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1 Converting transcript counts to gene abundances

Consider a gene with two transcripts t1 and t2 of lengths l1 and l2 and a two-condition
experiment where X i

1 reads originate from transcript t1 in experiment i (i ∈ {1, 2} and
X i

2 (i ∈ {1, 2} reads originate from transcript t2. The current recommended approach to
gene-level differential analysis is to compute a gene abundance for each condition as follows:
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computes gene abundance as the sum of transcript abundance, and the

factor l1+l2
2

produces a “gene count” to be used in differential expression methods such as
DESeq2 (Love et al., 2014) that perform shrinkage. The formula may contain extra constants
related to sequencing depth. Note that
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This estimate of log-fold change avoids the problems discussed in (Trapnell et al., 2013).
However in terms of variance estimation, the “gene count” Y i ∝ X i

1l2 + X i
2l1 can be prob-

lematic when l1 6= l2. Specifically if (without loss of generality) l1 < l2 then variance in X i
1

may be amplified by l2, an undersirable property since there is no reason why the variance
contribution of one transcript should depend on the length of another.

2 Šidák aggregation

Let T be the set of transcripts and G the set of genes. For each g ∈ G, denote the number
of transcripts in g by |g| = |{t : t ∈ g}|. Let Pt be the uniform random variable denoting the
p-value output by a transcript-level differential analysis method under the null hypothesis of
no differential abundance of transcript t. For a specific experiment, let ptg denote the p-value
obtained from testing for differential abundance of transcript t in gene g by that method.
Let mg = mint∈gptg and set ug = 1− (1−mg)

|g|.
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For each g ∈ G, let Hg be the null hypothesis that no transcript t ∈ g is differentially
abundant. Assume that the hypotheses Hg are independent, and additionally that for each g
the hypotheses resulting in the values ptg are independent (i.e. the random variables {Pt}t∈g
are independent).

Claim 1. The Benjamini-Hochberg step-up procedure applied to the values {ug}g∈G controls
the FDR for the |G| null hypotheses {Hg}g∈G.

Proof: Denote by Mg the p-value that under the null hypothesis Hg the smallest among
the {Pt}t∈g is less than or equal to mg. Note that

Mg = P

(⋃
t∈g

(Pt ≤ mg)

)
= 1−

∏
t∈g

P (Pt > mg) = 1− (1−mg)
|g|. (3)

Therefore under the null hypotheses the values ug are uniformly distributed. Given a signif-
icance threshold α, the Benjamini-Hochberg step-up procedure identifies the largest k such
that if the ug are ordered from smallest to largest as u1 ≤ u2 ≤ u3 ≤ · · · then

uk ≤
k

|G|
α. (4)

The procedure then rejects the null hypotheses corresponding to u1, . . . , uk. The assumption
that the hypotheses Hg are independent guarantees that Benjamini-Hochberg procedure has
a false discovery rate bounded by α.

Note that for small values of mg, 1− (1−mg)
|g| ≈ |g|mg by Taylor approximation. The

use of |g|mg instead of ug would be equivalent to a Bonferroni correction at the gene-level
prior to the Benjamini-Hochberg procedure. As described, the ug can be viewed as a Šidák
correction (Šidák, 1967).

In the DEXSeq program (Anders et al., 2012) there is a similar approach that is imple-
mented for aggregation, but that is slightly different. Instead of applying the Šidák correc-
tion to the minimm p-value from each gene and sorting genes according to the ug values, in
DEXSeq genes are sorted directly according to the mg values. While the DEXSeq approach
to controlling the false discovery rate is correct (Reyes et al., 2012), the ordering according to
mg is not equivalent to the ordering according to ug and has a drawback. Specifically, genes
with many isoforms are more likely, by chance, to produce a small p-value in one of their
isoforms, and this has two consequences. First, the most highly ranked genes (i.e. smallest
value of mg) will tend to have more isoforms, and second, while DEXSeq controls the FDR
there are more likely to be false positives with small mg values rather than small ug values,
so that the “FDR budget” is consumed more quickly.

