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ABSTRACT

Structural materials engineering often aims to realize materials that are simulta-
neously strong, tough, and lightweight — a combination classically considered
mutually exclusive. Natural composite materials such as bone exhibit a combi-
nation of these properties far exceeding that of their constituents, a feat generally
credited to their hierarchical structure — all the way down the nanoscale. To date, a
quantitative description of how this property combination arises in such microstruc-
turally complex materials has remained elusive due to challenges in experimentally
isolating and probing the salient deformation and toughening mechanisms at the
micro and nanometer scales — length scales on the order the constituents of many
natural composites.

In this thesis, we first investigate the site-specific nanoscale structure of human
bone using transmission electron microscopy. We show the presence of previously
undiscovered disordered arrangement of collagen and mineral — alongside a well
known ordered structure — within the trabecular architecture of bone. We perform
micro- and nano-mechanical compression experiments to probe strength and defor-
mation of each of these microstructures, revealing a size-dependent strength of bone
attributed to the limited number of failure-initiating critical defects (e.g pores) in
the small-scale samples relative to macro-scale tissue.

Unlike experiments for investigating strength at small-scales, fracture experiments
are standardized for the macroscale. To address this, we developed an in situ
SEM/nanoindenter methodology that enables 3-point bending fracture experiments
with observation and measurement of crack growth and toughening behavior at
nano and micrometer scales. Using this technique, we discuss the crack initiation
and growth toughness arising primarily from the underlying fibril microstructure in
bone. In the context of a crack growth resistance, we describe a transition in the
toughening behavior of bone originating from different levels of hierarchy. Given
its versatility, this experimental technique establishes a platform for understanding
the coupling between structure and fracture behavior of micron-sized materials.
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C h a p t e r 1

INTRODUCTION

1.1 Achieving Strength and Toughness
A common aim of structural materials engineering is to design materials that
are simultaneously strong and tough, commonly denoted "damage tolerance" [1].
Strength is the material’s stress that characterizes resistance to non-recoverable de-
formation. In the case of metals this is often defined as the onset of plasticity; in
ceramics it represents themaximum attainable stress of thematerial. Fracture tough-
ness characterizes the material’s energetic resistance to growing an existing crack.
The classical mutual exclusivity of these properties is exemplified in a common
"workhorse" ceramic like alumina which is to be stronger than tougher engineering
metals like aluminum alloys. From a materials engineering perspective, we often
resolve this by turning to composite materials and employing "toughening" strate-
gies, increasing the energetic cost for a crack to propagate through a material. To
understand toughening strategies we first provide a very brief description of crack
growth criteria in linear elastic materials.

A Brief Description of Fracture Toughness
Fracture mechanics has its origins in Griffith theory, stating that the toughness of
a material under loading is a competition between the decrease in stored elastic
energy and energy gained from creating new surfaces from a pre-existing crack
[2]. This toughness defined as a strain energy release rate G = 2γ — where γ
is the surface energy — empirically describes the behavior of brittle materials;
Irwin realized it fell short for ductile materials. Due to the concentrated stresses at
the crack tip, ductile materials develop a plastic zone which dissipates energy and
contributes to the energy balance in addition to the surface energy gained, requiring
an increased energy release rate for growth of a crack. An alternative approach to
the energy description was introduced whereby the intensity of the crack tip denoted
K in front of the crack tip is considered as the criteria for crack extension. Irwin
described the stress field at some distance r and angle θ in front of the crack tip as
σi j → K/

√
2πr fi j (θ) as r → 0 [3]. K defines the magnitude of the local stress.

Alternatively we can consider this stress intensity in terms of the remotely applied
stress σapp, such that K = Qσapp

√
a. Here a is the length of the crack and Q is
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a term that accounts for the geometry of the material being loaded (i.e., Q = 1 for
an infinite plate loaded in tension) [4]. In this context, crack growth occurs if the
applied stress results in some stress intensity K = KC . In linear elastic materials,
and for tensile opening conditions (denoted mode I), the strain energy release rate
and the stress intensity factor are simply related by G = K2/E , where E is the elastic
modulus of the material. In simple terms, toughening a material thus requires some
mechanism to cause an increase in applied driving for per unit crack extension.

Damage Tolerance in Composites
Well characterized engineering toughening strategies includefiber-reinforcements[5]
in ceramic and polymer matrix materials and ductile particle inclusions[6] in ce-
ramics. Mechanistically fiber reinforcements tend to bridge the surfaces of opening
cracks. Through debonding and frictional sliding against the matrix, this bridging
can dissipate additional energy, increasing the strain energy release rate for crack
growth. This can also be considered as shielding the crack tip from applied stresses,
thus lowering the K . The result of toughening in composites is quite evident; Figure
1.1 shows a materials space of toughness and strength normalized by density. We
see that engineering composites (shown in red) performed better than the constituent
materials described above (polymers, metals, and cermamics). What is also evident
is that natural materials exhibit a wide range of specific toughness at relatively high
specific strength, seemingly unattainable by engineering materials. This raises the
question: what can we learn from nature in terms of designing damage tolerance?

1.2 Strong and Tough Biomaterials
Natural heterogeneous materials like bone and nacre are widely coveted as structural
design examples, as they exhibit an unparalleled combination of strength, tough-
ness, and density. This is generally attributed to an extremely hierarchical structure
of most of these materials [8]. What is unique about many of these materials is
that the structure-property relation in natural materials goes all the way down to the
nanoscale, a length scale that has been challenging to isolate, probe, and understand.
For example, bone is composed of soft and compliant collagen fibrils mineralized
by a hard and stiff bioapatite at the nanoscale that form the heterogeneous building
block (∼100 nm diameter) for the different morphologies of bone across the various
length scales; nacre is a simpler “brick-and mortar” structure of aragonite platelets
held together by chitin biopolymer [9]. It has been hypothesized that the nanoscale
constituents of these natural materials are instrumental for their macroscale proper-
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Figure 1.1: Materials Properties Space of Toughness vs Strength. Adapted from [7]

ties; for example, the nanoscale characteristic dimensions of the minerals in these
materials could lead to flaw tolerance [10]. Mimicking hierarchical materials to
achieve similar damage tolerance has gained substantial traction over the past two
decades; the main challenge has been introducing hierarchy starting from nanoscale
features to produce bulk materials [11]. Some of the most notable methods in-
volve kinetically controlled freeze casting[12] and magnetically assisted slip casting
[13] of alumina to create nacre-like materials. While these biomimetic studies
have focused on overcoming hierarchical manufacturing challenges, the fundamen-
tal question of the structural biomaterials and biomimetic communities remains
experimentally unanswered (particularly for bone): how do the underlying nano and
microscale components of these hierarchical natural materials give rise the desirable
property combination?

1.3 Thesis Overview
The aim of this thesis is to gain a deeper understanding of the small-scale mechanics
of human bone. Overall we attempt to gain some insight as to how it is designed
in the context of an engineering material. Specifically, we aim to understand the
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origin of strength and fracture toughness. In the first chapter we have provided an
brief overview of the engineering interest in biological materials. In the second
chapter we investigate the structure of bone a provide a revised hierarchy of human
bone based on new findings. This revised hierarchy serves as a framework for the
mechanical experiments in the thesis. In the third chapter we investigate the site
specific deformation and strength of bone at length scales ∼ 10µm and smaller. In
the fourth chapter we develop an approach for performing fracture on microscopic
specimens and investigate the fracture behavior of bone in its macroscopically
naturally crack arresting or "toughest" orientation. In the fifth chapter we provide a
brief summary of the work presented in this thesis. We also discuss the employing
the new way of thinking about fracture of materials at small length scales as well
as the phenomenological scaling behavior of toughening mechanisms for designing
toughness in synthetic materials.
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C h a p t e r 2

A REVISED HIERARCHY OF TRABECULAR BONE:
NANOSCALE DISORDER

Chapter Abstract
The hierarchical organization of components within bone has been credited with
its remarkable combination of strength and toughness that outperforms those of
its two main nanoscale constituents, hydroxyapatite and collagen. The process by
which these two constituents form what we know at the macroscale as bone is still
unknown. The simple description of the emergent theory is that the polymeric
collagen forms a scaffold for mineralization by the hydroxyapatite. Investigations
into the mineral phase in other biogenic materials like nacre have revealed an
amorphous microstructure in the mineralization stage. It has been proposed that
in human bone, an amorphous mineral serves as a precursor to the formation of
crystalline hydroxyapatite, i.e., bone growth, yet the mechanism for amorphous-to-
crystalline transformation mechanism remains unknown. Here we use Transmission
Electron Microscopy (TEM) to provide direct evidence of 100-300 nm-sized amor-
phous calcium phosphate (ACP) regions. These regions are present in a disordered
nanocomposite phase within the bone located in the nodes of the trabecular network.
When the disordered phase is deprotienated, we observe crystallization within the
ACP. Based on these we present a revised hierarchical structure of trabecular bone.

Adapted from:

Tertuliano, O. A. & Greer, J. R. The nanocomposite nature of bone drives its
strength and damage resistance. Nature Materials 15, 1195–1202 (2016). URL
http://www.nature.com/doifinder/10.1038/nmat4719.
O.A.T performed the experiments, analyzed the data, and developed model and
wrote the manuscript.



6

2.1 Current understanding of bone mineralization in bone
Hard biological solids, such as nacre, dentin, and bone, possess an extraordinary
combination of toughness and strength that has been not fully replicated by existing
biomimetic efforts [11, 14, 15] . Multiple studies suggest that this property ampli-
fication arises from the hierarchical sub-structure —- all the way to the nanometer
level — within the hard biocomposites [10, 16, 17]. At the nanoscale, bone is com-
posed of collagen triple helices mineralized by hydroxyapatite (HA) nanocrystals
[18, 19]. This nanocomposite forms the functional units, ∼ 100 nm-diameter min-
eralized collagen fibrils, which assemble into the lamellar structure of bone [20], as
shown in Figure 2.1c. The lamellae are arranged in various ways to compose the two
distinct types of bone, cortical and trabecular. Cortical bone, the most abundant at
80% of the total bone mass, composes the shaft of all long bones, such as femur (Fig
2.1a), and of shell material in flat bones, such as cranial plates11. The remaining
20% is trabecular bone, which is the highly porous (40-90%) network of beams and
plates confined to the ends of the long bones (Fig 2.1a,b) and between the flatter
bones [14, 21].

Figure 2.1: Revised hierarchy of trabecular bone. a) A cross-sectional schematic
of the lower femoral condyle shows the trabecular structure is confined in spaces
not occupied by cortical bone. b) At the millimeter scale it is composed of beams
and plates while at the microstructural level (c) there is a combination of an ordered
lamellar structure (e) in the beams and a disordered structure (d) at the center of the
nodes, where the beams intersect.

The biomineralization literature to date reveals that crystalline hydroxyapatite (cHA)
is present at the nanometer length scale within the bone hierarchy, yet the mech-
anism for bone mineralization has not been fully understood or postulated [22].
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The presence and function of an amorphous mineral phase at the nanoscale in bone
has garnered much attention in biomineralization research. Amorphous calcium
phosphate (ACP) has been observed in zebrafish bone via transmission electron mi-
croscopy (TEM) and was proposed to serve as a transient precursor to the formation
of nanocrystalline cHA [23, 24]. Solid state nuclear magnetic resonance (ssNMR)
studies provide evidence for a more permanent form of ACP functioning as a distinct
surface domain around a carbonated hydroxyapatite core in bone mineral [25, 26].
These biomineralization studies were conducted by dispersing either bone mineral
or biomimetic apatites in ethanol, which renders determining the relationship be-
tween the amorphousmineral phase and the collagenwithin the bone nanocomposite
ambiguous.

In this chapter, we report site-specific TEM analysis of the human trabeculae and
identify an ordered bone phase in the lamellae and a disordered phase in the nodes
of the trabeculae, which contains an amorphous mineral. We provide electron
diffraction evidence for the direct transformation of biogenic ACP to crystalline HA
with time. Finally we discuss the importance of theses findings in the context of the
structure of bone.

2.2 Preparation of human bone for site-specific TEM
We acquired fresh human trabecular bone from the femoral medial condyle of a
50 year old female donor with no history of bone disease (Articular Engineering).
Pieces of the trabecular structure are cut to ∼ 3x3x3 mm3 samples. The samples are
cleaned with detergent in an agitator for 24 hours at 37o C to remove bone marrow
and the fatty tissue infiltrating the porous trabecular structure. To expose the interior
of the nodes and beams the bone is embedded in polymethylmethacrylate (PMMA)
and polished in 5 steps: diamond lapping paste (9, 6, 3 and 1 µm) and finished
with a 0.05 µm diamond lapping paper. We next evaporate 40 nm of gold on the
polished surface to reduce charging effects in scanning electron microscopy (SEM)
and Focused Ion Beam (FIB) milling.

A TEM lift-out technique is employed to prepare sections for TEM analysis. Using
FIB milling (FEI Versa 3D DualBeam), initial 2 µm thick sections are carved from
the nodes and the trabeculae lamellae, with sections being parallel to the lamellae
orientation. The sections are excised and attached to nanomanipulator using gas
injected Pt deposition. The sections are then attached to a copper grid with Pt
deposition and freed from the manipulator using FIB milling. Once on the grid,
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the sections are FIB-milled to a thickness of 100 nm in 4 steps using the following
voltage and current conditions respectively: 30 kV 1 nA; 20 kV 300 pA; 15 kV 10
pA; 15kV 1.5 pA. TEM is performed on these sections at 300Kv.

2.3 Microstructure of the Ordered and the Disordered Phases
TEM microstructural analysis of the bone reveals two distinct microstructures at
the nanoscale, ordered and disordered. Figure 2.2a shows a lamellar structure with
a preferred orientation of collagen fibrils along the lamellar axis. The periodic
banding structure of collagen with a 67nm pitch is indicated by alternating dark and
light contrast in the image. This banding pattern originates from the overlapping
of collagen molecules during fibrillogenisis (the formation of collagen fibrils); the
banding is thus orthogonal to the fibril alignment. The inset electron diffraction pat-
tern shows the (002) and mixed (112), (211), and (300) diffractions of cHA crystals.
We refer to this general microstructure as the ordered phase. Figure 2.2b shows
TEM micrographs of sections extracted from the nodes of the trabeculae, exposing
a densely entangled arrangement of collagen fibrils. No preferential orientation or
detectable arrangement of the fibrils was observed. The diffraction pattern in the
inset shows weak (002) reflections and a diffuse ring with a calculated spacing, d,
of 2.85 Å, indicative of amorphous calcium phosphate (ACP) [27]. We will refer to
this microstructure as the disordered phase.

2.4 Mineral structure of the ordered and disordered phase
To further probe the microstructure of the mineral within the respective ordered
and the disordered phases of the bone, we deproteinate the trabecular samples in
NaOCl.To deproteinate samples we employed a protocol similar to that described
in [28] . The samples are submerged in a 5% NaOCl solution for 72 hours with the
solution changed at 24 hr intervals and subsequently rinsed in Hanks Buffered Saline
Solution (HBSS). This solution is similar in ionicity and pH to extracellular matrix
that surrounds bone in vivo. Depreotination of the structure was verified via Raman
spectroscopy before and after the NaOCl treatment as show in 2.3. Pre-treatment
Raman analysis shows characteristic PO4

-3 peaks at 438, 589, and 959 cm−1 and a
peak at 1075 cm−1 indicating CO3

-2 substitutions. It also shows amide III, C-H, and
amide I peaks as well as proline and hydroxyproline. After the NaOCl treatment,
these polymer peaks are no longer visible.

