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ABSTRACT

This thesis is a study of two-dimensional bursty channels from the information-
theoretic as well as the coding-theoretic points of view. An information-theoretic
model of bursty channels is defined and analyzed using probabilistic arguments.
Two-dimensional burst correcting codes are developed. Their combinatorial and
algebraic structures are examined. Two-dimensional bursty channels are used to
model computer memories. The results of this thesis give bounds on the storage

capacities of computer memories if sophisticated codes are used.
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INTRODUCTION

1. Overview

This thesis is a study of bursty channels. These channels are common in many
real communication problems where noise is time-dependent. In this work we
are primarily concerned with two-dimensional bursty channels. Chapter I gives
a model for such channels which motivates the rest of the thesis. As memory
cells in VLSI chips are made smaller every year, the cells become sensitive to
many sources of errors. One of the most important sources is alpha-particle
radiation. In present day technology, an alpha-particle may affect only a single
memory cell. However, as cell dimensions decrease, a single alpha-particle may
cause a two-dimensional burst of errors. Although present day memories are
quite immune from thermal and quantum effects, these sources of errors are
expected to be fundamental in any theoretical estimation of ultimate limits on
data storing in memory devices. If the dimensions of memory cells continue
to shrink every year, using error correcting codes to combat errors will become
a necessity. However, if coding is used, then only a fraction of the number of
memory cells on the chip is used to store data. The remaining bits are used as
parity checks in order to allow the chip some error correcting capability. Using
information-theoretic techniques, an upper bound on the ultimate number of
data bits that can be stored on a chip is derived, if present day technological

trends continue.

In chapter II, we give an information-theoretic model of bursty channels.
The channel capacities are derived, and their asymptotic values are obtained. A
coding scheme which is asymptotically optimum is described. The asymptotic

values of the channel] capacities are used to obtain the ultimate fraction of area
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that can be used to store data, if alpha-particles are the only source of errors.
It may be surprising to note that this useful area, and not only the number of
data bits, does increase by making the memory cells smaller, if the dimensions

of the cells are already below a certain limit.

Chapters I and II compose the first part of the thesis which is dominated by

information-theoretic arguments.

In the second part, two-dimensional burst correcting codes are investigated.
This part starts with the essential preliminaries relevant to two-dimensional
codes and bursts. In chapter III, the class of burst identification codes is defined
and studied. Burst identification codes are codes that can identify the burst
patterns but not necessarily their positions. We are primarily interested in the
minimum number of redundant bits required to construct burst identification

codes of arbitrarily large areas.

In chapter IV, we define two-dimensional burst correcting codes, and give
a measure of their efficiency which we call excess redundancy. We also define
and study two-dimensional burst locating codes. These codes can locate the
positions of the bursts if their patterns are known. Burst locating codes are
used extensively in constructing burst correcting codes. The first class of burst
correcting codes developed in this chapter is the class of BIL-codes. These codes
are constructed by combining burst identification and locating codes. The sec-
ond class of codes developed in this chapter, is the class of Fire-ish codes, which
is a generalization of Fire codes. These two classes of codes are generally better,
with respect to excess redundancy, than any other class of two-dimensional burst
correcting codes ever reported in the literature. However, the most important
class of codes introduced in this chapter is the class of cyclic burst correcting
codes of minimum redundancy. These codes, which are cyclic, have the smallest

redundancies among all burst correcting codes of the same areas.
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In the appendix, we briefly describe efficient encoding and decoding tech-

niques for the codes developed in chapter IV.
2. A Guide to the Thesis

This thesis is composed of two parts which are held together with the same
bond that holds together information theory and the theory of error correcting
codes. The two parts are written independent of each other. However, chapter I
is considered to be a motivation for the problems treated in both parts. Within
the first part, chapter II, except section 5, is independent of the material of
chapter I. The preliminaries of the second part are essential to chapters III and
IV. Certain definitions and results of chapter III are used in sections 4 and 5 of

chapter IV.

Each part has its own references. In the first part, the author makes free
use of some basic defintions and results in information and probability theories.
These definitions and results can be found in most textbooks. More specifically,
the author is heavily influenced by [7],[13], [21] in information theory, and [5],[10]
in probability theory. The general description of computer memories is primarily

based on [15],{16].

Most of the arguments presented in the second part depends on very basic
results in algebra, finite fields, and number theory. However, any result, which is
not considered to be basic, is clearly stated and referenced. Moreover, proofs are
given for most of these results wherever space and logical continuity permit. The
author has primarily consulted {[14] in algebra, {15],(18] in finite fields, and [11]
in number theory. In coding theory, the author is a student of (3],{16],{17],[20].

The author considers Theorems 6 of chapter II, 8 of chapter III, and 34 of
chapter IV to be the most important results of the thesis.

Finally, few remarks about notation. In this thesis, all logarithms have base



4
2. For real r, |r]| denotes the largest integer < r, and [r] denotes the smallest
integer > r. If ¢ is a prime power, F, denotes GF(q), the finite field of order q.
H p(z,y) € Pyz,y], then deg, p(z,y) denotes the degree of p(z,y) in z, i.e., the
degree of p(z,y) as a polynomial over F[y|.



PART ONE

COMPUTER MEMORIES AND BURSTY CHANNELS:

AN INFORMATION-THEORETIC STUDY



CHAPTER 1

INFORMATION CONTENT PER CHIP

This chapter is a motivation for the rest of the thesis. Section 1 contains a brief
description of computer memories. Soft errors are described in section 2. In

section 3, we will try to justify the use of error correcting codes in computer

memories.
1. Random Access Memories

VLSI technology has made a great impact on semiconductor memories. Every
year, semiconductor memories are made smaller, cheaper, and faster. One of
the most important classes of computer semiconductor memories is the class of
random access memory, known as RAM. In this type of memory, the content of

the memory cells can be written or read in any desired sequence.

In dynamic RAMs, which are the most widely used class of computer mem-
ories, the content of each cell is stored on a small storage capacitor. Logical “0”
or “1” are represented by the presence or absence of electric charge on the ca-
pacitor. Each cell is accessed by addressing a word line, which points to the row
containing the cell, and a bst line, which points to its column. The information
to be read or written on the cell is transmitted through the bit line. A sense

amplifier is used to amplify the signal read from the cells.

Two important parameters related to the reliability of data storing in dy-
namic RAMs are the cnitical charge and the switching energy. The critical charge
is the threshold used to decide if a given cell contains “0” or “1”. The switching
energy gives the minimum energy required to alter the content of a cell. For a

dynamic RAM to be immune from noise, the critical charge and the switching
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energy should be sufficiently large. However, in the current trend of increasing

the information content per chip by reducing cell sizes, the critical charge and

the switching energy are continuously reduced.

The most widely accepted set of rules for scaling RAM cells are due to
Dennard et al. [3]. Although these rules are rarely followed literally, they give a
simple model that can be used to give a reasonably clear view of the problems to
be encountered with small cells. It should be mentioned that Dennard’s scaling
rules are not expected to be a good guideline as dimensions shrink below the

submicron.

Suppose that a scaling factor n, where n is a positive integer, is applied to
all physical dimensions, i.e., the lengths, widths, and heights of all devices are
divided by n. Then, according to Dennard’s rules, the critical charge is scaled
down by 1/n?, while the switching energy is scaled down by 1/n®. This implies

that as we progress towards smaller cells, the less reliable the cells become.

In the following section, we will examine some error mechanisms that take

place as the switching energy and the critical charge decrease.
2. Soft Errors in Computer Memories

Errors in computer memories are traditionally divided into two classes: hard
errors and soft errors. Hard errors are associated with physical damage to the
memory cells. Such damage is permanant and can affect single cells, columns,
rows, or even the entire chip. Soft errors, on the other hand, do not cause any
physical damage. Hence, the probability of error for each cell does not change

after suffering from a soft error.

In the following, we will give a brief description of the sources of soft er-
rors. The most important source which has been already noticed in the 64K

RAM chips is alpha-particle radiation [11],[12]. Alpha-particles are emitted
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from impurities in the chip package and hit the chip with a rate of .01-.1 alpha-
particle/cm?-hour. The energy spectrum of the emitted alpha-particles is in the
range of 2-9 MeV. As an alpha-particle penetrates through a memory cell, it
generates electron-hole pairs. The electrons move towards the storage capacitor,
and may cause a change in the stored charge that exceeds the critical charge.
This can cause an error in that particular cell. It turns out that an error may
occur only if the content of the cell is “1”. If the cell content is “0”, the cell is
not sensitive to the alpha-particle. However, it has been noticed that an alpha-
particle may hit bit lines or sense amplifiers, and in such case a “06” can be read

as “1” [23].

As the cells become smaller, a single alpha-particle may cause a two-
dimensional burst of errors in the chip. The burst pattern is confined to a
rectangle whose size depends on the energy of the particle as well as on its angle

of incidence.

The errors caused by an alpha-particle are soft. The excess charge caused
by the particle is completely removed in the following “write” action. It has
been also noticed that cosmic rays can produce errors by essentially the same

mechanism [24].

Two more sources of soft errors are attributed to quantum and thermal
effects. These sources are fundamental in the sense that they are inherent in the
basic operation of the cells. Quantum effects [1],[9] are related to the Heisenberg
uncertainty principle. Thermal effects [9] are due to the random motion of
electrons induced by thermal noise. In the following, we will derive an estimate
for the error probability due to thermal effects as a function of the switching
energy. The model we consider is the same as that given by Stein [19].* The

equivalent electrical circuit is composed of a capacitor and a resistor. The mean

*  Unfortunately, the analysis in [19] is not mathematically rigorous, so we were inclined to

rederive the results.
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thermal energy generated within the circuit is given by

1 1 _—
—2-kT = El‘uz,
where k is Boltzmann’s constant, T is the Kelvin’s temperature, u is the noise

voltage across the capacitor, u? is its variance, and I' is the capacitance.

The mean voltage across the capacitor is considered to be ¢ or V according
to whether the content of the cell is “0” or “1”, respectively. The conditional
probability density function of the voltage across the capacitor is given by

1 u’T
Pr{u|“0”} = ————exp (—-—)
tul*0} /27kT /T 2kT )’
1 (v - V)zI‘)
Pr{u|“1”} = ———exp (—-——-—— .
(ul*17) \/27kT /T 2kT

The bit error probability ¢, assuming equal probabilities for storing “0” and “1”,

is given by
€= f Pr{u|“0”}du
Vi
Vv
= Q — 1
2\/kT/T
where Q(z) = Texp(—t’/Z)dt. The switching energy is E,, = I'V?/2. Hence,
an
€=0 ( 2kT) : (1)

Using the value of E,, = 107'? Joules, typical for the 64K RAM, we get ¢
10~2¢*19"_ This value is very low which reflects the fact that present day RAMs
are quite immune from thermal effects. In fact, they are also immune from
quantum effects as well [1],[9]. However, alpha-particles have a noticeable effect
on these RAMs, which is expected to be intolerable in the near future if the trend

towards higher densities increases without combating alpha-particles using new

innovations in device technology. Thus, alpha-particles will impose a physical
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limit to the persistent trend towards smaller and reliable memory cells, if no

coding is used.

Using error correcting codes, the effect of soft errors can be greatly reduced,
and hence, reliable memory cells whose sizes are below the apparent physical
limits can be produced. This of course is done at the expense of using a certain
number of memory cells on the chip as parity checks. To justify the use of error
correcting codes, we need to argue that the snformation content per chip, i.e.,
the number of information bits on a chip, can be increased even if some of the
cells are parity checks, as more cells are built per chip. This is the subject of

the following section.
3. Minimum Area per Information Bit

We begin with an “abstract” chip of unit area which contains a single memory
cell. We apply a scaling factor n, where n is a positive integer, to produce on
the original chip n? cells. We assume that if error correction is present, it is
performed at regular intervals of time, which may vary with n. We assume that
the error probabilities of the memory cells are equal. For each memory cell, the
probability of error is independent of the cell’s content and all other cells. This
bit error probability will be denoted by €(n). With these assumptions, writing
and reading bits from the chip is equivalent to transmitiing them on a binary
memoryless channel with error probability e(n). Motivated by physical reasons,
we assume that ¢(n) is an increasing function of n, and €(n) — 1/2 as n — oc.
In the analysis that follows, 1 — 2¢ occurs more frequently than ¢, so we define

6 = 1 — 2¢. The channel capacity per cell is given by
C=1 +eloge+(1 —e)log(l —6)
1
= 31(1 = 6)log(1 - &) + (1 + 8) log(1 + 6)].

We note that C/6? — loge as n — oo.
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If a code is used, so that k of the n? cells are used to store data, then the
rate of the code is defined to be R = k/n?. Shannon [17] has proved that there
exist codes with arbitrarily small probability of error if R < C. On the other
hand, if R > C, then no such codes exist. As n increases, we expect a larger
probability of error, and so the rate of the code needed to have reliable chips
should be reduced. We are interested in the minimum area per information
bit (MAPIB) required for reliable storing of data, assuming the technology to
produce a scaled chip for every positive integer n. This quantity is given by
MAPIB = inf ;561(7;5 (2)
Since C(n)/6%(n) — loge as n — o0, a necessary and sufficient condition for
MAPIB to be gero, is that né(n) — 0o as n — co. In that case, an infinite
amount of information bits can be stored on a urit area. This is of course

unrealistic.

Unfortunately, we cannot determine MAPIB from (2) since the bit error
probability €(n) is not known for all values of the scaling factor n. Another
problem arises from the memoryless assumption, i.e., that the error probabil-
ities for the celis are independent. This assumption will not hold as the cell
dimensions shrink since a single alpha-particle may cause several cells to fail.
This aspect will be considered in the next chapter. However, we simply note
that neither the flux nor the energy spectrum of alpha-particles depend on scal-
ing. This means that if a cell is small enough to be sensitive to alpha-particles of
all energies in the energy spectrum, which ranges from 2-9 MeV, then its error
probability depends primarily only on the probability that an alpha-particle hits
the surrounding area of the cell, which does not depend on the scaling factor.
Hence, alpha-particles impose no limit on the information content per chip by us-
ing error correcting codes. This shows the power of error correcting codes since,
~ without them and with no major improvements in technology, alpha-particles

undoubtedly impose a limit on the information content per chip.
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On the other hand, thermal effects place a fundamental limit on information
content per chip, even by using error correcting codes. This result was first
reported by Swanson [20] for other types of memory devices. We will show that
the result also holds for RAMs. From equation (1), we have for the unscaled

chip, i.e., with n =1

§(1) =1-2¢(1) =1-2Q (\/f;;,) :

Using Dennard’s scaling rules, the switching E,, is scaled by a factor of 1/n3.

Considering the area of a single cell in the 64K RAM to be unity, and using
the value E,, = 107'? Joules typical for the 64K RAM, we get 6(n) 1 -
2Q(10'n™'*). From (2), it follows that MAPIB s 1.2 x 105, and the capacity
per cell C is about 0.5. The cptimum value of n is about 400. Hence, even by
using error correcting codes, it is impossible to preduce a reliable chip with the
same area as that of the 64K RAM (which is about 1mm?, considering the area
of the memory cells only) and whose information content exceeds 5.4 Gigabits.
Of course, this estimate is very opiimistic as we have ignored all other sources of
error. Undoubtedly, at these very small dimensions new error mechanisms will be
discovered, and more importantly, the whole model, including Dennard’s scaling
rules, will be invalid. Although this analysis shows that even by using error
correcting codes, an ultimate limit on information content cannot be exceeded,
the same analysis shows the power of error correcting codes. Indeed, for the
optimal cell size, the bit error probability, without coding, is about 0.1, which
is far from being tolerated if no coding is used. In other words, by using error
correcting codes, reliable chips with very small cell dimensions and with high

information densities can be obtained.

In the analysis we have pursued so far we did nc’ consider the complexity
of the encoder and the decoder. It was implicitly assumed that the area of the

chip is entirely devoted to information and redundant bits. It is expected in
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the future that the encoder and the decoder will be implemented on the chip
itself. This will impose conditions on the codes to be used. In chapter Iv,
some two-dimensional burst error correcting codes, which may be helpful in
combating alpha-particles, are developed. The first priority in considering these
codes is their error correcting capabilities. In the appendix, efficient encoding
and decoding algorithms for these codes will be described. However, we are in
no position to argue that these algorithms are suitable to be implemented on
chips. On the other hand, we expect in the future, that the chip architecture

may be considerably modified to be compatible with the codes used.

In the rest of this section, we argue that in the *unrealistic® case of né(n) —
00 a8 n — 00, an infinite number of information bits can still be stored on the
chip even if the encoder and the decoder are placed on the chip. However,
we will impose the unrealistic condition that the encoder and the decoder are
completely immune from noise. Moreover, the area required for connections
will be ignored.* Let K(n) be the number of information bits on the scaled
chip, and N(n) be the codeword length. Hence, for reliable storing of data, we
have K(n)/N(n) < C(n). We assume that the encoder and the decoder are
composed of cells that are scaled with the same scaling factor n. The encoder
is a ROM (read only memory) that contains a list of all the 2X codewords. An
adder of length N is associated with each codeword. Each adder performs a
componentwise addition modulo 2 of the retrieved word and the corresponding
codeword, and gives the total number of 1’s appearing in the sum, which is
the Hamming distance. A codeword, with the closest distance to the retrieved
word, is the decoder’s estimate, which is a maximum likelihood decision. Hence,
the number of equivalent memory cells of the encoder and the decoder N,q is
- bounded by ¢N x 2%, where ¢ is a constant which is independent of n. For
the encoder and the decoder to be built on the chip, we should have n? >

N + N 2 N+ cN x 2X. What we need to show is that if né(n) — co as

* The author encourages the reader not to be serious in reading this paragraph.
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n — oo, then we can make K — oo such that the inequalities K/N < C and
n? > N+cN x2¥ are satisfied. Since C/6% — loge, then by having N = n/é(n),
the number of information bits per chip K can tend to infinity as logné(n). It
may be interesting to note that although the entire chip is almost devoted to the
encoder and the decoder, and the tiny part that remains is itsclf almost entirely
occupied by redundant bits, an infinite number of bits can still be stored on the
chip.
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CHAPTER II

BURSTY CHANNELS

In this chapter, we study a new class of channels with memory which we call
bursty channels. In section 1, bursty channels are defined. Their capacities
are derived in section 2. In section 3, asymptotic values of the capacities are
obtained. Coding schemes that are asymptotically optimum are described in
section 4. In section 5, we apply the model of bursty channels to computer

memories suffering from alpha-particles.

Throughout this chapter, uppercase letters denote random variables. Se-
quences are written in boldface letters. The I-sequence (v;, vy, ... , ¥1) is denoted

by v;. If § is a set, then the set §' is the product of I copies of §.
1. Definitions

Let § be a nonempty finite or countable set whose elements are called states. Let
S =5,8,,..., where S; is $-valued random variable, be a stochastic process
such that the following conditions are satisfied:

(1) The stochastic process 8 is strictly stationary [4; chapter II], i.e., for any
positive integer ¢, the multivariate distribution of Shi1, Sh42y- -, Shye i8 in-
dependent of h, as long as A > 0.

(2) There exists a least nonnegative integer m, called the duration of state
memory, such that any two finite sequences in S separated by at least m
states are independently distributed, i.e., if ¢ and # are two positive integers,

81y+++18,8,...,8, € 8,120, and ' > { +t + m, then,

' '
PI'{SH,] = 8, o..,S.'.H = 8;,S.‘i+1 = 81ye.- ,S.'I.HI = 8‘;} =

PI'{S.'.H = 81440 ,S.‘.H = 8;} PI’{S.'1+1 = S'l, .. .,S,"_HI = 8",}.
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Let X and Y be two nonempty finite sets. For every stale s € §, we
associate a discrete memoryless channel, called the component channel defined
by s, whose input and output alphabets are X and Y, respectively, and whose
channel probability matrix is [p(y|z,s)],z € X,y € Y.

