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ABSTRACT 

Through an analytical-empirical approach, the vortex-excited trans­

verse oscillations of flexibly-mounted circular cylinders in a uniform 

flow is studied. 

A new model is derived, assuming spanwise constant flow velocity 

within the sub-critical range of Reynolds numbers and using only experi­

mental data obtained from forced cylinders in water. 

The steady-state response of flexibly-mounted cylinders is obtained 

as a function of the structural system and flow parameters and its stabi­

lity is analyzed. Several characteristics observed experimentally and 

also present in the model response are discussed. 

The resultant model's capability for predicting structural response 

for a wide range of fluid mediums is illustrated through comparisons 

between model predictions and results obtained experimentally from flex­

ibly-mounted cylinders in air and in water. 

This model developed. is expected to yield better results for struc­

tures in water, by virtue of being based only on experimental results 

obtained in water. 
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NOTATION 

Parameter appearing in the analytical interpolation expression 
for cdl 

Wake Oscillator Model constants, i=0,1,2, •••• ,6 

Parameters appearing in the stability matrix, i,j=l,2 

Cylinder amplitude (=1/2 peak-to-peak displacement) 

Parameter appearing in the analytical interpolation expression 
for cdl 

Normalized cylinder amplitude (=A/D) 

Maximum value of the normalized amplitude B 

Steady-state normalized cylinder amplitude-response 

Parameter appearing in the analytical interpolation expression 
for cdl 

Structural damping per unit length for the flexibly mounted 
cylinder 

Drag coefficient, component of Fout-of-phase with cylinder 
displacement, normalized by (l/2pDV2) 

Drag coefficient, component of Fout-of-phase with cylinder 
displacement, normalized by (l/2pDA2w2) 

Inertia ·coefficient, component of Fin-phase with cylinder 
displacement, normalized by (l/2pDV2) 

Inertia coefficient, component of F in-phase with cylinder 
displacement, normalized by (l/2pDA20;2) 

Parameter appearing in the analytical interpolation expression 
for cdl 

Cylinder diameter 

Parameter appearing in the analytical interpolation expression 
for cml 

Parameter appearing in the analytical interpolation expression 
for cml 
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Experimentally measured force acting on a cylinder being forced 
to vibrate transversally to a uniform flow 

Wake Oscillator Model prediction of the force acting on a cy­
linder being forced to vibrate transversally to a uniform flow 

Structural stiffness per unit length for the flexibly mounted 
cylinder 

Structural mass per unit length for the flexibly mounted cylinder 

Real part of a complex number 

Reynolds number 

Strauhal number 

Uniform free stream flow velocity 

Normalized flow velocity (= ws/wn 

Vr Reduced flow velocity (= ws/Sw) 

Vro Parameter appearing in the analytical interpolation expression 
for Cml 

y Normalized cylinder displacement (=Y/D) 

Y Cylinder displacement 

z Normalized fluid oscillator variable in the Wake Oscillator 
Model (=Z/D) 

Z Fluid oscillator variable in the Wake Oscillator Model 

a Perturbation of Q about Q88 

a 0 Amplitude of the perturbation a 

bw
1 

1/2 power method bandwidth 

bw 2 Frequency entrainment bandwidth 

s Structural damping ratio (fraction of critical damping) 

2 Reduced damping (= 2(2nS) 2 s/n) 

n Mass ratio (= pD2/m) 



-viii-

A Eigenvalue in the stability analysis 

v Kinematic viscosity of a fluid 

~ Perturbation of B about B8 s 

~o Amplitude of the perturbation ~ 

p Fluid density 

T Normalized time (= wst) 

0 Phase angle in the assumed form of the Non-Lock-in Model response 

0ss Phase angle of the steady-state Non-Lock-in Model response 

w Perturbation of 0 about 088 

~o Amplitude of the perturbation ~ 

w Angular cylinder frequency, either in the induced or in the 
forced oscillations case 

wn Angular natural frequency of the flexibly mounted cylinder 

ws Angular Strouhal frequency 

wv Angular vortex-shedding frequency 

Q Normalized cylinder frequency (= w/ws) 

nss Normalized steady-state cylinder frequency response 
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CHAPTER I 

INTRODUCTION 

A bluff structure exposed to a flowing fluid, may be subjected to 

vortex induced vibrations. In structural engineering applications, 

these strumming oscillations are of great interest not only because of 

their potentially large amplitudes which can overstress a structural 

member but also because of their equally destructive long term effects, 

which may cause failure by fatigue. 

The most common examples of structures subjected to this kind of 

excitation are structures composed by cables and beams such as power 

transmission lines, mooring cables, towers and risers. More complex 

structures like bridges may also be subjected to vortex excited oscil-

lations, however the phenomenon may be even further complicated by 

reattachment of the vortices. 

1.1 BASIC PHENOMENA 

The oscillating forces induced by vortex shedding, are brought 

about by the fluid pressure on the structure's surface which fluctuates 

as vortices are shed alternately from each side of the structure. A 

sequence of this oscillating pressure field on a cylinder is pictured 

in Fig. 1.1.1. 

The major regimes of flow behavior, in which vortex-shedding from 

a stationary cylinder may occur are presented in Fig. 1.1.2. For low 

flow velocities (i.e., Re= VD (5) the flow is able to negotiate its way 
v 

around the cylinder and thus, no vortices are shed. As the flow velocity 

is increased a pair of Foppl vortices is formed in the wake and when 
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-2 t = 0.968 SEC 

-2 t = 1.000 SEC 

Fig. 1.1.1 

A Sequence of Surf ace Pressure Fields Around 

a Circular Cylinder [5] 
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Re < 5 REGIME OF UNSEPARATED FLOW 

5 TO 15 ~ Re < 40 A FIXED PAIR OF FOPPL 
VORTICES IN WAKE 

40 ~ Re < 90 AND 90 ~ Re < 150 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR 

150 ~ Re < JOO TRANSITION RANGE TO TURBU­
LENCE IN VORTEX 

JOO ~ Re <::: J X 105 VORTEX STREET IS FULLY 
TURBULENT 

J X 1 o5 <. Re < J.5 X 106 

LAMINAR BOUNDARY LAYER HAS UNDERGONE 
TURBULENT TRANSITION ANO WAKE IS 
NARROWER ANO DISORGANIZED 

J.5 X 106 ~ Re 

Fig. 1.1.2 

RE-ESTABLISHMENT OF TURBU­
LENT VORTEX STREET 

Vortex Shedding Regimes from a Fixed Circular 

Cylinder [ 5] 
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Re ~ 40, there is periodic shedding of vortices. Vortex-shedding per-

sists within the entire subcritical range of the Reynolds number. In 

the transcritical range, 3 x 105 (Re ( 3.5 x 106 , periodic shedding 

ceases to exist. It appears again in the supercritical range of the 

Reynolds number, [5]. 

In the absence of structural oscillations, the vortex-shedding 

frequency wv, satisfies [29] 

(1.1.1) 

where the Strauhal frequency (ws) is given by an experimentally deter-

mined relationship [73] as 

w = 2nS~ 
s D (1.1.2) 

V is the free stream flow velocity, D is the diameter of the cylinder, 

and S is the Strauhal number. The experimental constant S is a function 

of the structure's geometry and of the Reynolds number, as shown in 

Fig. 1.1.3. Within the subcritical range of Reynolds number, the 

Strauhal number and, con~equently, the Strauhal frequency are quite well 

defined. But this is not true within the transcritical range, where 

the Strouhal number can take on any value between the dashed lines, 

resulting in a wide band of shedding frequencies. Finally, in the 

supercritical range, the Strauhal number is again quite well defined. 

Induced oscillations will occur at some frequency w, when a 

structural system with natural frequency Wn is exposed to the oscil-

lating forces due to vortex shedding. For sufficiently small amplitudes 

of oscillation, the vortex shedding process is undisturbed. In this 

case, the vortex shedding frequency is equal to the Strauhal frequency 

and the system also responds at the Strauhal frequency 
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(1.1.3) 

However, in the range of flow velocities V for which the Strauhal 

frequency is in the neighborhood of the structural system's natural 

frequency, the induced amplitudes of oscillation may be large enough to 

establish the lock-in condition. Under the lock-in condition, Eq. 

(1.1.1) ceases to hold and the actual vortex shedding frequency is very 

close to the natural frequency of the system [29] 

(1.1.4) 

On the other hand, when the structural system exposed to vortex 

shedding is forced to oscillate at a frequency w, lock-in occurs when-

ever the flow velocity is such that ws = w and then the actual vortex 

shedding frequency is very close to the forcing frequency, i.e., 

(1.1.5) 

0.47 ~--------------------/-,,..=-\------. 

/ \ 
/ I 

I I I I 
a: I I 
~ 0.3 I I 

:;; I \ -"""""""' ~ II ~ 
_. I .-.-1 ., ~,,.-m.m'!====----~~~~~1~~""~------

0.4 

0.1 

REYNOLDS NUMBER 

Fig. 1.1. 3 

Strouhal Number versus Reynolds Number [5] 
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1.2. SCOPE OF THIS INVESTIGATION 

Reported herein is research done to develop an analytical-empirical 

model for the response of elastically mounted cylinders subjected to 

vortex shedding. Assuming spanwise constant flow velocity, in the sub-

critical range of Reynolds number (i.e., S 0.20) and using only experi-

mental data obtained from experiments with forced cylinders in water, a 

new approach in the development of the model is followed. The resultant 

model's capability for predicting structural response for a wide range 

of fluid mediums is illustrated through comparison between model predic­

tions and experimental results from flexibly mounted cylinders in air 

and water. Although comparison between experimental results obtained 

in air with those obtained in water has been current practice for many 

years, doubts concerning the appropriateness of such practice are raised. 

The model developed is expected to yield better results for structures 

in water, by virtue of being based only on experimental results obtained 

in water. 
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CHAPTER II 

DISCUSSION OF PREVIOUS WORK 

2.1 A BRIEF HISTORICAL REVIEW 

Even though Aeolian tones emitted by taut wires in the wind were 

known in ancient time, it was only in 1878 that the first systematic 

study on vortex-shedding [73] was published. Experimenting with a 

variety of pipes and rods, Strouhal [73] derived the expression 

(Eq. (1.1.2)) for the vortex-shedding frequency and determined constant 

S was equal to 0.185. Further experimenting with wires, Strouhal came 

across more complex problems, such as frequency entrainment 1 and modal 

interaction. But it was Lord Rayleigh [57] in 1879, who discovered 

that vortex shedding oscillations occur primarily in a plane perpendi-

cular to the flow velocity. ' ,. von Karman, in 1912 published his theoreti-

cal work [77] on vortex-stree c stability which motivated many subsequent 

works. Until the early 1940's, however, most of the experimental and 

theoretical studies were confined to wakes of fixed cylinders and 

development of curves such as drag coefficient versus Reynolds 

number and Strouhal number versus Reynolds number. Then, the first 

observations on wakes of vibrating cylinders [41] were published and 

subsequent experimental [2, 8, 9, 11, 12, 14, 15, 33, 36, 39, 40, 47, 

49-51, 53, 55, 56, 60-62, 74-76], theoretical [l, 3, 4, 17-20, 22, 23, 

1 It is clear that Strouhal [73] did not understand the frequency 
entrainment phenomenon as it is understood today. lbwever, he noted 
that when the "friction sound" frequency (i.e., Strauhal frequency) 
was equal to the natural frequency of one of the wires, the sound 
produced was greatly increased. 
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28-32, 34, 42, 45, 59, 62, 65-67, 69] and theoretical-experimental 

[16, 37, 54, 58, 70] studies became broader in scope. They ranged from 

studies with fixed cylinders in uniform and sheared flow to studies 

with prototype-size cables in almost uniform flow. The extreme 

complexity of the problem not only precludes solutions based on first 

principles but has also restricted the range of application of approxi­

mate theories and models. 

