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ABSTRACT

The present investigation concentrates on the phenomenological and analytically quan-
titative study of the periodic and quasi-periodic solutions of a class of conservative, auto-
nomous, nonlinear difference equations. In particular, an equation with a cubic nonlinearity,
i.e., a form of the discrete Duffing equation, is studied. Following a simple analysis of the
equilibrium solutions, the global structures of the phase portraits are illustrated phenomeno-
logically for different values of the equation parameters. Three discrete perturbation pro-
cedures are then developed to obtain a consistent approximation for periodic and quasi-
periodic solutions. These approximate solutions contain certain "small divisors" in every
term other than the zero’th order term. An examination of the consequences of the vanishing
of such a "small divisor" leads to a method of constructing exact periodic solutions in the
form of finite Fourier series. The thesis concludes with a discussion of the quasi-periodic

approximate solutions and their applicability.
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CHAPTER 1
INTRODUCTION

1.1 DIFFERENCE EQUATIONS AND DYNAMICAL SYSTEMS

Difference equations may be used to model the dynamics of physical systems in a wide
variety of ways. Applications of discrete models appear in the disciplines of engineering,'*
mathematical physics,“’5 and biology,6 just to name a few. In an applied mathematical sense,
difference equations arise in three fundamental ways: as direct physical models of sampled
data systems, as models of continuous equations being simulated on digital computers, and

as, at least, local models of the Poincar€ maps so commonly appearing in the modemn

geometric theory of mechanics.*>’

The use of the digital computer to simulate the behavior of physical systems is per-
vasive in virtually all areas of modern applied science. Any such simulation requires a
discrete modeling approach at some level. The discrete modeling approach essentially
always involves difference equations. Therefore, a study of the dynamics of difference equa-
tions seems quite logical. Further, since the qualitative behavior of the solutions of differ-
ence equations may be so concisely visualized in the phase space of the corresponding

discrete dynamical systems, an explicit, phenomenological study of the phase portraits of a

specific equation seems logically scientific.

The qualitative, geometric theory of mechanics has its roots in the pioneering works of
Poincare® and Birkhoff’ on the physics and mathematics of the problem of the stability of
celestial objects subject to Newtonian gravitation. Impetus for the curremt explosion of
mathematical research was given by Kolmogorov in an address to the 1954 International
Congress of Mathematicians.® In the thirty-odd years since then, many significant steps, e.g.,

Smale’s work on differentiable dynamical systems,'® have been taken toward development of



a coherent, mathematically rigorous, qualitative theory. However, publications accessible to
the audience of applied engineering literature have been, to say the least, rare. The present
thesis may be viewed as this student’s attempt to bridge such a "gap" in a way he, personally,

can understand. The study of the dynamics of discrete models provides a convenient

"bridge."

1.2 GOALS OF THE INVESTIGATION

The specific goals of the present thesis are threefold. These goals may be stated in the

logical order of the forthcoming investigation as follows:

s Phenomenological development of a qualitative, primarily visual, understanding of

the global structure of the phase portraits of a specific nonlinear difference equation;

s Explicit analytical development of the classical "Lindstedt-Poincar€ type" of pertur-
bation methods!*!? for the study of periodic and quasi-periodic solutions of a class

of nonlinear different equations; and

s Application of the perturbation theory to the study of the solutions the same,

specific , nonlinear difference equation.

An equation with a cubic nonlinearity was chosen for study within the present investi-
gation since such an equation provides a relatively simple example of a broad class of non-

linear difference equations. In partcular, a second order, nonlinear difference equation of the

form
Xpol = 2 +Xyq +hx, +Ex°=0 (1.1)

will be studied. For obvious reasons, Eq. (1.1) will be referred to as the (conservative, auto-

nomous) discrete Duffing equation.



1.3 A BRIEF OVERVIEW OF THE INVESTIGATION

The present investigation begins, in earnest, in Chapter 2. The study starts with a sim-
ple analysis of the parametric dependence of the existence and stability of equilibrium solu-
tions of the discrete Duffing equation. Attention is then focused on a phenomenological sur-
vey of the global structure of the phase portraits of the discrete Duffing equation for various,

specific values of the equation parameters, k£ and €.

A development of approximate analytical methods for the study of periodic and quasi-
periodic solutions of second order, nonlinear difference equations, such as the discrete
Duffing equation, is presented in Chapter 3. In particular, an explicit development of the

discrete analog of classical, continuous secular perturbation theory is presented.

Chapter 4 concentrates on the application of the approximate methods developed in
Chapter 3 to the study of the periodic and quasi-periodic solutions of the discrete Duffing
equation. A method of constructing certain exact, "closed form" periodic solutions is
presented in addition to the discussion of the applications of the periodic and quasi-periodic
approximate solutions. Comments connecting these explicit solutions to the qualitative,

phenomenological discussion of Chapter 2 are included. A brief summary of the present

study is presented in Chapter 5.



-4 -

CHAPTER 2

A QUALITATIVE AND PHENOMENOLOGICAL LOOK
AT THE DISCRETE DUFFING EQUATION

2.1 INTRODUCTION

The overall analysis of a given nonlinear difference equation, e.g., the discrete Duffing
equation, is greatly facilitated by developing an understanding of the global behavior of the
solutions. Unless exact solutions are available, the true, global phenomenology of a given
difference equation can only be ascertained by numerical simulation. The (x, ,x,,;)-phase
plane of the difference equation provides a convenient "canvas” on which the global
phenomenology can be viewed. The present chapter concentrates on the generation and
observational analysis of the phase portraits of the discrete Duffing equation. All of the
simulations done for this investigation were performed on a microcomputer, using BASIC as
the programming language.

The global analysis of the discrete Duffing equation begins with a determination and
description of the equilibrium solutions in Section (2.2). A selective overview of the
phenomenology of the discrete Duffing equation is presented in Section (2.3). Within Sec-
tion (2.3), attention is restricted to the "physically interesting” cases, i.e., to the regions of the

parameter space where periodic, quasi-periodic, and stochastic solutions appear.

2.2 EQUILIBRIUM SOLUTIONS

2.2.1 General Considerations

As mentioned in the previous section, a study of the global behavior of the solutions of
a nonlinear difference equation usually begins with an analysis of the existence and character

of the equilibrium solutions. An analysis of this type is performed in much the same way as



the corresponding analysis of a nonlinear differential equation.

Specifically, an equilibrium analysis of the discrete Duffing equation, Eq. (1.1), begins

by considering the original equation,
Xpag = 2%, + Xy +hx, +Ex,°=0 .1
and setting

Xn+l = Xp T Xp-] T Xy Yn . (2.2)

ol

The equilibrium solutions of Eq. (2.1) are determined by substituting Eq. (2.2) into Eq. (2.1)

to obtain
e +ex2 =0, (2.3)
which yields
x,=0 2.4)
and
x,=tq] T .5)

Note that Eq. (2.5) yields real values for x, only if k¥ and € are of opposite sign, i.e.,

sgn (k) = sgn(€)=>one equilibrium solution ,

and
sgn (k) =—sgn(g) => three equilibrium solutions .

The general nature of the solutions in the neighborhood of the equilibrium points may

be determined, in part, by slightly perturbing the solutions away from their respective



equilibrium points and analyzing the respective linear approximations. This process is facili-

tated by taking
X, =x, 48, 2.6)
where £, is a small perturbation, and substituting Eq. (2.6) into Eq. (2.1) to obtain

(X*+§n+1>-2(x>;<+§n)+(x*+§n—l)+k(x*+§n)+€(x*+§n)3=0 . (27)

Using Eq. (2.3), Eq. (2.7) may be reduced to
E.an+1_2§n+én—1+k§n+38x>|2<én+0(|§n|2)=O . (28)

Neglecting terms of order higher than one, and writing Eq. (2.8) as a first order system,

results in

&na1 2-k-3x} -1 £,
= (2.9)
E.vn 1 0 én~1
The characteristic equation for Eq. (2.9) is
A2—(Q2—k -3ex2)A+1=0,
which yields
M:%(z—k—mi)i\ji—(z—k—3ax,§)2—1 . (2.10)

The type of a given equilibrium solution, i.e., saddle, etc.,, may be determined using Eq.

(2.10).

2.2.2 Parametric Dependence of the Global Behavior




A gross, overall picture of the global behavior may be ascertained by an analysis of the
equilibrium solutions, as discussed in Section (2.2.1). In general, as illustrated by Egs. (2.3)
and (2.10), both the existence and the nature of the equilibrium solutions depend upon the
parameters of the discrete Duffing equation, i.¢., on € and k. The only exception to this asser-

tion is the existence of the equilibrium solution at the origin.

The nature of the equilibrium solution at the origin may be determined by substituting

for x in Eq. (2.10). This yields

_ 1 1 2
M—E@—kﬁbdzu—k)—l.

The dependence of |A.| on the parameter & is illustrated graphically in Fig. (2.1). Clearly,
k < 0 =>saddle point ,
k > 4 => saddle point ,

and,
0 £k £ 4 => critical case

As will be seen in Section (2.3), the origin is actually a center for 0 < & < 4.

Similarly, the nature of the equilibrium points given by Eq. (2.5) may be determined.

Substituting for x in Eq. (2.10) yields
he=1+k =N +k)P—1 .
The dependence of |A4| on k, for this case, is shown in Fig. (2.2). Obviously,
k >0 (e < 0) => saddle point ,

k <=2 (e > 0) => saddle point ,
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and
-2 <k £0(e>0)=>critical case

Here, again, as will be seen in Section (2.3), the equilibrium point, x ., is actually a center for

-2 <k <0(e>0).

The results of the analysis, thus far, are summarized symbolically in Fig. (2.3). Obvi-
ously, except for the stable manifolds of the saddle points and the equilibrium solutions
themselves, all solutions in regions I, IV, V, and VII of the parameter space are unstable.
Therefore, the remainder of the present investigation will be restricted to the study of the
solutions of the discrete Duffing equation occurring within regions II, III, and VI of the

parameter space depicted in Fig. (2.3).

2.2.3 A Note on Degenerate Cases

The analysis of the preceding section provided a complete characterization of the
equilibrium points of the discrete Duffing equation, with respect to the (k ,€)-parameter space
of Fig. (2.3), except for the three vertical lines given by & =—2(g> 0),0,4, respectively.
These "lines" represent sets of parameter points at which the matrix of the linear approxima-
tion, i.e., the matrix in Eq. (2.9), yields equal eigenvalues, and hence, in general, possesses
dependent eigenvectors near at least one of the equilibrium points, x .. Of course, dependent

eigenvectors indicate so-called "marginal” stability.

In particular, on the line & =—2(g > 0), the matrix possesses dependent eigenvectors at
x, =xV—k/e. On the line k =0, the matrix possesses dependent eigenvectors at both x, =0
and x, =*x~—k/e. Finally, on the line k =4, the matrix possesses dependent eigenvectors at
x, = 0. Qualitatively, as can be seen from Fig. (2.3), these "degeneracies” correspond to tran-
sitions between different "types” of equilibrium points or to the first appearances of equili-

brium points. A specific study of such cases lies outside the scope of the present
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investigation.

2.3 PHENOMENOLOGY OF THE DISCRETE DUFFING EQUATION

2.3.1 Phase Portraits of the Discrete Duffing Equation

An analysis of the existence and character of equilibrium solutions, as presented in Sec-
tion 2.2, provides only a "myopic" view of the phase plane structure of a nonlinear difference
equation. The present section is devoted to a phenomenological look "through the looking
glass" at the phase portraits of the discrete Duffing equation. In the present context, the
"looking glass" is, of course, a digital computer system. Specifically, a Hewlett-Packard

model 9816 microcomputer was used to generate the phase portraits. All of the programming

was done in interpretive BASIC.

As will be shown in the figures to follow, the detailed structure of the phase portraits of
a relatively simple, second order, nonlinear difference equation, such as the discrete Duffing
equation, can be exceedingly complex. The characteristics of periodic, quasi-periodic, and
so-called "stochastic" behavior are all present. Furthermore, these characteristics depend on
the parameters of the specific equation under investigation. For the (conservative, auto-

nomous) discrete Duffing equation, Eq. (2.1), the parameters are the linear "stiffness" param-

eter, k, and the nonlinear parameter, €.

