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Abstract

We describe a new approach for creating concise high-level generative models from one or more ap- 

proximate range images. Using simple acquisition techniques and a user-defined class of models, our 

method produces a simple and intuitive object description that is relatively insensitive to noise and is 

easy to manipulate and edit. The algorithm has two inter-related phases—recognition, which chooses 

an appropriate model within a given hierarchy, and parameter estimation, which adjusts the model 

to fit the data. We give a simple method for automatically making tradeoffs between simplicity and 

accuracy to determine the best model. We also describe general techniques to optimize a specific gen- 

erative model. In particular, we address the problem of creating a suitable objective function that is 

sufficiently continuous for use with finite-difference based optimization techniques. Our technique for 

model recovery and subsequent manipulation and editing is demonstrated on real objects—a spoon, 

bowl, ladle, and cup—using a simple tree of possible generative models.

We believe that higher-level model representations are extremely important, and their recovery for 

actual objects is a fertile area of research towards which this thesis is a step. However, our work is 

preliminary and there are currently several limitations. The user is required to create a model hierarchy 

(and supply methods to provide an initial guess for model parameters within this hierarchy); the use 

of a large pre-defined class of models can help alleviate this problem. Further, we have demonstrated 

our technique on only a simple tree of generative models. While our approach is fairly general, a real 

system would require a tree that is significantly larger. Our methods work only where the entire object 

can be accurately represented as a single generative model; future work could use constructive solid 

geometry operations on simple generative models to represent more complicated shapes. We believe 

that many of the above limitations can be addressed in future work, allowing us to easily acquire and 

process three-dimensional shape in a simple, intuitive and efficient manner.
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Chapter 1

Introduction

1.1 Motivation

It has now become possible to easily acquire true 3-dimensional data of actual objects. In this way, 3D 

objects may be scanned in much the same way as a 2D photograph. Reasonably accurate point-clouds 

or range data—a collection of 3-dimensional points on the surface of the object to be scanned in—from 

3D objects [6, 31] can be obtained. There has also been much interest recently in simple methods for 

range data acquisition using structured light. In this thesis, we use two of these techniques, due to 

Bouguet and Perona [4] and Trobina [30]. In the first approach, 3-dimensional shape is inferred from the 

deformation of the shadow of a hand-held rod rolled over a plane on which the object is placed. The 

second method [30] involves the projection of alternating black-and-white stripes onto the object to be 

scanned. Both approaches use off-the-shelf hardware and are portable and easy to set up.

For use in graphical applications, these point-clouds are usually transformed into polygonal meshes 

[6, 15], or spline patches [9, 19]. However, these approaches often provide an unintuitive representation 

of the object and are difficult to manipulate. In addition, a huge amount of data is required since the 

meshes usually contain many thousands of triangles.

For modeling many man-made objects, generative models proposed by Snyder[27, 28] provide an 

attractive alternative. The modeled object is represented by a hierarchical tree of operators that 

provides a logical description of the object’s structure. Designers can intuitively specify, examine, and 

modify the model. In this paper, we describe methods to invert this modeling process. Given a user-
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defined hierarchy of models such as that shown in the lower left of figure 1.2, the system recovers an 

appropriate generative model within this hierarchy from range data of an actual object.

The hierarchy from which the examples in this thesis are derived is shown in the lower left of figure 

1.2 and reproduced in figure 5.1. A number of objects such as bowls, ladles, and spoons as well as 

cylinders and surfaces of revolution can be adequately modeled. Assume we have a collection of objects 

such as cylinders, bowls, and spoons that we wish to represent, and which are effectively modeled by 

our chosen hierarchy. By using the range data acquisition techniques in [4] or [30], and the algorithms 

described in this thesis, we may automatically obtain accurate parametric models of the input objects. 

If we wish to represent a different class of models, the user must define the appropriate generative 

model hierarchy or extend our hierarchy to model the desired objects.

1.2 Benefits of the Proposed Method

Simplicity: To acquire the range data, we use simple techniques based on structured fight due to 

Trobina [30] and Bouguet and Perona [4]. The latter approach requires only a desk-lamp, pencil and 

checkerboard apart from the camera. Using input from these approaches, we output a simple and 

intuitive object description in the form of a compact generative model.

Figure 1.1: Top: Original range data (a single range image artificially colored) embedded in a cuboidal bounding box. 
Bottom: Recovered generative model with the same bounding box. The model is a smooth and compact representation.
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Figure 1.2: Pictorial representation of generative model creation. The algorithm takes range data (in the form of a point- 
cloud) and a generative model hierarchy as input. An appropriate generative model is then chosen, and parameters are 
optimized to output an accurate and concise description that can be edited.

Robustness: Since we can make use of known symmetries in the given hierarchy, an accurate model 

can often be recovered from incomplete or noisy range data, making this approach more robust to 

noise than mesh creation. Most of our examples use only one noisy and incomplete range image, while 

creation of a polygonal mesh would require many accurate and properly aligned range images. We 

also demonstrate that even where the hierarchy cannot adequately model the range data, the approach 

yields a simple model that mimics the original object to the extent possible.

Compactness: Generative models provide a very concise representation—we need only store the 

operations at each level in the tree that describes the model and the control points representing the
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parametric curves that constitute the leaves of this tree. This can provide a saving of several orders of 

magnitude over the number of parameters a triangular mesh would require.

Intuitiveness: Since the generative model is expressed in terms of parametric curves that correspond 

to logical features of the object, it is much easier to understand and manipulate than the corresponding 

polygonal mesh. This has obvious applications in recognition and editing. The generative model can 

be adapted to the object being represented. A sphere, a spoon and a cylinder can each be represented 

explicitly as high-level objects whereas a mesh or spline-patch represents these fundamentally different 

shapes with the same primitive.

1.3 Related Work

Recovery Methods for Specific Shapes: Much research in the computer vision community has 

focused on methods for recovering object shape for specific primitives such as superquadrics, generalized 

cylinders and hyperquadrics. Representative references are [5, 14, 20]. While these methods are useful 

within our framework for estimating model parameters, our major contribution is not in parametric 

recovery for specific models, but in selecting an appropriate model and presenting general techniques 

for optimizing the curves constituting this representation. Further, most of the representations used 

in previous work have a small number of parameters instead of curves, and research has largely been 

restricted to recovery of a specific type of model such as quadrics [10] or generalized cones [26] instead 

of a model within a more general hierarchy. In a similar spirit as our work, Debevec et al. [7] propose 

a way to recover polyhedral models from photographs of architectural scenes. While this research is 

similar to ours, we employ more complex shapes, and automate the recovery process further—the user 

need specify neither the specific model nor the particular edges of interest. However, we require range 

data instead of photographs and use a pre-defined model hierarchy.

Grammars: Lin and Fu [22] discuss the use of plex grammars [11] to describe composition of objects, 

which is analogous to our use of a hierarchical tree structure as a model representation. An object 

is represented as a composition of primitive objects. These primitives can be joined together via 

translations, rotations and connection at curves or surfaces. This is a general framework for representing
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complex objects. By contrast, in this thesis, we are concerned with composing curves with a tree of 

operators to derive a single generative model. Future work could involve composition of generative 

models to represent more complicated objects. While this could be done with standard computer 

graphics operations, grammars might provide a more general and powerful framework.

Mesh simplification and editing: Hoppe et al.[16] describe techniques to optimize meshes. In this 

approach, a simplified mesh is compared to the original pointwise. However, the simplified mesh will 

still contain the same primitive—the triangle—and will still not represent many models accurately. 

For instance, a sphere can obviously be described by one parameter—the radius—but a triangular 

tessellation requires significantly more data. By contrast, generative models have the power to switch 

to a different representation as appropriate, e.g. from a sphere to a cylinder. In addition, our chapter on 

optimizing generative models discusses some improvements over the objective functions used in Hoppe 

et al.[l6]. A major application of our research for graphics is the intuitiveness of the representation 

that makes models easy to interpret and edit.