This subject still generates very much interest not only academi­

cally but also in practice where engineers are faced with problems 

caused by vortex induced vibrations [13]. 

2.2 EXPERIMENTAL INVESTIGATIONS 

By virtue of being relatively more complete, particular interest 

is given, herein, to the experimental observations obtained by Sarpkaya 

[61, 62] and by Feng [9]. The former, on the forces acting on harmon­

ically forced cylinders in uniform aqueous flow, will serve as the 

basis for development of the present model. The latter, on the response 

of flexibly mounted cylinders in a uniform flow of air, will be used to 

gauge the predictions produced by the model. 

2.2.1 Forced Cylinders 

Sarpkaya [61, 62] measured the forces acting on a rigid cylinder 

forced to vibrate transverse to a uniform flow, as pictured in Fig. 2.2.1. 

The cylinder was forced to displace harmonically with a displacement 

given by 

y A sin wt (2.2.1) 
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with prescribed amplitude A and frequency w. The component of the 

force in the frequency of excitation acting on the cylinder was measured 

as a function of time. Since this force closely resembles a sinusoidal 

wave, Sarpkaya chose to decompose it into two orthogonal Fourier compon-

ents defined by 
1 

F(t) ::- pD v2[Cmh sin wt - Cdh cos wt] 
2 

or alternatively 

1 2TI 3A 32nA2 
F(t) ::-pDV2 [C --

2 ml v2D 
sin wt - C cos wt] 

dl3v202 
r 

where the reduced velocity Vr is defined as 

1 

Fig. 2.2.1 

Forced Cylinder 

r 

Rigid 

Displacement 
Y( t} = Asinwt 

(2.2.2) 

(2.2.3) 

(2.2.4) 
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The inertia coefficients Cmh and Cml and drag coefficients Cdh and 

Cdl as presented in [62] are herein reproduced as Figs. 2.2.2 and 2.2.3. 

Also reproduced in Fig. 2.2.4 is a comparison between the time 

trace of F(t) given by Eq. (2.2.2) and its experimentally measured coun­

terpart. It is noted that this relatively good agreement was attained 

only when the cylinder was vibrating under lock-in conditions, i.e., 

when the vortex shedding frequency wv is very close to the frequency 

w at which the cylinder is forced to vibrate (i.e., wv = w). However 

outside the lock-in range, vortices are shed at the Strouhal frequency 

ws while the cylinder is forced at a frequency w, (i.e., wv = ws* w). 

Thus a frequency-content analysis of the measured F(t) will show energy 

concentration around the forcing frequency w and around the Strauhal 

frequency ws [33, 70, 71]. This implies that the actual experimental 

time trace of F(t), outside the lock-in range would show a beating-like 

characteristic, [61, 70, 71] which cannot be accounted for by Eq. (2.2.2). 

It is important that this limitation be recognized and if possible 

taken into account in any formulation that uses Eq. (2.2.2) to model 

the force acting on a cylinder vibrating in a cross flow. 

2.2.2 Flexibly Mounted Cylinders 

Placing a flexibly mounted cylinder, as shown in Fig. 2.2.5, in a 

wind tunnel, Feng [9] measured the cylinder amplitude and frequency 

response as a function of the flow velocity. Sample experimental 

results for two different values of structural damping are reproduced 

in Figs. 2.2.6 and 2.2.7, where the natural frequency of the cylinder 

is defined as 
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-12 
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Fig. 2.2.3 

Inertia Coefficients Cml and Drag Coefficients Cdl versus 

Reduced Velocity for Various Values of Normalized Amplitude [62] 
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3 

-3 

Fig. 2.2.4 

Comparison of Heasured and Calculated 

Transverse Force., F(t) [62] 

Sponwise Rigid 

Fig. 2.2.5 

Flexibly Mounted Cylinder 

1 Displacement 
Y( t ) 
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I I I 

0. 80 1. 00 1.20 
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I 

1. 40 
ws/ wn 

Fig. 2.2.6a 

Experimental Frequency Response [9] 
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Fig. 2.2.6b 

Experimental Amplitude Response [9] 
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I I I I 

0. 80 1. 00 1. 20 1. 40 
N~RMRLIZED VEL~CITY ws/wn 

Fig. 2.2.7a 

Experimental Frequency Response [9] 
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(2.2.5) 

and the fraction of critical damping is given by 

s-2Jkffi (2.2.6) 

where m, c, and k are the structural mass, damping and stiffness, per 

unit length, respectively. The mass ratio is defined as 

(2.2. 7) 

where p is the fluid density. Thus, the mass ratio is proportional to 

the ratio of the fluid mass dislocated by the cylinder and the mass of 

the cylinder. 

In Figs. 2.2.6 and 2.2.7, the response is plotted as a function of 

the normalized velocity Vn defined as 

v 2nS -
D 

(2.2.8) 

where S 0.20 has been assumed. The normalized amplitude B is given 

by 

B -
1/2 (peak to peak displacement) 

D (2.2.9) 

The frequency of response w is normalized by wn• Also plotted, is a 

reference dashed line w/wn = ws/wn on which will lie all points corres-

ponding to a non-locked-in response. On the other hand, points corres-

ponding to a locked-in response will lie on the horizontal line w/Wu = 1 

within a region where w = wn defined · as the lock-in bandwidth. 
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2.3 ANALYTICAL MODELING 

2.3.1 Introduction 

Theoretical studies have, in general, lagged behind their more 

numerous experimental counterparts by several years. Theoretical modeling 

of wakes behind fixed cylinders began in 1912 [77]. It was only in 1964, 

however, that Bishop and Hassan [2] suggested, based on experimental 

observations, that the wake behind a vibrating cylinder behaved very much 

like a nonlinear self excited oscillator. Many analytical models stemmed 

from this suggestion. Hartlen and Currie [28] proposed a Lift-Oscillator 

Model using a Van der Pol equation to model the fluid behavior. Iwan 

and Blevins [30] proposed a similar model, the Wake Oscillator Model, in 

which the Van der Pol equation is tentatively derived from the gross 

fluid behavior. Both formulations have been further pursued [29, 31, 

65, 66, 67]1 with results that can, in general, be considered good. 

In the remainder of this section, the Wake Oscillator Model is used 

to predict the forces acting on forced cylinders. These forces are 

herein, presented in terms of the inertia coefficient Cmh and the drag 

coefficient Cdh' and will be used in later sections as an aid, not only 

to understand the experimental data, but also to interpret some of the 

results obtained by the present model. 

1 For other analytical formulations, see papers [48] and [64] where 
several formulations are reviewed. 
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2.3.2 The Wake Oscillator Model 

Based on other assumptions besides the fluid momentum equation, Hall 

[29] arrived at the following Van der Pol type equation for the fluid 

oscillator 

d2z dz n (-dz)
3 

2 a
0

pD2 --2 -a 1pnv--+ a 2p- - + a 6 pV Z 
dt dt v dt 

(2.3.1) 

a pD2 (d2z - d2Y) +a pDV ( dZ - dY )+a pD2 d2z 
3 dt2 dt 2 . 4 dt dt 5 dt 2 

(2.3.2) 

It is noted that by setting a 5 = 0, Eqs. (2.3.1) and (2.3.2) reduce to the 

expressions derived by Blevins [3]. The constants a 0 to a 6 are model 

constants, determined by the fitting of experimental data. Y is the 

cylinder displacement and Z is a fluid oscillator variable defined such 

that its first derivative with respect to time is "the average vertical 

fluid velocity in a unit depth of a control volume surrounding the 

cylinder", [ 29]. 

The cylinder displacement, the fluid oscillator variable and time are 

normalized as follows 

d 
dt 

y 
y =n 

T = 

d 
- w -

S dT 

z 
z =n 

Wst 

- ws ( ) ' 

then, substituting into Eqs. (2.3.1) and (2.3.2), yields 

(2.3.3) 

(2.3.4) 

(2.3.5) 
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(2.3.6) 

and 

(2.3. 7) 

1 
Dividing by -zpDV2 , the above expression can be written as 

and 

Fint(T) 

1 /2pDV2 

(2.3.8) 

(2.3.9) 

Substituting Eq. (2.3.9) into Eq. (2.3.8) and rearranging, yields 

1 
z" - --(21TS) 

a - a a a 
1 4 z ' + 2rr S _6. ( z ' ) 3 + -6.. 

el el el 

where 

1 
-(-21f_S_)....,.2 z _1_~ y' +~ y" 

(21TS) e 1 e 1 

(2.3.10) 

(2.3.11) 

To reproduce conditions similar to those in Sarpkaya's experiment, a 

cylinder is assumed to be harmonically driven with a motion 

y 
• w 

B sin- T 
Ws 

(2.3.12) 
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Eq. (2.3.10) can then be solved for z and the normalized interaction 

force determined through Eq. (2.3.9) 

Based upon several different data sets obtained from experiments 

performed in air and in water, Blevins [3] arrived at the following values 

for the model constants 

a 0 = 0.48 0.20 a 4 = 0.38 

0.44 0 (2.3.13) 

The resultant predicted inertia coefficient Cmh and drag coefficient 

Cdh are presented in Fig. 2.3.1, for 4.0 < Vr < 7.0. The amplitude and 

frequency responses of a rigid flexibly mounted cylinder obtained using 

model constants (2.3.13) are shown in Fig. 2.3.2, so to enable future 

comparisons. 

Whereas Hall [29] used several different data sets obtained from 

experiments performed only in air to determine model constants with the 

following values 

0.4611 

0.2824 

a
2 

= 0.0558 

a3 =..-o. 3000 

0.2413 

0.0985 (2.3.14) 

and again, the predicted inertia coefficient Cmh and drag coefficient 

Cdh are plotted in Fig. 2.3.3, for 4.8 < Vr < 7.8. Plotted in Fig. 2.3.4 

are the amplitude and frequency response of the same rigid flexibly 

mounted cylinder using model constants given in (2.3.14). 

1 As previously explained, setting as = 0, reduces Eq. (2.3.9) and 
(2.3.10) to those originally derived by Blevins [3]. 
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CHAPTER III 

AN ANALYTICAL-EMPIRICAL MODEL 

The merit of any approximate model resides basically in its ability 

to predict structural response, amplitude and frequency, as a function of 

the structural system and flow parameters. As a by product of the modeling 

process it is hoped that one may be able to better understand some aspects 

of the intricate phenomenon of fluid-structure interaction. lbwever, a 

total understanding of this phenomenon will only be possible through a 

formulation based on first principles. Given the present knowledge, 

this still appears to be far away. 

In view of this situation, approximate models, for either the struc­

tural response or the fluid response, and ideally involving both responses, 

are and will be of interest and value for some time to come. Models 

based on the Van der Pol equation for the modeling of the fluid behavior 

[3, 28, 29, 66], have been and still are useful, but like any other 

approximate model have their drawbacks and shortcomings. Some of the 

most important shortcomings are: 

1) the model constants are not directly measurable quantities. 

