 476
25 1.0 avg 476
33 0.9 any 261
33 0.9 avg 255
33 0.95 any 261
33 0.95 avg 262
33 1.0 any 247
33 1.0 avg 247
50 0.9 any 83
50 0.9 avg 77
50 0.95 any 82
50 0.95 avg 81
50 1.0 any 70
50 1.0 avg 70
100 0.9 any 45
100 0.9 avg 35
100 0.95 any 42
100 0.95 avg 36
100 1.0 any 21
100 1.0 avg 21
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Tissue enrichment testing via a hypergeometric model

Having built a static dictionary, we generated a Python script that implements a

significance testing algorithm based on the hypergeometric model. Briefly, the

hypergeometric model tests the probability of observing ni occurences of a tissue i

in a list of size M if there are mi labels for that tissue in a dictionary of total size N

that are drawn without replacement. Mathematically, this is expressed as:

P(ni |N,mi, M) =

(
mi

ni

) (
M − mi

N − ni

)
(
N
ni

) . (6.1)

Although a user will input gene IDs, we test the number of ocurrences of a term

within the gene list, so a single gene can contribute to multiple terms. Due to

the discrete nature of the hypergeometric distribution, this algorithm can generate

artifacts when the list is small. To avoid spurious results, a tissue is never considered

significant if there are no annotations for it in the user-provided list.

Once the p-values for each term have been calculated, we apply a standard FDR cor-

rection using a Benjamini-Hochberg step-up algorithm (Benjamini and Hochberg,

1995). FDR corrected p-values are called q-values. Genes that have a q-value less

than a given alpha are considered significant. Our default setting is an alpha of

0.1, which is a standard threshold broadly agreed upon by the scientific community

(see for example (Love, Huber, and Anders, 2014; Pawitan et al., 2005; Storey and

Tibshirani, 2003)). This threshold cannot be altered in the web GUI, but is user

tunable through our command-line implementation.

Users input a gene list using any valid gene name for C. elegans. These names are

processed into standard WormBase gene IDs (WBGene IDs). The program returns

a table containing all the enriched terms and associated information such as number
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of terms in gene list and expected number of terms. Finally, the program can also

return a bar chart of the enrichment fold change for the fifteen tissues with the

lowest measured q-values. The bars in the graph are sorted in ascending order of

q-value and then in descending order of fold-change. Bars are colored for ease of

viewing, and color does not convey information. Our software is implemented in an

easy to use GUI (see Figure 62). Anatomy terms are displayed in human-readable

format followed by their unique ontology ID (WBbt ID). In summary, each time the

ontology annotations are updated, a new trimmed ontology is generated using our

filters; in parallel, users can submit their gene lists through WormBase for testing,

with results output in a number of formats (see Figure 63).

Validation of the algorithm and optimizing parameter selection

We wanted to select a dictionary that included enough terms to be specific beyond

the most basic C. elegans tissues, yet would minimize the number of spurious

results and which had a good dynamic range in terms of enrichment fold-change.

Larger tissues are correlated with better annotation, so increasing term specificity is

associatedwith losses in statistical power. To help us select an appropriate dictionary

and validate our tool, we used a set of 30 gold standards based on microarray and

RNA-seq literature which are believed to be enriched in specific tissues (Gaudet

et al., 2004; Spencer et al., 2011; Cinar, Keles, and Jin, 2005; Watson et al., 2008;

Pauli et al., 2006; Portman and Emmons, 2004; Fox et al., 2007; Smith et al., 2010).

These data sets are annotated gene lists derived from the corresponding Expression

Cluster data in WormBase. Some of these studies have been used to annotate gene

expression, and so they did not constitute an independent testing set. To correct this

flaw, we built a clean dictionary that specifically excluded all annotation evidence

that came from these studies.

As a first attempt to select a dictionary, we generated all possible combinations of
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Figure 62 Screenshot of results from the web GUI. After inputting a gene-list, the
user is provided with the results. An HTML table is output with hyperlinks to the
ontology terms. A publication-ready graph is provided below, which can be saved
by dragging to the desktop. The graph is colored for better visualization; color is
not intended to convey information. The graph and the table show anatomy terms
in human-readable format, followed by their unique WBbt ID. Finally, lists of the
genes used and discarded for the analysis are also presented.