1.4 Limitations of our Approach

There are a number of important limitations in our current approach that deserve mention. While 

the number of different shapes that can be expressed logically with generative models is an advantage, 

this also means that an appropriate model hierarchy must be created by the user to model a desired 

set of input objects. We currently rely upon user-defined methods to estimate particular curves of the 

generative model (although these estimates may be crude). While we touch on how these estimates can 

be automatically derived from curves for simpler models in chapters 3 and 4, we have not developed 

this approach completely. Note that we derive an approximation to the range data; the full complexity 

of the data is not retained. Further, we deal only with the problem of obtaining a single generative 

model. The composition of simple generative models to represent more complex objects is not dealt 

with in this thesis. Finally, note that we have shown our results only for a relatively simple subtree 

of generative models. While we believe this to represent a proof of concept, a complete system would 

probably use a much larger class of input models.

Our approach depends upon existing methods of range data acquisition. The input point-cloud is
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assumed to be a good representation. In practice, this means that we manually clean the data to remove 

stray points or points picked up from the environment and not relevant to the object being modeled. 

Further, we do not touch on alignment of range images which is of prime importance in obtaining a 

seamless 3-dimensional representation. Where alignment of multiple views was required, we used a 

mechanical device (a rotary platform) to get accurate information on the transformation connecting 

the views.

Organization

The rest of this thesis is organized as follows: First, chapter 2 gives some background information on 

range data acquisition, generative modeling, and fitting of parametric models on which the material 

in this thesis builds. In chapter 3, we describe our basic framework for recovering the appropriate 

generative model based on the complexity of the range data given as input. In chapter 4, we discuss our 

methods for fitting a selected generative model to range data, and discuss some general optimizations 

in this context. In chapter 5, we give details of the specific generative hierarchy we use to generate the 

results given in chapter 6. We present our conclusions and directions for future work in chapter 7.
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Chapter 2

Background

This chapter is intended to give a brief introduction to some of the concepts on which this research 

builds—range data acquisition, generative modeling, and optimization to fit parametric models.

2.1 Range Data Acquisition

A range image is equivalent to a photograph with additional depth information—in effect, a 3- 

dimensional scan. Instead of an intensity at each pixel, as in a conventional digitized photograph, 

we associate a distance from the camera. This is the depth information. The ordinary intensity image 

can be useful for modeling the reflectance properties of the object to be scanned, but this thesis does 

not address issues of texture and reflectance modeling.

The range image can be acquired in a variety of ways—by use of laser scanner [21], triangulation [25], 

and with structured light. These are all active methods in that energy is projected onto the object, 

and range data is obtained from observing its reflection. Passive methods may also be used such as 

shape from properties such as shading and silhouettes. However, these algorithms are generally not 

as reliable as active range data acquisition. Humans acquire a sense of depth by stereoscopic vision 

as well as higher level cognitive processing. While there has been some research on such methods (for 

instance, [29]), use of stereo requires solving a correspondence problem, for which sufficiently robust 

algorithms have not yet been developed. Jarvis gives a good introduction and survey of range data 

acquisition[18]. Besl and Jain[2] survey three-dimensional object recognition and include a discussion
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of range data acquisition. Parthasarathy et al.[24] give a classification of methods to acquire range 

data.

To acquire a seamless 3-dimensional representation of the object being modeled, we must align 

multiple range images obtained from different angles. This is analogous to composing photographs 

taken from different angles to get a better idea of shape. Alignment of range images is an interesting 

topic. A volumetric method of merging scans is detailed in [6] along with an arrangement that allows for 

full motion around the object. In case the precise transformation between the different range images 

is not known, computing a correct alignment can be extremely difficult. This is because methods 

to align multiple range images must establish correspondences between the same physical point on 

multiple data sets, which is not always easy to do. To avoid this problem, we used a rotary platform 

where necessary to obtain an accurate transformation between views from different angles (in the same 

plane). It should be noted that one of the advantages of our technique is that we can often get good 

results from only one range image—in these cases, no alignment is required—or a cylindrical view of 

the object—in which case a simple rotary platform sufficed. One of the goals of this thesis is to provide 

methods to obtain fairly accurate models with minimal hardware, so we have used a simple rotary 

stage rather than a more complicated motion apparatus.

While methods for range data acquisition have been known for decades, there has recently been 

a lot of interest in simple techniques for range imaging which make the process simple, cheap, and 

portable. Indeed, one of the primary goals of this thesis is to show that for a certain class of objects, 

we can use simple data acquisition techniques together with the algorithms described in this thesis to 

produce a simple and intuitive object description. It is hoped that the development of such methods 

will allow ordinary users to become comfortable with representing 3-dimensional objects in much the 

same way that photography has become commonplace. Below, we discuss two techniques for range data 

acquisition that require minimal hardware and can easily be constructed from off-the-shelf components. 

These were used to provide the range data input for our system.
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2.1.1 Hierarchical Structured Light

In this method [30], we use a projector and a camera. First, the projector and camera are calibrated (a 

checkerboard pattern is used for this purpose), and the relative transformation between them is noted. 

The setup is shown in figure 2.1.

Figure 2.1: The apparatus for range data acquisition using structured light. We include the object to be scanned in, the 
projector, the camera, the checkerboard pattern for calibration, the monitor and the computer displaying point-clouds of 
the object. Photograph courtesy of Jean-Yves Bouguet.

A sequence of alternating black and white stripes are projected as a gray code onto the object from 

the projector. The gray code is used to minimize error (as proposed by Inokuchi et al.[17]) owing to 

misclassification of a point as light or dark. By considering the pixel location on the camera and the 

projector code derived from the striped pattern, we may derive the 3D location of that point using our 

calibration data. Since this can be done for all visible points, we are able to acquire a range image.

Figure 2.2 shows an example of the stripe images that result. Objects from the environment such as 

the table are removed by using a contrast mask before processing or by removing stray points manually 

from the range data. An example of the resulting point cloud (which has been made sparser to show 

the individual points clearly) is found in figure 2.3.
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Figure 2.2: Two patterns of alternating light and dark stripes projected onto the object to be scanned. The stripes are at 
different resolutions and project a gray code onto the object.

2.1.2 Desktop Range Imaging

Recently, Bouguet and Perona [4] proposed an approach designed to use minimal hardware. They 

observe the deformation of the shadow cast by a hand-moved rod over a plane on which the object is 

cast after calibration of the camera and point light-source. This approach is very easy to set up. An 

image of the setup is shown in figure 2.4 and illustrates the simplicity of the technique.

Note that the camera image places each visible point along a line. The depth is unknown. However, 

in the setup of figure 2.4, we know that all points in the shadow of the rod lie on the plane formed by 

the light-source and the line segment containing the undeformed shadow (where the shadow does lies 

on the plane). The intersection of this plane with the line from the camera allows us to infer depth. 

By moving the rod, we calculate depth for all visible points.

Figure 2.3: The point cloud got from range imaging of a spoon using structured light. The point cloud has been made 
sparser in the figure to show the individual points clearly.



11

Figure 2.4: Showing the method of Bouguet and Perona. The light-source isn’t shown in the figure and the only other 
devices needed are a checkerboard and pencil for calibration only. The rod is moved manually and depth is inferred from 
deformation of the shadow.

Limitations: A few of the limitations of our range data acquisition techniques are discussed below. 