Rather, other parameters, functions of these constants, are 

evaluated through the solution of a system of differential 

equations; 

2) the data used to calibrate the models are generally taken 

from several different experiments which may not be directly 

comparable; 
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3) the models rely heavily for calibration on experiments per­

formed in air but are applied without adjustment to water. 

Since the model constants, by virtue of approximations 

involved in the solution of the system of differential 

equations, make use of the nature of the fluid considered, 

strictly speaking there should be a reassessment of the 

model whenever a new fluid is introduced; 

4) the extension of Van der Pol oscillator type models to other 

situations of interest, such as spanwise variable flow and 

infinite cables has proven extremely difficult, if not 

impossible. 

Motivated by these drawbacks, an alternate approach to the modeling 

of vortex-induced oscillation of structures has been developed, based on 

measurements of forced cylinders in uniform flow. As in previous formu­

lations [3, 28, 29, 66], it is not intended to solve the fluid-structure 

interaction problem precisely, but rather to give another tool for dealing 

with this class of problem. The proposed empirical model makes use only 

of "forced cylinder" data to predict behavior of flexibly mounted struc­

tures. This approach was suggested quite a few years ago [15], but never 

fully exploited. 

It is hoped that the proposed model will provide another step towards 

the understanding of an important physical phenomenon. 
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3. 2 STEADY-STATE RESPONSE FORMULATION 

Based upon experimental results, as the ones discussed in Chapter 

II, one may conclude that the phenomenon of flow-induced vibrations of 

cylinders can be separated into two distinct categories: 

1) A locked-in oscillation with the following characteristics: 

a) there is vortex shedding frequency entrainment. The 

vortex shedding frequency is captured by the frequency 

of oscillation of the mechanical system; 

b) the amplitude of vibration of the mechanical system is 

large; 

c) the frequency of vibration of the mechanical system is 

close to its own natural frequency though unknown 

"a priori". 

2) A non-locked-in oscillation with the following character­

istics: 

a) there is no vortex shedding frequency entrainment and 

vortices are shed at the Strauhal frequency; 

b) the amplitude of vibration of the mechanical system is 

small; 

c) the frequency of vibration of the mechanical system is 

essentially the Strauhal frequency, i.e., the system 

responds at the frequency of excitation. 

The present model is formulated separately for each of the above 

categories of response and is based upon experimental data for a forced 

cylinder in uniform flow, as reported by Sarpkaya [61]. 
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In these particular experiments, a rigid cylinder, placed transverse 

to the flow, was harmonically driven with a motion 

Y = A sin wt (3.2.1) 

The force acting on the cylinder, recorded as a function of time, was 

decomposed into two orthogonal Fourier components at the frequency of 

oscillation and is expressed as 

F(t) 
1 

=-
2 

pLDv2[~h sin wt - Cdh cos wt] (3.2.2) 

The coefficients Cmh and Cdh are presented as functions of a normalized 

amplitude (A/D) and reduced velocity (Vr), where 

1 
(3.2.3) 

3.2.1 The Lock-in Model 

Consider the rigid flexibly mounted cylinder of Fig. 2.2.4. It 

is important to note, if ~xperimental results (such as those of Sarpkaya) 

are used, that built into those results, there is a definite phase between 

the displacement and the measured force, for each prescribed amplitude 

and frequency of vibration. Thus, in solving the induced vibration case, 

this should be and is accounted for by assuming the force as given in Eq. 

(3.2.2)1 and the response as in Eq. (3.2.1). 

The problem of induced vibrations is hereby formulated in terms of 

structural parameters per unit length as 

Refer to discussion on Sarpkaya's experimental results presented in 
Chapter II 
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m d 2 y + -c d y + kY - 1 2 - - pDV [ Cmh sin wt - Cdh cos wt] 
d t 2 d t 2 

(3.2.4) 

with 
Y = A sin wt (3.2.5) 

where the amplitude and frequency of vibration are unknowns. 

The time, displacement, amplitude and frequency are normalized as 

follows 

y 
B - A y -

D D 
(3.2.6) 

w =~ Q - Qn 
Ws Ws 

(3.2.7) 

(3.2.8) 

) ' (3.2.9) 

then, substituti~ into Eq. (3.2.4) and (3.2.5) yields 

(3.2.10) 

where 

y = B sins-GT (3.2.11) 

(3 .2 .12) 

(3.2.13) 

r;; is the f rac ti on of critical dampi~ defined in the usual way; nn is 
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the natural frequency of the system, normalized by the Strauhal frequency 

(3.2.14) 

n is a dimensionless fluid-structure mass ratio parameter defined [29] 

as 

n (3.2.15) 

and Ws is the Strauhal frequency as defined by Eq. (1.1.2). 

SubstitutiU?; Eq. (3.2.11) and its derivatives into Eq. (3.2.10) and 

collec ti~ the sinnT and the cosnT terms, yields 

cn2 - n 2 )B n 2(2ns)2 cmh(n,B) 
n 

(3.2.16) 

(3.2.17) 

With respect to the system of Eqs. (3.2.16) and 3.2.17), it is noted 

that: 

1) the equations form a coupled set of nonlinear algebraic equa-

tions as opposed to a coupled system of nonlinear differential 

equations as obtained in the Van der Pol Oscillator formula-

tions [ 3, 28, 29 , 66] ; 

2) a very small ration, as well as other approximations are 

generally required to solve the system of equations in the 

Van der Pol Oscillator formulations. In the present 
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formulation, however, no approximations are necessary to 

implement the solution scheme. Also, for the first time it 

is possible to vary the mass ratio within a range covering 

both structures in water and in air, without reassessment 

of the model; 

3) analysis of Eq. (3.2.17) indicates that induced oscillations 

are restricted to regions where 

(3.2.18) 

Should the present approach prove worth pursuing hereupon 

more experimental data will be needed and Eq. (3.2.18) 

will provide a criterion as to where experimental efforts 

should be concentrated. In Fig. 2.2.2 the two regions 

where Eq. (3.2.18) is satisfied are given by 3.3 ~ Vr ~ 4.3 

and by Vr ; 4.8. This thesis will be concerned with the 

second region, Vr; 4.8, where the forces are relatively 

larger thus yielding greater amplitudes and where almost 

perfect "synchronization", i.e., n :: 1.0 occurs ; 

4) to implement the solution of the system of Eqs. (3.2.16) and 

(3.2.17), Cmh(n,B) and Cdh(n,B) must be defined for all 

points where Eq. (3.2.18) is satisfied. But at this stage, 

available experimental data are far from sufficient to 

allow the interpolation of these points by a numerical 

procedure. Instead, one has to resort to what is done in 

Section 3.3, i.e., interpolation of these points through 

an analytical surf ace. 
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3.2.2 The Non-Lock-in Model 

Assuming the hypotheses presented at the beginning of section 3.2 

and by reasoning similar to those for the Lock-in Model, the problem can 

again be formulated in terms of structural parameters per unit length, as 

follows 

(3.2.19) 

with 

y (3.2.20) 

where amplitude and phase of vibration are unknowns. Using Eq. (3.2.6) 

to Eq. (3.2.9) gives 

n 
[Cmh sinT - cdh COST) 

2(21TS) 2 

y B sin (T - 0) 

cmh cmh(n=l,B) 

(3.2.21) 

(3.2.22) 

(3.2.23) 

(3.2.24) 

It is important to note, that although assuming that the oscillator 

will respond at the Strauhal frequency ws, the problem is still non-

linear because of the nonlinearity of the forcing function. 

The non-lock-in problem is substantially simpler than the lock-in 

problem. One is required to solve only one nonlinear algebraic equation 

under non-locked-in conditions, as opposed to a coupled system of 
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nonlinear algebraic equations under the locked-in condition. 

Substituting Eq. (3.2.22) and its derivatives into Eq. (3.2.21) a 

solving for B and 0 yields 

B 
n (3.2.25) 

2(2nS) 2 

sin~ = (3.2.26) 

cos0 (3.2.27) 

Solution is implemented by first solving Eq. (3.2.25) for B, and 

then solving Eq. (3.2.26) and (3.2.27) for 0. 

3.3. STABILITY ANALYSIS OF STEADY-STATE RESPONSE 

Multiple solutions are anticipated due to the nonlinear nature of 

the present problem [9], so the determination of stability of each solu-

tion becomes essential. 

Application of asymptotic methods are rigorously justified for 

certain nonlinear systems which, however, do not include the proposed 

system. Still, the Method of Slowly Varying Parameters 1 , developed by 

Krylov and Bogoliubov [38], and by Bogoliubov and Mitropolsky [7], does 

1 Also known as Method of Averaging or Krylov-Bogoluibov-Mitropolsky 
(KBM) Method. 
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lend itself to the perturbation approach used in carrying out the afore-

mentioned analyses. The Method of Slowly Varying Parameters, when applied 

to the equation of motion of a single degree of freedom oscillator yields 

a pair of first order ordinary differential equations given in terms of 

precisely the same variables used in section 3.2, that is, the amplitude 

and frequency of the system. This analogy primarily motivates the per-

turbation analysis done herein. 

3.3.1 The Lock-in Model 

From Eq. (3.2.10), the equation governing the locked-in response is 

Assume 
y B( T) sinS1( T )T (3.3.2) 

where the amplitude B and frequency S1 are slowly varying functions of the 

normalized time. Differ~ntiating Eq. (3.3.2) once, with respect to the 

time T yields 

y' BQ cosS1T + B' sinS1T + BS1'T cosS1T (3.3.3) 

By analogy to the Method of Slowly Varying Parameters, let it be further 

assumed that 

y' BQ cosS1T (3.3.4) 

then from Eq. (3.3.3) it is clear that 

B' sinS1T + BS1'T cosS1T 0 (3.3.5) 
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Differentiating Eq. (3.3.4), with respect to the normalized time gives 

y" = -m22 sin~h - BSGSG 'T sinQT + B 'Q cos QT + BQ' cos QT (3.3.6) 

Substituting Eqs. (3.3.2), (3.3.4) and (3.3.6) into Eq. (3.3.1) then 

yields 

<nA- n2 )B sinSGT - BSGQ'T sinQT + B'Q cosSGT + BQ' cosQT + 

(3.3.7) 

Equation (3.3.5) together with Eq. (3.3.7) form a coupled system of 

first order ordinary differential equations that replaces Eq. (3.3.1), a 

single second order ordinary differential equation. By first, multiplying 

Eq. (3.3.5) by cosSGT, Eq. (3.3.7) by sinSGT and subtracting term by term; 

and then multiplying Eq. (3.3.7) by cosSGT, Eq. (3.3.5) by sinQT and adding 

term by term, the following set of equations results 

n 
(3.3.8) 

2(2ns)2 

and 

(3.3.9) 

Averaging Eq. (3.3.8) and (3.3.9) over one cycle of oscillation yields 
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21f 21f 21f 

£ (n~- n2 )B sin2o dO - £ BQ'G de + £ (n' + 2snnn)B sine cose de 

21f 21f 
n 

Z(ZnS) 2 ( l Cmh sin2e d9 - l cdh sine cose de) (3.3.10) 

and 

21T 2TI 21f 

J (n~- Q2 )B sine cose d8 + J B'Q d8 + J (Q' + 2sQnQ)B cos 2e d8 
0 0 0 

21T 2 iT 

(3.3.11) 

where 

e (3.3.12) 

Assuming that B and Q remain essentially constant over one cycle of 

oscillation, they can be replaced by their average values over that cycle, 

which will be approximately B and n. Then Eqs. (3.3.10) and (3.3.11) 

yield 

Note that under steady-state conditions, that is, Q' 

system of Eqs. (3.3.13) and (3.3.14) reduces to 

(Q2- g2)B 
n 

B' 

(3.3.13) 

. (3.3.14) 

0, the 

(3.3.15) 
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(3.3.16) 

which is, as expected, identical to the system of Eqs. (3.2.16) and 

(3.2.17) derived directly for the steady state response in section 3.2. 

