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ABSTRACT

The core of the Earth is predominately iron alloyed with approximately 5 wt%
nickel along with some amount of light elements, e.g., Si, O, S, C, H, Mg. Min-
eral physics studies, in conjunction with seismological and cosmochemical ob-
servations, provide an opportunity to improve constraints on the composition
of the core. In this thesis, we investigate the thermoelastic and vibrational
properties of bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 (atomic
percent) at high pressures.

We present powder x-ray diffraction data on bcc- and hcp-structured Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1 at 300 K up to 167 GPa and 175 GPa, respectively. The
alloys were compressed in diamond anvil cells, and their equations of state and
axial ratios were measured with high statistical quality. These equations of
state are combined with thermal parameters from previous reports to improve
the extrapolation of the density, adiabatic bulk modulus, and bulk sound speed
to the pressures and temperatures of Earth’s inner core. We place constraints
on the composition of Earth’s inner core by combining these results with seis-
mic observations and available data on other light-element alloys of iron. We
find the addition of 4.3 to 5.3 wt% silicon to Fe0.95Ni0.05 alone can explain
geophysical observations of density, adiabatic bulk modulus, and bulk sound
speed at the inner core boundary, as can up to 7.5 wt% sulfur with negligible
amounts of silicon and oxygen. Our findings favor an inner core with less than
∼2 wt% oxygen and less than ∼1 wt% carbon, although uncertainties in elec-
tronic and anharmonic contributions to the equations of state may shift these
values.

Seismic studies provide evidence for an anisotropic inner core, which is sug-
gested to be related to the ratio of the c- to a-unit cell parameters of hcp-
structured materials. We demonstrate hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 have
measurably greater c/a axial ratios than those of hcp-Fe over the measured
pressure range. We further investigate the relationship between the axial ra-
tios, their pressure derivatives, and elastic anisotropy of hcp-structured mate-
rials.

Next, we present high pressure NRIXS data on bcc- and hcp-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 at 300 K with in situ x-ray diffraction. From these data, we
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determine the partial phonon density of states for each composition, and we
systematically compare our results to iron. We constrain the Debye sound
velocity from the low energy region of the phonon density of states. Using
our previously determined equations of state for the same compositions, we
constrain the compressional and shear sound velocities and shear moduli. At
300 K, we find that 9 at% nickel decreases the shear velocity of hcp-iron
by ∼6% and that silicon has a minimal effect on the shear velocity of hcp-
Fe0.91Ni0.09. Thermal effects likely play a large role in the sound velocities of
iron alloys at core conditions, so constraining these effects is critical to further
constrain the composition of the core.

From the volume scaling of the phonon DOS, we find the 300 K vibrational
components of the Grüneisen parameter for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
are very similar to that of hcp-Fe within uncertainties. We also constrain vibra-
tional thermal pressure from the volume dependence of vibrational free energy,
and we find negligible differences within uncertainty between the vibrational
thermal pressures of hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1. By combining
the vibrational component of thermal pressure with theoretical estimates of
the anharmonic and electronic contributions, we provide an estimate for the
total thermal pressure. We constrain a variety of additional parameters from
the NRIXS data and phonon density of states, including the vibrational com-
ponent of entropy, the vibrational thermal expansion, the vibrational kinetic
energy, the Lamb-Mössbauer factor, and the vibrational specific heat.
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C h a p t e r 1

INTRODUCTION

1.1 The Earth’s core

At the center of the Earth lies the Earth’s core, which is composed of an iron-
rich liquid outer core surrounding a small solid inner core which has grown
over time from the outer core. The convection of the outer core generates
the Earth’s magnetic field, and the heat from the core contributes to the
convection of the mantle, which in turn drives plate tectonics on the surface
of the Earth. Despite the core’s influence on life on Earth’s surface, direct
samples of the core are inaccessible. Therefore, much of our knowledge of
the Earth’s core comes from indirect methods, including cosmochemical and
seismic observations, experimental mineral physics studies, and theoretical
calculations. Cosmochemical observations of chondritic meteorites, the sun,
and the Earth’s crust and mantle suggest iron and nickel are preferentially
sequestered within the deep interior of the Earth. These findings indicate the
core is predominately iron alloyed with ∼5 wt% nickel (Allègre et al., 1995;
McDonough and Sun, 1995; McDonough, 2003).

Seismic observations of free oscillations and body wave travel times, combined
with knowledge of the Earth’s mass, radius, and moment of inertia, place
constraints on the density and sound velocities of the inner and outer core
as a function of radius. Two of the most commonly referenced models are
the one-dimensional radial models AK135-F (Kennett et al., 1995; Montag-
ner and Kennett , 1996) and the Preliminary Reference Earth Model (PREM)
(Dziewonski and Anderson, 1981) (See Figure 1.1). While these two models
are generally in close agreement, neither reports uncertainty on density (ρ),
compressional velocity (vP ), or shear velocity (vS) in the core. Constraints
on the uncertainties of ρ, vP , and vS come from more recent free oscillation
studies. For instance, Deuss (2008) report average inner core velocities of
vP = 11.15 ± 0.05 km/s and vS = 3.55 ± 0.05 km/s, and a study by Masters
and Gubbins (2003) reports the density jump at the inner core boundary to
be 0.82 ± 0.18 g/cm3. More recently, body waves and free oscillations have
also provided evidence for complex structure and anisotropy in the inner core



2

vP

vP

vS

vS

ρ

ρ

upper
mantle

lower mantle outer core inner core

24
 G

Pa

13
6 

G
Pa

32
9 

G
Pa

liquid Fe + Ni +
light elements

solid Fe + Ni +
light elements

Figure 1.1: Seismic constraints on density (ρ) and compressional (vP ) and
shear (vS) sound velocities: one-dimensional seismic models AK135-F (Ken-
nett et al., 1995; Montagner and Kennett , 1996) and PREM (Dziewonski and
Anderson, 1981), two lateral bins from Attanayake et al. (2014), and average
inner core sound velocities from Deuss (2008).

(reviewed in Deuss , 2014). For instance, the hemispherical variation of vP at
the top of the inner core has been investigated by Attanayake et al. (2014). We
compare two vP bins from opposite hemispheres from their study in Figure 1.1.

The composition of the core can be further constrained by comparing seismic
constraints of ρ, vP , vS, isentropic bulk modulus KS, and bulk sound speed vφ
to mineral physics experiments and ab initio calculations of various iron alloys.
At inner core conditions, the density of the outer core is ∼10% lighter than
liquid iron (reviewed in Poirier , 1994), and the density of the inner core is ∼3–
5% lighter than hcp-iron (reviewed in Li and Fei , 2014), which supports the
presence of light elements (e.g., Si, O, S, C, H, Mg) in the core (Li and Fei ,
2014; Litasov and Shatskiy , 2016; O’Rourke and Stevenson, 2016; Vočadlo,
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2015). This evidence indicates a greater concentration of light elements in
the outer core than in the inner core. A plausible core composition must also
match the compressional and shear velocities of the core. The vP and vS of
the inner core are reported to be respectively ∼4–10% slower (e.g., Sakamaki
et al., 2016) and >30% slower than hcp-iron (e.g., Martorell et al., 2013a).
A detailed understanding of the effect of composition on the sound velocities
and densities of iron alloys at core pressures and temperatures is necessary to
constrain the outer and inner core compositions and the melting temperature
at the inner core boundary. Additionally, constraints on core composition
would aid our understanding of the nature of anisotropy and heterogeneity in
the inner core. Furthermore, an understanding of the thermoelastic properties
of these alloys at core conditions can constrain geodynamical simulations of
the evolution and ongoing processes of the core.

1.2 Phases of iron-nickel-silicon alloys

The phase diagrams of iron and Fe0.91Ni0.09 are illustrated in Figure 1.2. The
portion of the phase diagram from 0–25 GPa and up to 1000 K is after Huang
et al. (1988), and the portion from ∼25–330 GPa is after Zhang et al. (2016).
We note that the Fe0.91Ni0.09 samples used in Zhang et al. (2016) were syn-
thesized from the same batch of Fe0.91Ni0.09 used throughout this thesis. At
ambient pressure and temperature, iron is in the body-centered cubic (bcc)
structure. With increasing temperature at ambient pressure, iron transitions
into the face-centered cubic (fcc) phase, then briefly into another bcc phase,
before melting around 1800 K (Strong et al., 1973). With increasing pressure
at 300 K, iron transitions into the hexagonal close packed (hcp) structure via
a sluggish transition nominally around 8.3 GPa, although the bcc phase has
been observed up to 25 GPa on compression, and the hcp phase has been
observed down to 2 GPa on decompression (Zarkevich and Johnson, 2015).
According to Huang et al. (1988) and Zhang et al. (2016), nickel stabilizes the
fcc phase and slightly decreases the melting temperature of hcp-iron. Several
studies have proposed iron or iron-nickel may assume a bcc phase at inner core
conditions (e.g., Belonoshko et al., 2008; Dubrovinsky et al., 2007). However,
recent experimental studies at pressures and temperatures close to the inner
core have found iron and Fe0.9Ni0.1 in the hcp structure (Sakai et al., 2011;
Tateno et al., 2010, 2012). Much of this thesis, therefore, focuses on the hcp
phases of iron alloys. The melting temperature of iron-alloys at pressures cor-
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Figure 1.2: Phase diagram of Fe (gray) and Fe0.9Ni0.1 (orange). The phase
diagrams from 0–25 GPa and up to 1000 K are after Huang et al. (1988). The
phase diagrams from ∼25–330 GPa are after Zhang et al. (2016).

responding to the inner core boundary is of particular interest, as this phase
transition is a key constraint on the geotherm of the core. Zhang et al. (2016)
propose a melting temperature at the inner core boundary of 5700 ± 200 K
for hcp-iron and of 5500 ± 200 K for hcp-Fe0.91Ni0.09, although the range of
reported melting temperatures for hcp-iron and iron-nickel is wide. For in-
stance, Anzellini et al. (2013) report an inner core boundary temperature of
6230 ± 500 K for hcp-iron.

Silicon is a favored light element in the inner core for a variety of reasons.
First, the high magnesium to silicon ratio in the crust and mantle of Earth
compared to chondritic meteorites suggests silicon may be sequestered in the
core (Allègre et al., 2001, 1995). Second, silicate-iron partitioning experiments
conducted at high pressure and high temperature observe that silicon pref-
erentially partitions into iron (Fischer and Campbell , 2015; Ricolleau et al.,
2011). Lastly, ab initio and experimental results demonstrate silicon partitions
roughly equally between liquid and solid iron at high pressure (Alfè et al.,
2002, 2007). The phase diagram of Fe0.84Si0.16 (Fischer et al., 2013, converted
to atomic units) is compared to the phase diagram of iron (Huang et al., 1988;
Zhang et al., 2016) in Figure 1.3. Near ambient conditions, the phase dia-
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Figure 1.3: Phase diagram of Fe (gray) and Fe0.84Si0.16 (blue). The phase
diagram of Fe from 0–25 GPa and up to 1000 K is after Huang et al. (1988).
The phase diagram from ∼25–330 GPa of Fe is after Zhang et al. (2016). The
phase diagram Fe0.84Si0.16 is after (Fischer et al., 2013). Gray labels refer to
Fe phases; blue labels refer to Fe0.84Si0.16 phases.

gram of Fe0.84Si0.16 is similar to that of Fe, with Fe0.84Si0.16 taking on a bcc
structure. With increasing pressure, Fe0.84Si0.16 transitions to an hcp struc-
ture, with silicon stabilizing the bcc phase to higher pressures. For instance,
we found in this thesis that the bcc-hcp transition of Fe0.8Ni0.1Si0.1 occurred
∼6 GPa above that of Fe0.91Ni0.09, in agreement with Zhang and Guyot (1999)
and Lin (2003). With the addition of silicon, the fcc phase of iron takes on
a metastable coexistence with the hcp and B2 phase, and, at higher temper-
atures, the hcp phase of iron becomes coexistent with the B2 phase. It is
thought that the addition of light elements depresses the melting temperature
of iron. For instance, silicon is estimated to decrease the temperature at the
inner core boundary by 0–400 K (as reviewed in Fischer , 2016). Figure 1.3
appears to show a higher melting temperature of Fe0.84Si0.16 compared to iron
because the Fe0.84Si0.16 melting temperature reported in Fischer et al. (2013)
is based upon the iron melting temperature of Ma et al. (2004), which reports
a higher iron melting temperature than Zhang et al. (2016).

The iron-silicon composition investigated in this thesis, Fe0.8Ni0.1Si0.1, likely
has a phase diagram which lies somewhere between the phase diagrams of Fe,
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Table 1.1: Summary of synchrotron experiments presented in this thesis

Composition Experimental DAC Beamline Dates Pressure Chapter
Methods Run (mo/yr) (GPa)

Fe NRIXS, XRD APS 3-ID-B 03/15 0 4
Fe0.91Ni0.09 NRIXS, XRD APS 3-ID-B 03/15 0 4
Fe0.91Ni0.09 NRIXS, XRD FeNi-Run#1 APS 3-ID-B 04/12, 3.8–104 4

06/12,
10/12

Fe0.91Ni0.09 NRIXS, XRD FeNi-Run#2 APS 3-ID-B 02/13 1.7–4.5 4
Fe0.91Ni0.09 NRIXS, XRD APS 3-ID-B 03/15 0 4
Fe0.8Ni0.1Si0.1 NRIXS, XRD FeNiSi-Run#1 APS 3-ID-B 11/13 7.1 4
Fe0.8Ni0.1Si0.1 NRIXS, XRD FeNiSi-Run#2 APS 3-ID-B 02/14 6.5 4
Fe0.8Ni0.1Si0.1 NRIXS, XRD FeNiSi-Run#3 APS 3-ID-B 02/14 27.9–86 4

03/15
Fe0.91Ni0.09 XRD APS 13-BM-C 02/15 0 2, 3
Fe0.91Ni0.09 XRD FeNi-Run#1 APS 13-BM-C 02/15 0–104 2, 3
Fe0.91Ni0.09 XRD FeNi-Run#2 ALS 12.2.2 04/16 1.4–104 2, 3
Fe0.91Ni0.09 XRD FeNi-Run#3 APS 13-ID-D 06/16 14.6–167 2, 3
Fe0.8Ni0.1Si0.1 XRD ALS 12.2.2 05/15 0 2, 3
Fe0.8Ni0.1Si0.1 XRD FeNiSi-Run#1 ALS 12.2.2 05/15 0–88.1 2, 3
Fe0.8Ni0.1Si0.1 XRD FeNiSi-Run#2 APS 13-ID-D 06/16 31.6–175 2, 3

Fe0.9Ni0.1, and Fe0.84Si0.16. Fe0.8Ni0.1Si0.1 at inner core conditions is thought
to adopt an hcp-structure or a mixture of hcp and B2 phases (Fischer and
Campbell , 2015; Fischer et al., 2013; Sakai et al., 2011; Tateno et al., 2015),
where the B2 phase of Fe-Si and Fe-Ni-Si becomes more favorable as Si content
or temperature is increased.

1.3 Overview of thesis

Throughout this thesis, we investigate the thermoelastic properties of bcc- and
hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, and we compare systematically to the ther-
moelastic properties of bcc- and hcp-Fe whenever possible. While we make
an effort to compare our measured and derived quantities to other iron-light-
element alloys, systematic comparisons are frequently hindered by the scarcity
of existing experimental data. The greater portion of this work was collected
in a high pressure environment via the use of diamond anvil cells (DACs)
at 300 K. Data presented in this thesis rely on synchrotron x-ray diffraction
(XRD) and nuclear resonant inelastic x-ray scattering (NRIXS) experiments.
We outline the synchrotron experiments from which this thesis draws in Ta-
ble 1.1.
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In Chapter 2, we present high-quality 300 K pressure-volume relations of bcc-
and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 measured with XRD up to 167 GPa and
175 GPa, respectively. These measurements were conducted in a helium pres-
sure medium, which ensures a more hydrostatic compressional environment
than other commonly selected pressure media, and with a tungsten pressure
calibrant. Quantities derived from these x-ray diffraction results are tabulated
in Appendix A. We fit equations of state (EOS) to the presented pressure-
volume data, and we present uncertainties and correlations on the EOS fit
parameters, which is necessary for uncertainty calculations when comparing
and extrapolating EOSs. We systematically compare our findings to an EOS
study on iron conducted with the same pressure media and pressure calibrant
(Dewaele et al., 2006).

In the later half of Chapter 2, we extrapolate our 300 K hcp-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 EOSs to inner core conditions to determine the effect of nickel
and silicon on density, bulk modulus, and bulk sound speed. These quantities
are of particular interest, as they can be directly compared to seismic obser-
vations of the inner core. To estimate the allowable nickel and silicon content
in the inner core, we apply a linear and bulk aggregate mixing model to the
thermal EOSs. We find that for a fixed nickel content of 5 wt%, the den-
sity, bulk modulus, and bulk sound speed of the inner core can accommodate
4.3–5.3 wt% silicon. We then expand our compositional space search using
existing thermal EOSs for FeO, FeS2, and Fe7C3, and we propose a variety of
inner core compositions consistent with seismic observations of density, bulk
modulus, and bulk sound speed. For example, we find the inner core can ac-
commodate up to 7.5 wt% sulfur, up to ∼2 wt% oxygen, and less than 1 wt%
carbon, although uncertainties in electronic and anharmonic contributions to
the equations of state may shift these values.

In Chapter 3, we apply our experimental data from Chapter 2 and Appendix A
to investigate the relationship between the hcp-phase c/a axial ratio and elastic
anisotropy. Due to experimental difficulties in synthesizing large single crystals
of hcp-iron alloys, the elastic anisotropy of hcp-iron alloys is poorly constrained
and currently debated. The elastic anisotropy of an hcp-structured material is
suggested to be related to its c/a axial ratio. Our measurements in a helium
pressure medium provide a tight constraint on the c/a axial ratio of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. We investigate the relationship between c/a
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and elastic anisotropy and then apply our findings to hcp-cobalt and helium,
whose elastic anisotropy can be directly measured with single crystals. We
then apply our findings to hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 and compare
with experimental predictions.

In Chapter 4, we present high pressure NRIXS data on bcc- and hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1 at 300 K. The sample volume is constrained in situ by
XRD collected immediately before and after each NRIXS measurement. From
these data, we determine the partial phonon density of states (DOS) for each
composition, and we systematically compare our results to iron by re-analyzing
previously collected hcp-iron NRIXS data (Murphy et al., 2011a,b, 2013). A
wide variety of thermoelastic quantities can be determined either directly from
NRIXS data or from the partial phonon DOS.

We demonstrate a new method of determining the Debye sound velocity from
the low energy region of the phonon DOS which provides an improved estimate
on the Debye sound velocity uncertainty. From this, we present Debye sound
velocities for bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. Using our previously
determined equations of state for the same compositions, we constrain the
compressional and shear sound velocities and shear moduli of bcc- and hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. At 300 K, we find that 9 at% nickel decreases
the shear velocity of hcp-iron by ∼6%, and that silicon has a minimal effect on
the shear velocity of hcp-Fe0.91Ni0.09. We conclude that thermal effects likely
play a large role in the sound velocities of iron alloys at core conditions, so
constraining these effects is critical to further constrain the composition of the
core.

From the volume scaling of the phonon DOS, we constrain the 300 K vibra-
tional component of the Grüneisen parameter for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1.
The phonon DOS also provides constraints on the volume dependence of vi-
brational free energy, which is directly related to the harmonic vibrational
component of thermal pressure. By combining the harmonic vibrational com-
ponent with theoretical estimates of the anharmonic and electronic contribu-
tions, we provide an estimate for the total thermal pressure of hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1. The phonon DOS provides access to the harmonic vibra-
tional component of entropy per 57Fe atom, the volume derivative of which is
directly related to the product of isothermal bulk modulus and thermal ex-
pansion. Therefore, we can apply the isothermal bulk modulus constrained
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in Chapter 2 to determine the harmonic vibrational component of thermal
expansion for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. From the NRIXS data and
from the phonon DOS, we present constraints on the kinetic energy per 57Fe
atom and on the Lamb-Mössbauer factor, which is related to the mean square
displacement. The phonon DOS also provides information on the vibrational
component of specific heat, which we present at the end of Chapter 4. In
summary, this thesis provides improved constraints on the effects of nickel and
silicon on the thermoelastic and vibrational properties of iron, which will aid
our community’s progress in constraining core composition, the thermal profile
of the Earth, and the thermodynamic properties of the core.
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C h a p t e r 2

EQUATIONS OF STATE OF IRON-NICKEL-SILICON
ALLOYS1

2.1 Introduction

Earth models, such as the Preliminary Reference Earth Model (PREM) (Dziewon-
ski and Anderson, 1981) and AK135-F (Kennett et al., 1995), provide one-
dimensional radial models of the compressional, shear, and bulk sound veloc-
ities down to the center of Earth. Combined with a model for the density
distribution within Earth, these models provide the adiabatic bulk and shear
moduli along this 1-D profile. Cosmochemical studies suggest the Earth is
composed primarily of iron alloyed with approximately 5 wt% nickel (Allègre
et al., 1995; McDonough, 2003). The presence of some amount of light ele-
ments (e.g., Si, O, S, C, H) inside the core has been suggested based upon
the properties of pure iron and their deviation from these seismically inferred
values (e.g., Allègre et al., 1995; Campbell , 2016; Hirose et al., 2013; Li and
Fei , 2014; McDonough, 2003; Ohtani , 2013).

The equation of state (EOS) and c/a axial ratio of pure hexagonal close packed
(hcp)-iron have been well constrained by a powder x-ray diffraction (XRD)
study at 300 K, which used tungsten as a pressure marker and helium as
a pressure medium (Dewaele et al., 2006). Helium is considered to provide
more uniform stress conditions inside the sample chamber compared to other
commonly selected pressure media, especially under extreme conditions (Klotz
et al., 2009; Zarochentsev et al., 2004). While an iron-nickel diamond anvil cell
(DAC) study up to 255 GPa suggested the pressure-volume relation of iron
is indistinguishable from that of iron alloyed with 20 at% nickel (Mao et al.,
1990), a systematic study evaluating the effect of alloying iron with nickel in
a helium pressure medium has not yet been conducted. The Mao et al. (1990)
study was conducted without the use of a pressure medium and with the plat-
inum pressure calibrant of Holmes et al. (1989). Subsequent EOS experiments

1This chapter contains material previously published as part of Morrison, R. A.,
J. M. Jackson, W. Sturhahn, D. Zhang, and E. Greenberg (2018), Equations of state
and anisotropy of Fe-Ni-Si alloys, Journal of Geophysical Research: Solid Earth, 122,
doi:10.1029/2017JB015343.
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have predominantly neglected nickel and focused on iron alloyed with various
light elements (Hirose et al., 2013; Poirier , 1994). However, the presence of
non-hydrostatic stress conditions could blur such compositional effects, as it
is known that the lattice parameters and resulting unit-cell volumes can be
highly sensitive to stress conditions (e.g., Zhao and Ross , 2015). The stress
conditions inside Earth’s core are thought to be hydrostatic, so achieving ex-
perimental conditions that are as close to hydrostatic as possible is critical.
Determination of these quantities for a suite of iron alloys under low deviatoric
stress conditions can provide important constraints on compositional effects.

We present high-precision pressure-volume data for Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
using powder x-ray diffraction at 300 K up to 167 GPa and 175 GPa, respec-
tively. By using tungsten powder as pressure calibrant and helium as a pressure
transmitting medium, we minimize error in determination of compositional ef-
fects due to pressure calibration and non-hydrostatic stresses. The results are
a suite of high fidelity data sets fit with equations of state. By systematically
comparing our findings to those of pure iron (Dewaele et al., 2006), we con-
strain the effect of nickel and silicon on the density, bulk modulus, and bulk
sound speed of iron alloys, which is a critical step in constraining the inner
core’s composition. We find that for iron alloys, constraining the equation of
state at 300 K significantly reduces the uncertainty of high-temperature equa-
tions of state extrapolated to inner core conditions. After extrapolating our
hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 equations of state to inner core condi-
tions, we estimate the allowable inner core composition in Fe-Ni-Si composition
space and then extrapolate to the Fe-Ni-Si-O-C-S composition space.

2.2 Experimental methods

The samples were synthesized from individual pieces of Ni, Si, and 95%-
enriched 57Fe to produce iron containing ∼10 wt% nickel and iron containing
∼10 wt% nickel and ∼5 wt% silicon. The Fe, Ni, and Si pieces were arc-melted
in an argon atmosphere and then cold rolled to ∼10 µm. Sample compositions
were confirmed with scanning electron microscopy (SEM) measurements to be
Fe0.91(1)Ni0.09(1) and Fe0.80(1)Ni0.10(1)Si0.10(1) (atomic units), and sample homo-
geneity was observed at a scale of 1 µm. The unit-cell volume is insensitive to
the 57Fe-enrichment of our samples. We remove the effect of the enrichment
of our sample by using the natural isotopic abundances of iron to compute the
density.
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Table 2.1: Conditions for each x-ray diffraction experimental run

Run Phase Composition P range Diamond Sample Experimental X-ray focus
(GPa) culet diameter size Facility size (µm2,

(µm) (µm2) FWHM)
FeNi-Run#1 bcc Fe0.91Ni0.09 0–15.2 250 20x20 APS 13-BM-C 15x15

hcp Fe0.91Ni0.09 15.2–104
FeNi-Run#2 bcc Fe0.91Ni0.09 1.4–13.1 250 20x35 ALS 12.2.2 20x20

hcp Fe0.91Ni0.09 15.1–104
FeNi-Run#3 hcp Fe0.91Ni0.09 14.6–167 100 10x10 APS 13-ID-D 3x3
FeNiSi-Run#1 bcc Fe0.8Ni0.1Si0.1 0–21.6 250 20x20 ALS 12.2.2 20x20

hcp Fe0.8Ni0.1Si0.1 21.6–88.1
FeNiSi-Run#2 hcp Fe0.8Ni0.1Si0.1 31.6–175 100 10x10 APS 13-ID-D 3x3
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To achieve high pressures, the iron alloys were cut to a range of lateral dimen-
sions and placed in the center of the sample chamber of symmetric DACs with
diamond culet diameters of 100 or 250 µm and bevels extending to 300 µm.
Rhenium gaskets were used to maintain sample-chamber integrity. Each gas-
ket was indented to a thickness of 20–40 µm and then drilled with a 65–130 µm
diameter hole using electric discharge machining. A cubic boron nitride seat on
the downstream side of the DAC maximized the accessible 2θ range for x-ray
diffraction measurements. We placed tungsten powder proximal to the sample
in the sample chamber to act as a pressure calibrant. Tungsten was selected
as a pressure calibrant for its high x-ray scattering coefficient, its well-known
equation of state (e.g., Dewaele et al., 2004; Dorogokupets and Oganov , 2006),
and its use as a pressure calibrant in a study on pure iron (Dewaele et al.,
2006). The sample chamber was filled with compressed helium at 25,000 PSI
as a pressure transmitting medium with the gas loading facility located at
Caltech. Helium’s remarkably low shear modulus (Zarochentsev et al., 2004)
enables the measurement of highly accurate data, including the c/a axial ra-
tios of the hcp-structured phases. The x-ray powder diffraction study on iron
by Dewaele et al. (2006) also used helium as a pressure medium. Thus, the
similarity in sample environments permits a more precise comparison of the
iron alloys investigated in this study to those of iron.

Powder x-ray diffraction experiments were conducted at GSECARS’ beamlines
13-BM-C and 13-ID-D at the Advanced Photon Source (APS) near Chicago
and at beamline 12.2.2 at the Advanced Light Source (ALS) in Berkeley.
Each beamline delivered slightly different characteristics of the x-rays for the
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 experimental runs (hereafter referred to as FeNi-
Run#1, FeNi-Run#2, FeNi-Run#3, FeNiSi-Run#1, and FeNiSi-Run#2). Specif-
ically, a beam size of ∼15 × 15 µm2 full-width at half maximum (FWHM)
and an energy of 28.57 keV was used at APS sector 13-BM-C for FeNi-Run#1.
A beam size of ∼20 × 20 µm2 FWHM and energies of 30 and 35 keV were
used at beamline 12.2.2 at the ALS for FeNiSi-Run#1 and for FeNi-Run#2.
A beam size of ∼3 × 3 µm2 FWHM and an energy of 37.08 keV was used
at APS sector 13-ID-D for FeNi-Run#3 and FeNiSi-Run#2. Pressure was in-
creased manually offline for FeNi-Run#1, FeNi-Run#2, and FeNiSi-Run#1.
For FeNiSi-Run#2 and FeNi-Run#3 at APS sector 13-ID-D, pressure was in-
creased in situ using a membrane DAC (Sinogeikin et al., 2015). The standard
LaB6 was used to calibrate x-ray diffraction images for all runs except FeNi-
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Run#2, when the calibrant CeO2 was used. Experimental conditions for each
run are summarized in Table 2.1.

X-ray diffraction images were integrated with the software Dioptas (Prescher
and Prakapenka, 2015). Example x-ray diffraction patterns for body centered
cubic (bcc)- and hcp-Fe0.91Ni0.09 and bcc- and hcp-Fe0.8Ni0.1Si0.1 are shown in
Figures 2.1 and 2.2, respectively. The structural phase transition from bcc
to hcp was identified by the appearance of peaks associated with the hcp
phase and the disappearance of peaks associated with the bcc phase. Lattice
parameters of the iron alloys and of the tungsten powder were determined using
full profile Pawley refinement and were consistent with those obtained using
the Pawley refinement approach in the GSAS-II software package (Toby and
Von Dreele, 2013). The sample and tungsten unit cell volumes were calculated
from the refined lattice parameters a for bcc phases and a and c for hcp phases.

The tungsten equation of state from Dorogokupets and Oganov (2006) was used
to determine sample pressure. This equation of state has been calibrated with
modern shock wave, x-ray, and ultrasonic measurements collectively. Use of
this pressure calibration allows for a systematic comparison of our Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1 studies with the study by Dewaele et al. (2006) on pure
iron, which also used the Dorogokupets and Oganov (2006) tungsten pressure
calibration.

Lattice parameter error analysis

The lattice parameter uncertainties for Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and tung-
sten were obtained from the refinement of each x-ray diffraction pattern. How-
ever, full-profile refinement methods are known to significantly underestimate
lattice parameter uncertainties (Angel , 2000). We estimate the lattice parame-
ter uncertainty with scaling factors k, where the lattice parameter uncertainty
σ obtained from refinement of an individual pattern for a given phase is re-
placed by kσ (Angel , 2000). We apply the same scaling parameter k to all
data within a given phase. To estimate the uncertainty scaling parameters
for each phase of a particular composition (bcc Fe-alloys, hcp Fe-alloys, and
bcc-tungsten), we used two general principles. First, when fitting an equation
of state to experimental pressure-volume data from a single run, the reduced
goodness of fit (χ2) should be close to 1. The uncertainty on each data point
should not be smaller than is justified by the scatter of the data, assuming the
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P = 11.8 GPa, FeNi-Run#2

P = 87.3 GPa, FeNi-Run#2

Fe0.91Ni0.09

a.

b.

P = 167 GPa, FeNi-Run#3c.

Figure 2.1: X-ray diffraction patterns at 300 K for a) bcc-Fe0.91Ni0.09 at 11.8
GPa, b) hcp-Fe0.91Ni0.09 at 87.3 GPa, and c) hcp-Fe0.91Ni0.09 at 167 GPa.
Patterns are plotted againstQ (=2π/d) instead of 2θ to remove the dependency
on wavelength. Patterns were collected with the sample (black curves, left y-
axis) and with the tungsten powder (blue curves, right y-axis) aligned with
the x-ray focus. Patterns are plotted before background subtraction.
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P = 10.4 GPa,  FeNiSi-Run#1

P = 88.1 GPa,  FeNiSi-Run#1

Fe0.8Ni0.1Si0.1

a.

b.

P = 175 GPa,  FeNiSi-Run#2c.

Figure 2.2: X-ray diffraction patterns at 300 K for a) bcc-Fe0.8Ni0.1Si0.1 at
10.4 GPa, b) hcp-Fe0.8Ni0.1Si0.1 at 88.1 GPa, and c) hcp-Fe0.8Ni0.1Si0.1 at 175
GPa. Patterns are plotted against Q (=2π/d) instead of against 2θ to re-
move the dependency on wavelength. Patterns were collected with the sample
(black curves, left y-axis) and with the tungsten powder (blue curves, right
y-axis) aligned with the x-ray focus. Patterns are plotted before background
subtraction.
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model to fit the data (i.e., the EOS) is reasonable. Second, when an equation
of state is fit to data combined from multiple runs, the χ2 should be approx-
imately 1, because a better estimate of uncertainty is obtained from multiple
repetitions of the same experiment than is obtained from a single experiment;
thus, when an equation of state is fit to data combined from multiple runs,
the reduced χ2 should be approximately 1. As a result of this uncertainty
estimation, the reduced goodness of fit (χ2) is ∼1 for each of our equation of
state fits.

Proper propagation of uncertainty from a particular pressure calibrant requires
knowledge of the corresponding error correlation matrix of the data used to
create the pressure scale. As the error correlation matrix for the Dorogokupets
and Oganov (2006) tungsten equation of state is not available, the pressure
calibration is treated as given. Nevertheless, the uncertainty for the Dorogoku-
pets and Oganov (2006) tungsten pressure standard agrees with aluminum,
gold, copper, platinum, and tantalum pressure standards within 2 GPa at
160 GPa and 300 K (Dorogokupets and Oganov , 2006), which is of compara-
ble magnitude with our reported pressure uncertainty (see Tables A.1–A.4 in
Appendix A).

2.3 X-ray diffraction results

Fe0.91Ni0.09

X-ray diffraction images were collected from pressures ranging from 0 to 167
GPa over three separate experimental runs (FeNi-Run#1, FeNi-Run#2, FeNi-
Run#3) at 300 K. Example x-ray diffraction patterns for Fe0.91Ni0.09 are shown
in Figure 2.1. Fe0.91Ni0.09 is stable in the bcc-structure at ambient conditions,
and a phase transition to the hcp-structure was constrained to pressures be-
tween 12.5 GPa and 17.2 GPa. Fe0.91Ni0.09 is thought to be stable in the hcp
phase in the Earth’s inner core (Tateno et al., 2012). Minor texturing was
observed in the x-ray diffraction images at all pressures due to cold rolling of
the samples during synthesis. However, the sample x-ray diffraction peak 2θ
positions did not vary radially around the x-ray diffraction image, indicating
the minor texturing of the sample had a negligible effect on the determined
peak positions. The bcc-Fe0.91Ni0.09 lattice parameters were determined from
the d-spacings of the following four reflections: 110, 200, 211, and 220. The
hcp-Fe0.91Ni0.09 lattice parameters were determined from the d-spacings of the
following nine reflections: 100, 002, 101, 102, 110, 103, 200, 112, and 201.
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The bcc-tungsten lattice parameters were determined from the d-spacings of
the following five reflections: 110, 200, 211, 220, and 310. Lattice parameters,
volumes, and pressures are given in Tables A.1 and A.2 in Appendix A.

