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ABSTRACT 

RNA-Sequencing (“RNA-Seq”) is performed to measure gene expression, often to ask the 

question of what genes are differentially expressed across various biological conditions. 

Statistical methods have been used to model RNA-Seq quantifications in order to 

determine differential expression, and have traditionally be divided into gene-level 

methods and transcript-level methods. There has been little attempt to connect the 

statistical divide, although transcript expression and gene expression are biologically 

inextricably linked. In this thesis, we provide a case study of a comparative differential 

expression analysis, demonstrating that many differential expression events happen on the 

isoform-level, and that performing an analysis using only summarized gene quantifications 

would fail to capture these events. Furthermore, we develop statistical methods that unify 

the transcript-level and gene-level analysis. In bulk RNA-Seq, by using p-value aggregation 

methods, we are able to translate transcript-level results into gene-level results under a 

unified framework. For single cell RNA-Seq, we propose using multiple logistic regression, 

leveraging the high dimensionality of the data in order to determine if the transcript 

quantifications pertaining to a gene are able to constitute a linear discriminant for cell type. 

This method combines differential transcript expression analysis and differential gene 

expression analysis into a unified framework which we call “gene differential expression.” 

Lastly, we demonstrate that our methods could be used on transcript compatibility counts 

instead of transcript quantifications in order to bypass ambiguous read assignment and 

improve accuracy. We show that transcript compatibility counts obtained via transcriptome 

pseudoalignment are comparable in quantification accuracy to quantifications from 

genome alignment methods. 
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NOMENCLATURE 

 
Differential Gene Expression:  gene quantifications are modeled in order to 
determine differential expression 
 
Differential Transcript Expression: transcript quantifications are modeled in order to 
determine differential expression 
 
Differential Transcript Usage: transcript quantifications are modeled to determine 
whether transcript allocation across the gene is differential 
 
Equivalence Class (EC): the set of transcripts that a read is compatible with 
 
Pseudoalignment: the process by which the set of transcripts a read is compatible with 
is determined 
 
Transcript compatibility counts (TCCs): the counts associated with equivalence 
classes for a RNA-seq sample 
 
Bulk RNA-Seq: method where the RNA from many cells are sequenced in aggregate 
 
Single cell RNA-Seq (scRNA-Seq): method by which single cells are isolated and its 
mRNA sequenced, and the cell of origin of a read can be identified
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Chapter I 

Introduction 
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Why study gene expression 

Gene expression is the master regulator of biology. In humans, for example, most 

tissues share the same genome, and yet a diversity of tissues and processes can be 

achieved and regulated due to differential gene expression. Measuring gene expression is 

vital for studying tissue differentiation, attributing disease risk to gene expression, and 

studying the genomic landscape of diseases, drugs, or other perturbations. 

 

Methods for Measuring Gene Expression 
 

There exists a myriad of molecular biology techniques to measure gene expression. 

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) first reverse 

transcribes RNA into cDNA, and then uses fluorescently-coupled polymerase-based 

amplification with specifically designed primers to detect the presence of a target cDNA. 

The number of cycles needed to produce a fluorescent signal provides a quantitative 

measure of cDNA concentration. qPCR is a targeted, low throughput, yet sensitive 

method for measuring gene expression. 

In the 1980’s, microarrays were developed as a high-throughput method that can 

quantify the expression of many genes in one experiment. While it was initially developed 

to study DNA structural variation, its most common use has been to measure RNA 

expression. In this technology, DNA oligonucleotide probes are printed and bound to 

distinct regions of a chip, not unlike the printing of circuits onto a silicon chip. 

Hybridization of a sample on the chip allows target cDNA to be captured by the bound 
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oligonucleotide probes. A fluorescent or chemiluminescent signal is coupled to 

hybridization, allowing for readout by photodetection, usually by a specialized machine. 

Signal from different regions of the chip correspond to hybridization of different probes, 

and quantification of luminescence allows for quantification of target RNA in the sample. 

Popular commercial suppliers of microarray technology include Affymetrix and Illumina, 

i.e., Affymetrix GeneChip and Illumina BeadChip.1,2 

 
Next Generation Sequencing  
 

In the early 2000’s, next-generation sequencing (NGS) came into the arena. It 

would not be an understatement to call the advent of NGS a revolution for molecular 

biology.  Prior to NGS, Sanger sequencing was possible at low-throughput and high cost. 

Sequencing the first human genome, completed in 2001 with Sanger sequencing, was 

estimated to have cost of up to 1 billion dollars. The concept of quantifying gene 

expression is changed with NGS. Compared to microarray, which specifies a set of 

sequences and asks whether cDNA containing these subsequences is expressed, NGS 

allows one to sample a pool of cDNA. Each read from NGS now corresponds to a 

sequenced molecule of DNA, which can literally be counted up for each gene. 3 

There are several platforms for sequencing. Oxford Nanopore is a single-molecule 

method that identifies bases from measuring current while a motor protein threads a 

string of bases through a synthetic biologic nanopore. It allows for long length (median 

of 6kb, maximum of 60kb) but with high error rates (5-10%) and low throughput (on 

the order of 10K reads), limiting its use in genome-wide studies. Ion Torrent uses clonal 
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amplification of DNA, measuring pH changes due to DNA extension in order to identify 

the base being added. 4 5 

Illumina sequencing by far the most popular method for genome-wide sequencing 

studies. It uses clonal amplification of DNA with fluorescently labeled dNTPs. 

Fluorescent imaging after each round of base extension reveals the base being that has 

been added.  Illumina is popular due to its low error rates (<1% across its sequencing 

platforms) with errors being primarily substitutions, as well as its speed and high 

throughput. In contrast to Oxford Nanopore sequencing, Illumina sequencing has a 

shorter maximum read length of a few hundred base pairs. 6 7 Library preparation for 

Illumina sequencing involves reverse transcribing RNA to cDNA as well as adaptor 

ligation of pre-specified Illumina adaptors for recognition by the sequencer. Ultimately, 

the choice in sequencing platform will depend on a combination of factors, including cost, 

throughput, read length, error rate, and speed. For the purpose of this thesis, we will be 

discussing computational methods for analyzing the short reads such as those produced 

by Illumina sequencers. 

The cost per read is becoming cheaper, the time to sequence is shorter, the 

maximum number of base pairs that could be sequenced per experiment is growing, and 

empirically, the number of reads per experiment is growing exponentially. 8  The 

decreasing cost of sequencing (biological Moore’s law) is also coupled to the decreasing 

cost of computation (siliconic Moore’s law). Growing sequencing datasets motivate the 

need for algorithmic and statistical methods that scale with the number of reads. 
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Single cell RNA-Seq is a technique that was developed in the last decade and has 

been quickly growing in popularity. In bulk RNA-Seq, the lysate generated from many 

cells are sequenced. A bulk RNA-Seq sample of brain tissue, for example, would include 

sequenced mRNA from neuron, glia, and connective tissue, and gene expression could 

only be suggested as a mixed aggregate unless the cell types are sorted and purified prior 

to RNA-Seq. In contrast, single cell RNA-Seq allows one to identify the mRNA 

corresponding to individual cells, making a scRNA-Seq a nature method to assay gene 

expression of heterogeneous biological systems, such as cancer, developmental biology 

and differentiation, and complex tissues. scRNA-Seq is currently being used as the 

primary method for developing a human brain atlas, where the composition of cell types 

in various regions of the brain could be identified and mapped.9 

There are several methods for performing scRNA-Seq, including isolating single 

cells into wells to be individually processed for sequencing (SMART-seq) or generating 

single cell suspensions using oil droplets where cell barcoding is performed prior to 

pooled library preparation (10x). In addition to cell barcodes, methods may also employ 

oligonucleotides as unique molecular identifiers (UMI) to identify sequences that are 

PCR amplified from the same original molecule.  When choosing the specific scRNA-Seq 

protocol, common considerations include the desired number of cells, the sequencing 

depth per cell, and cost of experiment. Like those of other sequencing methods, scRNA-

Seq datasets are growing in size, but in the number of cells as well as the total number 

of reads, motivating the need for computational methods to analyze the high dimensional 

datasets produced.  
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Computational Analysis of RNA-Seq 

Here, we present an overview of the conventional computational pipeline for 

performing differential expression analysis of RNA-Seq. In the first section, we use a 

discussion of gene-level analysis of bulk RNA-Seq to introduce commonly-used methods 

for quantification and differential expression. The second section discusses the unique 

challenges and several solutions for analyzing bulk RNA-Seq on a transcript isoform level. 

For each of the first two sections (gene level analysis and transcript level analysis), 

first we discuss the process for obtaining quantifications from a sequencing experiment. 

This involves taking a set of sequences generated from the sequencer and obtaining 

quantifications for genomic features, such as gene counts.  In order to make conclusions 

about gene expression, such as whether a gene is up or downregulated between 

conditions, these quantifications must be modeled to in order to account for inherent 

variability. So, we first discuss methods for quantification and then methods for 

differential expression analysis. 
In the last section, we present a brief discussion of methods for the analysis of 

single cell RNA-Seq (scRNA-Seq). While the quantification of single cell RNA-Seq may 

also involve similar alignment or pseudoalignment of reads as in bulk RNA-Seq, the 

unique challenges of barcode and unique molecular identification (UMI) mapping, as well 

as those of analyzing a high dimensional data matrix, makes scRNA-Seq a rich topic of 

its own. Indeed, methods such as imputation for dropped-out expression, dimensionality 
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reduction of the high dimensional data matrix, and clustering to identify cell types have 

been developed for scRNA-Seq uniquely. 
While the primary purpose is to introduce the current statistical methods for 

RNA-Seq analysis, we will also discuss limitations of existing methods and, where 

appropriate, where the work proposed in this thesis improves upon these limitations. 

 

RNA-Seq Analysis on the Gene Level 

Alignment to Reference Genome and Quantification 

In the conventional pipeline for analyzing RNA-Seq, reads are first be aligned to 

the reference genome corresponding to the species of interest. The quality of the 

reference genome is highly species dependent. Common model organisms, including 

human, mouse, C. elegans and Drosophila, have easily-accessible, accurate reference 

genomes, whereas obtaining reference genome for an uncommonly studied organism 

could be challenging. However, even these generally accurate references genomes could 

be unreliable or uninformative at loci with high amounts of genetic diversity and/or 

structural variation, such as the HLA and ABO loci in humans. Special attention should 

be paid if these regions are of interest to the scientific investigation. In addition to the 

genomic sequence itself, an annotation that specifies the gene and/or transcript tracks 

on this genomic sequence is necessary for RNA-Seq analysis. Common annotations used 

include those provided by Ensembl, RefSeq and UCSC. 
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Bowtie/Bowtie 2 is the classic aligner for short reads such as those produced by 

Illumina sequencing. It uses the Burrows-Wheeler transform, a reversible string 

compression algorithm, to build a space-efficient index of the genome on which 

subsequences (i.e. reads) could be found efficiently. 

While DNA sequencing alignment could be simply formulated as an error-tolerant 

substring matching question, the problem of RNA-Sequencing alignment has an 

additional layer which is to account for splice junctions. Because of the splicing of mRNAs, 

a contiguous mRNA subsequence may not correspond to contiguous subsequence in the 

genome, and aligners for RNA-Seq analysis must specifically allow for gaps.  Bowtie210  

was extended from Bowtie to support gapped alignment. TopHat/TopHat211 identifies 

splice junctions using alignments from Bowtie. Tophat/TopHat2 was then deprecated by 

its authors for HISAT/HISAT212 , a splice-aware aligner that provides further speed 

improvements through an extension of Burrows Wheeler transform to graphs. STAR13 is 

another splice-aware aligner, independent of the Burrows Wheeler transform, that was 

built using the concept of a maximal mappable prefix, and is extendable to long reads 

such as those produced by Oxford Nanopore. 

After alignment to the genome, reads are then assigned to genes in order to 

determine gene expression. Methods including HTSeq14 and featureCounts15 sum up the 

reads aligning to genomic intervals defined by an annotation, i.e. all exons corresponding 

to a gene, to produce gene counts. When these methods are used to aggregated counts 

across multiple exons to a single gene count, they lose information about distinct 
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transcript isoforms, which are unique in sequence and could have different biological 

functions. 

  

Differential expression analysis 

The experimenter performing RNA-Seq often has conditions he/she is wishing to 

measure and compare gene expression under. For example, in Chapter 1, we analyze a 

dataset from an experiment where the goal was to discover genes whose expressions were 

affected by Zika infection. The experimenters infected human neuroprogenitor cells with 

the Zika virus and with a mock control and performed a differential gene expression analysis 

on the dataset.16 Such experimental setups for RNA-Seq are common and motivates the 

need for a systematic and statistically principled approach to performing genome-wide 

differential expression analysis. 

RNA-Seq is not a deterministic process and is inherently noisy. Biologically, 

different handling and preparation of the sample may result in expression differences in 

the samples. Furthermore, there is stochasticity in gene expression, even at “steady 

states.” 17  18 Technically, the process of library preparation and sequencing, where a 

subsample of the biologically expressed RNA molecules are selected to be reverse 

transcribed, adaptor ligated, amplified and eventually sequenced, is a multi-step 

procedure where variance is introduced at every step. Lastly, the computational procedure 

of read alignment and quantification introduces inferential variance, for example as a 

result of alignment error or as a result of short, ambiguous reads that could map to more 

than one gene. Statistical methods for differential expression analysis must therefore 
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model variance accurately in order to determine the statistical significance of an observed 

difference in gene expression between conditions. 

 

The procedure can be outlined as follows: 

1.  After alignment and read counting, we arrive at a gene count or abundance 

matrix of dimension samples by genes. The expression matrix is first normalized to account 

for the differences in sequencing depth across samples. In addition to the expression table, 

another table of dimension samples by conditions describes the covariates for each sample.  

2. A model on gene expression is fit for each gene. Two common 

parameterizations for RNA-Seq include a linear model on log-transformed counts and a 

negative binomial model on discrete counts. limma19 and sleuth20 use a linear model; 

edgeR21 and DESeq22/DESeq223 use the negative binomial model. The negative binomial 

model can be motivated as a Poisson with an additional parameter to account for 

overdispersion. 