The bursty channel is defined as follows. When a sequence X = z;,1,,...,
where z; € I, is transmitted, the ith component z; is transmitted through
the component channel defined by s;, where s; is the ith component of 8. The
process 8 = 81, 5, ..., is called the state stochastic process of the bursty channel.

The I-sequence (Si,...,S;) is called the state random [-sequence.

As an example of a bursty channel, we consider the case where § is finite,
and the components of 8 are independent and identically distributed random
variables. In this case m = 0. This channel has been introduced by Shannon
[18]. In the next section, we will make use of this simple channel to derive the

capacity of the general bursty channel.

Block interference channels introduced by McEliece and Stark [14], are in
certain aspects similar to bursty channels. The only difference is that in block
interference chanrels, the state stochastic process § = 51,8,..., is such that
Sim+1 = Sim42 = ... = Sii+1)m for every nonnegative integer 1, where m is some
positive integer. Moreover, S+, and Sim+1 are independent for § # j. Gen-
erally speaking, 8 is not stationary, and thus block interference channels may
not be bursty channels. However, by considering the channel whose input is an
m-sequence (z.—,,.+1,z,-,,.+2,...,z(;“),,.), where 1 = 0,1,..., then block interfer-
ence channels can be viewed as bursty channels whose state stochastic process
is a sequence of independent, identically distributed, random variables. In our
treatment of bursty channels, we will use many techniques introduced in the

study of block interference channpels.



~17 -

2. Channel Capacities

In this section, we derive the capacity of the bursty channel in the following
three cases:*
- (i) Neither the encoder nor the decoder knows the state which governs the
transmission of each letter.
(ii) The decoder, but not the encoder, knows the state which governs the trans-
mission of each letter.
(iii) Both the encoder and the decoder know the state which governs the trans-
mission of each letter. We assume that the encoder knows all the states

before encoding.

We note that in cases (i) and (ii) the input is independent of the states.

For each of the above three cases, a capacity is defined as follows. First, we
define an (n, M, A) code to be a code of M codewords, each of length n, and
whose error probability does not exceed A. Now, suppose that there exists a
real number C such that if € > 0 and 0 < A < 1, then for all sufficiently large n,
there exists an (n, M, A) code with M > 2"°~9 and any (n, M, A) code satisfies
M < 27(C+9, If such C exists, it is called the capacity. We will argue in the
following that in each of the three cases, the capacity exists. We denote by C,

C4, and C,q the capacities corresponding to cases (i),(ii), and (iii), respectively.

For the example of bursty channels given in section 1, where § is finite
and the components of S are independent and identically distributed random
variables, the capacities C, Cy, and C,; are known to exist. Let S, X, and

Y denote single components of each of S, the random input, and the random

* Case (iv), in which the encoder, but not the decoder, knows the states, will not be considered
here. In fact, we are mainly interested in case (i). Cases (ii) and (iii) are primarily used to gain
a better understanding of case (i).



- 18 -

output, respectively. Then, the capacities are given by [8],[18],[21; section 4.6},

C=m(a.)x I(X;Y), (1)

plz

Ca = max I(X;Y|S), (2)
plz

Cea=n(1?))c I(X;Y|S), (3)
p(z|e

where I(X;Y) and I(X;Y|S) denote the mutual information, and the condi-
tional mutual information given S, between X and Y, respectively. The maxi-
mization is taken over all probability distributions, where p(z) and p(z|s) denote
the distributions of z and of z given s, respectively. The expression of C.4 is an
abbreviation for ¥,es max,,) I(X;Y|s)Pr{S = s}, The assumption that § is
finite can be removed by using the results of [21; chapter 8].

Now, we return to the general bursty channel with state stochastic pro-
cess 8, and duration of state memory m. We will consider only the capacity
C to avoid repetition since the argument holds for C; and C.s a8 well. Let
n = k(I + m) +t, where n,k,I,t are integers, k,I > l,and 0 < t < | + m.
Let 8, = (Si,...,8,) denote the first n components of S, i.e., the state ran-
dom n-sequence. Define the random k-sequence R; = (Ry,...,R:), where
R, = (S(;_l)(,+,,.)+1,S(;-,)(,+,,.)+g,...,S(,-_l)(,+,,.)+,) for 1 < 1 < k. We define
the channel A to be the channel whose input and output alphabets are X/ and
Y', respectively, and whose state random k-sequence is R;. Conditions (1) and

(2) stated in section 1 ensure that the components of R, are independent and

identically distributed random variables. Hence, from (1), we have
Ca(l) = max I(X;;Y)),
pix))

where C,(l) denote the capacity of A. Here, X; and Y; denote the input and

output random 1-sequences, respectively, of channel A. Let

__Ca(D)
C= P irm
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In the following, we will argue that C is the capacity of the bursty channel
corresponding to case (i). First, consider a discrete memoryless channel with
gero capacity, and whose input and output alphabets are X and Y, respectively.
Let &' denote the state of such channel. We also consider a discrete memoryless
channel with capacity log|X|, whose input and output alphabets are X and g,
where ¥ is a finite set which contains Y such that || > | X|. Let s" denote the
state of such channel. Note that these two discrete memoryless channels may
actually be among the component channels of the bursty channel. From the

random n-sequence 8,, we define the random n-sequence S), = (5;,...,S') as

g, fori=l+1,1+2,...,1+m (mod!+m),
S = or k(i+m) < i < n;
S;, otherwise.

The random n-sequence 8, is defined similarly after replacing &' by s". Let A’
be the channel with input and output alphabets X and Y, respectively, and
with state random n-sequence S;. Similarly, let A" be the channel with input
and output alphabets X and ¥, respectively, and with state random n-sequence
Sn. Let Ca(l) and Can(l) be the capacities of A’ and A", respectively. Clearly,

these capacities are given by

1
CA'(I) = I + mCA(I), (4)
and
1
Canll) = ;- Call) + ;7 —log | X|. (5)

Suppose we are given € and A such that € > 0 and 0 < A < 1. Obviously,
an (n,M, ) code for channel A' is is an (n, M, A) code for the bursty channel.
Hence, it follows from the definition of the capacity of A’ and (4), that there
exists for sufficiently large n, an (n, M, A) code for the bursty channel with

M > 20(Carh=c/3) — gn(Ca)/(H4m)=c/2) > gn(C—o) (6)

if { is chosen such that C < Ca(l)/(I+m)+€/2. On the other hand, an (n, M, A)
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code for the bursty channel is an (n, M, A) code for channel A", Hence, it follows
from the definition of the capacity of A" and (5), that for sufficiently large n,
any (n, M, A) code for the bursty channel satisfies

M < zn(CAn(l)+€/2) — 2"([?‘,;CA (')h;'";loxl-flﬂ/?).
By choosing I large enough so that mlog|X|/(I + m) < €/2, we get
M< 2"(1‘,4,‘—,,,0‘5(')4") S 2n(C+(). (7)

From (6) and (7), it follows that the capacity of the bursty channel exists, and
is equal to C. Furthermore, since Cy/(I) < C < Can(l), we get by using (4) and
(5,

1 1 m
< < .
Trmoall) <€ < Ca(l) t i m o8kl
Hence,
¢ = im 98U _ yp max 1KY
{—o0 l {—oc p(x,) l

So far, we have treated case (i). The same argument holds for cases (ii) and
(iii) by using (2) and (3). Hence, the next lemma is proved. Before stating it,
recall the definition of X; and Y as the input and output random 1-sequences,
respectively, of channel A. The random variable Y, depends on X; and R,
which is the state random variable of channe! A. But R, = (5,85,,...,5) is
the state random I-sequence of the bursty channel. Hence, X, and Y, are the
input and output random I-sequences of the bursty channel. Thus, we can state

the foliowing lemma without referring to channel A.
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Lemma 1. Let X;, Y, and 8; be the input, output, and state random
I-sequences, respectively, of the bursty channel. Then,

C—sup max (X;;Y,) = lim max I—(x'—’YL)

pxi  l+m I~ pixi) ] ’

Cy= sup max 13X Yi|S)) = lim max M,
P(*l) ‘+ m {—o0 p(xl) l

Ced = sup max ———-—-I(x’;Yllsl) = lim max w’
p(xi|s) {+m =0 pix/s) l

The next theorem implies that in cases (ii) and (iii), the statistical depen-

dence between the components of 8 is immaterial given the first order distribu-

tion of the states.

Theorem 2. Let! be a positive integer, X,, Y;, and S; be the input, output,

and state random l-sequences, respectively. Then,
Cd = max I(X,;Y,|S,)/l,
Cu= max I(X; Y|S0/

pixis;)

Proof. For 8; = (s;,...,8) € §' and Pr{S; = 8} > 0, let Ex, y,s, denote
expectation on the joint sample space of X; and Y, given S; = 8. Since the
- component channels are memoryless, we have

I
p(Yilxi, 81) = g p(yilzi, 83).

From the definition of the mutual information, we have

p(yilx, 8
I(X;; Yilsi) = Ex,, v, [log (P(;'l|gl)l)]

and

> I(X¥is) = 3" Bx [log g._l__z]

=1 =1 ( IS)
p(yilxi, ) ]

= Ex, v |log DY1XL81 |
XoXile [og Ii= p(vils:)
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By using Jensen’s inequality, we get

I(XISYIIBI) - z: I(X"Yls‘) - Exn"r[u [log .—lypl(!:;;a )]

i=1 PAYil8i
< logEx, y,ps, [—W] = 0,

with equality if, and only if, p(y:|&;) = IT'_, p(%i|s:). The later equality is satis-
fied if p(x|s;) = IT'., p(z:|s;). Hence, we have
pl(nalx I(thllsl) = Z [(nal“x) I(X”YES,)
xils:) y=1 Pi%il®

Thus,
ma.x I(X‘. Yng,)_ Z mzlxx I(X,,Y,]s,)Pr{S,—s,}

plxis:) Y ES'p

=y Z max I(X;; Yi|s:)Pr{S = 8;}

. es' i=1 Pl

—E Y. max I(X;;Y;ls) Pr{S; = s}

s=1 €S plaile)

—l max I(Xl,Y”Si),

pla1le1)
since Pr{S; = s} is independent of s by condition (1} of section 1. Now, it follows
from Lemma 1 that Theorem 2 holds for C,;. The same argument proves the
theorem for Cy as well after taking into account that X, and S; are independent

in case (ii). B

It is interesting to study the case when C; = C,,. First, we say that the
component channels are compatible if there exists an input distribution that
achieves capacity for all of the component channels whose states have positive
probability. The next corollary then follows immediately from Theorem 2 by
setting [ = 1.

Corollary 8. C,4 = C, if, and only if, the component channels are compati-
ble.

Of course, this corollary does not imply that the information provided to the
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encoder about the states is useless if the component channels are compatible.

In fact, by using this information the encoding and decoding complexity may

be reduced considerably.

Theorem 2 offers an easy way to calculate C,qy and Cy by setting | = 1.
However, for the capacity C, which is generally more interesting, Theorem 2
does not apply. In fact, the statistical dependence between the components of
8 plays a vital rule in determining C. This will be considered in the following
section. We end this section with a theorem that implies a lower bound on C,

which is tighter than that implied by Lemma 1.

Theorem 4. Let X, and Y, be the input and output random l-sequences of
the bursty channel, respectively. Then,

C = lim max ———I(xl;Yi) = 8up max Lx’; Y_‘)'
I—oo pix;} l 1 oplx) l

Proof. The first equality follows from Lemma 1. To prove the second equality,

it suffices to show that

max I(xlr;YIr) 2 max
p(xi,) ir p(x,) r

(8)
for all positive integers | and r. Without loss of generality, we give the proof
for r = 1. Consider the components X,...,X; of X; to be independent. The
following argument is from [13; chapter 1]. Let Ex, y, denote expectation on the
joint sample space of X; and Y. Then,

= Exhy, [log —~—————}:(x‘!y‘) ] ’
=1 p(zl')
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and

; I(X,Y;) = ; Ex,y, [log 4 (?"3;')]

ITizy p(zilyi)
= EX,,Y [log;—— .
' n£'=l p (1‘." )
By using Jensen’s inequality, we get

N vy I, p(zily:)
S I(X;Y) ~ I(X5Y) = Ex, v, [log (x,|y,)]

< logEx, y, [Mi;(lﬁy:l)yi) ] =0.

=1

Thus, we have
max I(X;Y,) > Ema.xI(X.,Y) = lmaxI(X,,Y,)

P (x '—1

Thus, (8) holds for r = 1. ]
3. Asymptotic Values of Capacities

Consider a bursty channel whose state stochastic process is 8 = §;,5,,.... We
define the run length random variable to be the value of L such that S, = §, =

. =81 # Sp41, if such L exists. If no such L exists, we take L = co. We also
define for each positive integer I, the I-run random variable U as

Ulz{o, ifLZ{;
1, otherwise.

Now, consider a sequence of bursty channels I';,T,,..., defined on the same
state set §, input alphabet X, and output alphabet Y. However, the duration
of state memory may not be the same for all channels. For channel T',,, let L,
Uin, and S;, be the run length random variable, the I-run random variable, and
state random l-sequence, respectively. Every bursty channe! satisfies conditions
(1) and (2) of section 1 by definition. We assume that the sequence I';, T',,..
satisfies also the following two conditions:

(3) The sequence of random variables Ly, L,,... diverges to oo in probability.*

* That is to say, for each I and ¢ > 0, Pr{L, <1} < ¢ if n is sufficiently large [2; chapter 4].
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Equivalently, for each positive integer I, the sequence of random variables
Uiy, Uiz, ..., converges to 0 in probability.

' (4) The sequence of state random 1-sequences S, ;,S;,,... converges in distri-

bution to some random variable S,.

Let C(n),Ca(n), and C.4(n) be the capacities of channel I', corresponding
to cases (i),(ii), and (iii) of section 2, respectively. From Theorem 2, the next

theorem follows because of condition (4).

Theorem 5. Let X, and Y, be the input and output random I-sequences,

respectively. Then,
lim Cy(n) = max I(X,;Y3|S,),
n—oo pl(z;
lim C.4(n) = max, I(X,;Y,|S)).
n=—0oo plzyin

Now, we state and prove the most important result in this chapter. In the
proof, as well as in the next section, some basic properties of mutual information
and conditional mutual information will be used. These properties can be found
in [7; chapter 2},[22].

Theorem 6.

lim C(n) = lim Cy(n).

n—oc

Proof. Let n and [ be positive integers to be determined later. Consider the

bursty channel I',,. From Theorems 2 and 4, we have

Cd(ﬂ) - C(ﬂ) < %[ ln(a-7)( I(xl,n; Yl,n'sl,n) - n%a))( I(xl.n; Yl,n)]:
Pixy Pix;

where X;,,, Y;, and 8;,, are the input, output, and state random /-sequences,

respectively, of channel I',,. Hence,

Cilm) = C() < 7 max{(Kupi VialSi) ~ [ Vi) (9)
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Since X;, and 8, are independent, I(X;n; Yia[S15) = I(Xin; Yin, Sin). We

have
I(Xyn; Y1,0,810) = I(Xin; Yin) = I(Xip; S1n| Yin)
= I(Xin, Yi1,581n) = I(S105 Yi0)
<I(Xip, Yi0;8:,)
= I(Xipn, Y103 810, Usn)
= I(Xin) Y13 StnlUtn) + I(Xin, Y103 Up ),

where we have used the fact that U, is a function of 8;,,. Since U}, is a binary

random variable, we have

I(xl,n;Yl,ny Sl,n) - I(xl.n;Yl,n) S I(x',n’ Yl,n; Sl,nIUl,n) + 1. (10)

But
I(xl,nle,n;Sl,nIUl,n) = I(xl,n)Yl,n;sl,nlUl,n = O)Pr{Ul,n = 0}
<+ I(X,,,,,Y,,,.;S,',,IU,,. = l)Pr{U,,, = 1}.

Hence, we have

I(xl,m Yl,n; Sl,nIUl,n) S I(xl,m Yl,n; Sl,nIU!,n = 0)
+ og(| X (| YN)Pr{U,n = 1}. (11)

To bound I(X;n, Yin;8i,n|Ui, = 0), we use the same technique as that presented
in [14]. Let T be the histogram describing the number of times each of the pairs
(z,y) € X x Y occurs among the ! pairs (X}, Y1), (X2,Yz),...,(X;,Y:). Then T
is a sufficient statistic for 8, given Uj,, = 0, i.e., given T and U}, = 0, the joint
random variable (Xy,,Y,,) is independent of 8;,, [6; chapter 3]. Since T is a

function of X;, and Y,,, we have

I(xl,mYl,n; Sl,n'”l,n = 0) = I(X{,.,Y(,,,, T; S['n|U1,,. = 0)
= I(T;S',nlU"n = 0) + I(xl,m Yl,n; sl,any Ul,n = 0)
= I(T;8,|Uin = 0)
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< H(T)
< | X||Y|log(l + 1), (12)

since there are at most (I + 1)/¥I¥! such histograms. From (10), (11), and (12),

we have
I(X1n3 Y1,0,810) — I(Xy; Yi0) < | XY log(l + 1)
+ og(| XY )Pr{U1n = 1} + 1.
From (9), we have

Culm) ~ C(n) < 7 [|XI1Y/log(t + 1) + Llog(|X|[Y)Pr{Tsn = 1} +1].

Now, we prove that lim[Cy(n) — C(n)] = 0 as n — o0o0. Suppose 6§ > 0 is
given. Choose [ large enough such that [(|X]|¥|)log(I + 1) + 1]/I < 6/2. From
condition (3}, it follows that log(|X||Y|)Pr{U}, = 1} < 6/2 for all sufficiently
large n. This proves that Cy(n) —C(n) < & for such n. The theorem now follows

since lim Cy{n) exists by Theorem 5. ]

Theorem 6 can be heuristically explained as follows, in case of finite §. As
the state sequence form long runs, i.e., subsequences of elements of § of like kind,
the decoder can infer the component channel governing the transmission of each
letter with small probability of error. This can be done by an agreement between
the encoder and the decoder to divide the word sent into blocks of some fixed
length, and within each block a certain packet of shorter length that is known to
the decoder is sent. The decoder assumes that all the letters transmitted in each
block are governed by the same component channel, and guesses these channels
from the output distributions of the packets. Hence, the information provided
to the decoder about the states in case (ii) may be dispensible, if a certain
probability of error in guessing the states is tolerated. McEliece and Stark [14]
have noticed the same phenomenon in block interference channels where all the
runs have the same length, and both the encoder and the decoder know where

each run starts and ends. Thus, in block interference channels, by choosing the
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blocks to have the same length as the runs, then the assumption made by the
decoder that each block is governed by the same state holds. However, in bursty
channels, the runs may start and end anywhere. Furthermore, even if the states
form very long runs, the decoder will not be able, in general, to decide where

each run starts or ends within an arbitrarily smalil probability of error.

In the following section, we will show that this argument does not only give
a heuristic explanation for Theorem 6, but also offers a coding scheme to achieve

the asymptotic value of C(n).
4. Smart Interleaving

In this section we will confine ourselves to bursty channels with a finite state
set §. We are interested in case (i) of section 2 in which neither the encoder
nor the decoder knows the state which governs the transmission of each letter.
We assume, without loss of generality, that no two different states in § are

associated with the same component channel.

Let ¢ be a nonnegative integer. A test packet of length ¢ is a fixed string of ¢
letters in X'. Let I > t be some positive integer. Now, suppose that the coding
scheme is such that every codeword is divided into blocks of length ! each, except
possibly the last block which will be discarded. Each block starts with the test
packet. The test packet and the number ! are known to the decoder. The
decoder, upon receiving a word, looks at every block of length I, and assumes
that the states are the same in any particular block. Furthermore, the decoder
infers the state of such block from the output corresponding to the test packet
contained in the block. Having done that, the decoder decodes the received

word assuming that it knows the state governing each letter sent.

The decisions made by the decoder from the test packets form an estimated
state stochastic process S, whose components are in §. The ith component S, is

the estimated state variable of the ith block. Let m' = |m/I]. Then § catisfies
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conditions (1) and (2) of section 1 if m is replaced by m’.