dictionaries with minimal annotations of 10, 25, 33, 50 and 100 genes and similarity

cutoffs of 0.9, 0.95 and 1, using ‘avg’ or ‘any’ similarity thresholding methods

(see Table 61). The number of remaining ontology terms was inversely correlated

to the minimum annotation cutoff, and was largely insensitive to the similarity

threshold in the range we explored. Next, we analyzed all 30 datasets using each

dictionary. Because of the large number of results, instead of analyzing each set of

terms individually, we measured the average q-value for significantly enriched terms

in each dataset without regard for the perceived accuracy of the terms that tested
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Figure 63 TEA Workflow. The complete ontology is annotated continuously by
WormBase curators. After each update, the ontology is processed to remove unin-
formative terms, and the remaining terms are used for statistical testing. Users can
select a gene list and input it into our tool using our WormBase portal. The gene
list is tested for enrichment using the trimmed ontology, and results are output in
tabular and graphic formats for analysis.

significant. We found that the similarity threshold mattered relatively little for any

dictionary. We also noticed that the ‘any’ thresholding method resulted in tighter

histograms with a mode closer to 0. For this reason, we chose the ‘any’ method for

dictionary generation. The average q-value increased with decreasing annotation

cut-off (see Figure 64), which reflects the decreasing statistical power associated

with fewer annotations per term, but we remained agnostic as to how significant is

the trade-off between power and term specificity. Based on these observations, we

ruled out the dictionary with the 100 gene annotation cut-off: it had the fewest terms

and its q-values were not low enough in our opinion to compensate for the trade-off

in specificity.

To select between dictionaries generated between 50, 33 and 25 annotation cut-offs,

and also to ensure the terms that are selected as enriched by our algorithm are
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Figure 64 Kernel density estimates (KDE) for 30 gold standard datasets. We ran
TEA on 30 datasets we believed to be enriched in particular tissues and pooled all
the results to observe the distribution of q-values. The mode of the distribution for
dictionaries with annotation cut-offs of 100 and 50 genes are very similar; how-
ever, when the cut-off is lowered to 25 genes, the mode of the distribution shifts to
the left, potentially signalling a decrease in measurement power.

reasonable, we looked in detail at the enrichment analysis results. Most results

were comparable and expected. For some sets, all dictionaries performed well.

For example, in our ‘all neuron enriched sets’ (Spencer et al., 2011; Watson et al.,

2008) all terms were neuron-related regardless of the dictionary used (see Table 62).

On the other hand, for a set enriched for germline precursor expression in the

embryo (Spencer et al., 2011), the 50 cutoff dictionary was only able to identify

‘oocyte WBbt:006797’, which is not a germline precursor although it is germline

related; whereas the two smaller dictionaries singled out actual germline precursor

cells—at the 33 cutoff, our tool identified the larval germline precursor cells ‘Z2’ and

‘Z3’ as enriched, and at the 25 gene cutoff the embryonic germline precursor terms

‘P4’,‘P3’ and ‘P2’ were identified in addition to ‘Z2’ and ‘Z3’. We also queried

an intestine precursor set (Spencer et al., 2011). Notably, this gene set yielded

no enrichment when using the 25 cutoff dictionary, nor when using the 50 cutoff

dictionary. However, the 33 cutoff dictionary identified the E lineage, which is the

intestinal precursor lineage in C. elegans, as enriched. Both of these results capture
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specific aspects of C. elegans that are well known to developmental biologists.

Not all queriesworked equallywell. For example, a number of intestinal sets (Spencer

et al., 2011; Pauli et al., 2006) were not enriched in intestine-related terms in any

dictionary, but were enriched for pharynx and hypodermis. We were surprised that

intestinal gene sets performed poorly, since the intestine is a relativelywell-annotated

tissue.

We assessed the internal agreement of our tool by using independent gene sets

that we expected to be enriched in the same tissues. We used two pan-neuronal

sets (Spencer et al., 2011; Watson et al., 2008); two PVD sets (Spencer et al., 2011;

Smith et al., 2010); and two GABAergic sets (Spencer et al., 2011; Cinar, Keles,

and Jin, 2005). Overall, the tool has good internal agreement. On most sets, the

same termswere enriched, although orderwas somewhat variable (see Table 65), and

most high-scoring termswere preserved between sets. All comparisons can be found

online in our Github repository (see Availability of data and materials). Overall, the

dictionary generated by a 33 gene annotation cutoff with 0.95 redundancy threshold

using the ‘any’ criterion performed best, with a good balance between specificity,

verbosity and accuracy, so we selected this parameter set to generate our static

dictionary. As of this publication, the testable dictionary contains 261 terms.

