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Abstract

Concurrent data structures simplify the development of concurrent programs by encap-
sulating commonly used mechanisms for synchronization and communication into data
structures. This thesis develops a notation for describing concurrent data structures,
presents examples of concurrent data structures, and describes an architecture to sup-
pert concurrent data structures.

Concurrent Smalltalk (CST), a derivative of Smalitalk-80 with extensions for concur-
rency, is developed to describe concurrent data structures. CST allows the programmer
to specify objects that are distributed over the nodes of a concurrent computer. These
distributed objects have many constituent objects and thus can process many messages
simnultaneously. They are the foundation upon which concurrent data structures are
built.

The balanced cube is a concurrent data structure for ordered sets. The set is distributed
by a balanced recursive partition that maps to the subcubes of a binary n-cube using
a Gray code. A search algorithm, VW search, based cn the distance properties of the
Gray code, searches a balanced cube in O(log N) time. Because it does not have the root
bottleneck that limits all tree-based data structures to O(1) concurrency, the balanced
cube achieves O(‘Eglﬁ') concurrency.

Considering graphs as concurrent data structures, graph algerithms are presented for the
shortest path problem, the max-flow problem, and graph partitioning. These algorithms
introduce new synchronization techniques to achieve better performance than existing
algorithms.

A message-passing, concurrent architecture is developed that exploits the characteristics
of VLSI technology to support concurrent data structures. Interconnection topologies
are compared on the basis of dimension. It is shown that minimum latency is achieved
with a very low dimensional network. A deadlock-free rcuting strategy is developed for
this class of networks, and a prototype VLSI chip implementing this strategy is described.
A message-driven processor complements the network by responding to messages with
a very low latency. The processor directly executes messages, eliminating a level of
interpretation. To take advantage of the performance offered by specialization while at
the same time retaining flexibility, processing elements can be specialized to operate on &
single class of objects. These object experis accelerate the performance of all applications
using this class.
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Chapter 1

Introduction

Computing systems have two major problems: they are too slow, and they are too hard
to program.

Very large scale integration {VLSI) [8€] technology holds the promise of improving com-
puter performance. VLSI has been used to make computers less expensive by shrinking
a rack of equipment several meters on a side down to a single chip a few millimeters
on a side. VLSI technology has also been applied to increase the memory capacity of
computers. This is possible because memory is incrementally extensible; one simply
plugs in more chips to get a larger memory. Unfortunately, it is not clear how to apply
VLSI to make computer systems faster. To apply the high density of VLSI to improving
the speed of computer systems, a technique is required to make processors incrementally
extensible so one can increase the processing power of a system by simply plugging in
more chips.

Ensemble machines {110] , collections of processing nodes connected by a communications
network, offer a solution to the problem of building extensible computers. These concur-
rent computers are extended by adding processing nodes and communication channels.
While it is easy to extend the hardware of an ensemble machine, it is more difficult to
extend its performance in sclving a particular problem. The communication and syn-
chronization problems involved in coordinating the activity of the many processing nodes
make programming an ensemble machine difficult. If the processing nodes are too tightly
synchronized, most of the nodes will femain idle; if they are too loosely synchronized,
too much redundant work is performed. Because of the difficulty of programming an
ensemble machine, most successful applications of these machines have been to problems
where the structure of the data is quite regular, resulting in a regular communication
pattern.

Object-oriented programming languages make programming easier by providing data
abstraction, inheritance, and late binding [121]. Data abstraction separates an object’s
protocol, the things it knows how to do, from an object’s implementation, how it does



them. This separation enccurages programmers to write modular code. Each module
describes a particular type or class of object. Inheritance allows a programmer to de-
fine a subclass of an existing class by specifying only the differences between the two
classes. The subcliass inherits the remaining protocol and behavior from its superclass,
the existing class. Late, run-time, binding of meaning to objects makes for more flexible
code by allowing the same code to be applied to many different classes of objects. Late
binding and inheritance make for very general code. If the problems of programming
an ensemble machine could be solved inside a class definition, then applications could
share this class definition rather than have to repeatedly solve the same problems, once
for each application.

This thesis addresses the problem of building and programming extensible computer
systems by cbserving that most computer applications are built around data structures.
These applications can be made concurrent by using concurrent data structures, data
structures capable of performing many operations simultaneously. The details of com-
munication and synchronization are encapsulated inside the class definition for a con-
current data structure. The use of concurrent data structures relieves the programmer
of many of the burdens associated with developing a concurrent application. In many
cases communication and synchronization are handled entirely by the concurrent data
structure and no extra effort is required to make the application concurrent. This thesis
develops a computer architecture for concurrent data structures.

1.1 Original Results
The following results are the major original contributions of this thesis:

e In Section 2.2, I introduce the concept of a distriduted object, a single object that
is distributed across the nodes of a concurrent computer. Distributed objects can
perform many operations simultaneously. They are the foundation upon which
concurrent data structures are built.

e A new data structure for ordered sets, the balanced cube, is developed in Chapter 3.
The balanced cube achieves greater concurrency than conventional tree-based data

structures.

e In Section 4.2, a new concurrent algorithm for the shortest path problem is de-
scribed.

e Two new concurrent algorithms for the max-flow problem are presented in Sec-
tion 4.3.

e A new concurrent algorithm for graph partitioning is developed in Section 4.4.



e In Section 5.3.1, I compare the latency of k-ary n-cube networks as a function
of dimensicn and derive the surprising result that, holding wiring bisection width
constant, minimum latency is achieved at a very low dimension.

e In Section 5.3.2, I develop the concept of virtual channels. Virtual channels can
be used to generate a deadlock-free routing algorithm for any strongly connected
interconnection network. This method is used to generate a deadlock-free routing
algorithm for k-ary n-cubes.

e The torus routing chip (TRC) has been designed to demonstrate the feasibility
of constructing low-latency interccnnection networks using wormhole routing and
virtual channels. The design and testing of this self-timed VLSI chip are described
in Section 5.3.3.

e In Section 5.5, I introduce the concept of an object expert, hardware specialized to
accelerate operations on one class of object. Object experts provide performance
comparable to that of special-purpcse hardware while retaining the flexibility of a
general purpose processor.

1.2 Motivation

Two forces motivate the development of new computer architectures: need and technol-
ogy. As computer applications change, users need new architectures to support their new
programming styles and methods. Applications today deal frequently with non-numeric
data such as strings, relations, sets, and symbols. In implementing these applications,
programmers are moving towards fine-grain object-oriented languages such as Smalltalk,
where non-numeric data can be packaged into objects on which specific operations are
defined. This packaging allows a single implementation of a popular object such as an
ordered set to be used in many applications. These languages require a processor that
can perform late binding of types and that can quickly allocate and de-allocate resources.

New architectures are also developed to take advantage of new technology. The emerging
VLSI technology has the potential to build chips with 107 transistors with switching
times of 10710 seconds. Wafer-scale systems may contain as many as 10° devices. This
technology is limited by its wiring density and communication speed. The delay in
traversing a single chip may be 100 times the switching time. Also, wiring is limited to
a few planar layers, resulting in a low communications bandwidth. Thus, architectures
that use this technology must emphasize locality. The memory that stores data must be
kept close to the logic that operates on the data. VLSI also favors specialization. Because
a special purpose chip has a fixed communication pattern, it makes more effective use of
limited communication resources than does a general purpose chip. Another way to view
VLSI technology is that it has high throughput (because of the fast switching times) and
high latency (because of the slow communications). To harness the high throughput of
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Figure 1.1: Motivation for Concurrent Data Structures

this technology requires architectures that distribute computation in a loosely coupled
manner so that the latency of communication does not become a bottleneck.

This thesis develops a computer architecture that efficiently supports object-oriented
programming using VLSI technology. As shown in Figure 1.1, the central idea of this
thesis is concurrent data structures. The development of concurrent data structures
is motivated by two underlying concepts: object-oriented programming and VLSI. The
paradigm of object-oriented programming allows programs to be constructed from object
classes that can be shared among applications. By defining concurrent data structures as
distributed objects, these data structures can be shared across many applications. VLSI
circuit technology motivates the use of concurrency and the construction of ensemble
machines. These highly concurrent machines are required to take advantage of this high
throughput, high latency technology.

1.3 Background

Much work has been done on developing data structures that permit concurrent access
[31], [32], [33], [34], [76], [81]. A related area of work is the development of distributed
data structures [39]. These data structures, however, are primarily intended for allowing



concurrent access for multiple processes running on a sequential computer or for a data
structure distributed across a loosely coupled network of computers. The concurrency
achieved in these data structures is limited, and their analysis for the most part ignores
communication cost. In contrast, the concurrent data siructures developed here are
intended for tightly coupled concurrent computers with thousands of processcrs. Their
concurrency scales with the size of the problem, and they are designed to minimize
communications.

Many algorithms have been developed for concurrent computers [7], (9], [15], [75] [85],(102]
[116]. Most concurrent algorithms are for numerical problems. These algorithms tend to
be oriented toward a small number of processors and use a MIMD [42] shared-memory
model that ignores communication cost and imposes global synchronization.

Object-oriented programming began with the development of SIMULA [11], [19]. SIM-
ULA incorporated data abstraction with classes, inheritance with subclasses, and late-
binding with virtual procedures. SIMULA is even a concurrent language in the sense
that it provides co-routining to give the illusion of simultanecus execution for simulation
problems. Smalltalk [51], [52], [74], [136] combines object-oriented programming with an
interactive programming environment. Actor languages (1], [17] are concurrent object-
oriented languages where objects may send many messages without waiting for a reply.
The programming notation used in this thesis combines the syntax of Smalltalk-80 with
the semantics of actor languages.

The approach taken here is similar in many ways to that of Lang [79]. Lang also pro-
poses a concurrent extension of an object-oriented programming language, SIMULA, and
analyzes communication networks for a concurrent computer to support this language.
There are several differences between Lang’s work and this thesis. First, this work de-
velops several programming language features not found in Lang’s concurrent SIMULA:
distributed objects to allow concurrent access, simultanecus execution of several methods
by the same object, and locks for concurrency control. Second, by analyzing interconnec-
tion networks using a wire cost model, I derive the result that low dimensional networks
are preferable for constructing concurrent computers; contradicting Lang’s result that

high dimensional binary n-cube networks are preferable.

»

1.4 Concurrent Computers

This thesis is concerned with the design of concurrent computers to manipulate data
structures. We will limit our attention to message-passing [112] MIMD [42] concurrent
computers. By combining a processor and memory in each node of the machine, this class
of machines allows us to manipulate data locally. By using a direct network, message-
passing machines allow us to exploit locality in the communication between nodes as
well.
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Concurrent computers have evolved ocut of the ideas developed for programming multi-
programmed, sequential computers. Since multiple processes on a sequential computer
communicate through shared memory, the first concurrent computers were built with
shared memory. As the number of processors in a computer increased, it became neces-
sary to separate the communication channels used for communication from those used
to access memory. The resuit of this separation is the message-passing concurrent com-
puter.

S

Concurrent programming models have evolved along with the machines. The problem
of synchronizing concurrent processes was first investigated in the context of multiple
processes on a sequential computer. This model was used almost without change on
shared-memory machines. On message-passing machines, explicit communication prim-
itives have been added to the process model.

1.4.1 Sequential Computers

A sequential computer consists of a processor connected to a memory by a communi-
cation channel. As shown in Figure 1.2, to modify a single data object requires three
messages: an address message from processor to memory, a data message back to the
processor containing the original object, and a data message back to memory containing
the modified object. The single communication channel over which these messages travel
is the principal limitation on the speed of the computation, and has been referred to as
the Von Neumann bottleneck (4].

Even when a programmer has only a single processor, it is often convenient to organize a
program into many concurrent processes. Multiprogramming systems are constructed on
sequential computers by multiplexing many processes on the single processor. Processes



in a multiprogramming system communicate through shared memory locations. Higher
level communication and synchronization mechanisms such as interlocked read-modify-
write operations, semaphores, and critical sections are built up from reading and writing
shared memory locations. On some machines interlocked read-modify-write operations
are provided in hardware.

Communication between processes can be synchronous or asynchronous. In program-
ming systems such as CSP [62] and OCCAM [64] that use synchronous communication,
the sending and receiving processes must rendezvous. Whichever process performs the
communication action first must wait for the other process. In systems such as the Cos-
mic Cube {123} and actor languages (1],{17] that use asynchronous communication, the
sending process may transmit the data and then proceed with its computation without
walting for the receiving process to accept the data.

Since there is only a single processor on a sequential computer, there is a unique global
ordering of communication events. Communication also takes place without delay. A
shared memory location written by process A on cne memory cycle can be read by
process B on the next cycle 1. With global ordering of events and instantaneocus com-
munication, the strong synchronization implied by synchronous comrmunication can be
implemented without significant cost. The same 18 not true of concurrent computers
where communication events are not uniquely ordered and the delay of communication
is the major cost of computation.

It is possible for concurrent processes on a sequential computer to access an object
simultaneously because the access is not reaily simultaneous. The processes, in fact,
access the object one at a time. On a concurrent computer the illusion of simultaneous
access can no longer be maintained. Most memories have a single port and can service
only a single access at a given time.

1.4.2 Shared-Memory Concurrent Computers

To eliminate the Von Neumann bottleneck, the processor and memory can be replicated
and interconnected by a switch. Shared memory concurrent computers such as the
NYU Ultracomputer [106},{54],(55], C.MMP [135], and RP3 [100] consist of a number of
processors connected to a number of memories through a switch, as shown in Figure 1.3.

Although there are many paths through the switch, and many messages can be trans-
mitted simultaneously, the switch is still a bottleneck. While the bottleneck has been
made wider, it has also been made longer. Every message must travel from one side
of the switch to the other, a considerable distance that grows larger as the number of
processors increases. Most shared-memory concurrent computers are constructed using
indirect networks and cannot take advantage of locality. All messages travel the same

!Some sequential computers overlap memory cycles and require a delay to read a location just written.
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Figure 1.3: Information Flow in a Shared-Memory Concurrent Computer

distance regardless of their destination.

Shared-memory computers are programmed using the same process-based model of com-
putation described above for multiprogrammed sequential computers. As the name im-
plies, communication takes place through shared memory locations. Unlike sequential
computers, however, there is no unique global order of communication events in a shared-
memory concurrent computer, and several processors cannot access the same memory
location at the same time.

Some designers have avoided the uniformly high communication costs of shared-memory
computers by placing cache memories in the processing nodes [53]. Using a cache, mem-
ory locations used by only a single processor can be accessed without communication
overhead. Shared memory locations, however, still require communication to synchronize
the caches?. The cache nests the communication channel used to access local memory
inside the channel used for interprocessor communication. This division of function
between memory access and communication is made more explicit in message-passing
concurrent computers.

3The problem of synchronizing cache memories in a concurrent computer is known as the cache coherency
problem.
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1.4.3 DMessage-Passing Concurrent Computers

In contrast to sequential computers and shared-memory concurrent computers which
operate by sending messages between processors and mermories, a message-passing con-
current computer operates by sending messages between processing nodes that contain
both logic and memory.

As shown in Figure 1.4, message-passing concurrent computers such as the Caltech Cos-
mic Cube {112} and the Intel iPSC {65} consist of a number of processing nodes intercon-
nected by communication channels. Each processing node contains both a processor and
a local memory. The communication channels used for memory access are completely
separate from those used for inter-processor communication.

Message-passing computers take a further step toward reducing the Von Neumann bot-
tleneck by using a direct network which allows locality to be exploited. A message to an
object resident in a neighboring processor travels a variable distance which can be made
short by appropriate prccess placement.

Shared-memory computers, even implemented with direct networks, use the available
communications bandwidth inefficiently. Three messages are required for each data
operation. A message-passing computer can make more efficient use of the available
communications bandwidth by keeping the data state stationary and passing control
messages. Since a processor is available at every node, data operations are performed in
place. Only a single message is required to modify a data object. The single message
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specifies: the object to be modified, the modification to be performed, and the location
to which the control state is to move next.

Keeping data stationary alsc encourages locality. Each data object is associated with
the procedures that operate on it. This association allows us to place the logic that
operates on a class of objects in close proximity to the memory that stores instances of
the objects. As Seitz points out, “both the cost and performance metrics of VLSI favor
architectures in which communication is localized” [111].

Message-passing concurrent computers are programined using an extension of the process
model that makes communication actions explicit. Under the Cosmic Kernel [123], for
example, a process can send and receive messages as well as spawn other processes. This
model makes the separation of communication from memory visible to the programmer.
It also provides a base upon which an cbject-oriented model of computation can be buiit.

1.5 Summary

In this thesis [ develop an architecture for concurrent data structures. I begin in Chap-
ter 2 by developing the concept of a distributed object. A programming notation, Con-
current Smalltalk (CST), is presented that incorporates distributed objects, concurrent
execution and locks for concurrency control. In Chapter 3 I use this programming nota-
tion to describe the balanced cube, a concurrent data structure for ordered sets. Con-
sidering graphs as concurrent data structures, I develop a number of concurrent graph
algorithms in Chapter 4. New algorithms are presented for the shortest path problem,
the max-flow problem, and graph partitioning. Chapter 5 develops an architecture based
on the properties of the algorithms developed in Chapters 3 and 4 and the character-
istics of VLSI technology. Network topologies are compared on the basis of dimension,
and it is shown that low dimensional networks give lower latency than high dimensional
networks for constant wire cost. A new algorithm is developed for deadlock-free routing
in k-ary n-cube networks, and a VLSI chip implementing this algorithm is described.
Chapter 5 also outlines the architecture of a message driven processor and describes how
object experts can be used to accelerate operations on common data types.
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Chapter 2

Concurrent Smalltalk

The message-passing paradigm of object-oriented languages such as Smalltalk-80 [51]
introduces a discipline into the use of the communication mechanism of message-passing
concurrent computers. Object-oriented languages also promote locality by grouping
together data objects with the operations that are performed on them.

Programs in this thesis are described using Concurrent Smalltalk (CST), a derivative of
Smalltalk-80 with three extensions. First, messages can be sent concurrently without
wailting for a reply. Second, several methods may access an cobject concurrently. Locks
are provided for concurrency control. Finally, the language allows the programmer to
specify objects that are distributed over the nodes of a concurrent computer. These
distributed objects have many constituent objects and thus can process many messages
simultaneously. They are the foundation upon which concurrent data structures are
built.

The remainder of this chapter describes the novel features of Concurrent Smalltalk. This
discussion assumes that the reader is familiar with Smalltalk-80 [51]. A brief overview
of CST is presented in Appendix A. In Section 2.1 I discuss the object-oriented model
of programming and show how an object-oriented systemn can be built on top of the
conventional process model. Section 2.2 introduces the concept of distributed objects. A
distributed object can process many requests simultaneously. Section 2.3 describes how
a method can exploit concurrency in processing a single request by sending a message
without waiting for a reply. The use of locks to control simultaneous access to a CST
object is described in Section 2.4. Section 2.5 describes how CST blocks include local
variables and locks to permit concurrent execution of a block by the members of a
collection. This chapter concludes with a brief discussion of performance metrics in
Section 2.6,
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2.1 Object-Oriented Programming

Object-oriented languages such as SIMULA [11] and Smalltalk [51] provide data abstrac-
tion by defining classes of objects. A class specifies both the data state of an object and
the procedures or methods that manipulate this data.

Object-oriented languages are well suited to programming message-passing concurrent
computers for four reasons.

e The message-passing paradigm of languages like Smalltalk introduces a discipline
into the use of the communication mechanism of message-passing computers.

e These languages encourage locality by associating each data object with the meth-
ods that operate on the object.

e The information hiding provided by object-oriented languages makes it very con-
venient to move commonly used methods or classes into hardware while retaining

compatibility with software implementations.

e Object names provide a uniform address space independent of the physical place-
ment of objects. This avoids the problems associated with the partitioned address
space of the process model: memory addresses internal to the process and process
identifiers external to the process. Even when memory is shared, there is still a
partition between memory addresses and process identifiers.

In an object-oriented language, computation is performed by sending messages to objects.
Objects never wait for or explicitly receive messages. Instead, objects are reactive. The
arrival of a message at an object triggers an actton. The action may involve modifying
the state of the object, transmitting messages that continue the control flow, and/or
creating new objects.

The behavior of an object can be thought of as a function, B [1]. Let S be the set of all
object states and M the set of all messages. An object with initial state, 1 € S, receiving
a message, m € M, transitions to a new state, n € S, transmits a possibly empty set of
messages m' C M, and creates a possibly empty set of new objects o C O.

»

B:S x M~ P(M),S, ?(O). (2.1)

Actions as described by the behavior function (2.1) are the primitives from which more
complex computations are built. In analyzing timing and synchronization each action is
considered to take place instantaneously, so it is possible to totally order the actions for
a single object.

Methods are constructed from a set of primitive actions by sequencing the actions with
messages. Often a method will send a message to an object and wait for a reply before
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proceeding with the computation. For example, in the code fragment below, the message
size is sent to object x, and the method must wait for the reply before continuing.

xSize «—x size.
ySize «—xSize * 2.

Since there is no receive statement, multiple actions are required to implement this
method. The first action creates a contezt and sends the size message. The contexs con-
tains all method state: a pcinter to the receiver, temporary variables, and an instruction
pointer into the method code. A pointer to the context is placed in the reply-to field
of the size message to cause the size method to reply to the context rather than to the
original object. When the size method replies to the context, the second action resumes
execution by storing the value of the reply into the variable xSize. The context is used
to hold the state of the methcd between actions.

Objects with behaviors specified by (2.1) can be constructed using the message-passing
process model. Each object is implemented by a process that executes an endless receive-
dispatch-execute loop. The process receives the next message, dispatches control to the
associated action, and then executes the action. The action may change the state of the
object, send new messages, and/or create new objects. In Chapter 5 we will see how,
by tailoring the hardware to the object model, we can make the receive-dispatch-execute
process very fast.

2.2 Distributed Objects

In many cases we want an object that can process many messages simultaneously. Since
the actions on an object are ordered, simultanecus processing of messages is not consis-
tent with the model of computation described above. We can circumvent this limitation
by using a distributed object. A distributed object consists of a collection of constituent
objects, each of which can receive messages on behalf of the distributed object. Since
many constituent objects can receive messages at the same time, the distributed cobject
can process many messages simultaneously.

Figure 2.1 shows an example CST class definition. The definition begins with a header
that identifies the name of the class, Tally Collection, the superclass from which Tally
Collection inherits behavior, Distributed Collection, and the instance variables and locks
that make up the state of each instance of the class. The header is followed by definitions
of class methods, omitted here, and definitions of instance methods. Class methods define
the behavior of the class object, Tally Collection, and perform tasks such as creating new
instances of the class. Instance methods define the behavior of instances of class Taily
Collection, the collections themselves. In Figure 2.1 two instance methods are defined.
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class TailyCollection the class name
superclass Distributed Collection a distributed object
instance variables data local collection of data
class variables none

locks none

class methods
class methods ...

instance methods

taily: aKey count data matching aKey

||

(self upperNeighbor) localTally: aKey sum: O returnFrom: myld

localTally: aKey sum: anint returnFrom: anld
| newSum |
newSum +«—sum.
data do: [:each |
(each = aKey) ifTrue: [newSum +—newSum +1]].
(myld = anld) ifTrue: [requester reply: newSum]
ifFaise: [(self upperNeighbor) localTally: aKey sum: newSum returnFrom: anld].

other snstance methods ...

Figure 2.1: Distributed Object Class Tally Collection
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Instances of class Tally Collection are distributed objects made up of many constituent
objects (COs). Each CO has an instance variable data and understands the messages
tally: and localTally:. A distributed object is created by sending a newOn message to its
class.

aTallyCollection «TallyCollection newOn: someNodes.

The argument of the newOn: message, someNodes, is a collection of processing nodes!.
The newOn: message creates a CO on each member of someNodes. There is no guarantee
that the COs will remain on these processing nodes, however, since objects are free to
migrate from node to node.

When an object sends a message to a distributed object, the message may be delivered
to any constituent of the distributed object. The sender has no control over which
CO receives the message. The constituents themselves, however, can send messages to
specific COs by using the message co:. For example, in the code below, the receiver (self),
a constituent of a distributed cbject, sends a local Tally message to the anld constituent
of the same distributed object.

(self co: anld) locaiTaily: #foo sum: 0 returnFrom: myid.

The argument of the co: message is a constituent identifier. Constituent identifiers are
integers assigned to each constituent sequentially beginning with one. The constant
myld gives each CO its own index and the constant maxid gives each CO the number of
constituents.

The method tally: aKey in Figure 2.1 counts the occurrences of aKey in the distributed
collection and returns this number to the sender. The constituent object that receives
the tally message sends a localTally message to its neighbor?>. The localTally method
counts the number of occurrences of aKey in the receiver node, adds this number to the
sum argument of the message and propagates the message to the next CO. When the
localTally message has visited every CO and arrives back at the original receiver, the
total sum is returned to the original customer by sending a reply: message to requester.

Distributed objects often forward mesgages between COs before replying to the original
requesting object. TallyCollection, for example, forwards localTally messages in a cycle
to all COs before replying. CST supports this style of programming by providing the
reserved word requester. For messages arriving from outside the object, requester is
bound to the sender. For internal messages, requester is inherited from the sending
method.

!Processing nodes are objects.

3The message upperNeighbor returns the CO with identifier myld + 1 if myld # maxId and the CO
with identifier 1 otherwise.
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This forwarding behavior illustrates a major difference between CST and Smalltalk-80:
CST methods do not necessarily return a value to the sender. Methods that do not
explicitly return a value using ‘1’ terminate without sending a reply. The tally: method
terminates without sending a reply to the sender. The reply is sent later by the local Taily
method.

The tally: method shown in Figure 2.1 exhibits no concurrency. The point of a dis-
tributed object is not to provide concurrency in performing a single operation on the
object, but rather to allow many operations to be performed concurrently. For example,
suppose we had a Tally Collection with 100 COs. This object could receive 100 messages
simultaneously, one at each CO. After passing 10,000 localTally messages internally, 100
replies would be sent to the original senders. The 100 requests are processed concurrently.

Some concurrent applications require global communication. For example, the concur-
rent garbage collector described by Lang [79] requires that processes running in each
processor be globally synchronized. The hardware of some concurrent computers sup-
ports this type of global communication. The Caltech Cosmic Cube, for instance, pro-
vides several wire-or global communication lines for this purpose {112].

Some applications require global communication combined with a simple computation.
For example, branch and bound search problems require that the minimum bound be
broadcast to all processors. Ideally, a communication network would accept a bound
from each processor, compute the minimum, and broadcast it. In fact, the computation
can be carried out in a distributed manner on the wire-or lines provided by the Cosmic

Cube.

Distributed objects provide a convenient and machine-independent means of describing a
broad class of global communication services. The service is formulated as a distributed
object that responds to a number of messages. For example, the synchronization ser-
vice can be defined as an object of class Sync that responds to the message wait. The
distributed object waits for a specified number of wait messages and then replies to all
requesters. On machines that provide special hardware, class Sync can make use of
this hardware. On other machines, the service can be implemented by passing messages
among the constituent objects.

2.3 Concurrency

CST does not exclude the use of concurrency in performing a single method. A more
sophisticated tally: method is shown in Figure 2.2. Here I use messages upperChild and
lowerChild to embed a tree on the COs®. When a CO receives a tally: message it sends
two localTally messages down the tree simultaneously. When the localTally messages

3The implementation of methods upperChild and lowerChild is straightforward and will not be shown
here.
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instance methods for class TallyCollection

tally: aKey count data matching aKey
I
Pt

Tself local Tally: aKey level: O root: myld.

locaiTally: aKey level: anint root: anld

| upperTally lowerTally sum alevei]

aLevel = anint + 1.

sum «0.

data do: [each |
(each = aKey) ifTrue: [sum «sum +1]].

{anint < maxLevel) ifTrue: |
upperTally «—{self upperChild: anld level: aLevel) locaiTally: aKey level: 1 root: anld,
fowerTally «—(seif lowerChild: anid level: alevei) locaiTally: aKey level: 1 root: anid.
TupperTally + lowerTaily + sum].

-

Tsum.

Figure 2.2: A Concurrent Tally Method

reach the leaves of the tree, the replies are propagated back up the tree conéurrently,
The new TallyCollection can still process many messages concurrently, but now it uses
concurrency in the processing of a single message as well.

The use of a comma, °,’, rather than a period, ‘.7, at the end of a statement indicates that
the method need not wait for a reply from the send implied by that statement before
continuing to the next statement. When a statement is terminated with a period, ‘.,
the method waits for all pending sends to reply before continuing.

A simpler example of concurrency is shown in Figure 2.3. This figure shows a portion of
the definition of Class Intervai*. The definition has two methods; l:u: is a class method
that creates a new interval, and contains: is an instance method that checks if a number
is contained in an interval.

As shown in Figure 2.4, the contains: method is initiated by sending a message, contains:
aNum, to object, aninterval, of class Interval. Objects of class Interval have two acquain-
tances 5 | and u. To check if it contains aNum, object anlnterval sends messages to both

*The term Interval here means a closed interval over the real numbers, {a € R | { € a < u}. This differs
from the Smalltalk-80 [51] definition of class Intervai.

®In the parlance of actor languages [1] an object, A’s, acquaintances are those objects to which A can
send messages.
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class Intervai the class name
superclass Object the name of itg superclass
instance variables | lower bound
u upper bound
class variables none
locks rwlock implements readers and writers

class methods

I aNum u: anotherNum creates a new interval
| newinterval |
newlinterval «self newlLocal.
newinterval I: aNum,
newlnterval u: anotherNum.
Tnewl!nterval

other class methods ...
instance methods

containg: aNum tests for number in interval
require rwlock.
| lin uin |
lin «—| < aNum,
uin +—u > aNum.
T(lin and: uin)

other tnstance methods ...

Figure 2.3: Description of Class Interval
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Figure 2.4: Synchronization of Methods

| and u asking | if | < aNum, and asking u if u > aNum. After receiving both replies,
aninterval replies with their logical and.

Observe that the contains: method requires three actions. The first action occurs when
the contains: message is received by anlinterval. This action sends messages to | and u
and creates a context, aContext, to which | and u will reply. The first reply to aContext
triggers the second action which simply reccrds its occurrence and the value in the reply.
The second reply to aContext triggers the final action which computes the result and
replies to the original sender. In this example the context object is used to join two
concurrent streams of execution.

Only the first action of the contains: method is performed by object anlnterval. The
subsequent actions are performed by object aContext. Thus, once the first action is
complete aninterval is free to accept additional messages. The ability to process several
requests concurrently can result in a great deal of concurrency. This simple apprecach
to concurrency can cause problems, however, if precautions are not taken to exclude
incompatible methods from running concurrently.

Figure 2.3 illustrates another novel feature of CST. Instance variables in CST may be
either internal variables or ezternal variables. Internal variables are stored in the same
processing node as an object and may be accessed without passing messages. External
variables may be stored anywhere and require message passing for access. An internal
variable is created using the newlocal message, while an external variable may be ac-
quired by passing a pointer, or may be created using the new message. The l:u: method
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in Figure 2.3 uses the newlocal method to generate new instances of class interval.

2.4 Locks

Some problems require that an object be capable of sending messages and receiving
their replies while deferring any additional requests. In other cases we may want to
process some requests concurrently, while deferring others. To defer some messages
while accepting others requires the ability to select a subset of all incoming messages to
be received. This capability is also important in database systems, where it is referred
to as concurrency control [133].

Consider our example object, aninterval. To maintain consistency, aninterval must defer
any messages that would modify | or u until after the contains: method is complete. On
the other hand, we want to allow anlnterval to process any number of contains: messages
simultaneously.

SAL, an actor language, handles this problem by creating an insenssiive actor which only
accepts become messages [1]®. The insensitive actor buffers new requests until the original
method is complete. Lang’s concurrent SIMULA [79] incorporates a select construct to
allow objects to select the next message to receive. While exclusion can be implemented
using select, Lang’s language treats each object as a critical region, allowing only a
single method to proceed at a time. Neither insensitive actors nor critical regions allow
an object to selectively defer some methods while performing others concurrently.

Adding locks to objects provides a general mechanism for concurrency control. A lock
is part of an object’s state. Locks impose a partial order on methods that execute on
the object. Each method specifies two possibly empty sets of locks: a set of locks the
method requires, and a set of locks the method ezcludes. A method is not allowed to
begin execution until all previous methods executing on the same object that exclude a
required lock or require an excluded lock have completed. The concept of locks is similar
to that of triggers [90].

A solution to the readers and writers problem is easily implemented with this locking
mechanism. All readers exclude rwlock, while all writers both require and exclude
rwlock. Many reader methods can access the object concurrently since they do not
exclude each other. As soon as a writer message is received, it excludes new reader
methods from starting while it waits for existing readers to complete. Only one writer
at a time can gain access to the object since writers both require and exclude rwlock.
This illustrates how mutual exclusion can also be implemented with a single lock.

SCST objects could use the Smalltalk become: message to implement insensitive actors.



2.5 Blocks
Blocks in CST differ from Smalltalk-80 blocks in two ways.
e A CST block may specify local variables and locks in addition to just arguments.

[ :argl :arg2 | (locks) :varl :var2 | code]

e It is possible to break out of a CST block without returning from the context in

which the value message was sent to the block. The down-arrow symbol, ¢}’ is
used to break out of a block in the same way that ‘7’ is used to return out of a
block.

Sending a block to a collection can result in concurrent execution of the block by members
of the collection. Giving blocks local variables allows greater concurrency than is possible
when all temporary values must be stored in the context of the creating methed. Locks
are provided to synchronize access to static variables during concurrent execution.

2.6 Performance Metrics

Performance of sequential algorithms is measured in terms of time complexity, the aum-
ber of operations performed, and space complexity, the amount of storage required [2].
On a concurrent machine we are also concerned with the number of operations that can
be performed concurrently.

The algorithms and data structures developed in this thesis are based on a message-
passing model of concurrent computation. Message-passing concurrent computers are
communication limited. The time required to pass messages dominates the processing
time, which we will ignore.

In sharp contrast, most existing concurrent algorithms have been developed assuming an
ideal shared-memory multiprocessor. In the shared-memory model, communication cost
is ignored. Processes can access any memory location with unit cost, and an unlimited
number of processes can access a single memory location simultaneously. Performance
of algorithms analyzed using the shared-memory model does not accurately reflect their
performance on message-passing concurrent computers.

Communication cost has two components:

latency: the delay of delivering a single message in isolation,

throughput: the amount of message traffic the communication network can handle per
unit time.
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For purposes of analysis I will ignore throughput and consider only latency.

The programs in this thesis are analyzed assuming a binary n-cube interconnection topol-
ogy. Programs are charged one unit of time for each communication channel traversed
in a binary n-cube.

2.7 Summary

In this chapter I have introduced Concurrent Smalltaik (CST), a programming notation
for message-passing concurrent computers. Its novel features include locks for concur-
rency control, and the ability to create distributed objects. CST borrows its syntax,
late-binding, and inheritance directly from the Smalltalk programming language [51].
Many of the ideas in CST are borrowed from Athas’ language, XCPL [3].
Distributed objects are implemented as a collection of constituent objects (COs). Any
CO can receive a message sent to the distributed object. Since many COs can receive
messages at the same time, a distributed object can process many messages simultane-
ously. The constituents of a distributed object are assigned to processing nodes when
the cobject is created. Thus, distributed objects provide a mechanism for mapping a data
structure onto an interconnection topology. Distributed objects are the foundation upon
which concurrent data structures, such as the balanced cube described in Chapter 3, are
built.

CST permits methods to exploit concurrency by sending several messages before waiting
for any replies. CST also allows some methods to terminate without sending any reply.
Thus a message can be forwarded across many objects before a reply is finally sent to
the original requester.

CST methods are compiled into sequences of primitive actions that can be described using
a behavior function (2.1). Context objects are used to hold the state of a method between
actions and to join concurrent streams of execution. Primitive object behaviors can be
implemented using the message-passing process model of computation [123]. However,
as we will see in Chapter 5, a direct hardware implementation of the behavior function
results in improved performance.



