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Relationship between differential expression methods. (a) Depiction of the difference in expression of a
two-transcript gene 1n two cell types. The two black points correspond to gene expression in each of the two
cell types: the x-coordinate depicts the expression of its first transcript and the y-coordinate, the expression of

its second transcript. In differential transcript expression (DTE) tests, tran

scripts are independently assessed

for differential expression, corresponding to independent testing with projections of the points onto the x-axis

and y-axis (pink segments). Differential gene expression (DGE) tests are
expression; this change in overall gene abundance is proportional to the d

based on changes in overall gene
1fference 1n the projections of the

points onto the line y=x (blue segment). Traditional differential transcript usage (DTU) methods test for

differential transcript allocation within a gene. Differences in transcript usage 1s proportional to differences of
the projections onto the line y=-x (green segment), which 1s orthogonal to the DGE direction. Gene
differential expression (GDE) 1s a moniker for changes between transcript abundances as reflected in the

length of the line between them (red segment). Our proposed method uses logistic regression to find this line.
(b) DGE methods have a “blind spot” for genes whose transcripts change only in relative abundance. Such
transcripts can be detected by DTU. However, DTU has a blind spot for genes changing in overall abundance

(¢). Logistic regression for GDE has no blind spots, as differential anal
direction of change.

ysis 1s performed in the detected
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Simulations - Experimental Effect Sizes
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Simulations - Correlated Effect Sizes
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Performance of differential expression methods on simulations. A scRNA-seq dataset
containing two cell types, each with 105 cells, was simulated. In (a, b-zoomed 1n), effect sizes

were derived from an experiment. In the independent effect size simulation (¢, d), transcripts
were 1independently chosen to be perturbed. In the correlated effect size simulation (e, 1), genes
were chosen independently to be perturbed, and all transcripts corresponding to the same gene
were perturbed in the same direction with the same effect sizes. Four differential expression
methods and three variants of logistic regression were tested on these simulations and their FDR-
sensitivity plots are depicted. ‘log reg - transcripts’ 1s our GDE method, which performs logistic
regression on the transcript quantifications. In contrast, ‘log reg - gene counts’ performs
univariate logistic regression on the summarized gene counts and 1s a DGE method
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Simulations - Experimental Effect Sizes
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Performance of logistic regression on the simulation based on experimental effect sizes. The simulation
depicted 1in Supplementary Figure 2a,b was used to benchmark different parameters. In (a), three different
normalization methods: transcript counts, size factor normalization from DESEqQ2, and transcript-per-million
(TPM) normalization, were compared on this simulation. In (b), we compared tximport’s three methods of

summing transcript quantifications to gene quantifications prior to differential gene expression analysis with
DESeq2 (b).
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Splatter Simulations
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Splatter Simulations
Independently of the simulations described in Supplementary Figures 2-4, another simulation

was generated using Splatter. Within Splatter, two groups of cells were simulated, each with 10%
probability of producing differential transcripts, resulting in 19% ditferential transcripts between
the two groups. The simulated counts are used as inputs into the differential expression methods
for benchmarking. In (a) we plotted a sensitivity-FDR curve. In (b) and (c¢), we benchmarked the
runtimes of these methods on the simulation, plotting the CPU time and the real elapsed time of
three trials.
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Analysis of embryonic dataset
We used five different methods to find differential expressed genes between day 3 and day 4 post-

fertilization preimplantation human embryonic cells. An UpSet plot shows sizes of the set intersections
of the 3000 most significant genes from each method (a). We showcase transcript dynamics of two of

t!
t!

ne 502 genes that are in the intersection of all five methods (b, ¢) and two of the 464 genes that are in
ne set unique to logistic regression (d, ). In these figures, the quartiles are plotted (i.e. the box contains

t!

ne 25-735th percentile), and outliers defined as farther than 1.5 * inter-quartile range are depicted as

points.



Supplementary Figure 6

Simulations - Experimental Effect Sizes
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Simulations - Correlated Effect Sizes
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Performance of differential expression methods on simulations. In the event that transcripts
could not be quantified, performing logistic regression on TCCs 1s an alternative that also retains

1soform-level information. On the same full-length simulation as in Supp Fig 2, we benchmarked
logistic regression using TCCs. In (a, b-zoomed 1in), effect sizes were derived from an
experiment. In the independent effect size simulation (c, d), transcripts were independently
chosen to be perturbed. In the correlated effect size simulation (e, f), genes were chosen
independently to be perturbed, and all transcripts corresponding to the same gene were perturbed
in the same direction with the same effect sizes.
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Power analysis of CD4S. Using the PBMC dataset, we performed differential analysis between memory
and naive T-cells at three levels of subsampling cells: 1000 cells (a), 2000 cells (b) and 3000 cells (c). We
compared multiple logistic regression on TCCs with univariate logistic regression using gene counts and
performed Benjamini-Hochberg adjustment on p-values. At all three levels of subsampling, CD45 was
found to be significant (FDR < 0.01) with logistic regression using TCCs, but not with gene counts.

Furthermore, while there 1s a high overlap 1n the significant genes (FDR < 0.01) between both method
there are genes that each method finds differential (FDR < 0.01) that the other does not (d). (e) shows t

S,
ne

effect sizes on the overall gene counts discovered by each method uniquely compared to that in t

1C

intersection. Both methods identify genes with large effect sizes. Multiple logistic regression misses

genes with small effect sizes but identifies genes with large changes in differential transcript usage.
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C
equivalence

class id

1 185825

2 199819

3 211359

4 599451

5 599452

6 599453

V4 615875

transcripts

ENST00000348564,
ENST00000442510.

ENST00000348564,
ENST00000367367,
ENST00000442510,
ENST00000529828,
ENST00000530727,
ENST00000573477,
ENST00000573679,
ENST00000574441,
ENST00000575923,
ENST00000576833.