Figure 2.4 shows a TEMmicrograph of the deproteinatedmineral phase within a thin
section extracted from an ordered lamella. In the absence of collagen, the ordered
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Figure 2.2: a) Ordered or lamella phase showing arrangement of collagen fibrils
and corresponding electron diffraction pattern illustrating (002) and mixed (112),
(211), and (300) reflections of cHA nanocrystals . b) Disordered composite phase
showing entangled collagen fibrils with lack of preferential orientation or character-
istic banding pattern. The diffuse ring in the diffraction pattern inset indicates an
amorphous mineral (ACP) and less intense (002) reflections of cHA.

microstructure appears to be composed of multiple nanocrystallites; the diffraction
pattern in the inset shows intense (002) reflections, which correspond to crystalline
cHA, identical to those in the untreated sample in 2.2a. The high-resolution TEM
image in the inset of Figure 2.4a reveals the periodic fringes of the crystallites, with
this particular crystal having a spacing of 2.78 Å, corresponding to the (112) planes
of the crystalline hydroxyapatite. Figure 2.4b reveals a combination of amorphous
calcium phosphate and nanocrystalline mineral within the disordered phase. We
identified multiple isolated fully amorphous regions, which span roughly 100 to 300
nm in size. Adjacent to these amorphous regions are nanocrystals, which appear
to be embedded in an amourphous calcium phosphate matrix themselves. The
diffraction pattern from this region shows (112), (211), and (300) reflections from
the embedded crystal corresponding to the cHA, and the HRTEM inset confirms the
atomic scale disorder in the isolated amorphous regions.

To probe the stability of the observed amorphous calcium phosphate in disordered
phase with respect to the adjacent hydroxyapatite nanocrystals, we performed TEM
analysis of the same region after a 30-day time lapse. During the 30 days, the TEM
sample was stored at room temperature in a N2 environment. Figure 2.5a shows
the initial arrangement of ACP (left) and HA nanocrystals (right), as well as the
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Figure 2.3: Raman spectra before and after NaOCl deprotination of bone showing
disappearance of all protein peaks after the treatment.

Figure 2.4: Mineral structure of bone. a) Deproteinated mineral of ordered bone
showing a nanocrystalline microstructure as evidenced by the diffraction pattern and
atomic scale order in theHRTEM inset. b) Deproteinatedmineral of disordered bone
showing ACP structure along with cHA nanocrystals in an ACP structure. (bottom
left). The HRTEM inset shows the corresponding ACP atomic scale disorder and
the diffraction pattern shows the (112) (211) and (300).

diffraction pattern inset showing the crystallinity of the HA. Figure 2.5a shows the
same region after the 30 day incubation period; the HA nanocrystals on the right
appear to have grown, confirmed by the increased (112), (211), (300) intensities in
the diffraction pattern inset; we also observe the emergence of (002) reflections after
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one month, which further proves the formation of crystals. The significance of the
TEM results are now discussed in the following sections.

Figure 2.5: Crystallization of amorphous mineral. Deprotonated mineral structure
in disordered phase taken before (a) and after (b) a 30 day incubation at room
temperature in a nitrogen environment. The electron diffraction pattern after the
incubation (b, inset) shows an increase in crystallinity as evidenced by more intense
HA reflections and the emergence of the (002) spots when compared to the initial
diffraction pattern (a, inset).

2.5 Presence of ordered and disordered microstructure
We observed two distinct phases in trabecular bone, each containing a mineral
and collagen nanocomposite: (1) an ordered microstructure, which composes the
lamellae, and (2) a disordered phase at the center of the nodes. The TEM image of
the ordered phase (Fig. 2.2) shows periodically-arranged mineralized collagen fibril
arrays, consistent with previous structural investigations of the lamellar structure of
bone[20, 29, 30]. The disordered phase is characterized by entangled collagen fibrils
with no preferential arrangement or orientation. Recent studies of the demineralized
collagen network in human cortical and trabecular bone reported the presence of
a similar disordered collagen structure at the interface in ordered phase lamellae
[31, 32]. We demonstrate that this disordered phase is also present in the center
of the nodes of the trabecular network. The specific role of this disordered phase
in biomineralization and structural responsibilities has not yet been unambiguously
established. It was proposed that the disordered phase carries the canaliculi network
[32], which allows communication among osteocytes embedded in the bonematerial
via percolation through the bone structure. Our observations of the disordered
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nanocomposite phase, in conjunction with the previous observations, suggest the
disorder likely permeates throughout the hierarchal structure of the bone: it forms
the intra-lamellar interfaces in cortical and trabecular bone and the nodal cores in the
trabecular network. Its ubiquitous presence suggests that the disordered cHA-ACP
nanocomposite plays a critical role in biomineralization and growth of bone, and
likely in its mechanical resilience. This latter will be thoroughly investigated in
Chapter 3.

2.6 Structure of the mineral in the bone hierarchy
The effect of the collagen scaffold on the mineralization of bone is still under debate
because it has been challenging to replicate relevant in vivo conditions. However this
has become clearer with use of organized, high collagen fibril density biomineral-
ization models [33–35]. Wang et al. suggest that a 3-dimensional periodic structure
of collagen fibrils, with its characteristic gaps and overlaps providing space to ac-
commodate new material, is instrumental for the mineralization of fibrils by cHA
in vitro. Our TEM results show that in the ordered phase, the collagen scaffold is
periodically arranged and contains visible gap and overlap regions, predominantly
mineralized by nanocrystalline hydroxyapatite. In contrast, in the disordered phase
we observe a densely entangled collagen scaffold that contains both amorphous
calcium phosphate as well as hydroxyapatite. The lack of a banding pattern contrast
in the disordered phase, shown in Figure 2.2b, suggests that the mineral is located
uniformly within the collagen scaffold, even when the fibrils are not periodically
arranged. This contrast also suggests the mineral is not mainly concentrated in the
gap regions as in the ordered lamellar bone. A similar disappearance of the banding
pattern observed in the in vitro biomineralization models has been attributed to a
higher degree of mineralization of fibrils [36, 37]. This would substantially reduce
the diffraction contrast between the gap and overlap regions in the fibril structure.
Our TEM observations of the contrasting biogenic minerals in ordered and disor-
dered collagen scaffolds support the conjecture that an ordered fibril structure array
may govern the mineralization process.

2.7 Summary and Outlook
The TEM analysis presented in this chapter revealed the presence of a disordered
phase in distinct locations in the trabecular network. We also found that the mi-
crostructure within the mineral in the disordered phase contains a mix of amorphous
calcium phosphate regions and nanocrystalline hydroxyapatite. This enables an ad-
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dendum to our understanding of the microstructure of bone. In Figure 2.1, which
illustrates a femoral condyle at the macroscale, we show a porous trabecular network
at the mesoscale, a lamellae and nodal structure at the micron scale, an ordered col-
lagen/cHA in the lamellae, and now also disordered collagen/ACP/cHA in the nodes
at the nanoscale. These findings enhance the existing understanding of trabecular
bone hierarchy reported by [32]. This description of the hierarchical structure of
bone serves as the basis for the mechanical investigations in the following chapters.

The contribution of the 3-dimensional fibril organization to the process of min-
eralization in bone appears to be of interest to the biomineralization community
[28, 35, 36, 38]. One current hypothesis of the collagen mineralization mechanism
is that the ordered fibrils give rise to the nanocrystalline mineral structure currently
observed in bone [35]. The TEM analysis presented in this work enhances the
current state of the art by implying that disordered fibrils may give rise to a mix
of amorphous and crystalline mineral (i.e., disordered fibrils may play a role in
stabilizing ACP). This is a meaningful observation in real bone that also poses the
question of how disordered bone forms i.e/, what is the role of cells in fibrillogenesis
of disordered fibrils.
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C h a p t e r 3

MICRO- AND NANOSCALE DEFORMATION AND STRENGTH
OF BONE

Chapter Abstract
The stiffness and strength of bone tissue are generally described to stem from the
properties of its main constituents, the inherently nanoscale collagen and hydroxya-
patite. Yet little has been done to understand the isolated deformation behavior of
bone at these relevant length scales. In this chapter, nanomechanical experiments
on cylindrical samples (3000 to 250 nm in diameter) of the bone’s ordered and dis-
ordered phases revealed a transition from plastic deformation to brittle failure and
at least a factor-of-2 higher strength in the smaller samples. We postulate that this
transition in failure mechanism is caused by the suppression of extrafibrillar shear-
ing in the smaller samples, and that the emergent smaller-is-stronger size-effect is
related to the sample-size scaling of the distribution of flaws. Our findings should
elucidate the multiscale nature of bone strength.

Adapted from:

Tertuliano, O. A. & Greer, J. R. The nanocomposite nature of bone drives its
strength and damage resistance. Nature Materials 15, 1195–1202 (2016). URL
http://www.nature.com/doifinder/10.1038/nmat4719.
O.A.T performed the experiments, analyzed the data, and developed model and
wrote the manuscript.
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3.1 Intro
The introductory chapter described that strength and toughness of materials are
classically deemed as inversely related, but hard biogenic materials like bone and
nacre are reported to mitigate this conflict at the macroscopic tissue level [1]. It
is suggested that this damage tolerance — the combination of high strength and
toughness - in natural materials arises from their complex hierarchical sub-structure
— all the way to the nanometer level [10, 16, 17]. This is in part because the damage
tolerance of bone outperforms that of collagen and hydroxyapatite: its fracture
toughness is at least an order of magnitude higher than that of either constituent,
and its reported macroscopic failure strength varies with mineral volume fraction in
a manner that is not yet described by simple composite models [39]. These points
suggest that understanding the collagen and mineral interplay in bone is integral
to understanding its mechanical response. To date, most research efforts on the
mechanical properties of bone have primarily focused on its macroscale response
and have been unable to decouple the hierarchical structural response from amaterial
level deformation. Thus a mechanistic understanding of how bone deforms and fails
at the length scale of its fundamental constituents remains elusive.

While toughness of bone has been generally reported to arise from the complex
multi-scale hierarchy (subject of Chapter 4), its relatively high strength and stiffness
are linked to the nanoscale spacial arrangement of collagen and hydroxyapatite
[40, 41]. In trying to explain these enhanced mechanical attributes, the existing
nanoscale composite deformation models are based on the assumption of an ordered
model of HA crystals and collagen [41]. A popular model for describing the
composite nature of collagen and HA involves considering minerals embedded in
a collagen matrix as follows: minerals are arranged in a staggered motif within the
collagen matrix; the minerals are rigid and rigidly bonded to the collagen matrix;
tensile stress of the tissue accommodated by shearing of the collagen matrix that
is located between the embedded mineral. this shearing transmits stress to rigid
mineral. This model suggests a continuum model of bone in which the elemental
unit is not a mineralized collagen fibril but instead a composite of collagen and HA;
is consequentially is unable to account for extrafibrillar mineralization as well as a
disordered nanocomposite previously described in this thesis. In Chapter 2 we used
our TEMfindings of disorder at the nanoscale to expand on the previously understood
hierarchical structure of bone. The recently discovered presence of amorphous
calcium phosphate in the sub-lamellae length scales calls for a re-evaluation of
these models, especially in understanding the contribution of amorphous calcium



16

phosphate (ACP) and other microstructural components to the mechanical response
of the bone, i.e., its strength and failure mechanism, at each characteristic length
scale.

In this chapter, we report the size-dependent deformation behavior of bone under
compression. We fabricated cylindrical micro- and nano-pillars with diameters of
250 to 3000 nm from each phase, ordered and disordered, using Focused Ion Beam
(FIB) and performed dry uniaxial compression experiments using the methodology
commonly used to probe nanoscale mechanical properties of rigid solids [42, 43].
Our experiments revealed a ductile-to-brittle transition and a higher strength form
the micro- to the nanoscale in both phases. We found the elastic modulus of the
disordered phase, measured via nanoindentation, to be 1.3 times higher than that of
the ordered phase. We developed a stochastic model, which treats the existing flaws
in sample morphology, i.e., pores, as stress concentrators in initiating yielding and
deformation, which quantitatively captures the emergent size effect. We discuss the
increase in the yield stress at smaller sample dimensions, observed in both ordered
and disordered phases, in the framework of this model.

Performing nanomechanical experiments on bone
FIB milling is employed to fabricate cylindrical micro- and nano-pillars for uniaxial
compression experiments. In the nodes and beams of the untreated trabecular
architecture, concentric annuli of decreasing diameter are milled using decreasing
beam currents. Using an accelerating voltage of 30kV, the annuli were milled at
5000, 1000, 100, and 10 pA. A 1pA final cleaning cut was used for the 500 and
250 nm pillars. We fabricate pillars with nominal diameters of 3000, 2000, 1000,
500, and 250 nm (N=5 for each) with length to diameter aspect ratios of 3 to 1 to
eliminate buckling and edge effects in the compression data. This process is shown
on a 250 nm pillar in Figure 3.1 and Supplemntal Video 1. Samples fabricated from
the ordered phase were made so the pillar axis is orthogonal to the lamellae; the
fibril orientation in the nano-pillars made from the disordered phase was inherently
random.

Compression experiments were performed on dry pillars with a 10 µm diamond
flat punch tip in an Agilent G200 Nanoindenter. A quasi static strain rate of 10-3

s-1 is used on all pillars to eliminate strain rate dependence that could arise from
viscoelastic properties of collagen. The uniaxial compression experiments allow us
to measure load (p) and displacement (d) and convert those to stress (σ) and strain
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Figure 3.1: Fabrication of bone nanopillar via FIB milling- a-d show the evolution
of the pillar as wemake smaller concentric cuts using the FIB at decreasing currents.
The final cleaning cut is done at 10 pA.

(ε) using the simple engineering relations σ = p/area and ε = (h0 − d)/ho. Here
the area refers to the cross sectional area of the pillar and and ho is the original
height of the pillar. Yield strength is measured via the 0.2% offset method. The
elastic portion is taken as the strain prior to this yield while plastic strain is strain
after this yield.

We used nanoindentation to measure the elastic modulus of each phase. A diamond
Berkovich tip is used to perform indentation experiments on polished surface. This
technique also allows measurement of load vs displacement; however, the stress
state is no longer generally uniaxial as in the compression experiments. Hertzian
contact mechanics solutions for axis-symmetric indenters into elastic half-spaces
serve as the bases for extracting the elastic response from the load vs displacement
data [44]. We use the well established Oliver and Pharr methodology for an elastic
solid [45]. In this context the elastic modulus is defined in 3.1. Here E and Ei are the
elastic moduli of the material and indenter, respectively, while Er is the reduced or
effective modulus of the contact in the experiment. Additionally S is the unloading
stiffness from the load vs displacement response, A is the area of the contact, and β
is a correction factor for indenter tips that are not perfectly axis symmetric; this is
generally around unity (∼ 1.07 for a Berkovich).
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3.2 Nanomechanical Response of Ordered and Disordered phases
Figure 3.2 shows representative pre- and post-compression images and stress vs.
strain data for 3000, 500, and 250 nm-diameter pillars. In the ordered phase, the two
largest pillars, with diameters of 3000 and 500 nm, failed via shear offsets with an
average shear angle of 46.6± 7.8owith respect to the loading orientation (Fig.3.2a,b),
and the 250 nm-diameter sample catastrophically collapsed (Fig.3.2c). As show in
Figure 3.3, the stress vs. strain data of the 3000 nm samples is characterized by
an initial linear elastic response followed by yielding and plastic flow region where
most of the shear-off processes occurred. The 500 nm-diameter samples exhibit
similar features, with more abrupt shearing events. The data for the smallest, 250
nm-diameter pillars displays linear elastic behavior to failure via brittle fracture. We
determined averages and standard deviations of the characteristic yielding strengths
of these samples to be 327 ± 20 MPa for 3000 nm samples at 5.1 ± 0.9% strain, 247
± 32 MPa for 500 nm samples at 3.4 ± 0.8% strain, and 591 ± 91 MPa for 250 nm
samples at 6.7 ± 0.5% strain.