Chapter 3

The Balanced Cube

Sequential computers spend a large fraction of their time manipulating ordered sets of
data. For these operations to be performed efficiently on a concurrent computer, a new
data structure for ordered sets is required. Conventional ordered set data structures
such as heaps, balanced trees, and B-trees [2] have a single root node through which
all operations must pass. This root bottleneck limits the potential concurrency of tree
structures, making them unable to take advantage of the power of concurrent computers.
Their maximum throughput is O(1). This chapter presents a new data structure for
implementing ordered sets, the balanced cube [21], which offers significantly improved
concurrency.

The balanced cube eliminates the root bottleneck allowing it to achieve a throughput
of O(r%v) operations per unit time!. Concurrency in the balanced cube is achieved
through uniformity. With the exception of the balancing algorithm, all nodes are equals.
An operation may originate at any node and need not pass through a root bottleneck as
in a tree structure. In keeping with the spirit of a homogeneous machine, the balanced
cube is a homogeneous data structure.

Why is a concurrent data structure such as the balanced cube needed? Many applica-
tions are organized around an ordered set data structure. By using a balanced cube to
implement this data structure, the application can be made concurrent with very little
effort. The application is divided into'partitions that communicate by storing data in
and retrieving data from the balanced cube. Because the balanced cube can process these
requests concurrently, accesses to the balanced cube do not serialize the application. In
Section 3.8 we will see how a balanced cube can be used in a concurrent computer mail
system, in a concurrent artwork analysis program, and in a concurrent directed-search
algorithm.

The balanced cube’s topology is well matched to binary n-cube multiprocessors. The

1Unless otherwise specified, all logarithms are base two.



24

balanced cube maps members of an ordered set to subcubes of a binary n-cube. A Gray
code mapping is used to preserve the linear adjacency of the ordered set in the Hamming
distance adjacency of the cube.

Previous work on concurrent data structures has concentrated on reducing the interfer-
ence between concurrent processes accessing a common data base but has not addressed
the limited concurrency of existing data structures. Kung and Lehman [76] have devei-
oped concurrent algorithms for manipulating binary search trees. Lehman and Yao [81]
have extended these concepts and applied them to B-trees. Algorithms for concurrent
search and insertion of data in AVL-trees [31] and 2-3 trees [32] have been developed
by Ellis. Ellis has also developed concurrent formulations of linear hashing [33! and
extendible hashing [34].

These papers introduce a number of useful concepts that minimize locking of records,
postpone operaticns to be performed, and use marking mechanisms to modify the data
structure. However, these papers consider the processes and the data to be stationary,
and thus do not address the problems of moving processes and data between the nodes
of a concurrent computer. The cost of communications, which we assume to dominate
processing costs, has largely been ignored.

The remainder of this chapter describes the balanced cube and how it addresses the issues
of correctness, concurrency, and throughput. In the next section the data structure is
presented, and the consistency conditions are described. The VW search algorithm is
described in Section 3.2. VW search uses the distance properties of the Gray code
to search the balanced cube for a data record in O(log N) time while locking only a
single node at a time. An insert algorithm is presented in Section 3.3. Insertion is
performed by recursively splitting subcubes of the balanced cube. Section 3.4 discusses
the delete operation. Deletion is accomplished by simply marking a record as deleted.
A background garbage collection process reclaims deleted subcubes. The insertion and
deletion algorithms tend to unbalance the cube. A balancing algorithm, presented in
Section 3.5, acts to restore balance. Each of the algorithms presented in this chapter
is analyzed in terms of complexity, concurrency, and correctness. Section 3.6 extends
the balanced cube concept to B-cubes which store several records in each node. Section
3.7 discusses the results of experiments run to verify the balanced cube algorithms.
The chapter concludes with a discussion of some possible balanced cube applications in
Section 3.8. .

3.1 Data Structure

3.1.1 The Ordered Set

An ordered set is a set, S, of objects on which a linear ordering < has been defined,
Ya,b € S either a < b or b < a and a # b unless a and b are the same object. In many
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applications these objects are records and the linear order is defined by the value of a key
field in each record. In this context the ordered set is used to store a database of relations
associating the key field with the other fields of the record. The order relation defined
on the keys of the records is implicit in the structure. A data structure implementing
the ordered set must efficiently support the following operations.

at: key return the object associated with a key.
at: key put: object add an object to the set
delete: key remove the object associated with key from the set.

from: lkey to: ukey do: aBlock concurrently send a value: message to aBlock for each
element of the set of objects with keys in the range [lkey,ukey|.

succ: keyl return the cbject with the smallest key greater than keyl.
pred: keyl return the object with the largest key smaller than keyl.
max return the maximum object.

min return the minimum cbject.

In this chapter we will restrict our attention to developing algorithms for the search (at:),
insert (at:put:) and delete operations. The remaining functions can be implemented as
simple extensions of these three fundamental operations. The succ: and pred: operations
can be implemented using the nearest neighbor links present in the balanced cube.

3.1.2 The Binary n-Cube

The balanced cube is a data structure for representing ordered sets that stores data in
subcubes of a binary n-cube [96], [124]. A binary n-cube has N = 2™ nodes accessed by
n-bit addresses. Each bit of the address corresponds to a dimension of the cube. The
node or subcube with address a; is denoted N{a;]. If the address is implicit, the node will
be referred to as N. The binary n-cube is connected so that node N{a,] is adjacent to all
nodes whose addresses differ from a; in exactly one bit position: {a;S27 |0 < j < n—1}.
A binary 3-cube with nodes labeled byh address is shown in Figure 3.1.

An m-subcube of a binary n-cube is a set of M = 2™ nodes whose addresses are identical
in all but m positions. An m-subcube is identified by an address that contains unknowns,
represented by the character X, in the m bit positions in which its members’ addresses
may differ. For example, in Figure 3.1 the top of the 3-cube is the 1XX subcube. The
top front edge is the 1X1 subcube.

A right m-subcube is an m-subcube which has unknowns in the least significant m bits
of the address. No X is to the left of a 0 or 1 in a right subcube address. For example,
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Figure 3.1: Binary 3-Cube

the 1XX subcube is a right subcube while the 1X1 subcube is not. A node is a right
O-subcube, a singleton set, since it has zero Xs in its address. The corner node of a right
subcube N{a] is the node with the lowest address in the subcube, ¥ [min(a)]. The corner
node address is the subcube address with all unknown bits set to zero. The upper nodes
of a right subcube N|a] are all the nodes in the subcube other than the corner node: the

Y

elements of the set N{a]\ N|[min(a)].

3.1.3 The Gray Code

The balanced cube uses a Gray code [56] to map the elements of an ordered set to the
vertices of a binary n-cube. Consider an integer, I, encoded as a weighted binary vector,
bn—l: ey bo, so that

n—1 .
I=5 527, (3.1)
j=0

The reflected binary code or Gray code representation of I, a bit vector G(I) = gn-1,..., g0,
is generated by taking the modulo-2 sum of adjacent bits of the binary encoding for I
(58]

St
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_ b{@b";r.I lfi'<n“1 5
9"{6,- fiz=n-1 (3:2)

Since the & operation is linear, we can convert back to binary by swapping g; and &
in equation 3.2. We use the function B(J) to represent the binary number whose Gray
code representation is J.

b‘—{gg f1=n-1 (3>

By repeated substitution of equation 3.3 into itself we can express b; as a modulo-2
summation of the bits of G{I).

5
et

n-1
by = Z g; (mod 2) (3.

j=i

While these equations serve as a useful recipe for converting between binary and Gray
codes, we gain more insight into the structure of the code by considering a recursive
list definition of the Gray code. For any integer, n, we can construct a list of N = 27
integers, gray(n), so that the I*® element of gray(n) is an integer whose binary encoding
is identical to the Gray encoding of /. The construction begins with the Gray code of
length 1. At the i*® step we double the length of the code by appending to the current
list a reversed copy of itself with the §*! bit set to one?.

gray(0) = (0]. (3.5)
gray(n) = append( gray(n — 1), 2(*~1) + reverse(gray(n — 1)) ). (3.6)

It is this reversal that gives the code the symmetry and reflection properties that we will
use in developing the balanced cube search algorithm.

In the linear space of the ordered set, element [ is adjacent to elements /4 1. In the cube
space, however, the distance between two nodes is the Hamming distance between the
node addresses: the number of bit positions in which the two addresses differ. For nodes
A and B to be adjacent, they must be Hamming distance one apart, dg(A, B) = 1. The
Hamming distance between I and I — 1, dg4(7) is given by the recursive equation.

*In (3.5) [0] denotes the list containing the number zero. The function append(x,y) in (3.6) appends
lists x and y. The function reverse(z) reverses the order of list 3. Also in (3.6) the addition is performed
with scalar extension. The number 2™ ™! iz added to every element of the reversed list.
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Figure 3.2: Gray Code Mapping on a Binary 3-Cube

dga($)+1 if2)I, I#0
dga(l)=< 1 if 2 T (3.7)
undefined if I =0

A plot of this function is shown in Figure 3.26 on page 60.

For example, in the case where I = ¥ and I — 1 = ¥ — 1, the elements are at op-
2 2

posite corners of the cube, distance n apart. The Gray code has the property that
dg(G(I),G(I+1)) =1, VI 3 0< I < (N ~-2). Thus, if we map element I of the
linear order to node G(I) of the binary n-cube, nodes that are adjacent in linear space
are also adjacent in cube space. A Gray code mapping of integers onto a binary 3-cube
is shown in Figure 3.2.

3.1.4 The Balanced Cube

In a balanced cube, each datum is associated with a right subcube, N{a;], and is stored
in a constituent object in the corner node, N[min(a;)], of the subcube. Figure 3.3
shows the header for class Balanced Cube. A datum is composed of a key, N key, an
object associated with the key, NN object, the dimension of the subcube, N dim, and a
flag, N flag, that indicates the status of the subcube. The data are ordered so that if
B(a1) > B(az), Nla;] key > Nlaz] key. Node addresses are ordered using the inverse
Gray code function; thus, if two addresses are adjacent in the order, they will alsc be
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class Balanced Cube the class name

superclass Distributed Object

instance variables key defines the order
data object associated with key
dim the dimenssion of the subcube
flag status of subcube

class variables none

locks rwlock implements readers and writers

Figure 3.3: Header for Class Balanced Cube

Hamming distance one apart.

For the remainder of this chapter I will refer to both cube addresses and to linear
order addresses. A cube address is the physical address of a processing node. The
parenthesized binary numbers in Figure 3.2 are cube addresses. A linear address is the
position of a node in the linear order. For example, the integers (0-7) in Figure 3.2 are
linear addresses. Linear addresses Aj;, are related to cube addresses A.up. by (3.2) and
(3.4).

Aijn = B (Acube) ( )
3.8

Acube =G (Alin)

Upper nodes of the subcube N{a;] are flagged as slaves to the corner node by setting
N flag «#slave. Any messages transmitted to an upper node N{ay] are routed to the
corner node of the subcube to which N|[a,] belongs. There is one exception to this
routing rule. A split message is always accepted by its destination and never forwarded.
This message is the mechanism by which upper nodes become corner nodes. Since the
cube is balanced, most corner nodes have dimensions differing only by a small constant.
Thus, the message routing time between adjacent corner nodes will be limited by a small
constant.

Data are associated with the subcubes rather than the nodes of a binary n-cube to allow
ordered sets of varying sizes to be mapped to a cube of size 2. For example, a singleton
set mapped to the 3-cube of Figure 3.1 would be associated with the subcube XXX the
entire cube. If a second element is added to the set, the cube will be split. One element
will be associated with the 0.X X subcube and the other element with the 1.X X subcube.
This splitting is repeated as more elements are added to the set.
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A balanced cube is balanced in the sense that in the steady state, the dimensions of
any two subcubes of the balanced cube will differ by no more than one. This degree of
balance guarantees O(log N) access time to any datum stored in the cube. The balance
condition is valid only in the steady state. Several insert or delete operations in quick
succession may unbalance the cube. A balancing process which runs continuously acts
to rebalance the cube.

There are two consistency conditions for a balanced cube. It must be ordered as de-
scribed above and operations on the cube must be serializable giving results consistent
with sequential execution of the same operations ordered by time of completion. This
condition guarantees correct results from concurrent operations.

3.2 Search

3.2.1 Distance Properties of the Gray Code

To develop a search algorithm for the balanced cube, we need to know the distance
properties of the Gray code; that is, for any element of the ordered set mapped onto
the cube, at what distance in linear space its neighbors are in cube space. The distance
properties of the mapping tell us how much we can reduce the {linear) search space with
each nearest neighbor query in the cube. To achieve O(log N) search time we must cut
the search space in half with no more than a constant number of messages.

The reflection properties of the Gray code give us an easy method of calculating dis-
tance in a balanced cube. Consider some node, X, in a balanced n-cube. As shown in
Figure 3.4, if we toggle the most significant bit of node address X, we generate address
Y = X @ 2" 1. In linear space, Y is the reflection of X through 2"2_1. Thus, the linear

distance between node X and its neighbor, Y, in the n — 1** dimension is

r -1
2

|
din(X,n — 1) =2 ;X - (3.9)

To calculate the distance in a lower dimension, say k, we reflect about the center of the
local gray(k) list. Thus, the linear distance from a node with address X to its neighbor
in the k*® dimension is given by

2k+1 _1}

dLN(X,k):2f(X(mod2k“))-— 7| (3.10)

The tables below show the distance function (3.10) for each dimension, k, of a balanced
4-cube. In each dimension, k, the first table shows the cube address, G(X) for the
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Figure 3.4: Calculating Distance by Reflecticn

X" element in the linear order. The second table lists the neighbor of each node, X,
in the k*» dimension, N(X, k). The third table shows the distance to this neighbor,
din(X, k) = |N(X,k) — X|. To find X’s neighbor in dimension k, we convert X to a
cube address, G(X), toggle the k*? bit, G(X) ® 2*, and convert back to the linear order,
N(X,k) = B(G(X) ® 2¥). For example, the neighbor of node X = 4 in dimension k = 1
is node N (4,1) = 7. The distance to this node is dyn(4,1) = [T — 4| = 3.



X 0] 1] 2 3 4 5]6 7] 8 9101112 13]14 15
G(X) 0/ 1] 3. 2 61 7!5 4112 13 .15 14 110 11] 9 8
X 0] 1/ 2 3 4 5/6 7] 8 710 | 11 | 12 13 | 14 | 15
N(X,0) 1, 0 3 2 5 4.7 6 81110 13 1215 14
N(X 1) 3,2/ 1 0 7 6,5 411 10 9 8 15 1813 12
N(X,2) 7] 6, 5 4 3, 2/1 0 15 1413 12 11 10| 9| 8
N(X,3) 15|14 13 12 11 ,10.9 8 7 6 51 4 3 2 1|

X 0 1] 2 3 4] 56 77 8 910 11112 13|14 15
din(X,0) 1] 1,1 1, 111,11 1,1, 1,1 1] 1] 1
dinv(X,1) | 3 111 3 37 1/1 3.3 1] 1|3 3 1] 1] 3
din(X,2) 7| 5, 3. 1, 1| 315 7,7, 5, 3] 1, 1 3 5] 7
din(X,3)  15/13 11, 9 7] 5.3 1] 1 3, 5, 7 9 111315

The data from these tables are plotted in Figure 3.5. The symmetry of reflection is
clearly visible. In each dimension, k, we have 2" *~! Vs centered on right subcubes of
dimension k + 1. There are eight Vs of dimension 0, four Vs of dimension 1, two Vs of
dimension 2 and one V of dimensicn 3. For example, the nodes at linear addresses 4-7
constitute a V of dimension 1. Combining this V with it neighboring V (addresses 8 11)
gives addresses 4-11, a W of dimension 1.

Definition 3.1 A V of dimension k is a right subcube of dimension k + 1: a collection
of 25*1 nodes beginning on a multiple of 2**! in the linear order.

Definition 3.2 A W of dimension k is two adjacent Vs of dimension k.

We use these Vs and Ws in the following section to develop a new search algorithm.

3.2.2 VW Search

VW search finds a search key in the Gray cube by traversing the Vs and Ws of the
distance function shown in Figure 3.5. The neighbors of a node, X, are those nodes
that are directly across a V from X in Figure 3.5. The search procedure sends messages
across these valleys, selecting a search path that guarantees that the search space is
halved every two messages.

Messages:
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Figure 3.5: Neighbor Distance in a Gray 4-Cube

VW search is performed by passing messages between the nodes of the cube being
searched. The body of the search uses two messages: vSearch and wSearch. When
a node receives one of these search messages, it updates the state fields of the message
and forwards it to the next node in the search path. Nodes never wait for a reply from
a message. The formats of the search messages are shown below. The search state is
represented by the destination node, two dimensions: vDim and wDim, and a search
mode: Vor W.

vSearch: aKey vDim: vDim wDIm: wDIim
wSearch: aKey vDim: vDim wDIm: wDim

-

In VW search we encode the search space into the destination address, seif, and =z
dimension, wDim. wDim is the dimension of the smallest W in the distance function
which contains the search space. A second dimension, vDim, is the dimension of the
smallest V which completely contains our current W and thus the search space. vDim
can be computed from wDim and self; however, it is more convenient to pass it in the
message than to recompute it at each node.

The wDim, celf encoding of the search space can be converted to the conventional upper
bound, lower bound (U, L) representation by means of the reflect function. From (3.10)
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Figure 3.6: Search Space Reduction by vSearch Method

we know that the reflection in the linear space about dimension, d, of node X is given
by

fr(X,d) = X — 2(X(mod 2¢+1)) + 2¢+1 — 1. (3.11)

The current position, self, or its reflection in the wDim dimension is one bound of the
search space, and the reflection of this bound in the vDim dimension is the other bound.
Thus, if the current address is S, the wDim is W, and the vDim is V', we can calculate
the linear bounds of the search space (L,U) from

L(S: W)V) = mm(S, fR(S)W): fR(S’V)> fR(fR(S)W)’V))) (3'12)
U(S,W,V) = max(S, fa(S,W), fa(S,V), falf&(S, W), V)). (3.12)
Algorithm:

VWsearch operates by passing vSearch and wSearch messages between the nodes of a
balanced cube. Each message reduces the search space by comparing the search key to
the key stored in the destination node.

When a node receives a vSearch message, the search space extends between the current
node’s neighbors in the V and W dimensions (Ny and Nw) as shown in Figure 3.6.
These neighbors will always be in opposite directions. By examining the key at the
present node, the vSearch method makes the current node a new endpcint of the search
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space selecting Ny or Nw as the other endpoint. The dimension of the neighbor chosen
becomes the new V dimension and the W dimension is decreased until a W neighbor in
the appropriate direction is found.

-

When the W dimension has been reduced below the dimension of the current node, X,
then X’s W neighbor is contained within X’s subcube. Thus there is no point in sending a
message to the W neighbor, and the search is completed. Before terminating the search,
however, X checks the contents of its linear neighbor in the direction of the key to verify
that the key hasn’t been inserted in the cube during the search. If the key isn’t found,
the search terminates with a nil reply. Otherwise, the search continues by increasing the
W dimension above the dimension of X’s subcube. The method for vSearch is shown in
Figure 3.7 3.

When a node receives a wSearch message, the search space extends from its W neighbor
(Nw) to that neighbor’s V neighbor (v ) as shown in Figure 3.8. The wSearch method
makes the current node one endpoint of the new search space, selecting between Ny
and Ny as the other endpoint. If Ny is chosen as the endpoint, the search proceeds
as in vSearch. If Ny is the endpoint, however, the dimension remains unchanged and a
vSearch message is forwarded to the current node’s V neighbor. The wSearch method is
shown in Figure 3.9.

Example 3.1 The search technique is best described by means of an example. Consider
the following table.

X 0 11 27 31 41 51 6 71 8, 9] 10| 11| 12 13| 14| 15
G(X) 6} 1)y 31 2 6 7 5 411211371514} 10111 g9 8
_ Data $A | $B 1 SC [ $D | SE SF | $G | $H | $1 | $J | SK | SL | SM | SN SO | sP

The table represents a Gray 4-cube where each node of the cube stores a single character
symbol. Figure 3.10 shows the search of this Gray 4-cube for the key $G stored at node
G(8). The search begins at node G(2). The search is started with the message vSearch:
$G wDim: 5 vDim: 5. Since we know that the search key must be in the current dimension
5 trough of the W (this is the whole 4-cube), we start the search with a vSearch message.
The subsequent search messages are as-follows:

1. Since the search key, $G, is greater than the key $C stored at G(2), node G(2) sends
the message wSearch: $G wDim: 4 vDim: 5 to its dimension 4 neighbor, G(13).

2. Since the key, $G, is between G(2)'s key, $C, and G(13)’s key, $N, G(13) sends the
message wSearch: $G wDim: 3 vDim: 4 to node G(10).

*The methods for neighbor:, upperNeighbor:, lowerNeighbor:, key:SameSideAsDim: and re-
duceDim:key: are omitted for the sake of brevity. Their implementation is straightforward.



instance methods for class Balanced Cube

at: aKey reply the object associated with aKey
I

Tself vSearch: aKey wDim: MaxWdim vDim: MaxVdim mcde: vMcde

vSearch: aKey wDim: wDim vDim: vDim search for aKey
exciude rwlock. a reader method
{newVDim newWDim | new dimenstons of search space
(key = aKey) ifTrue:[ requester reply: data]. check sf found

(self key: aKey sameSideAsDim: wDim) ifTrue: |
newVDim «wDim,
newWDim «—wDim - 1.]
ifFalse: |
newVDim «vDim,
newWDim «—wDim.]
newWDim «—self reduceDim: wDim key: aKey.
(wDim < dim) ifTrue: |
(key < aKey) ifTrue: |
(aKey < {(seif upperNeighbor) key)) ifTrue: [requester reply: nil]]
ifFaise: |
(aKey > ((self lowerNeighbor) key)) if True: [requester reply: nil}].
newWdim «self increaseDim: wDim key: aKey.]
(self neighbor: newWDim) wSearch: aKey wDim: newWDim vDim: newVDim.

Figure 3.7: Methods for at: and vSearch
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instance methods for class Balanced Cube
wSearch: aKey wDim: wDim vDim: vDim search for aKey

exclude rwlock.
||
(key = aKey) ifTrue:[ requester reply: datal.
(self key: aKey sameSideAsDim: wDim)

ifTrue: [self vSearch: aKey wDim: wDim vDim: vDim]

ifFalse: [(self neighbor: vDim} vSearch: aKey wDim: wDim vDim: vDim.]

check if found

Figure 3.9: Method for wSearch
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Figure 3.10: Example of VW Search

3. The search key is not between $N and $K, so G(10) must reflect the search (in the
vDim dimension) to the other trough of the W by sending the message vSearch:
$G wDim: 3 vDim: 4 to node G(5).

4. Since the key is not between G(5)’s key, $F, and its neighbor G(2)’s key, $C , the
Wdim is decreased to find a neighbor in the direction of the key. G(5) sends the
message wSearch: $§G wDim: 2 vDim: 4 onto G(6) where the search terminates
successfully.

Example 3.2 Figure 3.11 shows two examples of searching a balanced cube which is
not full and which is temporarily out of balance.

1. In the first example, a search for the contents of G(4) is initiated from node G(5)
with the message vSearch: 4 wDim: 4 vDim: 4.

2. Since the search key is less than G(5), node G(5) forwards the search message to
node G(2), a slave node of node G(0) with the message wSearch: 4 wDim: 3 vDim:
4. Since the search key is greater than the contents of G(0) the W dimension is
decremented to 0 and the message wSearch: 4 wDim: 0 vDim: 4 is sent to node
G(3). It is important to note that although G(2) is a slave node and thus uses the
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Figure 3.11: VW Search Example 2

value of the corner node, G(0), the search continues from G(2) and is not detoured
to G(0).

3. Node G(3) is also a slave of G(0) and thus less than the search key, so the search is
reflected across the V dimension to node G(4) with the message vSearch: 4 wDim:
0 vDim:4. The search key is found at node G{4).

The second example in Figure 3.11 illustrates the case in which the search key is not
present in the cube.

1-3. The search for the key, 3, is initiated at node G(3). The search proceeds as above
until the message vSearch: 4 wDim: 0 vDim: 4 reaches node G(4).

4. To confirm that the key has not been inserted during the search, node G(4) ex-
amines the key of its linear address neighbor, node G(3) by sending G(3) a key
message.

5. Node G(3) replies with the value associated with its subcube, 0. Since 0 and the
contents of G(4), 4, bracket the search key, the search terminates by sending a nil
reply to the original requester.

The remainder of this section analyzes the VW search algorithm to show that the order
of the algorithm is O(log ) and to prove that the algorithm is deadlock free.

Lemma 3.1 Each execution of vSearch decreases wDim by at least 1.
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Proof: There are two cases as shown in Figure 3.6:

1. If the search key is between the current node, self, and its W neighbor, wDim-1is
explicitly decremented.

2. If the search key is between the current node, self, and its V neighbor, then the
current W neighbor is in the wrong direction, so ReduceDim:key: will decrement
wDim by at least 1 to find a neighbor in the proper direction.

Lemma 3.2 vSearch is executed at least once for every two search messages *.

roof: The only case in which vSearch is not executed is when a wSearch message is
received and the key is not between the current node and its neighbor. The next message
generated in this case is a vSearch message. Thus the vSearch method will be executed
at least once for every two messages. Ji

Theorem 3.1 A VW Search of a Gray n-cube requires no more than 2(log ¥ + 1)
messages.

Proof: From Lemmas 3.1 and 3.2 wDim is decremented at least once every two messages.
Since wDim is initially n = log N, after 2log N messages wDim will be zero. An additional
two messages will either find the search key or decrement wDim below zero, causing
termination. B

Theorem 3.2 The VW Search algorithm is deadlock free.

Proof: The VW Search algorithm locks only one node at a time: the one currently
conducting the search. Since rwlock is never required, the key messages transmitted
before terminating an unsuccessful search are never blocked. Thus, there is no possibility

of deadlock. B

3.3 Insert

Messages:

“Messages to self are local to the node and thus are not counted in this analysis.
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The insert operation 1s initiated by sending an at:put: message to any node in the
cube. This message starts a search of the cube for the insert key, aKey. When the
search terminates, the data, anObject, is inserted by calling method localAt:put:. A
split:key:data:flag: message is used by this method to split an existing right subcube into
two right subcubes of lower dimension to make room for the insert.

at: aKey put: anCbject
localAt: aKey put: anObject
split: aDim key: aKey data: anObject flag: aFlag

Algorithm:

The insert algorithm is identical to the search algorithm except that on completicn, in
addition to sending a reply, the insert splits a node and inserts the key and associated
data. Rather than repeat the search algorithm here, only the changes will be described.

If the key being inserted is already in the cube, the insert replaces the object bound to
the key with the object in the at:put: message. If the key being inserted is not already
in the cube, the insert procedure must insert it. To do this, the not found reply of the
search procedure listed above:

requester reply: nil.

is replaced by a call to the method localAt:put: shown in Figure 3.12.

If the present node has a dimension greater than zero, then it is split by sending a split
message to its upper half and decrementing its dimension. If the dimension is already
zero, the insert terminates with a reply of nil. This does not necessarily mean that the
cube is full. The cube may just be temporarily out of balance.

If the insert key and the linear order of the neighbor’s address have the same relation to
the current key and current address, the split message inserts the key and record into the
corner node of the upper half subcube and sets its dimension to prevent it from routing
further messages to the original corner node. The method belowNeighbor: dim returns
true if the linear order address of the current node is less than the linear address of its
neighbor in dimension dim. Figure 3.13 shows the split method. Once the dimension of
the split node is set, the split is complete in that the split node will begin responding to
messages rather than forwarding them to its corner node.

If the insert key and the linear order of the neighbor’s address have opposite relations to
the current key and current address, the split message copies the original corner node’s
key and record into the upper half subcube. The lower half subcube is then set with the
new key and record. Note that between the assignment of the key and the assignment
of the record to the lower half subcube, this subcube is in an inconsistent state.
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instance methods for class Balanced Cube

localAt: aKey put: anQObject ingert after completing search
require rwlock exclude rwlock.

|
(dim > Q) ifTrue: |
dim «—dim - 1.
(self key: aKey sameSideAsDim: dim) ifTrue: |
(self neighbor: dim) split: dim key: aKey data: anObject flag: #vaiid]
ifFalse: |
{seif neighbor: dim) split: dim key: key data: data flag: flag,
key —aKey,
data +—anObject]
requester reply: anObject]
ifFalse: |
requester reply: nii}

Figure 3.12: Method for localAt:put:

instance methods for class Balanced Cube

split: aDim key: aKey data: anObject flag: aFlag  splits a slave node from its parent
require rwlock exclude rwlock.
H
key —aKey,
data +—anObject,
dim «—aDim,
flag +—aFiag.

Figure 3.13: Method for split:key:data:flag:




To prevent an inconsistent state from being observed, both localAt: put: and split:
key: data: flag: are writer methods. They both require and exclude rwlock. Thus, no
other operation can be performed on the current node during an inconsistent state. This
locking cannot cause deadlock, since the split node is in fact part of the locked node
until the split is completed. This is an important distinction.

Consider splitting the subcube CO0XXX into 0000XX and 0001XX. In the instant of time
before the split, all nodes in 000XXX must route their messages to 000000. Immediately
after the split, all messages to the upper half subcube 0001XX must be routed to 000100.
For the cube algorithms to operate correctly, the split must be an atomic operation.
Since the split occurs when the dimension of node 0001C0 is written, it is an indivisible
operation. Before the dimension is written, messages to nodes 0001XX are routed to
000100 which forwards them to 00COO since it is not a corner node. After the dimension
is written, these messages are accepted directly by 000100. Because the key and record
of the split node are in fact not accessible before the dimension is updated, the split
procedure does not have to require rwlock. This lock, however, makes the analysis of
the operation simpler.

To prevent the possibility of simultaneously inserting the same key in the cube twice, it
1S necessary that the search terminate in the up direction unless the insert key is lower
than the lowest key in the cube.

Example 3.3 Figure 3.14 shows the steps required to insert the key 3 into the cube of
Figure 3.11. The search part of the insert proceeds as in Example 3.2 However, instead
of terminating with a not found message, the key, 3, is inserted as follows:

1. Since the search must terminate in the UP direction, node G(4) sends the search
back to node G(3). The state of the cube at this point is shown in Figure 3.14A.

2. As shown in Figure 3.14B, G(0), the corner node of the 0X X subcube to which
G(3) belongs, decrements its dimension (from two to one), effectively detaching
the 01X subcube, and sends a split message to its neighbor in dimension 1, node
G(3). G(3) becomes the corner node of the newly formed subcube.

3. The split message inserts the key, 3, into node G(3) and sets its dimension to 1 as
shown in Figure 3.14C. -

4. Finally, both nodes are unlocked as shown in Figure 3.14D.

Theorem 3.3 An insert operation in a stationary cube containing N nodes requires
O(log N) time.

Proof: The initial stages of the insert are identical to the search operation and thus
require O(log N) time. The final stage of the insert is the split operation which takes
constant time. 8
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Figure 3.14: Insert Example

Theorem 3.4 An insert operation will not deadlock with other concurrent operations.

Proof: While the insert operation can lock out readers on two nodes simultaneously, the
second node locked is part of the subcube which is locked by the first node. Placing the
second lock operation does not increase the number of nodes which are locked.. Rather,
requiring and excluding rwlock in the split method assures that the upper half subcube
will remain locked after its dimension is set to make it an independent subcube. This
second subcube is in effect created by the insert and thus cannot previously have been
locked by another operation. This node cannot be created by another operation during
the final stage of the insert, since its corner node is locked, and the only way to create
a node is to split it from its corner node. Thus, an insert operation will never have to
wait to galn access to the split node. B

3.4 Delete

Messages:

The delete operation is initiated by sending a delete: message to any node in the cube.
This message initiates a search for the node containing the delete key. If found, the
operation marks this node as deleted and replies to the requester. After the node is
marked deleted, it sends a mergeReq message to its merge netghbor. The merge neighbor
merges with the deleted node to recover its space. The messages mergeUp, mergeDown,
move and copy are used to merge the two nodes.
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The following is a list of the principal message selectors used to implement the delete:
operation.

deiete: aKey

mergeReq: anld flag: aFlag dim: aDim
mergeUp

mergeDown: aKey data: anQObject flag: aFlag
move: aNode

copy: aKey data: anObject flag: aFlag

lgorithm:

The delete algorithm is identical to the search until the key is found. Then the node is
marked deleted, flag «#deleted, and a mergeReq message is sent to the deleted node’s
merge neighbor. This has the result of routing all messages addressed to this node except
mergeUp, mergeDown, and copy messages to its merge neighbor.

Definition 3.3 The merge netghbor of a node, N|al, with address, a, is the node N[m(a)]
with address, m(a) = a® 2¥(3ldiM_If the subcubes cornered by nodes N|a] and N[m(a)]
are of the same dimension, they can be merged to form a subcube of greater dimension.
Further, node N{m(a)] is the only node with which node N[a] can be merged.

When a node, A, receives a mergeReq message from another node, B, A determines
if B is its merge neighbor by comparing dimensions. There are two possible cases, as
shown in Figure 3.15. If the two nodes are of the same dimension (Figure 3.15A,B), they
are merged. The merge is accomplished by node A’s sending a mergeUp or mergeDown
message to node B. If A is below B (Figure 3.15A) a mergeUp message is sent. A
mergeDown message is sent if A is above B (Figure 3.15B). These messages have the
effect of extending the subcube cornered by node A to include the subcube cornered by
node B. The method invoked by a mergeReq message is shown in Figure 3.16.

When the two adjacent nodes A and B have different dimensions, a simple merge is not
possible. This situation is shown in Figure 3.15C,D. Since A is the merge neighbor of B,
it will always be the case that A dim <'B dim. In this case we copy the contents of node
C, the linear address neighbor of node B, to node B and mark C deleted. In performing
the copy we reduce the dimension of the deleted subcube and make it possible for the
linear address neighbor node, C, to merge subsequently with its merge neighbor A. The
move: and copy:data:flag: messages are used to move the contents of node C to node B.

The merge operation combines the subcube cornered by node, A, with its adjacent
subcube cornered by B. If the current node is the corner of the upper half subcube,
the state of the current node is copied into the available lower half subcube with the
mergeDown message. The method for mergeDown is shown in Figure 3.17. If this method
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A dim = B dim A dim < B dim
A
B {DEL) A B (DEL)
C
C
A B (DEL} B {DEL)
A
A B C D
Figure 3.15: Merge Dimension Cases
instance methods for class Balanced Cube
mergeReq: anid flag: aFiag dim: aDim tnvoked after node anld s deleted

require rwlock exclude rwlLock.
L
(aFlag = #deleted) ifTrue: |
(aDim = dim) ifTrue: | same dimension, just merge
(anld > myld) ifTrue:]
((self co: anld) mergeUp) ifTrue:[dim «—dim + 1]]

ifFalse[
((seif co: anld) mergeDown: key data: data flag: flag) ifTrue:[flag «—#slave]]]
ifFalse: | smaller than neighbor, send move

(self neighbor: (aDim-1)) move: anld]]

Figure 3.16: Method for mergeReq:flag:dim:




instance methods for class Balanced Cube

mergeDown: aKey data: anObject flag: aFlag copy a node’s state and absorb it
require rwlock exclude rwlock or Tfaise.

|

key «—aKey, data «—anObject, flag «—aFlag.

Ttrue.

mergeUp merge with node below by becoming a slave
exclude rwlock. a reader operation
flag «—#slave.
Ttrue.

Figure 3.17: Methods for mergeUp and mergeDown:data:flag:

is successful, the current node flag is set to #slave to indicate that it is no longer a corner
ncde. Since the nodes are inconsistent while the copying takes place, this operation
requires rwlock.

If the current subcube is below its adjacent subcube, then the current node is the corner
of the combined subcube. In this case a mergeUp message is sent to the adjacent subcube
to set its flag to #slave. Once this message completes successfully, the dimension of the
current subcube is incremented to extend its domain over the merged subcube. The
method for mergeUp is also shown in Figure 3.17.