Fe0.8Ni0.1Si0.1
X-ray diffraction images were collected from pressures ranging from 0 to 175
GPa over two separate experimental runs (FeNiSi-Run#1, FeNiSi-Run#2) at
300 K. Example x-ray diffraction patterns for Fe0.8Ni0.1Si0.1 are shown in Fig-
ure 2.2. Fe0.8Ni0.1Si0.1 is also stable in the bcc structure at ambient conditions
and undergoes a phase transition to the hcp-structure at a higher pressure than
Fe0.91Ni0.09. The bcc-hcp phase transition for Fe0.8Ni0.1Si0.1 was constrained to
be above 18.7 GPa and below 24.5 GPa, demonstrating that 10 at% Si stabi-
lizes the bcc phase by about 6 GPa. Similar to the Fe0.91Ni0.09 samples, minor
texturing was observed in the Fe0.8Ni0.1Si0.1 samples at all pressures due to cold
rolling. As in the case of the Fe0.91Ni0.09 samples, the sample x-ray diffraction
peak 2θ positions did not vary radially around the x-ray diffraction image.
The higher background in FeNiSi-Run#2 at higher pressures is likely due to
a combination of Compton scattering from thicker diamond anvils (∼2.2 mm
compared with ∼2.0 mm) and minor sample thickness variations at higher
pressures. For consistency, the bcc- and hcp-Fe0.8Ni0.1Si0.1 lattice parameters
and the bcc-tungsten lattice parameters were constrained using the same set
of reflections as for the Fe0.91Ni0.09 data in this study. Lattice parameters,
volumes, and pressures are given in Tables A.3 and A.4 in Appendix A.

2.4 Equations of state

We used the open-source software package MINeral physics UTIlities (MINUTI)
version 2.0.0 (Sturhahn, 2017) to fit both Vinet and third order Birch-Murnaghan
EOSs to the 300 K bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 data. For each
phase of each composition, we combine all runs into a single data set and fit
three parameters: ambient volume V0, ambient isothermal bulk modulus KT0,
and the ambient pressure derivative of the bulk modulus K ′T0. No parameters
were fixed in these equation of state fits, and no priors based on other studies
were applied. The resulting equation of state parameters are given in Ta-
ble 2.2, and the correlations between model parameters are given in Tables 2.3
and 2.4.
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Table 2.2: Equation of state fitting parameters

Ref Phase Composition V0 K0 K ′0 P range P medium P gauge EOS
(Å3) (GPa) (GPa)

This study bcc Fe0.91Ni0.09 23.635(6) 146.7(30) 6.42(60) 0-15.2 He W Vinet
23.635(6) 146.8(31) 6.39(64) BM3

This study bcc Fe0.8Ni0.1Si0.1 23.385(9) 155.6(74) 5.7(12) 0-21.6 He W Vinet
23.384(9) 155.9(75) 5.6(13) BM3

This study hcp Fe0.91Ni0.09 22.505(42) 157.5(39) 5.61(10) 14.6-167 He W Vinet
22.436(40) 167.4(40) 5.07(10) BM3

This study hcp Fe0.8Ni0.1Si0.1 22.952(72) 125.2(46) 6.38(12) 21.6-175 He W Vinet
22.837(71) 135.8(52) 5.84(14) BM3

Dewaele et al. (2006) bcc Fe (Our fit)a 23.524(18) 168.1(83) 4.7(13) 0-14.6 He W, ruby Vinet
Dewaele et al. (2006) hcp Fe 22.428(98) 163.4(79) 5.38(16) 17-197 He W, ruby Vinet

22.468(24) 165(fixed) 4.97(4) BM3
(Refit)b 22.425(54) 162.9(45) 5.40(9) Vinet

aAs Dewaele et al. (2006) report no bcc-iron equation of state, we fit a Vinet EOS to their reported bcc-iron data.
bWe refit hcp-iron data (Dewaele et al., 2006) with a Vinet EOS to obtain fit parameter correlations. Our refit is consistent
with the original Vinet EOS fit by Dewaele et al. (2006).
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Table 2.3: Vinet equation of state parameter correlations. Correlations for
bcc- and hcp-Fe are for our fits to data from Dewaele et al. (2006).

V0 K0 K ′0 V0 K0 K ′0
bcc Fe0.91Ni0.09 hcp Fe0.91Ni0.09

V0 +1.00 -0.65 +0.48 V0 +1.00 -0.98 +0.93
K0 +1.00 -0.96 K0 +1.00 -0.98
K ′0 +1.00 K ′0 +1.00

bcc Fe0.8Ni0.1Si0.1 hcp Fe0.8Ni0.1Si0.1
V0 +1.00 -0.42 +0.30 V0 +1.00 -0.99 +0.96
K0 +1.00 -0.97 K0 +1.00 -0.99
K ′0 +1.00 K ′0 +1.00

bcc Fe (Dewaele et al., 2006) hcp Fe (Dewaele et al., 2006)
V0 +1.00 -0.82 +0.66 V0 +1.00 -0.98 +0.93
K0 +1.00 -0.96 K0 +1.00 -0.98
K ′0 +1.00 K ′0 +1.00

Table 2.4: Third order Birch-Murnaghan equation of state parameter correla-
tions

V0 K0 K ′0 V0 K0 K ′0
bcc Fe0.91Ni0.09 hcp Fe0.91Ni0.09

V0 +1.00 -0.65 +0.48 V0 +1.00 -0.98 +0.93
K0 +1.00 -0.96 K0 +1.00 -0.98
K ′0 +1.00 K ′0 +1.00

bcc Fe0.8Ni0.1Si0.1 hcp Fe0.8Ni0.1Si0.1
V0 +1.00 -0.42 +0.30 V0 +1.00 -0.99 +0.96
K0 +1.00 -0.97 K0 +1.00 -0.99
K ′0 +1.00 K ′0 +1.00

Fe0.91Ni0.09

We present the bcc- and hcp-Fe0.91Ni0.09 pressure-volume data and Vinet equa-
tion of state fits in Figure 2.3. We compare to the hcp-Fe x-ray diffraction
study up to 205 GPa at 300 K, which was conducted with a helium pressure
medium and a tungsten pressure calibrant and fit with a Vinet EOS (De-
waele et al., 2006). We also compare to the hcp-Fe and hcp-Fe0.8Ni0.2 x-ray
diffraction studies up to 300.6 GPa and 255.0 GPa, respectively, at 300 K,
which were conducted with no pressure medium and a platinum pressure cal-
ibrant and fit with third order Birch-Murnaghan EOSs (Mao et al., 1990).
In the lower panel of Figure 2.3, the hcp-Fe0.91Ni0.09 equation of state from
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this study was subtracted from all hcp data and fits to elucidate the differ-
ence between each equation of state. When plotting uncertainty on data in
the lower panel, we employ the effective variance method, whereby the uncer-
tainty in pressure is projected into an effective contribution to volume using
error propagation. This allows us to effectively one-dimensionalize the plot to
more easily distinguish between equations of state. Note a pressure medium
dramatically improves the statistical quality of the data. Although uncertain-
ties for the pressure-volume data were not published in Dewaele et al. (2006),
and are thus not shown in Figure 2.3, one can see that the volumes of iron
and Fe0.91Ni0.09 diverge by ∼0.1 Å3 at ∼150 GPa. Therefore, only with high-
precision x-ray diffraction data can such differences, or lack thereof, be resolved
(Figures 2.3–2.5).

Fe0.8Ni0.1Si0.1
The bcc- and hcp-Fe0.8Ni0.1Si0.1 pressure-volume data and Vinet EOS fits are
displayed in Figure 2.4. We compare to the hcp-Fe0.83Ni0.09Si0.08 and hcp-
Fe0.93Si0.07 x-ray diffraction studies up to 374 GPa and 252 GPa, respectively,
which were conducted with a NaCl pressure medium and fit with third or-
der Birch-Murnaghan equations of state (Asanuma et al., 2011). The NaCl
pressure medium also served as a pressure calibrant; however, uncertainties
on pressure are not published. We also compare to the hcp-Fe0.85Si0.15 x-ray
diffraction study up to 54.3 GPa, which was conducted in an ethanol-methanol
(1:4) pressure medium with a gold pressure calibrant and fit with a third-order
Birch-Murnaghan equation of state (Lin, 2003). The Lin (2003) Fe0.85Si0.15

study collected x-ray diffraction data both on compression and decompression,
and the bcc-hcp transition occurs at lower pressures upon decompression. The
hcp-Fe0.91Ni0.09 Vinet equation of state (this study) and the pure iron Vinet
equation of state (Dewaele et al., 2006) are also plotted for reference. In the
lower panel of Figure 2.4, the hcp-Fe0.8Ni0.1Si0.1 equation of state from our
study was subtracted from all hcp data and EOS fits to elucidate the dif-
ference between each equation of state. As described above, when plotting
the uncertainty on data in the lower panel, we employ the effective variance
method to one-dimensionalize the uncertainties. As uncertainties on pressure
are not reported in Asanuma et al. (2011), the uncertainty for the Asanuma
et al. (2011) data cannot be properly calculated in the lower panel of Fig-
ure 2.4. Note that a helium pressure medium improves the statistical quality
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Figure 2.3: Volume-pressure relation for data and equation of state fits for
bcc- and hcp-Fe0.91Ni0.09, where the symbols refer to different experimental
runs. We compare to hcp-Fe (Dewaele et al., 2006), hcp-Fe (Mao et al., 1990),
and hcp-Fe0.8Ni0.2 (Mao et al., 1990). In the bottom panel, the hcp-Fe0.91Ni0.09

EOS (this study) is subtracted from all hcp data and fits.

of hcp-iron alloy pressure-volume data.

Comparison of Fe-Ni-Si alloys

In Figure 2.5, we compare the fitted equations of state for the three iron alloy
studies conducted in a helium pressure transmitting medium: bcc- and hcp-
Fe0.91Ni0.09 (this study), bcc- and hcp-Fe0.8Ni0.1Si0.1 (this study), and hcp-Fe
(Dewaele et al., 2006). As Dewaele et al. (2006) do not report an equation of
state for bcc-Fe, we fit their bcc-Fe pressure-volume data with a Vinet equation
of state using MINUTI. The resulting EOS parameters and their correlations
are given in Tables 2.2 and 2.3, respectively. The addition of 9 at% Ni to bcc-
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Figure 2.4: Volume-pressure relation for data and equation of state fits for bcc-
and hcp-Fe0.8Ni0.1Si0.1, where the symbols refer to different experimental runs.
We compare to hcp-Fe0.83Ni0.09Si0.08 (Asanuma et al., 2011), hcp-Fe0.93Si0.07

(Asanuma et al., 2011), and hcp-Fe0.85Si0.15 (Lin, 2003). For reference, the
equations of state for Fe0.91Ni0.09 (this study) and Fe (Dewaele et al., 2006)
are also plotted. In the bottom panel, the hcp-Fe0.8Ni0.1Si0.1 EOS (this study)
is subtracted from all hcp data and fits.
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Figure 2.5: Volume-pressure relation for bcc- and hcp-Fe0.91Ni0.09 (this study),
bcc- and hcp-Fe0.8Ni0.1Si0.1 (this study), and hcp-Fe (Dewaele et al., 2006). All
three studies were performed with a helium pressure transmitting medium and
used the tungsten pressure calibration by Dorogokupets and Oganov (2006).
In the bottom panel, the hcp-Fe0.91Ni0.09 EOS (this study) is subtracted from
all hcp fits.

iron has a measurable effect on the equation of state (Figure 2.6). The further
addition of 10 at% Si to bcc-iron decreases the volume and increases the bcc
stability field, in agreement with Zhang and Guyot (1999) and Lin (2003).
The addition of 9 at% Ni to hcp-iron increases the volume slightly by ∼0.5%
at all pressures. The further addition of 10 at% Si results in greater curvature
of the pressure-volume relation, thus exhibiting a measurable increase in the
pressure derivative of bulk modulus K ′T0.

Confidence ellipses provide a valuable assessment tool for comparing model
parameters, their uncertainties, and their correlations for equation of state
fits. In Figure 2.6, we plot the KT0 and K ′T0 68% joint confidence ellipses for
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Figure 2.6: 68% confidence ellipses for bulk modulus at 0 GPa KT0 and for
the pressure derivative of bulk modulus at 0 GPa K ′T0 for bcc-Fe0.91Ni0.09 (or-
ange ellipse), bcc-Fe0.8Ni0.1Si0.1 (blue ellipse), and our Vinet fit to bcc-Fe data
of Dewaele et al. (2006) (gray ellipse). Equations of state without reported
correlation matrices are plotted as points with error bars as reported: bcc-Fe
(gray triangle), bcc-Fe0.95Ni0.05 (orange upright triangle), and bcc-Fe0.90Ni0.10

(orange inverted triangle) (Takahashi et al., 1968); bcc-Fe (gray circle) and
bcc-Fe0.91Si0.09 (green circle) (Zhang and Guyot , 1999).

our bcc-Fe0.91Ni0.09 and bcc-Fe0.8Ni0.1Si0.1 studies. We compare these results
to our fit of the bcc-Fe data from Dewaele et al. (2006), to the bcc-Fe, bcc-
Fe0.95Ni0.05, and bcc-Fe0.90Ni0.10 equations of state by Takahashi et al. (1968),
and to the bcc-Fe and bcc-Fe0.91Si0.09 equations of state by Zhang and Guyot
(1999). The bcc-Fe0.91Ni0.09 confidence ellipse is noticeably smaller than the
bcc-Fe0.8Ni0.1Si0.1 and bcc-Fe (Dewaele et al., 2006) confidence ellipses due the
higher density of data in the bcc-Fe0.91Ni0.09 data set.

In Panel a of Figure 2.7, we plot theKT0 andK ′T0 68% and 95% joint confidence
ellipses for our hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 studies. We compare to the
reported equation of state parameters from iron alloy x-ray diffraction studies
at 300 K described in earlier in this section (Asanuma et al., 2011; Dewaele
et al., 2006; Lin, 2003; Mao et al., 1990). Confidence ellipses for these studies
were not plotted in Figure 2.7A as none of these studies reported fit-parameter
correlations. Uncertainties for parameters are plotted as reported. While the
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e.d.c.

Figure 2.7: (a) Confidence ellipses for EOS parameters KT0 (bulk modulus
at 0 GPa) and K ′T0 (pressure derivative of bulk modulus at 0 GPa) for hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. Outer thin ellipses represent 95% confidence;
inner bold ellipses represent 68% confidence. EOSs without reported corre-
lation matrices are plotted with error bars as reported (see legend). (b-e)
Confidence ellipses for KT and K ′T for hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1, and
our refitting of hcp-Fe data (Dewaele et al., 2006) anchored at a variety of pres-
sures. When the EOS is anchored at a pressure outside or near the endpoints
of the data range, the EOS parameters are strongly correlated.
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Figure 2.8: Confidence ellipses for EOS parameters V0 (unit cell volume at
0 GPa) and KT0 (bulk modulus at 0 GPa) for hcp-Fe0.91Ni0.09 and hcp-
Fe0.8Ni0.1Si0.1. EOSs without reported correlation matrices are plotted with
error bars as reported (see legend). Outer thin ellipses represent 95% confi-
dence; inner bold ellipses represent 68% confidence.

KT0 and K ′T0 for hcp-Fe0.91Ni0.09 (this study), hcp-Fe (Dewaele et al., 2006),
and hcp-Fe and hcp-Fe0.8Ni0.2 (Mao et al., 1990) have similar values, we find
adding 10 at% Ni to Fe slightly decreases KT0 and increases K ′T0, whereas the
opposite conclusions would be reached from the study of (Mao et al., 1990).
Note that the effects of Si on the equation of state parameters KT0 and K ′T0 of
Fe and Fe-Ni alloys were previously poorly constrained and produced contra-
dictory conclusions. We find adding 10 at% Si to our iron-nickel alloy decreases
KT0 and increases K ′T0. By using the same pressure calibrants and a helium
pressure transmitting media, the hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 stud-
ies paired with the hcp-Fe Dewaele et al. (2006) study provide a systematic
constraint on the effect of Si on Fe and Fe-Ni alloys with high statistical qual-
ity. Similar plots demonstrating the V0 and KT0 correlation and the V0 and
K ′T0 correlation for our hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 studies are shown in
Figures 2.8–2.9.

The equation of state fit parameters are typically defined at 0 GPa for con-
venience (e.g., V0, KT0, and K ′T0). However, the equation of state parameters
could just as easily be defined at any other pressure (e.g., VP=50, KT,P=50,
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Figure 2.9: Confidence ellipses for EOS parameters V0 (unit cell volume
at 0 GPa) and K ′T0 (bulk modulus pressure derivative at 0 GPa) for hcp-
Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1. EOSs without reported correlation matri-
ces are plotted with error bars as reported (see legend). Outer thin ellipses
represent 95% confidence; inner bold ellipses represent 68% confidence.

and K ′T,P=50). As hcp-structure iron alloys are unstable and unquenchable at
ambient pressure and temperature, we highlight the importance of comparing
various equations of state at pressures where the hcp-phases are stable. For
instance, at 0 GPa it is not a surprise that the correlation of parameters is
quite large for the hcp phases, especially when compared to the correlation of
the parameters of the bcc-phases (Table 2.3).

To clearly identify the effects of Ni and Si on the equation of state of hcp-
iron, we also plot confidence ellipses at 50, 100, and 150 GPa, all of which are
within the hcp stability field and within the experimentally measured regions.
We plot confidence ellipses from the three studies that were conducted with
a helium pressure medium and used the Dorogokupets and Oganov (2006)
tungsten pressure calibration: hcp-Fe0.91Ni0.09 (this study), hcp-Fe0.8Ni0.1Si0.1
(this study), and hcp-Fe (Dewaele et al., 2006). As Dewaele et al. (2006) do not
publish EOS parameter correlations, we refit their hcp-Fe data with a Vinet
EOS in MINUTI to plot confidence ellipses in Figure 2.7b–e. The resulting
EOS parameters and correlations from our fit to the hcp-Fe pressure-volume
data from Dewaele et al. (2006) are given in Tables 2.2 and 2.3, respectively.



29

hcp
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Figure 2.10: Isothermal bulk modulus at 300 K as a function of pressure for
Vinet EOSs of hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1, and our refitting of hcp-
Fe data reported in Dewaele et al. (2006). The uncertainties (shaded) reflect
error propagation that includes parameter correlations. Inset: Isothermal bulk
modulus at 300 K as a function of pressure for Vinet EOSs of bcc-Fe0.91Ni0.09,
bcc-Fe0.8Ni0.1Si0.1, and our fit of bcc-Fe data reported in Dewaele et al. (2006).

In Figure 2.7c, note the decrease in correlation between KT and K ′T at 50
GPa, compared to that at 0 GPa (Figure 2.7b). At higher pressures, the
confidence ellipses demonstrate positive correlation, and the correlation again
increases with increasing pressure. At 50 GPa, the low correlation between
KT and K ′T allows the effect of alloying iron with Ni and Si to be more readily
observed. Regardless of which pressure is chosen as an anchor for the equation
of state parameters, 9 at% nickel slightly increases the bulk modulus pressure
derivative of hcp-iron, and 10 at% silicon noticeably increases the bulk modulus
pressure derivative of hcp-Fe0.91Ni0.09. This effect is most evident in Figure 2.10
where the isothermal bulk moduli of bcc- and hcp-Fe0.91Ni0.09 (this study),
Fe0.8Ni0.1Si0.1 (this study), and Fe (Dewaele et al., 2006) are plotted as a
function of pressure. The plotted uncertainties reflect error propagation that
includes parameter correlations.

The density of bcc- and hcp-Fe0.91Ni0.09 (this study), Fe0.8Ni0.1Si0.1 (this study),
and Fe (Dewaele et al., 2006) are also plotted as a function of pressure with ap-
propriate error propagation of the fit parameters (Figure 2.11). The densities
of Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 are computed assuming natural iron isotopic
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Figure 2.11: Density at 300 K as a function of pressure for bcc- and hcp-
Fe0.91Ni0.09, bcc- and hcp-Fe0.8Ni0.1Si0.1, and our refitting of hcp-Fe data re-
ported in Dewaele et al. (2006), all assuming natural levels of 57Fe enrichment.
Open circles refer to bcc-structured data; filled circles refer to hcp-structured
data. The uncertainties (shaded) reflect error propagation that includes pa-
rameter correlations.

abundance. We find hcp-Fe and hcp-Fe0.91Ni0.09 are virtually indistinguish-
able in the pressure range investigated, but small measurable differences in
their EOSs produce an hcp-Fe0.91Ni0.09 that is 0.3% lighter than pure iron at
330 GPa and 300 K. As expected, silicon substantially decreases the density of
iron or of an iron-nickel alloy. The addition of 10 at% Si decreases the density
of hcp-Fe0.91Ni0.09 by ∼5% over all pressures investigated.

Bulk sound speed is of interest as it is related to the seismically observable
compressional and shear sound velocities vP and vS. To determine bulk sound
speed for hcp alloys, we first convert the experimentally constrained isothermal
bulk modulus to an adiabatic bulk modulus with the thermal EOS parameters
Θ0 = 417 K, γ0 = 2.0, and q = 1.0. (See Section 2.5 for these details.) For bcc
alloys, we assume the adiabatic and isothermal bulk moduli are approximately
equal. We then calculate bulk sound speed at 300 K from the adiabatic bulk
modulus combined with our experimentally determined density. We compare
the bulk sound speeds of bcc- and hcp-Fe0.91Ni0.09 (this study), bcc- and hcp-
Fe0.8Ni0.1Si0.1 (this study), and hcp-Fe (Dewaele et al., 2006) as a function of
density at 300 K using the natural isotopic abundance of iron in Figure 2.12.



31

hcp

bcc

hcp

Figure 2.12: A Birch plot of bulk sound speed vφ as a function of density at
300 K. Isothermal Vinet EOSs for bcc- and hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1,
and our refitting of hcp-Fe (Dewaele et al., 2006) are paired with thermal EOS
parameters Θ0 = 417 K, γ0 = 2.0, and q = 1.0 at 300 K. The uncertainties
(shaded) reflect error propagation that includes parameter correlations for V0,
KT0, and K ′T0. The hcp phases are plotted up to 364 GPa. Inset: Bulk sound
speed at 300 K as a function of pressure for Vinet EOSs of hcp-Fe0.91Ni0.09,
hcp-Fe0.8Ni0.1Si0.1, and our refitting of hcp-Fe data reported in Dewaele et al.
(2006).

Compared to pure iron, the effect of alloying 9 at% nickel is negligible, whereas
the addition of 10 at% silicon increases the bulk sound speed. Furthermore,
the difference between the bulk sound speed of the silicon alloy compared to
that of hcp-Fe increases with increasing pressure. In particular, the bulk sound
speed of hcp-Fe0.8Ni0.1Si0.1 increases from being 1.7% higher than hcp-Fe at
30 GPa to being 5.5% higher than hcp-Fe at 150 GPa.

2.5 Extrapolation to inner core conditions

Geophysical observations paired with seismic models provide constraints for
the density, adiabatic bulk modulus, and bulk sound speed of the inner core
(e.g., Dziewonski and Anderson, 1981; Kennett et al., 1995). Knowledge of
these properties at inner core conditions is an essential aspect of constrain-
ing the composition of the inner core. The phases hcp-Fe and hcp-Fe0.91Ni0.09

are thought to be stable at inner core conditions (Sakai et al., 2011; Tateno
et al., 2010, 2012). Fe0.8Ni0.1Si0.1 at inner core conditions is thought to adopt
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an hcp-structure or a mixture of hcp and B2 phases (Fischer and Campbell ,
2015; Fischer et al., 2013; Sakai et al., 2011; Tateno et al., 2015), where the
B2 phase of Fe-Si and Fe-Ni-Si becomes more favorable as Si content or tem-
perature is increased. We combine our 300 K equations of state with existing
thermal parameters to obtain high-temperature equations of state from which
we can estimate the density, adiabatic bulk modulus, and bulk sound speed of
hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 at inner core conditions. We then place con-
straints on the composition of Earth’s inner core by combining these results
with available data on light-element alloys of iron and geophysical observa-
tions.

Thermal equation of state

We extrapolate to inner core conditions with a thermal equation of state,

P (V, T ) = P300K(V ) + ∆PTh(V, T ), (2.1)

where P300K(V ) is the 300 K Vinet equation of state, and the thermal pressure
∆PTh(V, T ) is approximated using the following terms: a Debye model for
vibrational energy, which is a quasi-harmonic model of the vibrations referred
to as the Mie-Grüneisen-Debye equation of state, as well as electronic (Pel)
and anharmonic (Panh) terms (Sturhahn, 2017),

∆PTh(V, T ) = PTh(V, T )− PTh(V, 300K) (2.2)

and

PTh(V, T ) =
γ(V )

V

9kBT

(
T

Θ(V )

)3 ∫ Θ(V )/T

0

x3dx

ex − 1
+

9

8
kBΘ(V )

+Pel +Panh.

(2.3)
We express the Grüneisen parameter γ(V ) with a volume dependent scaling
law,

γ(V ) = γ0

(
V

V0

)q
, (2.4)

where γ0 is the Grüneisen parameter at 1 bar and q is a scaling parameter.
We express the Debye temperature as

Θ(V ) = Θ0 exp

[
γ0 − γ(V )

q

]
. (2.5)

A nuclear resonant inelastic x-ray scattering (NRIXS) study to 171 GPa de-
termined the phonon density of states of hcp-Fe as a function of volume, from



33

Table 2.5: Thermal equation of state parameters used to extrapolate to inner
core conditions.
Phase V0 K0 K ′0 Θ0 γ0 q

(Å3) (GPa) (K)
hcp-Fe0.91Nia,b0.09 22.505(42) 157.5(39) 5.61(10) 417c 2.0(1)d 1.0(2)d

hcp-Fe0.8Ni0.1Sia,b0.1 22.952(72) 125.2(46) 6.38(12) 417c 2.0(1)d 1.0(2)d
hcp-Fea,c 22.428(98) 163.4(79) 5.38(16) 417 2.0(1)d 1.0(2)d
B1-FeOa,e 20.352 149.4(10) 3.60(4) 417 1.41(5) 0.5
Fe7Ca,f

3 182.87(38) 307(6) 3.2(1) 920(140) 2.57(5) 2.2(5)
FeSg2 158.59(7) 139.7(15) 5.69(19) 624(14) 1.39 2.04(28)
aThe electronic and anharmonic contributions to thermal pressure are
approximated by adding the theoretically determined Pel and Panh of hcp-Fe
(Dewaele et al., 2006) to the pressure.
bThis study: XRD at 300 K up to 167 GPa (hcp-Fe0.91Ni0.09) and 175 GPa
(hcp-Fe0.8Ni0.1Si0.1)
cDewaele et al. (2006): XRD at 300 K up to 205 GPa and ab initio
calculations
dMurphy et al. (2011a): XRD and NRIXS at 300 K up to 171 GPa
eFischer et al. (2011): XRD with laser heating up to 156 GPa and 3100 K
fChen et al. (2012): XRD at ambient temperature up to 167 GPa
gThompson et al. (2016): XRD with laser heating up to 80 GPa and 2400 K.
The electronic and anharmonic contribution to thermal pressure (A2) as
reported in Thompson et al. (2016) is included in this treatment.

which the ambient pressure Grüneisen parameter γ0=2.0±0.10 and the scaling
parameter q=1±0.2 were determined (Murphy et al., 2011a). We apply these
values of γ0 and q to the equations of state for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1,
and Fe. For hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, we assume the pure iron Debye
temperature Θ0=417 K (Dewaele et al., 2006). The thermal EOS parameters
used for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe are shown in Table 2.5.

At temperatures relevant to the inner core, electronic (Pel) and anharmonic
(Panh) contributions to the thermal pressure become non-negligible. To ac-
count for this contribution, we estimate Pel and Panh using ab initio calcula-
tions. For hcp-Fe, we use the theoretically determined hcp-Fe Pel and Panh

from Dewaele et al. (2006). As calculations constraining the electronic and
anharmonic contributions to thermal pressure for Fe-Ni alloys are limited, we
estimate Pel and Panh of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 as those of hcp-Fe
from Dewaele et al. (2006).

Density ρ at inner core conditions was calculated as a function of pressure and
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temperature from the hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 thermal equations
of state. Natural isotopic enrichment was assumed for density calculations.
Isothermal bulk modulus KT was calculated from the thermal equation of
state,

KT = −V
(
∂P

∂V

)
T

. (2.6)

The adiabatic bulk modulus at inner core conditions, which can be compared
with seismic models, was calculated with

KS = KT (1 + γαT ) , (2.7)

where the thermal expansion α is calculated from the thermal equation of state
with

α =
1

V

(
∂V

∂T

)
P

, (2.8)

and the Grüneisen parameter γ is calculated with Equation 2.4. The bulk
sound speed at inner core conditions, which is related to vS and vP , is then
calculated by

vΦ =

(
KS

ρ

)1/2

=
(
v2
P −

4

3
v2
S

)1/2

, (2.9)

where the density ρ is calculated with natural isotopic abundance.

Iron alloys at inner core conditions

We use a few recent studies to estimate a plausible range of inner core tem-
peratures. Although large discrepancies exist in reported inner core boundary
(ICB) temperatures, one can use them as bounds in this analysis. For in-
stance, Anzellini et al. (2013) report an inner core boundary temperature of
6230 ± 500 K for a pure iron core. Zhang et al. (2016) measured the melting
temperature of compressed iron and hcp-Fe0.9Ni0.1 samples using synchrotron
Mössbauer spectroscopy and a fast temperature readout spectrometer (Zhang
et al., 2016). From these measurements, they estimate an upper bound for
the inner core boundary (ICB) temperature of 5500 ± 200 K. The studies
by Zhang et al. (2016) were conducted on Fe0.91Ni0.09 samples from the same
synthesis as those used in this study. It is also well known that the addition
of light elements to hcp-iron can lower the melting temperature. For instance,
silicon may depress the melting point of hcp-iron by 0–400 K, and sulfur may
depress the melting point of hcp-iron by 900–1200 K (as reviewed in Fischer ,
2016). As the change in temperature with radius in the inner core is thought
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Figure 2.13: Thermal EOSs for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1 (this study), and
Fe (Dewaele et al., 2006) are extrapolated to inner core conditions to calculate
density ρ, adiabatic bulk modulus KS, and bulk sound speed vφ as a function
of pressure at 5500 K (see text for details). Estimated electronic and anhar-
monic contributions to thermal pressure are included. Bars (right) represent
uncertainty due to EOS parameters for hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1.
Upper and lower dashed lines represent -500 K and +500 K, respectively. We
compare to the seismic model AK135-F (red line) (Kennett et al., 1995) with
estimated uncertainties for ρ (2%), KS (2.3%), and vφ (0.6%) (Deuss , 2008;
Masters and Gubbins , 2003). We include KS and vφ of the eastern (Bin 3,
black dashed line) and western (Bin 6, black solid line) hemispheres of the
inner core, as determined by combining vP (Attanayake et al., 2014) with ρ
and vS from AK135-F. The ρ, KS, and vφ from thermal EOSs FeO (Fischer
et al., 2011), Fe7C3 (Chen et al., 2012), and FeS2 (Thompson et al., 2016) are
included.

to be small in comparison to the inner core temperature uncertainty (Brown
and Shankland , 1981; Pozzo et al., 2014), we assume a uniform temperature
in our analysis. For these reasons, we assess the compositional constraints us-
ing ICB temperatures of 5000 K, 5500 K, and 6000 K. The density, adiabatic
bulk modulus, and bulk sound speed of hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1,
including their uncertainties, are thus calculated along the inner core pressure
gradient from 330 to 364 GPa (Figure 2.13).

To calculate the uncertainty on density, adiabatic bulk modulus, and bulk
sound speed from the hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 thermal equations
of state, we propagate uncertainty from our isothermal EOS fit parameters V0,
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KT0, K ′T0 and fix γ0 = 2.0 with q = 1.0 (Murphy et al., 2011a) using MINUTI.
To estimate the uncertainty from γ0 and q, we repeat this calculation using
Θ0 = 417 K and the range of γ0 and q reported in Murphy et al. (2011a):
γ0 = 1.9 with q = 0.8 and γ0 = 2.1 with q = 1.2 (Figure 2.14). The un-
certainty contributions from V0, KT0, and K ′T0 and from γ0 and q are listed
in Table 2.6. The uncertainty contributions due to the isothermal equation
of state parameters V0, KT0, and K ′T0 for hcp-Fe, hcp-Fe0.91Ni0.09 and hcp-
Fe0.8Ni0.1Si0.1 are found to be of similar magnitude to the uncertainty due to
γ0 and q, which highlights the importance of accurately constraining the pa-
rameters V0, KT0, and K ′T0 to obtain reliable thermal equations of state. One
of the greatest sources of uncertainty is due to the electronic and anharmonic
contributions to the thermal pressure, which are not well constrained (e.g., Alfè
et al., 2001; Fei et al., 2016; Martorell et al., 2013a,b, 2016; Moustafa et al.,
2017). To account for this, we enlarge our error bars on density, adiabatic bulk
modulus, and bulk sound speed. The total uncertainty on density, adiabatic
bulk modulus, and bulk sound speed for these three alloys at inner conditions
is denoted by the vertical bars to the right of each panel in Figure 2.13.

To compare with the inner core, we plot density, adiabatic bulk modulus, and
bulk sound speed from AK135-F as a function of pressure (Kennett et al.,
1995) in red in Figure 2.13. The uncertainty of the inner core density is
estimated at 2% by Masters and Gubbins (2003), and the uncertainty of the
bulk sound speed of the inner core is estimated to be 0.6% by Deuss (2008).
The uncertainty of the inner core adiabatic bulk modulus from AK135-F can
then be estimated from error propagation to be 2.3%. The AK135-F model
does not explicitly include pressure, so pressure is estimated from depth using
the PREM model (Dziewonski and Anderson, 1981).

We first assess the constraints provided for Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1.
The density of hcp-Fe0.8Ni0.1Si0.1 matches AK135-F throughout the inner core,
suggesting Fe0.8Ni0.1Si0.1 may be a reasonable composition for the Earth’s in-
ner core. While the adiabatic bulk modulus and bulk sound speed of hcp-
Fe0.8Ni0.1Si0.1 at the inner core boundary are close to the uncertainty range of
AK135-F, the pressure gradients ofKS and vφ of Fe0.8Ni0.1Si0.1 are significantly
higher than those of AK135-F, a topic we will return to later in this chapter.