Applying the tool

We applied our tool to the RNA-seq datasets developed by Engelmann et al. (En-

gelmann et al., 2011) to gain further understanding of their underlying biology.

Engelmann et al._ exposed young adult worms to 5 different pathogenic bacteria or

fungi for 24 hours, after which mRNA was extracted from the worms for sequenc-

ing. We ran TEA on the genes Engelmann et al identified as up- or down-regulated.

Initially we noticed that genes that are down-regulated tend to be twice as better

annotated on average than genes that were up-regulated, suggesting that our under-
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Table 62 Comparison of results for a GABAergic neuronal-enriched gene set from
Watson (Watson et al., 2008) showing that results are similar regardless of annota-
tion cutoff. We ran the same gene list on a dictionary with a minimum annotation
cutoff of 50, similarity threshold of 0.95 and similarity method ‘any’ versus an-
other with a minimum annotation cutoff of 33, similarity threshold of 0.95 and
similarity method ‘any’. In the table, columns are abeled with their significance
value (Q-value) or enrichment fold change followed by a hyphen and a number
which indicates which the cutoff for the dictionary that was used for testing. Not
all tissues are present in either dictionary. Hyphens denote not-applicable values,
which occurs when a particular tissue is not present in both dictionaries.

0 1 2 3 4 5 6 7 8

Enrichment Fold Change

nerve ring WBbt:0006749
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Figure 65 Independently derived gene sets show similar results when tested with
the same dictionary. Set 1. GABAergic gene set from Watson (Watson et al.,
2008). Set 2. GABAergic gene set from Spencer (Spencer et al., 2011). Arrow-
heads highlight identical terms between both analyses. All terms refer to neurons
or neuronal tissues and are GABA-associated. Dictionary with cutoff: 33; thresh-
old: 0.95; method: ‘any’.



139

standing of the worm immune system is scarce, in spite of important advances made

over the last decade. Up-regulated tissues, when detected, almost always included

the hypodermis and excretory duct. Three of the five samples showed enrichment of

neuronal tissues or neuronal precursor tissues among the down-regulated genes. As

an independent verification, we also performed GO analysis using PANTHER on

the down-regulated genes for D. coniospora. These results also showed enrichment

in terms associated with neurons (see Figure 66). A possible explanation for this

neuronal association might be that the infected worms are sick and the neurons are

beginning to shut down; an alternative hypothesis would be that the worm is down-

regulating specific neuronal pathways as a behavioral response against the pathogen.

Indeed, several studies (Meisel and D. H. Kim, 2014; Zhang, Lu, and Bargmann,

2005) have provided evidence thatC. elegans uses chemosensory neurons to identify

pathogens. Our results highlight the involvement of various C. elegans neuronal

tissues in pathogen defense.

Discussion

We have presented a tissue enrichment analysis tool that employs a standard hyper-

geometric model to test the C. elegans tissue ontology. We use a hypergeometric

function to test a user-provided gene list for enrichment of anatomical terms in

C. elegans. Our hope is that the physiological relevance of anatomical terms will

enable researchers to make hypotheses about high-dimensionality data. Specifically,

we believe an enriched term may broadly suggest one of two hypotheses: if a list

is enriched in a particular anatomical region, that anatomical region is affected by

the experimental treatment; alternatively, the anatomical regions that are enriched

reflect biologically relevant interactions between tissues. We believe the first hy-

pothesis is a reasonable one to make in the case of whole-worm RNA-seq data for

example, whereas the second hypothesis may be more plausible in cases where a
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Figure 66 D. coniospora Gene Enrichment Analysis and Tissue Enrichment Anal-
ysis results. We compared and contrasted the results from a gene enrichment anal-
ysis program, pantherDB, with TEA by analyzing genes that were significantly
down-regulated when C. elegans was exposed to D. coniospora in a previously
published dataset by Engelmann et al (Engelmann et al., 2011) with both tools. a.
pantherDB screenshot of results, sorted by p-value. Only top hits shown. b. TEA
results, sorted by q-value (lowest on top) and fold-change. Both pantherDB and
TEA identify terms associated with neurons (red square). The two analyses pro-
vide complementary, not redundant, information.
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researcher already knows what tissues a particular gene list came from, as may be

the case in single-cell RNA-seq.

