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ABSTRACT 

Organosilanes are advantageous in organic synthesis due to their ability to act as 

both stable products and reactive intermediates. A stereospecific one-pot cascade reaction 

that converts chiral allylic silanes into chiral heterocycles was developed using Lewis acid 

catalysis. We report on the development of this cascade reaction, optimization to benchtop-

scale chemistry, and preliminary investigation into the synthetic scope. In our studies, we 

were successful in varying the cyclization ring size, investigating cyclization preference in 

the presence of multiple electrophilic leaving groups, and altering the functional groups 

present on the aldehyde starting material. Ultimately, we envision this method will be 

useful in the synthesis of a variety of enantioenriched heterocycles found in bioactive 

natural products, many of which have may find use as potential drug targets. 
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Chapter 1 

Background on Allylic Silanes 

 

1.1 ORGANOSILANES AS TOOLS IN ORGANIC SYNTHESIS 

Organosilanes are valuable compounds due to their applications in medicinal 

chemistry and as reagents for chemical synthesis. In pharmaceutical pursuits, the 

replacement of carbon with silicon has a twofold effect. In some cases, exchanging a 

carbon atom for a silicon atom has been shown to improve therapeutic effects of known 

drugs 1-3 (Figure 1).1 While the two atoms have similar electronic properties, there are 

subtle differences between the two such as the increased C–Si versus C–C bond length. 

This can result in drastic in vitro effects, such as modified selectivity or metabolic rate.2 

Furthermore, sila-substitution can lead to better definitions of intellectual property in the 

pharmaceutical industry, making these molecules more enticing for companies to invest 

time and money into their development.  



 

 

2 
 

 

Figure 1. Sila-substituted analogues of known drugs. 

 
In order to synthesize complex organic compounds such as the bioactive molecules 

(1-3) in Figure 1, the synthetic organic chemist must construct these molecules in a 

stepwise fashion, drawing on reactions available to them from their synthetic toolkit. The 

use of organosilicon compounds as reagents has garnered increasing interest in the organic 

chemistry communitiy.3–6 The advantages these reagents are numerous – stability under a 

variety of reaction parameters, reactivity under mild conditions, and functional group 

compatibility for use on a wide variety of compounds. These benefits open up new avenues 

for reaction design, thus adding new reaction methods to the synthetic organic chemist’s 

toolkit. In comparison to other organometallic reagents, silicon is significantly less ionic 

than other metal atoms, only forming a weakly polar bond with carbon. However, this 

property makes silicon-based groups generally unreactive toward electrophilic species. 

Nevertheless, given certain conditions, reactions with electrophiles can occur.  

 

1.2 REACTIVITY OF ALLYLIC SILANES WITH ELECTROPHILES 

In terms of reaction development, the allyl silyl motif has become an increasingly 

popular candidate for starting materials as their electronics lend themselves to regiospecific 
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3 
reactions with electrophilic compounds. Silyl groups are electron-donating and therefore  

are capable of stabilizing carbocations that are β to the silicon atom. More specifically, in 

the case of allylic silanes, the carbon-silicon σ bond exhibits conjugation with the π bond of 

the olefin.7 This electronic structure increases the energy of the highest occupied molecular 

orbital and therefore allylic silane motifs (4) can be highly reactive with electrophiles, 

forming carbocation intermediate 5 en route to 6 (Figure 2). Additionally, allylic silanes do 

not readily isomerize like their allyl metal counterparts; this isomerization only occurs at 

temperatures of 500 °C, thus making reactions of allylic silanes with electrophiles 

regiospecific, unlike with other allyl metal compounds.8  

 

 

Figure 2. General reaction scheme of allylic silanes with electrophiles. 

 

1.3 LEVERAGING REACTIVITY TO MAKE STEREOSPECIFIC 

TRANSFORMATIONS 

One of the first reactions between allylic silanes and carbonyl compounds was 

performed in 1974 in order to do synthesize homoallylic alcohols. Calas and coworkers 

reported the synthesis of homoallylic alcohols using activated organosilanes, such as allylic 

silanes, in the presence of catalytic, chlorinated Lewis acids (e.g. aluminum trichloride, 

gallium trichloride, and indium trichloride).9,10 Although the work was groundbreaking for 

its unique use of organosilanes as reagents, the scope remained limited to only two 

chlorinated carbonyl substrates (8): chloral and chloracetone (Figure 3). Another 
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Nu E

4 5 6



 

 

4 
shortcoming of the reaction was the additional desilylation step required to get to the 

alcohol product, as the addition of the allylic silane (7) to the chlorinated carbonyl 

compounds (8) results in a silyl ether intermediate (9). In terms of reaction development, 

this linear sequence left room for further studies to optimize a one-step procedure. 

Furthermore, a more expansive substrate scope beyond the two chlorinated carbonyl 

substrates became necessary for this reaction to have broad-reaching synthetic utility.  

 

 

Figure 3. Selected reactions of allylic silanes reacting with chlorinated aldehydes and 

ketones, catalyzed by chlorinated catalytic Lewis acid. 

 
At roughly the same time as Calas’ work, a major breakthrough happened in the 

field. Sakurai et al. reported the reaction between allylic silanes and Lewis acid-activated 

carbonyl compounds, expanding the scope to a wide variety of carbon electrophiles (11) 

with varying degrees of success. Addition of the allyl fragment and loss of the silyl group 

provides γ,δ-unsaturated alcohols (Figure 4). This stereospecific reaction built upon 

previous work done by Calas and coworkers through use of stoichiometric titanium 

tetracholoride as the activating Lewis acid. Through use of this reagent, the scope of carbon 

electrophiles that could react with allylic silanes expanded to include aliphatic, aromatic, 

and alicyclic carbonyl compounds (11).7  
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Figure 4. General reaction scheme for the Hosomi-Sakurai allylation between 

trimethylallylsilane and selected subtrates. 

 
When analyzing the results in Figure 4, certain patterns begin to emerge regarding 

steric demand and yield. Linear carbonyl compounds (11a,11c-f) tend to react quickly with 

high yields. The addition of steric bulk at the β or γ carbons both decreases yield and 

requires an increase in reaction time, as with isobutyraldehyde (11b) and 4-methylpentan-

2-one (11g). As the sterically encumbering groups increase in distance from the site of the 

reaction, the yield increases and less reaction time is needed, as with 3-phenylpropanal 

(11c). These trends also explain the decrease in yield of cyclic ketones (11h,i) with the 

decrease in ring size. Smaller rings are more rigid and are more susceptible to steric issues.  

The Sakurai allylation is relatively simple to carry out in a synthetic chemistry 

laboratory. Typically the reaction is run under a nitrogen atmosphere with dichloromethane 

as the solvent, and an aqueous workup is performed in order to protonate the alkoxide to 

the homoallylic alcohol product. This carbon-carbon bond formation is conducted on 
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6 
relatively short timescales, such as 0.5 to 10 minutes (Figure 4). When exposed to the 

Lewis acid for extended periods of time, the yield of the desired product diminishes due to 

side reactions such as polymerization.  

While the Sakurai allylation provides a robust method to produce alcohols from the 

acid-catalyzed reaction between allylic silanes and carbonyl compounds, the value of the 

alcohol product is often overlooked. The alcohol functional group can be viewed as a 

stopping point in a synthetic scheme rather than a useful tool for chemists in their pursuit of 

constructing complex molecules. Building upon this notion, the reaction conditions 

reported by Sakurai became the starting point for our own work. Instead of isolating the 

homoallylic alcohol (14), we envisioned avoiding the aqueous workup and hypothesized 

whether or not the alcohol intermediate could be used to synthesize a heterocyclic product 

(15) in situ (Figure 5). Progressing this established methodology onward to more complex 

and synthetically challenging heterocycle motifs is the core focus of this thesis work.  

 

 

Figure 5. Conceptual basis for thesis work stemming from the Sakurai allylation. 

 

1.4 ALTERNATE AND OPTIMAL REACTION CONDITIONS 

In these allylation reactions, a Lewis acid is required to activate the carbonyl 

moiety. Sakurai first reported the use of titanium tetrachloride which provides relatively 

good yields of the desired allylation products when using a wide variety of carbonyl 
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7 
compounds. However, this Lewis acid is not always optimal. In fact, Sakurai reports on 

using other Lewis acids on a case-by-case basis, such as boron trifluoride diethyl etherate, 

ethylalumnium dichloride, and tin tetrachloride.7,11 Even still, titanium tetrachloride tends 

to be the more universally accepted activating agent for these allylation reactions. 

A shortcoming of the Sakurai allylation reaction is that it requires stoichiometric 

amounts of Lewis acid in order to activate the carbonyl species present in the reaction 

mixture. However, stoichiometric quantities of Lewis acid are not ideal when it comes to 

method development. It is economically inefficient and, depending on the reagent, can be 

somewhat dangerous. Therefore, it is desirable to develop methods which use catalytic 

amounts of the Lewis acid.  

Catalytic Lewis acids were discovered to work in the Sakurai allylation with 

aldehydes nearly two decades later using a chiral (axyloxy)borane catalyst. Ishihara and 

coworkers report their synthesis of the chiral (axyloxy)borane catalyst (8) and showcase its 

utility in terms of great yields, good diastereoselectivity, and excellent enantiomeric excess, 

especially when using substituted allylic silane reagents (17).12 They found that 20 mol% 

loading of the catalyst to be the most successful, as lower catalyst loading resulted in severe 

decreases in yield. The catalyst produces silylated homoallylic alcohols (19) and upon 

further treatment with tetrabutylammonium fluoride, the desilyated alcohol product was 

observed. Yields were improved by substituting the allylic portion of the silyl starting 

material, due to improved asymmetric induction (Figure 6). Although they developed a 

catalytic allylation reaction, the types of carbonyl compounds that could participate in this 

reaction limited to simple aldehydes and ketones. 
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Figure 6. Asymmetric allylation with a chiral (acyloxy)borane catalyst. 