Highly specular objects or dark objects can often not be imaged. This is because there is little contrast 

between views obtained by projecting dark and light stripes, or between views obtained when the 

object is in shadow versus being lighted. Also, there is a size limitation—our system is currently set 

up to image objects whose characteristic length is about 10 cm. While it may be possible to extend 

the approach to work on objects significantly outside this size range, this has not yet been tested. We 

deal only with static scenes; dynamic scene descriptions are not modeled. The object to be scanned in 

must be rigid to allow it to be easily rotated for viewing from multiple viewpoints. Our current system 

makes it hard to scan in flexible objects.
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2.2 Generative Modeling

Snyder [27] gives a comprehensive description of generative modeling. Here, we briefly mention the 

important features that we use in our system. A generative model can be represented:

(2.2)

where M(v) is a linear transformation in 3D, and T(v) is a translation. M, γ and T may then be 

represented with parameterized curves. The affine transform is composed of a rotation, translation 

and scahng. Each component could be represented with a different curve, each parameterized by v. γ 

represents the cross-section parameterized by u. It is also possible to easily represent simpler models 

such as profile products [1]:

(2.1)

where S is the surface, f is a vector function represented as a tree of primitive operators acting on 

curves c1, c2, c3, .... The curves are maps from the real line to 2-dimensional space; i.e. ci: ℜ → ℜ2. u 

and v are parameters to the curves (and hence, the surface). By convention, we usually use u, v ∈ [-1, 1] 

It can be seen that the three-dimensional shape is built from two-dimensional curves—that may for 

instance, control cross-sections or scaling relationships. Thus, the shape is specified in a modular way, 

being built from lower-dimensional components that are easier to manipulate and visualize.

An example of a generative model that is simple to specify, and yet reasonably expressive is the 

banana model [27, p. 68,69] developed by Snyder. Here, the surface S is given by an affine transform:

(2.3)

where γ(u) = [γ1(u), γ2(u)] is the cross-section curve and the profile curve is δ(v) = [δ1(v), δ(v)]. 

Generative models are intuitive to use, and fairly general. Unlike simple shapes such as su-

perquadrics, hyperquadrics, spheres, or cylinders which are parameterized by a number of (not always 

intuitive) parameters, generative models differ in having curves, not isolated parameters, as inputs to 

or at the leaves of the operator tree f in equation 2.1. Further, these curves usually correspond directly 

to a logical feature of the model such as a cross-section, a transformation, or a scaling factor. Because 

of their intuitive nature and expressive power, generative models are convenient for modeling many
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man-made objects. To create a generative model, the user needs to know the surface description—in 

other words, the user must specify the precise symbolic description of the model. The constituent 

curves must then be created by adding control-points in a curve-editor. Note that the methods of this 

thesis automate the above procedure—the curves are automatically determined, and the appropriate 

model (symbolic representation) is chosen within a user-specified hierarchy.

The principal benefits of generative models are that they are compact, very general, and allow 

intuitive model specification. Further, for a set of generative models, it is usually easy to create a 

hierarchy of models with links from parent to child or a shallower to a deeper level corresponding to 

making the model more complex, usually by adding a single curve as explained in Chapter 3.

Our work allows generative models to be more widely used by presenting algorithms for their re- 

covery from range data. We note that a principal hurdle in generative modeling is that the user must 

specify the function f in equation 2.1, often using complicated mathematical operations. However, 

once a generative model hierarchy has been created, a user can recover an appropriate model and the 

parametric curves constituting it without needing to fully understand the mathematics. By interac- 

tively modifying the curves, he may edit the model in an intuitive way without knowing the precise 

mathematical representation of the object being modeled.

2.3 Fitting of Parametric Models using Optimization

There is a wealth of literature on fitting parametric models to data. See the survey by Bolle and 

Vemuri [3] for instance. In some cases, the parametric model may be represented by an implicit 

function that depends on some parameters:

where x, y and z are the co-ordinates. In this case, an application of f to each data-point gives an 

error-norm, and the model parameters that determine f can be varied to minimize this norm. The 

simplest example is if f represents a sphere centered about the origin. Then f(x, y, z) = x2 + y2 + z2 - r2 

where the sole model parameter is the radius r. Here, r can be varied to best fit the data. The error 

norm defined by f will in general be algebraic, and not based on purely geometric disparity. This can 

lead to problems, and various error norms can be proposed to correct some of these problems.
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Another possibility is for x , y and z to be known explicitly in terms of parameters u and v as is often 

the case for generative models. Refer to equation 2.1. The challenge in this case is to associate a data 

point with given u and v for comparison to the model. Chapter 4 on fitting a specific generative model 

gives a clear discussion of our methods, and why they improve in some cases on previous work. The 

quantities involved in computing correspondence are often challenging to compute analytically, and our 

approach is general enough to allow the model to be represented in tessellated form. This is particularly 

challenging because most optimizers require objective functions that are twice-differentiable.

Optimization

In fitting of a parametric model, we will need to use an unconstrained nonlinear minimizer. We used 

the Sequential Quadratic Programming routine E04UCF in the NAG libraries [23]. Here, we briefly 

describe how this optimizer works.

Let x denote the current best guess to minimize the objective function φ. We seek to update:

(2.4)

where x is the new best guess, α is the step-size and d is a direction determined by solving the quadratic 

subproblem obtained from a Taylor expansion about the current best guess to quadratic order:

(2.5)

where g is the gradient of the objective function and H is the corresponding Hessian. A straightfor- 

ward gradient descent can then be performed. The Hessian is updated using Broyden-Fletcher-Garb- 

Shapiro quasi-Newton update (see [8] for a reference). A good general reference is Gill et al.[12].

Differentiability: In order to compute the gradients and the Hessian, most numerical routines re- 

quire the objective function to be continuously twice differentiable. The gradients may either be 

computed analytically, or by using a finite difference approximation. It is easier to use a finite dif

ference approximation, since it can be computed automatically, and this is the approach used in this 

thesis. However, analytic gradients are more accurate and can lead to better results provided they can 

be computed efficiently.
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Chapter 3

Framework for Model Recognition

Here, we discuss our general framework for choosing the appropriate generative model from within a 

user-defined class to best fit the range data. The model recognition process is based on a compromise 

between model accuracy and simplicity. Although the approach detailed here is general, we will often 

refer for illustrative purposes to the specific tree used to create the results shown. This hierarchy which 

is pictured on the lower left of figure 1.2 (a larger version is reproduced in figure 5.1) and in figure

6.1 is inspired by the spoon model created by Snyder [27, p. 83]. Our model hierarchy can represent 

spoons, bowls and ladles as well as a number of common shapes as discussed in chapter 5.

3.1 Important Concepts

3.1.1 Model Hierarchy

The model hierarchy consists of a number of levels corresponding to the complexity of the model as 

measured by the number of curves constituting it. For our class of models, level 0 consists of a “box” of 

constant thickness with only 3 parameters for the length, width and depth. The box model essentially 

defines a bounding box for the data. Deeper levels consist of refining one or more of these parameters 

by representing them as curves instead of constant values. For example, the edge from the box to the 

"depth" node in figures 1.2 and 6.1 corresponds to refining the depth by representing it as a curve. The 

hierarchy can also be thought of as a tree; going from parent to child generally corresponds to adding 

a single curve. For instance, the box is the parent, while the model with refined depth is the child.

While the parameters for curves can vary continuously, there may also be parameters which take
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on one of a set of discrete values. In this case, we may use one of these values in the recognition phase, 

but choose the value which leads to the lowest error before final model selection and optimization. For 

example, in the tree shown in figure 1.2 and discussed in greater detail in chapter 5, each node can 

be split corresponding to a straight or circular cross-section. Thus, there is a link in the hierarchy 

corresponding to changing the cross-section used. In practice, we have found it convenient to use the 

simple rectangular (straight) cross section for the recognition process. After recognition, we choose the 

cross-section—straight or circular—leading to lower error. The branch for the appropriate cross-section 

is the lowest part of the tree in figure 1.2. For completeness, the results show an example (the bowl) 

where we actually split each node.

3.1.2 Estimation of Co-ordinate Axes

During the fitting process, we align the range data with the axes as labeled by the specific generative 

hierarchy being used. This is done simultaneously with estimation of the first or root model. We use 

the principal axes of the data to infer the co-ordinate directions. The co-ordinate representation of the 

generative model imposes an asymmetry between the axes, making it impossible to label them without 

knowledge of the specific hierarchy used. However, we can consider all six possible labelings and pick 

the one which leads to the best results after an appropriate model is recognized and then optimized. 

Model-dependent axis-labeling techniques can be used where available, and details for our hierarchy 

are found in chapter 5.