The specific points in the (k ,€)-parameter space, at which phase portraits are to be illus-
trated, are shown in Fig. (2.4). The "+"-shaped pattern of the points within each region of the
parameter space was chosen so that the dependence of the phase plane structure on one of the

equation parameters, with the other parameter held fixed, could be viewed. The phase por-

traits are presented in Figs. (2.5)-(2.19).

Keeping a picture of the familiar (x x)-phase space of the (conservative, autonomous)

continuous Duffing equation,
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Figs. 2.5-2.19, as shown.
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X +kx +ex=0,

in mind, note the general, qualitative appearance of Figs. (2.5)-(2.19). As can be seen, within
a specific region of the parameter space, only the scale of the global phase portrait structure
depends on €. Further discussion of the characteristics of these phase portraits will be post-

poned to allow the reader to more easily cross-reference the figures and to absorb the pure,

visual impact that they provide.

2.3.2 Initial Comments on Periodic and Quasi-periodic Solutions

The "regular” behavior exhibited in the neighborhood of the centers appearing in Figs.
(2.5)-(2.19) 1s generated by periodic and quasi-periodic solutions. In particular, periodic
solutions are represented by finite sets of points around the centers and quasi-periodic solu-
tions are represented by infinite, but denumerable, sets of points "circling" the centers. These

ideas will be more precisely stated in Chapters 3 and 4.

As i1s well known, the frequency of the periodic solutions of the (conservative, auto-
nomous) continuous Duffing equation depends upon the amplitude of the solutions. How-
ever, the period of such solutions corresponds to only one "trip" around the center. In con-
trast, the period of the periodic solutions of the discrete Duffing equation may correspond to
many "trips" around the center. In the same sense, the "period" of the quasi-periodic solu-
tions of the discrete Duffing equation is infinite. Therefore, in order to facilitate a discussion
of the frequency-amplitude relationship of the discrete Duffing equation, the concept of a

"pseudo-period” corresponding to one "trip" around the center will prove useful.

The "pseudo-period” may be defined, heuristically, by considering the discrete indepen-
dent variable, #n, as "continuous” along a given trajectory. This concept is illustrated graphi-
cally in Fig. (2.20). Such a definition produces frequency-amplitude relationships of the type
illustrated in Fig. (2.21). As will be seen in Chapter 4, these frequency-amplitude relation-

ships will be useful in discussing the accuracy of the approximate methods developed in
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An example of the phase portrait of the discrete Duffing equation

Fig. 2.5

fork =—1and e =0.01.
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X
n+1

Fig. 2.6 An example of the phase portrait of the discrete Duffing equation

fork =—1 and & = 0.001.
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Fig. 27 An example of the phase portrait of the discrete Duffing equation

fork =—1ands=20.1.
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ase portrait of the discrete Duffing equation

An example of the ph

2.8

fork =—-1band e =0.01.
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Fig. 2.9 An example of the phase portrait of the discrete Dufling equation

fork =—-0.5and £ =0.01.
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Fig. 2.10 An example of the phase portrait of the discrete Duffing equation
fer k =2 and ¢ = 0.01.
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An example of the phase portrait of the discrete Duffing equation

2.11

Fig.

fork =2 and ¢ = 0.001.
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Fig. 2.12 An example of the phase portrait of the discrete Duffing equation

2andes=0.1.

for &
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Fig. 2.13

An example of the phase portrait of the discrete Duffing equation

fork =1lande=

0.01.
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Fig. 2.14 An example of the phase portrait of the discrete Duffing equation

fork =3 and s =0.01.
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Fig. 2.15 An example of the phase portrait of the discrete Duffing equation

ferk =2 ande = -0.01.
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An example of the phase portrait of the discrete Duffing equation

Fig. 2.16

fork =2 and £ = ~0.001.
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Fig. 2.17 An example of the phase portrait of the discrete Duffing equation

fork =2 and ¢ = —0.1.
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An example of the phase portrait of the discrete Duffing equation

Fig. 2.18

1 and ¢ = =0.01.

for k



29 -

An example of the phase portrait of the discrete Duffing equation

2.19

Fig.

fork =3 and & =—-0.01.
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Fig. 220 An example illustrating the evolutionary behavior of a quasi-
periodic solution, or of a periodic solution that winds around the
equilibrium point many times before repeating itself. The motiva-
tion for the heuristic definiticn of a "pseudo-peried” is clearly

evident.
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Fig. 221 An example of the dependence of the "pseudo-frequency"” of the

solutions on the amplitude of the solutions fork =2 and £ = 0.01,
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Chapter 3.

2.3.3 Some Comments on Stochastic Behavior

Certainly, one of the most obvious qualitative features of the phase portraits presented
in Figs. (2.5)-(2.19) is the presence of so-called "stochastic” behavior, i.e., the seemingly
irregular wandering of solutions in the neighborhood of separatrices connecting equilibrium,
or periodic, saddle points. Such behavior is the result of the wild oscillations of transversally
intersecting stable and unstable solutions emanating from equilibrium, or periodic, saddle
points.*” If the stable and unstable solutions arise from the same saddle point, the oscilla-

tions are called "homoclinic." Otherwise, they are dubbed "heteroclinic."

Stochastic behavior is not exhibited by the solutions of conservative, autonomous,
second order, nonlinear differential equations. However, it is a generic attribute (i.e., persists
for all € 20) of the phase portrait structure of a similar class of nonlinear difference equa-
tions. Phenomenological evidence of this genericity, for the equilibrium saddle point occur-

ring in region II of the parameter space, is shown in Figs. (2.22)-(2.25).

Since the basic goal of the present thesis is the study of the periodic and quasi-periodic
solutions of nonlinear difference equations, a more detailed treatment of stochastic behavior
will not be presented. However, the study of stochastic behavior is the subject of much

current research. The book by Lichtenberg and Lieberman’ provides a fairly recent survey

for conservative systems.
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X
n+1

Fig. 222 An example of the homoclinic behavior of solutions near the
equilibrium saddle point for £ =—-0.5 and £ =0.1. For clarity,

only the unstable manifolds are shown.
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An example of the homoclinic behavior of solutions near the
equilibrium saddle point for ¥ = ~0.5 and ¢ =0.01. For clarity,

only the unstable manifolds are shown.
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Fig. 2.24 An example of the homoclinic behavior of solutions near the
equilibrium saddle point for & = ~0.5 and £ = 0.001. For clarity,

only the unstable manifolds are shown.



n+1

Fig. 2.20 An example of the homoclinic behavior of solutions near the
equilibrium saddle point for & = —-0.5 and ¢ = 0.0001. For clarity,

only the unstable manifoids are shown.
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CHAPTER 3

APPROXIMATE METHODS FOR THE STUDY OF
PERIODIC AND QUASI-PERIODIC SOLUTIONS

3.1 INTRODUCTION

The utility of a mathematical model of a physical system is directly proportional to the
predictive capabilities of the model. These capabilities fall into three broad categories:
phenomenological (numerical), quantitative, and qualitative. In order to obtain useful quanti-
tative information from a mathematical model, either exact analytic solutions must be avail-
able, or approximate solution techniques must be used. As illustrated in the previous chapter,
even a very simple nonlinear difference equation, such as the discrete Duffing equation, can

vield an incredibly complex phase portrait. Hence, in general, approximate methods will be

necessary.

In physical applications, the "steady-state" solutions are of prime importance. These
"steady-state” solutions may be equilibrium points, periodic solutions, or quasi-periodic solu-
tions. Equilibrium solutions may be obtained by solving a nonlinear algebraic equation, as
was discussed and carried out for the discrete Duffing equation in the previous chapter.
Determination of periodic (period > 1) and quasi-periodic solutions is not as straightforward

and, in practice, exact solutions are usually unobtainable. Therefore, approximate solutions

are highly desirable.

Three approximate techniques for studying the periodic and quasi-periodic solutions of
(autonomous) nonlinear difference equations will be developed within the present chapter.
Following a preliminary discussion of periodic and quasi-periodic solutions in Section (3.2),
and an illustration of the appearance of secular terms in a straightforward perturbation expan-

sion in Section (3.3), the approximate methods will be developed in Sections (3.4), (3.5), and



- 38 -

(3.6). For clarity, the explicit development is restricted to regions III and VI of the parameter
space of the discrete Duffing equation as shown in Fig. (2.3). The chapter closes with a com-

parison of the methods, as well as some comments on their application, in Section (3.7).

3.2 SOME COMMENTS ON PERIODIC AND QUASI-PERIODIC SOLUTIONS

Periodic and quasi-periodic solutions comprise all of the nontrivial, "steady-state" solu-

tions for a given second-order, conservative, autonomous difference equation. Such an equa-

tion may be written

Xn1=EFxn) . (3.1
Periodic solutions of Eq. (3..1), of period k, are defined via
Xppk =X k€ Z k22 (3.2)
with
Xny FX, VIi<k, leZ'.
The periodicity condition given by Eq. (3.2) may be rewritten as

Ensz(fn) . (3.3)

Therefore, the determination of periodic solutions of Eq. (3.1) may be reduced to the solution
of a nonlinear algebraic equation as given by Eq. (3.3). However, even for very simple forms
of the map F, the solution of Eq. (3.3) may be practically intractable. Hence, an efficient
approximate technique for determining the period and estimating the amplitude of periodic
solutions would prove useful. Later in the present chapter, a perturbation approach will be

used to develop a method for the study of these periodic solutions.
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Quasi-periodic solutions for Eq. (3.1) are more difficult to define rigorously. Since Eq.
(3.1) is conservative and autonomous, an adequate definition may be stated as: quasi-
periodic solutions of Eq. (3.1) are those solutions that remain within a closed, bounded one-
dimensional submanifold of the phase space, but are not strictly periodic. Note that this
definition excludes equilibrium solutions, periodic solutions, and separatrix solutions, since
equilibrium and separatrix solutions may be considered strictly periodic, with periods 1 and
e, Tespectively. The previous definition, however, does include the "higher-order" quasi-
periodic solutions near periodic solutions. As will be seen later in the chapter, approximate

expressions for quasi-periodic solutions are simply generated by a perturbation analysis.

3.3 THE DISCRETE PERTURBATION METHOD AND SECULARITY

3.3.1 A Particular Example

The formal development of a discrete perturbation technique for obtaining approximate
solutions of nonlinear difference equations may best be illustrated by example. The discrete
Duffing equation 1s an ideal example since it exhibits relative analytic simplicity, genuine

practical applicability, and a history of previous theoretical work. The (conservative, auto-

nomous) discrete Duffing equation is, again,
Xpo1 = 2%, + Xy +hx, +ex,°=0 . (3.4)

Typically, the use of a perturbation procedure to generate approximate solutions

requires knowledge of the exact solution of the unperturbed system. Note that the linear

difference equation,

Xpa+l — 2C059Xn +Xx,1= 0 s (35)

possesses the exact solution,
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x, =Acos(n@+vy) , (3.6)

where the amplitude, A, and the phase, , depend on the initial conditions xo and x;. Hence,

recasting Eq. (3.4) in the form,
Xp4q —20080x, +x,_; +ex,° =0 , (3.7

will be convenient for the development to follow. However, note that expressing Eq. (3.4) in

the form of Eq. (3.7) seems to place a restriction on the range of the linear parameter, &, i.e.
k=2(1-cosB)=>0<k <4 . (3.8)

An examination of Fig. (2.3) reveals that the range 0 < k <4 is precisely the parameter range
in which periodic and quasi-periodic solutions exist near the origin for the discrete Duffing

equation. Thus, the restriction on k& given by Eq. (3.8) is artificial, for the present discussion.

33.2 The Straightforward Expansion and Secular Terms

The most obvious, though somewhat naive, approach to the development of a perturba-
tion procedure is to take a known solution to the unperturbed equation and expand the desired

solution in a power series in the perturbation parameter around the known solution.

Specifically, set
x, =x0+ex) + x4 .. (3.9)

The straightforward approach is to substitute Eq. (3.9) into Eq. (3.7) and to set the

coefficients of the powers of € to zero. Thus, implementation of this procedure begins with
(62 +exty e +..)—2c080(x, +ex,l + €8x 2+ )

+ (0 el ek 4 ) rexlex,) 82+ )3 =0,
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and results in the following system of linear equations:

x5y —2c080x, +x,1; =0, (3.10)
xn1+1 - 2COSGX,,1 + xnl—-l = —(xn0)3 H (31 1)
xn2+1 - ZCOSQX,? + xnz—l = -3(xn0)2xn1 > (312)

etc.