To examine the effect of other light elements, we include three thermal equa-
tion of state studies in Figure 2.13: FeO (Fischer et al., 2011), Fe7C3 (Chen
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Figure 2.14: We illustrate the uncertainty contribution from the quasi-
harmonic terms of hcp-Fe’s thermal equation of state to density, bulk modulus,
and bulk sound velocity at 330–366 GPa and 5500 K. We propagate the uncer-
tainty from our 300 K EOS fit parameters V0, KT0, and K ′T0 and fix γ0 = 2.0
and q = 1.0 (Murphy et al., 2011a) (black). To estimate the uncertainty from
γ0 and q, we repeat this calculation using the range of γ0 and q reported in
Murphy et al. (2011a): γ0 = 1.9 with q = 0.8 (blue) and γ0 = 2.1 with q = 1.2
(red). The range of values spanned by these three uncertainty calculations at
330–366 GPa and 5500 K represent uncertainty on density, bulk modulus, and
bulk sound speed for hcp-Fe. The same uncertainty calculation was repeated
for hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1. These values are broken down in
Table 2.6. While this plot excludes uncertainty from electronic and anhar-
monic contributions to thermal pressure (Pel and Panh), uncertainty from Pel
and Panh was included in Figure 2.13.

et al., 2012), and FeS2 (Thompson et al., 2016). High temperature diamond
anvil cell experiments by Fischer et al. (2011) investigated B1-structured FeO
with x-ray diffraction and laser heating using a NaCl pressure medium and
an iron pressure standard. Single crystal diamond anvil cell experiments at
300 K by Chen et al. (2012) investigated non-magnetic hexagonal Fe7C3 with x-
ray diffraction and synchrotron Mössbauer spectroscopy using a neon pressure
medium and pressure marker. Chen et al. (2012) approximated the effects of
temperature on non-magnetic Fe7C3 using multi-anvil experiments on param-
agnetic Fe7C3 by Nakajima et al. (2011). High temperature diamond anvil cell
experiments by Thompson et al. (2016) investigated cubic FeS2 (pyrite) with
x-ray diffraction and laser heating using a KBr pressure medium and pressure
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Table 2.6: Density, adiabatic bulk modulus, and bulk sound velocity uncertainties at high temperature at the ICB (330 GPa).

Fe Fe0.91Ni0.09 Fe0.8Ni0.1Si0.1
ρ Ks vφ ρ Ks vφ ρ Ks vφ

(g/cm3) (GPa) (km/s) (g/cm3) (GPa) (km/s) (g/cm3) (GPa) (km/s)
Uncertainty from V0, KT0, K ′aT0 0.012 11 0.042 0.021 15 0.056 0.016 15 0.055
Uncertainty from γ0, qb 0.020 6.0 0.029 0.019 5.8 0.028 0.018 4.9 0.025
Total uncertainty without Pel and P c

anh 0.032 17 0.071 0.040 21 0.085 0.033 20 0.080
aThe V0, KT0, K ′T0 contribution to uncertainties of ρ, Ks, and vφ for Fe were obtained by fitting an EOS to the
Dewaele et al. (2006) data set with MINUTI and extrapolating to 330 GPa and 5500 K with fixed γ0 and q. Similarly,
the V0, KT0, K ′T0 contribution to uncertainties of ρ, Ks, and vφ for Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 were obtained by
fitting data from this study with MINUTI and extrapolating to 330 GPa and 5500 K with fixed γ0 and q.
bThe uncertainty from γ0 and q was estimated repeating the fits in (a) using the range of γ0 and q reported in
Murphy et al. (2011a): γ0 = 1.9 with q = 0.8 and γ0 = 2.1 with q = 1.2.
cThe total uncertainties on density, adiabatic bulk modulus, and bulk sound speed at high temperature are the range
of values spanned by the uncertainty calculations in (a) and (b). The uncertainty due to electronic and anharmonic
contributions to thermal pressure is not accounted for here but is included in Figure 2.13.



39

calibrant. Thompson et al. (2016) constrained the cubic FeS2 (pyrite) equation
of state at 300 K with a neon pressure medium and a gold pressure calibrant.
The thermal equation of state parameters used for FeO, Fe7C3, and FeS2 are
shown in Table 2.5. While the methodology of our work allows for a systematic
comparison of hcp-Fe, hcp-Fe0.91Ni0.09, and hcp-Fe0.8Ni0.1Si0.1, the studies of
FeO, Fe7C3, and FeS2 were performed with varied methodology, so comparison
to these alloys is more speculative.

The electronic and anharmonic contributions to thermal pressure for FeS2 were
constrained by Thompson et al. (2016) and are thus used for FeS2. However,
because these terms have not been constrained for FeO and Fe7C3, Pel and
Panh are approximated as the hcp-Fe Pel and Panh terms reported by Dewaele
et al. (2006). While hydrogen is suggested to be one of the light elements in
Earth’s core (e.g., Stevenson, 1977), Fe-Ni-H alloys were excluded here due to
a sparsity of thermal EOSs with relevance to Earth’s inner core conditions.
The uncertainties on density, adiabatic bulk modulus, and bulk sound speed
at high temperature for FeO, FeS2, and Fe7C3 were not estimated, as proper
uncertainty propagation would require knowledge of the covariance matrix
relating the fitted parameters V0, KT0, K ′T0, γ0, and q.

Concerning the stability of these phases in the inner core, Ozawa et al. (2011)
find B2-FeO to be favored over B1-FeO above 240 GPa at 4000 K, thereby
suggesting the B2 phase is stable in the inner core, and ab initio studies by
Huang et al. (2018) propose I4/mmm-Fe2O is energetically favorable above 270
GPa. However, experimental equations of state are not presently available for
B2-FeO or I4/mmm-Fe2O. Shock experiments by Ahrens and Jeanloz (1987)
suggest cubic pyrite is stable up to 320 GPa. While recent theory suggests
C2/m-FeS2 may be stable at inner core conditions (Bazhanova et al., 2017),
experimental equations of state are also not presently available for this phase.
In a recent review, Li and Fei (2014) suggest Fe7C3 is favored over Fe3C as
the liquidus phase of the Fe-C system at pressures above 7 GPa and therefore
favored as a phase in the inner core.

The trends shown in Figure 2.13 suggest neither oxygen nor carbon is likely
to satisfy the geophysical constraints as the sole light element in the inner
core. While it is not readily apparent from this figure whether sulfur alone
could satisfy the density, adiabatic bulk modulus, and bulk sound speed of the
inner core, it is clear that none of the examined alloys match the seismic gradi-
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ents of AK135-F. Next, we will explore and attempt to quantify geophysically
permissible mixtures of these iron-rich light-element alloys.

Seismic and experimental constraints on core composition

Fe-Ni-Si system

We examine hypothetical compositions in the Fe-Ni-Si compositional space to
determine whether silicon could be the dominant light element in the inner
core. To do so, we apply a linear mixing model. Badro et al. (2007) propose
linear mixing should hold for hcp-iron alloyed with low concentrations of light
elements, and this approach has been applied to various solid iron alloys (e.g.,
Antonangeli et al., 2010, 2018; Badro et al., 2007; Fiquet et al., 2009; Ohtani ,
2013). Linear mixing is therefore a reasonable approximation for a mixing of
hcp-Fe, hcp-Fe0.91Ni0.09, and hcp-Fe0.8Ni0.1Si0.1. Density can be calculated as

ρavg =

∑
i ximi∑
i
ximi

ρi

, (2.10)

where xi are atomic percents and mi are the molecular weights. Voigt av-
eraging is used to calculate the average adiabatic bulk modulus, and bulk
sound speed is calculated from the adiabatic bulk modulus and density (Equa-
tion 2.9).

For each hypothetical composition, we compare the resulting density, adiabatic
bulk modulus, and bulk sound speed to AK135-F at the inner core boundary
(330 GPa, Figure 2.13). If the density, adiabatic bulk modulus, and bulk
sound speed of the given hypothetical composition fall strictly within 2% of
AK135-F’s density, 2.3% of adiabatic bulk modulus, and 0.6% of bulk sound
speed at 330 GPa (Deuss , 2008; Masters and Gubbins , 2003), we consider the
given hypothetical composition to be a possible core composition. Otherwise,
the hypothetical composition is excluded. While all calculations are performed
with atomic percent compositions, possible core compositions are selected and
plotted as weight percent for literature comparison convenience.

We explore the compositional space within 0–10 wt% nickel and 0–12 wt%
silicon. The resulting compositional space in agreement with AK135-F at the
inner core boundary at 5000 K, 5500 K, and 6000 K is plotted in Figure 2.15.
If nickel content is fixed at 5 wt%, we find a silicon content of 4.3–5.3 wt% sat-
isfies the density, bulk modulus, and bulk sound speed of the ICB at 5500 K.
With nickel content fixed at 5 wt%, a temperature of 5000 K lowers the al-
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Figure 2.15: A range of inner core compositions in the Fe-Ni-Si system using
experimental constraints on hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 with a lin-
ear mixing model. The regions represent agreement with the seismic model
AK135-F within 2% of the density (red), 0.6% of the bulk sound speed (gray),
and 2.3% of the adiabatic bulk modulus (blue). Seismically consistent com-
positions lie within the intersection of the three regions. Estimated electronic
and anharmonic contributions to thermal pressure are included. Pressure is
fixed at 330 GPa. See text for more details.

lowable silicon content to 4.2–4.8 wt%, and a temperature of 6000 K raises
the allowable silicon content to 4.7–5.8 wt%. While cosmochemical analyses
suggest a Ni core content of 5 wt% (Allègre et al., 1995; McDonough, 2003),
iron-nickel meteorites inferred to be remnants of differentiated protoplanets
have variable nickel content. We find any concentration of nickel in the in-
vestigated range of 0–10 wt% can satisfy the density, bulk modulus, and bulk
sound speed at the ICB at 5500 K and 6000 K. For a cooler ICB tempera-
ture of 5000 K, only up to 7.5 wt% nickel satisfies the density, bulk modulus,
and bulk sound speed of the ICB. The nickel content has a small effect on
the allowable silicon content in the inner core. Lowering the nickel content to
0 wt% would raise the allowable silicon content to 4.9–5.9 wt%, and raising
the nickel content to 10 wt% would lower the allowable silicon content to 3.7–
4.6 wt%. Therefore, we find an inverse relationship between the nickel and
silicon content of the inner core.

Fe-Ni-Si-O-C-S system

As it is unlikely that the inner core contains only one light element, we extrap-
olate our analysis to the Fe-Ni-Si-O-C-S compositional space. While our Fe-
Ni-Si compositional analysis is based on systematic experimental studies, this
Fe-Ni-Si-O-C-S compositional analysis is necessarily based on studies with var-
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ied methodology and is therefore more speculative. While linear mixing may
be a reasonable approximation for a mixing of hcp-Fe-Ni-Si with sufficiently
small quantities of Ni and Si, immiscible phases and phases with different
crystal structures are unlikely to follow a linear mixing model. A mixing of
the phases hcp-Fe, B1-FeO, cubic FeS2, and Fe7C3, which all have different
crystal structures, may be better described by a bulk aggregate model. The
accuracy of and deviation from these mixing models will be enlightened by
future experimental studies on samples of intermediate compositions.

We therefore apply two basic models to explore the Fe-Ni-Si-O-C-S system: a
linear mixing model and a bulk aggregate model. The calculation of density
will be the same for both assumptions (see Equation 2.10). In the linear mixing
case, Voigt averaging is used to calculate the average adiabatic bulk modulus
as before. In the bulk aggregate case, Voigt-Reuss-Hill averaging is used to
calculate the average adiabatic bulk modulus. As before, bulk sound speed
is calculated from the adiabatic bulk modulus and density for both models
(Equation 2.9).

For each hypothetical composition in the Fe-Ni-Si-O-C-S system, we compare
the resulting density, adiabatic bulk modulus, and bulk sound speed to AK135-
F at the inner core boundary (330 GPa). We explore the compositional space
within 0–10 wt% nickel, 0–12 wt% silicon, 0–8 wt% oxygen, 0–4 wt% carbon,
and 0–12 wt% sulfur (Li and Fei , 2014; Sata et al., 2010). For subsequent
results, we fix the nickel concentration of the bulk core composition at 5 wt%
(Allègre et al., 1995; McDonough, 2003).

Select slices of the resulting compositional space in agreement with AK135-F at
the inner core boundary are plotted in Figure 2.16 and tabulated in Table 2.7.
We find that as the carbon content of a hypothetical inner core composition
increases, the allowable oxygen content decreases and silicon content increases.
As the sulfur content of the inner core composition increases, the allowable
oxygen and silicon contents decrease.

Using either a bulk aggregate or linear mixing assumption and a nickel content
of 5 wt%, a silicon content of 4.3–5.3 wt% alone satisfies the density, bulk
modulus, and bulk sound speed at the inner core boundary, consistent with our
analysis in just the Fe-Ni-Si compositional space (Figure 2.16a). A maximum
value of 1.0 wt% carbon is allowed with a bulk aggregate or linear mixing
assumption, requiring the presence of up to 6.5 wt% silicon (Figure 2.16c). A
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Figure 2.16: A range of inner core compositions in the Fe-Ni-Si-O-C-S system
using experimental constraints on hcp-Fe, hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1,
Fe-O, Fe7C3, and FeS2 with a linear mixing model (outlined regions) and a bulk
aggregate model (shaded regions). The shaded and outlined regions represent
the compositions in agreement with AK135-F within 2% of density ρ (red),
within 0.6% of bulk sound speed KS (gray), and within 2.3% of adiabatic bulk
modulus vφ (blue). Density is the same for both models. Seismically consis-
tent compositions lie within the intersection of the ρ, KS, and vφ regions in
agreement with AK135-F. Estimated electronic and anharmonic contributions
to thermal pressure are included. Nickel content is fixed at 5 wt%, and 5500 K
and 330 GPa are assumed. See text for more details.
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Table 2.7: Iron alloy compositional models in agreement with the density,
adiabatic bulk modulus, and bulk sound velocity of AK135-F at the ICB. Ni
concentration is fixed at 5 wt%.

Corresponding Bulk aggregate Linear mixing
Panel in S C Si O Si O

Figure 2.16 (wt%, fixed) (wt%, fixed) (wt%) (wt%) (wt%) (wt%)
a 0 0 4.3-6.1 0.0-2.0 4.3-5.8 0.0-2.3
b 0 0.5 5.1-6.4 0.0-1.1 4.9-6.1 0.0-1.4
c 0 1 5.8-6.5 0.0-0.2 5.4-6.4 0.0-0.6
d 3 0 2.6-3.9 0.0-1.2 2.6-3.8 0.0-1.4
e 3 0.5 3.3-4.2 0.0-0.3 3.1-4.1 0.0-0.5
f 3 1 — — — —
g 6 0 0.9-1.9 0.0-0.4 0.8-1.8 0.0-0.5
h 6 0.5 — — — —
i 6 1 — — — —

maximum value of 2.0 wt% oxygen is allowed with a bulk aggregate assumption
(or 2.3 wt% with a linear mixing assumption). This oxygen content requires
5.6 wt% silicon (5.3 wt% with linear mixing) to also be present (Figure 2.16a).
We therefore find that neither oxygen nor carbon can be the only light element
in the inner core containing 5 wt% nickel. On the other hand, a maximum
sulfur content of 7.5 wt% requires only 0.2 to 0.5 wt% silicon and no oxygen
or carbon (with either a bulk aggregate or linear mixing assumption). Lower
values of sulfur content (5 wt%) require a higher silicon content of 1.4 to
2.5 wt% silicon with a bulk aggregate assumption, or 1.5 to 2.6 wt% silicon
with a linear mixing assumption (Figure 2.16g).

We also explore the effect of varying nickel and temperature in the Fe-Ni-Si-
O-C-S system. As the nickel content of the inner core increases, we find the
allowable silicon content decreases and the allowable oxygen, carbon, and sul-
fur content increases (Figure 2.17 and Tables 2.8 and 2.9). Temperature has a
strong effect on the allowable core compositions. A cooler inner core bound-
ary temperature of 5000 K increases the seismic favorability of oxygen, carbon,
and sulfur in the core, while a hotter temperature of 6000 K strongly decreases
the seismic favorability of oxygen, carbon, and sulfur (Figures 2.18 and 2.19
and Tables 2.10 and 2.10). Therefore silicon is more seismically favorable as
the dominant light element for hotter inner core boundary temperatures. This
is consistent with data on the melting point depression due to the addition
of light elements. Silicon is estimated to decrease the temperature at the in-
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Table 2.8: Iron alloy compositional models in agreement with the ρ, KS, and
vφ of AK135-F with Ni concentration fixed at 0 wt%. Temperature is fixed at
5500 K. Compare to Tables 2.7 and 2.9.

Corresponding Bulk aggregate Linear mixing
Panel in S C Si O Si O

Figure 2.17 (wt%, fixed) (wt%, fixed) (wt%) (wt%) (wt%) (wt%)
a 0 0 5.0-6.5 0.0-1.6 4.9-6.3 0.0-1.8
b 0 0.5 5.7-6.9 0.0-0.7 5.5-6.6 0.0-1.0
c 0 1 — — 6.2-6.6 0.0-0.1
d 3 0 3.3-4.4 0.0-0.8 3.2-4.3 0.0-1.0
e 3 0.5 — — 3.9-4.3 0.0-0.1
f 3 1 — — — —
g 6 0 1.8-2.0 0.0 1.7-2.0 0.0-0.1
h 6 0.5 — — — —
i 6 1 — — — —

Table 2.9: Iron alloy compositional models in agreement with the ρ, KS, and
vφ of AK135-F with Ni concentration fixed at 10 wt%. Temperature is fixed
at 5500 K. Compare to Tables 2.7 and 2.8.

Corresponding Bulk aggregate Linear mixing
Panel in S C Si O Si O

Figure 2.17 (wt%, fixed) (wt%, fixed) (wt%) (wt%) (wt%) (wt%)
a 0 0 3.7-5.6 0.0-2.4 3.7-5.3 0.0-2.7
b 0 0.5 4.4-5.9 0.0-1.5 4.2-5.6 0.0-1.9
c 0 1 5.1-6.2 0.0-0.6 4.8-5.9 0.0-1.0
d 3 0 1.9-3.5 0.0-1.6 1.9-3.3 0.0-1.8
e 3 0.5 2.7-3.8 0.0-0.7 2.5-3.6 0.0-1.0
f 3 1 — — 3.2-3.6 0.0-0.1
g 6 0 0.2-1.4 0.0-0.8 0.2-1.3 0.0-1.0
h 6 0.5 1.3-1.3 0.0 0.9-1.3 0.0-0.1
i 6 1 — — — —

ner core boundary by 0–400 K, oxygen by 700–1100 K, carbon by 600–800 K,
and sulfur by 900–1200 K (as reviewed in Fischer , 2016). Therefore, an inner
core with predominately silicon as the light element would be associated with
a hotter inner core boundary, and an inner core with predominately oxygen,
carbon, or sulfur as the light element would be associated with a cooler inner
core boundary.
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Figure 2.17: We explore the effect of Ni on the range of compositions in the
Fe-Ni-Si-O-C-S system. Ni content is fixed at 0 wt% (shaded regions), 5 wt%
(thick lines), and 10 wt% (thin lines) using the experimental constraints on the
following alloys: hcp-Fe, hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1, Fe-O, Fe7C3, and
FeS2. Only the bulk aggregate mixing model is shown. The shaded and out-
lined regions represent the compositions in agreement with AK135-F within 2%
of density ρ (red), within 0.6% of bulk sound speedKS (gray), and within 2.3%
of adiabatic bulk modulus vφ (blue). Pressure is fixed at 330 GPa, temperature
is fixed at 5500 K, and estimated electronic and anharmonic contributions to
thermal pressure are included.
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Figure 2.18: The effect of a cooler inner core boundary temperature on the
compositional analysis is explored (as compared to Figures 2.16 and 2.19). A
range of compositions are explored in the Fe-Ni-Si-O-C-S system with tempera-
ture fixed at 5000 K using experimental constraints on hcp-Fe, hcp-Fe0.91Ni0.09,
hcp-Fe0.8Ni0.1Si0.1, Fe-O, Fe7C3, and FeS2. The shaded and outlined regions
represent the compositions in agreement with AK135-F within 2% of density
ρ (red), within 0.6% of bulk sound speed KS (gray), and within 2.3% of adia-
batic bulk modulus vφ (blue). A bulk aggregate model (shaded regions) and a
linear mixing model (outlined regions) are employed. Density is the same for
both models. Pressure is fixed at 330 GPa, nickel content is fixed at 5 wt%,
and estimated electronic and anharmonic contributions to thermal pressure
are included.
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Figure 2.19: The effect of a hotter inner core boundary temperature on the
compositional analysis is explored (as compared to Figures 2.16 and 2.18). A
range of compositions are explored in the Fe-Ni-Si-O-C-S system with tempera-
ture fixed at 6000 K using experimental constraints on hcp-Fe, hcp-Fe0.91Ni0.09,
hcp-Fe0.8Ni0.1Si0.1, Fe-O, Fe7C3, and FeS2. The shaded and outlined regions
represent the compositions in agreement with AK135-F within 2% of density
ρ (red), within 0.6% of bulk sound speed KS (gray), and within 2.3% of adia-
batic bulk modulus vφ (blue). A bulk aggregate model (shaded regions) and a
linear mixing model (outlined regions) are employed. Density is the same for
both models. Pressure is fixed at 330 GPa, nickel content is fixed at 5 wt%,
and estimated electronic and anharmonic contributions to thermal pressure
are included.
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Table 2.10: The effect of a cooler inner core boundary temperature on the
compositional analysis is explored. We tabulate iron alloy compositional mod-
els in agreement with the ρ, KS, and vφ of AK135-F with temperature fixed at
5000 K. Ni concentration is fixed at 5 wt%. Compare to Tables 2.7 and 2.11.

Corresponding Bulk aggregate Linear mixing
Panel in S C Si O Si O

Figure 2.18 (wt%, fixed) (wt%, fixed) (wt%) (wt%) (wt%) (wt%)
a 0 0 4.1-5.9 0.0-2.6 4.0-5.6 0.0-3.0
b 0 0.5 4.7-6.2 0.0-1.7 4.4-5.9 0.0-2.1
c 0 1 5.4-6.6 0.0-0.9 5.0-6.2 0.0-1.3
d 3 0 2.2-3.8 0.0-1.8 2.2-3.6 0.0-2.0
e 3 0.5 3.0-4.1 0.0-0.9 2.8-4.0 0.0-1.2
f 3 1 3.9-4.1 0.0 3.3-4.1 0.0-0.3
g 6 0 0.5-1.8 0.0-1.0 0.5-1.7 0.0-1.1
h 6 0.5 1.4-1.8 0.0-0.1 1.1-1.8 0.0-0.3
i 6 1 — — — —

Table 2.11: The effect of a hotter inner core boundary temperature on the
compositional analysis is explored. We tabulate iron alloy compositional mod-
els in agreement with the ρ, KS, and vφ of AK135-F with temperature fixed at
6000 K. Ni concentration is fixed at 5 wt%. Compare to Tables 2.7 and 2.10.

Corresponding Bulk aggregate Linear mixing
Panel in S C Si O Si O

Figure 2.19 (wt%, fixed) (wt%, fixed) (wt%) (wt%) (wt%) (wt%)
a 0 0 4.8-6.2 0.0-1.3 4.7-6.1 0.0-1.5
b 0 0.5 5.5-6.5 0.0-0.4 5.3-6.4 0.0-0.6
c 0 1 — — — —
d 3 0 3.0-4.1 0.0-0.6 3.0-4.0 0.0-0.7
e 3 0.5 — — — —
f 3 1 — — — —
g 6 0 — — — —
h 6 0.5 — — — —
i 6 1 — — — —
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Assessing the effects of Pel and Panh

We now assess the effects of Pel and Panh on the density, adiabatic bulk modu-
lus, and bulk sound speed of iron alloys at inner core conditions. We repeat the
above calculations and analysis with thermal pressure approximated only as
a Debye model of vibrational energy, i.e., with the electronic and anharmonic
contributions to the thermal pressure in Equation 2.3 neglected. We refer to
this model as the Vinet-Mie-Grüneisen-Debye (Vinet-MGD) equation of state.
We show the resulting density, adiabatic bulk modulus, and bulk sound speed
at inner core conditions in Figure 2.20. When Pel and Panh are neglected, the
properties change noticeably with respect to AK135-F. We find the absence
of the Pel and Panh contributions to the thermal pressure of hcp-Fe0.8Ni0.1Si0.1
increase Ks and vφ away from the values of AK135-F, which would, for all
other things being equal, decrease the favorability of Si as a light element in
the inner core. We also repeat the compositional mixing analysis with the
Vinet-MGD equation of state (i.e., neglecting Pel and Panh). Several slices of
the resulting allowable compositional space are shown in Figure 2.21. Neglect-
ing Pel and Panh increases the overall compositional space in agreement with
AK135-F. The overall effect of neglecting these terms is to decrease allowable
concentration of Si while increasing the allowable concentrations of O, C, and
S in the inner core. Therefore, accurately constraining the Pel and Panh contri-
butions to the thermal pressure of iron alloys is necessary to further constrain
the composition of the inner core.

Seismic gradients in the inner core

As previously mentioned, the gradients of adiabatic bulk modulus and bulk
sound speed of all the examined iron alloys do not match those of AK135-F. If
the average seismic gradients are true, we repeat the above mixing analysis at
364 GPa and 5500 K to assess permissible compositions. For this calculation,
we include the electronic and anharmonic contributions to thermal pressure
as previously detailed. Several slices of the resulting allowable compositional
space are shown in Figure 2.22. The overall effect of this analysis at 364 GPa
is similar to the effect of neglecting Pel and Panh. The allowable compositional
space is generally increased, Si becomes less favorable, and O and C become
more favorable. A recent study investigated the longitudinal variation of com-
pressional wave speeds in the uppermost 80 km of the inner core (Attanayake



51

330 340 350 360
Pressure (GPa)

8

9

10

11

12

13

14

15

D
en

si
ty

 (g
/c

m
3 )

hcp Fe (Dewaele et al. 2006)
hcp Fe0.91Ni0.09 (this study)
hcp Fe0.8Ni0.1Si0.1 (this study)
FeO (Fischer et al. 2011)
Fe7C3 (Chen et al. 2012)
FeS2 (Thompson et al. 2016)

330 340 350 360
Pressure (GPa)

900

1000

1100

1200

1300

1400

1500

1600

B
ul

k 
M

od
ul

us
 (G

P
a)

AK135
AK135 + Attanayake 2014 East (Bin 3)
AK135 + Attanayake 2014 West (Bin 6)

330 340 350 360
Pressure (GPa)

8

9

10

11

12

13

14

B
ul

k 
S

ou
nd

 S
pe

ed
 (k

m
/s

)

Figure 2.20: We demonstrate how neglecting the estimated electronic and
anharmonic contributions to thermal pressure affects the high temperature
equations of state. (Compare to Figure 2.13). Thermal equations of state for
hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 (this study) are extrapolated to core
conditions to calculate density ρ, adiabatic bulk modulus KS, and bulk sound
speed vφ as a function of pressure at 5500 K at 330 GPa. Here, estimated
electronic and anharmonic contributions to thermal pressure are not included.
We compare to Fe (Dewaele et al., 2006), FeO (Fischer et al., 2011), Fe7C3

(Chen et al., 2012), and FeS2 (Thompson et al., 2016). Dashed lines represent
a temperature of ±500 K. We compare to AK135-F with an estimated 2%
uncertainty for ρ, 2.3% uncertainty forKS, and 0.6% uncertainty for vφ (Deuss ,
2008; Masters and Gubbins , 2003). We include KS and vφ of the eastern (Bin
3, black dashed line) and western (Bin 6, black solid line) hemispheres of the
inner core, as determined by combining vP from Attanayake et al. (2014) with
ρ and vS from AK135-F.
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Figure 2.21: We demonstrate how neglecting the estimated electronic and an-
harmonic contributions to thermal pressure affects the compositional analysis.
(Compare to Figure 2.16). A range of inner core compositions are explored
in the Fe-Ni-Si-O-C-S system using the experimental constraints on the fol-
lowing alloys: hcp-Fe, hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1, Fe-O, Fe7C3, and
FeS2. The mixing calculation assumes 5500 K and 330 GPa, and the esti-
mated electronic and anharmonic contributions to thermal pressure are not
included here. The shaded and outlined regions represent the compositional
space in agreement with the seismic model AK135-F within 2% of the density
ρ (red), within 0.6% of the bulk sound speed KS (gray), and within 2.3% of
the adiabatic bulk modulus vφ (blue). Two mixing models are employed: a
bulk aggregate model (shaded regions) and a linear mixing model (outlined
regions). Density is the same for both models. The nickel content is fixed at
5 wt%.
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Figure 2.22: A range of compositions at the center of the Earth (364 GPa) are
explored in the Fe-Ni-Si-O-C-S system using the experimental constraints on
the following alloys: hcp-Fe, hcp-Fe0.91Ni0.09, hcp-Fe0.8Ni0.1Si0.1, Fe-O, Fe7C3,
and FeS2. (Compare to Figure 2.16). The shaded and outlined regions rep-
resent the compositional space in agreement with AK135-F within 2% of the
density ρ (red), within 0.6% of the bulk sound speed KS (gray), and within
2.3% of the adiabatic bulk modulus vφ (blue). Two mixing models are em-
ployed: a bulk aggregate model (shaded regions) and a linear mixing model
(outlined regions). Density is the same for both models. The nickel content
is fixed at 5 wt%. The mixing calculation assumes 5500 K, and estimated
electronic and anharmonic contributions to thermal pressure are included.
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et al., 2014). To draw comparisons with our analysis, we combine the com-
pressional velocities from two of Attanayake et al. (2014)’s longitudinal bins
(bin 3 in the eastern hemisphere and bin 6 in the western hemisphere) with the
density and shear velocity of AK135-F to calculate the adiabatic bulk mod-
ulus and bulk sound speed. The longitudinal variation estimates are plotted
as black dotted (east) and solid (west) lines in Figure 2.13. The KS and vφ

gradients for all alloys appear to agree well with those reported for the upper
inner core in the western hemisphere (bin 6), but not with those of the eastern
hemisphere (bin 3) (Attanayake et al., 2014). Thus, chemical and/or physical
variations could exist laterally and radially, throughout the inner core. For
example, there could be a gradient in composition or distinct phase/chemical
boundaries within the inner core.

Discussion

We now compare our compositional mixing analysis at 5500 K at 330 GPa (Fig-
ure 2.16) to other proposed inner core compositions. Antonangeli et al. (2010)
use inelastic x-ray scattering (IXS) results on the compressional wave velocity
of Fe0.89Ni0.04Si0.07 as a function of density (pressure) and suggest an inner core
composition of 4–5 wt% Ni and 1–2 wt% Si, a composition also favored as a
joint solution to geochemical, seismological, and mineral physics constraints
of the outer core (Badro et al., 2015; Brodholt and Badro, 2017). We find
that 1–2 wt% of Si alone is insufficient to match the density of the inner core.
Later IXS and x-ray diffraction measurements up to 140 GPa determined the
compressional waves of Fe alloyed with 9 wt% Si at 300 K (Antonangeli et al.,
2018) and found up to 3 ± 2 wt% Si could explain inner core properties for
relatively high temperatures of 6200 to 6500 K. These silicon concentrations
are lower than we suggest, as we find that an ICB temperature of 6000 K has
an allowable silicon content of 4.7–5.8 wt%, and the concentration of silicon
required increases with temperature. However, both our findings and those of
Antonangeli et al. (2018) depend on how the electronic and anharmonic contri-
butions to thermal pressure are modeled. Ab initio calculations by Martorell
et al. (2016) find the addition of silicon decreases density and increases both
the compressional and shear velocities of iron at 360 GPa such that the den-
sity and velocities for a single Fe-Si composition cannot simultaneously satisfy
seismic observations. They therefore suggest silicon is unlikely to be the sole
light element in the inner core, although this study did not consider the effects



55

of nickel that we report here.

High pressure partitioning experiments demonstrate that the simultaneous
solubilities of Si and O increase substantially with temperature (Bouhifd and
Jephcoat , 2011; Hirose et al., 2017; Siebert et al., 2012; Takafuji et al., 2004).
To this end, a range of solutions containing both silicon and oxygen in our
analysis would be permitted (Figure 2.16a). Ab initio partitioning studies
between solid and liquid iron containing Si, S, and O by Alfè et al. (2002,
2007) find weak partitioning of Si and S between liquid and solid iron and
conclude that Si and S are insufficient to explain the density jump at the
inner core boundary. Based on their finding that O is highly incompatible
in solid iron and the seismically observed density jump reported by Masters
and Gubbins (2003) of 6.5 ± 1.4%, Alfè et al. (2007) estimate an inner core
composition of 4.5 wt% of Si or S with trace amounts (0.06 wt%) of O and
an outer core composition of 4.6 wt% of Si or S and 4.3 wt% of O. Our
compositional analysis, which favors silicon and/or sulfur over oxygen and
carbon in the inner core, is in agreement with this model (Figure 2.16, panels
a, d, and g). An outer core containing larger amounts of silicon, such as
8-9 wt% (Fischer et al., 2015; Rubie et al., 2015), would not be favored by
our compositional mixing analysis. A melting relation study by Komabayashi
(2014) based on high-pressure and high-temperature experiments in the Fe-
FeO system found oxygen reduces the compressional wave velocity of liquid
iron away from seismologically constrained values, thereby suggesting the bulk
outer core of the Earth is oxygen poor. This would suggest the inner core is
also oxygen poor. This is in agreement with the oxygen poor region of our
compositional models (Figure 2.16, bottom of panels a–e and g).

The amount of carbon in the Earth is difficult to estimate as carbon may have
accreted primarily as volatile hydrocarbons (Lodders , 2003) or as carbides
or graphite which have greater thermal stabilities (Buchwald , 1975; Wood ,
1993; Wood et al., 2013). Using a combination of cosmochemical, partitioning,
density, and sound velocity studies, Wood et al. (2013) estimate the total upper
carbon limit in the whole core at ∼1 wt%. Ab initio partitioning calculations
between iron and silicate melts by Zhang and Yin (2012) similarly estimate the
carbon content in the whole core at 0.1–0.7 wt%. An ab initio study by Li et al.
(2016) on the velocity and density of Fe7C3 found the density of Fe7C3 to be
too low to be a major component of the inner core. Our compositional analysis



56

is in qualitative agreement withWood et al. (2013), Zhang and Yin (2012), and
Li et al. (2016) as we find the maximum carbon content in the inner core to
be 1.0 wt% coexisting with ∼5 wt% Si. In contrast, Chen et al. (2014) suggest
the shear softening of Fe7C3 could explain the low shear velocity of the inner
core. They propose a core composed of predominately Fe7C3, which would
correspond to 8.4 wt% C in the inner core and a minimum of approximately
0.3 wt% of C in the bulk core. While our compositional analysis does not
address shear velocities, the trends for density, bulk modulus, and bulk sound
velocity do not favor an inner core carbon concentration of this magnitude.