When simulating p-values according to a null distribution (i.e. each transcript in the
genome receives a p-value that is uniformly distributed) for the Mus musculus transcriptome
(GRCm38 release 88), we found that the average number of isoforms among the top 100
ranked genes according to mg is 6.89 (median = 5) versus 2.77 for ug (median = 1). For
context, the average number of transcripts per gene in the Mus musculus transcriptome is
3.1 with a median of 1.
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3 Applicability of the Lancaster method to RNA-Seq

Transcripts of the same gene are not in general independent from each other since they may
be biological co-regulated and are quantified from the same pool of reads. Therefore, we
performed a series of experiments demonstrating that the extent of transcript dependence
is limited and that the assumption of independence in performing the Lancaster method is
a reasonable approximation. Furthermore we show that the application of the Lancaster
method to aggregating transcript p-values does not inflate the false discovery rate (FDR) or
false positive rate (FPR).

3.1 Independence of transcript p-values

We performed an in silico experiment to measure distribution of p-values under the null
hypothesis. To construct an instance of the null hypothesis, we chose six samples randomly
from within the GEUVADIS set of samples performed on Finnish women and performed
a 3v3 differential expression analysis using sleuth on transcripts. A pair of transcript p-
values was randomly selected from each gene and scatter-plotted (Supplementary Figure
8), showing that transcript p-values appear linearly uncorrelated (Pearson correlation of
0.064), and other than a point of high density of low-low p-value pairs, appear uniform and
independent by first-order visualization.

To test directly for independence, a chi-square test was performed on a contingency ta-
ble constructed on these p-value pairs by binning p-values uniformly in 0.1 intervals. The
chi-square test resulted in a p-value of 7.5e−8, supporting the idea that p-values of isoforms
within a gene are not independent, which is expected. However, when p-values within the
(0, 0.1) interval are excluded from the chi-square test, the chi-square test for independence
resulted in a p-value of 0.74, consistent with what we noticed upon visualization and demon-
strating that transcript p-value dependence is largely limited to small p-value regimes but is
otherwise independent.

3.2 Control of false positive rates and false discovery rates

One reasonable critique of applying the Lancaster method to RNA-Seq is that even weak
dependence between transcripts under the null hypothesis leads to exaggerated gene p-values
and an inflated false positive rate (FPR) and false discovery rate (FDR), especially when
small transcript p-values are aggregated. To address this critique, we performed an ex-
periment to test the effect of transcript dependence on the FPR and FDR under the null
hypothesis. In each trial of our experiment, we randomly chose six samples from the same
batch within the Finnish women GEUVADIS samples and compared the numbers of false
positives (p-value < 0.05) and false discoveries (q-value < 0.05) found in gene mode com-
pared the numbers found with the Lancaster method using sleuth. We performed 20 such
trials and tabulated the results in Supplementary Figure 9. In all 20 trials, the number of
false positives were reduced with Lancaster aggregation (paired t-test, p-value = 6.5e−6),
and in 14 trials, the number of false discoveries were reduced (paired t-test, p-value = 0.141).
The null simulation results demonstrate that the Lancaster method resulted in a reduction
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of the FPR and FDR, not an inflation, and are consistent with the findings in the pertur-
bation simulation results (Figure 3, Supplementary Figures 1-3) that the Lancaster method
reported more accurate and conservative FDRs than other methods.
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4 Independent and Correlated Effect Simulations

Supplementary Figure 1a: Independent effect simulation.
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Supplementary Figure 1b: Independent effect simulation (zoomed in).
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Supplementary Figure 2a: Correlated effect simulation.
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Supplementary Figure 2b: Correlated effect simulation (zoomed in).
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5 DESeq2 Performance on Simulations

Supplementary Figure 3a: Experimental effect simulation with DESeq2.
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Supplementary Figure 3b: Experimental effect simulation with DESeq2 (zoomed in).
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Supplementary Figure 3c: Independent effect simulation with DESeq2
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Supplementary Figure 3d: Independent effect simulation with DESeq2 (zoomed-in).
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Supplementary Figure 3e: Correlated effect simulation with DESeq2.
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Supplementary Figure 3f: Correlated effect simulation with DESeq2 (zoomed-in).
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6 Additional Supplementary Figures

