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ABSTRACT

This thesis concerns the geometric problem of finding a convex set that best fits a
given dataset. Our question serves as an abstraction for data-analytical tasks arising
in a range of scientific and engineering applications. We focus on two specific

instances:

1. A key challenge that arises in solving inverse problems is ill-posedness due
to a lack of measurements. A prominent family of methods for addressing
such issues is based on augmenting optimization-based approaches with a
convex penalty function so as to induce a desired structure in the solution.
These functions are typically chosen using prior knowledge about the data. In
Chapter[2] we study the problem of learning convex penalty functions directly
from data for settings in which we lack the domain expertise to choose a
penalty function. Our solution relies on suitably transforming the problem of

learning a penalty function into a fitting task.

2. In Chapter 3] we study the problem of fitting tractably-described convex sets

given the optimal value of linear functionals evaluated in different directions.

Our computational procedures for fitting convex sets are based on a broader frame-
work in which we search among families of sets that are parameterized as linear
projections of a fixed structured convex set. The utility of such a framework is that
our procedures reduce to the computation of simple primitives at each iteration,
and these primitives can be further performed in parallel. In addition, by choosing
structured sets that are non-polyhedral, our framework provides a principled way to
search over expressive collections of non-polyhedral descriptions; in particular, con-
vex sets that can be described via semidefinite programming provide a rich source

of non-polyhedral sets, and such sets feature prominently in this thesis.

We provide performance guarantees for our procedures. Our analyses rely on
understanding geometrical aspects of determinantal varieties, building on ideas
from empirical processes as well as random matrix theory. We demonstrate the
utility of our framework with numerical experiments on synthetic data as well as

applications in image denoising and computational geometry.

As secondary contributions, we consider the following:
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1. In Chapter 4] we consider the problem of optimally approximating a convex
set as a spectrahedron of a given size. Spectrahedra are sets that can be

expressed as feasible regions of a semidefinite program.

2. In Chapter [5| we consider change-point estimation in a sequence of high-
dimensional signals given noisy observations. Our method integrates classical
approaches with a convex optimization-based step that is useful for exploiting

structure in high-dimensional data.
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Chapter 1

INTRODUCTION

The heart of this thesis concerns the geometric problem of finding a convex set
C c R? that best fits a given dataset. Recall that a set C is convex if it satisfies the
following property:

Ax + (1 = Dy € C for every x,y € C, and every 4 € [0, 1].

The task of fitting a convex set to data serves as an abstraction of data-analytical
tasks arising in a range of scientific and engineering applications. For example, in
econometrics, one may wish to learn a convexity-based model to describe supply-
demand levels of a specific commodity based on historical data; here, convexity-
based considerations arise naturally as a result of fundamental principles such as
marginal utility. In computational geometry, the computation of convex sets to
encompass a collection of points in space is a routinely applied procedure, and it

serves as a building block for describing more complicated objects.

The nature of the data that is presented here may take many forms; for instance, they
may reveal direct information about C in the form of points lying on the boundary
of C, or they may reveal indirect information about C in the form of optimal values
of a collection of functions evaluated over C. The precise manner in which we fit a
convex set depends on the type of data we receive as well as the purpose for which
we fit these sets. In Chapters [2] and [3] we focus on two specific instances of fitting

problems, and we summarize the contributions of these chapters as follows:

1. Chapter[2; Learning Semidefinite Regularizers. Regularization techniques
are widely used to address ill-posedness in optimization-based approaches for
solving inverse problems. These techniques frequently take the form of penalty
functions that are augmented to the objective of our optimization instance.
The purpose of introducing regularization is to induce a certain desired struc-
ture in the solutions to our inverse problems; for instance, the £; norm is useful
for inducing sparse structure in solutions, and the nuclear-norm is useful for
promoting low-rank structure in matrices. In the most typical implementa-

tions of regularization techniques, the specific choice of regularizer (i.e. the
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penalty function) is informed by domain-specific knowledge about the data;
for instance, certain classes of signals are known to be well-approximated as
being sparse in the Fourier domain, and a natural choice of regularizer that is
effective at inducing such structure is the ¢; norm with respect to the Fourier
basis. Unfortunately, the challenge in many contemporary data-analytical
tasks arising in scientific and engineering applications is that the data is fre-
quently high-dimensional, and is presented in an unstructured manner. These
challenges complicate the task of providing an informed choice of regular-
izer. To address these issues, we propose a framework for learning a suitable

regularizer directly from data.

Our first contribution is to provide a conceptual link between the problem of
learning a regularizer from data and the task of identifying a suitable atomic
set. More precisely, atomic sets are collections of vectors — we refer to these as
atoms — that specify a model for representing data succinctly. The relevance
of atomic sets to our set-up is that they identify natural choices of regularizers

that are effective at enforcing latent structure present in the data.

Our second contribution is to show that the simplest instantiation of learning
a regularizer precisely corresponds to the more widely studied problem of
‘dictionary learning’ or ‘sparse coding’ — these concern the task of represent-
ing data as linear projections of sparse vectors. As we elaborate further in
Chapter [2] the regularizers that we learn from dictionary learning correspond
to identifying a finite collection of atoms for data, and are computable via

linear programming.

Our third contribution is to propose and analyze an algorithm for learning
regularizers which correspond to a specific infinite collection of atoms, and
are computable via semidefinite programming. In particular, our framework
naturally generalizes prior works in dictionary learning. A critical component
of our procedure is that we apply an intermediate Operator Sinkhorn iterative
step, and this is necessary to address identifiability issues that arise. The
Operator Sinkhorn iterative step is the operator analog of a widely studied
algorithm for matrix scaling known as Sinkhorn Scaling. Our main result
in this chapter is a local linear convergence guarantee for our algorithm.
The proof of our result relies on the analysis of affine rank minimization
instances, the stability properties of Operator Sinkhorn and their relation to

geometric aspects of determinantal varieties (in particular, the tangent spaces
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with respect to these varieties), as well as ideas from random matrix theory.

Our fourth contribution is to demonstrate the utility of our framework for
learning regularizers, and in particular, regularizers that correspond to an
infinite collection of atoms. We consider a numerical task in which we
denoise a collection of natural images corrupted by noise. Our results show
that the denoisers obtained using our framework attain the same performance
as denoisers obtained using prior works based on dictionary learning, but are

computationally cheaper to evaluate.

. Chapter [3;: Fitting Tractable Convex Sets to Support Function Evalua-
tions. In this chapter, we consider the problem of reconstructing a convex
set given optimal values of linear functionals evaluated in different directions.
More formally, given a vector u € R4 with unit Euclidean-norm, the support
function of a convex set C c R? evaluated in the direction u € R? is defined
as hc(u) = supge(g w). Our task is to estimate an unknown compact convex
C* c RY given access to its support function evaluations, which may further

be corrupted by noise {(u®, y?) : y = pox(u?) + €D},

The task of reconstructing convex sets from their support function measure-
ments arises in a range of applications; for instance, in tomographic appli-
cations, the extent of the absorption of parallel rays projected onto an object
provides support information about the object. Previous approaches for es-
timating convex sets from support function measurements typically rely on
estimators that minimize the error over all possible compact convex sets. Un-
fortunately, the drawback of such approaches is that they do not allow for the
incorporation of prior structural information about the underlying set, and the
resulting estimates become increasingly more complicated to describe as the
number of measurements available grows. In addition, these estimates are fre-
quently specified in terms of polyhedral descriptions, and are thus inadequate

for expressing non-polyhedral sets.

In this chapter, we describe a framework for estimating tractable convex sets
from support function evaluations. Our approach is based on estimators that
minimize the error over structured families of convex sets that are specified as
linear images of concisely described sets in a higher-dimensional space that is
not much larger than the ambient space. Examples of concisely described sets
that we consider in this chapter include the simplex and the free spectrahe-

dron. By parameterizing convex sets as linear images of concisely described
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sets we achieve two outcomes: from a computational viewpoint, one can op-
timize linear functionals over estimators that we obtain as outputs from our
procedures efficiently, and from an inferential perspective, we regularize for

the complexity of the reconstruction.

We provide a geometric characterization of the asymptotic behavior of our
estimators. Our analysis relies on a results that shows certain sets which
admit semialgebraic descriptions are Vapnik-Chervonenkis (VC) classes. We
apply our numerical procedures to a range of reconstruction tasks including
computing a convex mesh of the human lung as well as (a variant of) fitting
points on the unit-sphere in R? so as to maximize separation. Our numerical
experiments highlight the utility of our framework over previous approaches in
settings in which the measurements available are noisy or small in number as

well as those in which the underlying set to be reconstructed is non-polyhedral.

A Framework for Fitting. At the core of Chapters|2|and [3|is a broader framework
for fitting convex sets based on searching over families specified as linear projections

of ‘structured’ convex sets:
% ={A(C) : A € L(RY,R%)}. (1.1)

For instance, in Chapter |3} we consider fitting with sets that are expressible as the
projection of the simplex — this is the collection of non-negative vectors whose

entries sum up to one:
AT :={x:x=(x1,...,x),(x,1) =1,x, > 0,1 <i < g} CR%.

In addition, in Chapter [3] we also consider fitting with sets that are expressible as
the projection of the free spectrahedron — this is the collection of positive semidef-
inite matrices whose eigenvalues sum up to one, and can be viewed as a suitable

generalization of the simplex:
O :={X:X =X trace(X) =(X,I) = 1,4;(X) > 0,1 <i < p} cSP.

In Chapter 2] we are interested in fitting convex sets that arise as level sets of
norms. Since norms are functions that are symmetric about the origin, it is natural
to consider lifting sets C that are centrally symmetric, as the projections of such

sets are also centrally symmetric. Here, recall that a set C is centrally symmetric if
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—x € C whenever X € C. As such, in Chapter 2, we primarily consider projections

of the ¢; ball (also known as the cross-polytope)

X:X=(xq,.. .,xq)’,Z |x;)| < 1p cRY,
i=1
as well as the nuclear-norm ball

P
X: Z 0i(X) <13 cRP*P, gy(-) is the i-th singular value.
i=1

The parameterization of families of convex sets as linear images of structured sets in
(L.1) is a central idea in optimization as such families offer a powerful and expressive
framework for describing feasible regions of convex programs. In the context of
fitting convex sets to data, we search over families parameterized as for similar

reasons, and we elaborate on these as well as additional reasons in the following.

First, as noted above, the parameterization of convex sets as linear images of struc-
tured sets as in (I.1)) offers a very expressive framework for describing convex sets.
As a simple example to illustrate our point, every polytope with at most g vertices
can be represented as the linear image of the simplex A? Cc R? via an appropriate

projection map A € L(R9,R9).

Second, by choosing structured convex sets that are non-polyhedral, our framework
offers a principled approach for searching over collections of non-polyhedral sets.
The capacity to accommodate non-polyhedral descriptions within our framework
is a significant contribution of this thesis over prior works. As we elaborate in
subsequent chapters, these prior works can be viewed suitably as instances of fitting

convex sets with polyhedral descriptions to data.

Third, parameterizations of the form (1.1]) provide a concrete approach to quantify
the complexity of a set description, namely, in terms of the dimension of the lifting
set C. We refer to such a quantity as the lifting dimension. The notion of using
the lifting dimension as a measure of complexity of a set description is a core
idea in the literature of ‘lift-and-project’ representations (also known as extended
formulations) whereby one seeks compact descriptions of complicated objects by
lifting to dimensions that are slightly higher than the ambient space. Fitting with sets
that admit simple descriptions is an essential consideration within our framework
as there are numerous instances in which we require these sets for downstream

processing (the setting we consider in Chapter [2] is one such example). In such
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settings, it is crucial that we are able to perform computations such as optimization

over our fitted sets efficiently.

Fourth, we have effective computational strategies for searching over convex sets
specified in the form of (I.I). The computational task of searching over families
described as naturally leads to an optimization instance over the space of linear
maps L(R?,R?). As we elaborate further in Chapters [2and [3| such a task may be
subsequently reformulated in terms of the structured factorization of a data matrix.
The utility of such a reformulation is that we have access to a vast literature of
prior works on computing matrix factorizations, and this is helpful for developing
computational strategies for our fitting task. The procedures we develop in Chapters
[2land[3|are based on the idea that we compute structured factorizations by optimizing
over one factor while keeping the other factor fixed. Such methods are frequently
termed as ‘alternating minimization’-based approaches, and they heavily rely on
the minimization of each factor being relatively simple to compute. In the current
context whereby we search over families parameterized by (1.1]), the minimization of
our associated matrix factorization instance over each factor requires computations
that involve the facial structure of C. Consequently, it is advantageous to select
choices of C for which its facial geometry is well-understood. Examples of sets that
satisfy such a property include the simplex, the free spectrahedron, the ¢; ball, and

the nuclear norm ball.

Semidefinite Programming-Representable Convex Sets. A key emphasis of this
thesis is that we fit using sets that can be described via semidefinite programming.
Such sets are non-polyhedral, and they naturally generalize the collection of sets

that can be described via linear programming, i.e., the collection of polyhedral sets.

A range of basic but important questions naturally arise in the context of fitting
convex sets with semidefinite descriptions. For instance, one may wish to identify
settings under which using semidefinite descriptions over polyhedral descriptions
is advantageous. Another question is that one may wish to further understand the
expressiveness of semidefinite descriptions. We investigate a simplified version of
the latter question in Chapter ] and we summarize the contributions of this chapter

as follows:

1. Chapter 4 Optimal Approximations of Convex Sets as Spectrahedra.
Spectrahedra are convex sets that can be specified via linear matrix inequal-

ities. These are fundamental objects in the field of control theory as well
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as optimization. The collection of spectrahedra is widely known to be very
expressive; for instance, it includes the collection of all polyhedra. However,
unlike the family of polyhedra, our understanding of spectrahedra is far more

limited.

In this chapter, we focus on understanding the expressiveness of spectrahedra
as convex sets. More precisely, we pose the following mathematical question:
Given a compact convex C C RY, what is its optimal approximation as a
spectrahedron of size k (i.e. the spectrahedron can be expressed in terms of
a linear matrix inequality with matrices of size k X k)? Building off ideas
developed in Chapter[3] we develop numerical procedures for computing such
approximations. Our computational tools are useful for understanding the ex-
pressiveness of spectrahedral sets from an approximation-theoretic viewpoint.
We demonstrate numerical implementations of our procedure; in particular,
we describe some examples of convex sets in which spectrahedra of small

sizes offer a surprisingly high degree of approximation.

Secondary Contributions. As a secondary contribution, in Chapter[5] we consider
the problem of estimating changes in a sequence of high-dimensional signals given

noisy observations. We outline the contributions of Chapter [5|as follows:

1. Chapter[5; High-Dimensional Change-Point Estimation: Combining Fil-
tering with Convex Optimization. Change-point estimation is the identifi-
cation of abrupt changes in a sequence of observations. Such problems are
routine in time-series analyses, and arise in a range of applications such as
quality control and financial modeling. As in other inferential tasks encoun-
tered in contemporary settings, a key challenge underlying many modern
change-point estimation problems is the increasingly large dimensionality
of the underlying sequence of signals, and this leads both to computational

difficulties as well as to complications with obtaining statistical consistency.

A prominent family of methods for estimating the locations of change-points in
a sequence of noisy scalar-valued observations is based on the filtered deriva-
tive. These methods begin with an averaging step applied over observations in
a sliding window, followed by a computation of pairwise differences between
successive averages, and finally the implementation of a thresholding step to
estimate change-points. Unfortunately, the natural extension of the filtered

derivative procedure to the high-dimensional setting leads to performance



8

guarantees for reliable change-point estimation that require the underlying

signal to remain unchanged for long portions of the sequence.

In this chapter, we propose a new approach for estimating change-points in
high-dimensional signals by integrating ideas from atomic norm regulariza-
tion with the filtered derivative framework. The atomic norm regularization
step is based on solving a convex optimization instance, and it exploits latent
low-dimensional structure that is frequently found in signals encountered in
practice. The specific choice of regularization may be selected based on prior
knowledge about the data, or it may be learned from data using the ideas
from Chapter 2] Our algorithm is well-suited to the high-dimensional setting
both in terms of computational scalability and of statistical efficiency. More
precisely, our main result shows that our method performs change-point esti-
mation reliably as long as the product of the smallest-sized change (measured
in terms of the Euclidean-norm-squared of the difference between signals at a
change-point) and the smallest distance between change-points (as the number
of time instances) are larger than a Gaussian width parameter that character-
izes the low-dimensional complexity of the underlying signal sequence. Last,
our method is applicable in online settings as it operates on small portions of

the sequence of observations at a time.

1.1 Notation and Conventions

The styles of all variables and quantities follow these rules: a is a scalar, a is a
vector, A is a matrix, and A is a linear operator mapping matrices to matrices. A is
typically a set, while .7 is a collection. A denotes a linear map from the space of

matrices to vectors.

We use d to refer to the ambient dimension, and we use g to refer to the lifted
dimension. The exception is when we lift to the space of matrices, in which case we
denote using p X p dimensions. We typically use s to denote the number of nonzero

entries of a vector, i.e., sparsity, and r to denote rank of a matrix.

Last, || - |l¢, denotes the £,-norm; in particular, || - ||, denotes the Euclidean norm.



Chapter 2

LEARNING SEMIDEFINITE REGULARIZERS

2.1 Introduction

Regularization techniques are widely employed in the solution of inverse problems
in data analysis and scientific computing due to their effectiveness in addressing
difficulties due to ill-posedness. In their most common manifestation, these methods
take the form of penalty functions added to the objective in optimization-based
approaches for solving inverse problems. The purpose of the penalty function
is to induce a desired structure in the solution, and these functions are specified
based on prior domain-specific expertise. For example, regularization is useful
for promoting smoothness, sparsity, low energy, and large entropy in solutions to
inverse problems in image analysis, statistical model selection, and the geosciences
[26L 30, 32, 35, 136, 48, 99, [116, [144]]. In this paper, we study the question of
learning suitable regularization functions from data in settings in which precise
domain knowledge is not directly available. The regularizers obtained using our
framework are specified as convex functions that can be computed efficiently via
semidefinite programming, and therefore they can be employed in tractable convex

optimization approaches for solving inverse problems.

We begin our discussion by highlighting the geometric aspects of regularizers that
make them effective in promoting a desired structure. In particular, we focus on a
family of convex regularizers that is useful for inducing a general form of sparsity
in solutions to inverse problems. Sparse data descriptions provide a powerful
formalism for specifying low-dimensional structure in high-dimensional data, and
they feature prominently in a range of problem domains. For example, natural
images are often well-approximated by a small number of wavelet coeflicients,
financial time series may be characterized by low-complexity factor models, and a
small number of genetic markers may constitute a signature for disease. Concretely,
suppose .7 C R is a (possibly infinite) collection of elementary building blocks or
atoms. Then y € R is said to have a sparse representation using the atomic set .
if y can be expressed as follows:

k
y = Zc,-a,-, a, € d,ci >0,
=1

1
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for a relatively small number k. As an illustration, if o/ = {ie(j)};?':1 c R4
is the collection of signed standard basis vectors in R?, then concisely described
objects with these atoms are those vectors in R consisting of a small number
of nonzero coordinates. Similarly, if .o/ is the set of rank-one matrices, then the
corresponding sparsely represented entities are low-rank matrices; see [33] for a
more exhaustive collection of examples. An important virtue of sparse descriptions
based on an atomic set .o is that employing the atomic norm induced by &/ —
the gauge function of the atomic set @/ — as a regularizer in inverse problems
offers a natural convex optimization approach for obtaining solutions that have
a sparse representation using </ [35]. Continuing with the examples of vectors
with few nonzero coordinates and of low-rank matrices, regularization with the ¢;
norm (the gauge function of the signed standard basis vectors) and with the matrix
nuclear norm (the gauge function of the unit-Euclidean-norm rank-one matrices)
are prominent techniques for promoting the corresponding sparse descriptions in
solutions to inverse problems [30, 32, 36, 48, 153,199,116, 144]]. The reason for the
effectiveness of atomic norm regularization is the favorable facial structure of the
convex hull of &7, which has the feature that all its low-dimensional faces contain
points that have a sparse description using 7. Indeed, in many contemporary data
analysis applications the solutions of regularized optimization problems with generic
input data tend to lie on low-dimensional faces of sublevel sets of the regularizer
[31} 148, [116]]. Based on this insight, atomic norm regularization has been shown
to be effective in a range of tasks such as statistical denoising, model selection, and
system identification [20, 107, [127].

The difficulty with employing an atomic norm regularizer in practice is that one
requires prior domain knowledge of the atomic set .« — the extreme points of the
atomic norm ball — that underlies a sparse description of the desired solution in an
inverse problem. While such information may be available based on domain exper-
tise in some problems (e.g., certain classes of signals having a sparse representation
in a Fourier basis), identifying a suitable atomic set is challenging for many contem-
porary data sets that are high-dimensional and are typically presented to an analyst
in an unstructured fashion. In this paper, we study the question of learning a suitable
regularizer directly from observations {y! )};’zl c R? of a collection of structured
signals or models of interest. Specifically, as motivated by the preceding discussion,
our objective is to identify a norm || - || in R such that each y)/||y"|| lies on a
low-dimensional face of the unit ball of || - ||. An equivalent formulation of this

question in terms of extreme points is that we want to obtain an atomic set .2/ such
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that each y/) has a sparse representation using .«7; the corresponding regularizer is
simply the atomic norm induced by .<7. A norm with these characteristics is adapted
to the structure contained in the data {yY )};‘:1, and it can be used subsequently as a
regularizer in inverse problems to promote solutions with the same type of structure

as in the collection {y" )}721.

When considered in full generality, our question is somewhat ill-posed for several
reasons. First, if || - || is a norm that satisfies the properties described above with

respect to the data {yY )};? then so does «/|| - || for any positive scalar . This issue is

=1’
addressed by learning a norm from a suitably scaled class of regularizers. A second
source of difficulty is that the Euclidean norm ||-||, trivially satisfies our requirements
for a regularizer as each y“) /||y |l¢, is an extreme point of the Euclidean norm ball
in R?; indeed, this is the regularizer employed in ridge regression. The atomic
set in this case is the collection of all points with Euclidean norm equal to one,
i.e., the dimension of this set is d — 1. However, data sets in many applications
throughout science and engineering are well-approximated as sparse combinations
of elements of atomic sets of much smaller dimension [12, 26,35} 45! |83} 104, [111]].
Identifying such lower-dimensional atomic sets is critical in inverse problems arising
in high-dimensional data analysis in order to address the curse of dimensionality;
in particular, as discussed in some of these preceding references, the benefits of
atomic norm regularization in problems with large ambient dimension d are a
consequence of measure concentration phenomena that crucially rely on the small
dimensionality of the associated atomic set in comparison to d. We circumvent
this second difficulty in learning a regularizer by considering atomic sets with
appropriately bounded dimension. A third challenge with our question as it is stated
is that the gauge function of the set {+y")/||y"||, }i_, also satisfies the requirements
for a suitable atomic norm as each y/)/ ||y(f)||g2 is an extreme point of the unit ball
of this regularizer. However, such a regularizer suffers from overfitting and does
not generalize well as it is excessively tuned to the data set {y' )}7:1. Further, for
large n this gauge function becomes intractable to characterize, and it does not
offer a computationally efficient approach for regularization. We overcome this
complication by considering regularizers that have effectively parametrized sets of

extreme points, and consequently are tractable to compute.

The problem of learning a suitable polyhedral regularizer — an atomic norm with a
unit ball that is a polytope — from data points {y! )}7:1 corresponds to identifying

an appropriate finite atomic set to concisely describe each y/). This problem is
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equivalent to the question of ‘dictionary learning’ (also called ‘sparse coding’) on
which there is a substantial amount of prior work [ 24, 18, 9} [11}, 72} 104} 1122, [123),
134,139,140, 148]] (see also the survey articles in [51,/96]]). To see this connection,
suppose without loss of generality that we parametrize a finite atomic set via a
matrix L € R%*9 so that the columns of L and their negations specify the atoms. The
associated atomic norm ball is the image under L of the ¢; ball in R?. The columns
of L are typically scaled to have unit Euclidean norm to address the scaling issues
mentioned previously (see Section [2.2.4). The number of columns ¢ controls the
complexity of the atomic set as well as the computational tractability of describing
the atomic norm, and is permitted to be larger than d (i.e., the ‘overcomplete’
regime). With this parametrization, learning a polyhedral regularizer to promote the
type of structure contained in {yV )};‘:1 may be viewed as obtaining a matrix L (given
a target number of columns ¢) such that each y') is well-approximated as Lx") for
a vector x) € R? with few nonzero coordinates. Computing such a representation
of the data is precisely the objective in dictionary learning, although this problem
is typically not phrased as a quest for a polyhedral regularizer in the literature. We
remark further on some recent algorithmic developments in dictionary learning in
Sections 2.1.3.1/and 2.2.4] and we contrast these with the methods proposed in the

present paper.

2.1.1 From Polyhedral to Semidefinite Regularizers

The objective of this paper is to investigate the problem of learning more general
non-polyhedral atomic norm regularizers; in other words, the associated set of ex-
treme points may be infinite. On the approximation-theoretic front, infinite atomic
sets offer the possibility of concise descriptions of data sets with much richer types
of structure than those with a sparse representation using finite atomic sets; in turn,
the associated regularizers could promote a broader class of structured solutions to
inverse problems than polyhedral regularizers. On the computational front, many
families of convex optimization problems beyond linear programs can be solved
tractably and reliably [103]. However, building on the challenges outlined previ-
ously, there are two important factors in identifying non-polyhedral regularizers
from data. First, it is crucial that any infinite atomic set </ we consider has an
effective parametrization so that it is tractable to characterize data that have a sparse
representation using the elements of .<7. Second, we require that the convex hull of
the atomic set .7 has an efficient description so that the associated atomic norm pro-

vides a computationally tractable regularizer. As described next, we address these
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concerns by considering atomic sets that are efficiently parametrized as algebraic
varieties (of a particular form), and that have convex hulls with tractable semidefinite
descriptions. Thus, previous efforts in the dictionary learning literature on identify-
ing finite atomic sets may be viewed as learning zero-dimensional ideals, whereas
our approach corresponds to learning atomic sets that are larger-dimensional vari-
eties. From a computational viewpoint, dictionary learning provides atomic norm
regularizers that are computed via linear programming, while our framework leads
to semidefinite programming regularizers. Consequently, although our framework
is based on a much richer family of atomic sets in comparison with the finite sets
considered in dictionary learning, we still retain efficiency of parametrization and

computational tractability based on semidefinite representability.

Formally, we consider atomic sets in R? that are images of rank-one matrices:
(L) = {Lv) | w,v € R, |lull, = L[Ivllp, = 1}, (2.1)

where £ : RPP — R specifies a linear map. We focus on settings in which the
dimension p is such that p> > d, so the atomic sets .7,(£) that we study in this paper
are projections of rank-one matrices from a larger-dimensional space (in analogy to
the overcomplete regime in dictionary learning). By construction, elements of R?
that have a sparse representation using the atomic set .%7,(£) are those that can be
specified as the image under £ of low-rank matrices in RP*P. As the convex hull
of unit-Euclidean-norm rank-one matrices in R”*? is the nuclear norm ball in RP*?,

the corresponding atomic norm ball is given by:
conv (,(£)) = {£(X) | X e RP?, || X|l, < 1}, (2.2)

where || X||x := X; 09(X). As the nuclear norm ball has a tractable semidefinite
description [53}[116]], the atomic norm induced by .«7,(£) can be computed efficiently

using semidefinite programming.

Given a collection of data points {y" )};?:1 c R and a target dimension p, our goal
is to find a linear map £ : RPP — R such that each y“), upon normalization
by the gauge function of .27,(£), lies on a low-dimensional face of conv(7,(L)).
For each y') to have this property, it must have a sparse representation using
the atomic set .«7,(£); that is, there must exist a low-rank matrix XU e Rpxp
with yV) = £(X1)). The matrix X") provides a concise description of y) € R?
in the higher-dimensional space R”*?. Consequently, the problem of learning a

semidefinite-representable regularizer with a unit ball that is a linear image of the



14

Dictionary learning

Our work

Atomic set

{+Le® | @ € RY is the i’th
standard basis vector}

L : R — R4 (linear map)

{L(@V’) |u,v € RP,
lulle, = [Ivlle, = 1}

L : RP*P — R4 (linear map)

Algebraic/geometric
structure of atoms

Zero-dimensional ideal

Image of determinantal variety

Concisely specified
data using atomic set

Image under L of
sparse vectors

Image under £ of
low-rank matrices

Atomic norm ball

{Lx | x € RY, [[x]l¢ < 1}

{LX) | X eRPP,IX|lx < 1}

Computing atomic
norm regularizer

Linear programming

Semidefinite programming

Learning regularizer
from data {y(")};?:1

Identify L and sparse xU) € RY
such that y¥) ~ Lx") for each j

Identify £ and low-rank XV) € RPXP
such that y) ~ £(X\)) for each j

Table 2.1: A comparison between prior work on dictionary learning and the present
paper.

nuclear norm ball may be phrased as one of matrix factorization. In particular, let
Y = [yD]---|y™] € R®" denote the data matrix, and let £; € RP?, i = 1,...,d be
the matrix that specifies the linear functional corresponding to the i’th component
of alinear map £ : RP*? — R?. Then our objective can be viewed as one of finding
a collection of matrices {£ i};’:l C RP*P gpecifying linear functionals and a set of

low-rank matrices {XU )};?:1 C RP*P gpecifying concise descriptions such that:

Yij=(Lo XYy i=1,...,d, j=1,....n. (2.3)

Here (A, B) = tr(A’B) denotes the trace inner product between matrices. Note the
distinction with dictionary learning in which one seeks a factorization of the data
matrix Y such that the XU)’s are sparse vectors as opposed to low-rank matrices
as in our approach. Figure [2.1 summarizes the key differences between dictionary

learning and the present paper.

2.1.2 An Alternating Update Algorithm for Matrix Factorization

A challenge with identifying a semidefinite regularizer by factoring a given data
matrix as in (2.3)) is that such a factorization is not unique. Specifically, consider
any linear map M : RP*P — RP*P that is a rank-preserver, i.e., rank(M(X)) =
rank(X) for all X € RP*P; examples of rank-preservers include operators that act
If each

yU) = £(X1)) for a linear map £ and low-rank matrices {XU )};.’:] , then we also have

via conjugation by non-singular matrices and the transpose operation.
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that each y) = £ o M~/(M(X1))), where by construction each X') has the same
rank as the corresponding M(X)). This non-uniqueness presents a difficulty as the
image of the nuclear norm ball under a linear map £ is, in general, different than it is
under £ oM~! for an arbitrary rank-preserver M. Consequently, due to its invariances
the factorization does not uniquely specify a regularizer. We investigate this
point in Section[2.2.2]by analyzing the structure of rank-preserving linear maps, and
we describe an approach to associate a unique regularizer to a family of linear maps
obtained from equivalent factorizations. Our method entails putting linear maps in
an appropriate ‘canonical’ form using the Operator Sinkhorn iterative procedure,
which was developed by Gurvits to solve certain quantum matching problems [[75]];
this algorithm is an operator analog of the diagonal congruence scaling technique

for nonnegative matrices developed by Sinkhorn [[132].

In Section[2.2]we describe an alternating update algorithm to compute a factorization
of the form (2.3). With the £;’s fixed, updating the X\/)’s entails the solution of
affine rank minimization problems. Although this problem is intractable in general
[102], in recent years several tractable heuristics have been developed and proven
to succeed under suitable conditions [[65} 82, [116]]. With the X ()’s fixed, the L;’s
are updated by solving a least-squares problem followed by an application of the
Operator Sinkhorn iterative procedure to put the map £ in a canonical form as
described above. Our alternating update approach is a generalization of methods

that are widely employed in dictionary learning for identifying finite atomic sets

(see Section[2.2.4).

Section [2.3|contains the main theorem of this paper on the local linear convergence
of our alternating update algorithm. Specifically, suppose a collection of data points
{y(j)};.’:1 c R? is generated as yV) = L*(X(j)*), j = 1,...,n for a linear map
L* : RPP — RY that is nearly isometric restricted to low-rank matrices (formally,
L* satisfies a restricted isometry property [116]) and a collection { XU )*};?:1 C RP*P
of low-rank matrices that is isotropic in a well-defined sense. Given the data {y/) };?: ]
as input, our alternating update approach is locally linearly convergent to a linear map
L : RP? - R4 with the property that the image of the nuclear norm ball in R”*?
under £ is equal to its image under £*, i.e., our procedure identifies the appropriate
regularizer that promotes the type of structure contained in the data {y! )};‘zl; see
Theorem [2.3.5] Our analysis relies on geometric aspects of determinantal varieties
(in particular tangent spaces with respect to these varieties) and their relation to

stability properties of Operator Sinkhorn scaling.
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We demonstrate the utility of our framework with a series of experimental results

on synthetic as well as real data in Section[2.4]

2.1.3 Related Work
2.1.3.1 Dictionary Learning

As outlined above, our approach for learning a regularizer from data may be viewed
as a semidefinite programming generalization of dictionary learning. The alternating
update algorithm we propose in Section[2.2.3|for computing a factorization (2.3)) gen-
eralizes similar methods previously developed for dictionary learning [2, 4, 9, [104]
(see Section [2.2.4), and the local convergence analysis of our algorithm in Section
also builds on previous analyses for dictionary learning [2, 9]. In contrast to
these previous results, the development and the analysis of our method in the present
paper are more challenging due to the invariances and associated identifiability is-
sues underlying the factorization (2.3)), which necessitate the incorporation of the

Operator Sinkhorn scaling procedure in our algorithm.

An unresolved matter in our paper — one that has been investigated previously in
the context of dictionary learning — is the question of a suitable initialization for
our algorithm. In particular, our theory states that our algorithm exhibits linear
convergence to the desired solution provided the initial guess is sufficiently close
to a linear map that specifies the correct regularizer (in an appropriate metric). We
employ random initializations in our experiments with real data in Section [2.4.2
and these are useful in identifying effective semidefinite regularizers that outperform
polyhedral regularizers obtained via dictionary learning. Random initialization is
the most common technique utilized in practice in dictionary learning as well as
in many other structured matrix factorization problems arising in data analysis. To
build support for this idea, several researchers have proven that random initialization
succeeds with high probability in recovering a desired factorization under suitable
conditions in a number of problems [64, [141]], including in a restricted form of
dictionary learning [139} [140] in which the polyhedral regularizer is specified as
the image of the ¢; ball under an invertible linear map (as described previously,
dictionary learning in full generality allows for polyhedral regularizers that may be
specified as an image of the ¢; ball under a many-to-one linear map). In a different
direction, some recent papers also describe data-driven initialization strategies for
dictionary learning based on variants of clustering [3, 8]]. It would be of interest to

develop both these sets of ideas in our context, and we comment on this point in
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2.1.3.2 Lifts of Convex Sets

A second body of work with which our paper is conceptually related is the literature
on lift-and-project representations (or extended formulations) of convex sets. A
tractable lift-and-project representation refers to a description of a ‘complicated’
convex set in R? as the projection of a more concisely specified convex set in R,
with the lifted dimension d’ not being too much larger than the original dimension
d. As discussed in [70, [152]], obtaining a suitably structured factorization — of a
different nature than that considered in the present paper — of the slack matrix of
a polytope (and more generally, of the slack operator of a convex set) corresponds
to identifying an efficient lift-and-project description of the polytope. On the other
hand, we seek a structured factorization of a data matrix to identify a convex set
(i.e., the unit ball of a regularizer) with an efficient extended formulation and with
the additional requirement that the data points (upon suitable scaling) lie on low-
dimensional faces of the set. This latter stipulation arises in our context from data
analysis considerations, and it is a distinction between our setup and the optimization

literature on extended formulations.

2.1.3.3 Sinkhorn Scaling

A third topic with which our paper has synergies — and to which we make contri-
butions in the course of our analysis — is the literature on Sinkhorn scaling. This
algorithm is an iterative procedure for transforming an entrywise nonnegative matrix
to a doubly stochastic matrix by diagonal congruence scaling [[132]. There is a sub-
stantial body of work on the properties of this algorithm (see [80] and the references
therein) as well as on its applications in domains such as combinatorial optimization
(approximating the permanent of a matrix [92]) and data analysis (efficiently com-
puting distances between probability distributions [40]). The operator analog of
Sinkhorn scaling was developed by Gurvits and this work was motivated by certain
operator analogs of the bipartite matching problem that arise in matroid theory [75]].
To the best of our knowledge, our work represents the first application of Operator
Sinkhorn scaling in a problem in data analysis. Further, in our investigation of the
properties of Algorithm[I] we describe results on the stability of Operator Sinkhorn
scaling; these may be of independent interest beyond the specific context of our

paper (see Appendix[A.3).
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2.1.4 Paper Outline

In Section we discuss our alternating update algorithm for computing the fac-
torization (2.3)) based on an analysis of the invariances arising in (2.3)). Section[2.3|
gives the main theoretical result concerning the local linear convergence of the algo-
rithm described in Section[2.2] and Section[2.4]describes numerical results obtained

using our algorithm. We conclude with a discussion of further research directions
in Section

Notation We denote the Euclidean norm by || - ||,,. We denote the operator or
spectral norm by || - ||. The k’th largest singular value of a linear map is denoted
by o(-), and the largest and smallest eigenvalues of a self-adjoint linear map are
denoted by Apyax(-) and Ayin(+) respectively. The space of p X p symmetric matrices
is denoted S” and the set of p X p symmetric positive-definite matrices is denoted
S?.. The projection map onto a subspace V is denoted P,. The restriction of
a linear map M to a subspace V is denoted by M. Given a self-adjoint linear
map M : V — V with V being a subspace of a vector space V, we denote the
extension of M to V by [M]y : V — V; the component in V of the image of
any x € V under this map is M P (x), while the component in V+* is the origin.
Given a vector space V, we denote the set of linear operators from V to V by
End(?V). Given matrices A,B € RP*?, the lincar map A X B € End(RP*?) is
specified as AKX B : X — (B,X)A. The Kronecker product between two linear
maps is specified using the standard ® notation. For a collection of matrices 2™ :=
{X(j)};.’:1 C RP*P, the covariance is specified as cov(2") = 1 Yo XY XY, Two
quantities associated to this covariance that play a role in our analysis are A(Z") =
3 (Amax(€OV(27) + Amin(cov(:2"))) and A(Z) = 5(Amax(€OV(2")) = Amin(cOV(Z))).
Given a matrix X € RP*P of rank r, the tangent space at X with respect to the

algebraic variety of p X p matrices of rank at most r is specified aq}
T(X)={XA+BX| A, B e R},

2.2 AnAlternating Update Algorithm for Learning Semidefinite Regularizers
In this section we describe an alternating update algorithm to factor a given data
matrix ¥ = [yV] - - - |y"™] € R®" as in (Z.3). As discussed previously, the difficulty
with obtaining a semidefinite regularizer using a factorization (2.3)) is the existence

of infinitely many equivalent factorizations due to the invariances underlying (2.3).

LA rank-r matrix X € RP*P is a smooth point with respect to the variety of p X p matrices of
p p yorpXp
rank at most r.
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We begin by investigating and addressing this issue in Sections [2.2.1]and [2.2.2] and

then we discuss our algorithm to obtain a regularizer in Section [2.2.3] We contrast
our method with techniques that have previously been developed in the context of
dictionary learning in Section [2.2.4]

2.2.1 Identifiability Issues

Building on the discussion in the introduction, for a linear map £ : R — R?
obtained from the factorization (2.3) and for any linear rank-preserver M : RP*? —
RP*P_ there exists an equivalent factorization in which the linear map is £ o M (note
that M~ is also a rank-preserver if M is a rank-preserver). As the image of the nuclear
norm ball in RP*? is not invariant under an arbitrary rank-preserver, a regularizer
cannot be obtained uniquely from a factorization due to the existence of equivalent
factorizations that lead to non-equivalent regularizers. To address this difficulty, we
describe an approach to associate a unique regularizer to a family of linear maps
obtained from equivalent factorizations. We begin by analyzing the structure of

rank-preserving linear maps based on the following result [98]]:

Theorem 2.2.1 (/98 Theorem 1],[147, Theorem 9.6.2]) An invertible linear op-
erator M : RP*P — RP*P s a rank-preserver if and only if M is of one of the
following two forms for non-singular matrices Wi, W, € RP*P: M(X) = W XW, or
M(X) = W X'W,.

This theorem brings the preceding discussion into sharper focus, namely, that the
lack of identifiability boils down to the fact that the nuclear norm is not invariant
under conjugation of its argument by arbitrary non-singular matrices. However, we
note that the nuclear norm ball is invariant under the transpose operation and under
conjugation by orthogonal matrices. This observation leads naturally to the idea of

employing the polar decomposition to describe a rank-preserver:

Corollary 2.2.2 Every rank-preserver M : RP*P — RP*P can be uniquely decom-
posed as M = M o MPY for rank-preservers MPd : RPXP — RPXP and MO : RPXP —

RP*P with the following properties:

e The operator MP4 is specified as MPY(X) = P1 X P, for some positive-definite
matrices Py, Py € S%,.
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® The operator M is of one of the following two forms for orthogonal matrices
U,,Up € RPXP: MOF(X) =U; XU, or Mor(X) = U1X’U2.

Proof. The result follows by combining Theorem [2.2.1] with the polar decomposi-

tion. O

We refer to rank-preservers of the type MP! in this corollary as positive-definite
rank-preservers and to those of the type M°" as orthogonal rank-preservers. This
corollary highlights the point that the key source of difficulty in identifying a reg-
ularizer uniquely from a factorization is due to positive-definite rank-preservers.
A natural approach to address this challenge is to put a given linear map £
into a ‘canonical’ form that removes the ambiguity due to positive-definite rank-
preservers. In other words, we seek a distinguished subset of normalized lin-
ear maps with the following properties: (a) for a linear map £, the set {£ o
MPd . MP is a positive-definite rank-preserver} intersects the collection of nor-
malized maps at precisely one point; and (b) for any normalized linear map £,
every element of the set {£ o M® : M is an orthogonal rank-preserver} is also

normalized. The following definition possesses both of these attributes:

Definition 2.2.3 Let L : RP? — R9 be a linear map, andlet L; e RP*P i =1,....d
be the component linear functionals of L. Then L is said to be normalized if
4 LL{ =pland YL, L/ L; = pl.

The utility of this definition in resolving our identifiability issue is based on a
paper by Gurvits [75]. Specifically, for a generic linear map £ : RP*? — RY,
the results in [75] imply that there exists a unique positive-definite rank-preserver
Ng @ RPXP — RPXP g0 that £ o Ng is normalized (see Corollary in the
sequel); this feature address our first requirement above. One can also check that
the second requirement above is satisfied by this definition — any normalized linear
map composed with any orthogonal rank-preserver is also normalized. Further, the
collection of normalized maps defined above may be viewed as an affine algebraic
variety specified by polynomials of degree two. One can check that any notion of
normalization (specified as a real variety) that satisfies the two attributes described

previously cannot be an affine space, and therefore must be specified by polynomials
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of degree at least two. Consequently, our definition of normalization is in some sense

also as ‘simple’ as possible from an algebraic perspective [’

In addition to satisfying these appealing properties, our notion of normalization
also possesses an important computational attribute — given a (generic) linear map,
a normalizing positive-definite rank-preserver for the map can be computed using
the Operator Sinkhorn iterative procedure developed in [75]. Thus, the follow-
ing method offers a natural approach for uniquely associating a regularizer to an

equivalence class of factorizations.