In the disordered bone, we measured the characteristic strengths of 313 ± 8 MPa at
4.1 ± 0.3% strain, 320 ± 20 MPa at 4.7 ± 1.4 % strain, and 658 ± 160 MPa at 4 ± 1.9
% strain, for the same respective diameters. Post-compression images of the 3000
nm samples, shown in Figure 3.2d, reveal that failure occurred via a shear offset at
44.0 ± 1.2o. The two smallest-sized samples, with diameters of 500 nm and 250
nm, displayed failure that likely initiated at the pores (Fig. 3.2f,e). Characteristic
strength vs. pillar diameter for ordered and disordered pillars is plotted in Figure 3.4.
We observed higher characteristic yield strengths with decreasing pillar diameter
and compared with bulk (3000nm) in both microstructures; the disordered bone
strength increases by a factor of 2 and the ordered one by a factor of 2.4 from the
500 to 250 nm diameter samples. The elastic loading slope in the compression
experiments may be misleading because it is sensitive to the typical experimental
artifacts associated with this methodology, like slight misalignment between the
nanoindenter tip and the pillar and/or the compliance of the substrate [42]. To
reduce susceptibility to these issues, we used nanoindentation to measure the elastic
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Figure 3.2: Deformation of Ordered and Disordered pillars. a-e) Pre- and post-
compression (left and right, respectively) of ordered (a,b,c) and disordered (d,e,f)
pillars showing samples exhibiting distinct failure modes: shearing in a,b,d) and
brittle failure in c,e, and f)

modulus of each phase, which was 16.3 ± 1.5 GPa for the ordered phase and 21
±1.8 GPa for the disordered one. We now discuss the relevance of these mechanical
results in the following sections.

Figure 3.3: Characteristic stress vs. strain responses of the ordered a) and disordered
b) 3000, 500 and 250 nm pillars
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Figure 3.4: Yield strengths across pillar diameters. Both the ordered and disordered
samples exhibit size independent yield strengths up until the nanometer regime in
which there is a dramatic increase in strength.

3.3 Deformation and stiffness in ordered and disordered phases
SEM images of the compressed samples, shown in Figure 3.2 (a,b, and d), suggest
that failure occurred via a series of shear events in the samples with diameters of
3000 nm down to 1000 nm in the disordered phase and over the same range of sizes
down to 500 nm in the ordered phase. The corresponding stress vs. strain data shows
that both phases displayed linear elastic loading followed by ductile deformation,
with plastic (inelastic in the case of bone) strains up to 5.1 % in the ordered bone
and 6.3 % in the disordered bone. All 250 nm-diameter nano-pillars displayed
a linear elastic response up to brittle failure regardless of microstructure. The
deformation mechanisms of bone vary throughout its hierarchy; to date, isolating
those active at the smallest relevant scales has proven challenging. Gupta et al.
conducted small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction
(WAXD) measurements of the local strain within bone tissue during in situ tensile
experiments and found that the strain within the collagen fibrils remained constant
after the yield point of the bone tissue. These authors proposed inter-fibrillar sliding
through shearing of the extra-fibrillar matrix as the mechanism of inelasticity in
nanoscale bone [46–48]. Recently compression experiments of 500 nm-diameter
bone micro-pillars were able to isolate lamella scale deformation, showing shearing
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occurs at this level [49]. The dominant deformation mechanism of shearing in
the 3000 - 500 nm diameter micro-pillars found in the present study is consistent
with this literature. Adding to the existing state of knowledge, we postulate that
the ductile to brittle transition from micro- to nano-pillars can be interpreted as
an extension of the previously reported deformation mechanisms to the nano-scale
regime, where dimensional reduction suppresses inter-fibrillar sliding.

The change in the mechanical response in ordered bone when sample size is reduced
from the micro- to nano-scale hints at a transition in the deformation mechanism
from inter-fibrillar sliding in 3000 - 500 nm diameter pillars, which accommodates
shear strains, to brittle failure of mineralized fibril in the 250 nm-diameter ones.
We propose this mechanism to be as follows: as the pillar size decreases from
3000 to 250 nm, the average number of mineralized collagen fibrils spanning the
diameter decreases from 30 to 2.5, assuming a collagen fibril diameter of 100
nm. This reduces the number of possible inter-fribrillar sliding events by an order
of magnitude and substantially reduces the amount of inelastic strain it is able to
accommodate. As a result, the mineralized collagen fibrils in the 250 nm-diameter
pillars are elastically strained to failure. This deformation mechanism explains the
change in failure mode from shearing to brittle fracture in the ordered bone. Our
results demonstrate that the deformation of bone depends on the sample size down
to the fibril level at the nanoscale in dry, ordered bone.

The deformation of isolated disordered phase of the bone has not been reported.
The results of this work demonstrate similarities in the mechanical response of the
3000 mm-diameter samples extracted from the ordered and the disordered phases
of the bone (Fig. 3.3a,b), which suggests the shearing of the extra-fibrillar matrix to
be the dominant microscale inelastic mechanism in both phases. The extra-fibrillar
matrix is composed of non-collagenous proteins and extra-fibrillar mineral and is
reported to serve as a “glue” between the mineralized fibrils [19]; this would lead to
a similar contribution in the microscale deformation in the ordered and disordered
phases, consistent with the results observed here.

The nanoscale mechanical response between the two phases is similar in post-elastic
deformation but varies in the elastic regime. We observed a higher linear elastic
loading slope of 18 ± 2.4 GPa in the 250 nm-diameter disordered samples, compared
with 8.9 ±1.3 GPa for the 3000 nm-diameter pillars. This difference is significant
and likely not related to the experimental artifacts because the loading slopes of
the samples fabricated from the ordered phase were 8.9 ±1.1 GPa, sampled over 6
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pillars of all sizes, similar to those of the larger disordered bone pillars. We attribute
this difference in the elastic modulus between the two phases, which emerges at the
nanoscale, to the amount of mineralization within the fibrils; by rule of mixtures,
the more mineralized the fibril, the stiffer the sample. We can recall results from
Chapter 2 to expand on this.

TEM images in Figure 2.2 a,b reveal that the contrast caused by the periodic ar-
rangements of the mineralized collagen fibrils is not present in the disordered phase;
In Chapter 2 we proposed that this absence of striations is caused by the higher
degree of mineralization of the disordered fibrils, similar to previous observations
of highly mineralized ordered fibrils [35, 36]. In the compression experiments,
the suppression of the extra-fibrillar deformation in nano-sized samples results in
the straining of the fibrils, and the stiffer elastic response. Our nanoindentation
measurements performed on the surface of each phase revealed an elastic modulus
of 16.3 ± 1.5 GPa for the ordered bone, which is consistent with reported values for
dry lamella bone via nanoindentation [49, 50] , and 21.0 ±1.8 GPa for the disordered
one, which indicates that the disordered phase is 30% stiffer than the ordered one.
The compression experiments indicate the disordered phase is 50% stiffer. The
absolute value of the elastic loading slope in any nano- or micro-pillar compression
data should be taken judiciously because it is subject to errors caused by minor mis-
alignments between the indenter-pillar interface and imperfect contact. For example
all measurements of elastic modulus made via pillar compression were lower than
those made via nanoindentation (i.e 8 vs 16 GPa for the disordered phase). The
disparity in stiffness between the ordered and disordered phases is apparent based
on both types of nanomechanical experiments. Along with the TEM analysis from
Chapter 2, these findings suggest that the fibrils in the disordered phase are stiffer
than those in the ordered one, likely caused by a higher degree of mineralization.

3.4 The effect of microstructure and size on strength
The stress vs. strain data shown in Figures 3.3 demonstrate that the yield strengths
of all micro-pillars with diameters of 500 to 3000 nm are nearly equivalent for both
underlying microstructures, ordered and disordered. An increase in yield stress
occurs when the pillar diameter is reduced from the micro- to the nano-scale in both
phases. The ordered phase shows a 2.4-fold increase in strength for samples with
250 nm diameter compared to those of 500 nm diameter, and the disordered phase
shows a 2-fold increase for the same respective size comparison. We determined
the average strength of the disordered phase to be 10% higher than of the ordered
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one at the nanoscale; their mean values agree within error. Our measurements
of strength in the ordered phase are consistent with the micro-pillar compression
studies of cortical lamellar bone, which report strengths ranging from 300 to 490
MPa depending on the anatomical orientation of the pillar[49]. Those authors also
reported a strength increase from the macro- to micro-scale, but the strength of bone
at the lowest level of hierarchy, the nano-scale, and its relation to strength at larger
scales has not been reported. The nano-pillar compression experiments in this work
uncover the “smaller is stronger” size effect present down to the nano-scale.

Figure 3.5: Surface flaws as points of initiation of failure

We postulate that this micro- to nano-scale size effect can be connected with the
initiation of deformation. The similarity in size effect in both phases points to
similar mechanisms for the initial yielding event, which initiates at a flaw or pore.
Figures 3.5a-c show SEM images of the cross-sections of a compressed disordered
3000 nm-diameter pillar at lateral depths of 250, 750, and 1500 nm into the pillar
to facilitate tracking the failure plane throughout the pillar; this is also available as
Supplemental Video 2. We observe that an incipient crack becomes discontinuous,
or bridged, when the cross-section sweeps from 250 to the 750 nm into the pillar
and is only visible near the surface of the pillar at the 1500 nm section. Based on
these post-mortem observations, we hypothesize that failure and deformation during
compression initiate at the surface flaws, and the size effect emerges from the lower
probability of having these critical flaws in the smaller samples.

3.5 Estimating sources of stress concentration
We propose that the yield strength, σyield , decreases as the probability of having
a flaw (i.e., a pore) on the pillar surface increases; that is, surface flaws serve as
probabilistic stress concentrators, which initiate failure during compression. This is
manifested most prevalently in the larger pillars, with diameters > 500 nm. At these
nano and micro length scales, it is reasonable to consider bone as a fiber-reinforced
composite; hence we should also consider microstructural stress concentrations,
i.e. ones that arise from stiff fiber reinforcements in a more compliant matrix. To
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quantify these effects and to capture their effect on the observed size dependent
strength, we calculate the stress concentrations for two different representations of
bone: 1) we model the ordered and disordered phases as fiber-reinforced composites
to evaluate the stress concentrations that arise from stiff fibers and 2) we consider
the small-scale samples as a homogeneous continuum medium with randomly dis-
tributed pores to evaluate the stress concentrations caused by surface flaws, i.e.,
pores. We then compare the stress concentrations from each of these components
and employ the strongest stress concentrator to quantitatively describe the emergent
size effects in ordered and disordered phases of bone.

Although the main result is the surface flaws serve as the strongest stress concen-
trator (which is used in the section 3.7), we first discuss the bone in following
subsections as a simple unidirectional fiber composite and extra parameters relevant
to understand how stress may be concentrated due to elastic heterogeneity at the
nanometer substructure.

Stress Concentration from fibers
The stress concentration factor that arises from the stiff fiber reinforcements in a
composite, k f , can be represented as

k f =
1 − φ f

(
Em

E f

)
1 −

(
φ f

φ f max

) 1
2
(

Em

E f

) (3.2)

where φ f is the volume fraction of the fibers, φ f max is the close-packing fraction
of the fibers based on the assumed packing configuration of the fibers (i.e., hexag-
onal, square, random), and Em and E f are the matrix and fiber elastic moduli,
respectively[51] . Equation 3.2 is only valid for the cases when the fibers are stiffer
than the matrix. To employ this principle, we must first define the functional fibril
and matrix in the bone composite. The gap and the overlapping regions within the
collagen fibril structure, shown and labeled in Figure 3.6a, have been reported to
contain some amount of mineral [36, 41]. This gives rise to a mineralized fibril
structure, for which we use the subscript "MF" in our model construction. The
mineral that is located externally to the fibril can be tightly bound to the surface
of the MF [29] , which gives rise to a coated mineralized fibril, here referred to as
"CMF". This external fibril could otherwise be a part of the extrafibrillar matrix,
which we refer to as "EFM" . The CMFs have been experimentally observed in bone,
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bridging sheared regions in [49] and on failure surfaces [52]. Those experimental
observations both suggest that it is important and relevant to calculate the stress
concentration due to CMFs, kCMF .

Figure 3.6: Fibrils diagrams. a) Hexagonally arranged ordered fibrils with MF radii
rM F and some spacing s. B) Schematics of the MF and CMF models showing a
Reuss, or series, model of the stiffness contributions from the mineral, collagen, and
NCPs.

To date, we have not been able to find any literature that reports the elastic properties
or volume fractions of CMFs or the complementary EFM; this is likely due to the
difficulty of isolating these constituents in experiments and the lack of consensus on
the spatial distribution of bone mineral in models and computational efforts. The
exact spatial distribution of mineral (intrafibrillar vs extrafibrillar) in bone is still
under debate in the literature, ranging from 30% to 75% of the total mineral being
extrafibrillar [38, 53]. The amount of extrafibrillar mineral bound to the surface of
the fibril has received little attention [54] . Most elastic models of bone at these
nano- and micro- length scales do not take into consideration extrafibrillar miner-
alization [41, 55]. Those that do assume some initial extrafibrillar vs intrafibrillar
mineral distribution [54, 56] without a true mechanical basis. Understanding the
spatial distributions of bone constituents at these length scales is necessary for cal-
culating kCMF .We calculate kCMF without assuming an initial mineral distribution
by modeling bone as a fiber-reinforced composite in two stages: 1) aMFmodelwith
MFs contained in an EFM, composed of non-collagenous proteins(NCPs), mineral,
and pores, and 2) a CMF model, in which some mineral from the MF’s model
EFM is tightly bound to the surface of the CMF, i.e., the initial MF is grown into a
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stiffer CMF by effectively absorbing mineral from the EFM. These two models are
illustrated in Figure 3.6.

We use the MF model to determine the volume fractions of each fundamental
constituent, i.e., collagen, mineral, and non-collagenous proteins (NCPs), as well
as the extrafibrilar vs intrafibrillar distribution the mineral. We accomplish this
by using the elastic moduli measured in our experiments as constraints for the
eigenstress (Ruess) elastic model of the composite. Next, we re-allocate the mineral
from the EFM to the MF to "create" a stiff CMF in a more compliant EFM, which
allows us to calculate kCMF

MF model

The ordered phase composite is depicted as hexagonally arranged fibrils in the EFM,
similar to the arrangement assumed by Nikolov and Raabe (ref [54] and Fig. 3.6a).
Then, the elastic modulus of the overall composite in terms of the elastic properties
of the MF and the EFM is

EMFmodel =

(
φMF

EMF
+

1 − φMF

EEFM

)−1
(3.3)
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Here Ecoll , EMin, and ENCP are the elastic moduli of the collagen, mineral, and
non-collagenous proteins, respectively.