This model, linear or negative binomial, is fit for each gene g: 

, 

where Yig is the expression of gene g in sample i, and Xi is the (often indicator) variable 

corresponding to covariate j for sample i. Covariates may be included in the model to 

account for confounders and batch effects, even if they are not tested for effect on 

expression. To test the significance of differential expression for a specific covariate j, a 

likelihood ratio test could be performed comparing this alternate model to the null model 
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where covariate j does not have an effect on gene expression, i.e. Bj is excluded from 

model. Another option is the Wald test, which tests the null hypothesis that Bj = 0. 

3. After obtaining p-values for each gene, multiple testing correction should be 

performed. The Benjamini-Hochberg correction to control false discovery rate is standard. 

Quantile-quantile plots (QQ plots) can also be used to examine whether the p-values are 

distributed as expected, i.e. uniform between 0 - 1 as under the null hypothesis. 

 

One known issue of RNA-Seq differential expression is that sample sizes are often 

limited. With only two or three biological replicates, the sample variance is unreliable 

and could lead to false positives. The solution that most methods (including limma, 

edgeR, DESeq2, and sleuth) have adopted is to perform shrinkage on the genome-wide 

mean variance relationship, thereby sharing information across genes, i.e. the variances 

of genes with similar mean expressions are shrunk towards their mean variance. The 

shrinkage estimator of variance is then used for statistical testing, instead of the sample 

variance. sleuth is unique in that it distinguishes technical from biological variance and 

performs shrinkage only on the biological component of variance, while using an 

alternative approach to compute technical variance (discussed below). 

 

RNA-Seq Analysis on the Transcript Level 

One feature of molecular biology grossly ignored in the gene-level analysis is that 

of transcript isoforms. Transcript isoforms are different mRNAs that are transcribed from 
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the same genomic locus, but have different sequences due to differential splicing leading 

to inclusion/exclusion of different exons. A gene-level analysis fails to capture the 

amount of regulation that is happening through biological processes such as alternative 

5’/3’UTRs, differential splicing, and up/down regulation of specific transcripts. In 

Chapter II, we showcase a differential transcript expression analysis of RNA-Seq of Zika 

infection, demonstrating that many genes have individual transcripts that are 

differentially expressed with opposing effect sizes. The same genes are likely to be missed 

in the differential gene expression analysis, which we compare to our differential 

transcript expression analysis. 

 Nonetheless, performing analysis on the transcript-level has its challenges. First, 

transcript quantification is not trivial. There may be many transcripts per gene that share 

exons and overlap in sequence. Reads that may map unambiguously to a genomic locus 

could correspond to multiple transcript isoforms. Furthermore, differential transcript 

expression comes with its own set of challenges, including the fact transcript 

quantifications contain greater inferential variance due to ambiguous read assignment. 

In this section, we address some methods that have been developed to handle the 

challenges of obtaining transcript quantifications and performing differential transcript 

expression analysis. 

 

Transcript Quantification from Genome Alignments 

Methods have been developed specifically to obtain transcript isoform 

quantifications after genome alignment. In general, a probabilistic model for RNA 
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sequencing is required for assigning genomic alignments to transcripts. For example, this 

model may assume uniform sequencing across mRNAs and uniform coverage along each 

mRNA, or it may consider sequencing bias (non-uniform sequences at the start and end 

of fragments) and positional bias (non-uniform coverage along the mRNA). An 

assumption about the distribution of RNA-Seq reads, even if that is of uniform, unbiased 

sequencing along the expressed mRNA molecule, is necessary for choosing how to 

distribute read alignments to transcripts. RSEM24 is a method that uses the expectation 

maximization algorithm to assign ambiguous counts to transcripts under a probabilistic 

model of counts. Cufflinks performs isoform discovery alongside isoform quantification 

by solving for the minimum number of isoforms required to explain the observed reads. 

 

Pseudoalignment: An Alternative to Genome Alignment 

Aligning RNA-Seq reads to the genome is computationally expensive, as the index 

of the reference genome must be stored in memory and algorithmically scales with the 

length of the reference genome and the read. 25  Instead of alignment, a class of 

“pseudoalignment” methods were developed in as a light-weight alternative. Instead of 

seeking to locate the genomic site of origin of an RNA-Seq read, it looks for the set of 

transcripts a read may have originated from. This set of transcripts is the “equivalence 

class” of the read, in that two reads are defined to be in equivalence if they are compatible 

with the same set of transcripts. 

The pseudoaligner Sailfish26 segments each read into its constituent kmers and 

hashes each kmer to obtain that kmer’s equivalence class. Following pseudoalignment, 
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kmer counts are assigned to transcripts with the EM algorithm. kallisto27 also uses kmer 

hashing, but employs a de Brjuin graph to map each read (instead of each kmer) to an 

equivalence classes, thereby improving the accuracy of Sailfish while retaining the value 

of its simplistic approach. 

There is an enormous speed-up provided by and less computational demand 

required for performing pseudoalignment instead of alignment, allowing RNA-Seq to be 

quantified in several minutes on a personal laptop instead of several hours on a dedicated 

server. In Chapter V, we show that the quantification accuracy of pseudoalignment 

methods is comparable to that of alignment methods. 

 

Transcript Compatibility Counts (TCCs) 

While originally an intermediate product of pseudoalignment alignment methods 

generated prior to read assignment, transcript compatibility counts (“TCCs”), the counts 

associated with each equivalence class, have been explored as a useful data matrix of its 

own. TCCs are free of any inferential variance and constitute summary statistics for RNA-

Seq quantification. In the differential expression method sleuth (further discussed below 

in “Differential transcript expression analysis”), TCCs allow for efficient bootstrap 

estimation of inferential variance that would otherwise be computationally infeasible. In 

Ntranos et al.28, TCCs are used as the data matrix instead of gene quantifications to 

cluster single cell RNA-Seq datasets. In Chapters III and IV, we show using TCCs instead 

of transcript counts in performing differential expression analysis improves accuracy. 
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Differential transcript expression analysis 
 

After transcript quantification, a differential transcript expression analysis 

(“DTE”) is performed to investigate which transcripts have statistically different 

abundances across conditions. Traditionally, transcript quantifications are used as input 

to differential expression methods used for differential gene expression (“DGE”), and 

there has been little thought in modeling DTE differently from DGE. 

However, there are substantial differences between performing DGE and 

performing DTE that have substantial statistical implications. Given that eukaryotes 

often have more transcripts than genes (~170,000 transcripts compared to 30,000 genes 

in human genome), there is a greater burden to pass multiple testing correction when 

performing DTE. Furthermore, because transcript quantification compared to gene 

quantification involves more specific read assignment to transcripts with some overlap in 

sequence, there is greater inferential variance. The number of transcripts in a gene and 

the extent of shared sequence across transcripts, for instance, have a large effect on the 

quantification certainty of transcripts within a gene, and would be difficult to determine 

a priori for each gene. 

Cuffdiff229 performs differential expression of transcripts by modeling transcript 

counts with a beta negative binomial distribution. The beta distribution is used to capture 

additional inferential variance from ambiguous transcript quantification in addition to 

the over-dispersion modeled by the negative binomial. Cuffdiff2 performs model fitting 

by calculating the empirical covariance matrix from read assignment to transcripts. 
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sleuth 30  uses another strategy for calculating inferential variance. Instead of 

parametric modeling, sleuth performs bootstrapping to estimate inferential variance 

resulting from ambiguous read assignment. sleuth then performs shrinkage on the 

variance component that is not captured by the estimated inferential variance. What 

would otherwise be a computationally infeasible task of bootstrapping, aligning and 

quantifying millions of RNA-Seq reads was made feasible by leveraging the concept of 

TCCs developed by kallisto. Bootstrapping TCCs is equivalent to bootstrapping reads, 

and quantification of bootstrapped TCCs with the EM algorithm is fast and requires no 

additional alignment on the bootstrapped samples.  In simulations, sleuth has much more 

conservative and accurate false discovery rates compared to other differential expression 

methods, suggesting that accurate estimation of inferential variance is an important 

component of differential transcript expression. 

 

Differential Expression for Single Cell RNA-Seq 
 

Single cell RNA-Seq (scRNA-Seq) represents a new frontier in experimental and 

computational methods. On the analysis side, although naively it could be thought of as 

an extension of bulk RNA-Seq with more samples via more cells, closer examination 

reveals unique challenges associated with scRNA-Seq. 

The maximum of cells that can be assayed in one scRNA-Seq experiment is 

exponentially and is now on the order of millions, leading to a high dimensional data 

matrix.31 Compared to bulk RNA-Seq where there may only be a few samples that are 



	

	

18 

usually deeply sequenced, scRNA-Seq datasets often have many cells that are usually 

shallowly sequenced. Furthermore, due to the lower amounts of starting RNA in single 

cells, scRNA-Seq is thought of as a “noisier” experiment compared to bulk RNA-Seq. For 

example, a gene may have no mapped reads in a subset cells of a cell type that are known 

to express that gene, a concept referred to as “dropout.” 

Single cell methods commonly model dropout in order to perform differential 

expression. Instead of a negative binomial distribution on counts, many methods use a 

zero-inflated negative binomial to better model the additional zero expression values. In 

SCDE32, a Bayesian approach is used to fit an error model to each cell in order to model 

per-cell in addition to per-gene probability of dropout.  In MAST33, each cell is now 

parameterized by its detection rate, the proportion of genes that are expressed in the cell. 

In Monocle34, instead of the negative binomial, a Tobit model is used to account for zero-

inflation. However, whether dropout exists as an independent phenomenon from merely 

shallow sequencing is disputed.35 

While the measurement of a specific gene in a specific cell may be unreliable, the 

dataset provides information in aggregate. For example, common scRNA-Seq pipelines 

perform smoothing and dimensionality reduction36, identify distinct cell types through 

unsupervised clustering, and then perform differential expression between clusters to 

identify markers of these cell types.37  Furthermore, as the scRNA-Seq datasets increase 

in number of cells, machine learning methods that leverage this increasing dimensionality 

are being adopted.38 In Chapter IV, we show that logistic regression can be used for 



	

	

19 

performing gene differential expression, an example of leveraging the number of cells to 

fit higher dimensional models.  
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Outline of Chapters  

This thesis discusses novel methods we developed in order to perform RNA-Seq 

gene differential expression, which unifies differential gene expression and differential 

transcript expression. By using transcript quantifications, our methods are sensitive to 

transcript-level differential events, while being able to summarize our statistical results 

to the gene-level. However, not only is our method more sensitive and accurate for 

detecting differential transcript expression, it can also detect differential gene expression. 

We present two methods for performing gene differential expression: one for bulk RNA-

Seq and one for scRNA-Seq. Furthermore, we show that in both methods, we can use 

transcript compatibility counts (TCCs) instead of transcript counts, from which we can 

obtain even more accurate results from reducing inferential variance due to ambiguous 

read assignment to isoforms. 

Chapter II is a case-study that compares a gene-level analysis with a transcript-

level analysis, showcasing that there are many isoform-level events that are missed when 

RNA-Seq quantifications are summarized to the gene level. It motivates the significance 

of detecting differential transcript-level events in biological systems. 

Chapter III provides a more formal discussion of the statistical drawbacks of 

performing differential gene expression analysis using gene quantifications. In addition 

to missing differential transcript expression events, a gene-level analysis is fraught on its 

premise of constructing gene counts, which when calculated from transcript counts leads 

to a distortion of variance. We provide a p-value aggregation method that allows one to 
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perform differential transcript expression and then obtain gene-level results that are 

statistically unified and coherent. We show that performing differential expression on 

TCCs instead of transcript counts and aggregating to the gene-level increases accuracy. 

Chapter IV discusses a differential expression method for single cell RNA-Seq. It 

leverages the large number of cells sequenced in RNA-Seq in a higher dimensional model 

corresponding to the dimension of the number of transcript isoforms. While it is a 

distinct method from the method discussed in Chapter III for bulk RNA-Seq, it 

conceptually achieves the same results: gene-level results that are consistent with the 

transcript-level results and that is sensitive to transcript-level events. We again show that 

using TCCs instead of transcript counts with this approach can lead to more accurate 

results. Furthermore, in this chapter’s supplement, we present a more formal argument 

for how our method unifies differential gene expression (“DGE”) and differential 

transcript expression (“DTE”) into a common test. 

Chapter V discusses a comparison of pseudoalignment and alignment. It 

demonstrates that the two suites of methods are comparable in accuracy in their 

transcript and gene quantifications. Furthermore, we discuss the new tools we developed 

new tools to convert between the quantifications produced by the two approaches, i.e. 

producing TCCs from genome alignments and producing alignment-like visualization 

from pseudoalignment. 
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Abstract 

Background 

A recent study of the gene expression patterns of Zika virus (ZIKV) infected human 

neural progenitor cells (hNPCs) revealed transcriptional dysregulation and identified cell 

cycle-related pathways that are affected by infection. However, deeper exploration of the 

information present in the RNA-Seq data can be used to further elucidate the manner in 

which Zika infection of hNPCs affects the transcriptome, refining pathway predictions 

and revealing isoform-specific dynamics. 

Methodology/Principal Findings 

We analyzed data published by Tang et al. using state-of-the-art tools for transcriptome 

analysis. By accounting for the experimental design and estimation of technical and 

inferential variance we were able to pinpoint Zika infection affected pathways that 

highlight Zika’s neural tropism. The examination of differential genes reveals cases of 

isoform divergence. 

Conclusions 

Transcriptome analysis of Zika infected hNPCs has the potential to identify the molecular 

signatures of Zika infected neural cells. These signatures may be useful for diagnostics 

and for the resolution of infection pathways that can be used to harvest specific targets 

for further study. 
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Introduction 

As infection with Zika virus (ZIKV) is associated with increasing cases of 

congenital microcephaly and adult Guillain-Barre Syndrome, a characterization of its 

pathophysiology becomes crucial. A characterization of the molecular effects of infection 

may help in the development of fetal diagnostics and can accelerate the identification of 

genes and pathways critical in disease progression. RNA-Sequencing (RNA-Seq) is an 

effective technology for probing the transcriptome and has been applied to study the 

effects of ZIKV infection of human neuroprogenitor cells (hNPCs) [1]. 

While initial analyses of the data conducted a general survey of transcriptome 

changes upon infection [1-3], they [1,2] used a method, Cufflinks/Cuffdiff [4], that failed 

to take advantage of the experimental design used in Tang et. al [1]. They [1-3] also did 

not examine transcriptome dynamics at the isoform level.  