Obtaining a regularizer from a linear map: Given a linear map £ : RP”? — R?

obtained from a factorization (2.3)), the unit ball of the regularizer we associate to
this factorization is the image of the nuclear norm ball in R?*? under the linear map
L oNg; here N is the unique positive-definite rank-preserver that normalizes £ (as
discussed in the sequel in Corollary [2.2.5] such unique normalizing rank-preservers

exist for generic maps £).

The soundness of this approach follows from the fact that linear maps from equivalent
factorizations produce the same regularizer. We prove a result on this point in the
next section (see Proposition [2.2.6), and we also discuss algorithmic consequences

of the Operator Sinkhorn scaling procedure of [[75]].

2.2.2 Normalizing Maps via Operator Sinkhorn Scaling

From the discussion in the preceding section, a key step in associating a unique
regularizer to a collection of equivalent factorizations is to normalize a given linear
map £ : RP*P — R<. In this section we describe how this may be accomplished by

appealing to the work of Gurvits [[73].

Given a linear operator T : S” — S” that leaves the positive-semidefinite cone in-
variant, Gurvits consider the question of the existence (and computation) of positive-
definite matrices Py, P> € Sﬁ + such that the rescaled operator T= (P1®P1)oTo(P,®
P>) has the property that T(I) = T’(I) = I, i.e., the identity matrix is an eigenmatrix
of the rescaled operator T and its adjoint [75]. This problem is an operator analog
of the classical problem of transforming entrywise square nonnegative matrices to
doubly stochastic matrices by diagonal congruence scaling. This matrix scaling

problem was originally studied by Sinkhorn [132], and he developed an iterative

Note that any affine variety over the reals may be defined by polynomials of degree at most two
by suitably adding extra variables; in our discussion here on normalization, we consider varieties
defined without additional variables.
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Algorithm 1 Normalizing a linear map via the Operator Sinkhorn iteration

Input: A linear map £ : RP*P — R4 with component functionals £;, i = 1,...,d
Require: A normalized map £ o M where M : RP*? — R? is a rank-preserver that
acts via conjugation by positive-definite matrices
Algorithm: Repeat until convergence
1. R=3Y%, 4,8/

1

2. Li — \/T)R_ELZ', i =
3.C=32,L/L,

1
4. Li — \/ﬁL,-C_i, I = 1,...,d

|
—
M
.
QU

solution technique that is known as Sinkhorn scaling. Gurvits developed an opera-
tor analog of classical Sinkhorn scaling that proceeds by alternately performing the
updates T «— (T())"'2@T(U) /?)oTand T « To(T'(I)"/2@ T'(I)~'/?); this se-
quence of operations is known as the Operator Sinkhorn iteration. The next theorem
concerning the convergence of this iterative method is proved in [75]. Following
the terminology in [75]], a linear operator T : S” — S? is rank-indecomposable if it
satisfies the inequality rank (T(Z)) > rank(Z) for all Z > 0 with 1 < rank(Z) < g;

this condition is an operator analog of a matrix being irreducible.

Theorem 2.2.4 (/75 Theorem4.6and4.7]) Let T : S? — SP be a rank-indecomposable
linear operator. There exist unique positive-definite matrices P1,P, € S, with
det(P1) = 1 such that T = (P ® P)) o T o (P, ® P») satisfies the conditions
T(I) = T'(I) = I. Moreover, the Operator Sinkhorn Iteration initialized with T

converges to T.

Remark. The condition det(Py) = 1 is imposed purely to avoid the ambiguity that
arises from setting Py «— aPy and Py « éPz for positive scalars a. Other than
this degree of freedom, there are no other positive-definite matrices that satisfy the
property that the rescaled operator T in this theorem as well as its adjoint both have

the identity as an eigenmatrix.

These ideas and results are directly relevant in our context as follows. For any
linear map £ : R — RY, we may associate an operator T : S — S defined
as Tg(2) = %Zidzl L;ZL;’, which has the property that it leaves the positive-
semidefinite cone invariant. Rescaling the operator T ; via positive-definite matrices
P, Py e S’j , to obtain T, = (P1®P1)oT;o(Py®P,) corresponds to conjugating the

component linear functionals {Li}flzl of £ by P; and P,. Consequently, rescaling
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T sothat Tg = (P ® Py) o T o (P, ® P,) and its adjoint both have the identity as
an eigenmatrix is equivalent to composing £ by a positive-definite rank-preserver
N = P; ® P; so that £ o N is normalized. Based on this correspondence, Algorithm
[I] gives a specialization of the general Operator Sinkhorn Iteration to our setting

for normalizing a linear map £ ] We also have the following corollary to Theorem

224

Corollary 2.2.5 Let L : RP? — R4 be a linear map, and suppose rank(Zflz1 L,ZL) >
rank(Z) for all Z > 0 with 1 < rank(Z) < p (i.e., the operator Tg(Z) =
%Zflzl L;ZL;" is rank-indecomposable). There exists a unique positive-definite
rank-preserver Ny : RP*P — RP*P such that L o Ng is normalized. Moreover,

Algorithm|l|initialized with £ converges to £ o N.

Proof. The existence of a positive-definite rank preserver Ng as well as the conver-
gence of Algorithm [I] follow directly from Theorem [2.2.4] We need to prove that
N is unique. Let Ng : RPX? — RP*P be any positive-definite rank-preserver such
that £ o N is normalized. By Theorem there exists positive-definite matrices
Py, Py, P|, Py suchthat N; = Py ® P, and N = P, ® P,. Without loss of generality,
we may assume that det(P;) = det(P;) = 1. By Theorem we have P = P,
and P, = P,, and consequently that Ny = Ng. O

Generic linear maps £ : RP*P — R (ford > 2) satisfy the condition rank(zl‘.’lz1 L;ZL;) >
rank(Z) for all Z > 0 with 1 < rank(Z) < p. Therefore, this assumption in Corol-
lary [2.2.5] is not particularly restrictive. A consequence of the uniqueness of the
positive-definite rank-preserver N in Corollary [2.2.5] is that our normalization
scheme associates a unique regularizer to every collection of equivalent factoriza-

tions:

Proposition 2.2.6 Let £ : RP*? — RY be a linear map, and suppose rank(zlflz L\ LiZL)) >
rank(Z) for all Z > 0 with 1 < rank(Z) < p. Let M : RP*P — RP*P be any rank-
preserver. Suppose N and Ngoy are positive-definite rank-preservers such that
L oNg and L oMo Ngoy are normalized. Then the image of the nuclear norm ball

under L o N is the same as it is under £ o M o Ngom.

3 Algorithm |1| requires the computation of a matrix square root at every iteration. By virtue
of the fact that the operator T ; which we wish to rescale is completely positive, it is possible to
normalize £ using only rational matrix operations via a modified scheme known as the Rational
Operator Sinkhorn iteration [75]].
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Remark. Note that ifthe linear map L satisfies the property that rank(Zfl:1 L;ZL]) >
rank(Z) for all Z > O with 1 < rank(Z) < p, then so does the linear map £ o M for

any rank-preserver M.

Proof. As M~! o N is a rank-preserver, we can apply Corollary to obtain the
decomposition M~! o Ng = M o MP4, where M is an orthogonal rank-preserver

and MPY is a positive-definite rank-preserver.

We claim that Nzoy = M~! o Nz o M. First, we have M~! o Nz o M = M o
MPd o M°, which implies that this operator is positive-definite. Next, we note that
a linear map that is obtained by right multiplication of a normalized linear map
with an orthogonal rank-preserver is also normalized, and hence the linear map
LoMoM ™ oNg oM = £ oNg oM isnormalized. By applying Corollary

we conclude that Ngoy = M~ o Nz o MO

Consequently, we have £ o Mo Ngoy = £ o Nz o M. As the nuclear norm ball is
invariant under the action of the orthogonal rank-preserver M, it follows that the
image of the nuclear norm ball under the map £ o N is the same as it is under the

map £ o Mo Ngowm. O

The polynomial-time complexity of the (general) Operator Sinkhorn iterative pro-
cedure — in terms of the number of iterations required to obtain a desired accuracy
to the fixed-point — has recently been established in [62]]. In summary, this approach
provides a computationally tractable method to normalize linear maps, and conse-

quently to associate a unique regularizer to a collection of equivalent factorizations.

2.2.3 An Alternating Update Algorithm for Matrix Factorization

Given the resolution of the identifiability issues in the preceding two sections, we are
now in a position to describe an algorithmic approach for computing a factorization
[@3) of a data matrix ¥ = [y(V] - - - [y"™] € R¥" to obtain a semidefinite regularizer
that promotes the type of structure contained in Y. Specifically, given a target
dimension p, our objective is to obtain a normalized linear map £ : R”>? — R
and a collection {X(j)};?:1 of low-rank matrices such that 3, [ly") — L(X(j))llg2
is minimized. Our procedure is an alternating update technique that sequentially
updates the low-rank XU)’s followed by an update of £. We assume that our
algorithm is provided with a data matrix ¥ € R?*", a target dimension p, and an

initial guess for the normalized map £. Our method is summarized in Algorithm 3
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Algorithm 2 Obtaining a low-rank matrix near an affine space via Singular Value
Projection

Input: A linear map £ : RP*? — R? apointy € R, a target rank r, an initial guess
X € RP*P, and a damping parameter v € (0, 1]

Require: A matrix X of rank at most r such that ||y — £(X )ll¢, is minimized, i.e.,
solve

Initialization X = 0

Algorithm: Repeat until convergence

1. X « X +vL'(y - L(X)) (i.e., take a gradient step with respect to the objective

of (2.3))

2. Compute top-r singular vectors and singular values of X: U,,V, € RP, X, €
Rrxr
3. X < U2V,

2.2.3.1 Updating the low-rank matrices {XV )}7:1

In this stage a normalized linear map £ : R”*? — R? is fixed, and the objective is
to find low-rank matrices {X (j)};?:l such that yV) ~ £(XU) for each j = 1,...,n.
Without the requirement that the X)’s be low-rank, such linear inverse problems
are ill-posed in our context as p? is typically taken to be larger than d. With the
low-rank restriction, this problem is well-posed and it is known as the affine rank
minimization problem. This problem is NP-hard in general [102]. However, due
to its prevalence in a range of application domains [S3, [116], significant efforts
have been devoted towards the development of tractable heuristics that are useful
in practice and that succeed on certain families of problem instances. We describe

next two popular heuristics for this problem.

The first approach — originally proposed by Fazel in her thesis [53] and subsequently
analyzed in [30,/116]] —is based on a convex relaxation in which the rank constraint is
replaced by the nuclear norm penalty, which leads to the following convex program:

X =argmin j|ly - LOO|I7 + 4[| X . (2.4)

XeRpPxp

Here y € R? and £ : R”*? — R are the problem data specifying the affine space
near which we seek a low-rank solution, and the parameter 4 > 0 provides a tradeoft
between fidelity to the data (i.e., fit to the specified affine space) and rank of the
solution X. This problem is a semidefinite program and it can solved to a desired

precision in polynomial-time using standard software [[103} [145].

Another popular method for the affine rank minimization problem is based on directly

attempting to solve the following non-convex optimization problem via alternating
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projection for a specified rank r < p:

X = argmin ||y — L(X)||?2
XeRP® (2.5)

s.t. rank(X) <r.
This problem is intractable to solve globally in general, but the heuristic described in
Algorithm 2| provides an approach that provably succeeds under certain conditions
(65, 82]. The utility of this method in comparison to the convex program (2.4)
is that applying the procedure described in Algorithm [2]is much more tractable in

large-scale settings in comparison to solving (2.4)).

The analyses in [54} 165, 182, [116]] rely on the map £ satisfying the following type of

restricted isometry condition introduced in [116]]:

Definition 2.2.7 Consider a linear map £ : RP*? — R, Foreach k = 1,...,p the

restricted isometry constant of order k is defined as the smallest 6;(L) such that:

ILCOIIZ,
1= 61(L) £ ———== < 1+6(L)
I1X11Z,

for all matrices X € RP*P with rank less than or equal to k.

If a linear map £ has a small restricted isometry constant for some order k, then the
affine rank minimization problem is, in some sense, well-posed when restricted to
matrices of rank less than or equal to k. The results in [54, [65) 82, [116] go much
further by demonstrating that if y = £(X*) + & for £ € R¢ and with rank(X*) < r,
and if the map £ satisfies a bound on the restricted isometry constant d4,(£), then
both the convex program (2.4) as well as the procedure in Algorithm [2] applied
to solve (Z.3) provide solutions X such that || X — X*|le, < Cllglle,- Due to the
qualitative similarity in the performance guarantees for these approaches, either of
them is appropriate as a subroutine for updating the X)’s in our alternating update
method for computing a factorization of a given data matrix ¥ € R¥", Algorithm
is therefore stated in a general manner to retain this flexibility. In our main
theoretical result in Section we assume that the XU)’s are updated by solving
(2.5)) using the heuristic outlined in Algorithm 2} our analysis could equivalently be
carried out by assuming that the X/)’s are updated by solving (Z.4).

2.2.3.2 Updating the linear map £

In this stage the low-rank matrices {X (f)};.’zl are fixed and the goal is to obtain

a normalized linear map £ such that 37 Iy — L(X(j))llé is minimized. Our
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Algorithm 3 Computing a factorization via alternating updates

Input: A data matrix ¥ = [y --|y®] € R®", a target dimension p, an initial
guess for a normalized linear map £ : RP*? — RY, a target rank r < p

Require: A normalized linear map £ : R”? — R¢ and a collection of matrices
{)A((j)}’?zl with rank at most r such that 3. | ly") — f)(f((j))ng is minimized
Algorithm: Repeat until convergence

1.[Update X\)’s; £ fixed] Obtain matrices {X(j)};.‘:l of rank at most r such that

2y ||y(j )— L(X Y ))llé is minimized. This can be accomplished either via Algorithm
or by solving (2.4) for a suitable choice of 4. )
2.[Update £; XU)’s fixed] £ «  argmin i Iy — L(X(j))llt%
L:RP*P R4 ’
£ is a linear map
3.[Normalize £] Normalize updated linear map from previous step using Algorithm

procedure for this update consists of two steps. First we solve the following least-

squares problem:

n
L = argmin Z Iy - E(X(j))llf2 (2.6)
_Z:RPXV—HR‘I i=1
L is a linear map
This problem can be solved, for example, via a pseudoinverse computation. Next,
we apply the procedure described in Algorithm (1] to the updated £ obtained from

(2.6) in order to normalize it.

2.2.4 Comparison with Dictionary Learning

As described in Section [2.1.1] the dictionary learning literature considers the fol-
lowing factorization problem: given a collection of data points {yY )};’:1 c R4 and
a target dimension ¢, find a linear map L : RY — R and a collection of sparse
vectors {x(j)};?:1 C R such that y&) = LxU) for each j. As with (2.3), the linear
map L does not lead to a unique polyhedral regularizer. Specifically, for any linear
sparsity-preserver M : R? — RY, there is an equivalent factorization in which the
linear map is LM. In parallel to Corollary [2.2.2] one can check that M is a sparsity-
preserver if and only if M is a composition of a positive-definite diagonal matrix
and a signed permutation matrix. Since the ¢ ball is invariant under the action of a
signed permutation, the main source of difficulty in obtaining a unique regularizer
from a factorization is due to sparsity-preservers that are positive-definite diagonal
matrices. A common convention in dictionary learning that addresses this identi-
fiability issue is to require that each of the columns of L has unit Euclidean norm;

for a generic linear map L, there is a unique positive-definite diagonal matrix D
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such that LD consists of unit-norm columns. Adopting a similar reasoning as in
Section[2.2.2] one can check that this normalization resolves the issue of associating

a unique regularizer to an equivalence of factorizations.

The most popular approach for computing a factorization in dictionary learning is
based on alternately updating the map L and the sparse vectors {X(j)};l:]. For a
fixed linear map L, updating the x/)’s entails the solution of a sparse linear inverse
problem for each j. That is, for each j we seek a sparse vector x/) in the affine space
yU) = Lx. Although this problem is NP-hard in general, there is significant literature
on tractable heuristics that succeed under suitable conditions [31) 32, (36} 48-50];
indeed, this work predates and served as a foundation for the literature on the affine
rank minimization problem. Prominent examples include the lasso [144], which
is a convex relaxation approach akin to (2.4), and iterative hard thresholding [24]],
which is analogous to Algorithm 2| For a fixed collection {xV )};‘:1, the linear map
L is then updated by solving a least-squares problem followed by a rescaling of the

columns so that they have unit Euclidean norm.

We note that each step in this procedure has a direct parallel to a corresponding step
of Algorithm [3] In summary, our proposed approach for obtaining a semidefinite
regularizer via matrix factorization is a generalization of previous methods in the

dictionary learning literature for obtaining a polyhedral regularizer.

2.3 Convergence Analysis of Our Algorithm
This section describes the main theoretical result on the local convergence of our
algorithm. We begin by discussing the setup and an outline of our analysis in

Sections [2.3.1] and [2.3.2] respectively. The statement of our main theorem with

deterministic conditions is given in Section and we describe natural random
ensembles that satisfy these deterministic conditions with high probability in Section
[2.3.4] The proof of our theorem is discussed in Section [2.3.5]

2.3.1 Theoretical Setup

The setup underlying our main theorem is as follows. We assume that we are given
a collection of data points {y(j)*};?:1 c R with each y(j)* = LX(X (j)*), where
L* : RP*? — R4 is a linear map and .2°* := {X(j)*};‘:1 c RP*P is a collection of
low-rank matrices. Without loss of generality, we may take £* to be normalized and
surjective. Our objective is to obtain a linear map L : RPP — R with the property
that the image of the nuclear norm ball in R”*” under £* is the same as it is under

L. To this end, we seek a linear map £ that can be expressed as the composition of
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L* with an orthogonal rank-preserver (recall that the nuclear norm ball is invariant

under the action of an orthogonal rank-preserver).

As this goal is distinct from the more restrictive requirement that £ must equal £*,
we need an appropriate measure of the ‘distance’ of a linear map to £L*. A convenient
approach to addressing this issue is to express a linear map £ : R”*? — R in terms

of L* as follows, given any linear rank-preserver M : RP*? — RP*P;
L=Lc(I+E)oM, 2.7)

Here | € End(RP*?) is the identity map and the error term E = £* " o(LoM™ 1 - £*) €
End(RP*P); the assumption that £* is surjective is key as £*" is the right-inverse
of £L*. By varying the rank-preserver M in the error term E changes. If
there exists an orthogonal rank-preserver M such that the corresponding error E is
small, then in some sense the image of the nuclear norm ball under £ is close to
the image under £*. This observation suggests that the closeness between £ and
L* may be measured as the smallest error E that one can obtain by varying M over
the set of orthogonal rank-preservers. The following result suggests that one can
in fact vary M over all rank-preservers, provided we have the additional condition
that £ is also normalized. The additional flexibility provided by varying M over
all rank-preservers is well-suited to characterizing the effects of normalization via

Operator Sinkhorn scaling in our analysis, as described in the next section.

Proposition 2.3.1 Suppose £,L* : RPP — R? are normalized linear maps such
that (i) £* satisfies the restricted isometry condition 6;(£*) < 1/10, and (ii) £ =
L* o (1+E) o M for a linear rank-preserver M with ||E||¢, < 1/(150+/p||L*l2). Then
there exists an orthogonal rank-preserver M such that ||M®"=M||> < 300+/p||L*|l21|Elle,-

In words, if both £ and £* are normalized and if there exists a rank-preserver M such
that || E|l¢, is small in (Z.7)), then M is close to an orthogonal rank-preserverf*} in turn,
this implies that the image of the nuclear norm ball under £* is close to the image of
the nuclear norm ball under £. These observations motivate the following definition
as a measure of the distance between normalized linear maps £*, L : R — R4

for surjective £*:

&c+(L) := inf{||E||¢, | IE € End(R”*P) and a rank-preserver M € End(RP*?)
st.L=L"o(I+E)oM}. (2.8)

“The restricted isometry condition in Proposition is a mild one; we require a stronger
restricted isometry condition on £* in Theoremm
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In Section [2.3.3] our main result gives conditions under which the sequence of
normalized linear maps obtained from Algorithm [3|converges to £* in terms of the

distance measure £.

2.3.2 An Approach for Proving a Local Convergence Result

We describe a high-level approach for proving a local convergence result, which
motivates the definition of the key parameters that govern the performance of our
algorithm. Our proof strategy is to demonstrate that under appropriate condi-
tions the sequence of normalized iterates £ obtained from Algorithm 3| satisfies
(L) < y&(LD) for a suitable ¥y < 1. To bound &+(L*D) with re-
spect to &c+(L?), we consider each of the three steps in Algorithm Fixing
notation before we proceed, let L& = £* o (I + E®) o M® for some linear rank-
preserver M) and for a corresponding error term E®). Our objective is to show that
there exists a linear rank-preserver M(*1) and corresponding error term EC¢*!) with
L) = £*% o (1 + EC*D) o MU+D 50 that ||EC*D)]|,, is suitably bounded above in
terms of ||[E) |le,. By taking limits we obtain the desired result in terms of & ox(LD)
and &+ (L),

The first step of Algorithm [3] involves the solution of the following optimization

problem foreach j = 1,...,n:

‘ym* — £Ox)

XY = argmin
XERP*P

2
s.t. rank(X) < r.
&
As L0 = L* o (1 + ED) o M® and as yO)* = £*(X)™), the preceding problem can
be reformulated in the following manner:
MO(XU)) = argmin
XeRp*p
s.t. rank(X) < r.

. . - 12
L* o (1 + EO)YXD*) = £* 0 EOXD*) = £* o (1 + E(’))(X)Hf
2

If £* o (I + EY) satisfies a suitable restricted isometry condition and if ||£* o
E(’)(X(j)*)llg2 is small, then the results in [65) 82] (as described in Section
imply that MO(XW)) ~ X (* . In other words, if IE®|l¢, is small and if £* satisfies
a restricted isometry condition, then M(’)(X (j)) ~ XU )*; the following result states

matters formally:

Proposition 2.3.2 Let L* : RP*P — RY be a linear map such that (i) £* is nor-

malized, and (ii) L* satisfies the restricted isometry condition 64,(L£*) < %. Sup-

pose L = L* o (I + E) o M such that (i) M is a linear rank-preserver, and (ii)
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IElle, < min{1/(50yp), 1/(1207%||£*|l)}. Finally, suppose 'y = L*(X*), where

X* € RP*? is a rank-r matrix such that o(X*) > o1(X*)/2, and that X is the

optimal solution to

X = argmin |y - L(X)ll?2 s.t. rank(X) < r. 2.9)
XeRpPxr
Then '
MO = X | (S S | 0872 0B () 46
RPXP

where ||Glle, < 800r2[L.L* 31X * |12 IEII7,-

In this proposition, the conclusion is well-defined as the linear map Lf}’( x*)L:}( X -
T(X*) — T(X™) is invertible due to the restricted isometry condition on £* (see
Lemma [2.3.9). The proof appears in Appendix and it relies primarily on the
first-order optimality conditions of the problem (2.3). To ensure that the conditions
required by this proposition hold, we assume in our main theorem in Section [2.3.3]
that £* satisfies the restricted isometry property for rank-r matrices and that the
initial guess £(© that is supplied to Algorithm is such that &;x(£©) is small (with
a sufficiently good initial guess and by an inductive hypothesis, we have that there

exists an error term E) at iteration ¢ such that ||E(t)||52 is small).

The second step of Algorithm [3| entails the solution of a least-squares problem.
To describe the implications of this step in detail, we consider the linear maps
X* iz Y0 XUz and X : z — Y- XUz from R" to RP*P. With this
notation, the second step of Algorithmresults in the linear map £ being updated
as follows:

L0 = £* o X* 0 X7, (2.10)

In order for the normalized version of £(*D) to be close to £* (in terms of the
distance measure &), we require a deeper understanding of the structure of X* o X*,
which is the focus of the next proposition. This result relies on the set 2™* being

suitably isotropic, as characterized by the quantities A(Z*) and A(Z7*).

Proposition 2.3.3 Ler {AU )};’: , C R and {BU )};’: | € RP*P be two collections of
matrices, and let A : 7 — 2721 A(j)zj andB :z— 2721 B(j)zj be linear maps from
R” to RP*P associated to these ensembles. Let Q : RP*P — RP*P be any invertible

, , Al{AYL
linear operator and denote w = max; ||Q(B(J)) - A(J)H[z. Ifw < # and if
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A4

1
W < & then

AoBt = |1 (Q(B(J>) - A(j)) XAY +FloQ, (2.11)
nA ({A(J)}”: ) =
wA((any.)

{A U)}n ) pA({A(i)};?:l)yz.

where ||F|l,, < 20p (

The proof of this proposition appears in Appendix and it consists of two key
elements. First, as w is bounded, the operator A o B* may be approximated as
Ao A" o Q. Second, as the set {AU )}7:1 is near-isotropic based on the assumptions
involving A({AY )};?21) and A({AV )}?21), one can show that A o A* can be expanded
suitably around the identity map |. In the context of our analysis, we apply the
conclusions of Proposition with the choice of AY) = XW* BU) = XU and
Q=M",

The final step of our analysis is to consider the effect of normalization on the map

L® in (Z.10). Denoting the positive-definite rank-preserver that normalizes £ +!

by N1y, we have from Propositions |2.3.2| and |2.3.3| that the normalized map £*1)

obtained after the application of the Operator Sinkhorn iterative procedure to £*1)

can be expressed as:
1 < N , _
JGR IS I e Z (M(I)(X(J)) _ X(;)*) 5 X0 1+ F| o MD o N,
j=1

where F € End(RP*P) is suitably bounded. As M®) and N ju+n are both rank-
preservers, we need to prove that the expression within parentheses | — m
Z?ZI(M(’)()A(U)) - XV*)® XU* + F is well-approximated as a rank-preserver so
that £¢+(£*Y) is suitably controlled. To make progress on this front, we note that
| = I®I is arank-preserver. Therefore, if—m Z’J?:l(M(’)()?(j))—X(j)*)&X(f)*+F
is small, a natural approach to characterizing how close | - m Z;’: l(M(t)()A( Wy —
X (j)*) X XD +Fistoa rank-preserver is to express this quantity in terms of the
following tangent space at | with respect to the set of rank-preservers acting on the

space of p X p matrices:
W =span{l @ W) + Wo ® I | W, W, € RP*!} (2.12)

The next result gives such an expression.
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Proposition 2.3.4 Suppose D : RP*P — RP*P is a linear operator such that ||D||¢, <
1/10 and | : RP*P — RP*P s the identity operator. Then we have that

|+D=(+%Py:(D)+H)o W

where H : RP*P. — RP*P s a linear operator such that ||H|;, < 5||D||§2/\/13 and
W : RP*P — RP*P is a linear rank-preserver such that ||W — |l < 3||Dll¢,/+/P.
Here, the space ‘W is as defined in (2.12).

The proof of this proposition appears in Appendix As detailed in the proof
of Theorem [2.3.5] in Section [2.3.5] one can combine the preceding three results
along with the observation that ¢ Py (x+) < [(Lfr(x*) ;.(X*))‘l]Rpxz: < ¢ Prix*)
for suitable constants ¢,é > 0 (from Lemma [2.3.9]in Section based on L£*
satisfying a suitable restricted isometry condition) to conclude that there exists an
error term EU+D at iteration ¢ + 1 (corresponding to the error term E® at iteration ¢

that we fixed at the beginning of this argument) such that

1 & Ak A
ECD = o | —— (Xm < xV) )®P e o)
nA(2*) ]Z:; T (2.13)

+ Py (F) + O(IEV|I7).

Thus, there are two ‘significant’ terms in this expression that govern the size of
IEC*D]|,,. To control the first term, we require a bound on the following operator
norm:
. LY (0% g x0F
Q™) = |[Pays o I—IZ(XJ 0 XD) & P im [ (2.14)
Jj=1 2

Note that this operator belongs to End(End(R”*?)). In Section we show that
the first significant term in (2.13) is bounded as % IE®|l¢,. For the second
term in (2.13)), we show in Section [2.3.5|that ||F|l,, < MIIE@H@ based on

~

abound on &.+(L?) on the initial guess. Consequently, two of the key assumptions

in Theorem [2.3.5|concern bounds on the quantities ?ET%:; and IA\%{:;.

We note that the Operator Sinkhorn scaling procedure for normalization is crucial
in our algorithm. Aside from addressing the identifiability issues as discussed in
Section the incorporation of this method also plays an important role in the
convergence of Algorithm[3] Specifically, if we do not apply this procedure in each

iteration of Algorithm 3] then the estimate of £* at the end of iteration 7 + 1 would be
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L+ from (2.10). In analyzing how close the image of the nuclear norm ball under
L+ ig to the image of the nuclear norm ball under £*, we would need to consider
how close X* o X* is to an orthogonal rank-preserver as opposed to an arbitrary
rank preserver; in particular, we cannot apply Proposition as £U*D s not
normalized. In analogy to the discussion preceding Proposition and by noting
that | = I ® I is an orthogonal rank-preserver, we could attempt to express X* o X*
in terms of the following tangent space at | with respect to the set of orthogonal

rank-preservers:
S=span{I®S; +S$®1I : 51,5 € R”?" and skew-symmetric}. (2.15)

Following similar reasoning as in the preceding paragraph, the convergence of our
algorithm without normalization would be governed by ||Ps. o [% Z;‘:l( YO* 1
x0") ® PT(XU)*)]”Z- This operator norm is, in general, much larger than the
quantity Q(2™*) defined in (2.14) as S c ‘W, which can in turn affect the con-
vergence of our algorithm. In particular, for a natural random ensemble 2™*
of low-rank matrices described in Proposition [2.3.8] in Section [2.3.4] the condi-
tion on Q(Z*) in Theorem is satisfied while the analogous condition on
|Pss o [% ’]?zl(X 0* [ xU )*) ® PT(X(,)*)] |I> is violated (both of these conclusions
hold with high probability), thus highlighting the importance of the inclusion of the
normalization step for the convergence of our method; see the remarks following
Proposition [2.3.§ for details.

2.3.3 Main Result

The following theorem gives the main result concerning the local convergence of

our algorithm:

Theorem 2.3.5 Ler yV) = L*(XU)*), j=1,...,n, where L* : RP*? — R js q
linear map and ™ := {X(j)*};.’:1 C RP*P, Suppose the collection 2 satisfies the

following conditions:

1. There exists r < p and s > 0 such that rank(X(j)*) =rands > o (X(j)*) >
U,(X(j)*) >s/2foreachj=1,...,n;

AUL™) d .
2. TS < 107 and

N2 vd
3 27 < T

>
8

~

Suppose the linear map £* : RP*? — R? satisfies the following conditions:
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1. L* satisfies the restricted isometry condition 64,(L*) < %, where r is the
-\ %
rank of each X ke

2. L* is normalized and surjective; and

5 2
3. ||L*||§ < %.
If we supply Algorithm 3| with a normalized initial guess £© : RP*P — R? with

Ecx (L) < then the sequence {LVY} produced by the algorithm

S S
20000p7/2r2[[£*| 2’

(r+1) % 3 *
satisfies lim sup,_, % < 2||£*||§§3E§*; + 10p2||L*||2ﬁE§*)) < 1. In other
SL*
2Q(27)

words, fL*(L(t)) — Qwith the rate of convergence bounded above by 2|| L* ||2 N

10p2||L*||2ﬁE2,—§1)). We assume here that Step 1 of Algorithm 3| is computed via
Algorithm[2}

Remark. (i) In this result the assumption that Step 1 of Algorithm 3|is computed
via Algorithm[2)is made for the sake of concreteness. A similar result and proof are
possible if Step 1 of Algorithm 3| is instead computed by solving (2.4)) for a suitable
choice of the regularization parameter. (ii) In conjunction with Proposition [2.3.1]
this result implies that we obtain a linear map L upon convergence of our algorithm
such that the image of the nuclear norm ball in RP*P under L is the same as it is

under L*.

The proof of this theorem is given in Section[2.3.5] In words, our result states that
under a restricted isometry condition on the linear map £* and an isotropy condi-
tion on the low-rank matrices {XU )*};.’:1 , Algorithm 3is locally linearly convergent
to the appropriate semidefinite-representable regularizer that promotes the type of
structure contained in the data {£*(XU )*)};?: ,- The restricted isometry condition
on £* ensures that the geometry of the set of points {XU )*};’:1 in RP*P is (approx-
imately) preserved in the lower-dimensional space R?. The isotropy condition on
the collection {XV )*}7: , ensures that we have observations that lie on most of the
low-dimensional faces of the regularizer, which gives us sufficient information to

reconstruct the regularizer.

Results of this type have previously been obtained in the classical dictionary learning
literature [2,9]], although our analysis is more challenging in comparison to this prior
work for two reasons. First, two nearby sparse vectors with the same number of
nonzero entries have the same support, while two nearby low-rank matrices with

the same rank have different row/column spaces; geometrically, this translates to
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the point that two nearby sparse vectors have the same tangent space with respect
to a suitably defined variety of sparse vectors, while two nearby low-rank matrices
generically have different tangent spaces with respect to an appropriate variety
of low-rank matrices. Second (and more significant), the normalization step in
classical dictionary learning is simple — corresponding to scaling the columns of
a matrix to have unit Euclidean norm, as discussed in Section [2.2.4] — while the
normalization step in our setting based on Operator Sinkhorn scaling is substantially
more complicated. Indeed, one of the key aspects of our analysis is the relation
between the stability properties of Operator Sinkhorn scaling and the tangent spaces
to varieties of low-rank matrices, as is evident from the appearance of the parameter
Q({XU)*};’Zl) in Theorem [2.3.5]

The distance measure &g+ that appears in Theorem[2.3.5]is defined up to an equiva-
lence relation, and with respect to the linear map £* to which we do not have access.
In practice, it is useful to have a stopping criterion that only depends on the sequence
of iterates. To this end, the next result states that under the same conditions as in
Theorem the sequence of iterates {£®)} obtained from our algorithm also
converges (the limit point is generically different from £*, although they specify the

same regularizer):

Proposition 2.3.6 Under the same setup and assumptions as in Theorem [2.3.5] the

sequence of iterates {LV} obtained from our algorithm is a Cauchy sequence.

This result is proved in Appendix[A.9]

Extension to the noisy case. In practice the data points y') may be corrupted by
noise, and it is of interest to investigate if our algorithm is robust to noise. One
can extend our analysis to demonstrate the robustness of our algorithm in a stylized
setting in which the data points y“) in Theorem are corrupted by additive
noise. Briefly, such an extension comprises two key steps. First, one can show
that there exists a normalized linear map L that is close to £* (up to composition
by an orthogonal rank-preserver), and which is a fixed-point of our algorithm. The
key ingredient in demonstrating this is to prove that each iteration of our algorithm
is contractive in a neighborhood of £* and to appeal to a suitable fixed-point
theorem. The proximity of the regularizer defined by L to the regularizer defined
by £* is determined by the radius of contraction, which depends linearly (under the

conditions of Theorem [2.3.5) on the size of the noise corrupting the measurements
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and inverse-polynomially on the size of the data set. Second, one can show that our
algorithm is locally linearly convergent to L (up to composition by an orthogonal
rank-preserver). This step essentially follows the same sequence of arguments as in
the proof of Theorem [2.3.5] and it relies on the radius of contraction from the first
step being smaller than the basin of attraction defined in Theorem this is true
as long as the noise corruption is suitably small and the number of data points is

sufficiently large.

2.3.4 Ensembles Satisfying the Conditions of Theorem 2.3.5|

Theorem [2.3.5] gives deterministic conditions on the underlying data under which
our algorithm recovers the correct regularizer. In this section we demonstrate
that these conditions are in fact satisfied with high probability by certain natural
random ensembles. Our first result states that random Gaussian linear maps upon

normalization satisfy the requirements on the linear map in Theorem [2.3.5}

Proposition 2.3.7 Let L : RP”? — R? be a linear map in which each of the d
component linear functionals are specified by matrices £; € RP*P with i.i.d random
Gaussian entries with mean zero and variance 1/d. Let L represent a normalized
map obtained by composing L with a positive-definite rank-preserver. Fix any
0 < 1. Then there exist positive constants cy, c3, c3 depending only on ¢ such that if
d > cirp, then (i) 64,(L£) < 6 and (ii) || £]x < \/g with probability greater than
1 — ¢y exp(—c3d).

The proof of this result is given in Appendix [A.4] As shown in [28] random
Gaussian linear maps from RP*? to R satisfy the restricted isometry property for
rank-4r matrices if d 2 rp (and this bound is tight). Our result shows that under
the same scaling assumption on d, ‘most’ linear maps satisfy the more restrictive
requirements of Theorem [2.3.5] Next we consider families of random low-rank

matrices:

Proposition 2.3.8 Ler 2 := {X1) };.‘:1 be an ensemble of matrices generated as
X0 = 3 s PN with each U = [, L VD = WL v €
RP*" being drawn independently from the Haar measure on p X r matrices with
orthonormal columns, and each sgj ) being drawn independently from D, where D
is any distribution supported on [s/2,s] for some s > 0. Then for any 0 < t; < 1/4

and 0 < ty, the conditions (i) IA\Eg)) < t; and (ii) szg%; < 80]53 + 1y, are satisfied




38

2 2
with probability greater than 1 — 2p exp(—%) -p exp(—#&(‘). In particular, the
requirements in Theorem for d 2 rp are satisfied with high probability by the

10
ensemble 2" provided n 2, .

Considering the requirements of Theorem [2.3.3]in the regime d 2 rp is not restric-
tive as this condition is necessary for the restricted isometry assumptions of Theorem
on £* to hold. The proof of this result is given in Appendix Thus, in
some sense, ‘most’ (sufficiently large) sets of low-rank matrices satisfy the require-
ments of Theorem 2.3.51 We also note that for a collection of low-rank matrices

2 generated according to the ensemble in this proposition, the ratio ﬁgg; — 0 as

n — oo, while one can show that the ratio % = 15) as n — oo. Based on Theorem

[2.3.5] this observation implies that for data generated according to the ensemble in
Proposition [2.3.8] the rate of convergence of Algorithm [3|improves with an increase
in the amount of data, but only up to a certain point beyond which the convergence
rate plateaus. We illustrate this property with a numerical experiment in Section
2.4.1

Remark. It is critical in the preceding result that we project onto the orthogonal
complement of the subspace ‘W from (2.14)) in the definition of Q(Z"). For a set of
low-rank matrices 2 drawn from the same ensemble as in Proposition one
can show that ||Ps. o %2?21(X(j) X xXV)) ® Prxinllz > cA(Z) for a constant
¢ > O with high probability, where the subspace S is defined in (2.15)). In the context
of the discussion at the end of the preceding section, we have that the conditions
of Theorem are violated if we do not incorporate the normalization step via

Operator Sinkhorn scaling, which in turn impacts the convergence of our algorithm.

2.3.5 Proof of Theorem[2.3.5]
Before giving a proof of Theorem [2.3.5] we state two relevant lemmas that are
proved in Appendix [A.T]

Lemma 2.3.9 Suppose a linear map £ : RP*P — R satisfies the restricted isom-
etry condition 5,,(L) < 1. For any T := T(X) with X € R”*? and rank(X) <
r, we have that (i) 1 — 63 < Amin(L5-L7) < Amax(L3-L7) < 1+ 6o, (i)
1Ly L) Ml = L L) el < 15, (i) 197 0 Ll < VTF o3 1L1b,
and (iv) |I[(L5-Lg)  row 0 L'L]l2 < %llﬁ”z. Here Lo Ly T — T isa

self-adjoint linear map.
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Lemma 2.3.10 Let 2 := {X(j)};?:l C RP*P be a collection of matrices, and let
Smin := Min; ||X(j)||§2 and Smax 1= Max; ||X(j)||§2. Then smin/p> —AMZ) < A(Z) <
Smax/p2 + A(Z).

Proof of Theorem [2.3.5] To simplify the presentation of our proof we define the fol-
lowing quantities aq := 20000p7/2r2||£l*||§, ay = 800r5/2||L*||§, @ = 2r || L*2,
@ = 10p?||L*|lh, as = 5(p?/Nr)ai, as = 100p3oz§, as = 5(p*/\r)as, and
a7 = a3+ ag/6 + 1/4. The specific interpretation of these quantities is not essential

to the proof — the pertinent detail is that they only depend on p,r, || L*||>.

To simplify notation in the proof we denote A := A(Z"), A := A(Z), and Q :=
Q(Z). In addition we also denote 7V) := T(X(j)*). Our proof proceeds by
establishing the following assertion. Suppose that the 7-th iterate £ is such that
LD = L% o (I + ED) o M®, where M® is a rank-preserver, and E® is a linear
operator that satisfies ||E(t)||g2 < 1/ag. Then the t + 1-th iterate is of the form
LD = 0% o (1 + EX*DY) o MU*D for some rank-preserver M?*1, and some linear

operator EC*1) that satisfies
IE“DNle, < vollEDlle, + y1IEV)IZ, (2.16)

where yo = 2||L*[|2(Q/A) + a6(A/A), and | = a4 + s + 503 //p.

Before we prove this assertion, we note how it allows us to conclude the result. By
taking the infimum over E®) on the right hand side of (2.16) and by noting that
Ecx(LUD) < [[EUD||g,, we have

Ece(LID) < ol (L) + 18+ (LD), (2.17)

One can check based on the initial assumption on &;x(£) that y = yy +
y1écx(L©) < 1. By employing an inductive argument one can establish that
Epx (L)) < y&a(LW). Thus Ep+(LD) < ¥ (L@) = 0 as t — co. By divid-
ing the expression in throughout by &;x(£®), and subsequently taking the
limit # — oo, we obtain the asymptotic rate of convergence

(L))

limsup =—=——= < limsu + “(LDY) = .
msup = L) msup(yo + 1€+ (L") = 70

We proceed to prove the assertion.