3.1.3 Parameter Estimation

For generative models, we need a way to estimate parametric curves for model recognition and opti- 

mization. A starting point exists in the form of the parent model at the previous stage in the hierarchy. 

For instance, when we change from the box to a generalized cylinder, we are refining the shape curve 

from the starting point of a simple rectangular bounding box. Optimization over the additional degrees 

of freedom can be used to estimate the newly-added curve as shown in figure 4.3.

In case reasonably accurate model-dependent ways to estimate parameters are known such as those 

for our tree of models discussed in chapter 5, we do not need to optimize in the recognition phase, but
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still do so after an appropriate model is chosen. We emphasize that the model-dependent estimates 

may be quite crude, since they merely provide an initial guess for the global optimization phase.

Figure 3.1 presents a summary of our entire algorithm. Below, we discuss each step in detail. The 

reader may wish to refer to figure 6.1 for examples of applying the algorithm.

Figure 3.1: An overview of the entire algorithm.

3.2 Algorithm Description

Step 1. Acquire Range Data: We use simple and portable techniques based on structured fighting 

to acquire range data. Trobina [30] describes a method using a projector where alternating patterns 

of dark and light are projected onto an object. Bouguet and Perona [4] infer shape from the shadow 

of a rod moved over a plane on which the object is placed. Both techniques are simple, portable, and 

require minimal hardware.

Step 2. Fit to root model: Let ρ denote our current model estimate which we initially set to the 

root node of the hierarchy—for our hierarchy, the box. An error-of-fit function φ is computed based 

on the average spatial deviation between the range data and the model as defined in equation 4.10 

—details are given in the next chapter. The total cost C is set equal to the error of fit.

Basic Algorithm

1. Acquire Range Data

2. Set current estimate for the model to the root node of hierarchy and calculate 
error of fit for root node after estimating parameters.

3. For each child of current model, estimate parameters and calculate error of fit. 
Add complexity to calculate total cost.

4. If cost for any child is less than that for current model estimate, reset current 
estimate to child with minimal cost and goto step 3.

5. Optimize.

6. Check for possible simplifications.
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where Δ is a penalty for complexity. We use Δ(N) = NQ where N is the level in the hierarchy of a 

specific model and Q is a constant that controls the tradeoff between simplicity of the output model 

and accuracy.

Step 4. Reset ρ: The previous stage calculated the cost function for ρ and all its children if any. 

Of these, if the child with lowest cost C(γi(ρ)) has a lower cost than ρ, we make it the new best fit 

(ρ = γi) and go back to step 3. Otherwise, exit to step 5. For instance, if ρ = box and shape has the 

lowest cost out the children of box, and C(shape) < C(box), we now set ρ = shape and loop back to 

step 3. On the other hand, if C (shape) > C(box), we exit to step 5.

As with parameter estimation, we are using a greedy algorithm to choose the best model. We 

consider only the descendants of the current best guess p to choose the next best guess. Conversely, a 

node is considered only if it is finked to the best guess p at some point.

Step 5. Optimize: Once we have a model p of the right complexity, we refine the model parameters 

or curves by using a global optimization process—discussed in the next chapter—that is capable of 

fine-tuning all the parameters simultaneously, and giving us the best generative model of a particular 

type.

Step 6. Simplify: Once the optimized curves constituting the generative model are obtained, we 

can check for simplifications. We currently check for the curves being close to semi-circular, one or 

more curves being symmetric (in which case we use the side for which we have more complete data),

Step 3. Fit children to Data: For each child denoted by γi(ρ) of the best guess ρ, we estimate 

parameters and calculate the error of fit φ(γi). For instance, if ρ = box, the children are γ1 = 

shape, γ2 = depth, γ3 = bend. The parameter estimation is greedy. When a constant is refined into 

a curve, only that curve is estimated; the curves already constituting p are not changed. This is not 

necessarily the best strategy—addition of more degrees of freedom may change the best values for the 

existing parameters—but it is simple, efficient and scalable. We then calculate a cost function for each 

child:

(3A)
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and identicality of two or more curves. In these cases, a simple representation of the curve can be 

obtained. This in turn can lead to simpler object types. The same effect can be obtained by including 

all simpler object types in the hierarchy, but may lead to an unnecessarily large number of primitives 

at each level.

The simplification step occurs after, and not before optimization, because the initial guess for the 

optimization might intentionally be simple or crude, and we must be sure that the optimal curve can 

be simplified.
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Chapter 4

Fitting a specific generative model

In this chapter, we give some general techniques to fit a specified generative model to range data. The 

specific generative model is assumed chosen using the methods of the previous chapter. The primary 

contribution of this chapter is to develop our general error-of-fit functions (used for model recognition 

in the previous chapter), and show how they can be minimized by optimization—step 5 in our general 

framework just described. We also discuss our methods for fitting and parameterizing curves from 

extracted silhouettes, and show how curve-fitting and optimization are combined to yield an accurate 

generative model.

4.1 Optimization

We require a general objective function to compare range data and a generative model. For greatest 

generality, we require our methods to be independent of the specific generative model used and work 

whether or not the quantities to be computed have analytic forms; for instance, the model may exist only 

in tessellated form. Since the model can be an arbitrary function of the parametric curves constituting 

it, we use a general unconstrained nonlinear minimizer. For example, we have used the Sequential 

Quadratic Programming routine in NAG[23] with numerical computation of the gradients. Because the 

optimization process is more robust when the objective function varies smoothly with the parameters, 

we use objective functions that are guaranteed to be Cp continuous where p can be made arbitrarily 

large.

We discuss two objective functions corresponding to 2D and 3D error-of-fits, either of which may
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be used to obtain an optimal model. The 2D error-of-fit is well suited for optimizing particular curves 

by projecting onto the appropriate plane as shown in figure 4.3, while the 3D error-of-fit gives a clear 

measure of the average spatial deviation between range data and the model.

(xmi, ymi) Model point in 2D plane
(xmi, ymi, zmi) Model point in 3D
φ Objective function
∆r Area of projected range data
∆m Area of projected model
∆c Common area
max (a, b) Maximum of a and b
min (a, b) Minimum of a and b
⇑(⋅ , ⋅), ⇓(⋅ , ⋅) Cp continuous max/min
Ymmin(x), Ymmax(x) Model silhouettes
t Support of kernel
K(⋅, t) Kernel of support t
B(⋅, t) Blend function of support t
(α, β, γ) Fractional Parameterization
xm⇓, xm⇑ Cp min and max values in x of model
ym⇓(xm), zm⇓(xm, ym) Cp min values for y and z
ym⇑(xm), zm⇑(xm, ym) Cp max values for y and z
pmi, pr Vectors on model and range data
Pm(pr) Corresponding model point for pr
μ Penalty for a hole

Table 4.1: Some important symbols.

4.1.1 2D Error of Fit

Here, we discuss the comparison of two "images"—a series of points projected onto a given plane which 

for notational purposes we will assume to be the X-Y plane but which can actually be any plane or 

combination of planes (such as the sum of the errors for projection onto the X-Y and X-Z planes). We 

shall denote the ith point from the acquired range data by (zri, yri) and the ith point from tessellating 

the model by (xmi, ymi) ⋅ (xmi, ymi) is assumed to be arbitrarily smooth in the parameters of the model. 

Our goal is to design a general optimization technique which given as inputs (xri, yri), and a starting 

guess for model parameters—corresponding to a guess for (xmi, ymi)—produces a "best-fit". We will 

also discuss the Simplifications that result when analytic formulae for model contours can be found.
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where φ is the objective function, ∆r is the area of range image, ∆m is the area of the image from the 

model, and ∆c is the common area. The terms on the right are defined by:

Range of Integration: Where Yrmax(x) and Yrmin(x), or Ymmax(x) and Ymmin(x) are undefined—that 

is, if the points from range data or model do not extend into a given region—the integrand(s) is(are) 

defined as 0. This means the effective range of integration is the extent in x.