Since a merge operation must lock both nodes A and B, a priority mechanism is used
to prevent deadlock. If a mergeDown message arrives at a node which is locked, it
terminates unsuccessfully. A mergeUp message will wait until the node is unlocked. The
alternative ‘or ffalse’ in the lock specification for mergeDown causes it to return faise
rather than wait on an incompatible lock.

Only a node’s merge neighbor can send’it a merge message; thus, there is only one case in
which merge messages can form a cycle for resources. If two adjacent nodes of the same
dimension, such as A and B in Figure 3.15A, are both deleted, these nodes will send
mergeReq messages to each other. The mergeReq method will lock each node and send
a mergeUp or mergeDown message to the other node. If the merge messages were both
to wait on the locks, deadlock would occur. Instead, the mergeDown message terminates
immediately. Its reply unlocks node B and allows the mergeUp message to proceed.

The messages move: and copy:data:flag: are used to move the contents of one node tc
another. When the move: message is received by a node, that node attempts to copy
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instance methods for class Balanced Cube

move: anld . attempt to move contents to node anld
require rwlock exclude rwlock. a writer operation
N
i

{(self co: anld) copy: key data: data flag: flag) ifTrue:[ flag «—#deleted]

copy: aKey data: anObject flag: aFlag replace contents if deleted or free
require rwiock exclude rwlLock or Tfaise. doesn’t wast
B
((flag = #deleted) or: (flag = #free}) ifTrue: |
key «—aKey. data +—anObject, flag «~—aFiag.
Ttrue]
ifFaise:[Tfalse]

Figure 3.18: Methods for move: and copy:data:flag:

itself to the destination of the move by sending a copy: message to the destination. If
the copy: succeeds, it replies to the move: which then marks the source node deleted.
The methods for move and copy are shown in Figure 3.18.

Example 3.4 This example illustrates the simplest case of garbage collection, where
the nodes are the same size and all that is required is a merge. Figure 3.1GA shows
the state of a 2-cube where the key stored in G(3) has just been deleted. The following
messages merge the deleted node with its neighbor.

1. To initiate collection, G(3) sends a mergeReq message to its merge neighbor G(0).

o

The mergeReq method locks G(0) and sends a mergeUp message to G(3) as shown
in Figure 3.19B. This message locks G(3). It will always succeed since mergeUp
messages have priority over mergeDown messages.

3. As shown in Figure 3.19C, the mergeUp method sets G(3)’s flag equal to #slave
effectively attaching it to the 0X subcube.

4. After the merge method replies, G(0) increments its dimension to 2 to reflect the
fact that the two subcubes, 1.X and 0X, have been merged to form a single subcube,
XX. The final state of the subcube is shown in Figure 3.19D.

Example 3.5 Figure 3.20 illustrates the case where A dim < B dim.
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Figure 3.19: Merge Example: 4 dim = B dim
1. Node G(3)/0 (node G(3) with dimension 0) receives a mergeReq message from node

(34

G(0)/1, as shown in Figure 3.20A.

The linear address neighbor of G(0)/1 is the neighbor of G(3) in the dim - 1
dimension, G(2). Node G(3) sends a move:G{0) message to G(2) as shown in
Figure 3.20B.

The move locks node G(2) and copies the key, record and flag from node G(2) to
node G(0) by sending a copy message as shown in Figure 3.20C.

When copy replies successfully to node G(2) (Figure 3.20D) node G(2) is marked
deleted.

. As illustrated in Figure 3.20E. Node G(2) will now send a mergeReq to node G(3)

initiating equal dimension garbage collection.

Theorem 3.5 To delete a key from a qube with N nodes requires O(log N) time.

Proof: The search portion of the delete requires O(log N) time. Marking the node
deleted and merging the node with its neighbor requires constant time. B

Theo

rem 3.6 The delete operation will not deadlock with other concurrent operations.

Proof: The delete operation locks only one node at a time. H
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Figure 3.20: Merge Example: A dim < B dim

Theorem 3.7 The merge operations will not deadlock with other concurrent operations.

Proof: Although the merge operations lock two nodes simultaneously, this locking is
ordered so that a node, A, will only wait for a node with an address greater than A to
become unlocked. Thus, it is impossible to have a cycle of nodes waiting on each other’s

locks. H .

Before proving that concurrent search, insert, delete, and merge operations will give the
same result as running the operations sequentially in order of completion, we need to
define some terms and prove one lemma about concurrency.

Definition 3.4 An cperation commits when it has made a final decision to modify the
state of a node in the cube and/or to reply with a particular result. Once an operation
commits to modifying the state of a node, it must follow through and perform the
modification. It cannot back out after committing.

Definition 3.5 The commit condition is the condition which must occur for an cpera-
tion to commit.

Definition 3.6 An operation completes when it has finished modifying the state of a
node. After an operation completes it cannot modify any additional state.

Definition 3.7 The vulnerable period of an operation is the period between the time it
commits and the time it completes.
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Definition 3.8 A snapshot of the cube is the state of all corner nodes of the cube with
no methods in progress. Since there is no concept of simultaneity between nodes of the
cube, each node may be stopped at any point as long as causality and order of completion
are preserved.

Definition 3.9 The netghborhcod of an operation includes all nodes whose states are
examined by the operation between the time it commits and the time it completes.

Here are some examples:

e A search operation commits and completes at the same time. A successful search
commits to replying with the data when it finds the requested key in the current
node. An unsuccessful search commits to replying nil when it receives a reply from
a linear address neighbor confirming that the search key is not in the cube.

e An insert operation.commits when the search portion of the insert receives the
reply from the query message to an adjacent node. The commit condition is that
the present node and the adjacent node bracket the insert key. The insert oper-
ation completes when the split method unlocks its node. The node which is split
constitutes the neighborhood of the insert operation.

e The commit condition for a delete operation is the key stored in the present node
matching the delete key. When this condition is discovered, the operation commits.
A delete is completed when the delete flag of the node is set true. -

e A merge commits when the mergeUp or mergeDown message is accepted. The
commit condition is that the two nodes being merged are adjacent. Completion
occurs when the merged node is unlocked.

Lemma 3.3 If an operation, P’s, commit condition is valid throughout P’s vulnerable
period and if P’s neighborhood is not changed by another operation during this period,
then any concurrent execution of P is consistent with a sequential execution of P ordered
as follows:

»

e P is ordered after all operations R which complete before P commits.
e P is ordered before all operations S which commit after P completes.

e P is ordered either before or after any operation Q that completes during P’s
vulnerable period.

Proof: P’s commit condition and P’s neighborhood constitute the state of the cube
which is visible to P. If this state remains constant from the time P commits to the time
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P completes, then P will act as if there were no concurrent operations, Q, during this
period since it cannot see any changes caused by Q. It follows that P can be serialized
with operations Q in any order. Since P’s commit decision is valid after all operations
R have completed, it will be valid if P is not started until after these operations have
completed. Applying the same logic with S in place of P shows that operations S can be
started after P completes without changing S’s commit condition. B

Theorem 3.8 Concurrent search, insert, delete, and merge operations will give the same
result as running the operations sequentially in order of completion.

roof: The search, insert, delete and merge operations all meet the conditions in the
hypothesis of Lemma 3.3:

Search completes at the time it commits and thus meets this condition.

'he commit condition for insert is that the present node, A, and the node directly above
the present node, B, straddle the key to be inserted, K. This condition always holds at
completion since: (1) a new node C<K cannot be inserted between A and B since this
insert would have to be performed at A and A is locked, and (2) if B is deleted during
this period, then for any node D>B, D>K.

The commit decision for delete is that the delete key is found. The node containing this
key is locked, so the condition still holds at completion.

The commit condition for merge is that the adjacent node is marked deleted and the
merge operation is able to lock the node. Since both of the nodes being merged are locked
during the vulnerable period, this condition is still valid when the operation completes.
For all these operations, the neighborhood is the present node which is locked and thus
remains constant during the critical period.

3.5 Balance

The balancing process proceeds in three steps.

1. An imbalance between two adjacent subcubes, A and B, in the cube is recognized.

2. The subcube containing fewer data, say A, frees space on its border with B. With-
out loss of generality assume A is below B. To free space, the node containing the
highest datum in A, AH, splits itself, freeing half its space.

3. The heavier subcube (containing more data), in this case B, moves its smallest
datum to the space freed in step 2.
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Figure 3.21: Balancing Tree, n = 4

Imbalance is recognized by embedding a tree in the cube. As shown in Figure 3.21, for
n=4, the tree is constructed by recursively dividing the cube into two subcubes. The
node of each subcube closest in linear order to the other subcube is chosen as the corner
node. This tree has one idiosyncrasy: messages to the outer child of a node® must
traverse two communication links, while messages to the inner child of a node need to
traverse only one link. Despite this shortcoming, however, the tree is ideal for balancing
for two reasons. First, it evenly distributes the task of recognizing imbalance over all
nodes of the cube except the zero node. Also, the root node of every cube is on the
boundary of the cube across which a datum must be moved to balance the cube with an
adjacent cube at the same level. Each root node participates in correcting an imbalance
recognized by its parent.

The cube is balanced if, for each internal node in the tree, the number of keys stored in
the subcubes represented by the two children of the node differ by less than 2 : 1. Using
the number of keys in a subcube as the balancing criterion rather than the maximum or
minimum dimension of a node in the subcube has the advantage that local imbalances
are averaged out when considering global balance.

Messageas:

Leaf and internal nodes periodically transmit size messages to their parent nodes. When
the parent node receives the size message, it updates its size and checks the sizes of its

5Here the outer child of a node, A, is the child of A to the outside of the subiree rooted by A’s parent
as drawn in Figure 3.21. The outer child of the root is the left child as drawn in Figure 3.21.
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two subcubes for imbalance.

If the root node of a subcube detects imbalance between the two halves of its subcube,
it initiates balancing by moving records between its two children. This data transfer
takes place in two steps. First, a free message is transmitted to the boundary node
of the subcube containing fewer elements. This message causes the boundary ncde to
split itself as in the insert operation, with the old key and record remaining in the node
farthest from the subcube boundary. The boundary node of the subcube with the larger
size is then sent a move message. This message locks the boundary node, copies its key
and record to the freed node, and then marks the adjacent node deleted. The net effect
is to move one datum from the larger subcube to the smaller subcube. While a node is
marked free, it routes all its messages to the destination node. The root subcube repeats
this operaticn until balance is restored to a 2:1 size ratio. It is important to note that
because of the Gray code mapping, most of these messages traverse only a single link in
the cube. The message from the rcot to its outer child is the only message that must
traverse two links.

size: anint of: anid
free: anid

Algorithm:

The size method, shown in Figure 3.22, updates the size of self, checks for balance
between its two subcubes, and possibly initiates balancing by sending a free message to
the smaller of the two subcubes. The free method splits its destination subcube in half
and sends a move message to the node in the other half subcube, instructing it to copy
itself to the freed node and then to delete itself.

The free method, shown in Figure 3.23, is similar to insert in that it must split the
present node to generate a free block. There are two cases. If the subcube contains
more than one element, the boundary node is a corner node. Since it is right on the
boundary, it must copy its present state into the split subcube and then free itself. If
the subcube contains only a single element, the boundary node is a slave to the root
which recognized the imbalance. In this case the root simply sends a split message to
free the boundary half of its subcube. As with insert, locking two nodes simultaneously
is permissible during a split since the two nodes were the same node at the time of the
first lock, and it is impossible for another process to attempt to lock the split subcube
after the original subcube is Jocked.

After a node is freed, the node which is to move to the freed subcube receives the move
message. The move copies the boundary node’s key and record to the freed node while
preserving the freed node’s dimension. After the copy completes, the boundary node
is marked deleted. Although two nodes are locked simultaneously, unlike the merge
operation, no priority resolution is required to prevent deadlock. Once a node is freed,
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instance methods for class Balanced Cube

size: anint of: anid update size of subcube rooted at recetver
||
(myld < anld) ifTrue:{
lowerSize «—anlnt]
ifFalse:]
upperSize «—anint].
mySize «—lowerSize + upperSize. (lowerSize > (2 * upperSize)) ifTrue;]
(self upperChild) free lowerChild]
(upperSize > (2 * lowerSize}) ifTrue:|
(self lowerChild) free upperChild]

Figure 3.22: Method for size:of:

instance methods for class Balanced Cube

free: anid split self and send a move message to anld
require rwlock exclude rwlock
||
(dim > 0) ifTrue: |
((flag = #tdeleted) or: (flag = #free)) ifTrue:[(self co: anld) move: myld]]
ifFalse:]
dim «dim - 1.
(self adjacentTo: anld) ifTrue |
(self neighbor: dim) split: dim key: key data: data flag: flag,
flag «—free].
(self co: anld) move: myld]
ifFalse |
(self neighbor: dim) split: dim key: key data: data flag: #free,
(seif co: anld) move: (myld xor: 24™]]

»

Figure 3.23: Method for free:
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there is only one node which can send a copy message to that node. Thus, as in the
insert and free operations, for purposes of locking, the freed node is part of the boundary
node from the moment it unlocks after being tagged free.

Example 3.6 Figure 3.24 shows a balancing operation on a 3-cube.

1. In Figure 3.24A, root node 100, G(7), sees one record in the upper half of the cube
and four records in the lower half of the cube. Recognizing this imbalance, G(7)

sends a free message to G(4).

As shown in Figure 3.24B, since G(4) is a slave to G(7), the free operation locks

G(7), decrements its dimension, and sends a split message to G(4).

After the split message has marked G(4) free, a move message is sent to G(3) as
shown in Figure 3.24C.

After the move completes, G(3) is marked deleted and the cube is balanced as
shown in Figure 3.24D.

The balancing operations alter none of the arguments in the proofs of Theorems 3.1
to 3.8 above. Thus, all of these theorems hold in a cube which is being dynamically
balanced.
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3.6 Extension to B-Cubes

A straightforward extension of the balanced cube is the B-cube. The B-cube is to a-
balanced cube what a B-tree is to a balanced tree. In the B-cube, rather than storing
one record in each node, up to k records may be stored in each node. B-cube operations
attempt to keep the number of records in each node between {gj and k by splitting
nodes when the number of records exceeds k and merging adjacent nodes when their
combined number of records drops below k& + 1. Within a B-cube node, records are
sorted and searched by conventional means. Between nodes, the algcrithms presented
here for balanced cubes are applied with some modifications. For example, in the search
procedure, a query message would reply with both upper and lower keys. The test for

equality in this case would be lower <= key <= upper.

B-cubes have several advantages over balanced cubes:

e The overhead for maintaining the dimensicn and flag fields in each node is reduced.
Rather than maintaining these fields for each record, their cost is spread out over
up to k records. Locks in a B-cube can be either on a record basis or on a node
basis. Write-locking at the node level and read-locking at the record level seem to
make the most sense.

e In a B-cube, the majority of inserts and deletes can be performed entirely within a
single node without splitting or merging. Thus, the number of node interactions is
reduced. Also, balancing is required less frequently, since the number of operations
which changes the node counts is reduced. Note, however, that when balancing is
performed the amount of data to be moved has increased.

e It is expected that nodes will be swapped from a mass storage device. In the B-
cube, the size of a node can be chosen to match a convenient transfer size for the
storage device. In general, this size is larger than a single record.

A possible disadvantage of B-cubes is that they reduce the potential concurrency of
the data structure. However, in most applications the number of records will greatly
exceed the number of available processors, and the concurrency of B-cubes will not be
the limiting factor. In fact, this reduction of concurrency is an advantage in the sense
that it allows the granularity of the data structure to be smoothly varied over a large
range.

3.7 Experimental Results

The balanced cube data structure has been implemented on a multiprocessor simulator,
and a number of experiments have been performed to verify the correctness of the algo-
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rithms and to measure their throughput. The balanced cube simulator is a 3000-line C
program 68]. The code is divided fairly evenly into three parts:

e A binary n-cube simulator which provides the message passing environment of a
concurrent computer.

e The balanced cube algorithms.

e Instrumentation code to configure the cube simulator and to measure the perfor-
mance of the balanced cube algorithms.

The decision to use a simulator instead of an actual concurrent computer for these exper-
iments was a difficult one. The Caltech Cosmic Cube was available and was ideally suited
to run the balanced cube algorithms. The simulator was chosen over the Cosmic Cube,
however, because it offered greater flexibility and ease of instrumentation. The simulator
can model the behavior of a wide range of concurrent ccmputers. Computers of any size
from cne processor to 2!° processors can be simulated. For the experiments described
below, the simulator was configured as a binary n-cube 1 < n < 13. New communication
topologies, such as a linear connected cube, can be easily added to the simulator. Also,
it is easy to model different weightings of processing time to communication time cn the
simulator.

Two sets of experiments were run. The first set of experiments, described in detail in
[20], was performed on an early version of the balanced cube which directly mapped
the elements of the ordered set to the nodes of a binary n-cube. The current balanced
cube algorithms, using a Gray code mapping, were used in the second set of experiments.
After a few experiments were run to verify that the insert, delete, and balance operations
consume only a modest portion of the cube’s resources, all remaining experiments were
performed using only the search operation.

Throughput experiments were run to determine if the data structure can achieve the
predicted O(B{;—VW) throughput. These experiments were run using a load model that
applied a maximum uniform load to the cube. The experiments were run for both the
direct mapped cube and the current balanced cube.

S

Throughput is the number of operations the data structure can perform per unit time.
The balanced cube can perform N operations at a time and each operation requires
O(log N) time, so the predicted throughput is O(EQJW)' In the steady state, the balanced

cube can perform O(ng) operations each message time.

The throughput results presented in this section assume a uniform load. Both the con-
stituents to which requests are made and the keys searched for are uniformly distributed.
A concentration of messages to one constituent or searching for a single key would cause
a hot spot and reduce throughput. These throughput results also assume that data
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Diamonds represent experimental data.

inserted into the balanced cube is uniformly distributed. If an adversary inserts a patho-
logical sequence of data, balancing can, in the worst case, require O(N) messages per
operation reducing throughput to O(1).

The throughput results for the original direct mapped cube of [20], shown in Figure 3.25,
fail to achieve the predicted throughput. The direct mapped cube achieves a throughput

of ODIy O(Eglgw)

The degradation of O(log N) is due to the non-uniformity of the Hamming distance
between linear order neighbors, as expressed in Equation (3.7). The function, dg 4, can
be thought of as a barrier function. Shown in Figure 3.26, this function represents how
many channels a message between linear address neighbors must traverse. Degradation
occurs because the channels corresponding to the higher barriers must carry more traffic
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than the channels corresponding lower barriers. Hence, these channels become congested.
The average barrier height is given by:
Er} 1 {rzn—s‘ 2n+1 +9
= :

dgar = on = on sz 2. (3.14)

The degradation is the ratio of maximum barrier height to average barrier height or ~ 3.
The experimental data of Figure 3.25 agrees exactly with this figure.

The Gray code mapping used in the current balanced cube eliminates this degradation as
shown in Figure 3.27. The throughput difference of O(log N) between Figures 3.25 and
3.27 illustrate the importance of developing data structures which match the topology
of concurrent computers.
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3.8 Applications

A Mail System

Concurrent data structures such as the balanced cube provide a medium through which
objects can communicate without knowing of each other’s existence or physical location.
Consider a mail system that forwards messages between objects that occasionally migrate
from node to node. As shown in Figure 3.28, the mail system consists of a balanced cube
used to hold the associations between object names and their current addresses, and
local Post Offices that cache these associations and handle communications with objects.
Objects interact through the Post Office rather than directly communicating with each
other.

e When an object moves to a new node, it registers its new address by sending the
message at: <name> put: <address> to its local Post Office. The Post Office
inserts this association in the balanced cube.

e To send a message to an object, B, the sender object, A, transmits a message
to its local Post Office. Each local Post Office maintains a cache of recently used
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object-address associations. If the address is not found in this cache, an at:<name>
message is sent to the balanced cube to look up the address.

e If an address in the local cache is stale (the cbject has moved), the destination
Post Office consuits the balanced cube to find the correct address, forwards the
message, and notifies the sending Post Office of the new address.

Using the PostOffice mechanism, objects can communicate without ever knowing any-
thing about each other. Objects send messages to names. The object receiving messages
for a given name can move or be replaced without notifying any of its customers. There
is no central name server to become a bottleneck. The server that asscclates names with
addresses is distributed and can process many requests simultaneously.

Artwork Analysis

Applications can be constructed by combining concurrent data structures. Consider the
problem of integrated circuit artwork analysts. This problem has two aspects:

circuit eztraction: discovering the electrical circuit of an integrated circuit from an ex-
amination of its layout gecmetry.

destgn rule checking: verifying that the layout obeys a set of geometrical design rules.
These rules specify restrictions such as minimum feature width, minimum feature
spacing, etc....

Traditionally, artwork analysis has been performed using a scan-line algorithm [5],{29],[16].

However scan line algorithms are inherently sequential as they involve traversing the chip

in sequence from one end to the other. In this section we examine an approach to con-

current artwork analysis using balanced cubes.

The artwork for an integrated circuit is a set of polygons. Artwork analysis involves
checking for interactions between polygons. An efficient algorithm must be selective in
these checks to avoid the O(N?) complexity required to check every pair of polygons. If
polygons are compared only with neighboring polygons, the number of comparisons can
be significantly reduced. g

To reduce the number of comparisons, we use a B-cube to maintain the spatial rela-
tionship between polygons in one dimension. Each polygon is enclosed in a bounding
box, and the B-cube is ordered by the left z coordinate of the bounding box. Within
each node of the B-cube, two indices into the local list of polygons are maintained, one
ordered by z coordinate and one by y coordinate.

Artwork analysis is performed concurrently on this structure by having each polygon
send a from: leftX to: rightX do: aBlock message to the B-cube. At each node of the
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B-cube, aBlock executes and, using the y index, selects only those polygons that overlap
the sender in both coordinates. These polygons are then compared with the sender to
check for design rule errors.

O(N'®) comparisons will be made on y coordinates, making this algorithm less efficient
than O(N log N) sequential algorithms. This algorithm has the advantage, however, of
being very concurrent, while the scan-line algorithms are inherently sequential.

By using a two-dimensional corner-stitched data structure as described in [93] it is pos-
sible to achieve concurrency without the O(\/F) penalty imposed by ordering primarily
in a single dimension. A corner-stitched data structure can be distributed by using
the pointers as keys into a balanced cube. Since order is not required, the concurrent
dictionary described in Appendix B could be used instead of the balanced cube.

Directed Search

Many problems involve the directed search of a state space. For example, most game-
playing programs are built around an a — f§ search of a game tree that represents the
state space of positions. The program begins from the current position and generates
all possible successor positions. These successor positions are then expanded to generate
positions two moves ahead and so on. At each step of the search there is a set of
active positions: those positions that have been generated but not yet expanded. Active
positions are expanded in order of their merit as determined by some evaluation function.
Some positions may be pruned, eliminated from further consideration, on the basis of
static evaluation functions.

We can construct a concurrent directed search algorithm by storing all generated posi-
tions in a balanced cube. As in the artwork analysis example above, a B-cube is used.
Some hash function of position is used as a key to insert positions into the B-cube.
Within each node, two indices are kept into the data: an index ordered by keys and
an index ordered by the evaluation function. An expand method running in each node
repeatedly removes the most promising position from the local B-cube node, expands
that position, and inserts its descendants into the B-cube.

The directed search algorithm that resylts from using a B-cube in this manner has a
number of desirable properties.

e Identical positions can be converged, since they will hash to the same key.

e The hash function in combination with the balance property of the B-cube will
evenly distribute positions over the processing nodes of a concurrent computer,
resulting in good load balancing.

e Perhaps most importantly, no special effort is required to make the expand method
concurrent. The method simply removes a position from the B-cube, expands



65

it, and inserts the descendants into the B-cube. All of the communication and
synchronization, all of the burdens of concurrency, are handled by the B-cube.

3.9 Summary

I have develcped a new data structure for implementing ordered sets, the balanced cube.
The balanced cube is a distributed ordered set cbiect. It is an ordered set of data, along
with operations to manipulate those data, distributed over the nodes of a concurrent
computer. Operations are initiated by messages to any node. Thus, many operations
may be initiated simultaneously. The balanced cube offers significantly improved con-
currency over conventional data structures such as heaps, balanced trees, and B-trees.

On sequential machines, complexity is measured by instruction counts. Based on these
conventional measures, the balanced cube performs as well as balanced trees or B-trees
requiring O(log N) time to search, insert, or delete a record in a structure of N records.
For concurrent machines, however, communications costs are more important than in-
struction counts, and the throughput of several operations executing in parallel is more
important than the latency of a single operation. Based on this performance model,
a balanced cube offers O(l%.ﬁ}’} throughput as compared to O(1) throughput for con-
ventional data structures. Consider, for example, an N = 1024 processcr concurrent
computer. A conventional data structure implemented on such a machine can process
only a single access per unit time. A balanced cube, on the other hand, can process over
100 accesses simultaneously. )

In any concurrent system, consistency of interacting operations and deadlock avoidance
are critical. The balanced cube is provably deadlock free. Each operation locks at most
one non-deleted node at a time and unlocks this node before locking the next node. In the
case of the merge operation, where there may be competition for access to deleted nodes,
a priority scheme is used to resolve any conflicts. In the balanced cube, concurrently
executing operations produce results that are consistent with a sequential execution of
the same operations ordered by time of completion. This consistency is achieved by the
judicious use of locking to make the completion of an operation appear instantaneous
and to assure that the neighborhood of an operation is not modified between the time
it commits to modifying the state of the cube and the time it completes performing the
modification.

Balanced cubes and B-cubes can be used to construct concurrent applications. In many
cases, such as in the directed search example of Section 3.8, no special effort 18 required
to make an application concurrent. Many instances of the application simply insert and
remove data from the balanced cube. The balanced cube data structure handles all
communication and synchronization.
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Chapter 4

Graph Algorithms

In this chapter I represent graphs as concurrent data structures and develop algorithms
for manipulating graphs on message-passing concurrent computers. Unlike the ordered
set structure examined in Chapter 3, a graph does nct have a fixed set of operations
defined on it. Instead, a graph serves as a framewcrk for modeling and solving a number
of combinatorial problems.

Graph data structures have been applied to a wide range of problem areas, including
transportation, communications, computer aided design, and game playing. Because of
their importance, graph algorithms for sequential machines have been studied in depth
[26], [43], [63], [67], [95], and some work has been done on concurrent graph algorithms
[102], (103}, [116], [85]. However, little work has been done on algorithms for message-
passing concurrent computers, and very little experimental work has been done to de-
termine the performance of concurrent graph algorithms on large (> 100 processor)

machines.

This chapter addresses these gaps in the literature by formulating new concurrent graph
algorithms for three important graph problems and evaluating their performance through
both analysis and experiment. Section 4.2 discusses concurrent shortest path algorithms.
A weakness in an existing concurrent shortest path algorithm is exposed, and a new
algorithm is developed to overcome this problem. Max-ow algorithms are discussed in
Section 4.3. Two new max-flow algorithms are developed. Finally, Section 4.4 deals with
the graph partitioning problem. Novel techniques are developed to prevent thrashing of
vertices between partitions and to keep the partitions balanced concurrently.

4.1 Nomenclature

Definition 4.1 A graph G(V, E) consists of a set of vertices, V, and a set of edges,
E CV x V. The source vertex of edge e, is denoted s, and the destination, d,.
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class Graph generic graph
superclass Object
instance variables vertices a distributed collection
edges a distributed collection
class variables none
locks none
class Vertex
superclass Object
instance variables forwardEdges
backwardEdges
class variables none
locks none
class Edge
superclass Object
instance variables source 8, where e = (s8,d)
dest d, where e = (s3,d)
class variables none
locks none

Figure 4.1: Headers for Graph Classes

Definition 4.2 A path is a sequence of edges P = ¢;,...,e; D Vi d; = 8;.1. The source
of the path is sp = 8; and the destination of the path is dp = d;.

Definition 4.3 A path P is said to visit a vertex v if P contains an edge e, and v = s,
or v =d,. A proper path visits no vertex twice.

»

Definition 4.4 The degree of a vertex, v, is the number of edges incident on v. The
in-degree of v is the number of edges with destination v and the out-degree of v is the
number of edges with source v.

Most graphs encountered in computer aided design and transportation problems are
sparse: O(|E|) ~ O(|V]). For this reason I restrict my attention to sparse graphs.

The CST headers for classes Graph, Vertex and Edge are shown in Figure 4.1. A graph is
represented by two distributed collection objects, vertices, V', and edges, E. Elements of
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vertices are of class Vertex and consist of forward and backward adjacency lists. The ad-
jacency list representation is used here, since it is more efficient than adjacency matrices
in dealing with the sparse graphs characteristic of most large problems. Each edge in
the graph is an instance of class Edge which relates its source and destination vertices.

In the following sections I will define subclasses of Vertex and Edge to include problem
specific instance variables such as length, weight, capacity and flow. To conserve space,
these subclasses will not be explicitly declared. Instead, the new instance variables in
each subclass will be informally described.

4.2 Shortest Path Problems

The shortest path problem has wide application in the areas of transportation, commu-
nication and computer-aided design. For example, finding optimal routings for aircraft,
trucks or trains is a shortest path problem as is routing phcene calls in a telephone net-
work. Shortest path algorithms are also used to solve computer-aided design problems
such as circuit board routing and switch level simulation [14].

To discuss shortest paths, we must first define length.

Definition 4.5 Length, [, is a function E — R. The length of a path is the sum of the
edge lengths along the path {{P) = ECJ'EP I(e;).

Definition 4.8 The diameter, D, of a graph, G, is the maximum over all pairs of points
of the minimum length of a path between a pair of points,

D = max {min!(P)|sp = v;,dp = v;} V v;,v; €V (4.1)

4.2.1 Single Point Shortest Path

The single point shortest path problem (SPSP) involves finding the shortest path from a
distinguished vertex, 8 € V to every other vertex. In this section I examine an existing
concurrent SPSP algorithm due to Chandy and Misra [15] and show that it has expo-
nential complexity in the worst case. I go on to develop a new concurrent algorithm for
the SPSP problem that overcomes the problem of Chandy and Misra’s algorithm and
requires at most O(|V|?) messages.

The SPSP problem was solved for sequential computers by Dijkstra in 1959 [27]. Shown
in Figure 4.3, Dijkstra’s algorithm begins at the source and follows edges outward to
find the distance from the source to each vertex. The wavefront of activity is contained
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Figure 4.2: Example Single Point Shortest Path Problem

spsp: s
| vSet u v |
vertices do: [:aVertex | aVertex distance: infinity}.
source distance: 0.
vSet «—SortedCollection sortBlock:[:a :b | a distance < b distance].
vSet add: source.
[vSet isEmpty] whileFalse: [
u +vSet removeFirst,
(u forwardEdges) do: [:edge |
v +—edge destination.
((u distance + edge length) < v distance) ifTrue:|
v distance: (u distance + edge length).
v pred: u.
vSet add: v]]]

Figure 4.3: Dijkstra’s Algorithm
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s 0 nit  (a.1).(b.2)

a 1 s (b.2).(c.2).(d.3).(e.5)
b 2 s (c.2).(d.3).(e.5)

¢ 2 a  (d.3).(e.d)

d 3 a (ed).[f4)

e 4 d  (f.4).(g.6)

f 4 d (g.5)

g 5 f

Figure 4.4: Example Trace of Dijkstra’s Algorithm

in vSet, the set of vertices that have been visited but not yet expanded. To avoid
traversing an edge more than once, the algorithm keeps vSet in sorted order. Each
iteration through the whileFaise: loop, the active vertex nearest the source, u, is removed
from vSet and expanded by updating the distance of all forward neighbors. When the
algorithm terminates, the distance from source to a vertex, v, is in v distance and the
path can be found by following the pred links from v back to source. Dijkstra’s algorithm
remains the best known algorithm for the sequential SPSP problem.

A trace of Dijkstra’s Algorithm on the graph of Figure 4.2 is shown in Figure 4.4. For
each iteration of the whileFaise: loop, the figure shows the vertex expanded, its distance
from the source, its predecessor and the state of the active set. Note that each vertex,
and thus each edge, is examined exactly once. Because of this property, for sparse graphs
Dijkstra’s algorithm has a time complexity of O(|V|log|V|). The loop is iterated |V|
times and the rate-limiting step in each iteration, selecting the vertex u, can be performed
in O(log |V']) time using a heap!.

Chandy and Misra [15] have developed a concurrent version of Dijkstra’s Algorithm.
This algorithm is simple and elegant; however, as we will see shortly, it has a worst case
time complexity of O(ZM). A simplified form of Chandy and Misra’s algorithm is shown
in Figure 4.5. While Chandy and Misra’s original algorithm uses two passes to detect
negative weight cycles in the graph, the simple algorithm uses only a single pass. As with
Dijkstra’s Algorithm, Chandy and Misra’s Algorithm works by propagating distances
from the source. The algorithm is initiated by sending the source a setDistance: 0
from: nil message. When a vertex receives a setDistance:from: message, with a distance
smaller than its current distance, it updates its distance and sends messages to all of

'If there are only a constant number of edge lengths, then the seleciion can be performed in constant
time using a bucket list and the time complexity of the algorithm is O(|V'}]).
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instance methods for class Path Graph
spsp: 8
|
source setDistance: 0 from: nil.
instance methods for class Path Vertex
setDistance: aDist from: aVertex
|
{aDist < distance] ifTrue: {
distance +-aDist.
(pred notNii) ifTrue:[pred ack].
pred +—aVertex.
forwardEdges do: [redge !
(edge destination) setDistance: (distance + edge length) from: self
nrMsgs «—nrMsgs + 1]].
ifFalse: [aVertex ack].

ack
H
nrMsgs «—nrMsgs - 1.
{(nrMsgs = 0) ifTrue;|
(pred notNil) ifTrue: [pred ack].
(self = graph source) ifTrue: [graph reply].
pred «—nil].

Figure 4.5: Simplified Version of Chandy and Misra’s Concurrent SPSP Algorithm
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Figure 4.6: Example Trace of Chandy and Misra’s Algorithm

its successors. Every setDistance:from: message is acknowledged with an ack message to
detect termination as described in [28]. When the source replies to the graph the problem
is solved and the algorithm terminates. Unlike Dijkstra’s algorithm, the expansion of
vertices is not ordered but takes place concurrently. This is both the strength and the
weakness of this algorithm.

A trace of Chandy and Misra’s algorithm on the graph of Figure 4.2 is shown in Fig-
ure 4.6. Each row of the figure correspends to one arbitrary time period. Each column
corresponds to one vertex. For each time period, the messages (vertex, distance) received
by the vertices are shown in the corresponding columns. For instance, during the first
time period vertex a receives the message setDistance: 1 from: s, or (s.1) and vertex b
receives (s.2).

The order of message arrival at reconvergent vertices is nondeterministic. Figure 4.6
shows a particularly pessimistic message ordering to illuminate a problem with the algo-
rithm. During time pericd 2, messages (b.5) and (a.3) are received by vertex d. In the
example I assume the message from b arrives before the message from a. Vertex d up-
dates its distance twice and sends two messages to vertex e. Unlike Dijkstra’s algorithm,
Chandy and Misra’s algorithm may traverse an edge more than once.

This multiple edge traversal, due to the very loose synchronization of the algorithm, can
result in exponential time complexity. Consider the graph of Figure 4.7. If messages
arrive in the worst possible order, Chandy and Misra’s algorithm requires 0(2%,'1) time
to solve the SPSP problem on this graph. Each triangular stage doubles the number of
messages. Vertex vy receives messages with distances 3 and 2; vy receives 7,6,5 and 4;
vi receives 2¥ + 2k — 1,...,2k in that order. Although it is unlikely that the situation
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Figure 4.7: Pathological Graph for Chandy and Misra’s Algorithm

will ever get this bad, the problem is clear. Tighter synchronization is required.