The system of Eqs. (3.2.13) and (3.2.14), by virtue of being more complete 

allows for the analysis of stability of these solutions, which is under-

taken as follows. 

Let the steady state solution be denoted by 

Yss (3.3.17) 

Then, consider a perturbation to this solution of the following form 

B(T) (3.3.18) 

(3.3.19) 

where t;.(T) and a(1) are small perturbations about Bss and nSS' respec-

tively. Furthermore , expand the forcing terms Cmh(S1,B) and Cdh(n,B) 

about Bss and nss, as a function of t;. and a as 

a + • • • 

(3.3.20) 

• t;. + a + • • • 

(3.3.21) 
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where only the first order terms in the expansion are shown. 

Substituting Eqs. (3.3.20) and (3.3.21) into Eqs. (3.3.13) and 

(3.3.14), retaining only terms of first order in~ and a, and making use 

of Eqs. (3.3.15) and (3.3.16) one obtains 

n (3Cmh 
2(2ns)2 3B 

• a) 
D=Dss 
B=Bss 

acdh 
. ~ +-­an 

(3.3.22) 

Eqs. (3.3.22) and (3.3.23) form a coupled system of first order differ-

ential equations in the perturbed variables ~ and a, and will be refer-

red to as the perturbed system of equations. 

Assume solution of the form 

a = a e/..t 
0 

(3.3.24) 

(3.3.25) 

where ~ 0 , a 0 and/.. are constants. The steady state solution will then 

be stable if and only if/.. has negative real parts, i.e., R (/..) < O, 

so that the perturbations ~ and a decrease in time. Otherwise, the 

solution will be unstable. Substitute Eqs. (3.3.24) and (3.3.25) into 

Eqs. (3.3.22) and (3.3.23) to obtain 



where 
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n 

n 

Q=S"tss 
B=Bss 

0 (3.3.26) 

(3.3.27a) 

(3.3.27b) 

(3.3.27c) 

(3.3.27d) 

The system of Eqs. (3.3.26) will have a nontrivial solution only if the 

determinant of the coefficient matrix is zero. This leads to the charac-

teristic equation for A 

(3.3.28) 
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3.3.1.1 Stability Boundaries 

Analysis of Eq. (3.3.28) leads to the conclusion that a necessary 

and sufficient condition for instability is 

(3.3.29) 

since under this condition, at least one of the roots of Eq. (3.3.28) 

will contain a positive real part, R (A) > O. However, because of the 

complexity of each aij (i,j = 1,2) term, no sufficient condition for 

instability can be derived in terms of the basic variables involved in 

Eq. (3. 3. 28). 

A parametric study has shown that for most of the range of para-

meters considered herein1 ,the real part of at least one of the roots is 

postive, whenever a 21 < O. Therefore, as an approximation, the stability 

boundaries may be given by 

0 (3.3.30) 

Thus, a steady state solution lying on a stability boundary not only has 

to satisfy Eqs. (3.3.15) and (3.3.16) but also Eq. (3.3.30). That is, 

the stability boundary is the solution for the following set of equations: 

(3.3.31) 

1 See section 3.4. 
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(3.3.32) 

n 
0 (3.3.33) 

Substituting Eq. (3.3.32) into Eq. (3.3.33), the stability boundary 

will be given by 

(3.3.31) 

= 0 (3.3.34) 

An examination of Eqs. (3.3.31) and (3.3.34) leads to two main con-

clusions, valid within a .certain range of the parameters n and s: 

1) The stability of the steady-state response depends only on 

Cdh (n,B) coefficients, as evidenced by Eq. (3.3.34). 

According to the present approximation, stability is inde-

pendent of the Cmh (~,B) coefficient. 

2) Stability boundaries depend only on the mass ratio parameter 

n. According to the present approximation the stability 

boundaries are independent of the structural damping ratio 

s• 
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3.3.2 The Non Lock-in Model 

Consider the non-lock-in formulation given by Eqs. (3.3.21) and 

(3.2.22). Bearing in mind the differences between the Lock-in and the 

Non-Lock-in models with respect to the assumed form of response and of 

force coefficients, the perturbation analysis framework laid down in 

subsection 3.3.1 yields 

where 

n 
( C h sinT - Cdh COST) 

2(2TIS)2 m 
(3.3.35) 

(3.3.36) 

(3.3.37) 

In applying the perturbation approach, the response of the oscil-

lator is assumed to be of the form 

y = B(T) sin[T - 0(T)] (3.3.38) 

with amplitude B and phase 0 assumed to be slowly varying functions of 

the normalized time. Assuming that 

y' B cos(T - 0) (3.3.39) 

yields 

B'sin(T - 0) - B0' cos(T - 0) = 0 (3.3.40) 

Differentiating Eq. (3.3.39) once with respect to T and substituting it 

along with Eq. (3.3.38) and (3.3.39) into Eq. (3.3.25) yields 
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n 
+ B0'sin(T - 0) Z(ZnS)2 (Cmh sinT - Cdh COST) (3.3.41) 

The system of Eq. (3.3.40) and (3.3.41) must be solved for B(-r) and 

0(-r). This is done by first multiplying Eq. (3.3.40) by sin(T - 0), 

Eq. (3.3.41) by cos(T - 0) and adding term by term; and then multiplying 

Eq. (3.3.40) by cos(T - 0), Eq. (3.3.41) by sin(T - 0) and subtracting 

term by term. The resulting set of equations is as follows 

n 
2(2ns)2 [Cmh sin-r cos(T - 0) - Cdh ·cosT cos(T - 0)] (3.3.42) 

and 

( aii-1 ) B sin 2 ( T - 0) + 2 l)tn B sin ('r - 0) c 0 s ( T - 0) + B 0 t = 

Z(Z~S) 2 [Cmh sinT sin(T - 0) - Cdh cosT sin(T - 0)] (3.3.43) 

Averaging Eqs. (3.3.42) and (3.3.43) over one cycle of oscillation and 

assuming that B and 0 remain essentially constant over this cycle of 

oscillation, then Eqs. (3.3.42) and (3.3.43) can be rewritten as 

n 
Z-(ZnS) 2 (Cmh cos0 + Cdh sin~) (3.3.44) 

n 
Z(ZnS) 2 (Cmh sin~ - Cdh cos0) (3.3.45) 
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Under steady-state conditions B' = 0' 0, Eqs. (3.3.44) and (3.3.45) 

become 

<nA- 1 )B 
n 

2 (Cmh cos0 + Cdh sin0) 
2(2nS) 

n 
2

( 2nS) 2 (Cmh sin0 - Cdh cos0) 

(3.3.46) 

(3.3.47) 

If solved for Band 0, these equations yield Eqs. (3.2.25), (3.2.26) and 

(3.2.27) as expected. 

Let the steady state solution be 

Yss = Bss sin(T - 0ss) (3.3.48) 

Consider small perturbation s(T) and ~(T), such that 

B(T) (3.3.49) 

~SS + \jJ(T) (3.3.50) 

Expand the forcing terms Cmh (S6=1,B) and Cdh (st=l,B) about Bss as a 

function of s only and make use of small angle assumption. Then the 

resulting perturbed system of first order differential equations is 

obtained as 

COS~ss s + 

sin0ss s ) (3.3.51) 
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n 
2(2ns)2 (Cmh cos0ss ~ 

Assume a solution of the form 

Q=l 
B=Bss 

where ~ 0 , ~o and A are constants. 

sin0ss ~ + 
Q=l 
B=Bss 

cos0ss ~ ) (3.3.52) 

(3.3.53) 

(3.3.54) 

As in the lock-in formulation, the same criteria for stability 

apply . Thus the steady state solution is stable if and only if A has 

negative real parts, R(A)<O, so that perturbations die out in time. 

Otherwise the solution is said to be unstable. 

Substituting Eqs. (3.3.53) and (3.3.54) into Eqs. (3.3.51) and 

(3.3.52) yields 

= 0 (3.3.55) 

with 

(3.3.56a) 
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n 
(

acmh 
--- -- cos0ss + 
2(2nS)2 · aB 

SG=l 

n 
2 (Cmh cos0ss + Cdh sin0ss) 

2( 2n S) 

2r;;Qn -
n ( a~h 

2(2nS) 2 aB SG=l 

B=Bss 

sinflss) 
SG=l 

SG=l 
B=Bss 

(3.3.56b) 

(3.3.56c) 

(3. 3. 56d) 

Note that by using Eqs. (3.3.46) and(3.3.47), Eqs. (3.3.56a) and 

(3.3.56c) can be further simplified to give 

(3.3.57a) 

~l - (Q2- l)B n SS (3.3.57b) 

The system of equations Eq. (3.3.55) will have a nontrivial solu-

tion, only if the determinant of the coefficient matrix is zero. This 

yields the characteristic equation for A 

0 (3.3.58) 
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3.3.2.1 Stability Boundaries 

Analysis of Eq. (3.3.58), again leads to the conclusion that a 

necessary and sufficient condition for instability is 

Once more, due to the complexity of the quantities involved, the 

above condition cannot be translated in terms of the basic variables 

present in Eq. (3.3.58). However, a parametric study has shown that no 

instability occurs within the range of parameters considered herein. 

Ideally, the regions of stability of each model would be mutually 

exclusive allowing the stable solution in each region to be considered 

the only solution in that particular region, i.e., the criteria for 

transition between the responses of the Lock-in and the Non-Lock-in models 

would be based upon the stability character of each response. But due to 

the lack of instability in the Non-Lock-In model response, the afore­

mentioned criteria will apply only when transitioning from the Lock-in 

model to the Non-Lock-in model. Nevertheless, this is understood not to 

be a severe shortcoming, since from the practical point of view, interest 

lies primarily in the larger amplitude response that may be induced under 

lock-in conditions. Therefore, at this time no alternate criterion has 

been developed. 
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C HAPTER IV 

ANALYSIS OF THE MODEL 

4.1 INTRODUCTION 

It has been suggested [15], that results from the forced cylinder 

experiments could be used in understanding the case of induced oscil­

lations. Sarpkaya [61], besides obtaining experimental data, also 

attempted to use these data to predict the induced response of cylinders, 

but restricted himself to predictions of the maximum amplitude of 

vibration. Rather recent research [29], however, casts some doubts on 

. the analogy between the forced cylinder and the spring mounted cylinder, 

and the experimental use of one situation to understand the other. 

Despite these doubts, the present approach is directly applied to forced 

cylinder experimental data in order to illustrate its potential and to 

uncover possible inconsistencies in the data. To further emphasize the 

potential of this formulation, suitably interpolated experimental data are 

used to produce continuous model response curves. 