We applied the recently-developed kallisto [5] and sleuth [6] programs to 

improve the accuracy of quantification and to extract information from the data that was 

previously inaccessible. We found that sleuth’s improved control of false discovery rate 

[6] resulted in differential transcript and gene lists that are much more specific and that 

are significantly enriched in neurodevelopmental pathways. They reveal ZIKV’s neural 

tropism and the host’s response to viral infection. Furthermore, we demonstrate that the 

combination of accurate kallisto quantification, assessment of inferential variance and the 

sleuth response error model allows for the detection of post infection isoform-specific 

changes that were missed in previous analyses.   
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The sleuth Shiny app drives a freely available website that allows for 

reproducibility of our analyses, and provides tools for interacting with the data. This 

makes the dataset useful for analysis by infectious disease experts who may not have 

bioinformatics expertise. 

 

Methods 
 
 We ran kallisto and sleuth on a total of eight RNA-seq samples of ZIKV-infected 

and mock-infected hNPCs (GEO: Series GSE78711) (See Table 1 for experimental design 

and description of samples). We used kallisto to pseudoalign the RNA-seq reads and 

perform bootstraps, using an index based on the ENSEMBL GRC38 Homo sapiens release 

85 transcriptome. For single-end read quantification, we used default parameters (kmer 

size = 31, fragment length = 187 and sd = 70). For each of the eight samples, kallisto 

quantified transcript abundances and performed 100 bootstraps. 

The response error model of sleuth was then used to identify differentially 

expressed transcripts. Sleuth used the bootstraps performed by kallisto to estimate the 

inferential variance of each transcript, and an adjusted variance was used to determine 

differential expression for that transcript. This data set had a unique experimental design, 

however.  For each sequencing library corresponding to a biological sample, Tang et al. 

performed both paired-end and single-end sequencing.  To take advantage of the technical 

replicates performed by Tang et al., we modified sleuth to perform a weighted average of 

the inferential variance with the number of fragments sequenced (Table 1). 
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Principle component analysis of the transcript abundances provided a quick 

verification of the accuracy of our methods, as the first principle component separated 

the samples by infection status and the second principle component separated the 

samples by sequencing method (Fig. 1).  

The data analysis pipeline was performed on a laptop and can be repeated using 

the provided scripts at http://www.github.com/pachterlab/zika/. The kallisto 

quantifications, the modified version of sleuth, as well as a script for the pipeline, are 

available on the github. One can use the script to start the Shiny app, which recreates the 

statistics and figures referenced throughout this paper, along with interactive data 

visualization tools.  Alternatively, the preloaded sleuth Shiny app can be found via 

http://128.32.142.223/tang16/. 

 
Results 
 

Using a false discovery rate of 0.05 as the threshold for differential expression, we 

detected 4610 transcripts across 3646 genes that are differentially expressed between 

ZIKV-and mock-infected samples. (Fig. 2, S1 and S2 Tables) For the 3969 genes that 

Cuffdiff found differentially expressed but sleuth did not, sleuth reported an average false 

discovery rate of 0.55.  

It was not surprising that the many differentially expressed genes discovered by 

Cuffdiff were considered false positives by sleuth. In simulations by Pimentel et al [6], 

sleuth provided the most accurate false discovery rates, whereas other methods including 
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DESeq2, edgeR, and Cuffdiff2 underestimated their false discovery rates. In other words, 

these methods provided differential gene lists that had many more false positives than 

what was suggested by their p-values. The fundamental idea underlying sleuth is that, by 

using bootstraps to estimate inferential variance, it does not assume a parametric 

distribution to account for uncertainty in isoform mapping. 

 Furthermore, we found a few hundred genes with differentially expressed 

transcripts not identified by Cuffdiff. We ascribe these to the accounting of experimental 

design and the isoform-level analysis. 

 

Zika induced isoform divergence 

Differentially regulated genes may be missed in gene-level analysis for several 

reasons.  Noise in the measurement of highly expressed transcripts can mask expression 

changes in lowly expressed transcripts.  In the case of isoform switching, upregulation in 

one isoform and  downregulation in another may “cancel out.” We identified 108 genes 

that contain transcript(s) that are significantly upregulated and other transcript(s) that 

are significantly downregulated, a phenomenon we coin “isoform divergence” (S3 Table). 

Of these 108 isoform diverging genes, 57 were not considered differentially expressed by 

Cuffdiff analysis. 

We performed a pathway analysis on the 108 genes using Reactome [7].  

Enrichment was identified in neuronal system (specifically transmission across chemical 

synapses and protein-protein interactions at the synapses), developmental biology 

(specifically axon guidance), immune system, DNA repair, chromatin modifying 



 

 

34 

enzymes, gene expression (rRNA and transcriptional regulation), metabolism, signal 

transduction, transmembrane transport and vesicle-mediated transport.  

One of these 57 isoform diverging genes not picked up by Cufflink is NRCAM, 

neuronal cell adhesion molecule, which is putatively involved in neuron-neuron adhesion 

and axonal cone growth. Another is CHRNA7, cholinergic receptor nicotinic alpha 7 

subunit. [8] Fig. 3 shows transcript abundances in NRCAM and CHRNA7 across 

different samples, highlighting isoform-specific changes. 

 

A gene ontology (GO) analysis of sleuth-discovered genes showcase neural and 

head development networks 

 We performed a side-by-side gene ontology (GO) analysis with the differential 

genes identified by sleuth and Cuffdiff, using ClueGO [9, 10] over the Biological 

Processes ontology network, using GO Term Fusion. We set the network specificity to 

global (GO tree interval: 1-4), using pathways with a minimum of 50 genes and kappa 

score of 0.5.  We highlighted enriched nodes of particular interest and their enrichments 

in Fig. 5. Provided in the supplementary materials are the side-by-side GO analysis results 

tables (S4 and S5 Tables). 
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Discussion 

 RNA-Seq can provide rapid and high resolution probing of infection response, and 

initial studies of Zika infection highlight isoforms, genes and pathways that may play an 

important role in disease etiology. However, the simplicity of RNA-Seq library prep and 

cDNA sequencing belies the complexity of analysis. We have shown that a careful 

analysis of previously published data can reveal novel targets with higher confidence, and 

in the process rendering a valuable dataset usable by the community of Zika researchers.  

 The kallisto and sleuth tools we have used in our analysis are particularly powerful 

when coupled with the interactive sleuth Shiny application, and our publicly available 

server provides access to numerous interactive plots and figures that cannot be 

reproduced in a static publication. This highlights the utility and importance of data 

sharing [11], and we hope that our analysis, aside from its usefulness for the Zika 

scientific community, can also serve as a blueprint for future data sharing efforts.  

 sleuth is a fast and accurate pipeline for analyzing RNA-Seq data that allows for 

testing at the isoform level. The alignment and quantification pipeline is feasible and 

compatible with a standard desktop computer. The interactive Sleuth application, made 

publically available, allows for informative data visualization, including those of library 

prep fragment size distributions, principle component analysis, and gene and transcript 

expression changes. We invite the scientific community studying Zika to utilize this 

toolkit. 
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Figures  

Sample 
Accession 
Number Condition 

Sequencing 
method 

Sequencing 
machine Reads 

No. 
Fragments / 
weights 

Mock1-1 SRR3191542 mock paired-end MiSeq 15855554 7927777 

Mock2-1 SRR3191543 mock paired-end MiSeq 14782152 7391076 

ZIKV1-1 SRR3191544 zika paired-end MiSeq 14723054 7361527 

ZIKV2-1 SRR3191545 zika paired-end MiSeq 15242694 7621347 

Mock1-2 SRR3194428 mock single-end NextSeq 72983243 72983243 

Mock2-2 SRR3194429 mock single-end NextSeq 94729809 94729809 

ZIKV1-2 SRR3194430 zika single-end NextSeq 71055823 71055823 

ZIKV2-2 SRR3194431 zika single-end NextSeq 66528035 66528035 
 

Table 1. Experimental design. Tang et al. infected two samples with ZIKV and two 

with a mock infection. Library preparation was performed for each sample to make four 

cDNA libraries.  Each library was then sequenced with MiSeq using paired-end reads 

and NextSeq using single-end reads. 
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Figure 1: Principle component analysis. PCA of the eight samples shows that the 

primary contributor to variance is ZIKV infection status (ZIKV vs mock), while the 

secondary component is sequencing method (paired-end vs single-end). 
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Figure 2: Venn diagram of differential expression analysis. Sleuth identified 3646 

differentially expressed genes. Cuffdiff identified 6864 differentially expressed genes. 

2895 of the 3646 differentially expressed genes were also reported in Tang et. al [1], but 

they reported an additional 3969 genes that we failed to identify. Furthermore, we found 

751 differentially expressed genes corresponding to 5426 transcripts not detected by 

Cuffdiff. 
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Figure 3: NRCAM is an example of an isoform divergent gene involved in neuron-

neuron adhesion. For a specific gene, the sleuth Shiny app plots the counts 

corresponding to each transcript and sample. Visualized here are counts for four 

transcripts of NRCAM across the eight samples, colored by infection status. 
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Figure 4: The counts of CHRNA7, another isoform diverging gene, plotted by the 

sleuth Shiny app.  Visualized here are counts for three transcripts of CHRNA7 across 

eight samples, colored by infection status. 
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Figure 5: GO pathways enrichment. The enriched nodes of particular interest include 

neuron projection guidance (p-value = 2.7E-3 vs >0.05 with Cuffdiff), cerebral cortex 

development (1.6E-7 vs >0.05), neuron development (9.9E-6 vs 3.9E-4), neuron 

projection development (1.8E-6 vs 5.0E-5), nervous system development (3.0E-10 vs 

1.0E-9), central nervous system development (6.9E-9 vs 1.0E-4), brain development 

(2.8E-9 vs 8.0E-4), forebrain development (1.9E-7 vs 4.1E-2), telecephalon development 

(2.7E-5 vs 5.2E-3), head development (1.3E-6 vs 3.2E-4), and cellular response to stress 

(9.4E-26 vs 7.3E-22).  
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Abstract 

 Compared to RNA-Seq transcript differential analysis, gene-level 

differential expression analysis is more robust and experimentally actionable. 

However, the use of gene counts for statistical analysis can mask transcript-level 

dynamics. We demonstrate that ‘analysis first, aggregation second,’ where the p-

values derived from transcript analysis are aggregated to obtain gene-level results, 

increase sensitivity and accuracy. The method we propose can also be applied to 

transcript compatibility counts obtained from pseudoalignment of reads, which 

circumvents the need for quantification, and is fast, accurate, and model-free. The 

method generalizes to various levels of biology, and we showcase an application 

to gene ontologies. 

 

Keywords 
 
RNA-Seq, differential expression, metaanalysis, p-value aggregation, Lancaster 

method, Fisher’s method, Šidák correction, RNA-Seq quantification, RNA-Seq 

alignment, pseudoalignment, transcript compatibility counts, gene ontology 
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Background 

Direct analysis of RNA abundance by sequencing cDNAs using RNA-Sequencing 

(RNA-Seq) offers the possibility to analyze expression at the resolution of individual 

transcripts (Wang et al. 2009). Nevertheless, RNA-Seq continues to be mostly studied at 

the gene-level, partly because such analyses appear to be more robust (Soneson et al. 

2016), and also because gene-level discoveries are more experimentally actionable than 

transcript-level discoveries due to the difficulty of knocking down single isoforms 

(Kisielow et al. 2002). 

Gene-level RNA-Seq differential analysis is, at first glance, similar to transcript-

level analysis, with the caveat that transcript counts are first summed to obtain gene 

counts (Anders and Huber 2010, Anders et al. 2015). However, despite such superficial 

simplicity, there is considerable complexity involved in transitioning from transcripts to 

genes. In (Trapnell et al. 2013), it was shown that naïve approach of summing transcript 

counts to gene counts lead to inaccurate estimates of fold-change between conditions 

when transcripts have different lengths. Because transcript counts are proportional to 

transcript lengths, summing transcript counts is not equivalent to summing transcript 

abundances. 

A remedy to this problem is to estimate gene abundances (e.g. in transcript-per-

million units) by summing transcript abundances (Trapnell et al. 2010), but 

regularization methods for variance estimation of gene counts (Robinson et al. 2010) 

cannot be directly applied to abundances. For this reason, recent workflows for gene-level 
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differential analysis rely on converting gene abundance estimates to gene counts 

(Soneson et al. 2016, Pimentel et al. 2017). Such methods have two major drawbacks. 

First, even though the resulting gene counts can be used to accurately estimate fold 

changes, the associated variance estimates can be distorted (see Figure 1 and Additional 

file 1: Section 1). Second, the assignment of a single numerical value to a gene can mask 

dynamic effects among its multiple constituent transcripts (Figure 2). In the case of 

“cancellation” (Figure 2a), the abundance of transcripts changing in opposite directions 

cancels out upon conversion to gene abundance. In “domination” (Figure 2b), an 

abundant transcript that is not changing can mask substantial change in abundance of a 

minor transcript. Finally, in the case of “collapsing” (Figure 2c), due to overdispersion in 

variance, multiple isoforms of a gene with small effect sizes in the same direction do not 

lead to a significant change when observed in aggregate, but their independent changes 

constitute substantial evidence for differential expression. As shown in Figure 2, these 

scenarios are not only hypothetical scenarios in a thought experiment, but events that 

occur in biological data. 

Rather than aggregating quantifications prior to differential analysis, one 

approach is to first perform a transcript-level differential analysis followed by a gene-level 

meta-analysis. Such a method is implemented in the DEXSeq program (Anders et al. 

2012), although it is not effective at recovering differential events lost due to collapsing, 

and is suboptimal even for cancellation or domination events (see Results and Additional 

file 1: Section 2). Meta-analysis has been suggested for microarray studies to aggregate 

probe-level p-values (Hess et al., 2007) and is performed in genome-wide association 
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studies to aggregate single nucleotide polymorphism p-values to make gene-level (Chen 

et al., 2014. Dai et al., 2011., Lamparter et al., 2016) and pathway-level inferences (Li et al., 

2011, Lamparter et al., 2016), but such approaches do not appear to have been extensively 

explored for RNA-Seq. 