 
Due to the need for a catalytic Sakurai allylation that could react with more 

complex aldehydes and ketones, efforts continued in order to develop methods with more 

expansive substrate scopes, particularly those that included cyclic ketones (20). In 2005, 

Wadamoto and Yamamoto reported a method which used a silver catalyst to form chiral 

homoallylic alcohols from allyltrialkoxysilanes (21) and ketones.13 Using (R)-

DIFLUOROPHOS (22) as a ligand that complexes with silver fluoride (1:1 molar ratio), 

Wadamoto was able to access a wide variety of homoallylic alcohol products (10) with 

excellent enantioselectivity and good yields using only 5 mol% catalyst loading (Figure 7).  
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Figure 7. Catalytic, asymmetric Sakurai allylation with various ketone substrates. 

 
It is evident from these selected reactions that the Sakurai allylation has been 

elaborated upon extensively since its initial report. Each of these reactions has showcased a 

way in which one could access enantioenriched homoallylic alcohol products in good 

yields, demonstrating the synthetic value of this transformation. 
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10 
for its cytotoxic and potential antitumor activity. Using boron trifluoride diethyl etherate as 

the Lewis acid for the Sakurai allylation, Williams was able to construct the hydroxyl 

stereocenter with moderate selectivity and good yield (60%).14 The alcohol (24) is used to 

later form the heterocyclic ring of the macrolide (Figure 8). Although the diastereomeric 

ratio of 2:1 leaves room for improvement, the minor diastereomer can be converted to the 

desired isomer through use of the Mitsunobu reaction which inverts the stereochemistry at 

the site of the carbon-oxygen bond. The allylation product is then advanced to complete the 

first total synthesis of (+)-amphidinolide P. 

 

 

Figure 8. Williams’ use of the Sakurai allylation has poor diastereocontrol, but the 

undesired isomer can be inverted with a Mitsunobu reaction. 

 
In 2003, the Trost laboratory used the Sakurai allylation in synthesis of three 

furaquinocins (28a and 28b), a class of molecules known primarily for their antibiotic 

activity but which also show cytotoxic and antihypertensive activity.15 The aldehyde 

moiety on the bicyclic core of the molecule (26) was used as a functional handle for the 

allylation step in the total synthesis (Figure 9). The diastereoselective Sakurai allylation of 

the core with allyltrimethylsilane (7) was able to introduce the alcohol stereocenter with 

moderate selectivity (dr 4:1). From this allylation product, the two isomeric forms of the 
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11 
olefin could be elaborated upon using alkene metathesis to complete the total synthesis of 

furaquinocin A and furaquinocin B.  

 

 

Figure 9. Late stage Sakurai allylation in Trost’s synthesis of furaquinocins. 

 

1.6 OTHER REACTIONS BETWEEN ALLYLIC SILANES AND 

ALDEHYDES 

While all of the previous examples include the loss of the silyl group upon addition 

of the allyl fragment to the aldehyde, other transformations between allylic silanes and 

aldehydes have been reported. De Fays and coworkers were able to synthesize 

enantioenriched β-hydroxy allylsilanes (32) using allylic silanes (28).16 Through 

transmetallation with stoichiometric n-butyllithium and then a chiral allyltitanium 

compound (29), stereochemical information is transferred from the organometallic reagent 

to the final cyclic diene (32), creating two stereocenters on the molecule with good yield 

and in excellent enantioselectivity (Figure 10).  
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12 
trifluoride etherate. Similarly, chiral organoborane compounds can be used in place of a 

chiral titanium complex in order to prepare chiral hydroxysilanes with excellent yields.  

 

 

Figure 10. Asymmetric allylmetallation of aliphatic aldehydes with an allylic silane. 

 
According to Chabaud et al., the use of organoboranes is of growing interest to the 

organic community, as it provides a means to both efficiently and reliably synthesize chiral 

allylic silanes.5 A γ-silylallylboronate intermediate (34) can be synthesized easily with one 

step from a simple allylic silane starting material (Figure 11). This intermediate is then 

exposed to an aldehyde with a terminal olefin, and upon a basic workup, β-

hydroxyallylsilane 36 is formed in great yield (86%) and with excellent enantiomeric 

excess (94%).17 Roush and coworkers do not report on an extensive substrate scope using 

this method, but were able to run it on an additional aldehyde containing benzyl ether 

functional groups in some of their later studies.18 They can elaborate these β-

hydroxyallylsilane intermediates using Grubbs’ second-generation catalyst with ring 

closing metathesis in order to generate chiral cyclic allylic silanes (37).  
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Figure 11. Synthesis of chiral β-hydroxyallylsilanes can undergo ring-closing 

metathesis to a cyclic form, starting from a γ-silylallylboronate intermediate. 

 

1.7 SELECTED METHODS TO SYNTHESIZE CHIRAL ALLYLIC 

SILANES 

1.7.1 STEREOSPECIFIC APPROACHES 

Although recent work by Roush showcases a unique method with which to 

synthesize allylic silanes, the synthesis of these compounds have intrigued the community 

for decades. In 1991, Panek and coworkers reported a series of papers on the Claisen 

rearrangement of chiral vinyl silanes to optically pure α-chiral-β-silyl-(E)-hexanoic acids 

(38).19,20 The diastereoselectivity of the products could be altered by changing the reaction 

conditions, strongly favoring either the syn (39) or anti (40) products (Figure 12). Their 

methodology was able to tolerate silyl groups of various steric demands, as well as various 

functional groups at the second stereocenter on the molecule. Product yields using this 

method were quite good, ranging from 55-95%. However, the reaction was somewhat 

limited as all products contained either a terminal ester or acid group, and all products were 

synthesized from very specific chiral vinyl silane motifs. 
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Figure 12. Synthesis of chiral silyl hexanoic acids via a Claisen rearrangement. 

 
With the lack of a relatively generalized synthesis of these allylic silane reagents, 

the Ito group later reported on a method to diastereoselectively convert chiral allylic 

alcohols to allylic silanes via a disilanyl ether intermediate (Figure 13).21 By first reacting 

the allylic alcohol with 1-chloro-1,1,-dimethyl-1,1,2-triphenyldisilane (42), they were able 

to access a silyl ether (43) that could undergo an intramolecular cyclization using catalytic 

amounts of 1,1,3,3,-tetramethylbutyl isocyanide and palladium acetylacetate. The silicon-

oxygen bonds on the heterocyclic intermediate (44) were cleaved through used of an 

organolithium reagent, affording  chiral allylic silane products (45) with good yields and 

excellent enantioselectivity. This bis-silylation methodology allowed for access to a wide 

variety of aliphatic allylic silane products. However, the use of strong organometallic 

reagents limits the functional group tolerance of this reaction.  

 

 

Figure 13. Bis-silylation of allylic alochols to afford chiral allylic silane products. 
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Due to challenges in the synthesis of these compounds, such as poor functional 

group compatibility, work continued on developing new methods to construct these allylic 

silanes. Shortly after Ito’s work, the Woerpel group reported on the use of various silver 

and copper catalysts for silylene insertions into carbon-oxygen bonds in order to produce 

chiral allylic silanes (Figure 14).22 Depending on the catalyst and substrate used, they were 

able to access dilanes in addition to allylic silanes. Starting from optically pure allylic 

alcohols (46), they are able to produce the desired allylic silanes (48) in moderate yields 

(63-74%) but with severe erosion of enantioselectivity (36% ee).  

 

 

Figure 14. Silylene insertion of allylic ethers to chiral allylic silanes. 

 
1.7.2 STEREOSELECTIVE APPROACHES 

The previous methods all leverage the chirality of the starting material in order to 

produce enantioenriched allylic silanes through stereospecifc transformations. Recently, 

efforts have focused on using chiral catalysts in order to set the stereocenters of the 

molecule using stereoselective approaches. In the past few decades, there have been 

numerous metal catalysts used to perform silicon-hydrogen insertion of vinylcarbenoids.23 

Davies and coworkers reported some of this asymmetric methodology in 1997. Through 

use of a rhodium (II) propionate catalyst (51), they were able to convert 

vinyldiazomethanes (49) to allylic silanes (52) with excellent enantiomeric purity (77-95% 

Si
Si

OBn
t-Bu

t-Bu
t-Bu

t-Bu
cat.

46 47 48

OBn

iPr

Me
Me

iPr



 

 

16 
ee) and high yields (63-77%).24 The silyl group is introduced through use of 

dimethylphenylsilane (Figure 15). This reactivity pattern was later explored in greater 

detail. 

 

 

Figure 15. Use of rhodium (II) catalyst to form chrial allylic silanes. 

 
In 2010, Wu, Chen, and Panek elaborate on the work of Davies by developing 
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products in decreased yields (44-55%) and with lower levels of enantioselectivity (70-

78%), but they can be run at higher temperatures (0 °C) in comparison to the same 

reactions with the rhodium catalyst (–78 °C). They are able to further elaborate these allylic 

silane products (55) via an allylation reaction to obtain products (56) in excellent yields 

(61-88%) but with moderate diastereoselectivity (Figure 16).  