To solve the synchronization problem with Chandy and Misra’s algorithm I have de-
veloped a new concurrent algorithm for the SPSP problem that synchronizes all active
vertices. This algorithm, shown in Figure 4.8, synchronizes all vertices in the graph with
their neighbors. By forcing a vertex to examine all of its input edges before propagating
a value on its output edges, the worst case time complexity of the algorithm is reduced
to O(|V]) for sparse graphs?. The worst case number of messages required for sparse
graphs is O(|V'|?). )

The algorithm is initialized by sending an spsp: source message to the graph. The graph
then initializes each non-source vertex by sending it an spsplnit: co message. The source
receives an spspinit:0 message. The spsplnit messages initialize the distance instance
variable of each vertex and start the synchronized distance computation by having each
vertex send setDist:from: messages to all of its forward neighbors.

Figure 4.9 illustrates the synchronization imposed by this algorithm on each vertex by
means of a Petri Net [98]. During each step of the algorithm, each vertex sends setDist
messages to all of its forward neighbors. When setDist messages have arrived from all
backward neighbors, the vertex acknowledges these messages with ackDist messages.
When ackDist messages are received from all forward neighbors, the cycle begins again.
Using this mechanism, vertices are kept locally synchronized. They do not operate in
lockstep, but, on the other hand, two vertices cannot be out of synchronization by more
than the number of edges separating them.

The algorithm as presented will run forever since no check is made for completion.

*On any real concurrent computer O{|V]) performance will not be seen, since it ignores communication
latency between vertices. On a binary n-cube processor, for example, the average latency is O(log V),
where N iz the number of processors, giving a time complexity of O{[V|log N).
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instance methods for class Path Graph
Spsp: s

.
P
vertices do: [:vertex |
(vertex = source) ifTrue: [ vertex spspinit: 0]

ifFaise: [vertex spspinit: oc]]

instance methods for class Path Vertex
setDist: aDist over: anEdge

L

nrMsgs «—nrMsgs - 1,

(aDist < distance) ifTrue: |
distance «+—aDist,
pred «—(anEdge source)],

(nrMsgs =0} ifTrue:|
self sendAcks.
(nrAcks = Q} ifTrue: [seif sendMsgs]]

spspinit: aDist

|

distance +aDist,
self sendMsgs

sendMsgs

|

nrAcks «(forwardEdges size),
acksSent «faise.
forwardEdges do: [iedge | (edge destination) setDist: (distance + edge length) over: edge]

sendAcks

|

nrMsgs «(backwardEdges size),
acksSent «true,
backwardEdges do: [:edge | (edge source) ackDist]

ackDist

|

nrAcks +—nrAcks - 1.
(acksSent and: (nrAcks = 0)) ifTrue: [self sendMsgs]

Figure 4.8: Synchronized Concurrent SPSP Algorithm
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Figure 4.9: Petri Net of SPSP Synchronization

Completion detection can be added to the algorithm in one of two ways.

e Embed a tree into the graph. Each step, each vertex (leaf) transmits up the tree a
message indicating whether or not its distance has changed. Internal nodes of the
tree combine and forward these messages. When the root of the tree detects ne
change for h consecutive steps, where h is the height of the tree, the computation
is finished.

e This shortest path is an example of a diffusing computation as defined in [28] and
thus the termination detection technique described there can be applied to this
algorithm.

For the sake of brevity, the details of implementing completion detection will not be
described here. In the experiments described below, the second termination technique
was implemented to give a fair comparison with Chandy and Misra’s algorithm.

An example trace of the synchronous SPSP (SSP) algorithm on the sample graph of
Figure 4.2 is shown in Figure 4.10. Since each vertex waits for distance messages on all
incoming edges before propagating its next message on an outgoing edge, an unfortunate
message ordering cannot cause an exponential number of messages.

Theorem 4.1 The SSP algorithm requires at most O(|V| x | E|) total messages.

Proof: In a graph with positive edge lengths, all shortest paths must be simple paths, or
we could make them shorter by eliminating their cycles. Thus, a shortest path contains



Time a b c d e f g
1 (s.1)  (s.2) (a.ce) (acc) (a.ce) (dioc) (eoc)
(b.oo) (c.xe) (ecc) (foc)
(d.oc)
2 (s.1)  (s.2) (a.2) (a.3) (a5) (doe) (e.xx)
(b.5) (e} (ecc) (fioc)
(d.cc)
3 (s.1)  (s.2) (a.2) (a.3) (a5) (d4) (e
(b.5)  (c.4) (eT) (f
(d.5)
4 (s.1)  (s.2) (a.2) (a3) (a8) (d4) (e6)
(b5 (c4) (8  (£5)
(d.5)

Figure 4.10: Example Trace of Simple Synchronous SPSP Algorithm

at most |V| — 1 edges. By induction we see that the algorithm finds all shortest paths
containing ¢ edges after ¢ iterations of exchanging messages with its neighbors. Thus, at
most |V'| — 1 iterations are required. Since |E| messages are sent during each iteration;
O(lV| x |El) total messages are required. B

The experiments discussed below were performed by coding both Chandy and Misra’s
algorithm and the SSP algorithm in C and running them on a binary n-cube simulator.
The simulator charges one unit of time for each communications channel traversed in
the graph. The experiments show that for large graphs the SSP algorithm outperforms
Chandy and Misra’s algorithm because it has better asymptotic performance, while for
small graphs Chandy and Misra’s algorithm performs better since it is not burdened
with synchronization overhead. R

Figure 4.11 shows the speedup of both algorithms as a function of the problem size. The
line marked with circles shows the speedup of Chandy and Misra’s algorithm, while the
line marked with diamonds shows the speedup of the SSP algorithm. The graph shows
that the SSP algorithm performs better than Chandy and Misra’s algorithm for large
graphs. The abrupt change in performance between 128 and 256 vertices is an anomaly
probably due to the fact that only a single graph of each size was tested.

The algorithms were run on random graphs of degree four with uniformly distributed
edge lengths. Tests were run varying the graph size in multiples of two from 16 to 4096
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Figure 4.12: Speedup of Shortest Path Algorithms vs. Number of Processors

vertices. In each test the number of processors was equal to the number of vertices in
the graph. The speedup figure in the graph is given by %, where T, is the number of
operations required by Dijkstra’s algorithm on a sequential processor ignoring accesses
to the priority queue, and T, is the time for the concurrent algorithm on a concurrent
processor. Note that these speedup figures are, in fact, pessimistic since they ignore the
time required by the sequential algorithm to access the priority queue.

Figure 4.12 shows the speedup of both algorithms as a function of the number of
processors. These tests were run on a random graph of degree 4 with 4096 vertices
and uniformly distributed edge weights. For this graph size, the SSP algorithm is about
four times as fast as Chandy and Misra’s algorithm for all configurations tested. The
speedup of both algorithms is = 5—1‘—\% over much of the range with Chandy and Misra’s
algorithm falling short of this asvmptote for large N.

Figure 4.13 shows the speedup of both algorithms for different-size instances of the
pathological graph of Figure 4.7. Because the graph is very narrow and does not offer
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much potential for concurrency, neither algorithm performed particularly well. The SSP
algorithm, however, outperformed Chandy and Misra’s algorithm by a significant margin.
Data are not available for Chandy and Misra’s algorithm on graphs of more than 256
vertices because the algorithm did not terminate on the 512 vertex case after two days
of run time on a VAX 11/750! The SSP algorithm performs moderately well even on a
4096 vertex graph.

As we will see in the next secticn, additional speedup can be gained exploiting concur-
rency at a higher level by running several shortest path problems simultaneously.

4.2.2 Multiple Point Shortest Path

In the multiple shortest path problem there are several scurce vertices, 8y,...,8;. The
problem is to find the minimum length path from each source vertex, s, to every node
in the graph. For example, during the loose routing phase an integrated circuit router
assigns signals to channels by independently finding the shortest path from each signal’s
source to its destination. Since each signal is handled independently, on a concurrent
computer all signals can be routed simultaneously.

The results of a number of experiments run to measure the concurrency of running
multiple shortest path problems simultaneously are shown in Figures 4.14 and 4.15.
Figure 4.14 shows the speedup vs. number of processors for eight simultaneous shortest
path problems on graph R2.10, a random graph of degree 2 and 1024 vertices. This
figure shows an almost linear speedup for small N trailing off to an lfgyN speedup as N,
the number of processors, approaches the size of the graph. This degradation is due to
the uneven distribution of load that results when only a few vertices of the graph are
assigned to each processing node. The maximum speedup of 10‘;{1\/ is due to the log N
cost of communication in an N processor binary n-cube.

Figure 4.15 shows the speedup of the multiple path algorithm vs. the number of simul-
taneous problems for a fixed computer of dimension 10, 1024 nodes. For a small number
of problems the speedup is limited by the number of problems available to run. As more
problems are added the speedup increases to 'a point where it is limited by the number
of processors available. Beyond this point the speedup remains at a constant level. In
this experiment the processors become the limiting factor beyond 10 problems. Running
a sufficient number of shortest path problems simultaneously gives a speedup that is
independent of the diameter of the graph and is instead dependent on the number of
available processors and the distribution of work to those processors.

The experiments shown in Figures 4.14 and 4.15 were run using Chandy and Misra’s
algorithm. Even greater performance gains are expected for the SSP algorithm since the
multiple problems could share the significant synchronization overhead of this algorithm.
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floyd
bE
vertices do: [ivi |
vertices do: [vj |
vi distTo: vj put: length of edge from 1 to j]]
vertices do: [ivk |
vertices do: [:vi |
vertices do: [ivj |
vi distTo: vj put: (vi distTo: vj) min: {{vi distTo: vk} + (vk distTo: vj}}}]

Figure 4.16: Floyd’s Algorithm

4.2.3 All Points Shortest Path

The all points shortest path problem is the extreme case of the multiple shortest path
problem described above, where every vertex in the graph is a source vertex. An efficient
sequential algorithm for solving this problem is given by Floyd [41] based on a transitive
closure algorithm by Warshall [134]. This algorithm, shown in Figure 4.16, finds the
shortest path between any pair of vertices, vi and vj, by incremental construction. The
algorithm begins, k=0, with vi dist at: vj containing the length of the edge (if any) from
vi to vj. That is, the shortest path from vi to vj containing no other vertices. On the first
iteration, the algorithm considers paths from vi to vj that pass through the first vertex
vk. On the m®" iteration, the shortest path passing through vertices numbered less than
or equal to m is found. Thus, when the algorithm completes, vi distTo: vj contains the
length of the shortest path from vi to vj. This algorithm has time complexity O({V [?)
and space complexity O([V]?).

A concurrent version of this algorithm is given in [57]. This algorithm uses |V'|? proces-
sors, one for each pair of vertices, to exécute the inner two loops above in a single step.
O(|V'|) steps are required to perform the path computation. This approach is similar tc
one described by Levitt and Kautz for cellular automata [82]. Although it gives linear
speedup, this algorithm is impractical for all but the smallest graphs because it requires
{V'|? processors. Since graphs of interest in computer-aided design problems often con-
tain 10% to 10% vertices, practical algorithms must require a number of processors that
grows no faster than linearly with the problem size.

Both the sequential and concurrent versions of Floyd’s algorithm are very inefficient for
sparse graphs. Floyd’s algorithm requires O(|V'|®) operations, while |V| repetitions of
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Dijkstra’s algorithm requires only O(|V{*log [V'|) for graphs of constant degree. This
is even better than the expected case performance of Spira’s O(/V |*log® |V|) algorithm
(119]. Thus, for sparse graphs, it is much more efficient to run multiple shortest path
problems as described in Section 4.2.2 than it is to run Floyd’s algorithm.

The space complexity of O(]V'|?) is a serious problem with the all points shortest path
problem. Note that this space requirement is inherent in the problem since the solution
is of size [V'|?. Another advantage of running multiple shortest path problems instead
of the all points problem is that the problem can be run in pieces and backed up to
secondary storage.

4.3 The Max-Flow Problem

The problem of determining the maximum flow in a network subject to capacity con-
straints, the max-flow problem, is a form of linear programming problem that is often
encountered in solving communication and transportation problems. These problems
usually involve large networks and are very computation-intensive.

Consider a directed graph G(V,E]} with two distinguished vertices, the source, s, and the
sink, t. Each edge e € E has a capacity, c(e). A flow function f : E — R assigns a real
number f(e) to each edge e subject to the constraints:

1. The flow in each edge is positive and less than the edge capacity.
0 < fle) < efe), (4.2)

2. Except for 8 and t, the flow out of a vertex equals the flow into a vertex: vertices
conserve flow.

YweV\{st}, 3 fle = 2. fle), (4.2)

e€in(v) e€out{v)

where in(v) is the set of edges into vertex v, and out(v) is the set of edges out of
vertex v. -

The network flow, F(G, f), is the sum of the flows out of s. It is easy to show that F is
also the sum of the flows into t, the sink®.

F= Y fl)= X 1) ()

e€out(s) e€in(t)

31t is assumed that there is no flow into the source or out of the sink.
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The max-flow problem is to find a legal flow function, f, that maximizes the network
flow F.

The max-flow problem was first formulated and solved by Ford and Fulkerson [43]. To
understand their algerithm we first need the following definitions. -

Definition 4.7 An edge e is useful{v, u) if either

1. e={v,u) and f(e) < c(e), or

2. e=(u,v) and f(e) > 0.

An edge that is useful(v,u) can be used to increase the flow between v and u either by
increasing the flow in the forward direction or decreasing the flow in the reverse direction.

Definition 4.8 The available flow, a;, over an edge e; = (8;,d;) is

1. ¢e;) — f(e;) in the forward direction from s; to d;,

2. f(e;) in the backward direction from d; to s;.

The available flow is the amount the flow can be increased over an edge in a given
direction without violating the capacity constraint. ’

Deflnition 4.9 An augmenting path is a sequence of edges e;,..., e, where

1. ey is useful(s, v1),
2. & is useful(v;_y,v) Vi3 1 < i< n,

3. en is useful(v,_1,t).

Thus, an augmenting path is a sequence of edges from s to t along which the flow can
be increased by increasing the flow on the forward edges and decreasing the flow on the
reverse edges,

The Ford and Fulkerson algorithm begins with any feasible flow and constructs a maximal
flow by adding flow along augmenting paths. An arbitrary search algorithm is used to
find each augmenting path. Flow in each edge of the path is then increased by the
minimum of the available flow for all edges in the path. The original Ford and Fulkerson
algorithm may require an unbounded amount of time to solve certain pathological graphs.
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Figure 4.17: Example of Suboptimal Layered Flow

Edmonds and Karp [30] later discovered that restricting the search for augmenting paths
to be breadth-first makes the time complexity of the algorithm O(|Z)*|V}). For dense
graphs where |E| = O(|V'{?) this is quite bad, O(|V'|®); however, for sparse graphs where
|E| = O(]V|), Edmonds and Karps’s algorithm requires only O([V'|3) time. Only recently
have better algorithms been discovered for sparse graphs.

Dinic introduced the use of layering to solve the max-flow problem [35]. Dinic’s algorithm
constructs a max-flow in phases. Each phase begins by constructing an auxiliary layered
graph that uses only useful edges in the original flow graph.

Definition 4.10 A layered graphis a graph where the vertex set, V', has been partitioned
into layers. Each vertex, v, is assigned to layer [(v) and edges are restricted to connect
adjacent layers: Ve = (u,v), {{(v) = l{u) + 1. The layer of a vertex corresponds to the
number of edges between the source and that vertex. A layered graph is constructed
from a general flow graph by breadth-first search.

e The source, s, is assigned to layer {(s) = 0.

e For each layer ¢ from 1 to k, a vertex u is assigned to layer ¢ if 3 an edge, e, which
is useful(v, u) for some vertex v in layer + — 1.

During each phase of Dinic’s algorithm a mazimal layered flow is found in the layered
graph using depth first search. The flows added to the layered graph are added to
the original flow-graph, and the next phase of the algorithm begins by relayering the
graph. The number of layers in the auxiliary graph is guaranteed to increase by one
each iteration and obviously can contain no more than [V| layers, so the number of
iterations is at most (V| — 1.
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Definition 4.11 A mazimal layered flow is a legal assignment of flows to edges of a
layered graph such that

e Flows are augmented only in the forward direction. The flow over a forward edge
(from layer 1 to layer ¢ 4+ 1) can only be increased and the flow over a reverse edge
(from 1 + 1 to ¢) can only be decreased.

e All paths from the source to the sink are saturated.

Because of the layering constraint, a maximal layered flow is not necessarily a maximal
flow on the layered network and may not be the best achievable within the constraints.
For example, Figure 4.17 shows a layered graph where each edge is labeled with its
capacity and flow (capacity/flow). The one unit of flow along path s,q,d,t is a maximal
layered flow even though a two-unit flow is possible (paths s,a,¢,t and s,b,d,t).

Finding a maximal layered fow is much easier than finding a max-flow in a general graph
because each edge has been assigned a direction. Dinic’s algorithm [33] constructs the
layered max-flow using depth-first search which requires O([V'| x | E}) time for each phase
or O(|V|?|E|) total time. Algorithms due to Karzanov (63] and Malhotra, Kumar, and
Maheshwari (MKM) [84] also use layering, but construct layered max-flows by pushing
flow from vertex to vertex. Karzanov’s algorithm constructs prefows, pushing flow
from the source, while the simpler MKM algorithm identifies a flow limiting vertex, v,
and then saturates v propagating flow towards both the source and sink from v. Both
of these algorithms require O(|V'|®) time and Galil has shown that these bounds are
tight [46]. While considerably better for dense graphs, these layered algorithms offer no
improvement over Edmunds and Karp for sparse graphs.

Cherasky developed an O([V|*\/]E]) algorithm by further partitioning the layered graph
into superlayers [45]. Karzanov’s algorithm is applied between the superlayers while
Dinic’s algorithm is used within each superlayer. Galil improved Cherasky’s superlayer to
have complexity O(EV’@ §El%) by using a set of data structures called forests to efficiently
represent paths in the superlayers [44].

Galil and Naamad have developed an O([V| x |E|log? [V|) algorithm that uses a form
of path compression. The algorithm follows the general form of Dinic’s algorithm, but
avoids rediscovering paths by storing path fragmentsin a 2-3 tree [45]. The fastest known
algorithm for the max-flow problem, due to Sleator [118], also stores path fragments in
a tree structure. Sleator’s algorithm uses a novel data structure called a biased 2-8 tree -
on which join, split and splice operations can be performed very efficiently to give an
O(log |V']) improvement over Galil and Naamad.

Despite the intensive research that has been performed on the max-flow problem, little
work has been done on concurrent max-flow algorithms. This paucity of concurrent
algorithms may be due to the fact that all of the sequential algorithms reviewed above
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are inherently sequential. They depend upon a strict ordering of cperations and cannot
be made parallel in a straightforward manner.

Shiloach and Vishkin (SV) (116} have developed a concurrent max-flow algorithm based
on Karzanov’s algorithm. Like Karzanov’s algorithm, the SV algorithm operates in
stages constructing a maximal layered flow at each stage by pushing preflows from the
source to the sink. A novel data structure called a partial-sum tree (PS-tree) is used
to make the pushing and rejection of flow efficient in dense graphs. The SV algorithm
is based on a synchronized, shared-memory model of computation wherein all proces-
sors have access to a common memory and can even read and write the same location
simultaneously. The algorithm assumes that all processors are synchronized so that
all active vertices finish their flow propagation before any new active vertices begin
processing. The CVF algorithm, described below, is very similar to the SV algorithm
but is based on a message passing model of computation wherein shared memory and
global synchronization signals are not provided.

Marberg and Gafni have developed a message passing version of the SV algorithm [85};
however, their algorithm is quite different from the CVF algorithm. The CVF algorithm
is locally synchronized; vertices communicate only with their neighbors. Each eycle of
the algorithm requires only two channel traversals for synchronization*. Marberg and
Gafni, on the other hand, use global synchronization. All vertices are embedded in a tree
which is used to broadcast STARTPULSE messages to all vertices to begin each cycle
and to combine ENDPULSE messages to detect the completion of each cycle. The same
tree is used to detect completion of each phase of the algorithm. With this approach
each cycle requires a minimum of 2log V| channel traversals for synchronization.

4.3.1 Constructing a Layered Graph

The remainder of this section describes two novel concurrent max-flow algorithms:

e the concurrent augmenting digraph (CAD) algorithm,

e the concurrent vertex flow (CVF) algorithm.

Both algorithms are similar to Dinic’s algorithm in that they iteratively partition the
flow-graph into layers and construct a maximal layered flow on the partitioned network.
This common macro algorithm is illustrated in Figure 4.18. The algorithms differ in their
approach to increasing flow in the layered network. The CAD algorithm increases flow
by finding augmenting paths, while the CVF algorithm works by pushing flow between
vertices.

Both the CAD and CVF algorithms construct a layered network using an algorithm

“A round trip between neighboring vertices is performed each cycle.
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maxFlow: g source: s sink: t
While an augmenting path exists from s tot
Construct a layered graph g’ from graph g
Construct a maximai layered flow in g’

Figure 4.18: CAD and CYF Macro Algorithm

similar to Chandy and Misra’s shortest path algorithm. As shown in Figure 4.19, par-
titioning the vertices into layers is the same as finding the shortest path when all edge
lengths are one.

The algorithm shown in Figure 4.19 differs from the algorithm shown in Figure 4.5 in
three ways:

e Both forward and backward edges are used in constructing paths.
e Only edges that are useful in the proper direction are considered.

o All edge lengths are considered to be unity.

S

Restricting edge lengths to unity results in greatly improved worst case complexity.
With unit edge lengths there are at most |V| possible values for a vertex’s distance
from the source. A vertex can change its value at most |V'| times resulting in O(|V|?)
messages in the worst case. For unit edge lengths the looser synchronization of Misra
and Chandy’s algorithm is preferable to the tight synchronization of the SSP algorithm.
Since the algorithm performs at most O(|V'|) layerings in the worst case, the contribution
of layering to the total number of messages required to solve the flow problem is O(|V{?).

In addition to partitioning the vertices into layers, it is also necessary to partition the
edges incident on each vertex, v in layer ¢ into a set of edges to layer 1+ + 1, outEdges,
a set of edges to layer ¢ — 1, inEdges, and all remaining edges. Collections inEdges and
outEdges will be used extensively in the following algorithms. The partitioning of edges
is straightforward and will not be shown here.

4.3.2 The CAD Algorithm

The CAD algorithm constructs a maximal flow in each layered network by finding aug-
menting paths. Multiple paths are explored concurrently and the algorithm merges re-
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instance methods for class Flow Vertex
layer: alayer over: anEdge
N
(aLayer < layer) ifTrue:{
(pred notNil) ifTrue:{pred ackFrom: seif].
layer «—layer,
pred «—ankEdge,
forwardEdges do:[:edge |
edge layer: (layer + 1) from: seif.
nrMsgs «nrMsgs + 1],
backwardEdges do:[:edge |
edge layer: (layer + 1} from: self,
nrMsgs «—nrMsgs +1],
(nrMsgs = O} ifTrue:|
pred ackFrom: seif,
pred «—nil]}
ifFalse:{anEdge ackFrom: seif].

ack
||
nrMsgs «—nrMsgs - 1.
{nrMsgs = Q) ifTrue:|
(pred notNil) ifTrue:{pred ackFrom: seif],
pred +—nil].

instance methods for class Flow Edge
layer: alayer from: aVertex

||

(aVertex = source) ifTrue:]
(flow < capacity) ifTrue:[dest layer: alayer over: self]
ifFalse:[aVertex ack]]

ifFalse:|
(flow > 0) ifTrue:[source layer: alayer over: self]
ifFalse:[aVertex ack]].

ackFrom: aVertex

I

(self oppositeVertex: aVertex) ack

Figure 4.19: CAD and CVF Layering Algorithm
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convergent paths into a digraph to improve performance. To prevent several paths from
claiming the same edge capacity, each path is constructed in three phases: propagation,
reservation and confirmation.

Propagation: All potential augmenting paths from s to t in the layered network are

found by constructing a path digraph rooted at s. Construction of the path
digraph begins by sending propagate messages from the source over all useful edges
to vertices In layer 1. A vertex in layer : waits until it has received messages over
all incoming useful edges from layer 1 — 1. It then sends propagate messages over
all outgoing useful edges to layer + + 1. The propagation process continues until
vertex t is reached.

For each edge, e, the maximum flow that can reach that edge from the scurce is
recorded in instance variable reserveFlow. The capacity of the edges used by the
paths discovered during the propagation phase is not locked, however, and several
paths may use the same capacity. Conflicts over edge capacity are resolved during
the reservation phase.

Reservation: Paths discovered during the propagation phase reserve edge capacity by

following links in the path digraph backwards from ¢t to s. When a propagate
message reaches the sink, the reservation process is initiated by the sink sending
a reserve message back to the preceding layer. A vertex in layer ¢ waits until
it receives reserve messages over all outgoing edges and then parcels the reserve
flow among incoming edges. Since there may not be sufficient flow into the vertex
from layer ¢ + 1 to satisfy all reservations, some edges may reduce the value of
reserveFlow. It is also possible that some vertices may have more incoming flow
from layer 1 +1 than can be reserved on all incoming edges. In this case the excess
reservations in the higher layers will be reduced during the confirmation phase,.

Confirmation: Reservations are confirmed and possibly reduced during the confirmation

phase. When a reserve message reaches the source, confirmation is initiated by
the source sending a confirm message back to layer 1. When a vertex in layer ¢
has received confirm messages over all incoming edges, it partitions the flow over
the outgoing edges, possibly reducing or completely canceling the reservation on
some of these edges and propagates confirm messages to layer + + 1. Because of
the way reservations are made during the reserve phase, the reservations made on
incoming edges are no greater than the reservations on outgoing edges. Thus, the
flow into a vertex during the confirm phase is guaranteed to be no greater than
the reserved flow on outgoing edges.

The propagate methods for both vertices and edges are shown in Figure 4.20. When
a non-sink vertex, v, receives a propagate message, it accumulates the total flow that
could possibly reach v in instance variable inFlow and counts the number of propagate
messages received in instance variable nrMsgs. When messages have been received over
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instance methods for class Flow Vertex
propagate: aFlow over: anEdge
(isSink] ifFalse: | internal vertez
inFiow «—inFiow + aFlow,
nrMsgs «—nrMsgs + 1.

(nrMsgs = (inEdges size)) ifTrue: | propagate flow to nezt layer
outEdges do: [ :edge | edge propagate: inFlow from: seif].
inFiow «0,
nrMsgs «0]
(outEdges size = 0} ifTrue:| dead end, reserve 0 flow
inEdges do: [ :edge | edge reserve: O from: seif]]
ifTrue: [anEdge reserve: aFlow from: self]. sink reflects messages

instance methods for class Flow Edge
propagate: aFlow from: aVertex

| outFlow |
(aVertex = source) ifTrue:[outFlow = aFlow min: (capacity - flow)] forward edge
ifFaise:{outFiow = aFlow min: flow]. backward edge

(self oppositeVertex: aVertex) propagate: outFlow over: self.
reserveFlow «—outFiow.

Figure 4.20: Propagate Methods

»
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instance methods for class Flow Vertex
reserve: aFlow over: anEdge
| outFlow |
(isSource) ifFalse: | internal vertez
inFlow «—inFiow + aFlow,
nrMsgs «—nrMsgs + 1.
(nrMsgs = {outEdges size)) ifTrue: |
inEdges do: [ :edge |
outFlow «—inFlow min: edge reserveFlow.
edge reserve: outFlow from: self,
inFlow «—inFlow - outFlow].
inFlow «0,
arMsgs «—0]]
ifTrue: [anEdge confirm: aFlow from: self]. gource reflects messages

instance methods for class Fiow Edge
reserve: aFlow from: aVertex

z |

i

reserveFiow +«—aFiow.

(self oppositeVertex: aVertex) reserve: aFlow over: seif.

Figure 4.21: Reserve Methods

all incoming edges®, a propagate message is transmitted to each outgoing edge in col-
lection outEdges. An edge receiving a propagate message takes the minimum of the flow
the vertex can deliver, aFlow, and its own available flow and propagates the resulting
outFlow to the next layer of the graph. When a propagate message reaches the sink, the
sink immediately sends a reserve message back to the sender to initiate the reservation
phase®.

The code that propagates reservations back toward the source is shown in Figure 4.21.
A vertex, v, waits to receive reserve messages from all of its outgoing edges, summing
the reserved flow in instance variable inFlow. When v has received messages from all
outgoing edges the value of inFlow represents the flow reserved between v and the sink,
t. Vertex v divides this low among its incoming vertices sending each of them a reserve
message to propagate the reservations back to the next layer. A reserve message received

®Recall that inEdges.outEdges is a partition of edges conatructed during layering and may be different
than the forwardEdges, backwardEdges partition defined by the structure of the graph.

®The sink could test for termination at this point by checking if any flow can reach it; however, for the
sake of simplicity this teat has been omitted.
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instance methods for class Flow Vertex
confirm: aFiow over: anEdge
| outFlow |
(isSink) ifFalse: | internal vertez
inFlow +inFiow + aFiow.
nrMsgs «—nrMsgs + 1.
(nrMsgs = (inEdges size}) ifTrue: |
outEdges do: [ edge |
outFiow +—inFiow min: edge reserveFiow.
edge confirm: outFlow from: self,
inFlow «inFlow - outFlow].
nrMsgs «0]]
ifTrue: | sink
inFiow +inFlow + aFlow.
nrMsgs «—nrMsgs + 1.
(nrMsgs = (inEdges size)) ifTrue: [requester reply: inFlow]].

di

instance methods for class Fiow Edge
confirm: aFiow from: aVertex
|
reserveFlow 0.
(aVertex = source) ifTrue:{flow «flow + aFlow] forward edge
ifFalse:[flow «—flow - aFlow]. back edge
(seif oppositeVertex: aVertex) confirm: aFlow over: self].

Figure 4.22: Confirm Methods

by the source is reflected back to the sender to initiate the confirmation phase.

The details of the confirmation phase are shown in Figure 4.22. As in the propagate
stage, a vertex, v, waits for messages on all incoming edges before sending messages over
all outgoing edges. When v receives the confirm message from the last incoming edge,
instance variable inFlow represents the amount of flow that has been added to paths from
the source, 8, to v. Vertex v uses this flow to confirm reservations on outgoing edges until
it is used up. If the incoming flow is not sufficient to satisfy all outgoing reservations,
one outgoing edge may only have part of its reservation confirmed (aFlow < reserveFlow)
and some edges may have their reservation completely canceled (aFlow = 0). An edge
recelving a confirm message increments or decrements its flow by the specified amount
depending on whether it is a forward or backward edge.
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When all confirm messages reach the sink, ¢, an iteration is complete and ¢t replies with
the added flow to the macro-level algorithm. If the added flow is zero, a maximal layered
flow has been constructed and the macro-level algorithm proceeds to re-layer the network
for the next solution phase. Otherwise, ancther iteration of path finding is initiated by
sending a propagate message to the source.

Lemma 4.1 Each iteration of the CAD algorithm saturates at least one vertex, v, leav-
ing no useful flow into v.

Procf: There are two cases:

1. No vertex reduces the reservation by having inFiow > O after sending all of its
reserve messages: all low propagated into the sink is confirmed. Proof by inducticn
on the number of layers, [.

e For | = 1, since the flow propagated into the sink comes directly from the
source, confirming this flow saturates all edges into the sink and thus saturates
the sink vertex.

e Consider a network of [ layers. The flow propagated along each edge is the
minimum of the available flow on the edge and the maximum flow that can
reach the preceding vertex. Thus, for each edge into the sink, either that edge
is saturated, or all flow propagated to the preceding vertex will be confirmed.
If all edges into the sink are saturated, then the sink is saturated. If some edge
e = (v,t) into the sink is not saturated, then all flow propagated into vertex
v is confirmed. This situation is analogous to vertex v being the sink vertex
of al — 1 layer network. Thus by induction, some vertex will be saturated.

2. If some vertex v reduces the reservation, then 3 a vertex u > wu reduces the
reservation and no vertex in a layer lower than I/(u) reduces the reservation. Thus,
all flow propagated into u is confirmed. Consider u as the sink of a graph of depth
I(u); then by the result of case (1) above, some vertex in this subgraph is saturated.

Theorem 4.2 The CAD algorithm requires O(|V |*| E|) messages.

Proof: The CAD algorithm sends exactly 3 X |E| messages during each iteration of the
three phases. By Lemma 4.1 each iteration saturates at least one vertex, so there can
be at most |V'| iterations per layering. Since at most |V'| — 1 layerings are constructed,
the total number of messages sent is at most

3x [E|x V] x (V] - 1) = O(V[*|B). (4.5)
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4.3.3 The CVF Algorithm

Like the CAD algorithm, the CVF algorithm works by iteratively partitioning the graph
into layers and then constructing a maximal layered flow for each partition. Rather
than using augmenting paths to ccnstruct a maximal layered flow, however, the CVF
algorithm works by pushing flow from the source vertex to the sink vertex.

The concept of a preflow ([63] p.53) is helpful in understanding this algorithm.

Definition 4.12 A preflow, f : E — X, i3 an assignment of flow to the edges of the
graph so that Equation (4.2) is satisfied, but Equation (4.3) is reduced to an inequality:
the flow into a vertex may exceed the flow out of a vertex.

YveV — {s,t}, Z fle) < Z fle). (4.6)

¢€in(v) e€out{v)

The CVF algorithm constructs a preflow by pushing flow requests from source to sink.
The preflow is converted into a maximal layered flow by rejecting excess flow requests.
If a vertex, v, in layer 1 cannot push all requested low on to layer { + 1, it rejects the
remaining flow sending it back to layer + — 1. The vertex, u, receiving the rejected flow
may send a request to another vertex in layer ¢, or it may reject the flow itself passing
the problem back to layer s — 2.

This approach to constructing a maximal layered flow is not unique. The CVF Qigorithm
is a concurrent version of Karzanov’s algorithm [63]. It is almost identical to the SV

algorithm [116]. There are three major differences between the CVF algorithm and the
SV algorithm.

1. The SV algorithm depends on a synchronized model of computation where all
vertices operate in lockstep. The CVF algorithm, on the other hand, is based
on an asynchronous message-passing model of computation. Vertices operate au-
tonomously and all synchronization is explicitly performed using message passing.

2. The SV algorithm uses PS-trees to combine communications from several edges.
The CVF algorithm is intended for sparse graphs where vertex degree is small and
such a structure is not needed.

3. The SV algorithm does not detect termination. All vertices become idle when a
maximal layered flow has been constructed, but there is no mechanism to detect
this condition. The CVF algorithm explicitly detects termination by propagating
acknowledgements.

An iteration of the CVF algorithm is started by having the source vertex send request
messages over all of its outgoing edges. The code for the request method is shown in
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instance methods for class Fiow Vertex
request: aFlow over: ankdge

i
[
i

(isSink) ifFaise: | internal vertez
inFlow —inFlow + aFiow, accumulate flow
(inFlow > O} ifTrue:{ stack push: aFiowQanEdge] record flow quanta on stack

nrRequests «nrRequests + 1.
((nrRequests = inEdges size} and:
((state = #inactive] or: (nrRejects = outEdges size})) ifTrue: |
seif sendMessages]] distridute accumaulated flow
ifTrue: [anEdge ackFiow: seif]. sink acknowledges immediately

instance methods for class Flow Edge
request: aFlow from: aVertex

N
(aVertex = source) ifTrue:{flow «flow + aFlow] forward edge
ifFalse:[flow «flow - aFlow], backward edge
(aFlow = self availFiow: aVertex) ifTrue:[state «#saturated].
(self oppositeVertex: aVertex) request: aFlow over: self,
rejectableFlow «—rejectableFlow + aFlow.

availFlow: aVertex

i !

(state # Ftactive] ifTrue:[10]. no more flow on saturated edge
(aVertex = source) ifTrue:[Tcapacity - flow] forward edge
ifFalse: [Tflow] backward edge.