We present a new framework for gene-level differential analysis that utilizes the 

Lancaster method (Lancaster, 1961). In this framework, differential expression is 

performed on transcripts as usual, but then transcript-level p-values are aggregated to 

obtain gene-level p-values. (See Methods for details about the Lancaster method. See 

Additional file 1 for applicability of the Lancaster method to RNA-Seq.) 

Our approach can be based on p-values derived from transcript-level differential 

analysis, but can also be applied to p-values derived from comparisons of transcript 

compatibility counts (TCCs), a concept introduced by the pseudoalignment method in 

kallisto (Bray et al., 2016).  Transcript compatibility counts are the number of reads that 

are compatible with a set of transcripts, i.e. an equivalence class.  In default RNA-Seq 

quantification mode, kallisto matches each read with its equivalence class, thus 

generating TCCs, and then applies the expectation-maximization (EM) algorithm on 

TCCs to obtain transcript quantifications. Differential analysis performed on directly 

TCCs has the advantage of being fast and model-free, and we show that it is particularly 

useful for positionally biased RNA-Seq data. 

Finally, we highlight the generality of our approach at varying levels of biological 

resolution by extending it to gene ontology analysis. In contrast to classical gene ontology 

(GO) tests that identify enrichment of GO terms with respect to gene lists, our approach 
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identifies GO terms in which there is significant perturbation among the associated genes. 

We combine this idea with TCC-based differential analysis to illustrate how GO analysis 

can be performed on RNA-Seq data without transcript quantification. 

 

Results 
 

We first examined the performance of aggregation in comparison to standard 

gene-level differential expression methods using three simulated scenarios from 

(Pimentel et al. 2017). In these simulations, transcripts are perturbed independently, in 

a correlated fashion with other transcripts of the gene, or according to effect sizes 

observed in a biological experiment. In the first scenario of independent effects, random 

transcripts in the transcriptome are independently chosen to be perturbed, and the effect 

size for each transcript is chosen independently. In the second scenario of correlated 

effects, genes are independently chosen to be differentially expressed, and all transcripts 

of the same gene are perturbed in the same direction.  In the third scenario of 

experimentally based effects, effect sizes are learned from an experimental data set and 

applied to the simulation. (See Methods for more details.) Each of the three scenarios 

was simulated twenty times. 

We evaluated the performance of various aggregation methods on these 

simulations with two differential expression methods, sleuth and DESeq2. These 

differential expression methods were chosen for their superior performance in previously 

published simulations (Pimentel et al, 2017).  sleuth utilizes bootstraps on reads to 

estimate inferential variance due to read-mapping and quantification uncertainty, which 
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is then used in a linear model to perform differential expression analysis.  DESeq2 utilizes 

a negative binomial model on counts (Love et al. 2014).  We evaluated every aggregation 

method using each differential expression method in each of the three simulation 

scenarios. 

Figure 3 shows the results of performing aggregation using sleuth in the 

simulation scenario that is modeled after experimental effect sizes, plotted as a false 

discovery rate (FDR)-sensitivity tradeoff curve. (Additional File 1: Figs S1 and S2 show 

results with other two simulation scenarios using sleuth. Additional File 1: Fig S3 shows 

results with the three simulation scenarios using DESeq2.)  Aggregation of transcript p-

values using the Lancaster method (Lancaster, 1961) outperforms standard gene-level 

analysis; it provides greater power at lower FDR.  Furthermore, Lancaster-based 

aggregation outperforms the Šidák method of DEXSeq, which utilizes the minimum 

transcript p-value to make the gene-level determination (method corrected, Additional 

file 1: Section 2). While the Šidák method performs well when transcripts are perturbed 

independently (Additional file 1: Fig. S1), it performs very poorly in the more common 

case of correlated effect (Additional file 1: Fig. S2).  In addition to providing more power 

at lower FDR than the other methods, the Lancaster method is also better at controlling 

and accurately reporting FDR (See Figure 3b for reported FDRs). Additional file 1: Fig. 

S3 shows similar improvements when aggregation is performed using p-values that are 

derived from DESeq2 (Love et al. 2014) instead of sleuth.  Regardless of the differential 

expression method used to compute p-values, the Lancaster method of aggregation 
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outperforms the other methods, showing that improvements in performance are due to 

the aggregation method and not the differential expression software. 

Transcript-level p-values are computed from transcript quantifications, a process 

that introduces uncertainty from multiple-mapping RNA-Seq reads. (Pimentel et al, 2017) 

showed that propagating uncertainty from the transcript quantification to differential 

expression analysis increases accuracy of the differential expression analysis.  In kallisto 

(Bray et al. 2016), pseudoalignment was performed to generate transcript compatibility 

counts (TCCs), which are the number of reads that are compatible with sets of transcripts 

and therefore do not contain any quantification uncertainty.  Given the improved results 

observed with performing Lancaster aggregation, we asked whether it is possible to 

perform differential expression analysis directly on TCCs and aggregate on TCC p-values 

to obtain gene p-values, thereby bypassing transcript quantification and the uncertainty 

it entails altogether. Figure 3 shows that aggregating TCC p-values outperforms other 

methods, including that of aggregating transcript p-values.  Furthermore, aggregating 

TCC p-values reported FDRs that are as or more accurate than those reported by other 

methods. In this instance, we used only TCCs that mapped solely to the transcripts of a 

single gene, which accounts for 88% of the RNA-Seq reads. It may be possible to continue 

to improve performance by accounting for intergenic TCCs. 

Aggregation of TCCs is useful when quantification is complicated due to non-

uniformity of reads coverage across transcript spans. While non-uniformity in coverage 

is prevalent in RNA-Seq (Hayer et al., 2015), it is particularly extreme in variants of RNA-

Seq that enrich for 5’ or 3’ sequences. We used TCC aggregation to perform differential 
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expression on QuantSeq data (Moll et al., 2014), where an experiment involved 

mechanically stretching rat primary type I like alveolar epithelial cells and then 

performing QuantSeq 3’ mRNA sequencing to detect changes in 3’ untranslated region 

(UTR) expression (Dolinay et al., 2017, GEO Series GSE89024). Figure 4a shows that 

overall results with TCC-based aggregation are similar to standard analysis based on gene 

counts obtained by summing the number of reads that map to any constituent isoforms. 

However, TCC-based aggregation allows for the discovery of events that are masked in 

standard count-based analysis. Figure 4b shows an example where we discovered 3’ UTR 

isoform switching, an event which could not be identified with a gene counts-based 

analysis. While p-value aggregation works well for gene-level differential expression 

analysis, aggregation can be extended to other natural groupings. To demonstrate the 

generality of the approach, we applied p-value aggregation to gene ontologies (Ashburner, 

2000). Classic gene ontology (GO) analysis of a RNA-Seq experiment involves first 

performing gene differential expression analysis to obtain either a list of statistically 

differential genes (i.e. all genes with q-value < 0.05) or a rank order list of genes (i.e. 

ordered by p-value) and then identifying GOs that are statistically enriched in this gene 

list.  Common statistical tests for enrichment include Fisher’s exact test and Wilcoxon 

rank-sum test (Huang et al., 2009, Mi et al., 2013).  Instead of testing for enrichment of 

GOs, we examined the complementary question of “perturbation analysis,” namely, 

whether the GO is significantly perturbed.  To test for perturbation, we aggregated p-

values based on transcript quantifications or TCCs for all genes in each GO term to obtain 

p-values for each GO term, which are then Bonferroni corrected. Unlike standard GO 
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enrichment analysis, this perturbation analysis utilizes the information derived from all 

genes and reveals information not only about membership, but also about the significance 

of perturbation. 

We performed differential expression and GO analysis on recently published 

RNA-Seq data that examined the effect of dexamethasone treatment on primary neural 

progenitor cells of embryonic mice (Frahm et al., 2017, GEO Series GSE95363). First, we 

performed differential expression using each of the four previously discussed aggregation 

methods to obtain differential gene lists (FDR < 0.05). (Additional file 1: Fig. S4 

compares differential expression with sleuth standard gene mode vs. Lancaster 

aggregating TCC p-values.) Then, we applied classical GO enrichment analysis to each 

method’s differential gene list. The Lancaster method applied to TCC derived p-values 

produced the differential gene list that is enriched for the most “immune”-containing GO 

terms (Figure 5a).  To apply the GO perturbation test, we performed further aggregation 

on the gene p-values resulting from differential expression analysis to generate GO p-

values, resulting in a total of four GO perturbation tests.  Each GO perturbation test 

resulted in a perturbed GO list (FWER < 0.05) that was more enriched for “immune”-

containing GO terms than the corresponding enrichment test (FWER < 0.05) 

(Additional file 1: Fig. S5). 

To highlight some specific results, in the GO perturbation test based on 

aggregating TCC p-values, we found 6396 GO terms (<0.05 FWER) perturbed by 

dexamethasone treatment.  Example terms at the top of the perturbed list included: 

system process (GO:0003008), response to stress (GO:0006950), metabolic process 
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(GO:0008152), immune system process (GO:0002376), inflammatory response 

(GO:0006954), and response to hormone (GO:0009725). As a comparison, the 

corresponding classical enrichment analysis using Fisher’s exact test revealed 2123 

enriched GO terms (<0.05 FWER). Many of the perturbed GOs mentioned above were 

also enriched, but system process and inflammatory response were not (FWER = 0.27 

and 1.00). In other words, an enriched ontology is likely perturbed, but not vice versa, 

and indeed, many “immune”-containing GO terms were perturbed but not enriched 

(Figure 5b). These results suggest that perturbation analysis can be a useful and powerful 

complementary analysis to standard GO enrichment analysis. 

 

Discussion 
 

We have shown that aggregating p-values to obtain gene-level p-values is a 

powerful and tractable method that provides biologically interpretable results. By using 

only the resulting p-values from a differential expression analysis, aggregation bypasses 

issues of different variances and directions of change across constituent transcripts, 

allowing it to capture cancellation, domination and collapsing events.  All the examples 

of failure modes of traditional gene differential analysis showcased in Figure 2 were 

successfully identified with the Lancaster method. Furthermore, performing the 

Lancaster method on TCC p-values leverages the idea of pseudoalignment for RNA-Seq, 

enabling a fast and model-free approach to differential analysis that circumvents 

numerous drawbacks of previous methods. 
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 The method of p-value aggregation is also extendable to testing other features of 

biological interest. We have demonstrated its utility for GO analysis to test for 

perturbation of gene ontologies, a complementary analysis that can be used in addition 

to existing GO enrichment tests. Aggregation can be performed hierarchically to maintain 

resolution at all levels including transcripts, genes and gene ontology terms.  Further 

applications can include testing for intron retention, differential transcript start site (TSS) 

usage, and other use cases where aggregation of features is of interest. Finally, gene-level 

testing directly from TCC counts is particularly well-suited for single-cell RNA-Seq 

analysis, where many technologies produce read distributions that are non-uniform 

across transcripts. 

While this paper has focused on higher-order differential analysis, the 

complementary problem of differential analysis of individual transcripts can also benefit 

from some of the aggregation ideas described here. The stageR method, recently 

described in (Van den Berge et al., 2017), incorporates a two-step testing procedure in 

which an initial meta-analysis at the gene-level (using DEXSeq) is used to identify 

differential transcripts without losing power due to testing of all transcripts. The use of 

the Šidák method for aggregation of p-values makes sense in that context, as it is desirable 

to identify genes with at least one differential isoform. However, it is possible that some 

of the methods we have introduced, including testing of TCCs and weighting, could be 

applied during the screening stage. 
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Conclusions 
 

Transcript differential analysis and gene differential analysis for RNA-Seq have 

been two independent procedures up until now. Aggregating transcript p-values with the 

Lancaster method to call gene differential expression not only outperforms other gene-

level methods, it also retains information about transcript dynamics and produces one 

coherent analysis between transcripts and genes. This framework can be leveraged to 

study multiple resolutions of biology, such as performing a hierarchical analysis of 

transcripts, genes and gene ontologies, or to bypass artifacts introduced at a particular 

resolution, such as obtaining gene-level results without transcript quantification by 

aggregating on transcript compatibility counts. 

 
 
Methods 
 
Aggregation of p-values 

Fisher’s method aggregates K p-values p1,…, pK, which, under the null hypothesis, 

are independent and uniformly distributed between 0 and 1.  Under the null hypothesis, 

the test statistic ! = 	 −2 log )* 	+
*,-  is chi-squared distributed with degrees of freedom 

(df)  = 2K.  The aggregated p-value is therefore 1 − /( −2 log )* )	+
*,- , where / is the 

cumulative distribution function (CDF) of a chi-squared distribution with df = 2K.  

(Fisher, 1932) 

 The Lancaster method (Lancaster, 1961) generalizes Fisher’s method for 

aggregating p-values by introducing the possibility of weighting the p-values with weights 



 

59  

w1,…,wK.  According to the Lancaster method, under the null hypothesis where all studies 

have zero effect, the test statistic ! = /2*3-()*)	+
*,- , where /2*3- is the inverse CDF of the 

chi-squared distribution with df = wi, follows a chi-squared distribution with 45 =

	 6*	+
*,- . Fisher’s method is a specific instance of the Lancaster method where all p-values 

are uniformly weighted by 2, and we found that the Lancaster method applied with a 

weighting scheme based on transcript counts outperformed Fisher’s method (Additional 

file 1: Fig. S6). 

We investigated whether the assumptions of Fisher’s and the Lancaster method, 

namely that p-values are independent and uniformly distributed under the null 

hypothesis, apply to RNA-Seq.  Additional file 1: Fig. S7 shows a distribution of the 

transcript p-values for the dexamethasone RNA-Seq data we examined. Aside from a peak 

close to 0, presumably corresponding to the differential transcripts, the p-values appear 

to be uniformly distributed.  Furthermore, the Additional file 1: Section 3 contains a 

walkthrough of the experiments we performed to test the independence between 

transcripts under the null hypothesis, showing that while transcripts of the same are not 

independent in general, the dependence is weak and does not lead to exaggerated p-values 

or inflated false discovery rates (Additional file 1: Figs. S8, S9). 