 

 

Figure 16. Use of copper(I) catalyst to synthesize chiral allylic silanes, which can be 

further reacted with aldehydes. 
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Copper catalysts continued to be investigated for their use in setting stereocenters 

on allylic silanes. Kacpryznski and coworkers reported a method which uses copper 

catalysts to perform asymmetric alkylation reactions using silyl-substituted unsaturated 

phosphates.26 This reaction differs from the previously mentioned metal-catalyzed 

syntheses of allylic silanes, as its method does not hinge upon the formation of carbon-

silicon bonds to form the stereogenic center. Instead, aryl or alkyl substitution to the silyl-

substituted carbon (57) provides for a route with which tertiary and quaternary silyl-

substituted carbons can be formed from secondary or tertiary silyl-substituted carbons, 

respectively (Figure 17). This methodology uses a chiral N-heterocyclic carbene ligand 

(converted to copper-based catalysts generated in situ with a copper salt) in conjugation 

with an organozinc reagent in order to form chiral allylic silanes (58) with excellent 

enantioselectivity. The shortcoming of this procedure is that it requires the starting material 

to already have a silyl group on the molecule. This lack of modularity prevents this reaction 

from being universally applicable in the synthesis of chiral allylic silanes from simple 

starting materials. 

 

 

Figure 17. Allylic substitution reaction with a copper catalyst generated in situ to 

form chiral allylic silanes. 
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1.8 CROSS-COUPLING AS A MODULAR APPROACH TO CHIRAL 

ALLYLIC SILANES  

Cross-coupling methodology can also be used to synthesize the chiral allylic silane 

compounds prepared by Kacprzynski and coworkers. However, this approach which sets 

the sp3 stereogenic center in a direct carbon-carbon bond formation has the benefit of 

allowing for more modularity when synthesizing allylic silanes. The cheap, simple starting 

materials can be easily modified prior to the cross-coupling in order to produce a wide 

variety of substituted allylic silanes. The first synthesis of enantioenriched chiral allylic 

silanes was reported in 1982 through a cross-coupling reaction developed by Kumada et al. 

(Figure 18).27 Kumada employed the use of a ferrocenyl-palladium complex to promote 

catalysis and the fidelity of the olefin substitution is retained. This reaction is not only 

important due to its ability to form the allylic silane products (61) with high levels of 

enantioselectively, but it is also important due to its lack of E-Z isomerization of the olefin.  

 

Figure 18. Kumada’s cross-coupling methodology to synthesize chiral allylic silanes. 
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Kumada further elaborated his work by demonstrating the first stereoselective 

Sakurai allylation using these enantioenriched allylic silanes. His work helped elucidate the 

acyclic linear diastereomeric transition states of the allylation reaction, where disfavored 

steric interactions lead to the formation of products with high levels of diastereoselectivity. 

The anti-selectivity of this reaction can be explained through an acyclic linear transition 

state (62 and 63), which minimizes steric interactions between the bulky alkyl groups 

(Figure 19). In this study, allylic silanes with E olefin configuration (61) were observed to 

consistently have good yields and excellent enantioselectivity when forming the 

homoallylic alcohol products (Figure 20).28 Despite the novelty of Kumada’s approach to 

synthesizing chiral allylic silanes, the utility of his method utilized a Grignard reagent in 

the cross-coupling reaction, which limits the functional group tolerance of the 

transformation.  

 

 

Figure 19. Newman projections show the minimizing of gauche interactions in 

Kumada’s allylation. 
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silanes have used this cross-coupling approach to set the Csp3 stereocenter, possibly due to 

the use of sensitive Grignard reagents.  

 

 

Figure 20. Kumada’s Sakurai allylation.  
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palladium catalytic cyclic typically only undergoes redox reactions between the 0 and +2 

states. Given its ability to access odd oxidation states, nickel can also participate in a 

variety of radical mechanisms, unlike palladium.32 Overall, nickel is a much more reactive 

and economical catalyst choice, however tuning this reactivity to afford desired reaction 

products in place of undesired side products becomes the main challenge in optimizing 

nickel-catalyzed cross-coupling reactions.  

 

 

Figure 21. Selected nickel-catalyzed reductive cross-coupling methods developed by 

the Reisman group. 
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work, as chiral allylic silanes with pendant electrophiles can be synthesized using these 

procedures. We envisioned that these novel allylic silane products could be elaborated to 

more challenging heterocyclic motifs common in natural products.   

 

 

Figure 22. Reisman’s asymmetric cross-coupling method to afford chiral allylic silanes 

under mild conditions. 

 

 

Figure 23. Selected chiral allylic silane substrates prepared using Reisman’s 

approach. 
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Chapter 2 

Reaction Design and Results 

 

2.1 CONCEPTION AND BASIS FOR REACTIVITY 

Recent efforts in the Reisman group have focused on new asymmetric reductive 

cross-coupling methods, as discussed in Chapter 1.8. Reaction conditions to synthesize 

chiral arylated alkenes have been modified to handle a rather sterically demanding regent, a 

silyl substituted benzyl chloride (71). Cross-coupling between this reagent and a vinyl 

bromide (69) can produce chiral allylic silanes (74) with high yields and excellent 

enantioselectivity (Figure 24). More importantly, these cross-coupling conditions can 

tolerate vinyl bromides including pendant electrophiles such as alkyl chlorides, bromides, 

and tosylates. We envisioned these allylic silanes containing terminal electrophilies to be 

useful in our endeavors to elaborate these chiral allylic silane products into a variety of 

heterocyclic motifs. 
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Figure 24. Asymmetric reductive cross-coupling between silyl substituted benzyl 

chlorides and vinyl bromides to provide access to chiral allylic silanes. 
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membered rings with oxygen and nitrogen incorporation (75-79), some of which exhibit a 

variety of therapeutic effects (Figure 25). These heterocyclic rings can be difficult to 

synthesize, so we aimed to develop a one-pot reaction to afford these chiral scaffolds.  

 

 

Figure 25. Heterocyclic bioactive natural products and their medicinal uses. 
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With the knowledge that the addition of chiral allylic silanes to carbonyl compounds can 

lead to the synthesis of chiral homoallylic alcohols with little to no erosion of 

enantioselectivity, we proposed a novel method for the synthesis of chiral heterocycles with 

oxygen incorporation. Allylic silanes can undergo a Sakurai allylation with a wide variety 

of carbon electrophiles. This allylation reaction is stereospecific and highly 

diastereoselective, providing two stereocenters in the product (Figure 26a).28 Additionally, 

it is known that base-mediated SN2 cyclization reactions can occur intramolecularly 

between alcohols with pendant electrophiles in order to form tetrahydropyrans (Figure 

26b).33 The aim of this research was to combine these two fundamental principles and 

develop a one-pot procedure to convert chiral allylic silanes into chiral heterocyclic 

products through a tandem allylation/cyclization approach (Figure 26c). 

 

 

Figure 26. Literature precedent for the tandem reaction proposed in this work. 
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Starting from chiral allylic silanes, we propose that cyclization to heterocyclic five- 

and six-membered heterocyclic rings can be achieved. The cross-coupling of vinyl 

bromides and benzyl chlorides yields chiral allylic silanes,29 which can undergo Lewis 

acid-catalyzed allylations with aldehydes. With these allyation products, the homoallylic 

alcohols are observed. We proposed that isolation of the chiral homoallylic alcohol could 

be avoided. Instead, intramolecular cyclization with a pendant electrophile, initially 

synthesized on a vinyl bromide coupling partner, could be achieved in one step during this 

reaction (Figure 27). 

 

 

Figure 27. Proposed synthesis of tetrahydropyrans from allylic silanes. 
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Figure 28. Preliminary screening of allylic silane with pendant electrophile with two 

Lewis acids commonly used in the Sakurai allylation. 
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trifluoride diethyl etherate, warming the reaction to room temperature also resulted in four 

products were also collected by preparatory TLC, however LCMS confirmed that none of 

the products were from the desired cyclization. Furthermore, the alcohol intermediate 

decomposed once the reaction had warmed to room temperature, so we evaded the issue by 

running the reaction again and quenching with water at –78°C.  

With this information in hand, we set out to quantify the amount of our alcohol 

intermediate. The general protocol used 1.1 equivalents of titanium chloride in 

dichloromethane at –45 °C, the lowest temperature available in the glovebox cryocool. The 

model substrates we investigated included propionaldehyde and an allylic silane with a 

pendant chloride electrophile (this allylic silane proved more amenable to scale up to 

multigram scale). The reaction was quenched with water prior to warming to room 

temperature, which alleviated decomposition of the alcohol. Gas chromatography (GC) was 

used to quantify the product yields, which provided 69% yield of the alcohol intermediate 

and 2% yield of the desired tetrahydropyran product. With the alcohol intermediate in 

hand, a formal synthesis via Perrott’s conditions could allow access to the heterocycle, 

however a reaction using a one pot procedure would be ideal. Thus, we conducted a GC 

assay to screen reaction conditions that would promote cyclization in good yields (Figure 

29).  

 

 

Figure 29. Method analyzed by GC assay.  
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2.3 SCREENING OF ADDITIVES TO PROMOTE CYCLIZATION 

Given the low 2% yield of the tetrahydropyran, we proposed two hypotheses for 

lack of cyclization. First, we proposed that the coordination of titanium to the alkoxide 

prohibited intramolecular cyclization. Second, we suggested that the reaction conditions 

were too acidic, and rapid protonation of the alkoxide intermediate inhibitied cyclization to 

the heterocycle.  