[Applying Proposition [2.3.2]: Since [E”|l,, < min{1/(50+/p), 1/(120r2||£L*|]2)},
by applying Proposition with the choice of X* = X E = EO, M = M®,
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and L£*, we have for each j = 1,...,n that

MORWD) — xD* = — [(L;-,(,»)L;m)_l]wxp o L*L* o EO (X(J')*) + GY),
(2.18)
where G is a matrix that satisfies |GV, < @ ||X(j)*||2||E(t)||§2-

[Applying Proposition [2.3.3]]: The next step is to apply Proposition [2.3.3]to the col-
lections of matrices {XU)*};?:1 and {X(j)};le. Let X*,X denote the linear maps
X* iz 3 X0z, X :z - P XUz;. First note that a[|EY|,, <
ai/ag < Vr||L*]l,. Second from the assumptions we have A/A < 1/21. Hence
by Lemma [2.3.10l we have A < s%r/p> + A < s°r/p> + AJ21. Tt follows that
A < s°r/(20p?), and thus by Lemmawe have A > s%r/(5p?). Third by ap-
plying these inequalities and Lemmato ([@18) we have [[MO(XW) - xD*|,, <
(VT+8a)/(1 = SaDIL* I XD N IED N, + ar XD RIEVN2 < saafap <
sas||[E®|lg, < VA/20. Fourth note that the assumptions imply A/A < 1/6. Hence
by Proposition [2.3.3|applied to { XU )*};?:] and {XU )};’:1 with the choice of Q = M®

we have

X*oX" = (1+D)oM?,

where
1 <& . .
D= > (1085 £5) e 0 £76% 0 EV(XV) R XV
n
j=1
1 n
_ _A G(j) X X(j)* +F,
n =
and

A

IFll, < 20p(saallEVle,)*/A + 2p(saal|EV I, ) A/ A
asEVNZ + as(A/AIEDl,. (2.19)

IA

[Applying Proposition 2.3.4]]: We proceed to bound ||D|ls,. Given a collection
{A(j)};lzl,.{g(j)};t:.l c RP*XP one has %” ijl AW gB(j)”é,2 < max; ||A(j) gB(j)”[2 =
max; ||AY|l,||BY|l¢,. By combining this inequality with Lemma we obtain
the bounds

1 C ’ - , P\ k -\ %k
(18 &5 T 0 £77£% 0 EV] (X0 5 X0
j=1 4

Qs |L* ]2/ AIED e, < a3llEDl, (2.20)

IA
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and

(1/nA) | GV RV < (@ VF/MIEVIR < as EVNZ. 22D
J=1 A

Hence by combining (Z.19), (Z.20), and (Z.2I) we have ||D|l;, < a3||E@||,, +
au|EQ|Z + as|ED|Z + as(A/MIED |, < a7]|EV|l;, < a7/ap < 1/10. Con-
sequently, by applying Proposition [2.3.4] with this choice of D, we have

X* o X" = (I+ Py (D) + H) o Wo MY, [[H|l, < (5a3/vPIEVIZ.  (2.22)

for some rank-preserver W.

[Conclusion]: Recall from the description of the algorithm that the next iterate is
given by LUFD = £* 0 X* 0 X 0 Nu yuoge» Where Npaogeog is the unique positive
definite rank-preserver that normalizes £* oX*oX*. We define EC*) := Pqy1 (D) +H,
and hence

L(l‘+1) — L* o (I + E(l+1)) o M([+1)’ (223)

where MO+D = W o M® o N Lrox*ok+ 1S @ composition of rank-preservers, and hence

is also a rank-preserver. It remains to bound ||E(*D)]|,,.

As ||[(L;_’O_)L;m)‘1]RW |P < gfrom Lemma , we have [(ir;’mﬁ;g))_l]w’x”
< 2P+, and hence (XU X X ) )®[(L;’U)L*TU>)_1]RPXP < 2(XVRXUD)@P).

Moreover, since (X" KXV ™)@ [(L;’U)L;U))‘l Jerxr and 2(XD* RXD Y@ P ;) are

Kronecker products of positive semidefinite operators, they too are positive semidef-

inite operators, and hence Py o (% Z?zl(XU)* X X(j)*) Q [(L;.’U)L;-U))_I]RPXP )2 o

Py < Pyys o (% 2 (X KX e Pr)* o Pays. This implies the bound

n

1 Ak - ) O
20 > [Payr o ;Z(X(f) R XD) @ [(L3) L% Trrer

j=1 2

Combining this bound with the identity L(X;) X X, = L o (X; X X;) we obtain

1 < , ~ ) - -
JHP(WL(;([KL;@%)) e o £74% 0 B9 (X0 ))x )

143
1 no , ] |
) ”_AH[PWL ° (Z(X(]) X X% @ [(L50L50) I]RPXP)](L* L£* o EM)
=1
QML L* 0 EDlp, < Q/MIL*IBIED e, 224

%)

IA
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Figure 2.1: Average number of iterations required to identify correct regularizer as
a function of the number of observations; each line represents a fixed noise level o
denoting the amount of corruption in the initial guess (see Section [2.4.1] for details
of the experimental setup).

From the definition of E¢*1) we have the relation

1 & , ,
ED = Py, (n—A Z[[(L%L;@)—I]RPW o L¥L* o EW](XU)") ® x*
j=1
1 & . .
o Z GV xN* & F) +H. (2.25)
j=1

Since Py defines a projection, we have (1/nA)||Paw (3], G R XD, <
(L/nN)II 2, GV & XD™||¢,, and |Paw-(F)lle, < IIFlle,. Hence, by applying the
bounds (2.19), (2.21)), (2.22), and (2.24)) to (2.23), we obtain

ECD, < (QIMNLHIE + as(A/ADIED I, + (s + a5 + 5a2/VP)IE?|?
= YollEVlls, + M lIEQ2.
This completes the proof. O

2.4 Numerical Experiments
2.4.1 Illustration with Synthetic Data
We begin with a demonstration of the utility of our algorithm in recovering a reg-

ularizer from synthetic data. Our experiment qualitatively confirms the predictions
of Theorem regarding the rate of convergence.

Setup. We generate a standard Gaussian linear map £ : R”X7 — R* and we

normalize it; denote the normalized version as £*. We generate data {yU )}}2?0
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as yv) = L*(UU)VU),), where each u'), v\) is drawn independently from the Haar
measure on the unit sphere in R7. We generate standard Gaussian maps € :
R77 — R, j =1,...,20 that are used to corrupt £* in providing the initial guess
to our algorithm. Specifically, for each o € {0.125,0.25,...,2.5} and each ed =
1,...,20 we supply as initial guess to our algorithm the normalized version of £* +
o&®_ In addition we supply the subset {y(j)};":1 for each m € {50,100, ..,1000}
to our algorithm. The objective of this experiment is to investigate the role of the
number of data points (denoted by m) and the size of the error in the initial guess

(denoted by o) on the performance of our algorithm.

Characterizing recovery of correct regularizer. Before discussing the results, we
describe a technique assessing whether our algorithm recovers the correct regular-
izer. In particular, as we do not know of a tractable technique for computing the
distance measure ¢ between two linear maps (2.8), we consider an alternative ap-
proach for computing the ‘distance’ between two linear maps. For linear maps from
RPXP to R4, we fix a set of unit-Euclidean-norm rank-one matrices {s(k)t(k)’}i: 1>
where each s©,t%) € R? is drawn uniformly from the Haar measure on the sphere
and ¢ is chosen to be larger than p?. Given an estimate £ : RP*? — R? of a linear

map L* : RP*? — R?, we compute the following

4
. 1 . 2
distg+(L) 1= ZZ nf - (2.26)
2

k=1 rank(X)<1

c* (s<k)t<’<>’) — L(X)

To compute the minimum for each term in the sum, we employ the heuristic described
in Algorithm [2} If £* satisfies a suitable restricted isometry condition for rank-one
matrices and if £ is specified as £* composed with a near-orthogonal rank-preserver,
then we have that distg+(£) ~ 0; in the opposite direction, as £ > p?, we have that
diste« (L) =~ 0 implies &x+(£) = 0. In our setting with p = 7 we set £ = 100. If our
algorithm provides an estimate £ such that distz«(£) < 1073, then we declare that

our method has succeeded in recovering the correct regularizer.

Results. In Figure we plot for each o € {0.125,0.25,...,2.5} the average
number of iterations — taken over the 20 different initial guesses specified by the
normalized versions of £* + US(i), i =1,...,20 — required for Algorithm 3| (with
Step 1 computed by solving (2.3) via Algorithm [2) to succeed in recovering the
correct regularizer as a function of the number of data points m supplied as input.
The different curves in the figure correspond to different noise levels (specified by o)

in the initial guess; that is, the curves higher up in the figure are associated to larger
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Figure 2.2: Image patches (left) obtained from larger raw images (sample on the
right).

noise levels. There are two main conclusions to be drawn from this result. First,
the average number of iterations grows as the initial guess is of increasingly poorer
quality. Second, and more interesting, is that the number of iterations required for
convergence improves with an increase in the number of input data points, but only
up to a certain stage beyond which the convergence rate seems to plateau (this is a
feature at every noise level in this plot). This observation confirms the predictions of
Theorem[2.3.5]and of Proposition[2.3.8|(specifically, see the discussion immediately
following this proposition).

2.4.2 Illustration with Natural Images
2.4.2.1 Representing Natural Image Patches

The first stage of this experiment contrasts projections of low-rank matrices and
projections of sparse vectors purely from the perspective of representing a collection

of image patches.

Setup. We consider a data set {y(j)}?ﬁo € R% of image patches. This data is
obtained by taking 8 X 8 patches from larger images of seagulls and considering
these patches as well as their rotations, as is common in the dictionary learning
literature; Figure [2.2] gives an example of a seagull image as well as several smaller
patches. To ensure that we learned a centered and suitably isotropic norm, we
center the entire data set to ensure that the average of the yU)’s is the origin and
then scale each datapoint so that it has unit Euclidean norm. We apply Algorithm
B3] (with Step 1 computed by solving (2.5)) via Algorithm [2) and the analog of this
procedure for dictionary learning described in Section [2.2.4] We assess the quality
of the description of the data set {y(")}?iﬁo as a projection of low-matrices (obtained
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using our approach) as opposed to a projection of sparse vectors (obtained using

dictionary learning).

Representation complexity. To assess the performance of each representation
framework, we require a characterization of the number of parameters needed to
specify an image patch in each representation as well as the resulting quality of
approximation. Given a collection {yY )};?:1 c R?, suppose we represent each point
as y¥) =~ £(XY) for a linear map £ : RP? — R< and a rank-r matrix X) € RP*?.
The number of parameters required to specify each X) is 2pr — r? and the number
of parameters required to specify £ is dp>. Consequently, the average number of
2, dp?
n

parameters required to specify each y\) is 2pr — r . In a similar manner, if

each y) ~ LxU) for a linear map L : R” x R and a vector x) € R? with s nonzero
coordinates, the average number of parameters required to each yV) is 2s + i—p. In
each case, we assess the quality of the approximation by considering the average

squared error over the entire set {y" )};‘:1.

Results. We initialize both our algorithm and the dictionary learning method with
random linear maps (suitably normalized in each case). Before contrasting the two
approaches we highlight the improvement in performance our method provides over
a pure random linear map. Specifically, Figure [2.3|shows for several random initial-
izations that our algorithm (as well as the alternating update method in dictionary
learning) provides a significant refinement in approximation quality as the number of
iterations increases. Therefore, there is certainly value in employing our algorithm
(even with a random initialization) to obtain better representations than pure random
projections of low-rank matrices. Next we proceed to a detailed comparison of the
two representation frameworks. We employ our approach to learn a representation
of the image patch data set with p € {9, 10,. .., 15} and the values of the rank r cho-
sen so that the overall representation complexity lies in the range [17,33]. Similarly,
we employ dictionary learning with p € {100,200, . ..,1400} and the values of the
sparsity level s chosen so that the overall representation complexity lies in the range
[17,33]. The left subplot in Figure[2.5]gives a comparison of these two frameworks.
(To interpret the y-axis of the plot, note that the each data point is scaled to have unit
norm.) Our approach provides an improvement over dictionary learning for small

levels of representation complexity and is comparable at larger levels.

Comparison of atoms. Figure[2.4|gives an illustration of the atoms obtained from
classical dictionary learning (i.e., learning a polyhedral regularizer) as well as those

learned using our approach. The left subplot shows the finite collection of atoms of



46

0.14r 0.12r
0.12¢ 01
S 01
o © 0.08¢
c c
2 0.08f =)
< T 0.06¢
S S
< 0.061 =
s s 0.04¢
§0.04— § ‘
0.02 0.02
0 : ; ' 0 : : ; '
0 5 10 15 20 0 5 10 15 20
Iterate # Iterate #

Figure 2.3: Progression in mean-squared error with increasing number of itera-
tions with random initializations for learning a semidefinite regularizer (left) and a
polyhedral regularizer (right).
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Figure 2.4: Comparison between atoms learned from dictionary learning (left) and
our algorithm (right).

a polyhedral regularizer (corresponding to the finite number of extreme points), and
the right subplot shows a finite subset of the infinite collection of atoms learned using
our approach. The individual atoms in each case generally correspond to piecewise
smooth regions separated by boundaries. However, the geometry of the collection
of atoms is distinctly different in the two cases; in particular, the atoms learned
using our approach better represent the transformations underlying natural images.
As we discuss in the next set of experiments, our framework provides regularizers
that lead to improved denoising performance on natural images in comparison with

polyhedral regularizers.
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2.4.2.2 Denoising Natural Image Patches

We compare the performance of polyhedral and semidefinite regularizers in denois-

ing natural image patches corrupted by noise.

Setup. The 6480 data points from the previous experiment are designated as a
training set. Here we consider an additional collection {ygzt }]7.3? c R% of 8 x 8 test
image patches obtained from larger seagull images (as with the training set), and
subsequently shifted by an average of the pre-centered training set. We corrupt each

of these test points by i.i.d. Gaussian noise to obtain y(j) () eV, j=1,...,720,

obs — YeestT
where each €) ~ N(0,-2I) with 0% chosen so that the average signal-to-noise ratio
Iy,

ﬁlo Z’}:l —a2 ~ 18. Our objective is to investigate the denoising performance of

the polyhedral and semidefinite regularizers (learned on the training set) on the data

set {ygjb)s }Z(i Specifically, we analyze the following proximal denoising procedure:

. . 2
Ydenoise = arg min %HYObs - YII,;Z + Alyll, (2.27)
y€R64
where || - || is a regularizer learned on the training set and A > 0 is a regularization

parameter.

Computational complexity of regularizer. To compare the performances of dif-
ferent regularizers, it is instructive to consider the cost associated with employing
a regularizer for denoising. In particular, the regularizers learned on the training
set have unit-balls that are specified as linear images of the nuclear norm ball and
the £; ball. Consequently, the main cost associated with employing a regularizer
is the computational complexity of solving the corresponding proximal denoising

problem (5.5). Thus, we analyze the normalized mean-squared denoising error

”y(()j)s _y(ie)noise”2
ﬁ 27—1 % of a regularizer as a function of the computational complex-
ity of solving (5.5). For a polyhedral norm || - || : R — R with unit ball specified

as the image under a linear map L : RY — R of the £; ball in R?, we solve (5.3)) as

follows by representing the norm || - || in a lifted manner:

A . 1
Ydenoise = argmin 5 + At

x,zeRY
stER
» (2.28)
s.t. |lyobs — LX|l7, < s, Zzi <t > 0.
2 P Z+X

To solve (2.28) to an accuracy € using an interior-point method with the usual

logarithmic barriers for the nonnegative orthant and the second-order cone, we have
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Figure 2.5: Comparison between dictionary learning (blue) and our approach (red)
in representing natural image patches (left); comparison between polyhedral (blue)
and semidefinite (right) regularizers in denoising natural image patches (right).

that the number of operations required is /2¢ + 2 log( 2‘2;2 (d+29+2) +(2g+2)%))
— this represents the number of outer loop iterations of the interior point method —
multiplied by (d + 2¢g + 2)* + (2¢ + 2)? — this represents the number of operations
required to solve the associated linear system in the inner loop — for a barrier
parameter i [103) [118]. In a similar manner, for a semidefinite regularizer || - || :
R¢ — R with unit ball specified as the image under a linear map £ : R”? — R?
of the nuclear norm ball in R”*?, we again solve (5.3) as follows by representing the

norm || - || in an analogous lifted manner:

A _ . l
Ydenoise = argmin s + At

XeRP*P
Z],ZzESp
sIER (2.29)
Z X
st |lyobs = LQONZ <5, 3w(Zi+ Zo) <1, | > 0.
X 7

As before, to solve (2.29)) to an accuracy € using an interior-point method with the
usual logarithmic barriers for the positive-semidefinite cone and the second-order
cone, we have that the number of operations required is 1/2p + 2 log(zz—f((d +2(5) +
2)° +(2(5) +2)*)) multiplied by (d + (221’ ) +2)° + ((22” ) +2)? for a barrier parameter
n [118].

Results. We learn semidefinite regularizers on the training set using Algorithm [3|
for p € {9,...,20} and for a rank of 1. We also learn polyhedral regularizers on
the training set using dictionary learning for ¢ € {9%,10%,...,20%} and with corre-

sponding sparsity levels in the range {1/g — 1,~/q} to ensure that the representation
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complexity matches the corresponding representation complexity of the images of
rank-one matrices in the semidefinite case. As the lifted dimensions p? and ¢ in-
crease, the computational complexities of the associated proximal denoisers (with
the learned regularizers) also increase. The right subplot in Figure[2.5|gives the aver-
age normalized mean-squared error over the noisy test data (generated as described
above). The optimal choice of the regularization parameter A for each regularizer
is obtained by sweeping over a range to obtain the best denoising performance, as
we have access to the underlying uncorrupted image patches {ygzt}ji? For both
types of regularizers the denoising performance improves initially before degrading
due to overfitting. More significantly, given a fixed computational budget, these
experiments suggest that semidefinite regularizers provide better performance than
polyhedral regularizers in denoising image patches in our data set. The denoising
operation (5.5)) is in fact a basic computational building block (often referred to as a
proximal operator) in first-order algorithms for solving convex programs that arise
in a range of inverse problems [[109]. As such, we expect the results of this section
to be qualitatively indicative of the utility of our approach in other inferential tasks

beyond denoising.

2.5 Discussion

Our paper describes an algorithmic framework for learning regularizers from data in
settings in which prior domain-specific expertise is not directly available. We learn
these regularizers by computing a structured factorization of the data matrix, which
is accomplished by combining techniques for the affine rank minimization problem
with the Operator Sinkhorn scaling procedure. The regularizers obtained using our
method are convex, and they can be computed via semidefinite programming. Our
approach may be viewed as a semidefinite analog of dictionary learning, which can
be interpreted as a technique for learning polyhedral regularizers from data. We

discuss next some directions for future work.

2.5.1 Algorithmic questions

It would be of interest to better understand the question of initialization for our
algorithm. Random initialization often works well in practice and it would be useful
to provide theoretical support for this approach by building on recent work on other
factorization problems [64,[141]. To this end, we describe two experimental setups
on synthetic data showing instances where our algorithm recovers the true regularizer

from random initialization. In the first setup we generate a standard Gaussian linear
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map £ : R¥® — R and normalize it. Let £* denote the resulting normalized
map. We generate data {y! )}]1.241 asy¥) = L*WDv0)) /|| L* (vl )’)llgz, where each
u), v() is drawn independently from the Haar measure on the unit sphere in R. We
apply our algorithm to the data, and we supply as initialization the normalization of a
standard Gaussian linear map. The left subplot of Figure shows the progression
of the mean-squared error over 10 different initializations. As the measurements do
not contain any additional noise, the minimum attainable error is zero. We observe
that our algorithm recovers the regularizer in all 10 random initializations; moreover,
we observe local, linear convergence in the neighborhood of the global minimizer,
which agrees with our analysis. Note that the progress of our algorithm reveals
interesting behavior in that the global recovery of the regularizer is characterized
by three distinct phases — (i) an initial phase in which progress is significant; (i7) an
intermediate phase in which progress is incremental but stable; and (iii) a terminal
phase that corresponds to local, linear convergence. In particular, these graphs
indicate that global convergence to the underlying regularizer is not linear. The
second setup is similar to the first one, with the two main differences being that we
consider a linear map £* : R¥® — R0 of slightly different dimensions, and that
the data points {yU)}JZ.:l104 are images of rank-two matrices. The right subplot of
Figure [2.6) shows the progression of our algorithm over 10 different initializations.
In contrast to the previous setup where every initialization led to a global minimum,
in this case our algorithm attains a local minimum in 4 out of 10 initializations and
a global minimum in the remaining 6 initializations. In summary, our experiments
suggest that random initialization may sometimes be effective, and understanding

this effectiveness warrants further investigation.

Beyond random initialization, there have also been efforts on data-driven strategies
for initialization in dictionary learning by reducing the question to a type of clustering
/ community detection problem [3| 8]. While the relation between clustering and
estimating the elements of a finite atomic set is conceptually natural, identifying an
analog of the clustering problem for estimating the image of a variety of rank-one
matrices (which is a structured but infinite atomic set) is less clear; we seek such a
conceptual link in order to develop an initialization strategy for our algorithm. In
a completely different direction, there is also recent work on a convex relaxation
for the dictionary learning problem that avoids the difficulties associated with local
minima [[11]]; while this technique is considerably more expensive computationally
in comparison with alternating updates, developing analogous convex relaxation

approaches for the problem of learning semidefinite regularizers may subsequently
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Figure 2.7: Gram matrices of images of sparse vectors (left) and low-rank matrices
(right).

point the way to efficient global techniques that are different from alternating updates.

2.5.2 Approximation-theoretic questions

The focus of our paper has been on the algorithmic aspects of learning semidefinite
regularizers from data. It is of interest to investigate the power of finite atomic sets
in comparison with atomic sets specified as projections of determinantal varieties
from a harmonic analysis perspective (for a fixed representation complexity; see
Section[2.4.2.1|for a discussion on how these are defined). For example, what types

of data are better described using one representation framework versus the other?

Comparison of Gram matrices. As a simple preliminary illustration, we generate

two sets of 400 points in R, with the first set being a random projection of sparse
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vectors in R%%0

R of the form (- - - cos(2ma;t;), sinra;t;), -+ ) (-++ cos(2nBjt;), sin(2npB;t;), - -

for randomly chosen frequencies «;, 5;; the representation complexities of both these

and the second set being a random projection of rank-one matrices in

sets is the same. Figure[2.7]gives the Gram matrices associated with these data sets.
The data set of projections of sparse vectors appears to consist of ‘clusters’ of ‘block’
structure, while the data set of projections of low-rank matrices appears to consist of
smoother ‘toroidal’ structure. We seek a better understanding of this phenomenon
by analyzing the relative strengths of representations based on finite atomic sets

versus projections of low-rank matrices.

Representing group invariant datasets. A more targeted approach for answering
our approximation theoretic question is the following: are datasets that possess natu-
ral invariances arising from group transformations better described as determinantal

varieties compared to finite atomic sets?

As a simple illustration, we consider the following dataset comprising 1000 image
patches of dimensions 21 x 21 generated by rotating a single image at regular
intervals. We subsequently project the data to its top three principal components.

Figure [2.8]shows a subset of these images.

Figure 2.8: Dataset of rotated image patches.

In the first instance, we apply classical dictionary learning to learn a collection of
six atoms {+L;,+L,,+L3}, and we show these in Figure Notice that the atoms
can be naturally interpreted as rotations of the same image, and whose orientations
are spaced across regular intervals.

Figure 2.9: A collection of six atoms learned from the data using dictionary learning.

In the second instance, we apply our method to learn an infinite collection of

atoms specified as images of rank-one matrices {+L(ee’) : e € R2, llell, = 1},
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L : $? — R3, which we show in Figure (we omit negations). Notice that the
collection of atoms in Figure correctly reflects the higher order relationship

that is present in the data.

It is perhaps worth noting that the original dataset is not synthetically generated to
be exactly representable as images of rank-one matrices — Figure [2.11] shows the

residual error of expressing the data as projections of rank-one matrices.

Figure 2.11: Residual error from representing dataset as projections of a rank-one
matrix.

General atomic sets. More generally, it is also of interest to explore other families
of infinite atomic sets that yield tractable regularizers in other conic programming
frameworks. Specifically, dictionary learning and our approach provide linear and
semidefinite programming regularizers, but there are other families of computa-
tionally efficient convex cones such as the power cone and the exponential cone;
learning atomic sets that are amenable to optimization in these frameworks would

lead to a broader suite of data-driven approaches for identifying regularizers.
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Chapter 3

FITTING TRACTABLE CONVEX SETS TO SUPPORT
FUNCTION EVALUATIONS

3.1 Introduction

We consider the problem of estimating a compact convex set given (possibly noisy)
evaluations of its support function. Formally, let K* < R? be a set that is compact
and convex. The support function Agex(u) of the set K* evaluated in the direction
u € S9! is defined as:

hges(a) := sup (g, u).
geK*

Here S?! := {g : ||lg|» = 1} ¢ RY denotes the (d — 1)-dimensional unit sphere.
In words, the quantity hg«(u) measures the maximum displacement of the plane
normal to u intersecting K™*. Given a collection of noisy support function evaluations
{(u(i), y D) 1y = pgen(u®) + s(")}yzl, where each &) denotes additive noise, our

goal is to reconstruct a convex set K that is close to K*.

The problem of estimating a convex set from support function evaluations arises in a
wide range of problems such as computed tomography [115]], target reconstruction
from laser-radar measurements [91], and projection magnetic resonance imaging
[71]]. For example, in tomography the extent of the absorption of parallel rays
projected onto an object provides support information [115}1335]], while in robotics
applications support information can be obtained from an arm clamping onto an
object in different orientations [115]. A natural approach to fit a compact convex

set to support function data is the following least squares estimate (LSE):

n
Kisg € argmin l Z (y(i) - hq((ll(i)))2 . (3.1
KcR4:K is compact, convex n im1
An LSE always exists and it is not defined uniquely, although it is always possible to
select a polytope that is an LSE; this is the choice that is most commonly employed
and analyzed in prior work. For example, the algorithm proposed by Prince and
Willsky [115] for planar convex sets reconstructs a polyhedral LSE described in
terms of its facets, while the algorithm proposed by Gardner and Kiderlen [60] for
convex sets in any dimension provides a polyhedral LSE reconstruction described in

terms of extreme points. Despite the fact that Kisk is a consistent estimator of K*,
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it has a number of significant drawbacks. In particular, as the formulation (3.1)) does
not incorporate any additional structural information about K™ beyond convexity,
the estimator 7A<LSE is not well-behaved when the measurements available are noisy
or small in number. Further, even when the number of measurements is large, the
complexity of the resulting estimate grows with the number of measurements in
the absence of any regularization as the regression problem (3.1]) is nonparametric
(the collection of all compact convex sets in R? is not finitely parametrized); con-
sequently, the facial structure of the reconstruction provides little information about
the geometry of the underlying set[f] Figure [3.1] provides an illustration of these
points. Finally, if the underlying set K™ is not polyhedral, a polyhedral choice for
the solution 7A(LSE (as is the case with much of the literature on this topic) produces
poor reconstructions. Indeed, even for intrinsically “simple” convex bodies such
as the Euclidean ball, one necessarily requires many vertices or facets in order to

obtain accurate polyhedral approximations; see Figure [3.1]

3.1.1 Our Contributions

We describe a framework for regularizing for the complexity of the reconstruction
in the formulation (3.1). In particular, we consider reconstructions specified as
convex sets in R? (the ambient space in which K™ lies) that are linear images of
concisely described convex sets in R?, with ¢ not being too much larger than d. The
lifting dimension g serves as a surrogate for the complexity of the reconstruction.
Convex sets described in this manner are significant as there exist computationally
efficient algorithms for the optimization of linear functionals over such sets [103].
We employ these ideas in a conceptually different context in the setting of the present
paper in order to regularize for the reconstruction in (3.1)), which addresses many of
the drawbacks with the LSE outlined previously.

Formally, we consider the following regularized convex set regression problem:
& 2

. 1 ' ‘
K, (C) € argmin - Z (y(’) - hqc(u(l)))
K:K=A(C).AcL(RI R

(3.2)

Here C ¢ RY is a compact convex set in R? and L(R?,R?) denote the set of linear
maps from R? to R¢. In words, the above regularized formulation aims to identify

a convex set that is expressible as a linear image of the given set C that minimizes

I'We note that this is the case even though the estimator ‘]A(LSE is consistent; in particular,
consistency simply refers to the convergence of Kjsg to K™ in a ‘metric’ sense (e.g., Hausdorff
distance) and it does not provide any information about the facial structure of K sg relative to that
of K*.
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the error. The choices of C that are most commonly employed in our experimental

demonstrations are the simplex and the free spectrahedron.

Example. The simplex in R? is the set:
Al:={x:xeRL,x>0,(x,1) =1} where 1=(1,...,1).

Convex sets that are expressible as projections of A1 are precisely polytopes with at

most q extreme points.

Example. Let SP = R(2) denote the space of p X p real symmetric matrices. The

free spectrahedron O C SP (also called the spectraplex) is the set:
O ={X:XeS’,X>0,(X,I)y =1}, where I €SP is the identity matrix.

The free spectrahedron is a semidefinite analog of the simplex and the lifting dimen-
sion in this case is (* ;1) The free spectrahedron is especially useful in situations in

which we seek non-polyhedral reconstructions, as can be seen in Figure

Although our theoretical analysis is largely valid for arbitrary compact convex sets
C, we generally operate under the premise that the choice of C employed in (3.2))
comes from the families {A? }2":1 and {OP };": .- The specific selection of C from
these families is governed by the complexity of the reconstruction one seeks, which is
typically based on prior information about the underlying convex set. Our results in
Section [3.3]on the statistical properties of the estimator (3.2)) rely on the availability
of such additional knowledge about the complexity of the underlying set. In practice
in the absence of such information, cross-validation may be employed to obtain a

suitable reconstruction; see Section [3.6]

In Section [3.2] we discuss preliminary aspects of our technical setup such as proper-
ties of the set of minimizers of the problem (3.2)) as well as a stylized probabilistic
model for noisy support function evaluations. These serve as a basis for the sub-
sequent development in the paper. In Section [3.3] we provide the main theoretical
guarantees of our approach. In the first result concerning consistency, we show that
the sequence of estimates {7%,,((}’)};":1 converges almost surely (as n — oo) to that
linear image of C that is closest to the underlying set K*. Under suitable additional
conditions, we also characterize certain asymptotic distributional aspects of the se-
quence {K,(C )}—; this result is based on a functional central limit theorem, and
it requires the computation of appropriate entropy bounds for Vapnik-Chervonenkis

(VC) classes of sets that admit semialgebraic descriptions. Our third result describes



57

the facial structure of {K;,(C )}o2, in relation to the underlying set K*. We prove
under appropriate conditions that if K™* is a polytope then our approach provides a
reconstruction that recovers all the simplicial faces (for sufficiently large n); in par-
ticular, if K* is a simplicial polytope, we recover a polytope that is combinatorially

equivalent to K™*. Our result is more general, and it applies to non-polyhedral K*.

In the sequel, we describe a conceptual connection between the formulation (3.2))
(when C is a simplex) and K-means clustering. Accordingly, the algorithms we
propose in Section for computing ‘IA(,,(C ) — one based on gradient descent, and
another based on minimizing in alternating directions — bear significant similarities
with prominent methods, such as Lloyd’s algorithm, that are widely employed
for clustering problems (see Section [3.4). As the problem (3.2) is not convex as
formulated, our algorithms are not guaranteed to find a global minimum. Indeed, the
connection between (3.2)) and K-means clustering suggests that obtaining globally
optimal solutions may be NP-hard in general [42,95]]. We discuss this point further
in Section

A restriction in the development in this paper is that given a lifting dimension
q, we do not consider further optimization of the set C c R? in the formulation
(3.2) aside from the choices of the simplex A? and the free spectrahedron O” (with
g=(" ;1)). Specifically, both the simplex A? and the free spectrahedron O” are
particular affine sections of the nonnegative orthant in R? and the cone of positive
semidefinite matrices in S”, respectively. Consequently, a natural approach — based
on the literature on conic optimization [70, [152] — is to further improve the choice
of C by optimizing over all affine slices of the nonnegative orthant in R? or the cone
of positive semidefinite matrices in S”. Such an additional degree of flexibility in
the formulation leads to technical complications with establishing asymptotic
normality in Section [3.3.2] as well as to challenges with developing algorithms for
solving (3.2)) (even to obtain a local optimum). We remark on these difficulties in
Section [3.3.2] and for the remainder of the paper we proceed with the framework

discussed in the preceding paragraphs.

3.1.2 Estimating Centrally Symmetric Convex Sets

In some applications we may be interested in estimating convex bodies that are
known to be centrally symmetric — these are convex sets with the property that
—x € K whenever x € K, and they naturally arise as level sets of norms. From a

statistical viewpoint, it is frequently beneficial to enforce such a symmetry explicitly
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(b) Reconstructions of the convex mesh of
a human lung from 300 noiseless support
function measurements as the projection
of O% (our approach, left), and the LSE
(right).

(a) Reconstructions of the unit ¢,-ball
from 50 noisy support function measure-
ments as the projection of O3 (our ap-
proach, left), and the LSE (right).

Figure 3.1: Comparison between our approach and the LSE.

in the estimation procedure, as it reduces the number of degrees of freedom in the

problem.

Based on our framework of estimating convex sets as projections of a lifting set
C c RY, a natural extension of our ideas to estimating centrally symmetric convex
sets K is to simply choose C c R to also be centrally symmetric. The subsequent
discussion in this chapter also applies to such a setting. In particular, the natural
extension of projections of the simplex are projections of the £; ball, and the natural
extensions of projections of the free spectrahedron are the projections of the nuclear

norm ball over the space of symmetric as well as asymmetric matrices.

3.1.3 Related Work

3.1.3.1 Consistency of Convex Set Regression

There is a well-developed body of prior work on analyzing the consistency of
the LSE (3.1). Gardner et al. [61] prove that the (polyhedral) estimates Kise
converge to the underlying set K* in the Hausdorff metric as n — co. A number of
related work subsequently analyzed the rate of this convergence in minimax settings
[74]]. These results hold under relatively minimal assumptions on the available
support function evaluations and on the set K* (essentially that this set is convex
and compact). In contrast, the consistency result in the present paper corresponding
to the constrained estimator (3.2)) is qualitatively different. For a given compact and
convex set C C RY, we prove that the sequence of estimates {‘kn(C)};"=1 converges
to that linear image of C that is closest to the underlying set K*; in particular,
{K.(C )}o2, only converges to K™ if K™ can be represented as a linear image of
C. However, there are several advantages to the framework presented in this paper

in comparison with prior work. First, the constrained estimator (3.2)) lends itself
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to a precise asymptotic distributional characterization that is unavailable in the
unconstrained case (3.1I). Second, under appropriate conditions, the constrained
estimator ([3.2)) recovers the facial structure of the underlying set K™ unlike 7A(LSE.
More significantly, beyond these technical distinctions, the constrained estimator
(3.2) also yields concisely described non-polyhedral reconstructions (as well as
consistency and asymptotic distributional characterizations) based on linear images
of the free spectrahedron, in contrast to the usual choice of a polyhedral LSE in the

previous literature.

3.1.3.2 Fitting Convex Sets with Smooth Boundaries

We are aware of a line of work by Fisher et al. [S3] on fitting convex sets with
smooth boundaries to support function measurements. They propose interpolating
between support function evaluations using splines and the von Mises kernel to
obtain a smooth estimate of the support function. This smoothing is done in a local
fashion and the resulting reconstruction is increasingly complex to describe as the
number of measurements available grows. In contrast, our approach to producing
non-polyhedral estimates based on fitting linear images of free spectrahedra is more
global in nature, and we explicitly regularize for the complexity of our reconstruction
based on the choice of the lifting dimension. Further, the reconstructions produced
by Fisher et al. [355] are convex sets with smooth boundaries, i.e., the resulting
estimates do not possess any faces other than the extreme points and the entire
set itself. Consequently, any interesting facial geometry in the underlying set is
not captured in these reconstructions, unlike those based on linear images of free

spectrahedra as in the present paper.

3.1.3.3 K-means clustering

When the set C ¢ R? in the constrained estimator (3.2) is the simplex A%, the
resulting optimization formulation bears a great deal of similarity to the problem
of clustering [93]]. Specifically, in K-means clustering, one wishes to partition a
collection of points {y(")};’:1 c R4 into ¢ disjoint clusters, where the clusters are

c RY. This task is typically posed

represented by a collection of ‘centers’ {v; };1:1

as the following minimization problem
S 0 _ .|}

argmin Zmin vy —vil .
=1 2

{v; 7=1CR(1 i=1 -
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To illustrate the relationship between this formulation and our setup (with C = A%),

suppose we specify the linear map A € R%4 in (3.2) in terms of its columns as

A = [a;]...|as]. Then the optimization problem (3.2) can be reformulated as
n . . 2
argmin Z (y(’) — max <aj,u(’)>) . (3.3)
{aj} cRY 5 /

One can view as a problem of computing a partition of the collection of support
function measurements into g disjoint clusters, with each cluster being assigned to
an extreme point that minimizes the squared-loss error. In Section [3.4] we highlight
the analogies between our algorithms for computing %K and the widely used Lloyd’s

algorithm for K-means clustering [93]].

3.1.4 Outline

In Section [3.2) we discuss the geometric and algebraic aspects of the optimization
problem (3.2)), which serve as the foundation for the subsequent statistical analysis
in Section Throughout both of these sections, we describe several examples
that provide additional insight into the mathematical development. We describe
algorithms for (3.2) in Section [3.4] and we demonstrate the application of these
methods in a range of numerical experiments in Section We conclude with a

discussion of future directions in Section

3.2 Projections of Structured Convex Sets

In this section, we provide the necessary background to analyze our approach.
Throughout this paper, we assume that the underlying set K* c R is compact
and convex with non-empty interior. We also assume that the lifting set C ¢ RY,
q > d, is compact and convex. In addition, we require C to satisfy the property
that 0 ¢ aff(C), and that the cone generated by C is full dimensional — the first
stipulation allows us to express translations of projections of C in our framework,
and the second stipulation ensures that the set of linear transformations preserving

C are invertible (we elaborate on this point later).

Notation. Given a convex set C C RY, we denote |[Al|c := supycc [|AX][2. We
denote B).(x) := {y : |ly — x|| < 1} to be the unit || - [|-ball centered at x, and we
denote || - ||r to be the Euclidean-norm over the space of matrices. Given a point
a € R7 and a subset B C RY, we denote dist).|(a, B) := infpew [|a — b||. Last, given
any two subsets U, B ¢ R?, we denote the Hausdorff distance dy (2, B) := inf,;>o{t :
ACB+1B),(0),B CA+18),,(»0)}
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Probabilistic Model for Support Function Measurements. We assume that the
support function evaluations are measurement pairs — these are pairs of the form
(,y) € 84! x R, where u denotes the direction at which the support function is
evaluated, and y denotes the noisy support function evaluation — are independently

and identically distributed according to the model:
Pyer : y = hge«(u) + €.

Here, u € S¢! is a random vector distributed uniformly at random (u.a.r.) over the
unit sphere, ¢ is a centered random variable with variance o (i.e. E[e] = 0, and

E[£?] = 0%), and u and ¢ are independently distributed.

In the following, we describe the geometrical, algebraic, and analytical aspects of
our procedure. The proofs of all results we state are straightforward. To simplify

the exposition in this section, we defer these proofs to the Appendix.

3.2.1 Geometrical Aspects of Our Method

We quantify the difference between pairs of convex sets in terms of the L, metric
applied to their respective support functions. Let K and K, be a pair of compact
convex sets in R?, and let hy, (+) and hg, (-) be the respective support functions of

these sets. We denote

/p
o1 = ( [ Voo = @l ) L 1 p<s G

where the integral is performed with respect to the Lebesgue measure over S9~!; as
usual, we denote poo(K1, K2) = maxy | g, (w) — hg,(u)|. In Section|3.3.1} we prove

our convergence guarantees in terms of the L,-metric.

The p,-metric represents an important class of distance measures over convex sets.
For instance, it features prominently in the literature of approximating convex sets
as polytopes [25]. In addition, the specific instance of p = oo coincides with the
Hausdorff distance [[124].

A basic question we seek to address in Section[3.3.1]is to characterize the settings in
which the sequences of estimators obtained using our method converge, and the limit
to which these sequences converge to. As the estimators we consider are computed
by minimizing an empirical loss function, a natural strategy is to understand the
minimizers of the loss function at the population level. Let Q be a probability

measure over the pairs (u,y) € S9! x R. We denote the loss function with respect
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to Q as follows:
Oc(A, Q) := Eo{(hc(A'w) - y)*}.

First, we note that ®¢(-, Q) is continuous if y is Q-integrable:

Proposition 3.2.1 Let Q be any probability distribution over the measurement pairs
(u,y) satisfying Ep[|y|] < oo. Then the function A — ®¢c(A,Q) is continuous at
every A.

Next, we denote the set of minimizers of the loss function at the population level
D¢ (-, Pyex) by Myexc:

Myex ¢ := argmin O (A, Pyex).
A

The following result states a series of properties about the set My . Crucially, it

shows that My ¢ characterizes optimal approximations of K™ as projections of C:

Proposition 3.2.2 The set My ¢ is compact and non-empty. Moreover, we have

Ae Mywe o Ae argmin py(A(C), K™ ).
AeL(R4R4)

It follows from Proposition that an optimal approximation of K™ as the pro-
jection of C always exists. In Section [3.3.1] we show that the estimators obtained

using our method converge to such a set if it is also unique.

Example. Suppose K* is the regular g-gon in R?, and C is the free spectrahedron
O?. Then My ¢ uniquely specifies €>-ball.

Example. Suppose K* is the unit €>-ball in R?, and C is the simplex A?. Then

My« ¢ specifies a centered regular q-gon, but with an unspecified rotation.

In light of our previous remark, a natural question to consider is to obtain a full
characterization of the settings in which Mg+ ¢ defines a unique set. Unfortunately,
such an undertaking is difficult as the set Mg ¢ is highly dependent on the sets K*
and C. Based on Proposition [3.2.2] we can provide a simple sufficient condition

under which My« ¢ defines a unique set:

Corollary 3.2.3 Suppose we have K* = A*(C) for some A* € L(RY,R?). Then the
set of minimizers My ¢ uniquely define K*; i.e., K* = A(C) for all A € Myec.
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In our earlier example where K™ is the unit £,-ball in R? and C is the simplex A9,
the set Mg~ ¢ contains multiple orbits because of non-trivial symmetries in K* —
many sets that one encounters in practice do not contain such symmetries, in which

case we expect My ¢ to define a unique set.

3.2.2 Algebraic Aspects of Our Method
Next, we introduce the necessary tools to view our geometric problem of recon-

structing a set as an algebraic task of recovering a linear map.

We begin by describing the identifiability issues that arise with such an approach.
Given a compact convex C, let g be the linear transformation that preserves C; i.e.,

g(C) = C. Then the linear map defined by Ag specifies the same convex set:
[Ag](C) = A(g(C)) = A(C) =K.

As such, every projection map A € L(R?,R?) is amember of the equivalence relation
defined by:
A~ Ag, g€ Aut(C). (3.5)

Here Aut(C) denotes the subset of linear transformations that preserve C. Since
the cone generated by C is full dimensional, every element of Aut(C) must be an
invertible matrix, and hence Aut(C) forms a subgroup of GL(¢,R). In particular,
the equivalence class O¢(A) := {Ag : g € Aut(C)} specified by (3.5) is also the
orbit of A € L(R?,R?) under group action by Aut(C). A further consequence of C
being compact convex is that Aut(C) forms a compact matrix Lie group (see, e.g.,
Corollary 3.6 of [73]), and hence O¢(A) is also a smooth manifold.