To account for the porosity in the composite models, we assume that all pores are
located in the extrafibrillar space as opposed to within the fibers; the prefactor in
Equation 3.5 accounts for a reduction of EEFM caused by the volume fraction of
pores in the EFM, φEFM

pores. This fraction can be determined from the total volume
fraction of pores, φpores , measured in our experiments. The pore volume fraction
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is measured by analyzing focused ion beam enabled tomographic SEM images of
bone pillars. More detail on this process is available in Section 3.7.

To calculate φMF , we note that in a hexagonal array of fibers, the relative fraction
of the matrix as a function of the spacing between the fibers, s , is given by

φEFM
pores =

φpores

φEFM
(3.6)

φEFM = 1 − φMFφEFM [s] = 1 −
2πr2

MF

3 1
2 (2rMF + s)2

(3.7)

where φMF is the volume fraction of MFs. The average radius of the pores is some
linear fraction, x, of the spacing between fibrils, so we can relate s and x through:

x [s] = s − ssolid

2rpores + ssolid
(3.8)

Here, ssolid is the extrafibrillar linear spacing if no pores were present; we assume
ssolid to be ∼ 12 nm based on [54] and rpores is 20.8 nm, measured in this work for
the ordered phase. It is reasonable to assume that the linear fraction of the pores can
be related to their volume fraction in the EFM through x3 ∼ φEFM

f law , which allows
us to calculate s = 36.5nm , φord

EFM = 0.51 and φEFM
f law = 0.096 for the ordered phase.

For the disordered phase, the hexagonal geometrical argument is not applicable, but
by constraining the pores to the EFM as described earlier, we can assume that φEFM

scales with φpores ; that is φEFM
pores is constant across both phases. To calculate the

fraction of EFM in the disordered phase, φdisord
EFM , we scale φord

EFM by the ratio of
pore volume fractions in the two phases 3.9, resulting in φdisord

EFM = 0.63 .

φdisord
EFM =

φdisord
pores

φord
pore

φord
EFM (3.9)

Next, we can resolve the remaining volume fractions from Equations 3.3-3.5 in
terms of the fraction of total mineral that is extrafibrillar, as φMin

EF . In this context,
the fraction of the mineral that is intrafibrillar is simply

φMin
IF = 1 − φMin

EF (3.10)
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To determine the total mineral volume fraction, φMin, we define the total intrafibrillar
mineral fraction, φMinIF in two ways:

φMinIF = φMFφ
MF
Min

= φMinφ
Min
IF

(3.11)

where φMF
Min is the fraction of the MF that is mineral and φMin

IF is the fraction of
the total mineral that is intrafibrillar (note φMinIF and φMin

IF are not equivalent).
Equating the parts of Equation 3.11 , we get

φMin =
φMFφ

MF
Min

φMin
IF

(3.12)

Using similar relations for the EFM, we can solve for the fraction of EFM that is
mineral, φEFM

Min

φMinEF = φEFMφ
EFM
Min φMinEF

= φMinφ
Min
EF φ

EFM
Min

=
φMinφ

Min
EF

φEFM

(3.13)

With this series of relations dependent inherently on φMin
EF , all variables that define

EMFmodel can be solved for. The main assumed parameter in the MF model is the
fraction of the MF that is mineral. We physically use this as a constraint as it is this
is that is the amount of mineral that a MF can internally accommodate. We assume
this to be ∼ 0.42 as analytically calculated by Jäger and Fratzl [41] and corroborated
by Nair et al. [55] via molecular dynamics simulations. We tabulate the elastic
properties of the fundamental constituents, Ecoll , EMin , and ENCP , as well as
other assumed parameters, used in the calculations presented here in Table 3.5.
We account for the anisotropy in the elastic contributions of collagen and mineral
by using the transverse orientation values of Ecoll and EMin , respectively, for the
ordered phase. For the disordered phase we use the mean values of the transverse
and axial Ecoll and EMin

Using Mathematica, the system of equations is solved for both the ordered and
disordered phase by setting EMFmodel equal to their respective mean elastic moduli
as measured in this work via nanoindentation, 16.3 GPa for ordered, and 21.0 GPa
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for disordered(See Section 3.2). It is important to note that the eigenstress model
formulation above accounts for porosity by effectively reducing the EMin and ENCP

contributions to EEFM (Eq. 3.5) but the flaw volume fraction is initially not an
inherent part of φEFM . We account for this by adjusting the volume fractions, as
shown in Appendix A. The final resulting volume fractions and distributions are
reported in Table 2 for both phases. We calculate that ∼ 68.8% of the mineral is
extrafibrillar in the ordered phase and 77.9% in the disordered phase. This falls in
line with the literature that suggests most the mineral is located outside the fibril
[53, 57]. Although this model only considered dry bone, it is noteworthy that the
φMin

EF is just the percentage of total mineral fraction φMin that is outside the fibril and
thus could remain constant even if φMin decreased by introducing water.

Parameter Description Value Reference
φMF

Min fraction of MF that is mineral 0.42 [41]
φMF

Col fraction of MF that is collage 0.58 [41]
φpores fraction of bone that is porous ord,disord 0.58 present study
rMF[nm] radius of MF 50 [29]
r f laws[nm] average radius of flaws {ord, disord} {20.8,18.6} present study
ssolid non-porous linear spacing between ordered MF 12 [54]
EMin[GPa] elastic modulus of mineral {100,128} [54]
Ecoll[GPa] elastic modulus of dry collagen {7.5,10.65} [58, 59]
ENCP[Gpa] elastic modulus of non-collagenous proteins 1 [54]
Eord[Gpa] elastic modulus of ordered phase 16.3 present study
Edisord[Gpa] elastic modulus of disordered phase 21 present study

Table 3.1: MF and CMF model parameters

Variable Description Ordered Disordered
φMin fraction of tissue that is mineral 0.655 0.710
φColl fraction of tissue that is collagen 0.282 0.217
φNCP non-collagenous protiens volume fraction {ord,disord} 0.013 0.013
φMF mineralized fibril volume fraction 0.486 0.374
φCMF coated mineralized fibril volume fraction {ord, disord} 0.794 0.640
φEFM extrafibrillar matrix volume fraction {MF,CMF} {.541,.206} {0.626,0.360}
φMin

EF fraction of mineral that is extrafibrillar .688 .779
φMin

IF fraction of mineral that is intrafibrillar .312 .221
φEFM

Min fraction of EFM that is mineral {MF,CMF} {0.878,0.84} {0.883,0.866}
φEFM

NCP fraction of EFM that is NCP {MF,CMF} {0.026,0.064} {0.021,0.038}
φEFM

pores fraction of EFM that is pores {MF, CMF} 0.096 0.096
kCMF stress concentration factor 1.09 1.08

Table 3.2: Results of MF and CMF models
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Stress Concentrators from CMF model

Recalling that a the stress concentration factor (Equation 3.2) in this context is only
valid when the reinforcing fiber is stiffer than the matrix. With this in mind, we
formulate the CMF model by increasing the volume fraction of the mineral in the
MF. This is done by taking the contribution of the mineral from the extrafibrillar
matrix (EFM) and reallocating it to the surface of the new CMF (Figure 3.6a). This
results in increasing the stiffness of the fibril with respect to the EFM; because the
volume fractions of the fundamental constituents are constant from the MF to the
CMF model, the two model are equivalent in terms of the elastic properties of the
composite, EMFmodel = ECMFmodel . Similar to the MF model, we define the elastic
modulus of the CMF composite as

ECMFmodel =

(
φCMF

ECMF
+

1 − φCMF

EEFM

)−1
(3.14)

where the elastic modulus of the CMF unit and EFM, ECF and EEFM are represented
as

ECMF =
©«
φCMF

Coll

EColl
+
φCMF

MinIF

EMin
+

1 − φCMF
Col − φ

CMF
MinIF

EMin

(
1 − φEFM

f laws

) ª®®¬
−1

(3.15)

and

EEFM =
(
1 − φEFM

f laws

) (
φEFM

Min

EMin
+

1 − φEFM
Min

ENCP

)−1

(3.16)

The first and second terms in Equation 3.14 are the fractions of the CMF that are
collagen and internal mineral, respectively, defined as

φCMF
Coll = φ

MF
Coll

(
φMF

φCMF

)
(3.17)

φCMF
MinIF = φ

MF
Min

(
φMF

φCMF

)
(3.18)

The third term in Equation 3.15 reflects the contribution of the mineral on the
external surface of the fibril to the CMF stiffness. As explained in the MF section,
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we have restricted porosity to the extrafibrillar matrix. The elastic modulus of the
mineral is adjusted for this porosity in the third term.

The remaining mineral in the tissue composes a fraction of the EFM, φEFM
Min ; this is

given by

φEFM
Min =

φMin −
(
1 − φCMF

Coll

)
φCMF

1 − φCMF
(3.19)

where the term
(
1 − φCMF

Coll

)
φCMF is the fraction of tissue that is mineral and part

of the CMF, with 1 − φCMF = φEFM

In a similar fashion to the MF model, the unknown fractions can be solved for in
terms of one unknown, in this case φCMF . In order to calculate a physically valid
stress concentration factor in this the CMF context, we determine φCMF such the
CMF that is stiffer than the EFM in Figure 3.6. We plot ECMF , EEFM , and EOrdered

(Fig 3.5a)or EDisordered (Fig 3.5b) as functions of φCMF for φMF ≤ φCMF ≤ φ f max .
This range physically represents the limits of φCMF from the no reallocated mineral
fraction of CMFs up to the fiber close-packing fraction CMFs. We also plot kCMF ,
the stress concentration caused by CMFs as a function of φCMF . In the context of
this CMF model, the physical lower bound for φCMF is the fraction at which ECMF

and EEFM are equal and the upper bound is the close-packing fraction of the fibers;
this range is shaded and labeled as the kCMF -valid region in Figure 3.5. For both
ordered and disordered phases, kCMF only deviates from linearity with respect to
φCMF near the upper bound of the region; we take the average φCMF in this region
and calculate kCMF to be 1.09 for the ordered phase and 1.08 for the disordered.
These results are recorded in Table 3.5. We now compare these values to the stress
concentration that arises from the pores (surface and internal) calculated in the next
section.

Stress concentration form flaws
We can define the stress concentrations that arise from the internal flaws as kinternal

and those from surface flaws as ksur f ace . If we simplify the flaws to be round pores
in an isotropic continuum, we can approximate kinternal as the stress concentration
due to the internal spherical voids in a continuum body given by Timoshenko and
Goodier [61] as
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Figure 3.7: Elastic Properties of CMF model. a,c) Show the elastic modulus
of the CMF, EFM, and corresponding, composite ordered (a) or disordered (c).
The composite moduli are constant because an increase in φCMF corresponds to
reallocated mineral from the EFM to the CMF, thus the overall composite properties
do not change. The plots are shown with the lower bound of φCMF corresponding to
φMF and the upper bound corresponding to the close packing of the fiber, 0.9069 for
hexagonally close packed and ∼ 0.72 for disordered fibers [60]. b,d) Show the stress
concentration kCMF due to the CMF. The shaded region, showing where kCMF is
valid, has a lower bound at the fraction at which ECMF and EEFM are equal and an
upper bound at the close packing fraction.

kinternal =
27 − 15ν
2 (7 − 5ν) (3.20)

where ν is the Poisson’s ratio. Taking ν = 0.3 for bone [62], we calculate kinternal

to be 2.05. With a similar assumption of circular pores in an isotropic continuum,
we can approximate an upper bound for ksur f ace as the stress concentration of a hole
on the side of a plate, given by Inglis [63] as

ksur f ace = 1 + 2
a
b

(3.21)

where a and b are the major and the minor axes of an ellipse. In this context they
are approximated as equal and we calculate ksur f ace = 3.00
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3.6 Comparison of stress concentrators
To recapitulate, we calculated the stress concentrations that arise from each relevant
contribution in small-scale trabecular bone samples: the stiff fiber reinforcements
in ordered and disordered phases , kCMF = 1.09 and 1.08 , respectively, the internal
flaws kinternal = 2.05 , and the surface flaws, ksur f ace = 3.00 for both phases. This
shows that the strongest stress concentrators in the system are the surface flaws, or
pores, consistent with the experimental observations. This result gives us a starting
point to justify the hypothesis that serves as the underlying mechanism for failure
initiation occurring at the surface flaws in small-scale bone samples. We postulate
in the main body of this manuscript that the surface flaws serve as probabilistic stress
concentrators and determine the yield stress, or initiation of failure, of the sample.

3.7 Effective stress concentration from surface flaws
In the spirit of a stochastic dislocations source lengthmodel constructed byParthasarathy
[64] to predict a smaller-is-stronger size-effect observed in polycrystalline metallic
pillars, we conceive a 2D model of a cross-section of radius R and of unit thickness.
The cross section is orthogonal the pillar axis (Fig. 3.8b) . We define n flaws,
all of which we simplify to circles of mean radii r . The ith flaw is a distance di

from the surface of the pillar of radius R. There is a surface flaw if the minimum
of the set distances, di , is less than or equal to r (Equation 3.22). Equivalently, a
flaw is effective as a surface flaw if it is a distance di ≤ r from the boundary of
the cross-section. We also define the cumulative distribution function (CDF) of di

in Equation 3.23 , stating the density of flaws at some distance r drops of with the
square of that distance from the surface.

min {d1, . . . , dn} ≤ r (3.22)

Fdi = 1 −
(
1 − r

R

)2
(3.23)

We construct Equations 3.24 - 31 to reflect our hypothesis. In Equation 3.24, we
define the relation for yield strength, σyield , as a product of the bulk strength and
an effective stress concentration factor, σbulk and ke f f , respectively.

σyield = σbulk ke f f (3.24)
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Figure 3.8: Yield strengths across pillar diameters with corresponding model pre-
diction. a) Both the ordered and disordered samples exhibit size independent yield
strengths up until the nanometer regime in which there is a dramatic increase in
strength. A stochastic flaw-based yielding model is able to quantitatively capture
this strengthening in both phases. b) The simplified representation of the 2D slice of
unit thickness used in constructing the stochastic surface flaw failure model. The n
flaws are approximated to be circular with average radii r and the ith flaw is located
a distance di from the surface a pillar of radius R. The shaded regions in the model
results in (a) indicate upper and lower bound model results when using r values at
± one standard deviation.

For each phase, ordered and disordered, we take the bulk strength to be the experi-
mentally measured yield stress of the 3 µm pillars. We propose that ke f f increases
with the probability that a surface flaw exists, denoted as Ps in Equation 3.27.

ke f f = Ps + (1 − Ps) ksur f ace (3.25)

The upper bound for ke f f is ksur f ace = 3 , as estimated at the end of in Section 3.5.

We substitute Equation 3.25 3.24, stating a pillar becomes stronger as the probability
of stress concentration due to surface flaws decreases:

σyield = σbulk
(
Ps + (1 − Ps) ksur f ace

)
(3.26)

We can define the probability, Ps , using the pillar radius by assuming the volume
fraction of flaws across the range of pillars is constant. This assumption is reasonable
in each phase because the pillars are fabricated in the sub-lamella length scale,
meaning the microstructure should be consistent since lamellar interfaces are not
present. Keeping in mind the 2D simplification, we define Ps as the probability that
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the minimum of the distances of the n flaws in the cross-section is less than or equal
to r .

