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Abstract

In many experiments, especially those investigating aspects of fluid flow, it is com-
mon to observe time series data exhibiting chaos. Chaos lies in the realm of nonlinear
dynamics, and specialized methods are available for the analysis of nonlinear time
series. One particular method, called time delay analysis, is particularly useful for
extracting information from time series representing measurements at a single point
in space. In this thesis, hot-wire anemometry is used to obtain velocity time series
from experiments on isothermal Taylor-Couette flow. For R/R.=1.6, a simple limit
cycle is observed, yielding an attractor of dimension 1. For R/R,=11.1, the attractor
dimension increases, and the reconstructed attractor exhibits features characteristic
of a transition to turbulence. In addition, various other states and transitions of the
Taylor-Couette system are studied as well.

Direct numerical simulations (DNS) have also been performed to study the effects
of the gravitational and the centrifugal potentials on the stability of heated, incom-
pressible Taylor-Couette flow. The flow is confined between two differentially heated,
concentric cylinders and the inner cylinder is allowed to rotate. The Navier-Stokes
equations and the coupled energy equation are solved using a spectral method. To
validate the code, comparisons are made with existing linear stability analysis and
with experiments. The code is used to calculate the local and average heat transfer
coefficients for a fixed Reynolds number (R=100) and a range of Grashof numbers.

The variation of the local coefficients of heat transfer on the cylinder surface is investi-



v

gated, and maps showing different stable states of the flow are presented. Calculations
of the time and space averaged equivalent conductivity show that the heat transfer
decreases with Grashof number in axisymmetric Taylor vortex flow regime and in-
creases with Grashof number after the low becomes non-axisymmetric.

The numerical simulations also demonstrate the existence of a hysteresis loop in
heated Taylor-Couette flow, obtained by slowly varying the Grashof number. Two
different stable states with same heat transfer are found to exist at the same Grashof
number. The validity of Colburn’s correlation is investigated as well; the Prandtl num-
ber dependence is found to be slightly different from Pr3 for the range of Reynolds
number investigated. Finally, a time delay analysis of the radial velocity and the
local heat transfer coefficient time series obtained from the numerical simulation of
the radially heated Taylor-Couette flow is performed. The two-dimensional projec-
tion of the reconstructed attractor shows a limit cycle for Gr=-1700. The limit cycle
behavior disappears at Gr=-2100, and the reconstructed attractor becomes irregular.
The attractor dimension increases to about 3.2 from a value of 1 for the limit cycle

case.
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Chapter 1

Introduction

1.1 Motivation

The transition from laminar to turbulent flow is not well understood. Taylor-Couette
flow comsists of the flow in the annulus between two (possibly rotating) concentric
circular cylinders is a convenient fluid system to study transition and turbulence. It
is not difficult to construct; the flow is not very sensitive to small imperfections of
the experimental setup; the rotation rates of the inner cylinder can also be controlled
to a very high degree of accuracy. The Taylor-Couette problem offers a range of
features in the transition to turbulence which have been studied for over 40 years.
Circular Couette flow is a well behaved laminar flow to which exact solutions exist.
As the driving force is increased by increasing the speed of the inner cylinder, the
system unveils rich characteristics of nonlinear dynamical systems. The transition to
turbulence is slow, and with each transition, a new feature is added to the flow. The
flow passes through a chaotic regime on its route to fully-developed turbulence as
the control parameter (Reynolds number) is increased. It is widely believed that the
chaotic flow might contain information important to the understanding of turbulent

flow.
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In addition to theoretical studies of transition and turbulence, the Taylor-Couette
system is also in a number of engineering devices. For example, in Boiling Water
Reactor (BWR) power plants, high-speed pumps are used to transport water at high
pressure and temperature. A simple sketch (Shih, 1994) of such a pump is shown
in Fig. 1.1. The temperature of hot water is around 280°C. Clean and cold water
at 65°C is injected into the annular space between the shaft and the shaft cover.
This keeps the annulus free of foreign dirt particles and also lowers the temperature
of the rotating shaft. The hot reactor water and the injected cold water create a
thermal mixing region. Over the past decade, maintenance inspections have revealed
cracks up to 6mm deep on both the shaft and the shaft cover of such pumps; these
cracks arise after approximately 20,000 to 30,000 hours of operation (Kato, et al.,
1992; Gopalakrishnan, et al., 1992). In extreme instances, these cracks actually cause
pumps to fail. The manufacturers and operators of the pumps have surmised that
the cracking is due to thermal loading caused by an unsteady flow. Gopalakrish-
nan, et al. (1992) of the pump division for BW/IP International, Inc., did a simple
analytical study of such a flow and concluded that the cracks are caused by large
temperature fluctuations at frequencies below 25 Hz. Kato, et al. (1992, 1993) con-
ducted an experimental investigation by constructing a full scale mock-up pump and
by simulating a similar thermal environment. Thermocouples were used to measure
the temperature fluctuations on the surfaces of the shaft and the shaft cover. The
study showed that the magnitude of the temperature fluctuations increased with the
increase in the axial flow rate of the cold water. The results of the mock-up test also
showed that the mean axial temperature distribution increased with the increase in
the rotational speed of the inner cylinder. The mean axial temperature distribution
also increased with decrease of the axial flow rate of the cold water. They concluded