In order to test these two hypotheses, we screened different additives and analyzed 

the results with our GC assay. The allylation reaction was conducted at –78 °C for two 

hours, and then an additive was used to promote cyclization at room temperature. Initially, 

a crown ether was added to see if coordination between titanium and oxygen was inhibiting 

cyclization to occur. We proposed that the crown ether would coordinate the titanium and 

displace the alkoxide. Thus would allow for the oxygen atom to attack the carbon alpha to 

the pendant electrophile via an SN2 cyclization. With the addition of benzo-15-crown-5, 

limited cyclization (1% yield) was observed (Figure 30).  

 

 

Figure 30. Proposed mechanism for crown ether additive to promote cyclization. 
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31).  With the addition of a mild base, 2,6-lutidine (95), the desired tetrahydropyran was 

only observed in a 2% yield. There was no improvement from the addition of either a 

crown either or mild base compared to runs without any additives.  

 

 

Figure 31. Proposed mechanism for mild base to promote cyclization. 
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equivalents) amounts of titanium isopropoxide, the reaction failed to yield any allylated 

product and only starting material was recovered. 

 

 

Figure 32. Proposed mechanism for cyclization with four equivalents of strong base. 
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advantageous for us to focus our efforts in producing tetrahydrofurans with trans 

substitution as there are limited methods in the literature to synthesize these product 

scaffolds. Our methodology produces trans-substituted cyclic ethers regardless of ring size 

with excellent diastereoselectivity, so we focused our studies on the construction of 2,3-

disubstituted tetrahydrofurans. In order to prepare the required allylic silane starting 

material, we performed the nickel-catalyzed cross-coupling with a vinyl bromide 

containing one less methylene group than in our previous methods. With the allylic silane 

in hand, we could begin our efforts to optimize the reaction to benchtop procedures such 

that it can be a practical and broadly accessible method.  

 

 

Figure 33. Ito’s method involves a cyclic transition state to afford heterocycles. 
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approximately a 70% yield by NMR, only a 40% yield of 91 can be isolated due to a 

difficult, greasy separation of numerous side products. In fact, it takes 20 liters of hexanes 

in one column to isolate ~1 g of clean material. In order to access large amounts of material 

to optimize a generalized benchtop procedure, we investigated an alternate route to allylic 

silane 106 with great success. 

 

 

Figure 34. Original route to allylic silane starting material. 
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Figure 35. Improved route to allylic silane starting material. 
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and the allylated alcohol product. Based on these results, we believed that a problem had 

arisen in the reaction when conducted on the benchtop. As a result, particular emphasis was 

placed on optimizing the allylation step in order to regain good conversion and increase the 

yield of the allylated intermediate.  

 
 
 

 

Figure 36. 1H NMR of benchtop allylation setup shows low amounts of desired 

product (HA/HB) and low conversion of the allylic silane starting material (HC/HD). 

 
We proposed that the low conversion was most likely a result of adventitious water 

in the reaction. Since the reaction conditions use stoichiometric titanium tetrachloride,  one 

would predict that the starting material should be completely consumed, either to the 

desired product or to an undesired desilylated side product. However, since the starting 
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material was able to survive such harsh Lewis acidic conditions, we believed that 

fortuitous water was quenching the titanium tetrachloride. Once the alcohol was formed, 

indeed a large excess of strong base funneled the intermediate to the cyclic product. 

Consequently, the majority of our optimization efforts focused on remedying the allylation 

step.  

Various parameters were investigated in order to modify our method to a 

generalized benchtop procedure with good conversion and high yields. To ensure purity of 

the regents prior to the reaction, either newly purchased aldehyde reagents or freshly 

distilled regents were used to ensure clean material. This purification became vital to the 

new standard setup conditions. To rid the reaction of adventitious water, the flask was 

purged with argon gas and 3 Å molecular sieves were added to the reaction in order to 

maintain dry reaction conditions. With these modifications, the allylation step could be 

conducted at –78 °C in only 10 minutes.  Brief investigations on the cyclization portion of 

the cascade involved varying the equivalents of base used and altering the counterion of the 

base from potassium to lithium. In summary we found that this combination of these 

conditions restored reactivity and allowed for access to the desired heterocyclic products on 

the benchtop in good yields: use of argon atmosphere, addition of molecular sieves, 10 

minute allylation time at –78 ºC, and use of 10 equivalents of potassium tert-butoxide for 

cyclization. 

During these optimization studies, it also became readily apparent that the quality 

of the titanium tetrachloride played a large role in the success of the initial allylation step of 

the cascade reaction. Both argon and molecular sieves had to be utilized in the new method 

in order to ensure that water in the atmosphere did not quench sizable quantities of the 
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Lewis acid. Additionally, if sure-sealed bottles of titanium tetrachloride solution were a 

few weeks old and stored on the benchtop, notable decreases in yield (on the order of 10-

20% less) were observed. Since buying a new reagent every month was not economical, we 

sought to better understand the degradation of the Lewis acid via a brief study. When 

comparing a new bottle, a handmade solution from neat titanium tetrachloride (stored in the 

glove box), and a several week old bottle that was stored in the glove box in between uses, 

we found that as long as the solution is stored under inert atmosphere in a glove box, the 

age of the titanium tetrachloride solution does not matter. 

 

2.7 SUBSTRATE SCOPE 

With a successful tandem allylation/cyclization procedure now available, we moved 

forward to expand the substrate scope. As mentioned previously, according to a known 

procedure by Ito and coworkers, allylic silanes with pendant electrophiles can converted to 

the cis diasteromer of the tetrahydrofuran. However, with our optimized reaction 

conditions, we can access the trans diastereomer of the tetrahydrofuran. In order to fully 

demonstrate the utility of these allylic silane reagents, we decided to pursue the substrate 

scope on both the cis and trans diastereomers to investigate interesting differences between 

the two methods (Figure 37).  

In our initial screen of various aldehydes, we were able to successfully synthesize 

both diastereomers of six different tetrahydrofurans. Four possible products can be 

obtained in this method, resulting from the cis and trans configuration of the adjacent 

stereocenters as well as the E and Z isomers of the olefin. The reported diastereoselectivity 
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is given for the cis/trans ratio, the E:Z olefin ratio, and the percentage of the major isomer 

out of the four possible products. When analyzing the substrate scope, we note several 

interesting observations resulting from differences in the two reaction mechanisms. The Ito 

 

 

Figure 37. Substrate scope of the two diastereomers of the tetrahydrofuran products. 

 
reaction proceeds through an intramolecular allylation and universally gives higher yields 

compared to the intermolecular approach. Conversely, the tandem allylation/cyclization 

method developed in this work proceeds through a linear transition state and is influenced 

heavily by the sterics of the molecule. This is evident in comparing the yields of the two 

methods with more substituted aldehydes. When moving from an ethyl group to an 
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isopropyl group, the yield does not change using the condensation/intramolecular 

allylation route – 98% with 110 versus 99% with 111. However, when comparing the same 

aldehydes with the tandem allylation/cyclization method, the yield decreases significantly 

from 86% with 112 to 79% with 113. The same steric argument contributes to the moderate 

yields of using cyclohexane as the R group, although further investigations on using 

various ring sizes suggest there is more at play in this mechanism. 

Another interesting observation reveals that allylations with the aldehyde 

containing a pendant chloride electrophile have excellent yields with both methods. This 

shows that additional pendant electrophiles can be tolerated under the reaction conditions 

(versus eliminating to form a terminal olefin) and also provides insight into the cyclization 

step. With 5-chloropentanal, the alkoxide intermediate could cyclize onto the pendent 

electrophile of the aldehyde, rather than that of the allylic silane, providing two possible 

products – 120 and 123 (Figure 38). However, via our method, the proposed six-membered 

heterocyclic ring product is not observed. Rather, we saw great success (96% yield of 120) 

using a long chain with a pendant chloride as the R group on the aldehyde. This provides 

interesting insight into the kinetics of the cyclization, as the five-membered heterocyclic 

ring was preferentially formed. 

 

 

Figure 38. Mechanism showing cyclization onto two different electrophiles.   
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Additionally, we note that that aldehydes containing benzyl ether moieties have a 

drastic effect on the observed diastereomeric ratio (dr). With the tandem 

allylation/cyclization method, tetrahydrofuran 121 was formed with low dr of 2:1. As a 

result, we investigated a series of aldehydes containing benzyl ether functional groups in 

order to investigate coordination effects on the observed d.r. (Figure 39). In order to obtain 

full conversion of starting material, we modified our procedure to use 2.0 equivalents 

titatnium tetrachloride and 15.0 equivalents base. 

 

 

Figure 39. Substrate scope for aldehydes with various pendant benzyl ether groups. 

 
In the case of the trans-2,3-tetrahyrofurans, the dr between the trans to cis 

diastereomers improves as the benzyl group distance from the aldehyde increases. 

Interestingly, as with tetrahydrofuran 127, the benzyl group inverts the selectivity giving 

the cis product as the major diastereomer. According to Judd and coworkers, a benzyl ether 

group can stabilize intermediates and have effects on diasteromeric control.35 In this case, 

the benzyl ether can coordinate to the titanium in the reaction mechanism, which alters the 
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transition state and leads to erosion of diastereoselectivity. The benzyl group does not 

become non-innocent in this transformation until four methylene units are incorporated in 

the aldehyde as seen in tetrahydrofuran 129. In contrast, the diastereoselectivity of the cis-

2,3-tetrahydrofurans (124-126) is not affected by the presence of the benzyl group. 

