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ABSTRACT

Digital image correlation (DIC) is a powerful experimental technique for measuring
full-field displacement and strain. The basic idea of the method is to compare
images of an object decorated with a speckle pattern before and after deformation
in order to compute the displacement and strain fields. Local Subset DIC and
finite element-based Global DIC are two widely used image matching methods;
however there are some drawbacks to these methods. In Local Subset DIC, the
computed displacement field may not satisfy compatibility, and the deformation
gradient may be noisy, especially when the subset size is small. Global DIC
incorporates displacement compatibility, but can be computationally expensive. In
this thesis, we propose a new method, the augmented-Lagrangian digital image
correlation (ALDIC), that combines the advantages of both the local (fast and in
parallel) and global (compatible) methods. We demonstrate that ALDIC has higher
accuracy and behaves more robustly compared to both Local Subset DIC and Global
DIC.

DIC requires a large number of high resolution images, which imposes significant
needs on data storage and transmission. We combined DIC algorithms with image
compression techniques and show that it is possible to obtain accurate displace-
ment and strain fields with only 5 % of the original image size. We studied two
compression techniques (discrete cosine transform (DCT) and wavelet transform),
and three DIC algorithms (Local Subset DIC, Global DIC, and our newly proposed
augmented Lagrangian DIC (ALDIC)). We found the Local Subset DIC leads to
the largest errors and ALDIC to the smallest when compressed images are used.
We also found wavelet-based image compression introduces less error compared to
DCT image compression.

To further speed up and improve the accuracy of DIC algorithms, especially in
the study of complex heterogeneous strain fields at various length scales, we apply
an adaptive finite element mesh to DIC methods. We develop a new h-adaptive
technique and apply it to ALDIC.We show that this adaptivemeshALDIC algorithm
significantly decreases computation time with only little loss in accuracy.
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C h a p t e r 1

INTRODUCTION

Digital image correlation (DIC) is a popular optical experimental technique for
measuring deformation and strain in solids. In this method, we decorate the surface
of the sample with a speckle pattern. We then take a sequence of grayscale digital
images of a test specimen during the deformation. Finally, by comparing images in
the sequence, we determine the displacement and strain fields of the specimen using
image tracking algorithms [1, 2, 3, 4].

DIC has several advantages comparedwith other strainmeasurementmethods. First,
unlike electrical resistance strain gauges that need to be glued on the sample surface,
taking digital images does not require contact with the specimen. This is especially
advantageous for soft materials where contact may affect strain fields. Second,
each electrical resistance strain gauge only measures the strain status of one point
but DIC can easily provide full field displacement and strain values. Compared
with other non contact and full field optical strain measurement methods such as
holographic methods, speckle methods, and interferometric methods [5, 6, 7, 8],
DIC experiments do not require a very sophisticated experimental environment.

DIC has been applied to study the behavior of diverse solids systems such as bi-
ological material [9, 10, 11], metal alloys [12], shape memory alloys [13], porous
metals [14], polymers [15], and polymer foams [16]. It has provided insight into
the very nonlinear behavior of solids like slip bands [13, 17] and crack tips [18].
This method can also be combined with other diagnostic tools to enable investi-
gation of complex phenomena with very heterogenous and complex strain fields at
various length scales from nanometers to kilometers. For example, DIC has been
used to measure nonuniform phase transformation by combining scanning electron
microscopy (SEM) and electron backscatter diffraction (EBSD) [19]. It has also
been used with atomic force microscopy (AFM) to measure in-plane displacement
at the nanometer scale [20]. At the other extreme, DIC has been used in earthquake
and glacier monitoring [21, 22, 23, 24] at the scale of tens of kilometers.

Over the last thirty years, various DIC algorithms to compare images and obtain
displacement and strain have been proposed and implemented. Most algorithms
can be cast into two categories: Local Subset DIC method and Global DIC method
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[25, 26, 27, 28, 29]. In Local Subset DIC, as its name implies, we first break
up both reference image and deformed image into many subsets and then find the
deformation of each subset independently. Since the subsets are limited in size, the
deformation of each subset can be solved very fast; moreover the subsets can be
analyzed in parallel. Therefore, Local Subset DIC can be very fast. However, since
the deformation of each subset is obtained independently, the overall deformation
may not be compatible and the strain field can be extremely noisy. In Global DIC,
we represent the global deformation using a basis set (often based on a finite element
discretization), and then analyze the global image to obtain the coefficients relative
to this basis set. However, this is expensive.

These considerations have led to a number of attempts to improve these methods.
A number of filtering and smoothing schemes have been proposed to address the
noisiness of the Local Subset DIC methods [30, 31, 32]. Broadly, filtering of both
the images and the displacements not only reduces the noise but also can improve
the accuracy because it incorporates information from surrounding regions. While
this can be effective, the critical choice of filter is unrelated to the underlying
mathematical structure and may be experiment dependent. Similarly, a number of
sophisticated numerical methods have been introduced to address the computational
cost of global methods. These have followed two key ideas, or a combination of the
two. The first is to use either gradient [33, 34] or elastic [35, 36, 37] regularization.
The second is to use domain decomposition where the domain is broken up into
a number of sub-domains, the correlation is performed compatibly in each sub-
domain and the compatibility between the sub-domains is enforced using either
Lagrange multipliers [36, 38] or the finite element tearing and interconnecting
(FETI) procedure [35, 37]. These can then be used in parallel implementation
(see [39] for a review). These significantly speed up the convergence and reduce
computational time. However, these require sophistication in their implementation
and must be adopted to the problem at hand.

In this thesis, we propose and demonstrate a new image comparison algorithm: aug-
mented Lagrangian DIC or ALDIC. This method seeks to combine the advantages
of both the Local Subset DIC (speed and parallel implementation) and the Global
DIC (displacement compatibility and strain smoothness). The basic idea is to match
subsets locally as in the Local Subset DIC, but use compatibility as a constraint.
Specifically, we introduce an auxiliary globally compatible displacement field and
introduce the constraint that this auxiliary globally compatible displacement field
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and its gradient equal the locally correlated values. We implement the constraint
using the augmented Lagrangian method.

The augmented Lagrangian method, also known as the method of multipliers, has
been used to solve constrained minimization problems in diverse fields [40, 41]. It
adds to the objective functional a term that is linear in the constraint as in the method
of Lagrange multipliers and a term that is quadratic in the constraint as in the penalty
method. The addition of the quadratic term makes the numerical implementation
easier than themethod of Lagrangemultipliers. However, unlike the penaltymethod,
one does not need to take the limit of infinitely large penalty coefficients. For this
reason, the augmented Lagrangian method has found widespread acceptance in both
image precessing [42] and in mechanics [43, 44].

We implement the augmented Lagrangian using the alternating direction method
of multipliers (ADMM) that is a form of operator splitting [45]. In this method,
we successively perform the local correlation, optimize the auxiliary displacement,
update the multiplier and iterate. The convergence and other numerical issues of
ADMM have been carefully studied [46], and this method is widely used in image
processing [45, 47, 48] and inmechanics [49]. The second problem, the optimization
over the auxiliary displacement, is global. However, it leads to a universal, sparse,
well-conditioned operator (sum of the Laplacian and identity). This can be treated
very efficiently using established methods.

We compare the performance (accuracy and efficiency) of the newALDIC algorithm
with that of Local Subset DIC method and Global DIC method using both synthetic
data (where the exact displacement is known) and experimental data. We show that
ALDIC provides the most accurate displacement and strain. It is only a few times
more computationally expensive compared to Local Subset DIC and significantly
cheaper than Global DIC.

ALDIC also provides two additional advantages: it allows combining DIC with
image compression, and it allows a multi-resolution approach.

In practice, DIC methods usually require a large number of high resolution images
and this imposes significant needs on data storage and transmission. In the recent
decades, a number of sophisticated image and data compression algorithms have
been developed to represent images with less data size. We tested the combination
of different DIC methods with two popular lossy image compression techniques
based on discrete cosine transform (DCT) and wavelet transform and found that it
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is possible to obtain accurate displacement and strain fields with only 5% of the
original image size. Among all three DIC methods (Local Subset DIC method,
Global DIC method, and our proposed ALDIC method), Local Subset DIC leads to
the largest errors and ALDIC to the smallest errors when compressed images are
used. We also found that wavelet-based image compression introduces less error
compared to DCT image compression techniques [50].

To further save the computation cost, especially in the study of complex hetero-
geneous strain fields at various length scales, we apply h-adaptive finite element
mesh with our proposed ALDIC method, which can be solved quickly. Compared
to the current Global DIC method, this new adaptive ALDIC algorithm significantly
decreases computation time with little loss (and some gain) in accuracy.

In this thesis, we review two current DIC algorithms, Local Subset DIC method
and Global DIC method, in Chapter 2. Next, we propose and describe a new image
comparison algorithm: augmented Lagrangian DIC (ALDIC) in Chapter 3. We
verify and evaluate the accuracy of the proposed ALDIC method using a series
of case studies using synthetic data and experimental data in Section 3.5. These
examples demonstrate the superior accuracy of the proposed ALDIC algorithm. We
analyze the computation cost of the proposed method in Section 3.6. We show
that the computational effort of the ALDIC is at worst a factor of two to four more
expensive compared to Local Subset DICmethod, and less expensive than theGlobal
DIC method.

Chapter 4 introduces combining digital image correlation with image compression
techniques. Specifically, Section 4.2 introduces two popular image compression
techniques based on discrete cosine transform (DCT) and wavelet transform which
we use in this thesis. We analyze the combination of the image compression
techniques with three types of DIC algorithms in Section 4.3. Section 4.4 provides
various case studies with synthetic and experimental images. It shows that ALDIC
combines naturally with wavelet transform based image compression.

Chapter 5 studies the combination of adaptive mesh strageties with various DIC
algorithms. We develop a new robust adaptive mesh Global DIC method based on
finite element a posteriori error estimate in Section 5.2. To further save computation
cost, we apply adaptive mesh onto ALDIC method in Section 5.3. In Section
5.5, we use Kuhn triangulation and Quadtree adaptive mesh specifically for DIC
problems to avoid image grayscale value interpolation bias errors. We demonstrate
the superior efficiency of the proposed adaptivemeshALDICmethod using synthetic
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and experimental examples in Section 5.10 and analyze their computation cost in
Section 5.11. We recall the main results of this thesis and point out future directions
in Chapter 6.
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C h a p t e r 2

REVIEW CURRENT DIC METHODS

In this chapter, we review DIC problem formulation and two popular categories of
DIC algorithms which are Local Subset DICmethod and Global DICmethod. Local
Subset DIC decomposes the domain intomany local subsets, ignores the dependency
between neighboring subsets, and can be solved fast and in parallel. In Global DIC
method, the whole domain with all the subsets’ unknowns are solved together where
the kinematic connection between neighboring subsets are automatically considered
but it’s more expensive to solve and easily gets stuck into local minima.

2.1 Digital image correlation problem formulation
Consider a domain Ω ⊂ Rn undergoing a deformation y : Ω→ Rn, (n = 2, 3). As
seen in Figure 2.1, letX denotes the reference or undeformed position of a particle
in Ω and y(X) denotes the image or current position of the particle. Suppose we
have a speckle pattern with grayscale value f(X) in the reference domain, and the
corresponding grayscale value g(y) in the current configuration. If the deformation
convects the grayscale, then we have

f(X) = g(y(X)). (2.1)

The problem of digital image correlation is the inverse problem of finding the
deformation y(X) that satisfies (2.1) given grayscale images f(X) and g(y). We
pose it as one of optimization, or one of finding the deformation map that minimizes

f (X)
f (X)

X

X g (y(X)) g (y(X))

1

2

Figure 2.1: DIC reference image f(X) deforms into deformed image g(y(X)).
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the squared difference:

C =

∫
Ω

|f(X)− g(y(X))|2 dX→ minimize over y : Ω→ Rn. (2.2)

A few comments are in order. First, the images are pixelated with f, g taking discrete
values. So we can either replace the integrals above with a sum, or interpolate the
images (we use bi-cubic interpolation whenever we need sub-pixel values). Second,
due to illumination artifacts and gain errors in real experiments, it is useful to
normalize the images. This normalization depends on the knowledge of illumination
and other experimental details. A simple example is to normalize both images to
have the same mean and standard deviation:

f(X) 7→ f(X)− f̄
σf

, g(y) 7→ g(y)− ḡ
σg

, (2.3)

where f̄ , ḡ are the mean values of f, g, and σf , σg are their standard deviations [51].
Henceforth, we assume that we are always working with normalized images. Third,
in light of the normalization, note that minimizing C is equivalent to maximizing
the cross correlation ∫

Ω

f(X)g(y(X))dX. (2.4)

Finally, in practice, there are different ways in which the correlation can be per-
formed. One can take a series of images as the deformation proceeds and do the
correlation between consecutive images, or one correlate the first and final image,
or one can do something intermediate. The incremental correlation between suc-
cessive image can lead to easier convergence and smaller individual errors due to
small displacement, but can lead to the accumulation of systemic errors and add to
the cost. These issues are common to all three algorithms that we discuss presently.

2.2 Local Subset DIC method
The Local Subset DIC method is the most widely used algorithm in DIC software
packages [26, 27, 29]. As the name indicates, the idea is to break up the domain
into local subsets and perform the correlation or optimization independently in
each subset. Mathematically, we break up our domain into a finite number of
subsets Ω =

⋃
i Ωi, and make the ansatz that the deformation is piecewise constant
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translation or piecewise affine.

y(X) = X + u(X) = X +
∑
i

(ui)χi(X) (Piecewise constant translation),

(2.5)

y(X) = X + u(X) = X +
∑
i

(ui + Fi(X−Xi0))χi(X) (Piecewise affine),

(2.6)

where ui is the translation vector of the center of the local subset Ωi, Fi is affine
deformation gradient tensor,Xi0 is the coordinates of the center of each local subset,
χi is the characteristic or index function

χi =

{
1 X ∈ Ωi,

0 X /∈ Ωi.
(2.7)

Using piecewise translation ansatz (2.5), the optimization problem (2.2) decomposes
into a number of decoupled problems of optimizating over four (n = 2) or six (n = 6)
scalar variables:

Ci =

∫
Ωi

|f(X)− g (X + ui)|2 dX→ minimize over ui. (2.8)

Using piecewise affine deformation ansatz 2.6, the optimization problem (2.2) de-
composes into a number of decoupled problems of optimizing over six (n = 2) or
twelve (n = 3) scalar variables:

Ci =

∫
Ωi

|f(X)− g (X + ui + (Fi(X−Xi0)))|2 dX→ minimize over Fi,ui.

(2.9)

Problem 2.8 can be solved very fast using fast Fourier transformmethod [10]. As for
problem 2.9, there are a number of methods that have been used to solve this problem
including the Inverse Compositional Gauss-Newton(IC-GN) [25, 26, 52] and Inverse
Compositional Levenberg-Marquardt(IC-LM) scheme [52]. In this thesis, we use
IC-GN and this is described in detail in 2.3 and summarized in Algorithm 1.

2.3 Inverse Compositional Gauss-Newton (IC-GN) scheme
Here we summarize the Inverse Compositional Gauss-Newton (IC-GN) scheme to
solve Local Subset DIC optimization problem.

Given the current iterate of deformation map yk, we seek the updated deforma-
tion map yk+1. It is convenient to define the inverse maps φk and φk+1, where
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Algorithm 1: Local Subset DIC
Input: Reference image f , deformed image g
Output: Displacement ui, affine deformation gradient tensor Fi of each local

subset
Step 1: Initialization using FFT integer pixel search method;
Step 2: Precompute image gradients∇g;
Step 3: For each local subset, compute aip, biqr, cjkqr using (2.14), (2.15), (2.16);
while ‖di‖ , ‖ejk‖ > ε do

Step 4: Warp deformed image g with current deformation Fi,ui ;
Step 5: Compute di, ejk using (2.17), (2.18);
Step 6: Compute v,H using (2.13) ;
Step 7: Update φ using (2.11)

end

φk(yk(X)) = X. We define the increment ψk through yk+1 = ψk ◦ yk as shown
in Figure 2.2. We make a change of configuration and rewrite as

Ci =

∫
Ωk

i

|f(φk(z))− g(ψ(z))|2dz, (2.10)

where z is the current iterate of deformation map yk. We obtainψk as the minimizer
of this functional and the updated deformation map as

φk+1 = φk ◦ (ψk)−1. (2.11)

To minimize (2.10), we assume ψk ≈ z + v + H(z − z0) for small v and H.
Therefore,

Ci =

∫
Ωk

i

|f(φk(z))− g(z)−∇g(z) · (v + H(z− z0))|2dz. (2.12)

Minimizing over v andH, we obtain(
alp blqr

bmnp cmnqr

)(
vp

Hqr

)
=

(
dl

emn

)
, (2.13)
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Figure 2.2: The change of variables involved in the IC-GN update.

where

alp = 2

∫
Ωk

i

g,lg,pdz, (2.14)

blqr =

∫
Ωk

i

g,lg,q(zr − z0r)dz, (2.15)

cmnqr = 2

∫
Ωk

i

g,m(zn − z0n)g,q(zr − z0r)dz, (2.16)

dl =

∫
Ωk

i

(f − g)g,ldz, (2.17)

emn =

∫
Ωk

i

(f − g)g,m(zn − z0n)dz, (2.18)

and g,l = ∂g
∂zl

etc. We solve (2.13) for v,H to obtain ψk. We then obtain the new
(inverse) deformation φk+1 using (2.11). In practice, we don’t need to compute Ωk

i

domain at each iteration, instead we directly compute all the integrations (or discrete
summations) over the final deformed configuration, which also gives us good results
and saves lots of computation time.

Since the problems are decoupled, i.e., can be solved independently for each i, local
subset DIC is extremely fast and easily paralellized. Further, in practice, the subsets
can overlap. However, since each problem is solved independently, the results can
be noisy, susceptible to local imaging problems, and lead to discontinuous strain
fields.

2.4 Global DIC method
Not like in the Local Subset DIC method where we break up the whole domain
using densely distributed independent local subsets and ignore their compatibility
between neighbor subsets, (see Figure 2.3 left), in the Global DIC method, we
represent the global deformation using a global basis set, often based on a finite
element discretization, where the compatibility can be guaranteed automatically
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Local DIC Global DIC

Figure 2.3: Comparison between Local Subset DIC and Global DIC.

(see Figure 2.3 right):

y(X) = X + u(X) = X +
∑
p

upψp(X), (2.19)

whereψp(X) are the chosen global basis functions and up are the unknown degrees
of freedom. Thus, the problem (2.2) becomes

Cg =

∫
Ω

∣∣∣∣∣f(X)− g(X +
∑
p

upψp(X))

∣∣∣∣∣
2

dX→ minimize over {up}. (2.20)

We can solve this problem iteratively by setting uk+1 = uk + δu and using the first
order approximation

g(y(X)) = g(X + uk(X) + δu) ≈ g(X + uk(X)) +∇g · δu(X) (2.21)

so that

Cg ≈
∫

Ω

∣∣∣∣∣f(X)− g(X + uk(X))−

(∑
p

δupψp(X)

)
· ∇g(X)

∣∣∣∣∣
2

dX. (2.22)

This leads to the linear equation in δu

Mpqδuq = bp, (2.23)

where

Mpq =

∫
Ω

ψT
p (X) (∇g) (∇g)T ψq(X)dX, (2.24)

bp =

∫
Ω

(f(X)− g(X + uk(X)))ψT
p (X)∇g(X)dX. (2.25)
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Alternately, if the displacements are small, we can treat (2.23) as a linear problem
with δu as the incremental displacement.

Note that the size of the linear problem (2.23) is equal to the number of basis
functions or the size of the finite element discretization. This can be large if we
seek fine resolution. Thus, Global DIC is expensive and difficult solve in parallel.
However, it leads to compatible solutions. And there are methods to reduce the
computational expense as discussed in the introduction. In practice, it is common
to replace∇g with∇f or to use IC-GN which deals with the inverse map. This has
the advantage that the matrix Mpq is independent of iteration thereby reducing the
effort.

We remark that the procedure described in (2.23-2.25) may result in noisy displace-
ment fields because of the conditioning of the matrixM . So it is common practice
to add a weighted higher order penalty (regularizer) to the objective function. This
needs experience and expertise. Further, this requires boundary conditions whose
choice can lead to errors.

Finally, note that the Global DIC is not limited to smooth fields. It can be used
to study discontinuous fields like cracks and shear bands by using enriched basis
[53, 54]. In this paper, we use a Q4 finite element mesh in Global DIC, and this is
summarized in Algorithm 2.

2.5 Global DIC with regularization
InGlobal DICmethod, besides the guarantee of displacement continuity, we can also
assume there is certain smoothness in the displacement field. Thus, the regularized
Global DIC is the method which modifies Global DIC to prefer displacement field
with some smoothness by adding higher order regularizer term α 〈Bu(X),u(X)〉
onto the original correlation function in (2.20). 1

The new correlation function Cg−RG changes to be

Cg−RG =

∫
Ω

[f(X)− g(X + u(X))]2 + α 〈Bu(X),u(X)〉 . (2.26)

Notation 〈Bu(X),u(X)〉means the inner product betweenBu(X) andu(X), which
explicitly is thatBu(X) multiplies u(X) and then integrate over the whole domain.
There are various choices of operator B to add this smoothness penalty term. For

1If there exist cracks in the displacement field, we can still add smoothness regularization terms
in Global DIC method, excluding crack paths.
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Algorithm 2: Q4 Global DIC
Input: Reference image f , deformed image g
Output: Displacement u
Step 1: Initialization using FFT integer pixel search method;
Step 2: Precompute image gradients∇g ;
foreach pixel in each finite element do

Step 3: Compute isoparametric element local coordinates ;
Step 4: Compute isoparametric element ψ matrix ;
Step 5: Compute isoparametric element Jacobian J matrix;
Step 6: Compute spatial gradient of ψ matrix: Dψ ;
Step 7: Assemble onto stiffness matrixM = M + [ψT∇g][ψT∇g]T using
(2.24);

Step 8: (Optional) Add regularizer term onto stiffness matrix, e.g.
α[Dψ]T [Dψ]

end
while ‖δu‖ > ε do

Step 9: Warp deformed image g with current displacement un ;
Step 10: Assemble vector b using (2.25);
Step 11: Add regularizer term onto vector b if Step 8 has been done ;
Step 12: Solve δu by (2.23) ;
Step 13: Update displacement uk+1 = uk + δu;

end

example, whenB equals the identity matrix I, this approach is also called Tikhonov
regularization [55]. When B equals the Laplace operator, this method is gradient
regularization [33, 34]. Ref [34]§9 uses elastic potential energy as a Global DIC
regularizer, where uses a positive definite bilinear operator, to introduce a global
constraint of smoothness as:

B[u,v] =

∫
Ω

λdiv(u)div(v) + 2µ
2∑

i,j=1

eij(u)eij(v). (2.27)

Here eij(u) = 1/2(∂ui/∂xj +∂uj/∂xi) is the small strain tensor, and λ > 0, µ > 0

are so-called Lamé constants of the materials’ elastic properties. All the above regu-
larization choices are good for small deformations. As for large deformations, fluid
regularization [56], hyper-elastic regularization [57], and curvature regularization
[58] have also been proposed recently.