»

Figure 4.23: request Methods for CVF Algoerithm
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Figure 4.23. When a vertex, v, in layer ¢ has received a request message for a non-zero
amount of flow, it records the flow quantum requested on a LIFO stack and accumulates
the flow in instance variable inFlow. When request messages have been received cver all
incoming edges, instance variabie inFlow represents the total unbalanced flow into the
vertex. Method sendMessages balances this flow by either pushing it to layer 1 + 1 or
rejecting it back to layer 1 — 1. After its first activation, vertex v waits for messages over
all incoming edges and all outgoing edges, accumulating both flow pushed from layer
1 — 1 and flow rejected from layer 1+ + 1 before calling method sendMessages to balance
the flow.

Method sendMessages shown in Figure 4.24 balances the flow at a vertex, v, and syn-
chronizes v with its neighbors. To balance the flow at vertex v the method first tries to
push the excess flow to layer 1 + 1 by sending request messages over output edges. These
request messages propagate the preflow to the next layer of the graph. If fow remains
after all requests have been sent, the remaining flow is rejected back to layer f — 1 by
sending reject messages over incoming edges. Flow is rejected in LIFO order by rejecting
flow quanta popped off the stack until the excess flow has been rejected. Once the flow
has been rejected, sync messages are sent to all back edges to push the rejected flow back
to layer ¢ — 1 and to synchronize the algorithm. Request messages are always sent to
all outgoing edges and sync or ack messages to all incoming edges to keep the algerithm
synchronized. Many of these messages carry zero flow.

Method sendMessages also performs completion detection by propagating acknowledge-
ments. Sink vertices acknowledge all flow pushed into them by sending an ackFlow mes-
sage back to the sending edge. When a non-sink vertex, v, receives acknowledgement
from all of its neighbors in layer ¢ + 1 and receives no additional flow requests, it sends
acknowledgments to all of its neighbors in layer 1+ — 1. These acknowledgements, how-
ever, can be canceled by sending a non-zero flow request to v. When the source receives
acknowledgements from all of its neighbors, completion is detected and the algorithm
terminates.

Figure 4.25 shows the details of rejection. When an edge, e, receives a reject message,
it adjusts its flow accordingly and changes its state to either #£saturated (no more flow
can be requested across ¢) or #done (no more flow can be requested or rejected across
e). Flow rejections are accumulated until e receives a sync message. The sync message
causes e to propagate the rejected flow. back to the vertex at its opposite end. Vertices
handle flow rejections exactly the same as flow requests: flow is accumulated until all
requests and rejections are in, and then the vertex is balanced by calling sendMessages.

Both vertices and edges have a state encoded in instance variable state. Edge states
progress from #active to # saturated, and finally to #done.

#active: All edges begin each CVF iteration in the #active state. Flow can be requested
only across active edges.
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instance methods for class Flow Vertex

sendMessages
| outFlow quantum |
(inFiow > 0) ifTrue:{nrAcks «0]. reactivate unbalanced vertez
outEdges do: [ :edge | request flow from nezt layer

outFlow +—inFlow min: edge availFiow: self.
edge request: outFlow from: seif,
inFlow «inFlow - outFlow].
((inFlow = 0} and: (nrAcks = outEdges size}) ifTrue:]
inEdges do: [ :edge | send acknowledges to previous layer
edge ackFlow: seif]]
ifFalse[
(inFiow > 0) ifTrue: |
state «——#saturated,
[(inFlow > 0) and: {stack notEmpty}] whileTrue: [reject flow to previous layer
quantum «—stack pop. .
outFlow «—inFlow min: quantum x.
quantum y reject: outFlow from: self,
inFlow «inFlow - outFiow,
(quantum x > outFlow) ifTrue:]
stack push: quantum yQ@(quantum x - outFlow)]]].

inEdges do: [ :edge | edge sync: seif], sync up previous layer
(state 7 ##saturated) ifTrue:[state «—=active]]. become active
inFlow «0, reset flow rejected to source
nrRequests «0, reset message counts

nrRejects «0.

»

Figure 4.24: sendMessages Method for CVF Algorithm
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instance methods for class Fiow Vertex
reject: aFlow over: anEdge
| outFlow |
inFlow «inFlow + aFiow, accumulate flow
nrRejects «—nrRejects + 1.
({nrRejects = outEdges size) and: (nrRequests = inEdges size}) ifTrue: |

seif sendMessagesl]]. distribute ezcess flow

ackFiow: anEdge
P
P
nrAcks «—nrAcks + 1. count acks
seif reject: O over: anEdge.

instance methods for class Fiow Edge
reject: aFlow from: aVertex
L
(aVertex = source) ifTrue:{flow «—fow + aFiow] forward edge
ifFalse:[flow «flow - aFiow], backward edge
rejectableFlow «rejectableFlow - aFlow.
rejectedFlow +—rejectedFiow + aFiow
(aFlow > 0) ifTrue:]
(rejectableFlow = 0} if True:[state «—#done] no more flow to reject
ifFalse:[state «—gsaturated]]. no more requests

N

sync: aVertex

|

rejectableFlow «rejectableFlow - rejectedFiow,
(seif oppositeVertex: aVertex) reject: rejectedFlow over: self,
rejectedFiow «0.

ackFiow: aVertex

|

(state = #saturated) ifTrue:[state «#done].
(self oppositeVertex: aVertex) ackFlow: self.

Figure 4.25: reject and ackFlow Methods for CVF Algorithm
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#saturated: When the maximum possible flow has been requested across an #active
edge, or when any flow is rejected across an edge, the edge becomes #saturated.
No further flow can be requested across a #saturated edge.

—-—

#done: When all requested flow is rejected across an edge, or the flow in a #saturated
edge is acknowledged, the edge becomes #done. The flow in a #done edge cannot

be changed.
Vertex states progress from Finactive to #active tc #saturated:

#inactive: To initiate synchronization, all vertices begin in the #inactive state. Inactive
vertices walit only for messages on their incoming edges before calling sendMes-
sages tc balance their flow. After their first balancing operation, all vertices
become Factive or #saturated.

#active: As with edges, a vertex remains #active until it rejects flow.

#saturated: Once a vertex rejects flow, it becomes #saturated and will no longer accept
flow requests.

Lemma 4.2 Each iteraticn of the CVF algorithm constructs a maximal layered flow.

Proof: .

o The flow is legal since acknowledges are only propagated back from the sink to the
source when all vertices are balanced.

e Suppose the flow was not maximal; then there exists an augmenting path, P, in the
layered network. Let v; be the vertex of P in the i*? layer of the graph. The source
requests all possible flow from v;, so some vertex on P must have rejected some
of this flow. Let v; # t be the vertex of P furthest from the source that rejected
the flow. Each vertex v; requests all possible flow from all of its neighbors in layer
¢ + 1 including v;41 before rejecting any flow to v;_;. Since v; rejected the flow
and v;4; didn’t, all edges out of v; including the edge (v;,v;1;) must be saturated.
Then we have a contradiction since P includes (v, v;41), but an augmenting path
cannot contain a saturated edge.

The CVF algorithm is synchronized by having each vertex, v, in layer ¢ wait for messages
from all of its neighbors in layers ¢ & 1 before sending messages to layers ¢ = 1. This
synchronization, illustrated in the Petri Net of Figure 4.26, causes operation of the
layers to alternate: even layers send messages to odd layers and then odd layers send
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Figure 4.26: Petri Net of CVF Synchronization

messages to even layers. Since the layers are not completely connected, this alternation
18 somewhat loose; however, the Petri Net assures us that each vertex will execute the
same number of message sending cycles.

Lemma 4.3 Each iteration of the CVF algorithm requires at most O(|V'|) cycles and
thus O({V'{?) messages.

Proof: Flow pushed from the source is either acknowledged or rejected. Acknowledged
flow takes O(|V]) cycles to reach the sink from its last point of rejection. Rejected flow
performs a depth-first search (DFS) of the layered graph before it is either rejected back
to the source or is acknowledged by the sink. Flow first pushes forward (depth-first);
then, if it is rejected, it follows the same path backward, since requests are rejected in a
LIFO manner. Each time flow backtracks over a node, that node is saturated and will
not be visited again. In the worst case a single flow quantum traverses the entire layered
graph taking O(V|) cycles. Since every vertex sends messages every cycle, O([V|?)
messages are required. If several flow quanta are being rejected simultaneously, the
traversal takes less time. B

To see that this bound is tight, consider the graph of Figure 4.27, a binary tree where all
internzl edges have capacity 100 and all leaves are connected to the sink with capacity
1. The CVF algorithm will perform DFS on this graph taking 2|V| cycles to construct a
maximal layered flow. In contrast, the CAD algorithm will find a maximal layered fow
for this graph in O(log |V'}) cycles.

The graph of Figure 4.27 illustrates the major difference between the CAD and CVF
algorithms. In the CAD algorithm all potential paths from source to sink are discovered
simultaneously without considering possible conflicts. The CVF algorithm, on the other
hand, never generates any conflicts. It explores only those paths that have guaranteed
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Figure 4.27: Pathological Graph fer CVF Algorithm

available capacity on their initial segments. This conservative approach to augmenting
flow can result in sequential execution for graphs like the one shown in Figure 4.27 that
bottleneck near their sink.

Theorem 4.3 The CVF algorithm requires at most O(|V'|*) messages.

Proof: The contribution of layering is O(|V|®). By Lemma 4.2 a maximal layered flow
is constructed by each iteration of the CVF algorithm. Since at most [V'| — 1 layerings
are produced, at most O(|V|) iterations are performed. By Lemma 4.3 each iteration
takes O(]V'|?) time. Thus, the algorithm requires O{|V'|3) time. ®

4.3.4 Distributed Vertices

In both the CAD and CVF algorithms, the source and the sink are bottlenecks that
serialize the algorithm. At most one path can be processed by the source or sink per
unit time and each path must pass through both the source and sink twice. The problem
is especially acute in the case of a flow-graph for solvin% a bipartite matching problem
where the fanout of the source and fan-in of the sink are *%‘* — 1 as shown in Figure 4.28.
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Figure 4.28: A Bipartite Flow Graph
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Figure 4.30: Number of Operations vs. Graph Size for Max-Floew Algorithms

The source and sink bottlenecks can be removed by distributing these vertices. The only
operations performed at the source and sink are keeping message counts and reflecting
messages back across edges. Messages to or from the source or sink on a particular edge
affect no other edges. Thus, we can split the source and sink into muitiple vertices: one
for each edge incident on the original scurce or sink as shown in Figure 4.28. The individ-
ual source and sink vertices act independently, reflecting messages and keeping message
counts. When all source vertices have been acknowledged (in the CVF algorithm) or
have received confirm messages (in the CAD algorithm), completion is detected and the
algorithm terminates.

4.3.5 Experimental Results

The CAD and CVF algorithms have been run on a concurrent computer simulator to
measure their performance experimentally. Dinic’s sequential max-flow algorithm was
also tested to give a performance baseline for comparisons. Randomly generated bipartite
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graphs with uniformly distributed edge capacities were used as test cases for the max-flow
algorithms. The tests were run on a simulated binary n-cube interconnection network
where one unit of time is charged for each channel traversed by a message. This implies
that a random message requires on the average n = log N units of time to reach its
destination. The results of these experiments are shown in Figures 4.30, 4.21 and 4.32.

The number of messages required by each of the algorithms as a {function of graph size
is shown in Figure 4.30. For purposes of comparison, Dinic’s algorithm was charged
one message for each edge traversed. While the worst-case complexity of these three
algorithms is O(|V'|®), all three give linear performance on the test cases. The CAD
algorithm (squares) requires the fewest messages, ~ 9|V}, follewed by the CVF algo-
rithm (diamonds) with s 11|V'|, and, finally, Dinic’s sequential algorithm (triangles)
required s 30|V| edge traversals to construct a max-flow. This figure shows that the
CAD and CVF algorithms are, in fact, good sequential algorithms. The overhead of syn-
chronization does not greatly increase the number of messages required when compared
to a strictly sequential algorithm. The CAD algorithm requires fewer messages than the
CVF algorithm because it propagates wavefronts of activity across the graph. Only the
vertices on the wavefront are active at a given time. In contrast, the CVF algorithm is
tightly synchronized with all vertices actively sending messages all the time.

The speedup of the two concurrent algorithms relative to the sequential algorithm is
shown in Figure 4.31 as a function of the number of processors for a 4066 vertex graph.
Both the CAD algorithm (squares) and the CVF algorithm (diamonds) show nearly linear
speedup until they saturate at 128 processors with speedups of close to 200. The speedup
is greater than the number of processors because the CAD and CVF algorithms are better
than Dinic’s algorithm even for a single processor. The speedup of the CAD algorithm
varies from 2.5 on a single processor to 204 on 256 processors, a relative speedup of
81.6. The speedup of the CVF algorithm varies from 1.7 on a single processor to 202 on
1024 processors for a relative speedup of 119. As expected the CAD algorithm performs
slightly better for small numbers of processors with the CVF algorithm catching up for
large numbers of processors.

Figure 4.32 shows the speedup of the CAD (squares) and CVF (diamonds) algorithms
as a function of graph size. Each test was run with i%l processing nodes. For the CAD
algorithm, speedup varies from 0.9 for a 4 vertex graph to 196 for a 4096 vertex graph.
CVF speedups were nearly the same, varying from 0.7 for a 4 vertex graph to 202 for &
4096 vertex graph. The speedup grows slower than linearly, almost logarithmically, as
the number of vertices is increased from 4 to 128 and then just about linearly from 128
to 4066 vertices. This irregularity in the speedup curve may be due to the fact that only

one graph of each size was tested.
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4.4 Graph Partitioning

The graph partitioning problem involves partitioning the vertices of a graph into two sets
in a manner that minimizes the sum of the weights of edges incident on both sets. This
problem has important applications in computer aided design where graphs representing
the interconnection of logic circuits are partitioned onto several physical packages [105].
Graph partitioning is also used in process placement on multiprocessors where a possibly
dynamic graph representing the interccnnection of legical processes is partitioned over
a set of physical processors [120]

i

Unfortunately this important problem is NP-Complete [47]. In practice, however, poly-

nomial time heuristics based on iterative improvement methods are used with good
results [67},/38].

In the Kernighan and Lin algorithm [67], an initial partition is improved by exchanging
pairs of vertices between the two sets. At each step, the pair that results in the greatest
reduction in the weight of the cutset is chosen for exchange. The limiting step of the
algorithm is computing the weight reduction associated with each pair and sorting the
pairs according to this number. Based on this step, the time complexity of the algorithm
is estimated to be O([V|?log V).

Fidducia and Mattheyses [38] improve upon this algorithm to give a linear-time heuristic.
Their most important modification is to consider single vertex moves rather than pairwise
exchanges. They also use a bucket list to sort the vertices so vertices can be added or
deleted from the list in constant time.

A novel approach to the graph partitioning problem using linear programming has been
developed by Barnes [6]. This approach converts the partitioning problem into a matrix
approximation problem. The matrix approximation problem is then solved using linear
programming. This method is good for finding an approximate solution near a local
minimum for the problem. Barnes then uses an iterative improvement algorithm similar
to that of Kernighan and Lin to fine-tune this approximate solution.

The partitioning problem can also be approximately solved using simulated annealing
[69]. Simulated annealing, as applied to graph partitioning, involves randomly selecting
a move to alter the partition, and then Qccepting this move with a probability dependent
on its gain and the current annealing temperature. At high temperatures most moves are
accepted regardless of gain. As the graph cools, the algorithm becomes more selective,
accepting fewer negative gain moves. At zero temperature only positive gain moves are
accepted. This technique generally achieves better solutions than the straight iterative
improvement algorithms, because by occasionally accepting bad moves it is capable of
avoiding local minima. Simulated annealing requires considerably more computing time
than the other methods.

Consider an undirected graph G = (V, E) where edges (vi,v2) = e € E are assigned
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weight w(e). The vertices are partitioned into two disjoint sets A and B.

Definition 4.13 The cut defined by A and B is the set of edges C{4, B) = {(a,d) | &€
A, b€ B}. The sum of the weights of edges in the cut is the weight of the cut

W(4,B)= > w(e). (4.7)
e€C(A,B)

Definition 4.14 The imbalance of a partition 4, B is

I(A,B) = [|Al - B][. (4.8)

The object of a graph partitioning algorithm is to find a partiticn of V' into A, B, subject
to a balance constraint I(A, B) < C, so as to minimize the weight of the cut, W (4, B).

The remainder of this section describes a novel concurrent heuristic graph partitioning
algorithm. Like the sequential algorithms described in {67] and [28], it is an iterative
improvement algorithm. Starting from an initial partition, vertices are moved from one
set to the other to improve the partition. The algorithm is concurrent in that it moves
many vertices simultaneously while sequential algorithms move only one or two vertices
at a time.

4.4.1 Why Concurrency is Hard

Concurrency introduces two major problems: thrashing and balancing. There are cases
where making several simultaneous moves increases the weight of the cut even though
each move taken individually would reduce the weight of the cut. The simplest example
of this thrashing problem is shown in Figure 4.33. Vertices a € A and b € B are
connected with weight wy to each other, and with weight w; to another element of the
same set where w, > w;. Individually, moving a to set B or b to set A would decrease
the weight of the cut by wy — w;, but moving both a and b at the same time increases
the weight of the cut by 2w;.

A balance constraint must be imposed on the partitioning to prevent the algorithm from
reducing W (A, B) to zero by moving all of the vertices into one set. We require that
|I(A, B)| < Cy for some constant C,. In a sequential algorithm it is quite easy to keep a
running count of the size of each set. Moves are checked in sequence against the count,
and only moves that keep the counts within the balance constraint are allowed. In the
concurrent algorithm, this sequential checking of moves against a count is not possible,
and another mechanism is required to enforce balance.

The remainder of this section develops a concurrent algorithm that meets the challenges
described above. It uses a method of inhibiting gain to prevent thrashing and uses &
matching tree to impose balance.
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Figure 4.33: Thrashing
4.4.2 Gain -

An iterative improvement algorithm searches a state space by applying simple transition
moves to an initial state. In the case of graph partitioning, the state space is the space
of all possible partitions. Each transition move is the transfer of a vertex from one set
to the other. My algorithm is greedy in the sense that it moves all those vertices that
are guaranteed to give the largest immediate gain in the objective function —W (A, B).

Definition 4.15 The gain of a vertex g(v) is the amount by which W (A4, B) is decreased
by moving v from one set to another. If we define int(v) to be the set of edges connecting
v to vertices in the same set and ext(v) to be the set of edges connecting to elements if
the other set, then ’

i) = T wl)- Y wle) (4.9)

eCext(v) e€int(v)

During the first phase of the algorithm, all of the vertices compute their gain as follows.

1. All vertices transmit their set and the weight of the connecting edge to all neigh-
boring vertices.
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Figure 4.24: Simultaneous Move That Increases Cut

2. As vertices receive messages from their neighbors, they compute their gain as the
sum of the weights received from vertices in the opposite set less the sum of the
weights received from vertices in the same set.

4.4.3 Coordinating Simultaneous Moves

Because of the thrashing problem, if vertices were moved on the basis of gain alone, moves
could potentially increase W{A, B) as shown in Figure 4.34. The vertices adjacent to
vertex a can be divided into four sets:

»

o Ay, vertices in set A with positive gain,

A,, vertices in set A with negative or zero gain,

B,,, vertices in set B with positive gain,

By, vertices in set B with negative or zero gain.

The gain of a before moving any vertices is
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g(a) = (w(Bm) + w(B,)) = (w(An) + w(4,)). (4.10)

Where w(S) denotes the weight of all edges connecting a to set S. If all vertices wjth
positive gain including a are moved simuitaneously, the new gain of a (pushing a back
into set A) becomes

g'(a) = (w(Bm) + w(d,)) = (w(dm) + w(B,)). (+.11)

If w(A4,) > w(B,) moving a increases the value of the cut, W(A, B).

To scolve this problem of simultaneously moving vertices, we inhibit vertices from moving
if they are adjacent to vertices of larger gain in the opposite set. Thus, any vertex, a € A,
that moves knows that all of its neighbors in set B will remain staticnary. The set By,
is empty and the gain, g(a), is guaranteed. If some neighbor of a, a’ € A moves with a
to set B, the actual gain wiil be larger than g(a). To prevent ties, two vertices a and b
with equal gains g{a) = g{(b) compare their vertex IDs. The vertex with the larger ID
inhibits the other vertex.

Inhibiting nodes from moving based on gain has the disadvantage of reducing the con-
currency of the partitioning algorithm. To calculate the degradation in concurrency,
assume that all vertices have degree d, and that positive gains are uniformly distributed
over some range (0, n]. Then the probability of a vertex with gain ¢ moving is P, = (£)%.
Thus, the fraction of nodes with positive gain that can be expected to move is given by
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Even with gain inhibition, vertices must be locked after they are moved to avoid thrash-
ing. This is even true of sequential algorithms. To implement locking, the algorithm is
performed in phases. At the beginning of each phase, all vertices are unlocked. When-
ever a vertex is moved it is locked and cannot be moved again until the next phase.
Phases are repeated until there are no vertices with positive gain.
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Using locking and gain inhibition to prevent thrashing, the algorithm becomes

1. Set all vertices unlocked. -
2. While there is some unlocked positive gain vertex,

(a) All vertices transmit their set and the weight of the connecting edge to all
neighboring vertices.

(b) As vertices receive messages from their neighbors, they compute their gain as
the sum of the weights received from vertices in the opposite set less the sum
of the weights received from vertices in the same set.

(c) Unlocked vertices transmit their gain to all their neighbors. Locked vertices
transmit —oo to all their neighbors.

(d) Vertices that have a positive gain greater than the gain of all of their neighbors
move to the opposite set and become locked. Vertex IDs are used to break
ties.

3. Repeat steps 1 and 2 until there are no positive gain vertices.

4.4.4 Balance

A balance constraint is required to prevent the algorithm from finding a cut of weight
zero by moving all vertices into one set. Specifically, no move is allowed that will make
one set larger than the other by more than some constant C,. Thus, given a legal initial
partition, the condition [|4| — | B|| < C, will always be true.

The algorithm enforces the balancing constraint using a matching tree, a binary tree with
all vertices at its leaves. At the end of the gain exchange, step 2(c) above, all vertices
transmit their intentions (move or stay put) and their set (A or B) up the matching
tree. Each internal vertex of the matching tree waits for all of its children to respond.
It then attempts to match requests to move from set A with requests to move from set
B. Matched requests are granted and the grant message is transmitted back down the
tree. Unmatched requests are collected into a single message (count and set) that is
transmitted up to the next level of the tree. At the root of the tree, a count of the
current imbalance, |A| —|B|, is kept. The root acknowledges unmatched requests as long
as I(A, B) < Cs.

With balancing, the concurrent partitioning algorithm becomes

1. Set all vertices unlocked.

2. While there is some unlocked positive gain vertex not blocked by the balancing
constraint,
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(a) All vertices transmit their set and the weight of the connecting edge to all
neighboring vertices.

(b) As vertices receive messages from their neighbors, they compute their gain as
the sum of the weights received from vertices in the opposite set less the sum
of the weights received from vertices in the same set.

(c) Unlocked vertices transmit their gain to all their neighbors. Locked vertices
transmit —oc to all their neighbors.

(d) Vertices that have a positive gain greater than tke gain of all of their neighbors
transmit their set and their intention to move to their parent in the matching
tree. All other vertices transmit their intention to remain stationary and their
set to their matching tree parent. Vertex IDs are used to break ties in gain
comparison.

(e) The matching tree validates requests to move against the balance constraint
as follows:

i. Once each matching tree vertex receives messages from all of its children,
it matches requests from sets A and B. Matched requests are acknowl-
edged.

ii. Unmatched requests are collected into a message tc the next level of the
matching tree.

ili. The root of the matching tree acknowliedges up to C,—I( A, B) unmatched
requests from set A or up to Cs + I{A, B) unmatched requests from set B
and updates I(A, B) accordingly. All remaining unmatched requests are

rejected. If |I(A, B)| = C», all vertices in the smaller set are temporarily
locked until |I(A, B)| # Cs.

(f) Vertices that receive acknowledgements to their requests to move become
members of the opposite set.

3. Repeat steps 1 and 2 until there are no unblocked positive gain vertices.

4.4.5 Allowing Negative Moves

There are cases where any single move increases W (4, B), but a sequence of moves can
decrease W(A, B). Consider for example the case where [A| = |B| + C;, and ¥ b €
B, g(b) < 0. There are no unblocked positive gain vertices to move. Moving a vertex b
with small negative gain from B to A, however, may enable a vertex with large positive
gain to move from A to B.

The algorithm can be extended to find some of these sequences by maintaining two
partitions and accepting negative gain moves. The partition A', B' is updated every
move and its cut weight, W(A', B') is computed. The best partiticn A, B is updated
whenever W(A4', B') < W(A4, B).
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4.4.6 Performance

Each iteration of the algorithm takes O(d + log V') time. Exchanging edge weights ind
gains between neighbors takes O(d) time while propagating comparisons up the match
tree takes O(log|V|) time. Since probabilistically 3—}3 of the positive gain vertices are
moved in each iteration, the algorithm should complete after O(d) iterations. Thus, the
time complexity of the algorithm on a computer with an processor for each vertex of the
graph is estimated to be O(d* + dlog V) or, if we assume d is constant, O(log[V]}, a
speedup of E%ng' over the linear-time sequential algorithm of Fidducia and Mattheyses
[38].

4.4.7 Experimental Results

The speedup of the concurrent graph partiticning algerithm compared to a sequential
algorithm similar to Fidducia and Mattheyses is shown in Figure 4.35. The tests were
run on random graphs with average degree 4 and uniformly distributed edge weights. In
each test the number of processors was equai to the number of vertices.

The speedup is quite disappointing for small graphs but increases significantly for large
graphs. This behavior is due to the fact that the time required to perform an iteration
increases very slowly with the graph size, while the number of vertices moved each
iteration grows almost linearly with graph size.

The data in Figure 4.35 suggest that the efficiency of the algorithm could be improved
by using fewer processcrs than vertices and performing balancing for all vertices on a
single processor locally. This would reduce the height of the balancing tree and thus
reduce the time required for each iteration of the algorithm.

For each data point shown in Figure 4.35 the concurrent and sequential algorithms pro-
duced partitions of similar weight. A partition of the same graphs performed using
simulated annealing consistently produced partitions with 20% lower weight. While the
gradient-following algorithms, both sequential and concurrent, get stuck in a local mini-
mum, the simulated annealing program is able to find a point near the global minimum.

The techniques developed in this section, using gain inhibition to prevent thrashing
and using a matching tree to enforce balance constraints, are completely applicable to a
partitioning program that uses simulated annealing. In a concurrent simulated annealing
program each vertex would compute its inhtbited gein, the difference between its gain
and the largest of its neighbors’ gains. Vertices then move with a probability that is a
function of their inhibited gain and the current annealing temperature. The matching
tree is used to keep track of balance and to broadcast the current imbalance I(4, B) to
each vertex so that balance information can be incorporated in the gain function.
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Figure 4.35: Speedup of Concurrent Graph Partitioning Algorithm vs. Graph Size
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4.5 Summary

In this chapter I have developed concurrent algorithms for three graph problems.

In Section 4.2 I developed a new algorithm for the single point shortest path problem.
Chandy and Misra’s shortest path algorithm [15], because it is under-synchronized, has
an exponential worst case time complexity. By adding synchronization to this aigorithm
I developed the SSP algorithm which has polynomial worst case time complexity. Ex-
perimental comparison of these algorithms verified that the SSP algorithm ocutperform
Chandy and Misra’s algorithm for large graphs. Further experiments showed that addi-
tional concurrency can be attained by running several problems simultanecusly. Running
multiple problems is particularly advantageous for the SSP algorithm where the multiple
problem instances can share the considerable synchronization cverhead.

Two new algorithms for solving the max-flow problem wers developed in Section 4.3.
Both of the algorithms operate by repeatedly layering the graph and constructing a
maximal layered flow. The CAD (concurrent augmenting digraph) algerithm constructs
a layered flow by simultaneously finding all possible augmenting paths. These paths
compete with one another for shared edge capacity through a three-step reservation
process. The CVF (concurrent vertex fow) algorithm is similar to an existing concurrent
max-flow algorithm [116], [85], but introduces new methods for synchronization and
completion detection. Experimental results show that both of these new algcrithms
achieve significant speedups.

L

Finally, in Section 4.4 I developed a concurrent algorithm for graph partitioning. Con-
current graph partitioning is difficult for two reasons. First, moving several vertices
between partitions simultaneously can result in thrashing: two vertices in opposite sets
that are attracted to each other may indefinitely swap sets. Second, multiple simulta-
neous moves may result in a loss of balance: all vertices could simultaneously jump into
th: same set. The new algorithm solves the thrashing problem by using gain to inhibit
sirmultaneous moves that might interfere with one another. The balancing problem is
scived by embedding a tree into the graph. The tree matches moves in one direction
with moves in the other direction to assure that the moves made during one iteration of
the algorithm will not unbalance the partition.

The algorithms developed in this chapter have a great deal in common:

e They are synchronized by passing messages.
e Messages are short, containing between zero and three arguments.
e Methods are short; most are under 10 lines.

In Chapter 5 I will investigate how to build hardware to efficiently execute programs
having these characteristics.
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Chapter 5

Architecture

The objective of computer architecture is to organize a computer system to apply avail-
able technology to the solution of specific probiems. At the Processor-Memory-Switch
(PMS) level [117], architecture involves the organization of processing elements and com-
munication channels into a computer system. At the Register Transfer (RT) level [60],
architecture involves organizing registers, arithmetic units, finite state machines, and
transmission lines into the processing elements and communication channels that form
the building blocks at the PMS level. This chapter addresses both the RT and PMS
levels of architecture.

Computer architecture cannot ignore the physical organization of the machine. VLSI
computing systems are wire-limited; the complexity of what can be constructed is limited
by wire density, the speed at which a machine can run is limited by wire delay, and the
majority of power consumed by a machine is used to drive wires. Thus, machines must
be organized both logically and physically to keep wires short by exploiting locality
wherever possible. The VLSI architect must crganize a computing system so that its
form (physical organization) fits its function (logical organization).

I start this chapter with an intended application — the model of computation developed
in Chapter 2 and the algorithms developed in Chapters 3 and 4 — and a technology ~
VLSI From this starting point I develop a new architecture that takes advantage of the
cost performance characteristics of VLSI technology and includes many features designed
to enhance the performance of concurrent data structures.

In Section 5.1 I analyze the algorithms developed in Chapters 3 and 4. These algorithms
are characterized by short messages, short methods, and a limited number of pending
messages. In Section 5.3.1 I use the characteristics of these concurrent algorithms to
analyze the performance of interconnection networks.

In Section 5.2 I look at VLSI technology. VLSI technology is wire-limited both by the
maximum wire density that the technology can support and, since driving capacitive
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wires dissipates power, by the maximum power density that can be tolerated. Propaga-
tion delays in VLSI systems are also wire-limited. The delay of very short wires scales
logarithmically with wire length until a critical length is reached !. Beyond this critical
length, wire delay is bounded by the speed of light and grows linearly with wire length.
In Section 5.3.1 [ use these characteristics of the technology to derive some surprising
results on network topology.

The development of an architecture that applies VLSI technology to support concurrent
data structures is approached in two steps.

o First I consider the interconnection network over which processing elements (PEs)
communicate. Based on measurements of programs and characteristics of the tech-
nology, in Section 5.3.1 I show that a 2-dimensional torus or grid network topology
is preferable to a higher dimensional network. Experimental resulits back up this
surprising result.

In addition to a topology a network requires a routing algorithm. In Section 5.3.2 1
go on to develop a new method for constructing deadlock-free routing algorithms in
concurrent computer interconnection networks and apply this method to the two-
dimensional torus network. The design of a self-timed VLSI chip that implements
this algorithm is discussed in Section 5.3.3.

e To take advantage of a low latency communications network, the PEs must be
designed to operate efficiently in the message-passing environment. In Section 5.4
mechanisms are developed to implement the model of computation described in
Chapter 2 in hardware. The arrival of a message at a node results in the PE’s
performing the required action with a minimum of delay. Also, the sending of a
message is made indistinguishable from a method call.

To take advantage of VLSI technology, we must both exploit locality and build
hardware that is specialized to particular applications. In Section 5.5 I introduce
the concept of an object ezxpert (OE) to achieve both of these goals. OEs exploit
locality by storing objects of a particular class near the logic that operates on that
class.

5.1 Characteristics of Concurrent Algorithms

In Chapters 3 and 4, 42 CST methods were written. Here we examine these methods to
find the average message length, the average method length, and the average number of
pending messages per object.

'This critical length is about 30mm for a typical 1.25u4 CMOS technology.
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Every method has at least three fields: receiver, selector, and an implicit reply-to field
(either the sender or the requester). Thus, the minimum message length is 3 fields;
any message arguments add to this minimum length. The table above gives the static?
frequency of message lengths for the 42 methods examined. These data are also shown
in the left half of Figure 5.1. The average message length, L, is 4.9 fields. If we assume
a 32-bit field size, L ~ 160 bits.

Method Length
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CST methods tend to be quite short. The lengths of the 42 methods presented in Chap-
ters 3 and 4 are tabulated above and shown in the right side of Figure 5.1. The average
method length 1s 5.7 lines. While counting static method length does not account for time
taken in loops, this inaccuracy is partially offset by the fact that many of the methods
considered involve multiple actions. Because methods are short, each message received
results in only a small amount of computation. Thus, the latency of message trans-
mission must be kept very small, or excessive time will be spent transmitting messages
between processing nodes and little time will be spent computing at each node.

3Static frequency is a measure of how often an event occurs in the program text. Dynamic frequency,
on the other hand, is a measure of how often an event occurs during execution of the program.



Pending Messages

A CST object usually has only a small number of messages pending at any instant in
time. An object typically transmits a number of messages (usually < 3) and then waits
for replies from these messages before transmitting additional messages. Thus, the total
number of messages in the network at any given time is a small multiple of the number
of objects.

The characteristics of concurrent programs described in this section guide the devel-
opment of a concurrent computer architecture in the remainder of this chapter. The
message length is an important factor in deciding on the topology of the network, as
described in Section 5.3.1. The short method length means that network latency is a
critical parameter. Since the computation initiated by the arrival of a message takes only
a short period of time, message delivery must be made fast, or all processing elements
will become idle waiting for messages. Also, processing elements must be able to handle
messages quickly, since the time (To4.) required to send a message and to initiate an
action upon receipt of a message contributes to the total message latency. Finally, since
each object typically has only a few messages pending at once, the required network
throughput can be calculated as a function of the number of objects managed by each
processing element.

Before we begin developing our concurrent architecture, we must first examine the avaii-
able technology.

5.2 Technology

5.2.1 Wiring Density

VLSI systems (VLSI chips packaged together on modules and boards) are limited by
wire density, not by terminal or logic density. Current packaging technology allows us te
make more connections from VLSI chips to modules and boards than can be routed away
from the chips. Since VLSI systems are wire-limited, the techniques of VLSI complexity
theory [127] used to calculate bounds on the performance of VLSI chips are applicable
to systems as well. In Section 5.3.1 I use this wire-cost model of VLSI systems to derive
some results on concurrent computer interconnection networks.

VLSI complexity theorists, by considering the wire-limited nature of VLSI chips, have
been able to prove lower bounds on the area times time squared (AT'?) required to
perform a computation [87], [127]. The bound is calculated by finding the minimum
bisection width of all possible communication graphs for the computation. Thompson
shows that the area, A, of a VLSI chip is proportional to the square of the bisection
width, while the time required for the computation, T, is inversely proportional to the
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Figure 5.2: Packaging Levels

bisection width. Thus, the quantity AT? is a bound independent of bisection width.
By considering the wire density, not the logic density, as the limiting factor of the
technology, the VLSI complexity theory has been able to compute new bounds on the
complexity of sorting [129], computing Fourier transforms {128}, and numerous other
transitive computations.

Mcdern high performance computers are packaged in three primary levels as shown in
Figure 5.2 [115].

Chip: Circuit components and local interconnections are fabricated on a monoclithic
silicon die.