It follows that the space of projection maps L(R%,R¢) can be viewed as a union of
orbits O¢c(A). An important property of the Hausdorff distance is that it defines
a metric over collections of non-empty compact sets, and hence the collection of
all orbits {Oc(A)} ser(ra gy endowed with the Hausdorff distance defines a metric
space. In our subsequent analysis in Section[3.3] it is useful to view our set regression

instance as one of recovering an orbit

Notice that the function ¢ (-, Py« ) is invariant over orbits of A: forevery g € Aut(C),
we have ho(A'n) = he((Ag)'u). It follows immediately that the set of minimizers
Mg+ ¢ must also be a union of orbits. In Section we show that the sequence
of orbits corresponding to the minimizers of the empirical loss approach Mg ¢
as the number of measurements increase. Our results in Sections and 3.3.3]

consider the specialized setting where Mg+ is a single orbit, in which case the
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sequence of orbits also converges to Mg+ . It is straightforward to see that such
a condition is satisfied if K™* is a polytope with g extreme points, and we choose
the lifting set C to be the simplex A? in g-dimensions. The situation for projections
of the free spectrahedron is more delicate, as the number of extreme points may
be infinite. One simple instance in which My is a single orbit is when K™ is
the projection of O7 under a linear map A, and A maps O7 bijectively to K*. The
following result provides a procedure to construct further examples of convex sets
that are representable as projections of the free spectrahedron, and where the set of

minimizers Mg ¢ is a single orbit:

Proposition 3.2.4 Let {7(,-};‘:1 c R? be a collection of sets with the property that
Ki is expressible as the projection of O%, and that My, o4 is a single orbit. Let
K = ConV(Ui{%}le). Suppose that K; are exposed faces of K. Then K is
expressible as the projection of O, where q = %, q;. In addition, M oaq is a single

orbit.

3.2.3 Analytical Aspects of Our Method
Third, we state the main derivative computations in our paper. These are useful for

describing our examples in Section [3.3.2] and our algorithms in Section[3.4]

Given a compact convex C, the support function A¢(-) is differentiable at x if and
only if argmaxgcgrq (g, X) is a singleton, and in which case, the derivative is given by
argmaxycpg (g,x) (see Corollary 1.7.3 in [124]). We denote the derivative of h¢ at
X by ec(x) := Vx(hc(x)).

Example. Suppose C = A? C RY is the simplex. The function h¢(-) is the maximum
entry of the input vector, and is differentiable if and only if the maximum is unique,

in which case the derivative ec(-) is the corresponding standard basis vector.

Example. Suppose C = OP c SP is the free spectrahedron. The function he(-)
is the largest eigenvalue of the input matrix, and is differentiable if and only if the
largest eigenvalue has multiplicity one, in which case the derivative ec(-) is the

corresponding rank-one unit-norm positive definite matrix.

The following result computes the first derivative of ®¢(-, Pgex).

Proposition 3.2.5 Let Q be a probability distribution over the measurement pairs

(w,y), and suppose that EQ{yZ} < oo. Suppose that A € L(R1,R?) is a linear
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map such that he(+) is differentiable at A’ for Q-a.e. u. Then A — ®c(A,Q) is
differentiable at A with derivative 2Eg{(hc(A'u) — y)u ® ec(A'n)}.

3.3 Main Results

In this section, we describe the main performance guarantees associated with us-
ing our approach. We denote Py := %Z;’:l 6(u’y):(u(i)’y(i)), where (u(i),y(i)) ~
Pgc~, to be the empirical measure corresponding to drawing n i.i.d. measure-
ments from the model Py, and we denote the estimator K,(C) := A,(C), where

A, € argmin 4 Pc(A, Pygex).

3.3.1 Strong Consistency
Our main result describing strong consistency shows that the sequence of estimators
{K,(C )}.-, obtained using our method converges to the optimal p, approximation

of K™* as a projection of C, provided that such an approximation is unique:

Theorem 3.3.1 Given a compact convex K* c R¢, and the choice of any com-
pact convex C C RY as the lifting set, let {An};":l, A, € argmin,®¢c(A, P,gc+),
be a sequence of minimizers of the empirical loss function, and let {K,(C )) Sae
K.(C) = A,(C), be the corresponding sequence of estimators of K*. We have
dist(A,, M) — 0 a.s., and infae Myen du(Dc(A4,), Oc(A)) — 0 a.s.. In partic-
ular, if Mg ¢ specifies a unique set, i.e. there exists K c R? such that K = A(C)
forall A € Mg, then p,,(?A(n(C), K) — 0 a.s.. Furthermore, if K* = A*(C) for
some linear map A* € L(RY,RY), then pp(f(n(C),?(*) — 0a.s..

The above result is valid for all p, metrics, where 1 < p < co.

In settings where My~ ¢ defines multiple sets, our result implies a weaker notion
of convergence: Given any € > 0, there exists a ng such that pp(‘f(n(C ), An(C)) < €
for some A, € Mg=c, and all n > ng, a.s.. In other words, although the sequence
{K.(C )}i-, may not converge, we are guaranteed that its elements eventually ap-
proximate some member of the sets specified by Mg ¢ (not necessarily the same

set for every element) to arbitrary precision.

Example. Suppose K* is the unit {>-ball in R?, and C = A?. The optimal p;
approximation is the regular g-gon with an unspecified rotation. The sequence
{K,(C )}oo, does not have a limit; rather, there is a sequence {g,},. | C SO(2) such
that g,%K,,(C) converges to K* a.s..
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The proof of Theorem [3.3.T| comprises two parts. First, we show that there exists a
sufficiently large ball ¢ c L(R?,R?) such that A, € U as n — oo eventually a.s..
Second, we appeal to a uniform strong law of large numbers (SLLN), which we state
in the following, and prove in the Appendix. The structure of our proof is similar
to that of a corresponding result for K-means clustering (see the main theorem in
[L12]).

Lemma 3.3.2 (Uniform SLLN) Let U ¢ L(R?,R?) be bounded. Let Q be a prob-
ability distribution over the measurement pairs (u,y) satisfying EQ{yZ} < o0, and
let Q,, be the empirical measure corresponding to drawing n i.i.d. samples from the
distribution Q. Consider the collection of functions ® = {(hc(A"0) — y)*}acqs in
the variables (u,y). Then

sup |EQn{g} - EQ{g}| —0 as n—o oo as.
ge®

The proof of Lemma|[3.3.2]is located in the Appendix.

Proof of Theorem|[3.3.1] First we show that dist(A,, Mgexc) — 0 as.. Pick any
c € (0,1), and define Gy, := {(w,y) : (v,u) > c,|y| < rc/2}, forall v € S¢!,
r > 0. Define s, = P{(u,y) : (v,u) > c}, and note that s, > 0 since ¢ € (0,1).
Note that P{Gy,.} is a continuous function in v. Since E{|y|} < oo, we have
P{Gvsc} T sc asr — oo. Hence {{P{Gyv,}}yesa-1}r=0 is a sequence of collections
of continuous functions in v that converge pointwise to the constant function s,
as r — oo. Since the domain of these functions is S?~!, which is compact,
the convergence is also uniform. Thus we can pick r sufficiently large so that
(r2c?|4)P{Gy, .} > Pc(0, Pg+) uniformly over all v € S9-1,

We claim that A, € B¢, (0) eventually as n — oo a.s.. Suppose on the contrary
that this does not hold. Then A, ¢ rB|.c.(0) i.0.. For every A, ¢ rB|.1c.(0)
there is X, € C such that ||A,x,|| > r. Consider the sequence of unit-norm vectors
AuXu/||Anx,ll2 over the set of indices n such that A, ¢ rB|.1c.(0). Because the
unit-sphere is compact, we can pick a convergent subsequence whose limit point is
v € 84!, Then

lim Supq)C(An, Pn,?(*) > lim SUPEP”’%* {l(gv,r,c)(hC(A;zu) - y)2}
n n

> imPp, o {Gurc}r’c? [4 = Pr{Gure}rc® [4 > Dc(0, Pc).
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By the SLLN we have ®¢(0, P, g+) = Epnﬂ(*{yz} — Ep{y?} = ®c(0, Px+) a.s..
Then ®¢(A,, P,gcx) > ©c(0, Pygc+) i.0., which contradicts the optimality of A,.

We proceed to conclude that dist(A,, Mgxc) — 0 as.. Let A e Mgex ¢ be arbi-
trary. First by the optimality of A, we have ®c(A,, Ppgex) < Oc(A, P, 5+ ) for all
n. Second by Lemma with the choice of O = Py, we have (DC(A,,, Pog+) =
®c (A, Px~), and Do(A, Pgcex) — ®c (A, Pye+), both uniformly and a.s.. By combin-
ing the previous two outcomes we have ®¢(A,, Py+) < ®c(A, Pye+) + n eventually,
foralln > 0. Third by Proposition(Dc(-, Pyg~) is continuous, and hence A, € U
eventually a.s, for any neighborhood U of Mycsc. Thus dist(A,, Mgec) — 0 as..

We conclude the remaining assertions. Note that since Aut(C) is compact, we
may bound oy,x(g) uniformly over all g € Aut(C) by some ¢ > 0. Here, omax(+)
is the spectral norm. Given € > 0, let A € My be such that ||A, — A||r <
dist(Dc(A,), Mgxc) + €. Then, for every g € Aut(C), we have ||A,g — Ag|lr <
Tmax(8)(dist(Dc(A,), Mgcx o) + €) < c(dist(Dc(A,), Mg ) + €). This implies that
dy(Dc(A,), Oc(A)) < c(dist(De(A,), M) + €). By noting that € is arbitrary, it
follows that inf ac .,  du(Dc(An), Oc(A)) = O ass..

Now suppose that A(C) defines the same set for all A € Mg . Then ho(A'u)
defines the same function for all A € Mgex . We have dist(A,, Mgesc) — 0 as.,
and thus hc(A’u) — he(A™a) pointwise. Note that hc(A'u) is a continuous function

in u defined over a compact domain S¢~!. Thus h¢(A,u) — hc(A'a) uniformly.
Hence pp(VA(n(C), K) — 0 a.s.. The last assertion follows from Corollary O

3.3.2 Asymptotic Normality

Our second result characterizes the limiting distribution of the estimators {K,(C )} Sap

We begin our discussion by describing the nature of our result. Recall that each set
K.(C) = A,(C) is specified by a projection map A, € L(R%,R?). The manner in
which we describe the behavior of the set K,(C) is by characterizing the asymptotic
distribution of A,. We do so by selecting a minimizer A € Mg ¢ to serve as a
reference point. Following which, we define a sequence {4, }o> 1> where each A, is
a member from the equivalence class corresponding to A, (see (3.5)) that is closest
to A in the Euclidean distance. Our main result in this subsection shows that, under
conditions which we describe next, the sequence {\n(A, — A)};’l"zl is asymptotically
normal. In our subsequent discussion, we also illustrate a series of examples in

which we apply our result to describe the asymptotic behavior of the set K;,(C).

Next, we describe the key ingredients required for our result. The first set of re-
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quirements are non-degeneracy assumptions on the function ®¢(-, Px+). First, we
require the minimizers of ®¢(-, Pg) to define a unique orbit. Following from the
conclusions of Theorem [3.3.1 such an assumption guarantees that the sequence
of orbits {DC(An)};:i , converges, and in particular, it also guarantees that the se-
quence of linear maps {A,}”, converges, which is necessary in order to provide
a Central Limit Theorem (CLT) type of characterization for {A”}ZOZI' Second, we
require the function ®¢ (-, Px+) to be twice differentiable at A, and whose second
derivative is positive definite (modulo invariances due to Aut(C)) — this is a non-
degeneracy assumption that allows us to obtain a quadratic approximation of the
function ®¢(-, Pye+) around A, and subsequently compute first order approximations
of the empirical minimizers A,. The inclusion of these conditions have a geometric
interpretation: they guarantee that images of extreme points of C under the pro-
jection map A, — and by extension, the extreme points of K.(C) - converge in a
“well-behaved” manner. In our subsequent discussion, we consider a specific in-
stance where the above conditions are violated. We describe the behavior of ‘f(n(C )
to illustrate the manner in which an asymptotic normality characterization may fail

if the above conditions are not satisfied.

Our second ingredient is a property from empirical statistics known as stochastic
equicontinuity — it is a notion of uniform continuity that is specialized to sequences of
stochastic processes, and is useful for establishing a functional central limit theorem

for minimizers of an empirical process:

Definition 3.3.3 (Stochastic equicontinuity) Let {Z,(¢) : t € T} | be a sequence
of stochastic processes whose index set T is equipped with a pseudo-metric d(-,-)[3
The sequence {Z,}" | is said to be stochastically equicontinuous at a point ty € T
if for every n > 0 and € > 0 there exists a neighborhood U of ty such that

lim sup Pyex {sup | Z(1) — Zy(10)] > 77} <e.
n el

We describe the specific sequence of stochastic process for which we need to demon-

strate stochastic equicontinuity. First, let E, 4~ denote the signed measure:

Epgcc := Nn(Pygex — Pyex).

2 A pseudo-metric d(-, -) is the same as a metric except that we do not require d(x, y) = 0 to imply
that x = y.
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Next, we define the following remainder term
/IC((u’ y)’ A’ D)
((he((A + DY) = )2 = (he(A'w) = y)? = (Va((rc(A'w) = y)), D))

(3.6)

1
~ IDlle2

Third, we define the stochastic process {Eg, {Ac(-,A,D)} : D € L(R%,R%)}, where
D e L(R4,R%) denotes the index, and where the index space L(R?,R?) is equipped
with the seminorm || - [| .2(p,, ) := Epy. {(-)*}!/2. Here, note that Eg, {A¢(-, A, D)} is
not deterministic because E,, is arandom measure. To establish a CLT type of result,
we need to show that the following sequence of stochastic processes is stochastically

equicontinuous at D = 0:
{{B,{Ac(~A.D)} : D € LRLRD}LY,. 3.7)

Observe that the remainder function A¢ is defined with respect to a choice of C, and
hence stochastic equicontinuity of (3.7) is a property that depends on C. For many
natural choices of lifting sets C arising in optimization, such a property is indeed
satisfied — the following result shows that is stochastically equicontinuous for

the choice of C being the free spectrahedron:

Proposition 3.3.4 Let Ac(-, A, D) be the remainder functions defined according to
(3.6) with respect to choice of C being the free spectrahedron O4. Then the sequence
of stochastic processes {{EEn{/lC(-,A, D)} : D € L(Rq,Rd)}}Z"=1 where D is the
index and L(R9,R?) is equipped with the seminorm || - || L2(Pyx) 18 Stochastically

equicontinuous at D = 0.

The proof of Proposition [3.3.4] relies on a result by Stengle and Yukich showing
that certain collection of sets admitting semialgebraic representations are Vapnik-
Chervonenkis (VC) [136] — such a property is useful for establishing stochastic
equicontinuity of sequences of stochastic processes. We prove the result, and outline
extensions of Proposition [3.3.4] to other choices of sets C that admit semialgebraic
descriptions in Section

Our third ingredient is a mild structural assumption that requires the automorphisms
of C to be isometries. We remark that such an assumption is not particularly
restrictive, as many natural choices of lifting sets C satisfy such a requirement. For

instance, the automorphism group of the simplex A is the set of all g X g permutation
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matrices, and the automorphism group of the free spectrahedron O7 is the set of all
operators 7' : SP — SP, where T(X) = WXW’, and W € O(p) is orthogonal. The
utility of such an assumption is that it allows us to conclude that A, — A all lie in the

normal space with respect to Mg ¢ at A.

Theorem 3.3.5 Let K* C R? be a compact convex set. Suppose that C C R is a
compact convex set satisfying Aut(C) <1 O(q), where O(q) is the subgroup of g X q
orthogonal matrices, and My = Oc(A), for some A € L(R1,RY). Suppose that
the map A — ®¢(A, P) is twice differentiable at A, and whose second derivative
at A, which we denote by T, is positive definite restricted to N := NMW*’ C(A);
i.e.,, T|y > 0. In addition, suppose that the sequence of stochastic processes
{{EEH{AC(-,A, D)} : D € L(RY, Rd)}};"=1 is stochastically equicontinuous at D =
0. Let {An};"zl, A, € argmin ADc(A, P, x+) be the sequence of minimizers of the
empirical loss function, and denote A, € argmin AeDc( AH)HA — Allp. We have,
restricted to N,

Vi(Ay = A) D NO,(Cln) ™ Bp, (V& V], 1)) ™),

where V = V z(ho(A'u — y)?).

As we noted earlier, an asymptotic characterization of {%K,(C )}, may fail if the
non-degeneracy conditions concerning ®¢ (-, Pg+) are not satisfied — the following

example illustrates our point:

Example. Let K* := {0} C R be a singleton, and let the noise {8(")};‘:1 be i.i.d.
centered Gaussian random variables with variance 2. Since S! = {-1,1}, the
random variables u?) are +1 u.a.r. Furthermore, since hgs(u) = 0 for all v, the
support function measurements are simply y© = €9 forall 1 < i < n. Also, for
any choice of C, the set Mg = {0} € L(RY,R) is a singleton consisting the zero

map.

First, we consider fitting K* with the choice of C = A' ¢ R\, Then A, =
%Z?:] e, from which it follows that \Jn(A, — 0) is normally distributed with
mean zero and variance o — this is in agreement with Theorem m

Second, we consider fitting K* with the choice of C = A*> C R%. Define the sets
U_={i:w; =-1}, and U, = {i : w; = 1}, and define

1 , 1 A
= § @ d = E ()
a_ | & an .y | ev’.

iell_ Jjeu,
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Then Ky(C) = {x : a_ < x < oy} if a_ < @, and K,(C) = {%Z?zls(i)u(i)}

otherwise. Notice that a_ and a, have the same distribution, and hence ‘f(n(C‘ )
is a closed interval with non-empty interior w.p. 1/2, and is a singleton w.p.
1/2. For this particular instance, one can see that the linear map A, does not
satisfy an asymptotic normality characterization. A further computation reveals
that the function ®¢(-, P~) is twice differentiable everywhere excluding the line

{(c,c) : ¢ € R}, in particular, it is not differentiable at the minimizer (0,0).

The above example is an instance where the function @¢(-, P+ ) is not twice differ-
entiable at A. We remark that the manner in which an asymptotic characterization
of {K(C )}oo, fails in instances where Mg« ¢ contains multiple orbits is also qual-

itatively similar.

The proof of Theorem [3.3.5|requires the following structural result, which follows
as a consequence of Aut(C) < O(q):

Lemma 3.3.6 Let C C RY be compact convex. Suppose that Aut(C) <1 O(q). Let
A, B € L(R%,RY). Define Ag € argminy o .(4)l|B — X||F, and let g € Aut(C) be
such that A = Agg. Then |Bg — A|lr = ||B - Ag7'||F = dist). . (B, Oc(A)), and
Bg — A € Noa)(A).

Proof of Lemma The first series of equalities follow from g being an isometry.
From the first optimality conditions of Ag, we have B — Agp € Ng,(4)(Ap). By
applying the fact that g is an isometry, and that O¢(A) is the orbit of A under group
action of a subgroup of O(d), we have Bg — A € No,a)(A). O

Proof of Theorem[3.3.5] By combining Lemma [3.3.6| with Theorem [3.3.1] we have
A, > Aas,and A, — A e N, foralln > 1. Let Naﬂr(A) be the affine subspace
parallel to AV containing A. It follows that A, € Nz(A). The remainder of the
proof is a direct application of Theorem 5 in Section VII of [113] to {An};"zl,
where {A, }o2 | is to be viewed as a sequence in Nait(A). We proceed to verify that
the conditions of Theorem 5 hold. For completeness, we state the conditions of
the result specialized to our setting. First, we require A to be an interior point of
Nai(A) — this is trivially satisfied. Second, let (-, Py« ) be the function @ ¢ (-, Pgcx )
restricted onto Nag(A). We require the function ®¢ (-, Pye+) to be twice differentiable
at A with a non-singular derivative — this is satisfied by the assumption that I'|y is
positive definite. Third, we require ®¢(A,, Pyges) = op(n~1) +infs O (A, Poger) —

this is satisfied as A, minimizes ®¢(-, P,4+). Fourth, we require the components of
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Va((hc(A') — y)?) to be in L2(Pge+) — this follows from hc(A'u), u, and ec(A'u)

are being uniformly bounded over u € S?°!, as well as Ep, {€?} < co. Fifth, we
require the sequence {Eg, {A¢c(-, A, D)}} | indexed over D € N to be stochastically
equicontinuous at D = 0 — this follows the original assumption that the sequence
{EEH{/IC(-,A, D)}} | indexed over D € L(RY, R9) is stochastically equicontinuous
at D = 0. m|

Specialization of Theorem[3.3.5 In the following, we specialize Theorem 3.3.5]to
the setting where the underlying set K* = A*(C) is expressible as the projection of
C. The inclusion of such an assumption allows us to compute an explicit expression

of the second derivative of ®¢(-, Py ):

Proposition 3.3.7 Suppose that the underlying set K* = A*(C) for some A* €
L(R%,RY). In addition, suppose that the function he(-) is continuously differentiable
at A¥u for Pycx-a.e. w. Then the map A — ®¢c(A, Py ) is twice differentiable at A*,
and whose second derivative is the operator ' € L(L(R?,R?), L*(R%,R?)) defined
by

['(D) = 2E {{(u ® ec(A*u), D)u® ec(A*'u)} . (3.8)

The proof of Proposition [3.3.7]is a simple computation and is located in the Ap-
pendix. We remark that it is considerably more difficult to compute a general
expression of the second derivative of ®¢(-, Px+), and hence our result in Proposi-

tion [3.3.7) applies to a more restrictive setting compared to Proposition [3.2.5]

Our specialization of Theorem [3.3.3]is as follows:

Corollary 3.3.8 Suppose that the conditions of Theorem and Proposition
[3.3.7]hold. Then, using the notation of Theorem|[3.3.5] we have E{V ® V|_a»}|n =
20T |y, with T given by (B8). In particular, the conclusion of Theorem m
simplifies to \Jn(A, — A) 2 N(O,20*(T|p)7h.

Proof of Corollary[3.3.8, We have Va((hc(Aw) — ¥)*)|g=a+ = —&u ® ec(A*'u),
from which we have E{V ® V} = 20-’T’, and hence the result. |

Examples. In the following, we consider a series of examples in which we apply
our method to reconstruct different instances of K™*. We interpret the conclusions
of Theorem to describe the distributional behavior of %K,(C). To simplify
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our discussion, we specify the choices of lifting set C and the projection map
A* € L(R%,RY). In addition, our choices of C and A* also satisfy the conditions
of Corollary [3.3.8] (for the sake of brevity, we omit verifying that the conditions of
Corollary [3.3.8| hold), which we apply to compute the second derivative of the map
A+ ®c(A, Pger) at A* denoted by T'.

Our first and second examples consider instances of polyhedral K*. We choose
C = A1, where ¢ is the number of extreme points of K*. Under such a choice, the
set Mg comprises linear maps A € L(R%,R?) whose columns are the extreme
points of K*. One can show that I is a block diagonal operator comprising g blocks
of dimensions d X d. Using these pieces of information together with Theorem
we conclude the following description about 7A(n(C ): (i) it is a polytope with
g extreme points, (ii) every vertex of 7%,1((3 ) is close to a unique vertex of K™, (iii)
the deviations (after scaling by a factor of y/n) between every vertex-vertex pair are
asymptotically normal with inverse covariance specified by a d X d block of I', and
are pairwise-independent.

Example. Let K* be the regular g-gon in R> whose vertices are given by {v k}z;é,

where vy := (cos(2kn/q),sin(2kn/q)). Let v, be the vertex of K,.(C) closest to vy.
The displacement \[n(9,x — vy) is a random vector, and is asymprotically normal

with covariance 20*M . }( where:

cos(dkr/q) sin(dkm/q)

1 1
My = —1 + — sin(2rm .
Ty o (@n/4) sin(4kr/q) —cos(4kn/q)

The eigenvalues of My are 1/q+(1/2n)sin(2n/q) and 1/q—(1/2r) sin(2n/q), and
the corresponding eigenvectors are (cos(2kn/q),sin(2kn/q)) and (sin(2kn/q),— cos(kn/q))
respectively. Consequently, the random vector v, — vy has magnitude ~ o+/q/n in
the direction vy, and has magnitude ~ O'\/W in the direction vi. Figure
shows K*, and the confidence intervals (ellipses) of the vertices of V%n(C ) for g = 5.

Example. Let K* be the lo-ball in R, Letv € {(x1,...,%+1Y} be a vertex of
K*, and let w,,,, denote the vertex of ‘f(n(C) closest to v. The deviation Wy, — v is

asymptotically normal with covariance 20'2va Vl where:

M,, = %((1 =2/m)I + (2/m)vv’).

Hence it follows that w,,, —v is a random vector whose magnitude is ~ o202 4
(1-2/7)/d)""2n=112 in the direction of v, and is ~ 029+ V/2(1 = 2/7)~V2:[d [n in

the subspace orthogonal to v.



74

Figure 3.2: Estimating a regular 5-gon as the projection of A>. In the large 7 limit,
the estimator %, (C) is a 5-gon. The typical deviation of the vertices of K, (C) from
that of the 5-gon (scaled by a factor of v/n) is represented by the surrounding ellipses.

Our third and fourth examples consider instances of non-polyhedral K*. Unlike the
previous examples, our description of K. (C ) requires a different interpretation of
Corollary [3.3.§] that is suitable for sets with infinitely many extremal points. We
express A, = A* + D, where \/nD,, is a random linear map that is asymptotically
normal with covariance 20->(I'|y)~!, and where N denotes the normal space with
respect to Mg ¢ at A*. We describe the behavior of 7A(n(C ) by characterizing the
contribution of D,(C) as a perturbation to the set K* = A*(C).

Example. Suppose K* = By ,(c) is the {r-ball in RY with center ¢. We choose
C = {(L,v) : ||Vl < 1} € R¥ and A* to be a linear map of the form [c¢ Q] €
L(RTRY), where Q € O(d) is any orthogonal matrix. Then Ty is a self-
adjoint operator with rank q + (qgl). The eigenvectors of I'|n represent ‘modes of

oscillations’, which we describe in greater detail.

We begin with the case where d = 2 and ¢ = 0. Every perturbation D,(C) can be
decomposed into 5 different modes (these exactly correspond to the eigenvectors of
the operator T'|n ). To understand how these modes perturb A*(C), we parameterize
the extremal points of A*(C) by {(cos(6) sin(8)) }ge[o2x). The contribution of each
mode at the point (cos(6) sin(0))’ is a small perturbation in the direction (10), (0 1)/,
(cos(0) sin(@)), (cos(8) — sin(0))’, and (sin(6) cos(0))" respectively — Figure
provides an illustration. Notice that the first and second modes represent oscillations
of 7%”(0 ) about ¢, the third mode represents dilation, and the fourth and fifth mode

represent flattening.

The analysis for a general d is similar. Let {g : ||g||» = 1} denote the extreme points

of A*(C). First, there are g modes whose contributions are {(0,...,g;,...,0): g =

q+1)

g}, 1 < i < d, and these represent oscillations about ¢. Second, there are ( 5
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modes whose contributions are of the form Mg, where {M : M € L(RY R4, M =

M'}, and these represent higher dimensional analogs of flattening (of which dilation

is a special case).

, ,  (© (d) (cos(9) —(e)
(a) (1 0) (b) (0 1) (COS(Q) sin(@))’ sin(@))’ (sin(@) COS(Q))'

Figure 3.3: Modes of oscillations for an estimate of the £>-ball in R,

Example. Let K* be the spectral norm ball in S*>. The extreme points of K*
comprise three connected components: {I}, {—1}, and {UDU'}yes0(2), where D
is a diagonal matrix with entries (1,—1). To simplify our discussion, we apply
a scaled isometry to K* so that {I}, {-I}, and {UDU’}yeso() are mapped to
{(0,0,1)’}, {(0,0,-1)"}, and {(cos(8),sin(6),0) }gejo2r) respectively. We proceed

with our description with respect to the transformation. We choose

C ={X:XeO0"Xp=X13=X4=2Xo3=Xp4=Xo1 =X31 = X41 = X3p = Xgp = 0}
=R?x§?,
3.9
and A* to be the map defined by A*(X) = ({A1,X), (A2, X), (A3, X)), where

000 O 00O0O0 1 0 00

000 O 00O0O0 0 -1 00
Al = ’ A2 - s A3 =

001 O 0001 0 0 0O

000 -1 00T1@O0 0O 0 0O

In the large n limit, 7A(n(C ) is a convex set whose extremal points comprise a pair
of points Py and P, near (0,0,1) and (0,0,—1)" respectively, and an ellipse P
near {(cos(0),sin(0),0) }oe[02x). The operator I is block diagonal with rank 14 — it
comprises two 3-dimensional blocks associated with P and P,, and a 8-dimensional
block associated with P3. We denote the block operators associated with P; by T;.
From the block diagonal structure of I', we conclude that the distributions of P,
P>, and P53 are asymptotically independent. Moreover, the deviations of P and P,
from {(0,0,1)'} and {(0,0,—1)"} are asymptotically normal with inverse covariance

specified by I'y and I'; respectively.
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We explain the behavior of P53 in further detail. The operator '3 is the sum of
an operator 13, with rank 5 describing the variation of Ps in the xy-plane, and
another operator 13, with rank 3 describing the variation of P3 in the direction
of the z-axis. The operator 13, when restricted to the appropriate subspace and
suitably scaled, is equal to the operator we encountered in the previous example in
the setting where K* is the €>-ball in R?, and hence the description of the behavior
of P3 in the xy-plane follows from our prior discussion. The operator I's ; comprises
a single mode representing oscillations of P53 in the 7 direction (see subfigure (b)

in Figure [3.4), and two modes representing “wobbling” of Pz with respect to the
xy-plane (see subfigures (c) and (d) in Figure[3.4)).

(b) (0,0,1) (¢) (0,0,cos(8)) (d) (0,0,sin(9))’

(a) Extreme points of K*

Figure 3.4: Estimating K™* the spectral norm ball in S? as the projection of the set C
(B9). The extremal points of the estimator K;,(C) comprise a connected component
that is isomorphic to S! (see the above accompanying discussion), and the above
figure describes the possible modes of oscillations. There are 8 modes altogether —
5 of which occurs in the xy-plane and are described in Figure[3.3] and the remaining
3 are shown in (b),(c), and (d).

Challenges of extending Theorem to general affine slices. In the introduc-
tion, we noted that a more general regression problem leading to broader classes
of convex sets C is one where we optimize over affine slices of the nonnegative
orthant in R? or the cone of positive semidefinite matrices in S”. We briefly outline
the challenges that are involved in obtaining such a result. Suppose we let # c RY

denote the choice of such a cone. Then a general slice of the cone P is specified by:
X +1 ps
B(l):o, B € L(R?T,RY),

in which case, our regression problem can be generalized to the following:

argmin Ep,(y — he(u))?
AeL(R4R4),BeL(RI+ R")

s.t. C:{y:y:Ax,B(T):O,XEP}. (3.10)
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In principle, one could consider establishing a CLT type of result for the minimizers
of (3.10) jointly over A and B; the difficulty in doing so is that an appropriate
choice of the dimension s is typically unknown. One perspective is to establish
a result for s = g, as ¢ dimensions suffices to express all possible affine slices —
such an approach is problematic because it leads to degenerate optimal solutions
that contain zero singular values. Our earlier description of an instance where
D¢ (-, Pgex) is not twice differentiable at the global minimizer indicates the type of
behavior that may arise when the minimizers in Mg ¢ contain degeneracies. An
alternative perspective is to seek a result for a fixed choice of s, where s is chosen
to be sufficiently small to avoid degeneracies. In such a setting, it is necessary to
account for equivalences that arise due to automorphisms of # (these are analogous
to the equivalences due to Aut(C) in Section — one way of doing so is to
fix a canonical choice of linear map B, in which case the analysis reduces to an
optimization over projection maps, which is precisely the main setting we consider

in this paper.

3.3.2.1 Proof of Proposition 3.3.4

Given a function f(-), the graph of f is defined to be the set {(x,s5) : 0 < 5 <
fX)}U{(x,5): f(x) < s < 0}. The proof of Proposition relies on showing
that the collections of sets arising as graphs of the following satisfy an appropriate

complexity bound and for a radius r > 0:
F = {/lc((u,y), A, D)}Derﬂ , where B = B”.”LZ(PW*)(O) c L(RY,RY).

Here, Ac((u,y), A, D) is to be viewed as a function in the arguments (u, y), while D
indexes the collection. We do so by appealing to the notion of a Vapnik-Chervonenkis
class[3

Definition 3.3.9 (Vapnik-Chervonenkis (VC) Class) Let C be a set and § be a
collection of subsets of C. A finite set D is said to be shattered by & if for every
A C D there exists G € § such that A = GND. The collection § is said to be VC
class if there is a finite k such that all sets with cardinality greater than k cannot be

shattered by .

31t is perhaps more customary, especially in other texts, to show that the epigraphs rather than
the graphs of a collection of functions is VC. It turns out that the choice is immaterial, as the graphs
being VC implies that the epigraphs are also VC, and vice versa. As the proof of Proposition [3.3.4]
relies on results in [[113]], we retain the formalism developed in the same text.
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VC classes feature prominently in statistical learning theory; in particular, it provides
a framework for describing conditions under which generalization of a learning
algorithm is possible. The crux of Proposition[3.3.4]is a result by Stengle and Yukich
[136] showing that a large collection of sets that admit semialgebraic descriptions
are VC.

Proof of Proposition The proof relies on computing an entropy bound for the
graphs of functions in §. Define the classes of functions & := {((hc((A + D)'u) —
y)? = (he(A'w) = y)?)/|ID|}pers. and & := {(V(-,A),D/||D||)}pers. Note that
every element in § is expressible as a sum of elements in &; and F».

First we compute entropy bounds for & and . We have p(u,y,s,D,ej, ey, s) :=
(A'u - yleie))? — ((A+ D)u— yl,ee,)* — s, where ¢; € RY, i € {1,2},is a
polynomial in (u,y, s, D,e,e,s). Hence by Theorem 1 of [136], the collection of

sets given by

(w,y,s): sup inf p(u,y,s,D,ej,ers)>0pr:DerB;, (3.11)
llei|I<1 lle2ll<1

forms a VC class. The collection of sets {{(u,y,s) : s > 0} : D € rB} is also a
VC class. Since the intersection of VC classes is a VC class, the collection of sets
{{(w,y.5) : (hc((A + DYu) = y)* = (hc(A'w) = y)»)/|ID|l 2 s =2 0} : D € rB}
is a VC class. A similar sequence of arguments shows that the collection of sets
{(,y,s) : (hc((A + DYu) = y)* = (hc(A'w) = )*)/|ID|| < s < 0} : D € rB}is
also a VC class. As the union of VC classes is a VC class, we conclude that the
graphs of functions in & form a VC class. Next the set &, is a finite dimensional
collection of functions, with dimension equal to that of the linear map D. Hence by
Lemma 9.6 of [88] the graphs of functions in &; is a VC class[4]

Second by noting that D € r$ is bounded and by applying some elementary
computations, the function classes §; and & have a positive envelop of the form

c(1 + |y[), where ¢ is some constant depending only on AJY]

Third we apply the entropy bound to conclude the result. Our approach is a standard

procedure in the literature, and we follow a sequence of arguments that is similar to

“4The definition of a graph in [88]] differs from the definition of a graph in [113]]; for consistency
we stick with the definition in [113]]. One can apply a sequence of operations analogous to what we
did for &; to show that the graphs of &, is a VC class.

SA function £ is a positive envelop for a class of functions & if f € L>(Pg~), and |f| < f for

all feg.
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the proof in Example 19 of Chapter VII of [[113]]. For completeness, we present the

necessary arguments.

Let Q be any probability distribution over the variables (u,y). In addition, let
u(e, Q,%) denote the minimum m such that there exists an e-cover of the form
{fi}", for the collection & in the L?(Q)-metric (the functions f; are not required to

be in §). Define 7(6, 0, &) := fo(S vVlog u(t, O, &)dt. By Lemma I1:36 of [113]], there

exists constants ¢;, d;,i € {1,2}, such that

uS\O{ 2} 0.8) < o, ie{1,2}, (3.12)

for all 0 < ¢ < 1, all probability distributions Q over the variables (u, y), and any
choice of positive envelop function f. By the AM-GM inequality we have

H((6/2)4)Q{f?} Q. 81) + u(6/2)4J O{f?}, Q. &) < u(6+/O{f?}, 0. B),

and therefore there also exists constants ¢, d such that u(64/0{12},0,%) < c6™%. In
particular, by choosing Q = P, ¢+ and f = c(1 + |y]), it follows that

—d
y (5\/Epm{c(1 + |y|)}2,Pn’q<*,‘J;) <5l nz0. (3.13)

Subsequently, by applying the bound in (3.13) to Lemma 15 of Chapter VII in [[113],
we conclude that there exists a 6 > 0 for which

lim sup Pq(* sup |EEn {AC('9AA9D1) - /IC(',A\, D2)}| >nr <
" II/lc(sADl)—ﬂc(',&Dz)IILz(PW)s6
This implies the desired result. O

Remark. The only argument in the proof of Proposition that pertains to C
being the free spectrahedron is the existence of a polynomial p(-) such that sets in
the collection & can be expressed in the form of (3.11). For many families of convex
sets C that admit semialgebraic descriptions, such a polynomial p(-) exists, in which
case the sequence of stochastic processes {{Eg,{Ac(:, A,D)} : D € L(RY, Rd)}};":]

too, is also stochastically equicontinuous.

3.3.3 Preservation of Facial Geometry
Our third result describes the manner in which estimators computed using our

method respect the facial geometry of the underlying set.
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We begin our discussion with a motivating numerical experiment in which we
reconstruct the £; ball in R? from 200 noisy support function evaluations. More
precisely, we apply our method with the simplex in R® as the choice of lifting set,
and we compare the resulting estimate with the LSE in Figure[3.5] Our results show
a one-to-one correspondence between the faces of the reconstruction obtained using
our method (second subfigure from the left) with the faces of the ¢; ball (leftmost
subfigure); in contrast, we do not observe an analogous correspondence between the
faces of the LSE (rightmost subfigure) and the faces of the ¢; ball.

///A\

M 'A\ \\\ "y
'/4\\\‘ 4\/‘
--\ \ b ‘ b

\\‘\\V//A v

\

Figure 3.5: Reconstructions of the unit £;-ball (left) in R from 200 noisy support
function measurements using our method with C = A® (second from left), and with
C = A'? (third from left). The LSE is the rightmost figure.

The statement of our result requires us to formalize the notion by which a sequence
of estimators ‘respects the facial geometry’ of an underlying set. The precise manner
in which we do so is via the existence of an invertible affine transformation between
the faces of the underlying set and the faces of the reconstruction. For analytical
tractability, our result focuses on exposed faces — these are faces that are expressible

as the intersection of the underlying set with a half-space.

Definition 3.3.10 Let {K,} >, C RY be a sequence of compact convex sets converg-
ing to some K C R Let F c K be an exposed face. We say that F is preserved
by the sequence {K,}," | if there is a sequence {F,}, ., Fn © K, satisfying

1. F, > F.
2. F, are exposed faces of K,.
3. There is an invertible affine transformation B, such that ¥ = B,(%,) and

Fn = By (F).

Our main result in this subsection provides sufficient conditions under which an
exposed face ¥* C K* is preserved by a sequence of estimators {7%,1(())};1 I
obtained using our method. It operates under two sets of conditions:
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1. The first set of conditions concern the choice of lifting set C € R? in relation to
the underlying set K* ¢ R?; more precisely, we require K* to be representable
as a projection of C, and that the set of minimizers Mg ¢ form a single orbit
of a linear map A* under the action of the automorphism group of C, i.e.,
Mgeeec = Oc(A*) for some A* € L(RY,R?). To provide some intuition as
to what these conditions impose, in the simplest setting where the set K™ is
polyhedral and we choose C from among the family of simplices {A4 }2‘; 1>
these conditions can be easily shown to be equivalent to selecting C as the
simplex in dimensions equal to the number of extreme points of K*. It
is clear that an inadequate lifting dimension would not provide sufficient
expressive power in our framework to express K™; on the other hand, the
manner in which our method fails to recover the correct facial geometry when
the lifting dimension is excessive is quite different, and it can be attributed to
the inclusion of spurious extreme points. To give an illustration, we revisit
the previous numerical experiment in which we estimate the £; ball in R?, and
apply our method with A'? as the choice of our lifting set as opposed to A®. Our
reconstruction in Figure [3.5] (see the third subfigure from the left) preserves
a subset of the faces of the ¢; ball, and breaks the other faces into smaller
simplicial faces. Although our reconstruction fails to capture the correct
facial geometry, it nevertheless bears a stronger resemblance (qualitatively

speaking) to the underlying set as compared to the LSE.

2. Assuming that the first set of requirements are satisfied, the second set of
conditions concern the face #* and its relation to the lifting set C. These
conditions can be viewed as a characterization of instances under which F*
continues to be an exposed face under small perturbations (of an appropriate
type). More precisely, let G C C be the pre-image of #* under the projection
map A*. First, we require A* to be injective over the affine hull of G. In the
simplest setting where K™ is polyhedral, and we specify C to be a simplex
in dimensions equal to the number of extreme points of K™, our requirement
concerning the injectivity of A* implies that ¥* must be simplicial. It is
instructive to examine what happens when #* is nor simplicial. In Figure
we apply our method to an instance where the underlying set is the £, ball in
R3, and we observe that our resulting estimate breaks every face of the £, ball
into smaller simplicial faces. Second, we require the dimension of the linear
span of the normal cone of G with respect to C to be sufficiently large; here,

recall that for any convex K and any subset ¥ C K, the normal cone of ¥
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with respect to K is defined as the following:

Noc(F) = {x:(y-zx) <Oforally € K,z € ¥, and (y—z,x) = O forall y,z € F}.

Our stipulation on the size of dim(Span(9ti¢(G))) arises because we need to
consider how the extreme points of C in the neighborhood of the pre-image
G affect the facial geometry of our estimate of F#*. In the simplest instance
where K™ is polyhedral and we choose C to be the simplex, our condition is
trivially satisfied as the extreme points of C are isolated (we discuss this point
in detail subsequently); the situation becomes more delicate when K* and C
are non-polyhedral. We illustrate what may happen if dim(Span(9io(G))) is
not sufficiently large with a numerical experiment in which we estimate the

Race Track in R? from 200 noisy support function measurements:
Race Track := conv({(x,y)" : ||(x,y)'=(=1,0)|l> < 1 or ||(x,y)'=(1,0)'|l» < 1}).

More precisely, we consider the recovery of the two horizontal faces of the
Race Track. In Figure we show a reconstruction as the projection of O,
and we observe that the estimates of the straight edges of the Race Track are

curved.

Figure 3.6: Reconstruction of the unit £, ball in R from 75 noisy support function
measurements using our method. The choice of lifting set is C = A3,

Theorem 3.3.11 Suppose that K* C RY is a compact convex set with non-empty
interior. Let C C R? be a compact convex set such that Span(C) = RY. Suppose
that there is a linear map A* € L(RY,R?) such that K* = A*(C), and Mycc =
Oc(A*). Let {A,} ., A, € argmin ,®c(A, P,.x+), be a sequence of minimizers of the

n=1’

empirical loss function, and let {K,(C)},, K,(C) = A,(C), be the corresponding

n=1’

sequence of estimators of K*. Given an exposed face F* C K*, and let G = {x :
A*x € F*} N C be its pre-image. If
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Figure 3.7: Reconstruction of the Race Track from 200 noisy support function
measurements using our method. The choice of lifting set is the free spectrahedron

o*.

1. the linear map A* is injective when restricted to aff(G), and

2. dim(Span(Rc(G))) > g — rank(A*),
then F* is preserved by the sequence {K,(C )) e

Proof of Theorem[3.3.11] As we noted in the above, define A, € argmin , Oc(Ay) A~
Al|r, and denote 7, = A,(G).