The benefits of regularization in Global DICmethod are not only from the additional
assumption that the deformation field has a certain smoothness and belongs to more
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strict Sobolev space, but also that it helps optimization converge faster and avoid
local minima in the numerical respect.

Theoretically, all these regularized Global DIC could more or less help improve
displacements result’s smoothness. However, if the displacements field is heteroge-
neous and not quite uniform, the displacements’ accuracy is quite sensitive to the
choice ofB operator and the regularization term weight α. Too large α will smooth
out the heterogeneity of displacement fields, while too small α doesn’t help improve
the noise obviously. Choosing operator B and parameter α is still mostly based
on the researcher’s experience and preference. What’s more, as for displacement
field with high heterogenuity, varying regularization term coefficients α is needed
instead of just one fixed value [59].

Adding regularizer terms can help Global DIC converges faster, however, it is still
an expensive method. Note that the size of the linear problem (2.23) is equal to the
number of basis functions or the size of the finite element discretization. This can
be large if we seek fine resolution. And since the highly oscillating characteristics of
the speckle patterns, standard Gaussian quadrature usually fails in the computation
of stiffness matrix {Mpq} and external force vector {bp}. Instead, these numerical
integral in are approximated by direct pixelwise summations, whichmake the Global
DIC method expensive. And since all the unknowns in finite element discretization
are solved together, the procedure described in Eqs(2.23-2.25) may still need a large
number of iterations until converged.

2.6 Conclusion
In this chapter, we review two popular DIC methods: Local Subset DIC method
and Global DIC method. Local Subset DIC decomposes the optimization problem
into many independent local problems, which can be computed in parallel and
converge fast but the solved displacements field usually is not compatible, and
directly solved strain field is very noisy. Global DIC method solves the whole
domain at the same time using finite element method and can be added with global
smoothness regularization to guarantee the compatiblity and a certain smoothness
of the solved deformation field results; however, this method usually is expensive
and understanding how to add regularization terms requires extensive expertise and
experience.
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C h a p t e r 3

AUGMENTED LAGRANGIAN DIC METHOD

[1] J Yang and K Bhattacharya. “Augmented Lagrangian digital image correla-
tion”. In: Experimental Mechanics. Under review (2018).

We introduce a new image comparison algorithm, augmented Lagrangian DIC
(ALDIC) in this chapter, which seeks to combine the advantages of both the Local
Subset DIC (speed and parallel implementation) and the Global DIC (displacement
compatibility and strain smoothness).

3.1 ALDIC formulation
Recall the ansatz (2.5) we made in Local Subset DIC method. In this ansatz,
the local displacement ui and local displacement gradient Fi in the subdomain
Ωi are independent of each other, and independent for each i. Thus, there is no
guarantee of compatibility for the deformation. However, if the displacement field
were compatible, then the displacements and the displacement gradients would not
be independent, but instead satisfy a global constraint

{F} = D{u}, (3.1)

whereD is an appropriate discrete gradient operator (see Appendix A for examples
of first order finite differences). The Local Subset DIC ignores this constraint while
the Global DIC enforces this constraint by kinematic construction.

The key idea of ALDIC is to treat this constraint (3.1) efficiently. We do so by leaving
Fi and ui discrete as before, and introduce an auxiliary compatible displacement
field û such that

Fi = ∇û(Xi0), ui = û(Xi0). (3.2)

In other words, we minimize (2.2) subject to the ansatz (2.5) and constraints (3.2).
We do so using an augmented Langrangian method. Specifically, we consider the
correlation functional

L0 =
∑
i

∫
Ωi

(
|f(X)− g (X + ui + (Fi(X−Xi0)))|2

+
β

2
|(Dû)i − Fi|2 + νi : ((Dû)i − Fi) +

µ

2
|ûi − ui|2 + λi · ((û)i − ui)

)
dX,

(3.3)
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where we use the matrix or Frobenius norm for matrices |A|2 =
∑

ij |aij|2, vector
norm for vectors |a|2 =

∑
i a

2
i , and : for double dot product between two matrices

A : B =
∑

ij AijBij . Above, {νi}, {λi} are Lagrange multipliers that enforce the
constraints (3.2). Finally, β and µ are two positive real scalars. If β = µ = 0, then
this functional gives the traditional Lagrangemultiplier formulation if we change the
sign of {νi}, {λi} . On the other hand if β and µwere very large with νi = λi = 0,
then we have a penalty method. Choosing β and µ to be positive real scalers
while retaining the Lagrange multipliers is referred to as the augmented Lagrangian
method, and gives rise to well-conditioned numerical problems [40].

Given β and µ, we iteratively minimize L0 {Fi}, {ui} and {ûi} and update {νi}
and {λi}. Before we proceed, it is convenient to make the following modification
to the functional above. We setWi := νi/β, vi := λi/µ and define

L =
∑
i

∫
Ωi

(
|f(X)− g (X + ui + (Fi(X−Xi0)))|2

+
β

2
|(Dû)i − Fi + Wi|2 +

µ

2
|ûi − ui + vi|2

)
dX.

(3.4)

Notice that minimizing L0 over {Fi}, {ui} and {ûi} is the same as minimizing over
L since they differ by quadratic terms independent of {Fi}, {ui} and {ûi}.

The functional L is not local because the discrete derivative (Dû)i depends on
the value of ûi in neighboring subsets. Thus, we still obtain a global problem as
in the Global DIC method. However, there are two reasons why this problem is
computationally easier. First, the only non-local term is quadratic with a constant
scalar coefficient. Therefore it can be minimized very easily. Second, we can solve
this problem using an alternating direction method of multipliers (ADMM) that
allows us to break it up into simpler problems.

3.2 Alternating direction method of multipliers (ADMM)
We use alternating direction method of multipliers (ADMM) where local subprob-
lems are coordinated to find a solution to a large global problem [46] to iteratively
solve the problem.

Given {Fk
i }, {uki }, {ûki }, {Wk

i }, {vki }, we find the (k + 1)th update as follows:

• Subproblem 1: local update. While holding {ûki }, {Wk
i }, {vki } fixed, mini-

mize L over {Fi}, {ui}, to obtain {Fk+1
i }, {uk+1

i }:

{Fk+1
i }, {uk+1

i } = arg min
{Fi},{ui}

L
(
{Fi}, {ui}, {ûki }, {Wk

i }, {vki }
)
. (3.5)



17

Since {ûki } and hence {(Dû)ki } are known, this problem breaks into a series
of local problems that can be solved independently for each i:

Fk+1
i ,uk+1

i = arg min
Fi,ui

Li = arg min
Fi,ui

∫
Ωi

(
|f(X)− g (X + ui + (Fi(X−Xi0)))|2

+
β

2

∣∣(Dû)ki − Fi + Wk
i

∣∣2 +
µ

2

∣∣ûki − ui + vki
∣∣2 )dX.

(3.6)

This is similar to Local Subset DIC and can be solved by any of the methods
described in Section 2.2.

• Subproblem 2: global update. While holding {Fk+1
i }, {uk+1

i }, {Wk
i }, {vki }

fixed, we minimize L over {ûi} to obtain {ûk+1
i }:

{ûk+1
i } = arg min

{ûi}
L
(
{Fk+1

i }, {uk+1
i }, {ûi}, {Wk

i }, {vki }
)

= arg min
{ûi}

∑
i

∫
Ωi

(β
2

∣∣(Dû)i − Fk+1
i + Wk

i

∣∣2 +
µ

2

∣∣ûi − uk+1
i + vki

∣∣2 )dX.
(3.7)

Note that this is a global problem, but is independent of the images f, g.
Indeed, it leads to the linear problem(

βDTD + µI
)
ûk+1 =

(
βDTa + µb

)
, (3.8)

where a = {Fk+1
i −Wk

i } and b = {uk+1
i − vki }. The solution is given by

ûk+1 =
(
βDTD + µI

)−1 (
βDTa + µb

)
. (3.9)

Since β and µ are fixed, the matrix
(
βDTD + µI

)−1 can be precomputed
and stored, and therefore this step becomes a simple matrix-vector multipli-
cation. Further, the matrixD has a structure, and therefore this matrix-vector
multiplication can be carried out very efficiently.

• Subproblem 3: Lagrange multiplier update. We finally update {Wi}, {vi} as
follows:

Wk+1
i = Wk

i +
(
(Dû)k+1

i − Fk+1
i

)
, (3.10)

vk+1 = vk +
(
ûk+1 − uk+1

)
. (3.11)

• Stopping criterion. Theoretically, we should check the convergence of all
quantities during ALDIC iterations. However, in practice, we care most about
the displacements. Therefore, we simply check

(
ûk+1 − ûk

)
, and stop if this

happens to be smaller than a given tolerance.
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The overall algorithm is summarized in Algorithm 3.

Algorithm 3: ALDIC
Input: Reference image f , deformed image g
Output: Displacement ui, deformation gradient tensor Fi of each local subset,

global displacement û
Step 1: Initialization using FFT integer pixel search method;
Step 2: Precompute finite difference operatorD ;
Step 3: Choose initial parameters β,µ. Set dual variablesW,v to be zero;
while

∥∥uk+1 − uk
∥∥ > ε and

∥∥ûk+1 − ûk
∥∥ > ε do

Step 4: Solve subproblem 1 (3.6) as in Algorithm 1 for uk+1,Fk+1,;
Step 5: Solve subproblem 2 (3.9) for ûk+1 ;
Step 6: Update dual variablesW,v by (3.10), (3.11);

end

3.3 Extensions of ALDIC algorithm
A simplification of Subproblem 1
While holding {ûki }, {Wk

i }, {vki } fixed, minimize L over {Fi}, {ui}, to obtain
{Fk+1

i }, {uk+1
i }. Since {ûki } and hence {(Dû)ki } are known, this problem breaks

into a series of local problems that can be solved independently for each i as in Local
Subset DIC, which can be solved in parallel and converges fast near the 6-parameter
optimal solution using IC-GN scheme analogously with (2.13), where alp, dl, cmnqr
and emn are replaced with

a′lp = 2

∫
Ωk

i

(g,lg,p +
µ

2
δlp)dz, (3.12)

d′l =

∫
Ωk

i

((f − g)g,l +
µ

2
(ul − vkl − ûkl ))dz, (3.13)

c′mnqr = 2

∫
Ωk

i

[
g,m(zn − z0n)g,q(zr − z0r) +

β

2
δmqδnr

]
dz, (3.14)

e′mn = =

∫
Ωk

i

[
(f − g)g,m(zn − z0n) + β(Fmn − (Dû)kmn −W k

mn)
]
.(3.15)

Practically, we can make the following final simplification of Subproblem 1 to speed
up ALDIC algorithm. The local problem (3.5) requires us to minimize L over both
{Fi} and {ui}: this makes the local problem large and the overall convergence
slow. Further, the high dimensionality can lead to local minima and thus poor
accuracy. This is consistent with the practice of using only the displacements in
most commonly used Local Subset DIC softwares. Therefore, we simplify the
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ALDIC Subproblem 1 as follows: in the (k + 1)th iteration step, we update Fk+1

to be exactly equal to Dûk and only solve for uk+1. We still use the same IC-GN
iteration method as introduced previously in Section 2.2 Local Subset DIC, where
uk+1 are solved by {

uk+1
p

}
i

=
{
a′lp
}−1

i
{d′l}i . (3.16)

Extension ALDIC to arbitrary mesh
In the second subproblem (3.7), in the alternating direction, we fix F , u and try to
update û by:

ûk+1 = arg min
û

β

2

∥∥Dû− Fk+1 + Wk
∥∥2

F
+
µ

2

∥∥û− uk+1 + vk
∥∥2

L2
(3.17)

Using regular uniform mesh, analytical solution for û can be computed fast using
sparse matrix computation.

ûk+1 =
(
βDTD + µI

)−1 (
βDTa + µb

)
. (3.18)

Since β, µ are both positive scalars, it’s easy to prove
(
βDTD + µI

)
is symmetric

positive definite, therefore it always has inverse.

ALDIC algorithmADMM scheme works not only for uniform square mesh, but also
for arbitrary general mesh. If we are using non-uniform mesh, Subproblem 1 can be
easily extended to solve local update problems around each node of the non-uniform
mesh. Subproblem 2 can still be solved fast through

(β∆− µI)û = β∇ · (Fk+1 −Wk)− µ(uk+1 − vk+1). (3.19)

(3.19) will be discussed in details in Section 5.3 where we apply adaptive mesh onto
ALDIC.

Using non-uniform mesh, the Subproblem 3 Lagrange multipliers update step will
also be changed to{

Wk+1
i =Wk

i + ((∇û)k+1
i − Fk+1

i )

vk+1
i =vki + (ûk+1

i − uk+1
i )

(Lagrangian multipliers update).

(3.20)

3.4 Convergence and optimal conditions of ADMM
Convergence of ADMM
We briefly recall some results from Boyd et al. [46] that apply to the ADMM
alogrithm proposed above. Assume that the following conditions are true:
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• Assumption 1. The functional Ci in (2.9) or the first term of L can be
approximated by a closed, proper, and convex functional near the optimal
solution.

• Assumption 2. The Lagrangian L0 with β = µ = 0 has a saddle point; i.e.,
there exist ({F∗i }, {u∗i }, {û∗i }, {ν∗i }, {λ∗i }), for which

L0({F∗i }, {u∗i }, {û∗i }, {νi}, {λi}) ≤ L0({F∗i }, {u∗i }, {û∗i }, {ν∗i }, {λ∗i })

≤ L0({Fi}, {ui}, {ûi}, {ν∗i }, {λ∗i })

for all ({Fi}, {ui}, {ûi}, {νi}, {λi}).

Then, we have the following convergence results:

• Primal residual convergence.
(
Dûk − Fk

)
→ 0 and

(
ûk − uk

)
→ 0 as

k →∞, i.e., the constraints are satisfied asymptotically;

• Dual residual convergence.
(
ûk+1 − ûk

)
→ 0 as k → ∞, i.e., the dual

feasibility is satisfied asymptotically, see (3.26).

• Objective convergence. Lk → L∗ as k →∞, i.e., the Lagrangian approaches
its optimal value;

• Dual variable convergence. Wk → W∗,vk → v∗ as k → ∞, where
(W∗,v∗) is dual optimal point.

Note that the local functional Ci can be highly oscillatory and is thus not convex.
However, if the initial guess for the local variables ({Fi}, {ui}) is in the convergence
basin of Local Subset DIC, then the first assumption is true. If this assumption
is false, then subproblem 1 (3.5) above diverges; this provides a check that this
assumption holds.

Optimality conditions of ADMM
Set the first term in (3.4) to be

Φ(F,u) =
∑
i

∫
Ωi

|f(X)− g (X + ui + (Fi(X−Xi0)))|2 dX. (3.21)

The necessary and sufficient optimality conditions for the ALDIC ADMM formu-
lation are primal feasibility, [

Dû∗ − F∗

û∗ − u∗

]
=

[
0

0

]
(3.22)
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and dual feasibility, [
∂Φ(F∗,u∗)

∂F
∂Φ(F∗,u∗)

∂u

]
−

[
βW∗

µv∗

]
=

[
0

0

]
. (3.23)

Since Fk+1,uk+1 minimize L(F,u, ûk,Wk,vk) in the ADMM Subproblem 1, we
have that[
0

0

]
=

[
∂Φ(Fk+1,uk+1)

∂F
∂Φ(Fk+1,uk+1)

∂u

]
−

[
βWk

µvk

]
−

[
β
(
Dûk − Fk+1

)
µ
(
ûk − uk+1

) ]

=

[
∂Φ(Fk+1,uk+1)

∂F
∂Φ(Fk+1,uk+1)

∂u

]
−

[
βWk

µvk

]
−

[
β
(
Dûk+1 − Fk+1

)
µ
(
ûk+1 − uk+1

) ]− [β (Dûk −Dûk+1
)

µ
(
ûk − ûk+1

) ]

=

[
∂Φ(Fk+1,uk+1)

∂F
∂Φ(Fk+1,uk+1)

∂u

]
−

[
βWk+1

µvk+1

]
−

[
β
(
Dûk −Dûk+1

)
µ
(
ûk − ûk+1

) ]
.

(3.24)

Or equivalently,[
∂Φ(Fk+1,uk+1)

∂F
∂Φ(Fk+1,uk+1)

∂u

]
−

[
βWk+1

µvk+1

]
=

[
β
(
Dûk −Dûk+1

)
µ
(
ûk − ûk+1

) ]
. (3.25)

This means that the quantity

sk+1 =

[
β
(
Dûk −Dûk+1

)
µ
(
ûk − ûk+1

) ]
(3.26)

can be viewed as a residual for the dual feasibility condition (3.23). We will refer to
sk+1 as the dual residual at ADMM (k + 1)th iteration, and to

rk+1 =

[
Dûk+1 − Fk+1

ûk+1 − uk+1

]
(3.27)

as the primal residual at ADMM (k + 1)th iteration. And these two residuals
converge to zeros as ADMM proceeds.

3.5 Demonstration
We now demonstrate the ALDIC method, and compare it to both Local Subset DIC
and Global DIC methods. All algorithms are implemented in Matlab. We use the
following parameters unless it is specified otherwise. We use bi-cubic interpolations
for the grayscale value at subpixel positions. In the Local Subset DIC, we stop IC-
GN iterations when ‖di‖ , ‖ejk‖ < 10−6. Usually the IC-GN reaches convergence
point within several iteration steps. In the Global DIC, we use Q4 finite element
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Table 3.1: List of symbols used in the demonstration section

Fk Solved deformation gradient tensor in the k-th ADMM iteration Subproblem 1
uk Solved displacement vector in the k-th ADMM iteration Subproblem 1
uk Solved displacement vector in the k-th ADMM iteration Subproblem 2
Wk,vk Dual variables in the k-th ADMM iteration
u, x-direction displacement component
v, y-direction displacement component
exx, eyy, exy The “xx”,”yy” and “xy” components of infinitesimal strain

with a bilinear form of the domain’s displacement field trying to approximate the
exact nonuniform one. We stop the iteration when the average magnitude of the
nodal displacement update is smaller than 10−6 pixels. In ALDIC, we startW and v
from zero. We choose µ to beO(10−3) ∼ O(10−1) times diagonal terms of a′ip. We
take β =

[
O(10−1) ∼ O(100) · element size2 · µ

]
to balance the relevant terms. We

use the same stop criteria in subproblem 1 as Local Subset DIC (‖d′i‖L2
< 10−6),

and the whole ALDIC iteration stops when
∥∥ûk+1 − ûk

∥∥
L2
< 10−4.

When studying synthetic images where the exact deformation is known, we use the
root-mean-square (RMS) error,

RMS error :=

√√√√√
∑

# of nodes

|Numerical result− Exact value|2

# of nodes
(3.28)

in both the displacement and strain. RMS error reflects globally how far the com-
puted results are away from the exact values and is ameasure of the standard variance
of the computation error.

In Local Subset DIC, we report the deformation gradients/strains obtained directly
by the Local Subset DIC correlation. In Global DIC, we compute nodal strains
by extrapolating the strains from the finite element Gauss points. In ALDIC, the
strain field is obtained directly from Dû. We summarize the symbols we used in
the demonstration section in Table 3.1.

Case study I: Synthetic images from the SEM 2D-DIC Challenge
We study synthetic images from the SEM 2D-DIC challenge, samples 1 & 14 [60]1.
Sample 1 represents a series of pure translations while Sample 14 represents a
sinusoidal deformation with changing frequency.

1https://sem.org/dic-challenge/2d-test-image-sets.asp
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Figure 3.1: Convergence of the ALDIC method for the SEM 2D-DIC synthetic
images, Sample 1 representing translation.

Translation: Sample 1

The deformations in Sample 1 are pure translations in both x and y directions
with amplitudes ranging from 0 to 1 pixel in increments of 0.1 pixels. We set all
the local window sizes to be 20 × 20 pixels, and set both the local neighboring
windows distance and global element size to be 5 × 5 pixels. Figure 3.1 shows
the convergence of the various quantities (without a stopping criterion). We see
that ALDIC behaves well and converges within 6 steps. Figure 3.2 shows the RMS
errors in displacements and strains, and compares with the corresponding errors in
the Local Subset DIC and Global DIC methods. We observe that ALDIC has the
smallest errors in all cases.

We make a couple of comments. First, we see that the error of the Global DIC
method is high in this case. This is because we do not use a regularization since a
regularizer forces zero gradient which artificially forces the desired answer. Second,
when using synthetic images, a bias can be introduced if the interpolation used
for subpixel shifting is different from those used for creating the images. The
sinusoidal variation with image number is a reflection of this bias. We use a bi-
cubic interpolation in our work based on the study of Bornert et al. [61].
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Figure 3.2: Comparison of RMS error in displacement (a) and strain (b) computed
with the three methods for the synthetic images in the SEM 2D-DIC, Sample 1 or
translation.

Figure 3.3: Exact horizontal x-displacement and strain exx field associated with
Sample 14 images L1, L3, and L5.
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Table 3.2: Comparison of the RMS errors in displacement and strain for the SEM
2D-DIC synthetic images of Sample 14: L1, L3, and L5

Image local subset Regularized ALDIC
No DIC Global DIC

x displacement
(pixels)

L1 0.0212 0.0080 0.0139
L3 0.0202 0.0162 0.0136
L5 0.0201 0.0234 0.0141

Strain exx
L1 3.18× 10−3 3.15× 10−4 9.83× 10−4

L3 3.19× 10−3 1.90× 10−3 9.84× 10−4

L5 3.20× 10−3 3.10× 10−3 1.00× 10−3

Heterogeneous deformation: Sample 14

The deformations in Sample 14 are sinusoidal with varying frequency in the x
direction as shown in Figure 3.3 for the three images — L1, L3, and L5 — that
we use. It has zero displacement in the y direction. We set all the local window
sizes to be 30× 30 pixels, and set both the local neighboring windows distance and
global element size to be 5 × 5 pixels. As before, the ALDIC method converges
in about six iterations (we have omitted the figure for brevity). Figures 3.5 and 3.6
show the horizontal displacement u and the horizontal longitudinal strain exx for
the three images and the three methods. These figures show that the ALDIC leads
to smooth displacement fields and this is reflected in the strain. Table 3.2 shows the
RMS errors for strain and displacement, and shows that the ALDIC method leads
to smaller errors compared to the other two methods.

We also use the image L1 from this set to study the effect of the subset size in the
ALDIC method. Table 3.3 shows the RMS errors in displacement and strain using
three window sizes. Not surprisingly, the errors increase with decreasing window
size.

Case study II: Experimental heterogeneous fracture deformation
We conclude our case studies by analyzing data from an experiment on the fracture
of a heterogeneous material taken from Avellar [62]. The 50.8 × 45.7 × 9.5 mm
specimen that is shown in Figure 3.7 (a) is 3D printed using a compliant material
(Stratasys proprietary acrylicDM9895, E=45MPa) shown in dark and a stiffmaterial
(Stratasys proprietary acrylic RGD835, E=1960MPa, ν = 0.399) shown in grey. We
choose this example because the heterogeneous stiffness leads to complex strain and
displacement fields. A speckle pattern is applied using white spray paint and the
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Figure 3.4: Convergence check of ALDIC algorithm in Sample 14 L1, L3, and L5.