ENST00000413409,
ENST00000571847.

ENST00000348564,
ENST00000367367,
ENST00000442510,
ENST00000529828.

ENST00000348564,
ENST00000367367,
ENST00000442510,
ENST00000529828,
ENST00000530727.

ENST00000348564,
ENST00000367367,
ENST00000442510,
ENST00000491302,
ENST00000529828,
ENST00000530727,
ENST00000573477,
ENST00000573679,
ENST00000574441,
ENST00000575803,
ENST00000575923,
ENST00000576833.

ENST00000348564,
ENST00000367367,
ENST00000367379,
ENST00000442510,
ENST00000529828,
ENST00000530727,
ENST00000573298,
ENST00000573477,
ENST00000573679,
ENST00000574441,
ENST00000575923,
ENST00000576833.

IGYV visualization of pseudoalignments. The kallisto v0.44.0 pseudobam option outputs a BAM

file for each sample that can be visualized directly with IGV.

pseudoalignments of the three purified T-cell ty

Shown here are the

vbes from Zheng et al., 2017 (a, b). The TCCs

(track ‘kallisto’) are shown alongside their transcripts of origin (shown in track ‘Ensembl Genes’).
TCCs used 1n the differential expression analysis (Fig 2) are boxed in blue on the IGV track (a, b)
and their corresponding transcripts are tabulated (¢).
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The distribution of read distance from the 3’ end from Zheng et al., 2017. The substantial
number of reads far from annotated 3’-ends suggests a large number of unannotated 3° UTRs
whose reads are informative when transcript compatibility counts are utilized.
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IGV visualization of TCC structure from UTR modification. After identifying three
unannotated 3’UTRs from the Zheng et al., 2017, we modified the transcriptome to include these
novel UTRs (see Supplementary Methods). This figure depicts ECs 1n original transcriptome
(track ‘kallisto_original’) side-by-side with the ECs of the updated transcriptome (track
‘kallisto_refined’). Also included are coverage tracks for each of the three purified T-cell types
from Zheng et al., 2017. An analysis shows the three newly inserted UTRs break up the previous
ECs 1into more refined ECs. (a) shows that EC #199819 1s refined into EC #615896 and #199837.
In (b, ¢c), EC #185825 1s represented by 3 ECs in the refined version, EC #185243, #599469,
and #599470.
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Naive helper T-cells (CD4+/CD45RA+/CD25-) vs Memory helper T-cells (CD4+/CD45R0+)
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Reanalysis of CD4S using updated transcriptome. The transcriptome was updated with new 3’UTRs.
After obtaining TCCs using the new transcriptome, we performed logistic regression on CD45, which
remained differential with TCCs but not with gene counts. ECs#185843 and #599469, refined from EC
#1835825, remain differential between the memory T cell type and the naive T cell types (a,b). EC #615896,
refined from EC #199819, remains differential between naive and memory helper T cells. The p-value

distributions 1n (d.e,f) were generated by subsampling n=3000 cells per group over 200 iterations and the
error bars in (a,b,c) correspond to 95% confidence intervals.
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Naive Helper T-cells (CD4+/CD45RA+/CD25-) vs Memory Helper T-cells (CD4+/CD45R0+)
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Differential genes between naive and memory helper T-cells. Naive helper T cells and
memory helper T-cells were purified 1n Zheng et al., 2017 and then independently sequenced

with 10x technology. We performed differential expression between these cell types using
logistic regression on TCCs and found several genes to be differential, including CD45. In
contrast, these genes were not detected when examining only gene counts. The barplots were
generated by randomly sampling n=3000 cells per group and the error bars correspond to 95%
confidence intervals.



Supplementary Figure 13

tSNE: louvain clusters
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A de novo analysis of 68k PBMCs from Zheng et al. 2017. We obtained TCCs with kallisto
pseudoalignment, clustered the cells using the Louvain method (a) and plotted the cells with known T-cell

markers (b-g). By using TCCs, we were able to differentiate naive helper, memory helper and naive
cytotoxic T-cells into distinct clusters that are separable. In contrast, Zheng et al. 2017 were unable to
separate these cell types into distinct clusters.

P

P

.2

Py

L8

1B

FR

€

7.4

2.2

.G

.8

16

1.4



Supplementary Figure 14
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De novo analysis of T-cell clusters in 10x data. A subset of the cells in the 10x data containing naive,
memory and cytotoxic T-cells was analyzed and clustered using TCCs (a). Known naive, memory and
cytotoxic T-cell markers were plotted (b-1) and used to 1dentify the cell clusters. Logistic regression performed
on the TCCs 1n three pairwise differential expression tests, which revealed that CD435 1s differential between
naive and memory T-cells (g) and between cytotoxic and memory T-cells (1) with p-value = 0.01 and 0.003
respectively, but not between naive and cytotoxic T-cells with p-value = 0.21. The p-values repoted in (g,h.1)
were averaged over 200 iterations by randomly subsampling n=2000 cells per group and the error bars

correspond to 95% confidence intervals.



Supplementary Figure 15

Comparisons between experimental data and simulations
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Comparison between experiment and simulation
Our simulated group of non perturbed cells was compared to the myoblast cells from Trapnell et

al. upon which they are simulated. To compare the mean-variance relationship, each transcript’s
variance 1n TPMs was plotted 1n log-log scale against its mean TPM expression (a). To compare
the extent of dropout, each transcript’s proportion of zero expression across cells was plotted
against its mean TPM expression (b). We also compared the distribution in TCCs between the
experimental and simulation data. (c) depicts a histogram of the number of expressed ECs (1.e.
nonzero TCCs) per cell. (d) depicts a histogram of the expression in each EC.