Figure 4.1: Motivation for the 2D objective function which is the symmetric difference between the range data and the 
model: (A - B) ⋃ (B - A).

2D Objective Function: We will use a simple objective function illustrated in figure 4.1—the area 

not common to the two projections. Clearly, when this area is 0, the images coincide. We start with 

the definition:

(4.1)

(4.2)

where Ymmax(x) refers to the maximum value of the model as a function of x. Ymmin(x), Yrmax(x), and 

Yrmin(x), are similarly defined with the values for the range data being computed in the same way as 

those for a tessellated model. In cases of holes, there may be more than one maximum or minimum. 

We will not discuss these cases here, but our argument can be extended by considering each segment 

separately. lc(x) stands for the common "length" as a function of x and is given by:

(4.3)
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Continuity: The function ∆c as defined above may be C1 discontinuous because of the mins and 

maxes. Removing the outer max will help us by providing a correct gradient even in regions where the 

two datasets don’t overlap. Cp continuity can be maintained through the use of blending functions:

(4.5)

The standard max and min functions result when f(r) = r everywhere, and the modulus sign in 

the definition of r results in a derivative discontinuity when r = 0. For Cp continuity, f must be 

Cp continuous and satisfy f(u) = u when u ≥ t where t is the "support" of f—the region where it 

differs from the traditional value. Also, the first p derivatives of f should vanish at 0. The top part 

of figure 4.2 shows this construction. If we desire the property that ⇑(a, b) fie between a and b, then 

⇑(a, a) = a and f(0) = 0. In this case, we can define f as follows (see the bottom part of figure 4.2 for 

an illustration):

Here, B(u, t) is a Cp continuous blending function of finite support t (B(u, t) = 0 when u ≥ t 

and B(u, t) = 1 when u ≤ 0) with B(0, t) = 1 such that the first p derivatives vanish at u = 0 and 

B(t - u, t) = 1 - B(u, t). An inspection of the bottom middle part of figure 4.2 will show that this 

construction requires there to be regions where f will be less than that for the traditional maximum

(4.4)

Here, ⇑(⋅ , ⋅) and ⇓(⋅ , ⋅) denote Cp continuous versions of max and min respectively which reduce to the 

standard max and min functions when the two points in question are far enough apart. We will begin 

by defining:

(4.6)
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or minimum, and consequently there will be regions where the continuous maximum is less than the 

discrete version while the continuous minimum is greater than the discrete version.

Figure 4.2: Cp continuous maximum: ⇑(a, b). Top Left: Solid line shows f as a function of b - a, while dotted line shows 
the traditional relation f = r which is seen to have a derivative discontinuity at 0. Top Right: Solid line shows ⇑(a, b) as 
a function of b - a while dotted line shows the traditional maximum and is seen to have a derivative discontinuity where 
b becomes larger than a. Bottom Left: Blend function with vertical lines showing extent of blend from 0 to t. Bottom 
Middle: f as defined in equation 7 as a function of b - a with the solid line showing the continuous version and the dotted 
line, the traditional maximum. Bottom Right: Solid line shows ⇑(a, b) while dotted line shows the traditional version.

The integrals remains smooth in the face of isolated discontinuities in Ymmax(x) and Ymmin(x) as 

functions of (xmi, ymi), which allows us to use a "box-kernel" as discussed next.

Evaluating the Integral: If Ymmax(x) and Ymmin(x) can be expressed in closed form, the integrals may 

be evaluated analytically. Otherwise, the model must be tessellated, and Ymmax(x) and Ymmin(x) found 

numerically. In this case, we use a simple "box-kernel" of support t to evaluate Ymmax(x) and Ymmin(x):

where t is a suitable width of the same order as the point spacing in x. The evaluation of Yrmax(x) and 

Yrmin(x) is similar. As already discussed under the paragraph on the range of integration, in regions 

where no suitable ymi exists, Ymmin(x) and Ymmax(x) are undefined and the appropriate integrals are taken 

as 0 since there is no contribution to area from a region in which there is no data.

(4.7)
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More complicated methods may produce better results, but also make evaluation of the integral for 

φ more difficult. Also note that evaluation by quadrature does not preserve continuity in the face of 

isolated discontinuities. The “silhouette” step functions are represented as a list of intervals with each 

interval corresponding to a particular (xmi, ymi). The fist can be evaluated with one pass through the 

collection of points making this technique quite efficient.

Figure 4.6 shows the construction of the “silhouette” functions. The right of the figure shows a way 

to make them continuous as required for our 3D error of fit, but not necessary here.

Figure 4.3: Showing the results of optimizing using 2D error of fit. The spoon model is projected onto the X-Y plane 
and the shape curve is optimized. The dashdot(-.) line shows the noisy initial silhouette for the model, the solid line 
the optimized silhouette and x marks the silhouette from range data. The dotted rectangle indicates the rectangular shape 
derived from the box model. Optimization of this produces the dotted(..) curve which is virtually indistinguishable in most 
regions from the solid line.

Results: Figure 4.3 shows an example of our technique. The (tessellated) spoon model was projected 

onto the X-Y plane and the shape curve was optimized. The x marks show the silhouette for the range
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data. The dashdot(-.) line shows the initial conditions produced by adding random noise to parameters 

estimated using the curve-fitting techniques to be discussed later. The noise was added to validate the 

usefulness of the method for far off initial guesses. The solid curve is what we get after optimization 

and is seen to be quite close to the data. Note that while our specific model is symmetric about the X 

axis, the range data is not similarly constrained, which accounts for most of the final error. Analytic 

evaluation of the objective function gave similar results.

The dotted rectangle shows the guess for the box model. The dotted curve(..) shows the results 

of optimizing this trivial initial guess and is seen to be virtually indistinguishable from the solid line 

in most regions, demonstrating the robustness of the optimization procedure. As discussed in section 

3, this allows us to derive good estimates even when no model-dependent estimation procedure is 

available. In order to set up this optimization, we merely moved the Y components of all control points 

(except at the ends) to the values they would have for the box model. A complete implementation 

must also locate the positions of the control points, perhaps based on the curvature of the final result. 

We leave the full development of this approach to future work. The regularizing term discussed in 

section 4.3 has not been added, so there are small kinks in the optimized result.

4.1.2 3D Error of Fit

Rather than projecting onto a given plane, we can directly compare two 3D data sets from acquired 

range data (xri, yri, zri) and from the model (xmi,ymi, zmi). For each point on the range data, we will 

associate a corresponding point on the model—for other applications like texture mapping, we may 

wish to change the direction of correspondence. The squared distance between these two points averaged 

over all points of interest will give us our objective function. We will do this by first projecting a given 

point in the range data (xri, yri, zri) on to a unit cube parameterization (α, β, γ). We then map (α, β, γ) 

to a point on the model (xmi,ymi, zmi) and compare (xmi,ymi, zmi) with (xri, yri, zri).

Nearest Neighbor: The simplest way to make correspondences is by considering the nearest neigh- 

bor in the model to a given point on the range data. Hoppe et al.[16] use a similar idea. However, 

figure 4.4 illustrates the ill-effects of nearest neighbor based correspondence. The left image shows the 

way the texture map would appear if the range data were noiseless and exactly matched the model.
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On the middle and right, the model has been translated and random noise added as in figure 4.3. The 

middle figure shows the effect of a nearest-neighbor type correspondence. On the left of this image, 

for a large region, almost all points map onto the same region of the range data, and a similar effect 

is observed in cases where the model is badly scaled. In the rightmost figure, we use our fractional 

mappings to determine the texture map from the range data, and we see that a reasonable result is 

obtained.

Also note that our comparisons are based on geometric properties of the generative model and range 

data and are general. By contrast, much of the literature on fitting algebraic surfaces uses a specific 

algebraic objective function which while having the benefit of being easy to compute and preserving 

continuity, has the disadvantage that it does not always correspond well to geometric proximity and 

may depend on the particular parameterization used. We believe that our approach can be beneficial 

in any context where two datasets need to be compared and matched.