2.6 Conclusions

We present a suite of powder x-ray diffraction data sets collected at 300 K on
bcc- and hcp-Fe0.91Ni0.09 from 0 to 167 GPa and on bcc- and hcp-Fe0.8Ni0.1Si0.1
from 0 to 175 GPa. Vinet equations of state were fit to the resulting pressure-
volume data sets. By systematically comparing our findings to those of pure
iron conducted under similar conditions (Dewaele et al., 2006), we constrain
the effect of nickel and silicon on the density, bulk modulus, and bulk sound
speed of iron alloys, which is a critical step in constraining the inner core’s
composition. By computing the confidence ellipses for the fitted equation of
state parameters at a range of pressures where hcp alloys are stable, we show
that the addition of 9 at% Ni to hcp-Fe slightly increases the bulk modulus
pressure derivative at all pressures. The further addition of 10 at% Si notice-
ably increases the pressure derivative of bulk modulus at all pressures.

The density, adiabatic bulk modulus, and bulk sound speed of hcp-Fe0.91Ni0.09

and hcp-Fe0.8Ni0.1Si0.1 were extrapolated to 5500 K along the inner core pres-
sure gradient from 330 to 364 GPa and compared to the seismic model AK135-
F. We estimate the effect of the ICB temperature, as well as the electronic and
anharmonic contributions to thermal pressure, in our calculations. We applied
a linear mixing model to the Fe-Ni-Si system to determine to what extent sil-
icon is seismically consistent with the density, adiabatic bulk modulus, and
bulk sound speed observations of the inner core at 330 GPa. We found 4.3 to
5.3 wt% silicon alone could explain the density, adiabatic bulk modulus, and
bulk sound speed of the inner core. Silicon concentrations above ∼6 wt% are
not favored.

We extrapolated our compositional analysis to the Fe-Ni-Si-O-C-S system by
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applying both a bulk aggregate model and a linear mixing model at 330 GPa.
A mixture of silicon and oxygen (with or without sulfur) could also explain the
density, adiabatic bulk modulus, and bulk sound speed of the inner core. Our
analysis points to a low oxygen content of the inner core (less than ∼2 wt%)
as well as a low carbon content (less than 1 wt%). We find that an inner core
with predominately silicon as the light element would be associated with a
hotter ICB, and an inner core with predominately oxygen, carbon, or sulfur
as the light element would be associated with a cooler ICB.

The inclusion of electronic and anharmonic contributions to thermal pressure
has a noticeable effect on decreasing the allowable compositions. Therefore,
constraining the electronic and anharmonic contributions to thermal pressure
for a range of iron alloys at inner core conditions is necessary to further con-
strain core composition. Constraints on the shear properties and phase equi-
libria of iron alloys at inner core conditions, as well as constraints on the core
temperature, are similarly important to further constrain core composition.
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C h a p t e r 3

AXIAL RATIOS AND ANISOTROPY OF HCP-STRUCTURED
MATERIALS1

3.1 Introduction

Seismic studies provide evidence for an anisotropic inner core (e.g., Lythgoe
et al. (2014), and for a recent review, see Deuss (2014)). Various origins of this
seismic anisotropy have been suggested, including preferred alignment of elas-
tically anisotropic crystallites of iron alloys (e.g., Deuss , 2014; Hirose et al.,
2013; Mainprice, 2015). However, the elastic anisotropy of hcp-Fe alloys are
not very well constrained and currently debated. Elastic anisotropy of a ma-
terial is directly determined by its single-crystal elastic modulus tensor, which
can be experimentally or theoretically constrained by various approaches. One
common measure of elastic anisotropy for hcp-structured materials is the ratio
of compressional elastic moduli φ = C33/C11, where the elastic moduli C11

and C33 are expressed in the condensed Voigt notation (e.g., Mainprice, 2015;
Maupin and Park , 2015). However, hcp-iron is unstable at ambient pressure
and temperature, and the high-pressure synthesis of an hcp-iron single crys-
tal large enough to reliably determine elastic constants remains a challenge.
Previous studies have attempted to experimentally constrain the relative mag-
nitudes of C11 and C33 by inducing texture in polycrystalline hcp-iron in dia-
mond anvil cells and analyzing data collected at a range of angles compared to
the direction of compression, using x-ray diffraction (Mao et al., 1998; Merkel
et al., 2005; Singh et al., 1998) or inelastic x-ray scattering (Antonangeli et al.,
2004a; Mao et al., 2008). However, inducing texture in hcp-iron under such
large compressions has been suggested to cause the material to behave plas-
tically, so the results from such studies have been called into question (An-
tonangeli et al., 2006; Daymond et al., 1999; Li et al., 2004; Weidner et al.,
2004; Wenk et al., 2000).

Multiple studies have suggested that the anisotropy of hcp-structured materi-
1This chapter contains material previously published as part of Morrison, R. A.,

J. M. Jackson, W. Sturhahn, D. Zhang, and E. Greenberg (2018), Equations of state
and anisotropy of Fe-Ni-Si alloys, Journal of Geophysical Research: Solid Earth, 122,
doi:10.1029/2017JB015343.
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als may be related to the ratio of the c- to a-unit cell parameters (Asker et al.,
2009; Fischer and Campbell , 2015; Gannarelli et al., 2005; Ono et al., 2010; Sha
and Cohen, 2006), which implies the elastic anisotropy may be constrained by
experimentally feasible c/a axial ratio measurements. For instance, Wenk et al.
(1988) noted that at ambient pressure and temperature, the hcp-structured
materials Zn and Cd which had c/a axial ratios greater than the ideal hcp
value of 1.633 also had strong elastic anisotropy with C33/C11 ≈ 0.4. They
also noted that the materials Ti and Zr which had c/a axial ratios less than
1.633 also had weak seismic anisotropy with C33/C11 ≈ 1.15. For reference, a
C33/C11 = 1 would correspond to a minimum compressional wave anisotropy.
Steinle-Neumann et al. (2001) employ a conceptual argument, whereby the
expansion of the c-axis with constant density may induce a softening along
the c-axis, resulting in a decrease in C33/C11.

Theoretical calculations have noted a connection between c/a and anisotropy.
Vočadlo et al. (2009) observe that in ab initio molecular dynamics calculations
of elastic constants, it is critical to ensure the simulated crystal structure is in
equilibrium before a strain matrix is applied. They conclude that choice of the
c/a axial ratio is therefore of particular importance to obtain realistic elastic
constants in theoretical calculations. Grechnev et al. (2003) suggest theoretical
calculations with high c/a yield calculations of high elastic anisotropy where
C33/C11 < 1. This argument is in agreement with that of Wenk et al. (1988),
who also suggest a high c/a is correlated with C33/C11 < 1.

There is little consensus on the values and trends of axial ratios of iron alloys
at ambient temperature (e.g., Asker et al., 2009; Fischer and Campbell , 2015;
Gannarelli et al., 2005; Ono et al., 2010; Sha and Cohen, 2006), making the act
of benchmarking the correlation between axial ratios and anisotropy difficult.
Using x-ray diffraction data presented in Chapter 2 and Appendix A, we pre-
cisely determine the c/a axial ratio of hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1
at 300 K as a function of pressure, compare to that of hcp-Fe, and examine
the connection between the c/a axial ratio, its pressure derivative, and elastic
anisotropy in hcp-structured materials.

3.2 Axial ratios of iron alloys

The unit-cell axial ratios (c/a) for hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 de-
termined in this study from x-ray diffraction are shown in Figure 3.1 (see also
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Tables A.1–A.4 in Appendix A). We find the hcp-Fe0.91Ni0.09 axial ratio ranges
from 1.609 (20 GPa) to 1.604 (170 GPa) and the hcp-Fe0.8Ni0.1Si0.1 ranges from
1.614 (30 GPa) to 1.608 (170 GPa). We compare to the axial ratios of pure
hcp-Fe from Dewaele et al. (2006) and Boehler et al. (2008), which range from
1.604 (20 GPa) to 1.597 (170 GPa). The axial ratios of hcp-Fe0.91Ni0.09 and
hcp-Fe0.8Ni0.1Si0.1 decrease with pressure with a slope similar to that of hcp-Fe
(Boehler et al., 2008; Dewaele et al., 2006), and all three materials have an
axial ratio below the ideal hcp axial ratio of 1.633. The c/a axial ratios of
the three materials are measurably distinct. The hcp-Fe0.91Ni0.09 axial ratio
is offset from the pure iron axial ratio by +0.005 to +0.007, and the hcp-
Fe0.8Ni0.1Si0.1 axial ratio is further offset by roughly +0.005. Alloying iron
with nickel therefore has a measurable effect on the c/a axial ratio of the alloy,
as does alloying iron-nickel with silicon. This is in agreement with theoretical
calculations from Asker et al. (2009) and Ekholm et al. (2011) and existing
experimental results from Lin et al. (2002), Tateno et al. (2012), Sakai et al.
(2014), and Tateno et al. (2015).

Fischer and Campbell (2015) formulate a functional fit of the axial ratio data of
hcp alloys in the Fe-Ni-Si system in volume, temperature, and compositional
space based on a range of axial ratio measurements that include diamond
anvil and multi anvil cell experiments in various pressure media: He, Ne, KCl,
NaCl, SiO2, and MgO. We compare the Fischer and Campbell (2015) multi-
compositional c/a fit to our data as a function of volume in Figure 3.2. The
axial ratios of these three compositions decrease with increasing pressure (or
decreasing volume), the addition of nickel to iron increases the axial ratio,
and the further addition of silicon also increases the axial ratio. However, we
find a more shallow decrease in axial ratio with compression than Fischer and
Campbell (2015), which may be due to different pressure media. Many pressure
media (e.g., NaCl) are less hydrostatic at 300 K. Helium, however, is much
more hydrostatic at 300 K. Therefore, axial ratio measurements conducted in
a helium pressure medium may more accurately constrain the axial ratio slope
with pressure (or volume) at 300 K. The axial ratios of hcp-Fe (Boehler et al.,
2008; Dewaele et al., 2006) and of hcp-Fe0.91Ni0.09 (this study) demonstrate a
non-linear curvature with pressure. We therefore fit the axial ratios of hcp-Fe,
hcp-Fe0.91Ni0.09, and hcp-Fe0.8Ni0.1Si0.1 with the empirical exponential decay
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Figure 3.1: The c/a axial ratios of hcp-Fe0.91Ni0.09 (orange, this study) and
Fe0.8Ni0.1Si0.1 (blue, this study) determined with x-ray diffraction at 300 K
fit with exponential functions (Equation 3.1). X-ray diffraction studies and
exponential fits for pure hcp-Fe at 300 K by Dewaele et al. (2006) (black) and
(Boehler et al., 2008) (gray triangles) are included. The ab initio hcp-Fe study
at 0 K by Cohen et al. (1997) (gray open hexagons) is plotted to demonstrate
the c/a change in slope and curvature as temperature rises from 0 K to 300 K.

function
c

a
(P ) = A+B exp

(−P
C

)
. (3.1)

Our fits are plotted with the hcp-iron alloy x-ray diffraction data in Figure 3.1.

In Figure 3.3, we compare the axial ratios of hcp-Fe reported from several
studies at a range of temperatures. Diamond anvil cell x-ray diffraction exper-
iments at 300 K were conducted by Dewaele et al. (2006) in a helium pressure
medium and by Boehler et al. (2008) in various pressure media including Ar,
Xe, KCl, and Al2O3 and annealed. Laser heated diamond anvil cell x-ray
diffraction experiments were conducted by Ma et al. (2004) up to 161 GPa
and 3000 K in NaCl, MgO, and Al2O3 pressure media; by Tateno et al. (2010)
up to 377 GPa and 5700 K with no pressure medium; by Sakai et al. (2011)
up to 273 GPa and 4490 K in a NaCl pressure medium; by Fischer et al.
(2011) up to 156 GPa and 3100 K in a NaCl pressure medium; by Anzellini
et al. (2013) up to 200 GPa and 4900 K in a KCl pressure medium; and by
Fei et al. (2016) up to 205 GPa and 1800 K in Ne and MgO pressure media.
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Figure 3.2: Axial ratios c/a of hcp-Fe0.91Ni0.09 (orange, this study), hcp-
Fe0.8Ni0.1Si0.1 (blue, this study), and hcp-Fe (grey) (Dewaele et al., 2006). The
compositionally dependent axial ratio trends reported in Fischer and Camp-
bell (2015) are plotted for comparison. These trends are based on a fit to a
collection of existing 300 K and high temperature experimental data in the
Fe-Ni-Si compositional system.

Multi-anvil x-ray diffraction experiments by Uchida et al. (2001) up to 20 GPa
and 1500 K and by Yamazaki et al. (2012) up to 80 GPa and 1900 K were
conducted in MgO pressure media. We include ab initio hcp-Fe studies at 0 K
from Cohen et al. (1997), Steinle-Neumann et al. (1999), and Gannarelli et al.
(2005). Plotted ab initio hcp-Fe studies accounting for temperature effects
include Steinle-Neumann et al. (2001), Vočadlo et al. (2009), Mattesini et al.
(2010), Niu et al. (2015), and Pourovskii et al. (2014). Steinle-Neumann et al.
(2001) was excluded from Figure 3.3 for clarity.

Several general conclusions can be drawn about the c/a axial ratios of pure
iron. At 300 K, there is a weak decrease in the axial ratio of iron with pres-
sure (e.g., Boehler et al., 2008; Dewaele et al., 2006; Fei et al., 2016; Steinle-
Neumann et al., 2001). However, ab initio calculations at 0 K instead show
a weak increase in the axial ratio of iron with pressure (Cohen et al., 1997;
Gannarelli et al., 2005; Steinle-Neumann et al., 1999, 2001). Between 0 K
and 300 K, there appears to be a transition from a positive slope of c/a with
pressure to a negative slope of c/a with pressure. As temperature increases,
the slope of c/a with pressure appears to become increasingly negative (e.g.,
Fischer and Campbell , 2015). These studies suggest both temperature and
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Figure 3.3: Axial ratios for hcp-Fe include diamond anvil studies (Anzellini
et al., 2013; Boehler et al., 2008; Dewaele et al., 2006; Fei et al., 2016; Fischer
et al., 2011; Ma et al., 2004; Sakai et al., 2011; Tateno et al., 2010), multi-
anvil studies (Uchida et al., 2001; Yamazaki et al., 2012), and ab initio studies
(Cohen et al., 1997; Gannarelli et al., 2005; Mattesini et al., 2010; Niu et al.,
2015; Pourovskii et al., 2014; Steinle-Neumann et al., 1999; Vočadlo et al.,
2009).

pressure influence the c/a axial ratio.

At constant temperature, we propose that the pressure-dependent functional
form of c/a in Equation 3.1 is generally applicable to hcp-Fe as an empirical
fit. We fit the equation to the theoretically determined c/a axial ratio of
hcp-Fe at 0 K from Cohen et al. (1997) (Figure 3.1). Only the Cohen et al.
(1997) ab initio data set contains a large enough number of data points at
a constant temperature to obtain a reasonable fit. At 0 K, the sign of the
scaling parameter B is negative. This is consistent with the observation that
the slope of c/a with pressure transitions from positive at 0 K to negative at
300 K.
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3.3 The c/a axial ratio as it relates to elastic anisotropy

A variety of mechanisms have been proposed to explain seismically observed
anisotropy of the inner core, and distinguishing between these mechanisms
requires knowledge of the elastic anisotropy of hcp-iron alloys. However, ex-
perimentally measuring the elastic constants of hcp-iron is complicated by the
difficulty of synthesizing hcp-iron single crystals. The c/a axial ratio of hcp-
iron is thought to be an indirect measure of elastic anisotropy. Here, we explore
the mathematical relation between the c/a axial ratio and elastic anisotropy.

The elastic behavior of an anisotropic medium is described by an extended
version of Hooke’s law,

σij =
∑
kl

Eijklεkl, i, j, k, l = 1...3, (3.2)

where the second rank tensors σ and ε describing stress and strain are linearly
related by the fourth rank elastic tensor E. It is common to use the condensed
Voigt notation for these quantities, i.e., C11 = E1111, C12 = E1122, C13 = E1133,
σ1 = σ11, σ2 = σ22, etc.

σi =
∑
j

Cijεj and εi =
∑
j

Sijσj i, j = 1...6, (3.3)

where we have defined the elastic stiffness matrix Cij and its inverse Sij, the
elastic compliance matrix.

An isotropic stress tensor describes hydrostatic compression, and the elastic
response of the material to a pressure increase δP is then

εi = −δP
3∑
j=1

Sij, (3.4)

where the minus sign accounts for the conventional view that positive pressure
causes compression. The volume change is then

δV

V
=

3∑
i=1

εi = −δP
3∑

i,j=1

Sij. (3.5)

This relation immediately provides us with an expression for the bulk modulus
K as determined by a compression experiment, e.g., using x-ray diffraction,

K = −V δP
δV

=

 3∑
i,j=1

Sij

−1

, (3.6)
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where the sample’s pressure (P ) and unit-cell volume (V ) are determined.
This expression is identical to the Reuss bound of the bulk modulus, which
assumes uniform stress. This is a more relevant assumption for a diamond anvil
cell than the Voigt bound, which assumes uniform strain, because a pressure
transmitting medium such as helium can be used in the diamond anvil cell
sample-chamber to evenly distribute stress around the sample.

In the case of cubic symmetry, where the Reuss and Voigt bounds are equiva-
lent, we obtain the following expression for the bulk modulus,

KR=V =
1

3
[C11 + 2C12]. (3.7)

In the case of hexagonal symmetry (e.g., the hexagonal close-packed crystal
structure), the Reuss bound of the bulk modulus takes on the following form
(Grimvall , 1999; Ledbetter , 1977):

KR =
(C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13

. (3.8)

In the isotropic limit for a hexagonal system, we have C11 = C33, C12 = C13,
and C11 − C12 = C44. The bulk modulus for a hexagonal elastically isotropic
material then reduces to

K =
1

3
[C11 + 2C12], (3.9)

which is identical to the bulk modulus for cubic symmetry. We will return to
this later in the case of helium.

The hcp lattice parameters respond to compression as

δa

a
= ε1 = −(S11 + S12 + S13)δP (3.10)

and
δc

c
= ε3 = −(S33 + 2S13)δP. (3.11)

These equations can be integrated to obtain

a(P ) = a0 exp

[
−
∫ P

0
(S11(P ′) + S12(P ′) + S13(P ′)) dP ′

]
(3.12)

and

c(P ) = c0 exp

[
−
∫ P

0
(S33(P ′) + 2S13(P ′)) dP ′

]
. (3.13)



66

The c/a ratio is accordingly

c

a
(P ) =

c0

a0

exp

[
−
∫ P

0
(S33 − S11 + S13 − S12)dP ′

]

=
c0

a0

exp

[
−
∫ P

0

C11 − C33 + C12 − C13

(C11 + C12)C33 − 2C2
13

dP ′
]
. (3.14)

The derivative of Equation 3.14 then gives

C11 − C33 + C12 − C13

(C11 + C12)C33 − 2C2
13

= −d ln(c/a)

dP
. (3.15)

The left hand side of Equation 3.15 is experimentally accessible from single
crystal ultrasonic and inelastic x-ray scattering studies, and the right hand
side is accessible from carefully conducted x-ray diffraction experiments which
can deliver reliable lattice parameters as a function of pressure. Both sides of
this equation are accessible by ab initio calculations.

The bulk modulus K in Equation 3.8 can be extracted from Equation 3.14 to
yield

c

a
=
c0

a0

exp

[
−
∫ P

0

C11 − C33 + C12 − C13

C11 + 2C33 + C12 − 4C13

dP ′

K

]
. (3.16)

The derivative of Equation 3.16 then yields the following relation, where we
see that the Reuss bound of the bulk modulus is simply a scaling factor,

C11 − C33 + C12 − C13

C11 + 2C33 + C12 − 4C13

= −KR(P )
d ln(c/a)

dP
. (3.17)

Again, the left hand side is accessible from single crystal elasticity studies.
The right hand side is accessible from x-ray diffraction experiments, as high
quality x-ray diffraction data as a function of pressure can provide pressure
derivatives of the bulk modulus and the c/a axial ratio. This formulation may
be preferable if the bulk modulus is well constrained by carefully conducted
x-ray diffraction experiments. Both sides of this equation are also accessible
by ab initio calculations.

As C44 and C55 are absent under these circumstances, the pressure derivative of
the c/a axial ratio is only sensitive to anisotropy measures involving volumetric
terms (C11, C33, C12, and C13), not shear terms (C44, C55). For hcp materials
characterized by negligible anisotropy in the volumetric terms (that is, C11 =

C33 values, and C12 = C13), we arrive at the following expression:

−K(P )
d ln(c/a)

dP
= 0. (3.18)
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Figure 3.4: Axial ratios for hcp-cobalt are plotted as determined from diamond
anvil cell measurements with no pressure medium (Fujihisa and Takemura,
1996), from diamond anvil cell measurements with a neon pressure medium
Antonangeli et al. (2008a), and from cubic-anvil measurements with a NaCl
pressure medium Yu et al. (2012).

3.4 Cobalt c/a axial ratio and anisotropy

While synthesizing single crystals of hcp-iron remains challenging, single crys-
tals of hcp-structured cobalt are readily available at ambient conditions. Cobalt,
and other hcp-structured materials, have therefore been proposed to serve as
proxies for understanding the elastic behavior of hcp-iron. Here, we review
the axial ratio and the anisotropy of hcp-cobalt.

X-ray diffraction measurements constraining the c/a axial ratio of hcp-cobalt
are plotted as a function of pressure in Figure 3.4. Fujihisa and Takemura
(1996) study polycrystalline cobalt in a diamond anvil cell with no pressure
media up to 79 GPa, while Antonangeli et al. (2008a) study polycrystalline
cobalt in a diamond anvil cell with a neon pressure medium up to 90 GPa.
Yu et al. (2012) study polycrystalline cobalt in a cubic anvil apparatus with
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Figure 3.5: Experimentally determined elastic constants Cij for hcp-cobalt
include single crystal ultrasonic studies at ambient pressure (Masumoto et al.,
1966; McSkimin, 1955), single crystal impulsive stimulated light scattering
in a diamond anvil cell with a helium pressure medium (Crowhurst et al.,
2006), and single crystal inelastic x-ray scattering in a diamond anvil cell
with a helium and neon pressure medium (Antonangeli et al., 2004b, 2008b).
Ab initio calculations of Cij using density functional theory include Steinle-
Neumann et al. (1999) and Antonangeli et al. (2004b). Ambient pressure
Steinle-Neumann et al. (1999) Cij are slightly offset to the left of 0 GPa for
clarity.

a NaCl pressure medium up to 6.5 GPa. As the two studies with a pressure
medium (Antonangeli et al., 2008a; Yu et al., 2012) are in agreement at ambient
conditions, we reference a c/a axial ratio of 1.625 for cobalt at 0 GPa and 300 K
in Figure 3.10.

Experimentally and theoretically determined elastic constants Cij for hcp-
cobalt are plotted as a function of pressure in Figure 3.5. The elastic moduli
of single crystal cobalt were measured with ultrasonic studies at ambient pres-
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Figure 3.6: The anisotropy measure φ = C33/C11 for hcp-cobalt is calculated
from the Cij values reported in experimental studies (Antonangeli et al., 2004b,
2008b; Crowhurst et al., 2006; Masumoto et al., 1966; McSkimin, 1955) and
theoretical studies (Antonangeli et al., 2004b; Steinle-Neumann et al., 1999).

sure (Masumoto et al., 1966; McSkimin, 1955). The elastic moduli of cobalt
as a function of pressure were constrained by single crystal impulsive stimu-
lated light scattering in helium (Crowhurst et al., 2006) and by single crys-
tal inelastic x-ray scattering in helium and neon (Antonangeli et al., 2004b,
2008b). We compare the experimental measurements of Cij to theoretical ab
initio calculations which employ density functional theory (Antonangeli et al.,
2004a; Steinle-Neumann et al., 1999). The Antonangeli et al. (2008b) and
Steinle-Neumann et al. (1999) studies do not report elastic moduli as a func-
tion of pressure, so we convert volume to pressure with the cobalt equation
of state reported in Antonangeli et al. (2008a), where K0 = 203 ± 2 GPa
and K ′0 = 3.6 ± 0.1. Antonangeli et al. (2008b) does not measure C13, so
we use the C13 fit published in Antonangeli et al. (2004b). They report
C13(P = 0) = 90±10 GPa and ∂C13/∂P = 4.2±0.6. Similarly, Crowhurst et al.
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Figure 3.7: Axial ratios for hcp-helium are plotted as determined from sin-
gle crystal diamond anvil cell measurements using x-ray diffraction (Loubeyre
et al., 1993; Mao et al., 1988).

(2006) do not measure C33, so they report a C33 estimated from the C33 fit from
Antonangeli et al. (2004b): C13(P = 0) = 339± 4 GPa, ∂C13/∂P = 7.6± 0.2.
The anisotropy measure φ = C33/C11 is plotted in Figure 3.6. There is overall
agreement in φ at 0 GPa and at 300 K. We obtain an average value of φ0 = 1.14

from the experimental measurements at 0 GPa. However, the spread in φ at
higher pressures is broad, from approximately 1.10 to 1.22 in the range of
15-40 GPa.

3.5 Helium c/a axial ratio and anisotropy

Helium has substantially lower bulk and shear moduli than either hcp-iron or
hcp-cobalt (Zha et al., 2004). We examine the relationship between the c/a
axial ratio, its pressure derivative, and the elastic anisotropy of hcp-helium to
determine whether there are observable trends.

Two single crystal hcp-helium x-ray diffraction studies in diamond anvil cells
constrained the a and c lattice parameters as a function of pressure up to
58 GPa (Loubeyre et al., 1993) and up 23.3 GPa (Mao et al., 1988). The
resulting c/a axial ratios are plotted in Figure 3.7. While cobalt features a
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Figure 3.8: Experimentally determined elastic constants Cij for hcp-helium
were measured in a diamond anvil cell using Brillouin scattering (Zha et al.,
2004).

steadily declining axial ratio with pressure, helium’s axial ratio appears to be
independent of pressure, as is the case described using Equation 3.18. We
plot an average c/a of 1.632 at 0 GPa and 300 K for helium in Figure 3.10.
From Equation 3.15, the c/a trend with pressure suggests that helium is nearly
elastically isotropic in terms of C11, C33, C12, and C13.

Zha et al. (2004) measured the Cij values for hcp-helium in a diamond anvil cell
up to 32 GPa using Brillouin scattering (Figure 3.8). The resulting anisotropy
measure φ = C33/C11 is plotted in Figure 3.9. We assume a constant φ as a
function of pressure and average φ at all pressures to obtain a value of 0.96 at
300 K for hcp-helium, which is included in Figure 3.10.

3.6 Relationship between the axial ratio and anisotropy of iron
alloys

To examine the connection between the c/a axial ratio and the anisotropy
measure φ = C33/C11, we plot ab initio studies of hcp-Fe which report both
measures in Figure 3.10. We compare to the c/a axial ratio and anisotropy
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Figure 3.9: The anisotropy measure φ = C33/C11 for hcp-helium is calcu-
lated from the Cij values reported in Zha et al. (2004). An average value of
C33/C11 = 0.96 is plotted as a dashed line.

measure φ for other hcp-structured materials at 300 K and 0 GPa including Zn
(Ledbetter , 1977), Cd, Zr, Ti (Wenk et al., 1988), Co (Antonangeli et al., 2004b,
2008a,b; Crowhurst et al., 2006; Fujihisa and Takemura, 1996;Masumoto et al.,
1966; McSkimin, 1955; Yu et al., 2012) (see Figures 3.4–3.6), and He (Loubeyre
et al., 1993; Mao et al., 1988; Zha et al., 2004)(see Figures 3.7–3.9). While
a correlation between the c/a axial ratio and the anisotropy measure φ =

C33/C11 has been suggested in several studies, several ab initio studies do
not follow this trend. For instance, ab initio results are contradictory and
often report different φ values for very similar c/a values, e.g., Vočadlo et al.
(2009) and Niu et al. (2015). Note that while Co and He have similar c/a
axial ratios of ∼1.63, they have noticeably different φ anisotropy values, with
helium having C33/C11 ≈ 0.95 and cobalt having C33/C11 ≈ 1.15. We therefore
conclude that while Figure 3.10 suggests a correlation between the c/a axial
ratio and the anisotropy measure φ = C33/C11, the relation between c/a and
φ is likely non-unique, and c/a may be unable to reliably predict φ anisotropy.

We now examine the relationship between φ and the pressure derivative of
c/a in Figure 3.11 for hcp-Fe. The mathematical relationship between the
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Figure 3.10: The c/a axial ratio and anisotropy measure φ for hcp-iron de-
termined via ab initio calculations (Cohen et al., 1997; Mattesini et al., 2010;
Niu et al., 2015; Steinle-Neumann et al., 1999, 2001; Vočadlo et al., 2009). We
compare to hcp-structured materials Zn (Ledbetter , 1977), Cd, Zr, Ti (Wenk
et al., 1988), Co, and He. (The c/a and φ values for Co and He are determined
in sections 3.4 and 3.5, respectively.) For a compressionally isotropic material,
φ = 1 (gray line). For an ideal hcp-structure, c/a = 1.633.

elastic tensor components, Cij, of hcp materials and the c/a axial ratio was
demonstrated in equation 3.15.

The pressure derivative of c/a values at 0 K from Cohen et al. (1997) was
calculated from the c/a vs. pressure fit shown in Figure 3.1. As Steinle-
Neumann et al. (2001) do not have enough reported c/a values for a given
temperature to fit an exponential function, the pressure derivative of c/a was
calculated from a linear fit of c/a vs. pressure for 0 K, 4000 K, 5000 K, and
6000 K. The trends demonstrated in Figure 3.11 lend support for a positive
correlation between d(c/a)/dP and φ. If one uses the correlation in Figure 3.11
suggested by the cited ab initio studies, then the pressure derivatives of c/a for
hcp-Fe (Dewaele et al., 2006), Fe0.91Ni0.09 (this study), and Fe0.8Ni0.1Si0.1 (this
study) at 300 K and up to 170 GPa as shown in Figure 3.1 would correspond
to anisotropies of φ = 0.91–1.02 as illustrated in Figure 3.11. Nevertheless,
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Figure 3.11: A positive correlation between the anisotropy measure φ and
the pressure derivative of the axial ratio d(c/a)/dP is suggested by the ab
initio studies Cohen et al. (1997) at 0 K and Steinle-Neumann et al. (2001) at
0 K, 4000 K, 5000 K, and 6000 K. The shaded regions are a guide to the eye
to indicate the d(c/a)/dP of hcp-Fe, hcp-Fe0.91Ni0.09, and hcp-Fe0.8Ni0.1Si0.1 at
300 K and their corresponding φ if they follow the same d(c/a)/dP vs. φ trend
as the Cohen et al. (1997) or Steinle-Neumann et al. (2001) data. The hcp-Fe
region is greater in size due to its larger c/a vs. P curvature (see Figure 3.1),
which results in a greater range of d(c/a)/dP values. Regardless of the exact
value of the slope of the correlation, a relationship between d(c/a)/dP and φ
will exist according to Equation 3.16.

regardless of the exact value of the slope of the correlation, a relationship
between d(c/a)/dP and φ will exist according to Equation 3.16.

3.7 Conclusions

We find that hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 have greater c/a axial ra-
tios compared to hcp-Fe at all measured pressures. We investigate the rela-
tionship between the c/a axial ratio and the compressional anisotropy mea-
sure φ = C33/C11. Rather than relying on the c/a axial ratio to infer elas-
tic anisotropy, which is shown to provide non-unique results, we propose a
relationship between the pressure derivative of the c/a axial ratio and the
anisotropy measure φ = C33/C11. From our analysis, the pressure derivatives
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of c/a for hcp-Fe, Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1 at 300 K and up to 170 GPa
would correspond to anisotropies of φ = 0.91–1.02. Future high precision x-
ray diffraction measurements of the pressure derivative of c/a at a range of
pressures and temperatures will provide important constraints on the com-
pressional anisotropy measure.
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C h a p t e r 4

THERMOELASTIC QUANTITIES AND SOUND VELOCITIES
OF IRON-NICKEL-SILICON ALLOYS

4.1 Introduction

Seismological observations place constraints on the shear and compressional
sound velocities and density of the inner core (e.g., Dziewonski and Ander-
son, 1981; Kennett et al., 1995) and the discontinuity in compressional sound
velocity and density at the inner core boundary (e.g., Deuss , 2008; Masters
and Gubbins , 2003). These observations in conjunction with cosmochemical
and mineral physics studies place constraints on the composition and thermal
profile of the inner core. The density of the inner core is ∼3–5% lighter than
hcp-iron at inner core conditions (reviewed in Li and Fei , 2014), which sup-
ports the presence of light elements (e.g., Si, O, S, C, H) in the inner core
(reviewed in Li and Fei , 2014; Litasov and Shatskiy , 2016; Vočadlo, 2015).
A plausible inner core composition must also match the compressional and
shear velocities of the inner core, which are reported to be respectively ∼4–
10% slower (e.g., Sakamaki et al., 2016) and >30% slower than hcp-iron (e.g.,
Martorell et al., 2013a).

A detailed understanding of the effect of composition on the sound velocities
and densities of iron alloys at core pressures and temperatures is necessary
to constrain the inner core composition and the melting temperature at the
inner core boundary, as well as to better constrain outer core composition and
to understand the nature of anisotropy and heterogeneity in the inner and
outer core. Furthermore, an understanding of the thermoelastic properties of
these alloys at core conditions can constrain geodynamical simulations of the
evolution and ongoing processes of the core.

The sound velocities of hcp-iron have been extensively studied through shock-
wave experiments (Brown and Mcqueen, 1986; Jeanloz , 1979; Nguyen and
Holmes , 2004), 300 K static compression experiments (Antonangeli et al.,
2004a, 2018; Decremps et al., 2014; Giefers et al., 2002; Gleason et al., 2013;
Lin et al., 2005; Liu et al., 2014, 2016; Lübbers et al., 2000; Mao et al., 2001,
2008, 2012; Murphy et al., 2013; Ohtani et al., 2013), high temperature static
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compression experiments (Lin et al., 2005; Mori et al., 2017; Sakamaki et al.,
2016), and ab initio studies (Laio et al., 2000;Mao et al., 2001;Martorell et al.,
2013a; Niu et al., 2015; Steinle-Neumann et al., 2001; Vočadlo et al., 2009).
Similarly, numerous experimental and ab initio studies have investigated hcp-
iron’s isothermal equation of state (e.g. Boehler et al., 2008; Dewaele et al.,
2006; Dubrovinsky et al., 2000; Mao et al., 1990; Ono et al., 2010; Steinle-
Neumann et al., 1999) and thermal equation of state (Dubrovinsky et al., 1998;
Fei et al., 2016; Garai et al., 2011; Sakai et al., 2014; Sha and Cohen, 2010;
Stixrude et al., 1997; Uchida et al., 2001; Wasserman et al., 1996; Yamazaki
et al., 2012).

