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ABSTRACT 

Throughout my Ph.D. I have worked on technology development, at first to answer 

basic scientific questions and eventually for therapeutic applications. This technology 

development applied to a variety of fields, from neuroscience to development to gene 

therapy, and acted upon biological systems in a wide range of scale, from the single-cell 

monitoring to organism-wide gene-transfer. My graduate research began with the 

engineering of microbial rhodopsin spectral properties and fluorescence. By making use of 

their ability to absorb light and emit fluorescence in a voltage-dependent manner, I aimed 

to interrogate neuronal activity during behavior at the single-cell level. That line of research 

ended with publication of the voltage-sensor Archer, which I used to track activity of a 

single cell in vivo in awake, behaving worms. I then shifted from tracking activity at the 

single cell level, to visualizing entire organisms, by developing clearing techniques that 

enable a high-resolution, three-dimensional analysis of a diverse range of tissues. I began 

by optimizing tissue-clearing parameters for various tissue types and a wide variety of 

experimental needs. I then took that knowledge and applied it to visualizing and tracking 

the developing neural crest in cleared, whole-mount chicken embryos, discovering some 

unexpected derivates. Finally, I became interested not only in visualizing entire organisms, 

but in developing technologies to facilitate gene transfer throughout the body. The rapidly 

growing field of gene therapy is in constant need of new tools that target specific tissues, 

avoiding off-target effects. The end of my Ph.D. has been spent engineering viruses that 

can be delivered body-wide, but target only specific areas of therapeutic interest, like the 

brain and lungs. 
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C h a p t e r  1  

INTRODUCTION 

Biological systems are unfathomably complex, and even with all the scientific 

advances of the past century, we are still only beginning to scratch the surface. At all scales, 

from the network of billions of cells in the brain to 60 proteins expressed from the same gene 

coming together to form a viral capsid, the more we learn, the more we realize that we don’t 

know. The marriage of biology with engineering that has taken place in the last decades has 

provided a rapid increase in technological development to help address the myriad questions 

that abound. For my Ph.D., instead of attempting to answer a specific biological question, I 

adopted to develop technologies that would empower the research of others, from monitoring 

the activity of a single neuron and how it performs within a circuit to developing techniques 

to visualize or affect entire organs or organisms at once. 

1.1 Microbial rhodopsins: flexible tools across disciplines 

Rhodopsins are a very diverse family of proteins, found across all walks of life, but 

with a very singular purpose: detecting and responding to light. They are subdivided into two 

distinct groups, microbial and animal opsins1. Animal opsins are found in higher order 

eukaryotes and are primarily responsible for vision2. Microbial opsins, on the other hand, are 

found in prokaryotes, algae, and fungi, and perform basic survival functions related to the 

sensation of light, such as development and phototaxis. While animal opsins have been 

studied for their role in the visual pathway, it is microbial opsins that provide a wealth of 

novel applications for biology. Made famous by the advent of optogenetics3, microbial 

rhodopsins in neuroscience are used for their ability to pump or channel protons or ions in 

and out of cells in response to light. These responses allow scientists to control neuronal 

activity of genetically defined populations with great temporal and spatial specificity. A 

variety of opsins have been discovered4, or engineered5, that respond to different 

wavelengths of light, at different speeds, and fluxing a variety of ions, in order to fulfill the 

various needs for activating or inhibiting neuronal activity. In Chapter 2.2, I discuss my 
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efforts in collaboration with the Arnold lab at Caltech, to engineer the Gloeobacter 

violaceus rhodopsin proton pump (GR) to respond to vastly different wavelengths from the 

wild-type, beyond the range of known, natural protein pumping rhodopsins6. This proof of 

principle of rhodopsin engineering set the stage for our continued work on opsin engineering 

for other applications. 

Another application, not well studied until recent years, of microbial rhodopsins, and 

proton pumps specifically, is the ability to not only absorb and respond to light but emit it in 

return as fluorescence7. This ability to fluoresce, albeit very weakly, also happens in a pH or 

voltage dependent manner. This property of opsins to exhibit voltage-dependent fluorescence 

in response to light was first utilized by the Cohen group at Harvard8 in studying the use of 

Archaerhodopsin-3 (Arch) as a voltage sensor in mammalian cells, similar to how it had first 

been utilized as an inhibitor of neuronal activity less than a decade earlier. Voltage or calcium 

dependent sensors were not a new concept for monitoring neuronal activity9–11, but Arch 

provided greatly increased speed and dynamic range of fluorescence in comparison to 

existing tools. Arch never gained momentum as a neuroscience tool, though, in large part 

due to its incredibly weak fluorescence, a function of the highly inefficient quantum yield of 

rhodopsins naturally. In Chapter 2.3, I discuss my efforts, also in conjunction with the Arnold 

lab, to evolve Arch for brighter fluorescence in mammalian cells12. This was built upon the 

previous work with GR, using the mutations found in that paper as a starting point, and was 

also achieved by manipulating the amino acids in direct proximity with the light absorbing 

and emitting retinal chromophore. While this work resulted in a variant of Arch, Arch-7, that 

exhibited between 10-100-fold increased brightness in E. coli, at a maximal emission 

wavelength of 730nm, my interest was in the parent variant, Arch(DETC), which showed 

~4.5-fold improved fluorescence over Arch in HEK293 cells. 

The focus of Chapter 2.4 is my characterization of Arch(DETC), or Archer, for use 

as a voltage-sensitive fluorescence protein for neuroscience applications. As mentioned 

above, neuroscience has already made great use of microbial rhodopsins, by utilizing their 

ability to control neuronal activity through the application of light. I now wanted to be able 

to also record their activity using the same light sensitivity and utilizing the speed which set 

them apart from other voltage or calcium indicators. The GCaMP family of calcium sensors9 
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is the gold standard for measuring neuronal activity, but utilizes a secondary measure, 

calcium, instead of being able to report on changes in voltage directly. For this reason, a 

voltage indicator like Arch would be a cleaner measure of activity. Thankfully, we had 

already found a variant of Arch, Archer, which exhibited greatly enhanced fluorescence, 

bypassing Arch’s main limitation. In characterizing Arch’s voltage sensitivity in cultured 

neurons13, we discovered that Arch was able to follow quick changes in voltage, on the order 

of the fastest neurons in the brain, and presented the largest change in fluorescence in 

response to voltage of any genetically encoded voltage indicator to date. As a proof of 

principle for its feasibility to be used in vivo, we used it in awake, behaving worms, where 

we accurately detected changes in voltage in response to known stimuli. 

 

1.2 Tissue clearing flexibility across diverse tissue types 

The study of biological specimens at a microscopic scale has always been dependent 

on the availability of optical access. This, along with the ease of doing genetic manipulations, 

is one of the chief regions why model organisms like the worm Caenorhabditis elegans and 

zebrafish Danio rerio have gained such tractability. While studying larger organisms, like 

mice, chickens, and non-human primates, allows scientists to approach more complex 

biological questions, it comes hand in hand with the inability to visualize the myriad 

processes going on below the surface. For this reason, traditional histological practices of 

sectioning tissue into two-dimensions to visualize under a microscope have taken prevalence 

across biological disciplines. The downside of this practice is the loss of high-resolution, 

three-dimensional representations of anatomical and functional characteristics. With the 

advent of tissue clearing, though, we can render large, opaque sections of tissue transparent, 

allowing for unperturbed study of cells, their interaction with each other and their native 

environment. This concept is not a recent one, with the use of organic-solvents to clear tissue 

dating back over a century. Those traditional methods were not without their downsides, 

though, chief among which was damage to the specimens under observation. In recent years, 

a method for visualizing intact sections of tissue, organs, or entire organisms was developed, 

coined CLARITY14. CLARITY sought to remove the chief limitation to optical access 

throughout a tissue, the light-scattering lipids, without perturbing the rest of the molecular 
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content, namely proteins and nucleic acids. In this way, CLARITY brought tissue clearing 

to the main stream, providing a method theoretically compatible with the diverse needs of 

the biological community. 

Biological specimens come in a variety of sizes, densities and macromolecular 

contents. Additionally, experimental concerns usually include the presence of endogenous 

fluorescence, type of labeling required, antibody or nucleic acid, epitope retention, and 

relative positions of imaging targets to each other for a fully three-dimensional study. Passive 

CLARITY, or PACT15, as a methodology, is able to address all of these concerns: PACT is 

able to retain endogenous fluorescence, allows for immunohistochemistry and in situ 

hybridization, and avoids anisotropic shrinking or swelling of tissue. To achieve these results, 

though, a variety of experimental parameters need to be characterized, and their effects upon 

experimental outcome explored. In Chapter 3.2, I detail my work on characterizing the 

various conditions under which PACT can be performed for varied needs16. 

One experimental need that benefits from the use of tissue clearing is the study of the 

neural crest and its derivatives in developing embryos. The neural crest is a multipotent stem 

cell population with the capacity to self-renew and to differentiate into numerous cell types, 

the dysregulation of which leads to a multitude of neurocristopathies17 with extremely 

detrimental phenotypes. Neural crest cells arise within the forming central nervous system 

but then undergo an epithelial to mesenchymal transition to become migratory cells that 

undertake some of the longest migrations of any embryonic cell type. Upon reaching their 

final destinations, they differentiate into numerous cell types, ranging from craniofacial 

cartilage and bone to pigment cells of the skin, peripheral neurons and glia, and many other 

cell types18. Much of what we know about the cell types formed by and migratory routes 

followed by neural crest cells dates back to the pioneering studies of LeDouarin and 

colleagues19 in the 1970s and 80s. Using interspecific grafts of donor quail cells into host 

chick embryos, they created “chimera” in which neural folds of quail origin were grafted in 

place of chick neural folds, allowing for their derivatives and contributions to be 

distinguished in a species-specific manner. 

Despite their elegance and utility, these experiments are not without limitations. 

Because quail/chick grafts were conducted with two different species of birds, one cannot 
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rule out the possibility of artifacts caused by species-specific differences. As a case in point, 

quail cells are more invasive than chick cells20. In addition, as embryos grow, it becomes 

increasingly difficult to follow a small number of quail cells in a sea of chick tissue, making 

it possible that some neural crest contributions to various organs have gone unnoticed. This 

is particularly problematic given that amniote embryos are opaque and thus require serial 

sectioning to identify grafted cells at single-cell resolution. This is not only tedious, but 

sections can be lost, and neural crest derivatives underestimated. For these reasons, it is 

critical to revisit these classical experiments, not only to verify but also extend the results 

with modern technology. This is where the advantages of tissue clearing appear. In Chapter 

3.3, I detail how I adapted PACT to clearing chicken embryos and tested labeling 

methodologies for antibodies and nucleic acids to be able to fully characterize the neural 

crest derivative populations we were interested in studying. By utilizing intraspecific grafts 

from GFP-labeled donor chick neural folds into wild-type hosts and PACT to clear the entire 

embryos, we were able to analyze the sites to which GFP-labeled neural crest cells migrate 

in whole mount. By doing so, we were able to verify several previously characterized 

populations arising from the cardiac neural crest, as well as discover the possibility that 

populations previously attributed to other areas of the neural crest were instead cardiac crest 

derived. 

 

1.3 Engineered AAVs for systemic delivery in gene therapy 

 In recent years, we have witnessed the development and clinical use of gene 

therapies at an accelerated pace. The ability to change or introduce new genes greatly 

increases the therapeutic options for a variety of diseases. Amongst gene therapy vehicles, 

adeno-associated viruses (AAVs) are preferred due to their low immunogenicity, stable 

expression, and strong clinical safety record. In the clinic, AAVs have shown incredible 

promise, being the first vector approved in 2012 for use in humans to treat lipoprotein lipase 

deficiency21, with other trials just approved in 2017 (e.g. vision, hemophilia)22,23 and many 

more ongoing (Parkinson’s, Alzheimer’s)24. In addition, systemic AAV administration 

through the blood allows for gene delivery to widespread regions of the body in a non-



 

 

6 

invasive manner. However, naturally occurring AAVs have limited and highly overlapping 

tropism25, motivating us to work towards enhancing AAV functionality and versatility. 

Most gene therapies currently in clinical trials utilize naturally occurring AAV 

serotypes, which have evolved to broadly infect cells without much specificity. While this is 

a desirable characteristic for the survival of the virus, it is undesirable for its use to target 

gene therapies to specific cells. Two problems arise: 1) off-target effects and 2) the necessity 

for a larger viral load to achieve sufficient therapeutic levels. Traditionally, in gene therapy, 

these problems are addressed by directly injecting virus into the area of interest. This 

approach greatly limits the scope for therapeutic applications as direct injections are often 

impractical (i.e. the brain), and other times, inadequate at applying the therapy to a wide 

enough area. Systemic administration via the blood is an option in cases where direct 

administration is not practical and widespread areas need to be reached but runs up against 

the problem of the lack of target specificity. While naturally occurring AAVs have differing 

tropisms, they mostly target similar tissues at high levels, like the liver25–27. This results in a 

substantial number of viruses transducing the liver, while very few transduce another tissue 

of interest, for instance the central of peripheral nervous systems. A notable target is the 

brain, which naturally occurring AAVs cross into extremely inefficiently. In order to achieve 

a high enough level of expression in the target of interest, an abnormally high viral load can 

become necessary, which can induce a T-cell immune response producing systemic 

inflammation and, in severe cases, proving lethal28. 

In order to address the above issues and develop AAVs with high efficiency after 

systemic administration, a screening method, CREATE29,  was developed by Deverman and 

colleagues which allowed for the screening of large libraries of viral variants in vivo. This 

approach differs from previous efforts utilizing in vitro platforms30–32 or multiple rounds of 

selection in vivo without strong selective pressure33. Viruses found from in vitro screens often 

had difficulty translating to in vivo applications due to not having been selected in the 

complex environment the virus needed to act upon, while those developed from in vivo 

screens lacked the ability to distinguish between viruses just present in a tissue from those 

correctly unpackaging, traveling to the nucleus, and stably expressing their payload. These 

factors often lead to the necessity for many rounds of selection and evolution to narrow 
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libraries down to interesting variants30–33. CREATE, on the other hand, is built upon 

performing Cre-dependent selections in Cre-transgenic mouse lines, addressing both 

previous concerns. Utilizing this methodology, Deverman, Chan, and colleagues29,34 selected 

for vectors that, when delivered systemically, could cross anatomical barriers (such as the 

blood-brain) and efficiently transduce cells, with a notable finding being the recently 

published PHP.eB variant, which most efficiently targets the murine brain.  

In Chapter 4.2, I detail an evolution of the CREATE screening method. We employ 

parallel in vivo selections in multiple transgenic lines with positive and negative selective 

pressure, screening large libraries of engineered viral variants to select for the ones that, after 

systemic administration, very specifically enter cells and organs of interest and not others. 

By engineering viruses to more efficiently and specifically target certain cell types and 

regions, we can ensure effective therapeutic expression only to the areas where it is needed, 

while lowering the total systemic viral load introduced to the body and therefore minimizing 

side-effects. In Chapters 4.3 and 4.4, I discuss our results in engineering two such viruses, 

AAV9.RWT4 and AAV9.ReB10, which display increased specificity toward lung and brain 

respectively, and detargeting from other organs. AAV9.ReB10 also shows bias toward a 

specific cell-type within the brain, neurons, and significantly reduced levels in others. In both 

cases, these two engineered variants represent targeted evolution away from their parent 

virus, AAV9 and PHP.eB respectively, toward areas of therapeutic significance, providing 

candidates for non-human primate testing for eventual clinical applications or as scaffolds 

for further evolution. 
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C h a p t e r  2  

ENGINEERING MICROBIAL RHODOPSIN SPECTRAL PROPERTIES 

AND VOLTAGE SENSITIVITY 

[5] Engqvist, M. K. et al. (2015). “Directed evolution of Gloeobacter violaceus rhodopsin spectral properties”. 

In: Journal of Molecular Biology 427(1), pp. 205-20. doi: 10.1016/j.jmb.2014.06.015. 

[7] McIsaac, R. S. et al. (2014). “Directed evolution of a far-red fluorescent rhodopsin”. In: Proceedings of the 

National Academy of Sciences of the United States of America 111(36), pp. 13034-9. doi: 

10.1073/pnas.1413987111. 

[6] Flytzanis, N. C.*, Bedbrook, C. N.* et al. (2014). “Archaerhodopsin variants with enhanced voltage-

sensitive fluorescence in mammalian and Caenorhabditis elegans neurons”. In: Nature Communications 

5:4894. doi: 10.1038/ncomms5894. 

 

2.1 Summary 

  Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that 

transport ions across biological membranes in response to light. These proteins are 

interesting for light-harvesting applications in bioenergy production, in optogenetics 

applications in neuroscience, and as fluorescent sensors of membrane potential. Little is 

known, however, about how the protein sequence determines the considerable variation in 

spectral properties of PPRs from different biological niches or how to engineer these 

properties in a given PPR. Here we report a comprehensive study of amino acid 

substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that 

tune its spectral properties. Directed evolution generated 70 GR variants with absorption 

maxima shifted by up to ± 80 nm, extending the protein's light absorption significantly 

beyond the range of known natural PPRs. We discovered a subset of red-shifted GRs that 

exhibit high levels of fluorescence relative to the WT protein. 

  Another member of this protein family, Archaerhodopsin-3 (Arch) of 

halobacterium Halorubrum sodomense, was shown to function as a fluorescent indicator of 

membrane potential when expressed in mammalian neurons. Arch fluorescence, however, 

is very dim and is not optimal for applications in live-cell imaging. We used directed 

evolution to identify mutations that dramatically improve the absolute brightness of Arch, 

as confirmed biochemically and with live cell imaging. In some fluorescent Arch variants, 

the pKa of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature 
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for voltage-sensing applications. These bright Arch variants enable labeling of biological 

membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission 

thus far reported for a fluorescent protein (maximal excitation/emission at ∼620 nm/730 

nm). 

  Probing the neural circuit dynamics underlying behavior would benefit greatly 

from improved genetically encoded voltage indicators. Arch, usually used as an 

optogenetic tool for neuronal inhibition, has also been shown to emit voltage-sensitive 

fluorescence. Here we report two Arch variants with enhanced radiance (Archers) that in 

response to 655 nm light have 3–5 times increased fluorescence and 55–99 times reduced 

photocurrents compared with Arch WT. The most fluorescent variant, Archer1, has 25–

40% fluorescence change in response to action potentials while using 9 times lower light 

intensity compared with other Arch-based voltage sensors. Archer1 is capable of 

wavelength-specific functionality as a voltage sensor under red light and as an inhibitory 

actuator under green light. As a proof-of-concept for the application of Arch-based 

sensors in vivo, we show fluorescence voltage sensing in behaving Caenorhabditis elegans. 

Archer1’s characteristics contribute to the goal of all-optical detection and modulation of 

activity in neuronal networks in vivo. 

 

2.2 Directed evolution of Gloeobacter violaceus rhodopsin spectral properties 
[5] Engqvist, M. K. et al. (2015). “Directed evolution of Gloeobacter violaceus rhodopsin spectral properties”. 