4.2 A PURELY EMPIRICAL APPROACH 

The actual experimental data points for coefficients Cmh and Cdh' as 

published in [61], have been digitized and reproduced in Figs. 4.2.la and 

4.2.lb. They are shown as functions of reduced velocity Vr, but could 

just as well have been plotted as functions of the frequency of vibra­

tion Q. Note that in each of these figures, only the region of interest, 

i.e., where Eq. (3.2.18) is satisfied, has been reproduced. 

To apply the Lock-in Model, Eqs. (3.2.16) and (3.2.17) must be 
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solved simultaneously for Band Q, given the other parameters Qn, n, s, 

and S. However, since B is known only at four discrete points, those 

equations are solved instead for Qn and Q, given B, n, s, and S. From 

Eqs. (3.2.16) and (3.2.17), one obtains two different expressions for 

(4.2.1) 

which does not contain the coefficient Cdh' and 

n (4.2.2) 
2(21TS) 2 

which does not contain the coefficient Cmh• Through Eqs. (4.2.1) and 

(4.2.2), Qn is evaluated as a function of Q for each of the four values 

of B and at each experimental data point for Cmh and Cdh given in Figs. 

4.2.la and 4.2.lb. Qn is plotted as a function of Q in Figs. 4.2.2a to 

4.2.2g, for values of parameters S, n, and s chosen as follows: 

Table 4.2.1 

Values of Parameters for Purely Empirical Approach 

Case Figure s n s 

1 4.2.2a 0.20 .00514 .00103 
2 4.2.2b 0.20 .00514 .00145 
3 4.2.2c 0.20 .00514 .00181 
4 4.2.2d 0.20 .05 .01 
5 4.2.2e 0.20 .so .10 
6 4.2.2f 0.20 .20 .OS 
7 4.2.2g 0.20 .20 .oos 

In cases 1 to 3, the parameters were chosen so to enable direct 

comparison with Feng's experiments [9]. By maintaining the ratio n/s 
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constant in cases 4 and 5, the effect of n on the solutions could be 

verified. Finally, the manner in which s affects the solution is shown 

in cases 6 and 7. 

For each of the four B values, Eq. (4.2.1) and (4.2.2) may at most 

intersect at two points. Just to aid visual interpretations of those 

intersections, interpolation curves (dashed lines) were also drawn in 

Fig. 4.2.2g. The intersection points obtained in the case considered in 

Fig. 4.2.2g form the amplitude and frequency response curves plotted in 

Fig. 4.2.3. These curves, though rather sketchy, show the same quali­

tative behavior encountered experimentally [9, 27, 46] and are the first 

·indications that indeed forced vibration data can be used to generate the 

response of the induced vibration case. 

4.2.1 Observations on the Available Data 

Based on the results of Fig. 4.2.2 it is observed that: 

1) What appeared to be an extensive set of Cmh(Q,B) and Cdh(~6,B) 

coefficient data for the purpose of response prediction is, 

in fact, not so. As indicated by Figs. 4.2.1, there are 

only four values for the variable B that yielded meaningful 

results. Even so, the considerable scatter of data points 

makes defining a smooth interpolation curve difficult. 

2) In past experiments, the total force acting on the cylinder 

was measured and then decomposed into its orthogonal compon­

ents, as given by Eq. (3.2.2). In this manner, each experi­

ment, for a certain amplitude B and reduced velocity Vr, 

yielded only one value for each forcing coefficient Cmh 
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and Cdh• Thus, the resulting Cmh and Cdh values when 

plotted should align under their corresponding Vr value. 

But close examination of the actual experimental data points 

[61] shows that there appears to be a shift between the Cmh 

and Cdh coefficients obtained within each experimental run. 

3) From Figs. 4.2.2, it is noted that if the experimental points 

Cmh and Cdh were aligned under the same Vr value, then 

instead of plotting the results from Eq. (4.2.1) and (4.2.2) 

separately, one could have plotted the difference between 

these two equations. After all, the sole purpose of the 

procedure is to determine the simultaneous solution of Eqs. 

(3.2.16) and (3.2.17) in terms of Q and Qn• 

4) Upon examining Figs. 4.2.2b and 4.2.2c, it appears that 

either there is something wrong with the data, or else, 

there is a new characteristic of the vortex induced vibra­

tion phenomenon never before encountered or reported experi­

mentally. Fig. 4.2.2b shows that Eqs. (3.2.16) and (3.2.17) 

barely have a solution for B 0.13, have no solution for 

B 0.25 and B = 0.75 and have some sort of a solution for 

B 0.50. In terms of amplitude response, this would trans­

late into having a plot similar to that in Fig. 2.2.6 but 

with an added closed loop of solutions above those· shown 

for values B = 0.50 and no solutions in between. A similar 

reasoning applies to Fig. 4.2.2c. Recently, Staubli [70] 

found some analytical results similar to the aforementioned. 

Based on other sets of experimental data [3], however, 
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it still seems that there must be something wrong with the 

present data set and that in fact, Figs. 4.2.2b and 4.2.2c 

should not exhibit any solution for B = 0.50. 

5) It is observed that the maximumamplitudesof vibration 

obtained by the present approach are substantially smaller 

than those obtained experimentally by Feng [9], as can be seen 

from Table 4.2.2. 

Table 4.2.2 

Comparison Between Maximum Amplitudes of Vibration Obtained 
Experimentally and from Purely Empirical Approach 

Bmax 

n l;; Feng 1 Model 2 

.00514 .00103 .524 - .25 

.00514 .00145 .396 - .13 

.00514 .00181 .204 < .13 

.00514 .00257 .146 < .13 

.00514 .00324 .082 < .13 

1 Feng's results [9] as digitized by Hall [29]. 
2 Purely empirical approach. 

6) It is noted that the maximum amplitude of vibration occurs 

for Vr = 5.00; that is, where Cdh(Vr,B) is a minimum. 

This also corresponds to the point where Cmh(Vr,B)' = O. 

It will be shown later that this feature will allow mixing 

the present experimental data with other sets of experimental 

observations. 

In spite of all the possible problems related to the 
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presently available experimental data, it is believed 

that these data still carry the basic information necessary 

to predict, at least qualitatively, the behavior of the 

induced vibration of cylinders. A method for accomplishing 

this is presented. 

4.3 . AN ANALYTICAL-EMPIRICAL APPROACH 

It is clear from the foregoing that some appropriate interpolation 

of the data will be required in order to produce reasonable model response 

curves. Sarpkaya, in presenting the experimental data, also included a 

smoothed version, reproduced in Figs. 2.2.2 and 2.2.3. However, no 

mention was made as to how this version was obtained from the raw data. 

As is obvious at this point, the surfaces Cmh(Q,B) and Cdh(Q,B) must be 

well defined and continuous in both Q and B in order to ensure a contin­

uous solution for the system of Eqs. (3.2.16) and (3.2.17). If there 

were enough data points in both Band Vr (or Q), and if these data had a 

relatively smooth behavior, a numerical interpolation could be employed 

and the purely empirical approach described in the previous section 

applied. But this is not the case for the available data and may still 

not be, even when a more complete experimental set of data becomes avail­

able. One must, therefore, resort to some analytical interpolation 

scheme. 

Ideally, the interpolation expressions should be chosen to reflect 

the very nature of the vortex induced vibration phenomenon. A least 

square fit in two dimensions could then be applied to the experimental 

data so as to select the constants appearing in the interpolation 
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expressions. But if the nature of the fluid-structure interaction was 

known, there would be no need for an approximate model. 

4.3.1 Fitting of Experimental Data 

Considering the observations made with respect to the available 

experimental data, the situation is far from ideal. Instead of attemp-

ting to interpolate the actual data points through two dimensional 

surfaces, which could prove fruitless, an alternate interpolation scheme 

is adopted based on the smoothed data of Figs. 2.2.2 and 2.2.3. 

In this procedure, an expression for the curves in the Vr direction 

is chosen, in order to retain the characteristics deemed most important, 

but no attempt is made to make a best fit of the actual data points. 

In particular, analysis of Cd1CVr,B) curves presented in Fig. 2.2.3, 

for the range where Eq. (3.2.18) is satisfied, shows that 

1) all curves have a first zero crossing practically at about 

Vr = 4.80; 

2) all curves reach a minimum at about the same point, Vr = 5.00; 

3) there is a second zero crossing for Vr > 5.00, that is depen-

dent on B. 

Accordingly, an expression for Cdl (Vr,B) is chosen as follows: 

x 

[d(x-a) 2 + bx] 
, x~a (4.3.la) 

( 
x-a \ 2 

x [ 1 - c-a ") ] > , x a 
[d(x-a) 2 + bx] 

(4.3.lb) 

where 
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x = vr - 4.80 

and the other parameters are defined as 

a = 0.2 considered constant. x = a is where the minimum occurs in 

the local coordinate system. 

b b(B) , function of the amplitude and an approximate value for the 

inverse of the minimum. 

c = c(B) , function of the amplitude, x = c where the second zero cros-

sing occurs in the local coordinate system. 

d = 0.1 , controls the broadness of curves. 

The relationship between these parameters and the Cal curve is shown 

in Fig. 4.3.1. 

A similar examination of the behaviour of the Cml(Vr,B) curves, 

presented in Fig. 2.2.3, shows that 

1) all curves have a zero crossing practically at Vr = 5.15; 

2) the slope of the curves at the zero crossing point is depen-

dent on B; 

3) the curves tend to have a practically constant behavior for 

values of Vr slightly greater than 5.5. 

The expression for Cm1<Vr,B) is chosen as 

(4.3.2a) 

Cm1<Vr,B) 

- e (V - V ) r r 0 (4.3.2b) 

where the parameters are defined as 

Vro , zero crossing of the curves 
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slope of the Cmh curves at Vr = Vro 

assumed as an asymptotic value that Cmh would tend to, for 

relatively large values of Vr• 

The relationship between these parameters and the Cml curve is shown in 

Fig. 4.3.2. 

a -J 
c 

Fig. 4.3.1 Parameters for definition of Ca1<Vr,B) surfaces 

ton,B=e 

f 

Fig. 4.3.2. Parameters for definition of Cml (Vr,B) surfaces 
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The Cd1CVr,B) and Cml(Vr,B) curves, being smoother than the Cdh(Vr,B) 

and Cmh<vr,B) curves, have been chosen for interpolation. lbwever, 

one set of coefficients can easily be recovered from the other by using 

the following equations: 
21T 3B 

Cmh(Vr,B) =-- Cml (VpB) 
v 2 r 

(4.3.3) 

32TIB2 

cdh<vr,B) =--- Cd1CVr,B) 
3V 2 

r 
(4.3.4) 

It should be stated that the above expressions have been arrived at 

after a relatively extensive examination of other possible expressions. 

Among all the possibilities considered, it is felt that Eqs. (4.3.1) and 

(4.3.2) are the ones that best match the smoothed data of Fig. 2.2.3. 

As has been indicated, several of the parameters appearing in Eq. 

(4.3.1) and (4.3.2) were defined as functions of B so the complete two-

dimensional surfaces for Cm1CVr,B) and Cd1(Vr,B) surfaces can be gener-

ated. These functions were chosen, bearing in mind the simplest possible 

expressions and considering only the present set · of experimental data to 

the extent possible. 

Specification of the parameter b. 