Ps = P
[
dimin ≤ r

]
= P [min {d1, . . . , dn} ≤ r]

= 1 − P [{d1, . . . , dn} > r]
= 1 − (1 − P [di ≤ r]n)
= 1 −

(
1 − Fdi [r]

)n

= 1 −
((

1 − r
R

)2
)n

(3.27)

Here in the third line the Di are treated as independent variables. Eq. 29 shows
the number of flaws, n scales with R2 , assuming the volume faction of flaws, φ , is
constant.

n = φ
(

R
r

)2
(3.28)

To expand the unit thickness cross-section model to a 3D, we can assuming we have
l independent slices of unit thickness; this results in nl flaws for the number of flaws
in the full pillar. The probability Ps is shown in Equation 3.29.

Ps = 1 −
((

1 − r
R

)2
)nl

(3.29)

The pillars are fabricated to have aspect ratios of 3:1, length to diameter; due to this
ratio l scales as 6R . We can now summarize the yield strength as a function of
pillar radius:

σyield [r] = σbulk
©«1 − 2

((
1 − r

R

)2
)6φ R3

r2 ª®¬ (3.30)

In Matlab, we use image contrast thresholding to identify and quantify the porosity
across 42 cross-sections in each phase, ordered and disordered. We calculate and
measure φ to be 0.0493 for the ordered phase and 0.0590 for the disordered phase
and r to be 20.8 ± 11.0 nm for the ordered phase and r = 18.1 ± 9.4 nm for the
disordered phase. An example of the cross-sections and identified flaws used for
measuring φ and r is show in Supplemental Video 3 for disordered phase.
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The yield strengths as a function of sample diameter predicted by this model are plot-
ted along with the experimental data in Figure 3.8 and show quantitative agreement
between the model and the experimental data. The model predicts a size-dependent
yield stress, which is manifested by the ∼ 2-fold increase from 327 to 729 MPa in
the ordered phase and from 313 to 632 MPa in the disordered phase when pillar
diameter is reduced from 3000 nm to 250 nm. This size effect is similar to the
2-fold increase observed experimentally over the same size range. The proposed
model is limited in its ability to capture certain deformation processes such as the
contribution of porosity to the incipient plasticity, with respect to the postulated
extrafibrillar sliding mechanism [46]; more sophisticated modeling, which could
incorporate the interactions of all the components of the complex microstructure,
would be necessary to fully access these effects. But the agreement between the
experiments and the current model supports our hypothesis that the initiation of
yielding and failure in small-scale bone samples is governed by the presence of sur-
face flaws and the corresponding scaling with the relative surface area through pillar
radius. This is further supported by the our earlier consideration of the possibility
of failure initiation from other microstructural stress concentrators, such as internal
flaws, kinternal , or fibrils, kC MF, in the context of a composite.

To date, measurements of mechanical properties of bone have been primarily fo-
cused on larger scales, which would render de-coupling structural and material
properties challenging. The investigations of sub-lamellar mechanical properties in
trabecular bone have been focused on understanding energy dissipation that arise
from unraveling of the non-collagenous proteins in a single molecule context, rather
than on strength [19, 65, 66]. The experimentally measured strength of 658 MPa
that we report for the 250 nm-diameter disordered samples represent the highest
yield strength reported for bone to date. Although the size effect has been suggested
[67] and demonstrated [49] for cortical bone ranging from macro- to micro-scale,
this work provides insight into the further strength increase in bone samples when
their dimensions are reduced from micro- to nano-scale.

All pillars were fabricated in vacuum and the nanomechanical experiments were
performed at atmospheric pressure, which caused the bone samples to be dehydrated
during compression and indentation. It is expected that the dehydration stiffens the
bone due by altering the viscoelastic properties of collagen [50]. We measured the
disordered phase of bone to be stiffer than the ordered one and attributed it to a
higher degree of mineralization of the fibrils in the former; it can be argued that this
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relation will be preserved upon hydration of collagen in both phases. It has also been
proposed that water mediates the surface layer nature of HA in bone, providing an
amorphous hydrated interface between the nanocrystals [26]. We demonstrate that
the post yield behavior is highly contingent on the size of bone samples by attributing
the microscale ductility to shearing through the extrafibrillar matrix. Hydration of
the mineral surfaces, as well as the non-collagenous proteins in the extrafibrillar
matrix, could further increase this ductile behavior response. The role of water on
deformation and yielding mechanisms of bone requires a dedicated study, which is
outside the scope of the present work.

3.8 Summary and Outlook
Our experiments and results focus on how the post-elastic properties of bone, par-
ticularly strength and its variation with sample size, depend on the amount and
properties of the extrafibrillar matrix and porosity in two very distinct phases of
bone. We observe that each isolated phase of the bone exhibits similar mechanical
response in small-scale samples, and we postulate that this occurs because of the
common factors within the ordered and the disordered phases, i.e., extrafibrillar ma-
trix and porosity. After considering the effects of other microstructural components,
this porosity is what allows the disordered phase of bone to be asmechanically robust
as the ordered one. With the ability to isolate, performTEManalysis (see Chapter 2),
and mechanical probe the disordered bone phase we provide new insights about the
compressive strength of trabecular bone, specifically that the mechanical strength
is virtually identical between the two substantially microstructurally distinct phases
because of the prevalent effect of porosity as key mechanism for failure.

Modeling mechanical properties of bone, particularly atomistic ally, has been based
on the ordered structure of mineralized collagen fibrils [55] . By investigating
ordered and disordered phases of bone, we show that disorder can persist at the
nanoscale while microscale yield and post-yield properties are mostly preserved.
In this chapter we proposed that this is likely contingent on the presence of an
extrafibrillar matrix within the composite structure at these lowest levels of the bone
hierarchy.

Efforts at creating biomimetic bone have focused on replicating the ordered arrange-
ment of collagen fibrils to provide a 3D protein scaffold for mineralization [68]. Our
results further suggest the microscale arrangement of not just the collagen and min-
eral, but also the extrafibrillar matrix is paramount for emulating the post-elastic
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response of bone in an effort to create mechanically biocompatible scaffolds.
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C h a p t e r 4

FRACTURE OF MICRON-SIZED BONE

4.1 Chapter Abstract
Themicrostructural origins of toughening of bone have not been adequately explored
because the challenges associated with performing valid fracture experiments on
small-sized samples have precluded developing a quantitative description of bone
fracture through its hierarchy. Specific contributions of individual constituents at
each level of hierarchy to amplification of bone toughness beyond that of its parts
remain elusive. In this chapter, we developed an experimental methodology that
probes site-specific fracture behavior of micron-sized specimens. We apply this
methodology to investigate and quantify crack initiation and fracture toughness of
human bone with sharp cracks. Our findings indicate bone with sharp cracks to
be tougher than that with blunt cracks and quantify the crack growth toughness
emerging primarily from the underlying fibril microstructure. In the context of
the existing R-curve of bone, these experiments reveal a transition between fibril
bridging and crack deflection and twist as a function of length scale, providing a
quantitative description of how toughness behavior varies with hierarchy.

Adapted from:

Tertuliano, O. A., Edwards, B. W., Meza, L., Deshpande, V. & Greer, J. R.
Microscale 3-point bending fracture experiments reveal the emergent damage tol-
erance of bone. in preparation
O.A.T performed the experiments, analyzed the data, and wrote the manuscript.

Meza, L performed FE simulations
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4.2 Toughening Mechanisms in Bone
The microstructural origin of bone strength at the tissue level (femur, tibia etc. . . )
has been studied extensively in the past four decades; for example it has been gen-
erally accepted that its bending strength increases with mineral content [69]. In
Chapter 3 micro- and nano-mechanical compression experiments in isolated lamel-
lae have enabled site- and microstructure-specific measurements of bone strength
and revealed a “smaller is stronger” trend from the macroscopic tissue down to the
nanoscale collagen fibrils [49] . This size effect was attributed to the limited number
of failure-initiating critical defects (e.g., pores and interfaces) in small-scale samples
relative to macroscale tissue.

Conversely, the complex hierarchy of bone has also been reported to improve tough-
ness, specifically its crack growth resistance. Fracture studies on large-scale, mm-
cm bone specimens have revealed toughening mechanisms that are active various
length scales: molecular uncoiling and fibril bridging at the nanoscale [70, 71]
; microcracking at the microscale; and uncracked-ligament bridging, crack twist,
and deflection at the macroscale. These mechanisms collectively give rise to crack
growth resistance manifested by requiring a greater driving force to continuously
extend a crack, typically characterized by an “R-curve” [8]. All of these findings are
based on experiments conducted onmillimeter and larger-sized specimens; these are
length scales at which crack twist and deflection around osteons are described as the
dominant toughening mechanism. The role of sub-structure at smaller length scales,
such as the mineralized collagen fibrils, remains unknown, which precludes the for-
mulation of crack growth resistance in bone as a function of relevant microstructural
components within its hierarchical construct.

To determine and quantify the mechanical interplay among features at each level of
hierarchy necessitates quantifying their individual contributions to the toughness.
Fracture toughness experiments are classically standardized for the macroscale and,
for the most part, have not been pursued for small-scale specimens, in contrast to
the now-ubiquitous experiments on measuring compressive strengths of nano- and
micro-sizedmaterials [42, 43, 72]. This is because 1) linear elastic and elastic-plastic
fracture mechanics (LEFM, EPFM) place lower limit restrictions on specimen size
and 2) adapting a standard for fracture experiments that provide a valid measure of
toughness at the microscale poses significant fabrication and experimental difficul-
ties [73]. Methods based on new fracture geometries have been proposed for the
microscale, but the asymmetric loading conditions around the notch tip of micro-
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Figure 4.1: Multiscale Toughening Mechanisms in Bone

cantilevers, premature failure at elastically-fixed boundary conditions of clamped
beams limit viability of these techniques, particularly for heterogeneous materials
like bone [74].

We developed an experimental methodology that enables conducting in-situ 3-point
bending fracture experiments on free-standing micron-sized beams, similar to the
standardizedmacroscale single edged notched bend experiment15. We validated this
methodology using singe crystal silicon as a standard and measured crack initiation
and growth toughness of human bone through stable crack growth at the micrometer
scale. We describe and quantify this toughness of bone in terms of the underlying
fibril microstructure using a bridging zone model [75]. We discuss the emergence
of the crack growth toughness in bone through the transition from this fibril bridging
mechanism at the microscale to crack deflection and twist mechanisms reported at
larger crack lengths.

4.3 Developing Microscale 3-point Bending Fracture Experiment
Specimen Dimensions
As described, performing fracture experiments at the microscopic length scales is
challenging partially due tomeeting dimensional restrictions set by small scale yield-
ing conditions (SSY) necessary for the applicability linear elastic fracture mechanics
(LEFM). To this end, the American Society of Testing and Materials (ASTM) has
standardized experimental fracture geometries and cataloged experimental proce-
dures, specimen dimensional ratios, and handbook solutions for reported valid
fracture toughness values[76]. These standards have been developed over decades



42

of round robin experimental and numerical results. The specimen dimensions used
in the present work are calculated to meet SSY and dimensional ratios for the stan-
dardized single edge notched bending (SENB) fracture geometry as shown in Figure
4.2. To insure a valid measure of critical stress intensity KIC , the relevant beam
dimensions must be about an order of magnitude greater than the characteristic
plastic (or inelastic in the case of bone) deformation zone rp. In the context of the
SENB geometry, this criteria is given by

a0, b, B ≥ 10rp (4.1)

where B is the thickness (out of plane dimension not show in Fig) and b is the
uncracked ligament length B − a0. In plane strain conditions, the plastic radius rp is
defined as

rp =
1

6π

(
KIC

σy

)2
(4.2)

where σy is the yield strength of the material. Using the dimensional ratios defined
for the SENB geometry by the ASTM handbook, specifically B 0.5W - where W is
the thickness seen in Fig 4.2a - we get the dimensional criteria that w ≥ rp. Given
an estimated macroscale KIC of 1 MPa m1/2 for both silicon and bone [77, 78], we
show in Figure 4.2b a plot of the estimated allowable specimen thickness for σy

values up to 7 GPa, which represents the upper bound of failure strengths reported
for silicon in literature [79]. We see this allows very small specimen thickness
(100s of nms) for silicon. As a conservative estimate for bone we use a σy of 320
MPa (recalling our results from Chapter 3) and calculate that minimum specimen
thickness W ∼ 10µm as shown in figure 4.2c.

Generalized Specimen Preparation
In order to create a microscale fracture geometry that adheres to the calculated
specimen dimensions, we employ a combination of nanofabrication techniques and
a TEM lift out procedure. This procedure is outlined in Figure 4.3. By dry etching
rectangular patterns into silicon 4.3a-c, we first create a set of three supports, two
of which will define the span (S) of the specimen as in Fig 4.2 and one of which
is sacrificial. Next, using focused ion beam (FIB) milling in an SEM, we begin to
carve out a beam geometry until a cantilever is produced as shown in Figures 4.3d-f.
This is similar to the milling procedure used in Chapter 3 for the cylindrical pillars.
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Figure 4.2: SENB LEFM Dimensions. a) diagram of the standardized macroscale
single edge notched specimen alongside plots of allowable beam thickness for mea-
suring KIC of silicon (b) and bone (c) based on plain strain small scale yielding
criteria.

We next glue the specimen to a nano-manipulator in the SEM using an Pt based
organometallic glue, and subsquentially free the specimen from the bulk material
as seen in Figures 4.3d-f. The specimen is transferred on to the 3 silicon supports,
glued to the third sacrificial support and freed from the nano-manipulator. We apply
a crack starter notch to the specimen using the FIB; we place the manipulator on top
of the specimen (without any glue) to hold the it in place while the the sacrificial
supported is milled away. This results in the free standing microscale 3-point bend
fracture geometry as depicted in Figure 4.3i. Further information on the etching
procedure used in this technique can be found in Appendix B.

4.4 Validating Fracture Experiments on Silicon
To validate this new microscale methodology in the context of linear elastic fracture
mechanics (LEFM), we first performed experiments on single crystalline silicon
beams. We conducted in situ 3-point bending fracture experiments in an SEM
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Figure 4.3: TEM Liftout procedure for Fracture Specimens.

using a nanoindenter (Nanomechanics Inc) equipped with rounded diamond wedge
indenter tip of radius r = 3.12 µm. This is shown in Figure 4.4 for a silicon beam
geometry. The beams are loaded at a displacement rate of 5 nm/s until failure while
the load and displacement data is recorded. A dynamic stiffness is also recorded
to track the compliance of the specimen. This is done by superimposing a 2 nm
displacement amplitude oscillation at 45 Hz on to the monotonically increasing
applied displacement; the dynamic displacement and load responses produce a
dynamic stiffness[80]. The measured dynamic stiffness is then corrected for the
contact stiffness contributions of the wedge and supports in the experiment using
Hertzian mechanics solutions [44].We briefly describe this as follows.