 

2.8 CONCLUSIONS AND FUTURE DIRECTIONS  

 We were able to successfully develop a one-pot procedure to synthesize chiral 

tetrahydropyrans from chiral allylic silanes in good yields and with excellent 

diastereoselectivity. This procedure consists of a cascade reaction, starting with a Sakurai 

allyation followed by base-mediated cyclization to afford enantioenriched heterocycles – 

both tetrahydrofurans and tetrahydropyrans. We report on expansion of the substrate scope 

to use various aldehydes as well as studies on the cyclization mechanism and 

diastereoselectivity of the reaction with pendent benzyl ethers. Future work will involve a 

more detailed study into the mechanism of the reaction, as well as testing additional 

aldehyde and ketone substrates. Furthermore, we seek to expand the use of this method 

beyond the synthesis of cyclic ethers and future studies will investigate the formation of 

nitrogen-containing heterocycles via use of an imine in lieu of an aldehyde (Figure 40). 

 

 

Figure 40. Proposed substrate scope for nitrogen-related heterocycles, starting from 

propan-1-imine.  
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Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Methylene chloride (CH2Cl2) was dried by passing through an 

activated alumina column. N-methylpyrrolidinone (NMP), titanium tetrachloride (1.0 M in 

CH2Cl2), and potassium tertbutoxide (1.0 M in THF) were purchased from Sigma Aldrich 

and stored in the glovebox. Manganese powder (–325 mesh, 99.3%) was purchased from 

Alfa Aesar. Unless otherwise stated, chemicals were used as received. All reactions were 

monitored by thin-layer chromatography (TLC) using EMD/Merck silica gel 60 F254 pre-

coated plates (0.25 mm) and were visualized by ultraviolet (UV) light or with potassium 

permanganate (KMnO4) staining. Flash column chromatography was performed as 

described by Still et al.36 using silica gel (230-400 mesh) purchased from Silicycle. Optical 

rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 

589 nm. 1H and 13C NMR spectra were recorded on a Bruker Avance III HD with Prodigy 

cyroprobe (at 400 MHz and 101 MHz, respectively). NMR data is reported relative to 

internal CHCl3 (1H, δ = 7.26) and CDCl3 (13C, δ = 77.1). Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet. IR spectra were recorded on a Perkin Elmer Paragon 

1000 spectrometer and are reported in frequency of absorption (cm–1). Analytical chiral 

SFC was performed with a Mettler SFC supercritical CO2 chromatography system with 

Chiralcel AD-H, OD-H, AS-H, OB-H, and OJ-H columns (4.6 mm x 25 cm). HRMS were 

acquired from the Caltech Mass Spectral Facility using fast-atom bombardment (FAB) or 

electron impact (EI). X-ray diffraction and elemental analysis (EA) were performed at the 

Caltech X-ray Crystal Facility. 
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(S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107) 

 

According to a procedure by Reisman and coworkers29, a 250 mL round bottom flask with 

a stir bar was equipped with Mn0 powder (4.95 g, 90 mmol, 3 equiv), cobalt phthalocyanine 

(857 mg, 1.5 mmol, 0.05 equiv), and NiCl2BOX complex (73, 1.455 g, 3 mmol, 0.1 equiv). 

The flask was brought into a N2-filled glovebox, and then the NMP (60 mL, 0.5 M), 

(chloro(phenyl)methyl)trimethylsilane (5.96 g, 30 mmol, 1 equiv), and (E)-4-bromobut-3-

en-1-ol (7.61 g, 45 mmol, 1.5 equiv) were added sequentially. The flask was sealed with a 

new rubber septum, wrapped with electrical tape, and stirred at 5 °C in a cryocool for 6 

days. The crude reaction was diluted with Et2O and H2O, slowly quenched with 1 M HCl, 

and further diluted with water. The aqueous layer was extracted with Et2O and the 

combined organic layers were dried with MgSO4, filtered, and concentrated under reduced 

pressure. The crude material was purified by column chromatography (silica, 1:1:1 

Et2O/hexanes/PhMe) to yield 3.1 g of 107 (45% yield) in 98% ee as a blue oil. Spectral 

data matched those reported in literature.29 

 

(S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane (106) 

 

Allylic silane (107, 98% ee, 1.6 g, 6.83 mmol, 1 equiv), triphenylphosphine (2.685 g, 10.2 

mmol, 1.5 equiv), carbon tetrachloride (1.32 mL, 13.7 mmol, 2 equiv), and DCM (7 mL, 

0.98 M) were added to a 25 mL round bottom flask equipped with a stir bar. The reaction 
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mixture was refluxed under a N2 atmosphere at 40 °C for 1 day. The crude reaction mixture 

was loaded directly onto a silica plug and flushed with 250 mL hexanes to afford 1.66 g of 

106 (96% yield) in 98% ee as a colorless oil. Spectral data matched those reported in 

literature.29 

 

General Procedure 1: Allylation/Cyclization for trans-2,3-tetrahydrofurans 

 

On a bench-top, a 10 mL round bottom flask equipped with a stir bar was sealed 

with a septum and electrical tape, then flame dried with a propane torch and backfilled with 

argon. Then 100 mg of oven-dried 3 Å molecular sieves were quickly added to the flask, 

which was subsequently evacuated and backfilled with argon. The allylic silane (0.22 

mmol, 1.1 equiv), aldehyde (0.2 mmol, 1 equiv), and anhydrous CH2Cl2 (2.0 mL, 0.1 M) 

were added to the flask via syringe while under an Ar atmosphere. The reaction mixture 

was cooled to –78 °C and TiCl4 solution (0.24 mmol, 1.2 equiv, 1 M in DCM) was added 

via syringe. After stirring for 10 minutes, anhydrous KOtBu solution (2 mmol, 10 equiv, 1 

M in THF) was slowly added to the flask via syringe, the reaction was allowed to warm to 

room temperature, and continued to stir for 2 hours. The crude reaction was filtered through 

a plug of celite (approx. 4 cm in diameter and 1 cm thick), flushed with 50 mL of Et2O, and 

concentrated under reduced pressure. The crude residue was purified by column 

chromatography to yield the desired product. 
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(2R,3R)-2-ethyl-3-((E)-styryl)tetrahydrofuran (112) 

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane (106, 

55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and propionaldehyde (14.4 µl, 1.0 

equiv, 0.2 mmol) according to General Procedure 1. The crude residue was purified by 

column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 34.6 mg of 112 (86% yield, 

>20:1 dr, >20:1 E:Z, 94% major isomer) as a colorless oil. Rf = 0.39 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +48° (c = 0.5, CHCl3). 1H NMR (500 MHz, CDCl3): δ 7.40 

– 7.34 (m, 2H), 7.32 (ddd, J = 7.8, 6.7, 1.2 Hz, 2H), 7.25 – 7.20 (m, 1H), 6.45 (d, J = 15.8 

Hz, 1H), 6.12 (dd, J = 15.8, 8.7 Hz, 1H), 3.92 (dd, J = 8.1, 5.9 Hz, 2H), 3.52 (td, J = 7.9, 

4.1 Hz, 1H), 2.62 – 2.51 (m, 1H), 2.19 (ddt, J = 12.0, 8.1, 5.9 Hz, 1H), 1.89 (ddt, J = 12.4, 

9.0, 8.1 Hz, 1H), 1.73 – 1.63 (m, 1H), 1.54 (dt, J = 13.9, 7.4 Hz, 1H), 1.01 (t, J = 7.4 Hz, 

3H). 13C NMR (126 MHz, CDCl3): δ 137.3, 131.0, 130.9, 128.7, 127.6, 126.2, 85.3, 67.3, 

48.9, 33.9, 26.9, 10.8. FTIR (NaCl, thin film, cm-1): 2964, 2932, 2875, 1493, 1450, 1116, 

1020, 965, 746, 693.  

 

(2R,3R)-2-isopropyl-3-((E)-styryl)tetrahydrofuran (113) 

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane (106, 

55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and isobutylaldehyde (18.2 µl, 1.0 

equiv, 0.2 mmol) according to General Procedure 1. The crude residue was purified by 

column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 34.3 mg of 113 (79% yield, 

>20:1 dr, >20:1 E:Z, 94% major isomer) as a colorless oil. Rf = 0.46 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +46° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.39 
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– 7.28 (m, 4H), 7.25 – 7.19 (m, 1H), 6.43 (d, J = 15.8 Hz, 1H), 6.14 (dd, J = 15.8, 8.8 Hz, 

1H), 3.93 – 3.83 (m, 2H), 3.45 (dd, J = 7.7, 5.5 Hz, 1H), 2.74 (p, J = 8.2 Hz, 1H), 2.16 

(dddd, J = 12.0, 8.1, 6.6, 5.1 Hz, 1H), 1.92 – 1.77 (m, 2H), 0.98 (dd, J = 6.8, 1.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 137.4, 132.1, 130.4, 128.7, 127.3, 126.1, 88.9, 67.5, 46.3, 

34.6, 31.8, 19.7, 18.2. FTIR (NaCl, thin film, cm-1): 3026, 2961, 2933, 2872, 1493, 1486, 

1449, 1387, 1071, 1051, 965, 747, 693.  