The coding scheme described so far can be looked at as follows. The encoder
sends from every block the I — ¢ letters which are not used in the test packet.
These letters form a “reduced® codeword. The decoder is supplied with the
estimated state sequence, and decodes the received reduced word accordingly.
Thus, the decoder is provided with a noisy version of the state sequence by

depriving /I of the length of the codeword from any information relevant to the

message sent.

From section 3, there exists a coding scheme that achieves the capacity C if
t is set to 0. The main problem in doing that is the coding complexity needed to
utilize the statistical dependency of the components of the state sequence. Our
aim is to find a good coding scheme for the reduced codewords that ignores com-
petely this dependency. These later codes, if they exist, are in general easier to
find and implement. The scheme which will be considered is to make the reduced
codeword composed of (! — t)(m' + 1) subcodewords. The sth subcodeword is
composed of al] letters whose coordinates are congruent to s mod (I — ¢)(m' +1).
The states corresponding to such letters are independent since they are sepa-
rated by at least m states in the original codeword, i.e., the codeword which
contains the test packets. Furthermore, we require that the subcodewords are
independent of each other such that the statistical dependency of the states of
the subcodewords is completely ignored by both the encoder and the decoder. A
coding scheme under these restrictions will be called smart interleaving, a ferm
used in [14] in connection with block interleaving channels. The word “smart”
is used to distinguish such scheme from “ordinary” interleaving in which no test
packets are used, i.e., t = 0. Of course, in certain cases, as in the case of m = 0,
smart interleaving with ¢t > 0 in not the smartest thing to do and ordinary

interleaving is better.

In general, the restrictions imposed on smart interleaving are too strict in
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the sense that no coding scheme exists under these conditions that achieves
the capacity C. In the next lemma, we will find the capacity Cgs; of smart
interleaving. First, note that the estimated state sequence is independent of the
input, and that it is also independent of both the input and the output given
the state sequence. Here, as well as in the following, the input, output, and
state variables refer to the letters in the reduced codeword, i.e., the codeword

that does not contain the test packets.

Lemma 7. Let X,, Y;, and 51 be the input, output, and estimated state

random 1-sequences, respectively. Then,

Cs1 = (1 -1/l n(laJ)cI(X;;Yl,S'l).
P\2 ]

Proof. Clearly, Cs; is (1 — t/l) times the capacity of the channel where S, is
known to the decoder, and the states are independent, identically distributed,
and given by the random variable S, the state random 1-sequence. This channel
may be considered to have input X; and output (Y;,S’;). The capacity of this
channel is max,(,,) I{X,; Y;, S’l), [}

In the following, we assume that the test packet and the estimate § are

chosen to maximize Cs;.

One may consider the channel defined in the proof of Lemma 7 with input
X, and output (YI,S"I) to be a cascade of a channel with input X; and output
(Y1, 51), followed by a channel with input (Y;, S;) and output (Yl,fv‘;,) in which
5'1 depends only on S;. This model is valid since S‘, is independent of X; and Y,
given S;. The following lemma gives a bound on the loss of mutual information

due to the second channel. In this lemma, H denotes the entropy function.



—_ 3) —
Lemma 8. Let X,,Y,, S, and 8, be the input, output, state, and estimated

state random 1-sequences, respectively. Then,

I(Xl;yligl) Z I(XI;YI;S].) - H(Sllgl)'

Proof. . .
I(Xx;YuSnSx) = I(X;; Y1, 5:) + I(X;; 8:|Y1, S))

= I(Xy; Y1,51) + I(X3; 54V, 8).
But I (X,;s',lYl, S,) = 0 since $; and X,,Y, are independent given S,. Hence,
I(X3;Y1,51) = I( X3V, 50) — I(Xy; 8.V, 8)
> I(X; Y1, 5:) — H(S,|Y,, 8,)
> I(X1; Y1, 8,) — H(5,|5)).
|
Let U; be the I-run random variable defined in section 3. The next lemma

shows that if U; = 0, then H (S,|.§'1) can be made arbitrarily small by increasing
t.

Lemma 9. Let § > 0. Then for every sufficiently large t, there exists a test
packet of length t such that H(S,|S,,U; =0) < 6 ifl > t.

Proof. Define the distance d(s, s') between the states s and s' € § by

d(s, 8') = max{|p(y|z, &) — p(ylz, &')| : (z,y) € X x Y}.

By the assumption made in the beginning of this section that no two different
states share the same component channel, it follows that d(s,s') > 0 for s # s'.

Define the minsmum dsstance of the states as
dmin = min{d(s,s') : s,8' € §,5 # &'}.

Consider a test packet of length t > |X|, and let ¢ = [t/|X|]. In the following,
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we will ignore the last ¢t — ¢|X| letters in the test packet, and consider it to be
composed of the first c|X| letters only. Let each letter in X appear ¢ times in
the test packet. Define the random variable N(z,y), where (z,y) € X x V,
as the number of times the letter y appears in the output of the test packet

corresponding to input z. Define the estimate S of S, as follows:

8, if there exists a state s such that

g = IN(z,y)/c — p(y]z, 8)| < duin/2,
‘ for all (z,9) € X x J;
§, otherwise, where § is some fixed state in §.

From the definition of dp, it follows that this estimate is well defined, i.e.,
there is at most one state s for which |N(z,y)/c — p(ylz, 8)| < dmin/2 holds for

all (z,y) € X x Y. Let € > 0. From the law of large numbers, we have for
sufficiently large t,

Pr{|N(z,y)/c — p(y|z,8)| < dmin/2} > 1 —¢

for all (z,y) € X x Y if the block of length I that contains the test packet has

the same state s. Hence, if ¢ is sufficiently large,
Pr{gl # SlIUl = 0} < €.
The lemma now follows from Fano’s inequality [13; chapter 1]. [

Now, we consider the sequence of bursty channels I';,T’,,... defined in sec-
tion 3, where § is finite. This sequence satisfies conditions (3) and (4). The
asymptotic value of C(n) was derived in Theorem 6. Our main objective in this
section is to prove that Cs;(n), the capacity of I', using smart interleaving, tends
to the same limit as that of C(n). We need a lemma before proving this result.
The same notation will be used in the following after adding the subscript n to

denote channel I',,.

Lemma 10. For every § > 0 there exists ty(§) such that for every ¢t > t0(6),
H(S,,0)81,) < 6 for all sufficiently large n.
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Proof. For all 8,8’ € §, we have
Pr{Sin = 8|80 = 8} = Pr{S, = 88,0 = &', Uy, = 0}Pr{U},, = 0}
+Pr{S;, = 8|8, =8, Uj, = 1}Pr{U;, = 1}

From condition (3) of section 3, Pr{U;, =0} — 1 as n — co. Hence,
Pr{S,, = 8|8, = &'} — Pr{Sip = 8|81 = 8, Upp = 0}.
Similarly,
Pr{S;, = 3,5'1,,, =4'} = Pr{S,, = s, §1,n = 8'|U;,, = 0},

and

Pr{S,n = 8} = Pr{S,, = s|U;,, = 0}.

From the continuity of the entropy function it follows that
H(Sx,nls'x,n) - H(Sx,nlgl,m Ul.n = 0)
as n — 0o0. The lemma now follows from Lemma 9. [ |

The next theorem is the fundamental result of this section.

Theorem 11.
lim Csy(n) = lim C(n) = lim Ca(m).

Proof. The last equality has been proved already in section 3. So, it suffices to
show that Cy(n) — Css(n) — 00 as n — co. By setting I = 1 in Theorem 2, it

follows from Lemmas 7 and 8 that
t t A
Cu(n) — Csi(n) < 1Ca(n) + (1 = 1) H(S,0]51,)
t t ~
S i log irl + (1 - I)H(Slv"lsl‘n)"

Suppose that § > 0 is given. Choose t > t,(5/2) of Lemma 10. Choose { > ¢ such
that tlog|X|/l < 6/2. Then, from Lemma 10 it follows that Cy(n) — Cs;(n) < 6
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for all sufficiently large n. [
This theorem implies that smart interleaving is asymptotically optimum.
6. Applications to Computer Memories

In this section we apply the results of the previous sections to computer memories
affected by alpha-particles. First, we consider the “one-dimensicnal chip”, i.e.,
a chip whose width is one cell. Then, we consider “two-dimensional chips” and

argue that every result obtained so far has a two-dimensional version.

In the following, we assume that the only source of errors is alpha-particles
that hit memory cells. An error takes place when an alpha-particle hits the
chip during an encoding/decoding cycle, and causes some cells to change their

contents. This encoding/decoding cycle will be considered as a unit of time.

5.1. One-Dimensional Chips

Consider a chip whose width is 1 cell and whose length is infinite. The number
of cells per unit lengih is n, where n is some positive integer. The cells on the
chip are numbered 1,2,..., consecutively. There are g types of alpha-particles,
a;, 2, ..., .. For each j, the number of alpha-particles of type a, that fall on
- the ith cell per unit time is assumed to be a Poisson random variable N, ; of
mean A;/n, for some positive number A;. We assume that the Poisson random
variables N;; for ¢ = 1,2,”;g and j = 1,2,...,q, are independent. It followé
that the number of alpha-pariicles of type a; falling on a unit length per unit

time is a Poisson random variable with mean A;, which is independent of n.

Let 0 < w; < w; < -+ < wy be positive numbers, and define the burst
length of aj, where 1 < § < ¢, as b; = |wjn|. Here, w; is the effective range in
which electron-hole pairs are generated due to an alpha-particle of type a;. We

assume that a cell iz affected by an alpha-particle if, and only if, it lies completely
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within its effective range. Hence, the burst length b; gives the number of cells
that are affected by an alpha-particle of type a;. Note that alpha-particles of
type a4 are considered to be the “strongest” in the sense that they affect more
cells. This agrees with the physical evidence explained in chapter I that the
effect of an alpha-particle depends on its energy and angle of incidence which

vary considerably from particle to particle.

The state of cell § is given by*

g b1

Si=3Y Niaj,

j=1 k=0
which is the number of alpha-particles that affect cell i. Hence, the set of
states § is the set of nonnegative integers. Furthermore, S; is a Poisson random
variable with mean p, = A;b:/n + .- + Agby/n. Clearly, the stochastic process
S =§,,5,,..., satisfies conditions (1) and (2) of section 2, where the duration
of state memory is by — 1. Hence, a bursty channel I', can be defined. The input
- and output alphabets are {0,1}. The effect of a single alpha-particle is modelled
by transmitting the letters with state 1 through a binary memoryless channel Q2.
The component channel deﬁx;ed by state s > 0 is considered as a cascade of s of
the channels {1. The component channel defined by state s = 0 is considered to

be the binary noiseless memoryless channel.

Now, let n = 1,2,..., and define for each n the “ursty channel I',. The
numbers Ay,...,A; and wy,...,w, as well as the channel {1 are independent
of n. Let S;, be the state variable of cell 1 in channel I',. Let Uj, be the
[-run random variable of I',,, where [ is a positive integer. We will argue that
conditions (3) and (4) of section 3 are satisfied. Indeed U;,, = 1 if, and only if,
the states in the block of cells 1,2,...,1 are not equal. Hence, Uj,, = 1 implies
that at least one alpha-particle of type a;, for some 1 < 5 < ¢, has fallen on the

* We will ignore the “edge effect”, i.e., the case in which i < by. Of course this has no effect
on the channel capacity as by is finite. So, in the following we assume that there are b, — 1 cells
numbered 2 — by, 3 - b,,...,0.
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block of cells 1,2,...,1, or the block of cells 2 - b;,3 — bj,...,l+ 1~ b; in a unit

time. Thus,

q
Pr{Ui, =1} < 23 [1 = &M/,

j=1

as *'/" is the probability that no alpha-particle of type a; has fallen on a block
of I cells in a unit time. Clearly, U;,, — 0 as n — oo in probability, and condition
(3) is satisfied. Since, as mentioned before, S;, is a Poisson random variable
with mean u, = Asby/n+ .- + Agb,/n, it follows that as n — oo, S:n tends to
a Poisson random variable with mean 4 = A;w; + --- + A w,. Hence, condition
(4) is also satisfied. From Theorems 5 and 6, we have

lim C(n) = lim Cy(n) = xﬂa)xi I(X;Y|S = s)'e*/s!,

n—o0
=0

where X and Y are the input and output random 1-sequences, respectively. On
" the other hand, from Theorem 5,

lim Cuu(n) = e 3 Cou'/s),

n—oo
s=0

where C, is the capacity of a cascade of s of the channels (1. If 1 is a binary
symmetric channel, or a channel with zero capacity, then the component chan-
nels are compatible as defined in section 2, and the limits of C(n), C4(n), and

C.4(n) become equal because of Corollary 3.

If {1 has gero capacity, then the set of component channels is composed of
two channels only. In this case Cy = 1 and C, = 0 for r > 0. Since the two
component channels are compatible, C(n) — C.4(n) — e~ as n — co. The set
of states can be reduced to two states only, and smart interleaving can be used

to achieve the asymptotic value of capacity.

As explained in chapter I, the output of a cell which is affected by an alpha-
particle is 0, whether the input is 0 or 1. Hence, 01 is the binary asymmetric
channel whose capacity is 0. In such case, e is the ultimate limit of the fraction

of useful area that can be used to store data, as the memory cells continue to
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shrink, if alpha-particles are the only source of errors. As a simple numerical
example, consider the case in which we have one type of alpha-particles, i.e.,
g=1. Let w;, =1 and A, = 0.1. Hence b, = n and #n = 0.1 for all n. In case
n = 1, the states of the cells are independent, and hence the capacity C(1) can
be calculated by using (1). We find that C(1) & 0.77, which is the fraction of
the useful area when the cells are large so that an alpha-particle may affect only
a single cell. Now, by decreasing the dimensions of the cells so that a single
alpha-particle may affect n cells, the capacity C(n) —» e ~ 09 as n — oo,
i.e., 90% of the area becomes useful in storing data. This means that if the cells
are affected by alpha-particles because they are too small, then we should make

them even smaller and use coding!
5.2. Two-Dimensional Chips

The results of the previous sections all have two-dimensional versions. Let §
be a finite or a countable set. Suppose S = (S;;), where S;; € 8 fori,57 >1,
is a two-dimensional stationary stochastic process such that there exists a least
nonnegative integer m for which any two finite two-dimensional arrays in S
separated by at least m states in either direction are independently distributed.
These two conditions are the two-dimensional version of conditions (1) and (2)
of section 1. The process S is called the two-dimensional stochastic process of
the bursty channel, which can be defined exactly as in section 1. In this case, the
input and output are two-dimensional arrays. Clearly, all the results obtainad
so far can be written in a two-dimensional form. For example, the capacity C

of Theorem 4 becomes

I(X; Y))
C = —_
A= T

where X; and Y; are the input and output random I x l-arrays, respectively.

We define a sequence of bursty channel T}, T,,. .., and for channel T,,, we
define the { x I-run binary random variable Ui, which is equal to 0 if the states

S;; are the same in the I x I- block 1 < 4,7 < I. We assume that Ui, tends to
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0 in probability as n — co. We also assume that condition (4) of section 3 is
satisfied. The technique of smart interleaving can also be used if the state set is
finite. In such case, the test packet is a ¢ x ¢ block for some positive integer t.
The codeword is divided into I x I blocks for some [ > ¢, and each block contains
" the test packet. The decoder estimates the states in every ! x I-block from the
output of the test packet contained in the block. Two-dimensional chips affected

by alpha-particles can be modelled as two-dimensional bursty channels, exactly

as in the one-dimensional case.



- 30 -

References for Part One

(1] R. T. Bate, “Quantum-mechanical limitations on device performance,” in
VLSI Electronics, N. G. Einspruch, Ed., vol. 5, New York: Academic Press,
1982.

[2] K. L. Chung, A Course in Probability Theory, New York: Harcourt, Brace
& World, 1968.

[3] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A.
R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 256268, October
1974.

(4] J. L. Doob, Stochastic Processes, New York: Wiley, 1960.

[5] W. Feller An Introduction to Probability Theory and Its Applications, vol. 1,
New York: Wiley, 1968.

[6] T.S. Ferguson, Mathematical Statistics, New York: Academic Press, 1967,

[7] R.G. Gallager, Information Theory and Reliable Commaunication, New York:
Wiley, 1968.

[8] C. Heegard and A. A. E] Gamal, “On the capacity of computer memory with
defects,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 731739, September
1983.

[9] R. W. Keyes, “Physical limits in digital electronics,” Proc. IEEE, vol. 63,
pp. 740-767, May 1975.

[10] M. Lotve, Probability Theory, Princeton, N.J.: Van Nostrand, 1963.

[11] T. C. May, “Soft errors in VLSI: present and future,” IEEE Trans. Compo-



— 40 —
nents, Hybrids, and Manufacturing Technology, vol. CHMT-2, pp. 377-387,
December 1979.

[12] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic
memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2-9, January
1979.

[13] R. J. McEliece, The Theory of Information and Coding, Reading, MA:
Addison- Wesley, 1977.

[14] R. J. McEliece and W. E. Stark, “Channels with block interference ,” IEEE
Trans. Inform. Theory, vol. IT-30, pp. 44-53, January 1984.

[15] C. Mead and L. Conway, Introduction to VLSI Systems, Reading, MA:
Addison- Wesley, 1980.

[16] S. Muroga, VLSI System Design, New York: Wiley, 1982,

[17] C.E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech.
J., vol. 27, pp. 379423, July 1948.

(18] C. E. Shannon, “Channels with side information at the transmitter,” IBM
J. Research and Development, vol. 2, pp. 289-293, October 1958.

[19] K. Stein, “Noise-induced error rate as limiting factor for energy per operation
in digital IC’s,” IEEE J. Solid-State Circusts, vol. SC-12, pp. 527-530,
October 1977,

[20] J. A. Swanson, “Physical versus logical coupling in memory systems,” IBM

J. Research and Development, vol. 4, pp. 305-310, July 1960.

[21] J. Wolfowitz, Coding Theorems of Information Theory, Berlin: Springer-
Verlag, 1978.



— 41 -
[22] A. Wyner, “A definition of conditional mutual information for arbitrary

ensembles,” Inform. Contr., vol. 38, pp. 51-59, 1978.

(23] D. S. Yaney, J. T. Nelson, and L. L. Vanskika, “Alpha-particle tracks in
silicon and their effect on dynamic MOS RAM reliability,” IEEE Trans.
Electron Devices, vol. ED-26, pp. 10-16, January 1979.

[24] J. F. Zieger and W. A. Lanford, “Effect of cosmic rays on computer memo-

ries,” Science, vol. 206, pp. 776-788, 16 November 1979.



~ 42 -

PART TWO

TWO-DIMENSIONAL BURST CORRECTING CODES
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PRELIMINARIES

A binary two-dimensional code of area n; x n,,* where n; and n, are positive
integers, is a set of n; X n, binary arrays, whose elements are called codewords.
The rows and columns of an n; X n, array will be numbered O, i,...,ny—1and
0,1,...,n2 — 1, respectively. A binary linear two-dimensional codz C of area
n; X n; is a subspace of the n;n,-dimensional space of n; x n, arrays over F,.
Let k be the dimension of C, and [g(l)], ceey [gg)], where 0 <1< n;,0 < j < n,,
be a basis for C. The n; x n, matrix G = [g,;], where g, ; = (g,(:-), ,gu)) is
called a generator matriz of C. The dual code of C, denoted by C1, is the null
space of C. If the n; x n, matrix H = [h,;] is a generator for C*, then H is
called a parsty check matrsz of the code C. The elements of H are elements in the
r-dimensional vector space over P;, where r = n,n, — k is called the redundancy
of the code. The syndrome of a binary array [a, ;] of area n; x n,, with respect
to the parity check matrix H of (, is defined as ¥715" ©725" a;;h; ;. Thus, a
binary array of area n; x n, is a codeword in C if, and only if, its syndrome is

gero with respect to any given parity check martix.