In: Journal of Molecular Biology 427(1), pp. 205-20. doi: 10.1016/j.jmb.2014.06.015. 

2.2.1 Targeted mutagenesis for spectral tuning of GR 

  The retinal-binding pocket forms all the retinal chromophore contacts; we 

expected that these residues would provide a rich source of spectral tuning mutations. To 

identify amino acid substitutions in the GR retinal binding that led to shifts in λmax, we 

developed a moderate-throughput expression and purification assay (Fig. 1). Briefly, 

following GR expression in E. coli, we extracted protein from the cell membrane using 

lysozyme treatment in the presence of the detergent n-dodecyl β-D-maltoside (DDM) and 

subsequently purified it in 96-well filter plates pre-loaded with Ni-NTA resin (Fig. 1). The 

absorption properties of engineered variants were determined in 96-well format using a 
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standard plate reader (Fig. 1, see Materials and Methods for details). The limits of 

spectral shifting were further explored by recombination of single mutations identified 

from saturation mutagenesis libraries and additional mutagenesis and screening of the most 

red- and blue-shifted recombined variants. 

  To identify putative binding pocket residues in GR, we generated a homology 

model (see Materials and Methods) based on the crystal structure of its xanthorhodopsin 

(XR) homolog (44% protein sequence identity). In the GR model, 20 residues (D121, 

W122, T125, V126, L129, M158, I159, G162, E166, G178, S181, T182, F185, W222, 

Y225, P226, D253, A256, and K257) are within 5 Å of the retinal chromophore (Fig. 2). 

D121, W222, Y225, P226, D253, and K257 (which forms the Schiff base) are completely 

conserved between GR and the two best-studied PPRs, PR and BR (Table 1 and Fig. S1). 

While PPRs show extensive sequence diversity (with overall sequence identities as low as 

~ 20%), the binding pocket residues show a marked degree of conservation (Table 1 and 

Fig. S1). Site-saturation mutagenesis was performed at each of the binding pocket positions 

except K257, which forms the critical retinal linkage. Screening 88 clones for each 

saturation mutagenesis library (94% library coverage) identified a total of 52 unique blue- 

and red-shifted variants (Figs. 2 and 3 and Table S1). Mutagenesis at 15 of the 19 binding 

pocket residues yielded one or more spectral tuning mutations (Figs. 2 and 3). Thirteen of 

these fifteen positions gave rise to variants with exclusively blue or red shifts, but not both 

(the exceptions being D121 and A256, which gave both) (Figs. 2 and 3). Eighty percent of 

red-shifted variants contained mutations within 4 Å of the Schiff base linkage, whereas 

blue-shifting mutations were distributed along the retinal chromophore (Fig. S2). Blue-

shifting mutations far from the Schiff base (N10 Å) tended to increase local 

hydrophobicity, while blue-shifting mutations closer to the Schiff base tended to decrease 

local hydrophobicity (Fig. 4). Most mutations that cause a red shift were identified at D121 

and T125, which had 12 and 6 tuning mutations, respectively. Three residues, G162, E166, 

and A256, each had four blue-shifting mutations. Residues G178, W222, and Y225 had a 

single tuning mutation apiece: G178Q (blue shift), W222M (red shift), and Y225A (red 

shift). While most binding pocket residues had two or fewer mutations that only modestly 
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affected λmax, a handful of hot spots (D121 and G162) had many tuning mutations that 

led to large shifts in λmax (Fig. 3). 

2.2.2 Recombination for further mutagenesis 

  To test whether the tuning mutations could be combined to generate even larger 

spectral shifts, we generated two recombination libraries, one for blue-shifting mutations 

(the “blue” library) and one for red-shifting mutations (the “red” library). A fractionated 

plasmid amplification (Fig. S5a) approach allowed us to rapidly generate all possible 

combinations of targeted mutations with high confidence. Mutations that resulted in small 

spectral shifts and/or eliminated proton pumping were not included in these libraries. 

Recombining mutations V126A, M158L, G162C, G162L, G162S, G162V, E166P, 

E166W, S181G, A256C, A256D, A256G, and A256S with the WT codon for each position 

gave a blue library having 600 possible variants (Fig. S5b). We screened 1760 clones (95% 

coverage). Five mutants were found to be more blue-shifted than GRb1 (G162L). The most 

blue-shifted variant had three mutations (G162L, E166W, and A256S) and exhibited a 

further shift of −22 nm with respect to GRb1. This variant is called GRb2 (Figs. 3 and 5 

and Table S2). 

  The red library recombined T125C, T125D, T125G, T125N, T125V, L129K, 

L129W, W222M, P226I, P226V, and A256M with the WT codon for each position (216 

possible variants) (Fig. S5b). Screening 880 clones (98% coverage) yielded three variants 

more red-shifted than GRr1 (T125N) (Fig. 3 and Table S2). The T125C/A256M (GRr2) 

and T125V/A256M variants were the most red-shifted: each had an ~ 16-nm additional 

shift compared to GRr1 (Figs. 3 and 5 and Table S2). None of the eight recombined further 

blue- or red-shifted variants showed measurable proton-pumping activity (Fig. 3). 

  We wished to explore whether even larger shifts in GR λmax were possible. We 

therefore performed site-saturation mutagenesis on GRb2 and GRr2 at all sites within the 

retinal-binding pocket that were not already mutated (excluding K257). For the GRb2 

libraries, 1408 (16 × 88) clones were screened for 94% coverage, and for the GRr2 libraries 

1496 (17 × 88) clones were screened for 94% coverage. Further shifted variants, with 

respect to their GRb2 and GRr2 parents, were sequenced. This led to the identification of 
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ten tuning mutations, eight of which had not been identified in the first round of site-

saturation mutagenesis (Fig. 3 and Table S3). The libraries generated with GRr2 yielded 

two unique mutations that further red-shifted the protein (Fig. 3). The most red-shifted 

variant (GRr3; λmax = 619 nm), with a + 81-nm shift relative to WT GR, contained the 

D121E mutation in addition to the T125C and A256M mutations in GRr2 (Figs. 3 and 5 

and Table S3). The spectral shift of GRr3 was greater than predicted by simply adding 

effects from single tuning mutations (Fig. S6). The three most blue-shifted variants, with 

−79 to −80 nm shifts, had the W122L, W122M, or D121E mutations in addition to the 

parental G162L, E166W, and A256S mutations. The W122L/G162L/E166W/A256S 

variant is referred to as GRb3 (Figs. 3 and 5 and Table S3). Its λmax is 458 nm. Overall, 

screening 7216 clones (1672 in the first round of site-saturation mutagenesis, 2640 for the 

recombination libraries, and 2904 in the second round of site-saturation mutagenesis) for 

shifted absorption maxima resulted in 70 unique shifted variants (Fig. 3). GRb3 and GRr3 

differ by only seven mutations, yet their λmax are 161 nm apart. 

2.2.3 GR mutants exhibit increased fluorescence 

  We tested the fluorescence properties of all 70 spectrally tuned GRs using a 96-

well assay developed for this purpose. The full excitation spectrum was computed for each 

GR variant at multiple emission wavelengths (625–775 nm in 25-nm increments). The area 

under the curve (AUC) of the excitation spectra (at an emission wavelength of 725 nm) for 

each variant was used to score its overall fluorescence. AUC values were rank-ordered and 

color-coded according to their absorbance shift, revealing six outlier red-shifted variants 

(Fig. 8a). Measuring the full excitation-emission spectra of these variants confirmed 

increased fluorescence over the WT protein, which exhibited no measurable fluorescence 

under our assay conditions (Fig. 8b). The variant displaying the greatest in vivo 

fluorescence was D121E/T125C/A256M (Fig. 8b), which also had the highest quantum 

yield in vitro (1.2 × 10−2) of the six bright mutants (Table 2). Increasing the external pH 

from 6 to 11 attenuated fluorescence ~ 2-fold (Fig. 8c). 

2.2.4 Main figures and tables 
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Fig. 1. Schematic of screen for GR spectral tuning. Briefly, mutant GR libraries were 

transformed into E. coli followed by growth on selective solid media. 

Single E. coli colonies were picked with toothpicks and grown in 96-well plates. Following 

induction, His-tagged mutant GRs were purified using Ni-NTA resin. Absorbance spectra 

of mutant GRs were measured with a standard plate reader, from which the absorption 

maxima were determined. 
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Fig. 2. Retinal-binding pocket in GR homology model. Side chains of amino acids 

within 5 Å of retinal are shown. Glycines are displayed with hydrogen atoms visible. 

Residues for which only blue shifts were detected are colored blue (W122, V126, M158, 

G162, E166, G178, S181), residues with only red shifts are colored red (T125, L129, 

W222, Y225, P226, D253), and residues that yield both blue and red shifts are colored 

yellow (D121, A256). Black indicates positions for which no shifts were identified (I159, 

T182, F185, Y229) and the conserved Schiff base residue (K257), which was not targeted 

for mutagenesis. The retinal molecule is shown in orange. Helix six is omitted for clarity. 

 

 
Fig. 3. Spectrally shifted variants identified by site-saturation mutagenesis and 

recombination. The absorption maxima (λmax) represent averages, with standard error, of 

three biological replicas that were grown and extracted separately. Shifts are reported with 

respect to λmax of WT GR (538 nm). H+-pumping activities were determined using a dye-

efflux assay (see Materials and Methods): (−) no detectable activity, (+) activity that is less 

than 50% of WT, and (++) activity that is more than 50% of WT. Broken lines separate 

mutants resulting from different rounds of directed evolution. From the top, these are (1) 

site-saturation mutagenesis of WT GR, (2) recombination libraries, and (3) second round of 

site-saturation mutagenesis, performed on G162L/E166W/A256S and T125C/A256M. 

New mutations are shown in boldface and parent mutations are shown in plain text. (insert) 

Purified variants of GR, including the WT protein (GR WT), three GR variants with red-

shifted λmax (GRr1, GRr2, and GRr3), and three GR variants with blue-shifted λmax (GRb1, 

GRb2, and GRb3). GRr1 = T125N, GRr2 = T125C/A256M, 

GRr3 = D121E/T125C/A256M, GRb1 = G162L, GRb2 = G162L/E166W/A256S, and 

GRb3 = W122L/G162L/E166W/A256S. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/homology-modeling
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/retinal
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycine
https://www.sciencedirect.com/topics/immunology-and-microbiology/mutagenesis
https://www.sciencedirect.com/topics/immunology-and-microbiology/mutagenesis
https://www.sciencedirect.com/science/article/pii/S0022283614003088?via%3Dihub#s0020
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pik3r1
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Fig. 4. Relationship between hydrophobicity and residue distance from the Schiff base 

(K257) for blue- and red-shifting mutations. Amino acid substitutions that are more 

hydrophobic than the parental residues result in ∆Hydrophobicity > 0, while those that are 

less hydrophobic than the parental residues have ∆Hydrophobicity < 0. For blue-tuning 

mutations, the Pearson correlation between ∆Hydrophobicity and distance from K257 is 

0.55 (p = 0.0045), while for red tuning mutations, there is no correlation. Amino acid 

hydrophobicity scores were obtained from Black and Mould35. 

 

 
Fig. 5. Normalized absorption spectra of WT GR and key variants from each round of 

directed evolution. Absorption spectra are colored to match the colors of 

the rhodopsin pigments. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rhodopsin
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Fig. 8. Fluorescent properties of GR variants measured in live E. coli. (a) The AUC was 

computed from the excitation spectra of 70 unique GR, ranked-ordered, and color-coded 

according to spectral shift [technical replicates of GR(D121N), a red-shifted variant, are 

shown in green]. (b) Spline-fit excitation/emission spectra (performed in biological 

quadruplicate) of six outliers from (a) and WT GR. The mutations are written in shorthand 

without the residue numbers: GR(DETCAM) = GR(D121E/T125C/A256M), 

GR(TCFTAM) = GR(T125C/F185T/A256M), GR(TCAM) = GR(T125C/A256M), 

GR(TVAM) = GR(T125V/A256M), GR(TCWMAM) = GR(T125C/W222M/A256M), 

GR(DA) = GR(D121A). (c) Fluorescence of GR(D121E/T125C/A256M) normalized for 

total expression measured from pH 6 to pH 11. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fluorescence-spectroscopy
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Table 1. Comparison of natural variation and introduced mutations in retinal-binding 

pocket of GR and homologs 
aHomologous residues in the retinal-binding pocket were identified through structure-

guided alignment of protein sequences. 
bNatural variation represents variants retrieved from BLAST searches of the NCBI 

database with GR, BR, and PR. 
cMutations conferring spectral tuning in each of the three proteins and close homologs. The 

coloring of the mutations indicates whether they are blue- or red-shifted. For GR, the 52 

single mutations were discovered in the first round of site-saturation mutagenesis. For BR 

and PR, mutations were identified through a literature search. (See references36–50 as 

indicated in the table). GR mutations that correspond to mutations previously described in 

BR or PR are underlined. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/homologous-chromosome
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/peptide-sequence
https://www.sciencedirect.com/topics/immunology-and-microbiology/mutagenesis


 

 

18 

 
Table 2. Quantum yields of bright GR variants identified in this study 

 

2.2.5 Supplementary figures and tables 

 

 
Figure S1: Summary of a structure-based alignment of retinal binding pocket residues for 

PR, Arch, BR, and GR. 

 

 
Figure S2: Proportion of blue- and red-shifting mutations found within a given distance 

from K257. Measurements were done in PyMOL on a GR homology model based on the 

XR structure (see Methods). 
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Figure S5: Generation of recombination libraries. (a) Schematic of primer design for 

fractionated plasmid amplification to generate GR recombination libraries. Where several 

numbers are given a mix of primers was used to ensure equal distribution of amino acid 

codons. (b) Summary of residues in blue-shifted and red-shifted recombination libraries, 

which have 600 and 216 members, respectively. 

 

 
Figure S6: Plot of spectral shift predicted from simply adding effects of single tuning 

mutations versus the actual spectral shift of selected GR mutants. Data for generating this 

figure can be obtained from Tables S1-S3. 
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Variant λmax (nm) Shift (nm) H+ pumping Variant λmax (nm) Shift (nm) H+ pumping 

WT (GR) 538 ± 0 0 ++     

        

Blue shifts    Red shifts    

D121E 530 ± 1  -8 - D121A 568 ± 1 30 - 

W122A 511 ± 0 -27 - D121G 572 ± 0 34 - 

W122G 510 ± 1 -28 - D121K 566 ± 0 28 - 

W122R 519 ± 1 -19 - D121L 573 ± 0 35 - 

V126A* 526 ± 1 -12 + D121N 562 ± 1 24 - 

V126D 526 ± 0 -12 ++ D121M 577 ± 1 39 - 

V126T 526 ± 0 -12 + D121P 556 ± 0 18 - 

M158A 532 ± 2 -6 + D121Q 573 ± 0 35 - 

M158L* 527 ± 1 -11 ++ D121S 581 ± 0 43 - 

G162C* 509 ± 1 -29 ++ D121T 559 ± 0 21 - 

G162L* (GRb1) 496 ± 1 -42 + D121V 560 ± 0 22 - 

G162S* 522 ± 1 -16 ++ D121W 555 ± 0 17 - 

G162V* 507 ± 1 -31 + T125C* 558 ± 1 20 ++ 

E166L 521 ± 1 -17 + T125D* 556 ± 0 18 ++ 

E166M 526 ± 0 -12 + T125G* 547 ± 0 9 + 

        

E166P* 523 ± 1 -15 + T125L 563 ± 1 25 - 

E166W* 518 ± 1 -20 + T125N* (GRr1) 560 ± 1 22 + 

G178Q 531 ± 1 -7 ++ T125V* 548 ± 0 10 ++ 

S181A 531 ± 1 -7 ++ L129K* 551 ± 1 13 + 

S181G* 526 ± 1 -12 ++ L129W* 544 ± 0 6 + 

S181P 520 ± 1 -18 ++ W222M* 545 ± 1 7 + 

A256C* 526 ± 1 -12 + Y225A 546 ± 1 8 - 

A256D* 519 ± 1 -19 + P226I* 544 ± 1 6 ++ 

A256G* 527 ± 1 -11 ++ P226V* 543 ± 1 5 ++ 

A256S* 527 ± 0 -11 ++ D253E 552 ± 3 14 - 

    D253T 546 ± 2 8 - 

    A256M* 558 ± 1 20 + 

Table S1. Spectrally-shifted variants identified in first round of site-saturation mutagenesis. 

The absorption maxima (λmax) represent averages, with standard error, of three biological 

replicas that were grown and extracted separately. Shifts are reported with respect to wild-

type λmax. H
+-pumping activities were determined using a dye-efflux assay (see Methods), 

with (-) no detectable activity, (+) activity that is less than 50% of WT, and (++) activity 
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that is more than 50% of WT. Variants that were included in the blue- and red-shifted 

recombination libraries are indicated with a *. 
 

Genotype λmax (nm) Shift (nm) H+ pumping 

    

Blue recombination library    

G162L/E166W/A256C 480 ± 1 -58 - 

G162L/E166W/A256S (GRb2) 474 ± 1 -64 - 

G162L/E166W/S181G/A256C 485 ± 1 -53 - 

G162L/E166W/S181G/A256S 486 ± 1 -52 - 

E166W/S181G/A256S 489 ± 2 -49 - 

    

Red recombination library    

T125C/A256M (GRr2) 576 ± 1 38 - 

T125V/A256M 577 ± 1 39 - 

T125C/W222M/A256M 568 ± 0 30 - 

Table S2. Spectrally-shifted variants identified from recombination libraries. The 

absorption maxima (λmax) represent averages, with standard error, of three biological 

replicas that were grown and extracted separately. Shifts are reported with respect to wild-

type λmax. H+-pumping activities were determined using a dye-efflux assay (see Methods), 

with (-) no detectable activity, (+) activity that is less than 50% of WT, and (++) activity 

that is more than 50% of WT. Variants that were included in the blue- and red-shifted 

recombination libraries are indicated with a *. 
 

Variant λmax (nm) Shift (nm) H+ pumping 

    

Blue site-saturation mutagenesis    

D121E/G162L/E166W/A256S 458 ± 0 -80 - 

W122L/G162L/E166W/A256S (GRb3) 458 ± 2 -80 - 

W122M/G162L/E166W/A256S 459 ± 1 -79 - 

L129T/G162L/E166W/A256S 466 ± 0 -72 - 

M158G/G162L/E166W/A256S 468 ± 1 -70 - 

G162L/E166W/G178S/A256S 465 ± 1 -73 - 

G162L/E166W/Y229G/A256S 467 ± 1 -71 - 

G162L/E166W/Y229T/A256S 465 ± 2 -73 - 

    

Red site-saturation mutagenesis    

D121E/T125C/A256M (GRr3) 619 ± 0 81 - 

T125C/F185T/A256M 587 ± 1 49 - 
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Table S3. Spectrally-shifted variants identified from the second round of site-saturation 

mutagenesis. New mutations are shown in bold and parent mutations in plain text. The 

absorption maxima (λmax) represent averages, with standard error, of three biological 

replicas that were grown and extracted separately. Shifts are reported with respect to wild-

type λmax. H
+-pumping activities were determined using a dye-efflux assay (see Methods), 

with (-) no detectable activity, (+) activity that is less than 50% of WT, and (++) activity 

that is more than 50% of WT. Variants that were included in the blue- and red-shifted 

recombination libraries are indicated with a *. 