 

(2R,3R)-2-cyclohexyl-3-((E)-styryl)tetrahydrofuran (117)  

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane (106, 

55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and cyclohexanecarbaldehyde (22.4 

mg, 1.0 equiv, 0.2 mmol) according to General Procedure 1. The crude residue was purified 

by column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 27.1 mg of 117 (53% 

yield, >20:1 dr, 20:1 E:Z, 91% major isomer) as a colorless oil. Rf = 0.42 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +78° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 

– 7.34 (m, 2H), 7.34 – 7.28 (m, 2H), 7.25 – 7.19 (m, 1H), 6.43 (d, J = 15.7 Hz, 1H), 6.13 

(dd, J = 15.7, 8.8 Hz, 1H), 3.93 – 3.79 (m, 2H), 3.44 (dd, J = 7.6, 5.7 Hz, 1H), 2.78 (p, J = 

8.2 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.85 (dq, J = 12.3, 7.8 Hz, 2H), 1.79 – 1.69 (m, 3H), 1.68 

– 1.61 (m, 1H), 1.49 (tdt, J = 11.7, 6.1, 3.3 Hz, 1H), 1.30 – 1.04 (m, 5H). 13C NMR (101 

MHz, CDCl3): δ 137.5, 132.1, 130.3, 128.7, 127.3, 126.1, 88.3, 67.4, 46.0, 41.9, 34.6, 

30.1, 28.7, 26.7, 26.5, 26.3. FTIR (NaCl, thin film, cm-1): 2925, 2852, 1492, 1449, 1085, 

1066, 965, 887, 748, 694.  
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(2R,3R)-2-(4-chlorobutyl)-3-((E)-styryl)tetrahydrofuran (120)  

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane 

(196, 55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 5-chloropentanal (24 

µl, 1.0 equiv, 0.2 mmol) according to General Procedure 1. The crude residue was purified 

by column chromatography (silica, 0 to 6% Et2O/hexanes) to yield 48.6 mg of 120 (92% 

yield, 15:1 dr, >20:1 E:Z, 91% major isomer) as a colorless oil. Rf = 0.36 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +64° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 

– 7.28 (m, 4H), 7.25 – 7.20 (m, 1H), 6.46 (d, J = 15.8 Hz, 1H), 6.10 (dd, J = 15.7, 8.8 Hz, 

1H), 3.95 – 3.88 (m, 2H), 3.59 – 3.50 (m, 3H), 2.60 – 2.49 (m, 1H), 2.20 (dddd, J = 12.0, 

8.1, 6.4, 5.3 Hz, 1H), 1.94 – 1.85 (m, 1H), 1.85 – 1.75 (m, 2H), 1.70 – 1.62 (m, 2H), 1.57 – 

1.47 (m, 2H). 13C NMR (101 MHz, CDCl3): δ 137.2, 131.3, 130.5, 128.7, 127.4, 126.2, 

83.7, 67.3, 49.4, 45.1, 33.8, 33.2, 32.8, 24.1. FTIR (NaCl, thin film, cm-1): 2938, 2867, 

1492, 1449, 1071, 1029, 1017, 966, 748, 693. 

 

(2R,3R)-2-(but-3-en-1-yl)-3-((E)-styryl)tetrahydrofuran (116) 

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane 

(106, 55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and pent-4-enal (16.8 mg, 

1.0 equiv, 0.2 mmol) according to General Procedure 1. The crude residue was purified by 

column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 26.5 mg of 116 (58% yield, 

10:1 dr, >20:1 E:Z, 89% major isomer) as a colorless oil. Rf = 0.39 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +69° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 

– 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 6.46 (d, J = 15.7 Hz, 1H), 6.11 
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(dd, J = 15.8, 8.8 Hz, 1H), 5.84 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.09 – 4.92 (m, 2H), 3.97 

– 3.89 (m, 2H), 3.58 (td, J = 8.3, 3.7 Hz, 1H), 2.56 (p, J = 8.2 Hz, 1H), 2.35 – 2.10 (m, 3H), 

1.89 (ddt, J = 12.3, 9.0, 8.1 Hz, 1H), 1.73 (dddd, J = 13.7, 10.0, 6.2, 3.7 Hz, 1H), 1.60 

(dddd, J = 13.8, 9.7, 8.1, 5.3 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 138.6, 137.3, 

131.2, 130.6, 128.7, 127.4, 126.2, 114.7, 83.4, 67.3, 49.5, 33.9, 33.4, 30.8. FTIR (NaCl, 

thin film, cm-1): 3026, 2974, 2931, 2868, 1640, 1493, 1449, 1071, 966, 911, 747, 693.  

 

(2S,3R)-2-((benzyloxy)methyl)-3-((E)-styryl)tetrahydrofuran (127)  

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane (106, 

55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 2-(benzyloxy)acetaldehyde 

(30.0 mg, 1.0 equiv, 0.2 mmol) according to General Procedure 1 with the exception that 

2.0 equivalents TiCl4 and 15.0 equivalents KOtBu were used in this procedure. The crude 

residue was purified by column chromatography (silica, 0 to 20% Et2O/hexanes) to yield 

44.2 mg of 127 (75% yield, 1:3 dr (Note: trans is the minor diastereomer), >20:1 E:Z, 24% 

major isomer) as a yellow oil. Rf = 0.18 (silica, 10% EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +41° (c 

= 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): Note: mixture of diastereomers, contains 

additional impurity: δ 7.39 – 7.16 (m, 10.00H), 6.50 – 6.34 (m, 0.74H), 6.25 – 6.07 (m, 

0.75H), 4.68 – 4.46 (m, 1.88H), 4.18 – 4.03 (m, 1.36H), 4.01 – 3.92 (m, 0.42H), 3.92 – 

3.79 (m, 0.94H), 3.66 (dd, J = 10.5, 2.9 Hz, 0.24H), 3.63 – 3.46 (m, 1.87H), 3.44 – 3.32 (m, 

0.51H), 3.08 (dq, J = 9.4, 6.9 Hz, 0.57H), 2.80 (p, J = 8.5 Hz, 0.15H), 2.63 (dddt, J = 7.2, 

4.3, 2.9, 1.4 Hz, 0.19H), 2.19 (dtd, J = 12.5, 7.6, 4.9 Hz, 0.74H), 2.03 – 1.85 (m, 0.83H). 

13C NMR (101 MHz, CDCl3): Note: mixture of diastereomers, contains additional 
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impurity: δ 138.25, 137.19, 131.33, 131.07, 130.05, 128.74, 128.56, 128.51, 128.35, 

128.33, 128.27, 127.73, 127.65, 127.56, 127.52, 127.37, 127.29, 126.16, 126.11, 80.81, 

73.52, 70.99, 70.96, 67.93, 67.67, 45.23, 45.20, 36.24, 33.57, 32.81, 28.68, 27.59. FTIR 

(NaCl, thin film, cm-1): 3027, 2973, 2930, 2866, 1495, 1452, 1364, 1197, 1092, 1028, 

969, 748, 696.  

 

(2R,3R)-2-(2-(benzyloxy)ethyl)-3-((E)-styryl)tetrahydrofuran (121) 

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane 

(106, 55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 3-(benzyloxy)propanal 

(32.8 mg, 1.0 equiv, 0.2 mmol) according to General Procedure 1 with the exception that 

2.0 equivalents TiCl4 and 15.0 equivalents KOtBu were used in this procedure. The crude 

residue was purified by column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 

35.7 mg of 121 (58% yield, 2:1 dr, >20:1 E:Z, 63% major isomer) as a pale yellow oil. Rf = 

0.18 (silica, 10% EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +38° (c = 1.0, CHCl3). 1H NMR (400 

MHz, CDCl3): Note: mixture of diastereomers: δ 7.39 – 7.19 (m, 10H), 6.51 – 6.32 (m, 

1H), 6.23 – 6.04 (m, 1H), 4.58 – 4.42 (m, 2H), 4.10 – 3.98 (m, 0.7H), 3.97 – 3.88 (m, 

1.2H), 3.81 (td, J = 8.4, 6.7 Hz, 0.4H), 3.76 – 3.52 (m, 3H), 3.36 (t, J = 6.3 Hz, 0.3H), 3.01 

– 2.90 (m, 0.3H), 2.59 (p, J = 8.4 Hz, 0.6H), 2.29 – 2.13 (m, 1H), 2.05 – 1.92 (m, 0.7H), 

1.92 – 1.75 (m, 2.3H). 13C NMR (101 MHz, CDCl3): Note: mixture of diastereomers: δ 

138.63, 137.35, 137.25, 131.35, 131.08, 130.28, 129.46, 128.67, 128.47, 128.45, 127.83, 

127.79, 127.64, 127.60, 127.41, 127.35, 126.22, 81.05, 79.21, 73.21, 73.18, 68.04, 67.91, 

67.36, 66.80, 49.59, 45.97, 34.28, 33.76, 32.72, 31.95, 28.79, 27.71. FTIR (NaCl, thin 
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film, cm-1): 3027, 2969, 2930, 2865, 1495, 1453, 1363, 1198, 1099, 1028, 967, 748, 696.  