Module: Silicon dice are bonded to a (usually ceramic) module which provides intercon-
nections between the chips and from the chips to beard pins. Connections from.
chip to module can be made either by wire bonds or by solder bumps. With wire
bonding the chip is placed face-up on the module, and bonds are made by running
wire from pads on the periphery of the chip to corresponding pads on the module.
Connections are limited to one or two rows of pads about the periphery of the
chip. Typical pad dimensions are 100u on 200u centers. Solder bump connections
are made by depositing solder bumps on the face of the chip and then placing
the chip face down on the module and reflowing the solder. Solder bumps can be
distributed over the face of the chip on 250u centers [12].

Board: A number of modules are assembled on a printed circuit board (PCB) that
provides interconnection between modules. Modules are connected to a PCB
either by pins brazed to the back of the module that fit into holes drilled through
the PCB or by surface mounting the module to the PCB in a manner similar to
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solder bumping chips to a module. Boards are connected using either cables or a
backplane.

There are often two secondary levels of packaging as well. Boards are packaged together
in chassis, and chassis are assembled into racks.

' Dimension | Levei of Packaging | Units

i ! Chip | Module Board | :

| Wire Width 1.25 100 200 | u

. Via Diameter 1.25 100 | 500 ! u
Wire-Hole Pitch | 3.75 2000 750 | p |

| Signal Layers 2 >10 > 10 j

. Linear Size P10 100 600 | mm

The table above compares the characteristics of these three levels of packaging. The
PCB data are derived from design rules for a circuit board with 8 mil wire width, 8
mil spacing and 20 mil minimum hole diameter. The module characteristics are derived
from available data on IBM’s thermeal conduction module (TCM) {12} and a comparable
ceramic techrology available from Kyocera [77]. The design rules for several 1.25u CMOS
processes were consulted to construct the chip column of the table.

These numbers are for technologies that are in production today (1586). Integrated
circuit design rules are halved every 4 to 6 years [91], so that by 1990 it is reasonable to
expect chips to have 0.5u wide wires. Module and PCB technology also scale with time
but at a slower rate, so that the density gap between chips (= 250%%’4) and modules
(5%’%} will continue to widen. Wafer-scale integration {97} attempts to close this gap by
increasing chip size to the module level.

Most of the complexity of a VLSI system is at the chip level. Modern chips contain
& 2500 wiring tracks (éo.r,’g’:), compared to 500 (—%—'{)"“’3) for modules and 800 (g%—mo—“’ﬂ) for
PCBs. While modules and PCBs can have more layers than chips, the use of additional
layers is limited by the fact that in most PCB technologies, every via penetrates through
the entire thickness of the board. Because chips are 50 times as dense and significantly
more complex than modules, the amount of information that can be transferred from

chip to module is a bottleneck that limits the performance achievable by a VLSI system.

The number of connections from a chip to a module is limited by the wiring density of
the module, not, as many believe, by the number of terminals that can be placed on a
chip. Consider a 10mm chip with bond pads on 2504 centers (the spacing of TCM bond
pads [12]). The chip could make over 1600 connections if it were completely covered
with pads. There would be no point, however, in having this number of connections. A
10mm slice of the ceramic substrate is capable of handling only & 25 wires per layer®.

3 Assume alternate wiring channels are used by vias to lower layers.
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Even if 10 wiring layers were used, only 250 wires could be routed away from the chip*.
At the PCB level, assuming 10 layers and two wires between pins on a 2.5mm grid, only
80 wires can be routed out from under the chip. Even wire-bonding can achieve terminal
densities that can saturate module technology. Two rows of pads on 200u centers about
the periphery of the chip would be sufficient to make 400 connections.

Wires, not terminals or logic, are the limiting factor in high-performance VLSI systems.

5.2.2 Switching Dynamics

The intrinsic delay of an MOS device is the transit time, r, the time required for a charge
to cross the channel [86].

T= — (5.1)

where u is the carrier mobility, L is the channel length, and F is the electric field. Since
E =% (5.1) can be rewritten as

L2
na

(5.2)

T =

7 also represents the time required for a device to transfer the amount of charge on the
gate, Qg, from the drain to the source so, 1ps = Qf (50]

i

A more useful time measure is the delay of an inverter driving another inverter of the
same size [111].

Cinv
Tiny = Cg T (5.3)

Cinv 18 the input capacitance of the inverter, and Cg is the gate capacitance of the
inverter’s n-channel transistor. For a CMOS inverter with the p-channel device twice
the size of the n-channel device, npy = 3r. In a typical 1.25u4 CMOS technology with a
2.5V supply ° voltage, r = 25ps and ry,, = 75ps.

An inverter driving a load with capacitance Cp has delay,

4To convert pin density to wire density, this calculation assumes that all the pins are routed to one edge
of the chip.

® As geometries get smaller, carrier velocity saturation limita device current, 8o that increasing the applied
voitage does not reduce r linearly. For (5.1} to hold, voltages must be scaled to keep E < 2—:-’-.
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To drive large capacitances the delay can be minimized by using an ezponential horn, a
chain of inverters with each stage e times the size of the preceding stage [86]. Using this
technique, the minimum delay to drive a load from an minimum size inverter is

Cr .
tmin = Tinve IOge - (D.D)
ny
For short wires, wire delay depends logarithmically on wire length, Iy,
twire = nnveZOge Klw, (5'6)

where K = %"1 and C, is the capacitance per unit length of wire. Typically, K is in
the range 0.1 < K < 0.2. Long wires, on the other hand, act as transmission lines and
are limited by the speed of light. Let [, be the critical length at which speed of light
limits transmission time. The delay of an optimally sized exponential horn driving a
transmission line is the logarithmic delay of the first log, K. — 1 stages of the driver plus
the linear delay of the wire,

lw /€ ..
tiongwire = Tinve (]‘Ogg Kl - 1) -+ Z/_:) g(5'7)

or asymptotically,

1W1 /€
tiongwire > _‘;“—: (5‘8)
The crossover from a capacitive (short) wire to a transmission line (long) wire occurs
when the delay of the last driver stage equals the time of flight along the wire, nyve =
IL‘CE. This equation can be rewritten as

c
l. = fipve—. (5.9)

NG

With nny = 75ps and €, a 4, the crossover from a capacitive (short) wire to a transmis-
sion line (long) wire occurs at lw s 30mm. Thus for today’s technology (1.25u), even
relatively short wires are speed-of-light limited. In an 0.5u, technology nny = 30ps , and
the crossover is at lw = 10mm, about the length of a chip.

These speed-of-light wires are off-chip wires. As shown in Appendix C, the high resis-

. . - . . . . - » 6
tivity of on-chip wires limits on-chip signal velocity to ~ 8 x 10° X
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The delay of global wires in VLSI systems is due to speed-of-light delay in the wire (not
the RC delay of the driver) and thus increases linearly with wire length. For short wires,
lw < nnve—%=, delay is due to the RC delay of the driver and thus grows logarithmically
with wire geng!:h. In Section 5.3.1 I consider both linear and logarithmic delay modéls.

5.2.3 Energetics

The energy dissipated by a switching event in a VLSI system, Fgy, is almost entirely
used to charge the capacitance of the circuit node being switched.

1.,
Eyw = zCV? (5.10)

When C is the gate capacitance of a minimum-sized inverter, Ciny, Euw is the switching
energy of the technology, a figure of merit commonly used to compare logic technclogies.
Since V' and Ciny both scale linearly with linear dimensions, A, the switching energy of
MQOS logic scales as the cube of the linear dimensions, Ey, '}‘}g

In most VLSI systems the wiring capacitance dominates device gate capacitance, and
most of the switching energy is used to drive wires. The power required to drive these
wires must be supplied to each logic circuit by a power distribution system. This power,
in the form of heat, must also be removed by a cooling system. The power density
that the power supply and cooling systems can handle limits the performance of VLSI
systems. With very advanced cooling technology [12], power densities of 30% have been
achieved.

If C4 is the capacitance per unit area and T.y is the cycle time of the system, power

density, P4, is given by

CaV?
Py = .
2T,

(5.11)

Power density remains constant since, as voltage scales down, delay alsc scales down and
capacitance per unit area scales up (all linearly with A).

Consider a typical 1.25u technology. Let us make the following assumptions:

e Cy4 is the capacitance of one metal layer, C4q = 10—451‘::.

e The cycle time is 100 inverter delays, T¢y, = 1007, = 7.5ns.

e The supply voltage, V', is 2.5V,
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Interconnection Network

Figure 5.3: A Concurrent Computer

Then the power density is Py = 40%‘;. Even with a very modest cycle time, the power
density of a VLSI chip exceeds the capability of state-of-the-art cooling technology. Thus,
power density limits the wiring density of a VLSI system independent of the wire density
of the interconnection technology. We cannot escape from the problem of wiring density
by adding more wire layers.

To reduce power density we must run our system more slowly. From (5.11) one would
expect that power density varies as the inverse of cycle time; however, using hoi-clock®
logic [114], the power density can be made to scale as the inverse square of the cycle time,
Py x TC;,Z. This relation is a strong argument for concurrency. Concurrent computing is
energy efficient. We can run two computers at haif speed with half the energy required

to run one computer at full speed.

5.3 Concurrent Computer Interconnection Networks

»

Figure 5.3 shows the organization of a concurrent computer. A number of processing
nodes (N) communicate by means of an interconnection network. From Section 5.1 we
know that the network must have a low latency to support fine-grain concurrent algo-
rithms. We also know, from Section 5.2, that since VLSI technology is wire-limited,
these networks are limited by the amount of wire required to construct them. In Sec-
tion 5.3.1 | compare networks under the assumption of constant wire cost and show that
low-dimension networks (e.g., a torus) offer lower latency than can be achieved with a

®Slow-clock logic is a better name for this technique since it is the speed of the clocks relative to the
circuit rather than their voltage level that results in an energy savings.
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high-dimensional interconnect (e.g., & binary n-cube). This surprising result strongly
motivates the use of low-dimension k-ary n-cubes for the interconnection networks of
concurrent computers.

A deadlock-free routing algorithm for k-ary n-cube networks is required if these networks
are to be useful. In Section 5.3.2 I develop a novel method for constructing deadlock-
free routing algorithms and apply this method to several networks including k-ary n-
cubes. To test these ideas, [ have designed a VLSI chip that implements such a routing
algorithm. The design and testing of this chip is described in Section 5.3.3.

5.3.1 Network Topology

Interconnection networks for concurrent computers have been studied intensely, and
many different network topologies have been proposed. Tree networks have been pro-
posed for use in concurrent computers [13]. However, it has been shown that most logical

’

communication graphs do not map well onto a tree network topology[120]. A crossbar
switch can be used to connect every node, F;, to every other node, P;. A crossbar has the
desirable characteristic of being non-blocking. In a non-blocking network, any connection
that describes a permutation of the processing nodes can be constructed without inter-
ference. Unfortunately crossbars are impractical for large systems because their wiring
density grows as N?. Benes [10] developed a non-blocking network for telephone systems
that requires only O(N log N) switching elements. The Benes network has the disad-
vantage, however, that it requires a long time to configure for a particular permutation.
In a concurrent computer where the pattern of communications varies dynamically, this
long configuration time is unacceptable. Batcher’s sorting network [7] is a more prac-
tical non-blocking network. While it requires O(N log? N) switching elements and has
O(log? N) delay, it can be configured dynamically as messages are routed.

Most concurrent computers are constructed using blocking networks because the advan-
tages of a non-blocking network are not sufficient to offset the O(log N) increased cost
of a non-blocking network. The Omega network [80], a multiple stage shuffle-exchange
network [122], is an example of such a blocking network. The Omega network has
O(N log N) switching elements’ and a delay of O(log N)8. The Omega network is iso-
morphic to the fndirect binary n-cube or flip network [8] [108]. The direct version of this
network is the the binary n-cube [111], [96], [124]. The binary n-cube is a special case
of the family of k-ary n-cubes, cubes with n dimensions and k nodes in each dimension.

Since most of the interconnection networks used for concurrent computers are isomorphic
to binary n-cubes, a subset of k-ary n-cubes, in this section we restrict our attention to

"Recall from Section 5.2 that it is the wiring density that is important, not the number of switching
elements. I use the number of switching elements here for purposes of comparison only.

*The Omega network has O(log N) delay under the assumption that wire delay is independent of wire
length. Again, I use this assumption here for purposes of comparison only. We have already secn that
this assumption is not consistent with the characteristics of VLSI technology.



Figure 5.4: A Binary 6-Cube Embedded in the Plane

k-ary n-cube networks. It is the dimension of the network that is important, not the
details of its topology. We refer to n as the dimenston of the cube and k as the radiz.
Dimension, radix, and number of nodes are related by the equation

N=kK" (k——— VN, n=log, N) . (5.12)

We can construct k-ary n-cubes with (approximately) the same number of nodes but
with different dimensions. Figures 5.4-5.6 show three k-ary n-cube networks in order
of decreasing dimension. Figure 5.4 shows a binary 6-cube (64 nodes). A 3-ary 4-cube
(81 nodes) is shown in Figure 5.5. An 8-ary 2-cube (64 nodes), or torus, is shown
in Figure 5.6. Each line in Figure 5.4 represents two communication channels, one in
each direction, while each line in Figures 5.5 and 5.6 represents a single communication
channel.

Networks have traditionally been analyzed under the assumption of constant channel
bandwidth. Under this assumption each channel is one bit wide (W = 1) and has unit
delay (T. = 1). Thus, the constant bandwidth assumption favors networks with high
dimensionality (e.g., binary n-cubes).

The constant bandwidth assumption, however, is not consistent with the properties of
VLSI technology. Networks with many dimensions require more and longer wires than
do low-dimensional networks. Thus, large dimensional networks cost more and run more
slowly than low-dimensional networks. A realistic comparison of network topology must
take both wire density and wire length into account.

In this section we compare the performance of k-ary n-cube interconnection networks
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using the following assumptions:

o Networks must be embedded into the plane®.

I3

e Nodes are placed systematically by embedding 3 logical dimensions in each of the
two physical dimensions. We assume that both n and k are even integers. The
long end-around connections shown in Figure 5.6 can be avoided by folding the
network as shown in Figure 5.19 on page 155.

e For networks with the same number of nodes, wire density s held constant. Each
network is constructed with the same bisection width, B, the total number of wires
crossing the midpoint of the network. To keep the bisection width constant, we
vary the width, W, of the communication channels. We normalize to the bisection
width of a bit-serial (W = 1) binary n-cube.

e The networks use wormhole routing, described in Section 5.3.2.
e No more than a single bit is in transit on any wire at a given time.

s Channel delay, T¢, is a function of wire length, L. We begin by considering channel
delay to be constant. Later, the comparison is performed for both logarithmic and
linear wire delays; T, « log L and T, « L.

When k is even, the channels crossing the midpoint of the network are all in the highest
dimension. For each of the /N rows of the network, there are k(3-1) of these channels
in each direction for a total of 2\/Wk(%—1) channels. Thus, the bisection width, B, of a
k-ary n-cube with W-bit wide communication channels is

B(k,n) = 2w vNk(3-1), (5.13)

For a binary n-cube, k = 2, the bisection width is B(2,n) = W N. We set B equal to N
to normalize to a binary n-cube with unit width channels, W = 1. The channel width,
W (k,n), of a k-ary n-cube with the same bisection width, B, follows from (5.13):

oW (k, n)VNE(EY) = N, (5.14)

VN VN kN _k
ok(3-1)  2%k3k-1 2N 2

(5.15)

The peak wire density is greater than the bisection width in networks with n > 2 because
the lower dimensions contribute to wire density. The maximum density, however, is
bounded by

°If a three-dimensional packaging technology becomes available, the comparison changes only slightly.
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- (k? ~ 1> (5.16)

A plot of wire density as a function of position for one row of a binary 20-cube is shown
in Figure 5.7. The density is very low at the edges of the cube and quite dense near the
center. The peak density for the row is 1364 at position 341. Compare this density with
the bisection width of the row, which is 1024. In contrast, a two-dimensional torus has
a wire density of 1024 independent of position. One advantage of high-radix networks is
that they have a very uniform wire density. They make full use of available area.

Each processing node has 2n channels each of which is % bits wide. Thus, the number
of pins per processing node is .

N, = nk. (5.17)

A plot of pin density as a function of dimension for N = 256, 4K and 1M nodes'? is shown
in Figure 5.8. Low dimensional networks have the disadvantage of requiring many pins
per processing node. A two-dimensional network with 1M nodes (not shown) requires
2048 pins and is clearly unrealizable. However, the number of pins decreases very rapidly
as the dimension, n, increases. Even for 1M nodes, a dimension 4 node has only 128 pins.
Recall from Section 5.2.1, however, that the wire density of the board under the chips
becomes saturated before the maximum pin density of the chip is exceeded. Since all
of the 1M node configurations have the same bisection width, B = 1M, these machines
cannot be wired in a single plane. However, if the pin density is within reason, we may
still be able to construct these machines by escaping into three dimensions.

Latency

From Section 5.1 we know that the latency of the network is the critical performance

191K = 1024 and, 1M = 1K x 1K = 1048576.
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measure. Latency, T}, is the sum of the latency due to the network and the latency due
to the processing node,

T = Tnet + Tnode~ (518)

In this section we are concerned only with Th.:. We will consider Ty q4. in Section 5.4.

Network latency depends on the time required to drive the channel, T., the number of
channels a message must traverse, D, and the number of cycles required to transmit the
message across a gingle channel, é—, where L is message length.

L
Thee =T\ D+ — 5.19
net ¢ ( W) ( }
If we select two processing ncdes, F;, P;, at random, the average number of channels
that must be traversed to send a message from P; to P; is given by the following three
equations for the torus, the binary n-cube and general k-ary n-cubes:

Di=VN -1, (5.20)
n
Dy =2, (5.21)

D(k,n) = <k ’2' 1) n. (5.22)

The average latency of a k-ary n-cube is calculated by substituting (5.15) and (5.22),
into (5.19)

k-1 2L 2
Tnet = Tc ((——r) n-+ —k-> . (520)

Figure 5.9 shows the average network lafency, Thet, as a function of dimension, n, for
k-ary n-cubes with 22 (256), 214 (4K), and 2%° (1M) nodes*!. The left most data point
in this figure corresponds to a torus (n = 2) and the right most data point corresponds
to a binary n-cube (k = 2). This figure assumes constant wire delay, T., and a message
length, L, of 150 bits. Although constant wire delay is unrealistic, this figure illustrates
that even ignoring the dependence of wire delay on wire length, low-dimensional networks
achieve lower latency than high-dimensional networks.

!For the sake of comparison we allow radix to take on non-integer values. For some of the dimensions
considered, there is no integer radix, k, that gives the correct number of nodes. In fact, this limitation
can be overcome by constructing a mized-radiz cube.
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In general the lowest latency is achieved when the component of latency due to distance,
D, and the component due to message length, {{7, are approximately equal, D = ﬁr‘-,
For the three cases shown in Figure 5.9, minimum latencies are achieved for n = 2, 4,
and 5 respectively. The following table shows the values for D and % for these three
configurations.

Ninlk [WIDI|E
25612116 8 |15 19
4K [ 4| 8 | 4 |14 38
IM |5 16| 8 {38]19

The length of the longest wire in the system, ly, becomes a bottleneck that determines
the rate at which each channel operates, T,. The length of this wire is given by

lw(k,n) =ki L, (5.24)
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If the wires are sufficiently short, delay depends logarithmically on wire length. If the
channels are longer, they become limited by the speed of light, and delay depends linearly
on channel length. Substituting (5.24) into (5.6) and (5.8) gives

1+log,lw =1+ (% - 1> leg, k& logarithmic delay
T. < (5.

lw = k3t linear delay.

[¥4]

[S>]

w
e

We substitute (5.25) into {5.23) to get the network latency for these two cases:

n k-1 2L
(n_ RN b
(1 i (2 1) log, k) (( 7 > nt 4 ) cgarithmic delay

T x (5.26)

n k-1 2L
21 : S
(k: ) << > ) n+ ~—k—> linear delay.

Figure 5.10 shows the average network latency as a function of dimension for k-ary n-
cubes with 28 (256), 2}* (4K), and 22° (IM) nodes, assuming logarithmic wire delay
and a message length, L, of 150. Figure 5.11 shows the same data assuming linear wire
delays. In both figures, the left most data point corresponds to a torus (n = 2) and the
right most data point corresponds to a binary n-cube (k = 2).

In the linear delay case, Figure 5.11, a torus (n = 2) always gives the lowest latency. This
is because a torus offers the highest bandwidth channels and the most direct physical
route between two processing nodes. Under the linear delay assumption, latency is
determined solely by bandwidth and by the physical distance traversed. There is no
advantage in having long channels.

Under the logarithmic delay assumption, Figure 5.10, a torus has the lowest latency for
small networks (IV = 256). For the larger networks, the lowest latency is achieved with
slightly higher dimensions. With N = 4K, the lowest latency occurs when n is three!®.
With ¥ = 1M, the lowest latency is achieved when n is 5. It is interesting that assuming
constant wire delay does not change this result much. Recall that under the (unrealistic)
constant wire delay assumption, Figure 5.9, the minimum latencies are achieved with
dimensions of 2, 4, and 5 respectively.

The results shown in Figures 5.10 through 5.9 were derived by comparing networks under
the assumption of constant wire cost to a binary n-cube with W = 1. For small networks
it is possible to construct binary n-cubes with wider channels, and for large networks
(e.g., 1M nodes) it may not be possible to construct a binary n-cube at all. In the case
of small networks, the comparison against binary n-cubes with wide channels can be
performed by expressing message length in terms of the binary n-cube’s channel width,

}211 an actual machine the dimension n would be restricted to be an even integer.
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in effect decreasing the message length for purposes of comparison. The net result is the
same: lower-dimensional networks give lower latency. Even if we perform the 256 node
comparison against a binary n-cube with W = 16, the torus gives the lowest latency
under the logarithmic delay model, and a dimension 3 network gives minimum latency
under the constant delay model. For large networks, the available wire is less than
assumed, so the effective message length should be increased, making low dimensional
networks lock even more favorable.

In this comparison we have assumed that only a single bit of information is in transit
cn each wire of the network at a given time. Under this assumption, the delay between
nodes, T,, is equal to the period of each node, T;,. In a network with long wires, however,
it is possible to have several bits in transit at once. In this case, the channel delay, T, is
a function of wire length, while the channel period, T, < T, remains constant. Similarly,
in a network with very short wires we may allow a bit to ripple through several channels
before sending the next bit. In this case, T, > T.. Separating the coefficients, T, and
Tp, (5.19) becomes

= (z0+5,2). 60

The net effect of allowing T, # T}, is the same as changing the length, L, by a factor of
%’- and does not change our results significantly.

When wire cost is considered, low-dimensional networks (e.g., tori) offer lower latency
than high-dimensional networks (e.g., binary n-cubes). Intuitively, tori outperform bi-
nary n-cubes because they better match form to function. The logical and physical
graphs of the torus are identical; Thus, messages always travel the minimum distance
from source to destination. In a binary n-cube, on the other hand, the fit between form
and function is not as good. A message in a binary n-cube embedded into the plane may
have to traverse considerably more than the minimum distance between its source and
destination.

Throughput

Throughput, another important metric of network performance, is defined as the total
number of messages the network can handle per unit time. One method of estimating
throughput is to calculate the capacity of a network, the total number of messages that
can be in the network at once. Typically the maximum throughput of a network is some
fraction of its capacity. The network capacity per node is the total bandwidth out of each
node divided by the average number of channels traversed by each message. For k-ary
n-cubes, the bandwidth out of each node is niW, and the average number of channels
traversed is given by (5.22), so the network capacity per node is given by
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The network capacity is independent of dimension. For a constant amount of wire, there
is a constant network bandwidth.

To verify that throughput is proportional to capacity and to determine the constant of
proportionality, I measured the throughput of k-ary n-cubes with 256 and 4K nodes
using a k-ary n-cube network simulator. The simulations were performed using random
traffic and the deterministic routing algorithm described in Section 5.3.2. The traffic
was generated by repeatedly having each node randomly choose a destination node and
initiate transmission of a message to the destination node.

The results of the throughput experiment are tabulated below. Throughput is shown as
a fraction of capacity. The experimental results indicate that throughput is between 0.4
and 0.7 capacity for the cases tested. For practical purposes throughput is independent
of dimension.

Parameter 256 Nodes 4K Nodes
Dimension 2 4 8 2 4 6 | 12
radix 18 4 2 64 8 4 | 2
Throughput || 0.468 | 0.618 | 0.596 || 0.492 | 0.426 | 0.427 | 0.460

Hot Spot Throughput

In many situations traffic is not uniform, but rather is concentrated into hot spots. A hot
spot is a pair of nodes that accounts for a disproportionately large portion of the total
network traffic. As described by Pfister [101] for a shared-memory computer, hot-spot
traffic can degrade performance of the entire network by causing congestion.

The hot-spot throughput of a network is the maximum rate at which messages can be
sent from one specific node, P;, to another specific node, P;. For a k-ary n-cube with
deterministic routing, the hot-spot throughput, Oys, is just the bandwidth of a single
channel, W. Thus, under the assumption of constant wire cost we have

Ous =W =k - 1. (5.29)
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Low-dimensional networks have greater channel bandwidth and thus have greater hot-
spot throughput than do high-dimensional networks. Intuitively, low-dimensional net-
works operate better under non-uniform loads because they do more resource sharing.
In an interconnection network the resources are wires. In a high-dimensional network,
wires are assigned to particular dimensions and cannot be shared between dimensions.
For example, in a binary n-cube it is possible for a wire tc be saturated while a physically
adjacent wire assigned to a different dimension remains idle. In a torus all physically
adjacent wires are combined into a single channel that is shared by all messages that
must traverse the physical distance spanned by the channel.

5.3.2 Deadlock-Free Routing

Deadlock in the interconnection network of a concurrent computer occurs when no mes-
sage can advance toward its destination because the queues of the message system are

" full [70]. Consider the example shown in Figure 5.12. The queues of each node in the
4-cycle are filled with messages destined for the opposite node. No message can advance
toward its destination; thus the cycle is deadlocked. In this locked state, no communi-
cation can occur over the deadlocked channels until exceptional action is taken to break
the deadlock.
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Definition 5.1 A flow control digit or flit is the smallest unit of information that a
queue or channel can accept or refuse. Generally a packet consists of many flits. The
unit of communication that is visible to the programmer is the message. A message may
be composed of one or more packets, each of which carries its own routing and sequencing
information in a header. -

This complication of standard terminology has been adopted to distinguish between
those flow control units that always include routing information - viz. packets - and
those lower-level low control units that do not - viz. flits. The literature on computer
networks [125] has been able to avoid this distinction between packets and flits because
most networks include routing information with every flow control unit; thus the flow
control units are packets. That is not the case in the interconnection networks used by
message-passing concurrent computers such as the Caltech Cosmic Cube [112].

The concurrent computer interconnection networks we are concerned with in this section
are not store-and-forward networks. Instead of storing a packet completely in a node
and then transmitting it to the next node, the networks we consider here use wormhole
routing*® [113]. With wormhole routing, only a few flits are buffered at each node. As
soon as a node examines the header flit(s) of a packet, it selects the next channel on
the route and begins forwarding flits down that channel. As flits are forwarded, the
packet becomes spread out across the channels between the source and destination. It
is possible for the first flit of a packet to arrive at the destination node before the last
flit of the packet has left the source. Because most flits contain no routing information,
the flits in a packet must remain in contiguous channels of the network and cannot be
interleaved with the flits of other packets. When the header flit of a packet is:blocked,
all of the flits of a packet stop advancing and block the progress of any other packet
requiring the channels they occupy. Because a single packet blocks many channels at
once, preventing deadlock in a wormbhole network is harder than preventing deadlock in
a store-and-forward network.

I assume the following:

e Every packet arriving at its destination node is eventually consumed.
e A node can generate packets destined for any other node.

e The route taken by a packet is determined only by its destination and not by other
traffic in the network.

A node can generate packets of arbitrary length. Packets will generally be longer
than a single flit.

134 method similar to wormhole routing, called wirtual cut-through, is described in [66]. Virtual cut-
through differs from wormhole routing in that it buffers messages when they block, removing them
from the network. With wormhole routing, blocked messages remain in the network.
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e Once a queue accepts the first flit of a packet, it must accept the remainder of the
packet before accepting any flits from another packet.

e An available queue may arbitrate between packets that request that queue space
but may not choose amongst waiting packets.

e Nodes can produce packets at any rate subject to the constraint of available queue
space (source queued).

The following definitions develop a notation for describing networks, routing functions,
and configurations.

Definition 5.2 An interconnection network, I, is a strongly connected directed graph,
I = G(N,C). The vertices of the graph, N, represent the set of processing nodes. The
edges of the graph, C, represent the set of communication channels. Associated with
each channel, ¢;, is a queue with capacity cap(c;). The source node of channel ¢ is
denoted s; and the destination node d;.

Definition 5.3 A routing function R: C X N — C maps the current channel, ¢, and
destination node, ng4, to the next channel, ¢,, on the route from ¢, to ng, R(c.,ng) = ca.
A channel is not allowed to route to itself, ¢, # ¢,. Note that this definition restricts
the routing to be memoryless in the sense that a packet arriving on channel ¢, destined
for n; has no memory of the route that brought it to ¢.. However, this formulation of
routing as a function from C x N to C has more memory than the conventional definition
of routing as a function from N x N to C. Making routing dependent on the current
channel rather than the current node allows us to develop the idea of channel dependence.
Observe also that the definition of R precludes the route from being dependent on the
presence or absence of other traffic in the network. R describes strictly deterministic
and non-adaptive routing functions.

Definition 5.4 A channel dependency graph, D, for a given interconnection network, I,
and routing function, R, is a directed graph, D = G(C, E). The vertices of D are the
channels of I. The edges of D are the pairs of channels connected by R.:

E = {(ci,¢;)|R(¢i,n) = ¢c; for some n € N}. (5.30)

Since channels are not allowed to route to themselves, there are no l-cycles in D.

Definition 5.5 A configuration is an assignment of a subset of N to each queue. The
number of flits in the queue for channel ¢; will be denoted size(c;). If the queue for channel
¢; contains a flit destined for node ng4, then member(ngy,¢;) is true. A configuration is
legal if
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Ye; € C, size(c;) < cap(c). (5.

Definition 5.6 A deadlocked configuration for a routing function, R, is a non-empty
legal configuration of channel queues such that

Ve; € C, (Yn > member(n, ¢;), n # d; and ¢; = R{¢;, n) = size(c;) = cap(e;).)(5.32)

In this configuration no flit is one step from its destination, and no flit can advance
because the queue for the next channel is full. A routing function, R, is deadlock-free on
an interconnection network, I, if no deadlock configuration exists for that function on
that network.

Theorem 5.1 A routing function, R, for an interconnection network, I, is deadlock-free
iff there are no cycles in the channel dependency graph, D.

Proof:

=> Suppose a network has a cycle in D. Since there are no l-cycles in D, this cycle must
be of length two or more. Thus, one can construct a deadlocked configuration by filling
the queues of each channel in the cycle with flits destined for a node two channels away,
where the first channel of the route is along the cycle.

<= Suppose a network has no cycles in D. Since D is acyclic, one can assign a total order
to the channels of C so that if (¢;,¢;) € E then ¢; > ¢;. Consider the least channel in
this order with a full queue, ¢;. Every channel, ¢,, that ¢; feeds is less than ¢;, and thus
does not have a full queue. Thus, no flit in the queue for ¢; is blocked, and one does not
have deadlock. B

Virtual Channels

Now that we have established this if-and-only-if relationship between deadlock and the
cycles in the channel dependency graph, we can approach the problem of making a
network deadlock-free by breaking the cycles. We can break such cycles by splitting
each physical channel along a cycle into a group of virtual channels. Each group of
virtual channels shares a physical communication channel; however, each virtual channel
requires its own queue.

Consider for example the case of a unidirectional four-cycle as shown in Figure 5.13A,
N = {ng,...,n3}, C ={co,...,cs}. The interconnection graph, I, is shown on the left
and the dependency graph, D, is shown on the right. We pick channel ¢y to be the di-
viding channel of the cycle and split each channel into high virtual channels, ¢jg,...,¢i3,
and low virtual channels, ¢coq,...,cos, as shown in Figure 5.13B.
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When a packet enters the network it is routed on the high channels until it passes
through node zero. After passing through node zero, packets are routed on the low
channels. Channel coo 18 not used. We now have a total ordering of the virtual channels
according to their subscripts: ¢j3 > ¢12 > ¢11 > €10 > ¢o3 > co2 > co1. Thus, there is-no
cycle in D, and the routing function is deadlock-free.

Many deadlock-free routing algorithms have been developed for store-and-forward com-
puter communications networks [48], [49], [58], [89], [130], [131]. These algorithms are
all based on the concept of a structured buffer pool. The packet buffers in each node
of the network are partitioned into classes, and the assignment of buffers to packets is
restricted to define a partial order on buffer classes. The structured buffer pool method
has in common with the virtual channel method that both prevent deadlock by assign-
ing a partial order to resources. The two methods differ in that the structured buffer
pool approach restricts the assignment of buffers to packets, while the virtual channel
approach restricts the routing of messages. Either method can be applied to store-and-
forward networks, but the structured buffer pool approach is not directly applicable to
wormbhole networks, since the flits of a packet cannot be interleaved.

In the next section, virtual channels are used to construct a deadlock-free routing algo-
rithm for k-ary n-cubes. In [24] algorithms are developed for cube-connected cycles and
shuffle-exchange networks as well.

k-ary n-cubes

The E-cube routing algorithm [79],[124] guarantees deadlock-free routing in binary n-
cubes. In a cube of dimension d, we denote a node as n, where k is an d-digit binary
number. Node n; has d output channels, one for each dimension, labeled cog, . . ., c(a—1)k-
The E-cube algorithm routes in decreasing order of dimension. A message arriving at
node nj destined for node n; is routed on channel ¢;x, where 1 is the position of the most
significant bit in which k and [ differ. Since messages are routed in order of decreasing
dimension and hence decreasing channel subscript, there are no cycles in the channel
dependency graph, and E-cube routing is deadlock-free.

Using the technique of virtual channels, this routing algorithm can be extended to handle
all k-ary n-cubes. Rings and torcidal meshes are included in this class of networks. This
algorithm can also handle mixed radix cubes. Each node of a k-ary n-cube is identified
by an n-digit radix k number. The 1*? digit of the number represents the node’s position
in the *® dimension. For example, the center node in the 3-ary 2-cube of Figure 5.14 is
ny;. Each channel is identified by the number of its source node and its dimension. For
example, the dimension 0 (horizontal) channel from nj; to njg is co11. To break cycles,
we divide each channel into an upper and lower virtual channel. The upper virtual
channel of ¢cg;; will be labeled cg111, and the lower virtual channel will be labeled ¢po1;.
To give internal channels the lowest priority, they are labeled with a dimension higher
than the dimension of the cube. To assure that the routing is deadlock-free, we restrict
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Figure 5.14: 3-ary 2-Cube

it to route through channels in order of descending subscripts. Priority is always given
to the message from the channel with a lower subscript.

As in the E-cube algorithm, we route in order of dimension, most significant dimension
first. In each dimension, {, a message is routed in that dimension until it reaches a
node whose subscript matches the destination address in the ¢*! position. The message
is routed on the high channel if the i*! digit of the destination address is greater than
the *P digit of the present node’s address. Otherwise the message is routed on the
low channel. It is easy to see that this routing algorithm routes in order of descending
subscripts and is thus deadlock-free.

Formally, we define the routing function:

Car(n-re) if (dig(n,d) < dig(7,d)) A (dig(n,d) # 0),
R (C n ) — C40(n—rd) if (dig(n’) d) > dlg(]’ d)) v (dlg(n»d) = 0)7
KNCiFdens T Ci(nerdy if (VK > i,dig(n, k) = dig(j, k))A
(dig(n,s) # dig(s,1)),

(5.33)

where dig(n, d) extracts the d*" digit of n, and r is the radix of the cube. The subtracticn,
n — r4, is performed so that only the d'" digit of the address n is affected.
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Assertion 5.1 The rcuting function, Rgnc, correctly routes messages fromn any node
to any other ncde in a k-ary n-cube.

Proof: By induction on dimension, d.