 

2.2.6 Materials and methods 

Plasmids and bacterial strains 

 The gene coding for GR was obtained on the GR_pkj900 plasmid from Janos Lanayi. 

GR was amplified by PCR using primers that excluded the stop codon (Table S6, primers 1 

and 2). The PCR product was cloned by one-step isothermal assembly51 into an NdeI and 

NotI digested pET21a expression plasmid (EMD Millipore, Darmstadt, Germany), adding a 

flexible C-terminal linker that is five amino acids long and a His6-tag. This generated the 

pETME10 (GR) expression plasmid. To construct a translational fusion of GR with a C-

terminal CFP, we linearized the pETME10 plasmid with XhoI and subsequently purified it 

using agarose gel. CFP was amplified by PCR using primers with an overhang to the 

linearized plasmid. DNA fragments were then assembled using one-step isothermal DNA 

assembly. All constructs were verified by sequencing (Laragen, Culver City, CA, USA) 

using T7-specific primers. Sequences for the finished His-tagged GR protein and GR-

CFP fusion construct can be found in the supplement. All cloning was performed in 

the E. coli strain DH5α. The E. coli strain BL-21 (DE 3) was used for expression in all 

experiments. 

Generation of recombination libraries 

 The red recombination library was designed by combining all red-shifting mutations 

that did not destroy the proton-pumping ability. This yielded a library of 216 variants 

(obtained by multiplying the possible codons at each mutagenized site; Fig. S5b). If the same 

criteria were used to make the blue-shifted recombination library, it would result in a library 

of over 9000 variants. This number was too large to screen, and the blue-shifted 

recombination library was therefore reduced by setting a threshold for clones with an 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/plasmid
https://www.sciencedirect.com/topics/immunology-and-microbiology/polymerase-chain-reaction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primer-molecular-biology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stop-codon
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ndei
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/c-terminus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/xhoi
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/agarose
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sequencing
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fusion-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cloning
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absorption maximum below 528 nm for sites with more than one mutation. This reduced 

the library size from 9000 to 600 variants (Fig. S5b). Recombination libraries were 

constructed by amplifying the gene in fragments such that all mutation sites were either 

covered by mutagenic primers or included by mixing mutated backbones as templates in 

PCR. The relative binding site of primers used to generate each fragment is shown in Fig. 

S5a. Primers are listed in Table S6. For each site where multiple primers are listed, these 

were mixed at ratios resulting in even generation of all desired codons. For the red library, 

primers 43–48 and 49–52 were used to mutate T125, L129, W222, and P226 in one PCR 

product. Primers 53 and 54 were used to amplify the plasmid backbone from a mix of 

plasmids containing the WT codon at A256 and the codon for A256M. For the blue library, 

primers 62 and 63 and 64 were used to generate a PCR product where sites S181 and A256 

were mutated. Primers 55 and 56–61 were used to amplify the plasmid backbone while at 

the same time mutating sites M158, G162, and E166 from a mix of plasmid containing the 

WT codon at V126 and the codon for V126A. The PCR fragments were ligated using one-

step isothermal assembly and transformed into E. coli. 

Expression of libraries 

 Single E. coli BL21 (DE3) colonies transformed with library plasmids or control 

plasmid (parent) were picked to inoculate 200 μL LB media containing 100 μg/mL 

of ampicillin in 96-deep-well plates with 2 mL well volume (Greiner Bio-One, 

Kremsmünster, Austria). The plates were covered with a microporous membrane (Easy 

App™, cat. no. 2978-5827; USA Scientific, Ocala, FL) and incubated in a rotary shaker at 

225 rpm, 37 °C, and 80% humidity. The overnight cultures were diluted 1:20 in LB–

ampicillin media to a final volume of 1 mL in 96-deep-well plates and further incubated 

225 rpm, 30 °C, and 80% humidity for 2 h. Expression was induced through the addition of 

5 μL of 100 mM IPTG and 2 mM retinal in 95% EtOH/5% H2O to a final concentration of 

0.5 mM IPTG and 10 μM retinal. Protein expression proceeded for 4 h at 225 rpm, 30 °C, 

and 80% humidity in the dark. The E. coli cells were then collected by centrifugation at 4500 

RCF (relative centrifugal force) for 10 min in a swing-out centrifuge (Allegra 25R; Beckman 

Coulter, Brea, CA). 

Method for screening GR spectral tuning libraries 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-site
https://www.sciencedirect.com/topics/immunology-and-microbiology/lysogeny-broth
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ampicillin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/isopropyl-beta-d-1-thiogalactopyranoside
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/retinal
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-expression
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 To measure the absorption spectrum, the GR protein first must be extracted from 

the E. coli membrane. Following library expression (see above), we re-suspended cell pellets 

in 100 μL extraction buffer [20 mM Tris–HCl, 200 mM NaCl, and 0.15% (w/v) DDM 

(pH 7.5)] and frozen at − 20 °C overnight to improve cell lysis. The pellets were thawed at 

room temperature. We added 100 μL extraction buffer containing 1.4 mg/mL lysozyme and 

a small amount of DNase I to the wells. Extraction was allowed to proceed at room 

temperature for 30 min in the dark. Cell debris was subsequently pelleted by centrifugation 

at 4500 RCF for 10 min. Rhodopsins were purified from the supernatant using Ni-NTA 

affinity chromatography in a 96-well plate format. For this purpose, each well of a 96-well 

filter plate (Acroprep™, 1 mL, 1.0 μm glass fiber, Pall Corp., Port Washington, NY) was 

filled with 125 μL Ni-NTA agarose beads (cat. no. 30230, QIAGEN). The rhodopsin-

containing supernatant was transferred to the wells and incubated for 5 min at room 

temperature followed by a single washing step with 400 μL wash buffer [20 mM Tris–HCl, 

200 mM NaCl, 0.15% (w/v) DDM, and 80 mM imidazole (pH 7.5); incubation, 1 min] and 

one elution step {200 μL elution buffer [20 mM Tris–HCl, 200 mM NaCl, 0.15% (w/v) 

DDM, and 400 mM imidazole (pH 7.5)]; incubation time, 5 min}. After each incubation 

step, liquids were forced through the filters by centrifugation (200 RCF, 2 min). Absorption 

spectra of the purified rhodopsins were recorded in a 96-well microtiter plate from 420 nm 

to 680 nm in 3 nm steps with 5 flashes per measurement (infinite M200; Tecan). 

Analysis of spectral tuning data 

 Data from the spectral tuning libraries were analyzed and processed using Excel 

(Microsoft), as well as custom software in Python§. A nine-data-point smoothing function 

was applied to all measured spectra to decrease the effect of noise in the measurements. The 

λmax of each clone was then computed. Those clones with a λmax that was more than 5 nm 

shifted away from the parent protein and had an absorption level that was significantly above 

background were re-screened in quadruplicate and subsequently sequenced. 

Fluorescence screening 

 Following library expression (see above), we re-suspended cell pellets in 700 μL of 

200 mM NaCl. Transparent 96-well, flat-bottom plates were pre-aliquoted with 20 μL of 

500 mM potassium phosphate buffer at pH 7. A multi-channel pipette was used to transfer 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lysozyme
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/deoxyribonuclease-i
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chromatography
https://www.sciencedirect.com/science/article/pii/S0022283614003088?via%3Dihub#fn0015
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phosphate-buffered-saline
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180 μL of cells to the buffer-containing wells, for a final concentration of 180 mM NaCl 

and 50 mM potassium phosphate buffer. Fluorescence measurements were performed using 

a Tecan plate reader, with the instrument mode that was set to “Fluorescence Top Reading” 

with multiple reads per well (2 × 2 square). Other instrument parameters included manually 

setting the gain (100), number of flashes (25), and integration time (20 μs). In Fig. 8c, 

GR(D121E/T125C/A256M) is fused to CFP and the Normalized Fluorescence is defined as 

A*(Opsin Fluorescence/CFP Fluorescence) where A is an arbitrary scalar. 

 

2.3 Directed evolution of a far-red fluorescent rhodopsin 

[7] McIsaac, R. S. et al. (2014). “Directed evolution of a far-red fluorescent rhodopsin”. In: Proceedings of the 

National Academy of Sciences of the United States of America 111(36), pp. 13034-9. doi: 

10.1073/pnas.1413987111. 

2.3.1 Transferring GR mutations to Arch increases fluorescence 

  Although Arch and GR share low overall sequence identity, 16 of the 20 retinal 

binding pocket residues (defined as amino acids within 5 Å of retinal in Arch) are 

conserved between the two (Fig. S1). The mutations of a bright GR variant discovered in 

our previous directed evolution study of GR6, GR(D121E/T125C/A256M), which contains 

the desirable D→E substitution at the Schiff-base counter ion, map to D95E, T99C, and 

A225M in Arch, respectively (Fig. S1). We recombined these mutations in Arch and 

identified two variants, Arch(D95E/T99C) (here referred to as Arch(DETC)) and 

Arch(D95E/T99C/A225M) (here referred to as Arch(DETCAM)), that exhibit large red 

shifts in λmax compared with wild-type Arch (Fig. 1A) as well as an approximately fivefold 

increase in fluorescence in Escherichia coli at pH 6 (Fig. 1B). No other combinations of 

D95E, T99C, and A225M resulted in large changes in λmax or improved fluorescence over 

wild-type Arch. Arch(DETC) and Arch(DETCAM) exhibited nearly identical levels of 

fluorescence (Fig. 1B). Because the A225M mutation did not further increase fluorescence 

in Arch(DETC), we chose to focus on Arch(DETC) for further characterization and 

engineering. 

2.3.2 Increased Arch fluorescence is retained when expressed in mammalian cells 

https://www.sciencedirect.com/science/article/pii/S0022283614003088?via%3Dihub#f0045
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413987111/-/DCSupplemental/pnas.201413987SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413987111/-/DCSupplemental/pnas.201413987SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/content/111/36/13034.long#F1
http://www.pnas.org/content/111/36/13034.long#F1
http://www.pnas.org/content/111/36/13034.long#F1
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  Because Arch is of interest for optogenetics applications in mammalian cells, 

we tested the ability of Arch(DETC) to express and fluoresce in a mammalian cell line. The 

D95E and T99C mutations were made in a mammalian codon-optimized version of Arch 

designed with golgi and endoplasmic reticulum export domains for enhanced membrane 

localization in mammalian neurons52. Human embryonic kidney (HEK293) cells were 

transfected with the mammalian Arch and Arch(DETC) constructs and imaged following 

stimulation with a 633-nm laser. We found that Arch(DETC) had ∼4.5-fold improved 

fluorescence over Arch in HEK293 cells (Fig. 5).   

 

2.3.3 Main figures 

 

 

Fig. 1. Measuring the effects of mutations on Arch absorption maximum (λmax) and 

fluorescence. (A) Quantifying the shift in λmax between purified Arch and seven different 

mutants at pH 7.5. (B) Measuring the dependence of Arch, Arch(DETC), and 

Arch(DETCAM) fluorescence on pH. 

 

http://www.pnas.org/content/111/36/13034.long#F5
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Fig. 5. Live-cell imaging of HEK293 cells expressing Arch and Arch(DETC) fused to 

EGFP. (A) HEK293 cells imaged following laser excitation at 488 nm or 633 nm. (Scale 

bars: 10 µm.) (B) Fluorescence of Arch and Arch(DETC) (12 cells each) normalized for 

total expression using the EGFP tag. Error-bars represent SEMs. 

 

2.3.4 Supplementary figures 

 
Fig. S1. Structure-guided alignment of amino acid residues in the retinal binding pockets of 

Arch and Gloeobacter violaceus rhodopsin (GR). 

 

2.4 Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in 

mammalian and Caenorhabditis elegans neurons 

[6] Flytzanis, N. C.*, Bedbrook, C. N.* et al. (2014). “Archaerhodopsin variants with enhanced voltage-

sensitive fluorescence in mammalian and Caenorhabditis elegans neurons”. In: Nature Communications 

5:4894. doi: 10.1038/ncomms5894. 

2.4.1 Introduction 

  The study of brain circuitry encompasses three frames of reference: neuron-level 

spiking activity, circuit-level connectivity, and systems-level behavioral output. A 

pervasive goal in neuroscience is the ability to examine all three frames concurrently. 

Fluorescent sensors, which enable measurements of simultaneous changes in activity of 

specific populations of neurons, are envisioned to provide a solution9,53–56. Successful 

detection of both high-frequency trains of action potentials and subthreshold events in 

neuronal populations in vivo requires a genetically encoded voltage indicator (GEVI)57 with 
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fast kinetics, high sensitivity, and high baseline fluorescence. Recent developments of 

genetically encoded calcium9 and voltage sensors58–60 have yielded progress towards 

achieving this goal. The calcium sensor family GCaMP has been used to monitor 

populations of neurons in intact behaving organisms55. However, the detection of fast-

spiking activity, subthreshold voltage changes and hyperpolarization is difficult with 

GCaMP due to its relatively slow kinetics and reliance on calcium, a secondary messenger, 

flux into the cell9,61,62. Newer iterations of voltage-sensitive fluorescent proteins based on 

fusions with circularly permuted GFP, for example, ASAP158, improve on both the speed 

and sensitivity of previous sensors, for example, Arclight63, but are still limited by the 

ability to be combined with optogenetic actuators4,64,65. This spectral overlap prohibits the 

combined use of these sensors with opsins for all-optical electrophysiology. Currently 

available sensors are not able to meet all the needs for optical imaging of activity in vivo, 

calling for continued efforts to evolve GEVIs. 

 Archaerhodopsin-3 (Arch)4,64–66, a microbial rhodopsin proton pump that has 

recently been introduced as a fluorescent voltage sensor8, is fast and sensitive but suffers 

from low baseline fluorescence and strong inhibitory photocurrents. Previous optimizations 

of Arch successfully reduced photocurrents, for example, Arch D95N8 and Arch EEQ67, and 

increased sensitivity and speed, for example, QuasArs60, but have still to enable its use in 

vivo. All previous in vivo voltage sensing has been accomplished using lower power of 

fluorescence excitation light than is possible with reported Arch variants to date9,54,59. For 

example, Arch WT8 uses × 3,600 higher intensity illumination than ASAP158. The high laser 

power used to excite Arch fluorescence causes significant autofluorescence in intact 

tissue57 and limits its accessibility for widespread use. 

 Here we report two Arch mutants (‘Archers’: Arch with enhanced radiance), Archer1 

(D95E and T99C) and Archer2 (D95E, T99C and A225M) with improved properties for 

voltage sensing. These mutants exhibit high baseline fluorescence ( × 3–5 over Arch WT), 

large dynamic range of sensitivity (85% ΔF/F and 60% ΔF/F per 100 mV for Archer1 and 

Archer2, respectively) that is stable over long illumination times, and fast kinetics, when 

imaged at × 9 lower light intensity (880 mW mm−2 at 655 nm) than the most recently reported 

Arch variants60 (and × 20.5 lower than Arch WT8). We demonstrate that Archer1’s improved 
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characteristics enable its use to monitor rapid changes in membrane voltage throughout a 

single neuron and throughout a population of neurons in vitro. Although Archer1 has 

minimal pumping at wavelengths used for fluorescence excitation (655 nm), it maintains 

strong proton pumping currents at lower wavelengths (560 nm). We show that this single 

protein, Archer1, is a bi-functional tool that provides both voltage sensing with red light and 

inhibitory capabilities with green light. Finally, we demonstrate that Archer1 can detect small 

voltage changes in response to sensory stimulus in the context of intact multicellular 

organisms such as C. elegans. 

2.4.2 Results 

  The combination of D95E, T99C and A225M mutations was first identified in a 

site-saturation mutagenesis library of the proton pump Gloeobacter violaceus rhodopsin 

(GR) designed to evolve for spectral shifts6. Far-red shifted mutants of the GR library were 

then screened for fluorescence intensity in Escherichia coli, which revealed numerous hits 

with higher fluorescence than GR WT6. The corresponding mutations found in the most 

intensely fluorescent variants can be transferred to the homologous residues of Arch WT 

(Supplementary Fig. 1) and greatly improve its quantum efficiency and absolute 

brightness12. The selected mutants were expressed in neurons to test if their improved 

characteristics were maintained in a mammalian system. 

Characterization of two new mutant Arch voltage sensors 

 Arch variants designed with TS and ER export domains for enhanced membrane 

localization52 (Fig. 1a and Supplementary Fig. 1b) were screened in neurons for enhanced 

baseline fluorescence and decreased photocurrents at imaging wavelengths, compared with 

Arch WT8. Of the Arch variants screened, Archer1 and Archer2 exhibited ~5 × and ~3 × 

increased fluorescence, respectively, over Arch WT (Fig. 1a). Archer1 and Archer2 also have 

× 55 and × 99 reduced photocurrents in response to 655 nm laser illumination, respectively, 

when compared with Arch WT (Fig. 1b and Supplementary Fig. 2a). Archer1 exhibits a peak 

current on initial laser exposure, which then reaches a residual average steady state of 5.6 pA, 

while Archer2 produces no peak current, and an average steady state of 3.1 pA (Fig. 

1b and Supplementary Fig. 2b,c). Arch variants were also screened for increased voltage 

https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#s1
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sensitivity and faster kinetics compared with previously reported variant Arch EEQ67. 

Voltage sensitivity was measured as a fluorescence response to steps in membrane potential 

ranging from −100 mV to +50 mV. Due to Arch EEQ’s lower baseline fluorescence, its 

single-cell fluorescence traces show considerably more noise than those for Archer1 and 

Archer2 (Fig. 1c). Archer1 shows the highest voltage-sensitive fluorescence, as depicted by 

single-cell sensitivity measurements (Fig. 1c and Supplementary Movie 1), and by the 

averaged traces (Fig. 1d, Supplementary Fig. 3). Facilitated by Archer1’s increased baseline 

fluorescence, imaging can be done with short 1 ms exposure times and at lower laser 

intensities (880 mW mm−2) than previously published Arch-based sensors8,60,67. To 

characterize the stability of Archer1’s fluorescence, sensitivity was measured before and 

after prolonged laser illumination. Archer1 showed no reduction in voltage sensitivity over 

the 10–15 min timeframe measured (Supplementary Fig. 4). 

Sensitivity kinetics enables comparison across sensors 

 The choice of a specific voltage sensor for a given experimental application depends 

on whether the sensor will yield a significant fluorescence change in response to a given 

voltage change within the timeframe of interest. Traditionally, sensitivity is quantified by 

measuring the steady-state fluorescence change for a step in voltage8,58–60,63,67, but the steady-

state value does not provide information about the initial dynamics of the fluorescence 

response (sensor kinetics). The methods for kinetic analysis vary with different types of 

sensors. Following a previously used method for Arch-based sensor kinetics59,67 , we 

compared Archer1 with Arch WT by normalizing the fluorescent responses of each sensor 

during a 1 s voltage step (−70 mV to +30 mV) to the steps maximum fluorescence. These 

results indicate very similar kinetics between the two (Fig. 1e), without addressing Archer1’s 

× 35 larger change in fluorescence. The large time scale of these voltage steps is not relevant 

for neuronal applications. However, normalizing over a shorter time scale produces variable 

results depending on the time point used for normalization (Fig. 2b). A method that considers 

the sensitivity of a sensor on the time scale relevant to an action potential is necessary. 