The Šidák method (Šidák, 1967) utilizes a test based on the minimum p-value m 

= min(p1,…, pK), namely the adjustment 7 = 	1	–	 1 − m +. In the context of K isoforms 

with p-values p1,…, pK, 	7 is the gene-level p-value based on adjusting for the number of 

isoforms in the gene. If there are M genes, the adjustments will generate p-values 71, …, 7M, 

which can be corrected for multiple testing. This method is similar to the perGeneQvalue 
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result from DEXSeq (Anders et al., 2012), and while both methods control the false 

discovery rate, the gene ranking is different between the two methods (Additional file 1: 

Section 2). 

 

Transcript differential analysis and aggregation 

RNA-Seq reads were quantified with kallisto v.0.43.1 to obtain transcript counts 

and abundances. These transcript counts were used as inputs in differential expression 

methods sleuth and DESeq2 in order to obtain transcript p-values, which were then 

aggregated with the Lancaster method to obtain gene p-values. sleuth and DESeq2 were 

run with their respective default filters and the Wald test. sleuth was run with 30 

bootstraps. Transcripts filtered out from the differential expression analysis due to low 

counts were also filtered out from the p-value aggregation. To obtain p-value weights for 

the Lancaster method, we used as weights the mean expression level for the transcript 

extracted by the differential expression analysis (i.e. the mean_obs parameter in sleuth, 

the baseMean parameter in DESeq2). FDRs were calculated for the gene-specific p-values 

using the Benjamini-Hochberg method.  While we used the Wald test in this manuscript 

for obtaining transcript and gene differential expression analysis, we also tested the 

likelihood ratio test, which showed similar improvements with Lancaster aggregation and 

whose performance is comparable to the Wald test (Additional file 1: Fig. S10). 
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Transcript compatibility count differential analysis and aggregation 

Transcript compatibility counts (TCCs) of RNA-Seq reads were obtained with the 

kallisto pseudo option, which outputs a TCC matrix whose two dimensions are the 

number of samples and number of equivalence classes.  Each TCC represents the RNA-

Seq counts corresponding to an equivalence class of transcripts. All TCCs corresponding 

to transcripts from more than one gene were filtered out from the analysis; 88% of reads 

were retained after applying this filter. The remaining TCCs were used to perform 

differential expression with sleuth (Pimentel et al. 2017) and DESeq2 (Love et al. 2015) 

by using TCCs in lieu of transcript/gene counts.  In order to use sleuth, we performed 30 

bootstraps on TCCs, whose results were inputted into sleuth to estimate inferential 

variance. Non-expressed TCCs were filtered from the sleuth analyses and the default filter 

in DESeq2 was used. Both methods were performed with the likelihood ratio test because 

we found that the Wald test applied to TCCs reported overly liberal FDRs. The resulting 

TCC p-values from the differential expression analysis were aggregated using the 

Lancaster method, with p-value weights equal to the log-transformed mean counts 

normalized to 1. In other words, given K TCCs of the same gene with mean counts t1, …, 

tK,  the weight for the ith TCC is  6* = :;< =>?-
:;< =@?- 	A

@BC 	 . 
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Gene differential analysis 

The aggregation methods were compared to standard gene-level differential 

analysis performed with sleuth and DESeq2. sleuth was run in gene mode with 30 

bootstraps.  DESeq2 was run on gene counts obtained using tximport (Soneson et al. 

2015) to aggregate transcript quantifications, except the case of 3’ QuantSeq data set, 

where gene counts were obtained by summing reads that uniquely map to a gene.  Both 

sleuth and DESeq2 were run with the Wald test and their respective default filters. 

 

Simulations 

The simulations used to benchmark the method followed the approach of 

(Pimentel et al. 2017). A null distribution consisting of the negative binomial model for 

transcript counts was learned from the Finnish female lymphoblastic cell lines subset of 

GEUVADIS (Lappalainen et al., 2013).  A distribution of fold changes to the mean was 

learned from an experimental data set from (Trapnell et al., 2013), and 20% of genes were 

chosen randomly to be differentially expressed, with fold changes of the transcripts 

assigned by rank-matching transcript abundances. Twenty simulations were performed, 

each with different randomly chosen sets of differentially expressed genes. (For further 

details on the simulation structure see (Pimentel et al. 2017).) 

The simulations were quantified with kallisto v0.43.1 using an index constructed 

from Ensembl Homo sapiens GRCh38 cDNA release 79. Differential expression analyses 

were performed with sleuth and DESeq2 and then aggregated with various methods 

described above.  Sensitivities and corresponding FDRs were calculated and then 
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averaged across the twenty simulations. The average sensitivity at each average FDR was 

plotted with the mamabear package (Pimentel et al., 2017, 

https://github.com/pimentel/mamabear). 

 

Rat Alveolar Epithelial Cell Stretching Data Set Analysis 

We used a 3’ QuantSeq data set (GEO Series GSE89024) of stretched and 

unstretched rat primary type I like alveolar epithelial cells. Five replicates for each 

condition were performed by the original experimenters, resulting in a total of 10 single-

end RNA-Seq samples (Dolinay et al., 2017). Reads were trimmed to remove poly-A tails 

with fqtrim-0.9.5 using the default parameters (Johns Hopkins Center for Computational 

Biology, 2015). As discussed above in Methods section ‘Transcript compatibility count 

differential analysis and aggregation,’ TCCs were obtained with the kallisto pseudo option, 

differential expression of TCCs was performed in sleuth, and TCC p-values were 

aggregated with the Lancaster method. Because kallisto quantification is invalid for this 

non-uniform sequencing dataset and it cannot be used to provide bootstrap estimates of 

inferential variance required for sleuth, we used DESeq2’s default pipeline to perform 

gene differential analysis, summing all reads mapping uniquely to a gene to obtain gene 

counts. 

 

Dexamethasone Data Set Analysis 

We analyzed a data set (GEO Series GSE95363) consisting of reads derived from 

RNA-Seq on primary mouse neural progenitor cells extracted from two regions of the 
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brain, from female and male embryonic mice, and with and without dexamethasone 

treatment. Three replicates were performed for each of the eight combinatorial conditions, 

resulting in a total of 24 single-end RNA-Seq samples (Frahm et al., 2017).  As detailed 

above in ‘Transcript differential analysis and aggregation’, samples were quantified with 

kallisto v0.43.1 (default kmer length 31, with 30 bootstraps per sample), using an index 

constructed from Ensembl Mus musculus GRCm38 cDNA release 88. Within sleuth, a 

linear model with three parameters (gender, brain region, and treatment) was 

constructed, a Wald test was performed to test for effect of treatment on transcript 

expression, and the resulting p-values were aggregated.   As detailed above in ‘Transcript 

compatibility count differential analysis and aggregation,’ TCCs were obtained with 

kallisto v0.43.1 using the pseudo option, differential expression of TCCs was performed 

in sleuth, and the resulting p-values aggregated.  On this data set, we also performed the 

sleuth’s standard gene pipeline (detailed in ‘Gene differential analysis’) and the Sidak 

aggregation method, resulting in a total of four different aggregation methods. 

Each method’s significant gene list, thresholded at FDR < 0.05, was inputted into 

a classical GO analysis to test for GO enrichment.  topGO_2.26.0 (Alexa et al., 2016) was 

invoked to perform Fisher’s exact test, using gene ontologies drawn from GO.db_3.4.0 

and mouse gene annotations drawn from org.Mm.eg.db_3.4.0 (The Gene Ontology 

Consortium, 2015).  Furthermore, the gene p-values from each aggregation method were 

used in a GO perturbation test.  In the GO perturbation test, gene p-values are weighted 

by the counts mapping uniquely to the gene and aggregated with the Lancaster method, 
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using the ontology-to-gene mappings provided by topGO. The GO p-values were 

Bonferroni corrected to obtain FWER. 

 
Software Versions 
 

DESeq2 1.14.1 and sleuth 0.29.0 were used in R version 3.4.1 to perform 

differential analyses. tximport 1.2.0 was used to sum transcript counts within genes to 

perform gene-level differential expression with DESeq2. We implemented Fisher’s 

method and Lancaster method with the chisq and gamma functions in the R Stats Package. 

A lightweight R package containing the functionality for performing p-value aggregation 

with Fisher’s, Lancaster and Šidák methods, which is applicable generally to outside the 

domain of RNA-Seq, is available on CRAN as “aggregation” (https://cran.r-

project.org/web/packages/aggregation/index.html). Our method to perform gene-level 

differential analysis via Lancaster aggregation of transcript p-values has been 

implemented in sleuth. Scripts to reproduce the figures and results of the paper are 

available at http://github.com/pachterlab/aggregationDE/. 
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Figures 

 
Figure 1. Conversion of transcript counts to gene counts for the Nkap gene in the 

dexamethasone dataset under two conditions (dexamethasone and vehicle treatment). 

The x-axis is labeled with the Ensembl gene and transcript IDs, along with p-values 

obtained by performing sleuth on transcripts and genes. In this process, the transcript 

counts (a) are converted into transcript abundances (b) by normalization according to 

transcript lengths. Transcript abundances are then summed to obtain gene abundances 

(c), and then converted to gene counts (d) using the median or mean transcript length as 

a proxy for the gene length. The converted gene counts mask significant changes among 

the constituent transcripts, and the gene count variance does not directly reflect the 

combined variance in transcript counts. In this example Nkap is not differential when 

examined using the converted gene counts, but can be identified as differential when the 

p-values of the constituent transcripts are aggregated using the Lancaster method. 
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Figure 2: Differential transcript masking. Dynamics among transcripts may not be 

detected with gene-level analyses due to cancellation (a), domination (b) and collapsing 

(c).  Gene counts and constituent transcript counts are plotted between conditions 

(dexamethasone versus vehicle treatment) and annotated with Ensembl ID and sleuth-

derived p-values.  In the case of cancellation (a), the abundance of transcripts changing 

in opposite directions cancels out upon conversion to gene abundance. In domination (b), 

an abundant transcript that is not changing can mask substantial change in abundance of 

a minor transcript. In the case of collapsing (c), multiple isoforms of a gene with small 

effect sizes in the same direction do not lead to a significant change when observed after 

summation, but their independent changes constitute substantial evidence for 

differential expression. In all these examples, gene-level differential analysis with sleuth 

failed to identify the genes as differential (p-values listed on x-axis), whereas Lancaster 

aggregation of transcript p-values resulted in detection of the genes as differential. 
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Figure 3: Sensitivity and false discovery trade-off curves of aggregation methods. 

Twenty simulated experiments based on parameters estimated from biological data were 

analyzed with different aggregation methods and averaged producing (a), and zoomed in 

(b). sleuth in gene mode (‘sleuth-Gene’) is a standard gene-level differential analysis 

method. Aggregation results based on transcript p-values are shown using two 

approaches: sleuth transcript p-values aggregated by the Lancaster method (‘sleuth-

Lancaster Tx’) and sleuth transcript p-values aggregated by the Šidák-adjusted minimum 

method (‘sleuth – Sidak Tx’).  Finally, sleuth TCC p-values obtained by running sleuth 

on TCC counts were aggregated with the Lancaster method (‘sleuth-Lancaster TCC’). 

Dashed lines indicate true FDR at 0.01, 0.05, and 0.1.  The shapes (circle, triangle, square) 
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on each sensitivity-FDR curve indicate the true FDR and sensitivity at each method’s 

reported FDRs of 0.01, 0.05, and 0.1. 
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Figure 4: Analysis of positionally-biased RNA-Seq data using TCC aggregation. A 

log-log plot of p-values comparing aggregated sleuth-derived TCC p-values using the 

Lancaster method (x-axis) to p-values obtained by differential analysis in DESeq2 with 

gene counts (y-axis) shows overall agreement (a).  DESeq2 applied on gene counts 

discovered 460 DE genes (FDR < 0.05); Lancaster aggregation on TCCs discovered 243 

genes (FDR < 0.05). TCC aggregated analysis can detect differential 3’ UTR usage that 

is masked in gene count analyses (b). An example is shown from the rat gene Tap1, with 

rectangular blocks representing individual exons (blank = noncoding, solid = coding), 

and distinct equivalence classes (EC’s) labeled with brackets. Two other transcripts and 

their corresponding (zero count) equivalence classes are not shown. Significance levels 

for Tap1 under effects of alveolar stretching were calculated using the Lancaster method 

(p-value = 0.0056) and compared to p-values derived from gene counts (p-value = 0.169). 
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Figure 5: GO analysis based on p-value aggregation. (a) Four aggregation methods 

(‘Lancaster TCC’, ‘Lancaster Tx’, ‘Sidak Tx’ and ‘Gene’) were performed with sleuth to 

obtain gene-level differential expression analysis on response to dexamethasone 

treatment. The significant genes (FDR<0.05) from each differential expression analysis 

were tested for GO enrichment (Fisher’s exact test) and Bonferroni-corrected.  GO terms 

containing the word ‘immune,’ for which at least one differential expression analysis 

provided a significant enrichment (FWER < 0.05), are shown with corresponding 

FWERs. Aggregation methods (‘Lancaster TCC’, Lancaster Tx’ and ‘Sidak Tx’) are better 

at detecting “immune” enrichment than p-values derived from standard gene-level 

analysis (‘Gene’). (b) TCC p-values aggregated by GO term (‘Perturbation Test’) reveal 

complementary information to classical GO enrichment (‘Enrichment Test’). 
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Abstract 

Single-cell RNA-seq makes it possible to characterize the transcriptomes of cell types 

across different conditions and to identify their transcriptional signatures via 

differential analysis. Our method detects changes in transcript dynamics as well as 

changes in overall gene abundance in large numbers of cells to determine differential 

expression. When applied to transcript compatibility counts obtained via 

pseudoalignment, our approach provides a quantification-free analysis of 3’ single-cell 

RNA-seq that can identify previously undetectable marker genes. 
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Single-cell RNA-seq (scRNA-seq) technology provides transcriptomic 

measurements at single-cell resolution, making possible the identification and 

characterization of cell types in heterogeneous tissue.  The problem of identifying 

transcripts or genes that are differential between cell groups is analogous to the 

differential expression problem in bulk RNA-seq. Bulk RNA-seq differential expression 

methods can be applied directly to test transcripts or genes for differences between 

groups of cells1, and methods that account for technical artifacts in scRNA-seq 

experiments such as by modeling dropout seem to offer some advantages.2,3 However, 

one aspect of scRNA-seq that current methods do not take advantage of is the large 

number of cells sampled in single-cell experiments. Furthermore, current scRNA-seq 

methods are mostly based on quantifications of gene counts, thus precluding analysis of 

individual isoforms. In contrast, bulk RNA-seq is often performed to study dynamics of 

isoform expression, which have been shown to be important both in cell development 4 

and pathology 5. In the case of single-cell RNA-seq, isoform analysis is more 

complicated than in bulk RNA-seq6 but just as important7. To investigate these 

transcript dynamics from bulk RNA-seq, methods have been developed to test for 

differential transcript usage (DTU) but such methods rely on sampling reads from 

across isoforms. One of the challenges with scRNA-seq is that many methods produce 

data only from the 3’ ends of transcripts.  