Supplementary Figure 4: Log-log scatterplot of the p-values from a standard gene-level analysis
in sleuth and the p-values from Lancaster aggregating sleuth-derived TCC p-values. The dex-
amethasone dataset was used, with p-values corresponding to the significance that the gene was
differentially expressed in dexamethasone vs. vehicle treatment. 2772 differential genes (FDR <
0.05) were discovered by standard gene analysis compared to the 4336 significant genes (FDR <
0.05) discovered by Lancaster aggregation on TCCs.
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Enrichment	of	'Immune'	GO	Terms	in	GO	Analysis	Results
GO	Enrichment	Test GO	Perturbation	Test

Gene 0.99 2.94E-05
Sidak	-	Tx 0.94 0.00049
Lancaster	-	Tx 0.99 0.0005
Lancaster	-	TCC 0.96 0.0896

Supplementary Figure 5: Enrichment of ‘Immune’ GO Terms in GO Analysis Results. Four dif-
ferential expression analyses (‘Gene’, ‘Sidak Tx’, ‘Lancaster - Tx’, and ‘Lancaster TCC’) were
performed on the dexamethasone dataset using sleuth. A classical GO enrichment test and a GO
perturbation test were performed on results from each of the four methods, resulting in eight GO
analyses. Fisher’s exact test was performed to test for GO enrichment in the significant gene list
(p-val < 0.05) identified by each differential expression method. To perform the GO perturbation
test, the p-values of genes in the GO term were weighted by gene counts and aggregated with the
Lancaster method. GO p-values were Bonferroni corrected and a significant GO list (FWER <
0.05) was constructed for each method. Each GO list was then tested for enrichment in ‘immune’-
containing GO terms with Fisher’s exact test and the resulting p-values were tabulated.

16



Supplementary Figure 6a: Fisher’s method and the Lancaster method were compared based on
their performance on the experimental effect simulation. Transcript p-values derived from sleuth
and DESeq2 were aggregated with Fisher’s method and the Lancaster method. The results from
20 experiments were averaged.
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Supplementary Figure 6b: Fisher’s method vs. the Lancaster method (zoomed-in)
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Supplementary Figure 7: Distribution of transcript p-values from the dexamethasone data set.
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Supplementary Figure 8: Distribution of transcript p-values pairs from the same gene under the
null hypothesis.

20



False	Positives	(p-value	<	0.05) False	Discoveries	(q-value	<	0.05)

Trial	#
Gene	
mode

Lancaster	
aggregation Difference

Gene	
mode

Lancaster	
aggregation Difference

1 1463 428 -1035 15 16 1
2 1778 553 -1225 25 19 -6
3 8858 4024 -4834 1966 2010 44
4 8360 3353 -5007 1798 1495 -303
5 2567 742 -1825 83 81 -2
6 5123 1952 -3171 245 285 40
7 1866 623 -1243 56 41 -15
8 1421 447 -974 14 20 6
9 1541 386 -1155 8 12 4
10 1380 393 -987 24 22 -2
11 3904 1325 -2579 236 203 -33
12 1154 381 -773 38 27 -11
13 2096 484 -1612 45 24 -21
14 1626 418 -1208 22 16 -6
15 1269 386 -883 45 33 -12
16 1175 340 -835 55 34 -21
17 1355 383 -972 24 23 -1
18 909 221 -688 27 19 -8
19 706 174 -532 6 8 2
20 2738 792 -1946 57 56 -1
Mean 2564.5 890.3 -1674.2 239.5 222.2 -17.3
p-value	(paired	t-test) 6.546E-06 0.141

Supplementary Figure 9: Comparisons of the number of false positives and discoveries obtained by
sleuth gene mode versus Lancaster aggregation on sleuth-derived transcript p-values. Each of the
twenty null hypothesis trials is simulated by performing 3 vs. 3 differential expression analyses in
sleuth of batch-corrected samples from Finnish women in the GEUVADIS dataset.
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Supplementary Figure 10a. Performance of the likelihood ratio test on the experimental effect
simulation. Instead of the Wald test, sleuth was invoked using the likelihood ratio test in gene
mode (‘sleuth - Gene’) and on transcripts. Transcript p-values from the likelihood ratio test were
aggregated with the Sidak correction (‘sleuth - Sidak’) or the Lancaster method (‘sleuth - Lancaster
Tx’). For sake of comparison, ‘sleuth - Lancaster TCC,’ which is always performed with the
likelihood ratio test, is displayed.
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Supplementary Figure 10b. Performance of the likelihood ratio test on the experimental effect
simulation (zoomed-in).
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