The map [a;;] — a(z,y) = TN;* ):"_’.0 a;;z'y’ defines an isomorphism
between the n;n,-dimensional vector space of n; x n, arrays over ¥, and
the vector space of bivariate polynomials {p(z,y) € F2[z,y] : deg,p(z,¥) <
n,,deg, p(z,y) < n,}. We will frequently identify each array with its image

under this isomorphism.

A binary two-dimensional linear code C is said to be cyclic if zc(z,y) and
yc(z,y), both mod (z" + 1,y™ + 1), are in C for each ¢(z,y) € €. Thus, a cyclic

code of area n; X n, is an ideal in the residue class ring [z, y]/(z" +1,y"? +1).

* In the following, ny X ng does not mean the product n;n;, but rather the pair of integers
(ny,n2). An array of n, rows and ny columns is said to have area n; x nj.
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The pairs of positive integers will be partially ordered by saying that b, x b,
is less than n; X n; if b < ny, b < ny, and b; X b, # ny X Ny A by X byp-
burst, where b; x b, is less or equal to n; X n,, is a nonzero n; x n, binary
array whose nonzero components are confined to a rectangle of area b, x b,.
Let {(5,7) : vy < ¢ <y +b,u; < j < up+ b}, where 0 < u; < n, — b,
0 < uz < ng — b}, be the smallest rectangle containing the nonzero components
of the b; x by-burst B = [a;;], 0 <t < ny, 0 < j < n,. Then, B is said to have
area by x by, For by < b] < b, and b, < b; < b;, we say that B has the pattern
[aij], w1 <1 < uy + b, up <5 < uy + b, starting at position (u1,uz). In the
following, it is more convenient to speak about “the” pattern of B by considering
[aij], ur <4< uy+ b, u; <5 < uy + b}, to represent the same pattern for all
by < b < by and b, < b < b,. By this convention, it is to be noted that
the pattern and the starting position of any burst are unique. Thus, [a;;] is a
by X by-burst if, and only if, a(z,y) = T2 S0 6,2’y = z1y*d(z,y), for

some 0 < u; < ny —b;,0 <y, < ny — by, and b(z,y) € By4,, where

By, = {p(z,y) € F3[z,y] : deg, p(z,y) < b;,deg, p(z,y) < bs,

p(z,0) # 0,p(0,y) # 0}.

In such case the burst pattern is given by the polynomial b(z, y) and its starting
position is (u;, u;). The array [a,;],0 <1< n;, 0 < j < n,, is called a b; x b,-
cyclic burstif a(z,y) = L4 1720 a2y = z%1y"2b(z,y) (mod z™ +1,y™ +
1), for some 0 < u; < 1,0 < u; < ny, and b(z,y) € By,s,. Thus, a by x by-burst
is a by X by-cyclic burst, but the converse does not always hold. The starting
position (u;, u) of the cyclic burst and its pattern, which is given by b(z,y), are

not necessarily unique. This will be considered in the following lemma.

Lemma 1. A necessary and sufficient condition for all b, x b,-cyclic bursts
laij], 0 <1< ny, 0<j < n,, to have unique patterns and starting positions is

n,22b1—-la.ndn222b2—l.
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Proof. If n; < 2b; — 1, then the burst [a,;], defined by a;; = 1 if, and only if,
(4,5) € {(0,0), (b, — 1,0)} has starting positions (0,0) and (b, — 1,0) since

1+zh = 1 4+ zmhH) (mod z" + 1,y + 1),

and deg,(1 + z™~%+) = n; —b; +1 < b,. Thus ny > 2b, — 1 is a necessary
condition. By similarity, n, > 2b, — 1 is also necessary. Conversely, suppose

n, >2b—1,n,> 20, — 1, and
z"y" b (z,y) = z7y"0"(z,y) (mod z"' +1,y™ +1),
where 0 < u;,v; < 1y, 0 < 4,9, < g, b(z,y), b"(z,y) € Bys,. If u; > vy, then
"y (z,y) = 2™y (z,y)  (mod z™ 4+ 1,y™ + 1),

with n; — v; < n; — u;. Hence we may assume, without loss of generality, that

u; < v; and u; < v,. Thus, we have
¥(z,y) + 27"y (z,y) =0 (mod z™ +1,y" + 1),

Let t; = min{v; — u;,n; — v; + 4,} and ¢; = min{v; — uy,n;, — v, + u,}. Then,

t, < n,/2 and ¢; < ny/2. Thus, we have

f(z9) + 2"y f"(z,y) =0 (mod z™ +1,y™ +1),

or

=" f'(z,9) + ¥ f"(z,9) =0 (mod z™ +1,y"* +1),

where either f'(z,y) = ¥(z,y) and f"(z,y) = b"(z,y), or f'(z,y) = b"(z, y)
and f"(z,y) = ¥'(z,y). But both the polynomials f'(z,y) + z"'y" f"(z,y) and
z' f'(2,y) +y" f"(z, y) have degrees in z and y less than n, and n,, respectively,
as n; > 2b; —1 and n, > 2b, — 1. Hence at least one of these polynomials is gero.
Since f'(z,0), f'(0,y), f"(z,0) and f"'(0, y) are nongero, it follows that ¢, = ¢, =
0 and f'(z,y) = f"(z,y). Thus, u, = v, u; = vy, and ¥'(z,y) = b"(z, y). ]
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The following lemma gives the number of distinct b, x b,-burst patterns,

which we denote by N(b,,b,).

Lemma 2. The number of distinct b, x b,-burst patterns N(b;,b,) is given

by
N(bx, bg) = 2'151—1 + (251—1 _ 1)(253—l _ 1) x 2(51—1)(5,_1).

Hence,

24t < N(by, by) < 248,

and the equality holds if, and only if, b; or b, is 1.

Proof. From the definitions, it follows that N(b;,b;) is the total number of
binary b, x b;-arrays with the property that their first row and column are
nonzero. The first and second terms give the number of arrays satisfying this

property with “1” and “0” at position (0,0), respectively. B

In this work, we will consider binary linear codes only. If n; = 1, we say
that the code is a one-dimensional code of length n,. In such case, the first
dimension will be suppressed. Hence, from Lemma 2, it follows that the number

of distinct b-burst patterns is given N(b) = 2*-1,
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CHAPTER III

BURST IDENTIFICATION CODES

In this chapter, we study burst identification codes which are defined in section 1.
One-dimensional and two-dimensional burst identification codes are considered
in sections 2 and 3, respectively. In section 4 we examine certain classes of

two-dimensional burst identification codes.
1. Definitions

A two-dimensional linear code C is said to be a b; x b,-burst identification code if
no codeword is a b; X b,-burst, or a sum of two b, x b,-bursts of different patterns.
Equivalently, the code C is a b; X b;-burst identification code if, and only if, the
syndromes of the b, x b;-bursts with respect to any given parity check matrix of

C are nonzero and distinct for distinct burst patterns.

If a b, x bs-burst identification code is used over a channel that may add to
any transmitted codeword a b; x b;-burst, then the receiver can determine the
burst pattern added by the channel. It is important to note that the receiver
may not be able to uniquely determine the burst position. Hence the transmitted
codeword may not be uniquely determined. Thus, a b, x b,-burst correcting code,
which is defined in the next chapter, is a b, x b,-burst identification code, but
the converse does not always hold. In other words, a b; x b,-burst identification
code may contain a codeword which is the sum of two b, x b,-bursts of the same

pattern.

We define r(b,,5,) to be the minimum redundancy required to construct a
by X by-burst identification code of arbitrarily large area. Thus, if #,,xn, for every

positive integer n, denotes the redundancy, minimized over all b; x b,-burst
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identification codes of area n x n, or larger, then
r(bhb2) = nango Tnxn-

The validity of this definition, i.e., the existence of the limit will be shown later.

It is to be noted that r,., is a nondecreasing function of n, and hence, it suffices

to show that it is bounded.

Burst identification codes will be used in the next chapter to construct burst
correcting codes. In the present chapter, we start studying burst identifcation

codes by considering the one-dimensional case.
2. One-Dimensional Burst Identification Codes

A one-dimensional code is b-burst identification code if, and only if, the syn-
dromes of the b-bursts are nonzero and distinct for distinct burst patterns. Since
the number of different burst patterns is N(b) = 2%-!, it follows that the mini-
mum redundancy required to construct a b-burst identification code of arbitrarily
large length is bounded by r(b) > [log(1 + 2*-*)], which implies r(b) > b. It is
obvious that r(1) = 1, which is achieved by a code whose parity check matrix
is H=[1,1,...,1]. The bound r(b) > b, also follows from the following lemma

which is an immediate consequence of the definition.

Lemma 1. Let H be a parity check matrix of a b-burst identification code.

Then, every b consecutive elements of H are linearly independent over F,.
The next lemma shows that a stronger bound holds for b > 3.

Lemma 2. Let H be a parity check matrix of a b-burst identification code
of length n > 2b — 2. Then, every 2b — 2 consecutive elements of H are linearly

independent over F,.

Proof. If b < 2, the result follows from Lemma 1. So, we assume in the following

that b > 3. Let H = [ho,h,,...,h,_,] and suppose that YY=} a;h;;; = 0, where
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a;€PFja0=0ay1=1,1<u<2-2,and0< | < n—u. Lemma 1 implies that
u > b+ 1. The burst pattern (1,a, + 1,a;, a4, .-+,@y—1) starting at position
I+b—2 has syndrome hyy4_z+ (8, +1)hyyy_y + 58 aihyy; = 308 aihygi+(as_o+
1)hys-2+(a;+a4-1+1)hyyy_,. However, the burst pattern (1,a,,...,a;_3,65_o+
1,a; + ay_; + 1) starting at position ! has the same syndrome, but obviously a
different pattern. This contradicts the assumption that the code is a b-burst

identification code. a

It follows from this lemma that r(b) > 2b— 2. The following theorem gives a
construction of b-burst identification codes, for b > 2, of arbitrarily large lengths
and with redundancy 2b — 2. First, we define ¢; = (€i0s€i1,-..,€2-3), where
0<i<2b-2,¢;=1,and ¢;; =0 fors +# §, to be the ith canonical vector of

length 26 — 2.

Theorem 8. Let b > 2 and e; be the ith canonical vector of length
2b— 2. Then, the code C of length n whose parity check matrix is given by
H = [ho,h,,...,h,_,], where h; = €;mod(262), 18 @ b-burst identification code

with redundancy 2b — 2.

Proof. Consider a burst of length &' < . Let (30 =1,ay,...,8p_, = 1) be its
pattern and [ its position, where 0 < I < n — ¥'. The syndrome of this burst is

V-1 ¥-1
8= Z ahyy; = E @€ 4imod(2b—2)-
=0 =0

The vectors €/ +imod(20—2) for 0 < ¢ < b’ are distinct since §' < b < 2b— 2. Hence,
the weight of the vector 8, i.e., the number of its nonzero components, is equal
to the weight of the burst pattern. This ends the proof for b = 2 since the burst
patterns are either (1) or (1,1). Now, let b > 3. Then, s = (80y81y.+-,825-3) is
a cyclic shift of the (2b — 2)-tuple (ao, a;,...,a5_4,0,... ,0). Hence, if 8 has a
unique cyclic string of consecutive zeros of length > b— 2, then the burst pattern
(@0, 81,...,8p-1) can be uniquely deduced from s. If this is not the case, then s

has two cyclic strings of b — 2 geros each, which occurs if, and only if, ' = b and
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the burst pattern is (ap = 1,0,0,...,0,a;—; = 1). Also in this case the burst

pattern is uniquely determined from the syndrome. [ ]

Combining Lemma 2 and Theorem 3, along with the fact that (1) = 1, the

following theorem follows.

Theorem 4. r(1)=1, and r(b) =2b—2 for b > 2.
3. Two-Dimensional Burst Identification Codes

A two-dimensional code is a b; X b,-burst identification code if, and only if, the
syndromes of the b, x b,-bursts are nonzero and distinct for distinct burst pat-
terns. Since the number of different patterns is N(b,,b,), as given in Lemma 2
in the preliminaries, it follows that the minimum redundancy required to con-
struct a b; X b,-burst identification code of arbitrarily large area is bounded by
r(by, b2) > [log(1+ N(b,,d;))1, which implies r(b,,b,) > b;b,. In this section, we
will prove that 2b:b, — 2 < r(b;,b;) < 2b,b,. The following two lemmas are the

- two-dimensional versions of Lemmas 1 and 2.

Lemma 6. Let H = [h;;|,0 <1 < n;,0 < j < ny, be a parity check matrix of
a b, x by-burst identification code. Then, for every pair of integers (u1,u;), such
that 0 < u; < ny — by, 0 < u; < ny — by, the vectors h,;, foru, <t < u; + by,

u; <) < uy + b, are linearly independent over F,.

The proof of the previous lemma follows immediately from the definition.

Lemma 6. Let H =h;;],0<1 < n,;,0<j < n, be a parity check matrix of
a b, x by-burst identification code. Let 0 < uy,v; < ny —by, 0 < Uy, v, < ny— b2,
Loy, = {(8,7) 14y < <y + by, u; <3< uy+ by}, and define I,, v, similarly.
If [Iy,u;N Lo, 05| 2 2, then the vectors h,j, (3,5) € I, u,Ul,, ., are linearly

independent over F,.

Proof. Without loss of generality, assume that u; < v, and u, < v,. Let

J=1uyNlpo, ={(6,5) : vy s <uy+by,v, <5 < uy + b,}, and suppose
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|J] > 2. We may assume that u; + b, — v; > 2, otherwise interchange ¢ and j-

Now, suppose that I, J)ELuy sug U oy ey FivBij = 0, ai; € F3, and not all are gero.

Let co0 =1, z be an indeterminate, and ¢;; = ay,4i,0,4; for (1,7) € {(¢, ") :
0 <1 <b,0< 5" < b} —{(0,0),(1,0)}. The array [c; ], where 0 < 1 < b,,0 <
J < b; and ¢, = z, defines the pattern of a b, x b,-burst starting at position

(vi,v2). Let By be this burst. The syndrome of B, is

b1 —1b8g-1
Z z Cc’,jhu.+i,v,+j = hvhv: + xhvn+1,!’z + Z aiJhiJ
=0 ;=0 (i»j)elvl-vz_{("l7"3)v(”l+ly"2)}

=(1+ avn.vz)hvm: +(z + avx+l,vz)hvx+l,vz + Z a; jh;,
(,5)€ELsy 04

= Z a",fhl',i + (1 + avl,vz)hvl,vz + (z + avx+l,va)hvx+1,vz"
("J)efu,,u,—-’

Define the array [d;;], 0<i< bi, 0<j <b;as
Guytiuatis if (“1 + "s U2 + J) € Itu,uz - J;
d::i = 1+ Boy 099 if (ul +1,up + j) = (Uly v2);
5y —

Z+ Gy 41,059 if (u'l +1,u; + .7) = (01 + 1302)§
o, otherwise.

Let B, be the burst whose pattern is defined by the array [d;;], 0 <i < by, 0 <
J < b; and whose starting position is (u}, u}), where u} = u;+¢;,u} = u,+t,, and
t1, t; are the maximum values for which the rectangle {(i,7) : ¢, <s < b;, ¢, <
J < b3} contains all the nonzero components of the array [d;;] 0 <5 < b;, 0 <
J < bz. From Lemma 5, it follows that (u},u}) € I,, ., — J. The syndrome of
B,, which is 74! Z:;‘o‘ d; jhy, +iu,+s, 18 the same as the syndrome of B,. Hence
B; and B, should have the same pattern. This implies that Ay +iwl+j = Cij for
0<1<b —uj, 0<j<b;— u,. In particular it implies that dy 41,0, = 2. But
(v}, uh) € L, 4, — J, implies (u] + 1,u},) # (v, + 1, v;). Since d,,4;.,, i8 the only
element in the array [d;;] 0 < s < b;, 0 < j < b, that depends on z, it follows

that dy! 41,4, can not depend on z. This contradiction proves the lemma. [ |

It follows from the previous lemma that r(b;,b,) > 2b,b, — 2.
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Before presenting a construction of a b, x b,-burst identification code with
redundancy 25, b,, we have to say something about the notation that we shall use.
Let Q be the set {0,1',..., (502 — 1)’} U{0",1",...,(byb, — 1)"}. A vectorh €
F3'** can be represented as h = (hy, hy, .. crRiba—ryy Bory Byy oo R, gye).
We associate with every vector h € F2'% jis characteristic set ¥ = {ge @:
hg = 1}. In particular, the parity check matrix H = [h,;] can be represented by

the sets ¥;; instead of the vectors b, ;.

In the following construction of burst identification codes, we define a matrix
H= [1‘1.-,,-], 0 <t<2b, 0<j< 2b,. The parity check matrix of a code of
- area n; X ng, denoted by H = [h;;}, 0 <1 < n;,0 < j < n,, is then defined
periodically by h;; = ﬁ,‘modgh Jjmod2s;- The matrix H is called the buslding block
of the code. . |

Theorem 7. Let the elements of the 2b, x 2b, building block ¥ be defined as
i = {(ib + 5)'},
Fijass = {(8b2 + ), (b + 5)"},
Aivng = {(382 + 7Y, (((i+ 1) mod by)by + )"},
sy vi = {0382 + )"},

where 0 < § < by, 0 < j < b;. Then, N is the building of a b; x b,-burst

identification code of redundancy 2b,b,.

Before giving the proof, the following is an example of the construction of

the building block for b, = b, = 3.
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With b, = b, = 3, the building block X is

{0y {1} {2}
{3} {4}y {5}
{6} {7} ({8}

(0,0 (1,17} {2,2")
{31, 3"} {4l’ 4"} {50’ 5"}
{6', 6"} {71, 7"} {8l’ 8"}

{00,3"} {ll, 4"} {2l, 5"}
{3', 6"} {41’ 7"} {SI’ 8"}
i {61’ o"} {7l’ l"} {81, 2"}

{0"} {1"} {2"}
{3"} {4"} {5"}
{6"} {7"} {8"} j

(1)

Proof. It is clear from the construction that the redundancy is 2b,b,. Let B be
a by X by-burst whose burst pattern is [a;;], 0<i< b, 0< J < by, starting at
position (u;,u,). Its syndrome is given by

b1-1b3-1

8= 2 D aihu tin,.

i=0 j=0
Let J = {(u; +¢,u; +J) : a;; = 1} be the set of positions of the nonzero
elements of B. The projection of the burst B on the building block of area
2b; x 2b, is a cyclic burst ﬁ, where the position of its nonzero components are
given by the set J = {i mod 2b,, 5 mod 2b, : (1,7) € J}. From Lemma 1 in the
preliminaries, it follows that the cyclic burst B has unique burst pattern and
starting position. Hence, it suffices to show that the burst pattern of B can be
uniquely determined from the syndrome s. In fact, we will show that from s we
can even uniquely determine J , except for few cases in which J is determined

. up to a shift of b; and b,, in the vertical and horizontal directions, respectively.

It follows from the definition of § that I € #;; N fi s, where (4, 5) # (¢, '),
implies |s —1'| > b, or |j — j'| > b,. So, if § denotes the characteristic set of the
syndrome 8, then

(iy)es
where [ denotes union of disjoint sets. It also follows from the definition of #

that if f;; contains I' or I", then I =7 (modby). Let Jy = {(3,5) e J:j=1
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(mod b5)}, §/ ={s'€ S:8=1 (modbd,)}, §={s"€S§:s=1 (mod &,)},
and §; = §;J §', where 0 < I < b,. Hence, J = Upgey, Jy and § = Wpqrcs, S,
where §; = W)ed, ﬂ.-,,- for 0 <! < b,, which follows from (2). It is sufficient to
show that from each individual §;, where 0 < I < b, we can determine uniquely
the burst pattern defined by J;, which is a by x 1-burst. This is demonstrated

only for [ = 0 since the other values of I can be treated similarly.

Notice from the construction of ¥ that the number of elements contained in
#; 0 from the set {0,1,..., (b1b2—1)'} is at least equal to the number of elements
contained in )7.-,0 from the set {0",1",..., (b;b; — 1)"}. Of course, the same holds
for disjoint unions of )7;,0. The converse holds for )7;,.,. Equality occurs only in

Hi0 for by <4 < 2b;, and in fl;,, for 0 < i < b,.