 Our proposed method for analysis, sensitivity kinetics (SKi), expands on the 

traditional method by providing %ΔF/F for any given voltage change over time (Fig. 2a). 

With this method, both the sensitivity and kinetics can be compared simultaneously among 

https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f1
https://www.nature.com/articles/ncomms5894#f2
https://www.nature.com/articles/ncomms5894#f2
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sensors. SKi is calculated by evaluating the slope of the fluorescence response to steps in 

voltage for each time point after the step’s initiation. The sensitivity slopes are then plotted 

over time (Fig. 2a,c). Characterization of the SKi for Arch variants reveals that Archer1 

produces the largest changes in fluorescence of the sensors we tested (Fig. 2d), within any 

timeframe. 

Tracking action potentials in primary neuronal cultures 

 Action potentials were evoked in cultured rat hippocampal neurons expressing 

Archer1 through current injection. Archer1 fluorescence is capable of tracking action 

potentials in both individual processes and the cell body (Fig. 3a,b and Supplementary Movie 

2). In addition, the magnitude and shape of dendritic fluorescence changes closely mimic 

that of the cell body in response to the same event. As predicted by the SKi, Archer1 

fluorescence, with a >6 × increase in signal-to-noise ratio (SNR), more closely follows the 

electrical recording of action potentials than Arch EEQ at similar frequencies (Fig. 3c,d). 

Archer1 exhibits a large percentage change in fluorescence in response to action potentials 

(25–40% ΔF/F), and can track 40 Hz firing rate as well as simulated changes in membrane 

voltage occurring at 100 and 150 Hz (>50% ΔF/F) (Fig. 3e,f). The ability to follow action 

potential throughout neurons by imaging with significantly lower laser intensity 

(880 mW mm−2) is enabling for monitoring voltage-sensitive fluorescence in vivo. 

Archer1 functions as a voltage sensor and inhibitory actuator 

 All-optical electrophysiology requires an optical method for both sensing and 

perturbing cells. Recent work60 presented a construct with dual capabilities: voltage sensing 

and neuronal activation at distinct wavelengths through co-expression of a sensor and a light-

gated channel. Archer1 also provides two useful functionalities, both in a single protein. 

While minimally active with high intensity 655 nm laser illumination (880 mW mm−2), 

Archer1 is significantly more active at low intensity 560 nm light-emitting diode (LED) 

illumination (3 mW mm−2) ( × 51 at peak and × 35 at steady state) (Fig. 4a,b). The 

hyperpolarizing photocurrents generated by Archer1 in response to green light successfully 

inhibit action potentials, while red light does not (Fig. 4c,d). Thus, Archer1 can induce 

inhibitory currents with green light and sense activity with red. 

Optical monitoring of cultured neuronal networks 

https://www.nature.com/articles/ncomms5894#f2
https://www.nature.com/articles/ncomms5894#f2
https://www.nature.com/articles/ncomms5894#f3
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#f3
https://www.nature.com/articles/ncomms5894#f3
https://www.nature.com/articles/ncomms5894#f4
https://www.nature.com/articles/ncomms5894#f4
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 Fluorescent voltage sensors should enable the detection of spiking activity across 

all neurons in a population. Original Arch variants require the use of high optical 

magnification combined with binning and heavy pixel weighing67 to detect modest changes 

in fluorescence, due to low baseline. Until recently60, these stringent imaging requirements 

had prevented microbial rhodopsin-based voltage sensors from being used to monitor 

multiple cells simultaneously. Archer1, similar to QuasAr60, by virtue of its increased 

fluorescence and higher SKi, allows simultaneous imaging of activity for a population of 

cells while perturbing only one of them through current injection (Fig. 5a, schematic). Within 

the same optical field, we tracked the fluorescence of three cells with different behaviors: 

one showed a step change (due to an induced voltage step), one had spontaneous spikes that 

increased concurrently with the step and one remained unchanged (Fig. 5a, traces). 

Optical monitoring of sensory neurons in behaving C. elegans 

 A major application for voltage sensors is all-optical neuronal activity monitoring in 

model organisms in which electrophysiological recordings are inherently difficult, for 

example, C. elegans. The improved fluorescence and SKi of Archer1 have enabled us to 

extend its use from cultured cells to live, behaving nematodes. To test whether Archer1 will 

work in C. elegans, we examined the olfactory neuron AWC-ON (WormBase cell 

WBbt:0005832), one of the pair of C-type Amphid Wing cells. Previously, sensory-evoked 

Ca2+ transients that were monitored using GCaMP show fluorescence increase on odor 

removal, which peaks within 10 s and gradually decreases over minutes post stimulation68. 

To monitor the small voltage changes underlying this effect, we expressed Archer1 in AWC-

ON, and observed fluorescence changes in response to turning off the odorant stimulus 

(isoamyl alcohol) in anesthetized and non-anesthetized animals. According to Kato et al.69, 

the chemosensory responses in AWC neurons are not affected by the application of 

cholinergic agonist. As shown in Fig. 5b–d, Archer1’s fluorescence indicates that voltage 

transients peak within 2 s and end 10 s after turning off stimulus (Fig. 5c and Supplementary 

Fig. 5). These observed fluorescence changes, which correspond to small reported changes 

in AWC membrane voltage70, validate the sensor’s in vivo utility. A combination of results 

from Archer1 and GCaMP experiments can be used to better understand the dynamics of C. 

elegans voltage-gated calcium channels.  

https://www.nature.com/articles/ncomms5894#f5
https://www.nature.com/articles/ncomms5894#f5
https://www.nature.com/articles/ncomms5894#f5
https://www.nature.com/articles/ncomms5894#f5
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
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2.4.3 Discussion 

 All-optical methods for in vivo recording will require a GEVI with fast kinetics, high 

sensitivity, high baseline fluorescence and compatibility with optical methods for controlling 

neuronal activity. Here we report an Arch mutant, Archer1, in which these combined 

improvements enable the accurate tracking of action potentials at high speed, the detection 

of simultaneous activity within populations of neurons, wavelength-specific inhibition of 

neuronal activity and the real-time observation of voltage changes in response to a stimulus 

in live nematodes. Fluorescence measurements of Archer1 and Archer2 were achieved at 

lower intensity of laser illumination than has been possible in experiments using previously 

reported Arch variants8,60,67. Reduction in excitation light intensity required for fluorescent 

measurements increases the accessibility of Arch-based voltage sensors and their potential 

use in vivo. 

 Archer1 is an enhanced voltage sensor under red light, and it also enables inhibition 

of action potentials under green light. Recent work has been done to generate an all-optical 

system for neuronal excitation and voltage sensing (Optopatch60). Archer1, on the other 

hand, provides the first example of a combination of wavelength-specific sensing and 

hyperpolarization with a single protein. This wavelength-specific bi-functionality can enable 

all-optical dissection of a neural network through targeted inhibition and global fluorescence 

monitoring. Tools like Archer1 and Optopatch could be used for all-optical loss and gain of 

function circuit analysis, respectively. 

 Voltage sensors can also provide insights into neuronal response to stimuli in 

organisms in which electrophysiology is challenging, such as Caenorhabditis 

elegans and Drosophila melanogaster. Archer1 represents the first genetically encoded 

voltage sensor that has been used in live, behaving nematodes. This work provides a 

foundation for more detailed characterization of cell types with unknown voltage dynamics 

as well as fast-spiking muscle cells in C. elegans71. Additional applications of this tool likely 

include other transparent organisms, such as fly larvae and zebrafish, where a fluorescent 

voltage sensor could be used to dissect neural circuitry. 

 Until recently, due to their low baseline fluorescence57, Arch-based sensors were not 

compatible with in vivo applications. This work on Archer1, as well as recent work on 
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QuasArs60, demonstrates that Arch-based sensors are not fundamentally limited, but can 

be used for a variety of neuronal applications, including in vivo. Our data show that variants 

of Arch are capable of increased fluorescence, enabling practical detection, while retaining 

Arch WT's superior speed and dynamic range compared to XFP-based sensors72. Even 

though this work uses the lowest excitation intensity for an Arch-based sensor (<5% original 

illumination intensity of Arch WT8, ~60% of Arch EEQ67 and 11% of QuasArs60), it is still 

~200 times higher than that for XFP-based sensors. Given the already fast kinetics and high 

sensitivity of Archer1, further enhancements to baseline fluorescence could result in a GEVI 

capable of detecting activity in mammalian neuronal populations in vivo. 

2.4.4 Main figures 

 

Figure 1: Characterization of Arch variants in mammalian neurons. (a) Quantification of 

Archer1 (n=12) and Archer2 (n=11) fluorescence compared with Arch WT (n=13). Left—
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representative images of rhodopsin and fusion protein fluorescence; the published Arch 

EEQ–EYFP fusion67 (Supplementary Table 1) is used, while all other sensors are fused to 

EGFP. Right graph—summary data. Baseline rhodopsin fluorescence normalized to EGFP 

fluorescence. Arch EEQ not included in comparison, as it has a different fluorescent protein 

fusion. Right construct—Arch-EGFP fusion vector design. Scale bar, 10 μm. (b) Average 

steady-state photocurrents generated by Arch WT (n=10) and different variants (n=9, 10 and 

9 respectively for Arch EEQ, Archer1, and Archer2) in neurons voltage clamped 

at V=−50 mV. Inset shows low levels of photocurrents expanded to indicate differences 

between variants. (c) Fluorescent responses (imaged at 500 Hz) of single neurons expressing 

Arch EEQ, Archer1 and Archer2 to voltage-clamped steps in membrane potential. Neurons 

are held at −70 mV and stepped to voltages ranging from −100 mV to +50 mV in 10 mV 

increments. (d) Sensitivity of Arch variants measured as the functional dependence of 

fluorescence to change in voltage. Fluorescence changes are averaged over 1,000 ms voltage 

steps and plotted against voltage. Results exhibit linear dependence with R2values of 0.98, 

0.95, and 0.99 for Archer1 (n=10), Archer2 (n=3) and Arch EEQ (n=5) respectively. (e) 

On/Off kinetics in response to a 100 mV step (−70 mV to +30 mV) for Archer1 (n=10) 

compared with Arch WT (n=6). %ΔF/F for each time point is normalized to the maximum 

step response (%ΔF/F averaged over the whole step) (imaged at 1,000 Hz). Laser 

illumination for Arch WT, Archer1 and Archer2 (λ=655 nm; I=880 mW mm−2) is lower than 

that used for Arch EEQ (λ=655 nm; I=1,500 mW mm−2). Error bars represent s.e.m. 

***P<0.001, NS P>0.05, unpaired student’s t-test. 
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Figure 2: A method for comparing different voltage sensors. (a) Overview of the method 

used to quantify SKi. Step 1: averaged fluorescence responses (imaged at 500 Hz) of neurons 

expressing Archer1 (n=10) to voltage-clamped steps in membrane potential. Neurons are 

held at −70 mV and then stepped to voltages ranging from −100 mV to +50 mV in increments 

of 10 mV. Step 2: voltage sensitivity of fluorescence is plotted for each time point and a 

linear fit is calculated. This step assumes a linear dependence of fluorescence on voltage. 

Step 3: the slope for each linear fit is plotted over time. This measure allows one to calculate 

%ΔF/F for a desired voltage change over any time scale. (b) Averaged change in 

fluorescence due to a 100 mV step (−70 mV to +30 mV) of Archer1 (n=10) compared with 

Arch WT (n=6) shows significant differences in response magnitude (× 25–30). To compare 

the kinetics of the two sensors, normalization across the step is necessary. The maximum 

value within three different regions (I, II and III) is used as a normalization factor, resulting 

in different apparent kinetics and prompting the need for a different method for kinetic 

analysis. (c) Plotting the voltage sensitivity for each time point with linear best fits for Arch 

EEQ (n=5) and Archer2 (n=3) shows a slower rise to the steady-state value than Archer1 

(n=10). (d) Summarizing the SKi comparison of Archer1, Arch EEQ and Archer2. Inset 

expands the first 40 ms. Laser illumination for Arch WT, Archer1 and Archer2 

(λ=655 nm; I=880 mW mm−2) and for Arch EEQ (λ=655 nm; I=1,500 mW mm−2). 

 

 

Figure 3: Archer1 fluorescence tracks action potentials in cultured neurons. (a) Fluorescence 

of Archer1 expressing rat hippocampal neuron. Cell body and individual processes are 

outlined. Scale bar, 10 μm. (b) Fluorescence (imaged at 500 Hz) from single-trial optical and 

electrophysiological recordings of action potentials induced by a step current injection 
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(800 ms, 50 pA) analyzed for the color-matched somatic and dendritic areas outlined in a. 

(c) Fluorescence (imaged at 500 Hz) from single-trial recordings of action potentials in 

neurons expressing Archer1 and Arch EEQ. Firing of 20 and 22.5 Hz, respectively is 

generated through a step current injection (800 ms, 50 pA) in current-clamped cells. 

Fluorescence change is measured in absolute terms, as opposed to a percentage change, due 

to the lower baseline fluorescence of Arch EEQ. (d) Expanded regions of action potentials 

from c. Archer1 shows ~2 × higher change in fluorescence and >6 × increase in SNR (24.03 

versus 3.75) when compared with Arch EEQ, allowing it to better track action potential 

waveforms. Each fluorescent point is 2 ms apart. (e) Archer1 fluorescence (imaged at 

1,000 Hz) successfully tracks action potentials in cultured rat hippocampal neurons at 40 Hz: 

higher limit for such cultures, generated through a succession of brief, large amplitude 

current pulses (5 ms, 500 pA). Individual action potentials at 40 Hz show ~40% change in 

ΔF/F. (f) Single-trial recording of high frequency (100 Hz and 150 Hz) voltage steps 

(−70 mV to +30 mV) are generated in neurons to test Archer1’s ability to detect fast trains 

of depolarization and hyperpolarization. Fluorescence changes (imaged at 1,000 Hz) 

exhibited by Archer1 are >50% ΔF/F for both frequencies and return near baseline between 

each pulse. Each fluorescent point is 1 ms apart. Laser illumination for Archer1 

(λ=655 nm; I=880 mW mm−2) and Arch EEQ (λ=655 nm; I=1,500 mW mm−2). Fluorescence 

traces in b–e have undergone background subtraction and Gaussian averaging. 
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Figure 4: Archer1 acts as either a sensor or actuator at separate wavelengths. (a) 

Normalized steady-state activation spectrum of Archer1 spanning wavelengths between 

386–650 nm (n=11). (b) Currents induced by low intensity green LED illumination 

(n=8, λ=560±25 nm; I=3 mW mm−2) are significantly larger than those induced by high 

intensity red laser illumination (n=16, λ=655 nm; I=880 mW mm−2). (c) Archer1 exposed to 

green light successfully inhibits action potentials induced by step current injections (at 20, 

30 and 40 pA) when compared with non-illuminated current injections in the same cell. (d) 

Action potentials induced by a 100 pA current injection (900 ms) are inhibited by a pulse of 

green light (300 ms; I=3 mW mm−2), while no inhibition of action potentials is observed with 

a pulse of red laser at the power used to excite fluorescence (300 ms; I=880 mW mm−2). In 

addition, with no current injection, hyperpolarization is observed with exposure to green, but 

not red light. Error bars represent s.e.m. ***P<0.0001, unpaired Student’s t-test. 

 

 
Figure 5: Archer1 tracks activity in populations of cultured neurons and behaving worms. 

(a) Monitoring fluorescence in three Archer1 expressing cultured neurons with electrical 

stimulation of one cell. Cell A undergoes a voltage clamped 100 mV step and fluorescence 
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changes in the population are measured simultaneously. Cell A exhibits a step-like 

increase in fluorescence corresponding to the voltage step. Cell B, whose fluorescence 

indicates spontaneous firing before the step, shows an increase in firing rate concurrent with 

the voltage step in Cell A, with continued firing after the step is completed. Fluorescence of 

Cell C appears not responsive to the voltage step in Cell A. Asterisks indicate action 

potential-like changes in fluorescence (~35–40% ΔF/F increase within 10 ms). Scale bar, 

20 μm. (b) C. elegans expressing Archer1 in one AWC neuron shows opsin fluorescence 

(λ=655 nm; I=880 mW mm−2, 100 ms exposure) co-localizing with fused EGFP fluorescence 

(λ=485±20 nm; I=0.05 mW mm−2, 100 ms exposure). Scale bar, 20 μm. (c) Top: behavioral 

paradigm: worms are stimulated with odorant (Isoamyl alcohol, IAA) for 5 min, flow is 

switched to buffer (S Basal) for 30 s, and then odorant flow is restored. On the same worm, 

a control is performed where odorant is replaced with buffer. Bottom traces: imaging of 

Archer1 fluorescence (250 Hz) is performed continuously for 40 s, starting 5 s before flow 

switch. Averaged ΔF traces for two worms are shown. (d) Mean fluorescence of the 4-s time 

window after switch shows a significant increase with stimulus compared with no-stimulus 

controls (n=4 worms). Fluorescence traces imaged at λ=655 nm; I=880 mW mm−2. 

Fluorescence traces in a and b have undergone background subtraction and Gaussian 

averaging. Error bars represent s.e.m. *P<0.05, paired student’s t-test. 

2.4.5 Supplementary figures and tables 
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Supplementary Figure 1 | Structural alignment of Arch variants with Arch-1. (a) 

Sequence alignment via ClustalW2. Arch-1 (Uniprot P69051), Archer1, and Archer2 share 

93% amino acid identity. The alignment shows the D95E, T99C and A225M mutations of 

Archer1 and Archer2 from Arch WT boxed in blue. (b) Archer1 construct design and 

schematic of location of opsin-fluorescent protein fusion in membrane. Locations of the 

mutated residues (D95, T99 and A225) are shown in blue and their relative positions to the 

retinal chromophore in black. 

 
Supplementary Figure 2 | Residual photocurrents of Arch variants and effect on 

membrane potential. (a) Single trace voltage-clamp recordings of photocurrents in neurons 

expressing Arch WT and variants in response to three consecutive pulses of laser 

illumination at the intensity used for fluorescence imaging. Arch EEQ, as previously 

reported67, shows no steady-state photocurrent in response to laser illumination, while 

Archer1 and Archer2 exhibit small steady-state currents. Arch EEQ and Archer1 both 

respond to laser illumination with a brief peak of depolarizing photocurrent before reaching 

steady state. This has been observed with microbial rhodopsin-based voltage sensors as 

previously reported for Mac60. (b) Archer1 photocurrent characteristics are measured in 

response to 10 consecutive laser pulses (n = 10). An initial peak current is generated in 

naïve cells exposed to laser illumination for the first time. Subsequent pulses reach a lower 

steady state without a peak. (c) Current clamp recordings of changes in membrane voltage 
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of neurons expressing Archer1 (n = 15) induced by pulses of laser illumination. (d) Input 

resistance of patched cells expressing Arch WT (n = 8), Arch EEQ (n = 10) and Archer1 (n 

= 10) recorded as a measure of quality of the seal break. Laser illumination for Arch WT, 

Archer1 and Archer2 (λ = 655 nm; I = 880 mW mm-2), and Arch EEQ (λ = 655 nm; I = 

1,500 mW mm-2). Error bars represent standard error of the mean (s.e.m.). 