Table 3.3: DIC displacement and strain RMS errors of Sample 14 L1 with different
window sizes

Subset Local Subset Regularized ALDIC
Size DIC Global DIC

x displacement
(pixels)

30 × 30 0.0199 0.0079 0.0056
20 × 20 0.0323 0.0082 0.0067
10 × 10 0.0990 0.0088 0.0165

Strain exx
30 × 30 3.30× 10−3 2.08× 10−4 9.57× 10−5

20 × 20 7.78× 10−3 2.35× 10−4 1.62× 10−4

10 × 10 9.90× 10−2 2.84× 10−4 8.19× 10−4

specimen is loaded using the two pins inserted into the holes and pulled to failure.
The reference image and one deformed image of the sample (the area in the red box
of Figure 3.7 (a)) under loading are shown in Figure 3.7 (b-c), where the length scale
in the digital image is 0.037mm/pixel. We set all the local window sizes to be 16×16

pixels, and set both the local neighboring windows distance and global element size
also to be 16 × 16 pixels, see Figure 3.7 (d). The resulting images are analyzed
using all three DIC methods. The convergence of the ALDIC method is shown in
Figure 3.8. The displacement and strain fields obtained using all three methods are
shown in Figure 3.9. We see little difference in the horizontal displacement u, but
the vertical displacement v differs in the noise. ALDIC is less noisy than Global
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Figure 3.5: The horizontal displacement (u) obtained using the three methods from
the synthetic images of SEM 2D-DIC Sample 14: L1, L3, and L5.
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Figure 3.6: The horizontal longitudinal strain (exx) obtained using the three methods
from the synthetic images of SEM 2D-DIC Sample 14: L1, L3, and L5.
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Figure 3.7: Heterogeneous specimen used for the third case study. (a) Front view
of designed fracture specimen with brick architecture, where the box area will be
captured using a CCD camera. (b) A speckle pattern is applied using white spray
paint onto the surface of the specimen where the length scale of the digital image
is 0.037mm/pixel. (c) One deformed image of the sample as the crack propogates
under loading. (d) The local subsets/global finite element mesh used in all three
DIC methods.

DIC, which in turn is less noisy than the Local Subset DIC. This is also reflected in
the strain fields.

3.6 Computational cost
We compare the computational cost of the three DIC algorithms. The symbols used
are listed in Table 3.4. We estimate the cost of each step in each algorithm, and
these are listed in Tables 3.5-3.7. We then use the dominant terms (assuming that
k1 << k2) to estimate the total cost, and these are also listed in the tables. We
observe that all algorithms, properly implemented, scale linearly with the size of the
imagemN . Thus, the differences are in the pre-factors, and these can be significant
as we presently demonstrate. We also note that the Local Subset DIC and ALDIC
can be easily parallelized.
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Figure 3.8: Convergence of ALDIC method in heterogeneous fracture experiment.

Figure 3.9: Contour plot of three DIC algorithms solved displacement and strain
fields in heterogeneous fracture experiment.
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Table 3.4: List of symbols used in the analysis of computational cost

N # of pixels in each local subset or each finite element
m # of total local subsets or finite elements
d The dimension of images, e.g. d = 2 for 2D pixel images
nL Length of parameter vectors of each local subset
nG Length of parameter vectors in finite element
k1 Computation cost to compute image grayscale derivatives
k2 Computation cost to interpolate grayscale value at sub-pixel position
k3 # of iterations in Local Subset DIC algorithm
k4 # of iterations in Global DIC algorithm IC-GN scheme
k5 # of iterations in ALDIC ADMM scheme
k6 # of inside iterations in ALDIC Subproblem 1 IC-GN scheme
C # of clusters used in Local Subset DIC and ALDIC Subproblem 1

for parallel computation

Table 3.5: The computation cost of the Local Subset DIC IC-GN iteration

Pre-computation Step 2 Step 3
O(k1dmN) O(nL

2mN)

Per IC-GN iteration Step 4 Step 5 Step 6 Step 7
O(k2nLmN) O(nLmN) O(nL

3m) O(nL
3m)

Total O(k2k3nLmN/C)

Table 3.6: The computation cost of the Global DIC FEM iteration

Pre-computation Step 2 Step 3 Step 4 Step 5
O(k1dmN) O(dn3

GmN) O(dnGmN) O(d2nGmN)
Step 6 Step 7 Step 8
O(d6nGmN) O(d4n2

GmN) O(d4n2
GmN)

Per FEM iteration Step 9 Steps 10-11 Step 12 Step 13
O(k2dnGmN)O(d2nGmN) O(dnGm) O(dnGm)

Total O(k2k4d
2nGmN)

Table 3.8 lists the computational clock time for the case studies. All studies are
performed on the same workstation with Intel (R) Xeon(R) CPU E5-2650 v3 2.30
GHz (2 Processors), RAM 32.0 GB Memory, 64-bit nodes. In the Local Subset
DIC and ALDIC Subproblem 1 IC-GN iterations, we use 20 clusters and process it
in parallel in Matlab. It is clear from the table that Local Subset DIC is the least
expensive, and Global DIC is the most expensive as expected.
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Table 3.7: The computation cost of the ALDIC ADMM iteration

Pre- Steps 2-3
computation O(2d2m)

Per ALDIC Step 4 Step 5 Step 6
iteration O(k2k6nLmN) O(2d3m2) O(nLm)

Total O(k2k5k6nLmN/C)

Table 3.8: Computation time using three DIC algorithms

Example Para- Local Subset DIC Para- Global DIC Para- Para- ALDIC
Name meter time cost(s) meter time cost(s) meter meter time cost(s)

Theory k3 O(0.3k3k2mN) k4 O(16k4k2mN) k5 k6 O(0.3k5k6k2mN)

S14 L1 30× 30 12.2 28.55 6 478.33 7 6.5 121.63
S14 L1 20× 20 16.0 37.65 7 630.19 7 7.4 145.95
S14 L1 10× 10 40.8 95.28 7 1402.3 7 13.3 294.99
S14 L1 5× 5 12.2 743.36 7 11026 7 6.1 3065.02
S14 L3 5× 5 12.1 743.36 7 11368 7 6.1 2923.05
S14 L5 5× 5 12.1 743.36 8 11967 7 6.1 2960.71
Fracture exp 11.6 12.46 8 246.20 7 7.9 52.96
S1 img 2 7.3 46.07 5 338.27 6 2.9 150.25
S1 img 4 6.4 40.78 4 303.01 6 2.5 131.31
S1 img 6 5.9 38.48 4 307.18 6 2.5 127.08
S1 img 8 6.2 40.76 4 305.13 6 2.5 133.19
S1 img 10 6.3 39.95 5 331.99 6 2.6 133.03
S1 img 12 6.2 40.07 4 305.27 6 2.5 132.52
S1 img 14 6.0 38.40 4 304.49 6 2.5 126.21
S1 img 16 6.5 41.51 4 305.07 6 2.6 134.10
S1 img 18 7.4 47.16 5 330.98 6 3.1 156.03
S1 img 20 8.5 52.98 5 335.80 5 3.5 175.51

3.7 Conclusion
In this chapter, we have presented a new method, the augmented Lagrangian digital
image correlation (ALDIC), for image matching. It combines the advantages of
the two established methods, the speed of Local Subset DIC and the kinematic
compatibility of Global DIC. We show in Section 3.5 through a series of case-
studies using synthetic images that ALDIC provides superior accuracy compared
to the established methods. We show in Section 3.6 that the computational cost of
ALDIC is only a few times that of Local Subset DIC and less than that of Global
DIC.

All the three DIC algorithms are summarized in Figure 3.11. ALDIC correlates
subsets locally to find a displacement field as in Local Subset DIC, but then ties
them together by introducing an auxiliary compatible displacement field. This leads
to superior accuracy compared to Local Subset DIC for two reasons. First, the local
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Figure 3.10: Comparison of the deformation gradient (F11 component) obtained
using the Local Subset DIC (a) and ALDIC (b) for Sample 14 L1.

correlation or sub-problem 1 has some global information through the augmented
Lagrangian and auxiliary field — see equation (3.6). Second, the auxiliary field
leads to less noisy deformation gradients as shown in Figure 3.10. However, ALDIC
is more expensive than Local Subset DIC because it requires the solution of a global
problem (3.8) and it undergoes ADMM iterations. Still, this is not prohibitive: we
see in Section 3.6 that it is only a few times that of Local Subset DIC.

Both ALDIC and Global DIC seek to impose compatibility. However, the point of
departure is that ALDIC does not use a basis set to impose compatibility anywhere,
but does so using an augmented Lagrangian. Therefore, the resulting operator
(βDTD + µI) is the sum of the Laplacian and identity. This is universal, i.e.,
independent of the problem, displacement or image (though the matrix depends
on the discretization). The nature of the operator and the universality allows us
to either precompute the inverse (as we do here), or us a variety of established
efficient methods (see for example [63]). In contrast, the operator M in (2.24)
depends on the image, and moreover may be poorly conditioned depending on the
image. Regularization can help with the conditioning and it is possible to address the
computational cost. However, these require sophistication in their implementation
and must be adopted to the problem at hand.

We hold β and µ fixed during ALDIC iterations, but it can be also updated at each
iteration step to further speed up iterations, see Ref [46] §3.4.1. When varying
penalty parameters are used, the scaled dual variables W = ν/β and v = λ/µ

must also be rescaled after updating parameters β and µ.
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Local DIC Global DIC

AL-DIC Subproblem 2
solved globally

AL-DIC Subproblem 1
solved locally

ADMM

Figure 3.11: Comparison of Local Subset DIC, Global DIC, and ALDIC.
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C h a p t e r 4

COMBINING DIC WITH IMAGE COMPRESSION
TECHNIQUES

[1] J Yang and K Bhattacharya. “Combining image compression with digital
image correlation”. In: Experimental Mechanics. Under review (2018).

4.1 Introduction
Digital imgage correlation(DIC) infers the deformation from changes in the images
of speckle patterns. Therefore, it is necessary to have high resolution images
to obtain accurate displacement and strain values. Further, for the convergence
and efficacy of the image conversion algorithms, it is useful to keep the relative
deformation small. So it is common to acquire a series of images of the deformation
process. For all these reasons, DIC requires the acquisition, transmission, and
storage of large data-sets. The problem is only amplified in dynamical processes
and the closely related digital volume correlation (DVC)method in three dimensions.

In the recent decades, a number of sophisticated image and data compression al-
gorithms have been developed (see for example, [64]) that seek to represent digital
images with less data in order to reduce storage and transmission costs. They are
broadly divided into two categories: lossless and lossy. Lossless compression seeks
to compress the data in such a way that the key original information can be recon-
structed. This is useful, for example, where only the outline or borders of a particular
image is critical. However, lossless methods cannot guarantee compression for all
input data sets. This is indeed the case for speckle patterns. Lossy compression
seeks to approximate the original data with a limited loss of information that is not
perceptible to the eye. Lossy compression is broadly applicable and can lead to
significant reduction in image sizes. Two widely used compression techniques use
the wavelet transform (used in JPEG 2000 [65]) and the discrete cosine transform
(DCT, used in JPEG [66]).

In this chapter, we study the combination of image compression and digital image
correlation with the goal of reducing storage and transmission needs while maintain-
ing the fidelity of the deformation information. We study two popular compression
techniques – discrete cosine transform (DCT) and wavelet transform – with three



36

Table 4.1: Mean and standard deviation of image compression induced greyscale
errors

Mean value of ∆f Standard deviation of ∆f

10 % wavelet compression 0.0532 3.5618
5 % wavelet compression 0.0408 6.7807
10 % DCT compression -0.0163 5.4129
5 % DCT compression 0.0493 10.8765

image comparison methods described in Chapters 2 and 3.

4.2 Review image compression techniques
Weconsider two popular image compression techniques. The first technique is based
on wavelet transform. A wavelet transform that localizes a signal both in space and
frequency is applied to the image and only a fixed percentage of coefficients that have
the greatest values are saved [65]. The second image compression technique is based
on discrete cosine transform (DCT): the field is divided into blocks, discrete cosine
transform is applied to each block, and only a fixed percentage of coefficients that
have the greatest values are saved in each block [66]. Figure 4.1 shows the results
of applying these techniques to a speckle pattern from the Society for Experimental
Mechanics (SEM) DIC Challenge [60].

We compare the histogram of greyscale values of original images and compressed
images in Figure 4.2 (a-b). Both wavelet and DCT image compression maintain the
greyscale value distribution well. However, we find that there are sparse spikes in
the histogram of DCT compressed images and the magnitude of some spikes can be
large in the 5 % DCT compressed image. In contrast, there are no obvious spikes in
the histogram of wavelet compressed images. To further understand the nature of the
errors, let f̃ denote the compression of the reference image f and ∆f the difference:
f = f̃ + ∆f . We list the mean and standard deviation of ∆f in Table 4.1, and
plot the histogram of ∆f in Figure 4.2 (c-d). Both wavelet and DCT compression
induced greyscale value errors obey standard Gaussian distributions with zero mean
values. Further, wavelet compression outperforms DCT compression with smaller
standard deviations at the same compression ratio.

The development of image compression algorithms gives us motivations to test
whether we can combine image compression techniqueswithDICmethods to reduce
image sizes while maintain the fidelity of the deformation information or not.
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Figure 4.1: Image compression applied to the image from the SEM DIC Challenge
Sample 14, Case L1. (a) Original reference image (Size: 1.2 MB). (b) Original
deformed image (Size: 1.2 MB). (c-f) Wavelet compressed image whose size is
only 10% of original reference (c) and deformed (d) image (Size: 120 KB) and
5% of original reference (e) and deformed (f) image (Size: 59 KB). (g-j) DCT
compressed image whose size is only 10% of original reference (g) and deformed
(h) image (Size: 124 KB) and 5% of original reference (i) and deformed (j) image
(Size: 62 KB).

4.3 Combining image compression and DIC methods
Recall the discussion of the DIC algorithms in Chapter 2. In each of the DIC
algorithms, we solve a system of linear equations: (2.13) in Local Subset DIC,
(2.23) in Global DIC and (2.13) modified with (3.12), (3.13) in subproblem 1 of
ALDIC. We may write each of these equations compactly as

Ax = b, (4.1)

where the stiffness matrix A and the force vector b depends quadratically on the
greyscale images and their gradients f, g,∇f,∇g.

Now, recall f = f̃ + ∆f , g = g̃ + ∆g where f̃ , g̃ are the compressed images. If
we pick any of our DIC algorithms and apply it to our compressed images f̃ , g̃, we
obtain a linear problem

Ãx̃ = b̃, (4.2)

where Ã, b̃ are obtained using the compressed images. Since these quadratic, we
find that A = Ã+ ∆A, b = b̃+ ∆b where ∆A,∆b = O(∆f,∆g,∇(∆f),∇(∆g)).
Substituting this in (4.1) and using (4.2), we find that the error in the solution

∆x = x− x̃ ≈ A−1[(∆A)x−∆b] = O(∆f,∆g,∇(∆f),∇(∆g)) (4.3)
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Figure 4.2: Errors in the images induced by wavelet and DCT image compression.
(a-b) Histogram of greyscale values of wavelet (a) and DCT (b) compressed images.
(c-d) Both wavelet (c) and DCT (d) compression induced greyscale value errors
obey standard Gaussian distributions with different standard deviations.

since A, Ã are invertible. In other words, the error in displacements and strains is
controlled by the compression error.

Still, there are important differences between the methods.

Local Subset DIC. In Local Subset DIC, the matrix A (or a, b, c shown in (2.14-
2.16) in Section 2.2) involve the integration of terms that are quadratic in the image
gradients∇g. Since this is a speckle pattern,∇g is noisy and so are the compression
errors. Further, since the integration is on a small subset, ∆A can be large. Thus,
though the errors are controlled, they can be large in Local Subset DIC. This is
borne out by the examples in Section 4.4.

Global DIC. Here, the matrix A (orM in (2.24) in Section 2.4) also involve the
integration of terms that are quadratic in the image gradients ∇f , but against the
gradient of the shape function that is smooth on the scale of the speckle pattern.
Further, the integration is over the entire image. Therefore, we expect smaller
errors ∆A,∆b, and thus small errors in displacement. This is also borne out by the
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examples in Section 4.4.

ALDIC. Recall that the subproblem 1 of ALDIC is similar to Local Subset DIC.
However, the matrix a is modified by µI (cf 3.12). This reduces the error. Further
subproblem 2 of ALDIC or (3.8) is completely independent of the images; further, it
involves the discrete Laplace operatorDTD which is smoothing. For these reasons,
we expect much smaller errors in ALDIC. This is also borne out by the examples in
Section 4.4.

4.4 Demonstration
In this section, we study the combination of image compression and DIC through
examples involving both synthetic images and real experimental images. We use
twomeasures to evaluate the performance. The first is the absolute root mean square
error when the exact deformation is known as in synthetic images:

η1 =

√√√√√
∑
node#

|u− uExact|2

node#
and ξ1 =

√√√√√
∑
node#

|e− eExact|2

node#
, (4.4)

whereu is the inferred displacement with components u and v, anduExact is the exact
displacement; e is the inferred infinitesimal strain with components exx, eyy, and
exy, and eExact is the exact strain. This measures the accuracy of both the inherent
DIC and the combined compression-DIC errors. To assess the latter, i.e., the errors
induced in the DIC algorithm as a result of the compression, we use the relative root
mean square error,

η2 =

√√√√√
∑
node#

|uCompressed − uOriginal|2

node#
and ξ2 =

√√√√√
∑
node#

|eCompressed − eOriginal|2

node#
,

(4.5)

where uCompressed and eCompressed are the DIC method solved deformation field using
compressed images, whileuOriginal and eOriginal are the solved displacement and strain
field using original uncompressed images.

Synthetic example: Sample 14 of SEM 2D-DIC Challenge
SEM 2D-DIC Challenge is a series of benchmark problems [60]. We study the
Sample 14 dataset which involve sinusoidal deformation with changing frequency.
The reference image is taken from a real experiment, which is a typical DIC speckle
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Figure 4.3: The displacement obtained from Sample 14 L1 data using the three DIC
algorithms and the original as well as compressed images. The subset/mesh size is
20× 20.

pattern image with average radius around 8 pixels. The deformed images are formed
synthetically by applying a known displacement field to the reference image.

We describe our results for the case labelled L1 in the dataset. We apply all
three algorithms to the original images as well as compressed images. We show
the displacements in Figure 4.3 and (the exx) strain in Figure 4.4. As expected,
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Figure 4.4: The strains obtained from Sample 14 L1 data using the three DIC
algorithms and the original as well as compressed images. The subset/mesh size is
20× 20. The strains for the Local Subset DIC are not shown because they are very
noisy.
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Local Subset DIC is noisy, and the noise increases significantly with compression.
Indeed, it is not possible to compute any meaningful strain without smoothing
the data, but this requires experience and empirical intuition (too little smoothing
leaves noise while too much smoothing introduces artifacts) and difficult to quantify.
Therefore, we do not include the strains from Local Subset DIC. In the context of
this work, we conclude that it is not possible to combine Local Subset DIC with
image compression.

The two methods with global input, Global DIC and ALDIC, on the other hand do
quite well even when we use compressed images. We see that the noise increases
with compression, but not significantly. Global DIC method has more noise than
ALDIC method, especially in strain at the high compression. We see that both
methods have an artifact on the right boundary due to the boundary condition we
use. It is more pronounced in Global DIC. Further, we begin to see artifacts in
regions of rapidly changing strain (see the first peak from the right) in Global DIC.
ALDIC on the other hand continues to accurately find the displacements and the
strains even with only 5% of the original image with wavelet compression. DCT
compression produces more error. Overall, we conclude that ALDIC and wavelet
compression provide the optimal results.

This is confirmed in the absolute RMS errors shown in Table 4.2 and the relative
RMS errors are shown in Table 4.3. These tables also show the effect of choosing
different subset/mesh sizes. Importantly, the absolute RMS errors increase by about
a factor two with the most parsimonious wavelet compression in Global DIC and
ALDIC, but more in Local Subset DIC. Once again, we conclude that ALDIC and
wavelet compression provide the optimal results.

In conclusion, this example shows that ALDIC and wavelet compression up to 5%
of the original image provide good results for the displacement and strain fields. We
have also analyzed other datasets from the SEM 2D-DIC Challenge. The results are
similar as described in the supplementary material.

Experimental example: Heterogeneous fracture
We now turn to real experimental data from the fracture of a heterogeneous media
shown in Figure 3.7 [62] (also [67] for more details).

Figures 4.5 and 4.6 show the displacement and strain fields obtained from the three
algorithms using original, wavelet, and DCT compressed images of the heteroge-
neous fracture specimen. Once again, we do not show the strain fields for Local



43

Figure 4.5: The displacement fields obtained from Local Subset DIC, Global DIC,
and ALDIC using original, wavelet, and DCT compressed images of the heteroge-
neous fracture specimen.
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Figure 4.6: The strain fields obtained from Global DIC and ALDIC using original,
wavelet, and DCT compressed images of the heterogeneous fracture specimen.
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Table 4.2: Absolute RMS errors of Sample 14 L1 data using three DIC algorithms
applied to the original images and the compressed images with different subset/mesh

Index Mesh Image compression Local Subset DIC Global DIC ALDIC

Displacement
η1

(pixels)

30 × 30

Original 0.0199 0.0079 0.0056
Wavelet 10 % 0.0312 0.0108 0.0080
Wavelet 5 % 0.0514 0.0162 0.0127
DCT 10 % 0.0409 0.0130 0.0103
DCT 5 % 0.0652 0.0251 0.0207

20 × 20

Original 0.0323 0.0082 0.0067
Wavelet 10 % 0.0514 0.0112 0.0088
Wavelet 5 % 0.0846 0.0162 0.0164
DCT 10 % 0.0674 0.0131 0.0126
DCT 5 % 0.1055 0.0249 0.0260

10 × 10

Original 0.0990 0.0088 0.0165
Wavelet 10 % 0.1416 0.0111 0.0232
Wavelet 5 % 0.2086 0.0157 0.0351
DCT 10 % 0.2176 0.0139 0.0288
DCT 5 % — — —

Strain
ξ1

30 × 30

Original 2.08 ×10−4 9.57 ×10−5

Wavelet 10 % — 2.65 ×10−4 1.53 ×10−4

Wavelet 5 % — 3.81 ×10−4 2.10 ×10−4

DCT 10 % — 3.22 ×10−4 1.85 ×10−4

DCT 5 % — 5.20 ×10−4 2.50 ×10−4

20 × 20

Original — 2.35 ×10−4 1.62 ×10−4

Wavelet 10 % — 3.11 ×10−4 2.30 ×10−4

Wavelet 5 % — 4.40 ×10−4 3.72 ×10−4

DCT 10 % — 3.79 ×10−4 2.56 ×10−4

DCT 5 % — 6.05 ×10−4 3.79 ×10−4

10 × 10

Original — 2.84 ×10−4 8.19 ×10−4

Wavelet 10 % — 3.77 ×10−4 0.0010
Wavelet 5 % — 5.47 ×10−4 0.0015
DCT 10 % — 4.71 ×10−4 8.85 ×10−4

DCT 5 % — — —

Subset DIC because they are very noisy. Table 4.4 shows the relative RMS errors.
Once again, we see that ALDIC and wavelet compression gives good results.