Correcting displacement and stiffness for contact compliance
Because the contact points at the wedge tip and supports have finite stiffnesses (non-
rigid contact), they contribute to the experimentally measured dynamic stiffness and
displacement. Figure 4.5 shows the experimental system is modeled as a series of
springs and the contributions to the measured stiffness are given by

Smeasured =
(
S−1

specimen + S−1
wedgetip + Ssupports

)−1

Sspecimen =
(
S−1

supports − S−1
wedgetip − Ssupports

)−1 (4.3)

where the S refers to the respective stiffnesses. To quantify the contributions of the
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Figure 4.4: Microscale 3pt bend fracture of silicon

Figure 4.5: Microscale 3pt Bend Contact Model

diamond wedge tip and the silicon supports we use contact mechanics models that
provide theoretical contact stiffnesses of the geometries. Each support is considered
as a flat punch indenting into an elastic half space[42, 44]. This stiffness is given by

Ssupports = 2E∗
(

A
π

)1/2
(4.4)

where E∗ is the reduced modulus of the materials in contact and A is the area of the
contact. The reduced modulus is calculated as follows:
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E∗ =

(
1 − ν2

1
E1

+
1 − ν2

2
E2

)−1

(4.5)

where the Ei and νi are the elastic moduli and Poisson’s ratios, respectively. The
contribution from the wedge tip (Swedgetip ) is modeled as the contact between a
cylinder and a flat plane [81], given by

Swedgetip = BπE∗ ln
(

B3πE∗

PR

)−1

(4.6)

Here R is the wedge tip radius, B is the thickness of the beam, and P is the load. We
use 1190 MPa for the elastic modulus of the diamond tip, and for (100) silicon, we
use 130 MPa for Ei and 0.22 for νi [82]. We validate this model in the present work
by performing indentation experiments on a silicon walls as shown in Figure 4.6a.
These walls are the geometries of the silicon beams prior to being extracted for the
3-point bending experiment (See Appendix B). The indentation experiment allows
isolation of the wedge contact from the other contributions to Smeasured in Equation
4.3. Figure 4.6 shows the experimental contact stiffness data for the walls as well as
the results of the contact model in Equation 4.6, revealing quantitative agreement
between the experiment and the contact mechanics solution.

Using theoretical contributions of the supports and the wedge tip contact, we correct
the experimentally measured contact stiffness of the 3-point bending geometry (Fig
4.6c ). In Figure 4.6d, we also correct the measured displacement- i.e., remove
contributions from total measured displacement from indentation represented in
Figure 4.5 by the δ. As expected, these corrections show stiffening in the elastic
response of the specimen. The corrected data is used to calculate relevant fracture
results in the following sections of this chapter.

Fracture Results of Silicon Specimen
In the silicon fracture specimen we introduce the initial notches of length a0 oriented
such that the crack is defined by the [110] plane and travels in the (100) direction. Our
experiments revealed that the silicon specimens respond generally linear elastically
up to a load of 3.28 ± 0.28 at a displacement of 106.9 ± 10.1 nm and then fail
catastrophically as shown in Figure 4.7a and Supplemental Video 4. We calculate
the linear elastic mode I stress intensity factor K from the load and specimen
dimensions shown in Figure 4.4
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Figure 4.6: Silicon Contact Stiffness Corrections

KI(i) =
PiS

BW
3
2

f
(ai

w

)
(4.7)

where Pi and ai are the instantaneous load and crack length. In the present context
ai = a0. The f (ai/w) dimension less geometry factor for the 3-point bend specimen
is given by

f
(ai

w

)
=

3
( ai
w

)1/2
[
1.99 −

( ai
w

)
1 −

( ai
w

) (
2.15 − 3.39

( ai
w

)
+ 2.7

( ai
W

)3
)]

2
(
1 + 2

( ai
w

) ) (
1 −

( ai
w

) )3/2 (4.8)

Figure 4.7b shows the KI results for the silicon specimens. We calculate a the crack
initiation toughness or critical stress intensity, KIC of 0.94 +- 0.08 MPa m1/2. We
discuss these results in the following section.

Recent work has evaluated the efficacy of proposedmethodologies for measuring the
toughness of micron-sized materials[74]. The most prevalent small-scale fracture
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Figure 4.7: Silicon KIC

geometry, a notched cantilever, was used to measure an average KIC of 0.76 MPa
m1/2 in single crystal silicon [74] , a result in the lower range of 0.7-1.3 MPa m1/2

reported in literature [77, 83]. The asymmetric loading about the notch tip in a
cantilever geometry renders the KIC reported from such experiments to be that of an
inherently mixed-mode I and II fracture, not a true KIC . In the cantilever geometry,
the initial notch orientation β relative to the applied load changes as a function of
the cantilever deflection angle, also β. Stress based mode mixity given by

ψ = arctan
KI I

KI
(4.9)

Figure 4.8: Cantilever Mode Mixity

As shown in Figure ,the mixed mode nature of the cantilever arises from the inherent
evolution of a component of the applied load parallel to the notch orientation as
the beam deflects with the angle β. The Ks are proportional to the directionally
resolved component of the applied load P; this gives KI I ∼ sin β and KI ∼ cos β
and ψ = β for the cantilever geometry often employed in literature. The symmetric
loading of microscale 3-point beam bending method developed in this work allows
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for measuring a pure mode I KIC of 0.94 MPa mm1/2, consistent with 1 MPa
mm1/2 reported from fracture experiments conducted on macroscale single crystal
Si specimens [77, 83, 84].

Figure 4.9: Notch Radius of Silicon Specimen

The fracture toughness was measured from specimens with finite notched radii (ρ ≤
125nm, 4.9a) rather than ones containing atomically sharp precracks necessary to
measure a true toughness [76]. In a brittlematerial, the apparent toughness decreases
with increasing crack tip radius [85, 86]. The Creager and Paris formulation of this
concept estimates states KC ∼ σ

√
πa(1 + ρ

a ) ,where a is the crack length, and σ is
the remote applied tensile stress [85]. If ρ is relatively large the toughness becomes
an irrelevant criteria, but in the limit of a relatively small radius, ρa → 0 , the Irwin
criteria for sharp cracks is recovered, KC ∼ σ

√
πa. Silicon samples used to validate

the experimental methodology in this work had a ρ
a ≤ 0.05, which suggests that the

toughness of notched silicon specimens should be within 5% of that of atomically-
sharp precracked silicon, i.e., the error in the reported KIC originating from a finite
sized notch should be low. The pure mode I conditions of relatively small notch
radii and free boundary conditions enabled by the methodology developed in this
work allow the measurement of valid fracture toughness of micro-sized materials
using established macroscale standards.

4.5 Crack Initiation Toughness of Bone Lamellae
Given the LEFM results from Section 4.4, we investigate crack initiation toughness
of bone at the lamella length scale (3-7 µm). We first characterize the bone strength
and elastic properties using the bending geometry, followed by a cursory description
of the fatigue precracking procedure and the results of the crack initiation toughness.

Figure 4.10 shows the final specimens in the prespective of the trabecular bone ar-
chitecture as well as the underlying fibril microstructure. We polish bone trabeculae
in order to identify the lamellar structure in individual trabeculae as shown in Figure



50

4.10b. We then use the TEM liftout procedure described in Section 4.3 to carve out
the bone specimen for the fracture experiment as shown in Figure 4.10c. The nomi-
nal orientation of collagen fibrils in the prepared samples was parallel to the span of
the specimens, as shown in the transmission electron micrograph in Figure 4.10d.
This is done to mimic the physiologically relevant “breaking” or crack-arresting
orientation of bone [8, 70]. For the fracture experiments, a total of 10 samples were
made; similar to the silicon specimens we patterned through-notches of length ao

0.4W using Ga+ ion beam with the FIB in one half of the specimens. In the other
specimens, we carved out shorter notches that were subsequently pre-cracked by
fatiguing.

Figure 4.10: Bone Fracture Specimen and Microstructure a) Trabecular architech-
ture from which specimen are extracted. b) Lamellae structure in individual trabec-
ulae from which the fracture specimens are excised as shown in c). d) Transmission
Electron Microscopy image showing fibril orientation is mostly aligned with the
span of the bone fracture specimens, i.e the crack arresting orientation
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Bending Modulus and Strength of Lamellae
We first characterize the bending modulus and strength of bone lamellae using
the bending geometry. Figure 4.11a shows specimens prepared similarly to that
shown in Figure 4.10, but without a notch. These specimens are loaded and fail
catastrophically; Figure 4.11b shows the bending uniform deformation response
prior to failure. Figure 4.11c shows the load vs load line displacement response
from two specimens. We observe nominally linear elastic deformation with some
settling events (indenter and support contacts). One of the specimens also exhibits
deviation from linearity near maximum load. The stress vs strain response is plotted
in 4.11c. The bending stress σ and strain ε are given by

σ =
3
2

PS
BW2 (4.10)

ε = 6uW/S2 (4.11)

where P is the load, u is the load line displacement and the remaining terms are
dimensions of the specimen (Figure 4.4). Note thisσ represent the maximum tensile
and strain in the specimen, i.e., the stress and strain at the bottom of the specimen
along the loading line. The elastic modulus is calculated by fitting the middle third
of the stress vs strain data. We calculate 21.78 and 18.51 GPa. with an average
of 20.15 GPa; these results are in agreement with the ∼ 20-27 GPa reported for
bone when loaded in its stiffness orientation — parallel to the mineralized fibrils in
micrometer specimen, or osteons in millimeter specimens [8, 49]. We measure the
bending strength as 566 and 603 MPa. These results are higher than the strength
measure for macroscale bending of bone from a variety of animals [39]. Those
authors report bending strength ranging from 50-350 MPa using hydrated bone
specimens extracted in animals ranging from alligators to elephants to reindeer,
which would explain the wide spread in the literature. The results are are from
dry bone specimens and thus would be expected to be stronger. Additionally the
microstructure orientation of the fibrils in the specimens here are is such that the
tensile and compressive forces are acting along the fibril axes (stiff orientation).
Generally in brittle materials, a stiffer response correlates to a higher strength. In
the present context we take the elastic modulus E as 20.15 ± 2.31 GPa and the
strength as 585 ± 26 MPa.
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Figure 4.11: Bending Modulus and Strength of Lamellar Bone. a-b) The bending
deformation response of unnotched bone specimen prepared in the similar manner
with similar micro structural fibril orientation as the fracture specimen. c) Load vs
displacement for two bending specimen. d) Stress vs strain of ending specimens
with strength of 585 MPa and elastic modulus of 20.15 GPa

Fatigue Precracking Bone Specimens
In order to create a realistic or naturally sharp crack, half of the notched bone
specimens are fatigue pre-cracked in accordance to the standards established for
metals[76]. Specifically, the maximum load during fatiguing should not exceed a
value Pm given by

Pm =
1
2

Bb2
0

S
σy (4.12)

where b0 is the uncracked ligament length given byW−a0 andσy is the yield strength
of an notched specimen. If we consider the nominal stress in a notched specimen
as σ = 3

2
PS
Bb2

0
, and we plug in the criteria from Equation 4.12; the simple result is
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states the nominal stress in the notched specimen during fatiguing cannot exceed 75
% of the yield stress of the material, i.e σm ≥ σy. The beam bending experiments
resulted in a bending strength of 585 MPa, giving us a maximum nominal stress of
439MPa during fatiguing. Recall however that the specimen are free standing on the
supports; fatiguing them with such boundary conditions would surely lead to losing
the specimen. We thus fatigue precrack the specimen prior to freeing them from the
sacrificial support during preparation as described in Section 4.4 and shown in 4.3.
To determine an accurate maximum stress for fatiguing the specimens, we perform
a bending experiment on a bone specimen that is still glued to the sacrificial support
as shown in Figure 4.12a. The bone responds linear elastically to brittle failure and
we calculate a nominal strength of 549 MPa. This is in agreement with the stress
measured from the free standing specimen. We have a maximum nominal stress
criteria of 400 MPa during fatiguing.

Figure 4.12: Bending Strength of Bone Specimen with Glued Boundary Condition

We fatigue precrack the specimens using the dynamical mechanical analysis capa-
bilities of the nanoindenter. This is briefly described in Section 4.4 for applying a
2 nm oscillating load and tracking the stiffness (and thus compliance) of the spec-
imen during a monotonic loading scheme. We use this functionality to apply a
cyclic loading scheme at 50 Hz to notched specimens that are glued to the sacrificial
support. Figure 4.13a shows the applied load scheme as a function of time; we
monotonically load up to a static load which represents ∼ Pm

2 and then we apply
an oscillating load with an amplitude ∼ Pm

2 . We simultaneously track the dynamic
stiffness of the specimen and set a condition that the cycling loading ends once the
average stiffness drops by ∼ 1% . Figure 4.13b shows the same data as a function of
cycles (time*50 Hz) starting at the oscillating scheme. In Figure 4.13c we show the
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maximum nominal stress is within the calculated criteria. We reach the precracking
condition on the order of ∼ 104 cycles.

Figure 4.13: Fatigue Precracking Bone Specimens. a) shows the prescribed loading
scheme up to some load with the upper and lower bound of the applied oscillatory
load as a function of time. The dynamics stiffness is monitored and drops as a result
of crack growth in the specimen. b) shows the same results as a function cycles and
c) shows the nominal stress in the specimen as a function of cycle, remaining below
75% of the bending strength

Crack Initiation of Notched and Precracked Specimens
To quantify the crack initiation toughness of bone at the lamella length scale, we
perform fracture experiments on both the as-notched and precracked from notched
specimens. Figure 4.14 shows the conversion from load to themode I stress intensity
(KI using Equation 4.7) as a function of the load line displacement for all specimens.
Imperfect contact points in the experimental set up can lead to beam settling events
that appear as deviations from linearity in the stress intensity data. These can be
mistaken as crack initiation and make it difficult to determine the critical stress
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intensity. As described in Section 4.4, we apply a dynamic oscillation of a 2
nm amplitude in order to track the instantaneous stiffness of specimen, thereby
monitoring real crack initiation events. Figure 4.15 shows a examples of plots of the
load to stress intensity conversion plottedwith the simultaneouslymeasured dynamic
stiffness for a precracked 4.15a,b and a notched 4.15c,d specimen. The dynamic
stiffness increases monotonically during the elastic load portion as the surfaces in
contact during the settling into each other (i.e., contact area is increasing); The
dynamic stiffness then begins to decrease; we find this decrease point correlates
with the end of the linear elastic region in both the load and stress intensity vs load
line displacement data. This is also evident from the synced videos that these events
from crack initiation (Supplementary Videos 5 and 6). Figures 4.15b,d illustrates
that the crack initiation toughness, or critical stress intensity KIC , is taken as the
stress intensity at which the dynamic stiffness begins to decrease.

Figure 4.14: Loading response and KIC of Bone Specimen. a) shows the load vs
load line displacement data of the notched and precracked specimens and b) shows
the mode I stress intensity calculated from the load data

The results indicate that the stress intensity in the notched specimen increases until
the initiation of a crack at a KIC of 0.54 ± 0.15 MPa m1/2. Figures 4.16b-c show
the corresponding bending response up to crack initiation, followed by stable crack
growth (Figures 4.16c-d). The insets in Figures Figures 4.16b-d show magnified
images of the notch tip, revealing the crack travels straight through the specimens
without deflection. This is followed by catastrophic failure (Supplementary Video
5). Figures 4.17 shows the fracture behavior of the precracked bone specimens.
The precrack surfaces first separate (4.17b-c, Supplemental Video 6) as the stress
intensity increases linearly up to a crack initiation occurs at a KIC of 1.08 +-.06 MPa
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Figure 4.15: Measuring KIC at end of elastic region denoted by end of increase on
dynamic stiffness, i.e., crack initiation.

m1/2. The crack continues to grow stably through the specimen until catastrophic
failure (4.17c-d, Supplemental Video 6). Note that the stress intensities plotted in
these figures are only valid up until crack initiation, as indicated by point "b" in both
Figures 4.16 and 4.17.