An important element in constraining the thermal equation of state of hcp-
iron is the thermal Grüneisen parameter, which relates thermal pressure to
thermal energy per unit volume and can be used to reduce shock data for
comparison with isothermal compression studies. As the thermal Grüneisen
parameter is composed of vibrational and electronic contributions, constraints
on hcp-iron’s vibrational Grüneisen parameter have helped further constrain
its thermal equation of state (Dewaele et al., 2006; Dubrovinsky et al., 2000;
Murphy et al., 2011a; Uchida et al., 2001; Yamazaki et al., 2012). Further-
more, hcp-iron’s thermal pressure can be estimated by pairing the vibrational
component of thermal pressure, directly accessed through phonon density of
states (DOS) measurements (Murphy et al., 2011b), with ab initio constraints
on the electronic and anharmonic components of thermal pressure (Alfè et al.,
2001; Dewaele et al., 2006; Martorell et al., 2013a,b; Sha and Cohen, 2010;
Wasserman et al., 1996).

Despite the presence of nickel in the Earth’s core (Allègre et al., 1995; Mc-
Donough and Sun, 1995; McDonough, 2003), the sound velocities and ther-
moelasticity of hcp-structured iron-nickel alloys have received comparatively
little attention. Lin et al. (2003) studied the shear and compressional sound
velocities of bcc- and hcp-Fe0.92Ni0.08 with nuclear resonant inelastic x-ray scat-
tering (NRIXS). A variety of experimental studies investigated the equations
of state of hcp-iron-nickel at 300 K as well as at high temperatures (Asanuma
et al., 2011; Mao et al., 1990; McQueen and Marsh, 1966; Morrison et al.,
2018; Sakai et al., 2014; Takahashi et al., 1968) (e.g., see work presented in
Chapter 2); however, constraints on the thermal pressure of hcp-iron-nickel are
limited (Côté et al., 2012; Ekholm et al., 2011; Martorell et al., 2013a). Exper-
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imental constraints on the thermal pressure of iron-nickel alloys from phonon
density of states measurements, including constraints on the Grüneisen pa-
rameter, are still lacking.

A variety of studies have investigated the sound velocities of iron-silicon alloys
at 300 K (Antonangeli et al., 2018; Badro et al., 2007; Lin et al., 2003; Liu
et al., 2014; Mao et al., 2012; Ono, 2013; Sakairi et al., 2018). Fewer stud-
ies have investigated the sound velocities of iron-nickel-silicon alloys at 300 K
(Antonangeli et al., 2010; Lin et al., 2003; Liu et al., 2016). Recently, Sakairi
et al. (2018) investigated the compressional sound velocity of hcp-Fe0.89Si0.11

up to 1800 K and 84 GPa with inelastic x-ray scattering (IXS). However, ex-
isting studies constraining the shear velocity of iron-nickel-silicon alloys are
sparse (Lin et al., 2003; Liu et al., 2016), and systematic studies indepen-
dently constraining the effects of nickel and silicon on sound velocity are rare
(e.g. Antonangeli et al., 2018; Lin et al., 2003; Liu et al., 2014; Mao et al.,
2012). Many constraints on iron-silicon sound velocities at inner core condi-
tions come from ab initio studies (Martorell et al., 2016; Ono, 2013; Tsuchiya
and Fujibuchi , 2009; Vočadlo, 2007). Isothermal equations of state of these
alloys include Asanuma et al. (2011); Hirao et al. (2004); Lin (2003); Ono
et al. (2007); Sata et al. (2010); Tateno et al. (2015) and work presented in
Chapter 2 (Morrison et al., 2018), and experimental thermal equations of state
include Fischer et al. (2012, 2014); Zhang and Guyot (1999), and Tateno et al.
(2015). However, to date, the thermal pressure of iron-nickel-silicon alloys,
including constraints on the Grüneisen parameter, have not been investigated
with experimental phonon DOS measurements.

We present NRIXS measurements on bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
up to 104 GPa and 86 GPa, respectively. To ensure a systematic comparison
with hcp-Fe by avoiding differences in analyses methods, we re-analyze hcp-Fe
NRIXS data from (Murphy et al., 2011a,b, 2013). We present derived phonon
DOSs for each composition. We determine the Debye sound velocity from
the low energy region of the phonon DOS using a new analysis method which
better constrains the Debye sound velocity uncertainty. We present two sepa-
rate constraints on the vibrational component of thermal pressure for the hcp
phases. First, we determine the Grüneisen parameter by applying a volume
scaling relation to the phonon DOSs. Second, we estimate vibrational ther-
mal pressure from the vibrational free energy derived from the phonon DOS.
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Additional parameters are derived from the phonon DOS including the Lamb-
Mössbauer factor, and the thermal expansion is determined using constraints
on the bulk modulus from the same alloys.

4.2 Experimental methods

Samples were synthesized by arc-melting individual pieces of Ni, Si, and 95%-
enriched 57Fe in an argon atmosphere to produce Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1.
Samples were then cold rolled to ∼10 µm. SEM measurements confirmed the
molar sample compositions to be Fe0.91(1)Ni0.09(1) and Fe0.80(1)Ni0.10(1)Si0.10(1),
and sample homogeneity was observed at a scale of 1 µm. Samples from this
synthesis batch were previously used to constrain the melting temperature
of Fe0.91Ni0.09 (Zhang et al., 2016) and to constrain the equations of state of
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 in Chapter 2 (Morrison et al., 2018).

High pressure conditions were achieved using modified panoramic diamond
anvil cells (DACs) with 90◦ openings and cubic boron nitride backing seats on
the downstream side. These modifications maximize the accessible angle range
for in situ x-ray diffraction (XRD). One Fe0.91Ni0.09 and one Fe0.8Ni0.1Si0.1
experimental run (hereafter referred to as FeNi-Run#1 and FeNiSi-Run#1)
were each conducted with beryllium gaskets and loaded with a neon pressure
medium to ensure nearly hydrostatic conditions. These experimental runs fo-
cused on lower pressures where both Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 were in
the bcc phase. An Fe0.91Ni0.09 and an Fe0.8Ni0.1Si0.1 experimental run (FeNi-
Run#2 and FeNiSi-Run#2) were each prepared with a beryllium gasket and
a boron-epoxy insert to stabilize the chamber at higher pressures, and then
loaded with a neon pressure medium. An Fe0.8Ni0.1Si0.1 experimental run
(FeNiSi-Run#3) was prepared with a beryllium gasket and a boron-epoxy
insert, but with no additional pressure medium. Experimental conditions
for each run are summarized in Table 4.1. Additional bcc-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 foil samples were placed on Kapton tape for ambient pressure
measurements. Powdered 95%-enriched 57Fe was also placed on Kapton tape
for an ambient pressure measurement of bcc-Fe.

We collected nuclear resonant inelastic x-ray scattering (NRIXS) measure-
ments on each sample at 300 K at Sector 3-ID-B at the Advanced Photon
Source. The storage ring was run with 24-bunch top-up mode, with each
bunch separated by 153 ns. Incoherent inelastic x-ray scattering was measured
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Table 4.1: Experimental conditions for NRIXS and NFS studies

Energy Points Scan Stokes Number
Run Phase P range per length peak of scans

(GPa) (meV) scan (s/pt) (counts)
Fe
Ambient bcc 0 -80 to +90 681 5 327 2

Fe0.91Ni0.09

Ambient bcc 0 -80 to +90 681 11 407 4
FeNi-Run#1 bcc 1.7(1) -80 to +100 721 55 332 11

4.5(1) -80 to +100 721 35 247 7
FeNi-Run#2 bcc 3.8(1) -80 to +100 721 13 226 3

8.1(1) -80 to +100 721 23 211 4
hcp 18.0(1) -70 to +100 681 20 226 4

22.8(2) -70 to +100 681 18 229 4
41(1) -70 to +100 681 30 265 6
48(1) -70 to +100 681 25 170 5
63(1) -70 to +100 681 38 197 8
75(1) -70 to +100 681 38 181 8
83(1) -70 to +100 681 30 155 7
104(3) -70 to +100 681 35 203 9

Fe0.8Ni0.1Si0.1
Ambient bcc 0 -80 to +100 681 6 570 2
FeNiSi-Run#1 bcc 7.1(1) -80 to +110 761 36 289 8
FeNiSi-Run#2 bcc 6.5(1) -80 to +100 721 39 299 12
FeNiSi-Run#3 hcp 27.9(3) -80 to +100 721 39 257 12

37.1(6) -80 to +100 721 48 371 12
41(1) -80 to +100 721 56 327 20
55(1) -80 to +100 721 63 273 21
69(1) -80 to +100 721 61 273 23
86(3) -80 to +100 721 60 156 23

with three avalanche photodiode detectors (APDs) positioned radially around
the sample, and forward elastic scattering was measured with a single APD
downstream from the sample to constrain the resolution function. The x-ray
energy was tuned around the nuclear resonance of 57Fe (14.4125 keV) with a
state-of-the-art high-resolution monochrometer (Toellner , 2000). The energy
ranges scanned over for each compression point are summarized in Table 4.1.
For Fe0.91Ni0.09 measurements, greater counting rates at lower pressures al-
lowed us to scan over larger energy ranges for our bcc compression points. For
Fe0.8Ni0.1Si0.1 measurements, we observed higher energy phonon modes which
necessitated using a larger energy scan range. The typical energy resolution
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(full width at half maximum at zero energy transfer) was 1.1 meV. For four
Fe0.91Ni0.09 compression points between 83 and 104 GPa, large tails around the
resolution peak severely impacted the quality of the data, and these compres-
sion points were discarded. The NRIXS spectra for each compression point
are plotted in Figures 4.1 and 4.2.

In situ x-ray diffraction (XRD) was collected before and after each set of
NRIXS scans and averaged to determine the unit cell volume of the sample
at each pressure point (e.g., Gao et al., 2009; Murphy et al., 2013). The x-ray
wavelength energy was 14.4125 keV (0.086 nm), corresponding to a nuclear
resonance of 57Fe. XRD images were calibrated with a CeO2 crystal and in-
tegrated with the Dioptas software package (Prescher and Prakapenka, 2015).
We fit the resulting x-ray diffraction patterns with full-profile Pawley refine-
ment to determine the bcc phase lattice parameter a using reflections (100)
and the hcp phase lattice parameters a and c using reflections (100), (101), and
(002). We observed some texturing for our six largest compression points of
hcp-Fe0.91Ni0.09 (P > 41 GPa) and for hcp-Fe0.8Ni0.1Si0.1 as indicated by a loss
of intensity in the (002) diffraction reflection. Our remaining diffraction reflec-
tions for these compression points were sufficient to determine a and c, as the
(100) reflection is sensitive to the a lattice parameter and the (101) reflections
is sensitive to both the a and c lattice parameters. The exact amount of un-
certainty introduced by determining the sample volume with fewer diffraction
peaks is difficult to quantify, so we follow Murphy et al. (2013) and double our
determined volume uncertainty for these compression points. The resulting
lattice parameters and unit cell volumes are reported in Table 4.2.

Density was determined from our in situ volume measurements and accounts
for the 95% 57Fe isotopic enrichment of our samples (Table 4.2). Through-
out the NRIXS data analysis, we relied on our measured in situ volumes and
densities. For convenience, we convert our sample volumes to pressure using
external 300 K equations of state (EOSs). For our bcc-Fe data, we use the
Vinet EOS for bcc-Fe reported in Chapter 2 (Morrison et al., 2018) based on
compression data from Dewaele et al. (2006). For bcc- and hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1, we use the Vinet EOSs also reported in Chapter 2. These
EOSs were conducted with samples synthesized from the same Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 batches used in the NRIXS experiments. All of the EOSs ref-
erenced in this study were determined using the same pressure transmitting
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38 s
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Figure 4.1: Raw (unnormalized) NRIXS spectra for hcp-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 at 300 K collected around the resonance energy of 57Fe at
14.5125 keV with a step size of 0.25 meV.
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0 GPa

6.5 GPa

7.1 GPa

0 GPa

1.7 GPa

4.5 GPa

3.8 GPa

8.1 GPa

11 s

55 s

35 s

13 s

23 s

6 s

39 s

36 s

bcc-Fe0.91Ni0.09

bcc-Fe0.8Ni0.1Si0.1

Figure 4.2: Raw (unnormalized) NRIXS spectra for bcc-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 at 300 K collected around the resonance energy of 57Fe at
14.5125 keV with a step size of 0.25 meV. We note that the NRIXS spectra of
bcc-Fe is not displayed here and is plotted in Figure 4.3.
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Fe

Fe0.91Ni0.09

Fe0.8Ni0.1Si0.1

0 GPa

0 GPa

0 GPa
6 s

11 s

5 s

Figure 4.3: Comparison of raw (unnormalized) NRIXS spectra for bcc-
Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe at 0 GPa and 300 K collected around the
resonance energy of 57Fe at 14.5125 keV with a step size of 0.25 meV.

medium (helium) and the same pressure calibrant (tungsten with the Doro-
gokupets and Oganov (2006) pressure scale). The experimental conditions and
resulting parameters from each EOS study are listed in Table 2.2 (Chapter 2).
For each compression point, we also calculated the isothermal bulk modulus
KT and the pressure derivative of the isothermal bulk modulus K ′T using these
same EOSs. The resulting pressure, KT , and K ′T are listed in Table 4.2.

The NRIXS data were analyzed with the PHOENIX software package (www.NRIXS.com)
to obtain the partial phonon density of states (DOS)D(E, Vi) and various ther-
modynamic quantities including the Lamb-Mössbauer factor, kinetic energy,
thermal expansion, and vibrational free energy. As detailed in Sturhahn (2000,
2004) and Sturhahn and Jackson (2007), the background and the measured
elastic peak were subtracted from the measured NRIXS spectrum to obtain the
pure phonon excitation spectrum, I ′(E). The excitation probability density
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Table 4.2: Results from x-ray diffraction and 300 K equations of state

Phase a c Volume Densitya Pressureb KT K ′T
(Å) (Å) (Å3) (g/cm3) (GPa) (GPa)

bcc-Fe
2.863(1) 23.46(3) 8.062(9) 0 168(8) 4.7(1.3)

bcc-Fe0.91Ni0.09

2.874(1) 23.73(2) 7.99(1) 0 147(3) 6.4(6)
2.859(1) 23.38(3) 8.11(1) 1.7(1) 158(2) 6.3(6)
2.847(1) 23.08(3) 8.22(1) 3.8(1) 171(1) 6.1(6)
2.843(1) 22.98(3) 8.25(1) 4.5(1) 175(1) 6.1(5)
2.825(1) 22.54(2) 8.41(1) 8.1(1) 196(2) 5.9(5)

hcp-Fe0.91Ni0.09

2.454(1) 3.948(2) 20.59(2) 9.21(1) 18.0(1) 251(2) 4.88(7)
2.438(1) 3.925(4) 20.21(3) 9.38(1) 22.8(2) 274(2) 4.77(7)
2.399(2) 3.831(10) 19.09(6) 9.93(3) 41(1) 357(1) 4.46(6)
2.389(1) 3.788(7) 18.72(4) 10.13(2) 48(1) 388(1) 4.37(6)
2.359(1) 3.748(6) 18.07(4) 10.50(2) 63(1) 453(1) 4.22(6)
2.341(1) 3.708(4) 17.60(2) 10.77(1) 75(1) 504(2) 4.12(5)
2.330(1) 3.687(5) 17.33(3) 10.94(2) 83(1) 538(2) 4.06(5)
2.299(1) 3.654(9) 16.72(4) 11.34(3) 104(3) 620(3) 3.94(5)

bcc-Fe0.8Ni0.1Si0.1
2.859(1) 23.38(3) 7.70(1) 0 156(8) 5.7(1.2)
2.821(1) 22.46(2) 8.02(1) 7.1(1) 194(2) 5.3(1.1)
2.824(1) 22.53(3) 8.00(1) 6.5(1) 191(2) 5.3(1.1)

hcp-Fe0.8Ni0.1Si0.1
2.432(1) 3.886(6) 19.9(3) 9.05(2) 27.9(3) 281(2) 5.12(6)
2.408(1) 3.846(8) 19.31(5) 9.33(2) 37.1(6) 327(2) 4.94(6)
2.379(2) 3.896(10) 19.09(6) 9.44(3) 41(1) 347(2) 4.88(6)
2.366(1) 3.796(9) 18.40(5) 9.79(3) 55(1) 413(1) 4.70(6)
2.346(1) 3.740(7) 17.83(4) 10.10(2) 69(1) 478(1) 4.56(6)
2.331(2) 3.669(10) 17.26(6) 10.44(4) 86(3) 553(2) 4.43(5)

aDensity calculations account for sample enrichment
bPressure, isothermal bulk modulus (KT ), and pressure derivative of bulk
modulus (K ′T ) were calculated from volumes paired with Vinet EOSs listed
in Table 2.2.

S(E, Vi)) was then obtained by applying a normalization procedure to I ′(E)

based on the property that the first moment of S(E, Vi)) is equal to the recoil
energy of the resonant isotope ER. For 57Fe, ER = 1.956 meV. PHOENIX
applies the Fourier-log method to decompose S(E, Vi) into n-phonon contri-
butions,

Sn(E, Vi) =
∫
EnS(E, Vi)dE, (4.1)



86

for n = 0, 1, 2, 3. The Lamb-Mössbauer factor and the kinetic energy can
be directly determined from the 0th- and 2nd-order moments (S0(E, Vi) and
S2(E, Vi)), respectively (see sections 4.6 and 4.8).

To obtain the phonon DOS from S1(E, Vi), the quasi-harmonic approximation
was applied, which assumes the interatomic potential is harmonic and accounts
for thermal expansion. This approximation is thought to be reasonable for
NRIXS measurements at 300 K (Alfè et al., 2001). The resulting projected
partial phonon DOS D(E, Vi) was normalized by

∫
D(E, Vi)dE = 3. The

phonon DOS is ‘projected’ due to the dependency on the direction of incident
x-rays and ‘partial’ as NRIXS is only sensitive to the resonant isotope 57Fe.
For the bcc phase, D(E, Vi) is isotropic (Sturhahn and Kohn, 1999). For our
samples in the hcp phase, we note our sample is polycrystalline, so dependency
on the angle of incident x-rays should be minimal. Additionally, anisotropy
of the phonon DOS for hcp Fe was found to be minimal in the low energy
region used for sound velocity determinations (Giefers et al., 2002). Because
our alloys are predominantly 95%-enriched 57Fe, the partial phonon DOS is a
very close approximation to the total phonon DOS, and for iron, it is the total
phonon DOS. The resulting projected partial phonon DOSs for bcc and hcp
phases are plotted in Figures 4.4 and 4.5, respectively.

To compare our results to those of hcp-iron in a consistent manner, we re-
analyzed data from the hcp-iron NRIXS study ofMurphy et al. (2011a,b, 2013)
using the same methods as for Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. The resulting
phonon DOSs for hcp-iron are plotted in Figure 4.5. We excluded the 36 GPa
hcp-Fe NRIXS scan from our re-analysis, as we found the statistical quality of
this scan to be inferior to the other scans in this study. The 36 GPa scan was
collected over a much shorter integration time (18s, compared to an average
of 53s), and the number of counts in the Stokes region of this NRIXS scan was
much smaller (70 counts, compared to an average of ∼183 counts).

We compare the phonon DOS of the bcc and hcp phases of Fe, Fe0.91Ni0.09, and
Fe0.8Ni0.1Si0.1 in Figure 4.6. The phonon DOSs for the bcc phases are plotted
as measured at 0 GPa. The total phonon DOS for hcp-Fe at 90 GPa, and the
partial phonon DOS for hcp-Fe0.91Ni0.09 at 48 GPa and for hcp-Fe0.8Ni0.1Si0.1
at 41 GPa are scaled to 0 GPa using the phonon DOS scaling method outlined
in Section 4.4. Note the difference in relative phonon mode intensity between
bcc and hcp-structured iron alloys. Also, note the differences between the
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bcc-Fe0.91Ni0.09 bcc-Fe0.8Ni0.1Si0.1

0 GPa

1.7 GPa

3.8 GPa

4.5 GPa

8.1 GPa

0 GPa

6.5 GPa

7.1 GPa

Figure 4.4: Partial phonon density of states (DOS) of bcc-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 as determined by subtracting the elastic peak from measured
NRIXS spectra and applying the quasi-harmonic model. Phonon DOSs are
offset for visibility. Pressures were determined from volumes measured in situ.

phonon DOSs of different compositions. For instance, the phonon DOSs of
bcc- and hcp-Fe0.8Ni0.1Si0.1 extend to higher energies than the phonon DOSs
of Fe and Fe0.91Ni0.09.

4.3 Sound velocities

Debye sound velocity

The Debye sound velocity (vD) can be determined from the Debye-like low-
energy region of the phonon DOS via

v(E) =

[
m̃

2π2h̄3ρ

1

D(E)
E2

]1/3

, (4.2)

where m̃ is the mass of the resonant isotope, and v(E) = vD in the limit where
E approaches zero (e.g., Sturhahn, 2004). As an example, we illustrate select
phonon DOSs of hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 scaled according to
equation 4.2 in Figure 4.7. Two different phonon dispersion models are applied
to the scaled phonon DOSs. A ‘Debye-like’ model varies quadratically with
energy and therefore plots as a constant value in Figure 4.7. The parabolic
‘Debye-like’ regions of Fe and Fe0.91Ni0.09 extend to a large enough energy
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hcp-Fe0.91Ni0.09
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hcp-Fe0.8Ni0.1Si0.1
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41 GPa

Figure 4.5: Partial phonon density of states (DOS) of hcp-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 and total phonon DOS of hcp-Fe re-analyzed from Murphy et al.
(2013). Phonon DOSs were determined by subtracting the elastic peak from
measured NRIXS spectra and applying the quasi-harmonic model. Phonon
DOSs are offset for visibility. Pressures were determined from unit-cell volumes
measured in situ.

to obtain a suitable constraint on the Debye velocity. However, the parabolic
region of Fe0.8Ni0.1Si0.1 at 41 GPa is noticeably smaller than that of Fe0.91Ni0.09

at the same pressure. A greater amount of data can be included if instead an
empirical power law model of the phonon dispersion curve is applied,

v(E) = vD
[
1− (x/A1)4

]
. (4.3)

In both cases, the limit of v(E) as E approaches zero provides vD. For con-
sistency, we apply the phonon dispersion curve in equation 4.3 to the phonon
DOSs of both hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, as well as to our re-analysis
of hcp-Fe data from Murphy et al. (2013).
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bcc-Fe

hcp-Fe

bcc-Fe0.91Ni0.09

hcp-Fe0.91Ni0.09

hcp-Fe0.8Ni0.1Si0.1

bcc-Fe0.8Ni0.1Si0.1

0 GPa 300 K

Figure 4.6: Phonon DOS of bcc-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe at 0 GPa
are compared to phonon DOS of hcp-Fe0.91Ni0.09 (48 GPa), Fe0.8Ni0.1Si0.1 (41
GPa), and Fe (90 GPa, re-analyzed from Murphy et al. (2013)) scaled to 0 GPa
using our γ0,vib and q for each composition and the scaling procedure detailed
in section 4.4.

An outstanding question in how to accurately determine the Debye velocity
is how to optimally select the energy range of v(E) over which to fit the
phonon dispersion curve. An ideal method should be repeatable, consistent,
and meaningful. Previous selection criteria have involved selecting an energy
range that corresponds to a low reduced goodness of fit (χ2) and a stable vD
(e.g., Murphy et al., 2013). The metric χ2 is meaningful in that it detects
deviations in the model from the data (i.e., it is sensitive to under-fitting of
the data). However, χ2 is not sensitive to over-fitting of the data, as only a
few data points may yield a very good (low) χ2.

A better choice would be a metric that prefers both a good fit of the model
to the data and an energy range with more data points (i.e., a criteria that
disfavors both under-fitting and over-fitting of the data). Essentially, an energy
range choice should yield the maximum information from the data.
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hcp-Fe0.91Ni0.09

hcp-Fe0.8Ni0.1Si0.1

41 GPa

41 GPa

hcp-Fe

53 GPa

Figure 4.7: Phonon DOSs of hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 scaled ac-
cording to equation 4.2 to allow for visual representation of the low energy
constant Debye-velocity region used to constrain the Debye sound velocity.
Examples of two models used to constrain the Debye sound velocity are plot-
ted: the constant Debye-fit model (parabolic black solid line) and the power
law model (equation 4.3, black dashed line). The hcp-Fe data is from our
re-analysis of Murphy et al. (2013), and all other data is from this study.
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 data were conveniently collected at the same
pressure of 41 GPa. The flat region at low energy appropriate for fitting
a constant Debye-velocity model is much larger for hcp-Fe0.91Ni0.09 than for
hcp-Fe0.8Ni0.1Si0.1. We note that the fit models plotted here are purely demon-
strative and do not directly reflect our reported Debye velocities. See text for
a detailed description of our Debye velocity determination method.
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There are a variety of methods of estimating information, some more compu-
tationally intensive than others. Two common information estimates that are
easily computationally accessible are the Akaike Information Criteria (AIC)
and the Bayesian Information Criteria (BIC). Both of these criteria assume a
large number of data points. When selecting between energy fit ranges, the
number of data points will vary, so it is important to not assume the number
of data points is large. A common correction to the AIC (known as the AICc)
corrects for the case where the number of data points is small (Hurvich and
Tsai , 1989). The AICc has the form

AICc = χ2 + 2M +
2M(M + 1)

N −M − 1
, (4.4)

where χ2 is the goodness of fit of the model to the data, M is the number of
model parameters, and N is the number of data points. In our case, M = 1

for a ‘Debye-like’ model where the model parameter is vD, and M = 2 for a
power law model (equation 4.3) where the model parameters are vD and A1,
and N is the number of data points in the selected energy range. The third
term of equation 4.4 is critical, as it provides a sensitivity to over-fitting of the
data, which a traditional goodness of fit lacks.

As an example, we plot the effective probability exp(−AICc/2) of each fit
as a function of the start and end of the fit range (Emin and Emax, respec-
tively) for Fe0.91Ni0.09 at 41 GPa in the top panel of Figure 4.8. Low values of
exp(−AICc/2), e.g., where the number of data points is too small or where
Emax is too large, provide a poor constraint on the Debye velocity vD, whereas
high values of exp(−AICc/2) provide a better constraint on vD. This plot
demonstrates there are many choices of Emin and Emax that are equally favor-
able, e.g., choices that yield equally large values of exp(−AICc/2). We also
plot the vD as a function of Emin and Emax in the middle panel of Figure 4.8.
Depending on the quality of the NRIXS spectra and the phonon dispersions for
the sample, the value of vD obtained from a given data set may vary widely
for different fit ranges, even for fit ranges with similar AICc values. As a
result, two different fit ranges may yield equal values of exp(−AICc/2) but
noticeably different Debye velocities.

We propose binning the vD for many fit ranges, weighted by exp(−AICc/2),
to create a probability distribution function of vD. By accounting for many
possible fit ranges in the calculation of vD, this method provides a more rea-
sonable constraint on the uncertainty of vD than would be obtained by using
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Figure 4.8: To illustrate our Debye velocity determination, the power law
function (equation 4.3) is applied to the low energy region of the phonon
DOS of hcp-Fe0.91Ni0.09 at 41 GPa. In the top panel, we plot the fit quality
of the model as a function of starting energy range Emin and ending energy
range Emax. Fit quality is assessed as exp(−AICc/2), where the corrected
Akaike Information Criteria (AICc) is defined in equation 4.4. Larger values
of exp(−AICc/2) represent higher quality fits. In the middle panel, we plot
the resulting Debye velocity as a function of Emin and Emax. Notice the streaks
in the top and middle panel. These variations in Debye velocity highlight the
advantage of our Debye velocity analysis method over a fixed energy range,
which may influence the resulting Debye velocity. In the bottom panel, we
plot the probability distribution of the Debye velocity as calculated from the
top two panels. The red line and shaded region represent the mean vD and
standard deviation, respectively. See section 4.3 for a detailed description of
the analysis methods used.
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hcp-Fe0.91Ni0.09

hcp-Fe0.8Ni0.1Si0.1

41 GPa

41 GPa

hcp-Fe

53 GPa

Figure 4.9: Debye velocity (vD) probability distribution functions of hcp-Fe,
Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 at 300 K. The hcp-Fe data is from our re-analysis
of Murphy et al. (2013), and all other data is from this study. The red line
and shaded region represent the mean vD and standard deviation, respectively.
The uncertainty of vD can vary noticeably depending on the NRIXS spectra
and the phonon dispersions.

a single energy range. For example, in Figure 4.8 we include all fit ranges
that fall within Emin=3.5–27.0 meV and Emax=4.5–28.0 meV. The vD of these
fits are weighted by their corresponding exp(−AICc/2) and binned to pro-
duce a probability distribution function of vD (bottom panel of Figure 4.8).
We note this method is more computationally intensive than previous analysis
methods, as it requires fitting a model (e.g., equation 4.4) to the low energy
region of the phonon DOS many times, once for each fit range explored, and
then binning the results into a probability distribution function. However,
the added benefits are repeatable, consistent Debye velocities with meaningful
uncertainties.

We compare the obtained probability distribution functions for hcp-Fe, Fe0.91Ni0.09,
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hcp-Fe0.91Ni0.09

41 GPa

hcp-Fe0.91Ni0.09

63 GPa

hcp-Fe0.91Ni0.09

104 GPa

Figure 4.10: Debye velocity (vD) probability distribution functions of hcp-
Fe0.91Ni0.09 at 41, 63, and 104 GPa and 300 K. The red line and shaded region
represent the mean vD and standard deviation, respectively. The increase in
vD with pressure is clearly resolvable given the size of vD uncertainty.

and Fe0.8Ni0.1Si0.1 in Figure 4.9. Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 are most di-
rectly comparable, as they are conveniently measured at the same pressure
of 41 GPa. These probability distribution functions illustrate that the un-
certainty on vD can vary noticeable depending on the quality of the NRIXS
spectra and the phonon dispersions for the sample. In Figures 4.10 and 4.11,
we plot the vD probability distribution functions at three different pressures
for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, respectively. The increase in vD with
pressure is clearly resolvable given the size of the vD uncertainty. The Debye
velocities for bcc- and hcp-Fe, Fe0.91Ni0.09, and Fe0.8Ni0.1Si0.1 computed via
this method are listed in Table 4.3 and plotted as a function of density and
pressure in Figure 4.12.
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hcp-Fe0.8Ni0.1Si0.1

22.8 GPa

hcp-Fe0.8Ni0.1Si0.1

63 GPa

hcp-Fe0.8Ni0.1Si0.1

83 GPa

Figure 4.11: Debye velocity (vD) probability distribution functions of hcp-
Fe0.8Ni0.1Si0.1 at 22.8, 63, and 83 GPa and 300 K. The red line and shaded
region represent the mean vD and standard deviation, respectively. The in-
crease in vD with pressure is clearly resolvable given the size of vD uncertainty.
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Table 4.3: Results from NRIXS sound velocity analysis

V ρa P vD
a KS vφ

a vP
a vS

a G
(Å3) (g/cm3) (GPa) (km/s) (GPa) (km/s) (km/s) (km/s) (GPa)

bcc-Fe
23.46(3) 8.06(1) 0 3.47(3) 168(8) 4.57(11) 5.81(9) 3.11(3) 78(1)

hcp-Feb
19.66(7) 9.61(3) 30(2) 4.42(6) 312(3) 5.70(3) 7.31(5) 3.96(6) 151(4)
18.47(3) 10.25(1) 53(2) 4.61(4) 411(2) 6.33(1) 7.92(3) 4.12(4) 174(3)
17.80(3) 10.63(1) 69(3) 4.83(5) 476(1) 6.69(1) 8.35(4) 4.32(5) 198(5)
17.50(7) 10.80(2) 77(3) 4.94(2) 506(1) 6.85(1) 8.53(2) 4.41(2) 210(2)
17.10(7) 11.06(2) 90(3) 5.13(3) 558(1) 7.10(1) 8.86(2) 4.59(3) 233(3)
16.61(7) 11.38(5) 106(3) 5.21(3) 621(2) 7.39(2) 9.13(3) 4.65(3) 246(3)
16.24(7) 11.64(2) 121(3) 5.36(4) 677(2) 7.63(2) 9.42(3) 4.78(4) 266(4)
15.97(7) 11.84(2) 133(4) 5.40(8) 721(3) 7.80(2) 9.58(5) 4.82(7) 275(8)
15.61(7) 12.13(3) 151(5) 5.56(3) 786(4) 8.05(2) 9.88(3) 4.96(3) 298(4)
15.21(7) 12.43(3) 171(5) 5.68(7) 859(5) 8.31(2) 10.17(4) 5.07(6) 320(8)

bcc-Fe0.91Ni0.09

23.73(2) 7.99(1) 0 3.27(2) 147(3) 4.29(5) 5.46(4) 2.93(2) 69(1)
23.38(3) 8.11(1) 1.7(1) 3.28(2) 158(2) 4.41(3) 5.56(3) 2.93(2) 70(1)
23.08(3) 8.22(1) 3.8(1) 3.31(2) 171(1) 4.56(2) 5.69(2) 2.96(2) 72(1)
22.98(3) 8.25(1) 4.5(1) 3.39(2) 175(1) 4.60(1) 5.78(2) 3.03(2) 76(1)
22.54(2) 8.41(1) 8.1(1) 3.46(1) 196(2) 4.83(2) 6.01(2) 3.09(1) 80(1)

hcp-Fe0.91Ni0.09

20.59(2) 9.21(1) 18.0(1) 3.84(5) 254(3) 5.26(3) 6.58(4) 3.43(5) 109(3)
20.21(3) 9.38(1) 22.8(2) 3.94(3) 278(2) 5.44(2) 6.79(3) 3.52(3) 116(2)
19.09(6) 9.93(3) 41(1) 4.24(1) 360(1) 6.02(1) 7.44(1) 3.79(1) 142(1)
18.72(4) 10.13(2) 48(1) 4.36(4) 391(1) 6.22(1) 7.67(2) 3.89(3) 153(3)
18.07(4) 10.50(2) 63(1) 4.52(3) 456(1) 6.59(1) 8.07(2) 4.03(2) 170(2)
17.60(2) 10.77(1) 75(1) 4.60(2) 507(2) 6.86(1) 8.33(1) 4.10(2) 181(2)
17.33(3) 10.94(2) 83(1) 4.67(4) 541(2) 7.03(1) 8.51(3) 4.16(3) 189(3)
16.72(4) 11.34(3) 104(3) 4.97(4) 623(3) 7.41(2) 9.01(3) 4.43(3) 223(3)

bcc-Fe0.8Ni0.1Si0.1
23.38(3) 7.70(1) 0 3.21(1) 156(8) 4.49(11) 5.58(9) 2.86(1) 63(1)
22.53(3) 8.00(1) 6.5(1) 3.26(3) 191(2) 4.92(3) 5.95(3) 2.90(3) 67(1)
22.46(2) 8.02(1) 7.1(1) 3.23(3) 194(2) 4.89(3) 5.91(3) 2.87(3) 66(1)

hcp-Fe0.8Ni0.1Si0.1
19.90(3) 9.05(2) 27.9(3) 3.97(5) 284(3) 5.61(3) 6.94(3) 3.54(4) 114(3)
19.31(5) 9.33(2) 37.1(6) 4.16(4) 330(2) 5.95(2) 7.32(3) 3.70(3) 127(2)
19.09(6) 9.44(3) 41(1) 4.30(5) 350(2) 6.09(2) 7.53(4) 3.84(5) 139(3)
18.40(5) 9.79(3) 55(1) 4.37(4) 416(1) 6.52(1) 7.92(3) 3.90(4) 148(3)
17.83(4) 10.10(2) 69(1) 4.55(6) 480(1) 6.90(1) 8.33(3) 4.05(5) 165(4)
17.26(6) 10.44(4) 86(3) 4.68(4) 555(2) 7.30(2) 8.74(3) 4.17(4) 181(3)

aThe tabulated values for density, and Debye sound velocity, bulk sound speed,
compressional velocity, and shear velocity all account for 57Fe enrichment
bRe-analyzed from Murphy et al. (2013)
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Figure 4.12: Debye velocity (vD), compressional velocity (vP ), and shear ve-
locity (vS) for Fe (gray), Fe0.91Ni0.09 (orange), and Fe0.8Ni0.1Si0.1 (blue) as a
function of density and pressure. The bcc-phase (open circles) is distinguished
from the hcp-phase (filled circles). The hcp-Fe data is from our re-analysis of
Murphy et al. (2013), and all other data is from this study. Sound velocity
and density values account for the 57Fe enrichment of the samples.