As can be seen from Table 4.2.2, the present experimental data 

yield maximum amplitudes of vibration far below the values experimentally 

found by Feng [9]. Since the prediction of amplitude is one of the most 

important aspects of the capability of any model, it is felt that some 

improvement should be made in this area. Experimental data 1exactly simi-

1 As of this writing Staubli [70] has not published his complete work. 
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lar to the present set have not, as of yet, been published • However, as 

mentioned before, the maximum amplitude of vibration occurs at Vr = 5.00, 

corresponding to minimum values of Cdh (Vr,B) and close to zero values 

of Cmh (Vr,B). Data corresponding to forces acting at peak response on 

flexibly mounted cylinders are used to supplement Sarpkaya's data, based 

upon the assumption that both phenomena are similar. Mixing of the 

results from forced cylinder experiments with those obtained from flex-

ibly mounted cylinder experiments is, admittedly, not a very desirable 

procedure. Nevertheless, in doing so, the prediction capability of the 

model is so greatly enhanced that this by far off sets any of the proce-

dure's undesirable effects. 

Evaluating Eq. (4.3.1) for Vr = 5.0 and using Eq. (4.3.4), yields 

b(B) 
32TIB2 

- --~-

75 
1 

(4.3.5) 

Values for Cdh(5.0,B) from Blevins [9] are mixed with corresponding 

values from Sarpkaya and a smooth curve, given by the expression that 

follows, drawn through the experimental points. 

5.0,B) -l.375B2 + l.483B + 0.200 (4.3.6) 

This curve is shown, along with the experimental points, in Fig. 4.3.3. 

Note that the empirical relationship gives results which are larger than 

those obtained by Sarpkaya, for B = 0.13 and B = 0.25, and gives a smaller 

coefficient for B = 0.50. 

For all the other parameters, function of B, appearing in Eqs. 

(4.3.1) and (4.3.2) no similar measurements have been found. Consequently, 
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Force Coefficients at Peak Amplitude Response 

all remaining interpolation functions are based only on the experimental 

results obtained by Sarpkaya. This necessarily implies some degree of 

arbitrariness since there are, at most, five experimental data points to 

be interpolated. Nevertheless, there is the indirect constraint of what 

the amplitude and frequency response should look like for given value of 

n and ~. Within this framework, some alternatives have been tried and 

the expressions chosen for the present model are hereupon presented. 

Specification of the parameter c 

The parameter c represents the second zero crossing of Cd1(Vr,B) 
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curves in. the local coordinate system. An interpolation expression of 

the form 

c(B) 
1 

3.2B 
(4.3. 7) 

has been selected. The constant was determined through a least square 

fit of the data. Table 4.3.1 compares experimental and predicted values 

for the parameter c. 

Table 4.3.l 

Experimental and Predicted Values for Parameter c 

c(B) 

B experimental predicted 

0.13 2.70 1 2.40 
0.25 1.60 1.25 
a.so 0.65 0.63 
0.75 0.40 0.42 

1 Es tima:ted 

Specification of the parameter e 

The parameter e controls the slope at the zero crossing Vro of 

Cmi(Vr,B) curves. Let 

e( B) 
1 

2.043B3 - 2.560B2 + l.105B 
(4.3.8) 

The constants in the expression above were determined through a least 

square fit of the experimental data. Experimental and predicted values 

are compared in Table 4.3.2. 
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Table 4.3.2 

Experimental and Predicted Values for Parameter e 

e(B) 

B experimental predicted 

0.13 15.0 1 9.54 
0.25 7.50 6.75 
0.50 6.00 5.96 
0.75 3.70 3.99 
1.03 1.30 1.53 

1 Estimated 

Specification of the parameter f 

The parameter f controls the "asymptotic" value of Cml(Vr,B). The 

following expression has been selected and the constants determined 

through a least square fit. 

f(B) = 2.076B2 - 3.173B + 1.767 (4.3.9) 

Experimental and predicted values are presented next 

Table 4.3.3 

Experimental and Predicted Values for Parameter f 

f(B) 

B experimental predicted 

0.13 1.40 1.39 
0.25 1.00 1.10 
0.50 0.75 0.70 
0.75 0.60 0.56 
1.03 0.70 0.70 
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Specification of the parameter VrJ:J.. 

In section 4.2.1, it is mentioned that close examination of the 

actual experimental data shows that there is a shift between the Cmh and 

Cdh coefficients obtained for a same Vr• But solely based upon the 

analysis of these coefficients, one cannot tell which coefficient is 

actually shifted with respect to which. 

In comparing results, obtained in Chapter II, for the Wake Oscil­

lator with those obtained by Sarpkaya, it is clear in Fig. 2.3.1, that if 

the_ Cdh coefficients, as obtained by the latter, are assumed correct, 

then the Cmh coefficients should be shifted to the left. A left or right 

shift in the analytical interpolation expression for Cmh is accomplished 

by varying the value of the parameter Vro• Thus, if Vro = 5.15 is 

chosen, the interpolated Cmh curves will cross the Vro axis at the same 

point as the Cmh curves published in [61]. 

Based again on the results of Chapter II, the aformentioned shift 

can be compensated by choosing Vro = 5.00, which will be assumed herein. 

It will be noted whenever the parameter Vro takes on a different value. 

Once all parameters are defined, Cml(Vr,B) and Cd1(Vr,B), and 

corresponding Cmh<vr,B) and Cdh(Vr,B) can be plotted, as in Fig. 4.3.4 

and 4.3.5 for comparison with Fig. 2.2.3 and 2.2.2. Although, the inter­

polation procedure had a smoothing effect upon the experimental data, 

it may be easily verified that the overall fitting is reasonable. It is 

still observed that the fitting approach used herein, being modular, 

allows for independent changes in each of the parameters. 
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4.3.2 Amplitude and Frequency Responses 

Eq. (3.2.18) is satisfied, the locked-in response and the non-locked-in 

response given by Eq. (3.2.16) and (3.2.17) and Eqs. (3.2.25), (3.2.26) 

and (3.2.27), respectively, can be solved for each set of parameters n, s, 

and wn• To enable direct comparison with the experimental results from 

Feng [9], the model predictions for amplitude and frequency are plotted 

versus the normalized velocity Vn, defined as 

(4.3.10) 

Furthermore, the frequency is normalized by Wn so the response curves 

for the lock-in case (i.e., w = wn), may lie along the horizontal 

w/wn 1 and for the non-lock-in case (i.e., w = ws), on the diagonal 

In Figs. 4.3.6 to 4.3.10, the mass parameter n is kept constant 

while the damping ratio s is varied so as to cover all cases studied by 

Feng. The results from one case to another are very similar and one can 

note that the model exhibits many of the characteristics associated with 

the vortex induced vibration phenomenon. The lock-in response presents 

large amplitudes of vibration at w = wn, where the vortex shedding 

frequency is known to lock onto the structural frequency of vibration. 

Relatively smaller amplitudes of vibration are yielded by the non-lock-in 

model, at a frequency of vibration equal to the Strauhal frequency. The 

lock-in model clearly exhibits a region of double responses. In this 

particular region, the stability analysis developed in section 3.3 shows 



.. 
wo 
(j} ~I 

z ,...:-
0 
CL 
(j} 

w 
a: 0 

a 

-76-

>-·- ~ ~ ~ / ~ '-(') (!) (!) (!) (jjl (!) (!) (!)(!X'J') 

~ /~ 
Do // 
We> / 
a:a~/ ________ ~,--------~,----------.,----------.1.------------,1---------+-
LL 0. 60 0. 80 1. CO 1. 20 1. 4C 1. GO 1. 80 

0 
O! 

mo 

.. 
w 
Ula 
Ze:> 
0. 
CL o 
(j} 

w 
a:: 

w~ 
0. 
~o 

I-

NGRMRL I ZED VELLJC I Tl , ws/ wn 

Fig. 4. 3. 6a 

Model Versus Experimental Frequency Response 

ri = 0. 00514 
t = 0. C0.103 

_, o cJ: - / n .'i1o d e _, 

non-loc; - 1n moo~! 

~ ~~om Feng L9J 

© © 
_J 

CL 
:Lo 

a:~-l-----------.--J~~w.:.i..~....,....:.-==--------.----------.----------.-©--JO;,L-----1::.L--t-
00 . 6 0 0 . 8 0 1. 0 0 1. 2 0 1. 4 0 1. 6 0 1. 80 

NORMAL I ZED VELLJC I Tl, ws/ wn 

Fig. 4.3.6b 

Model Versus· Experimental Amplitude Response 



-77-

a 
C OJ I I I I I 
3~-+-~~~~_._~~~~_._~~~~_._~~~~_._~~~~_._~~~-/--+-

"3 11 = 0.00514 // 

a 
O' 

co a 

.. 
w 
en a 
ZC.:J 
0 . 
o_ a 
en 
w 
a: 
wa 

('11 

0. 
~a 

I-

_J 
Q_ 

t= 0.00145 (!) // 

/ 
./ 

/ 

/ 
/ 

/ 

Fig. 4.3.7a 

/ 
/ 

y/6 

Model Versus Experimental Frequency Response 

'I)= 0.C0514 
'{ == 0. 0014S 

locl: - 1n .'!lode! 

non-loc/( - / n 11Jod e l 

C) rrolli Feng L9J 

1. 8 0 

~a (!) 

a:~-1-~~~~-.-~~~-=:=~..__~~~--~~~~--~(!)~----~--~~~~-+-
00. 60 0. 80 1. 00 1. 20 1. 40 1. GO 1. 80 

NDRMRLIZED VELDCITI, w s/ w :i 

Fig. 4.3.7b 

lfodel Versus Experimental Amplitude Response 



a 
01 

co a 
"f) 

.. '{ w 
en zg 
D 
CL a 
VJ 
w 
a:: 
wo 

'Y) 

0 
~a 

I-
-i 
_J 

CL 
~a 

a:~ 
0

0. 60 

== 

= 

-78-

Fig. 4.3.8a 

Model Versus Experimental Frequency Response 

0. C0514 
0.C0181 

! ocf. - / n .mode-' 

non-! ocl-.· - / n .mode_' 

(!) rrom Feng £9J 

0. 80 1. 00 1. 20 1. 40 1. 60 1. 80 
NlJRMRL I ZED VELCJC I TY, ws/ wn 

Fig. 4.3.8b 

Model Versus Experimental Amplitude Response 



-79-

0 

c ~ I I I I I 3__:-t-------------------_.... ________ _._ ________ ___.. ____ ~----"----~--/--:~ 

'3 1'/ = 0. 00514 / / / 
t = 0. 00257 / 

.. 
wo 
(J) ~I 

z __:-
0 
(L 
(J) 

w 
a::: 0 

C.) // 

g~- ~ 
::J / 
Do // 
w (.D / 

/ 
/ (!) 