(2R,3R)-2-(3-(benzyloxy)propyl)-3-((E)-styryl)tetrahydrofuran (128)  

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane 

(106, 55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 4-(benzyloxy)butanal 

(35.6 mg, 1.0 equiv, 0.2 mmol) according to General Procedure 1 with the exception that 

2.0 equivalents TiCl4 and 15.0 equivalents KOtBu were used in this procedure. The crude 

residue was purified by column chromatography (silica, 0 to 20% Et2O/hexanes) to yield 

17.5 mg of 128 (27% yield, 2:1 dr, >20:1 E:Z, 65% major isomer) as a yellow oil. Rf = 0.22 

(silica, 10% EtOAc/hexane, UV). [𝒂]𝑫𝟐𝟓	 = +13° (c = 1.0, CHCl3). 1H NMR (400 MHz, 

CDCl3): Note: mixture of diastereomers: δ 7.41 – 7.19 (m, 10.0H), 6.66 – 6.36 (m, 1H), 

6.26 – 5.89 (m, 1H), 4.49 (d, J = 8.5 Hz, 2H), 4.04 (td, J = 8.2, 5.7 Hz, 0.4H), 3.97 – 3.88 

(m, 1.4H), 3.88 – 3.70 (m, 0.7H), 3.59 (td, J = 8.2, 3.3 Hz, 0.7H), 3.55 – 3.41 (m, 2H), 3.02 

– 2.89 (m, 0.3H), 2.56 (p, J = 8.5 Hz, 0.6H), 2.28 – 2.12 (m, 1H), 1.98 – 1.66 (m, 3.6H), 

1.63 – 1.50 (m, 1.4H). 13C NMR (101 MHz, CDCl3): Note: mixture of diastereomers: δ 

138.75, 138.73, 137.45, 137.28, 131.17, 130.85, 130.60, 129.61, 128.68, 128.52, 128.44, 

128.43, 128.37, 127.73, 127.71, 127.56, 127.40, 127.30, 126.24, 126.21, 83.78, 82.21, 

72.90, 72.84, 72.79, 70.39, 70.30, 67.27, 66.70, 49.38, 45.96, 33.88, 32.84, 30.71, 28.19, 

26.91, 26.77. FTIR (NaCl, thin film, cm-1): 3060, 3027, 2933, 2857, 1495, 1453, 1363, 

1203, 1100, 1073, 1028, 967, 747, 696.  

 

(2R,3R)-2-(4-(benzyloxy)butyl)-3-((E)-styryl)tetrahydrofuran (129)  

Prepared from (S,E)-(5-chloro-1-phenylpent-2-en-1-yl)trimethylsilane 
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(106, 55.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 5-(benzyloxy)pentanal (38.5 mg, 1.0 

equiv, 0.2 mmol) according to General Procedure 1 with the exception that 2.0 equivalents 

TiCl4 and 15.0 equivalents KOtBu were used in this procedure. The crude residue was 

purified by column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 13.7 mg of 

129 (20% yield, 10:1 dr, >20:1 E:Z, 90% major isomer) as a colorless oil. Rf = 0.18 (silica, 

10% EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +48° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): 

δ 7.39 – 7.12 (m, 10H), 6.44 (d, J = 15.7 Hz, 1H), 6.10 (dd, J = 15.8, 8.8 Hz, 1H), 4.48 (s, 

2H), 3.90 (d, J = 8.1 Hz, 2H), 3.56 (td, J = 7.8, 3.3 Hz, 1H), 3.46 (td, J = 6.5, 2.8 Hz, 2H), 

2.53 (p, J = 8.6 Hz, 1H), 2.19 (dddd, J = 12.0, 8.1, 6.5, 5.3 Hz, 1H), 1.93 – 1.82 (m, 1H), 

1.69 – 1.45 (m, 6H). 13C NMR (101 MHz, CDCl3): δ 138.8, 137.3, 131.1, 130.7, 128.7, 

128.4, 127.7, 127.6, 127.4, 126.2, 84.0, 73.0, 70.5, 67.3, 49.4, 33.9, 33.9, 30.0, 23.3. FTIR 

(NaCl, thin film, cm-1): 3027, 2935, 2860, 1495, 1454, 1363, 1102, 1028, 1017, 966, 747, 

696.  

 

General Procedure 2: Condensation/Allylation for cis-2,3-tetrahydrofurans 

 

On a bench-top open to an atmosphere of air, the allylic silane (0.22 mmol, 1.1 equiv), 

aldehyde (0.2 mmol, 1.0 equiv) and CH2Cl2 (2 mL, 0.1M) were added to a 25 mL round 

bottom flask equipped with a stir bar. The TMSOTf (0.06 mmol, 0.03 equiv) was added to 

the flask and the reaction was allowed to stir at room temperature for 5 minutes before 

being diluted with CH2Cl2 (6 mL). Celite (500 mg) was added to the crude mixture and the 
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solution was concentrated under reduced pressure. The resulting powder was then loaded 

onto a silica column and purified via column chromatography to yield the desired product. 

(2S,3R)-2-ethyl-3-((E)-styryl)tetrahydrofuran (110) 

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and propionaldehyde (11.6 mg, 1.0 

equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified by 

column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 39.6 mg of 110 (98% yield, 

>20:1 dr, >20:1 E:Z, 93% major isomer) as a colorless oil. Rf = 0.36 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +28° (c = 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ 7.39 

– 7.34 (m, 2H), 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 6.41 (d, J = 15.8 Hz, 1H), 6.18 

(dd, J = 15.8, 9.7 Hz, 1H), 4.05 (td, J = 8.3, 5.9 Hz, 1H), 3.86 – 3.73 (m, 2H), 2.95 (ddt, J = 

12.5, 10.0, 5.2 Hz, 1H), 2.22 (dddd, J = 12.5, 8.4, 7.5, 5.9 Hz, 1H), 1.89 (dddd, J = 12.6, 

8.1, 6.4, 4.7 Hz, 1H), 1.62 – 1.42 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, 

CDCl3): δ 137.5, 130.7, 129.7, 128.7, 127.3, 126.2, 126.2, 84.0, 66.6, 45.7, 32.9, 24.5, 

10.9. FTIR (NaCl, thin film, cm-1): 3026, 2964, 2934, 2874, 1494, 1463, 1450, 1359, 

1101, 1063, 1033, 970, 750, 694.  

 

(2S,3R)-2-isopropyl-3-((E)-styryl)tetrahydrofuran (111) 

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and isobutylaldehyde (14.4 mg, 1.0 

equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified by 

column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 44.0 mg of 111 (99% yield, 
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17:1 dr, >20:1 E:Z, 92% major isomer) as a colorless oil. Rf = 0.45 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +58° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 

– 7.35 (m, 2H), 7.35 – 7.29 (m, 2H), 7.25 – 7.19 (m, 1H), 6.40 (s, 1H), 6.24 (dd, J = 15.8, 

10.0 Hz, 1H), 4.06 (q, J = 8.0 Hz, 1H), 3.86 (ddd, J = 9.4, 8.4, 4.6 Hz, 1H), 3.33 (dd, J = 

9.8, 4.5 Hz, 1H), 2.97 – 2.89 (m, 1H), 2.27 (ddt, J = 12.6, 9.4, 7.5 Hz, 1H), 1.88 (dddd, J = 

12.5, 7.9, 4.6, 2.0 Hz, 1H), 1.81 – 1.70 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.6 

Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 137.5, 130.4, 129.6, 128.7, 127.2, 126.2, 88.8, 

66.4, 45.0, 33.5, 29.5, 20.7, 18.9. FTIR (NaCl, thin film, cm-1): 2958, 2872, 1494, 1450, 

1388, 1066, 970, 754, 694.  

 

(2S,3R)-2-cyclohexyl-3-((E)-styryl)tetrahydrofuran (115)  

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and cyclohexanecarbaldehyde (22.4 

mg, 1.0 equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified 

by column chromatography (silica, 0 to 5% Et2O/hexanes) to yield 50.6 mg of 115 (99% 

yield, >20:1 dr, >20:1 E:Z, 95% major isomer) as a colorless oil which crystallized upon 

standing. Crystals suitable for X-ray diffraction were grown from hexane upon standing in 

the freezer (–20 °C). Rf = 0.43 (silica, 10% EtOAc/hexane, UV). [𝒂]𝑫𝟐𝟓	 = +81° (c = 1.0, 

CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 – 7.35 (m, 2H), 7.32 (dd, J = 8.5, 6.7 Hz, 

2H), 7.26 – 7.20 (m, 1H), 6.41 (d, J = 15.8 Hz, 1H), 6.24 (dd, J = 15.9, 9.9 Hz, 1H), 4.04 

(q, J = 8.0 Hz, 1H), 3.84 (ddd, J = 9.5, 8.4, 4.6 Hz, 1H), 3.39 (dd, J = 9.7, 4.5 Hz, 1H), 2.93 

(dddd, J = 9.6, 6.8, 4.5, 1.9 Hz, 1H), 2.25 (ddt, J = 12.6, 9.4, 7.5 Hz, 1H), 2.08 – 1.99 (m, 
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1H), 1.87 (dddd, J = 12.5, 7.9, 4.6, 2.0 Hz, 1H), 1.77 – 1.68 (m, 2H), 1.68 – 1.60 (m, 2H), 

1.48 (dddd, J = 13.2, 8.1, 7.0, 3.5 Hz, 1H), 1.32 – 1.12 (m, 3H), 1.05 (tdd, J = 12.5, 10.9, 

3.5 Hz, 1H), 0.97 – 0.82 (m, 1H). 13C NMR (101 MHz, CDCl3): δ 137.7, 130.4, 129.7, 

128.6, 127.2, 126.2, 87.3, 66.2, 44.6, 38.9, 33.4, 31.0, 28.9, 26.6, 25.9, 25.8. FTIR (NaCl, 

thin film, cm-1): 2924, 2851, 1492, 1449, 1062, 970, 884, 753, 693. 