Compressional and shear sound velocities

We combine our Debye velocities with existing equations of state to constrain
the seismically observable compressional and shear sound velocities vP and vS
via

3

v3
D

=
1

v3
P

+
2

v3
S

(4.5)

and
KS

ρ
= v2

P −
4

3
v2
S, (4.6)

where KS is the isentropic bulk modulus and ρ is the density of our 57Fe
enriched samples. KS is related to the isothermal bulk modulus KT via the
following relation,

KS = KT (1 + γαT ), (4.7)

where γ is the Grüneisen parameter and α is the thermal expansion. For a
given composition and volume,KT is determined from existing 300 K equations
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of state. For bcc-Fe data, we apply the Vinet EOS for bcc-Fe reported in
Chapter 2 Morrison et al. (2018) based on compression data from Dewaele
et al. (2006). For hcp-Fe, we apply the hcp-Fe EOS from Dewaele et al. (2006).
For bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, we apply the Vinet EOSs also
reported in Chapter 2. Experimental details for each equation of state are
summarized in Table 2.2. The EOS studies for Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
were conducted using samples from the same synthesis batches as the samples
in this study. For samples in the bcc phase, we assume KS ≈ KT . For samples
in the hcp phase, we calculate KS using our reported γvib and αvib determined
from the phonon DOS of each composition (see sections 4.4 and 4.7). The
shear modulus G is then calculated via

G = v2
Sρ. (4.8)

The determined KS, vP , vS, and G are reported in Table 4.3, and vP , vS are
plotted as a function of density and pressure in Figure 4.12. The density and
sound velocities in Table 4.3 and Figure 4.12 account for the 57Fe enrichment
of the samples. From equation 4.5, one can see that the Debye velocity is more
sensitive to shear velocity than to compressional velocity. Therefore, NRIXS
measurements are better suited to constraining shear velocities, whereas the
resulting compressional sound velocities are more strongly affected by the ap-
plied equation of state (Sturhahn and Jackson, 2007).

We find that for a given pressure, alloying iron with nickel has a minimal
effect on compressional velocity, and further alloying Fe0.91Ni0.09 with silicon
similarly has a minimal effect on compressional velocity. However, alloying
hcp-iron with 9 at% nickel decreases the shear velocity by ∼6% for a given
pressure. Further alloying with 10 at% silicon has a negligible effect on the
shear velocity (Figure 4.12). These findings suggest than nickel decreases the
shear velocity of iron but not the compressional velocity of iron, while silicon
has little to no effect on the compressional and shear velocities of iron-nickel
alloys for a given pressure. Because Fe0.8Ni0.1Si0.1 is less dense than iron or
Fe0.91Ni0.09, when plotted as a function of density, Fe0.8Ni0.1Si0.1 has a greater
vP than that of hcp-Fe or Fe0.91Ni0.09 and a comparable vS to that of hcp-Fe
(Figure 4.12). Our findings are in agreement with ab initio studies byMartorell
et al. (2013a) which predict a ∼5% shear velocity decrease at 360 GPa and
0 K when ∼10 at% nickel is added to iron. However, Martorell et al. (2013a)
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Table 4.4: Natural and enriched molecular masses M of samples

Composition Menr
a Mnat

b

(g/mol) (g/mol)
Fe 56.942 55.845
Fe0.91Ni0.09 57.100 56.101
Fe0.8Ni0.1Si0.1 54.231 53.354
aFe 95% enriched in 57Fe
bFe with natural isotopic enrichment

suggest the effect of nickel on the shear velocity of iron is highly temperature
dependent, and they predict the effect of nickel on vS becomes minimal at
5500 K.

Comparison with previous studies

To compare with seismic observations or studies using samples of natural iso-
topic enrichment, our reported density and sound velocities can be corrected
to values corresponding to natural isotopic enrichment with the following re-
lation,

ρnat = ρenr (Mnat/Menr) (4.9)

and the following approximation,

vnat = venr
√
Menr/Mnat, (4.10)

where M is the molecular mass of the alloy. The subscripts nat and enr

denote samples with natural isotopic enrichment and samples enriched in 57Fe,
respectively. Values of Menr and Mnat are listed in Table 4.4.

We plot the 300 K Debye, compressional, and shear sound velocities of our
bcc-Fe data and our re-analyzed hcp-Fe data from Murphy et al. (2013) in
Figure 4.13. We plot these as a function of pressure to compare with other
NRIXS, IXS, and ultrasonic inferometry bcc- and hcp-Fe studies, some of
which do not report volumes determined in situ. We compare to NRIXS
studies by Mao et al. (2001), Lin et al. (2005), Gleason et al. (2013), and
Liu et al. (2016); IXS studies by Mao et al. (2012), Ohtani et al. (2013), Liu
et al. (2014), and Antonangeli et al. (2018); a combined NRIXS and IXS study
by Mao et al. (2008); and a picosecond ultrasonic study by Decremps et al.
(2014).

Unlike NRIXS studies, IXS and ultrasonic sound velocity studies do not require
57Fe sample enrichment. Therefore, the plotted vD, vP and vS values for bcc-
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Figure 4.13: A comparison of Debye (vD), compressional (vP ), and shear (vS)
sound velocities for bcc- and hcp-Fe from NRIXS, IXS, and ultrasonic experi-
mental studies at 300 K. Data from Murphy et al. (2013) has been re-analyzed.
For NRIXS studies conducted with 57Fe enriched samples, we plot sound veloc-
ities that have been corrected to those of natural enrichment via equation 4.10,
except for velocities from (Liu et al., 2016), where their reported natural en-
richment correction was applied.

Fe from this study and our re-analysis of hcp-Fe from Murphy et al. (2013)
have been corrected to natural enrichment via equation 4.10. We have also
corrected the reported vD, vP , and vS from Lin et al. (2005), Liu et al. (2016),
Mao et al. (2001), and Gleason et al. (2013) to natural isotopic enrichment
using equation 4.10. As Mao et al. (2008) report vP from samples with natural
isotopic enrichment and vD from samples enriched in 57Fe, we correct their
reported vD to natural isotopic enrichment and re-calculate vS for natural
isotopic enrichment.

The vD for hcp-Fe re-analyzed from Murphy et al. (2013) agrees well with Mao
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et al. (2008) and Liu et al. (2016), and it agrees with Mao et al. (2001) and Lin
et al. (2005) within the scatter of those studies. Our vD hcp-Fe trends 2–4%
below that of Gleason et al. (2013). Liu et al. (2016) suggests vD of Gleason
et al. (2013) may be larger due to a fit range starting at 1.7 meV, which is
partially within the measured resolution function width (Gleason et al., 2013).
The compressional sound velocities from IXS studies still trend above those
from NRIXS studies, even after correcting for enrichment effects. This may
be due to differences between NRIXS and IXS in energy and polarization of
phonons used to constrain sound velocities. However, we note NRIXS mea-
surements have little sensitivity to vP . We point the reader to Sturhahn and
Jackson (2007) for a description of the relative sensitivities of NRIXS to vφ,
vP , and vS. Similar to the comparison of vD for hcp-Fe, our reported vP

for hcp-Fe agrees well with Mao et al. (2001), Lin et al. (2005), Mao et al.
(2008) and Liu et al. (2016) and trends slightly below that of Gleason et al.
(2013). This is expected based on the vD results, as vD is strongly sensitive
to vS (Sturhahn and Jackson, 2007). The IXS studies by Antonangeli et al.
(2018) and Ohtani et al. (2013) report curves for vS at 300 K based on their
measured vP combined with existing equations of state (Dewaele et al., 2006;
Sakai et al., 2014). The vS of Antonangeli et al. (2018) and Ohtani et al.
(2013) trend respectively ∼5% and ∼11% above our reported vS for hcp-Fe,
due to IXS experiments’ insensitivity to vS and their use of a different EOS.

Debye, compressional, and shear sound velocities of bcc- and hcp-Fe0.91Ni0.09

at 300 K are plotted in Figure 4.14 and compared to results from Lin et al.
(2003) for Fe0.92Ni0.08. Velocities from both studies have been corrected to
natural enrichment via equation 4.10. The Debye velocities from both studies
are in close agreement, as are the compressional and shear velocities. Improved
statistics due smaller energy step sizes (0.25 meV compared to 2.2 meV) along
with our improved Debye velocity analysis method have allowed us to improve
the constraint on hcp-Fe0.91Ni0.09 shear velocities.

In Figure 4.15, we compare our Debye, compressional, and shear sound ve-
locities of bcc- and hcp-Fe0.8Ni0.1Si0.1 at 300 K with existing sound velocity
studies on Fe-Si and Fe-Ni-Si alloys. Previous studies include an NRIXS study
on bcc- and hcp-Fe0.85Si0.15 (Lin et al., 2003); a combined NRIXS and IXS
study on hcp-Fe0.868Ni0.086Si0.046 (Liu et al., 2016); and IXS studies on hcp-
Fe0.89Ni0.04Si0.07 (Antonangeli et al., 2010), hcp-Fe0.91Si0.09 (Antonangeli et al.,
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Figure 4.14: A comparison of Debye (vD), compressional (vP ), and shear (vS)
sound velocities for bcc- and hcp-Fe-Ni alloys from NRIXS experimental stud-
ies at 300 K. Both studies were conducted with 57Fe enriched samples, and we
plot sound velocities that have been corrected to those of natural enrichment
via equation 4.10.

2018), hcp-Fe0.89Si0.11 (Sakairi et al., 2018), bcc- and hcp-Fe0.85Si0.15 (Liu et al.,
2014), and hcp-Fe0.85Si0.15 (Mao et al., 2012). Sound velocities from this study
and those from Lin et al. (2003) and Liu et al. (2014) have been corrected to
natural enrichment via equation 4.10. The vS from IXS studies by Antonangeli
et al. (2010, 2018) are from their reported vS curves, which are based on their
measured vP paired with equations of state.

Our reported vD and vS of hcp-Fe0.8Ni0.1Si0.1 are similar to those of hcp-
Fe0.85Si0.15 (Lin et al., 2003). Based on our findings that nickel decreases
the shear velocity of iron and that silicon has a minimal effect on the shear
velocity of Fe0.91Ni0.09 for a given pressure (Figure 4.12), we would expect
hcp-Fe0.85Si0.15 to instead have a higher shear velocity than hcp-Fe0.8Ni0.1Si0.1.
Our determined vD and vS of hcp-Fe0.8Ni0.1Si0.1 deviate from those of hcp-
Fe0.868Ni0.086Si0.046 (Liu et al., 2016), especially at higher pressures where hcp-
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Figure 4.15: A comparison of Debye (vD), compressional (vP ), and shear (vS)
sound velocities for Fe-Si and Fe-Ni-Si alloys from NRIXS and IXS studies
at 300 K. For NRIXS studies conducted with 57Fe enriched samples, we plot
sound velocities that have been corrected to those of natural enrichment via
equation 4.10, except for velocities from (Liu et al., 2016), where their reported
natural enrichment correction was applied.

Fe0.868Ni0.086Si0.046 is noticeably lower than hcp-Fe0.8Ni0.1Si0.1. Based on our
finding that silicon has a minimal effect on the shear velocity of Fe0.91Ni0.09 for
a given pressure, we would expect these studies to more closely agree. Both
Lin et al. (2003) and Liu et al. (2016) apply a parabolic ‘Debye-like’ phonon
dispersion model to the low energy region of their phonon DOSs. Lin et al.
(2003) use a fixed energy range of 3.5–14 meV for the entire pressure range. Liu
et al. (2016) used Emin=3.5 meV and varied Emax according to the goodness of
fit χ2 (Emax=13 meV for 30 GPa and Emax=16.5 meV for 133 GPa). Because
alloying iron with silicon appears to decrease the parabolic ‘Debye-like’ region
of the phonon DOS (see Figure 4.7), a ‘Debye-like’ fit to Fe-Si and Fe-Ni-Si
alloys, if extended to too large of an energy range, would produce artificially
lower Debye velocities, resulting in systematically lower shear velocities. This
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could explain why the Debye and shear velocities of hcp-Fe0.85Si0.15 (Lin et al.,
2003) and hcp-Fe0.868Ni0.086Si0.046 (Liu et al., 2016) are lower than would be
expected given our sound velocities findings. We note that vP and vS from
this study are constrained by combining NRIXS determined vD with equations
of state from Chapter 2 Morrison et al. (2018), which were conducted with
samples from the same Fe0.8Ni0.1Si0.1 synthesis batch as in this study. The vP
and vS from (Lin et al., 2003) are constrained by combining vD with existing
equations of state on the same composition (Lin, 2003). Liu et al. (2016) in-
stead combines NRIXS constrained vD with IXS constrained vP to determine
vS, and pressure is determined with an equation of state for the same sample
from the same study. This difference in method may also introduce differ-
ences in reported vP and vS values. The vS from IXS studies by Antonangeli
et al. (2010, 2018) deviate noticeably from NRIXS determined vS, due to the
insensitivity of IXS measurement to vS.

Light elements

We compare our reported vD, vP , vS for bcc- and hcp-Fe, Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 at 300 K to the sound velocities of other candidate core compo-
sitions in Figure 4.16. We include NRIXS studies on Fe3S (Lin et al., 2004),
Fe3C (Gao et al., 2008), Fe7C3 (Chen et al., 2014), FeO, (Mg0.06Fe0.94)O,
(Mg0.16Fe0.84)O (Wicks et al., 2017), FeHx (Mao et al., 2004), and FeHx (Thomp-
son et al., 2018). We also include IXS studies on Fe3C (Fiquet et al., 2009)
and FeHx (Shibazaki et al., 2012).

When plotted as a function of pressure, the vP of Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
at 300 K show negligible differences with our re-analysis of hcp-Fe (Murphy
et al., 2013). The vP of Fe3S (Lin et al., 2004) trends ∼4% below hcp-Fe, while
the vP of iron-hydrides (Mao et al., 2004; Shibazaki et al., 2012; Thompson
et al., 2018) and Fe3C (Fiquet et al., 2009; Gao et al., 2008) trend above hcp-
Fe. The compressional velocities of Fe7C3 from an NRIXS study (Chen et al.,
2014) shows a noticeably different dvP/dP slope than Fe3C. As a result, the vP
of Fe3C falls above that of Fe above ∼25 GPa, while the vP of Fe7C3 falls below
iron above ∼70 GPa. The vP of (Mg,Fe)O (Wicks et al., 2017) deviates from
that of hcp-Fe above ∼50 GPa, as the dvP/dP slope of (Mg,Fe)O is noticeably
different from that of hcp-Fe. At 100 GP, the vP of FeO is ∼11% below that
of hcp-Fe.
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Figure 4.16: Debye (vD), compressional (vP ), and shear (vS) sound velocities
at 300 K of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 and our re-analysis of hcp-Fe
data from Murphy et al. (2013). We compare to other iron-light-element com-
positions. The sound velocities are plotted as reported without a correction
to natural enrichment.

As vD is predominately influenced by vS rather than by vP , the plots of vD
and vS at 300 K in Figure 4.16 show the same trends. Therefore we focus our
following discussion on vS. The constraints on vS as a function of pressure
suggest that silicon has a negligible effect on the vS of hcp-Fe and that iron-
hydrides (Mao et al., 2004; Shibazaki et al., 2012; Thompson et al., 2018) have
a higher vS than hcp-Fe. The elements nickel, silicon, oxygen, and carbon
all appear to decrease vS when alloyed with hcp-Fe, so these elements may
therefore help explain the low vS of the inner core. The vS of Fe0.91Ni0.09

trends ∼6.5% below that of hcp-Fe at 100 GPa. Fe3S (Lin et al., 2004) falls
∼10% below hcp-Fe at 60 GPa, although the dvS/dP of Fe3S is slightly steeper
than hcp-Fe, so this difference may decrease at higher pressures. At 100 GPa,
the vS of iron-rich (Mg,Fe)O (Wicks et al., 2017) is ∼26% lower than that of
hcp-Fe. The vS of Fe7C3 (Chen et al., 2014) is noticeably slower than that of
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Figure 4.17: Birch plot showing the bulk sound speed vφ at 300 K plotted as
a function of density for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 and our re-analysis
of hcp-Fe data from Murphy et al. (2013). We compare to other iron-light
element compositions. The sound velocities are plotted as reported without a
correction to natural enrichment.

Fe3C (Gao et al., 2008). From 30–50 GPa, the vS of Fe3C is ∼7–10% slower
than that of hcp-Fe, while the vS of Fe7C3 is ∼31% slower than that of hcp-
Fe. The dvS/dP slope of Fe7C3 is slightly lower than that of hcp-Fe, so the
difference between Fe7C3 and hcp-Fe may increase with pressure.

We plot bulk sound speed vφ for hcp-Fe, Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 at
300 K in Figure 4.17. We note that the trends of hcp-Fe, Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 are all remarkably linear, suggesting the validity of Birch’s law
for these compositions, at least in the pressure range investigated. We compare
to vφ from other NRIXS iron-light element studies, including Fe3S (Lin et al.,
2004), Fe3C (Gao et al., 2008), Fe7C3 (Chen et al., 2014), FeO, (Mg0.06Fe0.94)O,
(Mg0.16Fe0.84)O (Wicks et al., 2017), FeHx (Mao et al., 2004), and FeHx (Thomp-
son et al., 2018). We note that only (Mg,Fe)O noticeably deviates from Birch’s
law, which can be explained by a spin pairing transition that occurs around a
density of 8.3 g/cm3 at 300 K for iron-rich (Mg,Fe)O (Wicks et al., 2010).

Discussion

We observe in Figures 4.13, 4.15, and 4.16 that many shear sound velocities
reported in IXS studies deviate substantially both from other IXS vS studies
of similar compositions (e.g., Antonangeli et al., 2018; Ohtani et al., 2013) and
from NRIXS constraints on vS (e.g., Antonangeli et al., 2010, 2018; Ohtani
et al., 2013; Shibazaki et al., 2012). These IXS studies constrain vS by com-
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bining their constrained vP with existing equations of state. While NRIXS
experiments similarly constrain vS by combining their constrained vD with ex-
isting equations of state, the vD is strongly influenced by vS and therefore can
provide a stronger constraint on vS.

The extrapolation of vP and vS of candidate iron alloys to inner core con-
ditions requires a fairly accurate constraint on the pressure and temperature
derivatives of these quantities. Due to necessary long integration times and
technique requirements for IXS and NRIXS studies, the number of data points
and compression range in vP and vS data sets is typically much less than in, for
instance, equation of state studies. This hinders the ability to extrapolate vP
and vS to pressures relevant to the inner core. Furthermore, the thermal effects
dvP/dT and dvS/dT are poorly constrained, even for hcp-Fe. For example, the
largest reported magnitude of dvS/dT for hcp-Fe is −3.7 × 10−4 km s−1 K−1

and comes from a comparison of static elasticity and shock-compression studies
(Mao et al., 1998). A more recent constraint based on hcp-Fe ab initio con-
straints from Martorell et al. (2013a) gives dvS/dT = −3.2×10−4 km s−1 K−1.

Chen et al. (2014) suggest an inner core composed entirely of Fe7C3 would ex-
plain the ρ, vP , and vS of the inner core without invoking large sound velocity
temperature effects. However, cosmochemical and iron-silicate melt partition-
ing studies have suggested the carbon content of the whole core is <0.7–1 wt%
(Wood et al., 2013; Zhang and Yin, 2012). An ab initio study suggested the
density of Fe7C3 was too low to be a substantial component of the inner core
(Li et al., 2016), and, in our analysis of equations of state and seismic observa-
tions (Chapter 2 Morrison et al., 2018), we find a carbon content of less than
1 wt%. FeO and iron-rich (Mg,Fe)O also have a low vS compared to that of
hcp-Fe, suggesting a large oxygen content could explain the low vS of the inner
core. However, solid-liquid iron partitioning studies have suggested oxygen is
largely incompatible in the inner core (Alfè et al., 2002, 2007). Additionally,
we previously found the bulk sound speed of FeO limited the oxygen content
of the inner core to 2 wt% (Chapter 2 Morrison et al., 2018). We conclude
that constraining the effect of large compression and very high temperatures
(∼4000–5000 K) on the sound velocities, combined with tighter seismic con-
straints, will be essential to take the next steps in constraining inner core
composition.
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4.4 Grüneisen parameter

Vibrational Grüneisen parameter

The vibrational component of the Grüneisen parameter γvib for a given phonon
mode can be defined as the volume dependence of energy of that phonon mode,

γvib = − ∂ lnω

∂ lnV
= −∂ lnE

∂ lnV
, (4.11)

where ω is the frequency corresponding to the given phonon mode, and E is the
corresponding energy. As we have measured the phonon DOS for each com-
position as a function of volume, we can constrain the vibrational Grüneisen
parameter using a phonon DOS scaling relation after Murphy et al. (2011a).
We plot our phonon DOSs for each hcp phase in Figure 4.18. Upon visual
inspection, the phonon DOSs for a given composition appear to be related by
a single scaling parameter. For a given hcp-phase, we scale a single phonon
DOS D(E, Vi) to all other phonon DOSs D(E, V ) using the relation

D(E, V ) = ξ(V, Vi)D [ξ(V, Vi)E, Vi] , (4.12)

where Vi is the volume of the reference phonon DOS, V is the volume to
which the reference phonon DOS is scaled, ξ(V, Vi) is an energy independent
scaling parameter, and ξ(V, Vi) = 1 when V = Vi. For hcp-Fe0.91Ni0.09, we
compare the measured phonon DOSs to the scaled phonon DOS measured
at Vi = 18.72 ± 0.04 Å3 (P = 48 ± 1 GPa) in the left panel of Figure 4.18.
Similarly, for hcp-Fe0.8Ni0.1Si0.1, we compare the measured phonon DOSs to
the scaled phonon DOS measured at Vi = 19.09± 0.06 Å3 (P = 41± 1 GPa)
in the middle panel of Figure 4.18. For our re-analysis of hcp-Fe, we follow
Murphy et al. (2011a) and compare the measured phonon DOSs to the scaled
phonon DOS measured at Vi = 17.10± 0.07 Å3 (P = 90± 3 GPa) in the right
panel of Figure 4.18.

For a given hcp-phase, we apply equation 4.12 to scale a reference phonon
DOS D(E, Vi) to all other phonon DOSs D(E, V ) using a linear least squares
regression, thereby obtaining a scaling parameter corresponding to each pair
of phonon DOSs. We repeat this process with the other phonon DOS acting
as the reference to obtain a total of 7 × 8 = 56 scaling parameters for hcp-
Fe0.91Ni0.09, 5× 6 = 30 scaling parameters for hcp-Fe0.8Ni0.1Si0.1, and 9× 10 =

90 scaling parameters for hcp-Fe. These scaling parameters are plotted as a
function of V/Vi in Figure 4.19. The near-linear trend of the scaling parameter
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Figure 4.18: Examples of scaled phonon DOSs (red) compared to measured
phonon DOS (black with gray error bars) for hcp-structured Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and our re-analysis of Fe data from Murphy et al. (2011a). The
hcp-Fe0.91Ni0.09 at 48 GPa phonon DOS and the hcp-Fe0.8Ni0.1Si0.1 at 41 GPa
phonon DOS are scaled to each compression point according to equation 4.12.
Similarly, our re-analyzed phonon DOS of hcp-Fe from Murphy et al. (2013)
at 90 GPa is scaled to each compression point following the same method.

ξ with respect to V/Vi demonstrates the applicability of the scaling law in
equation 4.12.

We combine a rephrasing of equation 4.11,

γvib = −∂ ln ξ(V, Vi)

∂ lnVi
, (4.13)

with the commonly applied empirical relation,

γvib = γvib,i

(
V

Vi

)q
, (4.14)

where q is a fitting parameter, and the subscript i refers to a reference phonon
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Fe Fe0.91Ni0.09 Fe0.91Ni0.09Si0.09

Figure 4.19: Phonon DOS scaling parameters for hcp-Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and Fe as determined from equation 4.12 and the procedure
detailed in section 4.4. Data for hcp-Fe is re-analyzed from Murphy et al.
(2011a).

DOS. Combining equations 4.13 and 4.14 and integrating yields

ξ(V, Vi) = exp

{
γvib,i
q

[(
V

Vi

)q
− 1

]}
, (4.15)

where q 6= 0. Substituting an analogous relation to equation 4.14,

γvib,i = γvib,0

(
Vi
V0

)q
, (4.16)

into equation 4.15 yields

ξ(V, Vi) = exp

{
γvib,0
q

(
Vi
V0

)q [(V
Vi

)q
− 1

]}
, (4.17)

where ξ is the scaling parameter as a function of volume V and reference vol-
ume Vi. V0 is the volume at 0 GPa, as determined with an external equation of
state. The vibrational Grüneisen parameter at 0 GPa, γvib,0, and q are fitting
parameters. We applied equation 4.17 to the scaling parameters in Figure 4.19
using a linear least squares regression to determine γvib,0 and q. Then equa-
tion 4.16 was applied to determine the vibrational Grüneisen parameter as a
function of volume Vi.

We applied a grid search to the regression of equation 4.17, and we found the
scaling parameter values shown in Figure 4.19 do not constrain q. Therefore,
we fix q at the commonly assumed value of 1, and obtain values of γvib,0 =

2.04±0.01 for hcp-Fe, γvib,0 = 2.07±0.02 for hcp-Fe0.91Ni0.09, and γvib,0 = 2.03±
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Fe

Fe0.91Ni0.09
Fe0.8Ni0.1Si0.1

Figure 4.20: The vibrational Grüneisen parameter γvib for hcp-Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and Fe calculated using two methods. The hcp-Fe data is based
on our re-analysis of data from Murphy et al. (2011a). The first method ap-
plies equation 4.17 (curves with shaded regions representing uncertainty). The
second method applies equation 4.20 (filled circles) and is a rough approxima-
tion with larger uncertainties. It serves as a validity check on the assumptions
of method 1, as it does not rely on the empirical relation of equation 4.14.

0.05 for hcp-Fe0.8Ni0.1Si0.1. The resulting vibrational Grüneisen parameters are
plotted as lines with shaded uncertainties in Figure 4.20.

To test the robustness and validity of the above method, we approximate
the vibrational Grüneisen parameter without the application of the empirical
equations 4.14 and 4.16. The scaling parameter ξ can be expressed as a relation
between phonon branch energies at different volumes V and Vi, where Vi is
the reference volume,

ξ = Ei/E. (4.18)

Equation 4.11 can then be coarsely approximated as

γvib,i ≈ −
Vi
Ei

(
E − Ei
V − Vi

)
. (4.19)

Substituting equation 4.18 into equation 4.19, we find

γvib,i ≈ −
Vi
Ei

(
(Ei/ξ)− Ei
V − Vi

)
≈ (1− 1/ξ)Vi

V − Vi
. (4.20)

We select a single hcp phonon DOS collected at volume Vi to serve as a ref-
erence, and we pair it with each other phonon DOS of the same composition
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Fe (Merkel et al. 2000)
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Figure 4.21: Vibrational Grüneisen parameter γvib for hcp-Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and Fe calculated with equation 4.17 compared γvib for hcp-
Fe determined from results of NRIXS measurements by Murphy et al. (2011a)
re-analyzed by Fei et al. (2016), ab initio calculations at 500 K (Sha and Co-
hen, 2010), shock-wave and 300 K static compression XRD data (Dewaele
et al., 2006), static compression Raman spectroscopy at 300 K (Merkel et al.,
2000), and static compression XRD data (Dubrovinsky et al., 2000).

(at volume V ) to estimate the corresponding γvib,i. We then average all esti-
mated γvib,i for a given reference phonon DOS. We repeat this process with
each phonon DOS serving as a reference. While this method is an approxima-
tion for γvib,i, we note that it does not rely on the application of the empirical
relation in equation 4.14, on a linear least squares fit, or on fixing the fitting
parameter q. Therefore, it can serve a check of the validity of equation 4.17.
We plot γvib,i as determined from both methods as a function of volume for
each composition in Figure 4.20. The two methods of determining γvib,i agree
well within error bars within the measured volume region. However, the γvib,i
curve calculated with equation 4.17 has a powerful advantage, as it can be
extrapolated to 0 GPa or to higher pressures. Additionally, the γvib,i curve
is more reliable, because the other method depends on a very rough approx-
imation for the derivative in equation 4.11. We note that the error bars of
the γvib,i curve (calculated with equation 4.17) are much smaller than those of
the estimated γvib,i (calculated with equation 4.20) due to the imposition of
equation 4.14 and the lack of the rough approximation in equation 4.19.
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Figure 4.22: Various reported γvib determined from the hcp-Fe NRIXS data
reported in Murphy et al. (2011a). Our analysis using equation 4.17 and q =
1 and our approximation using equation 4.20 are internally consistent and in
agreement with published results from Murphy et al. (2011a) with q = 1. Our
analysis is not in agreement with results from Fei et al. (2016).

The γvib for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 and our re-analysis of hcp-Fe
data from Murphy et al. (2011a) are within close agreement (Figure 4.21)
and nearly indistinguishable within our reported error bars. We compare to
previously reported values of γvib for hcp-Fe. Ab initio calculations by Sha
and Cohen (2010) computed at 500 K are similar to our results, although the
slope of γvib with respect to volume is noticeably different. The γvib reported
by Dewaele et al. (2006) is determined with shock-wave and 300 K static
compression XRD data and is in close agreement with our results. Merkel
et al. (2000) constrain γvib with Raman spectroscopy at 300 K, andDubrovinsky
et al. (2000) constrain γvib with static compression XRD data. Fei et al. (2016)
calculate γvib from the results of Murphy et al. (2011a), much as we do in this
study.

In Figure 4.22, we compare γvib reported in Murphy et al. (2011a), Fei et al.
(2016), and our study, which all use the same NRIXS hcp-Fe data set from
Murphy et al. (2011a). We plot both our γvib results for hcp-Fe calculated using
equation 4.17 and equation 4.20. Note that each study (with the exception of
our approximation using equation 4.20) applies the same empirical constraint
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Figure 4.23: Scaled phonon DOSs (red) compared to measured phonon DOS
(black with gray error bars) for hcp-structured Fe. The hcp-Fe phonon DOS
at 30 GPa is scaled to each compression point according to equation 4.12. On
the left is our analysis of Murphy et al. (2011a), and on the right is the phonon
DOS scaling calculated from γvib from Fei et al. (2016).

of equation 4.14. Our analyses are internally consistent and in close agreement
with published results fromMurphy et al. (2011a) with q = 1. Small differences
between our analysis using equation 4.17 and reported values from Murphy
et al. (2011a) are likely due to our exclusion of the NRIXS data set at 36 GPa.
However, our results differ from the γvib of Fei et al. (2016).

We investigate the difference between our γvib analysis and that of Fei et al.
(2016), and we estimate the effect of this difference on the extrapolation of
an EOS to inner core conditions. We apply equation 4.15 to the γvib of Fei
et al. (2016), and we compare the resulting scaled phonon DOS to ours in
Figures 4.23–4.25. Figure 4.23 illustrates the scaling of the 30 GPa phonon
DOS, and Figures 4.24 and 4.25 illustrate the scaling of the 90 and 171 GPa
phonon DOS, respectively. The phonon DOS scaling with volume deviates
slightly from equation 4.12. Higher energy phonon modes shift to higher ener-
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Figure 4.24: Scaled phonon DOSs (red) compared to measured phonon DOS
(black with gray error bars) for hcp-structured Fe. The hcp-Fe phonon DOS
at 90 GPa is scaled to each compression point according to equation 4.12. On
the left is our analysis of Murphy et al. (2011a), and on the right is the phonon
DOS scaling calculated from γvib from Fei et al. (2016).

gies slightly more with increasing pressure than do lower energy modes. This
is particularly evident in Figures 4.23 and 4.25. Whereas the scaling fit in
this study weights the phonon modes roughly evenly, the scaling fit in Fei
et al. (2016) preferentially fits the lower energy region of the phonon DOS.
We therefore suggest the γvib from Fei et al. (2016) is analogous to the Debye
Grüneisen parameter, defined as

γD =
1

3
− V

vD

(
vD
V

)
T
. (4.21)

This is supported by the close agreement between the γvib from Fei et al. (2016)
and the γD from Murphy et al. (2011a).