The approximate solution generated by the straightforward approach may be obtained
by solving Eq. (3.10), Eq. (3.11), Eq. (3.12), etc., in succession, and then substituting into Eq.

(3.9). The general solution of Eq. (3.10) is given by Eg. (3.6) as
x0=Acos(nf+vy) . (3.13)
To solve Eq. (3.11), first note that
(x)? =A%cos’(n 6 + )
= Y4A3[3cos(n 8 + ) + cos(3n6 + 3y)] . (3.14)
Hence, the particular solution of Eq. (3.11) may be expressed in the form
x,} = nBsin(n 8 + ) + C cos(3n6 + 3y) , (3.15)

where B and C are functions of A. Substitution of Eq. (3.15) into Eq. (3.11), use of Eq.

(3.14), and use of standard trigonometric identities produces

3473 .
=~ Ssind (3.16)
and
3
C = A . (3.17)

- 8(cos8 — cos30)
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Finally, substitution of Eq. (3.13) and Eqgs. (3.15)-(3.17) into Eq. (3.9) yields the first-order

approximation,

3eA3
S

x, =Acos(nf+vy)— 85ind

nsin(n0 + )

€A3
B 8(cosO — cos36)

sin(30 + 3y) + O (e?) . (3.18)

Note that the second term on the right-hand side of Eq. (3.18) contains the independent
variable »n, as a multiplicative factor. Hence, this term is secular, i.e., the presence of this
term in the truncated perturbation series renders the expansion nonuniform as n grows large.
Therefore, analogous to the situation arising in the approximate solution of nonlinear dif-
ferential equations, the straightforward perturbation approach leads to the appearance of secu-
lar terms in the approximate solution. Consequently, to produce an approximate solution that

is uniformly valid for all n, a method of eliminating the secular terms must be developed.

34 THE DISCRETE LINDSTEDT-POINCARE METHOD

3.4.1 The Rationale Behind the Method

As shown in Section (3.3.2), the straightforward perturbation approach fails to provide
approximate solutions which are uniformly valid for all » due to the appearance of secular
terms. A review of the straightforward approach reveals that secular terms arise as a result of
the inhomogeneous terms in the linear difference equations for the first- and higher-order
corrections, €.g., Eq. (3.11). Hence, one method of eliminating the secular terms would be to
introduce additional unknowns into the expansion of the original nonlinear difference equa-
tion so that these unknowns appear in the inhomogeneous terms of the resulting system of

linear difference equations. Implementation of this procedure necessitates an explicit method

of introducing the additional unknowns.
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A phenomenological study of the discrete Duffing equation, as discussed in Chapter 2,
reveals that the pseudo-period of the quasi-periodic solutions is dependent upon the ampli-
tude. The pseudo-period of a quasi-periodic solution, as defined in Chapter 2, can be derived
by considering the independent variable, n, as a continuous variable along the solution trajec-
tory. The dependence of the pseudo-period on the amplitude of the quasi-periodic solutions
of the discrete Duffing equation is analogous to the dependence of the period on the ampli-

tude of the periodic solutions of the (conservative, autonomous) Duffing differential equation.

Therefore, an approximate solution procedure capable of eliminating secular terms and
explicitly illustrating the dependence of the pseudo-period on the amplitude of the quasi-

periodic solutions would be desirable. One such procedure is outlined below.

3.4.2 Implementation of the Method

An approximate solution procedure, possessing the dual capabilities mentioned above,
may be developed with reasoning analogous to that underlying the Lindstedt-Poincaré pro-

cedure for nonlinear differential equations. Specifically, the procedure may be outlined algo-

rithmically as follows:
(i) Introduce an approximate solution frequency, say ¢, into Eq. (3.7);

(ii) Expand the dependent variable, x,,, in a power series in the nonlinearity parame-

ter, €

(i1i) Expand some function of ¢ in a power series in €, where the zero’th order term

is the same function of the linear frequency, 6;
(iv) Introduce the expansions of (ii) and (iii) into Eq. (3.7); and
(v) Equate powers of ¢; and solve the resulting system of equations recursively,

eliminating secular terms at each step.

Implementation of this procedure may be conveniently carried out by first rewriting Eq.
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(3.7) in the equivalent form,

Xp41 — 2c080x, + x,_1 + 2(cosd —cosB)x, +ex,. =0 (3.19)
and then setting
x, =x0+ex,) +e2x 24, (3.20)
and
cosd = cos® +eay + e2ay+ .. . (3.21)

Introduction of Egs. (3.20) and (3.21) into Eq. (3.19) yields
(x,,oﬂ + ax,,lﬂ + szn2+1 +..)- ,’2cos¢)(xnO +ex,) +e2x?+ )
+ 00y +exty +e22 g + L+ 2eag +€2a, + )
X (x0 +ext +e2x 2+ ) el vex, + e i+ .2 =0 . (3.22)
Algebraic manipulation of Eq. (3.22) results in
(01 — 2cosdx,’ + x,0 ) + E[x, ) — 2c0sdx,) +x,1y +2a x50+ (x,9)°]
+€2[x,2 ~ 2cosbx,2 + x,?_l + 2(a ano +ax,h)

+3x0%x,11+0@EH=0 . (3.23)
Equation (3.23) may be satisfied iff each coefficient vanishes independently. Imposing
such a requirement on Eq. (3.23) produces the recursive system of equations

%2 —2cosdx,l+x0, =0, (3.24)

XL — 2cosox,! +x,1; =-2a.x0—(x0)? , (3.25)
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x2 — 2c080x,2 + %21 == 2(axl + ax,)) — 3(x,0)2x,) (3.26)

n >

etc. The equations of order & (k =3,4,5...) are similar to Eqgs. (3.24), (3.25), and (3.26), and

may be represented generically as
xfyy = 2c080xy +xfy =f (x2xL . xETY (3.27)

where the inhomogeneous term, f xOxk ... ,x,’f‘l), is a linear combination of terms of the

first and third degrees in the trigonometric functions.

3.4.3 The First Order Approximate Solution

An approximate solution of the discrete Duffing equation, accurate to first order in €,
may be obtained by solving Eq. (3.24), choosing the constant, a;, such that the "secular”
inbomogeneity is eliminated, solving Eq. (3.25), and substituting the results into Egs. (3.20)

and (3.21). As previously noted, the solution of Eq. (3.24) is given by Eq. (3.6) as

x0=Acos(n+ v) , (3.28)

where A and y depend on the initial conditions, xq and x;. Substituting Eq. (3.28) into Eaq.

(3.25) and using Eq. (3.14) yields

Xpyy —2c0s0x, +x,) 1 =—(2a,4 + %A Hcos(n o + )
- +A%0s(3n.0+3y) . (3.29)

The "secular” inhomogeneity in Eq. (3.29) is represented by the first term on the right-
hand side. As discussed in Section (3.3.2), the appearance of such a term gives rise to a par-
ticular solution of Eq. (3.29) of the form, nsin(n ¢ + ), which leads 1o secular behavior. In
contrast with the straightforward approach of Section (3.3), the discrete Lindstedt-Poincare

method provides a direct means of eliminating the "secular" inhomogeneity. Clearly,
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requiring that
Qa,A + %A3)cos(n¢> +y)=0 Vn,

implies that

a1=—%A2 : (3.30)

Substitution of Eq. (3.30) into Eq. (3.29) transforms Eq. (3.29) into

xl —2cosdx,l + x| =— i—A 3cos(3n ¢ + 3y) . (3.31)

A particular solution of Eq. (3.31) is given by

x,! = Bcos(3nd +3y) . (3.32)

The constant, B, is determined by substituting Eq. (3.32) into Eq. (3.31), exploiting standard

trigonometric identities, and requiring that the coefficients of cos(3n¢ + 3y) cancel each

other. This process leads to

A3
B= 8(costh — cos3¢)

(3.33)

The first order approximate solution is generated by substituting Eqs. (3.28) and (3.32)
into Eq. (3.20) and using Eq. (3.33) to obtain

3

_ eA ) )
X, =Acos(nd+y)+ 8(c050 — 00330) cos(3n ¢ +3y)+ 0 (g7) . (3.34)

The first order frequency correction is obtained by using Eq. (3.30) in Eq. (3.21) to yield

cosd = cosd — % eA2+ 0 (€Y . (3.35)
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The ramifications and characteristics of Eqgs. (3.34) and (3.35) will be discussed in Section

(3.7) and in Chapter 4.

3.4.4 The Second Order Approximate Solution

The second order corrections to Egs. (3.34) and (3.35) may be obtained in a manner

similar to the generation of the first order corrections. To begin, substitution of Egs. (3.28),

(3.30), (3.32), and (3.33) into Eq. (3.26) results in
x,% — 2cosdx,? + x,,z_l =—2a,A cos(nd + )

_ 34°
32(cos¢ — cos3d)

cos(3n ¢+ 3y)

B 3A°
8(cosd — cos30)

cos?(n & + y)cos(3n 6 + 3y) .

Exploiting some basic trigonometric identites yields the simplifying equation,
cosz(n o +y)cos(3nd +3y) = %cos(n O+ y)+ —;-cos(3n o+ 3y)

+ %cos(sn O+ 5y) .

Making use of Eq. (3.37) transforms Eq. (3.36) into,

2 34°
xn2+l - 2cos®x,_2 +X, = ll: 202A * 32(COS¢ - COS3¢)) costng+ W)

_ 3473
16(cosd — c0s30)

cos(3n 0+ 3vy)

_ 34°
32(cosd — cos3d)

cos(Snd+5vy) .

(3.36)

(3.37)

(3.38)
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Again, as in Eq. (3.29), the first term on the right-hand side of Eq. (3.38) represents a
"secular” inhomogeneity. This inhomogeneity may be eliminated by requiring
343

2a,A + 32(c0s6 — 00339) cos(nd+y)=0 Van ,

which implies

_ 344
"~ 64(cosd — cos3d)

a, (3.39)
Substitution of Eq. (3.39) into Eq. (3.38) gives the desired equation for the second order

correction, x,2, i.e.,

343

-2 Zhxl) =—
T+l 2C0SQx Xy 16(cosd — cos3¢)

cos(3n 0 + 3vy)

- 34° cos(Sn +S5vy) (3.40)
32(cosd — cos3d) ' '

A particular solution of Eq. (3.40) is given by
x2=Ccos(3nd +3y) + D cos(5n 6 +5y) . (3.41)

Determination of the constants, C and D, is facilitated by substitution of Eq. (3.41) into Eq.

(3.40), and by trigonometric and algebraic manipulation of the resulting equation, to obtain

2C (cos3d — cosd)cos(3n ¢ + 3y) + 2D (cos5¢ — cosd)cos(5n ¢ + 5w)

=- 34° cos(3n ¢ + 3y)
T 16(cos® — cos30) v
5
A cos(5nd+5vy) .

- 32(cosd — cos3d)

Finally, requiring that the coefficients of cos(3n¢ +3y) and cos(5n ¢+ 5y) cancel,
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independently, produces

347
" 32(cost - cos39)? (3.42)
and
3A°
D= 64(cosh — cos3)(cosd — cos5¢) (3.43)

The approximate solution, accurate to the second order in the perturbation parameter,
may be obtained by substituting Eqgs. (3.42) and (3.43) into Eq. (3.41), and substituting this

result and Eq. (3.34) into Eq. (3.20) to obtain

3

A
x, =Acos(nd+wy)+¢e 8(056 — 00330) cos(3n ¢+ 3y)

&2 34°
32(cosd — cos3¢)?

cos(3n 6+ 3y)

3A° 4
* Gacoss 20530)(2050 —0035%) cos(Sn¢ +5y) | +0 (3 . (3.44)

The second order frequency correction is produced by substituting Eq. (3.39) into Eq. (3.21).