Computation time
The computation times for the various examples are given in Table 4.5. All com-
putations were conducted on a personal computer with an Intel (R) Xeon(R) CPU
E5-2650 v3 2.30 GHz (2 Processors), RAM 32.0 GB Memory, 64-bit operating
system. As we reported earlier, Local Subset DIC is the fastest and Global DIC is
the slowest. We note that compression can marginally reduce the computation time.
However, if we compress too much, then we have difficulty with convergence and
this increases the computation time, especially in ALDIC.

4.5 Conclusion
Digital image compression requires high resolution images to accurately capture
the speckle patterns, and this makes storage and transmission expensive. In this
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Table 4.3: Relative RMS errors of Sample 14 L1 data using three DIC algorithms
applied to the original images and the compressed images with different subset/mesh

Index Mesh Image compression Local Subset DIC Global DIC ALDIC

Displacement
η2

(pixels)

30 × 30

Wavelet 10 % 0.0275 0.0078 0.0064
Wavelet 5 % 0.0503 0.0145 0.0121
DCT 10 % 0.0370 0.0101 0.0083
DCT 5 % 0.0658 0.0248 0.0210

20 × 20

Wavelet 10 % 0.0445 0.0078 0.0085
Wavelet 5 % 0.0828 0.0140 0.0167
DCT 10 % 0.0619 0.0101 0.0117
DCT 5 % 0.1063 0.0249 0.0280

10 × 10

Wavelet 10 % 0.1399 0.0076 0.0235
Wavelet 5 % 0.2181 0.0138 0.0371
DCT 10 % 0.2184 0.0104 0.0280
DCT 5 % — — —

Strain
ξ2

30 × 30

Wavelet 10 % — 1.27 ×10−4 6.05 ×10−5

Wavelet 5 % — 2.34 ×10−4 1.23 ×10−4

DCT 10 % — 1.74 ×10−4 7.90 ×10−4

DCT 5 % — 3.45 ×10−4 1.53 ×10−4

20 × 20

Wavelet 10 % — 1.56 ×10−4 1.32 ×10−4

Wavelet 5 % — 2.72 ×10−4 2.51 ×10−4

DCT 10 % — 2.11 ×10−4 1.56 ×10−4

DCT 5 % — 4.08 ×10−4 2.73 ×10−4

10 × 10

Wavelet 10 % — 1.99 ×10−4 6.79 ×10−4

Wavelet 5 % — 3.51 ×10−4 0.0011
DCT 10 % — 2.76 ×10−4 5.89 ×10−4

DCT 5 % — — —

Table 4.4: Relative RMS errors of fracture experiment using three DIC algorithms
applied to the compressed images compared with results using the original images

Index Mesh Image compression Local Subset DIC Global DIC ALDIC

Displacement
η2

(pixels)
16× 16

Wavelet 10 % 0.0082 0.0030 0.0074
Wavelet 5 % 0.0296 0.0118 0.0262
DCT 10 % 0.0213 0.3888 0.0191
DCT 5 % 0.0803 0.3908 0.0654

Strain
ξ2

16× 16

Wavelet 10 % — 1.71 ×10−4 2.28 ×10−4

Wavelet 5 % — 6.59 ×10−4 8.06 ×10−4

DCT 10 % — 0.0066 5.65 ×10−4

DCT 5 % — 0.0067 0.0020

paper, we study the combination of DIC with image compression. We study three
DIC algorithms (Local Subset DIC, Global DIC, and augmented Lagrangian DIC
(ALDIC)), and two image compression methodologies (discrete cosine transform
(DCT) and wavelet transform). Overall, we find through both synthetic and real data
that the DIC algorithms are able to recover deformation information from images
compressed to 5% of their original size albeit with some errors and noise.

Local Subset DIC is the most error-prone and noisy. This is to be expected since
Local Subset DIC relies only on local information, and there is no mechanism by
which any loss of information due to compression can be filled in. Further, since
the loss of information is not uniform, image compression can lead to noise in
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Table 4.5: Computation time of the numerical demonstrations
DIC Image Mesh Image compression Local Subset DIC Global DIC ALDIC

Sample 14 L1 30× 30

Original 28.55 478.33 121.63
Wavelet 10 % 23.06 380.56 102.37
Wavelet 5 % 22.78 370.80 106.40
DCT 10 % 24.80 433.42 112.25
DCT 5 % 25.58 435.38 118.67

Sample 14 L1 20× 20

Original 37.65 630.19 145.95
Wavelet 10 % 29.18 476.22 119.69
Wavelet 5 % 30.03 472.20 122.29
DCT 10 % 30.86 550.76 128.74
DCT 5 % 33.53 560.79 157.71

Sample 14 L1 10× 10

Original 95.28 1402.3 294.99
Wavelet 10 % 84.99 1284.3 265.38
Wavelet 5 % 95.56 1284.3 285.03
DCT 10 % 86.99 1137.3 275.56
DCT 5 % — — —

Fracture Exp 16× 16

Original 13.67 156.21 55.67
Wavelet 10 % 11.02 182.66 45.55
Wavelet 5 % 11.16 179.19 45.49
DCT 10 % 11.00 147.99 46.60
DCT 5 % 13.41 198.21 52.47

Local Subset DIC. The other two methods – Global DIC and ALDIC – are able to
fill to some extent missing local information from neighboring regions. Therefore
they are less error-prone and less noisy. However, this can introduce some artifacts
due to mollification. ALDIC appears to find the right balance between filling in
information and keeping mollification to a minimum.

Among the image compression algorithms, wavelet transform do better than DCT.
In DCT, we first cut the whole image into 8 × 8 pixel blocks and ignore the high
frequency coefficients within each block. Therefore, the interfaces between the
blocks are not necessarily smooth (cf Figure 4.1). Wavelet transform, on the other
hand, does not have this difficulty.
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C h a p t e r 5

ADAPTIVE MESH ALDIC

[1] J Yang and K Bhattacharya. “Multigrid adaptive mesh digital image correla-
tion”. In: To be submitted (2018).

[2] J Yang and K Bhattacharya. “Fast adaptive global digital image correlation”.
In: Advancement of Optical Methods & Digital Image Correlation in Exper-
imental Mechanics. Vol. 3. 2019. Chap. 7. doi: https://doi.org/10.
1007/978-3-319-97481-1_7.

DIC is especially useful in the study of complex phenomenawith very heterogeneous
strain fields at various length scales. In heterogeneous strain fields, a uniform
local subset or global finite element mesh discretization leads to very different
accuracy in the different regions; however, the precision only depends on the worst
subset/element. In other words, a high precision requires a very fine mesh if it
is uniform. We can overcome this by using an adaptive mesh in DIC to save
computation time with little loss in accuracy. In this chapter, we apply two adaptive
approaches, Kuhn triangluation and Quadtree mesh, to ALDIC.

5.1 Introduction
In DIC, adaptivity can have three different meanings.

1. Image. First, images can be taken with adaptive spatial resolutions. Passieux
et al. [68] use more than one camera to take DIC experimental images
with different focal distances and image scale ratios. They take relatively
low spatial resolutions farfield images using one camera far away to cover
larger areas for small strain deformation region, and they take relatively high
resolution nearfield images with another close camera to analyze large strain
deformation regions. Images can also be adaptively filtered to have various
resolutions to achieve multiscale resolution analysis [69].

2. Mesh. Second, the deformation field can be represented using a finite number
of sampling points in a self-adaptive manner. For example, Yuan et al.
[70] modified Local Subset DIC to automatically sample more points where
the weighted zero-normalized summation of squared differences correlation

http://dx.doi.org/https://doi.org/10.1007/978-3-319-97481-1_7
http://dx.doi.org/https://doi.org/10.1007/978-3-319-97481-1_7
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function is poorly satisfied. Ronovsky et al. [35] extended the Global DIC
method to refine finite elements where the modified the summation of squared
differences correlation function is relatively large.

3. Subset. Third, the deformation of different subsets/elements can be char-
acterized using hierarchical bases. For example, Wittevrongel et al. [71]
applies p-adaptive finite element method in Global DIC where larger gra-
dient deformation regions are described with higher order finite elements.
P-adaptive finite element-based Global DIC method has only been reported to
work well with very big subsets/elements whose sizes are from 50×50 pixels
to 100× 100 pixels. Similarly in Local Subset DIC, the order of local subset
shape function and the size of local subset can also be chosen adaptively to
improve the overall accuracy [72, 73].

In this chapter, we consider the second aspect described above, where the adaptivity
is in mesh used for representation of the deformation.

5.2 Variational formulation of regularized Global DIC
Recall from Section 2.5 that Global DIC optimization problem is usually severely
ill-posed. Thus regularization terms are added to the original correlation function.
Here we apply a gradient regularier to constraint the deformation field with certain
smoothness. At the (n+ 1)th step,

Cg =

∫
Ω

[f(X)− g(X + un + δu)]2 + α|∇(un + δu)|2dX, α > 0, (5.1)

where un is the solved displacements at the previous n-th step, δu is the update
of displacements at the (n + 1)th step. The corresponding stationarity principle in
weak form is given by∫

Ω

{
α∇(u0 + δu) : ∇ϕ− [f(X)− g(X + un + δu)]

∂g(X + un)

∂X
·ϕ
}
dX = 0,∫

∂Ω

{(
∇(un + δu)Tϕ

)
· n
}
dS = 0, ∀ϕ ∈ H1(Ω).

(5.2)

The “:” operator follows computation ruleA : BG =
∑

i

∑
j AijBij .

In the DIC experiments, if the deformation field is not large, we can take Taylor
expansion of the deformed image grayscale and only keep the first order term
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g(X + un + δu) ≈ g(X + un) + ∂g(X + un)/∂X · δu to linearize the above
equation. We can further approximate ∂g(X + un)/∂X using ∂f(X)/∂X, which
only needs to compute once to save computation time:∫

Ω

{[
∂f(X)

∂X
· δu

] [
∂f(X)

∂X
·ϕ
]}

dX =∫
Ω

{
−α∇(un + δu) : ∇ϕ+ [f(X)− g(X + un)]

[
∂f(X)

∂X
·ϕ
]}

dX, ∀ϕ ∈ H1(Ω).

(5.3)

Assuming there are natural boundary consitions, the above variational problem can
further be written into the following formwhereBG : H1×H1 → R is a symmetric
continuous bilinear form:

δu ∈ H1, s.t. BG [δu,ϕ] = 〈p,ϕ〉 , for all ϕ ∈ H1(Ω), (5.4)

where
BG [δu,ϕ] =

∫
Ω

{
δu ·

[
∂f(X)

∂X

] [
∂f(X)

∂X

]T
·ϕ+ α∇(δu) : ∇ϕ

}
dX

〈p,ϕ〉 =

∫
Ω

{
−α∇un : ∇ϕ+ [f(X)− g(X + un)]

[
∂f(X)

∂X
·ϕ
]}

dX.

(5.5)

Lemma 1. The symmetric bilinear operator BG : H1(Ω) × H1(Ω) → R in (5.4-
5.5) is coercive if displacement δu is not orthogonal to image grayscale gradients
∇f(X) a.e. in Ω.

Proof. ∀δu ∈ H1(Ω), there exists 0 < M <∞, such that∫
Ω

|δu|2dX < M. (5.6)

By further assuming δu is not orthogonal to ∂f(X)
∂X

a.e. in Ω, thus there exists a local
small sphere domain Ω0 ⊂ Ω, where

∣∣∣δu · ∂f(X)
∂X

∣∣∣ > 0 a.e. inside Ω0. So we have

BG(δu, δu) =

∫
Ω

{∣∣∣∣δu · ∂f(X)

∂X

∣∣∣∣2 + α |∇δu|2
}
dX

≥
∫

Ω0

∣∣∣∣δu · ∂f(X)

∂X

∣∣∣∣2 dX +

∫
Ω

α |∇δu|2 dX

>

∫
Ω0

∣∣∣δu · ∂f(X)
∂X

∣∣∣2 dX
M

∫
Ω

|δu|2dX +

∫
Ω

α |∇δu|2 dX

> C1|δu|2H1(Ω),

(5.7)
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where C1 = min{
∫
Ω0
|δu· ∂f(X)

∂X |
2
dX

M
, α} is a finite positive number.

Theorem 1. (Modified Lax-Milgram Theorem) LetBG : H1(Ω)×H1(Ω)→ R be
a continuous bilinear form that is coercive, then the equation system Eqs(5.4-5.5)
has a unique solution δu ∈ H1(Ω), which depends continuously on p.

Proof. See Appendix B.

5.3 Variational formulation of ALDIC Subproblem 2
In this section, we apply adaptive mesh onto ALDIC method with ADMM scheme.
In ADMM, there are two subproblems, and our mesh refinement criteria are based
on a posteriori error estimates of both these two subproblems. Before discussing
how to estimate a posteriori errors, we first describe how to solve ALDIC ADMM
scheme for arbitrary non-uniform mesh. The first subproblem of ADMM decouples
all the nodes into isolated ones, which can be easily solved with non-uniform mesh.
The second subproblem is a global update whose variational formulation is derived
as follows, and we can solve it using the finite element method.

InALDIC subproblem 2 global update, while holding {Fk+1}, {uk+1}, {Wk}, {vk}
fixed, we minimize L over {û} to obatin {ûk+1}, which is a global problem inde-
pendent of the reference and deformed images f, g.

{ûk+1} = arg min
{û}

L
(
{Fk+1}, {uk+1}, {û}, {Wk}, {vk}

)
= arg min

{û}

∫
Ω

(
β

2

∣∣Dû− Fk+1 + Wk
∣∣2 +

µ

2

∣∣û− uk+1 + vk
∣∣2) dX.

(5.8)

Wedefine functional L̃ :=
∫

Ω

(
β
2

∣∣Dû− Fk+1 + Wk
∣∣2 + µ

2

∣∣û− uk+1 + vk
∣∣2) dX.

The Euler-Lagrange Equation in weak form is given by∫
Ω

{β∇û : ∇ϕ+ µû ·ϕ} dX =

∫
Ω

{β(F−W) : ∇ϕ+ µ(u− v) ·ϕ} dX∫
∂Ω

{
∇ûTϕ · n

}
dS = 0,

∫
∂Ω

{
(F−W)Tϕ · n

}
dS = 0, ∀ϕ ∈ H1(Ω).

(5.9)

Assuming there are natural boundary conditions, the above variational problem
can further be written into the following form where BAL : H1 × H1 → R is a
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continuous symmetric bilinear form:

û ∈ H1, s.t. BAL[û,ϕ] = 〈q,ϕ〉 , for all ϕ ∈ H1(Ω), (5.10)

where 
BAL[û,ϕ] =

∫
Ω

{β∇û : ∇ϕ+ µû ·ϕ} dX

〈q,ϕ〉H1 =

∫
Ω

{β(F−W) : ∇ϕ+ µ(u− v) ·ϕ} dX.
(5.11)

Lemma 2. The symmetric bilinear operatorBAL : H1(Ω)×H1(Ω)→ R in (5.10-
5.11) is coercive.

Proof. ∀û ∈ H1(Ω), there holds

BAL(û, û) =

∫
Ω

{
β |∇û|2 + µ |û|2

}
dX ≥ C3|û|2H1(Ω), (5.12)

where C3 is some finite positive constant.

Using the similar proof with Theorem 1, we can apply Lax-Milgram theorem again
to guarantee the well-posedness of (5.10-5.11).

Theorem 2. Equation system (5.10-5.11) has a unique solution û ∈ H1(Ω), which
depends continuously on q.

5.4 Discretization
In this section, we recall some important concepts from [74] about Galerkin
discretization. To solve the variational problem in the regularized Global DIC
system (5.4-5.5) and the ALDIC subproblem 2 (5.10-5.11) numerically, we re-
strict the continuous space H1(Ω) to finite dimensional subspaces of dimension
N <∞. For simplicity, we use symbol {B,u,UN ,p, C} to represent the notations
{BG, δu, δUN ,p, C1} in the regularized Global DIC variational formulation (Sec-
tion 5.2), and to represent {BAL, û, ÛN ,q, C3} in ALDIC subproblem 2 (Section
5.3).

Definition 1. For N ∈ N, let H1
N(Ω) ⊂ H1(Ω) be subspace of dimension N ,

e.g., H1
N(Ω) := {v ∈ C(Ω)|vT ∈ Pn(T ), for all elements T ∈ J }, where J is a

conforming triangulation or Quadtree mesh of Ω (cf Definitions 7, 14) and Pn(T )

stands for the space of polynomials with degree not greater than n over element T .
Then a solutionUN to

UN ∈ H1
N(Ω) : B[UN ,ϕN ] = 〈p,ϕN〉 ∀ϕN ∈ H1

N(Ω) (5.13)
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is called Galerkin solution.

For comforming discretizations (cf Definitions 7, 14), the bilinear form B is well
defined and continuous on the discrete spaces H1(Ω) × H1(Ω). Lemma 1 can be
extended in the comforming discretizations such that

B[U,U] ≥ C |U|2H1(Ω) , ∀U ∈ H1
N(Ω), (5.14)

where C1 > 0 is the same coercivity constant with the continuous spaces case in
Lemma 1. We can further extend Theorem 1 into the discrete version.

Theorem 3. (Existence and uniqueness of the Galerkin solution). Let H1
N(Ω) ⊂

H1(Ω), then for any p ∈ H−1
N (Ω) there exists a unique Galerkin solution UN ∈

H1
N(Ω):

UN ∈ H1
N(Ω) : B[UN ,ϕ] = 〈p,ϕ〉 ∀ϕ ∈ H1

N(Ω) (5.15)

if (5.14) is satisfied.

Proof. Applying the Riesz representation theorem, there exists a linear discrete
operator BN ∈ L(H1

N(Ω);H1
N(Ω)) such that

〈BNU,W〉 = B[U,W], ∀U,W ∈ H1
N(Ω). (5.16)

Then the existence and uniqueness of a discrete solution UN ∈ H1
N(Ω) for any

p ∈ H−1
N is equivalent to the invertibility of the operator BN : H1

N(Ω) → H1
N(Ω).

Since the domain and the range of linear operator BN have the same dimension N ,
we only need to prove the injectivity of BN . Using coercivity,

∀0 6= UN ∈ H1
N(Ω), with C > 0,

|BNUN |H1
N (Ω) = sup

VN∈H1
N (Ω)

〈BNUN ,VN〉H1
N (Ω)

|VN |H1
N (Ω)

≥
〈BNUN ,UN〉H1

N (Ω)

|UN |H1
N (Ω)

=
B[UN ,UN ]

|VN |H1
N (Ω)

≥ C |UN |H1
N (Ω) ≥ 0.

(5.17)

So BN is invertible and Theorem 3 holds, i.e. for any p ∈ H−1
N (Ω), there exists

unique solutionUN ∈ H1
N(Ω) of (5.15), which further satisfies

|UN |H1
N (Ω) ≤ C−1 |p|H−1

N (Ω) . (5.18)
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Corollary 1. (Galerkin orthogonality).

B[u−UN ,W] = 0, ∀W ∈ H1
N(Ω). (5.19)

Proof. We are allowed to use any W ∈ H1
N(Ω) as a test function in the definition

of the continuous weak form (5.4-5.5). This gives

B[u,W] = 〈p,W〉 , ∀W ∈ H1
N(Ω). (5.20)

Then recalling the definition of the Galerkin solution (5.15) and taking the difference
yields (5.19).

Corollary 2. (Cea’s Lemma). Galerkin solutionUN in (5.15) is up to a constant as
close to exact solutionUN as the best approximation. The error satisfies

|u−UN |H1(Ω) ≤
|B|
C

min
V∈H1

N (Ω)
|u−V|H1(Ω) . (5.21)

5.5 Finite element spaces
Practically, in this thesis, we choose Lagrange elements of polynomial degree n = 1

as our finite element bases. These are easy to construct and are locally supported,
the latter property leads to sparse matrices. We use two types of adaptive mesh
systems: Kuhn triangulation and Quadtree adaptive mesh. Both of these two
adaptive meshes only involve image grayscale values at integer pixels, which help
us void the interpolation bias error of image grayscale value located at subpixels. In
2D, Kuhn triangle simplices are all isosceles right triangles (cf Figure 5.1 first row),
where all descendants of Kuhn triangles belong to one similarity class with various
orientations (cf Figure 5.2), while elements in Quadtree mesh are all squares (cf
Figure 5.1 second row). Kuhn triangulation doesn’t require hanging nodes and can
be easily refined with longest-edge bisection recursively. However, Quadtree mesh
needs hanging nodes along transition edges between elements with different sizes.
adaptive mesh ALDIC method.

First, we give out some useful definitions and concepts of Kuhn triangulation and
Quadtree mesh and review some of their properties in this section. After that,
we will discuss the refinement process of a given initial Kuhn triangulation using
bisection and the refinement of a given initial Quadtree mesh.
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Figure 5.1: Comparison of adaptive Kuhn triangulation mesh and adaptive Quadtree
mesh.

Kuhn simplex triangulation
We at first summarize the definition of Kuhn simplex (In 2D, it is also called Kuhn
triangle).

Definition 2. (Simplex and Subsimplices). Let d ∈ N denotes the dimension. A
subset T of Rd is an n-simplex in Rd if there exist n+ 1 points z0, z1, · · · , zn ∈ Rd

such that

T = conv hull{z0, z1, · · · , zn} =

{
n∑
i=1

λizi|λi ≥ 0 for i = 0, · · · , d,
n∑
i=0

λi = 1

}
,

(5.22)
where z1 − z0, · · · , zn − z0 are linearly independent vectors in Rd. By convention,
points are defined as 0-simplices.
A subset T ′ of T is a (proper) k-subsimplex of T if T ′ is a k-simplex such that

T ′ = conv hull{z′0, · · · , z
′

k} ⊂ ∂T (5.23)

with k < n and z′0, · · · , z
′

k ∈ {z0, · · · , zd}. The 0-subsimplices are the vertices of
a simplex. 1-subsimplices are edges and 2-subsimplices of 3-simplices are faces.
Moreover, the (n− 1)-subsimplices of n-simplices are referred as sides.

Definition 3. (Kuhn simplex). Kuhn simplex is a special type of d-simplex T with
(ordered) vertices and its type t by

T = {z0, z1, · · · , zd}t, t ∈ {0, 1, · · · , d− 1}, (5.24)
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where

zπ0 = 0, zπi :=
i∑

j=1

eπ(j) for all i = 1, · · · , d, (5.25)

where d is the dimension, π is a permutation of {1, · · · , d}.

There are three size measures of a simplex, which could further assist us to describe
its shape regularity.

Definition 4. (Three size measures of a simplex). We define three quantities to
measure the size of the given simplex T .

Outball daramater: hT := sup{|x− y| | x, y ∈ T}, (5.26)

Inball daramater: hT := sup{2r|Br ⊂ T is a ball of radius r}, (5.27)

Element daramater: hT := |T |1/d. (5.28)

All the three quantities in Definition 4 satisfy the following inequality and they are
equivalent up to the following quantity Shape Coefficient:

hT ≤ hT ≤ hT (5.29)

Definition 5. (Shape Coefficient). The shape coefficient of a d-simplex T in Rd ,
σT , is defined as the ratio of the outball diameter and the inball diameter of T .