We estimate the impact of γvib from Murphy et al. (2011a), Fei et al. (2016),
and this study on isothermal EOS extrapolation to inner core conditions. We
extrapolate the 300 K hcp-iron EOS from Dewaele et al. (2006) to 5500 K using
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Figure 4.25: Scaled phonon DOSs (red) compared to measured phonon DOS
(black with gray error bars) for hcp-structured Fe. The hcp-Fe phonon DOS
at 171 GPa is scaled to each compression point according to equation 4.12.
On the left is our analysis of Murphy et al. (2011a), and on the right is the
phonon DOS scaling calculated from γvib from Fei et al. (2016).

the methods described in Section 2.5. We apply Θ0 = 417 K and each of the
γvib from Murphy et al. (2011a), Fei et al. (2016), and this study. The resulting
density, bulk modulus, and bulk sound speed are compared in Figure 4.26. The
bars to the right represent the estimated uncertainty as reported in Table 2.6,
where uncertainties from electronic or anharmonic contributions to thermal
pressure are neglected. The seismic model AK135-F is plotted for reference
(Kennett et al., 1995) with uncertainties for ρ (2%), KS (2.3%), and vφ (0.6%)
(Deuss , 2008; Masters and Gubbins , 2003).

In comparison to existing equation of state uncertainty and seismic uncertainty,
the γvib from Murphy et al. (2011a), Fei et al. (2016), and this study intro-
duce negligible differences into the thermal equation of state at 5500 K and
inner core pressures. This is before taking into account the uncertainties from
electronic or anharmonic contributions to thermal pressure. In Section 2.5,
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Figure 4.26: Thermal EOSs for hcp-Fe (Dewaele et al., 2006) are extrapolated
to inner core conditions to calculate density ρ, adiabatic bulk modulusKS, and
bulk sound speed vφ as a function of pressure at 5500 K (see text for details).
Estimated electronic and anharmonic contributions to thermal pressure are not
included. Bars (right) represent uncertainty due to EOS parameters for hcp-Fe.
We compare to the seismic model AK135-F (red line) (Kennett et al., 1995)
with estimated uncertainties for ρ (2%), KS (2.3%), and vφ (0.6%) (Deuss ,
2008; Masters and Gubbins , 2003).

we estimate the electronic and anharmonic contributions to thermal pressure
with theoretical calculations from Dewaele et al. (2006), and we find a com-
bined Pel +Pahn of 14.5 GPa at 5500 K. At 5500 K and 3.7 g/cm3 density, the
formulation from Fei et al. (2016) estimates Pel + Pahn = 14.8 GPa, in close
agreement with Dewaele et al. (2006). Therefore, adding electronic and anhar-
monic contributions to thermal pressure to Figure 4.26 would not noticeably
change the difference between the three compared thermal equations of state
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for hcp-iron. We conclude that the differences between γvib from Murphy et al.
(2011a), Fei et al. (2016), and this study have a negligible impact on ρ, KS,
and vφ at inner core conditions.

Previoiusly in Section 2.5 Morrison et al. (2018), we applied the γvib from
Murphy et al. (2011a) and Θ0 = 417 K (Dewaele et al., 2006) to our isothermal
equations of state of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 to determine thermal
equations of state. We then reported the corresponding ρ, KS, and vφ. In this
section, we find the differences between the γvib of hcp-Fe, Fe0.91Ni0.09, and
Fe0.8Ni0.1Si0.1 to be negligible, and our re-analysis of γvib of hcp-Fe is in close
agreement with that of Murphy et al. (2011a). Therefore, we conclude that our
application of the γvib of hcp-Fe from Murphy et al. (2011a) to hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1 in Section 2.5 is a reasonable approximation.

4.5 Vibrational free energy and thermal pressure

A key element to constrain core composition is the comparison of the densities
of various iron alloys under core conditions to seismic constraints. Experimen-
tally constraining density-pressure-temperature relations at inner core condi-
tions remains experimentally challenging. Therefore, the thermal pressure of
iron alloys (Pth) is critical in extrapolating equations of state conducted at
lower temperatures to inner core temperatures. Previously, the Pth of hcp-iron
has been investigated with shock-compression experiments using the thermo-
dynamic Gruüneisen parameter and Mie-Grüneisen theory (Brown and Mc-
queen, 1986; Jeanloz , 1979). Theoretical calculations have also estimated the
Pth of hcp-iron (Alfè et al., 2001; Bouchet et al., 2013; Sha and Cohen, 2010;
Stixrude et al., 1997; Vočadlo et al., 2000; Wasserman et al., 1996). Murphy
et al. (2011a,b) constrained the vibrational component Pvib of hcp-iron with
NRIXS measurements via the vibrational free energy Fvib and the vibrational
Grüneisen parameter. By comparison, the thermal pressure of iron-nickel and
iron-silicon alloys has received little attention. Zhang et al. (2014) investigate
the thermal pressure of iron-nickel-silicon alloys with shock compression, and
Côté et al. (2010, 2012) apply theoretical calculations to study the thermal
pressure of iron-silicon and iron-nickel alloys, respectively. Here, we apply
the methods of Murphy et al. (2011a,b) to Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. For
consistency, we also re-analyze NRIXS data from Murphy et al. (2011a,b) to
ensure a systematic comparison of the alloys.
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Table 4.5: Vibrational free energy and components of the thermal pressure for
hcp phases

at 300 K at 5500 K
V P Fvib P h

vib P h
vib P h

anh Pel Pth
(Å3) (GPa) (meV/atom) (GPa) (GPa) (GPa) (GPa) (GPa)

hcp-Fea
19.66(7) 30(2) 21.6(4) 1.83(9) 33.5(16) 3.4 13.9 50.8
18.47(3) 53(2) 29.4(10) 2.17(5) 39.7(9) 3.3 13.7 56.7
17.80(3) 69(3) 34.3(8) 2.36(3) 43.3(5) 3.2 13.5 60.0
17.50(7) 77(3) 35.8(5) 2.45(3) 44.8(5) 3.1 13.4 61.3
17.10(7) 90(3) 39.3(5) 2.56(3) 47.0(5) 3.1 13.3 63.4
16.61(7) 106(3) 42.8(5) 2.70(4) 49.5(7) 3.0 13.2 65.7
16.24(7) 121(3) 46.6(7) 2.81(5) 51.5(9) 2.9 13.1 67.5
15.97(7) 133(4) 49.1(8) 2.89(6) 52.9(10) 2.9 13.0 68.8
15.61(7) 151(5) 52.0(10) 2.99(7) 54.8(12) 2.8 12.9 70.5
15.21(7) 171(5) 56.1(12) 3.10(8) 56.9(15) 2.8 12.8 72.5

hcp-Fe0.91Ni0.09

20.59(2) 18.0(1) 12.0(6) 1.89(22) 34.7(40) 3.6 14.1 52.4
20.21(3) 22.8(2) 13.3(7) 1.97(18) 36.1(33) 3.5 14.0 53.6
19.09(6) 41(1) 21.7(7) 2.20(8) 40.4(14) 3.3 13.7 57.4
18.72(4) 48(1) 24.4(8) 2.28(6) 41.8(11) 3.3 13.7 58.8
18.07(4) 63(1) 28.7(8) 2.41(10) 44.3(18) 3.2 13.5 61.0
17.60(2) 75(1) 31.2(8) 2.51(14) 46.0(26) 3.1 13.4 62.5
17.33(3) 83(1) 34.1(8) 2.57(17) 47.0(31) 3.1 13.3 63.4
16.72(4) 104(3) 39.9(8) 2.69(23) 49.4(43) 3.0 13.1 65.5

hcp-Fe0.8Ni0.1Si0.1
19.90(3) 27.9(3) 18.3(5) 2.30(49) 42.2(91) 3.3 13.6 59.1
19.31(5) 37.1(6) 21.9(5) 2.34(30) 42.9(54) 3.2 13.4 59.5
19.09(6) 41(1) 25.2(5) 2.35(23) 43.1(42) 3.2 13.4 59.7
18.40(5) 55(1) 29.6(8) 2.40(15) 44.0(27) 3.1 13.2 60.3
17.83(4) 69(1) 32.7(10) 2.44(29) 44.7(54) 3.0 13.1 60.8
17.26(6) 86(3) 38.4(10) 2.47(48) 45.3(89) 2.9 12.9 61.1

aRe-analyzed from Murphy et al. (2011b)

The harmonic vibrational free energy Fvib is accessible from the phonon DOS
with

Fvib =
1

β

∫
ln

(
2 sinh

βE

2

)
D(E, V )dE, (4.22)

where β = (kBT )−1. Fvib is related to the harmonic vibrational component of
the thermal pressure Pvib. When combined with the electronic and anharmonic
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Fvib = 0.46V 2 - 24V + 310

Fvib = 0.3V 2 - 19V + 270

Fvib = 0.1V 2 - 11V + 200

Figure 4.27: Harmonic vibrational free energy Fvib for Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and Fe at 300 K as determined from the phonon DOS. The
hcp-Fe data is a re-analysis of data from Murphy et al. (2011b). Error bars
where not shown are smaller than the symbols. Empirical equations for the
hcp-phases are displayed.

components Pel and Panh, this yields the total thermal pressure Pth,

Pth = Pvib + Pel + Panh = −
(
∂Fvib
∂V

)
T

−
(
∂Fel
∂V

)
T

−
(
∂Fanh
∂V

)
T

. (4.23)

The harmonic vibrational free energy Fvib of Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and
Fe at 300 K is plotted in Figure 4.27, and we fit empirical second-order poly-
nomials to the Fvib of the hcp phases to calculate the derivative (∂Fvib/∂V )T .
The polynomials are listed in Figure 4.27, where volume V is in Å3 and Fvib
is in meV/atom. We find the curvature of Fvib for hcp-Fe0.8Ni0.1Si0.1 is poorly
constrained due to the smaller compression range explored for the Fe-Ni-Si
alloy. We find for hcp-Fe that Pvib = −0.29V + 7.5, for hcp-Fe0.91Ni0.09 that
Pvib = −0.21V + 6.2, and for that hcp-Fe0.8Ni0.1Si0.1 Pvib = −0.07V + 3.6,
where V is in Å3 and Pvib has been converted to units of GPa. The resulting
Pvib are plotted in Figure 4.27, and the Fvib and corresponding Pvib for each
hcp volume can be found in Table 4.5.
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300 K

Figure 4.28: Harmonic vibrational thermal pressure Pvib for Fe0.91Ni0.09,
Fe0.8Ni0.1Si0.1, and Fe at 300 K as determined from the derivative of Fvib.
The hcp-Fe data is a re-analysis of data from Murphy et al. (2011b).
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Figure 4.29: Harmonic vibrational thermal pressure P h
vib as a function of vol-

ume and temperature for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe at 2000, 4000,
and 5500 K (circles). The hcp-Fe data is a re-analysis of data from Murphy
et al. (2011b). We compare to ab initio calculations of the harmonic thermal
pressure for hcp-Fe by Alfè et al. (2001) at 2000, 4000, and 6000 K (solid lines).
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Figure 4.30: Thermal pressure Pth as a function of volume and temperature
for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe. The hcp-Fe data is a re-analysis
of data from Murphy et al. (2011b). We include harmonic, anharmonic, and
electronic contributions to Pth. See text for more details.

As can be seen in equation 4.22, Fvib is directly proportional to temperature.
Therefore, our 300 K data can be used to inform the temperature dependence
of the harmonic Pvib with the following relation:

Pvib(V, T ) =
(

T

300 K

)
Pvib(V, 300 K). (4.24)

We plot the temperature dependent harmonic P h
vib in Figure 4.29, and compare

to the harmonic P h
vib calculated by Alfè et al. (2001). We note that the slope

of P h
vib with volume of hcp-Fe is steeper than that previously published by

Murphy et al. (2011b), due in part to our exclusion of the NRIXS data at
36 GPa, which had much lower counts than the other compression points in
the same data set. Our re-analysis of P h

vib for hcp-Fe is in close agreement
with Alfè et al. (2001), although our slope of P h

vib with volume is steeper. The
P h
vib for hcp-Fe0.91Ni0.09 is nearly indistinguishable from that of hcp-Fe. The

slope of Pvib for hcp-Fe0.8Ni0.1Si0.1 is much more shallow than that of hcp-Fe or
Fe0.91Ni0.09, although we note the slope of of hcp-Fe0.8Ni0.1Si0.1 is not as well
constrained due to the smaller compression range explored.
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Our above calculation of P h
vib neglects both the anharmonic contribution P anh

vib

and the electronic contribution Pel to the thermal pressure Pth, which are
important for high temperatures. The P anh

vib and Pel of iron alloys are not
yet well constrained by experimental data. Murphy et al. (2011b) and Sakai
et al. (2014) used the P anh

vib and Pel of hcp-Fe with fits from Dewaele et al.
(2006). These fits are based on hcp-Fe ab initio calculations by Alfè et al.
(2001) and use the P h

vib and Pel formulation from Dorogokupets and Oganov
(2006). As similar ab initio calculations are not available for hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1, we applied the hcp-Fe P h
vib and Pel from Dewaele et al.

(2006) to each of our hcp compositions to estimate Pth. The estimated con-
tributions of P h

vib, P anh
vib , and Pel for hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe

at 5500 K are tabulated in Table 4.5, and the corresponding total thermal
pressures Pth for 300, 2000, 4000, and 5500 K are plotted in Figure 4.30.

4.6 Lamb-Mössbauer factor

The Lamb-Mössbauer factor (fLM) is the probability for recoilless absorption.
It contains information about the binding of the resonant nuclei (57Fe in this
study) in the lattice, and it therefore depends on composition, local environ-
ment structure, pressure, and temperature. In NRIXS experiments, it is the
ratio of the elastic to total incoherent scattering. It takes a form similar to
that of the Debye-Waller factor. While the Debye-Waller factor describes co-
herent, fast scattering events, fLM describes slow scattering events such as
those which take place over the lifetime of nuclear resonance (141 ns for 57Fe)
(Sturhahn, 2004).

There are two different methods of accessing fLM from NRIXS measurements.
First, fLM can be determined from a moments analysis of the excitation prob-
ability density S(E, Vi) (see Section 4.2), where fLM is related to the 0th-order
moment S0(E, Vi) (Sturhahn and Chumakov , 1999). Second, fLM can be cal-
culated from the determined phonon DOS, which assumes a quasi-harmonic
lattice model (see Section 4.2). The quantity fLM is related to the thermal
motion of the resonant nuclei about their equilibrium positions, which can be
quantified by the mean square atomic displacement 〈u2〉. From the phonon
DOS, 〈u2〉 can be calculated as

〈u2〉 =
ER
3k2

0

∫ 1

E
coth

βE

2
D(E, V )dE, (4.25)

where k0 is the wavenumber of the resonant x-rays (k=7.306 Å−1 for 57Fe).
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Figure 4.31: Left panel: fLM for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and
Fe calculated with a moments analysis of S(E, Vi) (triangles) and determined
from the phonon DOS (circles). (See text for more details.) The data for hcp-
Fe is a re-analysis of data from Murphy et al. (2013). Error bars for fLM from
phonon DOS analysis are smaller than the displayed symbols. Right panel:
fLM phonon DOS analysis for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe
are compared to fLM from existing hcp-Fe studies (Gleason et al., 2013; Lin
et al., 2005).

The Lamb-Mössbauer factor is then

fLM = e−k
2〈u2〉. (4.26)

While both methods of determining fLM rely on S(E, Vi), only the phonon
DOS analysis relies on the quasi-harmonic assumption.

We compare our determined fLM from the moments analysis and the phonon
DOS analysis for Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe in Figure 4.31. We note
that both methods of determining fLM are in close agreement. For the hcp
phases, adding 9 at% Ni to iron decreases fLM by ∼1%. The fLM of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 are in close agreement, suggesting small amounts
of silicon have a negligible effect on iron-nickel’s fLM . For the bcc-phases, the
addition of nickel and silicon both decrease the fLM of iron.

4.7 Entropy and thermal expansion

The volumetric thermal expansion coefficient α helps constrain the density of
iron alloys at inner core conditions. Additionally, α factors into our calcula-
tion of the isentropic bulk modulus (equation 4.7), which is needed to constrain
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Table 4.6: Vibrational thermodynamic quantities derived from the phonon
DOS
Phase V P fLM Svib αvib EK Cvib

(Å3) (GPa) (kB/atom) (10−5K−1) (meV/atom) (kB/atom)
bcc-Fe

23.46(3) 0 0.789(1) 3.14(1) 14.2(1) 2.72(1)
hcp-Fe

19.66(7) 30(2) 0.859(1) 2.59(1) 1.76(4) 14.8(1) 2.60(2)
18.47(3) 53(2) 0.878(2) 2.36(3) 1.33(3) 15.1(2) 2.53(3)
17.80(3) 69(3) 0.888(2) 2.24(2) 1.15(2) 15.3(2) 2.49(2)
17.50(7) 77(3) 0.892(1) 2.19(1) 1.08(2) 15.4(1) 2.47(2)
17.10(7) 90(3) 0.899(1) 2.10(1) 0.98(2) 15.6(1) 2.44(2)
16.61(7) 106(3) 0.904(1) 2.01(1) 0.88(2) 15.8(1) 2.40(2)
16.24(7) 121(3) 0.910(1) 1.92(1) 0.81(2) 16.1(2) 2.36(2)
15.97(7) 133(4) 0.914(1) 1.86(2) 0.76(1) 16.2(2) 2.33(2)
15.61(7) 151(5) 0.918(2) 1.80(2) 0.70(1) 16.4(2) 2.30(2)
15.21(7) 171(5) 0.922(2) 1.70(2) 0.64(1) 16.7(3) 2.25(3)

bcc-Fe0.91Ni0.09

23.73(2) 0 0.775(1) 3.21(1) 14.1(1) 2.74(1)
23.38(3) 1.7(1) 0.778(2) 3.21(2) 14.1(1) 2.74(1)
23.08(3) 3.8(1) 0.784(2) 3.17(2) 14.2(1) 2.73(2)
22.98(3) 4.5(1) 0.788(2) 3.15(2) 14.2(1) 2.72(2)
22.54(2) 8.1(1) 0.802(2) 3.02(2) 14.3(1) 2.70(2)

hcp-Fe0.91Ni0.09

20.59(2) 18.0(1) 0.826(1) 2.89(2) 2.24(5) 14.4(1) 2.68(2)
20.21(3) 22.8(2) 0.832(1) 2.84(2) 2.05(4) 14.5(1) 2.66(2)
19.09(6) 41(1) 0.856(1) 2.60(2) 1.57(3) 14.8(1) 2.60(2)
18.72(4) 48(1) 0.864(1) 2.52(2) 1.45(3) 14.9(2) 2.58(2)
18.07(4) 63(1) 0.875(1) 2.40(2) 1.24(2) 15.1(2) 2.54(2)
17.60(2) 75(1) 0.881(1) 2.32(2) 1.11(2) 15.2(2) 2.52(2)
17.33(3) 83(1) 0.885(1) 2.25(2) 1.04(2) 15.4(2) 2.49(2)
16.72(4) 104(3) 0.899(1) 2.09(2) 0.91(2) 15.7(2) 2.43(2)

bcc-Fe0.8Ni0.1Si0.1
23.38(3) 0 0.769(1) 3.23(1) 14.1(1) 2.74(1)
22.53(3) 6.5(1) 0.780(2) 3.15(1) 14.1(1) 2.73(1)
22.46(2) 7.1(1) 0.785(2) 3.09(1) 14.2(1) 2.72(1)

hcp-Fe0.8Ni0.1Si0.1
19.90(3) 27.9(3) 0.841(1) 2.70(1) 2.01(4) 14.7(1) 2.62(1)
19.31(5) 37.1(6) 0.853(1) 2.59(1) 1.72(3) 14.8(1) 2.59(1)
19.09(6) 41(1) 0.863(1) 2.49(1) 1.63(3) 14.9(1) 2.57(1)
18.40(5) 55(1) 0.871(1) 2.38(1) 1.37(2) 15.2(2) 2.52(2)
17.83(4) 69(1) 0.880(1) 2.29(1) 1.18(2) 15.3(2) 2.50(2)
17.26(6) 86(3) 0.891(1) 2.14(2) 1.02(2) 15.6(2) 2.44(2)

aRe-analyzed from Murphy et al. (2011b)
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Figure 4.32: Vibrational harmonic component of entropy per 57Fe resonant
atom Svib for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe. The data for
hcp-Fe is a re-analysis of data from Murphy et al. (2013). In the left panel,
linear fits for the hcp phases are displayed. For hcp-Fe, we obtain a fit of
Svib = 0.197V − 1.28. For hcp-Fe0.91Ni0.09, Svib = 0.203V − 1.28. For hcp-
Fe0.8Ni0.1Si0.1, Svib = 0.204V − 1.37. In the right panel, we compare to Svib
from existing NRIXS studies: bcc- and hcp-Fe (Gleason et al., 2013; Lin et al.,
2005; Mao et al., 2001), Fe0.92Ni0.08, and Fe0.85Ni0.15 (Lin et al., 2003).

compressional and shear sound velocities from the Debye sound velocity (sec-
tion 4.3).

The vibrational component of thermal expansion αvib is related to the vibra-
tional entropy per 57Fe resonant atom (Svib). Svib is accessible via the phonon
DOS, which assumes a quasi-harmonic approximation, with

Svib =
kBβ

2

∫
E coth

βE

2
D(E, V )dE − kB

∫
ln

(
2 sinh

βE

2

)
D(E, V )dE.

(4.27)
The Svib for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe are plotted in
Figure 4.32.

The derivative of Svib with respect to volume is related to αvib with

αvib =
1

KT

(
∂Svib
∂V

)
T

, (4.28)

where KT is the isothermal bulk modulus, accessible with equations of state
(EOSs). For hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, we use the corresponding Vinet
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300 K

Figure 4.33: Vibrational harmonic component of thermal expansion for hcp-
Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe at 300 K. The data for hcp-Fe is a re-analysis
of data from Murphy et al. (2013). If not shown, error bars are smaller than
the displayed symbol.

EOSs from Chapter 2. For hcp-Fe, we use the Vinet EOS from Dewaele
et al. (2006). The EOS experimental conditions and parameters are listed
in Table 2.2. To calculate (∂Svib/∂V )T , we apply linear fits to the hcp data.
These fits and their corresponding equations are displayed in Figure 4.32.
Our resulting αvib for the hcp phases at 300 K are plotted in Figure 4.33
and tabulated in Table 4.6. The αvib of hcp-Fe and Fe0.91Ni0.09 are in close
agreement, while Fe0.8Ni0.1Si0.1 has a slightly higher thermal expansion at large
volumes. At smaller volumes, αvib of Fe0.8Ni0.1Si0.1 seems to approach that of
hcp-Fe and Fe0.91Ni0.09.

4.8 Other thermodynamic quantities

The vibrational kinetic energy per 57Fe resonant atom EK at 300 K can be
determined from NRIXS data in two ways. The first method uses the moment
analysis of the excitation probability density S(E, Vi) (see section 4.2), where
EK is related to the 2nd-order moment S2(E, Vi) (Sturhahn and Chumakov ,
1999). The second method is from the phonon DOS determined with the
quasi-harmonic approximation. The vibrational internal energy per 57Fe atom
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Figure 4.34: Left panel: Vibrational kinetic energy per 57Fe atom EK at 300 K
for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe calculated with a moments
analysis of S(E, Vi) (triangles) and from the phonon DOS (circles). (See text
for more details.) The data for hcp-Fe is a re-analysis of data from Mur-
phy et al. (2013). Right panel: EK phonon DOS analysis for bcc- and hcp-
Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe are compared to fLM from other NRIXS
studies: bcc- and hcp-Fe (Gleason et al., 2013; Lin et al., 2005; Mao et al.,
2001), Fe0.92Ni0.08, and Fe0.85Ni0.15 (Lin et al., 2003).

Uvib,

Uvib(V ) =
1

2

∫
E coth

βE

2
D(E, V )dE, (4.29)

is composed of equal parts kinetic and potential energy, so EK = (1/2)Uvib.
Both methods use the excitation probability density S(E, Vi), but only the
phonon DOS method relies on the quasi-harmonic approximation. We calcu-
late EK for Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe with the moment analysis and
from the phonon DOS and compare in Figure 4.34. The EK from both meth-
ods agree closely within error bars. The EK as determined with the phonon
DOS is listed in Table 4.6. The difference between compositions for the bcc
phases is negligible. For the hcp phases, the EK of Fe0.91Ni0.09 trends slightly
below those of Fe0.8Ni0.1Si0.1 and Fe; however, all three hcp phases agree within
uncertainty.

Lastly, the phonon DOS also yields the vibrational component of the specific
heat capacity via

Cvib(V ) = kB

∫ (
βE

2 sinh(βE/2)

)2

D(E, V )dE. (4.30)
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Figure 4.35: Left panel: Vibrational harmonic component of the specific heat
capacity Cvib for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1, and Fe at 300 K.
The data for hcp-Fe is a re-analysis of data from Murphy et al. (2013). Right
panel: We compare our Cvib to existing studies: bcc- and hcp-Fe (Gleason
et al., 2013; Lin et al., 2005; Mao et al., 2001), Fe0.92Ni0.08, and Fe0.85Ni0.15

(Lin et al., 2003).

We plot the Cvib as a function of volume for bcc- and hcp-Fe0.91Ni0.09, Fe0.8Ni0.1Si0.1,
and Fe at 300 K in Figure 4.35 and listed in Table 4.6. The three hcp phases
have similar trends with volume, with the Cvib of hcp-Fe0.91Ni0.09 falling slightly
above those of Fe0.8Ni0.1Si0.1 and Fe.

4.9 Conclusions

We present high pressure NRIXS data on bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
at 300 K with in situ XRD. From these data, we determine the partial phonon
density of states for each composition. To ensure a systematic comparison
to pure iron, we re-analyze the hcp-iron NRIXS data presented in Murphy
et al. (2011a), Murphy et al. (2011b), and Murphy et al. (2013) using the same
methods used to analyze our Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 data sets.

We demonstrate a new method of determining the Debye sound velocity from
the low energy region of the phonon DOS. This method applies the corrected
Akaike Information Criteria and uses a binning of many possible fit ranges
to determine a probability distribution function of the Debye sound velocity.
Unlike previous methods, this method does not depend on picking an energy fit
range for the phonon DOS, and it provides an improved estimate on the Debye
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sound velocity uncertainty. We present Debye sound velocities for bcc- and
hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1. Using our previously determined equations
of state for the same compositions, we present the compressional and shear
sound velocities of bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, along with the
corresponding shear modulus. At 300 K, we find that 9 at% nickel decreases
the shear modulus of hcp-iron by ∼6%, and that silicon has a minimal effect
on the shear modulus of hcp-Fe0.91Ni0.09.

From the volume scaling of the phonon DOS, we constrain the 300 K vibra-
tional component of the Grüneisen parameter for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1.
We find that the Grüneisen parameter of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
are quite similar to that of hcp-Fe within uncertainties. Therefore, we find
our application in Section 2.5 of the Grüneisen parameter of hcp-Fe to de-
termine the thermal equations of state of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
is a reasonable approximation. The phonon DOS also provides constraints
on the volume dependence of vibrational free energy, which is directly related
to the vibrational component of thermal pressure. Again, we find negligible
differences within uncertainty between the vibrational thermal pressures of
hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 to that of hcp-Fe. By combining the vibra-
tional component with theoretical estimates of the anharmonic and electronic
contributions, we provide an estimate for the total thermal pressure of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1.

The phonon DOS also provides access to the vibrational component of entropy
per 57Fe atom, the volume derivative of which is directly related to the product
of isothermal bulk modulus and thermal expansion. Therefore, we can apply
the isothermal bulk modulus constrained in Chapter 2 to determine the vibra-
tional component of thermal expansion for hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1.
The vibrational thermal expansion of hcp-Fe0.91Ni0.09 is indistinguishable from
that of hcp-iron. Silicon slightly increases the vibrational thermal expansion
of Fe0.91Ni0.09 at low compressions, but at larger compressions above 65 GPa,
the effect becomes negligible. From the NRIXS data and from the phonon
DOS, we present constraints on the vibrational kinetic energy per 57Fe atom
and on the Lamb-Mössbauer factor, which is related to the mean square dis-
placement. The vibrational kinetic energy of Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 are
indistinguishable from that of iron within uncertainty. We find that adding
9 at% decreases the Lamb-Mössbauer factor of hcp-iron by ∼1%, and that
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silicon has a minimal impact on the Lamb-Mössbauer factor of Fe0.91Ni0.09.
Furthermore, we constrain the vibrational component of specific heat from
the phonon DOS. The vibrational specific heat of hcp-Fe0.91Ni0.09 falls slightly
above that of hcp-Fe, while the vibrational specific heat of Fe0.8Ni0.1Si0.1 is in
close agreement with that of hcp-iron. In summary, we provide improved con-
straints on the effects of nickel and silicon on the thermoelastic and vibrational
properties of iron, which is a necessary step in constraining core composition,
the thermal profile of the Earth, and the thermodynamic properties of the
core.
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C h a p t e r 5

CONCLUSIONS

Throughout this thesis, we have investigated the thermoelastic and vibrational
properties properties of bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1
at high pressures. At each step, we have strived to systematically compare our
results to bcc- and hcp-iron, for a careful analysis of the effects of nickel and
silicon on iron necessitates a systematic approach.

In Chapter 2, we investigated the equations of state of bcc- and hcp-Fe0.91Ni0.09

and Fe0.8Ni0.1Si0.1 and explore implications for the composition of the Earth’s
inner core.

• We presented powder x-ray diffraction data and equations of state at
300 K on bcc- and hcp-Fe0.91Ni0.09 from 0 to 167 GPa and on bcc- and
hcp-Fe0.8Ni0.1Si0.1 from 0 to 175 GPa.

• We constrained the effect of nickel and silicon on the density, bulk mod-
ulus, and bulk sound speed of iron alloys at 300 K.

• The density, adiabatic bulk modulus, and bulk sound speed of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 were extrapolated to 5500 K along the
inner core pressure gradient from 330 to 364 GPa and compared to the
seismic model AK135-F.

• We applied a linear mixing model to the Fe-Ni-Si system to determine to
what extent silicon is seismically consistent with the density, adiabatic
bulk modulus, and bulk sound speed observations of the inner core at 330
GPa. We found 4.3 to 5.3 wt% silicon alone could explain the density,
adiabatic bulk modulus, and bulk sound speed of the inner core.

• We extrapolated our compositional analysis to the Fe-Ni-Si-O-C-S sys-
tem by applying both a bulk aggregate model and a linear mixing model
at 330 GPa. Our analysis pointed to a low oxygen and carbon content
of the inner core (<∼2 wt% O and <1 wt% C). These results depend
on the mixing model, the temperature of the inner core boundary, and
electronic and anharmonic contributions to thermal pressure.
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In Chapter 3, we investigated the c/a axial ratio of hcp-structured materials
and explored the its relationship to anisotropy in the inner core of the Earth.

• We found that hcp-Fe0.91Ni0.09 and hcp-Fe0.8Ni0.1Si0.1 have greater c/a
axial ratios compared to hcp-Fe at 300 K.

• We investigated the relationship between the c/a axial ratio and the
compressional anisotropy measure φ = C33/C11, and we proposed a re-
lationship between the pressure derivative of the c/a axial ratio and the
anisotropy measure φ = C33/C11.

In Chapter 4, we presented experimentally determined phonon density of states
of bcc- and hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1, from which we constrained
sound velocities and a wide array of thermoelastic parameters.

• We presented high pressure NRIXS data on bcc- and hcp-Fe0.91Ni0.09 and
Fe0.8Ni0.1Si0.1 at 300 K with in situ XRD.

• We determined the partial phonon density of states (DOS) for each com-
position. To ensure a systematic comparison to pure iron, we re-analyzed
the hcp-iron NRIXS data presented in Murphy et al. (2011a), Murphy
et al. (2011b), and Murphy et al. (2013) using the same methods.

• We constrained Debye sound velocities for the investigated bcc- and hcp-
structured alloys. Using our previously determined equations of state for
the same compositions, we presented the compressional and shear sound
velocities and shear moduli. At 300 K, we found that 9 at% nickel
decreases the shear modulus of hcp-iron by ∼6%, and that silicon has a
minimal effect on the shear modulus of hcp-Fe0.91Ni0.09.

• From the volume scaling of the phonon DOS, we constrained the 300 K
vibrational component of the Grüneisen parameter for the investigated
hcp-structured alloys. We found that the Grüneisen parameter of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 are quite similar to that of hcp-Fe within
uncertainties. Therefore, our previous application of the Grüneisen pa-
rameter of hcp-Fe to determine the thermal equations of state of hcp-
Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 is a reasonable approximation (see Chapter
2).
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• We investigated the volume dependence of vibrational free energy to
constrain the vibrational component of thermal pressure. We found neg-
ligible differences within uncertainty between the vibrational thermal
pressures of hcp-Fe0.91Ni0.09 and Fe0.8Ni0.1Si0.1 to that of hcp-Fe. We
provide an estimate for the total thermal pressure of hcp-Fe, Fe0.91Ni0.09,
and Fe0.8Ni0.1Si0.1.

• We constrained the vibrational entropy per 57Fe atom, which we paired
with our previously determined isothermal bulk modulus to determine
thermal expansion. The vibrational thermal expansion of hcp-Fe0.91Ni0.09

is indistinguishable from that of hcp-iron. Silicon slightly increases the
vibrational thermal expansion of Fe0.91Ni0.09 at low pressures, but the
effect becomes negligible above 65 GPa.

• We presented constraints on the vibrational kinetic energy per 57Fe atom
and on the Lamb-Mössbauer factor.

• We constrained the vibrational component of specific heat from the
phonon DOS.

Some of the largest sources of uncertainty in constraining inner core composi-
tion are the electronic and anharmonic contributions to thermal pressure, the
effect of temperature on sound velocities, and the extrapolation of the equation
of state from 175 to 330 GPa. A logical next step following this thesis would
be to systematically extend these studies to compositions of iron containing
small amounts of oxygen, carbon, and sulfur (around 1-10 wt%). Many existing
equations of state and sound velocity constraints on iron-oxygen, iron-carbon,
and iron-sulfur materials are for samples containing much larger light element
contents than is often suggested to be in the core. Therefore, mixing analy-
sis require a large extrapolation in compositional space to investigate realistic
core compositions. As mixing analysis may not accurately predict the com-
plexities of multicomponent systems, a similarly reasonable next step would
be to investigate the equations of state, sound velocities, and thermoelastic
properties of multi-component systems, such as those proposed in Chapter 2
of this thesis.

To further understand the source of anisotropy in the inner core, careful x-ray
diffraction experiments at a range of pressures, temperatures, and composi-
tions can improve the constraints on the pressure derivative of c/a. This would
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provide important constraints on the anisotropy measure. Of course, should
synthesis of a large enough high-quality hcp-iron crystal become feasible, a
direct measurement of anisotropy would become accessible.