Thus, using Eq. (3.35), this yields

342, 344

o =cosb — -
cOSo=cost—e 8 & 64(cosd — cos39)

+0(Y) . (3.43)

The properties and applications of Egs. (3.44) and (3.45) will be analyzed in Section (3.7)
and in Chapter 4. Higher order corrections to the approximate solution may be generated in

analogous fashion.
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3.5 THE DISCRETE METHOD OF RENORMALIZATION

3.5.1 The Rationale Behind the Method

The straightforward perturbation expansion, introduced in Section (3.3.2), led to the
appearance of secular terms in the resulting approximate solution given by Eq. (3.18). One
method of eliminating the secular terms, and, consequently, rendering the approximate solu-
tion uniformly valid for all n, was outlined in Section (3.4.2). The approach taken in Section
(3.4.2) was to introduce an auxiliary expansion, Eq. (3.21), into the original nonlinear differ-

ence equation. This approach provided a means of eradicating the secular terms before the

approximate solution was generated. Also, the auxiliary expansion was conveniently chosen

to clearly illustrate the dependence of the nonlinear frequency, ¢, on the amplitude of the

solution.

An alternate technique for the elimination of secularity would be to introduce additional
unknowns into the nonuniform approximate solution, e.g., Eq. (3.18), obtained via the
straightforward expansion approach. As discussed in Section (3.4.1), a method of introduc-
ing these additional unknowns, so that the dependence of the nonlinear "frequency”
(equivalently, the pseudo-period) on the amplitude is conveniently illustrated, would also be
desirable. Outlined below is a technique for "renormalizing” the approximate solution, after

it has been generated. This technique also explicitly displays the "frequency”-amplitude

dependence.

3.5.2 Implementation of the Method

The discrete method of renormalization is implemented by first obtaining an approxi-
mate solution via the straightforward approach. The approximate solution is then rendered

uniformly valid by a "renormalization" procedure. An outline of this procedure may be

stated as follows:
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(i) Expand the dependent variable, x,, in a power series in the nonlinearity parame-

ter, €;
(ii)  Introduce the expansion of (i) into Eq. (3.9);

(iii)  Equate powers of €; and solve the resulting system of equations recursively,

retaining the secular terms;
(iv) Construct the (secular) approximate solution with Eq. (3.7);
(v) Expand some "convenient” function of the linear frequency, 0, in a power series
in g
(vi) Introduce the expansion of (v) into the approximate solution of (iv); and

(vii) Eliminate any secular terms; and discard any terms of high order than the origi-

nal (secular) approximate solution.

3.5.3 The First Order Approximate Solution

To obtain a first order approximate solution of the discrete Duffing equation via the
discrete method of renormalization, the procedure outlined above must be followed, The first
four steps of this procedure comprise, precisely, the straightforward approach previously dis-
cussed. In Section (3.3.2), this approach was applied to the discrete Duffing equation, yield-

ing the first order (secular) approximation of Eq. (3.18). Slight algebraic manipulation of this

equation produces
x, =Acos(nB + V)

A% | 3nsin(n8+vy)  cos(3n6+3y)

- ¢ 8 sin® cosB — cos36

+0(e?) . (3.46)

As noted before, the secularity of the approximate solution, Eq. (3.46), renders the

approximation nonuniform for large ». Hence, the approximate solution must be
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"renormalized.” Also, the approximation given by Eq. (3.46) provides no clear means of

illustrating the dependence of the nonlinear "frequency" upon the amplitude of the solution.

The renormalization of Eq. (3.46), and an explicit illustration of the nonlinear

"frequency"-amplitude dependence, will be conveniently facilitated by the introduction of the

expansion
O=d+eb;+by+0(E) . (3.47)

Here, again, ¢ represents the nonlinear "frequency.”

Implementation of the renormalization procedure is carried out by substituting Eq.

(3.47) into Eq. (3.46) to obtain

X, =Acos[nd +y+enb; + 0 ()]

8

A3 | 3nsin[né+y+enb+ 0 (€Y)]
—F sin[0 + &b + O (e2)]

cos[3nd + 3y + 3enb + O (e1)] } +0 (D) (3.48)

cos[® + &by + O (e%)] — cos[30 + 3eb, + O (%))

for fixed n. Simplification of Eq. (3.48) may be accomplished by expanding the tri-
gonometric functions, considering n ¢ as the independent variable, in Taylor series about the

zero’th order parts of their respective arguments. Generically,
cos[ad + W + eab  + O (€2)] = cos(ad + )
~ gabysin(od + ) + O (€2) (3.49)
sinfo +y +£0b 1 + O (€%)] = sin(00 + W)

+eob 1cos(ad + ) + 0 (%) . (3.50)
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Specifically, note that

1 1
sin[o +&b; + O (eD)]  sing +eb jcosd + O (e2)

1 1
= — , (3.51)
sind
1+£{b1{ Esf—ng%} +0(s)}

and that

1
cos[¢ + &b + O (e%)] - cos[3¢ + 3eb; + O (€9)]

1
cosd — cos3¢ — b ((sing — 3sin3¢) + €2

1 1
. (3.52)
cosd — cos3d v Al
¢-c l—e{bl{ sing 3511134)} +0(5)}

cosd — cos3¢

Assuming € sufficiently small, i.e., small enough so that
lq ]

le| < [—=I

1y
in both Egs. (3.51) and (3.52), binomial expansions may be applied to the terms in braces in

both equations. Expanding the terms in braces in binomial series, transforms Egs. (3.51) and

(3.52) into

1 ]
sin[o +£b, + O (1))  sind

[1+0()], (3.53)

and
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1
cos[¢ +eby + 0 (9] - cos[3¢ + &b + O (e2)]

1
= m [1+0 ©)] . (3.54)

Finally, substituting Eqs. (3.53) and (3.54) into Eq. (3.48), and using Eqgs. (3.49) and (3.50),

the first order approximate solution becomes

3 .
X, =Acos(n¢+w)-—£b1Ansin(n¢+w)—8£—— MM
8 sind
_ cos(3nd +3y) 2
cos® — cos3d SRR
or

x, =Acos(nd+y)—eA| b, + 34° nsin(n ¢ + )

"o v 17 8sing v

+e 4> cos(3n ¢ + 3y) + O (e2) (3.55)
8(cosd — cos3¢) oV ' '

The secularity of the approximate solution, represented by the second term on the

right-hand side of Eq. (3.55), may be eliminated by proper choice of the constant, 5. In par-

ticular, choosing

342
=— , 3.56
8sind ( )
yields the uniformly valid first order approximate solution,
X, =Acos(nd+ W) +¢ 47 cos(3nd + 3y) + O (e2) (3.57)
n TV 8(cosd — cos3y) v ) '
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The first order frequency correction may be obtained by substituting Eq. (3.56) into Eq.
(3.47) to obtain
2

3A
e——q)_s&sinq)

+0(eH . (3.58)

Taking the cosine of both sides of Eq. (3.58) results in

cosb=cos| ¢ —e—— +0 (¢ )| . (3.59)
8sind

Applying Eq. (3.49) to Eq. (3.59), and solving for cos¢, yields, finally,

342 )
cos¢ = cosf — aT +0(e°) . (3.60)

The first order approximate solution, Eq. (3.57), is exactly the same as the first order
approximate solution obtained via the discrete Lindstedt-Poincaré technique, Eq. (3.34).
Similarly, the first order frequency correction, represented by Eq. (3.60), is the same as

before, represented by Eq. (3.35). Again, these equations will be discussed in Section 3.7

and in Chapter 4.

3.5.4 The Second Order Approximate Solution

The second and higher order approximate solutions may be generated in a fashion simi-
lar to the first order approximate solution generated above. In particular, construction of the

second order approximation begins with the particular solution of Eq. (3.12) using, as before,
xP=Acos(nb+vy) , (3.61)
and

3 A3
i . .62
25in0 nsin(n© +y) + 8(cost — cos30) cos(3n6 + 3y) (3.62)

1
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Substitution of Egs. (3.61) and (3.62) into Eq. (3.12), exploitation of basic trigonometric

identities, and a little algebra produces

A5

2 2 2 _
X1 — 2c080x,” + x4 16(cosb — cos36)

[2cos(n6 + )

Adn

+c03(3n 0 + 3y) + 2c0s(57 0 + Sy)] - 32sinf

[sin(n 6 + )

+sin(370 + 3y)] . (3.63)

Hence, the particular solution of Eq. (3.63) is, after much algebra,

2= 345 1 cos@
g 64sinf

o cos® —cos30  2sin0 } nsin(n 6 + )

1
cos0 — cos30

nsin(3n0 + 3y) + 7siln 5 n2cos(n® + W)}

34° { _ sin36

; cos(3nB+3
32(cosb — c:os3e)2 2s1nB } ( V)

343
" 64(cosh — c0s36)(cosB — cos50) (cos5n6 +35y) . (3.64)

Therefore, the second order (secular) approximation may be constructed by substituting Eqs.

(3.61), (3.62), and (3.64) into Eq. (3.9) to obtain, for fixed

x, =Acos(nf +v)

A3 A3
- in(n8 -
& 8sind nsn(n +y) 8(cos — cos30) cos(3n 6 +3v)

—g? 34° ! _ cos® nsin(n 6 + y)
64sinf cosb —cos36  2sin’p M
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nsin(3n 6 + 3y) + n2cos(n § + v)

cosb — cos30

1
2sin0

cos(3n0 + 3y)

_ 34° 2sinf — sin30
32(cosf —cos30) | 2sinB(cosB — cos30)

cos(5n 0 + 5vy)

" 2(cosd -1— cos50) } TO@E) . (3.65)

The uniformly valid second order approximate solution may be obtained from Eq.
(3.65) via the renormalization procedure illustrated in Section (3.5.3). First, the frequency
expansion, Eq. (3.47), must be substituted into Eq. (3.65). Then, all of the trigonometric fac-
tors must be expanded in Taylor series about the zero’th order parts of their respective argu-
ments, regarding n¢ as the independent variable. Binomial expansions are then used to
transform the constant trigonometric terms appearing in the denominators of some of the
terms of Eq. (3.65). Terms of the third and higher orders are then discarded. Finally, the
constants of the frequency expansion, Eq. (3.47), are chosen so that the secular terms are obli-
terated. This process results in the desired second order approximate solution,

A 3
8(cosd — cos3¢)

X, =Acos(nd+vy)+¢ cos(3n ¢ + 3y)

347
32(cosd — cos3h)?

+¢e2 cos(3n 6 + 3y)

R 3A°
© 64(cosd — cos30)(cosd — cosSh)

cos(5n o+ 5y) | + 0 () . (3.66)

Proceeding as before, the "frequency"-amplitude equation becomes,

cosc‘p—cose—e?’A2 —¢? 34° +
- 8 64(cos — cos30)

0 . (3.67)
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Note that Egs. (3.66) and (3.67) are exactly the same as Egs. (3.44) and (3.45), respec-
tively. As previously mentioned, the utility of these equations will be discussed in Section

(3.7) and in Chapter 4. Higher-order approximate solutions can be generated by the discrete

method of renormalization in a similar manner.

3.6 THE DISCRETE METHOD OF DOMINANT BALANCE

3.6.1 The Rationale Behind the Method

Two approximate solution techniques have been developed thus far: the discrete
Lindstedt-Poincar¢ method and the discrete method of renormalization. Both of these pro-
cedures begin with a generic perturbation expansion, i.e., Eq. (3.9), which assumes virtually
nothing about the form of the desired approximate solution. Both methods then proceed sys-
tematically to the generation of a consistent approximate solution. However, both of these
techniques, especially the discrete method of renormalization, may be cumbersome due to the

amount of algebraic and trigonometric manipulations that may be required.

A slightly simpler method of generating a first order approximate solution may be
developed, provided that a priori knowledge of the form of the first order approximation is
assumed. This method, which is analogous to the method of dominant balance for differen-
tial equations, is less rigorously based than the two previous methods. However, as will be
shown below, careful application of this technique results in a first order approximation that
is consistent with Egs. (3.34) and (3.57). Furthermore, the discrete method of dominant bal-
ance produces a first order nonlinear “frequency”-amplitude relationship that is consistent
with Egs. (3.35) and (3.60).

Knowledgeable consideration of the original nonlinear equation, Eq. (3.7), reveals that
the zero'th order approximate solution is given by Eq. (3.6). However, since Eq. (3.7) is non-
linear, the "frequency” of the approximate solution is expected to depend upon the amplitude.