/ 

GD ~(!) 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/C!Y'(!) (!) 

a::::c)~"--/ __________ , ________ ~,----------.-,----------.,----------~,---------
LL 0. 60 0. 80 1. 00 1. 20 1. 4C 1. CO L 8 0 

0 
en 

QJ 0 

w 
(J)o 
Zw 
0. 
(LO 

(J) 

w 
a::: 

w~ 
0. 
::JO 
I-

NCJRMRL I ZED VELCJC I TY , ws/ w:1 

Fig. 4.3.9a 

Model Versus Experimental Frequency Response 

'1 = 0.C0514 
t 0.00257 

locJ. - 1n .IJ)o d e ! 
non - l ocI - / n mo d e _, 

(!) .rro.l'/l Feng L"9J 

_J 
(L 
2:0 

cr:~4-------------~.i,,w...~:..:--=--~~~-----(!)~~~---------------~~~--+-
0o. so 0. 80 1. 00 1. 20 1. 40 1. GO 1. 80 

NCJRMRL I ZED VEL CJC I TY, ws/ wn 

Fig. 4.3.9b 

Model Versus Experimental Amplitude Response 



-80-

a 
C ro 
3.--:-r-~------~·-------~--'--·--------~·----.----__.• ________ .--....._1~~-----.,~ 

/ 

~ "} = 0.00514 // 
'{ = 0. 00324 / / 

.. 
wo 
en~· 

z .--:­
E) 

CL 
en 
w 
a::::a ,,.,--
>- c.:_ ~--'(!) 
u~ rt( 
z /OY" 
w ~ 
:::J / 
Do // 
Wtn / 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
..---\'.!.) 

~€(!) 

a:::: a-+=-/.--------~,.--~----~..--,~~~~~,------~--,~~~~~---,~~~~~ 
LL 0. 60 0. 80 1. CO 1. 20 1. 40 1. GC 1. 80 

0 
O' 

OJ a 

w 
eno 
zd 
0. 
CL a 
(f) 

w 
er: 
wo 

".'l1 
D. 
:::J 0 
I-

_J 

CL 

NCJRMRL ! ZED VELLJC I Tl 9 ..us/ wn 

Fig. 4.3.lOa 

Model Versus Experimental Frequency Response 

'fJ := C. C0514 
0.00324 

! ocJ: - / n /JJode ! 

non-JocI -/n .'!Jod e! 

(!) rrom Feng L9J 

Lo 
o:C.:_.__ __ ~~.---.----J,.!,,1-~--~e;;__--~~~~~~.-------.--~~~.....-~------~ 

0
0. 60 0. 80 1. 00 1. 20 1. 40 1. GO 1. 80 

NCJRMRLIZED VELCJCITI, w s/ w :i 

Fig. 4.3.lOb 

Hodel Versus Experimental Amplitude Response 



-81-

that the response corresponding to the smaller amplitudes is always 

unstable. However, the same stability analysis applied to the non-locked-

in response shows that solutions are stable everywhere. A jump in the 

solution is expected when transition from the locked-in to the non-locked-

in solution occurs at increasing flow velocities. 

The model predicted and experimentally observed maximum amplitudes 

of vibration are summarized in Table 4.3.4. It shows that maximum 

amplitudes are fairly accurately predicted by the present model. 

Table 4.3.4 

Comparison Between Experimental and Model Predictions 
for Maximum Amplitudes of Vibration 

1 
2 

Bmax 

n s Feng 1 Model 2 

.00514 .00103 .524 .468 

.00514 .00145 .396 .288 

.00514 .00181 .204 .198 

.00514 .00257 .146 .110 

.00514 .00324 .082 .077 

Feng's results [9] as digitized by Hall [29]. 
Analytical-empirical approach 

In spite of the good agreement between predicted and experimentally 

measured maximum amplitudes of vibration, the overall amplitude response 

curve for the model is consistently shifted to the left with respect to 

the experimental data. Furthermore, the lock-in band is roughly centered 

about ws/wn = 1. At this time, there is no totally convincing expla-

nation as to why this difference occurs. Yet, some possible hypotheses 
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are, hereby, discussed: 

1) It is possible that the forced cylinder experimental data 

have the "centered" lock-in bandwidth characteristic built 

in, thus, not allowing for a skewed lock-in band such as 

exhibited by the flexibly mounted experiments [9]. Koopman's 

[36] experimental results for a forced cylinder in air also 

show lock bandwidths centered about w/ws = 1. This tend to 

lend support to this hypothesis. 

2) In an attempt to compensate for the relative shift between 

experimental cmh and cdh points, the present model 

considers Cdh coefficients correct and shifts Cmh coeffici­

ents accordingly to the left. Then, the Cmh and Cdh coef­

ficients, around Vr = 5.00, look rather like those predicted 

by the Wake Oscillator Model and presented in Fig. 2.3.1. 

Force coefficients with these characteristics, however, 

are bound to yield responses centered about w = wn=ws, 

similar to those shown in Fig. 2.3.2. A correction in 

Cdh coefficients (instead of in Cmh coefficients) has 

not been attempted but it is anticipated that such a cor­

rection would shift the model predictions to the right of 

these model predictions presented herein. 

Although one could go on discussing other hypotheses that may help 

~stablish why the shift occurred, it is also important to look into why 

the model consistently underestimates the size of the lock-in bandwidth 

as shown in Figs. 4.3.6 to 4.3.10. If Feng's and Sarpkaya's experimental 

data are completely accurate, then this difference of almost 50% between 
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the size of the experimental and the predicted lock-in bandwidth seem to 

suggest that the results obtained in air may not be compared with those 

obtained in water after all. In principle, there seems to be no reason 

to believe that the force coefficients Cmh and Cdh would attain the same 

values for the same experiment performed in different fluid mediums (e.g. 

air, water). 

In order to assess the differences of model response in air and in 

water, parameters n and s are varied according to Table 4.3.5 to simulate 

several fluid mediums ranging from a light fluid like air to a heavier 

one like water and these results are shown in Figs. 4.3.11 to 4.3.13. 

Table 4.3.5 

Values for n and s Parameters Used to Simulate Varying Fluid Media 

Fluid 
Case # Medium n s 

1 Light .0070 .0001 
2 .0700 .0010 
3 Heavy .7000 .0100 

In case 1, the mass parameter value adopted is within the range Feng 

used in his experiments and behavior of the model is essentially similar 

to that previously described. The lock-in bandwidth and amplitude are, 

as expected, larger since the damping ratio assumed is an order of mag-

nitude smaller than the values used by Feng, but the overall shape of the 

amplitude response does not look at all like the previous model response 

curves pictured in Fig. 4.3.6 to 4.3.10. 

The results obtained in case 2 are similar to those in case 1. The 

lock-in bandwidth is slightly larger and one can observe in the frequency 
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plot, the incipient unfolding of the branch of unstable solutions from 

that of stable solutions. 

Model behavior in case 3, however, is considerably different from 

that of cases 1 and 2. The amplitude response shows a much wider region 

of relatively larger amplitudes of vibration. The frequency response has 

a very small lock-in region (where w = Wu) next to a substantially 

large region of frequency entrainment within which the system responds at 

a frequency that is neither w = Wn (lock-in frequency) nor w = ws 

(non-lock-in frequency). One can also note that the branch of unstable 

solutions has completely unfolded from that of stable solutions. These 

characteristics of case 3, although not present in Feng's [9] observa­

tions, are qualitatively very similar to those of the response curves of 

an experiment performed in water reported by Griffin [27] and reproduced 

in Fig. 4.3.14. The fact that the model response curves of structures in 

water show a better qualitative agreement with experimental data than 

their counterparts in air raises some doubts concerning the current 

practice of comparing results obtained by experiments done in water with 

those done in air. But only more experimental observations will dispel 

this doubt. However, it is believed that the present model will perform 

best in predicting response for structures in water. 

4.3.3 An Approximate Model for the Maximum Lock-in Amplitude Response 

Whether the maximum steady state amplitude of a flexibly mounted 

cylinder is determined by the ratio of the parameters n and s or by each 

parameter separately is a debatable point [61]. Based upon Eqs. (3.2.16) 

and (3.2.17), one may easily conclude that the overall response is a 
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function of each parameter separately. Yet, it seems impossible to derive 

or to conclude any dependency between the maximum amplitude and the 

parameters n and s• 

A closer look at Fig. 4.3.6 to Fig. 4.3.13 reveals that maximum 

amplitude occurs at ws/wn = 1 and w/wn = 1, for the range of n 

and s used herein. Under these conditions, Eq. (3.2.16) can be considered 

approximately satisfied and one is left with Eq. (3.2.17) to solve for 

the amplitude, as follows, 

n 
(4.3.11) 

2(21TS) 2 

Therefore, at least in an approximate sense, one may conclude that the 

maximum amplitude of vibration is indeed a function of the ratio s/n. It 

should be emphasized that in the previous equation, the structural frac-

tion of critical damping s must be measured in vacuum. 

Since, Eq. (4.3.11) will clearly only predict approximately the 

maximum amplitude of vibration, a parametric study in n and s is under-

taken in the next section, with the purpose of determining how good an 

approximation is this. One may verify in Figs. 4.3.11 to 4.3.13 that the 

parameters n and s were intentionally varied so to maintain a constant 

ratio s/n. In all three cases, the complete analysis yields approximately 

the same maximum amplitude. 

So that the solution of Eq. (4.3.11) can be directly compared with 

other published results [25], the variable reduced damping s is defined 

as follows 

2(21TS) 2 ~ 
n 

(4.3.12) 
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Then, Eq. (4.3.11) is rewritten as 

0 (4.3.13) 

The predicted maximum amplitude response obtained as a function of reduced 

damping is plotted in Fig. 4.3.15 along with experimental results compiled 

by Griffin1 [25]. Agreement among the results seem quite reasonable. 

This is expected because, after all, this model was developed based upon 

the fitting of experimental values of Cdh(Q=l,B). Anyway it is still 

remarkable that such a simple expression (Eq. (4.3.13)) can yield such 

good results. 

By virtue of the approximations introduced, Eq. (4.3.13) will always 

yield the correct value for the amplitude at ws/wn = 1, even though, 

it may or may not coincide with that of the maximum amplitude. This 

will be seen in the next subsection. 

4.3.4 A Parametric Study in n and s 

To evaluate prediction capabilities of the Lock-in Model and to 

appraise the approximate solutions for the stability boundaries (Eq. 

3.3.34)) and for the maximum amplitudes (Eq. (4.3.13)) a parametric study 

is, hereby, undertaken. The results obtained are presented in Figs. 

4.3.16 to 4.3.20. 

In Fig. 4.3.16, while the mass ratio n is kept constant, equal to 

0.00514, the fraction of critical damping s is varied within the range 

1 According to private communication, only structural damping measured 
in still air has been used in compiling these results. 
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considered by Feng [9] in his experiments. Approximate results for 

both the maximum amplitudes and the stability boundaries, are virtually 

coincident with those obtained by exact analysis. 

In Figs. 4.3.17 to 4.3.20, the mass ratio n takes on the values 

0.05, 0.10, 0.20, and 0.50, respectively. In each of the four figures, 

the corresponding n is kept constant while the fraction of critical 

damping ~ is varied so the ratio ~/n takes on the values given in the 

first column of Table 4.3.6. In this manner, Eq. (4.3.13) for predicting 

the approximate maximum amplitudes is thoroughly tested for a wide range 

of values of n. How these results compare with those obtained from the 

exact analysis is shown in Table 4.3.6. 

~/n 

1.00 
.so 
.30 
.20 
.10 
.06 

1 
2 

Table 4.3.6 

Comparison of Approximate and Exact Maximum Amplitudes 

Bmax L 

(exact) 

Bmax 
1 

(approximate) n = 0.05 n = 0.10 n = 0.20 n = o.so 

.041 .041 .041 .041 .048 

.109 .109 .110 .112 .138 

.260 .260 .262 .268 .304 

.469 .469 .470 .474 .494 

.800 .800 .800 .800 .802 

.955 .955 .955 .955 .955 

obtained from Eq. (4.3.13). 
obtained through the complete analysis. 