Figure 4.4: Left: Texture map if range data were noiseless, and the model matched it exactly. Middle: Nearest-Neighbor 
when model is translated and has noise added. Right: Texture map using fractional mappings.

Corresponding Points: Using the fractional distance in x, y and z is simple and has some advan- 

tages over the nearest-neighbor method for finding good correspondences. The fractional distance is 

essentially the ratio of the co-ordinate of a point to the total extent of the data in that co-ordinate. 

Besides the different correspondence method used, our method differs from that in Hoppe et al.[16] in 

that we optimize directly over model parameters, not over individual points of the tessellated model. 

Thus, our objective function is generally nonlinear. Instead of iterating over minimization and repro-
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jection, we introduce a general technique for making the correspondences vary Cp continuously with 

respect to the model parameters, which will help in the optimization phase.

Fractional Mapping: For simplicity, let us first assume that zm is a single-valued function of 

(xm, ym). We first map a range data point onto the unit square [0, 1]2 (the inverse mapping):

(4.8)

We then map (α, β) onto the model (the forward mapping) where we assume that zm is a known 

function of (xm, ym):

where pr is a range data point, Pm(pr) is the correspondence generated by the fractional map, and 

|| Pm - pr || is an appropriate norm—here, the square of the distance— between points Pm and pr. In 

the recognition phase, it is often more intuitive to use the simple distance norm rather than its square. 

We average over all range points to get the net objective function.

Generality: The above framework can be used even when z is a multi-valued function of x and y 

provided we can associate corresponding values of z for data and model. However, the number of values

(4.9)

Here, xm⇓ is a (Cp continuous) minimum value in x, xm⇑ is the corresponding maximum; and xm⇓(xm) and 

ym⇑(xm) are similar for y (as a function of x). The paragraph on continuity will discuss how appropriate 

smoothness can be achieved in equation 4.9. Since the range data isn’t being varied by the optimizer, 

its maxima and minima can be computed in a straightforward way. The objective function for a single 

range point is:

(4.10)
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Figure 4.5: Schematic of fractional mapping. We show the model and range data (as a step-function silhouette). For a 
point pr in range data, we first find its fractional distance α in x. Then, considering the height as a function of x, we find 
the fractional distance β in y. We map these fractional values back to a point Pm on the model using equation 10. Note 
that a and β are ratios, not distances, d is the distance between Pm and pr and its square gives the objective function. 
We show a few more correspondences. The correspondences act like springs, pulling the corresponding points together.

of zm for given (xm, ym) could even change as model parameters are varied. For greatest generality, 

we introduce a fractional mapping in z too:

(4A1)

where zm⇓(xm, ym) and zm⇑(xm, ym) are minima and maxima for z and are functions of (xm, ym).

The model may be present only in tessellated form and the correspondence Pm(pr) need not map

into an actual model point. Thus, we consider a small neighborhood around Pm(pr) to find the 

objective function, and modify equation 4.10 to read:

where pmi is a point on the tessellated model and | a - b | is the distance between points a and b. 

K(u, t) is a non-negative symmetric Cp continuous kernel of finite support t. t should be chosen to 

have a slightly larger magnitude than the spacing between discretized points of the tessellated model.

(4.12)
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Symmetry of the kernel ensures continuity even though the Euclidean distance involves a square root 

and so has a C1 discontinuity at 0. Because only a small number of nearby model points will make the 

kernel non-zero, we need only check a small area of the model.

Assumptions: We expect the forward and inverse mappings to exist. For there to be no ym⇓(xm) or 

ym⇑(xm) for a particular x; the model would have to split into disconnected parts, which we disallow. 

There is a possibility of holes, either when zm⇓(xm, ym) and ym⇑(xm, ym) do not exist or when the 

denominator in equation 4.12 vanishes. We will show how to smoothly blend holes into the objective 

function after we discuss simplifications and continuity considerations.

Simplifications: The framework above is general. In case more information is known about the 

model, it may be simplified somewhat. If analytic results for xm⇓, xm⇑, ym⇓(xm), and ym⇑(xm) are known, 

the forward mappings may be computed easily. Usually, z will either be a single-valued function of x 

and y or have a known number of values for given x and y. This corresponds to γ being a discrete 

integer variable instead of continuous. In this case, instead of doing the final scaling in z, we can merely 

associate corresponding discrete values of z, and eliminate the need for using the kernel by just using:

Continuity: We must verify that our objective function is smooth in the model parameters. It is 

sufficient to consider the correspondences as functions of (α, β, γ). We show how the maxes and mins in 

the forward map (equation 4.9 and the second part of equation 4.11) can be made arbitrarily smooth. 

Since the optimizer isn’t varying the range data, which just defines a set of values in (α, β, γ), it is not 

necessary to observe smoothness in computation of maxima and minima for the range data.

Equations 4.5 and 4.6 already show how to compute xm⇓ and xm⇑ Cp continuously for two points. 

This can be symmetrically extended to more points by associativity and symmetrizing. For instance, 

for three points:

By choosing the support to be small enough, we ensure that we always consider only a small number 

of points.
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Now, we compute ym⇓(xm) and ym⇑(xm). Because of the integral below, ym⇓(xm) and ym⇑(xm) are 

Cp continuous in the model parameters provided the kernel is Cp continuous. Figure 4.6 depicts the 

process.

(4.13)

Figure 4.6: The process of finding silhouettes. The left column of images shows the points as circles with horizontal lines 
indicating a width of t. The middle column shows the resultant silhouette and the right column the continuous maxima. 
In the middle row, one point (shown with a dotted line and arrow) has moved slightly to the left as compared to the 
top row. The bottom left shows the region affected, while the bottom middle and bottom right show the absolute value of 
the difference between the top and middle rows. The continuous maximum changes smoothly, and with small amplitude, 
compared to the discrete version.

Finally, we must compute the maxima and minima zm⇓(xm, ym) and zm⇑(xm, ym). Our requirements
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are that the maxima and minima remain Cp continuous with respect to the model parameters and that 

they take on the expected values except in certain "boundary regions". We use the following method 

(we show the computation only for the minimum; the maximum is computed analogously):

where the bar denotes the lowest value after removing the previous lowest, and the computation is 

repeated until q is 1. q is a blending function that ensures continuity in case the minimal value slips 

out of range. One possibility is:

where δ is a parameter—typically a small fraction of t—that controls the extent of the blend. If there 

is no model point within a radius t of (xm, ym), we apply the hole penalty discussed next.

Holes: In some cases, a range data point may map to a hole in the model. This usually indicates 

some fundamental incompatibility between the range data and the model (or a stray data point), and 

we deal with this by assigning a large penalty μ. This occurs either when the denominator in equation 

4.12 vanishes or when zm⇓(zm, ym) and zm⇑(xm, ym) do not exist. In the latter case, we already have 

a blending function that smoothly blends between the hole penalty and the normal objective function 

(if what were previously a hole were to fall inside the model as a result of varying parameters of the 

model). In the former case, we can easily create a blending function:

(4.16)

where the bar on top stands for the modified objective function which will be equal to the original 

everywhere except in regions near holes and will make the transition with Cp continuity.

(4.14)

(4.15)



33

4.2 Curve-Fitting

The building blocks of generative models are curves, and most of our estimation algorithms discussed 

in chapter 5 will yield a set of (noisy) points from determining the silhouette of the data projected on 

to a given plane. The interpolant of this silhouette will be our desired curve. Below, we show how to 

represent this curve simply and efficiently.

Step 1. Input interpolated data: We take as input a set of points, that we seek to smooth and 

interpolate. This comes from the estimation schemes discussed in chapter 5. For notational purposes, 

we assume these points to lie on the X-Y plane.

Step 2. Filter: Since we expect the data to be noisy, we first filter to smooth it.

Step 3. Compute Curvature: A discrete measure of the curvature of the curve is then computed:

(4.17)

where θ is the discrete curvature or importance measure. The curve is divided into a number of regions 

having equal net curvature, and cubic B-spline control points are added at the boundaries of each of 

these regions, and tripled at the end-points of the curve. The number of control points is proportional 

to the net curvature. The values of the control points are the corresponding data values.