Hence, we have the following set of rules for identifying the b, X 1-burst pat-
tern defined by Jy from $o. For other values of l, these rules are also applicable

after obvious modifications.

Rule (1):

If | Sl > 157,

or || = [8;'| and 8 # {(1b2)" : (sb;)' € S}}:

~ In this case, the elements of J; are of the form (3,0). In fact, J, = {(i, 0) : (sb;) €
So» (((s+1) mod b,)b;)" & Sg'} U{(5 + b,0) : (ib2)' € 82, (((i + 1) mod b,)b,)" €
S}

Rule (2):

If |55 < 1801,

or |§;| = |8y] and 8 # {(((s + 1) mod b,)b,)" : (3b2)' € Sp}:

In this case, the elements of fo are of the form (3,5,). In fact, Jy = {(s,b;) :

(362)' € S5, (ib2)" € S"YU{(i + by, bs) : (iby)' & 81, (3b,)" € SI).

Rule (3):
If §g' = {(s62)" : (552)' € Sg} = {({(5 + 1) mod b,)b,)" : (s8,)' € 8.}
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In this case, either §] = §) = Sy = ¢, the null set, which implies Jo = ¢, or
So={(#62)' : 0 < i < b} and §§' = {(sb;)" : 0 < § < b;}. The latter case implies
that Jo = {(5,0): b, < ¥ < 2b;} or Jo = {(5,8,) : 0 < § < b;}. However, these

two possibilities for J, give the same pattern.

By applying this algorithm to § for | = 1,2,...,b, — 1, this ambiguity
will be resolved unless when rule (3) is applicable for all values of I. In the later
situation, two possibilities for J can be deduced from the syndrome §. However,

both give the same burst pattern. |

Example continued

Let § = {2,%,6',7,8',4",5",6",7",8"} be a syndrome with respect to the
building block of the 3 x 3-burst identification code given in (1). Then,
S = {6}, S = {6"}. Rule (2) applies, and we find Jy = {(2,3)}. Simi-
larly, §; = {7'}, §' = {4",7"}, and rule (2) yields J, = {(2,4), (4,4)}. Finally,
$; ={2,5,8'}, 8 = {5",8"}, and rule (1) yields J; = {(2,2),(3,2), (4,2)}. So,
~ the cyclic burst B deduced from jo, jl, jz is

[0 0 0 0 0 0]
0 00 0 00O
0 01110
0 01 0 o0 0]’
0 01 010
0 00 0 0 O]

and its pattern is given by

O O

=
| I
.

Example continued

Let § = {0',1',3',6',0",3",4",6",8"} be a syndrome with respect to the
building block of the 3 x 3-burst identification code given in (1). Then, §! =
{0',3,6'}, & = {0",3",6"}, and rule (3) yields J, = {(3,0),(4,0),(5,0)} or



— 56 -
{(0,2),(1,3),(2,3)}. We also have §] = {1'}, §' = {4"}, and rule (1) yields
Ji = {(3,1)). Since the burst is assumed to be confined in a rectangle of area
3 x 3, then Jy = {(3,0)(4,0)(5,0)}. Finally, §} = ¢, S = {8"}, and rule(2)
yields J, = {(5,5)}. So, the cyclic burst B deduced from Jo, Ji, J; is

0 0 0 0 0 0]
0 00 0 0O
0 00 0 00O
1100 0 of’
1 00 0 0O
1 0 0 0 0 1]
and its pattern is given by
011
[0 1 0] .
1 10

The next theorem, which is the most important result of this chapter, follows

from Lemma 6 and Theorem 7.

Theorem 8. Let r(b,,b,) be the minimum redundancy required to construct

a by x b,- burst identification code of arbitrarily large area. Then,

2b1b2 -2 S r(bl,bg) S 2b1b2.

In the examples given, the burst projection J on the building block is
uniquely determined from §. As mentioned in rule (3) of Theorem 7, this is
not the case for all bursts. In the next chapter, when we study certain classes of
burst correcting codes, we need to determine J uniquely from § for all bursts.
The following lemma shows that this can be easily done by using b, more re-

dundant bits.

Lemma 9.  Let the vectors of the 2b; x 2b, building block ¥ be defined by

their characteristic sets as

q = '9.',,' U{(5 — b2)"}, fori=0, b, < j < 2by;
s ) otherwise,
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where fl;; is given in Theorem 7. Then, § is a building block of a by x b,-burst

identification code of redundancy 2b,b, + b,, which can uniquely determine the

projectior of any b, x b,-burst on the building block.
Example

With b, = b, = 3, the building block ¥ is

r {01} {ll} {2!} {0’, 0”, Om} {l,ﬂ 1"’ lm} {2)! 2n’ 2!"} b
&y {4y {5} (3,37 {4,y {5,857}
{60} {71} {80} {6’, 6"} {7!) 7!!} {8', 80} (3)
{0’, 3"} {ll’ 4"} {2l’ 5"} {0"} {1"} {2"}
{3l’ 6"} {4l’ 7"} {5l’ 8"} {3"} {4"} {5"}
{60} (7,1} (8,2} {6} (™ (&} |

Proof. The redundancy is 2b,b, + b,. From the construction of § and ¥ , it
follows that the code defined by ¥ is a subcode of the code defined by #. We
use the same notation introduced in the proof of Theorem 7. The characteristic
set § of the syndrome with respect to ¥ ; 18 a digjoint union of the characteristic
set of the syndrome with respect to ¥ and a subset of {0", 1",...,(by — 1)™"}.
Hence, rules (1),(2) and (3) apply. However, rule (3) can be modified to be rule

(3') by making use of the b, extra redundant bits as described in the following:

Rule (3'):
If §= S = ¢, then J, = ¢.
If S(; = {(Ibz)‘ : 0 S $ < bl} and s(;' = {(ibg)" : 0 S ' < bz}, then
j _ {(1,0) :bl Si<2b1}, if 0"'¢S;
T {Gb):0<i<b;), ifomeSs.

This resolves the ambiguity in rule (3) of Theorem 7. |
Example continued

Let § = {0,1,3,4',6',7,0", 1",3",4",6",7",0",1"} be the syndrome with re-

spect to the building block ¥ given in (3). Then §; = {0,3,6'}, §! =
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{07,3",6"}, and rule (3') yields Jo = {(0,3),(1,3),(2,3)}. Similarly, §!' =
{1,4,7}, 8 = {1",4",7"}, and rule (3') yields J, = {(0, 4),(1,4),(2,4)}. Fi-
nally, §; = § = ¢, and rule (3') yields J2 = ¢. So, the cyclic burst B deduced
from fo,fl, J, is

(== I = I <o [ oo T o I o
OO0 O0O0OO0o
0000 0O0

OO O kb st
O O O rt e

cocooocooco

and its pattern is given by

[
[P

il

Note that if the building block ¥, given in (1), is used, then the syndrome be-
comes § = {0/,1',3',4',6',7,0",1",3",4",6",7"}. In this case, J is not uniquely
determined. Instead, we have the shown two possibilities that give, of course,

the same pattern,

0 0 0 1 1 0] 0 0 0 0 0 0
000110 0000O0O
0060110 06000 0
0000O0 O or 11000 0l
0 00O0O0 O 110000
0 0 6 0 0 O] 1 1000 0

4. Some Specific Burst Identification Codes

In this section we will consider b, x b,-burst identification codes for some specific
values of b; and b;. We note that if H is a parity check matrix of a b, x b,-
burst identification code, then the transpose of H is a parity check matrix of a

bz X by-burst identification code, and so r(b;, b;) = r(b,, b,).
4.1. 1 X b-Burst Identification Codes

Obviously, r(1,1) = 1 which is achieved by a code whose parity check matrix is

composed of 1’s. So, in the following we take b > 1. The next theorem gives an



- 50 -
explicit construction for 1 x b-burst identification code with 2b — 2 redundant

bits.

Theorem 10. Let b > 1 and let e; be the sth canonical vector of length
2b — 2. Then, the code of area n; X n, whose parity check matrix is given by
H = [h;;],0< i< n,0<3 < ny where hi; = €jmoq(s-2), is a 1 x b-burst

identification code of redundancy 2b — 2.

Proof. The patterns of the 1 x b-bursts are the same as those of the one-
dimensional b-bursts. In Theorem 3, a construction is given of a one-dimensional
b-burst identification code. Hence, the code defined in Theorem 10, which is
simply the code defined in Theorem 3 repeated n, times, is a 1 x b- burst

identification code. The redundancy is obviously 2b — 2. a

Combining this result with Theorem 8, we obtain the following theorem.

Theorem 11. r(1,1) =1, and r(1,b) = r(b,1) = 2b— 2 for b > 1.
4.2. 2 x 2-Burst Identification Codes

From Theorem 8, we know that 6 < r(2,2) < 8. Here, we will prove that
r(2,2)=1.

First, we will show that r(2,2) > 6. Suppose that H is a 3 x 4 submatrix
of a parity check matrix of a 2 x 2-burst identification code with redundancy 6.
By studying the structure of H, we will establish a conradiction. By Lemma 6,

we may assume, without loss of generality, that H has the form

P € € u
q e e vVv|{,
t e e w

where e, is the ith canonical vector of length 6, and P;q,t,u,v, and w are

vectors of length 6. We shall write p = (po,p1,...,ps), and the same notation

holds for the other vectors.
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Lemma 12. ¢, =¢; =y =y, = 1.

Proof. Suppose that ¢; = 0. By Lemma 6, applied to {(3,75) :i =123 =
0,1,2}, it follows that gy = 1. The burst

0 1 0 0
1 14¢; 0 O
0 0 0 0

has syndrome (0,0, 1,¢s, g4, gs), as does the burst

0 0 0 O
0 1 ¢ O},
0 ¢ ¢ O

while, obviously, these two bursts have different patterns. This contradiction

proves that ¢, = 1. For reasons of symmetry, gs = v, = v, = 1. [ |

Lemma 13. p=e;, t=e;, u=-e( and w = e,.

Proof. Let z be an indeterminate. Since q; = 1 by Lemma 12, it follows that

the burst By, given by

1 po+pigo 0 O
P z 6 of,
0 0 00

has syndrome (0,0, p, + p1g2 + 7, ps + P15, e + P194, Ps + P1@s), a8 does the burst

B,, given by
0 0 0 0
0 p2+pig2+z ps+pigs O
0 Ps + P1q4 Ps+pigs O

Hence, these two bursts should have the same pattern. By taking z = 1, it

follows that p,+p1q2 = 0, po +P19o = P3+P193, P1 = Pa+P1q4, and ps+p,qs = 1.

Hence

0 0 0 0
B;=|(0 z py+pig O
0 D 1 0

If we now take z = 0, and compare B; with B,, it follows that p, = p; = 0.
Substituting this in the previous equations, we get p, = Ps = pe =0and ps = 1.

Hence, p = ;. By symmetry, we get t =e,, n = e,, and w = e,. u
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By Lemma 13, H has the form
e € e; e
q e e V|.
e € €; ¢

Furthermore, by Lemma 12 we have q; = ¢s = 1 and vp = vy = 1. The proof of

the next lemma contradicts the assumption r(2,2) = 6.

Lemma 14. r(2,2) > 6.

Proof. By Lemma 6, applied to {(1,5) : ¢ = 0,1, 7 = 0,1,2}, {(4,5) : § =

L2, 5= 0:1)2}) and {(’;]) :4=0,1,2, j = 0,1}, we get ¢, = qo = g = 1.
Hence, q = (1,1,¢2,1,1,1). By symmetry, v = (1,1,1,v;,1,1). However, the

0 1
1 1+4¢
has syndrome (0,1,1,1,1, 1), as does the burst

0 0
00 0 0
0 0 1+03 1 ’

00 0 1

burst

©C OO0
o OO

while, obviously, these bursts have different patterns. This contradiction proves

the lemma. |

The following theorem gives a 2x2-burst identification code with redundancy
7. Asin Theorem 7, the parity check matrix H = [h;;], 0 <t < n;, 0< j < n,,
is defined periodically by the 4 x 4 building block H = [ﬁ. i, 0<1<40<
j < 4, as h.",‘ = ﬁimodi,jmodh where ﬁ.‘J € F;
Theorem 15. Let
€ € e e
ﬁ €y €5 € 1

T le: e e e
€ 1 ey €g

where e, is the ith canonical vector of length 7, and 1 = (1,1,1,1,1,1,1). Then
H is the building block of a 2 x 2-burst idenification code of redundancy 7.
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Proof. It is clear from the construction that the redundancy is 7. Since the
building block has size 4 x 4, it suffices, as we have demonstrated in the proof of
Theorem 7 by using Lemma 1 in the preliminaries, to show that the burst pattern
of any 2 x 2-cyclic burst B on the building block can be uniquely determined

from its syndrome.

Let B be a 2 x 2-cyclic burst, and let 8 be its syndrome, whose weight is
denoted by w(s). Let J be the set of positions of the nonzero components of B.
From the construction of H, it follows that each vector u € {eo,e1,...,e¢,1}
occurs twice in H, namely at positions (s,7) and (¢ 4+ 2 mod 4, 5 + 2 mod 4), for
some 0 < 1,5 < 4. Since B is assumed to be of area 2 x 2, or less, it follows that
no vector u can contribute twice to 8. The weight w(s) = 4 if, and only if, the
pattern of B is [}1]- For all other burst patterns, w(s) > 4 if, and only if, J
contains {1,3) or (3,1). So, we may replace 1 by e; in the burst identification
algorithm, where we view now the e;’s as the canonical vectors of length 8. The
weight of the burst is now equal to w(8). Let u be one of the vectors that
contributed to 8. The nonzero components of the burst B is contained in a 3 x 3

subarray, which corresponds to the 3 x 3 submatrix

g U; U
H(u) = | u Wy,
W Wy WYy

where the vectors m;, 0 < ¢ < 5, and u are all different, and from the set
{eo,e1,...,e;}. Note that this 3 x 3 submatrix is the same for the two positions

of u in A. The burst pattern of B can now be easily determined from s and

H(u). »

Combining Lemma 14 and Theorem 15, we arrive at the following theorem.

Theorem 16. r(2,2)=1.
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4.3. b; X by-Burst Identification Codes of Redundancy 2b,b; — 2

From Theorem 8, we have 2b,b, — 2 < r(bi, b;) < 2b;b,. On the other hand,
Theorem 11 gives r(1,b) = r(b,1) = 26— 2 if b > 1. In this section, we will state
necessary conditions for a code with redundancy 26,5, — 2, to be a b; % b;-burst

identification code when b,,b, > 1.

In Lemma 6, we proved that the parity check vectors of a b1 x by-burst
identification code in two b, X b,-blocks, intersecting in two positions, are linearly
independent. In the next lemma, we consider the linear relations that may exist

among the parity check vectors in two b; x b;-blocks intersecting in one position.

Lemma 17. Let H=1h;;],0<i<n,, 0<j<n,, be a parity check matrix
of a by x by-burst identification code, where b;,b, > 1. Let

I={(5,7):0<i<b,0<]<by)

(G 9) s —1<i<2b— 1, b, — 1< 5 < 28, — 1),

and0<u; <n; —2b;+1,0< uy, <ny— 26, + 1. Then, there exists a unique
positive integer d, d| gcd(b; — 1,b, — 1), such that if
D GuitigstiBuytiggti = G, (4)
(sJ)er
where a;; € F;, and not all are sero, then 6,,44,+; = 1 if, and only if, (s,5) €

{(kl, kl2) : 0 < k < 2d,k # d}, where I, = (b, — 1)/d and I = (b, — 1)/d.

Proof. Without loss of generality, assume u; = u, = 0. Suppose that (4) holds.
Let

Ji={(6,7):a;=1,0<i<b;,0<5<b)}—{(bs—1,b; - 1)}
and

Jg = {(i,j):a.-d- = l, bl'—l S'( 2b1'—1, bz—l S ] < 2bg-1}*((bl—l,bg—l)}.
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It follows from Lemma 6 that J;, and J, are nonempty. From (4), we have
> hii+zhi g = Y hij+(a-1p3-1 + 2)he,_1,,
()N (f5)€73

where z is an indeterminate. But the left hand side is the syndrome of a b; x b,-
burst By(z), whose nonzero components are confined to {(1,7): 0 < i < b;, 0 <
J < by}, while the right hand side is a syndrome of a b, x b,-burst B,(z), whose
nongero components are confined to {(4,5) : by~ 1 <1 < 2b -1, by—1 <
J < 2b; — 1}. These bursts, having the same syndrome, have the same pattern.
Suppose that a;,-14,-1 = 1. Then the number of nonzero components in B, (0)
is |1}, and in By(0) is |J2| + 1. Hence, |J;| = [J;| + 1. However, B;(1) has
|Ji| + 1 nonzero components, while B;(1) has |J,| nonzero components. This

contradiction proves that ay,_y 4,1 = 0.

Since B,(0) has the same pattern as B,(0), then there exists a pair of integers
(11, 1,) such that
(i)eEh e (i+h,i+b) el (5)

Similarly for B;(1) and By(1), there exists a pair of integers (I!, ) such that
e U(bi- 16— 1)} & (i +1],5+ 1) € LU{(b — 1,6, - 1)} (6)

Applying Lemma 6, it follows that the parity check vectors whose positions are
in the set J ~ {(0,7) : 0 < j < b;} are linearly independent. Hence (0,7,) € J;
for some 0 < j; < b;. Using this statement in (6), it follows that Il =b—-1.
Similarly, I7 = b,—1. Substituting in (6), it follows that (0,0) € J;. Substituting
in (5), it follows that (1,5} # (b — 1,5, — 1). Let [, =, ~ " and L, = I} — I
Then, (I;,12) # (0,0).

Let (v',5') € Jy, then from (5), we have (' + I}, ;' + I}) € J;, and from (6),
(1,7 +h) € T U{(by = 1,6, — 1)} T (&' + 1, 5 +42) # (b1 — 1,52 — 1), then by
the same argument we have (+' + 215, 7' + 2I;) € J,U{(b, — 1,b, — 1)}. Thus, by

iterating the same argument, it follows that there exists a positive integer d g



— 65 —
such that ' + d; I, = b, — 1 and J' +dsjly =b; — 1, and for all 0 <k<dyj,
(" +kly, 3" +kl) € Jy. TIn particular, since (0,0) € J;, then there exists do o such
that dyol; = b; — 1 and doolz = b, — 1. Now, we argue that

J; = {(kll,klg) : 0 S k < do,o}.

Indeed, the containment D is already proved. To prove the containment C, note
that if (1,7) € Jy, then s+ di;l; = b, — 1 = dyol; and j + dijlo = by — 1 = dgl,.
Thus, § = (do,o — di;)ly and j = (doy — d;,)l,. Hence, (4,7) € {(kly,kl;) : 0 <
k < dgo}. This proves the containment C. Since L=L+1ll=1+b,—1and
l; =l + 13 = I + b, — 1, then it follows from (5) that

Jo={((k+1)+b —1,(k+1)l,+ b, — 1):0 < k < dyp).
Thus, a,; = 1 if, and only if,
(7)€ iU Je = {(kly, ki) : 0 < k < 2d, k # d},
where d = dyq.

To prove that d is unique, suppose that
E a:’,jh",j =0,
()er
where a;; € F,, and not all are gero, such that a,; = 1 if, and only if, (i,5) €
{(kty,kty) :0 < k< 2m, k # m}, where t; = (4, — 1)/m and ¢, = (b2 = 1)/m,
for some positive integer m. Then,
2. aih;=0,
(ig)er
where a/; = a,; 4 a} ;. Hence, ago = 0. If m # d, then not all the a,’s are gero.

But, this contradicts the arguments given since aj, = 0. a

If there exists a b; x b,-burst identification code with redundancy 2b,b, — 2,
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where b;,b, > 1, then (4) holds for every (u;, u,) such that 0 < u, < n, —2b, 41

and 0 < u; < ny —2b2+ 1. In the next theorem, we will prove that d of Lemma 4

does not depend on (u;,u;).