In general, maximum amplitudes are predicted very well by Eq. 

(4.3.13), but the results deteriorate as n and s increase. The worst 

results occur where structural damping is high, over 10%. This, however, 



OJ 

a 
u 

a 
'1:J 

Wu 
en 
z 
0 
CL 
cno 
w (Q 

a: 0 
LL 
0 
::J 
f- 0 
1---i -=:jl 

_J . 
CL a 
2: 
cc 

a 
'"'J 

a 

a 
a 
0

0. 70 

-93-

?) = 0. 00514 

'{/"!) 0.13 

'{/ "/) = 0. 28 

·----- --- .. __ 

0.85 1.00 1.15 1. 30 
NORMALIZED VELOCITY, ws/ wn 

Fig 4.3.16 

Parametric Study of Lock-in Hodel 

Stable Solutions 

Unstable Solutions 

1. 4S 

Approximate Stability Boundary 

1. GO 



co 

.. 

0 
0J 

0 
0 

0 
co 

wa 
en 
z 
0 
Q_ 

cno 
w~ 

a: a 
w 
D 
::J 
t- 0 

t--i """' _J . 
Q_ 0 

2: 
IT 

0 
"."'\) 

0 

-94-

't) = 0. 05 

"(/'IJ=0.10 

"(/ 'IJ = 0. 3C 

"(/'IJ = 1.CO 

0 ~~ --~ 

OJ.=_...-.-;;;;i~~:::::--..-....d..~~==.2-=-=:.::_:=------..-------------------J_ 
0

0. 70 0.85 1.00 1.15 1. 30 
NORMALIZED VELOCITY, ws/ wn 

Fig. 4.3.17 

Parametric Study of Lock-in Model 

Stable Solutions 

- - -- Unstable Solutions 

1. 45 

- - - Approximate Stability Boundary 

1. GO 



a 
0J 

a 
0 

CD 
a 
ro 

Wo 
en 
z 
0 
CL 
V)o 
ww 
a::a 
w 
0 
:::J 
l- a 
1--l ~· 
_J . 
CL a 
:L 
CI 

a 
0J 

a 

-95-

r, = 0 . 10 

'?;111=0.lO 

?;111 = 0. 20 

'?;/"') = 0. 30 

?;I "lJ == Loo 

0. 85 1. 00 1. 15 1. 30 
NORMALIZED VELOCITY, ws/ wn 

Fig. 4.3.18 

Parametric Study of Lock-in Model 

Stable Solutions 

Unstable Solutions 

1. 45 

Approximate Stability Boundary 

1. GO 



a 
N 

a 
a 

CD 
a 

we:) 
()) 

z 
0 
CL 
(f)a 
w eJ 

o::: a 
w 
0 
::::) 

f-- a 
1--i "<;jl 

_J . 
CL a 
:L 
CI 

a 
N 

a 

-96-

'Y) = 0. 20 

'{/~ == 0. 06 

'{/~ 0.10 

0 . 20 

---- ... _ .... __ _ 
------- .. . 

0. 60 1. co 1. 40 1. 80 
NORMALIZED VELOCITY, w s/ w n 

Fig. 4.3.19 

Parametric Study of Lock-in Model 

Stable Solutions 

Unstable Solutions 

2. 20 

Approximate Stability Boundary 

2. GO 



a 
N 

a 
0 

a 
'lJ 

Wo 
en 
z 
D 
CL 
cna 
LlJ (D 

cc 0 
LlJ 
0 
~ 
i--o 
I--! ~f 

_J . 
CL a 
2: 
([ 

a 
N 

a 

a 
u 

0
0. 20 

-97-

?} = 0.50 

"7;/"t/ = 0. 06 

f;l"IJ 0.10 

"7;/"fJ = 0. 20 

f;/"IJ = o. 30 

f;l"IJ:: 0. so 

f;l"IJ = 1. 00 

0. GO 1. 00 1. 40 
NORMALIZED VELOCITY, 

Fig. 4.3.20 

1. 80 
VJs/wn 

Parametric Study of Lock-in Model 

Stable Solutions 

Unstable Solutions 

2. 20 

Approximate Stability Boundary 

2. GO 



-98-

does not pose a severe problem since structures, in practice, do not 

present such large damping. Therefore, it appears reasonable to con-

elude that maximum amplitudes predicted by Eq. (3.4.15) may be used for 

all practical purposes. 

As for the stability boundaries, the region delimited by Eq. (3.3.34) 

is, in general, coincident with the actual unstable region. Again, 

results deteriorate as n and ~ increase, yet all unstable solutions are 

contained within the approximate stability boundary given by Eq. (3.3.34). 

4.3.5 Amplitude Response Bandwidth 

From the aforementioned it is now clear that large amplitudes of 

vibration and frequency entrainment may occur over a wide range of nor-

malized velocities. 

In order to have an expeditious way of predicting the characteristics 

of the amplitude response curves, the following bandwidths are defined: 

1) According to the classical half power method, the bandwidth 

~w 1 is determined from the frequencies at which the response 

is reduced to Bmax/12, as 

where at both points (ws/wn) and (ws/wn) , the 
a b 

amplitude response is Bmax//2. 

2) Alternately, the bandwidth may be defined as the region where 

the frequency of vibration differs substantially from the 

Strouhal frequency (i.e. , w * ws). The frequency entrain-

ment bandwidth ~w2 is then given by 
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where (ws/wn) is the smaller of the normalized frequen­
a 

cies at which amplitude response is Bmax//2 and (w8 /wn) 
c 

corresponds to the normalized frequency at which the ampli-

tude response lies on the stability boundary. 

A pictorial representation of each definition is shown in Fig. 4.3.21. 

In Fig. 4.3.22, plots for both bandwidths 6w
1 

and 6w
2 

as functions 

of n and ~ are presented. In general, one can infer that, for small 

damping and large mass ratio (e.g. light cylinder in water), the ampli-

tude response curve will be narrow at Bmaxf /2 (6w
1 

= 0.15) while assoc­

iated with a relatively larger frequency entrainment region (6w 2 >> 0.60). 

As damping increases, one bandwidth tends to the other, then much smaller 

regions of frequency entrainment can be expected. Note that amplitude 

and frequency responses for structures in water, that is, for values of 

n > 0.10, are expected to be more accurately predicted. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Using an analytical-empirical approach in this thesis, the problem 

of vortex-induced vibration of circular cylinders has been undertaken. 

A new model has been derived, based solely upon measurements of forces 

acting on a cylinder forced to vibrate in a uniform aqueous flow. This 

model predicts response of flexibly-mounted cylinders as a function of 

the structural system and flow parameters. The predicted model response 

has been compared to that obtained from flexibly mounted cylinder experi­

ments in a wind tunnel. In Chapter I, the basic phenomena of vortex 

shedding and lock-in have been reviewed for both structural configur­

ations of interest to this research effort, namely, forced and flex-

ibly mounted cylinders in uniform flow. 

Experimental results [61] that constitute the basis for development 

of the present model have been reviewed and discussed in Chapter II. 

Also reviewed and discussed in this chapter are the experimental data [9] 

used to evaluate the response curves predicted by the present model. A 

short review of previous analytical models for flow induced vibrations 

with emphasis on the Wake Oscillator Model has also been included. The 

latter model has been used to predict the forces acting on a cylinder 

forced to vibrate, in a harmonic motion, transverse to a uniform flow. 

Subsequently, these predicted forces have been used in the discussion of 

model results. 

In Chapter III, the new model for flow induced steady-stat~ response 

has been developed. Response under lock-in and non-lock-in conditions 
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has been treated separately. Model response has been determined to be a 

function of the following parameters: mass ratio (n), structural damping 

ratio (~), structural natural frequency (wn), Strouhal frequency (ws) 

and the Strauhal number (S), each of which can be independently varied. 

Analysis of model equations has shown that induced oscillations are 

possible only within certain ranges of reduced velocity, hence better 

defining the range where necessary experimental efforts should concentrate. 

In anticipation to multiple responses, a stability analysis of the 

steady-state response has been carried out through a perturbation approach 

that closely resembles the Method of Slowly Varying Parameters. In addi­

tion, an expression for an approximate stability boundary, under lock-in 

conditions has been derived and shown to be dependent only on the mass 

ratio parameter. 

In Chapter IV, the present model has been fully analyzed. First, by 

a purely empirical approach in which only the actual experimental data 

points have been used. This analysis has shown that force measurements 

from forced cylinders experiments can be used to predict amplitude and 

frequency responses of flexibly mounted cylinders. It has also shown 

the relative role played by the mass ratio and the structural damping 

ratio. Furthermore, it has evidenced inconsistencies in the available 

experimental data allowing some corrective measures to be incorporated 

into the analytical-empirical approach. 

In this analytical-empirical approach, analytical expressions have 

been used to interpolate the experimental data in order to obtain con­

tinuous model prediction curves. Model amplitude and frequency responses 

have been compared with those observed in flexibly mounted cylinder 
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experiments in a wind tunnel and have been shown to exhibit several experi­

mentally observed characteristics. Maximum amplitude of vibration is 

attained within the entrainment band, where the vortex shedding frequency 

wv is entrained by the natural frequency Wn of the cylinder. Further-

more, amplitude and frequency jumps are observed at the upper end of the 

entrainment band. 

Comparison between model and experimental responses also has shown 

that even though maximum amplitudes of vibration are fairly accurately 

predicted, the amplitude response curves are consistently shifted to the 

left with respect to the experimental ones, while entrainment bandwidths 

are underestimated. Such discrepancies have lead to doubts concerning 

the validity of comparing results obtained in experiments performed in 

water with those performed in air. These doubts were further substan­

tiated by the striking similarities observed between model response curves 

and those obtained from an experiment performed in water. H=nce, the 

model will best predic_t for structures in water. 

An expression to predict maximum amplitudes of vibration as a function 

of the reduced damping s has been derived based on model response pre­

dictions. Then a parametric study undertaken has shown this expression 

to yield results with virtually no errors for a relatively large range of 

damping values (O%<s<l0%). The maximum amplitudes predicted by the 

expression compares well with experimental results compiled elsewhere. 

Directed toward a better understanding of the manner in which ampli­

tude response curves vary as a function of n and s, frequency entrainment 

bandwidth and the half power bandwidth have been plotted as functions of 

these parameters. 
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Suggestions for further research 

As an immediate extension of this work, it is suggested that the 

methodology involved in the application of this present model be extended 

to flexible structures (i.e. cables and beams). More subtle, however, is 

the possible application of this model to uniform structures in spanwise 

sheared velocity flow or spanwise non-uniform structures in uniform velo­

city flow. It is strongly suggested that this be also pursued. 

Certainly, when more experimental data become available, several 

doubts raised within the context of this work, particularly, concern 

expressed over the validity of comparing results obtained from experi­

ments done in water with those done in air, will be dispelled. There­

fore experimental work directed towards this objective is also suggested. 

From the structural engineering point of view, it is important to be 

able to predict the nature of flow induced vibration whether or not the 

basic fluid mechanics is completely understood. It is hoped that the 

present model as well as the proposed future research will make a posi­

tive contribution towards this goal. 
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