σT :=
hT
hT
. (5.30)

Generally, the shape coefficient is closely related with upper bounds for the element
error of the solved Galerkin solutions, see Section 5.6. However, in the Kuhn
triangulations, the shape of all the elements is always fixed with the same shape
coefficient, which is one of the benefits for choosing Kuhn triangles as our elements
(also see Theorem 4). For the 2D Kuhn triangle with triangle leg length h, hT =√

2h, hT =
(

1−
√

2
2

)
h, hT =

√
2

2
h, and σT = 2(

√
2 + 1).

Definition 6. (Generation). The generation g(T ) of a element T is the number of
its ancestors in the refinement process, or, equivalently, the number of bisections
needed to create T from the intial coarsest mesh element T0.

With the definition of the generation number of the element, some related properties
of the elements can be obtained directly. For example, the element type of the
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Figure 5.2: All the 2D Kuhn triangles belong to one similarity class with different
orientations.

descendants of element T0 is “(g(T ) + t0) mod d”, where t0 is the element type of
T0, and descendant element size is

hT = 2−g(T )/dhT0 , (5.31)

where hT0 is the size of coarsest mesh element T0.

Theorem 4. (Shape Regularity for a Kuhn Simplex). All 2g descendants of genera-
tion g of a Kuhn simplex Tπ = {zπ0 , · · · , zπd }0 are mutually congruent with at most
d different shapes. In the d = 2 case, all descendants of a Kuhn-triangle belong to
one similarity class.

Definition 7. (Triangulation). Let Ω ⊂ Rd be a bounded, polyhedral domain. A
finite set J of d-simplices in Rd with

Ω̄ =
⋃
T∈J

T and |Ω| =
∑
T∈J

|T | (5.32)

in a triangulation of Ω. The Shape coefficient of a triangulation J is the quantity
σJ := maxT∈J σT . A triangulation J is conforming if it satisfies the following
property: if any two simplices T1, T2 ∈ J have a nonempty intersection S =

T1 ∩ T2 6= ∅, then S is a k-subsimplx of both T1 and T2 with k ∈ {0, · · · , d}.
In another words, conforming mesh means there are no vertices in the interior of
edges. A sequence of triangulations {Jk}k≤0 is shape regular if supT∈JkσJ ≤ C.
It is called quasi-uniform if there exists a finite constant C such that, for all k, there
holds maxT∈Jk hT ≤ C minT∈Jk hT .
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Finally, we give out the definition of uniform mesh and quasi-uniform mesh to
distinguish the uniformly refined mesh used in multigrid method from the adaptive
Kuhn triangulation.

Definition 8. (Uniform mesh). Let JN be a partition of Ω with N nodes. JN is
uniform mesh if all the elements have exactly the same generation number.

Definition 9. (Quasi-uniform mesh). Let JN be a partition of Ω withN nodes. JN
is quasi-uniform mesh if

max
T∈JN

h
d

T . min
T∈JN

hdT , (5.33)

where “.” means there can be a hidden constant independent of N .

FE basis functions of 2D Kuhn triangle elements
For the 2D Kuhn triangulation, we use constant strain triangle (CST) elements to
solve equation system (5.4-5.5). Assuming the Cartesian coordiantes of three nodes
of 2D Kuhn triangle element are {(x1, y1), (x2, y2), (x3, y3)}, shape functions of the
element T are

N1 =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

N2 =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

N3 =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]

, (5.34)

where A is the area of the triangle element.

A =
1

2
det

1 x1 y1

1 x2 y2

1 x3 y3

 . (5.35)

There holds ∀(x, y) ∈ T ,

x =
3∑
i=1

Nixi; y =
3∑
i=1

Niyi and u =
3∑
i=1

NiUi. (5.36)

The derivatives of shape functions, DN , can be computed directly.

∂N1

∂x
=

1

2A
(y2 − y3);

∂N2

∂x
=

1

2A
(y3 − y1);

∂N3

∂x
=

1

2A
(y1 − y2);

∂N1

∂y
=

1

2A
(x3 − x2);

∂N2

∂y
=

1

2A
(x1 − x3);

∂N3

∂y
=

1

2A
(x2 − x1);

(5.37)
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DN =



∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0

0 ∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x

0 ∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x

 . (5.38)

Quadtree mesh
A 2D Quadtree (Figure 5.1 second row) is a tree mesh structure in which each
parent element has exactly four children elements. They can be used to partition a
two-dimensional space by recursively subdividing into four quadrants.

Definition 10. (d-cube). A d-cubeQ, or also called d dimensional hypercube, is the
convex hull of the points given by all sign permutations of the Cartesian coordinates
(±1,±1, · · · ,±1). A subset Q′ of Q is also a hybercube with lower dimension.
Specifically, any subset hypercube of the (d − 1) dimension is called a side of the
parent d-cube.
A hypercube of dimension d has 2d sides. A zero-dimensional hypercube is a vertex
or point, and each d-cube has 2d vertices. A one-dimensional cube is a line, which
has 2 sides also called endpoints. A two-dimensional cube is a square and has 4
sides or edges. A three-dimentional cube is a square box with 6 two dimensonal
faces.

Definition 11. (Size measure of d-cube). The d-cube has volume 2d. We define the
element darameter hQ as the length of the edge of d-cube.

Definition 12. (Generation). The generation g(Q) of an element Q in a Quadtree
mesh is the number of its ancestors in the refinement process, or equivalently the
number of subdivisions needed to create Q from the inital coarsest mesh element
Q0.

With the definition of the generation number of the element, the descendants of the
generation g of a Quadtree mesh element all have the same shape with the element
size:

hQ = 2−g(Q)hQ0 , (5.39)

where hQ0 is the size of the initial element Q0.
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Definition 13. (Shape regularity for d-cube). Each parent d-cube has 2d or none
children (d − 1)-cube elements. All the descendants of generation number g of a
d-cube belong to one similarity class.

Definition 14. (d-cube mesh). Let Ω ⊂ Rd be a bounded, polyhedral domain. A
finite set K of d-cubes in Rd with

Ω =
⋃
Q∈K

Q and |Ω| =
∑
Q∈K

|Q| (5.40)

is a d-cube mesh of Ω. When d = 2, it is called Quadtree mesh, while when d = 3, it
is also called Octree mesh. Any two elements Q1, Q2 have a nonempty intersection
S = Q1∩Q2 6= ∅ are called neighboring elements. A d-cube meshK is conforming
if it satisfies the following property: |g(Q1) − g(Q2)| ≤ 1, where {Q1, Q2 are any
two neighboring elements. Specially, a d-cube mesh K is uniformly conforming if
|g(Q1)− g(Q2)| = 0 where {Q1, Q2} are any two neighboring elements. Elements
that have at least one different generation number neighboring element are called
Transition elements.

Theorem 5. Each d-cube mesh has at most (22d − 1) kinds of transition elements.

Example 1. (Transition elements in 2D case). There are 15 in total kinds of
transition elements, which are shown in Figure 5.3 (2)-(16).

FE shape functions of 2D Quadtree elements
For each 2D Quadtree non-transition element, we use bilinear Q4 isoparametric
shape functions, which are defined as

N1 = 1
4
(1− ξ)(1− η);

N2 = 1
4
(1 + ξ)(1− η);

N3 = 1
4
(1 + ξ)(1 + η);

N4 = 1
4
(1− ξ)(1 + η),

(5.41)

where {ξ, η} is the natural coordinates attached to the element; see Figure 5.4. For
any point (x, y) inside the elementwith four corner vertices{(x1, y1), (x2, y2), (x3, y3),
(x4, y4)}, there holds

x =
4∑
i=1

Nixi; y =
4∑
i=1

Niyi and u =
4∑
i=1

NiUi. (5.42)
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Figure 5.3: All kinds of elements in the Quadtree mesh, where nodes 1-4 are regular
corner nodes from Q4 finite element and nodes 5-8 are hanging nodes to keep C0

continuity of the deformation field.
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Figure 5.4: Isoparametric mapping in Q4 elements.

If none of the edges’ midpoints exist, this element will be the above classic Q4
finite element, as seen in Figure 5.3 (1). However, if at least one edge’s midpoints
exist, this element will be one of the transition elements in Figure 5.3 (2)-(16). To
implement the shape functions of transition elements, we choose Figure 5.3 (16) as
the transition element template and extend classic Q4 shape functions using Gupta’s
method [75], where we define δ(·) as

δ(Pti) =

{
1, If midpoint of refinement edge, Pti, exists;
0, If midpoint of refinement edge, Pti, doesn’t exist.

(5.43)
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Shape functions of Gupta’s conforming transition elements are defined as:

Ñ1 = N1 − 1
2

(
Ñ8 + Ñ5

)
; Ñ5 = 1

2
(1− η)(1− |ξ|)δ(Pt5);

Ñ2 = N2 − 1
2

(
Ñ5 + Ñ6

)
; Ñ6 = 1

2
(1 + ξ)(1− |η|)δ(Pt6);

Ñ3 = N3 − 1
2

(
Ñ6 + Ñ7

)
; Ñ7 = 1

2
(1 + η)(1− |ξ|)δ(Pt7);

Ñ4 = N4 − 1
2

(
Ñ7 + Ñ8

)
; Ñ8 = 1

2
(1− ξ)(1− |η|)δ(Pt8).

(5.44)

Displacement field is approximated using the linear combination of the above defined
shape functions.

x =
8∑
i=1

Ñixi; y =
8∑
i=1

Ñiyi and u =
8∑
i=1

ÑiUi. (5.45)

The derivatives of Gupta’s conforming transition elements shape functions can also
be easily comptuted as follows:

DÑ1

Dξ
= −1−η

4
− 1

2

(
DÑ8

Dξ
+ DÑ5

Dξ

)
; DÑ1

Dη
= −1−ξ

4
− 1

2

(
DÑ8

Dη
+ DÑ5

Dη

)
;

DÑ2

Dξ
= 1−η

4
− 1

2

(
DÑ5

Dξ
+ DÑ6

Dξ

)
; DÑ2

Dη
= −1+ξ

4
− 1

2

(
DÑ5

Dη
+ DÑ6

Dη

)
;

DÑ3

Dξ
= 1+η

4
− 1

2

(
DÑ6

Dξ
+ DÑ7

Dξ

)
; DÑ3

Dη
= 1+ξ

4
− 1

2

(
DÑ6

Dη
+ DÑ7

Dη

)
;

DÑ4

Dξ
= −1+η

4
− 1

2

(
DÑ7

Dξ
+ DÑ8

Dξ

)
; DÑ4

Dη
= 1−ξ

4
− 1

2

(
DÑ7

Dη
+ DÑ8

Dη

)
;

DÑ5

Dξ
= 1

2
(1− η)sign(−ξ)δ(Pt5); DÑ5

Dη
= −1

2
(1− |ξ|)δ(Pt5);

DÑ6

Dξ
= 1

2
(1− |η|)δ(Pt6); DÑ6

Dη
= 1

2
(1 + ξ)sign(−η)δ(Pt6);

DÑ7

Dξ
= 1

2
(1 + η)sign(−ξ)δ(Pt7); DÑ7

Dη
= 1

2
(1− |ξ|)δ(Pt7);

DÑ8

Dξ
= −1

2
(1− |η|)δ(Pt8); DÑ8

Dη
= 1

2
(1− ξ)sign(−η)δ(Pt8).

(5.46)

The Jacobian matrix of the isoparametric mapping is

J =

∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

 . (5.47)

The DN matrix in the FEM is assembled to be

DN =


inv(J)

0 0

0 0

0 0

0 0
inv(J)





DÑ1

Dξ
0 DÑ2

Dξ
0 · · · · · · DÑ8

Dξ
0

DÑ1

Dη
0 DÑ2

Dη
0 · · · · · · DÑ8

Dη
0

0 DÑ1

Dξ
0 DÑ2

Dξ
· · · · · · 0 DÑ8

Dξ

0 DÑ1

Dη
0 DÑ2

Dη
· · · · · · 0 DÑ8

Dη

 .
(5.48)
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The H1 conformity of finite element spaces
Using our above defined conforming Kuhn triangulation J or Quadtree meshK, we
define finite-dimensional spaces for our equation system (5.4-5.5) and (5.10-5.11)
as

V(J ) := {v ∈ C(Ω) | v|T ∈ P1(T ), ∀T ∈ J }, (5.49)

V(K) := {v ∈ C(Ω) | v|Q ∈ P1(Q), ∀Q ∈ K}, (5.50)

where P1(·) stands for the space of polynomials with degree not more than 1
over the inside domain. More precisely, we will show that V(J ) ⊂ H1(Ω) and
V(K) ⊂ H1(Ω), which possess bases which are locally supported and easy to
implement.

Lemma 3. (H1-Conformity for Kuhn triangulation mesh). If J is a conforming
triangulation of a bounded polyhedral Lipschitz domain Ω ⊂ Rd, then V(J ) ⊂
H1(Ω).

Proof. Let v ∈ V(J ). We show that v has a weak derivative. ∀η ∈ C∞0 (Ω) and
i ∈ {1, 2}, there holds∫

Ω

v∂iη =
∑
T∈J

∫
T

v∂iη =
∑
T∈J

∫
T

(∂iv)η +
∑
T∈J

∑
S∈∂T

∫
S

vηnT,i, (5.51)

where nT,i is the i−th coordinate of the exterior normal to ∂T . In the second term,
if S ⊂ ∂Ω, then there holds η|S = 0; otherwise there exists a unique simplex T ′ ∈ J
such that S = T ∩T ′ and nT ′,i = −nT,i, so the second term vanishes. Consequently,
there exists w ∈ L∞(Ω) is the weak derivate of v along the i−direction, where
w|T = ∂iv|T for all T ∈ J . So we have V(J ) ⊂ H1(Ω).

Analogously, H1-conformity also holds for Quadtree meshes.

Lemma 4. (H1-Conformity for Quadtree mesh). If K is a conforming Quadtree
mesh of a bounded polyhedral Lipschitz domain Ω ⊂ Rd, then V(K) ⊂ H1(Ω).

5.6 A priori error estimate
Previously, Corollory 2 shows the error of Galerin solutions of equation system (5.4-
5.5) and (5.10-5.11) using a stable discretization is dictated by the best approximation
from the discrete space. In this section, we provide a priori error estimate of the
regularized Global DIC method and ALDIC Subproblem 2 method.
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Theorem 6. (A Priori Error Estimate). Let 1 ≤ s ≤ 2, 1 ≤ p ≤ 2 and let the exact
solution uExact of the regularized Global DIC and ALDIC Subproblem 2 satisfy
uExact ∈ W s

p (Ω) with r := sob(W s
p )− sob(H1) > 0. Let UN ∈ V(JN) with Kuhn

triangulation mesh or V(K) with Quadtree mesh be the corresponding discrete
solution. If h : Ω→ R denotes the piecewise constant mesh density function that h
equals hT for all T ∈ JN , then

‖∇(uExact −UN)‖L2(Ω) .
|B|
C
‖hrDsuExact‖Lp(Ω) , (5.52)

where “.” means there can be a hidden constant, which depends on shape coeffi-
cient of the mesh and the dimension d. Sobolev number of W k

p (Ω) is defined by
sob(W k

p ) := k − d/p.

Proof. We refer to [74] Section §5.2 for the proof.

Corollary 3. (Quasi-Uniform Meshes). Let 1 ≤ s ≤ 2, and let the exact solution
uExact of the regularized Global DIC and ALDIC satisfy uExact ∈ Hs(Ω). Let JN
be a quasi-uniform partition of Ω with N nodes and let UN ∈ V(JN) with Kuhn
triangulation mesh orV(KN) with Quad/Octree mesh be the corresponding discrete
solution. Then,

‖∇(uExact −UN)‖L2(Ω) .
|B|
C
|uExact|Hs(Ω)N

−(s−1)/d. (5.53)

Proof. Quasi-uniformity of mesh JN implies

max
T∈JN

hdT ≤ max
T∈JN

h
d

T . min
T∈JN

hdT ≤
1

N

∑
T∈JN

hdT =
|Ω|
N
. (5.54)

Since r = (s − d/2) − (1 − d/2) = s − 1, plug above upper bound for hT into
(5.52), we can prove (5.53) holds. Since uniform mesh can be viewed as one special
case of quasi-uniform mesh, (5.53) also holds for uniform mesh.

Example 2. Using quasi-uniform meshes, if 1 ≤ s ≤ 2, the decay rate of error
|uExact −UN |H1(Ω) is bounded by O(N−(s−1)/d), slower than O(N−1/d).

Using uniform meshes, hT is constant over the whole domain, where H1 norm of
the error of discrete Galerkin solution is upper bounded by the global bebaviors
of |uExact|Hs(Ω) and the value of hT . However, this upper bound can be further
decreased to achieve higher decay rate by adaptively choosing element size hT due
to different local |uExact|Hs property.
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For example, in the two-dimensional d = 2 case, Binev et al.[76] proved the
following theorem for h-adaptive mesh.

Theorem 7. Let uExact ∈ H1(Ω) and u has the regularity that uExact ∈ C2(Ω) ∩
W 2
p (Ω) with 1 < p ≤ 2. The number of nodes of initial uniform mesh J0 is N0.

Then there exists refined mesh JN with N nodes such that

|uExact −UN |H1(Ω) . |Ω|1−1/p
∥∥D2uExact

∥∥
Lp(Ω)

N−1/2. (5.55)

More generally, in d ≥ 2 dimentional, using element shape function with polyno-
mials degree n ≥ 1, the maximum decay rate could reach O(N−n/d) using suitable
adaptive mesh.

In order to suitably refine the mesh adaptively, we will introduce the principle
of error equidistribution that the optimal mesh refinement should approximately
satisfy.

Principle of error equidistribution
Considering the following optimization problem: given a function u ∈ H1(Ω) and
an integer N > 0, we want to find a shape regular mesh JN to minimize the error
|uExact −UN |H1(Ω) subject to the constraint that the number of degrees of freedom
does not exceed N . Especially, here we only discuss d = 2 case, and assume the
regularity of uExact ∈ C2(Ω) ∩W 2

p (Ω) with 1 < p ≤ 2. The number of degrees of
freedom N is related with the mesh density function h by

N =

∫
Ω

1

h
dΩ. (5.56)

Applying Theorem 6 (5.52), the error is bounded from above by

‖∇(uExact −UN)‖2
L2(Ω) .

(∫
Ω

h2(p−1)|D2uExact|pdΩ

) 2
p

. (5.57)

To minimize the above upper bound with a given number of degrees of freedom N ,
we propose the Lagrangian

L[h, λ] =

∫
Ω

(
h2(p−1)|D2uExact|p −

λ

h2

)
dΩ. (5.58)

A stationary point of L satisfies

h2(p−1)+2|D2uExact|p = constant. (5.59)
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If we further assume the mesh J is sufficiently fine so that D2uExact is essentially
constant within each element T ∈ J , the above stationary condition is equivalent
to the equidistribution of error ET , where

ET = h
2(p−1)
T

∫
T

|D2uExact|p ≈ h2(p−1)+2|D2uExact(xT )|p

ET ≈ constant for all T ∈ J .
(5.60)

The above principle of error equidistribution gives us the idea to refine the elements
with larger errors, and Theorem 7 implies there exists certain refined mesh to reach
O(N−1/2) decay rate in the error. In practice, the exact solution uExact is unknown.
We are only able to replace the element error by computable element error indicator,
which will be discussed in Section 5.7. We also comment that in practice, the above
error’s maximum decay rate O(N−1/2) is usually hard to reach, since it’s very hard
to find the optimal mesh to make the error ET exactly equidistributed.

5.7 A posteriori error estimate
In this section, a posteriori error estimators of adaptive regularized Global DIC and
adaptive ALDIC are proposed, providing the indicators of elements with large errors
to be adaptively refined.

A posteriori error estimate of adaptive regularized Global DIC method
In regularized Global DIC, we are actually solving the above linearized weak form
(5.3), which holds in the integral meaning while strong form doesn’t satisfy point-
wisely. This inspired us to introduce the pointwise residual of Global DIC method
at the (n+ 1)th step:

RG(UNn+1) := α∆UNn+1 +
[
f(X)− g(X + UNn)− ∂f(X)

∂X
·
(
UNn+1 −UNn

)] ∂f(X)
∂X

.

(5.61)

Let us denote f̃G :=
[
f(X)− g(X + UNn)− ∂f(X)

∂X
·
(
UNn+1 −UNn

)] ∂f(X)
∂X

and

suppose f̃G ∈ L2(Ω). This allows us to write 〈R,w〉 as integrals over each T ∈ J
and integrate by parts:

〈RG,w〉 =

∫
Ω

RG ·wdX =
∑
T∈J

∫
T

rG ·wdX +
∑
Γ∈J

∫
Γ

jG ·wds, w ∈ H1(Ω)

(5.62)
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with

{
rG = RG(UNn+1), Interior residual in any simplex T ∈ J ,

jG = Jα∇(UNn+1)K, Jump residual on any element’s internal side Γ ∈ J ,
(5.63)

where Jα∇(UNn+1)K = αn+ ·∇(UNn+1)|T+ +αn− ·∇(UNn+1)|T− and n+,n− are
unit normals pointing towards T+, T− ∈ J , respectively.

Element local error indicator is defined as

E2
G(UNn+1 , T ) = h2

T ‖rG‖
2
L2(T ) + hT ‖jG‖2

L2(∂T\∂Ω) (5.64)

and total error estimator is summed to be

E2
G(UNn+1 ,J ) =

∑
T∈J

E2
G(UNn+1 , T ). (5.65)

Error of the solution of (5.3) is bounded by

1

C1

(
E(UNn+1 ,J )− osc(UNn+1 ,J )

)
.
∥∥∇(UNn+1 − uExact)

∥∥
L2(Ω)

.
EG(UNn+1 ,J )

C1

,

(5.66)
where uExact is the exact solution, C1 is the same value in Lemma 1. Term
osc(UNn+1 ,J ) measures oscillations of both interiori residual rG and jump residual
jG.

osc(UNn+1 ,J ) = ‖h(rG − rG)‖L2(Ω) +
∥∥h1/2(jG − jG)

∥∥
L2(Γ)

(5.67)

rG|T =

∫
T
rG

|T |
for all T ∈ J and jG|S =

∫
S
jG

|S|
for all S ∈ Γ. (5.68)

A posteriori error estimate of adaptive ALDIC method
We now estimate a posteriori error of adaptive ALDIC method. ALDIC has two
types of a posteriori error estimates based on two ADMM subproblems respectively.
From the first subproblem local step, a posteriori error estimate at the (n+ 1) step is
the samewith the Local Subset DICmethod SSD(summation of squared differences)
correlation function:

E2
AL1(UNn+1 ,FNn+1 ,J ) =

∑
i

∫
Ω

(∣∣f(X)− g(X + UNn+1 + FNn+1(X−Xi0))
∣∣2) dX.

(5.69)
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From the second subproblem global step, the pointwise residual at the (n+ 1) step
is defined as

RAL(ÛNn+1) = β
(

∆ÛNn+1 − div(Fn+1 −Wn)
)
− µ

(
ÛNn+1 −UNn+1 + vn

)
.