Also, in view of the trigonometric identity expressed in Eq. (3.14), a correction term with a
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frequency three times the fundamental frequency is to be expected. Therefore, a natural

choice for the form of the first order approximation is
X, =Acos(nd + ) +eB cos(3n¢ +3vy) , (3.68)
where

¢=8(4) (3.69)

is the amplitude-dependent nonlinear "frequency." The procedure for determining the unk-

nown constant, B, in Eq. (3.68), and for expressing the frequency-amplitude relationship, Eq.

(3.69), is described below.

3.6.2 Implementation of the Method

Implementation of the discrete method of dominant balance is relatvely straightfor-

ward. This procedure may be outlined as follows:

(1) Introduce the approximate solution, Eq. (3.68), into the original equation, Eq.

(3.7);

(ii)  Algebraically and trigonometrically manipulate the resulting equation until all

trigonometric terms, with arguments of the form ond + vy, are of the first

degree;
(iif) ~ Discard any terms of second and higher order in g;

(iv) Discard any (non-constant) trigonometric terms with arguments different than

those appearing in the approximation, Eq. (3.68); and

(v) Collect coefficients of similar terms to determine the constant, B, and the

"frequency"-amplitude relationship.



- 60 -

3.6.3 The First Order Approximate Solution

The discrete method of dominant balance leads to a uniformly valid first order approxi-

mate solution of the discrete Duffing equation via the procedure outlined above. Substitution

of Eq. (3.68) into Eq. (3.7) results in the equation
A{cos[(n + 1)¢ + y] - 2cosBcos(n ¢ + ) + cos[(n — Do+ yl}
+ €B {cos[3(n + 1)6 + 3y] — 2cosBcos(3n o+ 3y)
+cos[3(n — 1)d + 3y]} +e[A cos(nd + )
+eBcos(3no +3y)P=0 . (3.70)

Applying simple trigonometric identities, including the identity expressed by Eq. (3.14), and

algebraically manipulating Eq. (3.70) leads to

2A (cosd — cosB)cos(nd + ) + 2eB (cos3¢ — cosB)cos(2n ¢ + )

3
+ EAT [3cos(n ¢ + W) + cos(3n ¢ + Wi+ 0 (82) =0 . 3.71)

Collecting the coefficients of similar terms in Eq. (3.17), and neglecting all terms of order

higher than one, yields

[ 3A3}
2A (cosd — cosB) + 5—4— cos(n + )

3
+ { 2eB (cos30 — cosf) + s%—} cos(Brnd+3y)=0 . (3.72)

The equations for the unknown constant, B, and the frequency-amplitude dependence
are simply obtained by requiring that the respective coefficients of the two trigonometric

terms in Eq. (3.72) vanish independently. That is,
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343
24 (cosd — cosB) + 8—4— =0, (3.73)

and

3
2eB (c0s3¢ — cos0) + SAT =0 . (3.74)

Solving for cos in Eq. (3.73) yields the first order nonlinear "frequency"-amplitude relation-

ship
2
cosd = cosb ~ ség— . (3.75)
Similarly, solving Eq. (3.74) for B yields.
A 3
B = . 3.
8(cosB — cos3p) (3.76)

Elimination of the linear “frequency,” 8, from Eq. (3.76) is facilitated by introducing

Eq. (3.75) into Eq. (3.76). This results in

3
B = A ,
A2
8] cosd — cos3¢ + E? }
or
A3 1
B = . 7
8(cosd — cos3¢) A2 3.77)

1+¢
8(cosd — cos3p)

For ¢ sufficiently small, i.e., for

| - |
el < | 8(cosd — cos3h)

2
l A l

b
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the bracketed term in Eq. (3.77) may be expanded in a binomial series to produce

A3
B= 8(cos — cos3p) l+o@n,

or

A3
- 8(cos¢ — cos3¢)

(3.78)

Therefore, the first order approximate solution of the discrete Duffing equation, gen-

erated by the discrete method of dominant balance, may be written

3

_ A
X, TAcos(nd+y) +¢e 8(cosd — c0s39) cos(3nd +3y) . 379

Note that Eq. (3.79) is really the same as Egs. (3.34) and (3.57). Also, note that Eq. (3.75) is

really the same as Egs. (3.35) and (3.60). Again, these equations will be discussed in Section

(3.7) and in Chapter 4.

3.6.4  Some Comments on Higher Order Approximations

In principle, approximate solutions of the second and higher orders may be constructed
using the discrete method of dominant balance. However, similar to the situation arising with
the method of dominant balance for nonlinear differential equations, great care must be exer-

cised in choosing the form of the approximate solution.

In general, the assumed approximate solution of a given order will be of the form

J

X, =3 [B,-cos(in(b+w}+C,~sin(in¢+u!)] , (3.80)
i=1

where B; and C; are of the form

B; =Y ¢b, , (3.81)
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and

Jj-1
C; = Z Ekck s (382)
k=0

respectively. Improper choice of which terms to retain in Egs. (3.80), (3.81), and (3.82) will
lead to an approximate solution which will be less accurate than the one generated by the two

techniques previously discussed.

In particular, for the discrete Duffing equation, a second order approximate solution,

consistent with Egs. (3.44) and (3.66), will be generated only if an approximation of the

form,

Xy TAcos(nd + ) + (eB +€2C )cos(3n d + 3y)
+e2Dcos(Sno + 5y) | (3.83)

is chosen. A priori knowledge of the form of the approximation, as expressed by Eq. (3.83),
is generally difficult to acquire. Therefore, in practice, application of the discrete method of
dominant balance should probably be restricted to the generation of first order approximate

solutions. Even then, the method should only be applied to equations where the form of the

approximate solution is clearly deducible.

3.7 FURTHER COMMENTS ON THE APPROXIMATE METHODS

3.7.1 _An Overall Comparison

Three techniques for generating approximate solutions of nonlinear difference equa-
tions have been developed within the present chapter. All three methods are similar to
methods developed for generating approximate solutions to nonlinear differential equations.
However, the discrete nature of the independent variable in the present context necessitates

some subtle modifications.  Also, as discussed in the preceding and subsequent chapters, the
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discrete nature of this independent variable renders the approximate solutions quasi-periodic

except for certain "special” cases.

For a given order of approximation, both the discrete Lindstedt-Poincaré method of
Section (3.4), and the discrete method of renormalization, described in Section (3.5), yield
exactly the same approximate solution. This equivalence is exemplified by comparing Egs.
(3.34) and (3.44) to Egs. (3.57) and (3.66), respectively. In addition, both techniques furnish
precisely the same approximation to the nonlinear "frequency"-amplitude relationship, as
exemplified by comparing Egs. (3.35) and (3.45) to Egs. (3.60) and (3.67), respectively.
However, a cursory examination of their respective applications to the discrete Duffing equa-
tion reveals that the discrete Lindstedt-Poincare procedure is less cumbersome to apply than

the discrete method of renormalization.

The third technique, the discrete method of dominant balance developed in Section
(3.6), was seen to yield the same first order approximate solution, Eq. (3.79), and the same
frequency-amplitude relationship, Eq. (3.75). Furthermore, application of the discrete
method of dominant balance was seen to be less cumbersome than application of either of the
other methods. However, successful application of the discrete method of dominant balance
hinges on the correct choice of the form of the approximate solution. This requires a priori
knowledge of the solution, which may be difficult, if not impossible, to acquire in practice.

Therefore, caution must be exercised in the application of this technique.

An approximate solution technique, similar to the discrete method of dominant balance,
but based on more general Fourier series approximations, may be developed. This method,
which yields approximate solutions consistent with those generated within the present
chapter, is similar to the method of harmonic balance for nonlinear ordinary differential equa-
tions. Approximate solutions of the second and higher orders may be produced without any a
priori knowledge of the form of the solutions other than that they may be approximated by

Fourier series. In practice, however, application of such a technique is usually very tedious
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and cumbersome.

An alternate approach to the generation of approximate solutions, similar to the method
of slowly varying parameters for differential equations, has been developed and applied to the
discrete Duffing equation. Application of this approach is little or no more tedious than
application of the other methods discussed within the present chapter. However, such a tech-
nique requires a priori knowledge of the form of the solution. This method may also be

"generalized" by following a Fourier series approach, but the generalized method is very

cumbersome to apply.

3.7.2 A Note on Initial Conditions

In the development of the approximate solution techniques, the statement was made
that the zero’th order amplitude, A, and the phase angle, , depended upon the initial condi-

tions, xo and x,. However, the actual form of this dependence was left unspecified.

In particular, an examination of the discrete Lindstedt-Poincaré method reveals that the
homogeneous solutions of the linear equations for the various order correction terms, i.e.,

Egs. (3.24), (3.25), (3.26), etc., are all of the form
() =Aicos(nd +v,), i = 0,1,2,... .
Hence, the @ solutions are all of the form
x} =Aicos(nO+y;) + (%)), , i =0,12,.., (3.84)

where the particular solutions, (x} )p (0 =0,1,2,...), are the solutions that were derived in Sec-

tion (3.4). Note that, forn =0, Eq. (3.84) becomes

xh = A;cosy; + x0)p, i =0,1,2,... ; (3.85)

and, forn =1,
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xi = A;cos(@ + ;) + (x} o s i =0,1,2,... . (3.86)
To determine A and \ as functions of the A; and \,;, recall the trigonometric identity

ocos(B +7) = acosycosP — asinysinf . (3.87)

Denoting the sum of the fundamental "frequency” terms of the approximate solution by G,

application of Eq. (3.87) results in
On = (A oSy, + €A jcosy + ...)cosn & — (A 0Sinyy + €A ysinyy + ...)sinn ¢ .
Applying Eq. (3.87), and a similar equation for osin(B +7), in "reverse” yields
Oy =Acos(nd+vy) ,

where

A =+\/(Aocoswo+£A1cosq11 + .07 + (Agsinyg + €4 1siny; +...)% (3.88)

and

1| —(Aosinyg + €A jsiny; + ...)
(Aopcosyy + €4 jcosy; +...)

Y =tan~ (3.89)

Two different, but equivalent, approaches can be used to determine the constants, A;
and \f;, in Egs. (3.85) and (3.86). Both approaches assume that the order of the approximate

solution is specified. Additionally, note that the true initial conditions, xg and x;, may be

expressed as

xo=x§ +Eexg + ... (3.90)

and



xX1=x1 +&x; + ..., (391)

respectively.

One approach begins by making the assumption
xb =x{=0, i=12,. .

The A; and ; are then determined from Egs. (3.85) and (3.86) using Egs. (3.88) and (3.89)

and the nonlinear "frequency"-amplitude relationship. Obviously, this approach is very

cumbersome.

An alternate approach is to assume that
A=y, =0, i=12,. .
This assumption transforms Egs. (3.88) and (3.89) into
A=A (3.92)
and

V=VYp , (393)

respectively. The constants x{, and x} (i =1,2,..) are then determined from Eqgs. (3.85) and
(3.86) using Eqgs. (3.92) and (3.93) and the nonlinear "frequency"-amplitude relationship.
The zero’th order initial conditions, x§ and x?, are then obtained from Egs. (3.90) and

(3.91). Finally, Ay and g are determined from Egs. (3.85) and (3.86), with i = 0.

3.7.3 A Note on Regions of Application

The approximate solution techniques developed within the present chapter were based
on an approximation of the form given by Eq. (3.9). For clarity of the discussion, this

approximation was applied to the discrete Duffing equation written in the form of Eq. (3.7).
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The approximate solutions subsequently generated apply directly to the periodic and quasi-
periodic solutions of the discrete Duffing equation occurring around the origin. As illustrated
in Chapter 2, the occurrence of such solutions corresponds to regions III and VII of the

parameter space depicted in Fig. (2.3).

Periodic and quasi-periodic solutions also dccur within region II of the parameter space
of Fig. (2.3). The methods developed thus far also apply to this case. However, in view of
Eq. (3.8), the original difference equation cannot be written in the form of Eq. (3.7). Applica-
tion of the approximate techniques to region II of the parameter space requires that the origin

of the phase plane be shified to the "nonlinear center" around which solutions are desired.

Specifically, taking

yn=xn“x* bl (394)

where x, is given by one or the other of Eqgs. (2.5), substituting into Eq. (2.1), and using Eq.