Our tool relies on an annotation dictionary that is continuously updated primarily

with data from single gene qualitative analyses, does not require retraining and

does not require ranked genes. To our knowledge, this is the first tool that tests

tissue enrichment in C. elegans via the hypergeometric method, but similar projects

exist for humans and zebrafish (Y. S. Lee et al., 2013; Prykhozhij, Marsico, and

Meijsing, 2013), highlighting the relevance of our tool for high-dimensionality

biology. Chikina et al (Chikina et al., 2009) have previously reported a tissue

enrichment model for C. elegans based on a Support Vector Machine classifier that

has been trained on microarray studies. SVMs are powerful tools, but they require

continuous retraining as more tissue expression data becomes available. Moreover,

classifiers require that data be rank-ordered by some metric, something which is not

possible for certain studies. Furthermore, this tissue enrichment tool provides users

with enrichment results for only 6 large tissues. In contrast, our tool routinely tests

a much larger number of terms, and we have shown it can even accurately identify

enrichment of embryonic precursor lineages for select data sets.

We have also presented the first, to our knowledge, ontology term filtering algorithm

applied to biomedical ontologies. This algorithm, which is very easy to execute,

identifies terms that have specificity and statistical power for hypothesis testing. Due

to the nature of all ontologies as hierarchical, acyclical graphs with term inheritance,

term annotations are correlated along any given branch. This correlation reduces

the benefits of including all terms for statistical analysis: for any given term along

a branch, if that term passes significance, there is a high probability that many

other terms along that branch will also pass significance. If the branch is enriched

by random chance, error propagation along a branch means that many more false

positives will follow. Thus, a researcher might be misled by the number of terms of
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correlated function and assign importance to this finding; the fact that the branching

structure of GO amplifies false positive signals is a powerful argument for either

reducing branch length or branch intracorrelation, or both. On the other hand, if a

term is actually enriched, we argue that there is little benefit to presenting the user

with additional terms along that branch. Instead, a user will benefitmost from testing

sparsely along the tree at a suitable specificity for hypothesis formation. Related

terms of the same level should only be tested when there is sufficient annotation

to differentiate, with statistical confidence, whether one term is enriched above the

other. Our algorithm reduces branch length by identifying and removing nodes that

are insufficiently annotated and parents that are likely to include sparse information.

We endeavoured to benchmark our tool well, but our analysis cannot address prob-

lems related to spurious term enrichment. Although we were unable to determine

false-positive and false-negative rates, we do not believe this should deter scientists

from using our tool. Rather, we encourage researchers to use our tool as a guide,

integrating evidence from multiple sources to inform the most likely hypotheses.

As with any other tool based on statistical sampling, our analysis is most vulnerable

to bias in the data set. For example, expression reports are negatively biased against

germline expression because of the difficulties associatedwith expressing transgenes

in this tissue (Kelly et al., 1997). As time passes, we are certain the accuracy and

power of this tool will improve thanks to the continuing efforts of the worm research

community; indeed, without the community reports of tissue expression in the first

place, this tool would not be possible.

Conclusions

We have built a tissue enrichment tool that employs a tissue ontology previously

developed by WormBase. We use a simple algorithm to identify the best ontology

terms for statistical testing and in this way minimize multiple testing problems. Our
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tool is available within WormBase or can be downloaded for offline use via ‘pip

install’.

Methods

Fetching annotation terms

We used WormBase-curated gene expression data, which includes annotated de-

scriptions of spatial-temporal expression patterns of genes, to build our dictionary.

Gene lists per anatomy term were extracted from a Solr document store of gene

expression data from the WS252 database provided by WormBase (Howe et al.,

2016). We used the Solr document store because it provided a convenient access to

expression data that included inferred annotations. That is, for each anatomy term,

the expression gene list includes genes that were directly annotated to the term,

as well as those that were annotated to the term’s descendant terms (if there were

any). Descendant terms were those connected with the focus term by is_a/part_of

relationship chains defined in the anatomy term ontology hierarchy.

Filtering nodes

Defining a Similarity Metric

To identify redundant sisters, we defined the following similarity metric:

si =
|gi |

|
⋃k

i=0 gi |
(6.2)

Where si is the similarity for a tissue i with k sisters; gi refers to the set of tissues

associated with tissue i and |g | refers to the cardinality of set g. For a given set

of sisters, we called them redundant if they exceeded a given similarity threshold.

We envisioned two possible criteria and built different dictionaries using each one.

Under a threshold criteron ‘any’ with parameter S between (0, 1), a given set of

sisters j was considered redundant if the condition
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si, j > S (6.3)

was true for any sister i in set j. Under a threshold criterion ‘avg’ with parameter S,

a given set of sisters j was considered redundant if the condition

E[si] j > S (6.4)

was true for the set of sisters j (see Figure 61).