[Fn — F1: Since Mgexc = Oc(A*), it follows from Theoremm that A, — A*,

from which we have 7, — F*.

[F, are faces of K,]: Since F* is an exposed face of K™, there exists y € R4 and
¢ € R such that (y,x) = ¢ for all x € F*, and (y,x) > ¢ for all x € K*\F*.
This implies that (A*y,X) = ¢ for all X € G, and (A*y,X) > c for all X € C\G.
In particular, it implies that the row space of A* intersects the relative interior of
9Nc(G) in the direction A*y.

By combining the earlier conclusion that A, — A* a.s., and that dim(Span(9i¢(G)))+
rank(A*) > ¢, we conclude that the row spaces of the maps A, eventually intersect
the relative interior of 9i¢(G) a.s.. That is to say, there is exists an integer ng and
sequences {y,}p2,, C RY, {cntnin, C R such that (y,,x) = ¢, for all x € ¥, and

(Yn,x) > ¢ for all x € (IA(n(C)\Tn, n > ng, a.s.. In other words, the sets ¥, are

exposed faces of %K, (C) eventually a.s..

[One-to-one affine correspondence]: To establish a one-to-one affine correspon-
dence between ¥, and F we need to treat the case where 0 € aff(G) and the case

where 0 ¢ aff(G) separately.

First suppose that 0 € aff(G). Let 9 = aff(F) and Hg = aff(G). Since 0 € Hg, it
follows that H# and Hg are subspaces. Moreover given that A* is injective restricted
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to Hg = aff(G), it follows that H# and Hg have equal dimensions. Hence the map
T defined as the restriction of A* onto L($g, D) is square and invertible. Next
let ¢ = aff(F,), and let 7,, denote the restriction of A, to L($g,9#,). Given that
A, — A*, the maps {7, }> | are also square and invertible eventually a.s.. It follows
that one can define a linear map B, € L(R¢,R?) that coincides with T o T, ! restricted
to L(H#,, D), is permitted to be any square invertible map on L(Sbi,&jj,), and is
zero everywhere else. Notice that B, is invertible by construction. It straightforward
to check that ¥ = B,(%,) and 7, = B, '(F).

Next suppose that 0 ¢ aff(G). The treatment in this case is largely similar as in the
previous case. Let H# be the smallest subspace containing {(x,1) : x € F} € R4,
where the set # is embedded in the first d coordinates. Let $H, be similarly defined.
Let Hg = aff(G U {0}) — note that this defines a subspace. Since 0 ¢ aff(G), there
is a nonzero z € R? such that (z,x) = 1 for all x € G (i.e. there exists a hyperplane

containing G). Define the linear map 7' € L($Hg, H7) as

( Y )
7 96

where Pg, is the restriction operator onto the subspace H#. Since A* is injective

T:Pﬁﬁf

on G, it follows that $# and Hg have the same dimensions, and that 7" is square and
invertible. One can define a square invertible map 7}, analogously. The remainder of
the proof proceeds in a similar fashion to the previous case, and we omit the details.
Here, note that a linear invertible map operating on the lifted space R?*! defines an

affine linear invertible map in the embedded space R¥. O

Remark. Suppose that K* is a full bodied polytope with q extreme points and
we choose C = A%. Then Theorem [3.3.11] implies that all proper simplicial faces
of K* are preserved. It is easy to see that there is a linear map A* such that
K* = A*(AY), and that Mgspa = Opa(A*). Let F* C K* be any face (note
that all faces of a polytope are always exposed), and let G be its pre-image in
A4, Recall that the pre-image of an exposed face is also an exposed face (see for
instance the first part of the proof of Theorem [3.3.11)), and hence G is of the form
{IlIx : x > 0,{L,x) = I,X441 = ...X, = 0}, for some Il € Aut(A9), and some
s < g. We proceed to interpret the remaining requirements. First if A* is injective
on aff(G), then the image of G under A* is isomorphic to G; i.e., F* is simplicial.
Second the normal cone 9ipqa(G) is given by {Ilz : z < 0,2z, = . ..z; = 0}, and hence
the requirement dim(aff(Maq(G))) > g — rank(A*) holds precisely when s < d; i.e.,
the face F* is proper.
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Remark. Suppose that K* is a set that is expressible as the projection of the free
spectrahedron C = OP via the linear map A*, and that we also have Mg =
Oc(A*). Let F* be an exposed face, and let G be the pre-image OF. Then G must
be a face of OP, and hence is of the form

, Dy 0
Q:{UDU : D=

, Dyy € Or},

for some U € O(p), and some r < p. Note that

0 O

N ={UDU’ : D=
or(G) { 0 —Dy

, Dy € SP7", Dyp > 0},

and hence the requirement that dim(aff(Ror (G))) > (* er]) —rank(A*) holds precisely
when d > pr — (r;l).

Remark. Consider our earlier example where we computed an estimate of the Race
Track as the projection of O*. One can check that we may choose A* to be the

following linear map

(A1, X)

AX(X) =
0 (A2, X)

, A= Ay =

It is clear that rank(A*) = 2. Let F* be the face connecting (—1,0) and (1,0)’, and
let Gos be the pre-image of F* in O*. One can check that

0

Gos = 2%,y 20,x+y<17,Nos(Gpr) Z: Z =

S O O =
S = O O
S O O O
o O O O
o O O O

0
0
0
It follows that dim(aff(Np4(Gp+))) = 3, and since the lifting dimension is 10, our
requirement on dim(aff(My4(Gp+))) is not satisfied.

3.4 Algorithms
We describe two procedures for solving the optimization problem (3.2). One can

check that the problem can be reformulated as follows:

1< g )2
argmin  — Z (y(’) - hC(A’u(’))) . (3.14)
AeL(RaRrd) i
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Our first algorithm is based on gradient descent and the second algorithm is a form
of alternating minimization. We highlight the connection between the alternating
approach and Lloyd’s algorithm for K-means clustering [93]. As described previ-
ously, the problem (3.14]) is nonconvex as formulated; consequently, the algorithms
discussed next are not guaranteed to return a globally optimal solution. However,
we demonstrate the effectiveness of these methods with random initialization in

numerical experiments in Section [3.5]

3.4.1 Gradient Descent
Our first approach is based on gradient descent. From Proposition we have
that the derivative of the map A — ®(A, P,) — if it exists — is given by

2 © : : : :
VA((D(A, Pn)) - = Z (hC(A/u(l)) _ y(l)) u(l) ® eC(A/u(l))-
n
i=1
Based on the discussion in Section [3.2.2] this derivative exists for generic A when
C is either the simplex or the free spectrahedron; in particular, for these two cases

the computation of /¢, ec is given in Section [3.2.2] We summarize the steps in
Algorithm 4]

Algorithm 4 Convex Set Regression via Gradient Descent

Input: A collection {(u("),y(i))}f=1 c R? x R of support function evaluations; a
compact convex set C C RY; an initialization A € L(RY, RY); a step size 7 € (0,1]
Algorithm: Repeat until convergence

L. D« 13" (he(Au®) — yOu® @ ec(Au?)

2.A—A-nD

Output: Final iterate A

Although the algorithm presented is based on a fixed stepsize, in practice stepsizes

may also be chosen via some type of line search.

3.4.2 Alternating Minimization

The second algorithm is based on iteratively computing solutions to lineariza-
tions of the first-order optimality conditions of (3.14). Observing that hc(A'w) =
(A'u,ec(A'n)) = (A,u ® ec(A’u)), the first-order optimality conditions of (3.14)

may be expressed as follows:

I v ; ; ; ;
0 = - Z (hC(A’u(’)) — y(’)) u” ® ec(A'u?)
n
i=1

1 <& ‘ ‘ . . .
= - Z ((A, u? @ ec(Au?)) - y(’)) u? ® ec(A'u). (3.15)
i=1
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Ideally, one would like to compute solutions to (4.5) directly; the difficulty in doing
50 is that the function ec(A’u"”) depends non-linearly on A. Our approach to getting
around this difficulty is to alternately perform the following operations — fix A and
compute each ec(A'u?), and treat the ec(A'u”)’s as fixed and update A.

We note that the latter update step may be viewed as the solution of a linear system,
and that the success of the procedure we propose is governed by the conditioning
of this system. More precisely, suppose A is a minimizer of (3.14), and let ' €
L(L(R4,R?), L*(R9,R%)) be the operator defined as:
n
I'A) = Z <A, u” @ eC(A’u(i))> u?” @ ec(Au?).
i=1
The conditioning of the linear system depends on I' being positive definite; unfor-
tunately, such a condition is not guaranteed to be satisfied, and hence we apply an
intermediate Tikhonov regularization step to resolve these issues. We summarize

the full procedure in Algorithm 5]

Algorithm 5 Convex Regression via Alternating Minimization

Input: A collection {(u®, y("))};’:1 c RYxR of support function evaluations; a com-
pact convex set C C RY; an initialization A € L(R?,R); a choice of regularization
parameter y > 0

Algorithm: Repeat until convergence

1. e® — ec(A'u)

2.V« (u(l) ®e|... ju" e e(”)), Y (y(l),. . .,y(”)),

3. A— (Vo V+yD) (VY +yA)

Output: Final iterate A

Connection to Lloyd’s algorithm. When C = A7, Algorithm[3]is similar to Lloyd’s
algorithm for K-means clustering [93]]. Specifically, Lloyd’s algorithm begins with
an initialization of g centers, and it alternates between (i) assigning data-points to
centers based proximity (keeping the centers fixed), and (ii) updating the location
of cluster centers to minimize the squared-loss error. In our context, suppose we
express the linear map A = [a;]...|a,] € R9*4 in terms of its columns. The
algorithm begins with an initialization of the g columns, and it alternates between
(i) assigning measurement pairs (u®,y®), 1 < i < n, to the respective columns
{a;}1<j<4 such that the inner product (u®, a ;) is maximized (keeping the columns

fixed), and (ii) updating the columns {a;}i<;<, to minimize the squared-loss error.
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3.5 Numerical Experiments

In this section we describe the results of numerical experiments on fitting convex
sets to support function evaluations in which we contrast our framework based on
solving (3.2) to previous methods based on solving (3.1). The first few experiments
are on synthetically generated data, while the final experiment is on a reconstruction
problem with real data obtained from the Computed Tomography (CT) scan of a
human lung. For each experiment, we apply both the algorithms described in Section
[3.4with multiple random initializations, and we select the solution that minimizes the
least squared error. Specifically, we begin with Algorithm 5] and in instances where
the procedure fails to converge after a fixed number of iterations we restart using
Algorithm ] We observe that Algorithm [ converges in all instances we consider,
while Algorithm [5] exhibits much faster convergence compared to Algorithm [ on
those instances in which it converges. The (polyhedral) LSE reconstructions in our

experiments are based on the algorithm proposed in [60, Section 4].

3.5.1 Reconstructing the £;-ball and the ¢,-ball

We consider reconstructing the £;-ball {g : ||g|l; < 1} ¢ R? and the £,-ball {g :
llgll, < 1} ¢ R? from noiseless and noisy support function evaluations based on the
model (3.2). In particular, we evaluate the performance of our framework relative
to the reconstructions provided by the LSE for n = 20,50,200 measurements. For
both the ¢;-ball and the £,-ball in the respective noisy cases, the measurements are
corrupted with additive Gaussian noise of variance o> = 0.1. The reconstructions
based on our framework (3.2)) of the £;-ball employ the choice C = AS, while those
of the £,-ball use C = O3. Figure and Figure |3.9| give the results corresponding
to the ¢;-ball and the £,-ball, respectively.

Considering first a setting with noiseless measurements, we observe that our ap-
proach gives an exact reconstruction for both the ¢;-ball and the £>-ball. For the
¢1-ball this occurs when we have n = 200 measurements, while the LSE provides
a reconstruction with substantially more complicated facial structure that doesn’t
reflect that of the £;-ball. Indeed, the LSE only approaches the £;-ball in the sense
of Hausdorff metric, but despite being the best solution in terms of minimizing
the least-squares criterion, the reconstruction offered by this method provides little
information about the facial geometry of the £;-ball. Further, even with n = 20,50
measurements, our reconstructions bear far closer resemblance to the £;-ball, while
the LSE in these cases looks very different from the ¢;-ball. For the {-ball, our

approach provides an exact reconstruction with just n = 20 measurements, while



(a) 20 noiseless measure- (b) 50 noiseless measure-  (c) 200 noiseless measure-
ments ments ments

(f) 200 noisy measure-
ments

(d) 20 noisy measurements (¢) 50 noisy measurements

Figure 3.8: Reconstruction of the unit £;-ball in R3 from noiseless (first row) and
noisy (second row) support function measurements. The reconstructions obtained
using our method (with C = A% in (3.2))) are the on the left of every subfigure, while
the LSE reconstructions are on the right of every subfigure.

the LSE only begins to resemble the £>-ball with n = 200 measurements (and even

then, the reconstruction is a polyhedral approximation).

Turning our attention next to the noisy case, the contrast between the results obtained
using our framework and those of the LSE approach is even more stark. For both
the £;-ball and the £,-ball, the LSE reconstructions bear little resemblance to the
underlying convex set, unlike the estimates produced using our method. Notice that
the reconstructions of the £,-ball using our algorithm are not even ellipsoidal when
the number of measurements is small (e.g., when n = 20), as linear images of the
free spectrahedron O3 may be non-ellipsoidal in general and need not even consist
of smooth boundaries. Nonetheless, as the number of measurements available
to our algorithm increases, the estimates improve in quality and offer improved

reconstructions — with smooth boundaries — of the £,-ball.

In summary, these synthetic examples demonstrate that our framework is much more
effective than the LSE in terms of robustness to noise, accuracy of reconstruction
given a small number of measurements, and in settings in which the underlying set

is non-polyhedral.

3.5.2 Reconstruction via Linear Images of the Free Spectrahedron
In the next series of synthetic experiments, we consider reconstructions of convex

sets with non-smooth boundaries via linear images of the free spectrahedron. In



(a) 20 noiseless measure- (b) 50 noiseless measure-  (c) 200 noiseless measure-
ments ments ments

(f) 200 noisy measure-

(d) 20 noisy measurements (e) 50 noisy measurements ments

Figure 3.9: Reconstruction of the unit £>-ball in R3 from noiseless (first row) and
noisy (second row) support function measurements. The reconstructions obtained
using our method (with C = O3 in (3.2)) are the on the left of every subfigure, while
the LSE reconstructions are on the right of every subfigure.

these illustrations, we consider sets in R? and in R> for which noiseless support
function evaluations are obtained and supplied as input to the problem (3.2), with
C equal to a free spectrahedron O in some larger-dimensional space g. For the
examples in R?, the support function evaluations are obtained at 1000 equally
spaced points on the unit circle S'. For the examples in R>, the support function
evaluations are obtained at 2562 regularly spaced points on the unit sphere S based

on an icosphere discretization.

We consider reconstruction of the £;-ball in R?. Figure m shows the output from
our algorithm when d = 2 for ¢ € {2, 3,4}, and the reconstruction is exact for g = 4.
Figure [3.11] shows the output from our algorithm when d = 3 for g € {3,4,5,6}.
Interestingly, when d = 3 the computed solution for ¢ = 5 does not contain any
isolated extreme point (i.e., vertices) even though such features are expressible as

projections of the free spectrahedron O°.

As our next illustration, we consider the following projection of O%:

UPillow = {(x,,2)' : X € 0%, X12 = Xo1 = x, Xo3 = X3 = y, X34 = X43 = 2} C R’.

(3.16)
We term this convex set as the ‘uncomfortable pillow’ and it contains both smooth
and non-smooth components in its boundary. Figure [3.12] shows the reconstruction
of UPillow as linear images of O3 and O* computed using our algorithm. The

reconstruction based on O* is exact, while the reconstruction based on O3 smooths
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Figure 3.10: Approximating the £;-ball in R? as the projection of the free-
spectrahedron in S? (left), S? (center), and S* (right).

Figure 3.11: Approximating the £;-ball in R? as the projection of free spectrahedron
in 3, $*, §°, and S (from left to right).
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Figure 3.12: Reconstructions of K™* (defined in (3.16)) as the projection of O3
(top row) and O* (bottom row). The figures in each row are different views of a
single reconstruction, and are orientated in the (0,0, 1),(0,1,0),(1,0,1), and (1,1,0)
directions (from left to right) respectively.

out some of the ‘pointy’ features of UPillow; see for example the reconstructions
based on O and on O* viewed in the (0, 1,0) direction in Figure m

3.5.3 Polyhedral Approximations of the {,-ball and the Tammes Problem

In the third set of synthetic experiments, we consider reconstructions of the £,-ball
in R3 via linear images of the simplex; i.e., polytopes. The experimental set-up
is similar to the previous series of experiments: we supply 2562 regularly-spaced
noiseless support function measurements of the ¢,-ball as an input to (3.2)), and we
select C to be the simplex A? in some larger-dimensional space ¢, and for ¢ over a

range of values.
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The purpose of our experiment is to explore a specific instance of the broader
question of approximating the £»-ball in R? as a polytope. Such a problem has been
widely studied in different contexts and varying forms. For instance, the Tammes
problem seeks the optimal placement of ¢ points on S? so as to maximize the
minimum pairwise distance, and is inspired by pollen patterns [142][6 A separate
body of work studies polyhedral approximations of general compact convex bodies in
the asymptotics [25]. Yet another piece of work arising from optimization is that of
computing polyhedral approximations of the second-order cone [14] — in particular,
the approach in [[14]] leads to an approximation that is based on expressing the £,-ball
via a nested hierarchy of planar spherical constraints and subsequently approximate

these constraints with regular polygons.

Figure [3.13] shows the optimal solutions computed using our method for g €
{4,5,...,12}. We remark that the configurations in our solutions are similar to
those of the Tammes Problem [41, 125]] in some instances:

argmax min dist(ag,a;) = argmin  max (ag,a). (3.17)

{a; ;‘Izlcsd_l 1<k<l<gq {a; 7=1CS‘1_1 1<k<lI<gq

Specifically, the face lattice (as a graph) of our solutions is isomorphic to that of
the Tammes for g € {4,5,6,7,12}, which suggests that these configurations are
stable and optimal for a broader class of objectives. We are currently not aware
if the difference between solutions to both sets of problems for g € {8,9,10,11}
arises because our method recovers a solution that is locally optimal but not globally
optimal due to a lack of random initializations (in generating these results, we
apply 500 initializations for each instance of g), or is inherently due to the different
objectives that both problems seek to optimize. We conjecture that the difference for
q = 8 is due to the latter reason we raised, as an initialization using a configuration

that is isomorphic to the Tammes solution led to a suboptimal local minimum.

3.5.4 Reconstruction of a Human Lung

In the final set of experiments we apply our algorithm to reconstruct a convex
mesh of a human lung. The purpose of this experiment is to demonstrate the
utility of our algorithm in a setting in which the underlying object is not convex.
Indeed, in many applications in practice of reconstruction from support function
evaluations, the underlying set of interest is not convex; however, due to the nature

of the measurements available, one seeks a reconstruction of the convex hull of the

5Tammes Problem is a special case of Thompson’s Problem, as well as Smale’s 7th Problem
[133]).
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Figure 3.13: Approximating the £»-ball in R? as the projection of A? for ¢ €
{4,5,...,12} (from left to right, top to bottom).

underlying set. In the present example, the set of interest is obtained from the CT
scan of the left lung of a healthy individual [59]]. We note that a priori it is unclear
whether the convex hull of the lung is well-approximated as the linear image of a

low-dimensional simplex or free spectrahedron.

We first obtain n = 50 noiseless support function evaluations of the lung (note that
this object lies in R?) in directions that are generated uniformly at random over the
sphere S2. In the top row of Figure we show the reconstructions as projections
of 07 for g € {3,4,5,6}, and we contrast these with the LSE. We repeat the same
experiment with n = 300 measurements, with the reconstructions shown in the
bottom row of Figure 3.14]

To concretely compare the results obtained using our framework and those based on
the LSE, we contrast the description complexity — the number of parameters used
to specify the reconstruction — of the estimates obtained from both frameworks.
An estimator computed using our approach is specified by a projection map A €
L(R?,R%), and hence it requires dg parameters; while the LSE proposed by the
algorithm in [60] assigns a vertex to every measurement, and hence it requires dn
parameters. The LSE using n = 300 measurements requires 3 X 300 parameters to
specify whereas the estimates obtained using our framework — these are specified as
projections of O and O° — require 3x 15 and 3x21 parameters respectively. Despite
requiring significantly fewer parameters to specify, the estimates obtained using our
method offer comparable quality to the LSE. This substantial discrepancy highlights
the drawback of using polyhedral sets of growing complexity to approximate non-
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Figure 3.14: Reconstructions of the left lung from 50 support function measure-
ments (top row) and 300 support function measurements (bottom row). Subfigures
(a),(b),(c),(d),(f),(g),(h), and (i) are projections of free spectrahedra with dimensions
as indicated, and subfigures (e) and (j) are LSEs.

polyhedral objects in higher dimensions.

3.6 Conclusions and Future Directions

In this paper we describe a framework for fitting tractable convex sets to noisy support
function evaluations. Our approach provides many advantages in comparison to the
previous LSE-based methods, most notably in settings in which the measurements
available are noisy or small in number as well as those in which the underlying
set to be reconstructed is non-polyhedral. We discuss here some potential future

directions:

Algorithmic performance guarantees. An important question that merits further
investigation is that of designing algorithms that can solve (3.2) to global optimality.
The connection between (3.2)) and K-means clustering — as discussed in Section
[3.1.3.3] - suggests that computing such globally optimal solutions of (3.2) may be
computationally intractable as the results in [42, [95] prove that K-means clustering
is NP-hard. Accordingly, an approach that is commonly adopted in inverse problems
arising in data analysis is to identify subclasses of problem instances for which a

family of algorithms succeeds in obtaining globally optimal solutions. In the context
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of the algorithms described in Section [3.4] such a strategy may, for example, entail
designing suitable initialization methods for the two procedures described there.
Alternatively, it is also of interest to derive ‘global’ methods, such as those based

on convex relaxations.

Informed choices of the lifting dimension ¢g. In many settings in practice, a
suitable choice of the lifting dimension ¢ is usually not known in advance. Smaller
values of g allow us to obtain more concisely described reconstructions, although
such estimates may not fit the given data well; on the other hand, larger values of
q provide better fidelity to the data and yield more complex reconstructions, but
one runs the risk of over-fitting. A practically relevant question in our context is to

design methods akin to cross-validation to choose ¢ in a data-driven manner.

We illustrate our ideas with the following stylized experiment. In this instance,
we consider reconstructing the £;-ball in R? from 100 measurements corrupted
by additive Gaussian noise with standard deviation o = 0.1. We partition the
measurements into two subsets of equal size. Next, we apply our method with the
choice of C = A7 as our lifting set on the first partition, and we evaluate the mean
squared error (MSE) of our computed estimator on the second partition. We repeat
the process across 50 different random partitions, and over values of ¢ in {3, ..., 10}.
The left sub-plot of Figure [3.15] shows the MSE averaged over all partitions. We
observe that the error decreases as ¢ increases initially as models that are more
expressive allow us to fit to the data better. We observe that the error subsequently
remains approximately equal (instead of increasing, as one might expect), and this
occurs because our regression restricts to convex sets, which prevents the MSE from

growing unboundedly.

We remark that our observations apply more generally. In our second experiment, we
consider reconstructing the set K3 C R3 (defined below) from 200 measurements
corrupted by additive Gaussian noise with standard deviation oo = 0.05. The
remaining sequence of steps is identical to the first experiment. The set K3 is
defined as the convex hull of three disjoint planar discs {S1,S»,S3}, where each S;
is defined as follows:

cos 6 cos(2mj/3) —sin(27j/3)
S;=0; 1 :0eRp |, Q;=| sin2nj/3) cos(2nj/3)
sin 6 1

It is not difficult to see that K3 is representable as the projection of O°. Our results
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Figure 3.15: Choosing the lifting dimension in a data-driven manner. The left

sub-plot shows the cross validation error of reconstructing the £;-ball in R? as the

projection of A? over different choices of ¢, and the right sub-plot shows the same

quantity for Ks3 ¢ R? (see accompanying text) as the projection of O” over different

choices of p.

in the right sub-plot of Figure indicates a trend that is similar to that of the first

experiment.

Richer families of tractable convex sets. As described in the introduction, a
restriction in the development of this paper is that, given a lifting dimension ¢, we
do not consider further optimization of the set C c RY. For example, in settings
where C is specified as a fixed affine slice of a convex cone (the simplex and the free
spectrahedron OP are specific affine slices of the nonnegative orthant and the cone
of positive semidefinite matrices respectively), we do not consider searching over
all affine slices of the cone from which C is obtained. The complication that arises
with such additional optimization is that the gradient of the support function — with
respect to the parameters of the affine space describing the slice — corresponding
to such sets is not easily characterized analytically; indeed, requiring such gradient
information is in some sense equivalent to asking for a compact description of the
sensitivity analysis for arbitrary conic optimization problems, which is not available
in general. It would therefore be useful to identify broader yet structured families
of sets than the ones we have considered in this paper for which the gradient of the

support function continues to be efficiently characterized.
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Chapter 4

OPTIMAL APPROXIMATIONS OF CONVEX SETS AS
SPECTRAHEDRA

4.1 Introduction

Semidefinite programming is the class of optimization instances in which we mini-
mize linear functionals over feasible regions that are specified as the projection of an
affine slice of the cone of positive semidefinite matrices. An outstanding question
is to further understand the collection of sets that are representable via semidefinite
programming. Progress towards such a goal help us further recognize optimization

instances for which we can solve efficiently.

There is a wide spectrum of approaches towards the above goal. One approach
is through the lens of convex algebraic geometry, which seeks to understand the
algebraic properties of semidefinite-representable sets. A different approach is via
the lens of computational complexity, which seeks to understand minimal represen-

tations of convex sets as semidefinite programs.

In this chapter, we seek to understand the expressiveness of semidefinite represen-
tations. More precisely: Given a compact convex C* < R%, what is the optimal
approximation (in a suitably defined manner) as a spectrahedron of size p? Recall
that a convex set C C R is a spectrahedron of size p if it is expressible via a linear

matrix inequality involving symmetric matrices of dimensions p X p:

C={(x1,...,xd)':A0+A1x1 +...Agxg = 0}, A; €SP

In the following, we describe a numerical approach for computing the optimal solu-
tion. These are based on applying the ideas in Chapter [3|for reconstructing a convex
set from support function evaluations, and by viewing our task of approximating
convex sets as spectrahedra in the appropriate dual perspective. Our experiments
show that the minimum-sized spectrahedron required to approximate a given set to

high precision may sometimes be surprisingly small.

We remark that the nature of our subsequent discussion is exploratory, and it repre-

sents work in progress.
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4.2 Optimal Approximations of Compact Sets as Spectrahedra of Fixed Size

Let C* cR%bea compact convex set containing the origin in its interior.

Recall that the gauge function of a convex set yc(+) : R? — [0, o0] is defined as
ve(xX) =inf{tr : x et - C}.

The radial function of a convex set C is the reciprocal of its gauge function, and
is defined for all non-zero vectors x € R? [124]]. There is a very natural geometric
interpretation of the radial function; namely, it gives the scale of the vector x such

that it remains in C
1/yc(x) = sup{t : t x € C}.
In particular, ifu € R4 is also unit Euclidean-norm, then the radial function measures

the distance between the origin and the boundary of C in the positive u direction.

In this chapter we consider computing a spectrahedron of size p that minimizes the

squared error loss in terms of its radial function

1 1)
arg min / ( - ) u(da), C is a spectrahedron of size p.  (4.1)
c yer(w)  ye(w)

Here, u(-) denotes the uniform surface measure over the unit sphere S¢!.

Remark. Notice that we suffer no loss of generality in assuming that C* contains the
origin in its interior — there is clearly no loss in assuming that C* is full-dimensional,

and if C* does not contain the origin, we simply apply a translation.

The dual perspective. We begin by describing a reformulation of the optimization

instance (#.1)), which is based on parameterizing the variable C in its polar.

Formally, given a set C ¢ R, the polar set C° ¢ R¢ is defined as
C°:={y:(x,y) < lforallx e C} c R’

Polarity defines a duality over the collection of compact convex sets that contains
the origin in its interior. In particular, polarity transforms information about the
boundary in the ambient space into support information in the dual space. More
precisely, suppose that C ¢ R? is compact convex, and it satisfies 0 € int(C). Then
C°° = C, and yc(-) = hee(-) (see, for instance, Theorem 1.6.7 in [124]]). Here,
hc(x) := supge (g, X) denotes the support function of C evaluated at x.
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Proposition 4.2.1 Define

5 1 1\
Cp := arg min / ( - ) u(da), C is a spectrahedron of size p,
c yex(w)  ye(w)
4.2)
and define
) 1 I
Cp := argmin / ( — u(du). 4.3)
cersrrdyd \ver)  hgory(a)

Suppose that Cp and Cp are both compact, and they contain the origin in their re-
spective interiors. In addition, suppose that the solutions Cp and Cp are respectively

unique. Then ép = C‘D.

Here, O = S N {X : (I, X) = 1} denotes the free spectrahedron with dimensions
P Xp.

The proof of Proposition 4.2.1| relies on some basic properties about the polarity
operation. We begin by noting that every spectrahedron of size p containing the

origin in its interior can be expressed as the following
{x:1>L'x}cR?
for some linear map £ € L(S?,RY).

Next we compute the polar of the above set.

Proposition 4.2.2 Let C = {x : [ > L'x} for some £ € L(SP,R?). Then the polar
set C° is given by

C°={L(X): X e SPALX) <1} = L(S n{X : (IX) < 1}).

In particular, if 0 € L(S? N {X : {I,X) < 1}), then C° = L(OP).

Proof of Proposition It follows from the definition of polarity that
C°:={y: (y,x) < lforallx € C}

This can be equivalently expressed in terms of the solution of the following convex

program

C° = {y: sup (x,y) < 1}.

x:I>L'x
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It is clear that the origin is an interior point of the feasible region. Hence Slater’s

condition is satisfied. By strong duality, we have
C° = {y:3IXALX)<LL(X) =y, XS}

{L(X): X e SL.(,X) < 1}
LSP N {X : (I,X) <1}).

In fact, one can further write

C°= U t-L(OP).

0<r<1

It is clear that if 0 € £(OP) then C° = L(OP). O

Proof of Proposition Since Cp contains the origin in its interior, the optimal

solution may be expressed as
Cr={x:1> ﬁ},x},

for some linear map £ p € L(S?,R%). By Proposition , the polar set C p is given

by
Cp = Lp(OP).

Next, let Cp = £ p(OP). 1t is clearly closed. Since 0 € int(C’D), it follows that C’B is
compact. Furthermore, by Proposition , we have (:‘5 ={x:1> ﬁ’DX}.

We may conclude that Cp = Cp. Suppose that this is not the case. Then it must
be that £ p defines a suboptimal solution in (4.3]). However, the set C’B would attain
then a value in (4.2) that is strictly lower that the unique optimum Cp, which is
not possible. So they must both attain the same errors. By uniqueness, we further

conclude that C’D = C’p. O

4.3 Algorithms
In this section we describe our algorithms for minimizing (4.3). Our first algorithm
is based on gradient descent and our second algorithm is a form of alternating

minimization.

First we note that the minimization instance (4.3) requires the computation of a
surface integral, which is not feasible to compute in general. Our approach is to

approximate the integral as point masses on the surface, which leads to the following



101

optimization instance

1 1 2
arg min — (y(’) - —) . 4.4)
LeLRIRM he () ()

Gradient Descent. Our first approach is based on gradient descent. The derivative

of objective in (4.4) with respect to the linear map £ (provided it exists) is given by
2 ¢ 1)
- @ — 1/, (L0® ) ————| u ® Ep(L'u?).
" ;:1 (y /i ( ) I (Cu) o )

Here, Ep(X) is the unit-norm positive semidefinite matrix that corresponds to the

largest eigenvalue of X. We summarize the steps in Algorithm [6]

Algorithm 6 Convex Set Regression via Gradient Descent

Input: A collection {(11("),)7("))};‘:1 c R? x R of support function evaluations; a
compact convex set D C RY; an initialization £ € L(RY,R%); a step size 7 € (0, 1]
Algorithm: Repeat until convergence

LD« 230 (Y9 = 1/hp(L0D)(1/hp (L)) u? @ Ep(Lu)

2. L— L-nD

Output: Final iterate £

Although the algorithm presented is based on a fixed stepsize, in practice stepsizes

may also be chosen via some type of line search.

Alternating Minimization. The second algorithm is based on iteratively computing
solutions to linearizations of the first-order optimality conditions of (4.4). By noting
that hp(L'u) = (L'w,Ep(L'u)) = (L,u ® Ep(L'n)), the first-order optimality
conditions of (4.4) may be expressed as follows:

& . 1 3 .
0= = (¥ np(£u®) 1) (—) u? ® Ep(£ul)
i=1

hp(Lu®)

&, . . 3 .
=3 (y(’)(L,u(’) ® Ep(Lud)) 1) ( ) u? @ Ep(L"u).
i=1

hz)(ﬁ’ ll(i))
Our algorithm suffers similar conditioning issues as those in Section [3.4]of Chapter
Bl To address these issues, we apply an intermediate Tikhonov regularization

analogous to that of Algorithm [5

4.4 Numerical Experiments
TV-screen. Our first example is the set C; := {(x,y) : x* + y* < 1} ¢ R?, which

is also known as the T'V-screen (see Figure d.I). The set is C; is not expressible as
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Algorithm 7 Convex Regression via Alternating Minimization

Input: A collection {(u®, y(i))}?: , C R4 xR of support function evaluations; a com-
pact convex set D C RY; an initialization £ € L(R4,R¢); a choice of regularization
parameter y > 0

Algorithm: Repeat until convergence

1. e — Ep(L'u?), i) «— hp(L'u?)

2.V — %Zlﬂ:l y(i)(h(i))‘3((u(i)®e(i))®(u(i)®e(i))), Y %Z?:l(h(i))%(u(i)@e(i))
3.L— (V+yD) WY +yL)

Output: Final iterate £

a spectrahedron [77]], though it is expressible as the projection of an affine slice of
the PSD cone.

In Figure #.2] we show the approximations of C; computed using Algorithm [7] as
spectrahedra of sizes 2, 3, and 4. In this instance, a spectrahedron of size 4 is

sufficient to approximate C; up to a mean squared error of 1.7 x 107,

0.5

-0.5

-1 -0.5 0 0.5 1

Figure 4.1: {(x,y) : x* + y* < 1}, also known as the TV-screen.

0.5 0.5 0.5

-0.5 -0.5 -0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) Size 2 (b) Size 3 (c) Size 4

Figure 4.2: Approximations of the TV-screen as spectrahedra.

We compare our reconstructions with polyhedral approximation of comparable
complexity. In Figure 4.3/ we show the approximations of C; as polyhedra with 3, 6,
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and 10 facets. The number of facets are chosen to match the number of parameters

required to specify spectrahedra of sizes 2, 3, and 4.

We compare the mean squared errors of both families of reconstructions in Figure
4.1 Notice that although the spectrahedral approximation of size 4 requires as many
parameters to specify as the corresponding polyhedral approximation with 10 facets,

the latter attains a fit with MSE that is approximately a ninth of former.

2 2 2
15 15 15
1 1
0.5 0.5
0 0

-0.5 -0.5

-1 -1

-1 0 1 -1 0 1 -1 0 1

(a) 3 facets (b) 6 facets (c) 10 facets

Figure 4.3: Approximations of the TV-screen as polyhedra.

Degrees of freedom 2x3 2x6 2x10
Polyhedron 551072 [99x107* | 1.5x107*
Spectrahedron | 4.4x 1073 | 3.1 x 1073 | 1.7 x 107

Table 4.1: Mean Squared Errors of approximations of the TV-screen as polyhedra
and spectrahedra of different sizes.

A non-semialgebraic set in R>. Our second example is a set in R? bounded by

three curves
C={(x,y): x < 1/2,y < 1/2,exp(-3/2 —x) - 1/2 < y}.

We show the set C, in Figure[#.4] The set C, is not semialgebraic because a part of its
boundary is defined by the exponential function. Consequently, it is not expressible

via semidefinite programming.

In Figure 4.5] we show the approximations of C, as spectrahedra of sizes 2, 3, and
4. In this instance, a spectrahedron of size 4 is sufficient to obtain an approximation
with a MSE of size ~ 1.0 x 1078 (see Figure .

A semialgebraic set in R3. Our third example considers the convex hull of the

following variety

Vi={(ryz):x* =y =22 =0x*+y>+ 72— 1=0}.
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0.5

-0.5

Figure 4.4: An non-semialgebraic set defined as {(x,y) : x < 1/2,y
1/2,exp(=3/2 - x)—1/2 < y}.
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(a) Size 2 (b) Size 3 (c) Size 4

Figure 4.5: Approximations of C, as spectrahedra.

Size of spectrahedra 2 3 4
Mean Squared Error | 1.3x 1072 | 9.5x 107 | 9.6 x 107°

Figure 4.6: Mean Squared Errors of approximations of C, as spectrahedra of different
sizes.

This set is based on a worked example in [68].

In Figure we show the approximations of conv(V) as spectrahedra of sizes 2,
3, and 4 computed using our method. We observe that a spectrahedra of size 4 is
sufficient to obtain a MSE < 107° (see Figure .

To emphasize the compactness of our description, we compare our approximations
with the outer approximations obtained using theta bodies relaxations [69]. The
latter approach offers a principled manner for constructing convex outer approxi-
mations of semialgebraic sets that are representable via semidefinite programming.
These relaxations are presented as a hierarchy that converge towards the convex hull.
Based on the computations in [68], the first theta body relaxation is an ellipsoid,

and the second theta body is a convex set that can be expressed as a semidefinite
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(a) Size 2 (b) Size 3 (c) Size 4

Figure 4.7: Reconstructions of conv(‘V) using our method. The variety V is
outlined in blue.

Size of spectrahedra 2 3 4
Mean Squared Error | 6.1 x 1071 [ 5.7 x 107> | 2.1 x 1077

Figure 4.8: Mean Squared Errors of approximations of conv(‘V) as spectrahedra

program in dimensions 9. The numerical results in [68] do further suggest that the
second theta body relaxation is exact. Although our reconstruction as spectrahedron
of size 4 is approximate, it is able to achieve a high degree of accuracy using a far

smaller semidefinite program.
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Chapter 5

HIGH-DIMENSIONAL CHANGE-POINT ESTIMATION:
COMBINING FILTERING WITH CONVEX OPTIMIZATION

5.1 Introduction

Change-point estimation is the identification of abrupt changes or anomalies in a se-
quence of observations. Such problems arise in numerous applications such as prod-
uct quality control, data segmentation, network analysis, and financial modeling; an
overview of the change-point estimation literature can be found in [[13,139,1114,149].
As in other inferential tasks encountered in contemporary settings, a key challenge
underlying many modern change-point estimation problems is the increasingly large
dimensionality of the underlying sequence of signals — that is, the signal at each
location in the sequence is not scalar-valued but rather lies in a high-dimensional
space. This challenge leads both to computational difficulties as well as to compli-
cations with obtaining statistical consistency in settings in which one has access to
a small number of observations (relative to the dimensionality of the space in which

these observations live).

A prominent family of methods for estimating the locations of change-points in
a sequence of noisy scalar-valued observations is based on the filtered derivative
approach [7, 13, 115, 17, [18]]. Broadly speaking, these procedures begin with an
application of a low-pass filter to the sequence, followed by a computation of
pairwise differences between successive elements, and finally the implementation
of a thresholding step to estimate change-points. A large body of prior literature has
analyzed the performance of this family of algorithms and its variants [7, [17, [18].
Unfortunately, as we describe in Section[5.3] the natural extension of this procedure
to the high-dimensional setting leads to performance guarantees for reliable change-
point estimation that require the underlying signal to remain unchanged for long
portions of the sequence. Such requirements tend to be unrealistic in applications
such as financial modeling and network analysis in which rapid transitions in the

underlying phenomena trigger frequent changes in the associated signal sequences.

5.1.1 Our contributions
To alleviate these difficulties, modern signal processing methods for high-dimensional

data — in a range of statistical inference tasks such as denoising [19, 47, 63], model
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selection [29] [99] [150], the estimation of large covariance matrices [21, 22], and
others [32, 35, 48, 56| [116] — recognize and exploit the observation that signals
lying in high-dimensional spaces typically possess low-dimensional structure. For
example, images frequently admit sparse representations in an appropriately trans-
formed domain [26, 32] (e.g., the wavelet domain), while covariance matrices are
well-approximated as low-rank matrices in many settings (e.g., correlations be-
tween financial assets). The exploitation of low-dimensional structure in solving
problems such as denoising leads to consistency guarantees that depend on the in-
trinsic low-dimensional “complexity” of the data rather than on the ambient (large)
dimension of the space in which they live. A notable feature of several of these
structure-exploiting procedures is that they are based on convex optimization meth-
ods, which can lead to tractable numerical algorithms for large-scale problems as
well as to insightful statistical performance analyses. Motivated by these ideas, we
propose a new approach for change-point estimation in high dimensions by integrat-
ing a convex optimization step into the filtered derivative framework (see Section
[5.3). We prove that the resulting method provides reliable change-point estimation
performance in high-dimensional settings, with guarantees that depend on the un-
derlying low-dimensional structure in the sequence of observations rather than on

their ambient dimension.

To illustrate our ideas and arguments concretely, we consider a setup in which we

are given a sequence y[¢] € R? fort = 1,...,n of observations of the form:

y[t] = x*[¢] + &[t]. (5.1)

Here x*[t] € RY is the underlying signal and the noise is independent and identi-
cally distributed across time as g[t] ~ N(O, O'2Iq><q). The signal sequence 2 :=
{x*[¢]}7_, is assumed to be piecewise constant with respect to ¢. The set of change-
points is denoted by ™ c {1,...,n}, i.e.,, t € ™% o x*[f] # x*[t + 1], and the
objective is to estimate the set 7*. A central aspect of our setup is that each
x*[¢] is modeled as having an efficient representation as a linear combination of
a small number of elements from a known set ./ of building blocks or atoms
(19} 130, 132} 133} 35, 147, 48], 153, [116, [143]. This notion of signal structure includes
widely studied models in which signals are specified by sparse vectors and low-rank
matrices. It also encompasses several others such as low-rank tensors, orthogonal
matrices, and permutation matrices. The convex optimization step in our approach
exploits knowledge of the atomic set .o7; specifically, the algorithm described in

Section [5.3.2] consists of a denoising operation in which the underlying signal is
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estimated from local averages of the sequence y[¢] using a proximal operator based
on the atomic norm associated to 7 [19] 35| 47]]. The main technical result of this
paper is that the method we propose in Section [5.3] provides accurate estimates of

the change-points 7* with high probability under the condition:

A2 Toin = 02{n*(Z) + logn}, (5.2)

min

where Ap, denotes the size (in £>-norm) of the smallest change among all change-
points, Ty, denotes the smallest interval between successive change-points, and n
is the number of observations. The quantity n(.2") captures the low-dimensional
complexity in the signal sequence 2™ := {x*[¢]}"_; via a Gaussian distance/width
characterization, and it appears in our result due to the incorporation of the convex
optimization step. In the high-dimensional setting, the parameter 5? plays a crucial
role as it reflects the underlying low-dimensional structure in the signal sequence
of interest; as such it is usually much smaller than the ambient dimension g (we
quantify the comparisons in Section [5.2)). Indeed, directly applying the filtered
derivative method without incorporating a convex optimization step that exploits
the signal structure would lead to weaker performance guarantees, with the quantity

1 in the performance guarantee (5.2) being replaced by the ambient dimension .