Theorem 18. Suppose H = |h;;], 0 < i < ny, 0 < j < n, is a parity check
matrix of a b, X b,-burst identification code of redundancy 2b,b, — 2, where

by, by > 1. Let

I={(5,7):0<i<b,0<5<b)}
WG, 7) s —1<i<2b, -1, b, -1 < j < 2b,—1).

Then, there exists a unique positive integer d|gcd(b; — 1,b, — 1) such that if
0$u1 Sn1—2b1+1, 05“25”2—2b2+1, then

Z a"1+0‘.03+1'h“1+"'"2+i =0,
el
for a unique nonempty set {(s,5) € I : ay 4iu,+; = 1} given by {(kl;,kl;) : 0 <
k<2d, k+#d}, wherel, = (b, — 1)/d, I, = (b, — 1)/d. Similarly, let

I={(3,7):0<s<by, bo—1<j<2b,—-1}
U{(,5) 1 — 1 <i<2b -1, 0< 5 < by).

Then, there exists a unique positive integer d|ged(b, — 1,b, — 1) such that if
0<v,<n; —2b5+1,0< v, <ny, —2b,+ 1, then
Z aul+i,vg+jhv|+|',ug+j =0,
(ss)El

for a unique nonempty set {(3,5) € I : @y, 4i0,+; = 1} given by {(kl,, (2d - k)l,) :
0<k<2dk# 4}) where |, = (b, — l)/d-: b= (b - 1)/d

Proof. It suffices, by symmetry, to prove the theorem for d. Since the redun-
dancy is 2b,b, — 2, and I is of cardinality 2b,b, — 1, then if 0 < u, < n,—2b+1,
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0 < u; < ny — 2b; + 1, there exists a nontrivial linear relation of the form

Y GutiugtiBuitivgti = 0.
(is)e!

In Lemma 17, we proved that there exists a unique integer d(u,,u,) such

that ay,4iw,+; = 1 if, and only if, (i,5) € {(kly(u1, u2), kla(uy,u;)) : 0

<

k < 2d(uj,uz),k # d(us,u;)}, where Ij(u;,u;) = (b — 1)/d(u;,u,) and
l2(u1,u2) = (b — 1)/d(u,y, ;). It suffices, by induction and symmetry, to prove

that d(u;,u;) = d(u; + 1,u;), where 0 < u; < n; — 2b,, 0<u; <np—2h+1.

Let

Ji(uy, u2) = {(kli(u1, u2), klo(u1,u2)) :0< k < d(uy,us)},

and

Jo(uy, u2) = {(kly(u, uz), klo(uy, u2)) : d(uy, us) < k < 2d(u,,u,)}.

By applying Lemma 17 to (u,, u,;), we get
> bukigti= X Butius
($0)E€T1{uy,u3) ($.)E€J3(u1 u3)
and by applying it to (u; + 1, u;), we get
Z hu|+l+l',u,+j = Z hu|+1+l',ug+j-
(17)€1 (us+1,u4) (.4)€73(v14+1,u3)
Adding these equations, we get
E h"1+","z+i = Z hun+-',ua+iv
(J)en (i)l

where

I = {(kli(u1,42), kl2(uy,42)) : 0 < k < d(uy,u;)}

ULkl (6 + 1, u2) + 1, klp(uy + 1,u5)) 10 < k < d(u; + 1,u)),

(8)
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and

L = {(kli(u1,u2), kla(u1,uz)) : d(uy,u5) < k < 2d(uy, up)}

Ukl (s + 1, u2) + 1, kb (u; + 1,u,)) s d(u; + 1,up) < k < 2d(uy + 1,u,)}. (9)

But
Ilg{(i,J):OS'<b1, 0S]<bz},

and

Iz g {(i,]) . bl _<_ 1 < 2b1, bg _<_ ] < 2b2},

~ Hence, from (7}, there exist two b; X b,-bursts sharing the same syndrome, such
that the positions of their nonzero components are given by I, and I,. Hence,
these two bursts have the same pattern, which implies that there exist a pair of

positive integers ¢; and ¢, such that
(’;J) € Il < (i+ thj +t2) € 12~

From (8), it follows that {(0,0),(1,0)} C I, and (i,5) & I, for all i < 0. Hence,
from (9), it follows that ¢; = [d(u;, uz) + 1)li(u1,u2) and ¢; + 1 = [d(u; + 1, u) +
1]l (u; + 1,uz) + 1. But since I, (u;, u,)d(u;,u;) = Ii(uy + 1, u)d(uy + 1,uy) =
by — 1, then we have d(u,,u,) = d(u, + 1, u;). This, as argued before, suffices to

prove the theorem. [ |

Suppose that there exists a b; x b;-burst identification code of area n; x n,
and redundancy 25,b; — 2, where 0 < 2(b; — 1) < n, and 0 < 2(b; — 1) < n,.
Then, the integers d and d of Theorem 18 corresponding to the code, will be
called the diagonal parameters of the code.

Corollary 19. Suppose that H = [h;j], 0 <1 < n;, 0 < j < n,, where
0 < 4(b, —1) < n; and 0 < 4(b; — 1) < n,, is a parity check matrix of a
by X bs-burst identification code of redundancy 2b,b, — 2. Then, H is uniquely
determined from the submatrix H' = [h;;], 0 <§ < 2(b, —1), 0 < j < 4(b,—1),

and the diagonal parameters of the code.
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Proof. First, we show that h; ;, where 2(b, —1) < i < n, and 0 < 5 < 4(b,— 1),
is uniquely determined from H'. This is proved by induction on i. Suppose
that h; ;s is uniquely determined for ¢ < § and 0 < j' < 4(b, — 1). Then, from
Theorem 18, h; ;, where 2(b, — 1) < j < 4(b; ~ 1), is uniquely determined from

2d

E hd+kl.—2(5,—1),j+kl’,—2(b,—1) =0,
k=
k2d

where I} = (b, —1)/d and I; = (b, — 1)/d. On the other hand, h; ;, where
0 <7 <2(b; — 1), is uniquely determined from

2d

D bk 20, -1) -ty 42(b0-1) = O,
iz

where |, = (b;—1)/d and I; = (b,—1)/d. By interchanging  and 7, the corollary
follows. n

Corollary 19 implies that, for every b, x b,, there is a straightforward al-
gorithm, though it may be very tedious computationally, to decide whether
r(by, b2) equals 2b,b, — 2. Indeed, from this corollary it follows that the number
of by X b,-burst identification codes of redundancy 2b,b, — 2 is bounded by a
function that depends only on b, and b,, i.e., does not depend on the areas of

the codes.

In the previous subsection, we proved that there are no 2 x 2-burst iden-
tification codes of large areas and redundancy 6. In the next subsection, we
will show that there are no 3 x 2-burst identification codes of large areas and

redundancy 10.



- 70 -

4.4. 3 X 2-Burst Identification Codes

From Theorem 8, it follows that 10 < r(3,2) < 12. In the following, we will
prove that r(3,2) # 10.

Suppose that H is a 7 x 5 submatrix of a parity check matrix of a 3 x 2-burst
identification code with redundancy 10. By studying the structure of H, we
will establish a contradiction. From Lemma 6 and Theorem 18 we may assume,

without loss of generality, that

([t w e e t]
€ € e e; e

e; e p q e
H=|e, e u v e}, (10)
e e t w e

€ € € e; ey
P qQ e e P

where e; is the ith canonical vector of length 10, and P;q,u,v,t, and w are
vectors of length 10. We shall write p = (po, py, .. .yPs), and the same notation

is used for the other vectors.

Lemma 20. If p =00rgs =0, then p = (po,1,1,0,0,0,0,0,ps,1) and
q= (11QI)0: ,0,0,0,0, 1199): where Po = P&, q1 = @y, and Pogdi = Psge = 0.

Proof. Suppose p; = 0. From Lemma 6 applied to {5,/):¢=0,1,2, 5 =
1,2} U{(s,7) : 1= 1,2,3, j = 0,1}, it follows that p, = 1. The bursts

r

0 0 ps 0 O]
0 0 p, 1 0
00100
B,=100 0 0 0
00 0 00
00 0 00
0 0 0 0 0]
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and

0 0 0 0 0]
Po pp 0 0 O
p2 ps 0 0 O
B:=|pd ps 0 0 O
0 0 0 0 O
0 0 0 0 O
o 0 00 0

share the syndrome (po, pi, p2, ps, P4, Ps, 0,0,0,0). Hence, they have the same
pattern. By comparing their patterns, it follows that p; = 0. On the other
hand, the bursts

B,

il
coocoo0o0o0
cooocoIF o

cCo0OoO I
coocoococo
coo0o0oo0oo0oo0o

and

OO0 000 O0o

B,

COoOO0O0O0O0O0
OO0 000

OO0 00O ~OO
cocoBIPB o

|0 0
share the syndrome (po,0, ps,0,p,,0,0,0,0,1). Hence, they have the same pat-
tern. Thus, p; = 0. Substituting p, = 0 in B, and B,, and comparing their
patterns, it follows that p; = p, = 1, ps = pg = 0, and py = ps. Thus,

pP= (pO) L1,0,0, 0,0,0, ps, l)s with Po = Ds.

Now, suppose that g¢ = 1. Then the bursts

'0 0 1 qr 0.
0 0 gs+zps o+z O
00 z 1 0
By=\|0 0 0 0 0
00 0 0 0
00 0 0 0
(0 0 0 0 0]
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and

C 0 0 0 0 0]
Qo+zZpe a1 +z 0 0 O
Q:t+z gs 0 0 O

By = 94 g 0 0 0],
0 0 0 0O
0 0 0 0O
0 0 0 0 0]

where z is an indeterminate, share the syndrome (g0 + zps,q1 + z,¢» +
Z,9s,94,95,0,0,0,0). Hence, they have the same pattern, which implies z = g,
which is contrary to the definition of z. Hence, g¢ = 0. Due to the symmetry
between p and q, it follows that q = (1,¢,,0,1,0,0,0,0,1,q,), where ¢, = go.
Finally, if po = g, = 1, then py + go = p; + ¢: = 0, which contradicts Lemma 6
as applied to {(5,7) :1=2,3,4,5,6, 1 =0,1}. |

Lemma 21. p;=g¢¢=1.

Proof. Suppose p; = 0 or g¢ = 0. Then, from Lemma 20, it follows that
P = (p01,1,0,0,0,0,0,ps,1) and q = (1,¢,,0,1,0,0,0,0,1,q,), where p, =
Ps; 1 = 9o, and poqy = 0.

Suppose py = 0. Then uq = 1, since if uy = 0, then u = (u; + ug)e; + (u2 +
Ug)e; + use; + use -+ tgeg + ugeq + Urey + uges + uyp, which contradicts Lemma 6
as applied to {(4,7) : § = 1,2,3, j = 1,2} U{(s,5) : 1 = 2,3,4, § = 0,1}. The

bursts

[0 0 0 0 0]
0 0 14+us u,+uy O
0 0 q +y; 1 0
B;=10 0 1 0 0
00 0 0] 0
00 0 0 0
|0 O 0 0 0]
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and i
0 0 0 0O

0 0 0 0O

g1+ u; + U2 1+ Us 0 0 O

Bs = Uy Ug 0 0O

Ug Uy 0 00O

0 0 0 00

0 0 0 0 0]

share the syndrome (0,0, g; + u, + up, 1 +ug, Uy, Us, Ug, U7,0,0). Hence, they have

the same pattern, which implies u; = 0. Since u; = 0, then the bursts

[0 1] (1] 0 0]

0 u; + up l+u5 0 O

0 14+us ¢g+u 0 O
Bg= 0 Us 1 00

0 0 0 00

0 0 0 00

| 0 0 0 0 0]

and -

0 0 00O 0

0 00O 0

0 0 0 1 g +u+uy
BIO_ 0 00O Uy

0 0 0O Ug

0 0 0O 0

0 0 0 0 0 ]

share the syndrome (1,¢;,q, + u; + Yy, 1,u,,0,u6,0,1,q,), and hence have the
same pattern. If u; # u,, then by comparing the patterns of B, and B, it follows
that ug = 1, which leads to a contradiction by comparing the patterns of B, and
Bio. Hence, 4; = uy. By comparing the patterns of By and B,, it follows that
tg = 0. Then, by comparing the patterns of B; and By, where ug = u; +uy =0,
we get uz = uy = us = u7 = 0,uy = ug = 1. Thus, u = (1,4,,0,0, 1,0,0,0,1, u,),
where u; = u,. Hence, u = ey +u e, + ¢, +es + u;p, which contradicts Lemma 6
as applied to {(1,5) : ¢ = 1,2,3, § = 0,1,2}. This contradiction yields py = 1.
But then, by Lemma 20, ¢; = 0, and a similar argument holds due to symmetry.
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Lemma 22. p = (po,1,p2,9s,1,0,ps,1,ps, ps), where py = pe,p; = ps,ps =
Do, and q= (ls q1,92,9s,0,1, 1,97,?8,99), where q1 = 41,92 = Qs,9s = Qs. More-

over, poq1 =0 and u = uze; + ey + use + uge; + €q + uzes + € + up + usq.
Proof. By Lemma 21, we have p; = g¢ = 1. The bursts

0 0]

Bu =

ocoococoooco
oo OoOmIT
0CO0OO0O0OOF -
cooo0o0oo0

coococoocoo

and

sz =

OO OO0 0O
(== oo I eo I = N« N = BN =}
COOO0OO0COO

cocooIIJ[B o

CooRIIT o

share the syndrome (po, p1,p2, Ps, P4, P5,0,0,0,0). Hence, they have the same
pattern, which implies p; = py = 1,ps = 0,po = ps, P2 = ps, ps = po. Similarly,
=9 =1,9=0,91 =q7,92 = ¢s,qs = gs.

By applying Lemma 6 to {(1,7) : ¢ = 2,3,4,5,6, j = 0,1}, it follows that
the set {e;,es,...,e;,p,q} forms a basis for P}°. Thus, poq, = 0. Hence, there
exists an automorphism of F3° such that e; — e;_; for i = 2,3,...,9, p — e,
and q — e;. Since p = poey + €, + pre; + pses + e, + poeg + €7 + P2€es + psey,
then by considering the image of H in (10) under this automorphism, it follows

that u = u;e, + e; + ueq + uge; + e + uses + €y + U,p + usq. |

Theorem 23. r(3,2) > 10.
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Proof. From Lemma 22, it follows that the bursts

0 0 0 0 0]

0 0 g+us+pqu l4+gs+psqy O

00 Q1 + Yy 14 ug 0
Bis=|0 0 1 0 0
00 0 0 0

00 0 0 0

0 0 0 0 0

and ;
0 0 0 0O

1 0 0 0O

Q2tu+pq1 l+gs+psqgg 0 0 O

Bu = 1 + U, 1+ Us 0 0O
0 0 0 0 ¢

0 0 0 0 0

0 0 0 0 0]

share the syndrome (1,0,q; + 2 + p2q1, 1 + qs + paqy, g1 + g, 1 + us,0,0,0,0),
and hence have the same pattern. This implies us = g3 + psq; = 1. This yields
U+ (g1 + )P + (92 + U2 + pagi)es = €0 + (g2 + Uz + p2gi)e; + (g1 + uy)e,, which
contradicts Lemma 6 as applied to {(s,7) : ¢ = 1,2,3, 5 = 0, 1,2}. This final
contradiction proves that r(3,2) # 10. [
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CHAPTER IV

THE STRUCTURE OF BURST CORRECTING CODES

In this chapter, we study two-dimensional burst correcting codes, which are
defined in section 1. In section 2, we give a number of bounds on the parameters
of these codes. Burst locating codes, which are used in the construction of burst
correcting codes, are examined in section 3. In sections 4, 5, and 6, three classes

of burst correcting codes are developed.
1. Definitions

A two-dimensional linear code C is said to be a b; x by-burst correcting code if
no codeword, except the all zero codeword, is a b; x b,-burst or a sum of two
by X by-bursts. Equivalently, the code C is a b, x b,-burst correcting code if,
and only if, the syndromes of the b, x b;-bursts with respect to any given parity

check matrix of C are nongero and distinct.

This definition is useful because if a b, x b,-burst correcting code is used
over a channel that may add to any transmitted codeword a b, x b;-burst, then
the receiver can determine the burst added by the channel, and thus retrieve

the transmitted codeword.

A two-dimensional code is said to be a b, x b,-cyclic-burst correcting code if
no codeword, except the all zero codeword is a b; x b,-cyclic burst or a sum of
two b; x by-cyclic bursts. Note that a cyclic b, x b,-burst correcting code is a
by X by-cyclic-burst correcting code, but the converse does not necessarily hold.
Indeed, if C is a cyclic burst correcting code of area n, x n,, then zc(z,y) and
yc(z,y), both mod(z™ + 1,y™ + 1), are in C for each ¢(z,y) € C. This is not

necessarily true for cyclic-burst correcting codes.
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We are mainly interested in b, x b,-burst correcting codes whose areas are
much larger than b, x b;. Several classes of codes will be considered in this
chapter. The following measure is used to estimate the redundancy required in
each class. Consider an infinite class § of b; x b,-burst correcting codes, and
suppose that for every positive integer n, the subset § (n) of codes in § whose
areas are larger than n X n is nonempty. For each C € § , let nie X nye and rc
denote the area and redundancy of C, respectively. Then, we define the ezcess
redundancy* of the class § as

rs(bi, b2) = nh_{{}o ceilsl(fn) (Tc - 108("1cnzc))a

if such limit exists. It is to be noted that rg(b,b,) exists if, and only if,
infcesin) (rc - log(nlcngc)) is bounded as a function of n since it is a nonde-
creasing function. If this function is unbounded, we take rs(b1,b;) = co. The
definition of excess redundancy may need some clarification. A b, x by-burst
correcting code of area n; X n; and redundancy r must have distinct syndromes
for all distinct 1 x 1-bursts. Since there are n;n, such bursts, it follows that r
should be at least log(n,n;). This explains the term “excess” used to describe
rs(by, by). It follows from the definition of excess redundancy that if ro(by,b;) is
| finite, then for every € > 0 and every positive integer n, there exists a b; x b,-
burst correcting code in § of area n; x n,, for some n, x n, greater than n x n,

whose redundancy is less than rg(b,, b;) + log(n;n,) + €.
2. Bounds on Two-Dimensional Burst Correcting Codes

In this section, we will state and prove a number of bounds on two-dimensional
burst correcting codes. The bounds stated in the following two theorems are

extensions of similar bounds known for one-dimensional burst correcting codes.

The following bound is a Hamming-type volume bound, first stated by Fire

* The concept of excess redundancy is a8 modified version of an earlier measure of efliciency
of one-dimensional burst correcting codes developed by Fire [9].
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[9] in the one-dimensional case.

Theorem 1. The redundancy r of a b, x b,-burst correction code of area

n; X n, satisfles

272 1+ (n1 = by)(ne — B)N (b1, 5,) + (ny ~ by) f: N(by, b3)

b’2=1
‘x bl .2
+(nz = b2) 30 N(By,b)+ 3 3 N(b.,8),
¥ =1 bi=16,=1

where N(b,, b,) is the number of distinct patterns of by x by-bursts. Ifn; > 2b,—1,

nz > 2b; — 1, and the code is a b, x b,-cyclic-burst correcting code, then

2° Z 14 ﬂlﬂgN(bl,bg).