(2.3) leads to
Yns1 = 21+ k), +yng + €8x, 3,2 + 3,2 =0 . (3.95)

Application of the approximate techniques is facilitated by recasting Eq. (3.95) in the

form

Yns1 = 20088y, + ¥, + €8x 32+, =0 , (3.96)

where

cosB=1+% .

Note that this implies —2 < k <0, precisely as desired. Using Eq. (3.96) as the new starting
point, approximate solutions for y, are generated as discussed previously. These approxi-

mate solutions are then substituted into Eq. (3.94) to give the desired approximations for x,, .
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CHAPTER 4
APPLICATIONS TO THE DISCRETE DUFFING EQUATION

4.1 INTRODUCTION

The present chapter concentrates on the analysis of periodic and quasi-periodic solu-
tions of the discrete Duffing equation using approximate solutions obtained via the perturba-
tion techniques developed in Chapter 3. For expositional clarity, the discussion will again be
restricted to regions IIT and VI of the parameter space of the discrete Duffing equation as
shown in Fig. (2.3). A similar analysis, following the procedure outlined in Section (3.7.3),

may be applied to the periodic and quasi-periodic solutions occurring within region II of the

parameter space.

The general form of the approximate solution will be briefly discussed in Section (4.2).
Section (4.3) begins with a discussion of how the form of the approximate solutions reveals
criteria for the occurrence of periodic solutions. A method of constructing exact periodic
solutions will then be discussed, followed by some comments on the stability of periodic
solutions. A pair of examples of exact solutions will then be presented. The section closes
with brief discussions of approximate periodic solutions and periodic solutions in general.

Quasi-periodic solutions will be considered in Section (4.4).

4.2 THE GENERAL FORM OF THE APPROXIMATION

The starting point for the analysis to follow will be the general approximate solution
generated by the techniques previously developed. Notational complexity will be reduced in

the following discussion by defining

C2i+1 =C0SO —cos[(2/ + 1)0] , i=12,.. . (4.1)
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Hence, using, for example, the discrete Lindstedt-Poincare method to gernerate the third order

approximate solution, and substituting Eq. (4.1) into the result, yields

A3 g345 N e2A7
8(53 32(532 512

Xy, =Acos(n¢+\y)+8{

15 9
Y + T} } COS(3H¢+3W)
03  ©40s

2| 343 £A7{ 21
+€

9
640,30 + 512 2} } cos(5n 0 + Sy)

0505 0302
3A7

+ £ DYV
L 12803 O7

} cos(Tnd +7y) + 0 (g% . (4.2)

L o 1
An examination of Eq. (4.2) and the lower order approximations of Chapter 3, and the
procedure used to generate these approximations, indicates that the general form of the
approximate solution for a given order, say j, can be written as
Jo

X =Acos(nd+y)+ 3 /A cos[(2) + 1)(no + )]+ O (&) | (4.3)
j=1

The general form of the coefficient A j»J € [1,jo] © Z¥, may be expressed as

_](7—_]+1
Aj= 3T qelTIAAA (4.4)
i=1

where the ¢; are of the form of a finite sum of terms of the form pc{“c{ﬁ...o—zjﬁl, p € R; and

o,B,y€Z". Note that every term in the summation on the right-hand side of Eq. (4.4) con-

tains at least one divisor of the type defined in Eq. (4.1).
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4.3 PERIODIC SOLUTIONS

4.3.1 Criteria for the Occurrence of Periodic Solutions

Since every term in the approximate solution, other than the zero’th order term, con-
tains a divisor of the form of Eq. (4.1), the question of what happens when one of these divi-
sors vanishes naturally presents itself. Clearly, if one of the divisors explicitly occurring in

the approximate solution, to a given order in &, vanishes, then the approximation is invalid.

Suppose, in particular,

C2ip+1=0, (4.5)
and
Con#0 Vi<iy, i eZ'-{0} . (4.6)
Thus, Egs. (4.1) and (4.5) imply
cosh =cos[(2ig+ 1)¢] ,
and, hence,
Qig+1)9=%0+29n , g e Z*-{0} .

Solving for ¢ yields

0= ,q€Z+—{O}.
qn

ig+1

Imposing the condition expressed by Eq. (4.6) implies

GZ(ic—l)+1 =0 s
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or

0 # < . leZ'—{0} .

Therefore, Eq. (4.7a) must not be satisfied; and ¢ must be given by Eq. (4.7b). Also, exami-
nation of Eq. (4.7b), in light of Eq. (4.6), implies that ¢ must not be an integral multiple of
any of the nontrivial prime factors of (io+1). Clearly, if ¢ is any given, rational multiple of

7, then there exists an iy and a g such that Egs. (4.5) and (4.6) are satisfied.

Note that since solutions of the discrete Duffing equation may be represented by a tri-

gonometric series, the solutions will be strictly periodic iff there exists an integer, P > 2,

such that

(n+PY¥=né+2wn , we Z*- {0} ,

where w is the number of times the solution "winds" around the origin before mapping back

onto itself. Thus,

_ 2wrm

P , PeZ'-{01} .

Using Eq. (4.7b), this becomes

2w (ip+ 1
p o2t ) , PeZ"-{0,1} . (4.8)

Hence, note that Eq. (4.8) implies

g =w(ig+1) . 4.9

In particular, forw =1, Eq. (4.9) yields
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qSi0+1 .

4.3.2  Construction of Exact Periodic Solutions

If Eq. (4.7b) is satisfied, an interesting thing happens to trigonometric factors of the

type occurring in Eq. (4.3) for j > i, Clearly, forall j > i, j can be expressed in the form

J=Llo+D+r , 1€ Z°—{0} , re [0igcZt . (4.10)
Hence, using Eq. (4.10) and a basic trigonometric identity results in
cos[(2j + D(nd+y)]=cos{[2l (ig+ 1)+ 2r + 1(no+y)}
=Cos[(2r + 1)(n ¢+ y)lcos[2! (i + 1)(n ¢ + )]
=sin[2r + D)(n ¢ +y)Isin[20 (i g+ 1)(n ¢ + W] . (4.11)

However, since Eq. (4.7b) is assumed to be satisfied,

cos[21(z'0+1)(n¢)+\p)]=cos[ 2l(i0+1){ i”ffl HVJ }
0

=cos[2! (ig+ 1)y] , (4.12)

and, similarly,

Sin[21 (i + 1)(n 6 + )] =sin[21 (i + 1)y] . (4.13)
Using Eqs. (4.12) and (4.13), Eq. (4.11) becomes
cos[(Zj + D(n¢ +y)] = cos[(2r + 1)(n 6 + y)]cos[2! (io+ 1y]

= sin[(2r + 1)(n ¢ + y)}sin2/ (i o+ 1] . (4.14)
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Suppose, now, that
sin[2(ip+ Dy=0 .
This implies

ST
\V—m , (4.15)

where s is restricted to be zero or g in order to avoid redundancy. Note that satisfaction of

the condition expressed by Eq. (4. 15) results in

sin2l(io+ Dyl=sin(Ism)=0 VI , 5se Z*, (4.16)
and
cos[2l(ip+ Dyl=cos(lsm) = (=1)* VI, seZ* . (4.17)
Now, assuming Eq. (4.15) is satisfied and using Egs. (4.16) and (4.17), Eq. (4.14)
becomes

cos[(2j + 1)(n + )] = (1) cos[(2r + 1)(n¢ + v)] Vj>ig, (4.18)

where r € [0,ig] € Z*. That is, for all J > g, each trigonometric factor may be represented
by one of the trigonometric factors with r < ; 0
Additionally, assuming Eqgs. (4.7b) and (4.15) are satisfied, a curious thing happens to

the trigonometric factors form < j < i, where m is the smallest number satisfying

i
m>70, mezZ . (4.19)

Clearly, in this case, J can be expressed as

i
j=ig—r | 03r<-23,rez+. (4.20)
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Specifically, note that Eqgs. (4.20), (4.7b), and (4.15) imply

e =CO{ oz { 1-23“1 * 2<z'z:i 1) } }

B B ng T ST
_co;{ (2r+1){: Tt 2(i0+1)J
. ngT ST
+2(‘°+1){ o+l " 2(i0+1)J }

ngmw ST
= —(2r +1 + +2ngm+
co{ (2r )[ i+ 1 2<i0+1)J nqm sn}

= (-1)" cos[(2r + 1)(n¢ + )], Viem<j<ig, (4.21)

where r is given by Eq. (4.20) and m is the smallest number satisfying Eq. (4.19).

Therefore, satisfaction of Egs. (4.5), (4.6), and (4.15) implies that a cosine series
representation of the solutions to the discrete Duffing equation truncates with the 2m -1
term, where m is the smallest number satisfying Eq. (4.19). The truncation of the series

representation indicates that the periodic solutions of the discrete Duffing may be represented

exactly by a finite series of the form

m-1

Xy =Acos(n¢ + ) + > A;cos[(2i + Dno+vy)] , (4.22)
i=1

where the frequency, ¢, and the phase angle, v, are given by Eqs. (4.7b) and (4.15), respec-
tively. The coefficients, A and A;, may be determined by substituting Eq. (4.22) into the ori-
ginal difference equation, Eq. (3.4). Specifically, for the case w = 1 in Eq. (4.8), the distinct
periodic solutions obtainable from Eq. (4.22) may be identified as shown in Table 1 for

m =1,..,5. Clearly, as can be seen from Table I, all w =1 periodic solutions may be
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constructed exactly and uniquely by the method under discussion.

4.3.3 A Note on the Stability of Periodic Solutions

Note that, in general, there are two sets of values of coefficients satisfying Eq. (4.22),
i.e., the two sets of values corresponding to s =0,q, respectively. For example, as illustrated
in Chapter 2, e.g., Fig. (2.10), if the period is even, strictly periodic solutions of the discrete
Duffing equation occur as sets of alternating stable and unstable periodic points. For the con-
servative case presently under investigation, these points are alternating periodic centers and
saddle points, respectively. Thus, for even period solutions, one value of s yields the stable

periodic solution, and the other value of s yields the unstable periodic solution.

In general, the determination of the stability of a periodic solution corresponding to a
specific value of s may be carried out in a manner similar 1o the determination of the stability

of an equilibrium solution. That is, the solution is slightly perturbed away from the periodic

solution, x,*, by taking

X, =xX*+E, , |E | “small” . (4.23)

Eq. (4.23) is then substituted into Eq. (3.4), using the fact that x;* is an exact solution, to

yield

§n+1_(2"k)§n +§n—1+3£(xn*)2§n +0(’E.m |2)=o P

or,

§n+1 2k~ 3£(xn*)2 -1 én

+0(1E, 1% . (4.24)
én » 1 O én—l

Denoting the matrix occurring in Eq. (4.24) as L, (n), the stability of a specific periodic solu-

tion, x,*, is determined by the absolute values of the eigenvalues of

P-1
L¥=T] L, -i), (4.25)
1=
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where P is the period of the solution given by Eq. (4.8).

4.3.4 Examples of Exact Solutions

Rather than trying to prove that Eq. (4.22) furnishes an exact solution for a general
value of i, specific examples will be considered. In particular, three examples of solutions
which map back onto themselves after circling the origin once, 1.e., the case where w =1 in
Eq. (4.8), will be treated.

Example I: iy=1,¢4 =1

Examination of Eq. (4. 19) reveals that m = 1 for this example. Hence, consider a solu-

tion of the form,

X =Acos(no+y) . (4.26)

Substitution of this expression into the original form of the discrete Duffing equation, i.e., Eq.

(3.4), and use of some elementary trigonometric identities results in

2
{2cos¢~2+k+ 3eA J Acos(n ¢ + )

3

+ %—cos@mb +3y)=0 .

Use of Eq. (4.21) yields, further,

[Zcos¢—2+k+3+“i_1)i&42} Acos(no+y)=0 ,
L

or, simply,

2~k ~2cos0
e[3+(-1)°]

A=+2 (4.27)

where the exponent, s, comes from using Eq. (4.15) for the phase angle, .
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Table

Distinct solutions given by Eq. (422) forw =1and m =1

I

the top of the columns are defined in the text.