Since nodes can havemultiple parents (and therefore multiple sister sets), a complete

set of similarity scores was calculated before trimming the ontology, and nodes were

removed from the ontology if they exceeded the similarity threshold at least once in

any comparison.

Implementation

All scripts were written in Python 3.5. Our software relies on the pandas, NumPy,

Seaborn and SciPymodules to perform all statistical testing and data handling (McK-

inney, 2011; Van Der Walt, Colbert, and Varoquaux, 2011; Oliphant, 2007).

Availability of data and materials

Our web implementation is available at http://www.wormbase.org/tools/

enrichment/tea/tea.cgi. Our software can also be downloaded using Python’s

pip installer via the command

pip install tissue_enrichment_analysis

Alternatively, our software is available for download at: http://dangeles.

github.io/TissueEnrichmentAnalysis

http://www.wormbase.org/tools/enrichment/tea/tea.cgi
http://www.wormbase.org/tools/enrichment/tea/tea.cgi
http://dangeles.github.io/TissueEnrichmentAnalysis
http://dangeles.github.io/TissueEnrichmentAnalysis
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All benchmark gene sets, benchmarking code and Figures can also be found at the

same address, under the ‘tests’ folder.

Abbreviations

• TEA—Tissue Enrichment Analysis

• GO—Gene Ontology

• WBbt ID—A unique ID assigned to reference ontology terms

• WBgene ID—A unique ID assigned to reference nematode genes

Additional Files

Additional file 1 — TEA Tutorial

Tutorial for users interested in using our software within a python script

Additional file 2 — Folder Structure for SI files 3 and 4

A file detailing the folder structure of the zipped folders 3 and 4.

Additional file 3 — Golden Gene Sets

A list of all the genes used for our benchmarking process.

Additional file 4 — Results

A folder containing a complete version of the results we generated for this paper.
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C h a p t e r 7

TWO NEW FUNCTIONS IN THE WORMBASE ENRICHMENT
SUITE

Angeles-Albores, David et al. (2018). “Two new functions in theWormBase Enrich-
ment Suite”. In: Micropublication: biology. Dataset. doi: https://doi.org/
10.17912/W25Q2N.

Genome-wide experiments routinely generate large amounts of data that can be

hard to interpret biologically. A common approach to interpreting these results is

to employ enrichment analyses of controlled languages, known as ontologies, that

describe various biological parameters such as genemolecular or biological function.

InC. elegans, three distinct ontologies, theGeneOntology (GO),AnatomyOntology

(AO), and theWormPhenotypeOntology (WPO) are used to annotate gene function,

expression and phenotype, respectively (The Gene Ontology Consortium, 2000;

Lee and Sternberg, 2003; Schindelman et al., 2011). Previously, we developed

software to test datasets for enrichment of anatomical terms, called the Tissue

Enrichment Analysis (TEA) tool (Angeles-Albores et al., 2016). Using the same

hypergeometric statistical method, we extend enrichment testing to include WPO

and GO, offering a unified approach to enrichment testing in C. elegans. The

WormBase Enrichment Suite can be accessed via a user-friendly interface at http:

//www.wormbase.org/tools/enrichment/tea/tea.cgi.

To validate the tools, we analyzed a previously published extracellular vesicle

(EV)-releasing neuron (EVN) signature gene set derived from dissociated ciliated

EV neurons(Wang et al., 2015) using the WormBase Enrichment Suite based on

the WS262 WormBase release. TEA correctly identified the CEM, hook sensil-

lum and IL2 neuron as enriched tissues. The top phenotype associated with the

https://doi.org/https://doi.org/10.17912/W25Q2N
https://doi.org/https://doi.org/10.17912/W25Q2N
http://www.wormbase.org/tools/enrichment/tea/tea.cgi
http://www.wormbase.org/tools/enrichment/tea/tea.cgi
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EVN signature was chemosensory behavior. Gene Ontology enrichment analysis

showed that cell projection and cell body were the most enriched cellular com-

ponents in this gene set, followed by the biological processes neuropeptide sig-

naling pathway and vesicle localization further down. The tutorial script used to

generate the figure above can be viewed at: https://github.com/dangeles/

TissueEnrichmentAnalysis/blob/master/tutorial/Tutorial.ipynb

The addition of Gene Enrichment Analysis (GEA) and Phenotype Enrichment Anal-

ysis (PEA) to WormBase marks an important step towards a unified set of analyses

that can help researchers to understand genomic datasets. These enrichment anal-

yses will allow the community to fully benefit from the data curation ongoing at

WormBase.