 

(2S,3R)-2-(4-chlorobutyl)-3-((E)-styryl)tetrahydrofuran (118) 

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and 5-chloropentanal (24.1 mg, 1.0 

equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified by 

column chromatography (silica, 0 to 10% Et2O/hexanes) to yield 39.9 mg of 118 (75% 

yield, 8:1 dr, >20:1 E:Z, 87% major isomer) as a colorless oil. Rf = 0.27 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +29° (c = 0.5, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40 

– 7.35 (m, 2H), 7.35 – 7.29 (m, 2H), 7.25 – 7.20 (m, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.16 

(dd, J = 15.8, 9.6 Hz, 1H), 4.05 (td, J = 8.2, 5.8 Hz, 1H), 3.87 – 3.77 (m, 2H), 3.51 (t, J = 

6.7 Hz, 2H), 2.95 (ddt, J = 10.1, 7.4, 5.3 Hz, 1H), 2.22 (dddd, J = 12.4, 8.4, 7.5, 5.8 Hz, 

1H), 1.89 (dddd, J = 12.7, 8.1, 6.5, 4.8 Hz, 1H), 1.84 – 1.72 (m, 2H), 1.66 – 1.41 (m, 4H). 

13C NMR (101 MHz, CDCl3): δ 137.4, 130.9, 129.5, 128.7, 127.3, 126.2, 82.2, 66.7, 45.9, 

45.1, 32.8, 32.7, 30.8, 24.1. FTIR (NaCl, thin film, cm-1): 2934, 2867, 1493, 1449, 1073, 

1043, 970, 752, 694.  
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(2S,3R)-2-(but-3-en-1-yl)-3-((E)-styryl)tetrahydrofuran (114)  

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and pent-4-enal (16.8 mg, 1.0 equiv, 

0.2 mmol) according to General Procedure 2. The crude residue was purified by column 

chromatography (silica, 0 to 5% Et2O/hexanes) to yield 28.4 mg of 114 (62% yield, >20:1 

dr, >20:1 E:Z, 94% major isomer) as a colorless oil. Rf = 0.43 (silica, 10% EtOAc/hexane, 

UV).  [𝒂]𝑫𝟐𝟓	 = +49° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.39 – 7.34 (m, 2H), 

7.34 – 7.29 (m, 2H), 7.25 – 7.20 (m, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.17 (dd, J = 15.8, 9.6 

Hz, 1H), 5.82 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.06 – 4.92 (m, 2H), 4.05 (td, J = 8.3, 5.7 

Hz, 1H), 3.90 – 3.78 (m, 2H), 3.01 – 2.91 (m, 1H), 2.28 – 2.17 (m, 2H), 2.17 – 2.05 (m, 

1H), 1.89 (dddd, J = 12.8, 8.1, 6.6, 5.0 Hz, 1H), 1.67 – 1.48 (m, 2H). 13C NMR (101 MHz, 

CDCl3): δ 138.6, 137.4, 130.7, 129.6, 128.7, 127.3, 126.2, 126.2, 114.8, 81.7, 67.0, 45.9, 

32.9, 30.9, 30.8. FTIR (NaCl, thin film, cm-1): 3026, 2974, 2937, 2871, 1640, 1449, 1066, 

1051, 969, 911, 750, 694. 

 

(2R,3R)-2-((benzyloxy)methyl)-3-((E)-styryl)tetrahydrofuran (124)  

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and 2-(benzyloxy)acetaldehyde (30.0 

mg, 1.0 equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified 

by column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 38.2 mg of 124 (65% 

yield, 19:1 dr, 18:1 E:Z, 90% major isomer) as a colorless oil. Rf = 0.17 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +29° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.38 
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– 7.21 (m, 10H), 6.45 (d, J = 15.8 Hz, 1H), 6.20 (dd, J = 15.8, 9.4 Hz, 1H), 4.55 (q, J = 

12.1 Hz, 2H), 4.18 – 4.10 (m, 2H), 3.87 (q, J = 7.8 Hz, 1H), 3.59 – 3.50 (m, 2H), 3.09 (dq, 

J = 9.4, 6.9 Hz, 1H), 2.20 (dtd, J = 12.5, 7.6, 4.9 Hz, 1H), 1.98 (dtd, J = 12.3, 7.7, 6.4 Hz, 

1H) 13C NMR (101 MHz, CDCl3): δ 138.3, 137.3, 131.2, 128.8, 128.6, 128.4, 127.8, 

127.6, 127.4, 126.2, 80.9, 73.6, 71.1, 67.8, 45.3, 32.9. FTIR (NaCl, thin film, cm-1): 3027, 

2919, 2861, 1495, 1451, 1361, 1076, 1027, 970, 748, 695. 

 

(2S,3R)-2-(2-(benzyloxy)ethyl)-3-((E)-styryl)tetrahydrofuran (119)  

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and 3-(benzyloxy)propanal (32.8 mg, 

1.0 equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified by 

column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 50.3 mg of 119 (82% 

yield, 15:1 dr, 15:1 E:Z, 88% major isomer) as a colorless oil. Rf = 0.20 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +49° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.39 

– 7.20 (m, 10H), 6.40 (d, J = 15.8 Hz, 1H), 6.17 (dd, J = 15.8, 9.5 Hz, 1H), 4.57 – 4.48 (m, 

2H), 4.10 – 4.02 (m, 2H), 3.83 (td, J = 8.3, 6.7 Hz, 1H), 3.62 (td, J = 6.7, 3.6 Hz, 2H), 2.97 

(ddt, J = 9.6, 7.3, 5.5 Hz, 1H), 2.30 – 2.14 (m, 1H), 1.90 (dddd, J = 12.1, 8.2, 6.7, 5.1 Hz, 

1H), 1.82 (q, J = 6.8 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 138.6, 137.3, 131.0, 129.4, 

128.6, 128.4, 127.8, 127.6, 127.3, 126.2, 79.2, 73.2, 68.0, 66.8, 45.9, 32.7, 31.9. FTIR 

(NaCl, thin film, cm-1): 3027, 2927, 2946, 2861, 1495, 1453, 1363, 1092, 1028, 970, 750, 

737, 696. 
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(2S,3R)-2-(3-(benzyloxy)propyl)-3-((E)-styryl)tetrahydrofuran (125) 

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 51.6 

mg, 1.1 equiv, 0.22 mmol, 98% ee) and 4-(benzyloxy)butanal (35.6 mg, 

1.0 equiv, 0.2 mmol) according to General Procedure 2. The crude residue was purified by 

column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 47.4 mg of 125 (74% 

yield, >20:1 dr, 19:1 E:Z, 92% major isomer) as a colorless oil. Rf = 0.17 (silica, 10% 

EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +33° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.43 

– 7.20 (m, 10H), 6.43 (d, J = 15.8 Hz, 1H), 6.19 (dd, J = 15.8, 9.6 Hz, 1H), 4.49 (s, 2H), 

4.06 (td, J = 8.3, 5.7 Hz, 1H), 3.92 – 3.78 (m, 2H), 3.49 (qt, J = 9.3, 6.4 Hz, 2H), 3.02 – 

2.92 (m, 1H), 2.22 (dtd, J = 13.4, 7.9, 5.6 Hz, 1H), 1.96 – 1.85 (m, 1H), 1.85 – 1.76 (m, 

1H), 1.76 – 1.65 (m, 1H), 1.58 (q, J = 7.1 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 138.7, 

137.4, 130.8, 129.6, 128.6, 128.4, 127.7, 127.5, 127.3, 126.2, 82.2, 72.8, 70.3, 66.7, 45.9, 

32.8, 28.2, 26.9. FTIR (NaCl, thin film, cm-1): 3027, 2934, 2855, 1495, 1452, 1362, 1100, 

1073, 1028, 970, 749, 737, 696. 

 

(2S,3R)-2-(4-(benzyloxy)butyl)-3-((E)-styryl)tetrahydrofuran (126)  

Prepared from (S,E)-5-phenyl-5-(trimethylsilyl)pent-3-en-1-ol (107, 

51.6 mg, 1.1 equiv, 0.22 mmol, 98% ee) and 5-(benzyloxy)pentanal 

(38.5 mg, 1.0 equiv, 0.2 mmol) according to General Procedure 2. The crude residue was 

purified by column chromatography (silica, 0 to 15% Et2O/hexanes) to yield 40.1 mg of 

126 (60% yield, 20:1 dr, >20:1 E:Z, 92% major isomer) as a colorless oil. Rf = 0.23 (silica, 

10% EtOAc/hexane, UV).  [𝒂]𝑫𝟐𝟓	 = +38° (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): 
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δ 7.38 – 7.21 (m, 10H), 6.41 (d, J = 15.8 Hz, 1H), 6.17 (dd, J = 15.8, 9.6 Hz, 1H), 4.47 (s, 

2H), 4.05 (td, J = 8.2, 5.8 Hz, 1H), 3.89 – 3.78 (m, 2H), 3.46 (t, J = 6.5 Hz, 2H), 2.99 – 

2.88 (m, 1H), 2.22 (dddd, J = 12.5, 8.4, 7.5, 5.8 Hz, 1H), 1.88 (dddd, J = 12.7, 8.1, 6.4, 4.7 

Hz, 1H), 1.69 – 1.39 (m, 6H). 13C NMR (101 MHz, CDCl3): δ 138.8, 137.5, 130.7, 129.7, 

128.7, 128.4, 127.7, 127.5, 127.3, 126.2, 82.4, 72.9, 70.4, 66.6, 45.9, 32.9, 31.3, 29.9, 23.3. 

FTIR (NaCl, thin film, cm-1): 3027, 2936, 2860, 1495, 1452, 1361, 1102, 1073, 970, 750, 

736, 696. 
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