We show how prediction methods that take advantage of large numbers of cells 

and that fully exploit all the transcript information that can be extracted from reads, can 

greatly improve results both for differential gene expression and for differential 
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transcript usage. We make use of logistic regression, which was considered when 

microarray gene expression assays were developed8,9, but not pursued due to limited 

sample sizes. Now, scRNA-seq provides the large number of samples required to 

accurately fit a logistic regression model. Instead of the traditional approach of using 

the cell labels as covariates for gene expression, we perform logistic regression for each 

gene to predict cell labels from the quantifications of constituent transcripts when 

transcript quantifications can be accurately obtained. This is possible with certain 

technologies, such as SMART-Seq. Fitting the logistic regression model provides a 

linear combination of transcript quantifications that distinguishes cell groups, providing 

information about effect sizes of constituent transcripts, i.e. the “direction of change” 

(Figure 1, Supplementary Figure 1). Unlike traditional methods that test either for 

changes in overall gene abundance or for changes in transcript allocation, our method 

has the power to detect a change in any linear combination of transcript quantificiations 

and provides a unified testing framework that eliminates the need for a dichotomy 

between differential gene expression (DGE) and differential transcript usage (DTU) 

methods (Supplementary Figure 2). 

In a simulation based on experimental effect sizes (see Methods), logistic 

regression outperforms other existing scRNA-seq differential expression methods, even 

with different normalizations (Supplementary Figures 3, 4b). In the case that 

isoforms move in concert, naïve gene quantification by summing of isoform counts 

performs similarly to logistic regression (Figure 1a-c, Supplementary Figures 1a, 

3e,f), but logistic regression can also detect isoform switching (Figure 1d-f, 
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Supplementary Figures 1b, 3c-d, 5a). When applied to a dataset of differentiating 

myoblasts from Trapnell et al.,10 the method reveals diverse transcript dynamics across 

multiple genes known to be important for myogenesis (Figure 1h).  In addition to the 

Trapnell et al. dataset, we applied our method to a Smart-Seq2 dataset of embryonic 

cells in order to find genes that are differential between day 3 and day 4 post-

fertilization, and compared the results with those of other methods. We showcase 

several genes undergoing isoform switching that are only found by our method 

(Supplementary Figure 6).  These results suggest that methods that test only for 

changes in overall gene expression are likely to miss a significant proportion of 

differential genes (Supplementary Figure 2b). 

While transcript quantifications are biologically meaningful, in some cases they 

may be infeasible to obtain, such as in cases where only the 3’ ends of transcripts are 

sequenced.11,12   The reason is that transcripts of the same gene often share 3’UTRs and 

therefore cannot be differentiated solely from 3’ end sequences. We therefore examined 

the possibility of performing logistic regression directly on the transcript compatibility 

counts (TCCs) obtained via pseudoalignment. This is a procedure that for each read, 

finds a set of transcripts from which the read could have originated.13 The sets of 

compatible transcripts are called “equivalence classes”, and the TCCs correspond to the 

number of reads that map to each equivalence class.14 TCCs were used by Ntranos et 

al.15 as a more accurate, technology-independent transcriptomic signature for single cell 

clustering, since, unlike transcript quantifications, TCCs do not depend on a specific 

coverage model. In the case of 3’ sequencing where transcript quantification is 
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infeasible, TCCs can be readily obtained via pseudoalignment, maintaining the isoform-

level information that is available in the data.15,16 

On simulated data, the performance of logistic regression with TCCs is 

comparable with that of other methods (Supplementary Figure 7a-b). Furthermore, it 

has more power to detect isoform-switching (Supplementary Figure 7c-d). To 

investigate whether logistic regression with TCCs confers an advantage over gene-count 

based differential analysis from such data, we examined 10X Chromium scRNA-seq 

from three human T-cell populations that were purified using antibodies specific to 

different isoforms of PTPRC (CD45).11 Using TCCs, we performed pairwise differential 

analyses of purified CD45RO+ memory helper T-cells, CD45RA+ naïve helper T-cells, 

and CD45RA+ naïve cytotoxic T-cells, providing two positive controls (CD45RA+ vs 

CD45RO+) and a negative control (CD45RA+ vs CD45RA+) for the method. Logistic 

regression was able to detect differential expression of CD45 in the purified CD45RO+ 

memory and CD45RA+ naïve T-cell populations (Figure 2a,b). This result was deemed 

impossible in Peterson et al.,17 where it was noted that 3’ mRNA sequencing alone 

could not resolve these markers. We confirmed that gene counts alone could not 

identify CD45 as differential, and furthermore we found that independent testing of 

TCCs reduced statistical power. In contrast, when testing CD45RA+ naïve helper T-

cells and CD45RA+ naïve cytotoxic T-cells (Figure 2c), CD45 was not found 

significant with any method for this subsample, and there was little difference in overall 

p-value distribution between independently testing equivalence classes and performing 

multiple logistic regresion. A power analysis showed that logistic regression with TCCs 
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finds CD45 to be differentially expressed after multiple testing correction (FDR < 0.01). 

At any cell number, performing logistic regression on gene counts failed to find CD45. 

A distribution of the p-values obtained by each method suggests that while both 

methods find genes with the largest change in overall gene expression, logistic 

regression using TCCs detects isoform switching (Supplementary Figure 8). 

Further examination of the transcripts corresponding to the ECs identified by 

our method pointed to transcripts that were differentially expressed (Supplementary 

Figure 9).  Visual inspection of the differential ECs identified for CD45 revealed that 

the corresponding isoforms were being distinguished by virtue of alternative 

unannotated 3’ untranslated regions (UTRs) (Supplementary Figure 9a-b). To 

quantify the extent of isoform accessibility by 3’-end sequencing, we estimated the 

distribution of read pseudoalignments with respect to the annotated 3’UTRs 

(Supplementary Figure 9d).  We found a substantial number of reads farther from 

3’ends than expected, which points to a large number of unannotated 3’ UTRs. To 

mitigate the effect of unannotated 3’ UTRs on our analysis, we updated the 

transcriptome with novel 3’ UTRs for CD45 and redid the analysis. CD45 remained 

differential (Supplementary Methods, Supplementary Figures 10, 11). Our results 

are concordant with previous work on lymphocytic surface receptor isoform diversity.18 

Equivalence classes provide access to isoforms in genes other than CD45, and we found 

multiple other genes that also exhibited isoform switching between memory and naïve 

T cells (Supplementary Figure 12). 
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To examine whether TCCs are informative in a de novo scRNA-seq experiment, 

we analyzed a PBMC dataset that consists of 68579 cells sequenced at an average of 

20491 reads per cell.11 After clustering and using known cell type markers to annotate 

the clusters (Supplementary Figure 13), we were able to recapitulate our previous 

CD45 differential analysis: CD45 was identified as differential between memory and 

naïve T-cells (Supplementary Figure 14), showing that TCC-based logistic regression 

can be applied to cell groups generated by unsupervised clustering as in standard, de 

novo scRNA-seq workflows. 

Logistic regression is especially powerful for scRNA-seq since it leverages the 

large number of cells available in scRNA-seq experiments and incorporates isoform 

information for gene-level testing. It reveals the contribution of individual isoforms to 

the gene-level differential analysis, aiding in interpretability of results. While we have 

demonstrated the power of logistic regression for performing gene-level differential 

expression between two cell types, the method extends to more general groupings. 

Furthermore, logistic regression can be performed on all genes simultaneously to 

discover gene markers characterizing cell types. Finally, our method scales effectively 

with both the number of reads and cells, which is critical for processing increasingly 

large scRNA-seq datasets (Supplementary Figure 5b-c). 
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Methods 

Model 

We model cell membership as a function of gene expression. Let Xt,i be the 

transcript abundance for transcript t in cell i.  Let yi be the indicator variable for the 

membership of cell i. Then for a gene g, the transcript abundances are linear predictors 

of cell membership 

!"	|	%&,"	~	)*+,-.//0(2(3 + )&%&,"))&	∈7 , 

where 	2 8 	 is the logistic function defined as 2 8 = 1/(1 + *<&).  This framework is 

multiple logistic regression, where for each gene, the number of predictors is equal to 

the number of transcripts in the gene. To obtain significance scores for each gene, we 

perform a likelihood ratio test.  The null model used for the likelihood ratio test is that 

cell membership does not depend on gene expression: 

!"~	)*+,-.//0(2(3)). 

For each gene, the difference in the degrees of freedom between the alternate model 

and the null model is therefore equal to the number of transcripts contained in the gene. 

In the case where transcript quantifications are not available, TCCs may be used 

instead. Let Te,i be the TCC for equivalence class e in cell i.  The TCC models are 

!"	|	>?,"	~	)*+,-.//0(2(3 + )?>?,"))?	∈7 . 

Our null models remain  !"~	)*+,-.//0(2 3 ) and the differences in the degrees of the 

freedom are equal to the number of TCCs associated with each gene g. 
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Trapnell et al. 2014 analysis 
 

We downloaded the preprocessed Trapnell et al. 2014 data from the conquer1 

database, which included the quantified transcript-per-million (TPM) values and cell 

labels for 222 serum-induced primary myoblasts over a time course of 0, 24 and 48 

hours. We selected the 85 myogenic precursor cells and the 97 differentiating myoblast 

cells for differential expression analysis. We used Ensembl 

Homo_sapiens.GRCh38.rel84.cdna.all.fa to group 176241 transcripts into 38694 genes 

and tested each gene for differential expression between myogenic precursors and 

differentiating myoblasts using our method. Logistic regression was run using 

sklearn.linear_model.LogisticRegression(). After Benjamini-Hochberg correction, we 

obtained 1308 significant differential genes (< 0.01 FDR). We visualized these genes in 

a circle plot by performing logistic regression on the primary and secondary isoforms, 

which are defined as the isoforms with the largest and second largest average 

expression over all cells.  

 

Zheng et al. 2017 analysis 

We obtained the raw reads for the three human PBMC purified cell sub-type 

datasets described in Zheng et al., 2017, CD4+/CD45RA+/CD25- naïve T-cells, 

CD4+/CD45RO+ memory T-cells and CD8+/CD45RA+ naïve cytotoxic T-cells, from 

https://support.10xgenomics.com/single-cell-gene-expression/datasets. The reads were 

preprocessed (barcode detection, error-correction and pseudoalignment) with the 

scRNA-Seq-TCC-prep kallisto wrapper (SC3Pv1 chemistry) to obtain the single cell 
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transcript compatibility counts (TCC) matrix (https://github.com/pachterlab/scRNA-

Seq-TCC-prep). After filtering out cells with total UMI counts outside the interval [1K-

30K], we obtained 31831 cells (9923 CD4+/CD45RA+/CD25- naïve T-cells, 9994 

CD4+/CD45RO+ memory T-cells and 11914 CD8+/CD45RA+ naïve cytotoxic T-cells 

respectively). We selected all the equivalence classes that contained at least one isoform 

associated with the CD45 gene (also known as PTPRC, ENSG00000081237, 

ENSG00000262418) and filtered out the ones with total UMI counts less than 0.25% of 

the total number of cells, i.e. equivalence classes with fewer than ~79 UMI counts 

across all cells. This resulted in seven equivalence classes uniquely associated with 

subsets of the annotated isoforms of CD45. The gene counts for each cell were obtained 

by summing the TCCs. We performed all three pairwise tests for differential expression 

between the purified cell sub-types using a multiple logistic regression model on the 

seven TCCs, a logistic regression model on the aggregated gene counts, and a logistic 

regression model independently on each equivalence class. Logistic regression was run 

using sklearn.linear_model.LogisticRegression(), and the likelihood ratio test was used to 

obtain p-values for all three tests, as described in the “Model” section.  For each 

pairwise test, we randomly subsampled 3000 cells per group across 200 independent 

subsamples to generate p-value distributions for each method. 

The raw reads for the 68k PBMC dataset were preprocessed with the scRNA-

Seq-TCC-prep kallisto wrapper to obtain the TCC matrix. Equivalence classes that 

mapped to multiple Ensembl gene names and cells with total UMI counts outside the 

interval [2K-20K] were filtered out. The resulting 65444 cell by 95426 EC matrix was 
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subsequently used for post-processing and clustering with scanpy 0.2.6.19 We used the 

same steps outlined in the “Zheng et al. recipe” that is provided by scanpy, except we 

selected the 5000 most variable equivalence classes in lieu of the 1000 most variable 

genes. To verify the clustering structure, we plotted the cells with t-SNE using specific 

marker gene abundances obtained by summing all the constituent TCCs. 

Supplementary Figure 14 focuses on the clusters that most likely correspond to 

populations of naïve cytotoxic T-cells (Cluster A, CD8A+/CD4-/CCR7+, 5226 cells), 

naïve helper T-cells (Cluster B, CD4+/CCR7+, 12424 cells) and memory helper T-cells 

(Cluster C, CD4+/S100A4+/CCR10+, 4173 cells). Clusters A and C corresponded to 

clusters 3 and 6 in Supplementary Figure 13, whereas cluster B was obtained by 

manually merging clusters 1 and 2.  We performed pairwise differential expression tests 

between these three clusters using multiple logistic regression on TCCs and the 

likelihood ratio test (see ‘Model’ section for construction of the likelihood ratio test). 

To compare to our method, we also performed logistic regression on gene counts, and 

independent logistic regressions on each TCC followed by Bonferroni correction. P-

value distributions were obtained from performing these three differential expression 

tests across 200 subsamples, each time subsampling 2000 cells per cluster. 

In order to estimate the distribution of read distances to the 3’ end, we 

pseudoaligned the reads from the three purified T-cell populations to the transcriptome 

using the pseudobam option of kallisto 0.44.0. In the case of read multiple alignment, 

the weight of the read was split evenly across all reported transcripts. The distance to 

the 3’ end was inferred from the transcriptome coordinates reported in the BAM file. 
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To detect novel 3’ UTR ends for CD45, we identified reads whose alignment 

extends past the UTR into the polyA-tail and that kallisto pseudoaligned to the CD45 

gene. These reads were clustered according to their pseudoaligned genomic coordinates. 