A stochastically defined stress intensity for heterogeneous microstructure
We measure a 2-fold increase in the crack initiation toughness from notched to
precracked bone specimens (0.54 to 1.08 MPa m1/2). This result is counter to the
failure criterion for brittle materials discussed at the end of Section 4.4, which
generally states for a given failure material strength σ0 the critical stress intensity
scales with the crack tip radius. In the Creager and Paris formulation, the apparent
toughness decreases linearly with crack tip radius KC ∼ σ0

√
πa (1 + ρ/a), where a

is the crack length and ρ is the crack tip radius. Note that in certain geometries (i.e.,
penny shaped crack in 3D solid) this stress intensity can scale with the square root
of the crack radius; in general, the relation of a lower apparent toughness for sharper
crack tip is expected. This criterion assumes homogeneous material microstructure
in front of the crack tip, and as a result, a deterministic failure strength, i.e., the
materials fractures if stress locally reaches a σ0. The heterogeneous microstructure
of bone at the micrometer length scale, stemming from fibrils (Fig 4.10d) and
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Figure 4.16: Fracture Response of Notched Specimen

porosity (as seen in Chapter 3) [70, 87], warrants a stochastic description of failure
strength and toughness.

To investigate the relationship between toughness and crack radius for amaterial with
a heterogeneous microstructure, we perform linear elastic Finite Element tension
simulations on edge-cracked plates as shown in the schematics of Figure 4.18a,b .
To simulate heterogeneity, the plates have varying Ritchie-Knott-Rice (RKR) char-
acteristic microstructural length scales [88], r , and Weibull strength distributions
with varying moduli, m.The RKR length scale was originally employed to describe
a microstructural scale in which brittle cleavage fracture could occur at low tem-
peratures in metals. As the tensile stresses in front of the crack tip drops off with
the square root of the distance, the RKR length scale is that at which stress must
still be greater than or equal to the tensile strength of the material for some brittle
cleavage fracture to occur(∼ two grain sizes). The Weibull modulus describes the
spread of the distribution of the material strength; a small m indicates a large spread
or a more stochastic material[89]. In the present context, the material has a survival
probability Ps given by

Ps = exp
[
− 1
πr2

∫ (
σ22
σ0

)m

dA
]

(4.13)
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Figure 4.17: Fracture Response of Precracked Specimen

Here σ22 is the local tensile stress, σ0 is the mean failure strength of the material
and r is the RKR length scale. The critical stress intensity KIC is calculated when
the local stress gives Ps = e−1, i.e., when the survival probability reaches to ∼ 63%.

Figure 4.18 shows the simulation results of the normalized toughness, KIC/
(
σ0
√

r
)
,

as a function of normalized crack radius (ρ/r). The results reveal that for m > 4,
the toughness monotonically decreases with with crack tip radius, as expected in
a deterministic brittle material. For m ≤ 4 we observe a transition where a lower
relative notch radius can give rise to a higher toughness. This uniquely occurs when
the crack radius is comparable to the microstructural length scale ( ρ/r<1 ).The
schematics in Figure 4.18a,b illustrate the physical reasoning. In two plates with
identical microstructural (or flaw) landscapes, a sharper crack will have higher stress
concentrations, but the stress field of a blunter crack will extend further around the
notch root. When the crack radius is roughly equal to the spacing between relevant
microstructure, the stress field will interact more strongly with them than when the
crack radius is much smaller than themicrostructural features. Adopting the relevant
microstructural scale in the bone specimens as the collagen fibril diameters (50-250
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Figure 4.18: Loading response and KIC of Bone Specimen.

nm) and the measured notch radii as ∼ 200nm, we calculate ρ/r ≤ in the present
experiments. The reported Weibull modulus for bone ranges from 3.3-5.7 [90–92].
Estimatingm = 4.5 as an average of this range, simulations suggests a heterogeneous
material with relative notch radius in the ρ/r ≤ regime should have nearly constant
(although still increasing in the deterministic sense) crack initiation toughness as
a function of ρ/r , relative to those in the ρ/r ≥ 1 (Fig 4.18c). These results
suggest another mechanism is contributing to the higher toughness of precracked
bone specimens.

Figure 4.19: Radius of Notched Bone Specimen
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Figures 4.17c,d and Supplemental Video 6 reveal mineralized collagen fibrils bridg-
ing the precrack surfaces of the specimens during linear elastic regime prior to crack
initiation. In fiber-reinforced composites, this mechanism acts to shield the crack tip
from remotely applied stress, effectively toughening the material [93]. The silicon
micro-fracture results from Section 4.4 and FE simulations imply that when the
relative crack tip radii are below unity (ρ/a0 � 1, ρ/r < 1), the experiments on the
bone specimen should result in a constant toughness; empirical measurements com-
monly have a constant toughness below some threshold radius in brittle materials
[4, 94]. In the experiments presented here, we observe a 2 fold difference in KIC ,
which can be attributed to the observed fibril bridging mechanism. This contributes
an increase in toughness, ∆K f ibril

IC , of 0.54 MPa m1/2. This mechanisms has been
deemed inconsequential for toughening large cracks in bone (ao ∼ 1 mm), in part
because the fibril diameters are in the 50-250 nm range scale [95, 96]. However,
fracture often initiation from microscale flaws. In bone these flaws are manifested
as fibril-bridged microcracks that open by physiological cyclic loading or fatigue
[97]. The results presented here demonstrate that mineralized collagen fibrils can
prevent fracture initiation by doubling the critical driving force needed to open
physiologically relevant flaws (fatigue precracks) in bone that are on the order of
micrometers.

4.6 Crack Growth Resistance of Bone Lamellae
We quantified crack growth resistance by calculating the nonlinear elastic J-integral
as a function of crack extension. Unlike the linear elastic stress intensity factor, the
J-integral can account for the elastic and inelastic contributions to toughness during
crack growth. We first describe the determination of crack extension and then the
calculation and results of the crack growth resistance.

Calculating Crack Extension
The crack extension, ∆a, is calculated from the dynamic stiffness measurements
using an effective compliance calibration procedure [98]. The stiffness starting at
crack extension - which is described as the maximum of the measured stiffness of the
specimen - is inverted to acquire compliance of the specimen. The assumption here
is that the minimum of the measured dynamic compliance represents the effective
compliance, C0, of the as fabricated specimen with initial crack length a0. The
relation between the load line compliance of a 3-, C, and the normalized crack
length, ai/W , of a 3-point bend fracture specimen specimen is given by
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ai

W
= 0.997 − 3.58U − 1.51U2 − 110U3 + 1231U4 − 4400U5 (4.14)

where

U =
1

(FC)
1
2 + 1

(4.15)

Here F is a calibration constant calculated by setting a
W = a0/W and C = C0

[98, 99]. The crack extension at any instance is then calculated by solving for ai/W
for a measured Ci and subtracting from the initial crack length a0. Figure 4.20
shows an example of the result of this procedure where Figure 4.20a shows the
effective compliance from the stiffness (note the minimum compliance is take as the
compliance prior to crack extension) and Figure 4.20b shows the calculated crack
extension in correlation to the load response of the specimen.

Figure 4.20: Radius of Notched Bone Specimen

Calculating J-Integral of 3-point bend specimen
In the present context, the J-integral is defined as

Ji =
K2

i

(
1 − ν2)
E

+ Jpl(i) (4.16)

Here the first term corresponds to the plane strain linear elastic equivalence between
K and J where Ki is given by Equation 4.7. The second term is the plastic (inelastic)
work contribution to the toughness. This is generally given by
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Jpl =
2Ap

Bb
(4.17)

where Ap is the plastic work and b is the length of the uncracked ligament (W-
a). During crack growth the uncracked ligament is constantly increasing and an
incremental definition of plastic work is given by the ASTM as follows:

Jpl(i) =

[
Jpl(i−1) +

(
ηpl(i−1)

bi−1

) (
Apl(i) − Apl(i−1)

)
B

]
∗
[
1 −

γpl(i−1)
(
ai − a(i−1)

)
bi−1

]
(4.18)

Here η and γ are empirical constants equal to 1.9 and 0.9, respectively [76]. The
(ai − ai−1) term is an incremental crack extension. The bi−1 term represents an
uncracked ligament length such that bi=W − ai. An example of the incremental
plastic area, Apli , definition for this formulation in the present work is show in
Figure 4.21. This incremental definition is applicable when steady crack growth is
observed, as is with the bone specimens in the present work (Supplementary Videos
5 and 6).

Figure 4.21: Incremental Plastic Area for J Integral calculation

Figure 4.22 shows the crack growth resistance of the precracked specimens up to ∼
1.5 um of stable crack growth. Wemeasure an increase in toughness from an average
initiation toughness of 52 to 120 J/m2. In Figure 4.23 show images the fracture
surfaces to identify themicrostructural contributions to this fracture behavior. Figure
4.23b shows a fractured beam from a similar perspective as that of 4.23b;We observe
fibrils with an average diameter of 51± 10 nm. Figure 4.23c shows a complementary
fracture surface characterized by holes with an average diameter of 53 ± 10 nm.
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This shows strong evidence of fibril bridging, and particularly, fibril pull-out during
crack growth.

The macroscale toughness of bone is described primarily by its resistance to crack
growth rather than by initiation. This macroscale toughening is mainly attributed
to crack deflection and twist [8, 70]; at the microscopic lamellae length scales,
the main toughening mechanisms have yet to be quantified. Post-mortem images of
bone fracture surfaces in this work reveal a set of fibrils and holes on complementary
surfaces, which suggests that fibril bridging contributes significantly to crack growth
resistance at microscale crack extensions. In the following section, we discuss this
toughness in the context of a bridging zone and propose a mechanistic relation
between the fracture behavior and the length scale of the lamellae microstructure.

Figure 4.22: J Integral of Bone Lamellae

4.7 Bridging Zone and Characteristic Length
The fibril bridging mechanism observed in this work can be discussed using a
cohesive zone model by drawing an analogy to the toughening behavior observed
in fiber-reinforced engineering composites [6, 100]. Fiber-reinforced composites
are often designed such that the matrix fractures prior to the fibers, resulting a
“bridging zone” behind the crack tip in which fibers shield the tip from the remotely
applied stress – similar to the mechanism observed within the bone specimens in
the present work. The bridging zone is characterized by a bridging law, which
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Figure 4.23: Evidence of Fibril Bridging in Bone Lamellae

describes the stress in the zone,σ, as a function of the separation of crack surfaces,
denoted by δ [101]. Schematics of typical bridging law are shown in 4.24. The main
characteristics of bridging laws are the max (or closure) stress σ0, which represents
the tensile strength of the material, and the maximum bridging zone opening δ0.
Specifically δ0 is the opening at which the bridging elements in the crack wake can
no longer apply closing tractions, i.e., cannot shield the crack tip from remotely
applied stresses. The bridging law and the crack growth resistance are related by
restating the J-integral in Equation 4.19.
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Figure 4.24: a) schematic of bridging zone. b) plateau toughness that arises after a
charactertistic extension lch=L0 c,d) hardening-softening bridging laws

J = J0 +

∫ δ0

σ(δ)dδ

= JIC + ∆J
(4.19)

For brittle materials, the first term J0 is equivalent to the linear elastic JIC . The
second term refers to the increase in toughness that occurs during crack growth.
These are representative of the elastic and plastic components of the J-integral
calculation as in ASTM formulation in 4.16. In this context, a characteristic length,
lch, defines crack extension at which the material can no longer exhibits crack
growth resistance. At a crack extension of lch , also described as the steady-state
damage zone size, the material could fail catastrophically. Calculating the lch for the
bone specimens in the present work could provide further insight into how fracture
toughness arises from the bone hierarchy is at the lamellae length scale. In the
context of bridging mechanisms the characteristic length is given by

lch = 0.366
Eδ
σ0

(4.20)

where E is the elastic modulus of the composite [101]. To calculate the lch of the
bone specimens, it is necessary to first determine the bridging law σ(δ).

The specific functional form of σ(δ) is experimentally difficult to measure [6, 101,
102]. Often the tensile stress vs strain behavior of the 1) individual bridging
(reinforcement) components or 2) notched composite is related to the bridging
law but this is approach faces certain issues. A common issue is the appearance
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of multiple cracks within the tension specimen which result in rotations of the
specimen (due to bendingmoments). This causesmixedmode fracture and difficulty
identifying crack tip openings[103]. An alternative approach for determining the
bridging law is a J-integral approached proposed by [102]. This simply takes
advantage of rewriting σ(δ) as the derivative of the J-integral. In the present work,
taking the derivative of the experimentally calculated J as a function of δ can allow
for the determination of an empirical bridging law. To determine J(δ) from the
calculated J(∆a), we employ in situ SEM videos of the experiments to determine
the bridging zone opening δ. That process is breifly described before discussing the
bridging law results.

σ(δ) = ∂J(δ)
∂δ

(4.21)

Measuring crack openings
The in situ experiments provide video frames (correlated to the measured load, dis-
placement, and siffness data) that enable the visual measurement of the crack mouth
opening displacement (CMOD or simply d hereafter). We wrote a custom Matlab
script to track the crack mouth opening in the videos; in its simplest from, the script
identifies the crack mouth by thresholding the video frames in a region of interest
that includes the notch, similar to the region shown in Figure 4.25a. The result of
this is shown in Supplementary Video 7, where the red outline shows successful
identification of the initial notch geometry. In each frame, the measurement for d

is made at 20% of the height of the identified notch height (denoted at n0 for the
initial configuration and ni in Figure 4.25). This is done in order to have a consistent
measurement of d devoid of any irregularities at the bottom of the identified notch
stemming from contrast artifacts.

The bridging zone separation δ is taken as the crack opening at the initial crack tip;
for the initial configuration δ = 0 as shown in Fig 4.25a,c. This separation is then
geometrically calculated; Figure 4.25d shows that as the crack grows by ∆ai and the
crack mouth opens to a new value di, we can create two right triangles with bases
di/2 and δi/2. We note these are similar right triangles that share an angle θi so the
dimensions are proportional. Thus we have

δi =

(
di

ai − ni
5

)
∆ai (4.22)
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This approximation assumes the crack tip openings vary linearly with crack ex-
tension; because we do not observe crack tip blunting and the bone is generally
linear elastic and brittle under bending as shown in Section 4.5, this should be a
reasonable assumption. As the δi are determined from di, they are also correlated
to the calculated J-integral, and thus we have experimentally determined J(δ) data
as shown in Figure 4.26 from which the bridging law can be calculated.

Figure 4.25: Estimating bridging crack opening through measurement of crack
mouth opening and geometric argument.

Figure 4.26: Toughness vs Bridging Zone Opening

To calculate the bridging law from the J(δ) data using Equation 4.21, the data
is fit to a functional derived from Li et al [75, 104]. Those authors describe
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a quadratic relation between the stress and crack opening (Eq 4.23) after crack
initiation that empirically captures the pullout stress-separation behavior of various
fiber-reinforced cementitious composites. We integrate this relation with respect to
δ and get a cubic function for J(δ) as shown in Equation 4.24. Here σ0) and δ0 are
the fitting parameters.

σ = σ0

(
1 − δ

δ0

)2
(4.23)

J(δ) = σ0

(
δ − δ

2

δ0
+
δ3

δ0

)
(4.24)

The fitting results of the experimentally determined increase in toughness ∆J (the
rising potion of J(δ)) to Equation 4.24 are shown in 4.27a for two representative
specimens showing a relatively good fits at small bridging zone openings, i.e., at
δ > 100nm for one of the specimens the data starts to deviate from the cubic relation.
We calculate an average strength σ0 of 561 ± 75 MPa and a critical bridging zone of
δ0 427 ± 310 nm. The large spread in the δ0 fit results is due to the accuracy of the
cubic fit a larger δ values. Figure 4.27c shows the average experimental bridging
law determined from these parameters. The dashed lines represent error bounds
calculated from one standard deviation of the fitted σ0 and δ0. Due to the quadratic
nature of the employed bridging law, the results exclusively capture a stress softening
behavior. Mechanistically this was described by Aveston, Cooper, and Kelly as the
relative slipping of unbonded fibers against the interfacial shear stress, i.e., fiber
pullout after peak stress [5].