For d = 1, a message, destined for n;, enters the system at n; on the internal channel,

cq0i- If 1 < 7, the message s forwarded on channels, cgy4,...,c010,C00r, - - -3 Co0(j+1) tO
node n;. If ¢ > j, the path taken is, cooi,- -, Co0(j+1)- In both cases the route reaches
node n;.

Assume that the routing works for dimensions < d Then for dimension d+1 there are two
cases. If dig(7, d) # dig(7, d), then the message is routed around the most significant cycle
to a node ng > dig(k,d) = dig(J,d), as in the d = 1 case above. If dig(t,d) = dig(7, d),
then the routing need be performed only in dimensions d and lower. In each of these
cases, once the message reaches a node, n;, 3 dig(k, d) = dig(y, d), the third routing rule
18 used to route the message to a lower-dimensional channel. The problem has then been
reduced to one of dimension < n, and the routing reaches the correct node by induction.

Assertion 5.2 The routing function Rgnc on 2 k-ary n-cube interconnection network,
I, is deadlock-free.

Proof: Since routing is performed in decreasing order of channel subscripts, Ve;, ¢5,n, 2
R{ciyn;) = ¢; = 1 > j, the channel dependency graph, D, is acyclic. Thus by
Theorem 5.1 the route is deadlock-free. H

5.3.3 The Torus Routing Chip

I have developed the torus routing chip (TRC) as a demonstration of the use of virtual
channels for deadlock-free routing. Shown in Figures 5.15 and 5.16, the TRC is a =~
10, 000-transistor chip implemented in 3u CMOS technology and packaged in an 84-lead
pin-grid array. It provides deadlock-free packet communications in k-ary n-cube (torus)
networks with up to k = 256 nodes in each dimension. While primarily intended for
n == 2-dimensional networks, the chips can be cascaded to handle arbitrary n-dimensional
networks using [3] TRCs at each processing node. TRCs have been fabricated and
tested.

Even if only two dimensions are used, the TRC can be used to construct concurrent
computers with up to 2!® nodes. It would be very difficult to distribute a global clock
over an array of this size [40]. To avoid this problem, the TRC is entirely self-timed
[109], thus permitting each processing node to operate at its own rate with no need for
global synchronization. Synchronization, when required, is performed by arbiters in the
TRC.



151

D,ur@wumwﬁrm & o S

Figure 5.15: Photograph of the Torus Routing Chip
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Figure 5.16: A Packaged Torus Routing Chip

To reduce the latency of communications that traverse more than one channel, the TRC
uses wormhole [113] routing rather than store-and-forward routing. Instead of reading an
entire packet into a processing node before starting transmission to the next node, the
TRC forwards each byte of the packet to the next node as soon as it arrives. Wormbhole
routing thus results in a message latency that is the sum of two terms, one of which
depends on the message length, L, and the other of which depends on the number of
communication channels traversed, D. Store-and-forward routing gives a latency that
depends on the product of L and D. Another advantage of wormhole routing is that
communications do not use up the memory bandwidth of intermediate nodes. A packet
does not interact with the processor or memory of intermediate nodes along its route.
Packets remain strictly within the TRC network until they reach their destination.

System Design

The torus routing chip (TRC) can be used to construct arbitrary k-ary n-cube inter-
connection networks. Each TRC routes packets in two dimensions, and the chips are
cascadable as shown in Figure 5.17 to construct networks of dimension greater than two.
The first TRC in each node routes packets in the first two dimensions and strips off their
address bytes before passing them to the second TRC. This next chip then treats the
next two bytes as addresses in the next two dimensions and routes packets accordingly.
The network can be extended to any number of dimensions.
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Figure 5.19: A Folded Torus System

A block diagram of a 2-dimensional message-passing concurrent computer constructed
around the TRC is shown in Figure 5.18. Each node consists of a processor, its local
memory, and a TRC. Each TRC in the torus is connected to its processor by a processor
input channel and a processor output channel. Connections on the edges of the torus
wrap around to the opposite edge. One can avoid the long end-around connection by
folding the torus, as shown in Figure 5.19.

A flit in the TRC is a byte whose 8 bits are transmitted in parallel. The X and Y
channels each consist of 8 data lines and 4 control lines. The 4 control lines are used for
separate request/acknowledge signal pairs for each of two virtual channels. The processor
channels are also 8 bits wide, but have only two control lines each.

The packet format is shown in Figure 5.20. A packet begins with two address bytes.
The bytes contain the relative X and Y addresses of the destination node. The relative
address in a given direction, say X, is a count of the number of channels that must be
traversed in the X direction to reach a node with the same X address as the destination.
After the address comes the data field of the packet. This field may contain any number
of non-zero data bytes. The packet is terminated by a zero tail byte. Later versions of
the TRC may use an extra bit to tag the tail of a packet, and might also include error
checking.
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Figure 5.20: Packet Format

The TRC network routes packets first in the X direction, then in the Y direction. Packets
are routed in the direction of decreasing address, decrementing the relative address at
each step. When the relative X address is decremented to zero, the packet has reached
the correct X coordinate. The X address is then stripped from the packet, and routing
is initiated in the Y dimension. When the Y address is decremented to zero, the packet
has reached the destination node. The Y address is then stripped from the packet, and
the data and tail bytes are delivered to the node.

Each of the X and Y physical channels is multiplexed into two virtual channels. In each
dimension packets begin on virtual channel 1. A packet remains on virtual channei 1
until it reaches its destination or address zero in the direction of routing. After a packet
crosses address zero, it is routed on virtual channel 0. The address O origin of the torus
network in X and Y is determined by two input pins cn the TRC. The effect of this
routing algorithm is to break the channel dependency cycle in each dimension into a
two-turn spiral similar to that shown in Figure 5.13 on page 147. Packets enter the
spiral on the outside turn and reach the inside turn only after passing through address
zero.

Each virtual channel in the TRC uses the 2-cycle signaling convention shown in Fig-
ure 5.21. Each virtual channel has its own request (R) and acknowledge {A) lines.
When R = A, the receiver is ready for the next flit (byte). To transfer information,
the sender waits for R = A, takes control of the data lines, places data on the data
lines, toggles the R line, and releases the data lines. The receiver samples data on each
transition of R line. When the recelver is ready for the next byte, it toggles the A line.

The protocol allows both virtual channels to have requests pending. The sending end
does not wait for any action from the receiver before releasing the channel. Thus, the
other virtual channel will never wait longer than the data transmission time to gain
access to the channel. Since a virtual channel always releases the physical channel after
transmitting each byte, the arbitration is fair. If both channels are always ready, they
will alternate bytes on the physical channel.
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Figure 5.21: Virtual Channel Protocol
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Figure 5.22: Channel Protocol Example

Ccnsider the example shown in Figure 5.22. Virtual channel X1 gains control of the
physical channel, transmits one byte of information, and releases the channel. Before
this information is acknowledged, channel X0 takes control of the channel and transmits
two bytes of information. Then X1, having by then been acknowledged, takes the channel
again.

Logic Design

As shown in Figure 5.23, the TRC consists of five input controllers, a five by five crossbar
switch, five output queues, and two output multiplexers. There is one input controller
and one output controller for each virtual channel. The output multiplexers serve to
multiplex two virtual channels onto a single physical channel.

The input controller is responsible for packet routing. When a packet header arrives,
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Figure 5.24: Input Controller Block Diagram

the input controller selects the output channel, adjusts the header by decrementing and
sometimes stripping the byte, and then passes all bytes to the crossbar switch until the
tail byte is detected.

The input controller, shown in Figure 5.24, consists of a datapath and a self-timed state
machine. The datapath contains a latch, a zero checker, and a decrementer. A state
latch, logic array, and control logic comprise the state machine. When the request line
for the channel is toggled, data are latched, and the zero checker is enabled. When the
zero checker makes a decision, the logic array is enabled to determine the next state,
the selected crossbar channel, and whether to strip, decrement, or pass the current byte.
When the required operation has been completed, possibly requiring a round trip through
the crossbar, the state and selected channel are saved in cross-coupled multi-flops and
the logic array is precharged.

The input controller and all other internal logic operate using a 4-cycle signaling con-
vention [109]. One function of the state machine control logic is to convert the external
2-cycle convention into the on-chip 4-cycle convention. The signals are converted back
to 2-cycle at the output pads.

The crossbar switch performs the switching and arbitration required to connect the five
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input controllers to the five output queues. A single crosspoint of the switch is shown
in Figure 5.25. A two-input interlock (mutual-exclusion) element in each crosspoint
arbitrates requests from the current input channel (row) with requests from all lower
channels (rows). The interlock elements are connected in a priority chain so that an
input channel must win the arbitration in the current row and all higher rows before
gaining access to the output channel (column).

The output queues buffer data from the crossbar switch for output. The queues are of
length four. While shorter queues would suffice to decouple input and output timing, the
longer queues also serve to smooth out the variation in delays due to channel conflicts.

Each output multiplexer performs arbitration and switching for the virtual channels
that share a common physical channel. As shown in Figure 5.26, a small self-timed state
machine sequences the events of placing the data on the output pads, asserting request,
and removing the output data. An interlock element is used to resolve conflicts between
channels for the data pads.

To interface the on-chip equipotential region to the off-chip equipotential region that con-
nects adjacent chips, self-timed output pads (Figure 7.22 in (109]) are used. A Schmidt
Trigger and exclusive-OR gate in each of these pads signals the state machine when the
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pad is finished driving the output. These completion signals are used to assure that the
data pads are valid before the request is asserted and that the request is valid before the
data are removed from the pads and the channel released.

Experimental Results

The design of the TRC began in August 1985. The chip was completely designed and
simulated at the transistor level before any layout was performed. The circuit design
was described using CNTK, a language embedded in C [26], and was simulated using
MOSSIM [14]. A subtle error in the self-timed controllers was discovered at the circuit
level before any time-consuming layout was performed. Once the circuit design was
verified, the TRC was laid out in the new MOSIS scalable CMOS technology [132] using
the Magic system [94]. A second circuit description was generated from the artwork and
six layout errors were discovered by simulation of the extracted circuit. The verified
layout was submitted to MOSIS for fabrication in September 1985.

The first batch of chips was completed the first week of December but failed to function
because of fabrication errors. A second run of chips (same design), returned the second
week of December, contained some fully functional chips.

Performance measurements on the chips are shown in Figure 5.27. To measure the
maximum channel rate, output request and acknowledge lines were tied together, and
input acknowledge was inverted and fed back into input request. In this configuration
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the chip runs at a maximum speed, shown in Figure 5.27A, of 4MHz. The delays from
input request to output request and input acknowledge, shown in Figure 5.27B, are 150ns
and 250ns respectively. Data propagation time from input to output (not shown) was
measured to be 60ns for both rising and falling edges. Thus data are set up 90ns ahead
of the output request. Data hold time, shown in Figure 5.27C, is 20ns. -

Tau model calculations suggest that a redesigned TRC should operate at 20MHz and
have an input to output delay of 50ns. The redesign would involve decoupling the timing
of the input controller by placing single-stage queues between the input pads and input
controller and between the input controller and the crossbar switch. The input controller
would be modified to speed up critical paths.

Summary

Communication between nodes of a concurrent computer need not be slower than the
communication between the processor and memory of a conventional sequential com-
puter. By using byte-wide datapaths and wormbhole routing, the TRC provides node-
to~-node communication times that approach main memory access times of sequential
computers. Communications across the diameter of a network, however, may require
substantially longer than a memory access time.

The TRC serves as still another counterexample to the myth that self-timed systems
are more complex than synchronous systems. The design of the TRC is not significantly
more complex than a synchronous design that performs the same function. As for speed,
the TRC is probably faster than a synchronous chip, since each chip can operate at its
full speed with no danger of timing errors. A synchronous chip is generally operated at
a slower speed that reflects the timing of a worst-case chip and adds a timing margin.

5.4 A Message-Driven Processor

In Section 5.3 we investigated means of minimizing message latency, T;, by choosing
the proper dimension interconnection network and proper routing strategy. We ignored,
however, the contribution of the processing node to latency: Thode in (5.18). In this sec-
tion I present novel architectural features that minimize Tphoge by matching the behavior
of the processor to the object-based model of computation described by function (2.1).

In a concurrent computer built around a conventional instruction processor, interpreting
a message is a time-consuming process. First, the processor responds to an interrupt
informing it that a message has arrived. Next, the message is fetched from memory,
and the method to be executed in response to the message is determined. Finally, after
executing s 100 instructions, the processor begins execution of the method. If the
execution of the method involves sending a message, another cumbersome instruction
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sequence is required to initiate the send. The latency introduced by performing these
message receives and sends in software is intolerable in a system where the average
method is only 10 instructions long.

Instead of nesting the instruction fetch-decode-execute loop of a conventional processor
inside the receive-dispatch-execute loop required to process a message, a message driven
processor directly interprets messages. A level of interpretation is removed; messages
are the instructions of a message-driven processor.

When a message arrives at a processing node, the processor performs the following steps:

Reception: Upon message arrival the message is immediately removed from the network.
The message is buffered if the processor is busy and is received when the processcr
becomes idle. Reception and buffering of messages are performed by hardware.
The current message is placed in a receive register to allow the processor fast
access to arguments.

Method Lookup: Once a message has been copied into the receive register, the method
correspending to the message is determined by examining the message selector
and the class of the receiver. An instruction translation lockaside buffer (ITLB)
[22] is used to speed the translation of messages into methods.

Ezecution: Methods are either primitive or defined. Primitive methods, small integer
add for example, are performed directly by the processor. They generally involve
modifying the contents of an object and/or transmitting a reply message.

Defined methods create a context and specify a sequence of actions. Actions are
similar to subroutines on a conventional processor. They are executed by sending
a sequence of messages. Some of the sends performed during the execution of
a defined method are handled locally. They are simply instructions. Sends to
objects outside the current processing node result in sending a message over the
network. Addressing modes are provided to allow fast access to the fields of the
current message, acquaintances of the receiver, and the contents of the context
during the execution of an action.

If a method consists of more than a single action, the context is retained, and
the messages transmitted by the method are directed to reply to the context. A
pointer to the next sequence of messages to be executed for the method is stored
in the context. After the final action of a method, the processor sends a reply to
the object specified in the Reply To field of the original message unless this field
is nil.

The classes (data types) and the operations supported by a processing node may
vary amongst nodes. As described in Section 5.5, some processing nodes may be
object experts specialized to store and operate on a particular class of objects.
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Figure 5.28: Message Format

5.4.1 Message Reception

The format of a message is shown in Figure 5.28. Each message contains the following
fields:

Receiver: The identifier of the object to which the message is directed.

Selector: The name of the message. The selector, together with the class of the receiver,
determines what method is to be executed in response to the message. If the
message has a nil receiver, the selector directly determines the method!*.

Reply to: The object that is to receive the reply from this message. If this field is nil, no
reply is expected.

Arguments: Object identifiers for the arguments of the message, if any.

As shown in the lower portion of Figure 5.28, each object identifier consists of two fields.
The Tag field specifies whether the object is a primitive or a reference object and, if the
object is a primitive, specifies its class. If the object is a primitive, the Instance field is
the object itself. For example, if the Tag field specifies that the object is of class Small
Integer, the Instance field contains the integer. For reference objects, the instance field
contains a pointer to the object in object space. The object pointer is translated into a
node number by the global mail system and into an address within the node by the local
mail system. The class of a reference object is found within the object itself.

The process of message reception is illustrated in Figure 5.28. If the processor is idle
when a message arrives from the network, the message 1s read directly into a receive
register. The receive register contains slots for the receiver, selector, and reply to fields
of the message, as well as four arguments. Additional arguments are stored in memory
at a location referenced by the argument pointer.

14Messages from the network will never have a nil receiver. Messages executed as the instructions of
defined method, however, may have a nil receiver.
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If the processor is busy when a message arrives, the message is automatically buffered
in memory. Message buffer memory access takes pricrity over processor memory access,
since it is critical to network performance that a message be removed from the network
as soon as it arrives at its destination node. Dedicated registers point to the head and
tail of a message queue in memory. When the processor becomes idle, the message at
the head of the queue is removed from the queue and copied into the receive register.

The use of special purpose hardware to remove messages from the network, buffer them
in memory, and load messages into a processor register has two significant performance
advantages. Since messages are quickly removed from the network, network performance
is improved; if messages were left for any period of time with their tails blocking network
channels, severe network congestion could result. Also, message latency is reduced since
the time for a conventional processor to *respond to a network interrupt and load the
message is eliminated. If the processor is idle, the message is loaded as soon as it arrives.

5.4.2 Method Lookup

Once a message is received, the first step in interpreting the message is to look up
the method specified by the selector and the class of the receiver. If the receiver is a
primitive, its class is encoded in the tag part of the object ID and is already in the
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receive register. If the receiver is a reference object, the class of the object must be
fetched. Part of the object’s class is a table of selectors understood by that class and
the method corresponding to each selector. This table is searched, by hashing, to find
the selector in the received message. If the selector is found, the corresponding method
is executed. Otherwise, the object superclass is checked, then the superclass’ superclass,
and so on, as shown in Figure 5.30.

Method lookup can be accelerated by using an ITLB as shown in Figure 5.31 [22]. The
ITLB is an associative memory that asscciates selector and class with the corresponding

method. Each entry in the ITLB corresponds to a unique method and contains three
fields:

Key: The selector and class that specify the method.
Primitive Bit: Specifies whether the method is primitive or defined.

Method: How the method is to be accomplished. For a primitive method, this field
determines which primitive operation the processor is to perform. For a defined
method, this field contains the object ID of the method.

Method lookup using the ITLB proceeds in three steps. First, the class of the receiver
is obtained and concatenated with the selector to form a key into the ITLB. The ITLB,
an associative memory, attempts to find an entry matching this key. If an ITLB entry
is found, then the method field and primitive bit are read from the ITLB. Otherwise,
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a conventional method lookup must be performed as described above. All primitive
instructions are permanently stored in the ITLB.

The memory requirements for a message-driven processor are quite modest. A processing
element need not keep a complete class description for each class of objects it contains.
In fact, a processing element need not keep any code resident at all. When a method is
referenced, it can be copied over the network. When an ITLB miss occurs, method lookup
can be spread across a number of processing elements!5. Performance can be enhanced,
however, by maintaining redundant copies of some methods and class descriptions. For
example, it would be beneficial to maintain local copies of each method referenced in the

ITLB.

5.4.3 Execution

A context object, shown in Figure 5.32, is created at the start of a defined method and
controls the execution of the method. The receiver, reply-to object, and arguments from
the message as well as the method pointer from the method lockup operation are copied
into the context. The context contains the instruction pointer (IP) that sequences the
instructions in the method. Local variables are also held in the context. A context cache

131t ia important that only primitive or guaranteed resident methods are used for method lookup. Oth-
erwise, the system could get into an infinite loop of looking up a method required to look up a method
etc....
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Figure 5.32: A Context

as described in [22] can be used to provide fast allocation of and access to contexts.

To execute a method, the processor fetches the instruction referenced by the IP, executes
the instruction, and increments the [P to proceed to the next instruction. Each instruc-
tion conceptually sends a message, by specifying the receiver, selector, and arguments.
Many of the instructions, however, will not result in actually sending a message, but
instead will modify the contents of a local object or alter execution of the method by
modifying the IP. The processor executes these instructions directly.

Since all instructions are message sends, a processor that interprets a single instruction
would suffice. However, to improve the efficiency of commonly used primitives and
control instructions, certain messages will be more compactly encoded. A set of possible
instructions is as follows:

send: The SEND instruction sends a message to the specified receiver. Addressing
modes are provided to represent compactly the receiver, selector, and arguments.
If the receiver is nil, a constant, or a local object, the operation will be performed
directly and no send will occur. Otherwise, the fields of the message will be
assembled and the message transmitted over the network.

control instructions: These instructions can be thought of as sending messages to the
current context. BRANCH conditionally alters the value of the IP. SUSPEND
halts execution but preserves the context so that a reply can resume execution.
EXECUTE suspends the current context and begins execution of another context.
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Figure 5.33: Instruction Formats

REPLY sends a reply message with a specified argument list to the object specified
by the Reply-To field of the context and then deletes the current context.

common messages: Commonly used messages such as MOVE, at:put:, or + may be en-
coded directly to save space. Often these instructions combine several conceptual
gends into a single instruction. For example, the instruction A +B + C sends the
message + C to B and then stores the result in A, conceptually sending an at:put:
message to the object containing A.

Possible formats for these instructions are shown in Figure 5.33. Each instruction consists
of an opcode field and zero or more operand fields. Each operand field contains an
operand specifier that describes the operand using one of four addressing modes.

global constant: A global constant table contains commonly used constants such as true,
false, nil, and small integers. The operand descriptor specifies an offset into the
constant table.

local constant: A local constant table (literal table) is associated with each method.
This table contains selectors for the messages sent in the method and any other
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This code prefizes a method that 18 qualified by the line:
‘require rwlock exclude rwlock or Tfalse.’

CONTEXT.T1 +« RCVR.REQUIRED NOR RCVR.EXCLUDED
BRANCH LCONST.SUCCEED ON CONTEXT.T1
REPLY GCONST .false
SUCCEED: RCVR.REQUIRED + GCONST.true
RCVR.EXCLUDED «- GCONST.true
remainder of method code

-

Figure 5.34: A Coding Example: Locks

constants required by the method that are not contained in the global table. As
with the global constant addressing mode, the operand descriptor specifies an
offset into the constant table.

contezt: The operand descriptor selects a field of the context, or, if a specific code is used,
the context itself. This mode is used to access arguments and local variables.

receiver: The operand descriptor selects a field (variable) of the receiver or the receiver
itself.

The high two bits of the operand descriptor select the addressing mode. The remaining
bits select a specific constant or a specific field of the context or receiver.

As an example of message-driven processor code, consider implementing locks, described
in Section 2.4, by prefixing the body of the method with the code shown in Figure 5.34.
First, two fields of the receiver, REQUIRED and EXCLUDED, are NORed to determine if
the current method can be allowed to proceed. The result of this operation is stored in
the context in temporary variable, T1. If the method can proceed, a BRANCH is made
to the location labeled SUCCEED, the locks are set, and the method is continued!®,
Otherwise, the method is terminated by sending a reply with false as the argument. In
this example the context acts as a receptionist [1] in controlling concurrent access to the
receiver.

'*For mutual exclusion a Boolean lock is sufficient. In the general case, however, a counting semaphore
is required.
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5.5 Object Experts

One approach to harnessing the power of VLSI technoclogy is through specialization.
Many problems are so demanding of computer resources that the capabilities of general-
purpose computers are insufficient to solve these problems in a reasonable period of
time. Examples of demanding problems are finite element analysis, signal processing,
game playing, circuit simulation, and logic simulation. In recent years hardware acceler-
ators have been constructed for a number of these problems. Vector and array processors
[104] have been used to accelerate numerical applications such as finite element analy-
sis and signal processing, and special-purpose engines have been constructed for chess
playing [18] and for logic [99] and switch-level [23] circuit simulation. These machines
typically offer performance of 100 to 1000 times that of a general-purpose computer;
however, they have the disadvantage of being specialized for one problem. The low fab-
rication cost of VLS] technology makes buiiding special-purpose processors economically
feasible; however, limited design resources and economy of scale considerations make it
impractical to build a different processor for each problem. The challenge is to build an
accelerator sufficiently flexible to be applied to many problems.

A flexible accelerator can be constructed by applying specialization to data structures
rather than to particular applications. Most applications are built around a central data
structure, and in many cases operations on this data structure consume most of the com-
puting resources. By accelerating operations on common data structures, all applications
using these data structures are accelerated. Just as object-oriented programming makes
it convenient to share class definitions across several applications, hardware specialized
to operate on a particular class of objects, an object ezpert, can also be shared across
many applications.

In addition to exploiting specialization, object experts are also well suited to VLSI tech-
nology because they promote locality. Data of a specific class are stored in the object
expert, and operations on the data are performed locally. A floating point vector expert,
for example, would store vectors of floating point numbers near the pipelined arithmetic
unit that operates on the vectors.

A machine constructed around object experts is a heterogeneous machine. Different
types of processing elements specialized for different classes of objects are distributed
about the machine with several object experts clustered at each processing node. Each
processing node contains at least one general-purpcse processor (an object expert for
context objects) and possibly one processor that implements the class of objects used
to construct the mail system. Clustering of object experts promotes two levels of con-
currency: pipelining applications within each cluster and running several clusters in
parallel. Many applications can take advantage of two-level concurrency. For example, a
logic simulator can pipeline the event list, fanout list, and evaluation functions and run
several of these pipelines in parallel on different portions of the circuit simultaneously.
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Here are a few possible object experts:

A Floating Point Vector Ezpert accelerates numerical applications by providing fast arithe

metic operations on vectors of floating point numbers, similar to those provided
by the vector arithmetic units of a scientific computer such as the Cray 1 [104].
This expert is an example of a processing element that stores and operates on
objects that belong to a restriction of a class. In this example, only those vector
objects that contain only floating point numbers and that are under a certain
maximum length are eligible. If an integer is stored into one of these vectors, or if
a vector exceeds the maximum length, the vector would be exported to a general
purpose processor.

A Graph Ezpert accelerates algorithms similar to those presented in Chapter 4. This is
an example of an expert for a distributed object class. Constituents (edges and
vertices) of distributed cbjects (graphs) are stored in each expert. Several experts
at different processing nodes cooperate in accelerating operations on these graphs.

Set Ezperts accelerate operations on collections of objects. An ordered set expert would
accelerate the balanced cube operations described in Chapter 3. An unordered
set expert would accelerate the concurrent hashing operations described in Ap-
pendix B.

1/0 Ezperts provide a convenient way of dealing with I/O devices as objects that send
and receive messages. A display screen, for example, is an expert for objects of
class BitBlt. To draw on the screen, a copybits message is sent to one of these
objects. Input devices such as keyboards, lightpens, and mice are handled by
object experts that send messages in response to an input event, e.g., a keystroke,
and reply to messages about the state of the device, e.g., mouse position. Mass
storage experts control devices such as disks and tapes. An I/O expert maps
physical objects that manipulate the outside world into CST objects that send
and receive messages.

5.6 Summary

»

This chapter has presented a computer architecture designed to support concurrent
object-oriented programming. This architecture is motivated by the latency-sensitive
nature of the algorithms developed in Chapters 3 and 4 and the wire-limited nature of
VLSI technology.

In Section 5.3 I analyze concurrent computer interconnection networks to determine
what network topology gives the lowest latency for a given amount of wire. The analysis
is restricted to k-ary n-cube networks because the dimension of the network is moere
important than the details of the topology. In Section 5.3.1 I use a wire-cost model to
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analyze k-ary n-cube networks and derive the result that keeping wire cost constant,
low-dimensicnal networks have lower latency than do high-dimensional networks. The
lowest latency occurs when the component of latency due to message length, 3%,—, is nearly
the same as the component of latency due to distance, D. Low-dimensional networks also
provide higher hot-spot throughput because each communication channel is shared by
more processor pairs. The average throughput of a network is independent of dimension.

If low-dimensional, high-radix networks are to be used in message-passing concurrent
computers, a deadlock-free routing aigorithm for these networks is required. Avoiding
deadleck is a more difficult problem in these networks than in ccnventional computer
networks because these networks use wormhole routing to achieve low latency rather than
the store-and-forward routing used in traditional computer networks. With wormhole
routing, queueing is allocated on the basis of flits that cannot be interleaved with flits of
other messages, while in conventional networks, rescurces are allocated on the basis of
packets that can be interleaved. In Section 5.3.2 I develop a novel deadlock-free routing
algorithm based on the concept of virtual channels. By multiplexing two virtual channels
on each physical communications channel and by making routing a function C x N — C
rather than the traditional N x N — C, this algorithm converts cycles in the channel
dependency graph, D, into spirals, thus avoiding deadlock.

I have developed the Torus Routing Chip (TRC), described in Section 5.3.3, to demon-
strate the feasibility of the type of network described in this chapter. The TRC combines
many novel features.

e It is completely self-timed [109].
e It uses wormhole routing {113].

e It implements the virtual channel deadlock-free routing algorithm {24] in hardware.

TRCs have been fabricated and they operate properly.

In addition to minimizing network latency, the latency of each processing node must
also be minimized by matching the architecture of the processor to the semantics of the
programming model. Section 5.4 outlines the architecture of a message-driven processing
element that responds directly to messages rather than interpreting messages using a
conventional instruction processor.

To take advantage of the performance offered by specialization while at the same time
retaining flexibility, processing elements can be specialized to operate on a single class
of object. These object ezperts, Section 5.5, by accelerating common object classes,
improve the performance of all applications using those classes. Object experts also
promote locality by storing the objects local to the hardware that modifies them.



Chapter 6

Conclusion

The performance of computers can be made incrementally extensible by exploiting VLSI
technology to build concurrent computers, ensembles of processing nodes connected by
a network. These concurrent computers can be programmed by combining concurrent
data structures. The problems of communication and synchronization are encapsulated
in the data structure, leaving the programmer free to concentrate on problems specific
to his/her application.

This thesis has developed a paradigm for programming concurrent computers: concur-
rent data structures. To describe concurrent data structures, a programming notation,
Concurrent Smalltalk (CST), has been developed incorporating the concept of a dis-
tributed object. A distributed object is a single object consisting of a collection of con-
stituent objects, each of which can receive messages sent to the distributed object. Thus
distributed objects can process many messages simultaneously. They are the foundation
upon which concurrent data structures are built.

The balanced cube is a concurrent data structure for ordered sets. It achieves concur-
rency by eliminating the root bottleneck of tree-based data structures. A balanced cube
has no root; all nodes are equals. An ordered set is represented in a balanced cube by
mapping elements of the set to right subcubes of the balanced cube using a Gray code.
The VW search algorithm, based on the distance properties of the Gray code, searches
a balanced cube in logarithmic time. This search algorithm can be initiated from any
node and will uniformly distribute activity over the nodes of the cube. The B-cube is an
extension of the balanced cube that stores several data in each node to match the grain
size of the data structure to the grain size of a particular computer. The balanced cube
is an example of a concurrent data structure that differs markedly from its sequential
counterparts.

Concurrent graph data structures can be used to solve many combinatorial problems. In
Chapter 4 concurrent algorithms for the shortest path problem, the max-flow problem,
and graph partitioning were developed. These graph algorithms illustrate many of the
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synchronization problems encountered in concurrent programming. Consider, for exam-
ple, the shortest path problem. Dijkstra’s sequential algorithm [27] cannot directly be
made concurrent because it depends on a total order of events. It is too tightly synchro-
nized. A concurrent algorithm due to Chandy and Misra [15] that relaxes this ordering”
of events but introduces no other synchronization may require exponential time because
it is too loosely synchronized.

The concurrent algorithms described here are characterized by short messages and short
methods. Supporting this fine-grain concurrency requires a low-latency interconnection
network for efficient execution. Because VLSI technology is wire-limited, alternative
architectures must be compared keeping wire cost constant. Consider the family of k-
ary n-cube networks: networks with n dimensions and k processors in each dimension.
High-dimensional networks with narrow channels are compared against low-dimensicnal
networks with wide channels. The minimum latency occurs when the delay due to
message length, ;1{7, is nearly equal to the delay due to the distance traveled, D. This
minimum occurs at a surprisingly low dimension. For small networks, 1000 processors
or less, the minimum latency is achieved with a two-dimensional network. Even for very
large concurrent computers, networks with 4 or 6 dimensions are sufficient. In addition
to providing low-latency, low-dimensional networks have several other advantages. They
are easy to construct, since they fit into a plane with fewer folds than high-dimensional
networks. Two dimensional networks are particularly easy to construct since they fit
into the plane with no folds, and all channels are the same length. Low dimensional
networks are also easier to interface to and contrel. Since they have fewer channels per
node, they require less control logic to manage communications.

L

Virtual channels can be used to construct deadlock-free routing algorithms for all strongly
connected interconnection networks including k-ary n-cubes. By making routing a func-
tion of the channel on which a message arrives at a node, and by multiplexing several
virtual channels over a single physical channel, the cycles in a channel dependency graph
can be broken into spirals to avoid deadlock. A virtual channel routing algorithm has
the advantage that it can be used with wormhole [113] routing. In a wormhole network,
flow control is performed on flits that cannot be interleaved. Conventional structured
buffer pool deadlock avoidance algorithms are designed for store-and-forward networks,
where flow control is performed at the level of packets that can be interleaved. These
algorithms depend on the ability to interleave packets and thus cannot handle wormhole
routing, since flits cannot be interleaved. The torus routing chip (TRC), a self-timed
VLSI chip, has been developed to demonstrate the feasibility of wormhole routing and
virtual channels.

Low-latency processing elements are required to support fine-grain concurrent compu-
tation. A conventional processor executes about one hundred instructions to receive
and interpret a single message. A message-driven processor directly interprets messages,
eliminating this interpretation overhead. The instructions of a message-driven processor
are messages. By performing automatic message reception and buffering, accelerating
message lookup with an instruction translation lookaside buffer, and providing address-
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ing modes for fast access to the context and receiver, the architecture of a message-driven
processor is matched to the semantics of CST.

A machine with low-latency communications channels and processing elements is capable
of supporting instruction-size granularity. In the past, concurrent computation has been
performed with process-size granularity. With finer-grain concurrency, less memory is
required at each processing node. Current machines require a large memory at each
node to support a grain size large enough to keep their high latency from dominating
computation time. Some argue that a large memory is required to store a copy of the
operating system at each node; however, such a practice is wasteful. By properly layering
the operating system, only a few bottom-level modules, e.g., method lookup and mail
delivery, need to be replicated in every processing node. Higher level modules can be
stored in a single processing node and cached in other nodes as required.

VLS technology, being wire-limited, encourages specialization and locality. Storing data
local to the logic that manipulates it results in shorter wires. A special-purpose VLSI
chip has a fixed communication pattern and thus can make better use of the limited wires
than a general-purpose chip that must support many different communication patterns.
Unfortunately the high cost of designing a VLSI chip makes it impractical to build
special-purpose VLSI chips for every application. However, specialization can be applied
to many applications by building VLSI chips to accelerate operations on common classes
of objects. These object experts can be shared among applications, offering performance
comparable with special-purpose hardware while retaining much of the flexibility of &
general-purpose machine.

Computer architecture encompasses the design of programming languages, data struc-
tures, and algorithms, as well as hardware. The approach taken here is to start with
a programming paradigm, concurrent data structures, develop a notation, CST, write
algorithms using this notation, and finally to organize hardware to support these algo-
rithms. In contrast, many computer architects restrict themselves to the last step. They
analyze existing algorithms and fine-tune architectures to execute these algorithms. The
problem with this evolutionary approach is that it leads to inbreeding, amplifying both
the good and bad features of existing computer architectures. The algorithms analyzed
are optimized to run on the previcus generation of machines, which were fine-tuned to
execute the previous generation of algorithms, and so on. Each generation, algorithms
are designed to make the best use of the good features of the machine and to avoid the
bad. The next generation of machines, based on these algorithms, makes the good fea-
tures better and ignores the bad since they were not frequently used by the algorithms.
The worst effect of this approach to architecture is that it discourages new program-
ming language features. Late-binding programming languages, for example, are often
judged to be inefficient because they cannot be efficiently implemented on conventional
machines. Late-binding languages are not inefficient; conventional architectures are just
not well matched to these languages.

Powerful software features such as late-binding operators and automatic storage man-
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agement that are often cited as inefficient need not be slow. These features can be made
very efficient with a modest amount of hardware support. In fact, high-level features can
lead to a more efficient computing system by replacing many ad hoc mechanisms with
a single mechanism that can then be implemented in hardware. The key to a successful
architecture is to identify a few simple mechanisms that can be accelerated by hardware.

A VLSI architecture must match the physical form of a machine to its logical function.
Traditicnally computer architects and designers have concentrated on the logical orga-
nization of machines, giving little consideration to their physical design. With VLSI
technology this is no longer possible. VLSI technology is wire limited. To make best use
of wiring resources, architects must carefully plan the physical design of their machines.
For example, consider the interconnection networks analyzed in Chapter 5. Consider-
ing just the logical organization of the network, one quickly deduces (as Lang [79] did)
that binary n-cubes offer superior performance because of their smaller logical diameter.
When the physical implementation of the network is considered, however, one finds that
in fact low-dimensional networks offer better performance because they make better use
of their wires. The short logical diameter is no longer a great advantage since, after being
embedded into a two- or three-dimensional implementaticn space, all network topologies
have the same physical diameter.