After discarding clusters corresponding to known 3’UTR ends, 3 clusters remained 

corresponding to unannotated 3’ UTR ends, containing 69, 71 and 97 reads respectively. 

For each of these clusters, we removed the polyA-tail and generated a consensus 

sequence via multiple alignment using FSA20. The consensus sequence was aligned to 

the genome to determine the genomic coordinates of the novel 3’ UTR endpoint. The 

reference transcriptome was modified by creating a new version of each transcript 

belonging to CD45 that overlapped the new 3’ UTR endpoint, resulting in 13 novel 

transcripts added. For visualization purposes, we also ran kalliso pseudobam with the 

updated the GTF file (Supplementary Figure 10). 

 

Petropoulos et al., 2016 analysis 

We downloaded the Petropoulos et al., 2016 dataset21 from the conquer1 

database, which contains quantifications for 1529 human preimplantation embryonic 

cells. We used the provided Ensembl transcript and gene quantifications (counts and 

TPMs) to perform differential analysis between the day three embryonic cells and the 

day four embryonic cells (271 total cells). The differential expression methods were run 

with the same normalization and filters as with the simulations (see below). The 

method glm from R’s native stats library was used to perform logistic regression, by 

using the parameter family=‘binomial’ with its default logit link function. UpSetR 1.3.322 
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was used to plot the size of the intersection sets of the 3000 most significantly 

differential genes. 

 

Read simulation framework 

We developed a scRNA-seq simulation framework that can simulate reads 

(https://github.com/pachterlab/NYMP_2018/tree/master/simulations). Parameters for 

the simulator were estimated using data from Trapnell et al., 2014. In each simulation, 

cells were simulated from two different cell groups: a null group and a perturbed group, 

each with 105 cells. The null type was modeled after the cluster of proliferating 

myoblasts from the Trapnell et al., 2014 dataset. Specifically, after quantification of the 

dataset using kallisto and clustering on TCCs, the cluster containing 105 cells with 

MYOG expression was identified and used as the basis of our simulations. 

The nonzero TPMs from the myoblast cluster were used to estimate the 

parameters of a lognormal distribution for each transcript. To simulate the null cell type, 

TPMs for each transcript were drawn from a lognormal distribution. Then, for each 

transcript, a subset of cells were chosen at random in which the transcript abundance 

was set to 0 (‘dropout’). The percentage of dropout for each transcript was matched to 

the experimental dataset. Mathematically, given @& as the dropout rate for transcript t, 

and	A&	and 2&	parameterizing the mean and variance of the expressed component, the 

transcript expression is modeled as: 

B&|	A&, 2&, @& = 	 {	DE7FEGHID JK,LK 			M"&N	OGEPIP"D"&Q	(R<SK)
	T																																							M"&N	OGEPIP"D&"Q	SK . 
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The use of lognormal distribution on TPMs was motivated by the Tobit model in 

Monocle2, the mixture of dropout and expression components was motivated by SCDE, 

and the masking of random cells with 0’s to reach sufficient dropout was modeled after 

Splatter. The mean variance plots and the distribution of 0’s are greatly concordant 

between the simulations and the experimental data after which they are modeled 

(Supplementary Figure 15). 

Three different types of simulated data were prepared to reflect distinct 

perturbation scenarios and effect sizes. Transcripts expressed in fewer than 5 of the 105 

cells were deemed too lowly expressed and filtered out from the perturbation. In the 

independent effects simulation, 30% of the transcripts that passed the filter (20456 out 

of 68179 expressed transcripts) were chosen at random to be perturbed. For each 

transcript, a minimum effect size of 2-fold was drawn from a truncated lognormal 

distribution. The direction of each perturbation was chosen uniformly at random (50% 

upregulated, 50% downregulated). In the correlated effect simulations, genes with all 

transcripts passing the filter also passed the filter.  30% of remaining genes (~5220 of 

17390 genes) were chosen at random to be perturbed and expressed transcripts 

(defined as expressed in >= 5 cells) of that gene were perturbed with the same effect 

size drawn from a truncated log normal distribution at a minimum of 2. In the 

experiment-based simulations, the effect sizes were learned from Trapnell et al., 2014 

from the set of transcripts that DESeq223 found to be differentially expressed (p-value < 

0.05). The same transcripts are perturbed with their DESeq2-derived effect sizes in the 

simulation. 
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The effect sizes were applied to the mean expression, and abundances per cell 

were generated by sampling from lognormal distribution truncated at zero.  Given these 

cell-by-cell abundances, RSEM24 was used to generated paired-end reads uniformly 

distributed across transcripts using a model learned from a proliferating myoblast cell 

from the Trapnell et al., 2014 data set and a background noise read percentage 

(parameter theta) of 20%. The number of reads per cell was learned from the myoblast 

cluster by fitting a lognormal distribution of reads per cell (A= 14.42, 2= 0.336), 

corresponding to a mean of 193,000 paired-end reads per cell. 

 

Splatter Simulation Framework 
 

We also used Splatter25, which simulates transcript counts directly instead of 

reads. The same 105 myoblasts from Trapnell et al., 2014 used to model the 

simulations above were used to fit Splatter simulation parameters.  Transcripts with 

more than 90% zeros were filtered from the simulation, leaving 47606 transcripts to be 

simulated. We used Splatter’s default parameters to simulate two groups, i.e. 0.1 

chance of perturbation in each group, resulting in 9095 perturbed transcripts and 

corresponding to 19% perturbation rate across the two groups.  The 47606 transcripts 

were randomly assigned to 15420 genes according the transcriptomic structure and 

transcript counts were summed to provide gene counts. These transcripts correspond to 

6393 perturbed genes across 15420 total genes. 
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Simulation Analyses and Benchmarking 

Logistic regression, Monocle’s Tobit model,10 DESeq2 1.16.11,23 MAST 1.2.1,3 

and SCDE 1.99.42 were used to benchmark the simulations in R. Monocle’s Tobit 

model method, DESEq2, and MAST were invoked using Seurat’s wrapper functionality 

through Seurat::FindMarkers.26 The method glm from R’s native stats library was used to 

perform logistic regression, by using the parameter family=‘binomial’ with its default 

logit link function. 

The FASTQ files output from the RSEM simulations were quantified using 

kallisto v0.44.0.  tximport27 was used to aggregate transcript-level counts and 

abundances into gene-level counts and abundances prior to inputting into the various 

methods.  In contrast, the Splatter25 simulation did not require read quantification as 

transcripts counts were directly simulated. In order to afford each method its optimal 

input, normalizations native to each method were used. For SCDE, and DESeq2, the 

gene counts were used as input.  For Monocle and MAST, the TPM abundances were 

used as input. For our method, we used DESeq2’s library size method of normalization 

on transcript counts prior to performing logistic regression. To apply DESeq2’s method, 

size factors were calculated based on the transcript counts using 

DESeq2::calculateSizeFactors, and the normalized counts were obtained by dividing by the 

cell’s size factor.  For all methods, we filtered out genes/transcripts with zero 

expression in >90% of cells from the analysis with logistic regression. 

To perform logistic regression using TCCs, we filtered out ECs that contained 

transcripts from multiple genes and ECs with >90% zeros. Additionally, genes with 
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fewer than 4 cells per TCC were filtered from analysis. TCCs were normalized with 

DESeq2’s size factor method. 

We benchmarked the accuracy of the methods by evaluating their tradeoff 

between sensitivity and false discovery rate (FDR).  FDR is defined as the number false 

positives divided by the number of total declared positives. We ranked the genes by 

significance, i.e. lowest to highest p-value, and then calculated and plotted the FDR and 

sensitivity at each level of significance.  

In addition to benchmarking the methods by accuracy, we evaluated the 

runtimes of the methods on the Splatter simulation. Every method was run in series 

three times on the same dataset on a machine with 40 cores and 350 GB. Their 

runtimes were benchmarked with R’s system.time().  All methods were run using a 

single core, except SCDE which was run with its default 20 cores. The real elapsed time 

and the total processing time, calculated as the sum of the user time and the system 

time, were plotted in Supplementary Figure 4.  
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Figure 1: Logistic regression applied to scRNA-seq. Logistic regression can be used 

to detect gene differential expression at isoform level resolution. Panels (a-c) show a 

hypothetical scenario with two cell groups, ‘Group 1 and ‘Group 2’, colored blue and 

pink respectively, where both isoforms of a gene change with the same effect size. In 

panel (a), each cell is plotted by its two isoforms’ abundances. The dashed line along 

the x=y indicates the direction of change inferred by logistic regression. The orange 

shading corresponds to the probability of being in Group 1 under the logistic regression 

model; cells farther above the dashed line are more likely to be in Group 1 (darker 

orange) and cells farther below the dashed line are more likely to be in Group 2 (lighter 

orange). Panel (b) shows the histogram of gene abundances. Panel (c) shows the 

histogram of the linear combination of transcript abundances learned by logistic 

regression along with the same probability gradient as in panel (a). In this scenario, the 

linear combination found by logistic regression is the same as the summed gene 

abundances. Panels (d-f) depict another scenario where two isoforms have effect sizes 

in opposite directions, i.e. isoform switching. Panel (e) is a histogram of gene 

abundance and panel (f) is a histogram of the linear combination of transcripts from 

logistic regression. In (g), transcript dynamics for 1000 genes are visualized via a circle 

plot, in which the directions of arrow correspond to the direction of the change for each 

gene. The x-axis corresponds to primary isoform and the y-axis corresponds to the 

secondary isoform. Panel (h) shows the directions of change of 1308 genes from the 

Trapnell et al. data set that were identified by logistic regression as differentially 
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expressed between myogenic precursors and differentiating myoblasts. Pink arrows 

corresponding to known myogenic genes are marked along the circle. 
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Figure 2: Logistic regression discovers CD45 in purified T-cell types. Pairwise 

differential expression analysis was performed between purified memory helper T-cells, 

naïve helper T-cells, and naïve cytotoxic T-cells that were sequenced with 10X. In 

panels (a, b, c), p-value distributions corresponding to three different differential 

expression methods were generated from 200 subsamples. Each subsample contained 

3000 cells of each cell type from the full dataset of 9923 naïve helper T-cells, 9994 

memory helper T cells, and 11914 naïve cytotoxic T cells. The three methods included 
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our method of multiple logistic regression on TCCs (‘logistic regression’), logistic 

regression on gene counts (‘gene count test’) and logistic regression on each 

equivalence class followed by Bonferonni correction (‘independent tests’). Bar plots 

corresponding to the expression profiles of a specific subsample are shown in (d, e, f), 

where the whiskers correspond to the 95% confidence interval of the mean expression 

across 3000 cells. The p-values corresponding to this particular subsample are marked 

on the p-value distribution.  
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Abstract 
 
Motivation 

Genome alignment of reads is the first step of most genome analysis workflows. In the 

case of RNA-Seq, transcriptome pseudoalignment of reads is a fast alternative to 

genome alignment, but the different “coordinate systems” of the genome and 

transcriptome have made it difficult to perform direct comparisons between the 

approaches.  

 

Results 

We have developed tools for converting genome alignments to transcriptome 

pseudoalignments, and conversely, for projecting transcriptome pseudoalignments to 

genome alignments. Using these tools, we performed a direct comparison of genome 

alignment with transcriptome pseudoalignment. We find that both approaches produce 

similar quantifications. This means that for many applications genome alignment and 

transcriptome pseudoalignment are interchangeable. 

 

Availability and Implementation 

bam2tcc is a C++14 software for converting alignments in SAM/BAM format to 

transcript compatibility counts (TCCs) and is available at 

https://github.com/pachterlab/bam2tcc. kallisto genomebam is a user option of kallisto 

that outputs a sorted BAM file in genome coordinates as part of transcriptome 

pseudoalignment. The feature has been released with kallisto v0.44.0, and is available at 

https://pachterlab.github.io/kallisto/. 
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Introduction 
 

Read alignment programs are used to locate the genome coordinates from which 

a sequenced read could originate (e.g., Langmead and Salzberg, 2012). In the case of 

RNA-Seq, the sequenced reads correspond to cDNA that have been reverse transcribed 

from mRNA. Because splicing occurs as part of post-transcriptional processing, the 

alignments to the genome may span multiple exons and skip the introns between the 

exon-exon junctions.  The task of aligning RNA-Seq reads to the genome in a way that 

is robust to splicing is known as “genome spliced alignment.” There are several 

programs that perform this task, such as TopHat/TopHat2 (Trapnell et al., 2009; Kim et 

al., 2013), STAR (Dobin et al., 2013), and HISAT/HISAT2 (Kim et al., 2015).  When 

spliced alignment is used for RNA-Seq, subsequent analysis is required to assign reads 

to genes (e.g., Liao et al., 2014) or to transcripts (e.g., Trapnell et al., 2010) as part of 

quantification. 

An alternative to align reads to the genome is to align reads directly to the 

transcriptome. The transcriptome is defined as the set of sequences corresponding to 

mature mRNA after post-transcriptional processing. Methods such as eXpress (Roberts 

and Pachter, 2013) and RSEM (Li and Dewey, 2011) use transcriptome alignments for 

read assignment under a quantification model. In previous benchmarks of RNA-Seq 

quantification methods, it has been unclear whether performance improvements from 

transcriptome alignment are due to the mode of alignment or to a different 

quantification model (Teng et al., 2016). 
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In 2016, Bray et al. introduced the concept of pseudoalignment to the 

transcriptome, which, rather than a performing a full alignment, records information 

about the set of transcripts a read is compatible with. Specifically, in pseudoalignment, 

reads are assigned to these sets of transcripts, i.e. “equivalence classes” of transcripts 

(Nicolae et al., 2011). Transcript compatibility counts (TCCs) constitute the number of 

reads within the equivalence classes and serve as sufficient statistics for transcript 

quantification. (See Figure 1a for workflow of pseudoalignment and quantification.) 

Transcriptome pseudoalignment is orders-of-magnitude faster than traditional genome 

alignment (Bray et al., 2016; Patro et al., 2017); however while pseudoalignment has 

increased in popularity since its introduction two years ago (Vivian et al., 2017; 

Lachmann et al., 2018), genome alignment programs are still widely used. 