Proof. From the definition of a b; x b,-burst correcting code, it follows that the
number of nonzero syndromes 2" — 1 should be at least equal to the number of
by Xbo-bursts. N(b,,b,;) is the number of b; X b,-bursts starting at position (u,, u,)
ifO0<u <n;—band0 <y, <ny—b,. On the other hand, if 0 < u, < n; - b,
and n, — b, < ny; — b, = u; < n,, then the number of by X by-bursts starting at
position (uy,u;) is N(b,,b}). Similarly, the number of b; x by-bursts starting at
position (uy,u;) is N(b,b;) if n, — b, <ny— b, =u, <n;and 0 < U, < ngy—b,.
Finally, if n; —b; < ny — b, = 4, < ny and ny — b, < n, — b, = u; < n,,
then the number of b, x b;-bursts starting at position (u1,u,) is N(b),b,). The
first statement follows by counting the total number of b, x bo-bursts. Since, by
Lemma 1 in the preliminaries, the number of b, x by-cyclic bursts is nyn, N (b, b,)

~ifny > 2b; — 1 and n, > 2b, — 1, then the second statement also follows. [ |

The next lemma is analogous to the well known Varshamov-Gilbert bound,
and was first stated for one-dimensional burst correcting codes by Campopi-

ano [5],(20; chapter 4]. In the following, the bound is extended to the two-
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dimensional case.*

Theorem 2. There exists a b; x b,-burst correcting code of area n; x n, and

redundancy r if
2" 2 nlngNz(bl,bz).

Proof. We give an algorithm to construct a parity check matrix of a b; x b,-
burst correction code of area n, x n, and redundancy r if the inequal-
ity is satisfied. The algorithm consists of nun, steps. In each step, an
element h;; € F; is obtained and placed in an n, x n, array at posi-
tion (1,7). By achieving the last step in the algorithm, the required par-
ity check matrix is constructed. The elements are obtained in the or-
der b, _1ny-1, B0 —1ny-2,. .. sBa 10, B0y 2nsm1ye oy Ry 20y e e yhoo. Start with
h,,_1n,-1 # 0. Suppose now that we want to add an element hy, u, to the array
that is partially filled. From the definition of b; x b,-burst correcting codes, it
follows that h,, ., should not be a linear combination of any collection of ele-
ments already placed in the array whose positions are confined to a by x by-block
containing the position {u,,u;) and any collection of elements already placed in
the array whose positions are confined to a b, x bz-block. The number of distinct
linear combinations of collections of elements already placed in the array whose
positions are confined to a b, x b,-block, summed over all distinct by x by-blocks,
 is obviously bounded by ninyN(by,b,). In the following, we will argue that the
number of distinct linear combinations of collections of elements already placed
in the array whose positions are confined to a b, x b,-block containing the posi-
tion (v, u), is bounded by N(b,,b,). Indeed, this is the number of b, x by-bursts
with “1” at position (u;,u,), and whose “1”s are confined to the positions of

the elements already placed in the array. Consider two b, x b;-bursts B, and B,

* The bound of Campopiano is more refined than the one dimensional version of Theorem 2.
It can be easily seen from the proof how the bound derived here can be improved. However, this
improvement will not refine the upper bound on the excess redundancy derived in Theorem 3.



~80 -
satisfying these conditions, and let J, and J, denote the set of positions of their
“17s, respectively. It follows, from the order in which the elements are placed
in the array, that the burst B, starts at position (w1, 71) for some j; < u,, such
that (u,j) & J; for j; < j < u,. Similarly, the burst B, starts at position (u,, 5;)
for some j5; < u; such that (u;,j) € o for 7, < j < u,. I B, and B, share
the same pattern, then there exists a pair of integers (I, I2) such that (s,5) € J;
if, and only if, (5 + l;,5 + &;) € J,. But from the characterization of the start-
ing positions of B; and B,, it follows that I, = I, = 0. Thus, j; = j,, which
- implies B, = B,. This proves the bound N(b;,b,) for the number of distinct
linear combinations of collections of elements already placed in the array whose
positions are confined to a b; x b,-block containing the position (%1, u;). Hence,
if 2" > nynyN?(b;,b,), then we will succeed in finding the element h,, ,,. If
we succeed in finding the element kg, then definitely we obtain a parity check

matrix of a by X b;-burst correcting code. B

The next theorem is an immediate consequence of Theorems 1 and 2.

Theorem 3. Let r(b;,b;) denote the excess redundancy of the class of all

by x bs-burst correcting codes. Then,

log N(b;1,b2) < r(by,b;) < 2log N(b,b,).

Our main aim is to develop two-dimensional burst correcting codes whose
excess redundancy is small. Before doing that, it may be illuminating to consider

one-dimensional codes, whose theory is better understood.

Hamming codes are 1-burst correcting codes whose excess redundancy is
0. For 2-burst correcting codes, Abramson codes [2] have excess redundancy
1. The excess redundancies of these two classes of codes satisfy the minimum

bound of Theorem 3 with equality. For b-burst correcting codes, with b > 3, the
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best known class until recently in terms of excess redundancy was Fire codes
[9]. The excess redundancy of this class is (26 — 1) — log(2b — 1). However, it
has been shown recently 1] that for every positive integer b > 3, there exists a
class of cyclic b-burst correcting codes whose excess redundancy is b — 1. This

class satisfies the lower bound of Theorem 3 with equality.

We return to two-dimensional burst correcting codes. The first class of such
codes ever reported in the literature is due to Elspas [8]. The codes in this class
are products of cyclic codes. The excess redundancy of these codes is infinite for
all values of b; and b,. However, it should be noted that these codes have other

error correcting capabilities, in addition to correcting two-dimensional bursts.

The 7f-codes developed by Nomura et al. [19], are cyclic 1 x 1-burst cor-
recting codes whose excess redundancy is 0, which meets the lower bound of
Theorem 3 with equality. The cyclic class of two-dimensional Fire codes [12]
has excess redundancy (2b; — 1)(2b, ~ 1) —log (28, — 1)(2b, — 1), Apart from the
codes developed in this chapter, this excess redundancy is the best known value

in case by x b, greater than 1 x 1.

Theorem 3 implies the existence of a class of codes whose excess redundancy
I8 lower than that of Fire codes unless if (b, b,) = (1,5),(5,1), or (2,2), where
b > 1. However, it should be noted that there is no guarantee that these codes
have the nice algebraic structure of Fire codes which make them easy to encode
and decode. The most important result in this chapter, which is Theorem 34,
states that there exists a class of cyclic b; x b,-burst correcting codes, for every
pair (b;,b;) of positive integers, whose excess redundancy is b,b; if b, and b,
are both larger than 1, and b,b, — 1, if otherwise. The encoding and decoding
techniques for these codes, which are treated in the appendix, are easy, since

the codes are cyclic.
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3. Burst Locating Codes
3.1. Definitions

A two-dimensional linear code € is said to be a b; x by-burst locating code if no
codeword is a b, X b;-burst or a sum of two b; x b,-bursts of the same pattern.
Equivalently, the code C is a b; x b,-burst locating code if, and only if, the
syndromes of the b; x b;-bursts sharing the same pattern, with respect to any
given parity check matrix of C are nonzero and distinct. A b, x b, -cyclic-burst
locating code is defined similarly where the bursts involved in the definition are

cyclic.

These codes are useful in practice. If a b, x b,-burst locating code is used
over a channel that may add to any transmitted codeword a b, x b,-burst, then
the receiver can determine the burst position if the burst pattern is known. It is
important to note that the receiver may not be able to uniquely determine the
burst position without first knowing its pattern. Thus, a b; X b;-burst correcting
. code is a b; X by-burst locating code, but the converse does not always hold
except if b, =b;=1. In other words, a b, x b,-burst locating code may contam

a codeword which is the sum of two b; X b,-bursts of different patterns.

The following is an immediate consequence of the definition.

Lemma 4. If r is the redundancy of a burst locating code of area n; X n,,

then
r > [log{n,n, + 1)].

In the following, we will give two different constructions of b; x b,-burst

locating codes which will show that this bound is tight.
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3.2. 76-Codes

In this subsection, we will present a class of cyclic burst locating codes which is

already known in the literature.

Theorem 5. Let m, and m, be positive integers. Let a be an element of
order n in Fym;m; whose minimal polynomial over F, is of degree m;m,. Let n,,
n2, and n be positive integers such that the following conditions are satisfied:
(1) nin, = n.
(2) m, is the multiplicative order of 2 modulo n,.
(3) ged(ny,n;) = 1.
(4) ged(n,2™™ —1) =1,
Let v = a" and f = ™. Then,
| (i) The orders of ¥ and f are n, and n,, respectively.
(i) The minimal polynomial of 4 over F, is of degree m,, and the minimal
polynomial of 8 over F,m, is of degree m,.
(iii) The elements v'f/, for 0 < i < m,;, 0 < j < m,, are linearly independent
over F,.
(iv) 4*f’ =1 if, and only if, n,|i and n,|j.
(v) The matrix [¥'f’],0<i<n;,0<j<n,isa parity check matrix of a cyclic

m, X mg-burst locating code of area n; x n, and redundancy m;m,.

Proof. Part (i) immediately follows from conditions (1) and (4). From condition
(2) it follows that the minimal polynomial of 4 over F; is of degree m,. The
degree of the minimal polynomial of 8 over Fym: is the least positive integer
d such that 2™9 =1 (mod n,). Conditions (1), (2), and (3) implies that for
such d, we have 2™/ =1 (mod n). Since the minimal polynomial of @ over P,

is of degree m;my, it follows that d = m,. This proves (ii).

Now, suppose that

may—1 m;—1

Z Z “iJ’Y‘ﬂi =0,

J=0 =0
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where a,; € F;. The fact that the minima! polynomial of # over Fym, is of
degree m, implies Y724 a; ;4* = 0 for all 0 < j < m,, which implies g; ;=0
for all 0 < 4 < m,; and 0 < 5 < m; as the minimal polynomial of v over P, is of

degree m,. This proves (iii).

To prove (iv), note that n,|i and n,|; implies 48’ = 1 from (i). On the
other hand, if '8/ = 1, then '™ = f=i"s = 1, which gives n,|in,. This implies
n,|¢ by (3). Hence, §/ = 1, which gives n,|j.

Next, we prove (v). Let [¢;;],0 <1< n;,0< j < n, be an array over F,.
The syndrome of this array is given by
nyi—ln;—1 o
8 = E Z c;,j'y'ﬁ*’,
=0 j5=0
Thus, the array [c;;] is a codeword if, and only if, ¢(7, 8) = 0, where c(z,y) =
ymst ):;-';g‘ ci;jz'y’. Hence, the code is an ideal in Folz,yl/(z™ + 1,y + 1),
and thus, is cyclic. Since the code is cyclic, then to show that it is m, x m,-burst

locating code, it suffices to prove that if
¢(z,y) = b(z,y) + z"y"*b(z,y) (mod z™ +1,y™ +1)

is a codeword, where b(z,y) € Bm,m,*, then ¢(z,y) =0 (mod z" +1,y" + 1).
Suppose ¢(z,y) is a codeword, then b(v, 8) + v**8*:b(~, 8) = 0. But from part
(iii), it follows that b(v, #) # 0, which implies ¥*1** = 1. Part (iv) gives n;|u;
and n,|u,, which implies ¢(z,y) =0 (mod z"! + 1,y + 1).

Thus, the code is indeed a cyclic m; x m,-burst locating code of area n; x n,
and redundancy < m;m,. But from (iii), it follows that the redundancy is

exactly m;m.. [ ]

* Recall from the preliminaries that

Bm,m; = {P(I,U) € Fz[l‘, y] . degz p(zsy) < mlvdegy p(z!y) < mﬁsp(zvn) # OsP(O»U) # 0}
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A code whose construction is as given in Theorem 5 will be called a 1B-code

with parameters (m;, m,).

This class of codes can be traced to Gordon [10] who gave the construction
of a subclass of the dual codes of the codes presented here as a two-dimensional
generalization of M-sequences. However, Momura et al. [19] have extensively
generalized the work of Gordon. The 7f-codes presented here are the duals of
the codes studied in [19], which are called yf-array codes.

A 7f-code of area n, x n, and redundancy m,m,, where n,n;, = 2m1m3 _ 1,
is said to have maximal area. It is to be noted that a y8-code of maximal area

satisfies the bound of Lemma 4 with equality.

In the following, we will show that for all positive integers b; and bz, there
exists an infinite number of b; x b,-burst locating codes within the class of 8-
codes of maximal areas. The basic argument in the proof is due to Gordon [10].
First, we state without proof the following number-theoretic result attributed

to T. S. Bang. A proof of this result can be found in [7].

Lemma 6. If1 < m # 6 is a positive integer, then 2™ —1 has a prime factor

that does not divide 2' — 1 for every positive integer | < m.

Theorem 7.  For every pair of positive integers (m,, m.) such that 6 # m,; >

m2, there exists a q4fB-code of maximal area with parameters (m,, m,).

Proof. Let 6 £ m; > m,. From Lemma 6, it follows that there exists a prime
p such that m, is the multiplicative order of 2 modulo p, which implies m; <
p — 1 by Fermat’s Theorem. Let p°||2™ — 1 for some positive integer a.* If

pl(2m™2 — 1)/(2™ — 1), then

2(ma=lmi 4 glma=2)my 4y gmi 4 ] = (mod p).

—

g terms

* For positive integers I, and I, 1$]|l; means that I3]l; but I{F! J1,.
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Since 2™ =1 (mod p), it follows that p|m,. This implies m, > p > m, + 1,
which contradicts m, > m,. Hence, p f(2™™ — 1)/(2™ — 1), which implies
p A(2™™ —1)/p°. Let n; = p® and n, = (2™™ — 1)/p°. Then, conditions
(1), (2) and (3) of Theorem 5 are satisfied, and hence there is a y3-code with

parameters (m;, m,). |

Corollary 8. Ifb,, b,, and n are positive integers, then there exists a b, x b,-
burst locating code which is a 78-code of maximal area greater than n x n with

parameters (m, m,) for all sufficiently large m, and m,.

Proof. If b, x b, is less or equal to m; x m,, then an m; x m,-burst locating
code is a b; x b,-burst locating code. The corollary now follows from Theorem 7

and conditions (1) and (2) of Theorem 5. L

Some practical applications may require the areas of the burst locating codes
to be squares or close to squares. In the construction given in Theorem 5, it

follows that n; < 2™ — 1 and

gmims _ 1 gmima_ |

ng = > gmima=1)

n; = 2m — 1
Thus, if n, and n, are required to be large and close in value, then m, is restricted

to be less or equal to 2. But this may restrict the y8-code to be a by X by-burst

locating code with b; =1 or 2 only.

In the following, we construct b; x b,-burst locating codes of square areas

for all positive integers b, and b,.
3.3. aff-Codes

afi-codes are cyclic burst locating codes that have square areas. The following

theorem gives the structure of these codes.

Theorem 9. Let by, b,, t, t2, and m be positive integers, m > 1. Let «

and B be primitive elements in P,m, not necessarily distinct. Suppose that the
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following conditions hold:

(1) The elements a™'+/, 0 < § < by, 0 < j < by, are linearly independent over
F,.

(2) The elements "+ 0 <§ < by, 0< j < b,, are linearly independent over
F,.

(3) ged(tst; — 1,2™ —1) = 1.

Then the code with parity check matrix [h;,], 0 < i,j < 2™ — 1, given by

h;; = (a*'*, BH"), s a cyclic by x by-burst locating code of area 2™ —1x 2™ — 1,

and redundancy 2m.

Proof. Let n = 2™ — 1. An array [¢,], 0 < 1,7 < n, over P, is a codeword if,

and only if, its syndrome is zero, i.e., if, and only if,

n—~1ln-1 . . n—1n-—-i L
22 cijatt =3 3" ¢ 8 =0,
=0 §=0 =0 §=0

Let ¢(z,y) = Tiiy' £725" ¢ijz'y’, then it follows that ¢(z,y) is a codeword if
and only if ¢(a'',a) = ¢(B, ') = 0. Thus, the code is an ideal in P.lz,y]/(z" +
1,y" + 1), and hence is cyclic. To prove that the code is a b; x b,-burst locating

code, it suffices to show that if
c(z,y) = b(z,y) + z'y"*b(z,y) (mod z" +1,y" +1),

is a codeword, where b(z,y) € By,s,, then c(z,y) = 0 (mod z" + 1,y" + 1).

Suppose ¢(z,y) is a codeword, then
bla", a) + a’'1*1b(a" o) = b(B, B') + pUiteatap(B, ') = 0.

From conditions (1) and (2), it follows that b(a’,a) and (8, 8**) are nonzero,
which implies
Uty +u; = u; + Uyt =0 (mod n).

From condition (3) it follows that u; = u, =0 (mod n). Hence, c(z,y) = 0

(mod z" + 1,y" + 1). Thus, the code is a b, x b,-burst locating code of area
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2™ —1x 2™ — 1, and redundancy 2m at most. But by Lemma 4, it follows that
the redundancy is exactly 2m. [ |

A code whose construction is as given in Theorem 9 will be called an af-code.

For a given redundancy, af-codes are inferior to 7B-codes in the sense that
the former have smaller areas.* However, as can be seen from Lemma 4, for
the same redundancy, af-codes have the largest possible areas among all burst

locating codes of square areas.

Conditions (1) and (2) of Theorem 9 may be tedious to check. In the follow-
ing, we will give a systematic technique to satisfy these conditions if m is large

with respect to b; and b,.

Lemma 10. Let b, by, t,, t5, and m be positive integers such that

(i) t; > by and m > (b, — 1)¢, + b,.

(ii) t; > by and m > (by — 1)¢, + b.

Then, the following holds for any primitive elements o and B in Fym:

(1) The elements a*1*/, 0 < § < b, 0 < j < b,, are linearly independent over
P,.

(2) The elements /" 0 << b;,0< j < b, are linearly independent over
F,.

Proof. It suffices, by symmetry, to prove that condition (i) implies (1). From
(i), it follows that the numbers i¢, + 5, where 0 < i < b;, 0 < 5 < by, are distinct
and lie between 0 and m — 1. Since the minimal polynomial of o has degree m,

then condition (1) holds. a

The following is an immediate corollary of the previous lemma.

Corollary 11. If b, and b, are positive integers, then there exists a b, x b,-

burst locating code which is an af-code of area 2™ —1x 2™ —1 , for all sufficiently

* Here “area” does not mean the pair ny X ng, but rather the product nyng.
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large m.
4. BIL-Codes

Suppose that C; is a b; x b,-burst identification code of area n; X ny. Then C;
has no nonzero codeword which is a b; x b,-burst or a sum of two b, x b,-bursts of
different patterns. On the other hand, suppose that €y is a b; X by-burst locating
code of the same area n; x n,. Then, C; has no nonzero codeword which is a
by x by-burst or a sum of two b, x by-bursts of the same pattern. Hence, the
subspace C=C;NCy is a code of area n; x n, which has no nonzero codeword
which is a b; x b;-burst or a sum of two b, x b,-bursts. In other words, C is a
by X by-burst correcting code. Let r¢ denote the redundancy of ¢ , and define r¢,,

rc,, and r¢ ¢, similarly. Then, we have

rce=rc, +re, —re,4c,-

From a practical point of view, the problem of constructing a burst identifi-
cation code znd a burst locating code, as two separate problems is often much
easier than the problem of constructing a burst correcting code directly. On the
other hand, any b, x b,-burst correcting code is a subspace of a b, x b,-burst iden-
tification code and a &; x b;-burst locating code, just by considering these two
codes to be the same as the burst correcting code itself. Practically, if we want
to have a simple construction technique for a burst correcting code, then we may
only try to find a burst identification code €, and a burst locating code € whose
redundancies are as small as possible. In other words, in a simple construction
technique, we may not deliberately consider minimizing re, +reL — rep+cy, but
rather r¢, + r¢,. This is the basic motivation of the definition of the class of

BIL-codes which follows.

Let C; and € be b, x b,-burst identification and locating codes of the same

area, respectively. Let r¢, + rc. denote the sum of their redundancies. Then, a



— 90 —
code of redundancy r¢, +rc, , which is a subspace of C;NC, is said to be a b, x b, -

BIL-code. From the previous discussion, a b; x b,-BIL-code is a b; x by-burst

correcting code.

By Theorem 8, chapter III, the minimum redundancy r(by, b2) required to
construct b; x b-burst identification codes of arbitrarily large areas is bounded
by

2b1b; — 2 < r(by, by) < 2b,b,.

In Theorem 7, chapter III, we gave an explicit construction of b, x by-burst

identification codes of arbitrarily large areas whose redundancies are equal to

2b,b,.