Methods

Using the methods described in Angeles-Albores et al. (2016), we generated on-

tology dictionaries using the Anatomy, Phenotype and Gene Ontology annotations

for C. elegans. The dictionary similarity parameter was set to 95for all ontolo-

gies. The annotation per term minimum was set to 33 annotations for the AO,

a 50 annotations for the WPO, and 33 annotations for GO. Terms within the

dictionary are tested using a hypergeometric probability test and corrected using

the Benjamini-Hochberg step-up algorithm. In WS262, there are 1320 anatomy

terms, 1117 phenotypes, and 3025 GO terms that have at least 11 genes annotated

to them. The dictionaries are freely accessible using the Python version of the

Suite, which can be installed using the pip tool for Python libraries: pip install

tissue_enrichment_analysis. The dictionary can then be automatically down-

loaded by importing the enrichment analysis library in a Python script by writing

import tissue_enrichment_analysis as ea. The dictionaries can then be

downloaded by typing ea.fetch_dictionary(dict) into Python, where ‘dict ‘

https://github.com/dangeles/TissueEnrichmentAnalysis/blob/master/tutorial/Tutorial.ipynb
https://github.com/dangeles/TissueEnrichmentAnalysis/blob/master/tutorial/Tutorial.ipynb
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is one of the strings ‘tissue’, ‘phenotype’ or ‘go’ to specify which dictionary to

download. If the function does not receive an argument, the dictionary correspond-

ing to the AO is downloaded by default. See the tutorial above for an example

implementation.
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CONCLUSION

As the phenotypes that we analyze growmore andmore complex, it may be tempting

to deploymethods to dealwith large datasets developed in other disciplines to attempt

to extract and understand the mechanics underlying our systems. These methods can

be extremely effective, but only if they are fed the appropriate experimental designs

and analyzed with biological principles in mind.

Biology is replete with systems that have an enormous number of variables (genes)

with highly non-linear relationships between them. As a result, modeling with

differential equations will always be difficult. Differential equations are brittle, with

great dependence on the model specifications and parameter values, particularly

when the equations have non-linearities susceptible to bifurcations. Therefore, we

needmethods that are parameter-free and linear. In genetics, we find both properties.

I have tried to demonstrate that transcriptomes are phenotypes, and I have tried to

show examples of how these phenotypes can be rigorously and robustly manipulated

to draw biologically meaningful conclusions. The work is not without flaws, and

some of it may even be wrong. However, the principles are sound. Moreover, it

seems apparent that these principles can be applied to many experimental settings,

not just transcriptomes. It would be particularly interesting to apply thesemethods to

two experimental tools: Metagenomics and Transposon sequencing. Metagenomics

is used to survey communities and like RNA-seq can measure abundances with

quantitative accuracy, but, like with RNA-seq, a major challenge has been the

interpretation of the resulting datasets. I suspect that if metagenomes are inspected

through single and double perturbations, the underlying community complexity will

begin to unravel. Specifically, I strongly expect that Batesonian epistasis will play

a major role in microbiomic communities, just as it does in genetic networks. I
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believe that if these complex communities are inspected for examples of epistasis,

we will be able to identify groups of bacteria that are functionally interconnected,

and we will begin to understand the mechanisms underlying these interconnections.

A second area that is of increasing interest to me is Transposon sequencing (Tn-

seq). In Tn-seq experiments, a mutant library is generated through transposon

insertion. The library is subjected to a defined selection process and the library

is sequenced to obtain the mutant proportions after selection. Thus, Tn-seq can

be used to identify genetic elements linked causally to the phenotype of interest.

Tn-seq can be performed on mutant backgrounds, not just wild-type strains. So far,

Tn-seq experiments have performed single-factor analyses of wild-type and mutant

enrichments to identify interactors in the desired environment. It would be incredibly

interesting to perform Tn-seq epistasis experiments because the phenotype used to

reconstruct the interaction be the genetic regulatory network associated with the

genes under study. At the same time, Tn-seq of multiple mutants would immediately

yield the next layer of interactors or synthetic interactors in the network, naturally

providing the next set of experiments to perform. I suspect this avenue could be

particularly fruitful.

It is my hope that these concepts prove useful to the greater scientific community.
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