The performance guarantee (5.2) highlights a number of tradeoffs in high-dimensional
change-point estimation that result from using our approach. For example, the ap-
pearance of the term Arzanmin on the left hand side of (5.2)) implies that it is possible
to compensate for one of these quantities being small if the other one is suitably
large. Further, our algorithm also operates in a causal manner on small portions of
the sequence at any given time rather than on the entire sequence simultaneously, and
it is therefore useful in ‘online’ settings. This feature of our method combined with
the result (5.2)) leads to a more subtle tradeoff between the computational efficiency
of the approach and the number of observations n; specifically, our algorithm can be
adapted to process larger datasets (e.g., settings in which observations are obtained
via high-frequency sampling, leading to larger n) more efficiently without loss in
statistical performance by employing a suitable form of convex relaxation based on

the ideas discussed in [33]]. We discuss these points in greater detail in Section [5.4]

5.1.2 Related work
A recent paper by Harchaoui and Lévy-Leduc [76] is closest in spirit to ours; they
describe a convex programming method based on total-variation minimization to

detect changes in sequences of scalar-valued signals, and they provide a change-point
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estimation guarantee of the form (5.2)). Specifically, by combining assumptions (A2)

and (A3) in Proposition 3 of [76], the authors show that their algorithm provides
2

accurate estimates of the change-points in the regime A-. Tiyin/logn — oo as
n — oo, which is similar to our result (5.2) when specialized to scalar-valued
signals. In addition to the restriction to scalar-valued signals, the technique in [76]]
requires knowledge of the full sequence of observations in advance. As a result it is
not directly applicable in high-dimensional and online settings unlike our proposed

approach.

High-dimensional change-point estimation has received much attention in recent
years based on different types of extensions of the scalar case. The diversity of these
generalizations of the scalar setting is due to the wide range of applications in which
change-point estimation problems arise, each with a unique set of considerations.
For example, several papers [38,152] investigate high-dimensional change-point esti-
mation in settings in which the changes only occur in a small subset of components.
Therefore, assumptions about low-dimensional structure are made with regards to
the pattern of changes rather than in the signal itself at each time instance (as in
our setup). Xie et al. [151] consider a high-dimensional change-point estimation
problem in which the underlying signals are modeled as lying on a low-dimensional
manifold; although this setup is similar to ours, their algorithmic approach is based
on projections onto manifolds rather than on convex optimization, and the types of
guarantees obtained in [151] are qualitatively quite different in comparison to (5.2)).
We also note recent work by Aston and Kirch on high-dimensional change-point
problems in which they study the impact of projections on the performance of clas-
sical algorithms such as the cumulative-sum method [[10]]. In the setting where the
direction of change is known, the authors demonstrate that a projection along the di-
rection of change yields an algorithm with a recovery guarantee that is independent

of the ambient dimension, and is robust to misspecification of the noise covariance.

5.1.3 Paper outline

Section [5.2] gives the relevant background on structured signals that are concisely
represented with respect to sets of elementary atoms as well as the analytical tools
that are used in the remainder of the paper. In Section [5.3] we describe our algo-
rithm for high-dimensional change-point estimation, and we state the main recovery
guarantee of the procedure. In Section [5.4] we discuss the tradeoffs that result from
using our approach, and their utility in adapting our algorithm to address challenges

beyond high-dimensionality that arise in applications involving change-point esti-
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mation. We verify our theoretical results with numerical experiments on synthetic
data in Section [5.5] and we conclude with brief remarks and further directions in

Section[5.6] The proofs are given in the Appendix.

5.2 Background on Structured Signal Models
5.2.1 Efficient representations with respect to atomic sets
We outline a framework with roots in nonlinear approximation [12,45,/83111] that

generalizes several types of low-dimensional models considered in the literature
such as sparse vectors and low-rank matrices [19} 21} 22} 32,135 48, 99, 106 [116].

Let.«Z C RYbe acompact set that specifies a collection of atoms. We say thata signal
x € R? has a concise representation with respect to .o if it admits a decomposition

as a sum of a small number of atoms in &7, that is, we are able to write

X = c;a;,a; € JZ%, ci >0, (5.3)

s
i=1

for some s < ¢g. Sparse vectors and low-rank matrices are examples of low-
dimensional representations that are expressible in this framework. Specifically,
an atomic set for sparse vectors is the set of signed standard basis vectors &/ =
{xe;|1 <i < g}, while a natural atomic set for low-rank matrices is set of all rank-
one matrices with unit Euclidean norm. Other examples include binary vectors (e.g.,
in knapsack problems [97]), permutation matrices (in ranking problems [81]]), low-
rank tensors [[87], and orthogonal matrices. Such classes of signals that have concise
representations with respect to general atomic sets were studied in the context of

linear inverse problems [35]], and subsequently in the setting of statistical denoising
[19,33].

In comparison with alternative notions of low-dimensional structure, e.g., mani-
fold models [151]], which have been considered previously in the context of high-
dimensional change-point estimation (and more generally in signal processing), the
setup described here has the virtue that one can employ efficient algorithms for con-
vex optimization methods, and one can appeal to insights from convex geometry in
developing and analyzing algorithms for high-dimensional change-point estimation.

We discuss the relevant concepts in the next two subsections.

5.2.2 Minkowski functional and proximal operators
A key feature of our change-point estimation algorithm is the incorporation of a

signal denoising step that exploits knowledge of the atomic set 7. To formally define
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the denoising operation, we consider the Minkowski functional || - ||¢ : R? — [0, o0]
Ix||c :=inf{z : x € tC, t > 0}, (5.4)

defined with respect to a convex set C C RY such that &/ C C, as discussed in [35]].
As C is convex, the Minkowski functional || - ||¢ is also convex. This function is
also called the gauge function in the convex analysis literature [[120]. For a given
y € R? and a convex set C, we consider denoisers specified in terms of the following

proximal operator:

. 1 2
X = arg min §||y—x||€2 + Al|x]lc- (5.5)
xeR4
As || - ||c is a convex function, this optimization problem is a convex program. To

obtain a proximal operator that enforces signal structure in the denoising operation,
the set C is usually taken to be the tightest convex set containing the atomic set
o, i.e., C = conv(«/). With C = conv(&), the resulting Minkowski functional is
called the atomic nornfl] with respect to o7, and the associated proximal operator
(5.9) is called atomic norm thresholding [19]]. The atomic norm has been studied in
the approximation theory literature for characterizing approximation rates associated
with best k-term approximants [12,145,/83,[111]], and its convex-geometric properties
were investigated in [35] in the context of ill-posed linear inverse problems. When
o/ = {xe;|1 <i < q} is the collection of signed standard basis vectors, the atomic
norm with respect to .o/ is simply the £;-norm in RY. Similarly, the atomic norm
corresponding to unit-Euclidean-norm rank-one matrices is the matrix nuclear norm.
More generally, one can define atomic norms associated to other types of structured
objects such as permutation matrices, low-rank tensors, orthogonal matrices, and
signed vectors; see [33] for a detailed list. Atomic norm thresholding naturally
generalizes soft-thresholding based on the ¢;-norm for sparse signals to a more

general denoising operation for the types of structured signals described here.

One exception to the rule of thumb of choosing C = conv(%?) arises if the atomic
norm is intractable to represent, e.g., the tensor nuclear norm [79]. That is, although
these norms are convex functions, computing them may in general be computa-
tionally intractable. To overcome such difficulties, a natural approach described in
[33],[35] is to consider Minkowski functionals of convex sets C that contain .« and

that are efficient to represent, i.e., further tractable convex relaxations of conv(.<).

'For (5.4) to formally define a norm, we would also need the set .7 to be centrally symmetric.
Nevertheless, the results in the remainder of the paper hold without this condition, so we use “norm”
with an abuse of terminology.
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Finally, to avoid dealing with technicalities in degenerate cases, we assume through-
out the remainder of the paper that the set conv(e/) Cc RY is a solid convex set
containing the origin in its interior. Consequently, we have that ||x||c < oo for all
x € RY.

5.2.3 Summary parameters in signal denoising
Next we describe the relevant convex-geometric concepts for analyzing the perfor-
mance of proximal denoising operators. For x € R?, the Gaussian distance nc(x)

[56, 106] with respect to a norm || - ||¢ is defined as

ne(x) = gg{gw%[qxq)[dlst(g,ﬂ - (9||X||c)]}- (5.6)

Here dist(g, 0||x|lc) := infweqx||. [IW — gll¢, denotes the distance of g from the set
0||x||c, where d||x||¢ is the subdifferential of the function || - ||¢ at the point x [120].
We relate the Gaussian distance to the Gaussian width [66] in Appendix [C.I] by

extending a result in [S6].

The Gaussian distance ¢ (x) is useful for characterizing the performance of the prox-
imal denoising operator (5.5]) [19,33,[106]]. Specifically, suppose X = arg min, g4 % [Ix*+
& — X||§2 + A||x]|c, then the error between X and x* is bounded as [106]:

Ix* — %|l¢, < dist(e,1-d|x*|lc).

Taking expectations with respect to & and subsequently optimizing the resulting
bound with respect to A yields the Gaussian distance (5.6). We prove a generalization
of this result in Appendix [C.2] which is relevant to the analysis of the change-point
estimation algorithm proposed in Section[5.3.2]

As we will discuss in Section[5.3] the combination of the proximal denoising operator
with a suitable filtering step leads to a change-point estimation procedure with
performance guarantees in terms of 7¢(x) rather than y/g. This point is significant
because for many examples of structured signals that are encountered in practice,

it is typically the case that 7¢c(x) < +/g. For example, if X is an s-sparse vector in

RY then proximal denoising via the £;-norm gives 7, (x) < /2slog(g/s) + 3s/2+7
(35,56, [121,[138]. Similarly, if x is a rank-r matrix in RP*? then proximal denoising
via the matrix nuclear norm gives nnuc(X) < /6rp + 7 [35,56] 105} [117].

In order to state performance guarantees for a sequence of observations, we extend

the definition of ¢ to collections of vectors 2" = {x*[1],...,x*[n]},x*[i] € RY as
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follows:

Z') := inf max E dist(g, A - O||x*[¢ ) 5.7
ne(%) AZOX%G%{M B, ldisigd- dlx'] ]||c)]} (5.7)
5.3 Convex Programming for Change-Point Estimation

In this section, we describe our algorithm for high-dimensional change-point esti-
mation by combining the filtered derivative method with proximal denoising. We
state the main theorem that characterizes the accuracy of the estimated set of change-

points, and we outline the proof, with the full details given in the Appendix.

5.3.1 Motivation

We begin by highlighting some of the difficulties that arise in change-point estimation
as a result of the high-dimensionality of the observations. In order to frame our
discussion concretely, we consider the prominent and widely-employed class of
change-point estimation techniques based on the filtered derivative algorithm [7,
15, 117, 118]], although similar difficulties arise with other approaches as well. The
filtered derivative method detects changes based on an application of a pairwise
difference operator to the output of a suitable low-pass filter applied to the sequence
of observations. For simplicity, we describe a particular low-pass filter that is given
by the sample mean of the observations over a small window (again, elaborations on
this scheme are possible, with qualitatively similar conclusions). Formally, consider
the following sequence defined at time # by computing differences of sample means

over windows of size 6:

1 t 1 t+6
Dol =—2 > slil+ 5 > ylil. (5.8)
i=t—0+1 i=t+1

Locations at which FDg[¢] has large magnitude (i.e., above a suitably chosen thresh-

old) are declared as change-points.

This approach is well-suited for settings with sequences of scalar-valued signals, i.e.,
each x*[¢] is scalar; see [[7,[17,[18]] for detailed analyses. However, if applied directly
to the high-dimensional setting, the underlying sequence of signals x*[z] € RY is
required to remain stationary over time scales on the order of g so that changes can
be reliably estimated. This requirement is unfortunately not realistic for practical
purposes, e.g., in image processing applications one typically encounters g ~ 10°.
As such, it is desirable to develop an algorithm that detects changes in sequences of
high-dimensional observations reliably even if the signal does not remain stationary

over long time scales.
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5.3.2 Our approach to high-dimensional change-point estimation

We base our method on the principle that more effective signal denoising by exploit-
ing the low-dimensional structure underlying the sequence x*[¢] enables improved
change-point estimation. The formal steps of our algorithm for obtaining an estimate

1 of T* are as follows:

1. [Input]: {y[#]}_, the sequence of signal observations, a choice of parameters

6,v, A to be employed in the algorithm, and a specification of a convex set C.

2. [Filtering]: Compute the moving averages y[i] = é ;:f_l ylt],1 < i <

n—60+1.

3. [Denoising]: Let X[¢],1 < ¢t < n— 6 + 1 be the solutions to the following

convex optimization problems:

. 1
&[] = arg min Z1y[1] - x|, + Allxllc. (5.9)
xeR4

4. [Differencing]: Compute S[t] := ||X[¢ + 1] - X[t =0 + 1]||¢, for 6 <t < n-86.
5. [Thresholding]: For all 7 such that S[¢] < vy, set S[¢] = 0.

6. [Output]: Let {ij,ip,...} € {6,0 + 1,...,n — 6} be the indices of the
nonzero entries of S[f]. Divide the set {ij,i,...} into disjoint subsets
G1,.G2,....Grr € Z,sothatij, —i; < 0 © ij,ij41 € Gy and ij41 —i; >
0 & ij € Gr.ij+1 € Giv1. The estimates 7; are given by 7; := argmax, g, S[t],
1 <i < r, and the output is 7 = {f;}.

Observe that the proximal denoising step is applied before the differencing step.
This particular integration of proximal denoising and the filtered derivative ensures
that the differencing operator is applied to estimates X[¢] that are closer to the
underlying signal x*[¢] than the raw averages y[¢] (due to the favorable denoising
properties of the proximal denoiser). As discussed in Theorem this leads
to improved change-point performance in comparison to a pure filtered derivative
method. However, the analysis of our approach is complicated by the introduction

of the proximal denoising step; we discuss this point in greater detail in Section

533

The parameter 6 determines the window over which we compute the sample mean,

and it controls the resolution to which we estimate change-points. A larger value
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of 6 allows the algorithm to detect small changes, although if 6 is chosen too large,
multiple change-points may be mistaken for a single change-point. A smaller choice
of 8 increases the resolution of the change-point estimates, but small changes cannot
be reliably detected. The parameter y specifies the threshold for declaring changes,
and it governs the size of the change-points that can be reliably estimated. A small
choice of y allows the algorithm to detect smaller changes, but it also increases the
occurrence of false positives. Conversely, a larger value of y reduces the number
of false positives, but only those changes that are sufficiently large in magnitude
may be detected by the algorithm (i.e., the number of false negatives may increase).
In Theorem [5.3.1] we give precise guidelines for the choices of the parameters
(6,7, ) to guarantee reliable change-point estimation under suitable conditions via

the method described above.

Theorem 5.3.1 Consider a sequence of observations y[t] = x*[t] + €[t], t =
1,...,n, where each x*[t] € RY and each &[t] ~ N(O, O'zquq) independently. Let
™ Cc {l,...,n} besuchthatt € ™ < x*[t] # x*[t + 1], let Apin = mine.+ ||x*[¢] -
x*[t + 1lle,, let Tonin = Ming, ez, |t — 8], and let 27 = {x*[1],...,.x*[n]}.

Suppose Amin and T satisfy

A2 T > 6402 {nc(2) + ry/2log n}? (5.10)

for some r > 1 and some convex set C, where ng(Z") is as defined in (5.7), and
™ C {Twin/4,...,n — Tnin/4}. Suppose we apply our change-point estimation

algorithm with any choice of parameters 60,7y, and A satisfying
1. Tmln/4 2 0,
2. Amin/2 =2y > 2%{170(%) + r+/2logn}, and

3. 1 = Zargmin max E dist(g, 1 - 0||x*[¢ }
Vo gi x*[t]e%{gw(o,l,,xq)[ (g lIx*[#]llc)]

Then the algorithm recovers an estimate of the change-points T satisfying

2. |f; — 1| < min{(4r+/logn/nc(Z") + H)ZIL)\fg ) for all i, where §; and r*

Amin
are the i’th elements of T and ™™ when ordered sequentially,
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with probability greater than 1 — snl=r,

Remarks. (1) If condition (5.10) is satisfied, then the choices of 8 = T, /4 and
v = Amin/?2 satisfy the requirements in Theorem Just as in the pure filtered
derivative setting, a suitable choice of the parameter 6 often relies on knowledge
of the quantity Ty, and is usually set at a constant times smaller than Tp,;,. In the
setting where a desired total number of estimated change-points is available, the
threshold ¥ may be set such that the output of our algorithm contains the desired

number of change-points.

(2) For certain types of signal structure, one can specify suitable choices of A that
only depend on knowledge of the ambient dimension g. For example, in settings in
which 2" is a collection of sparse vectors in RY, and we apply a proximal denoising
step with the £;-norm, one may select 4 = a\/m, and in settings in which
Z is a collection of p X p low-rank matrices, and we apply a denoising step with
the nuclear-norm, one may select A = 2O'W [1O6]].

(3) The performance of our algorithm is robust to misspecification of the convex set
C. In particular, the quantity nc(2") for a misspecified C is in general larger than
that for the correct C, but it is always smaller than 4/g. Consequently, the recovery
guarantees associated with using a misspecified set C are weaker in general, but no

worse than applying a pure filtered derivative algorithm without a denoising step.

(4) Our results can be extended to settings in which the noise &[¢] has corre-
lations over space or time. For example, if the noise is distributed as g[t] ~
N(0,%), one could apply our algorithm to the transformed sequence of observations
{=71/2y[¢]}™., with the convex set C in the denoising step being replaced by the
set 21/2C. If the noise &[] is correlated across time, one could apply a temporal
whitening filter before proceeding with our algorithm. The application of such a
filter generally leads to a smoothening of the abrupt changes that occur at change-
points. As long as the bandwidth of the noise correlation is much smaller than Ty,
applying our algorithm to the smoothened sequence leads to qualitatively similar

guarantees as in the case in which the noise is independent across time.

As a concrete illustration of this theorem, if each element x*[¢t] € RY, t = 1,...,n
of the signal sequence is a vector consisting of at most s nonzero entries, then our

algorithm (with a proximal denoiser based on the {;-norm) estimates change-points

2

reliably under the condition A%, Ty 2 o-(slog(%) + log(n)). Similarly, if each

element x*[7] € RP*P, t = 1,...,nis amatrix with rank at most r, then our algorithm
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(with a proximal denoiser now based on the nuclear norm) provides reliable change-

point estimation performance under the condition AfmnTmm > o*(rp + log(n)).

5.3.3 Proof of Theorem 5.3.1]
The proof broadly proceeds by bounding the probabilities of the following three

events:

&1 :={S[t] = y,Vt € T} (5.11)

Ey 1 = {S[t] <y, Vt € Tpa} (5.12)

Exi={[X[t + 1] =X[t =0+ 1]|le, > |IX[t + 1 + 6] — X[t — O + 1 + S]]l¢,, V(£,0) € Touffer}-
(5.13)

Here tgy = {i : 0 <i < n—0,li—j| > 6,j € v} and Tpufter = {(t1,0) : £} € 75,0 2
6] > (41\/@/ ne(Z) + 4)%&‘%)\/@}. Note that Tpufer defines a non-empty
set if 8 > (4r\/@/n6(%) + 4)20'277%,(%)/Af‘nin. The event &; corresponds to
the atomic-norm-thresholded derivative exceeding the threshold y for all change-
points, while event &, corresponds to the atomic-norm-thresholded derivative not
exceeding the threshold vy in regions ‘far away’ from the change-points. Bounding
the probabilities of these two events is sufficient for a weaker recovery guarantee than
is provided by Theorem|[5.3.1] which is that any estimated change-point 7 € £ will be
within 6 of an actual change-point t* € 7*. However, the selection of the maximum
derivative in Step 6 of the algorithm often leads to far more accurate estimates of
the locations of change-points. To prove that this is the case, we consider the event
&3 corresponding to the atomic-norm-thresholded derivative at the change-point
being larger than the atomic-norm-thresholded derivatives at other points that are

still within a window of 6 but outside a small buffer region around the change-point.

The next proposition gives bounds on the probabilities of the events &1, E,, E3:

Proposition 5.3.2 Under the setup and conditions of Theorem we have the
following bounds:

P(ES) < 2", P(ES) <20, P(ES) < n' (5.14)

The events E1,E,,E3 are defined in (5.11]), (5.12)), and (5.13).

The proof of Proposition[5.3.2]is given in the Appendix, and it involves overcoming

two difficulties. First, if the filtering operator is applied over a window containing a
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change-point in Step 2, the average y[¢] is in effect a superposition of two structured
signals corrupted by noise. This necessitates the analysis of the performance of a
proximal denoiser applied to a noisy superposition of structured signals rather than
to a single structured signal corrupted by noise. The second (more challenging)
complication arises due to the fact that the differencing operator is applied to the
result of a nonlinear mapping of the observations (via the proximal denoiser) rather
than to just a linear average of the observations as in a standard filtered derivative
framework. We address these difficulties by exploiting certain properties of the
proximal operator such as its non-expansiveness and its robustness to perturbations.

Assuming Proposition [5.3.2] the proof of Theorem [5.3.1] proceeds as follows:

Proof of Theorem From Proposition and the union bound we have that
P(EINENE3) > 1— 511, We condition on the event E1NE;NE3 to complete the
proof. Specifically, conditioning on & ensures that we have S[¢z] > vy forall t € 7*
after Step 5. Conditioning on &, implies that all entries of S outside a window of
6 from any change-point are set to O after Step 5. Hence, after Step 6 all non-zero
entries of S that are within a window of at most 8 around a change-point will have
been grouped together (for all change-points), which implies that || = |v*|. Finally,
conditioning on the event &3 implies that S[¢] is larger than S+ 8] for all ¢ such that
(4r\/@/nc(%) + 4)‘”70—(%)\/5 < |8] < @ and for all t € v*. Thus, our estimate

Amin

of the change-point at ¢ € 7* is at most min {(4r\/log n/ne(Z) + 4)0"0—(‘%)\/5,9}

Amin
away, which concludes the proof. O

5.3.4 Signal reconstruction

Based on the estimated set of change-points 7, it is straightforward to obtain good
reconstructions of the signal away from the change-points via proximal denoising
(5.3). This result follows from the analysis in [19, [106], but we state and prove it

here for completeness:

Proposition 5.3.3 Suppose that the assumptions of Theorem hold. Let t,t; €

T be two consecutive estimates of change-points, let
o ~
A= —— aremin max {E,. dist(g, 4 - 9|1x*[]llc)]1},
o aremin max (Byo,., [dise 1 21X o))

and let y = m Z?:_[lgw .1 Yzl Denote the solution of the proximal denoiser

(3.3) applied to y as x:

1
X := arg min 5”)7 — x”?2 + A'||x]|c.
X
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Letting X be the estimate of the signal X*[t] over the interval {t +0 + 1,...,t — 8},

we have that
202

—_29{'70(%)2 + SZ}

= * 2
X—X |t <
%= X[, < —

with probability greater than 1 — 4nlr - exp(—s2/2), forallt; +0+1 <t < t, 0.

The proof of Proposition [5.3.3] is given in the Appendix. In order to obtain an
accurate reconstruction of the underlying signal at some point in time, Proposition
[5.3.3|requires that the duration of stationary of the signal around that time instance
be long (in addition to the conditions of Theorem [5.3.1| being satisfied).

5.4 Tradeoffs in High-Dimensional Change-Point Estimation

Data analysis in practice involves a range of challenges beyond the high-dimensionality
of the observations that motivated our development in this paper. For example, in
change-point estimation in financial time series, one is typically faced with addi-
tional difficulties arising from the extremely rapid rate at which the data are acquired
and the requirement that the data be processed in an ‘online’ fashion, i.e., the change-
point estimation procedure must process the incoming data in ‘real time.” In some
settings, rapid variations in an underlying phenomenon trigger frequent changes in
the sequence of observations, while in other cases small changes in a signal can be
difficult to detect when severely corrupted by noise. In this section, we describe
adaptations of the algorithm proposed in Section [5.3]to handle some of these chal-
lenges. Specifically, Theorem suggests a number of performance tradeoffs
that can be obtained in change-point estimation problems by employing suitable
variations of our algorithm. We demonstrate the utility of these modifications in
addressing some of the difficulties mentioned above, which highlights the versatility

of our approach.

5.4.1 Change-point frequency and size tradeoffs
2

The appearance of the term A’ . T, in (5.10) suggests an explicit relation between
the minimum time span between changes, the minimum size of a change, and
estimation accuracy. To illustrate the tradeoffs between A, and T, clearly, we
fix the complexity parameter nc(2") and the number of observations n in this
Thin in (5.10) can be interpreted

as a resolution on the types of changes that can be detected. Specifically, Theorem

. . . 2
discussion. As a consequence, the quantity A

5.3.1| guarantees reliable estimation of changes whenever AinnTmin is sufficiently

large, even if one of Apiy or T, may be small. Previous works in the change-
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point estimation literature have also demonstrated performance guarantees that are
suggestive of tradeofts similar to ours [57, [76]. In our setting, the quantities Apin

and T, inform us about the choices of key parameters in the algorithm.

In settings in which A, is small, i.e., there are change-points where the size of
the change is small, Theorem guarantees that all the changes can be detected
reliably so long as the distance between change-points (Ti,) is sufficiently large.
In order to accomplish this, one is required to choose a sufficiently small threshold
parameter y (for Step 5 of the procedure) and a suitably large averaging window 6
(for Step 2) with 8 < Tyn, in accordance with the requirements of Theoremm
By smoothing over large windows of size 6 and subsequently applying a proximal
denoiser, even small-sized changes can be detected as long as the averaging window
does not include multiple change-points (hence the condition that 8 < Tpnin). The
downside with choosing a large value for the parameter 6 is that we do not resolve
the locations of the change-points well; in particular, we estimate the locations of
each of the change-points to within a resolution of about V6. However, detecting
small-sized changes in a sequence corrupted by noise necessitates the computation
of averages over large windows in Step 2 of our algorithm in order to distinguish
genuine changes from spurious ones. Therefore, the low resolution to which we
estimate the locations of change-points is the price to pay for estimating the number
of change-points exactly in settings in which some of the changes may be small in

size.

In a similar manner, if changes occur frequently in a signal sequence, i.e., the
distance between change-points Tpyi, is small, Theorem [5.3.1 guarantees that all the
changes can be detected reliably if the size of each change A, is sufficiently large.
In such cases, the averaging window parameter § must be chosen to be sufficiently
small while the threshold parameter y must be appropriately large with y < Apin,
as prescribed in Theorem[5.3.1] The choice of a small value for 6 ensures that we do
not smooth the observation sequence over windows that contain multiple change-
points in Step 2 of our method. However, this restriction of the averaging window
size implies that the proximal denoiser in Step 3 is applied to the average of a small
number of observations, which negatively impacts its performance. This limitation
underlies the choice of a large value for the threshold parameter y in Step 5 of the
algorithm, which ensures that spurious changes resulting from denoising over small
windows do not impact the performance of our algorithm. Consequently, the size of

each change must be sufficiently large (as required by the condition that y < Apin)
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so that the change-points can be reliably estimated from a few noisy observations.
Analogous to the discussion in the previous paragraph with Ap;, being small and
Tmin being large, we also face resolution issues in settings in which Tp,;, is small
and Anip is large. Specifically, the quality of the estimate of the underlying signal
at time 7 is governed by the duration of stationarity of x[¢] around 7 (as discussed
in Proposition [5.3.3). As a result of Tpni, being small, the increased frequency of

changes leads to poor estimates of the signal in between change-points.

5.4.2 Computational complexity and sample size tradeoffs

In change-point estimation tasks arising in many contemporary problem domains
(e.g., financial time series), one is faced with a twin set of challenges: (a) the number
of observations n may be quite large due to the increasingly higher frequencies at
which data are acquired (this is in addition to the high dimensionality of each
observation), and (b) the requirement that these large datasets be processed online
or in real time. Consequently, as the number of observations per unit time grows,
it is crucial that we adopt a simpler algorithmic strategy — i.e., a method requiring
a smaller number of computational steps per observation — so that the overall
computational complexity of our algorithm does not grow with the number of
observations. In this section we describe a convex relaxation approach to adapt
the algorithm described in Section to achieve a tradeoff between the number
of observations and the overall computational complexity of our procedure; in
particular, we demonstrate that in certain change-point estimation problems one
can even achieve an overall reduction in computational runtime as the number of
observations grows. Our method is based on the ideas presented in [33 35]] in the
context of statistical denoising and of linear inverse problems; here we demonstrate
the utility of those insights in change-point estimation. We note that other researchers
have also explored the idea of trading off computational resources and sample size
in various inferential problems such as binary classifier learning [23| 44, 126, [128],
sparse principal component analysis [6} (16} [86], model selection [1]], and linear

regression [[129].

A modified change-point estimation algorithm. For ease of analysis and expo-
sition, we consider a modification of our change-point estimation procedure from
Section [5.3] Specifically, Step 6 of our algorithm is simplified so it only groups
time indices corresponding to the nonzero entries of the thresholded derivative val-

ues, with consecutive time indices in a group at most 6 apart (i.e., without further



122

choosing the maximum element from each group). Thus, our algorithm only pro-
duces windows that localize change-points instead of returning precise estimates
of change-points. The reason for restricting our attention to such a simplification
is that the additional operation of choosing the maximum element in Step 6 of the
original algorithm leads to unnecessary complications that are not essential to the
point of the discussion in this section. The performance analysis of this modified

algorithm follows from Theorem [5.3.1] and we record this result next:

Corollary 5.4.1 Under the same setup and conditions as in Theorem|5.3.1} suppose
that we perform the modified change-point estimation algorithm — that is, Step 6 is
simplified to only return groups of times indices, where consecutive time indices in
a group are at most 0 apart. Then we have with probability greater than 1 — 4nt-r?
that (i) there are exactly |t*| groups, and (ii) the j’th group G; C {6,...,n -0} is
such that |t}" — 1] <O forallf € G,.

In order to concretely illustrate tradeoffs between the number of observations and
the overall computational runtime, we focus on the following stylized change-point
estimation problem. Consider a continuous-time piecewise constant signal x*(7') €
R4, T € (0, 1] defined as:

X*(T) =x*", T e (T, T41].

That is, the signal x*(7') takes on the value x*) e R4 identically for the entire time
interval T € (T;,T;1] fori = 1,...,k. Herei = 1,.. ., k and the time indices {T,-}f:ll
are such that 0 = 77 < --- < Ty41 = 1. Suppose we have two collections of noisy

observations obtained by sampling the signal x*(T) at equally-spaced points % apart

1
Ti+1

and ﬁ apart for some positive integers k > 1 and n (we assume that n >
all i):

7 for

vy = X*(—)+8[t], t=1,....n

t
v = x*(—)+§[t], t=1.... kn.

Here g[t], &[t] ~ N(O, azquq) are i.i.d. Gaussian noise vectors. In words, y@[]
is a k-times more rapidly sampled version of x*(T) than y"[¢]. As a result, the
sequence y1[¢] consists of n observations and the sequence y'?[¢] consists of kn
observations. Consequently, it may seem that estimating the change-points in the

sequence y(z)[t] requires at least as many computational resources as the estimation
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of change-points in y[t]. However, when viewed from the prism of Corollary
and Theorem the sequence y'?[¢] is in some sense more favorable than
y(D[¢] for change-point estimation — specifically, if the minimum distance between
successive change-points underlying the sequence yV[¢] is Tinin, then the minimum
distance between successive change-points in y\?[¢] is kTin, i.¢., larger by a factor

of k. (Note that A, for both sequences remains the same.)

Let 27 = {x*1, ... x*®}  Applying the modified change-point estimation algo-
rithm described above to the sequence y(l)[t] with parameters 6 = Tyin/4,y1 =
Anin/2 and with a proximal denoising step based on a convex set C, we obtain

reliable localizations of the change-points under the condition:

ArznjnTmin > 6402 {nc(Z) + ry2logn}>?,

That is, we localize the change-points to a window of size 61 = Ti,in/4. Now suppose
we apply the modified change-point algorithm to the sequence y®[¢] (note that this
sequence is of length kn) with parameters 6y = kTin/4,Y2 = Amin/2 and with a
proximal denoising step based on the same convex set C. In this case, we reliably
localize each change-point in y(z) [¢] to a window of size 6, = kTyin/4 under the

following condition:

A2 (kTpin) = 64052 {nc(2°) + ry2logn + 2log k}2, (5.15)

The quality of the output in both cases is the same — identifying changes in y(!)[¢]
to a resolution of 6; = Tjin/4 is comparable to identifying changes in y?[¢] to a
resolution of @) = kTjnin/4, because y'?)[¢] is a k-times more rapidly sampled version
of the continuous-time signal x*(7') in comparison to y{"’[¢]. On the computational
side, our algorithm involves roughly » applications of the proximal denoiser based
on the set C in the case of y()[], and about kn applications of the same proximal
denoiser in the case of y?[¢]. Therefore, the overall runtime is higher in the case of
y?[¢] than in the case of y[z].

Notice that the left-hand side of the condition (5.13) goes up by a factor of k. We
exploit this increased gap between the two sides of the inequality in (5.15]) to obtain a
smaller overall computational runtime for estimating changes in the sequence y*[¢]
than for estimating changes in the sequence y("[¢]. The key insight underlying our
approach, borrowing from the ideas developed in [33} 35], is that we can employ
a computationally cheaper proximal denoiser when applying our algorithm to the

sequence y\?[¢]. Specifically, for many interesting classes of structured signals, one
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can replace the proximal denoising operation with respect to the convex set C in Step
3 of our algorithm with a proximal operator corresponding to a relaxation 8 c R4
of the set C, i.e., B is a convex set such that C C 8. For suitable relaxations 8 of the
set C, the proximal denoiser associated to 8 is more efficient to compute than the
proximal denoiser with respect to C, and further nc(2°) < ng(Z"). The reason for
the second property is that, under appropriate conditions, the subdifferentials with
respect to the gauge functions ||-||g, ||-||c satisfy the condition that d||x*||g C d||x*||c
at signals of interest x* € 2". We refer the reader to [33]] for further details, and
more generally, to the convex optimization literature [69, 89, (110, (119, [130] for

various constructions of families of tractable convex relaxations.

Going back to the sequence y®|[¢], we can employ a proximal denoiser based on
any tractable convex relaxation 8 of the set C as long as the following condition (a

modification of (5.13)) for reliable change-point estimation is satisfied:

A2 (kTmin) > 6402 {ns(Z) + r/2logn + 2log k}2.

min

Indeed, if this condition is satisfied, we can still localize changes to a resolution of
kTmin/4, i.e., the same quality of performance as before with a proximal denoiser
with respect to the set C. However, the computational upshot is that the number of
operations required to estimate change-points in y'®[¢] using the modified proximal
denoising step is roughly kn applications of the proximal denoiser based on the
relaxations 8. The contrast to n applications of a proximal denoiser based on
C for estimating change-points in the sequence y(!)[r] can be significant if the
computation of the proximal denoiser with respect to 8 is much more tractable than

the computation of the denoiser with respect to C.

We give an example in which such convex relaxations can lead to reduced compu-
tational runtime as the number of observations increases. We refer the reader to
[33]] for further illustrations in the context of statistical denoising, which can also
be translated to provide interesting examples in a change-point estimation setting.
Specifically, suppose that the underlying signal set 2" = {aa’ : a € {-1,+1}"}, i.e.,
the signal at each instant in time is a rank-one matrix formed as an outer product
of signed vectors. In this case, a natural candidate for a set C is the set of p X p
correlation matrices, which is also called the elliptope in the convex optimization
literature [46]. One can show that each application of a proximal denoiser with
respect to C requires O(p*>) operations [78]. The p x p nuclear norm ball (scaled

to contain all p X p matrices with nuclear norm at most p), which we denote as



125

8, is a relaxation of the set C of correlation matrices. Interestingly, the distance
ng(Z") is only a constant times larger (independent of the dimension p) than ¢ (2")
[33]]. However, each application of a proximal denoiser with respect to 8 requires
only O(p?) operations. In summary, even if the increased sampling factor k in our
setup is larger than a constant (independent of the dimension p), one can obtain an
overall reduction in computational runtime from about O(np*-) operations to about

O(knp?) operations.

5.5 Numerical Results
We illustrate the performance of our change-point estimation algorithm with two

numerical experiments on synthetic data.

A contrast between our approach and the filtered derivative. The objective of
the first experiment is to demonstrate the improved performance of our algorithm
from Section in comparison to the classical filtered derivative approach in a
stylized problem setup. Recall that the filtered derivative method is equivalent to
omitting the proximal denoising step in our algorithm, i.e., X[¢] = ¥[¢] in Step 3 of
our algorithm.

We consider a signal sequence x*[t] € R200x200 5 —

1,...,100, consisting of
exactly one change-point at time r = 50. Let u),u®,v(), v e R?0 pe vec-
tors with Euclidean-norm equal to 0.9 and direction chosen uniformly at random
and independently. The signal x*[¢] is a 200 x 200 matrix equal to u")v(!’ be-
fore the change-point and u®v(®” after the change-point, and the observations are
ylt] = x*[t] + &[t].t = 1,...,100, where &[t] ~ N(0,02 Lypy002) With o = 0.04.
Given this sequence of observations, we apply our algorithm with parameters 1 = 0.4
and 8 = 5 (and with proximal denoising based on the nuclear-norm) and the filtered
derivative algorithm with § = 5. The corresponding derivative values from our
algorithm and the filtered derivative algorithm are given in the right sub-plot of
Figure [5.1] We repeat the same experiment with the modification that the vectors
u u®, v() v® now have Euclidean-norms equal to 2, thus leading to a larger-
sized change relative to the noise. The corresponding derivative values from our

algorithm and the filtered derivative algorithm are given in the right sub-plot in
Figure [5.1]

One observation is that the derivative values are generally smaller with our approach
than with the filtered derivative algorithm; this is primarily due to the inclusion of

a denoising step, as a larger amount of noise leads to greater derivative values.
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Figure 5.1: Experiment contrasting our algorithm (in blue) with the filtered deriva-
tive approach (in red): the left sub-plot corresponds to a small-sized change and the
right sub-plot corresponds to a large-sized change.

More crucially, however, the relative difference in the derivative values near a
change-point and away from a change-point is much larger with our algorithm than
with the filtered derivative method. This is also a consequence of the inclusion of
the proximal denoising step in our algorithm and the lack of a similar denoising
operation in the filtered derivative approach. By suppressing the impact of noise
via proximal denoising, our approach identifies smaller-sized changes more reliably
than a standard filtered derivative method without a denoising step (see the sub-plot
on the left in Figure [5.1)).

Estimating change-points in sequences of sparse vectors. In our second experi-
ment, we investigate the variation in the performance of our algorithm by choosing
different sets of parameters 6, A,. We consider a signal sequence x*[t] € R'%%, ¢ =
1,...,1000 consisting of sparse vectors. Specifically, we begin by generating 10
sparse vectors s e RI000 ¢ — 1 ....10 as follows: for each k = 1,...,10, the
vector s'¥) is a random sparse vector consisting of 30 nonzero entries (the locations
of these entries are chosen uniformly at random and independently of k), with each
nonzero entry being set to 1.2~1. We obtain the signal sequence x*[¢] from the s*)’s
by setting x*[1] = s¥) for r € {100(k — 1) + 1,100k }. In words, the signal sequence
x*[¢] consists of 10 equally-sized blocks of length 100, and within each block the
signal is identically equal to a sparse vector consisting of 30 nonzero entries. The
magnitudes of the nonzero entries of x*[¢] in the latter blocks are larger than those in
the earlier blocks. The observations are y[¢] = x*[¢] + &[f], t = 1,...,1000, where
each &[t] ~ N(0, > T1000x1000) With o chosen to be 2.5. We then apply our proposed
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Run| 6 A1 vy
1 10 1 15
2 110 2 10
3 /30 05 9
4 130 1 5

Table 5.1: Table of parameters employed in our change-point estimation algorithm
in synthetic experiment with sparse vectors.
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Figure 5.2: Plot of estimated change-points: the locations of the actual change-points
are indicated in the bottom row.

algorithm using the four choices of parameters listed in Figure [5.1] with a proximal
operator based on the {j-norm. The estimated sets of change-points are given in

Figure [5.2] and the derivative values corresponding to Step 4 of our algorithm are
given in Figure[5.3]

First, note that the algorithm generally detects smaller sized changes with larger
values of 6 and smaller values of  (corresponding to Runs 3 and 4 from Figure[5.T),
i.e., the averaging window size is larger in Step 2 of our algorithm, and the threshold
is smaller in Step 4. Next, consider the graph of derivative values in Figure [5.3]
The estimated locations of change-points correspond to peaks in Figure [5.3] so
the algorithm can be interpreted as selecting a subset of peaks that are sufficiently
separated (Step 6). We note that a smaller choice of 6 leads to sharper peaks (and
hence, smaller-sized groups in Step 6), while a larger choice of 6 leads to wider

peaks (correspondingly, larger-size groups in Step 6).

Phase transition. In the third experiment, we examine the performance of our
algorithm for signal sequences with different values of Ap;, and Ti. For each
Amin € {\/4_1, V8, .. .,\/@}, Tmin € {4,8,...,80}, we construct a sequence x*[¢] €
R100 ¢+ = 1,...,1000 such that the size (in Euclidean norm) of each change equals
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Figure 5.3: Experiment with sparse vectors: graphs of derivative values correspond-
ing to different parameters choices from Figure

Amin, and the interval between each consecutive pair of change-points is equal to
Tmin- Specifically, we generate | 1000/T i, | sparse vectors p(k) e RIO 1 <k <
| 1000/ Timin]. The first 10 entries of the vector p(!) are set to Amin/V20 and the
remaining are set to zero. For each subsequent p*) € R0 2 < k < 1000/ Tpinl,
we proceed sequentially by choosing 10 coordinates uniformly at random from
those 90 coordinates of p(k‘l) that consist of zeros; we set these 10 coordinates
of p*) to Amin/V20 and the remaining to zero. We obtain the signal sequence
x*[t] e R1% ¢ =1,...,1000 by setting x*[1] = p®) for t € {(k — 1)Timin + 1, kTmin }.
The observations are given by y[f] = x*[f] + &[¢t], t = 1,...,1000, with each
g[t] ~ N(0,0*Looox1000) and o = 0.5. We apply our algorithm from Sectionm
with a proximal operator based on the £;-norm and with the choice of parameters
A = 0421log g = 4/log 10 (in this example, ¢ = 100), ¥ = Amin/2, and 6 = Tyin /4.
For each Api, € {\/Z, V8, .., \/%}, Tmin € {4,8,...,80}, we repeat this experiment
100 times.