 
Supplementary Figure 3 | Averaged fluorescence sensitivity of Arch variants. Averaged 

fluorescence responses (imaged at 500 Hz) of neurons expressing Arch EEQ (n = 5), 

Archer1 (n = 10) and Archer2 (n = 3) to voltage clamped steps in membrane potential. 

Neurons are held at -70 mV and then stepped to voltages ranging from -100 mV to +50 mV 

in increments of 10 mV. Laser illumination for Archer1 and Archer2 (λ = 655 nm; I = 880 

mW mm-2), and Arch EEQ (λ = 655 nm; I = 1,500 mW mm-2). 

 

Supplementary Figure 4 | Archer1 fluorescence sensitivity is stable with prolonged 

illumination. (a) Laser exposure and sensitivity measurement paradigm consists of 

detecting the sensitivity of fluorescence response to 100 mV voltage step in three 

consecutive measurements separated by 5 minutes of continuous laser exposures, with the 

first exposure at 880 mW mm-2 and the second at 1,500 mW mm-2. (b) The average 

percentage change in fluorescence in response to 100 mV step in voltage does not 

significantly change after the first (n = 8) or second (n = 6) prolonged laser exposure. (c) 

Average fluorescence waveforms for the sensitivity measurements described in (a, b) show 

no change in the characteristics of fluorescence response. Laser illumination for Archer1 (λ 

= 655 nm; I = 880 mW mm-2). Error bars represent standard error of the mean (s.e.m.). 
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Supplementary Figure 5 | Worm movement and fluorescence in anesthetized vs. non-

anesthetized worms. (a) Tracking fluorescence of an AWC cell. Cell location is determined 

by averaging coordinates of fluorescent pixels above a set threshold and monitoring their 

position on an x-y coordinate plane over time. Non-anesthetized worms show significant 

movement in both x (blue) and y (red) direction throughout the stimulation protocol 

compared to anesthetized worms. (b) Time locked fluorescence and cell movement traces 
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during a stimulus paradigm indicate that the frequent changes in fluorescence in non-

anesthetized worms, not apparent in anesthetized worms, correlates with worm movement. 

(c) Fluorescence traces of repeated trials of stimulation (red) within the same worm 

compared to control (black). (d) Single trial fluorescence response to stimulus and control 

paradigms for two worms (A and B) and the average fluorescence trace of the two. 

Fluorescence traces imaged at λ = 655 nm; I = 880 mW mm-2. Fluorescence traces (ΔF) in 

(b)-(d) have undergone background subtraction and Gaussian averaging. 

 
Supplementary Table 1 | Accession codes 
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Supplementary Table 2 | Cloning primers 

2.4.6 Supplementary movie captions 

Supplementary Movie 1 | Archer1 fluorescence in response to a voltage step. Fluorescent 

response of an Archer1 expressing rat hippocampal neuron to a voltage-clamped step in 

membrane potential from -70 mV to +50 mV. Step begins 500 ms into the video and ends 

1,000 ms later. Laser illumination for Archer1 is λ = 655 nm; I = 880 mW mm-2.1 
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Supplementary Movie 2 | Archer1 fluorescence tracks action potentials throughout a 

neuron. An 800 ms, 50 pA step current injection is applied to a current-clamped, Archer1 

expressing rat hippocampal neuron. Action potentials (*) are generated at 11.5 Hz in 

response to the current injection and Archer1 fluorescence is monitored throughout, 

showing large changes in fluorescence in the cell body and individual neurites in response 

to each action potential (visualized as fluorescence blinking). Laser illumination for 

Archer1 is λ = 655 nm; I = 880 mW mm-2.1 

1 = data file is stored at data.caltech.edu 

2.4.7 Materials and methods 

Ethics statement 

 All experiments using animals in this study were approved by Institutional Animal 

Care and Use Committee (IACUC) at the California Institute of Technology. 

Sensor constructs 

 Arch variant constructs were generated by first amplifying EGFP from FCK-Arch-

GFP (Accession codes listed in Supplementary Table 1) and adding the ER export domain 

using GFPfwd_overlapTSend and FCK-GFPrev_ERexport primers (Supplementary Table 

2) to make EGFP-ER. Arch-TS was then amplified from pLenti-CaMKIIa-eArch3.0-EYFP 

(Supplementary Table 1) using Archfwd and TSrev_into_GFPstart primers (Supplementary 

Table 2), assembled with EGFP-ER using Archfwd and ERrev primers (Supplementary 

Table 2), and subsequently cloned back into pLenti-CaMKIIa-eArch3.0-EYFP cut 

with BamHI and EcoRI restriction enzymes, to make pLenti-CaMKIIa-eArch3.0-EGFP. To 

make pLenti-CaMKIIa-Archer1-EGFP and pLenti-CaMKIIa-Archer2-EGFP, the D95E, 

T99C, and A225M mutations were introduced in the pLenti-CaMKIIa-eArch3.0-EGFP 

vector through overlap assembly PCR using Archfwd, ERrev, Arch3.0_D95E_T99C_fwd, 

Arch3.0_D95E_T99C_rev, Arch3.0_A225M_fwd, and Arch3.0_A225M_rev primers 

(Supplementary Table 2) and subsequent cloning back into the backbone 

via BamHI and EcoRI sites. pLenti-Arch-EEQ (Supplementary Table 1), an EYFP fusion, 

was used as a comparison. 

 To make Pstr-2::Archer1eGFP::unc-54 3′UTR, Archer1 was amplified from pLenti-

CaMKIIa-Archer1-EGFP using Arch-NheI-AAA-F and Arch-EcoRI-R primers 

(Supplementary Table 2) and inserted into the pSM vector using NheI and EcoRI sites. 

https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1
https://www.nature.com/articles/ncomms5894#s1


 

 

46 

The C. elegans Kozak sequence AAA, and the restriction enzyme sites mentioned above 

were engineered into the primers73. The AWC-specific promoter, which is a 2 kb sequence 

5′ to the start codon of str-2, was amplified from genomic DNA using str-2p-SphI-F2(2K) 

and str-2p-AscI-R2 primers (Supplementary Table 2) and cloned into the vector 

via SphI and AscI sites. 

Primary neuronal cultures 

 Rat hippocampal cells were dissected from Wistar pups (postnatal days 0–1, Charles 

River Labs), and cultured at 37 °C, 5% CO2 in Neurobasal media supplemented with B27, 

glutamine and 2.5% FBS. Three days after plating, glial growth was inhibited by addition of 

FUDR. Cells were transfected 4–5 days after plating with Arch WT and variants using 

calcium chloride. Neurons were imaged 3–5 days after transfection. 

Fluorescence imaging 

 Imaging was performed concurrently with electrophysiology recordings of voltage- 

and current-clamped cultured rat hippocampal neurons. For both cultured neurons and in vivo 

C. elegans experiments, a Zeiss Axio Examiner.D1 microscope with a 20x 1.0 NA water 

immersion objective (Zeiss W Plan Apochromat × 20/1.0 DIC D=0.17 M27 75 mm) was 

used. A diode laser (MRL-III-FS-655-1.3W; CNI) with a 650/13 nm excitation filter, 685 nm 

dichroic mirror and 664 nm long-pass emission filter (all SEMROCK) was used for 

rhodopsin fluorescence excitation throughout. For cultured neuron experiments Arch WT, 

Archer1 and Archer2 fluorescence was excited with 880 mW mm−2 illumination intensity at 

the specimen plane, while for Arch EEQ, 1,500 mW mm−2 illumination intensity was used. 

Higher illumination intensity was used for Arch EEQ compared with other Arch variants due 

to its lower baseline fluorescence with our imaging setup. For C. elegans experiments, 

880 mW mm−2 illumination intensity was used to visualize Archer1 fluorescence. For all 

experiments, fused EGFP fluorescence was imaged with 485±25 nm LED light using a 

Lumencor SPECTRAX light engine with quad band 387/485/559/649 nm excitation filter, 

quad band 410/504/582/669 nm dichroic mirror and quad band 440/521/607/700 nm 

emission filter (all SEMROCK) at 0.05 mW mm−2. 

https://www.nature.com/articles/ncomms5894#s1
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 All fluorescence traces were recorded using an Andor Neo 5.5 sCMOS camera 

cooled to −30 °C at 500 or 1,000 Hz. Pixels were binned up to 0.54 μm × 0.54 μm to achieve 

the image acquisition speeds. All recordings were taken using Andor’s Solis software. 

Electrophysiology 

 Conventional whole-cell patch-clamp recordings were done in cultured rat 

hippocampal neurons at >2 days post transfection. Cells were continuously perfused with 

extracellular solution at room temperature (in mM: 140 NaCl, 5 KCl, 10 HEPES, 2 MgCl2, 

2 CaCl2, 10 glucose; pH 7.35) while mounted on the microscope stage. Patch pipettes were 

fabricated from borosilicate capillary glass tubing (1B150-4; World Precision Instruments, 

Sarasota, FL) using a model P-2000 laser puller (Sutter Instruments) to resistances of 2–5 

MΩ. Pipettes were filled with intracellular solution (in mM): 134 K gluconate, 5 EGTA, 10 

HEPES, 2 MgCl2, 0.5 CaCl2, 3 ATP, 0.2 GTP. Whole-cell patch-clamp recordings were 

made using a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA), a Digidata 

1440 digitizer (Molecular Devices), and a PC running pClamp (version 10.4) software 

(Molecular Devices) to generate current injection waveforms and to record voltage and 

current traces. 

 Patch recordings were done simultaneously with imaging for measurements of 

voltage-sensitive fluorescence. For sensitivity measurements, cells were recorded in voltage 

clamp with a holding potential of −70 mV for 0.5 s and then 1 s voltage steps were applied 

ranging from −100 mV to +50 mV in 10 mV increments. Action potentials were generated 

in current clamp by current injection in either a long step (10–200 pA; 0.8 s) or in short pulses 

(100–500 pA; 2–10 ms). 

 Patch-clamp recordings were done with short light pulses to measure photocurrents. 

Photocurrents induced by the excitation wavelength used for voltage sensing were measured 

using a 655 nm laser at 880 mW mm−2. Photocurrents induced by green light were measured 

using 560±25 nm LED at 3 mW mm−2. Photocurrents were recorded from cells in voltage 

clamp held at −50 mV with 3–10 light pulse trains (0.5 s each pulse; 2 s apart). Voltage 

changes induced by 655 nm laser at 880 mW mm−2 were measured in a current clamp mode 

with three 0.5 s light pulses separated by 2 s and zero current injection. 



 

 

48 

 To test for inhibitory capabilities of Arch mutants, pulses (300 ms) of illumination 

with either red laser (655 nm at 880 mW mm−2) or green LED (560±25 nm at 3 mW mm−2) 

were applied to cells during a 900 ms train of induced action potentials (generated in current 

clamp by current injections from 30–100 pA). 

 Action spectra measurements were performed for the following wavelengths: 

386±23 nm, 438±24 nm, 485±20 nm, 513±17 nm, 560±25 nm and 650±13 nm with light 

intensity matched across all experiments at 0.08 mW mm−2. Each light pulse was delivered 

for 0.6 s with 10 s breaks between light pulses. All wavelengths were produced using LED 

illumination from a SPECTRAX light engine (Lumencor). Cell health was monitored 

through holding current and input resistance. 

Microinjection and germ line transformation in C. elegans 

 The transgenic line used in this work is PS6666 N2; syEx1328[Pstr-

2(2k)::Archer1eGFP(75 ng μl−1); Pofm-1::RFP(25 ng μl−1)]. Pstr-2::Archer1eGFP::unc-54 

3′UTR was co-injected with a Pofm-1::RFPmarker into Bristol N2 using the method 

described by Mello, et al.74. The two plasmids were diluted to the desired concentration in 

water to make a 5 μl injection mix. The injection mix was spun down at 14,000 r.p.m. for 

15 min and transferred to a new tube before injection to prevent needle clogging. Late L4 

hermaphrodites were transferred to a newly seeded plate and maintained at 22 °C 1 day 

before injection. The microinjection was performed the next morning when the worms had 

become young adults. Worms were glued on a 2% agarose pad and covered with Halocarbon 

Oil (Halocarbon Products Corporation, HC-700) before injection. A quantity of 0.8 μl of the 

injection mix was loaded into the injection needle. For generating this transgenic line, 32 

hermaphrodites (P0S) were injected for both arms of the gonad. 27 F1 were identified 3 days 

after injection based on Pofm-1::RFP expression in coelomocytes. Among them, five 

eventually became stable lines. The best line used in this study was determined by the highest 

transmission rate and the strongest expression level of Archer1eGFP. 

C. elegans in vivo stimulation experiments 

 Late L4 transgenic worms were transferred to a plate seeded with the mixture of 

OP50 and all-trans-Retinal (ATR) (Sigma-Aldrich, USA), and maintained at 22 °C in the 

dark 18 h before imaging. The final concentration of ATR in the mixture was 100 μm (diluted 
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from 100 mM stock: 100 mg ATR powder dissolved in 3.52 ml 100% ethanol) using fresh 

OP50. Five times higher concentration of ATR was previously used for wild-type Arch 

activity in worms. The microfluidic device is adapted for in vivo imaging. The PDMS chip 

contains four buffer inlets, one worm-loading channel and one suction channel connected to 

house vacuum. Two buffer inlets in the middle are the “buffer” and the “stimulus” channels, 

which are loaded with the default solution S Basal medium and 1:1,000 isoamyl alcohol 

(Sigma-Aldrich), respectively. S Basal medium containing 0.15% phenol red (Sigma-

Aldrich) is loaded in the side channels for detecting the laminar flow. An ATR-fed worm 

was first transferred to an empty NGM plate and washed in a drop of S Basal. It was then 

loaded in the microfluidic chip, where its nose was presented with either the buffer or the 

stimulus streams. The switch between buffer and stimulus stream was accomplished by 

changing the flow pressure from the side channels, which was regulated via an external valve 

controlled using a LabView script (National Instruments). The worm was exposed to the 

stimulus stream for 5 min (stimulus on), to the buffer stream for 30 s (stimulus off), and to 

the stimulus stream again. For performing the control experiments on the same worm, the 

flow switch remained the same, but the stimulus channel was loaded with S Basal. Imaging 

of Archer1 fluorescence began 5 s before stimulus was switched off and lasted for 40 s. For 

anesthetized experiments only, 0.1% levamisole (Sigma-Aldrich) was added to the worm-

loading channel to minimize movement artifacts. 

Data analysis 

 Unless otherwise noted, all fluorescence analysis was done with raw measurements 

of cell fluorescence background subtracted. Cells and background regions were selected 

manually in ImageJ and fluorescence measurements were recorded for each region of interest 

(ROI) and background fluorescence was subtracted from cell fluorescence. 

 Sensitivity analysis was performed using background subtracted fluorescence 

recordings. Baseline fluorescence (mean fluorescence of the cell 20 ms before voltage step) 

and step fluorescence (fluorescence over whole 1 s voltage step) were used to generate 

%ΔF/F traces for each voltage step. The mean %ΔF/F over the entire 1 s step was calculated 

for each voltage step and then plotted (%ΔF/F versus voltage step). 
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 On and off kinetics analysis was performed on fluorescence traces in response to 

a 100 mV step (−70 mV to +30 mV). Percentage change in fluorescence %ΔF/F for each 

time point is normalized to the maximum step response (%ΔF/F averaged over the whole 

step). 

SKi analysis was performed using time-locked, average %ΔF/F traces (voltage steps ranging 

from −100 mV to 50 mV in 10 mV increments) for all cells. At each time point throughout a 

voltage step (t=0 at time of voltage step trigger), %ΔF/F was plotted versus the respective 

voltage step. A linear best fit was then performed for the %ΔF/F versus voltage step for each 

time point. The slope of the best fit for each time point was then plotted over time 

(%ΔF/F/voltage step versus time). 

 SNR analysis for action potentials tracked by Archer1 and Arch EEQ fluorescence 

was performed. SNR was computed as SNR=abs(s–n)/σ, where s=peak fluorescence during 

action potential, n=average of preaction potential noise and σ=s.d. of the preaction potential 

noise. 

 Worm AWC cell and background regions were selected manually in ImageJ, 

fluorescence measurements were recorded for each ROI, and background fluorescence was 

subtracted from cell fluorescence. The ROI for the fluorescent cell was drawn to contain the 

cell soma for all time points of the experiment. ΔF is reported instead of %ΔF/F due to low 

detected baseline fluorescence. Calculating %ΔF/F would result in amplified signal, as well 

as amplified noise. 

 Worm movement analysis was performed on the worm fluorescence traces, which 

were first thresholded so that only the pixels above a certain threshold are considered pixels 

of the cell. The cell location was then determined by averaging coordinates of pixels above 

the set threshold for the first frame in the 10,000 frame experiment to get the coordinates at 

the center of the cell. A 70 × 70 pixel region around the center of the cell was then set as the 

ROI. The center of the cell was corrected by again taking the averaging coordinates of pixels 

above the set threshold within the 70 × 70 pixel region to eliminate any influence of pixel 

noise within the full frame. The corrected cell center (xc,1; yc,1) was then calculated for every 

frame of the 10,000 frame experiment (xc,1−xc,10,000; yc,1−yc,10,000). The x and y displacement 
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(xd; yd) were calculated for each frame as the difference from xc,1 and yc,1. 

The xd and yd were then plotted over time. 

Statistical methods 

 Paired and unpaired student’s t-tests were performed using GraphPad Prism (version 

6.04 for Windows, GraphPad Software, San Diego California, USA, www.graphpad.com). 

2.4.8 Additional information 

Nicholas C. Flytzanis & Claire N. Bedbrook 

These authors contributed equally to this work. 
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C h a p t e r  3  

WHOLE-BODY TISSUE CLEARING FOR HIGH-RESOLUTION 

PHENOTYPING OF INTACT TISSUES 

[1] Ezin, M.*, Flytzanis, N. C.* et al. “Bringing CLARITY to the classics: embryonic neural crest 

contribution in 3D”. In preparation. 

[4] Treweek, J. B. et al. (2015). “Whole-body tissue stabilization and selective extractions via tissue-hydrogel 

hybrids for high-resolution intact circuit mapping and phenotyping”. In: Nature Protocols 10(11), pp. 1860-

1896. doi: 10.1038/nprot.2015.122. 