(5.70)

We can further denote f̃AL := −βdiv(Fn+1 −Wn) − µ
(
ÛNn+1 −UNn+1 + vn

)
and suppose f̃AL ∈ L2(Ω). The local error indicator of each element is computed
as

E2
AL2(ÛNn+1 , T ) = h2

T ‖rAL‖
2
L2(T ) + hT ‖jAL‖2

L2(∂T\∂Ω) (5.71)

with{
rAL = RAL(ÛNn+1), Interior residual in any simplex T ∈ J ,

jAL = Jβ∇(ÛNn+1)K, Jump residual on any element’s internal side Γ ∈ J ,
(5.72)

where Jβ∇ÛNn+1K = βn+ · ∇ÛNn+1 |T+ + βn− · ∇ÛNn+1 |T− and n+,n− are unit
normals pointing towards T+, T− ∈ J , respectively.

The total error estimator of ALDIC Subproblem 2 is summed to be

E2
AL2(ÛNn+1 ,J ) =

∑
T∈J

E2
AL2(ÛNn+1 , T ). (5.73)

Error of the solution of (5.10-5.11) is bounded by
1

C3

(
EAL2(ÛNn+1 ,J )− osc(ÛNn+1 ,J )

)
.
∥∥∥∇(ÛNn+1 − uExact-Sub2)

∥∥∥
L2(Ω)

.
EAL2(ÛNn+1 ,J )

C3

,

(5.74)

where uExact-Sub2 is the exact solution of ADMMSubproblem 2, C3 is the same value
in Lemma 2.

osc(ÛNn+1 ,J ) = ‖h(rAL − rAL)‖L2(Ω) +
∥∥h1/2(jAL − jAL)

∥∥
L2(Γ)

(5.75)

rAL|T =

∫
T
rAL

|T |
for all T ∈ J and jAL|S =

∫
S
jAL

|S|
for all S ∈ Γ

(5.76)

We can define the overall a posteriori error estimate of adaptive ALDIC method as

E2
AL(UNn+1 ,FNn+1 , ÛNn+1 ,J ) = E2

AL1(UNn+1 ,FNn+1 ,J ) + E2
AL2(ÛNn+1 ,J ).

(5.77)
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Lemma5. EAL(UNn+1 ,FNn+1 , ÛNn+1 ,J )→ 0 if and only ifEAL1(UNn+1 ,FNn+1 ,J )→
0 and EAL2(ÛNn+1 ,J )→ 0.

Proof. Since all the three terms are non-negatives, the above Lemma holds auto-
matically.

Theorem 8. Let uExact denotes exact solution of the overall ALDIC problem. If
EAL → 0, then we have ÛN → uExact.

Proof. First, use the above Lemma 5, EAL → 0 implies both EAL1 → 0 and
EAL2 → 0. Then we have the inequality:∥∥∥ÛN − uExact

∥∥∥
H1
≤
∥∥∥ÛN − uExact-Sub2

∥∥∥
L2

+
∥∥∥∇ÛN −∇uExact-Sub2

∥∥∥
L2

+ ‖uExact-Sub2 −UN‖L2 + ‖∇uExact-Sub2 − FN‖L2

+ ‖UN − uExact‖L2 + ‖FN −∇uExact‖L2 .

(5.78)

On the right hand side, the first two terms are bounded by EAL2, the last two terms are
bounded by EAL1, and the middle two terms also converge to zeros if EAL1 → 0.

5.8 Mesh refinement
Inspired by the principle of error equidistribution, we mark and refine elements
whose with large a posteriori error estimates, while keep the other elements with
small a posteriori error estimates unchanged.

Mark elements with large a posteriori error estimate
We list three popular marking strategies to collect elements with largest a posteriori
error estimates into setM such thatminT∈M EJ (UJ , T ) ≥ maxT∈J\M EJ (UJ , T ).

(1) Maximum Strategy: For given parameter θ ∈ [0, 1], we let

M = {T ∈ J | EJ (UJ , T ) ≥ θEJ ,max} with EJ ,max = max
T∈J
EJ (UJ , T ).

(5.79)

(2) Equidistribution Strategy: For given parameter θ ∈ [0, 1], we let

M = {T ∈ J | EJ (UJ , T ) ≥ θEJ (UJ ,J )/
√
N}. (5.80)

(3) Dörfler’s Strategy: For given parameter θ ∈ [0, 1], we letM⊂ J such that

EJ (UJ ,M) ≥ θEJ (UJ ,J ). (5.81)
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Next, we come to refine marked elements in setM. The refinement algorithm using
Kuhn triangulation and Quadtree mesh are described below.

2D Kuhn triangle simplex bisection
As for Kuhn simplex, the edge zπo , zπd of any Kuhn-simplex is always the longest
edge which connectes the first and last vertex of the simplex, and it is always the
refinement edge whose midpoint z̄ = (zπ0 + zπd )/2 will become the new vertex.
Connecting the new vertex z̄ with the vertices of T other than z0, zd will generate
the new edge shared by the two children simplex T1, T2 of parent simplex T , whose
vertex order is dictated by the bisection rule

T1 := {z0, z̄, z1, · · · , zt︸ ︷︷ ︸
→

, zt+1, · · · , zd−1︸ ︷︷ ︸
→

}(t+1) mod d,

T2 := {zd, z̄, z1, · · · , zt︸ ︷︷ ︸
→

, zd−1, · · · , zt+1︸ ︷︷ ︸
←

}(t+1) mod d

(5.82)

with the convention that arrows point in the direction of increasing indices and
{z1, · · · , z0} = ∅, {zd, · · · , zd−1} = ∅.

In d = 2 case, the bisection rule does not depend on the element type and for
T = {z0, z1, z2} the two children are

T1 = {z0, z̄, z1}, T2 = {z2, z̄, z1}. (5.83)

Algorithm 4: Bisect compatibly divisible element T into two children elements
function BISECT(T )

Step 1, Find the longest edge E and the midpoint of E.
Step 2, Find the vertix opposite to the longest edge.
Step 3, Connect the vertix found in Step 2 with the midpoint of E found in

Step 1, which bisects element E into two children elements {T1, T2} .
Return {T1, T2}.

To assist recursively bisect Kuhn triangle elements, we summarize some useful
definitions as follows [74].

Definition 15. (Binary tree, Forest and Refinement). A binary tree is a tree data
structure in which each node has at most two children. Given initial simplex T0, the
binary tree F(T0) includes all the refined descendant elements that will be generated
by recurrent bisection of T0. Let J0 be an initial conforming triangulation. Then

F = F(J0) :=
⋃

T0∈J0

F(T0) (5.84)
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is the associated master forest of binary trees. For a node T ∈ F so that T ∈ F(T0)

with T0 ∈ J0, the generation g(T ) is the generation of T within F(T0). A subset
F ⊂ F is called forest iff

(1) J0 ⊂ F ;

(2) All nodes of F\J0 have a predecessor;

(3) All nodes of F have either two successors or none.

A forest F is called finite, if maxT∈F g(T ) <∞. The nodes with no successors are
called leaves of F . Any finite forest F is uniquely associated with a triangulation
J = J (F) of Ω by defining the nodes of J to be the set of all leaves in F . Given
two finite forests F1,F2 ∈ F with associated triangulations J1,J2 we call J2 as
refinement of J1 iff F1 ⊂ F2 and we denote this by J1 ≤ J2.

Definition 16. (Neighboring Elements and Conforming Refinements). Two ele-
ments T1, T2 ∈ J are called neighboring elements if they share a common side,
which is a (d − 1)−subsimplex. The class of Conforming refinements of initial
triangulation J0 is defined as

T = {J = J (F) | F ⊂ F is finite and J (F) is conforming}. (5.85)

In d = 2 case, the new vertices are always midpoints of edges. Any two neighboring
elements will be bisected at the same edge with the same new midpoint vertex, and
the conformity of the refined mesh can be guaranteed automatically.

Definition 17. (Compatible Bisection). Two elements T, T ′ ∈ F are compatibly
divisible if they have the same refinement edge. If all elements share an edge that
compatibly divisible, then they form a besection patch.

Definition 18. (Refinement Patch). LetJ be a given conforming grid and let T ∈ J
be an element with refinement edge E. We define the refinement patch of T to be

R(J ;T ) := {T ′ ∈ J | T ′ ∈ J with E ⊂ T ′}. (5.86)

Next, we give out the theorem about divisible compatibility in the Kuhn triangle
refinement patch.
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Figure 5.5: Example of recursive refinement of 2D Kuhn triangulation.

Theorem 9. Let J0 be a uniform conforming triangulation formed by Kuhn sim-
plices of type 0, and let J be a conforming refinement. Then any T ∈ J is of
locally highest generation in R(J ;T ), i.e.,

g(T ) = max{g(T ′) | T ′ ∈ R(J ;T )} (5.87)

and T ′ ∈ R(J ;T ) is compatibly divisible with T is and only if g(T ′) = g(T ).
Futhermore, min{g(T ′) | T ′ ∈ R(J ;T )} ≤ g(T ) − d + 1 and a non-compatibly
divisible neighboring element of T has generation g(T )− 1.

Definition 19. (Recursive Refinement). If all elements in refinement patch of T ,
R(J , T ), are compatibly divisible, we can simultaneously refine all the elements.
Otherwise, if there are elements in R(J , T ) that are not compatibly divisible with
T , the basic idea is to recursively refine these elements first.

In 2D case, if the longest edge of element T ,E, is interior, there is only one neighbor
element sharing the refinement edge E. Either this neighbor element is compati-
bly divisible, or the neighboring child is compatibly divisible after bisection of the
neighbor. If refinement edge E lies on the boundary, bisection can be executed di-
rectly. We summarize the recursive refinement of a single element T in Algorithm 5.

Example 3. (Recursive refinement of a single Kuhn triangle element). As shown
in Figure 5.5 (a), T is the marked element to refine in the current conforming
Kuhn triangulation J . The refinement patch of T is R(J ;T ) = {A,B,C, T},
with generation number g(A) = g(B) = g(T ) = 2 > g(C) = 1. So we
next access element C since g(C) = min{g(T ′′)|T ′′ ∈ R(J , T )} < g(T ) and
we need to compute REFINE_RECURSIVE(J , C) first. R(J ;C) = {D,C, T}
where element D reaches the minimum generation number and we need to com-
pute REFINE_RECURSIVE(J , D) (see Figure 5.5 (b)). R(J ;D) = {D,C} and
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Algorithm 5: Recursive refinement of a single element T ∈ J
function REFINE_RECURSIVE(J , T )
Do forever

Get refinement patch R(J , T );
Access T ′ ∈ R(J , T ) with g(T ′) = min{g(T ′′) | T ′′ ∈ R(J , T )} ;
If g(T ′) < g(T ) then
J := REFINE_RECURSIVE(J , T ′);

Else
break;

End if
end do

Get refinement patch R(J , T );
For all T ′ ∈ R(J , T ), do

If g(T ′) = g(T ) then
{T ′0, T ′1} = BISECT(T ′);
J := J \{T ′} ∪ {T ′0, T ′1};

End if
End for
Return J .

g(D) = min{g(T ′′)|T ′′ ∈ R(J , D)}, so we refine refinement patch R(J , D).
Since g(C) < g(D), applying Theorem 9, element C is not compatibly divisible
with element D. Thus only element D is bisected next through Algorithm 4. The
Kuhn triangulation mesh in Figure 5.5 (c) is generated as

J1 := J \{D} ∪ {D1, D2}. (5.88)

Recursively, next we compute REFINE_RECURSIVE(J1, C) which updates the
mesh to be Figure 5.5 (d).

J2 := J1\{D2, C} ∪ {D21, D22, C1, C2}. (5.89)

Finally, we compute REFINE_RECURSIVE(J2, T ) and finish refining marked el-
ement T (see Figure 5.5 (e)).

J3 := J2\{C2, T} ∪ {C21, C22, T1, T2}. (5.90)

Theorem 10. (Recursive Refinement of a single element T ∈ J ). Let J0 be
a uniform conforming Kuhn triangulation and let J be a conforming refinement.
Then, for any T ∈ J a call of REFINE_RECURSIVE(J , T ) terminates and outputs
the smallest conforming refinement J∗ of J where T is bisected. All newly created
elements T ′ ∈ J∗\J satisfy g(T ′) ≤ g(T ) + 1.
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Quadtree mesh refinement
To refine a marked 2D Quadtree element, we need to check whether it is divisible
or not. If it is divisible, then we just need to connect the opposite edges’ midpoints
and cut the square element evenly into 2×2 smaller elements, which is summarized
in Algorithm 6. As in Kuhn triangulation mesh, we give relative definitions for
Quadtree mesh as follows.

Algorithm 6: 2D Quad cut divisible element Q into 2× 2 children elements.
function QUADREF(Q)

Step 1, Find all the edges’ midpoints of element Q.
Step 2, Connect the midpoints of opposite edges in element Q found in Step 1,

and cut element Q evenly into 2× 2 children elements {Q1, · · · , Q4}.
Return {Q1, Q2, Q3, Q4}.

Definition 20. (Quadtree forest and refinement). A Quadtree is a tree data structure
in which each node has none or exact four children. Given initial square Q0, the
Quadtree F(Q0) holds full information the refined descendant elements that will be
generated by recurrent bisection of Q0. Let K0 be an inital uniform square mesh.
Then

F = F(K0) :=
⋃

Q0∈K0

F(Q0) (5.91)

is the associated master forest of Quadtrees. For a node Q ∈ F so that Q ∈ Q0

with Q0 ∈ K0, the generation g(Q) is the generation of Q within F(Q0). A subset
F ⊂ F is called forest iff

(1) K0 ⊂ F ;

(2) All nodes of F\K0 have a predecessor;

(3) All nodes of F have either four successors or none for quadtree mesh.

A forest F is called finite if maxQ∈Fg(Q) < ∞. The nodes with no successors are
called leaves in F . Given two finite forests F1,F2 ∈ F with associated Quadtree
meshes K1,K2, we call K2 as refinement of K1 iff F1 ⊂ F2 and we denote this by
K1 ≤ K2.

Definition 21. (Conforming Refinements). The class of Conforming Refinements
of initial Quadtree mesh K0 is defined as

Q = {K = K(F)|F ⊂ F is finite and K(F) is conforming}. (5.92)
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Definition 22. (Refinement Patch in Quadtree mesh). Let K be a given conforming
mesh and let Q ∈ K be an element marked to be refined. We define the refinement
patch of Q to be the set of all Q’s neighboring elements.

R(K;Q) := {Q′ ∈ K|Q′ ∈ K with Q′ ∩Q 6= ∅} . (5.93)

Next, we give out the theorem about divisiblity in the Quadtree refinement patch.

Theorem 11. Let K be a conforming Quadtree mesh refinement. Then any Q ∈ K
is of locally highest generation in R(K;Q), i.e.,

g(Q) = max{g(Q′) | Q′ ∈ R(K;Q)}. (5.94)

Futhermore, if min{g(Q′) | Q′ ∈ R(K;Q)} = g(Q), then element Q is divisible.
If a neighboring element of Q has generation number to be g(Q) − 1, then it is a
transition element.

Definition 23. (Recursive Quadtree Refinement). If all the marked elements Q are
divisible, we can refine them directly. Otherwise, if there are elements that are
not divisible, which means min{g(Q′) | Q′ ∈ R(K;Q)} < g(Q), the basic idea
is to recursively refine these elements (with generation number min{g(Q′) | Q′ ∈
R(K;Q)}) first.

We summarize the recursive refinement of a singleQuadtree elementQ in Algorithm
7.

Example 4. (Recursive refinement of a single Quadtree element). As shown in
Figure 5.6 (a),Q is the marked element to refine in the current conforming Quadtree
mesh K. The refinement patch of Q is R(K;Q) = {A,B,C,D,Q}, with gener-
ation number g(A) = g(D) = 2; g(B) = g(C) = g(T ) = 3. So we next access
elements A andD, since g(A) = g(D) = min{g(Q′′)|Q′′ ∈ R(K, Q)} < g(Q) and
we need to compute REFINE_RECURSIVE_QUAD(K, [A,D]) first. R(K;A) =

{H,F, T,B,A} where elementH reaches the minimum generation number and we
need to compute
REFINE_RECURSIVE_QUAD(K, H); R(K;D) = {G,F, T, C,D} where ele-
ment G reaches the minimum generation number and we need to compute RE-
FINE_RECURSIVE_QUAD (K, G) (see Figire 5.6 (b)). R(K;H) = {I, A, F,H}
and element H is divisible since g(H) = min{g(Q′′)|Q′′ ∈ R(K, H)} , so we
refine element H directly to four 2 × 2 smaller square elements, H1, H2, H3, and
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Algorithm 7: Recursive refinement of a single Quad element Q ∈ K
function REFINE_RECURSIVE_QUADtree(K, Q)
Do forever

Get refinement patch R(K, Q);
Access Q′ ∈ R(K, Q) with g(Q′) = min{g(Q′′) | Q′′ ∈ R(K, Q)} ;
If g(Q′) < g(Q) then
K := REFINE_RECURSIVE_QUAD(K, Q′);

Else
break;

End if
end do

Get refinement patch R(K, Q);
For all Q′ ∈ R(K, Q), do

If g(Q′) = g(Q) then
{Q′0, Q′1, Q′2, Q′3} = QUADREF(Q′) ;
K := K\{Q′} ∪ {Q′0, Q′1, Q′2, Q′3};

End if
End for
Return K.

H4. Similarly, element G is also divisible and is refined to four children elements,
G1, G2, G3, and G4, as shown in 5.6 (c)).

K1 := K\{H,G} ∪ {H1, H2, H3, H4, G1, G2, G3, G4} (5.95)

Recursively, next we compute REFINE_RECURSIVE(K1, [A,D]) which updates
the mesh to be Figure 5.6 (d).

K2 := K1\{A,D} ∪ {A1, A2, A3, A4, D1, D2, D3, D4}. (5.96)

Finally, we compute REFINE_RECURSIVE_QUAD(K2, Q) and finish refining
marked element Q; see Figure 5.6 (e).

K3 := K2\{Q} ∪ {Q1, Q2, Q3, Q4}. (5.97)

Theorem 12. (Recursive Refinement of a single Quadtree element Q ∈ K). Let
K0 be a uniform conforming Quadtree mesh and let K be a conforming refinement
s.t. K0 ≤ K. Then, for any Q ∈ K a call of REFINE_RECURSIVE_QUAD(K, Q)
ternimates and outputs the smallest conforming refinement K∗ of K where Q is
Quad cut. All newly created elements Q′ ∈ K∗\K satisfy g(Q′) = g(Q) + 1.
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Figure 5.6: Example of recursive refinement of 2D Quadtree mesh.

5.9 Convergence and stopping criterion
The adaptive mesh regularized Global DIC and ALDIC method compute the fol-
lowing iteration until converged; see Algorithm 8.

SOLVE→ ESTIMATE→ MARK→ REFINE. (5.98)

• In the SOLVE part, we solve the Galerkin solution of the above formulated
regularized Global DIC (Section 5.2) and ALDIC (Section 5.3) problem with
the h-adaptive mesh. In the adaptive regularized Global DIC method, a small
number of Gauss points usually are very bad to apply Gaussian quadrature for
integral approximations, where we still need to sum all the terms pixelwisely
over the whole domain. However, in adaptive ALDIC method, since there
are no image grayscale terms in the ALDIC Subproblem 2 global update,
nine points Gaussian quadrature works well to approximate all the numerical
integrals. So generally speaking, adaptive ALDIC is much faster than the
adaptive regularized Global DIC method.

• In the ESTIMATE part, we compute a posterior element error estimates of
adaptive regularzied Global DIC EG(U, T )2 and adaptive ALDIC method
(5.69-5.71) EAL1(U, T )2, and EAL2(U, T )2 as a weighted summation of ele-
ments interior error r and element side jump error j.

• In the MARK part, we mark elements with large a posteriori error estimates,
which will further be refined in the next part. There are three popular marking
strategies proposed in the literature (5.8), and we use the Dörfler strategy in
our numerical demonstrations.

• In the REFINE part, we recursively refine all the marked elements to update
Kuhn triangulation and Quadtree mesh (5.8).

Since the varaitional problems of regularized Global DIC and ALDIC Subproblem
2 are both formulated with coercive symmetric bilinear operatorBG orBAL. Using
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the above finite element spaces V, a posteriori error estimate E and refinement
algorithms, the sequence of discrete Galerkin solution converges to the best solution
in V.

Theorem 13. The sequence of Galerkin solution {Uk}k≥0 generated by Algorithm
8 satisfies

lim
k→∞
‖Uk − u‖V = 0 and lim

k→∞
Ek(Uk,Jk) = 0. (5.99)

However, since we are dealing with digital images where only grayscale values
at integer pixel positions are known exactly without additional interpolation bias
errors. Both Kuhn triangulation and Quadtree mesh refinements always generate
new nodes at midpoints of refined edges. So we can set the initial mesh element
size to be a very large even number with a factor of powers of 2. The adaptive
DIC refinements will stop when there exists a refined edge owning an odd length
{mod(minT∈Jk hT , 2) = 1} or where the shortest edge length already reaches 1
pixel {minT∈Jk hT ≤ 1}. If our initial uniform mesh has edge length in the powers
of 2 (pixels), we only need to consider the stopping condition {minT∈Jk hT ≤ 1}.

The adaptive regularized Global DIC and adaptive ALDICmethods are summarized
in Algorithm 8.

Algorithm 8: h-adaptive mesh regularized Global DIC/ALDIC methods
Input: Reference image f , deformed image g;
Output: DisplacementUN using RG-DIC or ÛN using ALDIC;
Step 1: Initialize displacements U0 using FFT method;
Step 2: Set up initial uniform mesh J0 and compute a posteriori error estimate
E0(U0,J0);

while {(minT∈Jk hT ) (mod 2)} and {minT∈Jk hT > 1} do
Step 3: Uk := SOLVE(Vk) using adaptive regularized Global DIC (Section
5.2) or adaptive ALDIC (Section 5.3) ;

Step 4: {Ek(Uk, T )}T∈Jk := ESTIMATE(Uk,Jk) and
Ek(Uk,Jk) =

∑
T∈Jk Ek(Uk, T );

if Ek(Uk,Jk)/E0(U0,J0) < ε,
break;

else
Step 5: Mk := MARK({Ek(Uk, T )}T∈Jk ,Jk);
Step 6: Jk+1 := REFINE(Jk,Mk); k = k + 1;

end if
end
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Table 5.1: Comparison of the RMS errors in different DIC algorithms solved
displacement and strain for the SEM 2D-DIC synthetic images of Sample 14 L5

Adaptive mesh DIC mehtod Uniform mesh DIC methods

Adaptive Adaptive Adaptive Adaptive Local Regularized
Kuhn tri Quadtree Kuhn tri Quadtree Subset Global ALDIC
Global DIC Global DIC ALDIC ALDIC DIC DIC

Displacements 0.0349 0.0190 0.0226 0.0154 0.0201 0.0234 0.0141

Strain 2.07× 10−3 1.74× 10−3 1.56× 10−3 9.96× 10−4 3.20× 10−3 3.10× 10−3 1.00× 10−3

5.10 Demonstration
We illustrate the proposed adaptive ALDIC method using a series of case studies.
These examples demonstrate the superior speed of the proposed algorithm while
retaining good accuracy.