On the other hand, in subsection 3.2 we presented for every m; < m, # 6
such that b; < m; and b, < m,, an explicit construction of a b, X by-burst locating
code which is a 78-code of redundancy m,;m, and area n, x n,, where n;n, =
2™™ — 1. Also, we have exhibited in subsection 3.3 an explicit construction of
a by X by-burst locating code which is an af-code of redundancy 2m and area
2™ —1x 2™ —1if m is a sufficiently large integer. Using either construction, it
follows that the excess redundancy rg; (b4, ;) of the class of b, x b;-BIL-codes
is bounded by r(b;,b;). On the other hand, Lemma 4 implies that ra(b, b2) =

r(b1, b2). Thus, we have proved the following theorem.

Theorem 12. The excess redundancy rg;y (b;,b,) of the class of b, x b,-BIL-

codes satisfies

2b1b2 -2 S [Bm(bl,bg) S 2b1b2.

In fact, rg;(bi,b2) = r(by,b;) which is the minimum redundancy required to

construct a b; X b;-burst identification code of arbitrarily large area.
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5. Pire-ish Codes

One-dimensional Fire codes [9] form a well known class of one-dimensional burst

correcting codes. The excess redundancy of this class of codes is given by
Trire(b) = (26— 1) — log(2b - 1),

which represents the smallest excess redundancy known among all b-burst cor-
recting codes with b > 3 until very recently. For example, the excess redun-
dancy of one-dimensional BIL-codes is given by Theorem 11 of chapter III as
rei(b) = 26— 2 for b > 1 and rg; (1) = 1. Hence, one-dimensional Fire codes

are superior to BlL-codes in terms of excess redundancy for all values of b > 2.

Imai [12] has generalized one-dimensional Fire codes to two-dimensional
cyclic burst correcting codes which are known as two-dimensional Fire codes.
We will call this class of codes Fire codes for simplicity since one-dimensional

Fire codes can be considered as a special case of two-dimensional Fire codes.

In this section, we will develop a class of two-dimensional burst correcting
codes, called Fire-ish codes, which contains Fire codes as a subclass. It should
be mentioned that Fire-ish codes, in contrast to Fire codes, may be noncyclic.
Hence, the two-dimensional error trapping decoding technique developed by
Imai [12] may not be applicable to Fire-ish codes in general. However, in the
appendix, we will show that some Fire-ish codes that are superior to Fire codes
can be decoded by essentially the same technique after some minor modifications.

The construction of Fire-ish codes is explained in the following theorem.

Theorem 138. Let H' = |h}],0<i<n,,0<j<n,bea arity check
(%) 1 2 p

matrix of a by x by-cyclic-burst locating code C' of area n, x n),. Let H" = ol
0 <4< nj,0<j < nj bea parity check matrix of a b, x b,-cyclic-burst

correcting code C" of area n! x nfl. Suppose that n' x n', and n" x n" are greater
g 1 2 PP 1 2 1 2

or equal to 2b; — 1 x 2b; — 1. Then, the code C whose parity check matrix
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H=1h;,0<i<n,0<j<n, wheren, = lem(ni,n}), n, = lem(ny, nf),

and h,;; = (h:-mod,,.l Jmodn{,» h;’modn,{ Jjmodnt); 15 3 by X by-cyclic-burst correcting code

of area n; X n,.
Proof. Suppose that
c(z,y) = v y"”b’(z,y) + z"fy"'ﬂ'b”(z, y) (mod z™ +1,y™ + 1)

is a codeword in C, where 0 < u},u} < n,, 0 < uy,uy < n,, and b'(z,y),

bt"(z,y) € Bis,. Then, it follows from the construction of ¢ that
zu’lmodn’l’yu;modn;’bl(z, y) + z"lllm"d"'x'y"'z'm"d”'z'b"(z, y) (mod " +1, yn’,’ + 1)

is a codeword in C". As C" is a by X b,-cyclic-burst correcting code of area n x n!!

whick is greater or equal to 25, — 1 x 2b; — 1, it follows, by Lemma 1 in the

preliminaries, that b'(z,y) = b"(z, y), n}|(4] — u}), and n|(u, — u!). Hence,
clz,y) = 21yl (z,y) + ¥ y*1b(z, y) (mod z™ + 1,y"* + 1).

- But, from the construction of C, it follows that

Z¥imodn) yuimodnlprcy oy + g¥imodny yuimodni btz o) (mod g™ + 1L,y™ +1)

i8 a codeword in C'. As (' is a §; x b-cyclic burst locating code of area n! x n
which is greater or equal to 2b; — 1 x 2b, — 1, it follows that n}|(u, — ") and
ny|(u) —uz). Hence, n,|(u} —u}) and n,|(u] — u}), which implies that ¢(z,y) = 0

(mod z™ + 1,y" +1). |

If r¢/y rev, and re denote the redundancies of €', ", and C, respectively,

then re S ree + ree.

Any b, x b,-cyclic-burst correcting code can be considered to have the con-
struction of the previous theorem, just by taking C' and C" to be the same as

the code itself. However, the problem of constructing a cyclic-burst correcting
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code of small area and a cyclic-burst locating code, as two separate problems, is
much easier than constructing a burst correcting code of large area. Practically,
if we want a simple construction technique using Theorem 13, we may restrict
ourselves to minimizing r¢: + rev, rather than ro. With this motivation in mind,
a subcode of redundancy r¢ + rew of the code ¢ whose construction is given in

Theorem 13 is called a Fire-ssh code.

Note that there exists an infinite class of yf-codes which are cyclic b; x b,-
burst locating codes such that each code in this class has maximal area ni x nj,
for some n) and nj such that nin} is relatively prime to any given positive
integer nyn3. This follows from Corollary 8 by properly choosing m;m,. Also,
Corollary 11 implies that there exists an inZinite number of aff-codes, which are
cyclic by x by-burst locating codes of area 2™ —1 x 2™ — 1, for some 2™ — 1 which
is relatively prime to any given positive integer nin;. Hence, y8-codes and af-
- codes, along with any b, x b,-cyclic-burst correcting code C" of redundancy re»
and area nj x n; greater or equal to 2b; — 1 x 2b, — 1, can be used to construct
an infinite class of b, x by-burst correcting codes of arbitrarily large areas, whose

excess redundancy is given by

Trire~ish(c) (b1, b2) = rev — log nin]. (1)

By Lemma 4, there are no b, x b,-cyclic burst locating codes which can be used
along with the code C” to construct a class of Fire-ish codes with smaller excess

redundancy.

Fire codes are the subclass of Fire-ish codes whose code ' is a 1B-code, and
whose code C" is the code of area 2b, — 1 x 2b, — 1, which contains the zero
codeword only. Obviously, this is the most simple construction for the code C".

From (1), it follows that the excess redundancy of Fire codes is given by

Trire(b1, b2) = (2by — 1)(2b; — 1) — log(25, — 1)(2b, — 1).
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The main problem in constructing good Fire-ish codes is to find a code
C" with small rev — log(n''n¥). In Lemma 9 of chapter III, we have actually
constructed a b; X b,-cyclic-burst correcting code of area 2b, x2b, and redundancy
2b,b; + b,. The parity check matrix of this code is the building block H defined
in the lemma. Let € denote this code. Using € to construct Fire-ish codes, we

get a subclass of Fire-ish codes whose excess redundancy is given by
rFix-e—isb(é)(bla b2) = 2byb; + min{b,, by} — log(45,5,),

where we have used min{b,,5,} instead of b, because of symmetry. Note that

_[Fi"_ish(é)(bl,bg) is less than r, (b;,b;) unless if b, or b, is 1, or (by,by) = (2,2).
6. Cyclic Burst Correcting Codes of Minimum Redundancy

6.1. Definitions

From Theorem 1, it follows that the redundancy r and the area n; X n, of a

cyclic by x by-burst correcting code satisfy

r> [log(l + nyn,N(b,, bz))].

A cyclic b; x b-burst correcting code of area n; X ng, where nyn, = 2™ — 1 and
redundancy r = m + [log N(b;,b,)] for some positive integer m, is said to be a
cyclic by X by-burst correcting code of minimum redundancy. I this section, we
will prove that for all positive integers b, and b,, there exist cyclic 6; x by-burst
correcting codes of minimum redundancy of arbitrarily large areas. The excess
redundancy of this class of codes is [log N(by,b;)]. The reason for calling this

class of codes minimum redundancy codes is explained in the following theorem.

Theorem 14. Let C be a'b; x b,-burst correcting code of redundancy r and

area n, X ny, where n;n, = 2™ — 1 for some positive integer m. Then

r > m+ [log N(by,n;)],
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if n; and n, are sufficiently large. If C is a b, x by-cyclic-burst correcting code,

then the above inequality holds for every n, x n, greater or equal to 2b, — 1 x
2b, — 1,

Proof. The first statement follows from the definition of excess redundancy.
Indeed, if r < m + [log N(b;,5;)] — 1 for an infinite sequence of areas n; x
n2, where n, and n, are increasing, then there exists a class of by x by-burst
correcting codes whose excess redundancy is [log N (b1, b2)]—1, which contradicts

Theorem 3. Now, we prove the second statement. From Theorem 1, we have
221+ (2™ - 1)N(by,b,).
So, it suffices to show that
2L 14 (2™ — 1)N(by, by), (2)

where K = [log N(b;,b;)]. If b, or b, is 1, then from Theorem 2 in the prelim-
inaries, it follows that (2) holds. So, assume that b, and b, > 1, and (2) does
not hold. Then,

gm+K—1 -1
N(b,b)) S ——— —
( 1y 2) —_— 2m _ 1
2K-1 _ 1
— 2K—l
t 2m — 1
2k-1_
< 2K—1 -
=4t

Using Theorem 2 in the preliminaries, which implies K = bib,, we get

25,51—1 -1

(2‘1—1 _ l)(z.,—l _ 1)2(51—1)(53—1) S
b1b,

This inequality does not hold if 4,5, > 2. n

Theorem 14 implies that there is no b, x b,-burst correcting code with smaller
redundancy than that of a cyclic b; x b;-burst correcting code of minimum re-
dundancy and the same area, if the area is sufficiently large. They may exist,

however, a b, x b,-burst correcting code which has the same redundancy, but
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larger area than that of a cyclic b; x b,-burst correcting code of minimum re-
dundancy. This is the reason why the excess redundancy of cyclic b, x b,-burst
correcting codes of minimum redundancy differs from the lower bound of The-

orem 3.

Before giving a scheme to construct cyclic b; x b,-burst correcting codes
of minimum redundancy, we need the following definitions. Define the set of

polynomials %, ;, as

Foi8s = {P(,9) € Bi,4, : p(z,y) irreducible over P,).

Let v and f be elements in P,, where q is a power of 2. Let v be a primitive
element in F,, and p(z, y) be a nonzero polynomial over F,. We define the index

ind,(p(7,8)) of p(7, ) as

p(7, B) = yind e,

where ind, (p(7,B)) is reduced modulo ¢ — 1. It follows that if o is a primitive

element in P, then

inda(p(7, £)) = nind,(p(7,)) (mod ¢ - 1),

for some # relatively prime to ¢ — 1. It is to be noted that F,[z,y] is a unique
 factorization domain [4; chapter I},[14; chapter V], and hence every b(z,y) €
By, 4, can be written uniquely as a product [1%, fi(z, y) of irreducibles in %, ,.
This implies that
k
ind, b(v, B) = Z_? ind, (fi(7,)) (mod g -1).

A cyclic code C of redundancy [log N(b,, b2)] such that if ¥'(z, y), b"(z,y) €

By, 4,y and ¥(z,y) + b"(z,y) € C, then b'(z,y) + b"(z,y) = 0, is said to be a

by x bz-code. Thus, a b; x by-code has redundancy b6, — 1 if b, or b; is 1, and
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b, b, otherwise.

Theorem 16. For every pair of positive integers (b1, b2), there exists a

b1 X by-code of area n} x n, for some odd, and relatively prime n, and n).

Proof. If b, = 1, let g(z) € P,[z] be a squarefree polynomial of degree b; — 1
which is not divisible by z. Let C be the one-dimensional cyclic code generated

by g(z). Suppose ¥'(z,0) + b"(z,0) € C, where b'(z,0), b"(z,0) € B;,,,. Then,
¥(z,0) + 8"(z,0) =0 (mod g(z)).

As deg, b'(z,0),deg, b"(z,0) < b, and deg, g(z) = b, — 1, it follows that b'(z,0)+
b"(z,0) = g(z). But from the definition of 8,, ;, we have b'(0,0) = 8"(0,0) = 1,
which contradicts ¢(0) = 1 if b'(z,0) # 4"(z,0). Hence, C is a b, x 1-code. For

reasons of symmetry, there exists a 1 x b;-code for every positive integer b,.

Now we consider the case by, b, > 1. In this case, a y8-code with parameters
(b1,b2), as described in Theorem 5, is a b; x b;-code which satisfies the required
conditions. From Theorem 7, it suffices, by symmetry, to prove that there exist
7B-codes with parameters (b;,b;) = (6,2), (5,3), (6,4), (6,5), and (6,6). In
case b, = 6 and b, = 2,4, or 5, let a be a primitive element in F.es,, n] = €3,
and ny = (2% — 1)/63. In case b, = 6 and b, = 3 or 6, let a be an element in
Fes, of order (2°* — 1)/3, n} = 63, and n} = (2% — 1)/189. In all cases, the
minimal polynomial of a over P, is of degree b,b,, and conditions (1),(2), and
(3) of Theorem 5 are satisfied, and thus there exist b, x b;-codes for b, = 6 and

b, =2,3,4,5, and 6. |

The following theorem gives a technique to construct cyclic b; x b;-burst

correcting codes of minimum redundancy if certain conditions hold.

Theorem 16. Let m, > b, and m; > b, be positive integers. Let C.s
be a 7B-code of maximal area n, X n, and parameters (m,,m,). Let [v'B7],

0 <1< ny, 0< 5 < ny, be its parity check matrix. Let n! and n, be positive



—08 -
integers. Suppose that the following conditions hold:

(1) ged(ny,n3) = 1.

(2) n}|n, and ny|n,.

(3) nint|ind,(f(v,8)) for all f € %,;,, where v is some primitive element in )

and g = 2™1™1,

Suppose that [h,], 0 < 1 < n}, 0 < § < n}, is a parity check matrix of a b, X b, -
code of area ny x n;,. Then, H = [("iﬁj,h,’modn'"jmodn'a)], 0<1<n;,0<5<n,,
is a parity check matrix of a cyclic b, x b,-burst correcting code of minimum

redundancy.

Proof. Let C be the code whose parity check matrix is H. Clearly, C is cyclic.

Hence, it suffices to show that if
c(z,y) = b'(z,y) + 2" y""¥"(x, y) (mod z™ +1,y" + 1)

" is a codeword in €, where b'(z, ¥}, ¥"(z,y) € By, 4,, then ¢(z,y) =0 (mod z™ +
1,y"* + 1). Suppose c¢(z,y) is a codeword in C, then

¥(7, ) + 7" B**b"(, B) = 0. (3)
This implies that

aindo“'(‘bﬁn + aindo ("'(‘7vﬂ))+ﬂlnz+uanm —_ O,

where a is a primitive element in P, such that 4 = a™ and B = a™" for some

n relatively prime to ¢ — 1 = nyn,. Thus, from condition (2) we have
ind,(8'(7, B)) — ind, (¥"(7, 8)) = uina + uanyn (mod n}n.).
But nn}[ind,(¥'(v,B8)) and n|n}|ind,(b"(7, B)) from condition (3). Hence,
Uin; + unn =0 (mod nin)).

From conditions (1) and (2), it follows that n!|u,. Similarly, n,|u, since
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ged(n, ninz) = 1. But from the construction of the code C, it follows that
b'(::, y) + b"(:c, y) = b'(z, y) + zmmodn',yu:modn',bn(z’y) (mod zn', + l,y"" + 1)

is a codeword in the b; x b,-code. Hence, ¥'(z,y) = b"(z,y). From (3), we have
7"'8“* = 1. But then Theorem 5 implies n,|u; and n,|u,. Hence, c(z,y) = 0
(mod z"' 41,y +1). Thus the code C is indeed a b, x b,-burst correcting code.
Its redundancy is obviously m;m, + [log N(b,,5,)], and hence C is of minimum

redundancy. B

Our main concern now is to use Theorem 16 to show that for all positive
integers b, and b, there exist cyclic b, x b,-burst correcting codes of arbitrarily
large areas. The main problem is that this theorem is burdened by 8o many
conditions that need to be satisfied. From the construction of 1P-codes given in

Theorem 5, the following lemma lists all the conditions needed in Theorem 16.

Lemma 17.  Let b, and b, be positive integers. Let n! and n, be two positive

odd integers which are relatively prime. Suppose that m, > b, and m, > b, be

some integers such that the following conditions are satisfied for some positive

integers n; and n,:

(1) nyn, = 2mm™s _ 1,

(2) m, is the multiplicative order of 2 modulo n,.

(3) ged{ny, n;) = 1.

(4) niin,.

(5) n%in,.

(6) nynylind.(f(7,B)) for all f € #,,,, where v, f € R, are of orders n, and ny,
respectively, ¢ = 2™'™, and v is some primitive element in P,.

Then, there exists a cyclic b x b,-burst correcting code of minimum redundancy

whose area is n; X n,.

In the following subsection, we will be concerned with condition (6).



- 100 -

6.2. Applying Weil’s Estimates of Character Sums

In this section, we will make use of Weil’s estimates of character sums with
polynomial arguments to prove the existence of cyclic burst correcting codes
of minimum redundancy. Many preliminary results are needed before making
use of Weil’s estimates. We start by giving a brief survey of characters of the

multiplicative groups of finite fields.

Let G be a finite abelian group of order n. A character y is a homomorphism
from G into the multiplicative group of C, the field of complex numbers. Hence,

for g € G, x(g) is an nth root of unity. If G is cyclic, G = (g), then

X () = g2rilk/n

defines a character x of G, where i = /=1 and 0 < l,k < n are integers.
Moreover, if x is a character of G, then x = x® for some 0 < | < n. By
identifying x") with I, it follows that the characters of the cyclic group G forms
a cyclic group of order n. The identity of the character group is x(®), which is
called the identity character. A character x of order j will be denoted by ;.
Thus, x, is the identity character.

In the following, let ¢ = 2™, where m is some positive integer. Let G be the
multiplicative group of P,, denoted by F;. This group is cyclic. The characters
of Fy are called multiplicative characters. If x is a multiplicative character, we
define x(0) = 0. As usual, let u, ¢ and d denote the Mébious, Euler, and divisor

functions, respectively. The following lemima is obvious.

Lemma 18. Let h > 1 be a positive integer, z be an indeterminate, and

€ € C be a primitive h th root of unity. Then

A1 k1
II (1-2¢)= Z z’,
J=1 1=0
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The following lemma appears in [6].

Lemma 19. Let ¢, and e, be positive integers such that eje; =g — 1. Let
u(k
ORI LIS p
2 ke, x*e3=x,
where w € F,. Then

_ {1, ifwisof order e;;
¥(w) = {0, otherwise.

Proof. Let n be the order of w. From the characterization of characters of finite
cyclic groups, it follows that any character y of F,is x for some 0 < I < g-—1.
For such character x, we have x(w) = e?*"/", and if x*** = y,, then q — 1)lke,
which implies e,|lk. Hence, if kle;, we get

ke3—1

E X(w) =5 2: e2xter/nk

e _ {l, if k|(e1/n);

0, otherwise.

Thus, we have

W)= ¥ o ={g Gnm

K{(er/n) otherwise.

In the following, ¥ = {fi(z) € Pyfz] : t = 1,2,...,M} is a set of pairwise
relatively prime polynomials of positive degree and fi(0)#0for1 <t <M.

Lemma 20. Let h > 1 be an integer which divides q—1, and v be a primitive
element in F,. Let

o) = 9) I1 . i (1(0)).
=1 §=0
where w € F; and y(w) is as defined in Lemma 19. Then
() {hM, if w is order e;