 

3.1 Summary 

To facilitate fine-scale phenotyping of whole specimens, we describe here a set of 

tissue fixation-embedding, detergent-clearing, and staining protocols that can be used to 

transform excised organs and whole organisms into optically transparent samples within 1-2 

weeks without compromising their cellular architecture or endogenous fluorescence. PACT 

(passive CLARITY technique) uses tissue-hydrogel hybrids to stabilize tissue biomolecules 

during selective lipid extraction, resulting in enhanced clearing efficiency and sample 

integrity. Furthermore, the macromolecule permeability of PACT-processed tissue hybrids 

supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive 

index matching solution) grants high-resolution imaging at depth by further reducing light 

scattering in cleared and uncleared samples alike. These methods are adaptable to all tissues, 

from thick slices of individual organs to entire organisms. Together, these protocols and 

solutions enable phenotyping of subcellular components and tracing cellular connectivity in 

intact biological networks. 

Traditional experiments determining neural crest contributions in vertebrate embryos 

were performed with quail-chick grafts. Aside from the inadequacy of quail progenitors to 

correctly model the migrating chick neural crest due to species differences, these experiments 

also require tissue sectioning and staining, which can lead to populations of cells in distal 

locations being missed. Utilizing tissue clearing technologies optimized for use in amniote 

embryos, we can inspect lineage contributions in the whole, intact embryo, allowing a high 

resolution, three-dimensional representation of neural crest contribution throughout the 
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periphery. Grafts from the neural fold of GFP transgenic donor chickens were implanted 

into wild-type hosts and analyzed after up to six days of development. By coupling perfusion 

to remove autofluorescence, tissue clearing of the whole-mount embryo, and staining with 

antibodies or processing for fluorescent in situ hybridization (FISH), neural crest derivatives 

can be fully explored and characterized. The results reveal a surprisingly diverse array of cell 

types developing from the cardiac neural crest that contribute to the heart and outflow tract, 

as classically observed, but also to the enteric nervous system of the esophagus, Schwann 

cells along cranial nerves, pigment cells, and portions of cranial ganglia. 

3.2 Developing passive clarity techniques for diverse tissue types 
[4] Treweek, J. B. et al. (2015). “Whole-body tissue stabilization and selective extractions via tissue-hydrogel 

hybrids for high-resolution intact circuit mapping and phenotyping”. In: Nature Protocols 10(11), pp. 1860-

1896. doi: 10.1038/nprot.2015.122. 

3.2.1 Characterizing hydrogel composition and buffer conditions on tissue structure, protein 

loss and antibody penetration 

For selecting the parameters of one’s tissue clearing experiment, multiple factors 

need to be considered, such as tissue size and density, lipid content, retention of 

macromolecules, clearing time, and others. To fully understand the effect of the tissue 

clearing process on experimental outcome, I characterized an array of parameters for the 

various steps of the procedure. 

In unstabilized tissue, the prolonged incubation in detergent at 37 °C required for 

PACT and the perfusive force used in PARS would be detrimental to tissue integrity. Thus, 

the hybridization of amine-containing and PFA-cross-linked biomolecules to a hydrogel 

scaffold serves to stabilize tissue architecture and nonlipid content throughout all aspects of 

PACT and PARS tissue processing. During PARS, the rodent's intact connective tissue and 

inflexible skeleton provide an additional degree of structural support. To support rapid 

delipidation in the absence of potentially tissue damaging electrophoretic clearing (ETC)75, 

the composition of the PARS/PACT15 hydrogel monomer solution bares a few major 

changes from our originally proposed CLARITY hydrogel14, which consisted of 4% (wt/vol) 

acrylamide, 4% (wt/vol) PFA and 0.05% (wt/vol) bis-acrylamide (A4P4B0.05). First, the 
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cross-linker bis-acrylamide must be excluded from the PARS hydrogel formulation to 

prevent hydrogel blockages in vasculature and perfusion lines. Its exclusion from the PACT 

hydrogel as well, and the reduced exposure of tissues to PFA in both protocols, accelerates 

clearing and immunolabeling steps. With a final composition of 4% (wt/vol) acrylamide and 

0% PFA (A4P0), the resulting minimal polymeric scaffold of the PARS and PACT tissue-

hydrogel matrices suffices not only to retain tissue proteins (Fig. 3a and Supplementary Fig. 

2) and stabilize tissue macrostructure15 during clearing, but it also allows SDS micelles to 

diffuse more freely through tissue for efficient clearing (Figs. 4a; Supplementary Fig. 2c). 

Similarly, a lower cross-link density ensures that antibodies can better access tissue epitopes 

during immunolabeling (Fig. 4b–d). 

Traditionally, tissue clearing protocols have aimed to render samples transparent via 

homogenizing the RIs of the various tissue components and matching their RIs with the lens 

and mounting setup (e.g., glass coverslip interfaces). This has often been accomplished via 

exchanging the aqueous fraction of tissue (RI ∼1.33) with a mounting medium of higher RI, 

which includes organic solvents such as BABB (RI ∼1.53–1.57)76–78, dibenzyl ether 

(RI ∼1.56)79,80 , methyl salicylate (RI ∼1.52–1.54)81 and 2,2′thiodiethanol (RI ∼1.52)82; 

polyol and saturated sugar solutions such as glycerol (RI ∼1.43–1.47)14, sucrose and fructose 

(RI ∼1.49–1.50)83; and amides such as formamide (RI ∼1.44)84 and urea (RI ∼1.38)85,86. 

Aside from passive CLARITY87 and PACT15, few passive clearing protocols endeavor to 

alter the chemical composition of tissue, by removing major tissue components from samples 

so that they become less light-scattering. One notable example is CUBIC86,88, which also 

combines the use of passive delipidation and RI matching to achieve transparency. Thus, we 

sought to compare the level of delipidation that was achieved with PACT-based clearing 

(A4P0 and A4P4 hydrogels) and CUBIC-based clearing. To examine the efficacy of tissue 

delipidation, we used transmission electron microscopy (TEM; Fig. 5b). Indeed, as 

illustrated by membrane permeabilization and extraction, lipid removal was noticed in all 

conditions, and it was highest in A4P0, in which a high degree of fine structure loss is evident. 

In contrast, A4P4 tissue, although extracted, still retains enough contrast for identifying fine 

structural detail, such as membrane-bound organelles and small neurites. With respect to 

structural preservation, the CUBIC samples are between the two PACT conditions, showing 

https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f12
https://www.nature.com/articles/nprot.2015.122#f12
https://www.nature.com/articles/nprot.2015.122#f4
https://www.nature.com/articles/nprot.2015.122#f12
https://www.nature.com/articles/nprot.2015.122#f4
https://www.nature.com/articles/nprot.2015.122#f5
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nearly complete lipid extraction but with some cytoskeletal elements in the axon 

preserved. Although samples embedded in A4P0 hydrogel showed adequate protein and 

nucleic acid retention for imaging endogenous fluorescence (Fig. 5c) and detecting myelin-

binding proteins (Fig. 5d), if an enhanced level of tissue preservation is desired, it is best to 

embed samples in a hydrogel with a higher order of tissue cross-linking by including PFA 

(for example, by adding 1–4% (wt/vol) PFA to the 4% acrylamide hydrogel solution, termed 

A4P1-4). Alternatively, samples can be processed in parallel, and adjacent areas can be 

directed either to TEM or to hydrogel-embedding and clearing to obtain both ultrastructural 

and volume information, respectively. 

The denaturing anionic detergent sodium dodecyl sulfate (SDS), used for lipid 

removal in PACT/PARS, is also very effective in dissociating DNA from proteins (e.g., for 

cell nuclei removal) and in disrupting extracellular matrices to facilitate protein removal 

(e.g., ionic interactions of SDS with membrane proteins allow for their removal and 

purification). For example, retrograde perfusion of a cadaveric rat heart with 1% (wt/vol) 

SDS for 12 h results in its complete decellularization89. By contrast, SDS solubilization of 

lipid bilayers via a micellar mechanism is a slower process. Thus, to guard against the 

extraction of peptide and nucleic acid content during SDS clearing, it is important that 

nonlipid tissue components have been hybridized to a hydrogel scaffold. 

In the initial Nature paper describing CLARITY14, the dense tissue-hydrogel cross-

linking conferred by A4P4B0.05 tissue embedding prohibited rapid passive clearing of large 

tissue blocks75. The advanced CLARITY protocol87 suggests decreasing acrylamide 

concentrations to as low as 0.5% (A0.5P4B0.0125) when clearing is performed passively 

rather than with ETC-based rate enhancement. After the initial, thorough perfusion-fixation 

step with 4% PFA, PACT and PARS tissues are infused with A4P0 monomer15. Although 

bis-acrylamide may be included in the hydrogel formulation to stabilize fragile samples, we 

have not found the addition of bis-acrylamide to be beneficial in preventing protein loss (Fig. 

3a) in either A4P0-hybridized (A4P0B0.05) or A4P4-hybridized (A4P4B0.05) tissues. 

Furthermore, although protein retention is similar for all A4P0-4 formulations (Fig. 3a), 

higher concentrations of PFA, which anchors tissue to the hydrogel mesh and increases tissue 

cross-linking, result in enhanced fine structure preservation (Fig. 5b) and limit anisotropic 

https://www.nature.com/articles/nprot.2015.122#f5
https://www.nature.com/articles/nprot.2015.122#f5
https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f5
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tissue-hydrogel expansion (Fig. 3b,c). The resulting less-porous tissue-hydrogel matrix 

curtails protein solubilization by SDS (Fig. 3a and Supplementary Fig. 2b); clearing speed 

(Fig. 4a and Supplementary Fig. 2c), overall tissue transparency (Fig. 4a), and the efficiency 

of antibody labeling (Fig. 4b–d) are all reduced. Thus, PFA-containing hydrogel 

formulations are only recommended for samples that will be used for in-depth profiling of 

fine structures, in which protein and nucleic acid retention is of maximum importance. 

Most protocols that render tissues transparent cause notable sample volume 

fluctuations. In general, clearing protocols that entail dehydration steps for clearing with 

organic solvents or some concentrated RI-matching solutions cause tissue shrinkage, 

whereas protocols that involve prolonged incubations in aqueous detergent-based solutions 

tend to cause gradual tissue expansion83,85,90. In part a consequence of the water-absorbing 

properties of polyacrylamide, a nitrogen-containing derivative of the super-absorber 

polyacrylic acid, tissue-hydrogel expansion has previously been reported with CLARITY 

and PACT-processing14,15 (Fig. 3b,c), and indeed it has been used to great advantage in 

ExM91. Several factors have been shown to influence the swelling properties of water-

absorbing hydrogels. The most notable are pH; the dissolved ion content of the aqueous 

swelling medium (i.e., clearing buffer) and the tissue-hydrogel microstructure, including the 

ordering of monomeric units within a polymerized hydrogel; the degree of cross-linking; and 

the mechanical rigidity of the embedded tissue. With respect to tissue clearing, as detergent 

gradually solubilizes and extracts tissue biomacromolecules, not only can water migrate into 

this additional space in the tissue-hydrogel matrix, but also there is less mechanical resistance 

from tissue components to polymer swelling as water continues to diffuse in. A modification 

to passive CLARITY-based protocols in order to counteract tissue expansion that occurs 

during clearing and to minimize the occurrence of morphological artifacts that could be 

introduced with fluctuating tissue size is by performing PACT with a hydrogel monomer 

formulation that contains increasing amounts of PFA (e.g., a hydrogel solution of 4% 

(wt/vol) acrylamide and 1–4% (wt/vol) PFA, A4P1–4)). The inclusion of PFA in hydrogel 

monomer compositions not only combats hydrogel swelling but also the expansion becomes 

increasingly isotropic (Fig. 3b). Thus, for improved tissue preservation, it is advisable to 

supplement the A4P0 hydrogel recipe with PFA (1–4% PFA in the monomer solution). 

https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f12
https://www.nature.com/articles/nprot.2015.122#f4
https://www.nature.com/articles/nprot.2015.122#f12
https://www.nature.com/articles/nprot.2015.122#f4
https://www.nature.com/articles/nprot.2015.122#f4
https://www.nature.com/articles/nprot.2015.122#f3
https://www.nature.com/articles/nprot.2015.122#f3
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The inclusion of PFA in monomer solutions also curtails tissue size changes in 

mounting medium. Upon their initial immersion in RIMS, tissue samples contract during the 

first hour (∼20% for A4P0-embedded coronal rodent brain sections), followed by a gradual 

rebound back to their pre-RIMS size. Imaging during this time window should be avoided, 

as these slight size fluctuations could introduce apparent tissue deformities or sample drift 

issues during image acquisition. With adequate equilibration in RIMS (e.g., hours to days, 

depending on sample size, tissue permeability, and so on), sample size and transparency will 

reach a steady state for high-resolution, deep imaging15. 

3.2.2 Main figures 

 

Figure 3: PACT protein loss and tissue expansion for different hydrogel and clearing 

conditions. A detailed comparison of the protein loss and tissue expansion for eight different 

hydrogel matrix compositions: A4P0, A4P1, A4P2, A4P4, A4P0B0.05, A4P4B0.05, 

A2P0B0.025 and unhybridized, and four different clearing buffers: 8% SDS-PBS (pH 7.5), 

8% SDS-PBS (pH 8.5), 8% SDS-BB (pH 8.5) and 8% SDS in 0.1 M PB (pH 7.4). Perfused 

and fixed mouse brains were sliced into 1-mm-thick coronal slices, and combinations of all 

the different hydrogel and clearing conditions were performed on slices from comparable 

locations. Slices were monitored and imaged every 12 h, and the clearing buffer was 

collected for protein loss measurements and replaced. (a) Total protein content within each 

sample of clearing buffer collected throughout the clearing process was measured by the 

bicinchoninic acid assay by extrapolating the concentration of protein from a standard curve 

of BSA concentration in each clearing buffer (Supplementary Fig. 2a). Protein amounts from 

each time point were summed until each slice was completely clear, resulting in a measure 

for the total amount of protein lost while clearing for each slice. This total protein loss was 

then compared with the initial weight of each slice (n = 3). A comparison was also made with 

the protein loss of 100-μm-thick slices that were not cleared but were permeabilized with 

https://www.nature.com/articles/nprot.2015.122/figures/12
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PBST overnight (n = 9). (b) Comparison between total width and height tissue expansion 

between hydrogel compositions (n = 4). (c) Tissue expansion comparisons with different 

clearing conditions (n = 8). (a–c) Data are presented as mean ± s.e.m. Experiments on 

vertebrates conformed to all relevant governmental and institutional regulations, and they 

were approved by the Institutional Animal Care and Use Committee (IACUC) and by the 

Office of Laboratory Animal Resources at the California Institute of Technology. 

 

 

Figure 4: Clearing time course and antibody penetration of PACT-processed samples. 

Quantitative comparison of the effect of different hydrogel-embedding conditions and 

clearing buffers on time to clear and antibody penetration during immunostaining. 1-mm-

thick mouse coronal slices were hybridized and cleared with the array of previously used 

PACT conditions (Fig. 3). Slices were monitored for the time they took to become 

https://www.nature.com/articles/nprot.2015.122/figures/3
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transparent. Once cleared, slices were washed and then immunostained. (a) Representative 

images of two 1-mm-thick coronal brain slices (∼1.0–0.0 mm anterior to bregma) through 

the time course for PACT clearing and a comparison of time to clear (mean ± s.e.m.) for each 

PACT hydrogel composition. For the representative images, slices were cleared with 8% 

SDS-PBS (pH 8.5) and incubated in RIMS for 24 h. (b) Imaging of antibody penetration 

through different PACT tissue preparations. Previously cleared and washed 1-mm-thick 

slices were immunostained for parvalbumin (red) and nuclei stained with DAPI (cyan), using 

2-d incubations with the primary and Fab format secondary antibodies, transferred to RIMS 

for 5 h and then RIMS-mounted. Samples from the cortex, traversing the depth of the slice, 

were imaged on a Zeiss LSM 780 confocal microscope with a Plan-Apochromat 10× 0.45 

NA M27 air objective (w.d. 2.0 mm). To ensure even illumination throughout the depth of 

the slice for fair antibody detection, we applied laser power z-correction (Zen software, 

Zeiss): power was changed linearly for each slice, shown as a gradient next to each image; 

starting power values at the top were chosen to match the level of fluorescence at the surface 

across slices, whereas the range of powers varied for different PACT conditions. Shown are 

images of staining through A4P0, A4P1 and A4P4 hydrogel-embedded samples, as well as 

unhybridized tissue, cleared with 8% SDS-PBS (pH 7.5). As antibody and small-molecule 

dye diffused through both the top and bottom surfaces of the slice simultaneously, the images 

show that within 2 d DAPI has fully penetrated in all the conditions, whereas antibody 

labeling has progressed to varying extents, depending on the PACT condition. As slices 

cleared with the different conditions also swell to different extents during the process 

(indicated by their difference in height relative to the pre-clearing height of 1 mm, as 

indicated by the white dotted lines in b, penetration of antibody through a more swollen 

sample will either require longer diffusion time or faster diffusion rate to reach an equivalent 

anatomical depth as in a less swollen sample. Incomplete detection of the DAPI signal in 

A4P1 and A4P4 slices is due to the difficulty of achieving similar light penetration in highly 

cross-linked slices. (c) Depiction of parvalbumin staining through same slices as in b. DAPI 

signal has been removed to better show the variable penetration of the antibody over the 

course of a 2-d period. (d) Quantification of antibody penetration through PACT conditions 

depicted in b and c. Antibody fluorescence signal was scaled by the average DAPI intensity 

for each z-section inside the volume, and the average scaled fluorescence along a line 

perpendicular to the tissue surface produced a final estimate of labeling intensity (in arbitrary 

units, a.u.) as a function of tissue depth. Antibody diffusion was fit to an exponential model 

[f(x) = a × exp (−tau × x) + b], with the exponent tau being inversely proportional to the 

square root of the diffusivity, wherein a larger tau indicates slower diffusion. Labeling 

intensities for A4P0, A4P1, A4P4 and unhybridized samples cleared with 8% SDS-PBS (pH 

7.5), as a representative sample of all the different buffers, are plotted on a logarithmic scale. 