Many experiments are required to refine the ideas presented in this thesis. A first step
is to implement a compiler and run-time system to run CST on an existing concurrent
machine such as the Caltech Cosmic Cube [112]. Because of the high latency of Cos-
mic Cube communication channels and the mismatch between CST semantics and the
architecture of the Intel 8086-based processing nodes, such a system will be quite ineffi-
cient. Nevertheless this programming system will be used to gain practical experience in
concurrent object-oriented programming and in building systems out of concurrent data
structures.

The next step is to build hardware to improve the efficiency of the system. This is best
done in stages.

1. Provide a low-latency communication facility by building a concurrent computer
using the TRC for communications and a commercial microprocessor, such as the
Motorola 68000 [92], for a processing element. Such a machine could be built in
a relatively short time frame and would provide valuable experience in using a
low-latency communication network.

2. Build a message-driven processor to complement the low latency of the TRC-
based network. This machine will provide an efficient environment for fine-grain
concurrent object-oriented programming and will provide further experience with
this programming style.

3. Provide a powerful machine for demanding applications by constructing object
experts for several commonly used classes such as floating point vectors and ordered
sets.



The availability of a machine comparable to (3) above will stimulate much research
on concurrent software. Concurrent operating systems will evolve to support fine-grain
object oriented programming. To run in a fine-grain machine with limited storage in each
processing node, operating systems will be partitioned into layers with only the bottom
layer duplicated in each node. Memory management functions will make the partitions
between processing nodes invisible to user programs by maintaining a single name space
across the machine. The system will relocate objects as required to make efficient use of
memory and processing resources, dynamically balancing the load across the processing
nodes. Systems will evolve to the point where a host i3 no longer required. Input/cutput
devices will connect directly to processing nodes and will appear as objects to the system.
Methods will be edited and compiled directly on the concurrent computer.

One fertile area for further research is the development of concurrent computer-aided-
design (CAD) applications. The exponential growth in the complexity of VLSI systems
that has made possible the construction of the machines described here has also exceeded
the capacity of sequential CAD programs. For example, verification of a 10°-transistor
VLSI chip by leogic simulation takes several weeks of CPU time. Since simulation time
grows as the square of device complexity, one can project that a 10%-transistor chip will
require several years to verify. Concurrent CAD programs will give performance several
orders of magnitude better than sequential applications, reducing verification time from
years to days. More importantly, concurrent applications give performance that scales
with the size of the problem. As VLSI chips become more complex, we will construct
larger concurrent computers to design these chips. We will apply VLSI technology to
solve the problem of VLSI complexity.

To exploit the low latency but high throughput of VLSI technology, we build concurrent
computers consisting of many processing nodes connected by a network. Software is
the real challenge in the development of these machines. It is difficult to focus the
activity of large numbers of processing elements on the solution of a single problem.
This thesis proposes a solution to the problem of programming concurrent computers:
concurrent data structures. Most applications are built around data structures. The
problem of coordinating the activity of many processing elements is solved once and
encapsulated in a class definition for a concurrent data structure. This data structure
is used to construct concurrent applications without further concern for the problems
of communication and synchronization. The combination of VLSI and concurrency will
make computers fast. The combination of object-criented programming and concurrent
data structures will make them easy to program.
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Appendix A

Summary of Concurrent Smalltalk

Concurrent Smailtalk (CST) is an extension of the Smalltalk-80 programming language
[51], [52], [74], [136] that incorporates distributed objects, concurrent message sending,
and locks. The differences between CST and Smalltalk-80 are described in Chapter 2.
This Appendix gives a brief summary of the entire programming language for those read-
ers not familiar with Smalltalk-80. For a more complete description of the programming
language, the interested reader should consult [51] or [136].

Classes

A CST program consists of a set of class declarations. Each class declaration describes
the state and behavior of a class of objects and has the form shown in Figure A.1. The
declaration contains the name of the class’s superclass, specification of the class object,
and specification of each instance of the class.

class: The class name identifies the class object, the object that contains the class vari-
ables and implements the class methods. The class object name is capitalized
since the class is a global object! and by convention names of shared variables are
capitalized. .

superclass: The superclass name identifies the superclass from which the current class
inherits variables and methods. The current class is declared as an extension of the
superclass. All class and instance variables declared in the superclass are added
to the lists specified in the class declaration. All class and instance methods that
are not overridden in the class definition are also inherited from the superclass.
The inheritance can extend through many levels of the superclass hierarchy, with

1Smalltalk could be greatly improved by adding some type of scoping to class names so that a user couid
locally override a class in an application without changing the class used by the rest of the system.
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class <identifier> the class name

superclass <identifier> name of the superclass

instance variables [<identifier>]« state of each instance object

class variables [<identifier>]= state of the class object

locks [<identifier>]=* locks controlling access to each instance object

class methods
class methods ...
instance methods

insiance methods ...

Figure A.1l: Class Declaration

the current class inheriting methods and variables from the superclass that were
in turn inherited from the superclass’ superciass, and so on.

instance variables: The private memory of each instance of the defined class. For exam-
ple, if we define a class Point with instance variables x and y, then each instance
of class Point is created with two local variables named x and y distinct from the
variables in any other instance. The instance variables specified in this declaration
are in addition to any instance variables specified by the superclass. )

class vartables: Variables shared by the class object and all instances of the class. There
is only one instance of each class variable. This single copy of a class variables
can be accessed by any instance of the class. Class variables are capitalized since
they are shared variables.

locks: Locks are special instance variables that control concurrent access to objects.

class methods: Methods that define the behavior of the class object. Each method spec-
ifies a number of expressions to be performed in response to a message. Typically
class methods handle tasks such-as object creation.

instance methods: Methods that define the behavior of each instance of the class.

Messages

Everything in CST is done by passing messages. Sending a message to an object causes
the object to execute one of its methods. A message has three parts:
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recetver: The object to which the message is being sent.

seiector: The type of message. The selector specifies the method the receiver is to exe-
cute.

arguments: Additional data required for the receiver to execute the method specified by
the selector.

Here are some examples of message expressions.
theta sin

This message expression sends the message with selector sin and no arguments to theta,
the receiver. A message like sin that has no arguments is called a unary message. In a
upary message, the selector follows the receiver.

a-+b

The receiver, a, i8 sent the message containing the selector, +, with argument, b. A
message like 4+ b, where there is a single argument and the selector consists of one or
two special characters, is called a binary message.

foo at: 10 put: "hello’

This keyword message sends the message with selector at:put: to object foo with argu-
ments 10 and ‘heilo’. In keyword messages the selector consists of a keyword before each
argument. Each keyword is terminated by a colon, .

When an object receives a message, it looks up and executes the method that matches
the message selector. The method lookup begins with the receiver first checking its
own instance methods. If the method is not found in the receiver’s class, the instance
methods defined in the superclass are checked, and so on.

Literals

The receiver and arguments in a message expression may be variables, pseudo-variables,
or literals. CST supports the following types of literals:

numbers: Numbers consist of an optional sign, an optional radix, an integer part, an
optional fraction part, and an optional exponent. Here are some examples of
numbers.
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17 an integer, radiz 10 18 default
16rFF a radiz 16 (hezadecimal) integer
3.14159265358979  pt

-10.1e-2 -0.101

2r101e2 2010100 or 20

characters: Character literals consist of a dollar sign, ‘$’, followed by any character, e.g.,
$A.

strings: String literals consist of a sequence of characters delimited by single quotes, e.g.,
'Heilo World’. To insert a single quote into a string it is duplicated, e.g., 'don"t’.

symbols: Symbols or atoms consist of a hash mark followed by the name of the symbol,
e.g., #slave.

arrays: A sequence of literals is denoted by the sequence with hash marks removed
enclosed in parentheses, ‘()’, and preceded by a hash mark, e.g., #{1 2 slave $A
"Element’ 2r10001 (1 2 3)).

Assignment

To simplify assignment of values to variables, CST permits the result returned by a
method to be assigned to a variable by using the backarrow, ‘—’, character. For example,
the message

a3+ 2.

assigns to variable a the result of sending the message + 2 to the object 3. Assignment
can be thought of as sending an at: variable put: expression message to the current
environment.

Messages that do not include an assignment do not generate a reply. To wait for a
message that returns no value, the message is preceded by a backarrow, ‘~’; with no
variable. For example, the message

—aRectangle display.
sends a display message to aRectangle and expects a reply from this message. The message
aRectangle display.,

on the other hand, does not expect a reply.
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instance methods for Integer
rangeProduct: upperBound

locks would go here

| midPoint upperProd lowerProd |

self = upperBound ifTrue: |
Tself]

ifFaise: |
midPoint «self + upperbound // 2.
lowerProd +—self rangeProduct: midPoint,
upperProd «—midPoint rangeProduct: upperBound.
TlowerProd * upperProd.]

instance methods for Intervai
contains: aNum
require rwlock.
| lin uin |
lin ] < aNum,
yin «~u 2> aNum.
T(lin and: uin)

Figure A.2: Methods

tests for number in interval

Methods

An object’s protocol?® is defined by the instance methods in the class declaration. Two
example method descriptions are shown in Figure A.2. The first method calculates
the product of a sequence of integers beginning with the receiver and ending with the
argument upperBound. This definition of the message rangeProduct: follows that of
Theriault [126]. The second method is the contains method for class Interval described
in Chapter 2 (Figure 2.3 on page 18). This method tests if a number is contained in a

closed interval of numbers.

Each method description consists of the following parts:

header: The method header consists of the selector that activates the method with
pseudo-variables in place of arguments. When a message i3 received by an object,
the object’s method with the corresponding header is activated. Message argu-

? An object’s protocol consists of the meassages understood by an object.
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ments are bound to the pseudo-variables in the method header. Pseudo-variables
are like instance variables except that they cannot be assigned to. For example,
the header rangeProduct: upperBound specifies that the following method will be
executed in response to a message with selector rangeProduct: and the pseudo
variable upperBound will be bound to the argument of the message.

concurrency control: An optional concurrency control line specifies a required set of
locks, an excluded set of locks, and an optional escape expression. The method is
allowed to execute only when no currently pending method requires an excluded
lock or exciudes a required lock. If the method is locked out, the escape expres-
sion is executed or, if no escape expression is present, the method is suspended.
Because the contains: method requires rwlock and specifies no escape, it will be
suspended if some previous method excluded rwlock and will be restarted only
when all such methods have completed.

local variables: Local variables are declared between two vertical bars, ‘. For exampie,
the rangeProduct: method declares three local variables, midPoint, upperProd, and
lowerProd.

message ezpressions: The remainder of the method consists of message expressions. Mes-
sages are separated by commas, ‘,’, or periods, ‘.’. A comma between two messages
means that the second message can be sent before receiving a reply from the pre-
vious message. When a period follows a message, replies must be received from
all previous messages whose results are assigned with a backarrow before the next
message can be sent. For example, the rangeProduct: method sends messages
to self and midPoint concurrently and then waits for replies from both messages
before multiplying the two results.

Messages may be nested within other messages. The reply of one message, A,
may specify the receiver or argument of another message, B. For example, the
message

self = upperBound ifTrue: [---] ifFalse: [-+].

in method rangeProduct: first sends the message, = upperBound, to seif and then
sends the ifTrue:ifFalse: message to the reply of this first message. Three rules
govern the parsing of these compound messages:

1. Any messages enclosed in parentheses, ‘()’, are evaluated before the messages
outside the parentheses.

2. Unary messages take precedence over binary messages, and binary messages
take precedence over keyword messages.

3. For messages of equal precedence, evaluation proceeds from left to right.
Two special identifiers allow a method to refer to the receiver.

seif is an expression that specifies the receiver.
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super also specifies the receiver, but messages sent to super are interpreted by
looking up the method beginning in the receiver’s superclass. Messages to
super are often used to inherit a method {rom the superclass while making
additicns in the subelass.

Messages return a value by preceding a message expression with an uparrow,
‘t’, The vaiue returned by the following message is in turn returned by the
method. Preceding a variable by an uparrow returns the value of the variable. A
downarrow, ‘!’, causes a method to terminate without returning a value.

Blocks

Like Smalltalk-80, CST has no built-in control structures. Instead, control structures are
built by sending messages to blocks. Blocks are deferred sequences of message expressions
that are executed when they are sent a value message. Blocks are like methods in that
they have arguments, locks, and local variables; unlike methods, however, blocks may
have free variables that are lexically scoped. That is, a block may refer to the local
variables of the method in which it is defined. Here is an example block:

[edge | require rwlock :varl |
varl «—edge flow.
varl > 0 ifTrue: [[]].

Blocks are enclosed in square brackets, []’, and consist of the following parts.

argument list: The optional argument list specifies the names of pseudo-variables that
are bound to arguments passed into the block with a value: arg message. Each
identifier in the list is preceded by a colon, : ’. For example, in the block above
the pseudo-variable edge is an argument. If this block is sent the message value:
anEdge, the block will be executed with pseudo-variable edge bound to object
anEdge.

concurrency control: Like methods, blocks may optionally specify two sets of locks to
control concurrent access to the block.

local variables: The optional variable list consists of a list of identifiers preceded by
colons. Local variables exist only for one activation of the block. Each time a
block receives a value message, it creates a new context with a new set of local
variables, all initialized to nil.

message expressions: The remainder of the block consists of a sequence of message ex-
pressions. The sequence is interpreted as in a method except that uparrow, ‘7,
returns out of the method cailing the block and downarrow, ‘}’, breaks out of the
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block or method calling the block. The last message expression in the block is
the value of the block expression.

A block 1s activated by sending it a value message. When a block receives a value message,
the arguments of the message are bound to the arguments of the block and the message
expressions in the block are executed.

Distributed Objects

A distributed object is a collection of constituent objects (COs) that receive messages
sent to the distributed object. Because a distributed object contains many independent
constituents, it can process many messages simultaneously.

Distributed objects are declared as subclasses of class DistributedObject. A new dis-
tributed object is created by sending the newOn: message to the appropriate class cbject.
For example, a new instance of a TailyCoilection (described in Figure 2.1 on page 14) is
created with the message

aTallyCollection «—TallyCollection newOn: someNodes.

The argument of the newOn: message, someNodes, is a collection of processing nodes.
The newOn: message creates a CO on each member of someNodes.

When a message is sent to a distributed object, it may be delivered to any constituent
of that object®. It is possible to send a message to a specific constituent of a distributed
object by indexing the object with the selector co:. For example, the message

aTallyCollection tally: "hello’.
is sent to any constituent of aTallyCollection. The message
aTallyCollection co: 3 tally: 'hello’.

is sent to the third constituent of aTallyCollection. Constituents are indexed sequentially
beginning with one. The pseudo-variables maxld, the total number of constituents, and
myld, the index of self, are available to constituent objects for use in computing indices.

®One hopes that the mail system will be efficient and deliver the message to the nearest CO or perhaps
the CO with the shortest message queue.
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Common Messages

To describe all of the classes and messages in a Smalltalk system is beyond the scope of
this appendix. I include the following list of common messages to assist the reader in
understanding the CST code in this thesis. This list is by no means comprehensive.

Block

value This unary message causes a block with nc arguments to be executed.

value: anObject --- A block with ¢ arguments is sent a message with ¢ value: keywords,
one for each argument. This message passes the arguments to the block and
causes the block to execute.

whileTrue: aBlock A value message is repeatedly sent to the receiver. As long as the
receiver replies with true, a value message is sent to aBlock, and the sequence is
repeated. If the receiver replies with faise, the method terminates.

whileFalse: aBlock This message is similar to whileTrue but with the receiver negated.
As long as the receiver block evaluates to false, the argument block is iterated.

Boolean

ifTrue: aBlock Sends a value message to aBlock if the receiver is true.
ifFalse: aBlock Sends a value message to aBlock if the receiver is false.

ifTrue: trueBlock ifFalse: falseBlock Sends a value message to trueBlock if the receiver is
true. Otherwise, if the receiver is false, a value message is sent to falseBlock.

ifFalse: falseBlock ifTrue: trueBlock Sends a value message to trueBlock if the receiver is
true. Otherwise, if the receiver is false, a value message is sent to falseBlock.

Number

+ Addition.
- Subtraction.
* Multiplication.

/ Division.
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/] Integer division rounding to —co.

\\ Modulo (remainder of division after rounding to —oc).
quo: Integer division rounding to 0.

rem: Modulo (remainder of division after rounding to 0).
abs Absolute value.

negated Additive inverse.

reciprocal Multiplicative inverse.

The selectors abs, negated, and reciprocal are not terminated with a colon because
they are unary messages. The selectors quo: and rem: are terminated by colons
because they are keyword messages.
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Appendix B

Unordered Sets

Many applications use unordered data structures and do not require the overhead nec-
essary to support an ordered set concurrent data strucsure like the balanced cube of
Chapter 3. In this appendix I present two unordered concurrent data structures. A
dictionary can be used in applications that require a data structure to hold associations
between objects but do not need to maintain an order relationship on the objects. A
union-find set can be used in applications where sets of data are combined.

B.1 Dictionaries

A dictionaryis a set of associations between pairs of objects. Each element of a dictionary
is an ordered pair (aKey,anObject) that associates a key aKey with object anObject. A
dictionary supports the following operations ®.

at: aKey return the object associated with key aKey.
at: aKey put: anObject add an object to the set.

delete: aKey remove the object associated with key aKey from the set.
do: aBlock : send a value: anObject message to aBlock for each object in the set.
Dictionaries represent binary relations. A common use of a dictionary is to represent

the name-of relation by binding symbols to names. For example, the symbol table in a
compiler is a dictionary.

!The complete protocol of class Dictionary is given in Chapters 9 and 10 of [51]. Most of the protocol
is omitted here for the sake of brevity.
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table

link
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hKey hd
aKey °® | o |

Figure B.1: A Concurrent Hash Table

Dictionaries can be implemented using a variety of data structures including radix search
tries [107], binary search trees [2], and hash tables [107]. Hash tables are usually the
structure of choice for sequential machines. The expected case access time for a hash
table is O(1) compared to O(log N) for the binary search tree, and hash tables make
more efficient use of memory than radix search tries. In the past, one objection to hash
tables was their fixed size; however, the recent development of extendible hashing [37],

[83] makes hash tables efficient even for sets that change size dynamically.

Ellis has developed concurrent algorithms for extendible hashing [34] and linear hashing
[33]. These algorithms involve locking schemes and protocols to support concurrent
access to a shared hash table. Like most work on databases, this work assumes a disk-
based system where multiple processes may compete for access to shared disk pages and

is not directly applicable to concurrent computers.

Unlike most sequential data structures, the hash table is ideally suited for a concur-
rent implementation. The table is homogeneous and can be distributed uniformly over
the nodes of a concurrent computer. Hash tables, unlike tree structures, have no root
bottleneck.

A concurrent implementation of a hash table using a variant of bounded index hashing
[83] is shown in Figure B.1. To see how this structure is used, consider the at: method
for distributed object Hash Table shown in Figure B.2. Search key aKey is converted to
a hashed key hKey by sending it the message hash. The low-order bits of hKey are used
to find the node that contains the data, while the next depth bits of hKey find the head
of a linked list within the node. A linear search of this list is performed to return the
object associated with aKey, or nil if this object is not found. The at:put: and delete:
methods are obvious extensions of the at: method.

An extendible hash table [37] is implemented in each node. Each node’s table is initialized



class Hash Table

superclass Dictionary a distributed object

instance variables table table of links (key,data,nezxt)
depth log of table stze

class variables none

locks rwlock implements readers and writers

instance methods

at: aKey find anObj in hash table
| hkey |
hKey +aKey hash. compute hashed key of object

(self at: (hkey mod maxld}) find: aKey at: (hKey/maxid).
private instance methods

find: aKey at: hKey in proper node, find object
require rwlock :
| link |
link «—table at: (hKey \\2%¢P*h).
[link isNil] whileFaise: [
(link key = aKey) ifTrue[requester reply: link data].
link «link next.]
requester reply: nil.

Figure B.2: Concurrent Hashing

to size 298" When the number of entries increases beyond «29ePth f5r some constant
a, depth is incremented and the size of the table is doubled. The objects in the table
need not be rehashed as the table grows. Doubling the size of the table simply increases
by one the number of significant bits of hKey. The new entries in the table initially
duplicate the old entries. As accesses are made to the table, the linked lists are split to
shorten the access paths.

3

The do: aBlock method broadcasts aBlock to each node of the distributed hash table
object. Each node enumerates the objects in its local table, sending each of them to
aBlock. If aBlock updates no instance or method variables, it can be replicated, and
the value methods can be processed in parallel. If aBlock updates instance or method
variables, then the executions must be synchronized.

An operation on the table requires only two messages, a find:at: message to the node
containing the key and the reply: message back. Thus, hashing is O(1) in the number
of elements in the set. However, since the destination of these messages is random, each
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message travels an average distance of E%ﬁ, where ¥ is the number of nodes in the
machine. This makes hash table access time grow O(log N) with the number of nodes
in the machine.

Since the hash function randomizes access to a hash table, there is very little interaction
between concurrent hash operations. Thus, the concurrency of hashing is O(N).

B.2 Union-Find Sets

A unton-find set, as the name implies, supports the operations of forming the union of
two sets and finding the set to which an element belongs 2.

union: aSet returns the union of the receiver with aSet. Both the receiver and aSet are
modified to form the new set.

add: anElement adds anElement to the receiver

set returns the set to which the receiver belongs. Elements of the set must support
this message as well.

Algorithm 4.3 in [2] performs a sequence of union and find operations in time that is
almost linear® in the number of operations performed, approximately constant time per
operation. Unfortunately this algorithm has very poor concurrency. Every find requires
traversing a tree from the leaves to the root. The root serializes finds since it can only
process one message at a time.

To eliminate this root bottleneck, we store with each element the identity of the set
to which the element belongs. As shown in Figure B.3, during a union operation the
smaller set becomes a subset of the larger set. Each element of the smaller set must also
be informed that it is now a member of the larger set. The code for these operations is
shown in Figure B.4.

Only the elements of the smaller set are updated during a union operation. Since each
time an element is updated the size of the set it belongs to has at least doubled, an
element is updated at most O(log N) times, where N is the number of elements *. Thus,
if we implement each of the sets with a dictionary or other constant access time structure,
the average time per union operation will be O(log ¥). Find operations require O(1)
time. The concurrency of union-find operations depends on the balance of the resulting
tree structure of sets.

2 As with dictionary, this class supports a more complete protocol.

$The time grows as Na(NN) where « is the inverse of Ackerman’s function and N is the number of
operations.

‘A similar approach is used in Section 4.6 of [2].
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Figure B.3: A Concurrent Union-Find Structure

class Union Find Set

superclass Set a distributed object
instance variables parent parent set if not self
class variables none

locks melock

instance methods

add: anObj add an element or subset to the set
require melock

I

anObj parent: self.
Tsuper add: anObj
union: aSet make smaller set a subset of larger

require melock

I

((aSet size) > (seif size)) ifTrue: [TaSet union: self].
Tself add: aSet
private instance methods

parent: aSet inform all elements of new parent
require melock exclude melock

I

parent «aSet,
seif do: [:each | each parent: aSet].

Figure B.4: Concurrent Union-Find




Appendix C

On-Chip Wire Delay

Signal velocities on an integrated circuit are limited by the resistance and capacitance
of the wire to be far less than the speed of light. Because the resistivity of integrated
circuit wires is high, it is not possible to build good transmission lines on a chip. Instead,
on-chip signal wires are lossy transmission lines with a delay proportional to the square
of their length.

We can propagate a signal with linear delay by placing repeaters along a transmission
line. Each repeater is an inverter of size S. The repeaters are spaced distance L apart.
Let us make the following assumptions:

e The ratio of inverter input capacitance to transistor gate capacitance is X. For
a CMOS inverter with the p-channel transistor twice the size of the n-channel
transistor, X = 3.

e Transistors will be modeled by a linear resistance. The resistance of a minimum

width transistor is R;. The output resistance of each inverter is R,y = %‘.

e The gate capacitance of a minimum width transistor is a constant, C¢, and scales
linearly with device size. The input capacitance of each inverter is Cipy = XSCy.

e The resistance of a unit length wire is K, R;. The resistance of the wire between
two inverters is Ry, = LK. R,.

¢ The capacitance of a unit length wire is K.Cy. The capacitance of the wire between
two inverters is Cy, = LK .Cy.

We model one stage of the RC transmission line with repeaters with a II network as
shown in Figure C.1. Half of the distributed wire capacitance is lumped at each end of
the wire. The output resistance of the driving repeater is added to the input end of the
network, and the input capacitance of the receiving repeater is added to the output side
of the network.
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Biny Ry

AN AAN

Figure C.1: Model of Inverter Driving Wire

We approximate the delay between repeaters by multiplying each resistance by the ca-
pacitance it ‘sees’ and summing the products.

C
T = By (Cw +Cinv) + Ry (““2}“0“ + cinv) »

= % (LK.Cy + XSC,) + LK. R, (LK;C*‘

* XSC‘) ! (1)

LK, L*K.K,
= RiCq (T‘ +X+ % + LK,XS).

To find the optimal repeater size, we take the partial derivative of T with respect to S

LK,

5T _ R, (‘F + me) . (C2)

Setting —g—g equal to zero and solving for S gives

K.

oy (C.3)

Sopt =

To find the optimal repeater spacing, we take the partial derivative of %, the inverse of
signal velocity, with respect to L
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AT
% _ iy (- )
31 = R.Cy 777 . (C.4)
Setting this equal to zero and solving for L gives
| 2X
L / : (C.5)

=\ KK
Substituting (C.3) and (C.5) back into (C.1) gives the delay of the optimal segment
Tope = 2RiCeX (1+ V7). (C.6)

o . . . o .o squares
Dividing (C.5) by (C.6) gives the maximum signal velocity in units of ===

V2

= , - C.7)
2R.CyVE KX (1+V2) (©7)

Vopt

Let us put some real numbers into these equations. The following table gives approximate
values for our four constants as a function of linear dimension, A, in microns.

Parameter | Value Units
R, | 10* 0
Cq I 47 fF
K. | 0.1
1 —3
K, | 5')'9'\0——

For a 1u technology (A = 0.5u), if we set X = 3, we can calculate:

-

e Optimal repeater size is S = 60.
e Optimal repeater spacing is L ~ 2500.
e Time between repeaters is T = 300ps.

e The maximum signal velocity, v = % w8 X 1065’—32 << 3 x 1085’—;"5.

This calculation has not been terribly accurate. Still, it is clear that signal velocities on
integrated circuits are limited by resistance to be much less than the speed of light.
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Glossary

acquaintance An object’s; A’s, acquaintances are those objects to which A can send
messages. In most cases an object’s acquaintances are its instance variables and
class variables.

actor: A synonym for object.
algorithm: A finite set of instructions for solving a specific type of problem [71].

argument: An object passed as part of a message. Arguments are bound to pseudo-
variables in the method executed in response to the method.

assignment: The process of binding an object to a variable. In CST assignment is indi-
cated by a backarrow, ‘«’. For example, a «b, assigns the value of b to variable
a.

balanced cube: A concurrent ordered set data structure that maps the elements of an
ordered set to the right subcubes of a binary n-cube.

balanced tree: An ordered set data structure based on a binary search tree whose height
is kept within a constant factor of log, N, where N is the number of data in the
tree [72]

B-cube: A concurrent ordered set data structure where multiple data are stored in each
node of a balanced cube.

B-tree: An ordered set data structure based on a tree with the following properties [72]:

. Each internal node of a B-tree of order N has between N/Z and N children.

. All leaves of a B-tree are at the same level and contain no data.

1

2

3. An internal node with k children contains k records.

4. The ¢*" record of an internal node is greater than the i — 1% record.
5

. All records stored in the *» child of a node, A, are greater than the ¢ — 1%
record stored in A and less than the *" record stored in A.
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binary message: A message with a single argument and a selector composed of one or
two special characters. For example, a + b and p < q are binary messages.

binary n-cube: An interconnection topology with N = 2" nodes where each node has a
binary address, a, and is connected to those nodes whose addresses differ from a
in exactly one bit position,a& 2, 0 <1 < n,

binding: The process of associating meaning with an object. For example, object-oriented
programming languages bind meaning to message objects by associating a methed
with each message.

block: In Concurrent Smalltalk, a block is a sequence of deferred message expressions
along with arguments, locks and local variables. A block is executed when it
receives a value message.

[:each | require rwlock :varl :var2 | messagel. message2]

The block above, for example, has a single argument, each, requires a lock, rwlLock,
and has two variables, varl and var2. When it receives a value: arg message, this
block binds each to arg and executes the two messages.

cache: A small, fast memory used to hold frequently accessed data.
class: An object that describes the state and behavior of objects of a certain type.

clags variable: A variable shared by objects of a certain class. It can be accessed by the
class itself and by any instance of the class. .

communication channel: The hardware used to transmit information between the nodes
of a network. The channel includes the physical wires that carry the information,
the buffers or queues that store information in transit, and the logic that controls
information flow.

computer architecture: The process of organizing a computer system to apply available
technology to the solution of a set of problems.

concurrent algorithm: An algorithm for a concurrent computer.

concurrent computer: A computer composed of many autonomous processing elements
connected by a network. The term concurrent is used rather than the term parallel
to emphasize the autonomous nature of the processing elements [111].

concurrent data structure: A data structure that can perform many operations simulta-
neously.

constituent object (CO): An object that is part of a distributed object. Constituent
objects receive messages sent to the distributed object.
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data abstraction: Data abstraction separates an object’s protocol, the messages an object
understands, from an object’s implementation, how the object responds to the
messages in its protocol.

data structure: A collection of data on which some relations are defined.

deadlock: Deadlock occurs when no progress can be made because of a cyclic conflics 1or
resources. In an interconnection network deadlock occurs when no message can
advance toward its destination because the queues of the message system are full.

degree: The degree of a vertex, v, is the number of edges incident on v.

diameter: The maximum over all pairs of vertices of the length of the shortest path
between two vertices in a graph.

direct network: An interconnection network in which the terminal nodes are alsc the
switching elements as opposed to an indirect network in which the terminals and
switching elements are distinct.

distributed object: An object consisting of a cellection of constituent objects. A message
sent to the distributed object may be received by any constituent of the object.

edge: An ordered pair of vertices.

ensemble machine: A machine consisting of an ensemble of processing nodes connected
by a network [110]. The processing nodes of an ensemble machine may be au-
tonomous as in a concurrent computer, or they may operate in lockstep as in a
SIMD [42] parallel computer.

flit: A FLow control digIT, the smallest unit of information that can be accepted
or refused by a communication channel or queue. Omne or more flits make up a
packet. Individual flits do not contain sequencing or routing information and thus
flits in a packet cannot be interleaved with flits of another packet.

heap: A data structure for implementing a priority queue. A heap is organized as a
binary tree with one record stored in each node of the tree. The tree is ordered
so that the record stored in each node is greater than the records stored in both
of its children. >

hypercube: A k-ary n cube with dimension, n, greater than three. Hypercube is often in-
correctly used as a synonym for binary n-cube; however, the radix of a hypercube
is not restricted to be two.

identifier: A name or symbol. In CST an identifier consists of a letter possibly followed
by a sequence of letters and digits.

inheritance: In an object-oriented language, a subclass inherits behavior from its super-
class.
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instance: An instance of a class, A, is an object of class A.

instance vartable: A variable local to a particular instance of an object. Instance vari-
ables make up an object’s private memory.

interconnection network: A communication network used to connect the processing nodes
of an ensemble machine.

indirect network: An interconnection network in which the terminal nodes are distinct
from the switching elements as opposed to a direct network in which the terminals
contain the switching elements.

k-ary n-cube: An interconnection topology with N = k™ nodes. Each node in a k-ary
n-cube has an n-digit radix k address, a = a,-1,..., a0, and is adjacent to those
nodes with addresses b = b,_1,..., by that differ from a in only one digit, say the
7" and this digit differs only by one, a; = b; = 1. Binary n-cubes are a special
case of k-ary n-cubes where & = 2.

keyword message: A message consisting of a selector and one or more arguments where
the selector is a sequence of keywords terminated with colons, ‘:’, one preceding
each argument. For example, the message receiver at: 8 put: ‘arg2’ is a keyword
message with selector at:put: and arguments 8 and ‘arg2’.

late binding: Binding meaning to objects as late as possible, usually at run-time. In
contrast, early binding usually takes place at compile time.

latency: The elapsed time required to perform an operation. The latency of a message
transmission is the elapsed time from the time the first flit of the message leaves
the source to the time the last flit of the message arrives at the destination.

lock: A programming construct used to restrict concurrent access to an object.

message: In an object-oriented programming language, a message is a request for an
object to perform some action. Messages consist of three parts: a receiver that
specifies the object which is to receive the message, a selector that specifies the
type of action to be performed, and arguments that supply additional information
required to perform the action. In,an interconnection network, a message is a
logical unit of communication. A message may be broken down into a number
of packets, physical units of communication that contain routing and sequencing
information. Packets in turn may be broken down into flits.

megsage-passing concurrent computer: A concurrent computer in which the processing
nodes communicate by passing messages over communication channels.

method: A description of how an object is to respond to a message. Methods in object-
oriented programming languages are similar to procedures and subroutines in
conventional programming languages.
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multiprogrammed system: A computer system that supports multiple processes on a sin-
gle processor.

object: The primitive element of an object-oriented programming system. An object
consists of a state and a behavior. The state of an object is made up of a number
of variables or acquaintances. The behavior of an object is specified by a number of
methods. The object executes these methods in response to particular messages.

object expert: A processing element specialized to operate on a restricted class of objects.
An object expert contains both storage for instances of this class of objects and
logic specialized to operate on these objects.

packet: In a communication network a packet is the smallest unit of information that
contains routing information. Packets may be broken down into flits.

path: A sequence of connected edges in a graph.
protocol: The set of messages that an object understands.
recetver: The object to which a message is sent.

selector: A part of a message specifying the type of operation to be performed by the
object receiving the message.

self-timed: A design discipline where the sequencing of events is controlled by the internal
delays of elements rather than by an external clock.

sequential computer: A computer that executes instructions one at a time.

shared-memory concurrent computer: A concurrent computer in which the processing
elements communicate by reading and writing shared storage locations.

store-and-forward routing: A routing strategy where an entire packet is stored in each
node along a multi-hop path before transmission to the next node is initiated.

strongly connected: A graph is strongly connected if there exists a path from every vertex
in the graph to every other vertex.

structured buffer pool: A technique used to prevent deadlock in an interconnection net-
work by controlling the allocation of buffers to packets.

subclass: A class that inherits methods and variables from an existing class, its super-
class.

superclass: The class from which methods and variables are inherited.
throughput: The total number of operations performed per unit time.

tort: Plural of torus.
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torus: Topologically, a torus is a doughnut shaped surface. In terms of interconnection
networks, torus is a synonym for k-ary n-cube.

tree: In Computer Science a tree refers to a hierarchical data structure organized as a
connected acyclic directed graph where the in-degree of each vertex is less than
or equal to one.

useful: In a flow graph, an edge, e, is useful from vertex u to vertex v, denoted useful(u.v)
if e=(u,v) and f(e) < c(e), or e= (v, u) and f(e) > 0.

vertex: A part of a graph.

virtual channels: A technique for preventing deadlock in an interconnection networx
by multiplexing several virtual channels, each with its own queue, over a single
physical channel and restricting the routing on virtual channels so that there are
no cyclic dependencies amongst channels.

very large scale integration (VLSI): A technology for fabricating integrated circuits con-
taining over 10* devices.

wafer scale integration (WSI): A technology for fabricating integrated circuits the size
of wafers (50-150mm on a side).

wormhole routing: A routing strategy where each flit of a packet is immediately for-
warded to the next node along a multi-hop path without waiting for the rest of a
packet to arrive.
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