Physically in many bridging mechanisms, the stress increases sharply with small
separations, indicating the activation of the debonding process[5]. We explore an
exponential relation between J and δ employed to capture the initial Hookean stress-
seperation behavior at small values of δ in more general cohesive zones models (see
Fig 4.24c) [103]. A simplified form is derived from [102] as

J(δ) = Jm −
(
Jm + Jm

δ

δpeak

)
exp

(
− δ

δpeak

)
(4.25)

Here Jm is the plateau toughness of the bridging mechanism as shown in Figure
4.24b, and δpeak is the peak stress. We calculate Jm = 55.1 ± 21.7 and δpeak =

31.85±10.67. The results of the fit are show in Figure 4.27b for the same specimens;
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Figure 4.27: Toughness And Bridging Law vs Crack Opening for cubic model a,c)
and exponential model b,d).

the exponential enforces a plateau in the J(δ) near the maximum of the measured
toughness. The resulting bridging laws are shown in Figure 4.27dwherewe calculate
a tensile strength σ0 = 636± 44 MPa. Within error, this is in agreement with the σ0

calculated using the cubic fit as well as the bending experiments discussed in Section
4.5. This it has an aphysical property; due to the exponential functional decay, the
σ0 approaches but does not equal 0, thus we do no have a unique δ0. However the
steady state damage zone size lch can also be given by E Jc

σ2
o
[101]. Using this we now

discuss results of lch from the cubic as well as exponential forms of J(δ).

We calculate and average steady state damage zone size , lch, of 5.59 µm (ranging
from 1.7 to 8.5 µm) and 2.7 µm (ranging from 2 to 3.5 µm) for the cubic and
exponential model fits respectively. Although the fitted σ0 results in both fits are
in great agreement, the wide range of the fitted results for δ0 in the cubic model
produces a much larger uncertainty lch. The calculated lch from the exponential



70

model has smaller span and lies within the bounds of the cubic model results. We
take the average of the results lch ∼ 4µm as an effective steady state damage zone
size. We can consider this result in relation to the relevant length scales of bone in
the presently studied level of hierarchy.

As the lamellae of bone are 3-7 µm thick, the calculated lch suggests a mechanism
for toughening related to the intrinsic dimensions of this level of the bone hierarchy.
In a homogeneous brittle material with similar lch, as a crack grows up to ∼4
µm, the driving force to continue crack growth should plateau and catastrophic
failure would be imminent. In bone this crack would interact with the interfaces
between the lamellae. This interface has been described as a disordered motif of
bone mineralized collagen fibril composite [87]. At this interface the cracks would
either deflect or require re initiation in the following lamella; the applied driving
force would have to increase in order to continue crack growth, i.e., the material is
toughened. This proposes a possible link between the intrinsic dimensions of the
bone lamellae and the steady state damage zone size supported by fibril bridging
mechanism observed in the experiments in the present work. Performing these
experiments on larger specimens (∼ 2x) would help confirm this.

4.8 Toughness of Bone Through Hierarchy
It is generally accepted that tougheningmechanisms in hierarchical natural materials
operate at different length scales but quantitative description of how and why this
leads to a desired rising R-curve in bone had not been determined [105]. Figure 4.28
shows a juxtaposition of our experimental data of crack growth resistance in the 1 µm

crack extension regime and that at 500 µm of crack extension from [8]. The effective
toughness KJ is back calculated from the J integral as KJ = (JE′)1/2. The figure
shows that at large crack lengths, crack deflection/twist at stiff interfaces of osteons,
contribute most substantially to the R-curve of bone. By extrapolating the large
crack R-curve down to small crack extensions relevant to this work using a standard
power-law fit employed or metals (Appendix C), it significantly underestimates the
toughness ofmicro-scale bone. We observe that by isolating the fibril microstructure
in micron-sized beams, its toughness at ∼ 1 µm of crack extension is ∼ 30 times
higher than that predicted from macroscale fracture experiments. Extrapolating the
R-curve from present study shows an intersection with the macroscale experiments
a crack extensions of ∼70 µm. This is the same length scale as spacing between
cement lines and is consistent with the ∼100 µm of crack extension necessary
to measuring the toughening effects of crack deflection in macroscopic fracture
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experiments. These results enable a quantitative description of how the R-curve
in bone changes as a function of crack growth in response to the salient levels of
hierarchy.

Figure 4.28: Scaling of Toughness in Bone Hierarchy

Revisiting the "R-Curve"
From a fundamental perspective, the beginning of the R-curve is often described as
a flat or microstructure-independent component of the crack growth resistance[3].
A schematic of this type of R-curve is shown in 4.29. Brian Lawn describes this
flat portion as the crack extension equal to the characteristic spacing of relevant
microstructural components in a material that exhibits a rising R-curve behavior. In
the context of a macroscale experiments, it is possible to measure an R-curve that
is dominated by certain mechanisms, as shown in 4.28. If little is known about the
microstructure of the material, the Lawn interpretation would lead us to believe the
characteristic microstructural length scale is on the order of the crack extension at
which the R-curve (measured frommacroscale experiments) begins to rise. However
with the development of the microscale methodology developed here, we uncover
a rising or toughening component of the previously "flat" portion of the R-curve
of a material. Although it does not contribute to the overall final toughness of the
material prior to complete failure, it is fundamentally instrumental to giving rise to
other mechanisms that dominate large length scales.
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Figure 4.29: Revisiting the Curve. Red curve (and the corresponding black dashed
segment) is representative of how we classically view crack growth resistance. With
the ability to measure toughness at microscopic crack extensions we show that there
is a fundamentally increase portion of the R-curve originating from microstructure
that is not resolved in classical, large scale fracture experiments. In the context of
bone, this microstructure is the 50-200nm mineralized collagen fibril.

Summary/Outlook
Studying andmimicking natural materials to achieve similar damage tolerance in en-
gineered materials has gained substantial traction over the past decade [9, 10, 106].
The main biomimetic pursuits have been focused on designing and incorporat-
ing multi-scale material hierarchy, starting from nanoscale features to produce
macroscale materials [11, 12, 107]. These biomimetic studies have focused on
overcoming hierarchical manufacturing challenges; the questions of why nanoscale
constituents and how to quantify the contributions of the underlying mechanisms at
those length scales remain experimentally challenging to answer. The microscale
fracture methodology, quantified nano-fibril toughening, and description of length
scale dependent toughening in bone provide a new route to studying hierarchical
materials as well as insight into designing damage tolerant bioinspired materials.
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C h a p t e r 5

SUMMARY AND OUTLOOK

This thesis has focused on understanding the relationship between the structure of
bone and its mechanical behavior at length scales that specifically probe the response
of the lamellae and the mineralized collagen fibrils. In bone, this range is∼ 7µm and
smaller. We started by first reporting a microstructure that had not yet be reported
within the trabecular bone architecture in the literature. This was the result of the
ability to probe the hierarchical structure with high spacial accuracy at length scales
of the underlying microscopes. It also allowed us to establish the simple hierarchical
picture of bone for the remainder of the work in the thesis.

Following this we borrowed from techniques used to characterize the strength and
deformation of small scale metals to site specifically probe the strength and de-
formation of an ordered and disordered phase of bone via micro and nano-pillar
compression experiments. We showed that as we decreased the size of the pillars
towards the size of the mineralized collagen fibrils, a transition from ductile to brittle
deformation. We also observe a corresponding increase in measured strength that
we attribute to the decreased effect in stress concentrations from the reduced num-
ber of critical flaws at smaller sample dimensions. This falls in line with a smaller
is stronger paradigm in the hierarchy of bone; as we reduce interfaces and het-
erogeneities that can concentrate stress or strain by reducing specimen dimensions
(i.e., reducing complexity of the structure being mechanically loaded) the apparent
strength increases.

Following this we explored the resistance to fracture in bone. Unlike probing
the uniaxial deformation at small length scales, we developed a 3-point bending
experimental approach for measure toughness in micron sized specimens. This
build upon the ability to site specifically isolate micro structure in bone using a
transmission electron microscopy sample preparation technique. We first show that
the microscale fracture method is valid in a linear elastic frame work using silicon a
reference material. We then show the effects of fibril bridging in the crack initiation
and crack growth resistance of bone from realistically grownprecracks. When placed
in the context of engineering materials, we can consider bone to be be designed like
a fiber composite at the micrometer length scale, which allows toughening small
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cracks before they grow and encounter other obstacles at larger length scales (i.e.,
crack deflection and twist at osteons). This work is able to quantify this behavior and
put it in a larger context, allowing for a quantitative comparison of how toughness
arises from different levels of the bone hierarchy.

We were also able to experimentally determine the bridging law of a material. At
these such small scales this has paves a route for modeling and predicting of fracture
behavior of multiscale materials. Cohesive elements can be developed using the
defining characteristics of a bridging law (or more generally a cohesive law). These
elements can describe the fracture behavior of a hierarchical material in multi-scale
simulations, especially those that incorporate homogenization schemes. This is a
promising are to explore for modeling the mechanics of bone.

We hope the work presented in this thesis establishes an approach for probing the
underlying structure-function relationship of this natural materials. The equally
important question of how to create materials that outperform those found in nature
in the context of weight and damage tolerance remains a significant challenge. This
is a truly interesting direction for future work.
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A p p e n d i x A

POROSITY ADJUSTED PARAMETERS FOR ELASTIC
COMPOSITE MODELS

Re-adjusted (adj) volume fractions to account for φEFM
f laws. These are the values

reported in Table 3.5 without the "adj" added for simplicity.
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A p p e n d i x B

ETCHING OF SILICON FOR MICROSCALE FRACTURE
EXPERIMENTS

The etching of the silicon structures in this thesis was accomplished in the Kavli
Nanoscience Institute. This refers to 1) the supports that hold the specimens and 2)
the silicon specimens.

Supports
The masks for the supports are fabricated by using a 2 photon lithography system
(Nanoscribe Gmbh) to create 2x2x2 µm polymer masks that create each individual
support. Two of these are spaced 40 µm apart with a third sacrificial support 2
µm from one of these. The 40 µm determines the span of during the fracture
experiment thus the spacing can be adjusted for differently sized specimens. The
supports are etched in a reactive ion etcher (RIE) at 10 mT and 20 sccm of SF6
for about 17 mins. This produces a tapered support profile. Figure B.1 shows the
process of etching multiple silicon supports from a mask array of span and support
dimensions (Fig B.1a) to the support profile (Fig B.1b) and the resulting supports of
different dimensions (Fig B.1c,d). If taller, straighter supports are desired (as seen in
Supplementary Video 5), the etching can be done in a more controlled deep reactive
ion etcher (DRIE). This is the process employed for etching the silicon beams and
will be described next.

Si Beams
The masks for the silicon beams are fabricated using e-beam lithography in the
nano-pattern generation system (NPGS) on the Quanta. A two layer PMMA recipe
(courtesy of Dagny Fleischman) is employed as follows:

• 3 min acetone wafer clean
• 3 min methenol wafer clean
• 180o c hot plate (2-5 min)
• cool for 1 min
• spin 495 A4 PMMA at 3500 RPM (1 min)

– gives ∼ 195 nm per Filmetrics measurement

– 5 min hot plate at 180o C
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– cool 1 min

• spin 950 A2 PMMA at 3500 RPM

– 5 min hot plate at 180o C

– cool 1 min
The resist is patterned using the NPGS with doses ranging from 500 to 750 µc/cm2.
Next the resist is developed in a room temperature solution of 1 to 3, methyl isobutyl
ketone to isopropanol (1:3 MIBK:IPA) for 45 seconds. The development is arrested
by placing the wafer in IPA for 30 seconds. We deposit 100 nm of alumina into
the pattern using e-beam evaporation (TES Evaporator). Note that it is important to
monitor the temperature increase in the chamber when depositing ceramics. If the
temperature rises above the glass transition of the resist, the pattern will be damaged.

Following deposition, liftoff of the sacrificial PMMA and alumina layer is accom-
plished by placing thewafer in acetone overnight. A couple of hours can be sufficient.
Placing the sample vertically in the acetone bath can considerably improve liftoff
quality by preventing redeposition of alumina that are flakes floating in solution
back onto the wafer. For similar reasons, it is also highly recommended to remove
the wafer from acetone liftoff bath with the etched surface facing down towards the

Figure B.1: Etching of 3-point bend supports
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bottom of the container (beaker, petri dish, etc...). The sample is next rinsed in an
new acetone bath, followed by an isopropanol bath.

The results of the masking process are shown in the top images of Figures B.2a,b.
Figure B.2a shows a mask created from a single PMMA 950 A2 spin while Figure
B.2b shows a mask from the dual resist procedure described above. We observe a
significant improvement in roughness of the edges of the mask by employing a dual
resist procedure.

To etch the beams we employ a pseudo-Bosch process in the Oxford III-V DRIE.
This involves simultaneously flowing SF6 to chemically etch and C4F8 to protect
the silicon. Tunning the ratio of the gases allows control of the profile of the etch.
Here we run 22/35 sccm of SF6/C4F8. The capacitively coupled power (or "direct
power") is set to 22 W and the inductive power is set to 1250 W. The etch rate with
these conditions is ∼ 250 nm/min. The results of the etching on the to alumina
masks are shown in the bottom images of Figures B.2a and b. The roughness of
the mask is transferred onto the walls of the structures; this shows the dual resist
process yields smoother structures.

Figure B.2: Si Beam Masks
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A p p e n d i x C

POWER-LAW FITTING OF TOUGHNESS

The effective toughness during crack growth denoted as KJ is calculated back
from the J-integral using the linear elastic relation KJ = (JE)1/2 [8]. This allows
for comparison with other toughness values reported for bone in literature. For
metals J-integral can be fit to a power-law with respect to the crack extension. In
macroscopic experiments this power law fit is generally given by

J = C1

(
∆a
k

)c2

(C.1)

where the C terms are fitting parameters and k is prescribed as 1 mm [76]. This
power law is employed to gain a functional form with which to determine a crack tip
blunting line and thus an effective JC . However, that is not mechanistically relevant
in the present experiments. In the present context, for simplicity, we absorb the k−c2

constant into the C1 parameter and rewrite the fit function as

J = α∆aβ (C.2)

Considering the relation between J and KJ , we can write the power law fit or KJ as

KJ =
(
α∆aβE′

)1/2

= αK∆aβk
(C.3)

where αK = (αE′)1/2 and βK = β/2 . The results of the fit are show in Figure 4 in
the main text.
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A p p e n d i x D

LEGEND OF SUPPLEMENTAL VIDEOS

Supplemental Video 1
Pillar fabrication via FIB

Supplemental Video 2
Cross Sections of post-mortem pillar to identify micro structural origin of failure

Supplemental Video 3
Tomographic sections of disordered bone for model parameters in Chapter 3

Supplemental Video 4
Fracture of silicon specimen

Supplemental Video 5
Fracture of notched bone specimen

Supplemental Video 6
Fracture of precracked bone specimen

Supplemental Video 7
Tracking crack mouth opening in precracked specimen