The amount of PFA contained in the hydrogel-tissue matrix is inversely proportional to 

immunohistochemical staining efficiency. Experiments on vertebrates conformed to all 

relevant governmental and institutional regulations, and they were approved by the 

Institutional Animal Care and Use Committee (IACUC) and by the Office of Laboratory 

Animal Resources at the California Institute of Technology. 
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Figure 5: Preservation of tissue architecture during delipidation. The differential effects of 

individual clearing conditions on cellular architecture and endogenous and stained 

fluorescence imaging. (a–c) Mice that received bilateral intracranial injections in the lateral 

septum of AAV expressing the tdTomato transgene were perfusion-fixed with 4% PFA, and 

a subset of 1-mm-thick unhybridized coronal brain sections were prepared for microscopy 

without clearing (control, first column), or they were first rendered transparent via the 

CUBIC method86,88 (second column). The second subset of 1-mm-thick sections underwent 

PACT-processing: A4P0 embedding (third column) or A4P4 embedding (fourth column) 

and clearing with 8% SDS-PBS (pH 7.5), followed by preparation for ultrastructural study 

or RIMS mounting. (a) Brain sections were photographed after fixation (control) or 

immediately after clearing (CUBIC, A4P0 and A4P4) to illustrate the degree of tissue 

swelling that occurred for each condition. (b) Control (unhybridized, uncleared), CUBIC-

cleared and PACT-cleared (A4P0, A4P4) tissues were then processed identically for 

ultrastructural examination using electron microscopy and tomography. Overviews (top row) 

from each of the four samples illustrate the relative amount of lipid loss attributable to the 

different clearing methods, in terms of contrast between structures. Tomographic 

reconstruction (bottom row) of subregions of the overviews, each showing a portion of an 

axon and surrounding cellular structures, indicates the extent of change at the fine-structural 

level. (c) Control, PACT- and CUBIC-cleared brain sections were mounted in RIMS or 
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CUBIC reagent-286,88, respectively, and the endogenous expression of tdTomato was 

imaged on a Zeiss LSM 780 confocal microscope with the LD LCI Plan-Apochromat 25× 

0.8 NA Imm Corr DIC M27 multi-immersion objective (w.d. 0.57 mm). Volume renderings 

(top: x,y,z = 300 μm for PACT- and CUBIC-cleared samples and x,y,z = 300, 300, 140 μm 

for control) and maximum intensity projections (bottom: x,y,z = 100,100,50 μm) are shown. 

In all images except the uncleared control, cells are visualized throughout the volume 

imaged. In the control image, light is unable to penetrate through the sample to image at 

depth. (d) Preservation of myelin proteins. 200-μm-thick A4P0-PACT-cleared mouse brain 

sections and 50-μm-thick uncleared sections were immunostained for SMI-312 and for 

myelin basic protein (MBP), using Atto 488–conjugated and Atto 647N–conjugated Fab 

format secondaries. After a 2-h RIMS incubation, the transparent sections were mounted and 

imaged on a Zeiss LSM 780 confocal microscope with the Plan-Apochromat 10× 0.45 NA 

M27 air objective (w.d. 2.0 mm) and the LD LCI Plan-Apochromat 25× 0.8 NA Imm Corr 

DIC M27 multi-immersion objective (w.d. 0.57 mm). The images correspond to a 50-μm-

thick maximum intensity projection over the dentate gyrus; Top: A4P0-PACT cleared, 

Bottom: uncleared smaller panels are high-magnification images of the boxed areas showing 

myelinated axons. Experiments on vertebrates conformed to all relevant governmental and 

institutional regulations, and they were approved by the Institutional Animal Care and Use 

Committee (IACUC) and by the Office of Laboratory Animal Resources at the California 

Institute of Technology. 

3.2.3 Supplementary figures 

 

Supplementary Figure 2. Protein loss over the course of PACT clearing. The amount of 

protein lost while clearing was measured by performing a BCA on the clearing buffer, which 

was collected and replaced periodically while 1 mm tissue samples were undergoing PACT. 

A standard curve of BSA protein concentration in each of the four different clearing buffers 

was generated. Standard curves were fit with a third order polynomial and used to extrapolate 

all protein loss measurements. (a) A representative case, in which the absorbance in arbitrary 

units (a.u.) of standard solutions at 562 nm is plotted against known BSA concentrations in 
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8% SDS-PBS (pH 7.5). (b) Graphs show single-trial, representative protein loss 

measurements for each hydrogel condition in each clearing buffer. Protein content was 

measured at 12 hours into clearing, at 24 hours, and then every 24 hours until the samples 

were clear and normalized to the initial weight of the slice. Experiments were performed in 

triplicates, representative single trials for each combination are shown. (c) Time to clear for 

1 mm sections PACT-processed with all hydrogel embedding and clearing buffer 

combinations (n = 3 for A4P1, A4P2 and Unhybridized. n = 4 for all others). 

 

3.3 Visualizing neural crest development in cleared chicken embryos 
[1] Ezin, M.*, Flytzanis, N. C.* et al. “Bringing CLARITY to the classics: embryonic neural crest contribution 

in 3D”. In preparation. 

3.3.1 Applying passive tissue clearing to chicken embryos 

Chicken embryos are a heterogenous tissue, requiring adaptation of the traditional 

tissue clearing parameters to combat variable lipid content and tissue density. To overcome 

these two problems, we adapted and optimized the previously published PACT 

conditions15,16, allowing us to fully clear E6 embryos in four days (Fig. 1a). The first, and 

largest, modification was to perform tissue clearing with the help of convective flow (Fig. 

1b), instead of relying on passive diffusion, which may have taken up to a month16. Second 

was to reduce the concentration of SDS while clearing to 4%, down from the 8% traditionally 

used by PACT, to account for the diversity in tissue types within the embryo. While this 

resulted in a reduction of clearing time, it helped to ensure more homogenous clearing, with 

the differences in clearing time and anisotropic expansion between lighter and denser tissues 

being removed. The rest of the clearing parameters were kept consistent with previously 

published16: embryos were fixed with 4% paraformaldehyde in PBS at 4oC for 48 hours, 

stabilized by embedding into a tissue-hydrogel matrix (4% acrylamide in PBS) and then 

cleared. After progressive clearing over 4 days, refractive index matching was enabled by 

mounting in RIMS, and embryos were imaged. 

An additional problem we encountered while clearing whole embryos was the 

presence of blood cells trapped by fixation within the embryo, and the excessive 

autofluorescence generated by these while imaging. To circumvent this problem, we adapted 

an established mammalian placental perfusion technique92 for use in chicken embryos (Fig. 

1c). Briefly, the embryonic vasculature was accessed by making a small incision in the 
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umbilical blood vessel93 of the embryo, while still inside the egg, through which a 

microcatheter was inserted. Saline was perfused through the embryonic vasculature using a 

micro-peristaltic pump at an infusion rate of 5 µl/min. In some cases, the embryo was further 

perfused via direct cannulation of the carotid artery. Following exsanguination, the embryos 

were rapidly fixed in situ via perfusion of 4% PFA. This procedure resulted in a drastic 

reduction in autofluorescence in highly vascularized areas of the embryo, compared with un-

perfused embryos (Fig. 1d), with the added benefit of more thoroughly fixing the tissue, due 

to active dissemination of PFA compared to passive diffusion. 

3.3.2 Whole-mount immunohistochemistry and FISH 

A major strength of tissue clearing via PACT is its ability to retain endogenous 

fluorescence of samples coupled with its compatibility with a variety of labeling 

techniques16. To test our ability to do a phenotypic characterization of cell-types within an 

intact, cleared embryo, three- and six-day old chick embryos were stained with several 

antibodies followed by refractive index matching and imaging using traditional confocal and 

light sheet microscopy. We focused on neuronal populations, labeling with antibodies against 

HuC/D (Fig. 2a) and Tuj1 (Fig. 2b), achieving embryo-wide labeling after two weeks 

combined of primary and secondary staining. In addition to antibody staining, we sought to 

determine if PACT processed embryos could be processed by in situ hybridization, which 

greatly increases the number of factors that can be identified simultaneously and is performed 

in a fraction of the time. To this end, we tested whether hybridization chain reaction (HCR)94 

could be applied to chick embryos after passive clearing. We processed transgenic GFP 

embryos in which all cells are GFP positive and stained them using probes against the 

transcription factor Sox10, which marks neural crest cells and their derivatives. The results 

review robust double staining of dorsal root ganglia in six-day old transgenic GFP chicks 

that are also brightly GFP positive (Fig. 2c,d). 

3.3.3 Tracking cardiac crest derivatives 

One of the most specialized neural crest contributions is the cardiac neural crest, 

which arises from the hindbrain just caudal to the otic vesicle and adjacent to the first three 
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somites. Quail/chick chimera by Kirby and colleagues95 showed that these cells contribute 

to the aortic arches, cardiac outflow tract and septum, as well as the valves of the heart. Given 

that these experiments were analyzed by sectioning and staining the region of the embryos 

encompassing the heart and outflow tract of the chimeric embryos, we sought to get a three-

dimensional view of cardiac crest contributions. We performed GFP grafts of GFP-labeled 

dorsal neural folds adjacent to the mid-otic to somite 3 level from 9-10 somite stage donor 

embryos and grafted these in place of the homologous region of wild-type neural folds of 

similarly staged embryos (Fig. 3a). Embryos (n=6) were then allowed to survive until 

embryonic day 6, by which time the four-chambered heart had formed. Embryos were 

perfused and cleared as described above and then imaged for GFP labeling (Fig.3b). 

As expected, several mesenchymal derivates arose from the GFP-labeled cardiac 

neural crest. In the heart, we noted bright GFP signal in the aortic arch arteries19,96 and in the 

outflow tract96,97. Specifically relating to the outflow tract, we found that the aorta, 

pulmonary trunk and aorticopulmonary septum were seeded with GFP-labeled cells in 

almost all embryos (Fig. 3c). Cardiac neural crest has also been shown to invade endocardial 

cushions and help form valves, notable among these the aortic semilunar valve98. Such 

contributions were also seen in our cleared embryos (Fig. 3c). The pharynx, clearly labeled 

by GFP (Fig. 3c), is another structure seeded by the cardiac neural crest19, and as the buccal 

aspect of an embryo, will mature to function as part of both the respiratory and digestive 

systems. Cardiac neural crest cells are also known to help form other heart structures like the 

interventricular septum and the cardiac ganglia95,98,99, as well as the endocrine glands of the 

thymus19, parathyroids19 and thyroid100, and mechano- and chemoreceptors like the 

baroreceptors and carotid bodies19. These derivates arise at more advanced stages than we 

collected here and were therefore not observed in our work. 

In addition to mesenchymal derivatives, the neural crest gives rise to neuronal and 

glial cells of the entire peripheral nervous system, as well as pigment cells. The cardiac neural 

crest, in particular, participates in the formation of cranial nerves IX (glossopharyngeal) and 

X (vagus101,102). Both these nerves are in part derived from transgenic GFP grafts and were 

labeled in multiple embryos (Fig. 3d). Fluorescent cells also often formed the nodose and 

petrosal ganglia which synapse with the vagus and glossopharyngeal nerves (Fig. 3d). The 
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jugular and superior ganglia103, which associate with nerves IX and X, were also labeled. 

From all axial levels of the embryo, a subpopulation of neural crest cells will become 

melanocytes19,104. Our results corroborated these prior findings in that all embryos displayed 

melanocytes in their skin (Fig. 3e). 

Even though the grafts were small, contributions by GFP-labeled cardiac neural crest 

cells were noted in several surprisingly anterior locations. The first unexpected result relates 

to the melanocytic lineage. Cardiac neural crest cells have been reported to give rise to 

melanocytes that populate the maturing dermis from the level of the otic vesicle to somite 

719,104. In some cases, we observed a more rostral extent of crest migration whereby pigment 

cells invaded the dermis up to the midbrain/hindbrain boundary (Fig. 3e). The second 

puzzling point deals with the branchial arch arteries. The axial crest origins of all branchial 

arch arteries have been carefully studied and documented, both spatially and temporally: 

neural crest participating in the formation of branchial arch arteries 1 and 2 arise in the dorsal 

neural tube at pre-otic levels, from rhombomeres 1 through 4105. Cardiac neural crest cells in 

one cleared embryo labeled branchial arch artery 2. In this embryo, the full pair of pharyngeal 

arch arteries 2 (Fig. 3c), located in the anterior section of these derivates, arose from the 

caudal-most cardiac neural crest from the level of somite 2 to 3. A set of third anterior 

derivatives was the paired dorsal aorta and carotid arteries past the common carotid branch 

point. Several embryos showed label in the internal carotid artery (Fig. 3c). 
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3.3.4 Figures 

 

Figure 1. Adapting PACT to chicken embryos. The passive clarity technique is very 

adaptable to different kinds of tissues and applications. (a) for chicken embryos we fixed the 

tissue in paraformaldehyde, hybridized it to an A4P0 (4% acrylamide in PBS) hydrogel, and 

progressively cleared it in 4% SDS in PBS with convective flow for 4 days before refractive 

index matching in RIMS. (b) The flow assisted clarity chamber consists of white tissue 

cassettes housing the embryos, arrayed around the perimeter of a dish kept at a steady 37oC 

while constant flow is applied via magnetic stir bar. (c) The micro-peristaltic pump set up by 

which embryos are exsanguinated and fixed prior to removal from the egg. An incision is 

made in the embryo shell and a microcatheter inserted into the umbilical blood vessel or 

carotid artery. PBS is first flushed through at a rate of 5 µl/min to remove blood, and then 
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4% PFA for an extended period to fix the embryo well before removal from the egg. (d) 

Representative images of the difference between unperfused and perfused embryos regarding 

blood autofluorescence. When the embryo is not properly exsanguinated, blood gets trapped 

and fixed throughout the body, with especially egregious areas being the neck, heart and gut. 

Side by side images of similar areas of two different embryos are shown.
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Figure 2. Immunohistochemistry and HCR in cleared chicken embryos. (a and b) Briefly, 

after 4 days of clearing, chicks are stained with primary antibody in PBS for 7 days, washed 

in 0.1% PBST 3-4 times over the course of two days, stained with secondary antibody in 

PBS for 7 days, washed another 3-4 times over two days in PBS and then refractive image 

matched with RIMS for 24 hours before imaging. (a) a ganglion labeled with anti-HuC/D 

primary antibody and Alexa633 secondary in an E6 GFP-transgenic chick. (b) whole-body 

image of an E3 wild-type chick labeled with anti-Tuj1 primary antibody and Alexa633 

secondary. (c and d) Chicks are labeled using hybridization chain reaction with probes 

against Sox10 mRNA. Briefly, after 4 days of clearing, chicks are incubated overnight in 

hybridization buffer (10% dextran sulfate, 10% formamide in 2x SSC) containing paired 

oligo probes against Sox10, washed in 2x SSC with 30% formamide and then 2x SSC three 

times each for 30 minutes, incubated in amplification buffer (10% dextran sulfate in 2x SSC) 

containing Cy3B-coupled hairpins against the oligo probes for six hours at RT, washed three 

times in 2x SSC for 30 minutes each and then refractive image matched with RIMS for 24 

hours before imaging. c) Dorsal view of the entire back of a GFP-transgenic embryo. Labeled 

in red is Sox10 which clearly labels the developing DRGs in this area. (d) Close up of two 

DRGs from c. 
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Figure 3. Cardiac neural crest derivatives in cleared chicken embryos. 1.5 somite-long 

orthotopic and isochronic grafts of GFP-labeled neural fold were made at various locations 

between somites 0 and 3 (cardiac neural crest) in different HH10 stage chick embryos. (a) 

Left - schematic of neural fold grafts from GFP-transgenic chick embryo into wild-type host. 

Right – Brightfield and fluorescence image of representative cardiac neural crest graft. (b) 

GFP-labeled cardiac neural crest derivatives throughout various expected and unexpected 

locations in a cleared E6 chick. * Taken from the same location of a different embryo. (c) 

Close-up of cardiac and esophageal region of neural crest derivatives. Expected labeling 

found in aorta, pulmonary trunk, aorticopulmonary septum, aortic semilunar valve, pharynx. 

Unexpected labeling found in branchial and pharyngeal arch arteries and paired dorsal aorta 

and carotid arteries. (d) Close-up of cranial nerves IX and X. Expected labeling found in 

glossopharyngeal and vagus nerves, as well as nodos ganglion. (e) Close-up of dermis near 

midbrain/hindbrain boundary. Expected labeling found in melanocytes, but their location 

was unexpectedly rostral of where cardiac neural crest derivates are supposed to be found. 

3.3.5 Future directions 

We speculate that the more anterior cardiac neural crest derivatives we discovered 

result from convergent extension and anterior shifting of the grafted neural tube. This may 

occur after most “cardiac” neural crest cells have left the neural tube, but we did see some 

apparently ganglion-like cells in the periphery at the same level as the labeled neural tube 

cells, as well as some mesenchymal GFP-labeled cells that are almost certainly melanocytes. 

As melanocytes are the last cells to migrate from the neural tube in the chick, this may suggest 

that convergent extension of the graft occurred prior to migration of pigment cells, which 

occurs at ~HH20-21 in the chick. It will be exciting to see whether less prominent derivatives 

of the cardiac neural crest can be detected in cleared embryos. Such tissues include the heart’s 

coronary arteries106,107  and a sparse population of cardiac ganglia cells before they coalesce. 

Whether the cardiac neural crest gives rise to nerve cells in the esophagus remains an issue 

under debate – indications from our grafts are that they probably do, at the caudal tip of the 

pharynx. Answering these questions, as well as further characterizing the derivatives that we 

have visualized, will require staining and further imaging, experiments currently under way. 
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C h a p t e r  4  

ENGINEERING TISSUE SPECIFIC AAVS FOR GENE THERAPY 

[2] Flytzanis, N. C.*, Goeden, N. S.*, Deverman, B. E., Gradinaru, V. “Engineering tissue-specific AAVs for 

gene therapy”. In preparation. 

 

4.1 Summary 

AAVs see widespread use for gene therapy as well as basic science applications. 

Their mostly conserved structure but diverse functionality presents an interesting problem 

for protein engineering. Specifically, directing systemically administered viruses toward 

distinct tissues allows for specialized treatment of target cells/organs, avoiding side-effects. 

Our efforts were two-fold: 1) engineer AAV9 to preferentially target specific tissues, and 2) 

further engineer PHP.eB, a variant of AAV9 previously engineered to efficiently cross the 

blood-brain barrier and transduce brain cells, to de-target it from all other regions of the 

body except the brain. To this end, we created a seven amino acid substitution library at the 

furthest surface-exposed loop (amino acids 452-458) and inserted it into both AAV9 and 

PHP.eB. After two rounds of Cre-dependent selection of our library in vivo in a panel of 

transgenic mice expressing Cre-recombinase in a variety of cell-types, we tested a variety 

of AAVs that targeted cells/organs of therapeutic significance. Coming out of the AAV9 

substitution library, AAV9.RWT4 shows biased transduction to the lungs, an almost 5-fold 

increase over AAV9. From the PHP.eB substitution library, we discovered a variant, 

AAV9.ReB10, that targets the brain just as strongly as its parent, with a strong preference 

for neurons over any other cell type, while being almost fully de-targeted (~10-100-fold 

decrease) from all peripheral organs. Combined, these two variants present strong examples 

of the power of engineering AAVs for cell-type and organ specificity, as well as a strong 

foundation for further work developing tools for gene therapy. 

4.2 Cre-dependent positive and negative selection of AAV9 libraries 

An outstanding challenge for gene therapy is the means to safely and efficiently 

transfer large genomes exclusively to desired cells and organs. Thus, our engineering 
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efforts focus on selecting viruses that specifically transduce one tissue over the others. 