Case study I: Synthetic images Sample 14 from the SEM 2D-DIC Challenge
We test our proposed adaptive ALDIC algorithms using synthetic images from
SEM 2D-DIC Challange Sample 14 L5, where the deformations are sinusoidal with
varying frequency in the x direction as shown in Figure 3.3.

We set all the local window sizes in Local Subset DIC and ALDIC Subproblem 1
to be 30 × 30 pixels, and set both the initial local neighboring windows distance
uniformly to be 80 × 80 pixels. This is also the global mesh finite element size in
ALDIC Subproblem 2. Every time the mesh is refined, the minimum of element size
is halved until 5 × 5 pixels. We measure the RMS errors of solved displacements
and strains in Table 5.1, and the results are also compared with the previous three
DIC algorithms with uniform meshes.

First, we find adaptive ALDIC method (Figure 5.8) is more accurate than adaptive
GlobalDICmethod (Figure 5.7). In the adaptiveALDICmethod, Kuhn triangulation
refines the mesh in a more homogeneous way compared with Quadtree mesh (Figure
5.8 first row), whose overall accuracy is worse than the adaptive Quadtree mesh
ALDIC, especially in the solved strain field.

The error in strain solved by the adaptive Quadtree mesh ALDIC is very close to
the uniform mesh ALDIC but it saves more than 40% of computation time. It is
also much faster than the adaptive Global DIC and current uniform Global DIC
methods(cf Tables 5.2-5.3).

We plot two types of a posteriori error estimates in Figure 5.9. A posteriori error
estimates based on ADMM Subproblem 2 continuously decrease both for adaptive
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Figure 5.7: Comparison of solved Sample 14 L5 deformation field using adaptive
regularized Global DIC with Kuhn triangulation and Quadtree mesh.

Kuhn triangulation and Quadtree ALDIC method, while the a posteriori error esti-
mate of Subproblem 1 (normalized over the number of nodes) is insensitive to the
mesh refinements.

To better visualize how a posteriori estimates guide us to mark elements to refine,
we plot both two types a posteriori error estimates at the end of “SOLVE” part in the
coarest mesh in Figure 5.10. The a posteriori error estimates of ADMMSubproblem
1 in both Kuhn triangulation and Quadtree mesh have almost the same pattern: they
are not sensitive to capture the oscillating strain changes. In contrast, a posteriori
error estimates of ADMM Subproblem 2 can more accurately mark local regions
where there are large strains and strain rates.
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Figure 5.8: Comparison of solved Sample 14 L5 deformation field using adaptive
ALDIC with Kuhn triangulation and Quadtree mesh.

Case study II: Collective cell migration
In the second example, we test adaptiveALDIC algorithms on real DIC experimental
images. Here a collective group of cells are tracked through 2D-DIC methods to
measure the collective cell migration, see Figure 5.11 [77]. All the cells are touching
with each other, and there are almost no overlappings or voids among the cells.

We start from uniform finite element mesh (element size: 128 × 128 pixels) and
adaptively refine elements where a posteriori error estimates EAL1 and EAL2 are large.
We choose local subset size to be 12× 12 in Local Subset DIC and ALDIC ADMM
Subproblem 1 processes. Figure 5.12 and Figure 5.13 plot the solved deformation
fields using adaptive ALDICmethod with Kuhn triangulation and Quadtree meshes.
Their solved deformation fields agree.
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Figure 5.9: Plot of a posteriori error estimates of SEM 2D-DIC synthetic images of
Sample 14 L5 based on ADMM Subproblem 1 and Subproblem 2.

Figure 5.10: Comparison of a posteriori error estimate based onADMMsubproblem
1 local update and subproblem 2 global update.

Figure 5.11: (a) Collective cells under microscope. (b) DIC image with speckle
pattern to measure collective cell migration. (Images courtesy of Jacob Notbohm.)
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Table 5.2: Computation time of adaptive regularized Global DIC using Quadtree
mesh to solve SEM-2D synthetic images of Sample 14 L5

Adaptive regularized Global mehtod Uniform mesh DIC methods

Minimum # Solve Estimate Mark Refine Each level # Uniform Local Uniform Uniform
element of time time time time adaptive Global of Subset DIC Global DIC ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) DIC time cost(s) nodes time cost(s) time cost(s) time cost(s)

80× 80 182 592.64 3.20 0.0048 0.26 596.10 182 6.81 592.64 33.39

40× 40 377 504.86 6.61 0.0048 0.72 512.19 663 14.46 567.31 94.78

20× 20 976 544.11 7.09 0.0055 1.81 553.02 2525 42.24 812.87 329.48

10× 10 2560 692.54 8.01 0.0176 13.89 714.46 9849 156.22 1647.3 1143.7

5× 5 7056 967.24 15.21 0.0754 0 982.53 38897 743.36 11967 2960.7

Total time cost(s) with minimum element size equals 5 pixels 3358.3 — 743.36 11967 2960.7

In keeping with the results of case study I, adaptive Kuhn triangulation has relatively
more uniform mesh refinement compared with Quadgree adaptive mesh. Kuhn
triangulation also smooths the strain field more than the Quadtree adaptive mesh.
However, both these two adaptive ALDIC schemes have much less strain field noise
compared with uniform Local Subset DIC; see Figure 5.14. Among all these DIC
algorithms, adaptive Quadtree mesh ALDIC performs best for both good accuracy
and fast computation speed (see Section 5.11).

We also checked a posteriori error estimates in Figure 5.15. The posteriori error
estimates based on ADMM Subproblem 2 continuously decrease, while the a pos-
teriori error estimate based on Subproblem 1 — summation of squared differences
(SSD) correlation function — is insensitive to the mesh refinements.

5.11 Computation cost
All the computations are performed on the same workstation with Intel (R) Xeon(R)
CPU E5-2650 v3 2.30 GHz (2 Processors), RAM 32.0 GB Memory, 64-bit nodes
usingMatlab. In the Local Subset DIC and ALDIC Subproblem 1 IC-GN iterations,
we use 20 clusters to perform parallel computing.

We summarize the computation time of our demonstrations in Tables 5.3-5.7. We
find that the adaptive Quadtree mesh ALDIC significantly saves computation time
compared with uniform mesh ALDIC and uniform Global DIC methods with just
a small loss in accuracy. Adaptive regularized Global DIC method usually are
very slow compared with adaptive ALDIC method. And adaptive Kuhn triangula-
tion ALDIC is also slow because it refines mesh more uniformly and needs more
refinement time to reach the same smallest element size with adaptive Quadtree
mesh.
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Figure 5.12: Adaptive ALDIC solved collective cell migration using Kuhn adaptive
triangulation mesh.
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Figure 5.13: Adaptive ALDIC solved collective cell migration using Quadtree
adaptive mesh.



86

Figure 5.14: Comparison between solved collective cell migration using uniform
Local Subset DIC, adaptive Kuhn triangulation ALDIC, and adaptive Quadtree
mesh ALDIC.
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Figure 5.15: Plot of a posteriori error estimates of cell migration based on ADMM
Subproblem 1 and Subproblem 2.

Table 5.3: Computation time of adaptive ALDIC using Quadtree mesh to solve
SEM-2D synthetic images of Sample 14 L5

Adaptive ALDIC mehtod Uniform mesh DIC methods

Minimum # Solve Estimate Mark Refine Each level # Uniform Local Uniform Uniform
element of time time time time adaptive ALDIC of Subset DIC Global DIC ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) time cost(s) nodes time cost(s) time cost(s) time cost(s)

80× 80 182 28.14 3.20 0.0094 0.40 31.75 182 6.81 592.64 33.39

40× 40 531 48.09 3.71 0.0062 0.95 52.76 663 14.46 567.31 94.78

20× 20 1444 156.50 4.84 0.0105 4.58 165.93 2525 42.24 812.87 329.48

10× 10 3898 320.38 12.15 0.0273 45.40 377.96 9849 156.22 1647.3 1143.7

5× 5 10907 1070.9 42.31 0.0948 0 1113.3 38897 743.36 11967 2960.7

Total time cost(s) with minimum element size equals 5 pixels 1741.7 — 743.36 11967 2960.7

Table 5.4: Computation time of adaptive ALDIC using Kuhn triangulation mesh to
solve SEM-2D synthetic images of Sample 14 L5

Adaptive ALDIC mehtod

Minimum # Solve Estimate Mark Refine Each level
element of time time time time adaptive ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) time cost(s)

40
√

2× 40
√

2 332 84.14 0.58 0.0084 0.87 85.60

40× 40 538 87.60 3.79 0.0075 1.43 92.83

20
√

2× 20
√

2 888 135.28 3.60 0.0125 2.61 141.49

20× 20 1634 230.88 4.83 0.0181 4.39 240.10

10
√

2× 10
√

2 2863 398.80 6.37 0.0413 7.68 412.89

10× 10 4952 669.39 10.04 0.0560 13.88 493.37

5
√

2× 5
√

2 8315 1134.53 13.72 0.0871 25.59 1173.9

5× 5 13772 1933.83 23.34 0.1622 0 1957.3

Total time cost(s) with minimum element size equals 5 pixels 4597.5



88

Table 5.5: Computation time of adaptive regularized Global DIC using Quadtree
mesh to solve collective cell migration

Adaptive regularized Global mehtod Uniform mesh DIC methods

Minimum # Solve Estimate Mark Refine Each level # Uniform Local Uniform Uniform
element of time time time time adaptive Global of Subset DIC Global DIC ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) DIC time cost(s) nodes time cost(s) time cost(s) time cost(s)

128× 128 256 2226.4 40.17 0.0057 3.62 2272.0 256 14.26 2226.4 41.23

64× 64 497 2305.6 40.31 0.0050 3.40 2349.3 961 36.75 3461.9 124.47

32× 32 1423 3368.7 45.53 0.0085 5.05 3419.3 3721 22.34 6380.6 155.66

16× 16 4151 4375.8 43.12 0.02207 36.36 4455.3 14641 49.12 13350 385.54

8× 8 10404 6095.8 67.79 0.05627 642.35 6806.0 58078 201.58 23958 1881.9

Total time cost(s) with minimum element size equals 8 pixels 19302 — 201.58 23958 1881.9

Table 5.6: Computation time of adaptive ALDIC using Quadtree mesh to solve
collective cell migration

Adaptive ALDIC mehtod Uniform mesh DIC methods

Minimum # Solve Estimate Mark Refine Each level # Uniform Local Uniform Uniform
element of time time time time adaptive ALDIC of Subset DIC Global DIC ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) time cost(s) nodes time cost(s) time cost(s) time cost(s)

128× 128 256 41.23 8.42 0.0074 0.37 50.03 256 14.26 2226.4 41.23

64× 64 570 75.54 12.33 0.0064 3.17 91.05 961 36.75 3461.9 124.47

32× 32 1664 81.20 10.11 0.0092 6.83 98.15 3721 22.34 6380.6 155.66

16× 16 5613 238.84 19.33 0.0340 20.92 279.12 14641 49.12 13350 385.54

8× 8 19037 780.34 27.97 0.0877 0 808.40 58078 201.58 23958 1881.9

Total time cost(s) with minimum element size equals 8 pixels 1326.8 — 201.58 23958 1881.9

Table 5.7: Computation time of adaptive ALDIC using adaptive Kuhn triangulation
mesh to solve collective cell migration

Adaptive ALDIC mehtod

Minimum # Solve Estimate Mark Refine Each level
element of time time time time adaptive ALDIC
size nodes cost(s) cost(s) cost(s) cost(s) time cost(s)

64
√

2× 64
√

2 332 50.74 1.28 0.0084 1.05 53.08

64× 64 590 126.89 3.79 0.0075 2.34 133.03

32
√

2× 32
√

2 951 145.42 3.59 0.0125 5.32 154.34

32× 32 1728 246.58 4.83 0.018 13.12 264.55

16
√

2× 16
√

2 2938 402.80 6.37 0.041 25.48 434.69

16× 16 4991 676.23 10.04 0.056 30.12 716.45

8
√

2× 8
√

2 8268 1121.9 13.72 0.087 35.87 1171.6

8× 8 13731 1888.1 23.34 0.162 0 1911.6

Total time cost(s) with minimum element size equals 5 pixels 4839.3
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5.12 Conclusion
In this chapter, we have developed a fast, efficient adaptive mesh DIC method using
our proposed ALDIC and ADMM scheme. We compare it with other adaptive
DIC methods in Figure 5.16. Current adaptive Local Subset DIC [70](Figure
5.16 left), and adaptive Global DIC [35](Figure 5.16 middle) use image matching
error, e.g., SSD (summation of squared differences) correlation function, as a mesh
refinement criterion. We find that this is not efficient or robust. We develop a new
h-adaptive technique and apply it to Global DIC method. However, this method is
very expensive, since the stiffness matrix and the external force vector have to be
rebuilt every time the mesh is changed and there involves the summation of image
grayscale value terms pointwisely. In our newly proposed adaptive ALDIC method
using ADMM scheme (Figure 5.16 right), both subproblems can be solved very fast
using adaptive mesh. Therefore, this has the best overall robustness and efficiency
among current adaptive DIC methods.

Dealing with digital images with the unit of pixel in DIC experiments, we apply
adaptive Kuhn triangulation and adaptive Quadtree mesh to decrease the number
of nodes. We use a posteriori error estimates as mesh refinement criterion which
considers both the image matching errors (SSD correlation function, related with
ADMMSubproblem 1 local update) and the global kinematic compatibility between
the neighboring elements (related with ADMM Subproblem 2 global update). We
find a posteriori error estimate that based on the image matching errors (Subproblem
1) is not sensitive to the mesh refinement, while a posteriori error estimate based on
the ADMM Subproblem 2 is. Between adaptive Kuhn triangulation and adaptive
Quadtree mesh in two-dimensional DIC problems, the latter adaptive mesh strategy
refines mesh more non-uniformly, and can significantly save computation cost with
little loss in accuracy.
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Figure 5.16: Comparison of adaptive Local Subset DIC method, adaptive regular-
ized Global DIC method and adaptive ALDIC method.
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C h a p t e r 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion
In this thesis, we have developed a new digital image correlation (DIC) algorithm,
augmented Lagrangian DIC (ALDIC) in Chapter 3. ALDIC combines both ad-
vantages of current Local Subset DIC method (fast, in parallel) and Global DIC
method (compatible, certain smoothness). Using the alternating direction method
of multiplers (ADMM), ALDIC can be solved fast, and its computation time usually
is two to four times of Local Subset DIC, and less than the Global DIC method.

DIC requires lots of high resolution images, which imposes significant needs on data
storage and transmission. We combine DIC algorithms with the image compression
techniques in Chapter 4 and find that it is still possible to obtain accurate deformation
fields with only 5% of the original image size. Among the three DIC algorithms,
we find that Local Subset DIC leads to the largest errors and ALDIC to the smallest
when compressed images are used. We also find that the wavelet image compression
technique introduces less error compared to the discrete cosine transform image
compression technique.

To further speed up DIC algorithms, especially in the study of complex heteroge-
neous strain fields at various length scales, we developed a new h-adaptive mesh
technique and applied it to ALDIC in Chapter 5. We demonstrated the efficiency
of this new adaptive mesh ALDIC through synthetic images and real experimental
DIC images. We studied two types of adaptive mesh strategies, Kuhn triangulation
and Quadtree mesh in adaptive ALDIC, and found that Quadtree mesh outperforms
Kuhn triangulation adaptive mesh both in accuracy and computation cost.

6.2 Future work
3D DVC ALDIC algorithm
All the demonstrations in this thesis are limited to two-dimensional images. How-
ever, the presentation of the method and algorithm is valid for two- and three-
dimension(or digital volume correlation, DVC). We hope to extend our 2D ALDIC
algorithm to 3D DVC case in the future.

As for adaptive ALDIC, we also extend 2D Quadtree adaptive mesh to 3D Octree
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adaptive mesh (cf Appendix C), where all the elements keep the shape and is easier
to implement compared with 3D Kuhn triangulation mesh.

Phase correlation methods to speed up ALDIC
We use the IC-GN iteration for the ADMM Subproblem 1 local update. This is
robust but still slow since it involves pixel-wise summation. We can further improve
this by using phase correlation methods and fast Fourier transforms that have been
introduced for Local Subset DIC method. In practice, phase correlation methods
are not as accurate as IC-GN iterations when the deformations are small. However,
it is much faster and our early results show that it still works well with very large
strains (could be around 40%) [78].

Dealing with discontinuities
All the demonstrations in this thesis are limited to continuous deformations. How-
ever, the adaptive mesh ALDIC algorithm can be extended to discontinuous defor-
mation fields. Specifically, in ADMM Subproblem 1 local step, subsets passed by
the crack path need to be treated with subset splitting strategies [79], and in the
ADMM Subproblem 2 global update, the finite element basis needs to be extended
with discontinous functions [54]. After each ADMM iteration (Subproblem 1 and
Subproblem 2), the level set method [54] can be used to update the crack path.

Hp-adaptive DIC
We focus on h-adaptive mesh DIC method in Chapter 5. Besides h-adaptive mesh
DIC, p-adaptive mesh DIC has been shown to work very well for very large elements
whose sizes are from 50× 50 pixels to 100× 100 pixels [71]. We wonder whether
we can continue improving the computation efficiency and overall accuracy of DIC
algorithm by combining h-adaptive DIC and p-adaptive DIC.
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A p p e n d i x A

THE OPERATORD

The matrix D in Section 3 is the discrete gradient operator. This depends on the
choice of discretization. In this paper, we use first order finite difference based on an
uniform square mesh. We provide explicit details for this case, but note that ALDIC
is compatible with any discretization and would lead to different matrices.

We describe the explicit discrete gradient operator in one dimension for convenience,
and the generalization to higher dimensions is obvious. We assume that the domain
is discretized uniformly with the distance h between nodes xi, x2 . . . xN . Then the
equation (3.1) is explicitly written as

F1

F2

F3

...
FN−1

FN

︸ ︷︷ ︸

=
1

2h



−2 2

−1 0 1

−1 0 1
. . . . . . . . .
−1 0 1

−2 2


︸ ︷︷ ︸



u1

u2

u3

...
uN−1

uN

︸ ︷︷ ︸
{F} D {u}

, (A.1)

where ui,Fi are the values at node xi.

In two dimension, the approximation of ∇û using matrix D is very similar to the
above one dimension case. For example, when the finite element meshes are 4× 4

and 10× 10 FEM Q4 meshes, with element length h = 1, matrixD’s are shown in
Figure A.1 and they are very sparse, especially when the mesh size is large.
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Figure A.1: Matrix D in (a) 4 × 4 and (b) 10 × 10 FEM Q4 meshes where both
element length h = 1.
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A p p e n d i x B

PROOF OF THEOREM 1

Theorem 1. (Modified Lax-Milgram Theorem) LetBG : H1(Ω)×H1(Ω)→ R be
a continuous bilinear form that is coercive, then the equation system Eqs(5.4-5.5)
has a unique solution δu ∈ H1(Ω), which depends continuously on p.

Proof. We denote by J : H1(Ω) → H−1(Ω) the isometric Riesz isomorphism
between H1(Ω) and H−1(Ω). Then by Riesz representation theorem, there exists a
unique linear operator BG ∈ L(H1(Ω);H1(Ω)) such that

〈BGv,w〉H1(Ω) = BG[v,w] for all v,w ∈ H1(Ω), (B.1)

where L(H1(Ω);H1(Ω)) is the space of all linear and continuous operators from
H1(Ω) into H1(Ω) with operator norm

|BG|L(H1(Ω);H1(Ω)) = sup
v∈H1(Ω)

|Bv|H1(Ω)

|v|H1(Ω)

= sup
v∈H1(Ω)

sup
w∈H1(Ω)

〈Bv,w〉H1(Ω)

|v|H1(Ω) |w|H1(Ω)

= sup
v∈H1(Ω)

sup
w∈H1(Ω)

BG[v,w]

|v|H1(Ω) |w|H1(Ω)

:= |BG| .

(B.2)

Then, the original problem (5.4) is equivalent to

δu ∈ H1(Ω) : BGδu = J−1p. (B.3)

Claim: Coercitity ofBG guarantees the above unique linear operatorBG : H1(Ω)→
H1(Ω) is an isomorphism and invertible with

∣∣B−1
G

∣∣
L(H1(Ω);H1(Ω))

≤ C1
−1, where

C1 is the same number with (5.7).

Then from (5.5), ∀ϕ ∈ H1(Ω),

|〈p,ϕ〉| ≤ α |un|H1(Ω) |ϕ|H1(Ω) + sup |f(X)− g(X + un)| |∇f |L2 |ϕ|L2

≤ α |un|H1(Ω) |ϕ|H1(Ω) + C2 |Ω|1/d |∇f |L2 |ϕ|H1(Ω)

≤
(
α |un|H1(Ω) + C2 |Ω|1/d |∇f |L2

)
|ϕ|H1(Ω) ,

(B.4)
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where C2 is some real finite number. Thus, we have

|p|H−1(Ω) ≤
(
α |un|H1(Ω) + C2 |Ω|1/d |∇f |L2

)
. (B.5)

Thus, p ∈ H−1(Ω) and there is unique solution δu ∈ H1(Ω) of (B.3) is given by
δu = B−1

G J−1p and δu depends continuously on p with

|δu|H1(Ω) ≤
∣∣B−1

G

∣∣
L(H1(Ω);H1(Ω))

∣∣J−1p
∣∣
H1(Ω)

=
∣∣B−1

G

∣∣
L(H1(Ω);H1(Ω))

|p|H−1(Ω)

≤ C−1
1 |p|H−1(Ω) ≤ C−1

1

(
α |un|H1(Ω) + C2 |Ω|1/d |∇f |L2

)
.

(B.6)

Finally, we prove the above claim. Using coercivity, ∀u ∈ H1(Ω),

C1 |u|H1(Ω) ≤
BG[u,u]

|u|H1(Ω)

=
〈BGu,u〉H1(Ω)

|u|H1(Ω)

≤ sup
v∈H1(Ω)

〈BGu,v〉H1(Ω)

|v|H1(Ω)

= |BGu|H1(Ω) .

(B.7)
If BGv = 0, using (B.7),

0 ≤ C1 |v|H1(Ω) ≤ |BGv|H1(Ω) = 0, with C1 > 0. (B.8)

The above inequalities must hold equality everywhere and v = 0, whence BG is
injective. Let wk = BGvk be a sequence such that wk → w ∈ H1(Ω) as k → ∞.
Invoking (B.7), we have

C1 |vk − vj|H1(Ω) ≤ |BG(wk −wj)|H1(Ω) = |wk −wj|H1(Ω) → 0, as j, k →∞.
(B.9)

Thus {vk}∞k=0 is a Cauchy sequence in H1(Ω) and it converges vk → v ∈ H1(Ω)

as k →∞. Continuity of BG yields that

BGv = lim
k→∞

BGvk = w ∈ BG(H1(Ω)), (B.10)

which shows that BG(H1(Ω)) is closed.