We consider a trial to be a success if the two conclusions of Theorem [5.3.1] are
achieved. First, the number of estimated change-points equals the true number
of change-points. Second, each change-point estimate is within a window of size
min{ (4r\/@ /n+4) Aiﬁn V6, 6} of an actual change-point, with » = 1.2, n = 1000,
and n = /2slog(q/s) + 1.5s + 7 is the Gaussian distance of s-sparse vectors in R4
from the discussion in Section [5.2.3] (in this example, s = 10,4 = 100). Figure[5.4]

shows the fraction of successful trials for different values of Anyin, Tmin-

Observe that the frequency of successful trials is high when AfmnTmm is large, and that
2

we see a phase transition in the performance of our approach as A; . Tiin becomes
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Figure 5.4: Experiment from Section demonstrating a phase transition in the
recovery of the set of change-points for different values of Ay, and Tinin. The black
cells correspond to a probability of recovery of 0 and the white cells to a probability
of recovery of 1.

small. In particular, the boundary of the phase transition appears to correspond

to the quantity AfmnTmm being constant, which is the scaling law suggested by the
recovery guarantee (5.10).

5.6 Conclusions

We propose an algorithm for high-dimensional change-point estimation that blends
the filtered derivative method with a convex optimization step that exploits low-
dimensional structure in the underlying signal sequence. We prove that our algorithm
reliably estimates change-points provided the product of the square of the size
of the smallest change (measured in ¢;-norm) and the smallest distance between
changes is larger than Gaussian distance/width quantity n? that characterizes the
low-dimensional complexity in the signal sequence. The dependence on 7 is a result

of the integration of the convex optimization step (based on proximal denoising).

The change-point literature also consists of extensive investigations of quickest
change detection problems [94, 108, 114, 131} [149]], which are qualitatively some-
what different than the setup considered in our work. In those settings one is given
access to observations sequentially, and the objective is to correctly declare when a
change-point occurs in the shortest time possible (i.e., minimize the expected delay)
subject to false alarm rate constraints. Building on the algorithmic ideas described in
this paper, it would be of interest to design computationally and statistically efficient
techniques for high-dimensional quickest change detection problems by exploiting

structure in the underlying signal sequence.
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Chapter 6

CONCLUSIONS

We summarize the main contributions of this thesis, and discuss future research

directions.

6.1 Summary of Contributions

Learning Semidefinite Regularizers

Regularizers are penalty functions that are deployed in optimization-based ap-
proaches for solving ill-posed inverse problems. The purpose of these functions
is to induce a desired structure in the solution. In Chapter [2| we describe a frame-
work for learning regularizers directly from data that can be computed efficiently
using semidefinite programming. Our procedure for learning regularizers is based
on computing a structured factorization of the data matrix. We develop an algo-
rithm for computing such factorizations, and we prove local linear convergence of
our method. Our numerical experiments on image denoising demonstrate the utility

of our framework.

Fitting Tractable Convex Sets to Support Function Evaluations

The support function of a set gives the displacement of a supporting hyperplane
from the origin. In Chapter [3] we describe a framework for fitting tractable convex
sets to noisy support function evaluations. We prove statistical guarantees for our
method. Our approach provides superior reconstructions in comparison to the
previous approaches, most notably, in settings in which the measurements available
are noisy or small in number as well as those in which the underlying set to be

reconstructed is non-polyhedral.

Optimal Approximations of Convex Sets as Spectrahedra

In Chapter 4] we consider the problem of computing optimal approximations of
convex sets as spectrahedra of a fixed size. We describe a numerical procedure for
computing such approximations. Our techniques are useful for further understanding

the expressiveness of semidefinite representations.

High-Dimensional Change-Point Estimation: Combining Filtering with Convex

Optimization
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In Chapter 5| we propose an algorithm that is suitable for estimating changes
in sequences of high-dimensional time series. Our method combines a convex
optimization-based step that exploits low-dimensional structure in the underlying
signal sequence with a classical change-point estimation algorithm known as the
filtered derivative. We provide performance guarantees of our algorithm, which

exhibit a dependence on the low-dimensional complexity in the signal sequence.

6.2 Future Directions

Qualitative analysis of local minima in matrix factorization instances

In this thesis, we describe a framework for fitting convex sets to data through solving
a non-convex optimization instance. The output of our algorithms for solving these
instances depends on the choice of initialization. In practical settings, we observe
that our methods are effective even though our algorithms typically do not converge
to global minima. An important future direction is to explain why such behavior

occurs.

One approach is to analyze the properties of local minima. In the context of learning
a regularizer from data as we did in Chapter 2] it would be interesting to show that
most local minima capture the ‘correct’ facial geometry. Such a result implies that

these minima define regularizers that are equally effective.

Providing progress in this direction is important for a number of reasons. First,
we show that the utility of our procedures is not contingent on computing the
global minimizer. Second, we provide concrete a explanation as to why random

initializations are useful in practice.

Understanding the expressiveness and utility of semidefinite descriptions

It is of deep interest to further understand the expressiveness of semidefinite de-
scriptions. It is also of deep interest to identify settings in which these descriptions

are useful in comparison to polyhedral descriptions.

A potential direction in the context of learning data representations is as follows.
In many applications, it is natural to consider bases that are invariant under certain
group transformations, and in particular, those that reflect physical considerations.
For instance, we may be interested in learning a basis for natural images that is
invariant to scalings, rotations, and translations. It is of interest to understand if such

bases are naturally amenable to descriptions based on semidefinite programming.

Optimizing over affine slices of structured convex cones
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Our numerical algorithms for fitting a convex set to data are based on searching over
the space of projection of a fixed set that can be expressed as the intersection of a
structured convex cone and an affine subspace. A richer family of convex sets are
those that are expressible as the projection of the intersection of a structured convex
cone and any affine subspace. An interesting direction is to develop numerical pro-
cedures for fitting convex sets to data over such a parameterization; i.e., we optimize

over the space of linear projection maps and affine subspaces simultaneously.
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Appendix A

PROOFS FOR CHAPTER 2

A.1 Proofs of Lemma[2.3.9 and Lemma

Proof of Lemma[2.3.9] Note that if Z € 7 then Z has rank at most 2r. As a
consequence of the restricted isometry property we have (1 — 65,)||Z ||§2 < ||I[£ o
Pr,-](Z)ll?2 < (1+52,)||Z||§2. Since Z € 7 is arbitrary we have 1-62, < A(L- L) <
1+ 62,, which proves (i). This immediately implies the bound in (ii). Moreover since

1CoPr 2 = |Prol’ LoPrll* < VT+ 8y, wehave | Prol/ Ll < VI+ oxIIL 11,

which is (iii). Last we have ||[(L;.L¢)_1]Rpxza o L'L2 < ||[(L;.L¢)_1]Rpxza |l2]|P7 o
’ V1+62r
L'L2 < 16,

22 ||.L ||, which proves (iv). O
Proof of Lemma Since tr(cov(Z")) = % Z’;zl ||XU)||§2, we have sy, < tr(cov(Z")) <
Smax- Next we have the inequalities (A(Z)—A(Z ) < cov(Z) < (A(ZL)+A(D))L.
The result follows by applying trace. O

A.2  Proof of Proposition 2.3.8]

In this section we prove that the ensemble of random matrices 2  described in
Proposition [2.3.§] satisfies the deterministic conditions in Theorem [2.3.5| with high
probability. We begin with computing En[X") K XU, and Ep[(XV) K X)) ®
P (xul- Note that the random matrices {X VR xU )}7:1 and the random operators
(XY R xU) @ PT(X(,-))};’ZI are almost surely bounded above in spectral norm by
construction. This allows us to conclude Proposition [2.3.§] with an application of
the Matrix Hoeffding Inequality [146].

To simplify notation we adopt the following. In the first two results we omit the
superscript j from X). In the remainder of the section we let E = Ep, 5% := E[s?],
{e; }f.’:l C RY be the set of standard basis vectors, and {E;; }sz | C RP*P be the set of

matrices whose (i, j)-th entry is 1 and is O everywhere else.

Proposition A.2.1 Suppose X ~ D as described in Proposition Then E[X X
X] = 5(r/p)\.

Proof. Tt suffices to show that E(X X X,e,€, X e,e.) = E(X,e, e, )(X,e.e)) =

5Wy5xz§2(r /p?). Let X = 21 siw;v; as described in the statement of Proposition
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Suppose we denote w; = (y;1,. . .,uig)’, and v; = (v;1,...,vig)". By applying
independence we have E(X, e, e/ )(X,eye.) = E[(X]_; SittiwVix) (X SkUkyViz)] =

2 wet ELsiskJE[uiwitky JE[vixvi]. There are two cases we need to consider.

[Case w # y or x # z]: Without loss of generality suppose that w # y. Then
E[ujwuiry] =0forall 1 <i,k < g, and hence E(X X X, e, €, Xee.) = 0.

[Case w = y and x = z]: Note that if i # k then E[u;,uxy] = Elu;,, JE[ury] = 0.
Since w; is a unit-norm vector distributed u.a.r., we have E[ul.zx] = 1/gq. Hence

E(X X X, e, Keye,) = ¥ E[s?|E[u? |E[v] = 5°r/p>. O

iw ix
Our next result requires the definition of certain subspaces of R”*” and End(RP*7).

We define the following subspaces in R”*P: Let G := {W : W = W/,W € I*} be
the subspace of symmetric matrices that are orthogonal to the identity, H := {W :

W = —W’} be the subspace of skew-symmetric matrices, and 7 = Span(/). It is
clearthat R’ =GoH o 1.

In addition to the subspace ‘W defined in (2.12)), we define the following subspaces
in End(RP*P):

1. Wss :=Span({AQ B: A,B € G}),

2. Wap :=Span({AQ B : A, B € H}),

3. Wss :=Span{A®B: A€ G,BeH},

4., Wys :=Span({A® B: A€ H,B e G}).
Note that End(RP*P) = W @ Wss & Was ® Wesa & Was. To verify this, first
express an arbitrary linear map E € End(RP*?) as a sum of Kronecker products
E = ),-1 Ai ® B;, second decompose each matrix A;, B; into components in the

subspaces {G,H, I }, and third expand the expression. The orthogonality between
subspaces is immediate from the identity (A; ® B;,A; ® Bj) = (A;,A;){Bi, B;).

Proposition A.2.2 Suppose X ~ D as described in Proposition[2.3.8} Then

E[(XX X)® P‘T(X)] = cwlay + capeglwes + cwdw,, + cwglwg, + cwyslw,g,
. _ 2.1 .. _ 201 (q—r)2 _ 2.1
where (i) cyy = Sr(l), (ii) cayg = $r(s = ) (i) ey, = Pr(

(=) : _ _ 2.1 (¢=r)*
-t and (iv) eawsy = cws = 5 = o)
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Proof. The proof consists of two parts, namely (i) to prove that the mean, when
restricted to the respective subspaces described above, has diagonal entries as spec-
ified, and (ii) to prove that the off-diagonal elements are zero with respect to any
basis that obeys the specified decomposition of End(RP*?). In addition, it suffices
to only consider linear maps that are Kronecker products since these maps generate
the respective subspaces. The following identity for all matrices A;, B;,A;, B; is

particularly useful

(A7 ® B) X (A} ® B)),E[(X K X) ® Prx)]) = E(Prx)(B;XAj), Pr(x)(BiXA)).

(A.1)
One may equivalently describe the distribution of X as follows — let X = UZgV’,
where U,V are p X p matrices drawn from the Haar measure, and 2 is a diagonal
matrix whose first r entries are drawn from 9, and the remaining entries are 0
(to simplify notation we omit the dependence on X in the matrices U,V). Let
Iy = diag(0,...,0,1,...,1) be a diagonal matrix consisting of p — r ones. Under
this notation, the projector is simply the map Py(x)(Z) = Z — UINU'ZVINV’. The
remainder of the proof is divided into the two parts outlined above.

[Part (i)]: The restriction to diagonal entries correspond to the case i = j, and hence
equation (A.1) simplifies to E[||Pg(x)(BX A)||§2]. Consequently we have

E[||Pr)(BXA)|7 | = E[|IBUZRV'All; | - E[|INU' AUSRV'BV Iy |7 |-

First we compute E[||IyU’AUZRV'BV I N||?2]- By the cyclicity of trace and iterated

expectations we have

E[|lInU'AUSRV'BV Iy|I} ]
E[tr(EL2U A UL U AUSRV' BV IyV'B'VEL?)]
By[By [tr(SL U A ULy U AUSRV' BV IV BVEL)]L.

It suffices to compute E[,°V'BVIyV'B'VEY?] = £/ *E[V'BVIyV'BVIE,” in
the three cases corresponding to B € {G,H, I } respectively. Using linearity and
symmetry, it suffices to compute E[V'BVE|V’B’V]. We split this computation into

the following three separate cases.

[Case B € 1]: We have [, NZIIQ/ 2 - 0, and hence the mean is the zero-matrix.

[Case B € H]: Claim: If B € H, and ||Bll, = 1, then E[V'BVE;|V'B'V] =
(I - En)/(gq(g - 1)).
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Proof: Denote V = [vi]...|v,]. The off-diagonal entries vanish as E(E;;, V'BVE;V'B'V)

= E(V|BV;)(v{Bv;) = 0 whenever i # j, as one of the indices i, j appears exactly
once. By a symmetry argument we have E[V'BVE|V'B’V] = al + BE;; for
some «, . First E[tr(V'BVE||V'B’'V)| = E[te(BVE|V'B’)] = t(BE[VE||V'|B’) =
tr(B(I1/q)B’) = 1/q, which gives ag+8 = 1/q. Second since B is asymmetric, V' BV
is also asymmetric and hence is O on the diagonals. Thus (V'BVE;;V'B’V,E ) = 0,
which gives @ + § = 0. The two equations yield the values of @ and S.

[Case: B € G]: Claim: If B € G, and ||B|l,, = 1, then E[V'BVE;|V'B'V] =
(I +(1=2/q)En)/((g - 1)(g +2)).

Proof: With anidentical argument as the previous claimone has E[V'BVE| | V'B'V] =
al + BE 1, where ag + B = 1/q. Next E[(V'BVE\V'B'V,E1)] = E[(V’lel)z],
where v; is a unit-norm vector distributed u.a.r. Since conjugation by orthog-
onal matrices preserves trace, and v; has the same distribution as Qv; for any
orthogonal Q, we may assume that B = diag(biy,...,by,) is diagonal without
loss of generality. Suppose we let vi = (vi,...,v;)". Then E[(V’lel)z] =
E[X bv} + Zizj biibjjvivi] = m(Z b7) + po(Ziy; biibjj), where pi = E[v{], and
U = E[vlzvg]. Since tr(B) = 0, we have ), bl.zl. = — 2izj biibj;. Last from The-
orem 2 of [37] we have u; = 3/(q(q + 2)), and u, = 1/(g(q + 2)), which gives
E[(v] Bv1)?] = 2/(g(q +2)), and hence @ + 8 = 2/(g(g + 2)). The two equations

yield the values of @ and .

With a similar set of computations one can show that E[llBUZRV’AHé] = §%r/p?
for arbitrary unit-norm A, B. An additional set of computations yields the diagonal

entries, which completes the proof. We omit these computations.

[Part (ii)]: We claim that it suffices to show that E[V’AiVEnV’A;. V] is the zero-
matrix whenever A;,A; € {G,H, T}, and satisfy (A;,A;) = 0. We show how
this proves the result. Suppose A; ® B;,A; ® B; satisfy (A; ® B;,A; ® Bj) =
(Ai, Aj)(B;,Bj) = 0. Without loss of generality we may assume that (A;,A;) = 0.
From equation (A.T]) we have

E(P7x)(B;XA;), Prx)(BiXA;))
= E[t(AVERU'B,BUZRV'A))]
~ Btr(A'VERU'BUINU BUERV AVINV)].
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By cyclicity of trace and iterated expectations we have

E[tl‘(A;- VZr U’B} Uly U,B,'UERV/A,'VINV’)]
= Ey[te(S{ U BUINU BUSBy[S PV AVINV A VEL )] = 0,

which proves part (ii) of the proof. Itleaves to prove the claim. We do so by verifying
that the matrix E[V'A,VE 11V’A’ V] is 0 in every coordinate, which is equivalent to
showing that E(v], A;v|)(V,A; V1) = 0 for all m,n. There are three cases.

[Case m # n]: Withoutloss of generality suppose thatm # 1. ThenE(v,,A;v1)(v,A;vi) =
E[E[(v,,Aiv1)(V,A;v1)|Vi,v,]] = 0.

[Case m = n = 1]: We divide into further sub-cases depending on the subspaces
A;, Aj belong to. If A; € H then V| A;v; = 0 since it is a scalar. Hence we eliminate
the case where either matrix is in . Since (A;,Aj) = 0 it cannot be that both
Aj,Aj € I. Suppose that A; = I//p and A; € G. Then E[(V|A;v1)(V|A;v1)] =
E[(v{A;vD)]/+/p = E[tr(A;v1v))]/+4/p = 0. Our remaining case is when A;,A; € G,
and (A;,A;) = 0. As before we let vi = (v1,...,v,)". Then

[(V Alvl)(V]A vi)] = Z Alqu] rszVquVs]
pqrs

Z AippAjppBIVE1+ D AippAjrrBIVIVII +2 3" AipgAjpgElv2vE],
p#r p#q

where in the second equality we used the fact that A;, A; are symmetric to obtain
a factor of 2 in the last term. Next we apply the relations E[vf,] = 3/(q(q + 2)),
E[vgvrz] = 1/(q(q + 2)), as well as the relations 0 = (A;, [){A;, 1) = 2, AippAjpp +
2per AippAjrr, and 0 = (A, Aj) = X, AippAjpp + Xpsq AipgAjpg to conclude that

the mean is zero.

[Case m = n # 1]: We have

E[(v,,Aiv1)(v,,Ajv1)]
= E[E[tr(AviviATVmv,)] V1]
= E[u(Avivi AL = viv))/(p — 1))Ivi]
= E[tu(AiviviA}/(p - D)] = E[tr(A LA/ (p(p - 1))] =
where the first equality applies the fact that, conditioned on v;, E[v,V/ ] is the

identity matrix in the subspace 7 (v1v})" suitably scaled, and the second inequality

applies the previous case. O
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Proof of Proposition First we have 0 < XY X XU) < §%rl. By Proposition
we have E[XU) )& X(U)] = (52r/p?)I. Since (X K XU) — (521 /p?)I)? < s*r2I,
we have P(||(1/n) 3/, XV & XU — (327 /p)I|| > trs®) < 2pexp(~t>n/8) via an
application of the Matrix Hoeffding inequality (Theorem 1.3 in [146]).
Second we have | XYW R XU, < sr, and || x|l = 1, and hence (XK XU)) @
Prr(xc/)) < s2rl @ | =: s?rI. From Proposition we have

2 52.,.2
; ; sr 165°r
E[(XY R XV @ Prxun] = ?I(W + 3 T,

Since (XY X X)) @ Prxi) — rI)? < s*r?1 we have

P

Amax

1, . ‘ .

; Z(X(J) & X(J)) ® P‘T(XU)) - E[(XU) & X(J)) ® pT(XU))]) > trsz)
i=1
< pexp(—t*n/8)

by an application of the Matrix Hoeffding inequality.

Let t = t;/(5p?) in the first concentration bound, and ¢t = #,/(5p?) in the sec-

ond concentration bound. Then A(Z) < t15°r/(5p?), and Q(Z) < 16s%r%/p® +
12521 [ (5p?), with probability greater than 1-2p exp(—ntl2 /(200p*)-p exp(—nt% /(200p*)).
We condition on the event that both inequalities hold. Since A(Z") < t;5%r/(5p?) <
s2r/(20p?), by Lemmawe have A(Z") > s°r/(5p*),andhence A(Z")/A(Z) <

t1, and Q(2)/A(Z") < 80r/p + t». O

A.3 Stability of Matrix and Operator Scaling

In this section we prove a stability property of Sinkhorn scaling and Operator
Sinkhorn scaling. For Sinkhorn scaling, we show that if a matrix is close to being
doubly stochastic and has entries that are suitably bounded away from 0, then the
resulting row and column scalings are close to 1 := (1,...,1)’. We also prove
the operator analog of this result. These results are subsequently used to prove
Propositions [2.3.1) and [2.3.7, We note that there is an extensive literature on the

stability of matrix scaling, with results similar to ours. However, Proposition[A.3.1]
in this section is stated in a manner that is directly suited to our analysis, and we

include it for completeness.

A.3.1 Main results

Proposition A.3.1 (Local stability of Matrix Scaling) Ler T € RP*P be a matrix
such that
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1. [e;,T(ej)) — 1/p| < 1/(2p) for all standard basis vectors e;,e;; and

2. € := max{||T1 = 1o, [T'1 = L|}ss} < 1/(48+P).

Let Dy, D; be diagonal matrices such that D,T D is doubly stochastic. Then

ID2 ® Dy — ]| < 96+/pe.

Proposition A.3.2 (Local stability of Operator Scaling) Let T : S? — S” be a

rank-indecomposable linear operator such that

1. v, T(uw')) — 1/p| < 1/(12p) for all unit-norm vectors u,v € RP; and

2. € :=max{|[T(I) = I, [T"(1) = I]l2} < 1/(48+/p).

Let N\,N, € S? be positive definite matrices such that (N, ® N;) o T o (N} ® Ny)
is doubly stochastic. Then ||N22 ® le — |l < 96+/pe. Furthermore we have
IN2 ® N1 = |l2 < 96+4/pe.

A.3.2 Proofs

The proof of Proposition relies on the fact that matrix scaling can be cast as the
solution of a convex program; specifically, we utilize the correspondence between
diagonal matrices Dy, D, such that D,T D, is doubly stochastic, and the vectors

g :=(&1,...,&p),n := (n1,...,mp) that minimize the following convex function
F(e,n) = ) Tjexplei+m;) = > &= > 1
ij i
via the maps (D;);; = exp(g;) and (D1);; = exp(n;) [67] (see also [85]) — this holds
for all matrices 7" with positive entries. We remark that one can derive the above

relationship from first order optimality. In the following we prove bounds on the
minima of F (see Lemma|A.3.6]).

The proof of Proposition [A.3.2] relies on a reduction to the set-up in Proposition

A3l

We begin with a lower estimate of the sum of exponential functions. We use the

estimate to prove Proposition
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Definition A.3.3 Let @ > 0. Define the function c, : R — R

1 —a)x2 g
o) =12 exp(—a)x~  if|x] < a
%exp(—a/)alxl if|x| 2 @

Remark. Note that the function c,(-) is continuous.

Lemma A.3.4 Forall x
exp(x) = 1 + x + co(x).

Proof of LemmalA.3.4, The second derivative of exp(x) is exp(x), and it is greater
than exp(—a) over all x such that |x| < @. Hence, by strong convexity of exp(x), we

have exp(x) > 1 + x + (1/2) exp(—a)x? over the interval [-a, a].

It follows that exp(@) > 1 + @ + co(@), and exp(—a) > 1 — @ + co(—a). Since
the function exp(x) is convex, and ¢, is linear in the intervals (—co, —| and [, o)
respectively, it suffices to check that (i) the gradient of exp(x) at x = a, which is
exp(a), exceeds that of ¢, (-), and (ii) the gradient of ¢, (-) exceeds that of exp(x) at

X = —a, which is exp(—a).

First we prove (i). Since @ > 0 we have 1 + 2a > V1 + 2a. Hence 2exp(a) >
2 +2a > 1+ V1 +2a. By noting that the quadratic 2z — 2z — @ = 0 has roots

(1/2) = (1/2)V1 + 2a, we have the inequality exp(a) > 1 + (1/2) exp(—a)a, from
which (i) follows.

Next we prove (ii). Since @ > 0, we have exp(a) > 1 + @ > 1 + @/2, and hence

1 - (1/2)exp(—a)a > exp(—a) from which (ii) follows. O

Lemma A.3.5 Let {si}le and {nj}f:1 be a collection of reals satisfying (3; &) +
(2;m)) = —2p. Then there is a constant d € R for which

1
> 2 oxpei+m) = p+ (Z@i + calei + d))) + (Z(m + calllj - d») :
ij i j
Proof. Consider the function

F@d) = (e +d+calei+d) = ). (nj—d+calny - d)) .
i J
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Then f(-) is continuous in d, and f(d) — +oo0 as d — +oo. By the Intermediate
Value Theorem, there is a d* for which f(d*) = 0. Then

D (l+ei+a* +colei+d) = ) (1+n; - d* +caly; - d¥)).
i J
By summing both sides and noting that c,(-) > 0, we have that each side of the

above equation is nonnegative. It follows that

1
- E exp(&; +1;)

- ]% (Z exp(e; + a’*)) ( exP(n, - d*))

i

117(2(1+8i+d*+ca(8,~+d* )(Z l+n;—d* +ca(nj—d*)))
j

i

p+ (Z@i + calei + d))) * (Z(m + ol - d))) :
i J

\%

\%

Lemma A.3.6 Given vectors € := (g1,...,&p) and n := (1,. . .,1p) define
F(e.n) = ) Tijexp(ei+n)) = > &= Y mj» (A.2)
ij i J

and €;j := T;j—1/p. Suppose (i) |€;| < 1/2p, and (ii) € := max{| }; &;l,| X, €;l} <
1/(24+/p). Let €*,n* be a minimizer of F. Then |& + nj’fl < 48+/pe, for all i, j.

Proof. Suppose |g; + ;| > 48+/pe for some (i, j). We show that &,7 cannot be a

minimum. We split the analysis to two cases.

(X&) +(X;nj) < =2pl: Since T;; > 0 we have F(&,n) > —(2; &) — (X, 1;) = 2p.
Then F(0,0) = 2;,(2; Tij) = Xi(1 + X &) < p(1 + 1/(244/p)) < 2p < F(&,1).

[(Xi &)+ (2;m) = —2p]: Let a = 244/pe, and define the sets
1. L(e)={i:|&] = a};
2. T(g)={i:a>|g| = 4eexp(a)}; and

3. U(e)={i:4deexp(a) > |&l}.
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Similarly define the sets .(n), 7 (n), % (n).

First since @ < 1, we have a > a exp(@)/3 > 84/pe exp(a) > 8e exp(a), and hence

i( Z colei) + Z ca(ﬂj))zf( Z il + Z lnjl)'

i€.”(¢g) jesL () i€ (g) jesL ()
Second
1 1 1
E(.Z Cale) + ), cam,-)):Z ZoP(-a)ef + ) sexp(-am]
i€7(g) jeg () i€e7(e) jeg ()
Ze( > lal+ )] |n,~|).
i€7 () jeg(m)

Third since there is an index (7, ) such that |&; + ;| > 48+/pe, one of the sets
< (g),/(n) is nonempty. By noting that a exp(—a) > 8+/pe, we have

%( Z col(&i) + Z ca(nj)) >e><2p><4eexp(oz)26( Z l&i| + Z |77j|)-

i€ (s) jesm) i€ (&) Je« (n)

We have €(2; l&i| + 2; ;) > 2i(&i(2; &) + 2;(mi(2; €;) = X &j(ei +15). By
combining the above inequalities with Lemma|[A.3.5| we have

1 1
2 Z(CXP(&‘ +1;) = (&i +1j) = 1) 2 E(Z ca(&i) + ; Ca(ﬂj)) > ; €ij(&i +11;).
(A.3)
Also, since exp(g; +17j) — (&; +17j) — 1 > 0 forall i, j, and |g;| < 1/(2p), we have
1
> lzj(exp(si +j) = (e 4 ) = 1) = max ey x ;

D ei(explei+ ) = (5 +n)) = 1). (A4)

ij

\%

exp(g; +n;) — (g + ;) — 1'

A%

By combining equations (A.3)) and (A.4) we have

1
> 2P+ 1) = (e + ) = 1) > = ) 6j(exple; +1) = 1)
ij ij
which implies F(g,n) > F(0,0). O

Proof of Proposition|A.3.1} By Lemma any minimum &*,n* satisfies |e +
n}‘l < 48+/pe. Hence by the one-to-one correspondence between the minima of ¥

and the diagonal scalings D1, D; [67], we have ||D, ® D1 — || < exp(484/pe) — 1 <
96+/pe. O
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Proof of Proposition Without loss of generality we may assume that Ny, N,

are diagonal matrices, say Dy, D, respectively. Define the matrix 7;; = (e;e], T(e; e;.)).
It is straightforward to check that T satisfies the conditions of Proposition [A.3.1}
moreover, the condition that (N, ® Np) o T o (N} ® Ny) is a doubly stochastic operator
implies that D%TD% is a doubly stochastic matrix. By Proposition we have
ID? ® D3 — 1|l < 96+/pe, and hence ||[N? ® N3 — ||, < 964/pe. Since Ny, N, are
self-adjoint, we also have ||[N; ® N> — |||, < 96+/pe. O

A.4  Proof of Proposition

In this section we prove that Gaussian linear maps that are subsequently normalized
satisfy the deterministic conditions in Theorem concerning the linear map £*
with high probability. There are two steps to our proof. First, we state sufficient
conditions for linear maps such that, when normalized, satisfy the deterministic
conditions. Second, we show that Gaussian maps satisfy these sufficient conditions

with high probability.

We introduce the following parameter that measures how close a linear map £ is to

being normalized.

Definition A.4.1 Let L € RP? — RY be a linear map. The nearly normalized

parameter of £ is defined as

(L) := max{||T¢ (1) = Il, [ITZ (1) = 1l2}-

Proposition A.4.2 Let £ : RP*? — R be a linear map that satisfies (i) the restricted
isometry condition 6,(£) < 1/2, and (ii) whose nearly normalized parameter sat-
isfies €(L£) < 1/(6504/p). Let £ o Ny be the normalized linear map where Ny is
a positive definite rank-preserver. Then L o Ny satisfies the restricted isometry
condition 6,(L oN) < &, = (1 + 6.(L))(1 + 96\/1_76(5))2 -1 < 1. Moreover,
1L o Ngll2 < (1 +964/pe(LIL .

Proof of Proposition Since £ satisfies the restricted isometry condition §;(£) <
1/2, we have [{vV/, Tz(uu’)) — 1/p| < 1/(2p) for all unit-norm vectors u,v € R”.
In addition, the linear map £ has nearly normalized parameter €(£) < 1/(650+/p).
Hence by applying Proposition to the linear map Tz, any pair of positive def-
inite matrices Q», Q1 such that O, ® Q> o T 0o Q1 ® O is doubly stochastic satisfies
|02 ® Q1 = l|l» < 96+/pe(L). By noting the correspondence between such matrices
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with the positive definite rank-preserver N such that £ o N is normalized via the
relation Ng = Qs ® Qy (see Corollary [2.2.5)), we have [[Ng[l2 < 1+ 96+/pe(L).

Let X be a matrix with rank at most . Then

IEN(XD)le, < VI +6,(L)IINg IRl Xle, < V1 + 6,(L)(1 + 96+pe(L))IXle

and hence ||L(NL(X))||§2 < (1+ 5_,)||X||g2. A similar set of steps show that
IEINXDIIZ, = (1=S)IIXI17 - Last |£ oNgll2 < [I£1RIINgll2 < (1+96y/pe)lIL |-
m|

Proposition A.4.3 (/43| Theorem I1.13]) Let t > 0 be fixed. Suppose L ~
N(0,1/d). Then with probability greater than 1 — exp(—t>d/2) we have || L], <

Vp?/d+ 1+t

Proposition A.4.4 ([28 Theorem 2.3]) Let 0 < 6 < 1 be fixed. There exists
constants ci,cp such that for d > cipr, if L ~ N(0,1/d), then with probability
greater than 1 — 2exp(—cad) the linear map L satisfies the restricted isometry
condition 6,(L) < 6.

Proposition A.4.5 (Gaussian linear maps are nearly normalized) Suppose3/Vd <
€ < 3. Suppose L ~ N(0,1/d). Then with probability greater than 1—4 exp(—p(—1+
Vde/3)?]2) the nearly normalized parameter of £ is smaller than €.

Bounding the nearly normalized parameter of a Gaussian linear map exactly cor-
responds to computing the deviation of the sum of independent Wishart matrices
from its mean in spectral norm. To do so we appeal to the following concentration
bound.

Proposition A.4.6 (Concentration of sum of Wishart Matrices) Suppose3/Vd <
t <3. Let {X(j)};lzl,X(j) = GYGYY, where GY) € RP*P,GU) ~ N(0,1/p), be a
collection of independent Wishart matrices. Then P(||$ Z;l:l XU 1l > 1) <
2exp(—p(=1 + Vdt/3)?/2).

Proof of Proposition[A.4.6) Consider the linear map G = [GV]...|G'D]. Then
Y4 XU = GG, and |5 X9, XU-I|;; < tifandonlyif o(G) € [/d(1 —1),/d(T +1)].
By [43] Theorem II.13] we have o(G) € [Vd—1-17, Vi+1+7] with probability greater
than 1 — 2 exp(—p#2/2). The result follows with the choice of 7 = —1 + Vdr/3. O
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Proof of Proposition|A.4.5] This is a direct application of Proposition with
GY) = +p/dLY) and GUY = \[p/d LD, followed by a union bound. O

Proof of Proposition We choose ¢ = 1/50 in Proposition § = 84,/2 in
Proposition[A.4.4] and € = §/(960+/p) in Proposition Then there are constants
c1.¢a,¢3 such that if d > ¢1rq, then (i) || L], < vp2/d + 51/50 < (101/50)y/p?/d,
(ii) L satisfies the restricted isometry condition 64r(fl) < 04r,/2, and (iii) L is
nearly normalized with parameter e(L) < 64,/ 960+/p, with probability greater than
1 — cr exp(—c3d).

By applying Proposition we conclude that the linear map £ satisfies the
restricted isometry condition 84-(£) < (1 + 64,/2)(1 + 845 /10> — 1 < 64, and

L1l < +/5p?/d. o

A.5 Proof of Proposition [2.3.1]

Proof of Proposition First we check that the linear map £* o (I + E) satisfies
the restricted isometry condition 6;(£* o (I+E)) < 1/2. For any rank-one unit-norm
matrix X we have [I[£*o (1+E)(X)ll, < 16*(O)lle, +1C*EXD e, < T+ 1710+
1/150 < m A similar set of inequalities show that [|[[L* o (I + E)[(X)]l¢, >

Vi-1/2.

Second we check that the nearly normalized parameter of £* o (I + E) satisfies
e(L*o(I1+E)) < 1/484/p. Denote € := L* o E. For all unit-norm rank-one matrices

E we have ||8(E)||§ < ||L*||§||E||§2. Hence for any unit-norm u € R” we have

d p

d )4

1 7 7 1 ’ 1 /

S 2XEE ) =2 ) ) (€ = ) IEweIE, < 1Lt FIEIR:
j=1 j=1 k=1 k=1

Using the fact that £* is normalized we have
1 &
* ks AN
;Z(LJ.L]. ,uua’) = 1.
j=1

By combining the previous inequalities with an application of Cauchy-Schwarz we

have

(T eroq+E)() = I, un’)

= (Tgrse(D) = T (D), und’)
| | L

= =Y {(&E& uuy+— Y (LFE ua) +— > (& L7 un’)
1922: ! 17221 7 17221 !

j=1 j=1 j=1
3IIL*[2IIElle,

IA
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Further more since u is arbitrary it follows that
I Tgre(d) = Ill2 < 3[IL*[2IIElle, -

Using a similar sequence of steps one can show that || T',, . (I)—1||> < 3IL*211E e, -
Thus e(L* o (I + E)) < 3[|L*|121|Elle, < 1/(48+/D).

The result follows by applying Proposition to the linear map T gxo(14). O

A.6  Proof of Proposition 2.3.2]
The proof of Proposition [2.3.2] is based on the following result concerning affine

rank minimization, which may be of independent interest.

Proposition A.6.1 Suppose X* is a p X p rank-r matrix satisfying o(X*) > 1/2.
Lety = L(X*)+1z, where the linear map L satisfies the restricted isometry condition
64r(L) < 1/10, and || £'z||, =: € < 1/(80r3/2). Let X be the optimal solution to

X = argmin ||y - L(X)llé s.t. rank(X) < r.
X

Then (i) || X —X*|l» < 4+re, and (ii) X—X* = [(L;(X*)LT(X*))—I]RPXP(L:,,(X*)z)m,
where ||G|lg, < 340r3/2€2,

The proof of Proposition [A.6.1|requires two preliminary results which we state and
prove first. Our development relies on results from matrix perturbation theory; we
refer the reader to [84, 137 for detailed expositions. Several of our results are minor

modifications of analogous results in [34].

The following result and the accompanying proof are minor modifications of Propo-
sition 2.2 in the supplementary material (s.m.) of [34] and its proof. The modifica-

tion allows us to provide a bound that does not scale with the ambient dimension.

Proposition A.6.2 Let Xi,X, € RP*P be rank-r matrices. Let o be the small-

est nonzero singular value of X, and suppose that || X; — Xz|[ < o /8. Then
P70 (X2)lle, < VPIX1 = X2ll3/Bo), and ||Prx,)- (X2)ll2 < 11 X1 — X2ll3/(50).

0 X’

In the following proof, given a matrix X € RP*?, we denote X := -
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Proof of Proposition[A.6.2} Let A = X, — X, and let k = o /4. By combining
equation (1.5) in the s.m. of [34] with the proofs of Propositions 1.2 and 2.2 in the
s.m. of [34] it can be shown that Po(z,). (X2) = (1/(27i)) fck X = CITALX -
CITYA[X, — ¢1)7'de, where the contour integral is taken along C, defined as the

circle centered at the origin with radius «.

By a careful use of the inequality ||AB||¢, < ||All2]|Bll¢,» we have ||[X; —ZI]'A[X; -
AKX = 2007l < XK = I MRl NX = 07 RIARIX: = 207 o

Since A is a matrix with rank at most 4r, we have ||A|l;, < Var||All,. We proceed

to apply the same bounds as those used in the proof of Proposition 1.2 in the s.m.

of [34] to obtain ||P7-(,g])l()fz)||gz < 2\/7K2||A||§/((0' — k)Xo = 3k/2)) < V2r|| X, -

)Z2||% /(3c). The first inequality follows by noting thalt\/§||507-(XI)L(X2)||52 = ||P¢(fl)l()z2)||gz,
and that || X1 - Xa[l2 = [|Xi = X2|l2.

The proof of the second inequality follows from a similar argument. O

We define the following distance measure between two subspaces 71 and 7, [34]

p(T1, %) := sup [[[Pr; = PrlN)la-
IV <1

This definition is useful for quantifying the distance between tangent spaces with

respect to the variety of low-rank matrices for pairs of nearby matrices.

Lemma A.6.3 Ler X|,X> € RP*P be matrices with rank at most r, and satisfy
IX1 — Xoll2 £ o /8, where o is the smallest nonzero singular value value of X.
Let T\ := T(X1) and T := T (X») be tangent spaces on the variety of matrices
with rank at most r at the points X, and X, respectively. Let L be a linear map
satisfying the restricted isometry condition 64,(L) < 1/10. If Z; € T;, i € {1,2},
then ||[(L7- L) Trrr(Z1) = (L5 L75) oo (Zo)lle, < (43/10)WF(1Z1 = Zall +
16r(1X1 — Xz|l2l1 22|12/ 0.

Proof of LemmalA.6.3] To simplify notation we denote ¥; = [(LiFLq;)'l]Rpxp(Zi),
i € {1,2}. From the triangle inequality we have ||Y; — Y2, < ||73¢1L(Y1 - V)le, +
|P7 (Y1 — Y2)|l¢,. We bound both components separately.

IA

[IISDr,-IL(YI — Y5)|l¢,]: From Proposition 2.1 of the s.m. of [34] we have p(771,72)
21X1 = X2 |l2. From Lemma2.3.9|we have [|Y> - Z2le, < 4 |Yalle, < %”22”52

IA
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V2rs.
- 544’||Z |l. Hence

Il = Pr](Pr = P72 = Z2))lle,
2Vrll[Pr = Prl(Ya = Z2)l2

2Vrp(TL, D) Y2 = Za |l
aAN2r 84
o 1 =04

1P7+ (Y2 = Zo)lle,

IA

IA

IA

1 X1 = X221 Z2]]>.-

Here the first inequality follows by noting that [| — P7 [([Pg; — P71(Y2 — Z3)) has
rank at most 4r. Next

1P7+(Z)le, = 1P7r-(Z1 = Z)lle, < 1 Z1 = Zalle, < 2\rl1Zy - Z3|)a.

By combining both bounds with the triangle inequality we obtain

1PV =Bl = 1Pl < 1P (2l + 1P (V2 = Z2)lly
4\/§r 4
< 2Vr||Zi - Zal + —[|X; = X221 Z2 I2.
o 1-04
[|P7 (Y1 — Y2)lle,]: Define the linear map G = LTUTLTIWE' First ||[P7 0 G o

Pr1(12) = [Pri 0 Go Pr](N2)lle, < 2Vr||[P73 0 GoPg](Y2) = [Pri 0 Go Pr ()2 <
2rp(T1, R)IIG(X2) |2, where [|G(X2)]l2 < IG(2)lle, < (14+64-) |12 lle, < 1+54’||22||52 <
@%i—fﬁfllzzllz Second [|[[Pg; 0 G o Pp](Y2) = [P 0 Go Pr](2)lle, = [P 0 Go
Pr = Pr)llle, < I[G o (P — Pr)l2)lle, < (14 04,)[[Pr — Prl(V2)lle, <
2Vr(1+64 ) [[Pr = Pr 1)z < 2vr(1+64,)p(T1, ) 1Yal2, where | 2|2 < [[Ya]le,

1‘_%_; |Z|]>. Third by combining these bounds with an application of Lemma[2.3.9

IAN A

and the triangle inequality we obtain

1P7 (Y1 = V2)lle,
1
1—
1

1 — 84
+ [P 0 G o Pr](Y2) — [P 0 G o Pr|(1)lle,

+ [|[[P7; 0 G o Pr](Y2) — [P 0 Go ?T](Yz)llez)

64r
IIZIIz)

IA

5 I[P 0 G o Pr](V1 = 12)lle,

IA

(I[Pg; © G o Pr1(Y1) = [Pg; 0 G o Pr; [(V2)lle,

IA

1
T CVIZi = Zal + 4V2 rp(fr,‘m
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Proof of Proposition We prove (i) and (ii) in sequence.

[G)]: Let f(o be the optimal solution to the following

X, = argmin [y - LX)l st rank(X) <r, 1X — X*|l2 < 4+/re.
X

Since 44/re < 1/2 < o(X*), X, has rank exactly r, and hence is a smooth point
with respect to the variety of matrices with rank at most r. Define the tangent space

9 := 7(X,), and the matrix X, as the solution to the following optimization instance

X. = argmin ||y - L(X)ll% s.t. XeT, IX — X*|l2 < 4Vre.
X

Here X, is the solution to the optimization instance where the constraint X € T,
which is convex, replaces the only non-convex constraint in the previous optimization
instance. Hence X, = X,. Define )A((f as the solution to the following optimization
instance
o . _ 5 A
X4 = arg)r(nln ly L(X)llg2 s.t. XeT.
The first order condition is given by [J’L()A(xr - X*) - L'z + Q4, = 0, where
Q4. € T+ is the Lagrange multiplier associated to the constraint X € 7. Project
the above equation onto the subspace 7 to obtain [PsoL'Lo 5‘1;-]()@;~ - X" =
[Ps o L'L o Py [(X*) + Ps(L2), and hence

A

Xj = X* = [(L5L3)  Trrw 0 ([£7L 0 P (X*) + L2) = Pra(X*).