To this end, we utilize an updated version of the CREATE methodology developed by 

Deverman and colleagues29 (Fig. 1a). With CREATE, a library of AAV capsids with 

mutations at a specific location is generated by PCR with degenerate primers, viruses 

packaging a replication-incompetent version of their own genome with a polyadenylation 

site flanked by Cre/Lox sites are produced in HEK cells, and the viral library is injected 

into transgenic animals expressing Cre in a specific population of cells. If variants of the 

library successfully transduce cells expressing Cre, their genome is flipped, and the 

sequences of those variants can be recovered in a Cre-dependent manner. In our version of 

CREATE, we utilize a similar strategy for generating libraries but perform selection in 

multiple transgenic mouse lines expressing Cre in different populations: Tek-Cre for 

endothelial cells throughout the body, hSyn1-Cre for neurons of the CNS and PNS, GFAP-

Cre for astrocytes, TH-Cre for dopaminergic cells and Fev-Cre for serotonergic cells. By 

performing our selections in parallel in multiple transgenic lines, we can employ both 

positive and negative selection, allowing us to target sequences recovered from a specific 

tissue of interest, and explicitly not recovered from others. For this, the recovered viral 

DNA from our tissues of interest is indexed and sent for next-generation sequencing 

(NGS), allowing us to see the specific sequences we positively and negatively selected. We 

then rank sequences based on prevalence in our targets of interest and synthesize a second-

round library containing only the top-performing sequences (Fig. 1a). 

The AA455 loop of AAV9 is the furthest protruding from the surface of the capsid 

(Fig. 1b) and has previously been implicated in neutralizing antibody binding108. The most 

commonly manipulated loop in AAVs is the AA588 loop, due to it being the site of 

heparan sulfate binding of AAV2109 and amenable to peptide display110–112. The only 

known receptor for AAV9 is N-linked terminal galactose113,114, but many indications point 

toward there being others. As the furthest protruding, as an integral part of the three-fold 

symmetry of the AAV115, and due to its proximity to the AA588 loop which is the second 

furthest protruding, we theorize that the AA455 loop may also play a role in cell-surface 

receptor binding, either on its own or by interaction with the AA588 loop. Thus, we 

decided to make two viral libraries (Fig. 1a,b) by randomly substituting the amino acids of 
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this loop, AA452-458, both in AAV9 and in PHP.eB, a variant of AAV9 previously 

engineered at the AA588 loop for increased efficiency in crossing the BBB and transducing 

neurons34. 

4.3 Engineering AAV9 toward lung specificity 

Naturally occurring AAVs have specific tropism to certain organs25. AAV9 

transduces muscle very efficiently, expresses at high levels in the liver26,27 and lower in 

other organs of the periphery. AAV9 is also one of a few viruses to be able to cross the 

blood-brain barrier and transduce the brain116. We performed two rounds of selection of a 

7AA substitution (AA452-458) library in AAV9 and analyzed the sequencing results for 

variants enriched more highly in one organ vs. the others. 

 After the first round of selection, we found no bias for certain amino acids in our 

library, either in the produced virus (Fig. 2a) or in individual tissues (data not shown). We 

pooled the highest enriched variants from each organ and synthesized a second round 

containing approximately 6,000 unique variants. After a second round of selection, 

enrichment data showed a bias of certain variants toward specific tissues and away from 

others, and we curated a list of the top variants to test (Fig. 2b,c). We packaged 

mNeonGreen under control of the ubiquitous CAG promoter, injected 5x1011 viral 

genomes into wild-type mice and allowed two weeks for expression. The resulting 

expression in various organs (Fig. 2d) showed expression patterns that didn’t deviate too 

much from AAV9, except in the organs which correlated with high enrichment scores from 

the NGS data (Fig. 2c). Specifically, AAV9.RWT4 expressed highly in the lungs and 

AAV9.RWT14 in the intestines and stomach. The lungs are not a target that AAV9 

transduces at high levels normally117, and AAV9.RWT4 shows an almost 5-fold increase in 

lung transduction (Fig. 2e,f), achieving similar levels as the serotype that most efficiently 

targets lungs, AAV5. 

4.4 Engineering PHP.eB away from peripheral expression 

Chan and colleagues recently characterized a virus, PHP.eB34, that transduces the 

brain of mice at higher levels than any other systemically delivered AAV. PHP.eB, a 2 

amino acid substitution from the previously described PHP.B29, is 10-20% more efficient 
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and brighter in most areas of the brain than PHP.B, which itself is roughly 40-fold more 

efficient than AAV9. Although not characterized in the original paper, PHP.eB also has 

reduced expression in peripheral organs when compared to AAV9. For this reason, PHP.eB 

presented a unique opportunity for further engineering, to retain or amplify brain 

transduction, while also making it specific for the brain by further reducing or ablating 

targeting to the periphery. We performed two rounds of selection of a 7AA substitution 

(AA452-458) library in PHP.eB and then tested the variants most highly enriched in the 

brain vs. periphery. 

After the first round of selection, we analyzed recovered sequences and synthesized 

a second round containing approximately 82,000 unique variants enriched in the brain 

compared to peripheral organs. These sequences didn’t seem to follow any trends regarding 

their amino acid distribution (Fig. 3a), which didn’t offer any insights into which amino 

acids at this position conferred the brain specificity we sought. After a second round of 

selection which narrowed down the top performing variants by a couple orders of 

magnitude, we selected a small subset of sequences to test (Fig. 3b) that exhibited high 

levels of enrichment for the brain, and negative enrichment for the liver and other 

peripheral organs (Fig. 3c). We tested this subset individually in wild-type mice, injecting 

5x1011 viral genomes packaging CAG-mNeonGreen and allowing for two weeks of 

expression. The resulting expression in the brains and livers (Fig. 3d) correlated very 

closely with the NGS enrichments, with variant AAV9.ReB10 standing out as exhibiting 

higher fluorescence in the brain than PHP.eB and negligible liver transduction. 

To fully characterize the performance of AAV9.ReB10 in comparison with AAV9 

and PHP.eB, we packaged a nuclear localized CAG-EGFP and injected 1x1011 viral 

genomes into animals, waiting three weeks for expression. This dose was chosen as an 

average dose for previous experiments utilizing systemic delivery to the brain. Our results 

show an increase, while insignificant, in the average number of cells transduced in the 

brain, as well as the average level of expression per cell, between AAV9.ReB10 and 

PHP.eB, while both are very significantly higher than AAV9 (Fig. 4a,c). In the spinal cord, 

AAV9.ReB10 performs at roughly 60% of the efficiency of PHP.eB, yet still almost 20-

fold higher than AAV9 (Supplementary Figure 1). Conversely, AAV9.ReB10 is very 
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significantly reduced in the liver compared to both PHP.eB (~50-fold) and AAV9 (>100-

fold), and slightly, yet insignificantly, dimmer in brightness/cell compared to PHP.eB, 

while both are significantly dimmer than AAV9 (~10-fold) (Fig. 4b,d). In the rest of the 

periphery, the results follow the same trend, with PHP.eB being lower than AAV9, and 

AAV9.ReB10 being a fraction of PHP.eB (Supplementary Figure 1). 

The above results match our NGS enrichment findings for both brain and periphery 

and are not surprising given the choice of PHP.eB as a parent. In this case, the insertion at 

the AA588 loop to make PHP.eB seems to confer a brain phenotype, and the substitutions 

at AA455 seem to refine that phenotype, conferring specificity to the brain away from the 

periphery. To further characterize what expression within the brain looked like for 

AAV9.ReB10 compared to PHP.eB, we stained for neurons, astrocytes and 

oligodendrocytes, and quantified the efficiency of the viruses at targeting those cell-types 

in various regions of the brain. While AAV9.ReB10 and PHP.eB transduced neurons at a 

similar efficiency across brain regions (Fig. 5a,b), astrocytes and oligodendrocytes were 

targeted roughly 4-5-fold lower levels across the whole brain by AAV9.ReB10 compared 

to PHP.eB (Fig. 5c,d,e,f). This result indicates a bias for neurons compared to other cell-

types conferred by the AAV9.ReB10 mutations, an interesting deviation from AAV9, 

which mostly targets astrocytes in the brain118,119. An interesting indication from the NGS 

data for AAV9.ReB10 (Fig. 3c) was the variant’s negative enrichment in the cerebellum. 

When characterizing the expression of AAV.ReB10 compared to PHP.eB in the 

cerebellum, we did indeed find a significant, roughly 4-fold, decrease in transduction of 

purkinje cells (Supplementary Figure 2). 
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4.5 Figures 

 

Figure 1. Viral engineering overview. (a) Using PCR, diversity is introduced in the form of 

a 7-amino acid insertion (PHP.eB insertion; green band) and/or substitution (AA 452-458; 

red band) in the rAAV9 genome, which harbors a Cre inducible switch surrounding the 

polyadenylation sequence. The DNA capsid library is transfected into HEK-293T cells, and 

diverse viral capsid libraries are harvested 60 hours later. The viral library is systemically 

injected into a panel of Cre-transgenic animals. Following three weeks of expression, tissue 

is harvested, and DNA extracted from all organs. Using PCR, sequences are selectively 

recovered from only those capsids which transduced Cre+ cells, flipping their 

polyadenylation sequence. The recovered sequences are subsequently prepared for next 

generation sequencing by PCR, adding dual-index barcodes unique to each specific Cre-

tissue combination. Following NGS, the data is mined using positive and negative selection 

for enrichment (increased prevalence within a specific tissue compared to other sequences, 

normalized to their presence in the injected viral library) and specificity (increased 

prevalence within a specific tissue or cell type compared to other tissues or cell types). 

After one to two rounds of selection, individual variants are tested based on their 

enrichment and specificity scores. (b) Surface model of the AAV9 capsid, illustrating the 

location of the 7 amino acid substitution introduced in these libraries (red), with and 

without the 7 amino acid insertion introduced by PHP.eB (green). 
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Figure 2. Characterization of the 7AA substitution library in AAV9. (a) The distribution 

across the 7 amino acid substitution in AAV9 introduced from AA452-458 demonstrates 

relatively little bias across the library, a low prevalence of stop codons, and no bias towards 

the WT AAV9 sequence (NGSGQNQ) following PCR generation of the DNA library and 

packaging of the viral capsid library in HEK-293T cells. (b) A subset of the top amino acid 

sequences recovered from two rounds of positive and negative selection for a variety of 

tissues and cell types. (c) A heat map plotting the log-scale enrichment scores of a subset of 

the top performers demonstrates diverse and non-overlapping enrichment and specificity in 

a variety of tissues. (d) ssAAV9:CAG-mNeonGreen, ssAAV9.RWT4:CAG-mNeonGreen 

orssAAV9.RWT14:CAG-mNeonGreen was intravenously injected into male adult mice at 
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5 × 1011 vg/mouse and mNeonGreen fluorescence assessed after two weeks. Direct 

comparison of the transduction profiles of two of the top performing variants specific for 

the lung and colon (RWT4 and RWT14, respectively) demonstrate strong fidelity between 

the selected tropism and NGS results. (e, f) Quantification of AAV9.RWT4 shows an 

approximately 4.7-fold increase in transduction efficiency in the lung when compared to 

AAV9 in n=1 mouse. Scale bars are 2 mm (d) and 1mm (e). 

 

 

Figure 3. Characterization of the 7 AA substitution library in PHP.eB. (a) The distribution 

across the 7 amino acid substitution in PHP.eB shows a relatively uniform distribution, 

with a few notable exceptions, a low prevalence of stop codons, and no bias towards the 

WT AAV9 sequence (NGSGQNQ) following PCR generation of the DNA library and 

packaging of the viral capsid library. (b) A subset of the top performing variants obtained 

from two rounds of positive and negative selection are presented here, showing a strong 

divergence from the WT AAV9 sequence. (c) A heat map plotting the log-enrichment 

scores of a subset of the top performers demonstrates specificity for, and enrichment in, 

neuronal populations a target for which PHP.eB is already biased towards. (d) 

ssAAV9.ReB1:CAG-mNeonGreen, ssAAV9.ReB2:CAG-mNeonGreen, 

ssAAV9.ReB10:CAG-mNeonGreen, ssAAV9.ReB17:CAG-mNeonGreen or 

ssAAV9.ReB22:CAG-mNeonGreen was intravenously injected into male adult mice at 5 × 

1011 vg/mouse and mNeonGreen fluorescence assessed after two weeks. Direct comparison 

of the transduction profiles of several of the top performing variants shows a strong 

correlation between validated tropisms, and those predicted by the NGS data. Scale bars are 

2 mm. 
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Figure 4. The tropism of AAV9.ReB10 is strongly biased towards the brain, with 

significant liver detargeting. ssAAV9:CAG-NLSx2-EGFP, ssPHP.eB:CAG-NLSx2-EGFP 

or ssAAV9.ReB10:CAG-NLSx2-EGFP was intravenously injected into male adult mice at 

1 × 1011 vg/mouse. GFP fluorescence was assessed after three weeks of expression. (a) A 

comparison of BBB crossing and brain transduction in AAV9, PHP.eB, and AAV9.ReB10 

shows a progressive increase in transduction efficiency in the brain following iterative 

engineering of the WT capsid. (b) Conversely, the same comparison in the livers shows a 

progressive decrease in transduction efficiency. (c) Quantification of the total number of 

cells transduced in the brain shows a non-significant increase in in total transduction for 

AAV9.ReB10 compared to PHP.eB, both of which are significantly increased compared to 

AAV9. Comparison of the average brightness per cell shows no significant difference 

between any of the variants. (d) Quantification of the total number of cells transduced in 

the liver shows a significant decrease comparing PHP.eB to AAV9. Furthermore, 

AAV9.ReB10 shows a significant decrease in transduction when compared to both AAV9 

and PHP.eB. Brightness per cell is also significant decreased when comparing PHP.eB and 

AAV9.ReB10 to AAV9, with no significant difference observed between the two 

engineered variants. For quantification: n = 3 mice per group for AAV9 and 

AAV9.PHPeB, and 6 mice per group for AAV9.ReB10, mean ± SE, one-way ANOVA (*P 

≤ 0.05; n.s., P ≥ 0.05). Scale bars are 1 mm. 
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Supplementary Figure 1. AAV9.ReB10 is detargeted from peripheral organs. 

ssPHP.eB:CAG-NLSx2-EGFP or ssAAV9.ReB10:CAG-NLSx2-EGFP was intravenously 

injected into male adult mice at 1 × 1011 vg/mouse. GFP fluorescence was assessed after 

three weeks of expression. Transduction efficiencies in peripheral tissues show a significant 

increase in spinal cord transduction for AAV9.ReB10 when compared to AAV9, but a 

significant decrease when compared to PHP.eB. In the DRGs, AAV9.ReB10 is 

significantly decreased when compared to AAV9, and non-significantly decreased when 

compared to PHP.eB. In the testis, AAV9.ReB10 is significantly decreased when compared 

to both AAV9 and PHP.eB. In the spleen, AAV9.ReB10 is significantly decreased when 
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compared to AAV9, and non-significantly decreased when compared to PHP.eB. In the 

Kidneys, AAV9.ReB10 is significantly decreased when compared to AAV9, and non-

significantly decreased when compared to PHP.eB. In the lungs, AAV9.ReB10 is non-

significantly decreased when compared to both AAV9 and PHP.eB. For quantification: n = 

3 mice per group for PHP.eB, and 6 mice per group for AAV9.ReB10, mean ± SE, Mann-

Whitney test (*P ≤ 0.05; n.s., P ≥ 0.05). 

 

 

Figure 5. Within the brain, AAV9.ReB10 is strongly biased towards neurons. 

ssPHP.eB:CAG-NLSx2-EGFP or ssAAV9.ReB10:CAG-NLSx2-EGFP was intravenously 

injected into male adult mice at 1 × 1011 vg/mouse. GFP fluorescence was assessed after 

three weeks of expression. (a) Across multiple brain regions, AAV9.ReB10 showed non-

significant increases in the total number of neurons transduced compared to PHP.eB, 

except for the midbrain, where AAV9.ReB10 showed a non-significant decrease. When 

taken as a whole, AAV9.ReB10 has a non-significant increase in the total number of 

neurons transduced compared to PHP.eB. (b) AAV9.ReB10 shows significantly reduced 

transduction of astrocytes across all brain regions quantified, except the striatum where it is 

trending towards significance. Total astrocyte transduction is also significantly decreased. 

(c) AAV9.ReB10 shows significantly reduced transduction of oligodendrocytes across all 

brain regions quantified. For quantification: n = 3 mice per group for PHP.eB, and 6 mice 
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per group for AAV9.ReB10, mean ± SE, Mann-Whitney test (*P ≤ 0.05; n.s., P ≥ 0.05). 

Scale bars are 200 µm. 

 

 

Supplementary Figure 2. AAV9.ReB10 is significantly detargeted from purkinje cells in 

the cerebellum. ssPHP.eB:CAG-NLSx2-EGFP or ssAAV9.ReB10:CAG-NLSx2-EGFP 

was intravenously injected into male adult mice at 1 × 1011 vg/mouse. GFP fluorescence 

was assessed after three weeks of expression. (a, b) Quantification of purkinje cell 

transduction in the cerebellum shows significantly fewer purkinje cells transduced by 

AAV.ReB10 when compared to PHP.eB. For quantification: n = 3 mice per group for 

PHP.eB, and 6 mice per group for AAV9.ReB10, mean ± SE, Mann-Whitney test (*P ≤ 

0.05; n.s., P ≥ 0.05). Scale bar is 200 µm. 

 

4.6 Future directions 

Taken together, our results show that AAVs can be engineered for tissue or cell-

type specificity, and that the resulting variants build upon previous engineering efforts. Our 

engineering efforts in the AAV9 background provided a panel of variants with increased or 

decreased specificity for certain peripheral organs compared to the AAV9 parent, without 

extreme deviations. Viruses overall hit similar targets to AAV9, with certain variants 

providing notable exceptions in specificity to certain organs, like AAV9.RWT4 to the 
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lungs. Our engineering efforts in the PHP.eB background also provided an array of 

variants with overall similar efficiency of targeting to the brain as PHP.eB. In this case, 

deviations from the parent were found in terms of targeting to other organs, where 

AAV9.ReB10 was significantly detargeted from the liver and other peripheral organs, or in 

terms of cell-type specificity, where AAV9.ReB10 transduced similar levels of neurons, 

but significantly lower in other cell-types. These results indicate that future engineering 

efforts should also take a step-wise approach toward attaining specificity for certain targets, 

with each variant building upon the previous. Both in the case of AAV9.RWT4 and 

AAV9.ReB10, further engineering can be done to further increase liver specificity and 

detargeting from other organs or change specificity toward other cell-types in the brain, 

respectively. 

Regarding their therapeutic use for treating disease, both newly engineered viruses 

present notable findings toward more specific delivery vehicles. Both the lungs and the 

brain represent prime targets for gene therapy, for diseases like Cystic Fibrosis and 

COPD120–122, or Huntington’s, Parkinson’s, and Friedreich’s Ataxia123–126. Both organs are 

best targeted via systemic administration of AAVs, due to size of coverage needed and 

method of administration. In this case, specificity toward the therapeutic target of interest 

with decreased off-target expression is necessary to minimize side-effects. For these viruses 

to find eventual use in gene therapy applications, though, they need to be tested and 

characterized in non-human primates. Those experiments are forthcoming. 
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