Step 4. Optimize: The above steps suffice to choose an appropriate model in the recognition phase. 

When fitting to the chosen model, we will also optimize the parameters of the control points to minimize 

an energy function φ:

where the right-hand side is a straightforward least-squares approximation to the N points being 

interpolated. At this time, any model-specific constraints discussed in chapter 5 must also be taken

(4.18)
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into account—for instance, requiring that the shape curve be perpendicular to the X-axis at the end- 

points.

Figure 4.7 shows the process of fitting. In the left figure, the range data is projected onto the X-Y 

plane and a (noisy) silhouette is extracted. In the right figure, we show the silhouette with x marks, 

and the estimated curve with a solid line with control points marked by circles. Since the model is 

symmetric about the X-axis, control points are shown for only one side, and the other side of the curve 

is shown only for illustrative purposes and is derived by symmetry. Note that there is a high density of 

control points in regions of large curvature with a corresponding low density in regions of low curvature.

4.3 Combining Curve-Fitting and Optimization

The simplest and most general method to combine curve-fitting and optimization is to estimate param- 

eters using curve-fitting for model recognition, and then run a global optimization using the 2D or 3D 

error-of-fit function. A faster variant when the model-dependent parameter estimation is fairly accu- 

rate, is to use optimization only to refine the estimate of the co-ordinate axes (so the only parameters 

are those for translation and rotation and the procedure is relatively fast), and iterate between this 

and curve fitting (with the optimization in step 4). This corresponds to alternating between optimizing 

the extrinsic parameters and refining the intrinsic parameters of the model. It is always desirable to 

include a regularizing term in the objective function to enforce fairness of the results. Otherwise, noise

Figure 4.7: The curve-fitting process. The left figure shows extraction of the silhouette while the right figure shows fitting 
of a smooth curve to the interpolated data.
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in the range data can cause the output curves to exhibit kinks and other undesirable behavior. A 

simple term based on a notion of curvature for each curve is:

The constant v weights the constraint to make its (initial) value of roughly the same magnitude as the 

other terms in the objective.

It should be emphasized that this is only a crude regularization term. Much further work is 

needed on determining what constitutes a perceptually suitable result, and adding suitable terms to 

the objective function.
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Chapter 5

Discussion of Specific Model Hierarchy

In this chapter, we review the particular hierarchy we choose to model. A diagram of the tree we use is 

given in figure 5.1. Models at higher levels (deeper in the tree) are obtained by refining simpler models 

at lower levels. Following the edges leading from the root node to a particular interior node, one can 

derive the history of successive refinements.

Figure 5.1: The specific hierarchy we use.
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5.1 General Concepts

Cross-Sections: We deal with two cross-sections in the Y-Z plane—circular and straight. Refer to the 

figures below. Cross-sections are defined by two parameters P and H. The circular cross-section is the 

circular arc connecting (-P, 0) , (P, 0) and (0, H) where ∣ H ∣ ≤ ∣ P ∣, while the straight cross-section is 

the similar rectilinear segment connecting the three points.

Figure 5.2: Circular and straight cross-sections. Both pass through points (-P, 0), (P, 0), and (0, H).

The tree in figure 5.1 shows a final branch for the two possible cross-sections. As discussed in 

section 3, conceptually each node in the tree splits into two corresponding to the cross-section used. 

We simplify the tree somewhat by using the straight cross-section for the recognition phase. Within 

the framework of section 3, we can effectively treat this as a parent-child linkage except that both 

nodes have the same penalty for complexity.

Co-ordinate Axes: We find the co-ordinate axis directions by computing the principal axes of the 

data using the eigenvectors of the covariance matrix as done to compute bounding boxes in [13], or by 

considering the axes along which the range data has greatest extent—in this approach, we first find the 

longest axis using optimization, and then the longest axis orthogonal to the first one. In general, we 

may expect the use of the covariance matrix to be more consistent—for input of a uniformly sampled 

cube, the resulting axes are the axes of the cube. However, for elongated objects where a significant 

amount of data is missing, the use of the longest axis is more robust. Note that we expect the input 

range data to contain points only from the object of interest, not the environment—far off stray points 

can seriously affect determination of the longest axis. In practice, we enforce this by manual removing 

stray points in the range data collection phase before invoking the methods described in this thesis.

Axis Labeling: To label the axes, we consider the three co-ordinate planes. The one about which
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the data has the greatest symmetry (computed by comparing a reflected version with the original using 

the error-of-fit techniques discussed in section 3) is the X-Z plane with the remaining axis forming the 

Y-axis. This follows from the symmetry of this hierarchy. To label the X and Z axes, we require that 

the silhouette of the range data in the X-Z plane fie parallel to the X axis (as will be the case for 

the “box” model which is what we are originally trying to fit). To avoid noise, we consider only the 

regions where the depth of the range data is greatest to compute this silhouette. It must be emphasized 

that this is only a crude model-dependent estimate, with a more accurate description given after the 

(hierarchy-independent) optimization step.

Thickness: For a complete solid representation, we must specify a thickness. Since the thickness 

is typically small, and there are weak clues in the range data regarding it, we do not optimize over it, 

but instead treat it as a constant value derived from looking at the projection in the Y-Z plane of the 

acquired data for a suitable X as illustrated in figure 5.3.

Figure 5.3: Deriving the thickness.

5.2 Shapes Modeled

We now discuss the various shapes and curves inherent to our hierarchy. We will use the straight

cross-section for most of these.

Box: There are 3 parameters for the length, width and depth corresponding to the extent of the 

range data. A mathematical representation for the box as a function of u and v is:

(5.1)

where -1 ≤ v ≤ +1, and u parameterizes the straight cross-section (-1 ≤ u < +1). The other 

parameters to ST are P and H. Square brackets refer to the two components (X and Y) of ST. l, w, 

and d denote length, width and depth respectively.
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Generalized Cylinder (Variable Shape): The projection of the box on the X-Y plane is a 

rectangle of dimensions l and w. Instead of treating w as a constant, it can be made a curve. This is 

the essence of descending one level down the tree of generative models —a curve is added for a better 

representation. This curve (which is assumed symmetric about the X-axis) is obtained by considering 

the silhouette of the projection of the range data onto the X-Y plane. The curve-fitting part of section 

3 shows an example of this projection and the derived curve. A mathematical representation is then 

given by (where the shape is denoted by P):

(5.2)

There are a few special restrictions on P. We assume that P[1] goes to 0 at the end-points and 

is perpendicular to the X-axis there to ensure derivative continuity of the shape (which is implicitly 

reflected about the X-axis as a result of the symmetry in the cross-sections). We implement this by 

placing a triple knot at the end-points with P[1] = 0, and also ensuring that the next control point at 

both ends has P[0] the same as the previous 3 to ensure the curve is perpendicular to the X-axis at 

the extremes.

Variable Depth: Instead of the depth being constant, it too can be made a curve like the shape. 

The depth is estimated by considering the silhouette in the X-Z plane. Calling the depth curve "H", 

we obtain:

(5.3)

Similar to the generalized cylinder, we want H[1] to go to 0 at the end-points. Also, as shown in figure 

5.4, H may go from negative to positive. In case the derivative is discontinuous here, a doubled knot 

should be placed at the zero-crossing.

Figure 5.4: A silhouette in the X-Z plane showing where H goes from being negative to positive.
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Bend: Figure 5.4 shows the MAX and MIN curves in the X-Z projection. if these curves are not 

parallel to the X-axis, we must include a bend defined as

where CRV = MAX when H < 0 and CRV = MIN when H > 0.

Combinations of these curves can give a variety of models. We give below the representation

for the complete spoon model (replacing ST with ARC and adding H for bend parameterized so

H[0] = P[0] = H[0]).