We argue BG is also surjective by contradiction. Assume BG(H1(Ω)) 6= H1(Ω).
SinceBG(H1(Ω)) is closedwe can decomposeH1(Ω) = BG(H1(Ω))⊕BG(H1(Ω))⊥,
where BG(H1(Ω))⊥ is the orthogonal complement of BG(H1(Ω)) in H1(Ω). By
assumption BG(H1(Ω))⊥ is non-trivial, there exists 0 6= w0 ∈ BG(H1(Ω))⊥,

w0 6= 0, 0 = 〈BGv,w0〉 = BG[v,w0], ∀v ∈ H1(Ω). (B.11)
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Choose v = w0, above equation contradicts (5.7). So we have that BG(H1(Ω)) =

H1(Ω). Therefore, we conclude that BG is an isomorphism from H1(Ω) onto
H1(Ω). We can further rewrite (B.7) as follows:

C1

∣∣B−1
G w

∣∣
H1(Ω)

≤ |w|H1(Ω) , ∀w ∈ H1(Ω), (B.12)

which means
∣∣B−1

G

∣∣
L(H1(Ω);H1(Ω))

≤ C1
−1.
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A p p e n d i x C

3D KUHN TRIANGULATION AND OCTREE ADAPTIVE MESH

In 3D, a cube can be subdivided by three planar cuts in 6 similar Kuhn triangula-
tion simplices (cf Figure C.1(a)), however, all the descendants are belong to three
similarity classes [80].

As for the 3D Kuhn simplex descendants, there are three shapes in different refine-
ment levels with fixed shape regularities; see Figure C.1. Compared with 3D Kuhn
triangulation, 3D Octree adaptive mesh, each parent element has none or exact eight
children elements, is easier to implement where all the elements keep the cubic
shape, (cf Figure C.2). Similarly as 2D Quadtree mesh, there are hanging nodes
and transition elements in Octree mesh which connect different size elements in 3D
Octree mesh.

FE shape functions of 3D Octant elements
In an analogous manner with 2D Quadtree, we still apply Gupta’s strategy [75] to
generate 3D Octree mesh element shape functions. Using isoparametric mapping,

Level 1

Level 2

Level 3

Level 4

a b

Figure C.1: Kuhn 3D simplex. (a) A 3D cube can be subdivided by three planar
cuts in 6 similar Kuhn triangulation simplices. (b) Binary bisection tree of a 3D
Kuhn triangulation simplex.
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Level 1 Level 2 Level 3a b c

Figure C.2: Adaptive 3D Octree mesh refinement.
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Figure C.3: 3D Octree element template.

classic cube finite element basis shape functions are defined as

N1 = 1
8
(1− ξ)(1− η)(1− ζ);

N2 = 1
8
(1 + ξ)(1− η)(1− ζ);

N3 = 1
8
(1 + ξ)(1 + η)(1− ζ);

N4 = 1
8
(1− ξ)(1 + η)(1− ζ);

N5 = 1
8
(1− ξ)(1− η)(1 + ζ);

N6 = 1
8
(1 + ξ)(1− η)(1 + ζ);

N7 = 1
8
(1 + ξ)(1 + η)(1 + ζ);

N8 = 1
8
(1− ξ)(1 + η)(1 + ζ),

(C.1)

where {ξ, η, ζ} is the natural coordinates attached to the cube element, see Figure
C.4. For any point (x, y, z) inside the elementwith eight corner vertices {(x1, y1, z1),
(x2, y2, z2),(x3, y3, z3),(x4, y4, z4), (x5, y5, z5),(x6, y6, z6),(x7, y7, z7),(x8, y8, z8)}, there
holds

x =
8∑
i=1

Nixi; y =
8∑
i=1

Niyi; z =
8∑
i=1

Nizi and u =
8∑
i=1

NiUi. (C.2)
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x

O y

za b

1

11O

x

h

z

Figure C.4: Isoparametric mapping in Octant elements.

We still use the same symbol δ(·) to mark whether midpoints due to refinement
surface exist or not. The shape functions of 3D transition elements are

Ñ1 = N1 − 1
2
(N̂11 + N̂12 + N̂17) + 1

4
(Ñ21 + Ñ23 + Ñ26);

Ñ2 = N2 − 1
2
(N̂9 + N̂12 + N̂18) + 1

4
(Ñ21 + Ñ23 + Ñ24);

Ñ3 = N3 − 1
2
(N̂9 + N̂10 + N̂19) + 1

4
(Ñ21 + Ñ24 + Ñ25);

Ñ4 = N4 − 1
2
(N̂10 + N̂11 + N̂20) + 1

4
(Ñ21 + Ñ25 + Ñ26);

Ñ5 = N5 − 1
2
(N̂15 + N̂16 + N̂17) + 1

4
(Ñ22 + Ñ23 + Ñ26);

Ñ6 = N6 − 1
2
(N̂13 + N̂16 + N̂18) + 1

4
(Ñ22 + Ñ23 + Ñ24);

Ñ7 = N7 − 1
2
(N̂13 + N̂14 + N̂19) + 1

4
(Ñ22 + Ñ24 + Ñ25);

Ñ8 = N8 − 1
2
(N̂14 + N̂15 + N̂20) + 1

4
(Ñ22 + Ñ25 + Ñ26);

Ñ9 = N̂9 − 1
2
(Ñ21 + Ñ24); Ñ15 = N̂15 − 1

2
(Ñ22 + Ñ26);

Ñ10 = N̂10 − 1
2
(Ñ21 + Ñ25); Ñ16 = N̂16 − 1

2
(Ñ22 + Ñ23);

Ñ11 = N̂11 − 1
2
(Ñ21 + Ñ26); Ñ17 = N̂17 − 1

2
(Ñ23 + Ñ26);

Ñ12 = N̂12 − 1
2
(Ñ21 + Ñ23); Ñ18 = N̂18 − 1

2
(Ñ23 + Ñ24);

Ñ13 = N̂13 − 1
2
(Ñ22 + Ñ24); Ñ19 = N̂19 − 1

2
(Ñ24 + Ñ25);

Ñ14 = N̂14 − 1
2
(Ñ22 + Ñ25); Ñ20 = N̂20 − 1

2
(Ñ25 + Ñ26);

Ñ21 = 1
2
(1− ζ)(1− |ξ|)(1− |η|)δ(Pt21);

Ñ22 = 1
2
(1 + ζ)(1− |ξ|)(1− |η|)δ(Pt22);

Ñ23 = 1
2
(1− η)(1− |ξ|)(1− |ζ|)δ(Pt23);

Ñ24 = 1
2
(1 + ξ)(1− |η|)(1− |ζ|)δ(Pt24);

Ñ25 = 1
2
(1 + η)(1− |ξ|)(1− |ζ|)δ(Pt25);

Ñ26 = 1
2
(1− |η|)(1− ξ)(1− |ζ|)δ(Pt26),

(C.3)
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where N̂9 ∼ N̂20 are intermediate functions defined as

N̂9 =
1

4
(1 + ξ)(1− |η|)(1− ζ)δ(Pt9);

N̂10 =
1

4
(1 + η)(1− |ξ|)(1− ζ)δ(Pt10);

N̂11 =
1

4
(1− ξ)(1− |η|)(1− ζ)δ(Pt11);

N̂12 =
1

4
(1− η)(1− |ξ|)(1− ζ)δ(Pt12);

N̂13 =
1

4
(1 + ξ)(1− |η|)(1 + ζ)δ(Pt13);

N̂14 =
1

4
(1 + η)(1− |ξ|)(1 + ζ)δ(Pt14);

N̂15 =
1

4
(1− ξ)(1− |η|)(1 + ζ)δ(Pt15);

N̂16 =
1

4
(1− η)(1− |ξ|)(1 + ζ)δ(Pt16);

N̂17 =
1

4
(1− η)(1− |ζ|)(1− ξ)δ(Pt17);

N̂18 =
1

4
(1− η)(1− |ζ|)(1 + ξ)δ(Pt18);

N̂19 =
1

4
(1 + η)(1− |ζ|)(1 + ξ)δ(Pt19);

N̂20 =
1

4
(1 + η)(1− |ζ|)(1− ξ)δ(Pt20).

(C.4)

Displacement field is approximated using the linear combination of the above defined
shape functions.

x =
26∑
i=1

Ñixi; y =
26∑
i=1

Ñiyi; z =
26∑
i=1

Ñizi and u =
26∑
i=1

ÑiUi (C.5)



DN1

Dξ
= −1

8
(1− η)(1− ξ);

DN2

Dξ
= 1

8
(1− η)(1− ζ);

DN3

Dξ
= 1

8
(1 + η)(1− ζ);

DN4

Dξ
= −1

8
(1 + η)(1− ζ);

DN5

Dξ
= −1

8
(1− η)(1 + ζ);

DN6

Dξ
= 1

8
(1− η)(1 + ζ);

DN7

Dξ
= 1

8
(1 + η)(1 + ζ);

DN8

Dξ
= −1

8
(1 + η)(1 + ζ);

DN1

Dη
= −1

8
(1− ξ)(1− ζ);

DN2

Dη
= −1

8
(1 + ξ)(1− ζ);

DN3

Dη
= 1

8
(1 + ξ)(1− ζ);

DN4

Dη
= 1

8
(1− ξ)(1− ζ);

DN5

Dη
= −1

8
(1− ξ)(1 + ζ);

DN6

Dη
= −1

8
(1 + ξ)(1 + ζ);

DN7

Dη
= 1

8
(1 + ξ)(1 + ζ);

DN8

Dη
= −1

8
(1− ξ)(1 + ζ);

DN1

Dζ
= −1

8
(1− ξ)(1− η);

DN2

Dζ
= −1

8
(1 + ξ)(1− η);

DN3

Dζ
= −1

8
(1 + ξ)(1 + η);

DN4

Dζ
= −1

8
(1− ξ)(1 + η);

DN5

Dζ
= 1

8
(1− ξ)(1− η);

DN6

Dζ
= 1

8
(1 + ξ)(1− η);

DN7

Dζ
= 1

8
(1 + ξ)(1 + η);

DN8

Dζ
= 1

8
(1− ξ)(1 + η);

(C.6)
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

DÑ1

Dχ
= DN1

Dχ
− 1

2

(
DN̂11

Dχ
+ DN̂12

Dχ
+ DN̂17

Dχ

)
+ 1

4

(
DÑ21

Dχ
+ DÑ23

Dχ
+ DÑ26

Dχ

)
;

DÑ2

Dχ
= DN2

Dχ
− 1

2

(
DN̂9

Dχ
+ DN̂12

Dχ
+ DN̂18

Dχ

)
+ 1

4

(
DÑ21

Dχ
+ DÑ23

Dχ
+ DÑ24

Dχ

)
;

DÑ3

Dχ
= DN3

Dχ
− 1

2

(
DN̂9

Dχ
+ DN̂10

Dχ
+ DN̂19

Dχ

)
+ 1

4

(
DÑ21

Dχ
+ DÑ24

Dχ
+ DÑ25

Dχ

)
;

DÑ4

Dχ
= DN4

Dχ
− 1

2

(
DN̂10

Dχ
+ DN̂11

Dχ
+ DN̂20

Dχ

)
+ 1

4

(
DÑ21

Dχ
+ DÑ25

Dχ
+ DÑ26

Dχ

)
;

DÑ5

Dχ
= DN5

Dχ
− 1

2

(
DN̂15

Dχ
+ DN̂16

Dχ
+ DN̂17

Dχ

)
+ 1

4

(
DÑ22

Dχ
+ DÑ23

Dχ
+ DÑ26

Dχ

)
;

DÑ6

Dχ
= DN6

Dχ
− 1

2

(
DN̂13

Dχ
+ DN̂16

Dχ
+ DN̂18

Dχ

)
+ 1

4

(
DÑ22

Dχ
+ DÑ23

Dχ
+ DÑ24

Dχ

)
;

DÑ7

Dχ
= DN7

Dχ
− 1

2

(
DN̂13

Dχ
+ DN̂14

Dχ
+ DN̂19

Dχ

)
+ 1

4

(
DÑ22

Dχ
+ DÑ24

Dχ
+ DÑ25

Dχ

)
;

DÑ8

Dχ
= DN8

Dχ
− 1

2

(
DN̂14

Dχ
+ DN̂15

Dχ
+ DN̂20

Dχ

)
+ 1

4

(
DÑ22

Dχ
+ DÑ25

Dχ
+ DÑ26

Dχ

)
;

DÑ9

Dχ
= DN̂9

Dχ
− 1

2

(
DÑ21

Dχ
+ DÑ24

Dχ

)
;

DÑ10

Dχ
= DN̂10

Dχ
− 1

2

(
DÑ21

Dχ
+ DÑ25

Dχ

)
;

DÑ11

Dχ
= DN̂11

Dχ
− 1

2

(
DÑ21

Dχ
+ DÑ26

Dχ

)
;

DÑ12

Dχ
= DN̂12

Dχ
− 1

2

(
DÑ21

Dχ
+ DÑ23

Dχ

)
;

DÑ13

Dχ
= DN̂13

Dχ
− 1

2

(
DÑ22

Dχ
+ DÑ24

Dχ

)
;

DÑ14

Dχ
= DN̂14

Dχ
− 1

2

(
DÑ22

Dχ
+ DÑ25

Dχ

)
;

DÑ15

Dχ
= DN̂15

Dχ
− 1

2

(
DÑ22

Dχ
+ DÑ26

Dχ

)
;

DÑ16

Dχ
= DN̂16

Dχ
− 1

2

(
DÑ22

Dχ
+ DÑ23

Dχ

)
;

DÑ17

Dχ
= DN̂17

Dχ
− 1

2

(
DÑ23

Dχ
+ DÑ26

Dχ

)
;

DÑ18

Dχ
= DN̂18

Dχ
− 1

2

(
DÑ23

Dχ
+ DÑ24

Dχ

)
;

DÑ19

Dχ
= DN̂19

Dχ
− 1

2

(
DÑ24

Dχ
+ DÑ25

Dχ

)
;

DÑ20

Dχ
= DN̂20

Dχ
− 1

2

(
DÑ25

Dχ
+ DÑ26

Dχ

)
;

where χ = ξ, η, and ζ.
DÑ21

Dξ
= 1

2
(1− |η|)(1− ζ)sign(−ξ)δ(Pt21);

DÑ22

Dξ
= 1

2
(1 + ζ)(1− |η|)sign(−ξ)δ(Pt22);

DÑ23

Dξ
= 1

2
(1− η)(1− |ζ|)sign(−ξ)δ(Pt23);

DÑ24

Dξ
= 1

2
(1− |η|)(1− |ζ|)δ(Pt24);

DÑ25

Dξ
= 1

2
(1 + η)(1− |ζ|)sign(−ξ)δ(Pt25);

DÑ26

Dξ
= −1

2
(1− |η|)(1− |ζ|)δ(Pt26);

DÑ21

Dη
= 1

2
(1− |ξ|)(1− ζ)sign(−η)δ(Pt21);

DÑ22

Dη
= 1

2
(1 + ζ)(1− |ξ|)sign(−η)δ(Pt22);

DÑ23

Dη
= −1

2
(1− |ξ|)(1− |ζ|)δ(Pt23);

DÑ24

Dη
= 1

2
(1 + ξ)(1− |ζ|)sign(−η)δ(Pt24);

DÑ25

Dη
= 1

2
(1− |ξ|)(1− |ζ|)δ(Pt25);

DÑ26

Dη
= −1

2
(1− |ξ|)(1− |ζ|)sign(−η)δ(Pt26);

DÑ21

Dζ
= −1

2
(1− |ξ|)(1− |η|)δ(Pt21);

DÑ22

Dζ
= 1

2
(1− |ξ|)(1− |η|)δ(Pt22);

DÑ23

Dζ
= 1

2
(1− η)(1− |ξ|)sign(−ζ)δ(Pt23);

DÑ24

Dζ
= 1

2
(1 + ξ)(1− |η|)sign(−ζ)δ(Pt24);

DÑ25

Dζ
= 1

2
(1 + η)(1− |ξ|)sign(−ζ)δ(Pt25);

DÑ26

Dζ
= 1

2
(1− |η|)(1− ξ)sign(−ζ)δ(Pt26);

(C.7)
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and derivatives of intermediate functions are computed as

DN̂9

Dξ
= 1

4
(1− |η|)(1− ζ)δ(Pt9)

DN̂10

Dξ
= 1

4
(1 + η)(1− ζ)sign(−ξ)δ(Pt10)

DN̂11

Dξ
= −1

4
(1− |η|)(1− ζ)δ(Pt11)

DN̂12

Dξ
= 1

4
(1− η)(1− ζ)sign(−ξ)δ(Pt12)

DN̂13

Dξ
= 1

4
(1− |η|)(1 + ζ)δ(Pt13)

DN̂14

Dξ
= 1

4
(1 + η)(1 + ζ)sign(−ξ)δ(Pt14)

DN̂15

Dξ
= −1

4
(1− |η|)(1 + ζ)δ(Pt15)

DN̂16

Dξ
= 1

4
(1− η)(1 + ζ)sign(−ξ)δ(Pt16)

DN̂17

Dξ
= −1

4
(1− η)(1− |ζ|)δ(Pt17)

DN̂18

Dξ
= 1

4
(1− η)(1− |ζ|)δ(Pt18)

DN̂19

Dξ
= 1

4
(1 + η)(1− |ζ|)δ(Pt19)

DN̂20

Dξ
= −1

4
(1 + η)(1− |ζ|)δ(Pt20)

DN̂9

Dη
= 1

4
(1 + ξ)(1− ζ)sign(−η)δ(Pt9)

DN̂10

Dη
= 1

4
(1− |ξ|)(1− ζ)δ(Pt10)

DN̂11

Dη
= 1

4
(1− ξ)(1− ζ)sign(−η)δ(Pt11)

DN̂12

Dη
= −1

4
(1− |ξ|)(1− ζ)δ(Pt12)

DN̂13

Dη
= 1

4
(1 + ξ)(1 + ζ)sign(−η)δ(Pt13)

DN̂14

Dη
= 1

4
(1− |ξ|)(1 + ζ)δ(Pt14)

DN̂15

Dη
= 1

4
(1− ξ)(1 + ζ)sign(−η)δ(Pt15)

DN̂16

Dη
= −1

4
(1− |ξ|)(1 + ζ)δ(Pt16)

DN̂17

Dη
= −1

4
(1− |η|)(1− ξ)δ(Pt17)

DN̂18

Dη
= −1

4
(1− |ζ|)(1 + ξ)δ(Pt18)

DN̂19

Dη
= 1

4
(1 + ξ)(1− |ζ|)δ(Pt19)

DN̂20

Dη
= 1

4
(1− ξ)(1− |ζ|)δ(Pt20)

DN̂9

Dζ
= −1

4
(1 + ξ)(1− |η|)δ(Pt9)

DN̂10

Dζ
= −1

4
(1 + η)(1− |ξ|)sign(−ξ)δ(Pt10)

DN̂11

Dζ
= −1

4
(1− ξ)(1− |η|)δ(Pt11)

DN̂12

Dζ
= −1

4
(1− η)(1− |ξ|)δ(Pt12)

DN̂13

Dζ
= 1

4
(1 + ξ)(1− |η|)δ(Pt13)

DN̂14

Dζ
= 1

4
(1− |ξ|)(1 + η)δ(Pt14)

DN̂15

Dζ
= 1

4
(1− ξ)(1− |η|)δ(Pt15)

DN̂16

Dζ
= 1

4
(1− η)(1− |ξ|)δ(Pt16)

DN̂17

Dζ
= 1

4
(1− η)(1− ξ)sign(−ζ)δ(Pt17)

DN̂18

Dζ
= 1

4
(1− η)(1 + ξ)sign(−ζ)δ(Pt18)

DN̂19

Dζ
= 1

4
(1 + η)(1 + ξ)sign(−ζ)δ(Pt19)

DN̂20

Dζ
= 1

4
(1 + η)(1− ξ)sign(−ζ)δ(Pt20)

(C.8)

The Jacobian matrix of the 3D isoparametric mapping is defined as

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 . (C.9)



104

The DN matrix in the FEM is finally assembled to be

DN =



inv(J)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

inv(J)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

inv(J)





DÑ1

Dξ
0 0 DÑ2

Dξ
0 0 · · · · · · DÑ26

Dξ
0 0

DÑ1

Dη
0 0 DÑ2

Dη
0 0 · · · · · · DÑ26

Dη
0 0

DÑ1

Dζ
0 0 DÑ2

Dζ
0 0 · · · · · · DÑ26

Dζ
0 0

0 DÑ1

Dξ
0 0 DÑ2

Dξ
0 · · · · · · 0 DÑ26

Dξ
0

0 DÑ1

Dη
0 0 DÑ2

Dη
0 · · · · · · 0 DÑ26

Dη
0

0 DÑ1

Dζ
0 0 DÑ2

Dζ
0 · · · · · · 0 DÑ26

Dζ
0

0 0 DÑ1

Dξ
0 0 DÑ2

Dξ
· · · · · · 0 0 DÑ26

Dξ

0 0 DÑ1

Dη
0 0 DÑ2

Dη
· · · · · · 0 0 DÑ26

Dη

0 0 DÑ1

Dζ
0 0 DÑ2

Dζ
· · · · · · 0 0 DÑ26

Dζ



.

(C.10)

The H1-conformity of Octree mesh finite element spaces
Analogously, H1-conformity also holds for Octree meshes.

Lemma 6. (H1-conformity for Octree mesh). If K is a conforming Octree mesh of
a bounded polyhedral Lipschitz domain Ω ⊂ Rd, then V(K) ⊂ H1(Ω).

Octree mesh refinement
To refine a marked 3D Octree element, we need to check whether it’s divisible or
not. If it’s divisible, then we just need to connect the opposite edges’ midpoints and
cut the cubic element evenly into 2× 2× 2 smaller elements, which is summarized
in Algorithm 9.

Algorithm 9: 3D Octant cut divisible element Q into eight children elements.
function OCREF(Q)

Step 1, Find all the faces’ midpoints of element Q.
Step 2, Connect the opposite faces’ midpoints of element Q found in Step 1,

and cut element Q evenly into eight children elements {Q1, · · · , Q8} .
Return {Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8}.

Similarly to 2D Quadtree mesh, we summarize 3D Octree mesh refinement algo-
rithms in Algorithms 10-11.
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Algorithm 10: Recursive refinement of a single Octant element Q ∈ K
function REFINE_RECURSIVE_OC(K, Q)
Do forever

Get refinement patch R(K, Q);
Access Q′ ∈ R(K, Q) with g(Q′) = min{g(Q′′) | Q′′ ∈ R(K, Q)} ;
If g(Q′) < g(Q) then
K := REFINE_RECURSIVE_OC(K, Q′);

Else
break;

End if
end do

Get refinement patch R(K, Q);
For all Q′ ∈ R(K, Q), do

If g(Q′) = g(Q) then
{Q′0, Q′1, Q′2, Q′3, Q′4, Q′5, Q′6, Q′7} = OCREF(Q′) ;
K := K\{Q′} ∪ {Q′0, Q′1, Q′2, Q′3, Q′4, Q′5, Q′6, Q′7};

End if
End for
Return K.

Algorithm 11: Recursive refinement of all the marked Octree elementsM
function REFINE_OC(K,M)
For all Q ∈M∩K, do
K := REFINE_RECURSIVE_OC(K, Q);

end
Return K.
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