. The symbols at

m iq q ) P v
1 1 1 —;‘- 4 0%
2 n 2 o,%
2 2 1 % 6 o,%
2 231 3 o,%
3 1 % 8 o,%
3 4 1 % 10 o,%
2 —25ﬂ 5 o%
5 1 z 12 0,—-
6 12
4 6 1 % 14 o,%
2 % 7 o,%
7 1 % 16 o,%
5 8 1 g 18 o,%
2 39’5 9 o,g
9 1 —1% 20 0’5%

For the example at hand, Egs. (4.7b), (4.8), and (4.15) yield, respectively,
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and,

W=% ; 5=0,1.

Hence, from Egs. (4.26) and (4.27), the periodic solution is given by

/ 2—k nw ST
xF=42 mcos[—f+7J . (4.28)

Interestingly, note that £ > 0 implies that real, nontrivial, period four solutions, as given
by Eq. (4.28), exist only for k < 2. Similarly, € <0 implies £ > 2. For convenience in the

remainder of the discussion of this example, suppose € > 0 and, in particular,

k=1 .
Now, fors =0, Eq. (4.28) becomes
¥ = —cos | AT (4.29)
T e 2 | :

Hence,

1 nTm
* 2= 2 i
(x2%) . cos [ N }

-
N NP
L 7 -+ Ecos(n 7{)_’]

1
£

_ I+ (=1
T 2 ’

so that the matrix of the linearized system in Eq. (4.24) becomes

1+ (=1)"
-3 ——~ -

1 0

Lo(n)=
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Thus, using Eq. (4.25),

-4 3 |

The characteristic equation of L & is, therefore,

WP —140% +1=0 |

which yields
ME=T72NTH -1 .

Clearly, the eigenvalues of L ¢ "straddle" the number one on the real line. Hence, the solu-

tion given by Eq. (4.29) is a set of periodic saddle points.

Turning attention, now, to the case where s =g =1 1in Eq. (4.28), the solution, x5,

becomes

N 2 nw
Xn = = COS$ *2“+

IR

J . (4.30)

Thus,

N

2 nt
*2=__ 2 —_
(x, %) Ecos [ >

|
i{l{ﬁH

[1+ sin(n )]

o |

o =
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Hence, the matrix of the linearized system in Eq. (4.24) becomes

-2 -1
Li(n)=
1 0

Therefore,
[—2 -17¢
L =
L1 0
5 47
L4 3]

which yields the characteristic equation

(A —20*+1=0 .

Thus, the eigenvalues of L ¥ are

Obviously, the eigenvalues, A¥, of L ¥ lie on the unit circle.

For the present example, with & = 1, the eigenvalues of L are actually equal. Hence,
the stability of the periodic solution given by Eq. (4.30) is "marginal” in the sense discussed
in Section (2.2.3). In reality, this "degeneracy” results from using the linearized system to
determine stability. As will be shown graphically, the solution given by Eq. (4.30) is actually

a set of periodic "centers," in general.

The period four solutions obtained in the present example are shown graphically in
Figs. (4.1)-(4.4) for various values of € and k. The two-"dimensionality" of one of the period
four "islands," belying the results of the linearized stability analysis, is illustrated in Fig.
(4.5). These figures were generated numerically from the original difference equation, i..,
Eq. (3.4). The structure of the phase plane close to the "ring" of periodic points was gen-

erated by slightly perturbing the initial values of the numerical simulation away from the
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exact periodic solutions given by Eq. (4.28).

Example II: ip=1,g =2

For the present situation, examination of Eq. (4.19) reveals that, again, m = 1. There-

fore, a solution of the form of Eq. (4.26) applies, i.e.,

x*=Acos(nd+ ) . (431

Following the approach illustrated in Example T and making use of Eq. (4.21) leads to Eq.

(4.27),1.e.,
A =424 /M ) (4.32)
e[3 +(-1)]

For this example, Egs. (4.7b), (4.8), and (4.15) yield, respectively,

and
1,U=% ;o =01,

Hence, using Egs. (4.26) and (4.27), the solution is given by

xn*=+2—\/—ﬂ—cos{mc+ﬂJ . (4.33)
e[3 + (-1)°] 2

Using a simple trigonometric identity on the cosine factor in Eq. (4.33) yields, further,

4—k ST
F=t2A [ —— (—])" - . 4.34
TN @t e )COS{J 9

Clearly, if € > 0, then the solution given by Eq. (434)exists V k e [04]cR. Ife<O,
then the solution given by Egq. (4.34) does not exist for any k [0.4] © R. Therefore, for the



- 88 -

remainder of the discussion of the present example, take £ > 0.

Now, note that for s =0 the solution given by Eq. (4.34) becomes

X = (=" 4/ 5%/5 : (4.35)

Hence,

4—k
€

(x*)? =

b

so that the matrix of the linearized system in Eq. (4.24) becomes, simply,

2k—-10 -1
Lo(n)=

1 0
Therefore, the matrix, L&, defined by Eq. (4.25), becomes

[ 2k-10 -17%
1 0

2k =102 -1  —(2k - 10)

2k - 10 -1

The characteristic equation of L§ is:
A —[(2k ~ 102 =2 +1=0 |

which yields the eigenvalues

102 _ | — 1M _ <
o L2 120> 2i\/‘ (2 1ﬁo> 2J L

Clearly, V k € [0,4) C R, the eigenvalues, A, "straddle”" the number one on the real line.

Therefore, the solution given by Eq. (4.35) is a set of period two saddle points.
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Suppose, now, that s = 1 in Egs. (4.34). The solution is just

x*=0 , (4.36)

1.e, the trivial solution. The matrix of the linearized system in Eq. (4.24) becomes

2—k -1
Ly(n)= ,
1 0

and, hence,

2-kP-1 —@2-k)
2k -1

The characteristic equation of L  is

M—l2=kP-2A+1=0 ,

which produces the eigenvalues

_-kP-2 Q@=kp-2 [
Ay= ) i\/l 5 J -1

Clearly, V k € (0,4) c R, the eigenvalues, A,, are complex conjugates lying on the unit cir-

cle. Therefore, the solution given by Eq. (4.36) just "reflects” the stable behavior of the
equilibrium point at the ori gin.

Examples of the period two solutions generated by Eq. (4.35) are shown in Figs. (4.6)-
(4.9). Curiously enough, note that the figures indicate that the stable and unstable manifolds
of the period two saddle points give rise to phase portraits that are just ninety-degree rotations
of the phase portraits for & < 0. However, the structure of the phase portraits for € < 0 rises

from the stable and unstable manifolds emanating from the equilibrium saddle points. Thus

the period two solutions seem "special.”
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Example IIl:  i5=2,4 =1

For this example, examination of Eq. (4.19) reveals that m = 2. Therefore, consider a

solution of the form

x;* =Acos(n¢+ V) + A jcos(3nd + 3y) . (4.37)

Substitution of Eq. (4.37) into the discrete Duffing equation, Eq. (3.4), and use of basic tri-

gonometric identities, leads to

343 3474, 3447
(2c080 —2+k)A +¢ T+ ) + 7 cos(nd +y)

A3 3A%A; 343
+] (200830 -2+ k)A +¢ —4—+ 7 +—4— cos(3n ¢ + 3y)

3A%4) 3442
+& 4 + ) cos(5n ¢ + Sy)

3447 A}
+£ 1 cos(Tno+7y) +¢ o cos(9nd+9y)=0 .
Use of Egs. (4.7b), (4.15), (4.18), and (4.21) yields, further,

343 34%, 3447
(k—-1DA +¢ —4—+ y 1+ =11+ 5 [1+(=1)*] cos(nd + y)

A3 3AAP A7
+| (k-2)A;+¢ T+ > +—4—[3+(—1)5] cos(3nd+3y)=0 |, (4.38)
where
T
¢_3
and
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Also, Eq. (4.8) yields, for the present example,
P=6.

Satisfaction of Eq. (4.38), for all n, implies that coefficients of the trigonometric terms

must vanish independently, i.e., after minor simplification,
3g 2 s
k—1+—4— {A%+AA {1+ (=D I}=0, (4.39)
and
(k-2)A1+%{A3+6AA12+A13[3+(—1)v“]}=0 o (4.40)

Hence, in general, the coefficients, A and A, may be determined by solving Eqs. (4.39) and

(4.40) simultaneously. In practice, such a solution may be obtained numerically for specific

values of k£ and ¢,

However, note that, for s = g =1, Eq. (4.39) becomes, simply,
k—1+%(A2)=0 .

Thus, for s =g =1,

a2 [T7F
EY e

Therefore, the existence of nontrivial period six solutions implies that £ <1 for e > 0, and

that ¥ > 1 for £ <0. Additional Testrictions on 4 may result from solution of Egs. (4.39) and
(4.40).

Once the coefficients, 4 and A 1, have been obtained for a given value of s, the stability
of the periodic solution, x,*, given by Eq. (4.37), may be investigated via the approach which

was outlined in Section (4.3.3) and illustrated in Example L. In practice, however, the stabil-

ity of such a solution may be more simply determined by numerical simulation. Examples of
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the period six solutions presently under discussion may be viewed in Figs. (4.10) and (4.11).
The procedure used to obtain these figures is strictly analogous to the procedure used to

obtain the figures for Example I.

4.3.5 A Note on Approximate Periodic Solutions

Clearly, the analysis of Section (4.3.1) indicates that if the frequency, ¢, is a rational
multiple of &, then there exists an integer, i, such that Egs. (4.5) and (4.6) are satisfied.
Hence, an exact periodic solution may be constructed in the form of Eq. (4.22), provided ¢

and & are such that a Fourier approximation of the type of Eq. (4.3) is applicable.

However, if i is large, construction of an exact periodic solution can become tedious
due to the large number of simultaneous, nonlinear algebraic equations that must be solved
for the coefficients. In the event of such a circumstance, the approximate frequency-

amplitude relationship to a given order in ¢, €.g., Eq. (3.45), may be used to obtain a reason-

ably accurate estimate of the amplitude.

43.6 Some Closing Comments on Periodic Solutions

In summary, for 0 < k < 4, if the frequency, ¢, 1s such that Egs. (4.5) and (4.6) are
satisfied, exact periodic solutions of the discrete Duffing equation may be constructed using
Eq. (4.22), where m is the smallest number satisfying Eq. (4.19). The phase angle, v, will be

given by Eq. (4.15). The coefficients of the trigonometric terms may be determined as illus-

trated in the examples.

In general, however, the existence of real coefficients, i.e., the existence of true periodic
solutions of the form of Eq. (4.22), places restrictions on the range of the linear "stiffness," k .

Different restrictions apply to the case where £ > 0 than 1o the case where € < 0,

Characterization of the phase points generated by an exact periodic solution, e.g.,
periodic saddle, periodic center, etc., relies on the determination of the Stability of the
periodic solution. The stability analysis of a given periodic solution may be carried out

analytically, as outlined in Section (4.3.3), or numerically.



- 97

i

ot

3G

e}

i
eh

“

f

Rt




olu-

) ) 0
yd
Ko
w
o °
fa] m
I
Q
[N
(o]
K
=
Sy
foof
(]
=
) (]
HEow
e
Q i
u ay
B
~ [} o
-~ - f19)
D v @ ‘
o (ie}
!Am i
20y
W
17
«
e
.h‘_
o)
|
o
"
@]
o}
pomnd
[oN)
E
~ «
.i, A
™ N
! w ]
o <
T
-
+
o
"



- 99 .

Specifically, as illustrated in Chapter 2 and the examples, even period solutions which
wind around the phase plane origin once before repeating themselves always occur in pairs.
One solution will be a set of periodic centers and the other a set of periodic saddles. Both
solutions are alternately intermingled. In this case, saddle connections occur, and the separa-
trices connecting the periodic saddle points exhibit generic, heteroclinic behavior. The
"amount" of heteroclinic behavior increases as the absolute value of the nonlinear parameter,

{e|, increases. Hence, the "size" of the stable regions surrounding the periodic centers

decreases as |€| increases.

The period two solutions discussed in Example II seem special because of the global
ramifications of their existence and stability. Examination of the phase portraits occurring
along a vertical line, say k =2, in the parameter space of Fig. (2.3), indicates that the struc-
tures of the phase portraits for £> 0 are Just ninety-degree rotations of the structures of the
phase portraits for € < 0. However, for £ <0, the structures of the phase portraits are essen-
tally governed by the equilibrium points, while, for ¢ > 0, the structures are essentially

governed by a pair of period two saddle points.