(5.4)

5.3 Simplified Shapes

Chapter 3 discusses how in some cases the curve representations may be simplified. Here, we show how 

some simpler shapes may be derived through this process, demonstrating the variety of objects that 

can efficiently be modeled using this simple tree:

• Right-Circular Cylinder: Make P(v) a semi-circle in equation 5.2.

• Hemisphere: Using a circular cross-section, make P(v) and H(v) identical semi-circles.

• Surfaces of Revolution: Using a circular cross-section, set P(v) = H(v). This gives half a surface 

of revolution. To get full spheres or surfaces, we would need to extend the ARC to draw out the

whole circle.
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Chapter 6

Results

We demonstrate results from fitting generative models to range data. For illustrative purposes, both 

the range images and the model were meshed to create the final images for display (colors are artificial). 

Internally, no meshing is done. Snyder [27] describes alternative methods to image generative models 

without mesh creation, but at the cost of loss of interactivity.

We use the 3D error-of-fit function φ defined by equation 4.12 using the simple distance norm after 

scaling the range data so the largest axis lies in the range -1 to +1. φ thus has a clear physical 

interpretation as the average fractional deviation between the model and the range data. In computing 

cost C, we use a complexity penalty per level Q of .02 after scahng. For estimation, we use the model- 

dependent estimation techniques of chapter 5, with parametric curves estimated using the curve-fitting 

approach of section 4.2. A kernel support of .04 was used in equation 4.12 with a 100-by-100 tessellation. 

A small blend parameter δ = 10-3 was used in equation 4.15, while a large hole penalty of μ = 10-1 

was assigned in equation 4.16.

6.1 Recovered Objects

Spoon: The first model which uses the full generality of the framework is a spoon. A single range 

image (shown in figure 1.1) obtained using the method of Trobina [30] was used. In figures 6.1 and 6.2, 

we show the entire process of recovery with reference to the tree of models pictured in figure 1.2.

Bowl: Figure 6.3 shows the recovery of a bowl model from a single range image acquired using [30]. 

In regions where data is missing, the depth curve yields poor results, but the system automatically
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Figure 6.1: Recovery of the spoon model. We show the tree over which we do recognition with inset images. Highlighted 
nodes were the best fit at some point, while nodes which are never reached (combination of shape and bend neither of which 
are ever best-guess) are not shown. The greedy algorithm requires that for a node to be reached, it be directly connected 
to a best-guess node, and these are the only links followed. Other links are shown in a lighter color. The final branch 
for straight and circular cross-sections is also shown where we pick the circular cross-section which has lower error, and 
optimize to get a best-fit model.

recognizes the symmetry of this curve about the vertical axis in the simplification phase (step 6 of the 

algorithm framework in section 3), and fills in the gaps. The system also automatically determines 

that the bowl shape is circular and that no significant benefit is gained from using a non-zero bend. 

We show error-of-fit data in figure 6.2 after splitting each node corresponding to straight and circular
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Figure 6.2: Trees for recognition of the spoon (left) and bowl(right) with corresponding error-of-fits φ and costs C. The 
complexity penalty per level is .02. Best-guess nodes are shown in yellow; nodes that were never reached in dark red. 
The spoon tree corresponds to the top figure and the decision between straight and circular cross-sections is made only 
after recognition. In the bowl tree on the right, each node is split corresponding to straight and circular cross-sections 
and a choice is made at each level. Links exist corresponding to adding a curve or changing cross-section but not both 
simultaneously. In the bowl tree, adding bend increases the cost function so our final model is a level 2 combination of 
shape and depth.

cross-sections. Links exist between nodes either when the cross-section is changed or a single curve is 

refined using the same cross-section.

Ladle: In figure 6.4, we show the fitting of a generative model to a single range image of a ladle 

obtained using the method of Bouguet and Perona [4]. The algorithm does well even when the data is 

incomplete or noisy.

Cup: Figure 6.5 demonstrates the robustness of our approach even when the model does not match 

the range data well. We took 6 aligned range images of a cup (shown in different colors). The hierarchy 

we use is incapable of modeling the handle of the cup, but does a good job on the cylindrical portion 

while doing something reasonable for the handle. Segmenting the range data (equivalent to adding 

a union operator to our model hierarchy) and a minor augmentation of our tree of models (addition 

of full rectangular instead of just a semi-rectangular or straight cross-section) allows us to model the 

entire cup fairly accurately.
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6.2 Compactness

The models discussed typically had fewer than a hundred parameters (the coefficients of the control 

points for the constituent curves). This is at least two orders of magnitude better than the results for 

meshing.

6.3 Editing

We demonstrate editing of the recovered spoon model shown in figure 6.1. Figure 6.6 demonstrates 

the ladle-like shape that we have created and shows how the new curves were obtained from the old 

ones by moving a few control points selectively in a few regions, making the editing process intuitive 

and simple.

Figure 6.3: Recovery of a simplified generative model for a bowl (right) from a single noisy incomplete range image (left). 
The system detects circularity and symmetry and that no bend need be added. As opposed to mesh-based reconstruction, 
we don’t have bad spots where there is no information in the data.

Figure 6.4: Left: Range data for ladle acquired using the technique of Bouguet and Perona. Right: Reconstructed 
generative model which is seen to do quite well even where the original is incomplete.
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Figure 6.5: Left: Range data for a cup got from aligning 6 views, each shown in a different color. Middle: Model’s 
best estimate. The cup handle cannot be correctly represented, but the algorithm still does something reasonable, showing 
the robustness of the technique. Right: Fairly accurate model derived by segmentation and slightly augmenting our 
hierarchy.

Figure 6.6: Editing the spoon (recovery shown in figure 5.1) into a ladle-type shape. Only a few control points need to be 
moved to get a radically different shape. Left: Edited shape curve before(blue), and after(red) editing. Control points are 
shown as circles. Middle: A similar plot for the depth curve. Right: A view of the edited model.
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Chapter 7

Conclusions and Future Work

We have presented a new method of going from range data to a model. Instead of deriving a polygonal 

mesh, we create a simple, intuitive and compact generative model. Demonstrating our ideas on a simple 

tree of models, we show how the ideas of model complexity and accuracy can be combined to select 

the appropriate model. Methods of curve-fitting are combined with special techniques for optimization 

to recover an appropriate optimized model. New models can be created very easily by editing shapes 

already recovered.

While we believe this is a first step towards an interesting area of future research, much further 

research is needed. Some limitations of our current system are detailed in section 1.4, and overcoming 

them will be a topic for future work. More work is also needed on perceptually-based objective functions 

and complexity-accuracy tradeoffs. Our objective functions based on average deviation between model 

and range data are currently very simple. As a first step, we could incorporate knowledge about 

the confidence with which each range data point is known into the objective function by considering 

the error in data acquisition. Further, a simple norm does not take into account perceptual qualities 

such as absence of discontinuities or near-discontinuities. Including such perceptual features in the 

objective function is important. Correct and efficient methods of curve representation especially in 

the presence of discontinuities is also a direction for future research. For instance, in the cup example 

before segmentation, a large number of control points are needed because the system does not recognize 

the discontinuities in the cup profile. Also, a future system would probably use displacement maps[19]
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to keep the full complexity of the range data and have the ability to compose generative models to 

represent more complex objects.

In the future, we would also like the system to automate some tasks that currently require user 

interaction. In the method described in this thesis, the user must supply a generative hierarchy. It 

might be possible to automatically derive this hierarchy from a mathematical representation of the 

objects to be modeled, or to use a large pre-defined hierarchy of models. Further, the user currently 

supplies the initial guess for parameter optimization. To automate this procedure, we could use a 

bootstrapping technique where the simpler model at the previous stage in the hierarchy is used as a 

basis for determining the initial guess for model parameters. Chapter 3 discusses this approach briefly 

and favorable preliminary results are presented in figure 4.3, but we have not yet fully explored this 

approach.

Our vision encompasses a scenario where the user need merely select an arbitrary object, and 

the system will automatically supply an intuitive compact representation that is easy to visualize, 

manipulate and edit. This thesis represents one step toward that goal.
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