In this thesis, I have aimed to improve the constraints on the effects of nickel
and silicon on the thermoelastic and vibrational properties of iron. It is my goal
that conducting careful, systematic experiments with attention to uncertainty
analysis will aid our community’s progress in constraining the composition of
the core, the thermal profile of the Earth, and the thermodynamic properties
of the core.
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A p p e n d i x A

QUANTITIES DERIVED FROM X-RAY DIFFRACTION DATA
FOR EQUATION OF STATE AND ANISOTROPY ANALYSIS

Table A.1: bcc-Fe0.91Ni0.09 x-ray diffraction dataa

Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
a σa Volume σV a σa Volume σV
(Å) (Å3) (Å) (Å3) (GPa)

FeNi-Run#1
2.8700 0.0003 23.640 0.008 0
2.8622 0.0005 23.448 0.011 3.1612 0.0002 31.590 0.007 1.1 0.1
2.8471 0.0006 23.079 0.016 3.1520 0.0002 31.315 0.007 3.8 0.1
2.8348 0.0005 22.781 0.011 3.1451 0.0002 31.110 0.006 6.0 0.1
2.8266 0.0004 22.584 0.010 3.1392 0.0002 30.935 0.007 7.9 0.1
2.8138 0.0004 22.278 0.010 3.1314 0.0005 30.705 0.014 10.4 0.2
2.8044 0.0004 22.056 0.009 3.1252 0.0003 30.523 0.008 12.5 0.1
2.7943 0.0057 21.818 0.134 3.1174 0.0006 30.295 0.018 15.2 0.2

FeNi-Run#2
2.8603 0.0002 23.401 0.006 3.1601 0.0002 31.557 0.005 1.4 0.1
2.8548 0.0002 23.266 0.006 3.1566 0.0002 31.453 0.007 2.4 0.1
2.8377 0.0002 22.851 0.006 3.1464 0.0001 31.149 0.002 5.6 0.1
2.8231 0.0002 22.500 0.006 3.1375 0.0002 30.885 0.005 8.4 0.1
2.8080 0.0002 22.141 0.006 3.1273 0.0001 30.585 0.004 11.8 0.1
2.8028 0.0002 22.018 0.006 3.1235 0.0001 30.474 0.004 13.1 0.1

aSee chapter 2.2 for a detailed description of uncertainty calculations.
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Table A.2: hcp-Fe0.91Ni0.09 XRD dataa (5 pages long)

Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
b

a σa c σc Volume σV c/a σc/a a σa Volume σV
(Å) (Å) (Å3) (Å) (Å3) (GPa)

FeNi-Run#1
2.4602 0.0011 3.9703 0.0040 20.811 0.028 1.6138 0.0018 3.1174 0.0006 30.295 0.018 15.2 0.2
2.4483 0.0010 3.9426 0.0026 20.466 0.021 1.6103 0.0012 3.1056 0.0011 29.953 0.032 19.5 0.4
2.4297 0.0009 3.9103 0.0024 19.992 0.019 1.6094 0.0012 3.0899 0.0010 29.501 0.028 25.5 0.4
2.4162 0.0011 3.8872 0.0030 19.653 0.023 1.6088 0.0014 3.0783 0.0008 29.170 0.023 30.2 0.3
2.4045 0.0011 3.8666 0.0030 19.360 0.023 1.6081 0.0015 3.0689 0.0009 28.903 0.026 34.2 0.4
2.3939 0.0011 3.8471 0.0033 19.093 0.024 1.6070 0.0016 3.0572 0.0006 28.574 0.017 39.3 0.3
2.3846 0.0011 3.8317 0.0030 18.869 0.023 1.6069 0.0015 3.0475 0.0009 28.303 0.025 43.8 0.4
2.3702 0.0010 3.8071 0.0029 18.522 0.021 1.6062 0.0014 3.0332 0.0010 27.906 0.028 50.7 0.5
2.3585 0.0009 3.7871 0.0024 18.244 0.018 1.6057 0.0012 3.0207 0.0009 27.563 0.026 57.0 0.5
2.3465 0.0005 3.7692 0.0015 17.973 0.011 1.6063 0.0007 3.0058 0.0036 27.157 0.097 64.9 2.0
2.3331 0.0006 3.7493 0.0017 17.675 0.012 1.6070 0.0008 2.9926 0.0015 26.801 0.041 72.4 0.9
2.3289 0.0006 3.7421 0.0017 17.577 0.011 1.6068 0.0008 2.9876 0.0021 26.667 0.056 75.3 1.2
2.3227 0.0005 3.7307 0.0014 17.430 0.010 1.6062 0.0007 2.9809 0.0023 26.488 0.062 79.3 1.4
2.3180 0.0005 3.7230 0.0016 17.324 0.011 1.6061 0.0008 2.9749 0.0026 26.328 0.070 82.9 1.6
2.3149 0.0007 3.7167 0.0020 17.249 0.014 1.6056 0.0010 2.9714 0.0007 26.235 0.019 85.1 0.5
2.3081 0.0004 3.7062 0.0013 17.099 0.009 1.6057 0.0006 2.9626 0.0033 26.003 0.087 90.7 2.2
2.3045 0.0005 3.7006 0.0015 17.020 0.010 1.6058 0.0008 2.9589 0.0011 25.905 0.030 93.1 0.8
2.2943 0.0009 3.6833 0.0025 16.791 0.017 1.6054 0.0013 2.9479 0.0008 25.618 0.020 100.5 0.5
2.2934 0.0008 3.6821 0.0022 16.772 0.015 1.6055 0.0011 2.9468 0.0007 25.589 0.019 101.2 0.5
2.2888 0.0007 3.6743 0.0021 16.669 0.014 1.6053 0.0010 2.9425 0.0009 25.477 0.024 104.2 0.6

aSee chapter 2.2 for a detailed description of uncertainty calculations.
bThe pressure uncertainties for data points above 1 Mbar were rounded to the nearest GPa in the
main body of the thesis.
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Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
2.4640 0.0009 3.9647 0.0093 20.846 0.051 1.6091 0.0038 3.1179 0.0004 30.310 0.012 15.1 0.1

FeNi-Run#2
2.4616 0.0007 3.9610 0.0063 20.786 0.035 1.6091 0.0026 3.1155 0.0005 30.240 0.015 15.9 0.2
2.4568 0.0008 3.9537 0.0084 20.667 0.046 1.6093 0.0035 3.1120 0.0009 30.138 0.025 17.2 0.3
2.4521 0.0005 3.9461 0.0014 20.548 0.011 1.6093 0.0006 3.1078 0.0010 30.016 0.029 18.7 0.4
2.4479 0.0004 3.9394 0.0014 20.443 0.010 1.6093 0.0006 3.1043 0.0011 29.915 0.033 20.0 0.4
2.4392 0.0005 3.9241 0.0014 20.219 0.011 1.6088 0.0007 3.0974 0.0004 29.716 0.011 22.6 0.2
2.4353 0.0004 3.9175 0.0013 20.121 0.010 1.6086 0.0006 3.0934 0.0006 29.601 0.018 24.1 0.2
2.4267 0.0005 3.9026 0.0014 19.903 0.011 1.6082 0.0007 3.0858 0.0009 29.383 0.027 27.2 0.4
2.4248 0.0004 3.8995 0.0013 19.856 0.010 1.6082 0.0006 3.0833 0.0013 29.312 0.038 28.2 0.5
2.4215 0.0005 3.8930 0.0014 19.769 0.011 1.6077 0.0007 3.0805 0.0007 29.232 0.019 29.3 0.3
2.4181 0.0004 3.8881 0.0014 19.689 0.010 1.6079 0.0006 3.0771 0.0010 29.136 0.027 30.7 0.4
2.4154 0.0004 3.8833 0.0013 19.620 0.009 1.6077 0.0006 3.0745 0.0009 29.062 0.025 31.8 0.4
2.4120 0.0004 3.8770 0.0012 19.534 0.009 1.6074 0.0006 3.0709 0.0007 28.960 0.020 33.3 0.3
2.4080 0.0004 3.8705 0.0013 19.436 0.009 1.6074 0.0006 3.0666 0.0008 28.838 0.022 35.2 0.3
2.4025 0.0004 3.8614 0.0013 19.302 0.009 1.6072 0.0006 3.0612 0.0007 28.686 0.021 37.5 0.3
2.3913 0.0004 3.8425 0.0012 19.029 0.008 1.6069 0.0006 3.0506 0.0008 28.389 0.022 42.3 0.4
2.3819 0.0003 3.8267 0.0010 18.802 0.007 1.6066 0.0005 3.0406 0.0008 28.111 0.022 47.1 0.4
2.3730 0.0003 3.8124 0.0010 18.592 0.007 1.6066 0.0005 3.0320 0.0007 27.873 0.020 51.3 0.4
2.3649 0.0003 3.8000 0.0010 18.405 0.007 1.6068 0.0005 3.0242 0.0007 27.659 0.019 55.2 0.4
2.3567 0.0003 3.7865 0.0010 18.213 0.007 1.6067 0.0005 3.0155 0.0008 27.421 0.021 59.7 0.4
2.3503 0.0003 3.7752 0.0010 18.060 0.007 1.6063 0.0005 3.0089 0.0007 27.241 0.018 63.3 0.4
2.3438 0.0003 3.7658 0.0011 17.916 0.007 1.6067 0.0005 3.0015 0.0008 27.041 0.021 67.3 0.4
2.3364 0.0003 3.7527 0.0010 17.741 0.007 1.6062 0.0005 2.9933 0.0007 26.820 0.020 72.0 0.4
2.3312 0.0003 3.7445 0.0010 17.623 0.007 1.6063 0.0005 2.9868 0.0008 26.645 0.022 75.8 0.5
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Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
2.3226 0.0003 3.7302 0.0010 17.427 0.007 1.6060 0.0005 2.9772 0.0009 26.389 0.024 81.5 0.6
2.3154 0.0004 3.7153 0.0012 17.250 0.009 1.6046 0.0006 2.9680 0.0008 26.145 0.022 87.3 0.5
2.3074 0.0005 3.7016 0.0014 17.067 0.010 1.6042 0.0007 2.9585 0.0008 25.895 0.022 93.4 0.5
2.2933 0.0005 3.6778 0.0015 16.751 0.011 1.6037 0.0008 2.9424 0.0009 25.474 0.025 104.3 0.7

FeNi-Run#3
2.4642 0.0006 3.9637 0.0016 20.844 0.013 1.6085 0.0008 3.1191 0.0030 30.345 0.087 14.6 1.1
2.4606 0.0005 3.9621 0.0013 20.775 0.011 1.6102 0.0006 3.1171 0.0024 30.287 0.071 15.3 0.9
2.4504 0.0005 3.9461 0.0015 20.520 0.011 1.6104 0.0007 3.1083 0.0029 30.031 0.083 18.5 1.1
2.4485 0.0005 3.9427 0.0015 20.470 0.011 1.6103 0.0007 3.1073 0.0032 30.002 0.092 18.9 1.2
2.4451 0.0005 3.9371 0.0016 20.385 0.012 1.6102 0.0007 3.1031 0.0036 29.88 0.11 20.4 1.4
2.4333 0.0005 3.9168 0.0015 20.084 0.011 1.6097 0.0007 3.0929 0.0016 29.587 0.046 24.3 0.6
2.4300 0.0005 3.9115 0.0016 20.003 0.012 1.6097 0.0007 3.0908 0.0024 29.527 0.068 25.2 0.9
2.4274 0.0005 3.9076 0.0017 19.940 0.012 1.6098 0.0008 3.0884 0.0017 29.458 0.049 26.1 0.7
2.4172 0.0005 3.8922 0.0016 19.695 0.012 1.6102 0.0007 3.0787 0.0016 29.181 0.047 30.1 0.7
2.4158 0.0005 3.8898 0.0016 19.660 0.011 1.6101 0.0007 3.0779 0.0014 29.158 0.039 30.4 0.6
2.4146 0.0005 3.8877 0.0016 19.630 0.011 1.6101 0.0007 3.0768 0.0017 29.127 0.049 30.8 0.7
2.4129 0.0005 3.8852 0.0016 19.589 0.011 1.6102 0.0007 3.0747 0.0017 29.068 0.048 31.7 0.7
2.4106 0.0005 3.8816 0.0016 19.534 0.011 1.6102 0.0007 3.0729 0.0023 29.017 0.065 32.5 1.0
2.4068 0.0005 3.8757 0.0016 19.443 0.012 1.6103 0.0008 3.0687 0.0030 28.898 0.084 34.3 1.3
2.3990 0.0004 3.8607 0.0016 19.242 0.011 1.6093 0.0007 3.0629 0.0023 28.734 0.066 36.8 1.0
2.3940 0.0004 3.8532 0.0016 19.125 0.010 1.6095 0.0007 3.0577 0.0020 28.588 0.057 39.1 0.9
2.3873 0.0004 3.8431 0.0015 18.968 0.010 1.6098 0.0007 3.0500 0.0019 28.373 0.052 42.6 0.9
2.3815 0.0005 3.8334 0.0016 18.829 0.011 1.6097 0.0007 3.0437 0.0039 28.20 0.11 45.6 1.9
2.3754 0.0005 3.8235 0.0016 18.684 0.011 1.6096 0.0007 3.0389 0.0046 28.06 0.13 47.9 2.2
2.3721 0.0005 3.8187 0.0016 18.609 0.010 1.6098 0.0007 3.0356 0.0021 27.973 0.059 49.5 1.1
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Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
2.3698 0.0006 3.8156 0.0021 18.557 0.014 1.6101 0.0010 3.0341 0.0033 27.931 0.091 50.2 1.6
2.3628 0.0004 3.7987 0.0013 18.366 0.009 1.6077 0.0006 3.0263 0.0019 27.716 0.053 54.1 1.0
2.3613 0.0004 3.7964 0.0013 18.332 0.009 1.6078 0.0006 3.0247 0.0029 27.672 0.080 54.9 1.5
2.3587 0.0004 3.7920 0.0013 18.270 0.009 1.6077 0.0006 3.0221 0.0021 27.601 0.057 56.3 1.1
2.3538 0.0004 3.7840 0.0014 18.156 0.009 1.6076 0.0007 3.0182 0.0024 27.494 0.065 58.3 1.3
2.3486 0.0004 3.7760 0.0015 18.038 0.009 1.6078 0.0007 3.0115 0.0039 27.31 0.11 61.8 2.1
2.3437 0.0004 3.7680 0.0015 17.924 0.009 1.6077 0.0007 3.0066 0.0036 27.179 0.098 64.5 2.0
2.3382 0.0004 3.7585 0.0014 17.795 0.009 1.6074 0.0007 3.0007 0.0027 27.019 0.074 67.8 1.5
2.3290 0.0004 3.7442 0.0015 17.588 0.009 1.6076 0.0007 2.9886 0.0016 26.693 0.042 74.7 0.9
2.3230 0.0004 3.7331 0.0013 17.446 0.008 1.6070 0.0006 2.9820 0.0018 26.517 0.049 78.6 1.1
2.3198 0.0004 3.7278 0.0014 17.373 0.008 1.6069 0.0006 2.9785 0.0027 26.424 0.071 80.7 1.6
2.3164 0.0004 3.7225 0.0014 17.298 0.009 1.6070 0.0006 2.9744 0.0032 26.315 0.085 83.3 2.0
2.3116 0.0004 3.7149 0.0014 17.191 0.008 1.6071 0.0007 2.9682 0.0015 26.150 0.039 87.1 0.9
2.3080 0.0004 3.7093 0.0014 17.112 0.009 1.6071 0.0007 2.9626 0.0019 26.003 0.050 90.7 1.2
2.3032 0.0004 3.7021 0.0013 17.008 0.008 1.6074 0.0006 2.9566 0.0020 25.845 0.054 94.6 1.4
2.3006 0.0004 3.6979 0.0013 16.950 0.008 1.6074 0.0006 2.9536 0.0020 25.766 0.053 96.6 1.4
2.2954 0.0003 3.6888 0.0013 16.832 0.008 1.6070 0.0006 2.9488 0.0020 25.641 0.052 99.9 1.4
2.2937 0.0003 3.6860 0.0013 16.794 0.008 1.6070 0.0006 2.9465 0.0020 25.581 0.052 101.4 1.4
2.2915 0.0003 3.6820 0.0013 16.744 0.008 1.6068 0.0006 2.9439 0.0021 25.513 0.055 103.2 1.5
2.2890 0.0003 3.6778 0.0013 16.688 0.008 1.6067 0.0006 2.9410 0.0022 25.438 0.056 105.2 1.5
2.2866 0.0003 3.6738 0.0013 16.635 0.008 1.6067 0.0006 2.9382 0.0021 25.366 0.054 107.2 1.5
2.2850 0.0003 3.6708 0.0013 16.598 0.008 1.6065 0.0006 2.9361 0.0023 25.311 0.059 108.7 1.6
2.2817 0.0003 3.6653 0.0013 16.526 0.008 1.6064 0.0006 2.9320 0.0028 25.205 0.072 111.6 2.0
2.2789 0.0003 3.6604 0.0014 16.463 0.008 1.6062 0.0007 2.9285 0.0031 25.115 0.080 114.2 2.3
2.2758 0.0003 3.6554 0.0014 16.396 0.008 1.6062 0.0007 2.9253 0.0019 25.033 0.049 116.6 1.4
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Fe0.91Ni0.09 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
2.2733 0.0003 3.6508 0.0014 16.339 0.008 1.6059 0.0006 2.9221 0.0020 24.951 0.051 118.9 1.5
2.2703 0.0003 3.6457 0.0014 16.273 0.008 1.6058 0.0006 2.9183 0.0019 24.854 0.048 121.8 1.4
2.2678 0.0003 3.6413 0.0014 16.218 0.008 1.6057 0.0007 2.9151 0.0018 24.772 0.047 124.3 1.4
2.2649 0.0003 3.6362 0.0014 16.154 0.008 1.6055 0.0007 2.9113 0.0020 24.675 0.051 127.2 1.6
2.2618 0.0003 3.6311 0.0014 16.087 0.008 1.6054 0.0007 2.9075 0.0021 24.579 0.054 130.2 1.7
2.2594 0.0003 3.6271 0.0014 16.035 0.008 1.6053 0.0007 2.9045 0.0022 24.503 0.056 132.6 1.8
2.2568 0.0003 3.6227 0.0014 15.979 0.008 1.6052 0.0007 2.9013 0.0023 24.422 0.059 135.1 1.9
2.2538 0.0003 3.6177 0.0014 15.915 0.008 1.6052 0.0007 2.8973 0.0025 24.321 0.064 138.4 2.1
2.2510 0.0003 3.6130 0.0014 15.854 0.008 1.6051 0.0007 2.8937 0.0029 24.230 0.073 141.4 2.4
2.2486 0.0004 3.6089 0.0014 15.803 0.008 1.6050 0.0007 2.8908 0.0031 24.158 0.078 143.8 2.6
2.2461 0.0004 3.6051 0.0014 15.751 0.008 1.6050 0.0007 2.8878 0.0033 24.082 0.083 146.3 2.8
2.2437 0.0003 3.6007 0.0014 15.698 0.008 1.6048 0.0007 2.8847 0.0033 24.005 0.082 149.0 2.8
2.2415 0.0004 3.5974 0.0014 15.653 0.008 1.6049 0.0007 2.8820 0.0033 23.938 0.082 151.3 2.9
2.2395 0.0004 3.5941 0.0014 15.611 0.008 1.6049 0.0007 2.8795 0.0036 23.875 0.089 153.5 3.2
2.2372 0.0004 3.5902 0.0014 15.562 0.008 1.6048 0.0007 2.8768 0.0038 23.808 0.094 155.9 3.4
2.2352 0.0004 3.5869 0.0015 15.520 0.008 1.6047 0.0007 2.8744 0.0040 23.75 0.10 158.0 3.6
2.2330 0.0004 3.5835 0.0015 15.474 0.008 1.6048 0.0007 2.8717 0.0045 23.68 0.11 160.4 4.1
2.2308 0.0004 3.5798 0.0014 15.428 0.008 1.6047 0.0007 2.8691 0.0049 23.62 0.12 162.8 4.5
2.2286 0.0004 3.5762 0.0014 15.382 0.008 1.6047 0.0007 2.8664 0.0021 23.551 0.051 165.2 1.9
2.2281 0.0003 3.5754 0.0014 15.372 0.008 1.6047 0.0007 2.8658 0.0021 23.536 0.051 165.8 1.9
2.2271 0.0003 3.5738 0.0014 15.351 0.008 1.6047 0.0007 2.8645 0.0020 23.504 0.050 167.0 1.9
2.2266 0.0003 3.5730 0.0014 15.341 0.008 1.6047 0.0007 2.8641 0.0020 23.494 0.049 167.4 1.8
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Table A.3: bcc-Fe0.8Ni0.1Si0.1 x-ray diffraction dataa

Fe0.8Ni0.1Si0.1 sample W pressure calibrant Pressure σP
a σa Volume σV a σa Volume σV
(Å) (Å3) (Å) (Å3) (GPa)

FeNiSi-Run#1
2.8597 0.0004 23.386 0.009 0
2.8515 0.0003 23.186 0.008 3.1603 0.0002 31.563 0.006 1.3 0.1
2.8390 0.0007 22.882 0.018 3.1527 0.0008 31.336 0.025 3.6 0.3
2.8234 0.0003 22.507 0.008 3.1421 0.0020 31.021 0.060 6.9 0.6
2.8070 0.0003 22.117 0.008 3.1316 0.0005 30.711 0.014 10.4 0.2
2.7974 0.0003 21.891 0.008 3.1262 0.0008 30.553 0.023 12.2 0.3
2.7829 0.0004 21.552 0.010 3.1168 0.0008 30.278 0.025 15.4 0.3
2.7735 0.0003 21.335 0.008 3.1077 0.0011 30.014 0.031 18.7 0.4
2.7647 0.0027 21.132 0.062 3.0999 0.0011 29.788 0.033 21.6 0.4

aSee chapter 2.2 for a detailed description of uncertainty calculations.
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Table A.4: hcp-Fe0.8Ni0.1Si0.1 XRD dataa (4 pages long)

Fe0.8Ni0.1Si0.1 sample W pressure calibrant Pressure σP
b

a σa c σc Volume σV c/a σc/a a σa Volume σV
(Å) (Å) (Å3) (Å) (Å3) (GPa)

FeNiSi-Run#1
2.4422 0.0004 3.9363 0.0034 20.332 0.019 1.6118 0.0014 3.0999 0.0011 29.788 0.033 21.6 0.4
2.4333 0.0003 3.9246 0.0008 20.124 0.007 1.6129 0.0004 3.0925 0.0004 29.575 0.012 24.5 0.2
2.4242 0.0003 3.9118 0.0009 19.909 0.007 1.6136 0.0004 3.0852 0.0007 29.366 0.019 27.4 0.3
2.4139 0.0003 3.8952 0.0009 19.656 0.007 1.6137 0.0004 3.0741 0.0006 29.051 0.018 32.0 0.3
2.4043 0.0003 3.8771 0.0009 19.410 0.007 1.6126 0.0004 3.0658 0.0006 28.816 0.017 35.5 0.3
2.3952 0.0003 3.8622 0.0008 19.189 0.006 1.6125 0.0004 3.0569 0.0006 28.566 0.017 39.5 0.3
2.3891 0.0003 3.8513 0.0008 19.037 0.006 1.6120 0.0004 3.0502 0.0010 28.378 0.029 42.5 0.5
2.3810 0.0003 3.8385 0.0008 18.846 0.006 1.6121 0.0004 3.0430 0.0006 28.178 0.017 45.9 0.3
2.3734 0.0003 3.8262 0.0008 18.666 0.006 1.6121 0.0004 3.0364 0.0009 27.995 0.025 49.1 0.5
2.3644 0.0003 3.8093 0.0008 18.442 0.006 1.6111 0.0004 3.0275 0.0017 27.749 0.045 53.5 0.8
2.3580 0.0003 3.7999 0.0009 18.297 0.006 1.6115 0.0004 3.0197 0.0007 27.535 0.020 57.5 0.4
2.3514 0.0003 3.7899 0.0009 18.147 0.006 1.6118 0.0004 3.0121 0.0007 27.328 0.020 61.5 0.4
2.3447 0.0003 3.7787 0.0008 17.991 0.006 1.6116 0.0004 3.0049 0.0008 27.133 0.021 65.4 0.4
2.3395 0.0003 3.7697 0.0008 17.868 0.006 1.6113 0.0004 3.0000 0.0011 27.000 0.029 68.2 0.6
2.3340 0.0003 3.7606 0.0008 17.741 0.006 1.6112 0.0004 2.9951 0.0008 26.868 0.020 70.9 0.4
2.3279 0.0003 3.7490 0.0008 17.594 0.006 1.6105 0.0004 2.9889 0.0010 26.701 0.028 74.5 0.6
2.3237 0.0003 3.7420 0.0008 17.498 0.006 1.6104 0.0004 2.9846 0.0014 26.586 0.038 77.1 0.8
2.3193 0.0003 3.7371 0.0008 17.409 0.006 1.6113 0.0004 2.9775 0.0021 26.397 0.055 81.4 1.3
2.3144 0.0003 3.7286 0.0008 17.296 0.005 1.6110 0.0004 2.9726 0.0011 26.267 0.030 84.4 0.7
2.3087 0.0003 3.7196 0.0008 17.170 0.005 1.6111 0.0004 2.9666 0.0008 26.108 0.020 88.1 0.5

aSee chapter 2.2 for a detailed description of uncertainty calculations.
bThe pressure uncertainties for data points above 1 Mbar were rounded to the nearest GPa in the
main body of the thesis.
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Fe0.8Ni0.1Si0.1 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
FeNiSi-Run#2
2.4128 0.0016 3.8949 0.0047 19.637 0.035 1.6143 0.0022 3.0749 0.0010 29.073 0.030 31.6 0.4
2.4129 0.0007 3.8932 0.0021 19.630 0.015 1.6135 0.0010 3.0741 0.0013 29.051 0.036 32.0 0.5
2.4126 0.0006 3.8926 0.0021 19.622 0.015 1.6134 0.0010 3.0736 0.0010 29.036 0.028 32.2 0.4
2.4114 0.0007 3.8906 0.0022 19.592 0.015 1.6134 0.0010 3.0735 0.0010 29.034 0.029 32.2 0.4
2.4102 0.0007 3.8892 0.0022 19.566 0.016 1.6136 0.0010 3.0712 0.0012 28.968 0.034 33.2 0.5
2.4092 0.0008 3.8877 0.0022 19.542 0.017 1.6137 0.0011 3.0702 0.0012 28.940 0.035 33.6 0.5
2.4068 0.0008 3.8832 0.0023 19.481 0.017 1.6134 0.0011 3.0686 0.0010 28.895 0.029 34.3 0.4
2.4046 0.0008 3.8798 0.0023 19.428 0.017 1.6135 0.0011 3.0670 0.0011 28.850 0.030 35.0 0.5
2.4046 0.0012 3.8798 0.0035 19.428 0.027 1.6135 0.0017 3.0649 0.0010 28.790 0.029 35.9 0.5
2.3979 0.0006 3.8679 0.0020 19.261 0.014 1.6130 0.0010 3.0608 0.0012 28.675 0.033 37.7 0.5
2.3949 0.0006 3.8632 0.0021 19.189 0.014 1.6131 0.0010 3.0585 0.0012 28.611 0.035 38.7 0.6
2.3932 0.0006 3.8613 0.0022 19.152 0.015 1.6134 0.0010 3.0571 0.0012 28.571 0.034 39.4 0.6
2.3907 0.0008 3.8591 0.0024 19.101 0.017 1.6142 0.0011 3.0548 0.0014 28.507 0.039 40.4 0.6
2.3866 0.0008 3.8560 0.0022 19.021 0.016 1.6157 0.0011 3.0511 0.0013 28.403 0.035 42.1 0.6
2.3844 0.0009 3.8539 0.0025 18.975 0.018 1.6163 0.0012 3.0480 0.0014 28.317 0.040 43.6 0.7
2.3788 0.0006 3.8397 0.0020 18.817 0.014 1.6141 0.0010 3.0421 0.0010 28.153 0.027 46.3 0.5
2.3749 0.0008 3.8372 0.0024 18.743 0.017 1.6157 0.0011 3.0387 0.0013 28.058 0.037 48.0 0.6
2.3696 0.0011 3.8336 0.0033 18.642 0.023 1.6178 0.0016 3.0357 0.0013 27.975 0.036 49.4 0.6
2.3663 0.0014 3.8307 0.0048 18.576 0.032 1.6189 0.0022 3.0322 0.0013 27.879 0.036 51.2 0.6
2.3607 0.0012 3.8190 0.0035 18.432 0.025 1.6177 0.0017 3.0253 0.0014 27.689 0.039 54.6 0.7
2.3592 0.0013 3.8169 0.0044 18.398 0.030 1.6179 0.0021 3.0224 0.0011 27.609 0.029 56.1 0.5
2.3519 0.0007 3.7946 0.0023 18.178 0.015 1.6134 0.0011 3.0160 0.0009 27.434 0.026 59.5 0.5
2.3497 0.0006 3.7927 0.0020 18.134 0.013 1.6141 0.0009 3.0135 0.0010 27.366 0.027 60.8 0.5
2.3482 0.0020 3.7789 0.0094 18.045 0.054 1.6093 0.0042 3.0095 0.0009 27.257 0.025 62.9 0.5
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Fe0.8Ni0.1Si0.1 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
FeNiSi-Run#2 cont.
2.3420 0.0007 3.7778 0.0024 17.945 0.016 1.6131 0.0011 3.0041 0.0016 27.111 0.043 65.9 0.9
2.3394 0.0007 3.7733 0.0021 17.884 0.015 1.6129 0.0010 3.0018 0.0014 27.049 0.037 67.2 0.8
2.3351 0.0007 3.7662 0.0024 17.785 0.016 1.6129 0.0012 2.9974 0.0012 26.930 0.034 69.6 0.7
2.3311 0.0007 3.7584 0.0025 17.687 0.016 1.6123 0.0012 2.9915 0.0012 26.771 0.031 73.0 0.7
2.3291 0.0007 3.7550 0.0024 17.641 0.015 1.6122 0.0011 2.9895 0.0010 26.717 0.027 74.2 0.6
2.3243 0.0007 3.7473 0.0022 17.532 0.015 1.6122 0.0011 2.9844 0.0009 26.581 0.025 77.2 0.6
2.3196 0.0007 3.7400 0.0025 17.427 0.016 1.6123 0.0012 2.9796 0.0009 26.453 0.025 80.1 0.6
2.3153 0.0009 3.7332 0.0029 17.331 0.019 1.6124 0.0014 2.9751 0.0009 26.333 0.023 82.8 0.5
2.3109 0.0010 3.7258 0.0033 17.231 0.021 1.6123 0.0016 2.9703 0.0007 26.206 0.019 85.8 0.5
2.3055 0.0010 3.7164 0.0037 17.107 0.023 1.6120 0.0017 2.9638 0.0007 26.034 0.018 89.9 0.4
2.3009 0.0012 3.7086 0.0045 17.003 0.027 1.6118 0.0021 2.9577 0.0010 25.874 0.027 93.9 0.7
2.2976 0.0016 3.7011 0.0067 16.920 0.039 1.6109 0.0031 2.9512 0.0011 25.704 0.030 98.2 0.8
2.2950 0.0005 3.6985 0.0018 16.870 0.011 1.6115 0.0009 2.9476 0.0014 25.610 0.037 100.7 1.0
2.2916 0.0005 3.6916 0.0017 16.789 0.011 1.6109 0.0008 2.9440 0.0015 25.516 0.039 103.2 1.0
2.2855 0.0005 3.6824 0.0018 16.658 0.011 1.6112 0.0009 2.9383 0.0012 25.368 0.032 107.1 0.9
2.2798 0.0006 3.6731 0.0020 16.533 0.012 1.6112 0.0010 2.9327 0.0011 25.223 0.030 111.1 0.8
2.2744 0.0006 3.6634 0.0021 16.412 0.013 1.6107 0.0010 2.9285 0.0012 25.115 0.032 114.2 0.9
2.2705 0.0006 3.6563 0.0020 16.324 0.012 1.6104 0.0010 2.9238 0.0011 24.994 0.027 117.7 0.8
2.2669 0.0006 3.6504 0.0021 16.246 0.013 1.6103 0.0010 2.9191 0.0012 24.874 0.031 121.2 0.9
2.2633 0.0007 3.6437 0.0025 16.164 0.015 1.6099 0.0012 2.9135 0.0013 24.731 0.034 125.5 1.0
2.2602 0.0009 3.6372 0.0033 16.091 0.020 1.6092 0.0016 2.9096 0.0016 24.632 0.040 128.5 1.2
2.2567 0.0012 3.6294 0.0045 16.007 0.026 1.6083 0.0022 2.9044 0.0023 24.500 0.058 132.7 1.8
2.2524 0.0006 3.6249 0.0022 15.926 0.013 1.6094 0.0011 2.8974 0.0012 24.323 0.029 138.3 0.9
2.2502 0.0007 3.6206 0.0024 15.876 0.014 1.6090 0.0012 2.8937 0.0011 24.230 0.027 141.4 0.9
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Fe0.8Ni0.1Si0.1 sample W pressure calibrant Pressure σP
a σa c σc Volume σV c/a σc/a a σa Volume σV

(Å) (Å) (Å3) (Å) (Å3) (GPa)
FeNiSi-Run#2 cont.
2.2474 0.0008 3.6143 0.0028 15.809 0.017 1.6082 0.0014 2.8882 0.0010 24.092 0.026 146.0 0.9
2.2427 0.0009 3.6037 0.0034 15.697 0.019 1.6069 0.0016 2.8822 0.0011 23.943 0.026 151.1 0.9
2.2404 0.0010 3.5997 0.0036 15.648 0.021 1.6067 0.0017 2.8791 0.0010 23.865 0.026 153.9 0.9
2.2379 0.0010 3.5962 0.0037 15.598 0.021 1.6070 0.0018 2.8757 0.0010 23.781 0.026 156.8 0.9
2.2354 0.0010 3.5934 0.0038 15.551 0.021 1.6075 0.0018 2.8725 0.0011 23.702 0.026 159.7 1.0
2.2330 0.0010 3.5907 0.0037 15.506 0.021 1.6080 0.0018 2.8699 0.0011 23.637 0.027 162.0 1.0
2.2306 0.0010 3.5878 0.0037 15.460 0.021 1.6084 0.0018 2.8670 0.0012 23.566 0.029 164.7 1.1
2.2282 0.0010 3.5851 0.0038 15.415 0.022 1.6090 0.0019 2.8638 0.0012 23.487 0.029 167.6 1.1
2.2258 0.0011 3.5829 0.0040 15.372 0.023 1.6097 0.0020 2.8612 0.0012 23.423 0.030 170.1 1.1
2.2235 0.0011 3.5811 0.0041 15.333 0.023 1.6106 0.0020 2.8587 0.0012 23.362 0.030 172.4 1.2
2.2214 0.0011 3.5793 0.0042 15.296 0.023 1.6113 0.0020 2.8564 0.0013 23.305 0.031 174.6 1.2
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