The characterization of odd period solutions, in general, and of even period solutions
that map around the origin more than once before repeating themselves, has not been
specifically attempted in the present investigation. However, the existence of such solutions
is implied by the generality of the analysis of Sections (4.3.1) and (4.3.2), provided that real
values of the coefficients of the exact solutions exist. Quite possibly, the phase plane Sym-

metry exhibited by the discrete Duffing equation may significantly affect the existence and

stability of such solutions.

In particular, for w = 1, numerical simulation indicates that odd period solutions always
occur as "pairs” of pairs in the sense previously discussed for even period solutions. That is,
the phase plane structure of the "ring" of periodic "islands" looks like the phase plane struc-
ture generated by an even period solution with a period twice as large as the odd period solu-
tion. However, the phase points of the odd period solution "leapfrog" from one "island" in

the periodic "ring," say "island;," to "islands," then to "islands," etc., until they return to
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"island;."

4.4 QUASI-PERIODIC SOLUTIONS

4.4.1 Approximate Quasi-periodic Solutions

If ¢ is not a rational multiple of 7, then none of the divisors of the form of Eq. (4.1
vanish identically. In such a case, an exact periodic solution of the discrete Duffing equation,
of the form of Eq. (4. 22), does not exist. In reality, as illustrated in Chapter 2, a quasi-
periodic solution may exist. The existence of such a quasi-periodic solution will, in general,
depend upon the specific values of the equation parameters, € and k. For the remainder of the

present discussion, suppose that ¢ is an irrational multiple of %, and that € and & are such that

a quasi-periodic solution exists.

Suppose, additionally, that ¢ is "close" to a rational multiple of , i.e., suppose

__gr !
¢“i0+1+0<'8”’ lel <1, (4.35)

for some positive integers, g, ig, and I, where q and i are as defined in Section (4.3). Mak-

ing use of a basic trigonometric identity, note that

cos[(2i g+ 1)0] = cos [ (2ig+1) { T‘%J } cos[O (1e]*)]
0

-sin[(2i0+1)[%JJ sinfO (1e1')]
0

=cos{[2(10+1)—1]{ J}COS[O(‘EI )]
[ ”sm[OUeiZ)]

-—sin{ Rg+1)-1]

— qn l
—cos[ io+1J cos[O(|e]*)]
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+sin[ I_O‘Ifl] sin[0 (e ]')] | (4.36)
and that
— qr IN o qn . !
cosd)—cos[ 1'0+1J cos{O (|e]")] sm[ 1'0+1J sin[O (]ef")] . (4.37)

Hence, using Eqgs. (4.1), (4.36), and (4.37),

. e .
Ozxo+1=-2sm[ z'quJ sin[O (|e|")] .

A Taylor series expansion of the sine function gives

sinfO([e]H=0(el’) ,

and, hence,
G2+ 1=0(lelly .

Therefore, an examination of the form of the approximate solution, as discussed in Sec-
tion (4.2), reveals that if ¢ is expressible in the form of Eq. (4.35), with / "large," then an
approximation of the form of Eq. (4.2) is invalid. Such a situation is analogous to the "prob-
lem of small divisors” occurring for nonlinear differential equations. A method of handling

the "problem of small divisors," for € very small, will be briefly mentioned in Section (4.4.2).

Suppose, now, that ¢ is not close to a rational multiple of 7 in the sense of Eq. (4.35).
Then an approximate solution of the form of Eq. (4.3) provides an asymptotic representation
of the actual quasi-periodic solution. A comparnison of the true and approximate quasi-
periodic solutions is facilitated by use of the pseudo-period of the true (numerical) solution,

as defined in Chapter 2. An example of such a comparison is shown graphically in Fig.

(4.12).
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Examining the phase portraits of Chapter 2, quasi-periodic solutions appear as concen-
tric (distorted) circles around an equilibrium center and as "chains" of (distorted) circles
around periodic centers. However, note that any finite digit representation of the frequency,
¢, is obviously really a rational multiple of n. Therefore, the (distorted) circles mentioned

above are actually higher order, Le., w "large," periodic solutions that are close to the

corresponding quasi-periodic solutions.

4.4.2 A Note on the Problem of Small Divisors

As previously discussed, if the frequency, ¢, is "close" to a rational multiple of 7 in the
sense of Eq. (4.35), then an approximation of the form of Eq. (4.3) is invalid. If, however, ¢
is very small, then an approximation of the amplitude may be obtained by using an extension

of the discrete method of slowly varying parameters that has been developed elsewhere.

Briefly, the extension of the method is based on considering the amplitude as a function

of a continuous variable, say ¢, and assuming, formally,
e=dr .

Subsequently, using the discrete method of slowly varying parameters leads to an approxi-
mate differential equation for the amplitude. A more explicit development will not be

attempted within the present investigation since application of the extended method is res-

tricted to the case where € is very small.
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CHAPTER 5

SUMMARY

The present investigation has focused on the phenomenological (numerical) and analyt-
ically quantitative study of the periodic and quasi-periodic solutions of conservative, auto-

nomous, second order, nonlinear difference equations. In particular, a version of the discrete

Duffing equation of the form
Xp] = 22Xy + X,y +hx, +ex,3=0 | (5.1

has been studied. The periodic and quasi-periodic behavior of certain solutions of Eq. (5. 1)
has been investigated using numerical simulation, and approximate and exact analytical tech-

niques. Some brief comments on the motivation for the mvestigation were presented in

Chapter 1.

Chapter 2 concentrated on the phenomenology of the phase portraits of Eq. (5.1).
Equilibrium solutions of the discrete Duffing equation were obtained by a simple analysis.
The parametric dependence of the existence and stability of the equilibrium solutions was
then determined in order to obtain an initial, global idea of the phase plane structure,
Specifically, periodic, quasi-periodic, and separatrix solutions were observed to occur for
€>0and ~2<k <4, and fore<0 and Q< k < 4. The remainder of the phenomenological
study was then restricted to a brief, primarily graphical, discussion of the structure of the

phase portraits occurring within the above-mentioned regions of the parameter space.

Chapter 3 was devoted to a development of "regular" perturbation methods for the gen-
eration of approximate solutions to a class of nonlinear difference equations. Following an
initial discussion of the straightforward expansion and "secularity," three discrete perturba-

tion techniques were derived explicitly. These techniques are strongly analogous to the
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Lindstedt-Poincar€ method, the method of renormalization, and the method of dominant bal-
ance, respectively, used for approximate solution of nonlinear differential equations. All of

the techniques discussed apply directly to equations of the form
Xp1 = 20080x, +x,_1 +&f (x,)=0 . (5.2)

The discrete Lindstedt-Poincare method begins by rewriting Eq. (5.2) in the form

Xn+1 — 20080%, +x,_1 + 2(cosd — cosB)x, +ef (x,)=0 , (5.3)
and taking
X, =x,,0+£x1n +82xn2+... (5.4)
and
cosd —cosb =ca; +e2ay+ ... . (5.5)

The expansions given by Egs. (5.4) and (5.5) are substituted into Eq. (5.3). Subsequently, re-
quiring that the coefficient of each power of € in the resulting equation vanish independently
leads to a recursive set of linear difference equations for the x,i, i =0,1,2,.... The coefficients,
a;, 1 =1,.2,.., appear in the inhomogeneous terms of these linear equations and are chosen

such that any "secular" inhomogeneity is eliminated.

The discrete method of renormalization begins by considering Eq. (5.2), directly, and
using the expansion of Eg. (5.4). Requiring that the coefficient of each power of € vanishes
independently results in a recursive set of linear difference equations that leads to a "secular”

approximate solution. This “secularity” may be removed by substituting the expansion

E

O0=0+eb;+e%,+...

into the approximate solution and analytically manipulating the result.
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A simpler, but less generally applicable technique, called the discrete method of dom-
inant balance, begins with a much stronger a priori assumption of the form of the solution.
The assumed solution is substituted into Eq. (5.2), and the usual order arguments are used to
determine the unknowns of the assumed approximate solution. The general use of the
discrete method of dominant balance should be restricted due to the relatively detailed, a

priori knowledge required for its correct application.

Chapter 4 concentrated on applying the methods developed in Chapter 3 to the study of
the periodic and quasi-periodic solutions of the discrete Duffing equation, Eq. (5.1). To a

given order, say j, the perturbation techniques yield a consistent approximate solution of the

form

Jo
xn=Aumm¢+qo+§;dAﬂmq@j+1xn¢+wn+cmd”b, (5.6)
J=1

where the coefficients, A j»J =1,...,jo, are given by

Joj+l
A= S geltlauea-l 5.7)
I=1

The coefficients, ¢, 1 =1,.,/0—j + 1, are of the form

a=F p,-cs;y‘ogﬁ"...ozﬁl , (5.8)

2

where p; € R and 0,0,y € Z*, and, for a giveni,
Yi+Bi+..+y21 . (5.9)
The "divisors” occurring in Eq. (5.8), and, hence, in Eqgs. (5.7) and (5.6), are defined as

G241 =cos§ —cos[(2j + 1)0] , Jj=12,. . (5.10)
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In view of Eq. (5.9), divisors of the form of Eq. (5.10) appear in every term in the sum-
mation on the right-hand side of Eq. (5.7), and, hence, appear in every term in the summation
on the right-hand side of Eq. (5.6). Therefore, an examination of the problem of the vanish-
ing of such divisors was crucial to an attempt to delineate the range of valid application of

Eq. (5.6).

In particular, supposing, for a given i,

G2ir1 =0, (5.11)
and
G #0 Vizig. (5.12)
The satisfaction of these criteria lead to
0= l_o‘ffl L qeZr, g<w(igt]), (5.13)

where g cannot be an integral multiple of any of the nontrivial prime factors of (iy+ 1), and

w is the number of times the solution wraps around the center before Tepeating itself.

With ¢ given by Eq. (5.13), an examination of the trigonometric factors appearing in

Eq. (5.6) indicates that if j > m, where m is the smallest integer satisfying

> - .14
and lf the phase angle, w, iS taken as
ST
- , 5= O; > 515

then the (odd) cosine series truncates with the (m — 1) term. This fact implies that an exact
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solution can be constructed using a finite number of terms, i.e.,

m—1

X, = Acos(nd + ) + > A;cos[(2i + D(ned+vy)] , (5.16)

i=1
where m, ¢, and y are defined by Egs. (5.14), (5.13), and (5.15), respectively. The
coefficients, A and 4;,7 =1,..m — 1, may be determined by substituting Eq. (5.16) into Eq.
(5.1). Solutions constructed in such a manner are clearly periodic. Three simple examples
were used to illustrate the constructive procedure. As noted in the examples, for a given g,

the existence of real coefficients in Eq. (5.16) is strongly dependent on k.

If iy, as defined above, is "large," then construction of an exact periodic solution using
Egs. (5.13)-(5.16) may be tedious. In that case, a reasonably accurate estimate of the ampli-
tude of the periodic solution may be obtained from the approximate solution to a "lower" ord-

er via the approximate frequency-amplitude relationship, e.g., Eq. (5.5).

Clearly, in view of Eq. (5.13), if ¢ is any rational multiple of 7, then there exists an i 0
such that the preceding discussion holds. If, however, ¢ is an irrational multple of x, then

none of the divisors defined in Eq. (5.10) vanishes. In that case, depending upon € and &, the

true solution may be quasi-periodic.

If, in addition, ¢ is not "close" to a rational multiple of 7 in the sense of Eq. (5.13) with
i small, then the true solution may be asymptotically approximated by Eq. (5.6). However,
if ¢ is "close" to a rational multiple of & in the same sense, then the approximation is invalid.
This situation corresponds to the "problem of small divisors” encountered in the regular per-

turbation theory of nonlinear differential equations. Solution of the "problem of small divi-

sors” is beyond the scope of the present thesis.

Some general comments were made on the connection between the solutions generated
by the techniques of Chapter 4 and the global phase portrait structures ilhistrated in Chapter

2. These comments arose from the stability analyses of the solutions and were conceptually
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verified by the corresponding numerical simulations.



10.
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