We proceed to bound ||X; — X*||,. First we have || X. — X*|l» < 4+/re < 1/20,
and hence o.(X.) > 9/20. Second by applying Proposition , we have

1P (X2 = 1P (Xe=XM)Il < (4Vre)*/(507(Xe)) < (64/9)re?, and [|Pyo (X*)le, <

(320/27)r3/%€*. Third by Lemma |2.3.9|and noting the inequality || - [l» < || - |l¢, We

have

ILLL)  Tere (LDl < I(L5L5) Trrer [ PHL D),
< 2V2r||L7zl2 /(1 — 64,) < (16/5)Vre.

Fourth by Proposition 2.7 in [65] we have

(L5 L) Trrer © £7L 0 Py 1(X¥)]2
(L5 L) Tr Iall[Pg 0 £'L 0 Py W(XE ey
84 |Pg (X*)lley /(1 = 84,) < (320/243)r°/%€%.

IA

IA
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Last, we combine the bounds to obtain ||)A(7A- —X*||» < 8re?+(16/5)\re+2r32e? <
4+/re. This implies that the constraint || X — X*||, < 4+/re for X, and X,, are inactive,
andhence X = X, = X, = Xﬁ-.

[(ii)]: We have

G = [(LLLy) Trrr(L'2) = [(Llru L7s) Trrmr (L2)
+ [[(L5Lq)  Trrw 0 L8 0 Py |(X*) = Py (XF).

We deal with the contributions of each term separately.

First [|[Pr+ — P31(L'2) |l < p(T, T2l < e/ (XX = X* || < 16yr€?,
where the second inequality applies Proposition 2.1 of the s.m. of [34]. Sec-
ond ||Pr+(L’z)|l, < 2||L’z|, = 2e. Hence by applying Lemma with the
choice of Z; = P4(L'z) and Z; = Pg+(L'z) we obtain ||[(L’ L) oo (£'2) —
(€ La) row (L'2)|le, < T0r€® + 256r3/2€%. Third we have Ifeer, L) Nreer 0
L'L o Pit [(X*)le, < (320/243)r3/2€2, and || Py (X¥)le, < (320/27)r3/2€2.

The bound follows by summing up these bounds. m|

The proof of Proposition [2.3.2] requires two additional preliminary results; in par-
ticular, the first establishes the restricted isometry condition for linear maps that are

near linear maps that already satisfy the restricted isometry condition.

Proposition A.6.4 Suppose L* is a linear map that satisfies the restricted isometry
condition 6,(£L*) < 1/20. Let E be a linear operator such that ||E||, < 1/(50||L*|}2).
Then £ = L* o (I + E) satisfies the restricted isometry condition 6,(£) < 1/10.

Proof of Proposition Let X be a matrix with rank at most . Then

£l < NL* Xl +HIL*EXD)le, < (V1 +6,(L*)+1/50)[[Xle, < V1 + 1/10]1X e,
A similar argument also proves the lower bound ||[£L(X)|le, = /1 = 1/10||X]|l,,. O

Lemma A.6.5 Suppose L satisfies the restricted isometry condition §;(£) < 1.

Then ||LLlle2 < v2(1 + 61(L)II L.

Proof. Let Z € argmaxy. x|, <1 |’ L(X)|2, and let 7 be the tangent space of the
rank-one matrix corresponding to the largest singular value of Z. Thensupy. <l 1L L(X)||2 <
SUPX: | x|l,, <1 |[#P7 o L'LIX)[l2 < \/Esupx;nxnfzg [[P7 o L7LIX)le, < V2| Py o
£'L]>. By Lemma we have V2[|P7 o L'Lll, < 2(1 + 61 (L) L]l O
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Proof of Proposition[2.3.2] To simplify notation we denote 7~ := 7 (X*). Without

loss of generality we may assume that ||[X*||, = 1. By the triangle inequality we

have

X = M) = [E5L5) T 0 £76% 0 B

< (X = M) = [((1+ E) 0 £¥£* 0 (1+ E)r) ™ Jarr o (1 +E)) 0 L¥L* 0 E(X*)
+ I+ EY 0 £76% o (14 B)l) o — [(L5L%5) o) 0 (14 E) 0 £7£* 0 E(X*)]le
+ILELE)  arer o (14 E)) 0 £¥£* 0 E(X*) — [(£5£5) e 0 £7£% 0 EX*)]ly

We bound each term separately.

[First term]: Let Z := [£* o E](X*). First by Proposition the linear map
L* o (I + E) satisfies the restricted isometry condition d4,(L* o (I + E)) < 1/10.
Second we have ||l + E|l»2 < 1+ /p||E|ls, < 51/50. Third from Lemma we

have [|£*L* [l < V2(1 + 84, (£*))|£*||2. Fourth [[E(X*)le, < VFl|Ell¢,. Hence
1+ E) 0 L7212 < (1 + Ell22ll 8% L* {2l Elley [ X *Nley < B/2VPIL* [2MIE .-
By the initial conditions we have that the above quantity is at most 1/(80r3/2).
Consequently, by applying Proposition[A.6.]to the optimization instance (2.9) with
the choice of linear map £* o (I + E) and error term Z we have
ICX* = M(X)) = [(1+ E) 0 £7£% 0 1+ B)lr) ™ Troww © (1 + E) 0 L],
< 765°2|IL* 3 1IEN7 -

[Second term]: First by Lemma we have [|[(LX.L%)  rexr|l2 < 20/19. Sec-

ond by the triangle inequality we have ||P7 o (I + E’) o L¥L* o (I + E) o Py —
Pz o L L* o Prlly < 3||L*|]2||E|ls,. Third by utilizing the identity (A + B)~! =
Al-AToBoAT+AToBoA T oBoA™ — ... with the choice of A = LXLX
and B =Py o(l+E) o LYL* o (1 + E) o Pr — A we obtain

I+ E) 0 LXL* o (1 + E)ly) ™ rrr — [(LXLF)  Troell2 < 4IL*ILIIE -
Fourth ||Pr o (I + E’) o L* L* o E(X*)|l¢, < (11/10)V/F||£*|12]|E]l¢,. Hence
I +E) o LY L* o (1 + E)ly) rowr — [(LXL5) Trrwe) 0 (1 4+ E') 0 LY L* 0 E(X*) g,
2112
< SVPIL*BNIEN -
[Third Term]: We have

I[(LLE) Trper o (1 4+ E') 0 LY L* 0 E(X*) = [(LXLE) rper 0 L¥L* 0 E(X*)|l,
< LR LEY e [RIE [RIL* I IEXM)le, < 2W||£*II§|IEII§2-
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[Conclude]: The result follows by summing each bound and applying Lemma
A.6.5 O

A.7 Proof of Proposition [2.3.3|

Proof of Proposition[2.3.3] To simplify notation we let A := A({A(j)};.’zl), A =
A({A(j)};?:l), and D be the linear map defined as D : z +— Z;?:l(Q(B(j)) - A(j))zj. In
addition we define 7 := (1/VnA)||D||>. Note that by the Cauchy-Schwarz inequality
we have T < w/VA < 1/20.

We begin by noting that since ||(1/nA)X* o X* — 1|, < A/A < 1/6, we have
I((1/nA)X* 0 X*) ! [l2, and [|(1/nA)X* o Xl < 6/5.

Next we compute the following bounds. First [|D o D’ o (X* o X*)7!||, < ||D||§ I|(X* o
X*)" M2 < (6/5)7%. Second [DoX* o (X* o X*) 7! [l < [ID[l2[IX*[[2[|(X* o X*) |2 <
7(6/5)%/2. Third ||X* oD’ o (X* o X*)~! ||, < 7(6/5)*/. By applying these bounds to

the following expansion we obtain
(X* +D)o (X* + D)’)_1
— ((I +Do X*/ o (x* o x*/)—l + X* o DI o (x* o X*I)—l + El) o X* o x*/)_
— (x* o X*/)—l (I —Do X*l o (X* o X*l)—l _ X* oD o (x* o x*l)—l + EZ)’

1

where ||E; | < (6/5)72, and ||Ez|l = || -Ej + (Do X¥ o (X* o X*) 1 + X* oD’ o (X* 0
X*)THED?=(. ) 2 < (IE1 |+ |IDoX* o(X* oX*) ™! +X* oD o (X* o X*') ! +E; |13+
) < (6/5)7+ (1(6/5) (T +2+4/6/5)2 + ... < 1272 + 31> + (31} + ... < 1272,

We apply the above expansion to derive the following approximation of X* o (X*+D)*

X* o (X* +D)*

X* o (X* +DY o ((X* +D) o (X* + D))"’

= (X*oX”+X*oD)o(X*oX")(I-DoX” o (X* o X*) ' —X*oD o (X* o X¥)' + E)
(I-DoX*" + E3),

where Ej satisfies ||E3|l> < 2(7(6/5)%2)(2(1(6/5)3/?) + ||E2 1) + ||E2ll> < 2072
Next we write ((1/(nA))X* o X*)~! = | + E4, where ||E4|l» < (6/5)A/A. Then
X*o(X*+D)  =1-DoX¥ o(X*oX*) ' +E3 =1-(1/nA)D o X* +F,

where [[F|l> < ||E3ll2 + |ID o X* o E4ll/(nA) < ||E3ll2 + 7(6/5)"/?||E4ll2 < 2077 +
2tA/A. The result follows by noting that ||F|l;, < ¢||Fll, T < w/VA, and that

X*oXt=X*o(X*+D)" 0 Q. O
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A.8 Proof of Proposition 2.3.4]

Proposition A.8.1 Given an operator E : RP*P — RP*P| there exists matrices Ep,
Eg such that Pw(E) = 1 ® E + Er ® I, and ||EL||e,, || ERrle, < ||Elle,//P-

Proof of Proposition|A.8.1l Define the subspaces Wr := {SQ® I : S € RP*P} and
W, ={I®S : 8 € RP*P}. Note that Wr N ‘W, = Span(l), and hence Py =

Pawrnspan(h: + Pw,nspan(t + Pspan(l)-

Define E; and Eg to be matrices such that ExR®I = Py nspan(iy- (E)+(1/2)Pspan(i)(E),
and I ® Ep = Py, nspan(iy- (E) + (1/2)Pspan(y(E). Fori € {L, R} we have the follow-
ing. Since Py;nspan(r)t and (1/2)Pspan(1) are projectors onto orthogonal subspaces
with spectral norm 1 and 1/2 respectively, we have ||E; ® I||;, < ||E|l,. Moreover,

since ||E; ® Ill¢, = || Eille, [l |le,» we have [|Eille, < [|Elle,/ /P 0O

Proof of Proposition[2.3.4, By applying Proposition [A.8.1] to the operator D we
have Py(D) = I ® E; + Eg ® I for a pair of matrices E;, Egx € RP*P satisfying
WELlle,» IERIle, < 1IDlle,/+/P. Moreover since ||EL |2, [|Erll> < 1, it follows that the

matrices I + Er and I + E are invertible. Consider the following identity
|+D = (l + (Payi(D) = Ex® Er) o (I + Ex) & (I + EL)—l) o(I+Er)®(I+EL).

We define H = (P (D)—Er®Er)o(I+Eg) '@(I+E;)! =Pqy.(D), and we define
W = (I + Eg)® (I + Er). By the triangle inequality we have [|W || < 3||Dl|¢, /+/p-

Next we note that ||(I + E;)"'|l, < 10/9, i € {L,R}, and that ||(I + Eg)"' ® (I +
Ep)~'l < 100/81. We also have ||Eg ® ELlle, = |Erlle,llELlle, < IIDIIZ,/g- By
noting that ||(I + E))™' — Il < (10/9)||E|l2, i € {L,R}, we have ||(I + Eg)™' ®

(I+E)'—I®I| < 3|IDll¢,/+/p- By combining these bounds we obtain |[H]|,, <
[Pw- D)o, [(1+ER) " ®U+EL) ™ ~I@1 |2+ | ER®ELle, |(I+ER) ™' @(U+EL) 2 <
SIDI /- .
A.9 Proof of Proposition 2.3.6]
Proof of Proposition[2.3.6] To simplify notation in the proof we denote ag :=
ag(p, £L*) = 96+/p||L*]l». We show that

169 = £Vl < agee (L), (A5)

for some function ay := ag9(p,r, L*) that we specify later. In the proof of Theorem
m we showed that &¢+(L®) < y'&:+(L®) for some y < 1. Hence establishing
(A.5) immediately implies that the sequence {L(t)}fz1 is Cauchy.
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Our proof builds on the proof of Theorem[2.3.5] Let

L0 =¥ (1+ED) oM

where E® is a linear map that satisfies ||E(’)||g2 < 1/ap. In the proof of Theorem
we show that

LD = ¥ o (1+EM™D)oWoMoN,

where ||[EC+D lle, < ||E(t)||€2, W is a rank-preserver, and N is a positive definite rank-
preserver. Moreover, as a consequence of applying Proposition [2.3.4] to establish
[@.23)) in the proof, we obtain the bound ||W — Il < 3a7||[E?|l,,. We use these
bounds and relations to prove (A.3).

By the triangle inequality we have

16D — £V, < IL* 0 ED oM + [|[£* 0 E*D o W oMo N[,
+ [L* oMo (N=1D)+[|L* o (W—1)oMoNl|. (A.6)

By Proposition applied to the pairs of linear maps £, £* and £U+D, L* we
have [|[M — Qqlf, [[W o Mo N — Qy|l» < ag||E?]|,, for some pair of orthogonal

rank-preservers Qp, Q,. Since ag/ay < 1 we have |[M|], < 2 and ||[W oMo NJ, < 2.
Consequently || £* o E o M||p, [|£* 0 E?*D o W o M o N|l, < 2[|L*|l2||[E®],.

Next we bound ||N — I||,. By utilizing [WoMoN - Qs < ag/ap, M —Qq]z <
agl|EV|l¢,, and [|[W = 1|l < 3a7||E?||,,, one can show that [N — Q3| < (6a7 +
2as + 2)|[EV|l,, where Q3 = Q] o Qq is an orthogonal rank-preserver. Since N is
self-adjoint, we have |[N> — ||, < 3(6a7 + 2ag + 2)||E(t)||g2, and hence [N — I, <
3(6a7 + 2as + 2)||[E?||,. This also implies the bound [N, < 3.

We apply these bounds to obtain || L* oMo (N=1)||, < 6(6a7 +2a5+2)||L*[21E]le,
and [|£* o (W —1) o Mo N[l < 9a7(|£*[|2[|E®]|2.

We define ag := (4 + 6(6a7 + 2ag + 2) + 9a7)||L*||> (these are exactly the sum of
the coeflicients of || E(’)llg2 in the above bounds). The result follows by adding these
bounds, and subsequently taking the infimum over E® in (A.6). o
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Appendix B

PROOFS OF CHAPTER 3

We begin by noting the following bound, which we use subsequently in the proof of
Proposition and Lemma For any pair of linear maps A, A> € L(RY,R%),
any unit-norm vector u, and any scalar y, we have ||hc(Aju) - y| - |hc(Aju) = y|| <
|he(A7u) — he(Au)| < [|Ar - Asllca.

Proof of Proposition[3.2.1} Let r = 1 + ||Allc2. Let € > 0 be arbitrary, and let
6 = min{e/(3E{r + |y|}),r}. Then for any Ay satisfying ||A — Apl|c2 < O, we have
| (4, 0) - ©(Ap, Q)| = [Eg{(hc(A'w) — y)* = (he(Aju) — y)*} < Eg{lhc(A'n) -
he(Ayw)|(2|hc(A'w)| + 2[y| + [[Ao — Allc2)} < 0Bo{2r + 6 +2[y|} < e. 0

Proof of Proposition Pick any ¢ € (0,1). Define Gy, := {(u,y) : (v,u) >
c,|y| < rej2}, forallve 847!, r > 0. Using a sequence of steps that is identical to
the proof in Theorem[3.3.1] one can pick r sufficiently large so that P{Gy . }r2c? /4 >
®c (0, Pye+) uniformly over all v € S¢! (we omit the justification).

Suppose A ¢ rB|..,(0). Then there exists x € C such that ||Ax||> > r. Define
v = Ax/||Ax||>. Then

De(A, Pyer) = E{1(Gy,)(hc(A'w) = y)*} = P{Gy, . }rPc? /4 > (0, Pycr),

and hence A ¢ Mg+ c. This implies that Mg c C rB)..,(0), and thus Mg c is
bounded.

By Proposition[3.2.1} the function A - ®¢ (A, Pg+) is continuous. Since r B, (0)
is compact, it follows that the minimizers of ®¢(:, Pg+) are attained, i.e., Mg ¢ is
non-empty. By the continuity of ®@¢(:, Pgx), it follows that My ¢ is closed, and

hence also compact.

By Fubini’s theorem, we have E{e(hc(K*) — hg(A'n))} = Ey[B:{e(hc(K*) —
he(Aw))}] = 0. Hence ®¢(A, Pxx) = E{(hc(K*) + & — ho(An))?} = E{(ho(K*) -
he(A'w))?} + E{&?}, from which the last assertion follows. O

Proof of Corollary[3.2.3] Clearly A* € Mgy c. Since, for every A € L(RY,RY),

hc(A’a) is a continuous function of u over a compact domain, it follows that
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A € My ¢ if and only if ho(A*'u) = he(A™a) everywhere. By applying Proposition
[3.2.2)and using the fact that a pair of compact convex sets that have the same support
function must be equal, it follows that K* = A(C) for all A € Mg c. O

Proof of Proposition Itis clear that K is expressible as the projection of O4. It
remains to check that if A; and A, are linear maps such that A;(07) = Ay(07) = K*,
then A; = Ayg for some g € Aut(0Y).

Let F;; be the pre-image of K; under the map A;. Since K is an exposed face,
the pre-image #;; must be disjoint faces of OY, for each i. As such, the set F;; is
isormorphic to the free spectrahedron O, for some §; < g. It is easy to check that
gi = q;. Then the faces 7; ; are block diagonal matrices of S? under a suitable choice
of basis. Last, by using the fact that Mg, o« is a single orbit, one can easily read
off an element g € Aut(O?) such that A} = Ayg. O

Proof of Proposition First, we have

|c(- A, D)
< 12(hc(A'n) = y)u ® ec(A'u)|lc2
+|hc((A + DY'a) = he(A'w)|[he((A + D)'u) + he(Aa) = 2y|/[|Dllc2
< ca(l+y)),

where c4 is a constant depending only on A. By noting that Ep{ y2} < oo, we have
Ac((w, y), A, D) € L£2(Q). Second, since the function A¢(-) is differentiable at A'u
for O-a.e., we have

(he((A+DYu)=y)* = (he(A'w) = y)* +(Va((hc(A'w)=y)*), D)+ Ac(, A, D)|IDllc.,

where A¢(-, A, D) — 0 as ||D|lca — 0, for P-a.e. u. Since A¢(-, A, D) € L%(Q), we
also have A¢ (-, A, D) € £L'(Q). The second assertion follows from an application of

the Dominated Convergence Theorem. O

Proof of Lemma(3.3.2] By a result in Section 1.1 of [58], it suffices to construct a
sequence of finite function classes {® }.- with the property that, for every g € ®,
there is a pair g, g € ® satisfying (i) g < g, and (ii) Eo{g — g} < €.

Our construction of &, is as follows. Without loss of generality assume that U €

B¢ (0) for some r > 0. Let Ds be a §-cover for U in the || - ||c2-norm, where ¢
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is chosen so that 46Eq{r + |y|} < €. We define G : {((|hc(Aw) = y| = 8)+)*}acp, U
{(Ihc(A"w) = y| + 6)*} e,

We proceed to verify (i) and (ii). Let g = (he(A'u) — y)? € ® be arbitrary. Let
Ag € D5 be such that [|A - Aollcp < 6. Define g = ((lhc(Aju) = y| = 8)+)? and

g = (|hc(Aju) — y| + 8)2. It follows that g < g < g, which verifies (i). Next

E{g-g} < 45E{|hc(Aju) — y|} < 46E{r + |y|} <, (B.1)
which verifies (ii). O
Proof of Proposition[3.3.7} To simplify notation, || - || denotes the operator norm

Il - llc2. By Proposition [3.2.5] the map A — ®(A, P) is differentiable in an open
neighborhood around A* with derivative 2(hc(A’'u) — y)u® ec(A’u). Hence to show
that the map is twice differentiable with second derivative I, it suffices to show that
lim E{2(hc((A* + D)u u®ec((A* + DYu
Jim | QA" + DYw) - y)u e ec((4” + DY w)
— E{2(h¢(A*u) - y)u ® ec(A*w)} - T(D)|| =

First we note that every component of e(u)u ® ec((A* + D)'u) is integrable because
E[e(u)?] < oo, and u ® ec((A* + D)'u) is uniformly bounded. Hence by Fubini’s

Theorem we have

E{(hc(A*"a) - y)u ® ec((A* + DY)} = Ey[Esu[—e(u)u® ec((A* + DYw)]] =
(B.2)
Similarly
E{(hc(A*ua) — y)u ® ec(A*u)} = 0. (B.3)

Second by differentiability of the map A — ®(A, P) at A* we have

im | B {CUe(A” + DY) =) = 20hc(A"w) = 5) = 2D.u e ec(A )} = .

By noting that every component of u ® ec((A* + D)'u) is uniformly bounded, and
an application of the Dominated Convergence Theorem, we have
lim E{(2(h¢((A* + D)'u
1Dl -0 IIDII|| {2tk =)
—2(hc(A*a) - y) = 2(D,u ® ec(A*w)))u ® ec((A* + DYu)}|| = 0
(B.4)
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Third since hc(-) is continuously differentiable at A*u for P-a.e. u, we have
ec((A* + DYu) — ec(A*u) as |D|| — 0, for P-ae. u. By the Dominated
Convergence Theorem we have E{ec((A* + D)u)} — E{ec(A*u)} as ||D|| — O.
It follows that

1

| ll)i”rg . m”zE {(u® ec(A*u),Dyu® ec((A* + D)'u)}

—2E {(u® ec(A*u),D)u® ec(A¥u)}| = 0. (B.5)

The result follows by summing the contributions from and (B.3), as well as
noting that the expressions in (B.2)) and vanish. o
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Appendix C

PROOFS OF CHAPTER 5

The Appendix is divided as follows. In Section|C.I|we describe the relation between
the Gaussian distance and the Gaussian width. Next, in Section @ we analyze the
denoising properties of proximal operators. Finally, in Section [C.3] we prove the
main results (from Section of this paper. As described at the end of Section
5.2.2], we reiterate that the assumption that the set conv(.e#’) ¢ R contains the origin
in its interior holds throughout the Appendix.

C.1 Relationship between Gaussian distance and Gaussian width
The Gaussian width of a set § C RY is defined as [66]:

W(S) = Eg n(01,,) [ SUP(E, Z)]-
zeS

The next definition that we need in order to relate the Gaussian distance and the

Gaussian width is the skewness kc(x) of a norm || - ||¢ at a point x:

1Ps)1x11c (O)]e,
| Patt hutt.x10)(0)le,”

kc(x) :=

where P denotes the Euclidean projection and aff.hull. denotes the affine hull. The
quantity x has a natural geometric interpretation: since the subdifferential d||x||¢c
corresponds to a face of the dual norm ball C* = {x : [|x]|5 < 1}, the parameter
kc(x) measures the skewness of the face d||x||c. It is clear from this interpretation
that ko(x) = 1 for all x € R? whenever the unit ball with respect to the dual norm
is suitably symmetric. Examples of such convex sets include the £;-norm ball, the
nuclear-norm ball, the {,-norm ball and the spectral-norm ball. Figures and

[C.2)illustrate the parameter « for two different unit-norm balls.

Our final definition relates to yet another convex-geometric concept. The tangent
cone T¢(x) at a point x € RY with respect to the unit ball of the || - ||c-norm (i.e., the
convex set C) when ||x||c = 1 is:

Te(x) := cone{z —x : z € RY, ||z|lc < [Ix]lc}-

For general unnormalized nonzero points x € R9, the tangent cone with respect to
C is Te(x/[[x[lc)-
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oyx, e, (0) = ag hun(a) X, |ic, ) (0)

By =t
{X e R?|[X[lc, <1} {X e R?|[X[le, <1}

Figure C.1: Figure showing the {;-norm ball C; with parameter ¢, (x1) = 1.

Mo)x,lc, (0) A Iag i (@)X e, ) (0)
hN '

B B
(X e R2[|X]c, <1} (X eR?[|X], < 1}

Figure C.2: Figure showing the skewed ¢;-norm ball C, with parameter x¢,(X2) =

V2.

The next proposition relates the Gaussian distance and the Gaussian width. The
result relaxes a “weak decomposability”” assumption in [56, Prop.1]. We denote the
Euclidean sphere in RY by S9!,

Proposition C.1.1 The Gaussian distance is bounded above by the Gaussian width
as follows:
ne(x) < w(Te(x) N ST + 3ke(x) + 4.

Proposition [C.1.1]is useful because it relates Theorem [5.3.1] and Proposition [5.3.3]

with previously computed bounds on Gaussian widths [35, 56].

The proof of Proposition |C.1.1|requires two short lemmas.

Lemma C.1.2 Suppose x # 0. Define H to be the affine hull of d|x|lc and
wo 1= Py(0). Then (w — wo,Wo) = 0 for all w € 9||x||c and ||wo|l¢, > O.

Proof. Since x # 0, the subdifferential d||x||c is a proper face of the dual norm
ball C* = {y : [lyll; < 1}. Also, since wp — 0 is orthogonal to H, we have

(wo — 0,w — wg) = 0 for all w € H. In particular, this holds for all w € 9||x||c.

By the assumption that the unit-norm ball has a non-empty interior (see reminder
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at the beginning of the Appendix), we have that 0 € int(C), which implies that
0 € int(C*). Consequently, H does not contain 0 and thus wy # 0. This implies
that ||W()||g2 > 0. O

Lemma C.1.3 Ler x € RY be an arbitrary nonzero vector. Define 1* : R? — R as

the function

A*(g) := arg mindist(g, 1 - 4||x]|c)
120

= arg min dist?(g, A - 9||x||¢).
>0

Let H be the affine hull of A - 0||x||c. Then A1* is W—Lipschitz

Proof. Let g1,g, be arbitrary vectors in R?. Since ||x||c < oo, the subdifferential
0||x||¢ is a closed convex set [120]. Hence we may let wg, be the point in d]|x||¢ such
that [|[wg, — g1lle, = dist(g1,4*(g1) - d||x||c). Define wg, similarly. Let wy = P(0)
so that

4% (82)Wg, — A*(81)Wg, ll¢,
[1(A%(82) — A*(g1))Wo + (A*(82)(Wg, — Wo) + ¥ (81)(Wo — Wg,))lle,

((A*(g2) — 2*(g1))Wo + (A*(g2)(Wg, — Wp) + 2*(g1)(Wo — Wy, )), Wo) wolle

= lIwolle|2*(g2) — 2*(g1)], (C.1)

\%

where the last equality follows from Lemma [C.1.2] Recall that projection onto

a nonempty, closed convex set is nonexpansive, and thus we have ||g> — gill,, >

1P0 1201 2-01xl1c}(82) =P U s0tr-0lxlcH 8D, = 1Pax(gr)-alixlic (82)—Pax (g yoixiic (81l
|A*(g82)Wg, — A (81)Wg, lle, = [IWolle,|1*(g2) — A*(g1)]. |

Proof of Proposition|C.1.1] Our proof is a minor modification of the proof of [56]
Prop.1.]. Let H be the affine hull of 9||x||c and wo = P#(0). From Lemma
C.1.3, we have 1% is W—Lipsczhitz function. Hence by [90, Theorem 5.3], we
have [1*(g) — E[A*(&)]| < ¢ for & ~ N(0,1,x,) with probability greater than
1 — 2exp(—(c||wolle,)?/2). Suppressing the dependence on &, consider the event
&. = {|1*(e)—E[1*]| < c}, and condition on this event. Define w; := Py (0) so

that ||wille,/lWolle, = k(X). Let w, € 9|x]||c be such that ||w, —&||,, = dist(g, 1*(&)-

* *Ty o qx
d|Ix|lc). One has that Ef/l*(]sicwg + E[’IE][Zf]fC ©)w, is a convex combination of w;
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and w, (as we condition on &), and hence it belongs to d||x||¢c. Then

dist(e, (B[1*] + ¢) - 0]Ix]lc)

2 lls - (@)W, + (B[A*] + ¢ - 2*@)wi)lle,

(ii)
< dist(e, 1% (&) - d|Ixlc)) + [(E[A*] + ¢ — 2*(8))wille,
(iii)

< dist(s,2%(g) - lIxllc)) + 2ck(x) [ Wolle, (C2)

where (i) is a consequence of Eﬁ%wg + %wl € 0||x||¢, (ii) follows

from the triangle inequality, and (iii) follows from the definition of «(x) and our

conditioning on the event &.. Define the function m : R? — R
m(e) = dist(g, (E[A*] + ¢) - dlIxllc) — dist(s, 2" (&) - dlIxllc).

Since m(g) is the difference of two 1-Lipschitz functions and hence 2-Lipschitz, we
have the concentration inequality P(m < E[m] — r) < exp(-r?/8). By setting r =
V81log(1/(1 = 2exp(=(c|Iwolls,)?/2))) we have exp(—r2/8) = 1-2 exp(=(c|[Wolls,)*/2)-
From (C.2)) the event {m(g) < 2ck(x)||wo|l¢,} holds with probability greater than

1 — 2 exp(—(c||woll¢,)?/2). Hence it must be the case that

E[m(e)] < 2k(x)cl[wolle, + \/8 log(1/(1 — 2 exp(—(clIwoll;,)*/2))).- (C.3)

Define N := U, 50{4 - 9||x||c}. We have

ne(x)
= ir/%f{]E[dist(s, - |Ixlle)1}
< El[dist(e, (E[A*] + ¢) - |Ix]lc)]
= E[dist(e, (&) - lIxllc)] + E[m(e)]
= E[dist(e,N)] + E[m(g)]
< Eldist(e, N)] + 2k(x)c|lwolle, + \/8 log(1/(1 = 2 exp(—(cllwoll;,)*/2)))

< (Eldis(e. M)} + 2(x)cliwolls, + /8 log(1/(1 —2exp(~(clwolle)2/2)))
(iv)
<

w(Te(x) N ST + 1+ 2k(x)clwollr, + \/8 log(1/(1 — 2 exp(—(clIwoll;,)*/2))),

where (i) follows from the definition of A*, (ii) follows from (C.3), (iii) follows
Jensen’s Inequality, and (iv) follows from [S, Proposition 10.1]. We obtain the

desired bound by setting ¢ = 1.5/||wo|le,. O
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C.2 Analysis of proximal denoising operators

The first result describes a useful monotonicity property of convex functions [100].

Lemma C.2.1 (Monotonicity, [100]) Let f be a convex function. Let X1,Xx; € RY.
Then for any z; € 0 f(x;),i = 1,2, we have

(z1 —22,X] —X2) > 0.

Our second result applies this monotonicity property to show that the error of
proximal denoising operators is robust to small changes in the underlying signal x*.
Notice that our proposition also describes the performance of proximal denoisers
for combinations of structured signals corrupted by noise. This is relevant in our
subsequent analysis because the proximal denoiser is applied to averages computed

near change-points.

Proposition C.2.2 (Robustness) Suppose X = arg min, %Hx* +&—- x||§2 + f(x) for

some convex function f and

Case 1 (Convex combination of two structured signals): X* = ,uxg +(1 - u)x‘f for

some 0 < u < 1 is a convex combination of two signals X, and X}. Then
E[lxg = &lle,] < (1= w)llIxg = x7lle, + Eldist(s,d f(x5))]-

In particular when u = 1 there is no mixture. In this special case the error bound
simplifies to
E[lx5 - Rlle,| < Eldist(s,d f(x)))].

Case 2 (Small perturbation to a structured signal): X* = xg + A. Then
E[lIxg = Rlle,] < lAlle, + E[dist(e, 0. (x3))]-

Here the expectations are with respect to &.

Proof. We only prove Case 1 since Case 2 follows from a change of variables. We
begin by fixing an &. From the optimality conditions, we have uxj+(1-u)x}+&-X €
0|IXllc. Let zp = argmin,, £ Iz — &|l,,- From the monotonicity property in
Lemma we have

(uxy + (1 — wx; +& -k —20,8—x3) > 0.
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Rearranging terms and applying the Cauchy-Schwarz inequality, we obtain
5 o 112
(1= @lixg = x7lle, I1X5 = Rlle, + 120 = lle, x5 — Klle, > lIxg — Kl

Finally, we divide through by [|x} — X||,, and take expectations on both sides with

respect to & to obtain the desired result. O

The final result concerns a Lipschitz property of proximal operators. Demonstrating
such a property allows us to subsequently appeal to concentration of measure results
[90].

Lemma C.2.3 (Proximal operators are non-expansive, Section 5 of [101]) Suppose
f is a convex function. Let X(&) be the optimal solution of the following optimization

problem

. 1
k() = arg)fnm E”X* +&- X||?2 + f(x). (C.4)

Then ||l&1 — &2lle, 2 [|IX(&1) — X(&2)lle,-

Corollary C.2.4 Fix an x* € R%. Define the function h : R? — R as h(g)
|X(g) — x*||¢,, where X(&) is defined in (C.4). Then the function h is 1-Lipschitz.

\%

Proof. By applying the triangle inequality twice one has |[X(g1) — X(&2)lls,
|||§((81) —x*le, — IX* — %(&2)l¢, | The result follows from an application of Lemma

O

C.3 Proofs of results from Section

In this section we prove Proposition [5.3.2] (our precursor to Theorem [5.3.1)) and
Proposition To simplify notation, we denote nc(2") by n in this section.
First we establish a tertiary result that is useful for obtaining a sharper bound on the

accuracy of the locations of the estimated change-points.

Proposition C.3.1 Fix an x* € R%. Let Xg and X be the optimal solutions to
X = arg min, %llx* +&— X||§2 + f(x) for € = €y and € = &, respectively. Define the
function j : R1 xR? = R, j(go,&1) := ||Xo — Xille,- Then j is \2-Lipschitz.

Proof. Let {f((l),f(%} and {f((z), ﬁ%} be the optimal solutions corresponding to the two
instantiations (&), £]) and (&3, &7) of the vectors (£o,£1). From Lemma we
have [18) — &2/l < lle} ~ €2l and I8}~ £, < lle] ~ & l.. By applying the
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triangle inequality, we have ||f((1) - f(} lle, < ||f(é - fc(z)llgz + ||f((2) - f(%llgz + ||ﬁ% - f(} Ile, -
Then

sl sl 82 a2 ol a2 52 ol
|||Xo - Xlllt’z - ”X() - X1||€2| < ”Xo - Xo”t’z + ||X1 - Xy ”t’z
1 2 1 2
< ”80 - 3()”52 + ”81 - 81”{’2

< V2|l(el, &) - (£2.67)le,.

Hence, j is V2-Lipschitz. O

Proof of Proposition We divide the proof into three parts corresponding to

the three events of interest.

Part one [P(E]) < 2”1_r2]: For each change-point ¢ € 7*, define the following event
81,1‘ : {Sl > ’y} Clearly, ai = U[€T* Sit We will prove that P(Sit) < 2n—r2. By

taking a union bound over all r € 7*, we have

PE) =B(| ) &) < Y BE;) <2t <20

tet* tet*

We now prove that P(E,) < . Conditioning on the event &7, and by the

triangle inequality, we have

Y >IX[z = 6 + 1] = X[z + 1]]le,

>—|IxX [r—0+1] =%t =0+ 1]|lp, + IX*[t + 1] = x*[t = 6 + 1]lg, — [|R[£ + 1] = x*[1 + ]|

Since ||x*[r + 1] = x*[t — 0 + 1]|ls, = Amin = 2y, one of the two events {||X[r —
0+ 1] —x*[t]ll, = y/2} or {||X[r + 1] — x*[t + 1]|l, = y/2} must occur. Also,
since t € %, we have |t —'| > 0 for all ¥/ € 7*\{¢t}. Hence the signal is constant

over the time instances {t — 6 + 1,...,¢t} and {r + 1,...,r + 6}. By applying

Proposition|C.2.2, we have the inequalities E[||x*[r — 6 + 1] - X[t — 0 + 1]||s,] <
and E[||X[7 + 1] — x*[7 + 1]|l¢,] < %=n. Thus

o
7

Vo
PES) < P(IK[r -0+ 1= x*[tllle, 2 ¥/2) + POK[r + 1] = x*[t + 1[ls, > ¥/2)

< P(I%[r - 6 + 1] = x*[r]lle, > E[IX[r - 6 + 1] = x*[t]lle,] + rV/o2/6+/2log n)
+P(I&[t + 1] = x*[t + 1]lle, > E[IR]¢ + 1] = x*[¢ + 1]le,] + rv/o2 /62 1og n)
2exp(—(ry2logn)?/2) = 207"

where (i) follows from the assumption that y > 2%{7}0(% ) + ry2logn}, and (ii)
follows from Corollary [C.2.4]and from [90, Theorem 5.3].

(i)
<
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Part two [P(ES) < 201" We prove that P(E5) < 201" in essentially the same
manner in which we showed that P(Sf) < 21! Forallt e Trar, define &y, as the
event &y := {||X[r =0 + 1] = X[t + 1][le, < y}. Then E = U,er,, 8§J. We will start
by proving that P(E5,) < 2",

By applying the triangle inequality and conditioning on the event 851 holding for
some t € Tgy, we have ||X[t — 0 + 1] — x*[r + 1]|lo, + [IX*[t + 1] — X[z + 1]|l,, >
IX[t — 6 + 1] — X[t + 1]||;, > y. Consequently, one of the two events {||X[t — 6 +
1] = x*[t + 1]|l,, = y/2} or {||x*[¢ + 1] — &[r + 1]|ls, > y/2} must hold. Since
t € Tgr, We have |t — t*| > 0 for all * € 7*, and thus the signal is constant
over the time instances {r — 6 + 1,...,t + 6}. By Proposition we have
E[|IX[r — 6 + 1] = x*[t — 6 + 1]||,,] < %n and E[||X[r + 1] — x*[r + 1]||,,] <

%n. This implies that we have that at least one of the following two events

{IX[t =0+ 1]-x*[r=0+1]|l¢, > E[||X[t—0+1]-x*[t—0+1]||s,]+r\o?/0+/2 l0og n}
or {||X[z + 1] = x*[t + 1]|l¢, > E[||X[z + 1] — x*[z + 1]|l¢,] + rv/02/6+/2 log n} holds.
From Corollary [C.2.4] and from [90, Theorem 5.3], we have that the probabil-
ity of either event (corresponding to these two inequalities) occuring is less than
2 exp(—(r+/2logn)?/2) = 2n~"". Thus
2 2
(&) =P(| ] &5,) < > B(ES,) < 2mmuln™ < 20!,
1€Tfyr 1€Tgyr

as required.

Part three []P(Sg ) < nl"z]: Let us now consider the event E3. To simplify notation,
we define [ := 4r\/@ /n. To prove this part of the proposition, we show a slightly
stronger result P(E%) < 46|7*| exp(—12n%/16). Since 8|t*| < n/4, our bound would
imply that P(E5) < n=’

For all pairs (#,0) € Tpufrer, define the event 3,5 = {||f<[t + 1] =X[t -0+ 1], >
I&[¢+1+6]=R[1 =0+ 1+6]lle, }. Then &5 = Us)enup ©
the following bound

g’l, s+ We start by proving

P(ES, 5) < 2exp(~I°n*/16)
for all pairs (,0) in Thyufer- Fix one such pair and let A; denote the magnitude of the
change at t € 7*. From the triangle inequality and Proposition we have that
E[|IX[z + 1]-X[r = 6 + 1]|¢,]
> =~ E[[I&[¢ + 1] = x*[z + 1lls,]
+E[||x*[r + 1] = x*[t = 0 + 1]|l,,] — E[|Ix*[t — 0 + 1] — K[1 — 6 + 1]]|,]

> A; —2y0o?%/0n.
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Suppose that 6 > 0. By similarly applying the triangle inequality and Proposition
we have

E[||X[t + 1+ 6]-X[t — 0 + 1 + 6]||¢,]
< E[I&[z + 1+ 6] = x*[r + 1]|le,] + E[|Ix*[t + 1] = X[t = 0 + 1 + 6]]|¢,]
<(1-6/6)A; +2No?/0n.

A similar set of computations will show that E[||X[z + 1+ 6] X[t =0 + 1 +5]|ls,] <
(1+6/0)A, +2+/02/6n for § < 0. Combining these inequalities and using the range

of values of 6 we have

E[||X[z + 1] = X[t — 0 + 1]|l,,] — E[||IX[t + 1 + 6] = X[t — 6 + 1 + 6]||¢, ]
Cla -4 = 15y, (C.5)
Then
P(E3,5) =P(IX[t + 1 + 0] = X[t =0 + 1 + S]lle, > [|X[z + 1] = X[t — 6 + 1lle,)
%)P(Hf([l +1+0]-X[t =0+ 1+06]|le, — X[z + 1] = X[t — 0 + 1]]|,
+ E[||IX[ + 1] = X[t — 0 + 1]||o,] —E[||X[t + 1 + 6] = X[t =0 + 1 +5]|ls,] = %n)

(ii) lo
<PlE[||X[t+ 1] -X%X[r—6 + 1 —|Ix[t+1]-X[t -0+ 1 > —
( [II%[z + 1] - X[ e, ] = (1X[z + 1] = X[ 1lle, 2\/517)

+]P(||f<[t +14+0]-X[t -0+ 1+6]|l, —E[||X[z + 1+ 6] —X[t =0 + 1 +5]¢,]

lo
2 —=n
2V6 )
(iii)
llSIZexp(—lznz/16),

where (i) follows from (C.5)), (ii) follows from the triangle inequality, and (iii) follows
from Proposition and from [90, Theorem 5.3]. Since &5 = U g)enpuie ©

we have via a union bound

c
3.1,0°

P(EY) < P(ES, ) < 2|Thufrer] exp(~1252/16) < 46|7*| exp(—1°n*/16).
3 3,60

(t.0)ETbufrer

This concludes the proof of Proposition [5.3.2] m]

Before proving Proposition[5.3.3] we require a short lemma.
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Lemma C.3.2 Let &€ ~ N(0, o'zquq). Then

dist(s,1 - d||x|lc) < 2(E[dist(s, 1 - 8]x[|c)])” + 20724

with probability greater than 1 — 2 exp(—t2/2).

Proof. The mapping & +— dist(g, A - d||x||c) is nonexpansive and hence 1-Lipschitz.

Using Theorem 5.3 from [90], we have
dist(g, A - d||x]||c) < E[dist(s,/l . Bllxllc)] +to (C.6)

with probability greater than 1 — exp(—¢>/2). By conditioning on the event corre-
sponding to the inequality (C.6), we apply the arithmetic-geometric-mean inequality

and conclude that
dist’(g, 4 - d|Ixllc) < 2(E[dist(e, A - d|xllc)])* + 220>

with probability greater than 1 — exp(—£>/2). ]

Proof of Proposition It follows from the proof of Proposition [5.3.2] that the
event & N &, holds with probability greater than 1 — 4nl-r, Conditioning on
the event that &; N &, holds, the reconstructed signal is constant over the interval
{t1 +86,...,tp — 6}. The result then follows from an application of Lemma m

and a union bound. O
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