While there have been comparisons of genome alignment and pseudoalignment 

methods (Teng et al., 2016; Bray et al., 2016; Patro et al., 2017), the benchmarks have 

examined only the final quantifications and have not teased apart the algorithmic 

components. The output of peudoalignment, in the form of TCCs, is conceptually 

different from genome alignments. To compare genome alignments directly to 

pseudoalignments, one must perform a conversion of the underlying data models, a 

task that is considerably more complicated than converting file formats. Furthermore, 

procedures for quantification after genome alignments are fundamentally different than 

those that are used with pseudoalignments, making a direct comparison challenging. 
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Results 
 

To compare alignment to pseudoalignment methods, we created a tool, bam2tcc, 

that converts genome alignments in the format of a BAM or SAM file to transcript 

compatibility counts, the primary output of transcriptome pseudoalignment. We then 

quantified genome alignments and transcriptome pseudoalignments using the exact 

same model and method (Figure 1b), thus separating the effects of alignment from 

those of quantification. We used bam2tcc to convert HISAT2 and STAR genome 

alignments into transcript compatibility counts, which were then quantified using the 

expectation maximization (EM) algorithm for a uniform coverage model (Bray et al., 

2016). We chose HISAT2 and STAR because of their popularity as well as their 

accuracy in previous benchmarks (Baruzzo et al., 2017). 

We compared the accuracy of the genome spliced alignment programs HISAT2 

and STAR and transcriptome pseudoalignment programs kallisto and Salmon on 

simulations where the true abundances are known.  We ran the methods with default 

parameters and with minimal parameterization. Performance of aligners and 

pseudoaligners on the simulations were comparable, as demonstrated by their mean 

absolute relative differences (MARDs) on expressed transcripts. We separately 

benchmarked accuracy on transcripts that were not expressed in the simulation by 

examining their distances from zero and taking the mean of this distance across all 

transcripts. On both measures, across 10 simulated samples, the results of methods 

were highly concordant with each other (Figure 1b-e), with the exception of STAR. 



 

 

117 

kallisto, Salmon and HISAT2 were more accurate than STAR (Tables 1-4), 

demonstrating that transcriptome pseudoalignment methods can outperform genome 

alignment methods. 

We also compared the results of the four methods on experimental RNA-Seq 

data from Zika-infected human neuroprogenitor cells (Tang et al., 2016; Yi et al., 2017). 

Since a simulation cannot capture all sources of variance in an experiment, the inter-

method correlations on experimental data were lower than on simulated data. 

Nonetheless, the cross-method correlations show that the methods still produced 

concordant quantifications (Tables 5-6). 

Examining the TCCs derived by each method on this experimental dataset also 

shows concordance on the level of the TCCs, even prior to quantification. We examined 

the number of transcripts in each equivalence classes as proxy for the uncertainty in 

read assignment. The distribution of equivalence class size, defined as the number of 

transcripts per equivalence class, weighted by the counts for the equivalence class, was 

similar for all methods (Figure 2a). The weighted mean equivalence class size was 

similar across all methods and showed that each read on average is compatible with 3.8 

ambiguous transcripts (Figure 2b). An examination of the intersections of identical 

equivalence classes across methods showed that the majority of equivalence class were 

shared amongst all methods, and that almost all of the reads were in equivalence 

classes that were common to all methods (Figure 2c). 

One feature of genome alignment methods is that the output can be used to 

produce a visualization of the reads along the genome. Such visualizations are 
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important for quality control and interpretation. To enable the feature with 

transcriptome pseudoalignment, we developed a tool, kallisto quant --genomebam, that 

generates a BAM file that can be used for visualization, alongside kallisto’s usual 

quantification. This will allow users to benefit from the speed of pseudoalignment while 

still being able to visualize the pseudoalignments. 

 

Discussion 
 

Our analysis is the first direct comparison that specifically examines the 

differences in alignment compared to pseudoalignment. Whereas previous comparisons 

confounded alignment/pseudoalignment with quantification, we have controlled for 

quantification by developing a new tool to convert genome alignments to TCCs. One 

application of our tool is to convert preexisting alignments into pseudoalignments. 

Previous work has shown that using TCCs directly for clustering and differential 

expression is as good as or better than using transcript quantifications (Ntranos et al., 

2016; Yi et al., 2018; Ntranos et al., 2018). Direct analysis of TCCs can be advantageous 

since it does not introduce inferential ambiguity through transcript assignment and is 

feasible even in the absence of full length sequencing (Ntranos et al., 2016; Yi et al., 

2018; Ntranos et al., 2018). Furthermore, TCCs can be used as a light-weight format to 

share patient RNA-seq data that maintains individual privacy. Unlike alignments in the 

form of a BAM file, TCCs are devoid of sequence-specific information and is thus 

anonymized, while still maintaining all information necessary for transcript 

quantification. 
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In choosing the benchmarking metrics for our analyses, we separated analysis of 

expressed transcripts from non-expressed transcripts. This is not typically done but we 

found that such a separation is important as metrics such as mean absolute difference 

(MARD) can be biased by zeroes. Because relative differences are more meaningful on 

expressed transcripts and absolute differences are more meaningful on non-expressed 

transcripts, we propose that subsequent benchmarks should always separately evaluate 

the two. 

One advantage of performing genome spliced alignment with RNA-Seq reads is 

that alignments can be readily visualized on browsers (e.g.,  Robinson et al., 2011). We 

provide, for the first time, a tool for visualizing pseudoalignments as projections to the 

genome. Previously, the pseudoalignment programs RapMap (Srivastava et al., 2016) 

and kallisto could output SAM formatted alignments, but only with respect to the 

transcriptome, and were therefore not directly useful for visualization. 

Finally, our results demonstrate a practical point for bioinformaticians: for the 

purpose of transcript quantification, transcriptomic pseudoaligners perform as 

accurately as aligners. One key advantage of pseudoaligners is speed, and with our new 

feature, we can support visualization of the pseudoalignments in genomic coordinates. 

Aside from cases where alignment to noncoding regions is valued (e.g. when 

transcriptome annotations are incomplete) or where alignments are important for the 

biology of interest (e.g. for the discovery of novel splice junctions), pseudoalignment 

should suffice. 
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Conclusion 
 
In a first direct comparison between aligners and pseudoaligners, we showed 

that pseudoaligners are as accurate as genome aligners. We created a tool that converts 

genome alignment in the form of a SAM/BAM into TCCs that can be quantified with 

kallisto. Furthermore, we implemented a new feature in kallisto for projecting 

pseudoalignments to the genome, which is output as a BAM file and can be visualized 

like genome alignments. Our tools place genome alignment and transcriptome 

pseudoalignment on an equal footing. 

 

Methods 
 
bam2tcc 

bam2tcc is written in C++14 and uses the SeqAn software library (Reinert et 

al., 2017) for efficient parsing of BAM and GTF files. bam2tcc requires as inputs a 

GTF/GFF file for the annotation and a sorted BAM or SAM file of alignments. The 

output of bam2tcc is a vector of TCCs and a map of ECs to transcripts. 

Briefly, bam2tcc first combines the transcript coordinates and the sorted read 

alignments. For each alignment, and every transcript, it considers whether the 

alignment is compatible with the transcript based on the exon coordinates of the 

transcript. An alignment is compatible with a transcript if it starts within an exon of the 

transcript, ends within an exon of the transcript, and its gaps coincide within the start 

and end coordinates of all the exons between the start and end exon.  For each 

alignment, the set of transcripts that are compatible with the alignment is its 
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equivalence class. In the case of reads with multiple genome alignments, bam2tcc 

computes the union of the alignments’ equivalence classes to obtain the equivalence 

class of the read. For paired-end sequencing, bam2tcc takes the intersection of the 

equivalence classes corresponding to the two reads to obtain the equivalence class of 

the pair. 

 

GenomeBam 

kallisto v0.44.0 adds a new option of projecting pseudoalignments of reads to 

genomic coordinates, where alignments are annotated with the posterior probability of 

the alignment. To this end, using a user-provided GTF file, kallisto constructs a model 

of the transcriptome consisting of genes, transcripts and exon coordinates. The 

reporting of the alignment uses a two-stage process. In the first stage, kallisto performs 

pseudoalignment and the equivalence class of each read is recorded on disk in a 

temporary file. Following pseudoalignment, the EM algorithm is run to obtain 

transcript quantifications. This is the usual workflow of kallisto quantification. In the 

second stage, with quantification results available, kallisto then loads the temporary file 

of equivalence classes in conjunction with the reads. For each read, kallisto identifies 

the first k-mer in the read that maps to the transcripts of the equivalence class with 

non-zero abundances. Using coordinates of the k-mer within the transcript, kallisto 

then projects the transcript coordinates to genome coordinates, accounting for exon 

structure. This subsequent projection is done without additional sequence information 

beyond the first matching k-mer. The set of genome projections are collapsed, such that 
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a read mapping to multiple transcripts but to a single genomic position has a single 

alignment record in the BAM file. All multiple genome alignments are reported, but the 

alignment supported by the highest transcript abundance is reported as the primary 

alignment. The genome is divided into fixed intervals and each alignment is written to a 

temporary BAM file on disk corresponding to the interval. After all reads have been 

processed, each temporary BAM file is sorted and concatenated to a final sorted BAM 

file. Finally, the sorted BAM file is indexed for fast random access. 

 

Datasets 

We used RSEM v1.3.0 to simulate paired end RNA-Seq samples with uniform 

coverage. The RSEM model was built using data from single cell RNA-Seq (SMART-

Seq) performed on differentiating myoblasts (Trapnell et al., 2014). With this model, we 

simulated 10 samples with an average of 2 million paired end reads per sample, and 

used the isoform counts that RSEM reported to have simulated (RSEM’s 

‘sim.isoform.results’ file) as ground truth.  Isoform counts were summed to gene counts 

to obtain ground truth gene counts. 

The Zika-infected human neuroprogenitor cell (hNPC) dataset is available at 

GEO database (GEO Series GSE78711).  For summary statistics, we performed the 

analyses on all four paired end samples in the dataset and reported the mean and 

standard deviations across all four samples. For figures showcasing one sample, we 

used SRR3191542, although we performed the analysis on all four samples and found 

similar results across them. 
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Genome and Transcriptome  

We performed quantification and analysis using Ensembl Homo sapiens genome 

GRCh38 release 92 (ftp://ftp.ensembl.org/pub/release-92/fasta/homo_sapiens/dna/ 

Homo_sapiens.GRCh38.dna_sm.toplevel.fa) and its corresponding annotation 

(GRCh38 release 92, ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens). The 

transcriptome was extracted from the annotation using tophat -G. This generation of the 

transcriptome file puts the genomic and pseudoaligners on an equal footing, as 

transcripts originating from alternate loci are not included in the transcriptome FASTA 

file. 

 

Generating TCCs 

We used Salmon v0.11.2 (labeled “Salmon” or “Salmon_0.11.2” in figures) and 

kallisto v0.44.0 (labeled ‘kallisto’ in figures).  We also included Salmon v0.8.2 in several 

benchmarks, which would be labeled explicitly as “Salmon_0.8.2.”  Salmon and kallisto 

indices were built using k-mer length equal to 31.  kallisto TCCs were obtained by 

running kallisto pseudo. Salmon TCCs were obtained with Salmon’s quasimapping mode 

by running Salmon --dumpEQ and reformatting Salmon’s output to match the format of 

TCCs in kallisto. 

We used HISAT2 v2.1.0 and STAR version 2.4.2a to perform genome alignment. 

We used samtools v.1.2 (Li et al., 2009) to sort the alignments by genomic coordinates. 

We then ran bam2tcc on the STAR and HISAT2 alignments to generate TCCs. 
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Quantification 

The TCCs generated by all four methods were quantified using kallisto’s EM 

algorithm, which is built on a uniform sequencing model. kallisto's EM algorithm was 

run by using a branch of kallisto written specifically for this analysis 

(https://github.com/pachterlab/kallisto/tree/pseudoquant) and invoking kallisto 

pseudoquant -l 187 -s 70 on the TCCs generated from all four methods. The -l and -s 

parameters correspond to the fragment size distribution (mean length and standard 

deviation), which are required for quantification with the EM algorithm. 

 

Benchmarking 

In comparing the quantifications across the methods, we use the mean absolute 

relative distance (MARD) and the mean absolute distance.  We defined mean absolute 

relative distance (MARD) as: 

 

, 

where T is the number of transcripts/genes considered,  is the estimated 

quantification for transcript/gene t, and  is the ground truth quantification for 

transcript/gene t.  We define mean absolute distance as:  
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Because we use mean absolute distance on only the set of unexpressed 

transcripts/genes, the mean absolute distance simplifies to 

. 

We use transcript and gene counts to calculate MARDs and mean absolute 

differences, obtaining gene counts from summing counts of the corresponding 

transcripts. We perform the Pearson and Spearman correlations on the log-transformed 

counts.  



 

 

126 

 

Declarations 

Availability and Implementation 
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Figure 1 

(a) We compared genome aligners and pseudoaligners by obtaining transcript 

compatibility counts from all methods and using kallisto to perform the same EM 

quantification. bam2tcc was used to convert genome alignments from HISAT and STAR 

to transcript compatibility counts prior to quantification.  We then plotted the mean 

absolute relative distances (MARDs) across ten simulations for transcripts and genes 

where the true expression is nonzero (b-c) and the mean absolute distance for 

transcripts and genes where the true expression is zero (d-e).
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Figure 2 

Distribution of equivalence class sizes in a dataset of paired-end RNA-Seq of human 

neuroprogenitor cells (SRR3191542). The size of an equivalence class is measured as 

the number of transcripts, weighted by the number of counts in the equivalence class. 

All methods have similar distributions of equivalence class sizes (a), and furthermore, 

the methods have comparable mean equivalence class size across the four samples in 

this dataset (b). The other three samples in the dataset also had similar distributions of 

equivalence class sizes (data not shown). (c) shows the equivalence classes that are 

shared across methods using an upset plot. The number of shared equivalence classes 

across the methods are plotted in the top bar graph. The read density in these 

equivalence classes are plotted in the bottom bar graph, which was calculated as the 

sum of the counts of the ECs within that intersection. 
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