that high-amplitude, low-frequency temperature fluctuations were the main cause of
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the cracks. These temperature fluctuations were also believed to be caused by a ther-
mal mixing region formed by the inner rotating shaft and the axial through flow. To
counter the problem of large temperature fluctuations, a seal purge heater was used
to heat the cold water before it was injected into the annulus. The tests showed that
the magnitude of temperature fluctuations were reduced significantly and after 500
hours of operation under various conditions, no thermal cracks were observed. To un-
derstand the flow near the heater area, a flow visualization study was also done. But
no vortices were observed. Similar studies on temperature fluctuation mechanisms
and heat transfer characteristics of fluid flow in an annular gap have been conducted
by Narabayashi, et al. (1993), Shiina, et al. (1993) and Watanabe, et al. (1993).
Even though the manufacturers of these pumps believe that the seal purge heater
would eliminate the cracks, there is a need for numerical simulations to understand
the complex fluid motion resulting from the rotation of the shaft and the radial tem-
perature gradients within the annulus. To predict thermal fatigue in these pumps,
a thermal stress analysis would require information about the frequencies and am-
plitudes of the thermal environment. The aim of this work is to understand the
physics that causes the temperature fluctuations and to obtain the frequency and
amplitude information for the thermal stress analysis model. Other applications of
this research is in the cooling of electrical motor shafts and turbine rotors (Kreith,
1968; Gardiner and Sabersky, 1978; Lee and Minkowycz, 1989). In these mechanical
systems, a faster and efficient transfer of heat is important for high compactness and
power density. The development of rotating devices such as heat exchangers, blood
oxygenators (Strong, et al., 1976) and gas centrifuges (Wood, 1983) needs a thorough
understanding of Taylor-Couette flow. Also applications include modeling of atmo-
spheric flows (Greenspan, 1968) and techniques of chemical vapor deposition (CVD)

used in semiconductor device fabrication (Singer, 1984). During the process of CVD,
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the solid products of a vapor phase chemical reaction are deposited on a substrate
placed on a rotating turret. The flow characteristics of the hot gases between the
turret and the enclosed bell jar determines the deposition process. A very fundamen-
tal objective of the study of Taylor-Couette flow is the understanding of mechanisms

that lead to the growth of laminar instabilities into turbulence.

1.2 Taylor-Couette Flow

Like the BWR pumps, most industrial applications of Taylor-Couette flow only have
an inner rotating cylinder. Based on the angular velocity of the inner cylinder, a non-
dimensional parameter, the Reynolds number, arises from the equations of motion.
The Reynolds number is defined as, R = wr;b/v. Taylor (1923), in his classic experi-
mental and analytical paper showed that at a critical Reynolds number, the base flow
became unstable to axisymmetric, counter-rotating, toroidal vortices stacked one on
top of another along the axis of the concentric cylinders. These vortices were later
named appropriately as Taylor vortices and correspondingly the flow as Taylor vortex
flow (TVF). TVF is depicted schematically in Fig. 1.2 (White, 1991). Taylor calcu-
lated the critical wavelength and the critical speed for the onset of counter-rotating
toroidal vortices by performing a linear stability analysis. His theoretically calculated
values agreed remarkably well with his experiments. Taylor vortices were also seen
in other flow visualization studies conducted by Burkhalter and Koschmieder (1973)
and Koschmieder (1979) at higher Reynolds number.

Coles (1965) performed a flow visualization experiment with suspended aluminum
particles. His experiments detected azimuthally periodic waves which traveled around
the inner cylinder superposed on the Taylor cells. The transition to this “Wavy Vor-
tex Flow” (WVF) occurred at a rotational speed approximately 20% higher than the

critical speed for transition to Taylor vortices. Coles (1965) system had a radius ratio
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of 0.874 and an aspect ratio of 27.9. Coles observed 26 different stable states for a
fixed Reynolds number by varying the inner cylinder rotational speed slowly. Coles
also recorded approximately 75 transitions from one state to another by increasing the
Reynolds number from 114 to 1348. These transitions were labeled by the number of
Taylor vortex pairs and the number of azimuthal waves. Therefore, he was successful
in showing that the final state was not unique and depended not only on the Reynolds
number but also on the history of the flow. He also concluded that, regardless of the
state, the angular velocity of these waves was nearly 0.34 times the angular velocity
of the inner cylinder. The wave speed was later found to be a function of radius ratio,
but was correct for his experimental setup. After Coles’ results were known, wavy
vortices were also reported by Nissan, et al. (1963) and Schwarz, et al. (1964).

In addition to TVF and WVF, the flow undergoes a series of transitions before it
becomes fully turbulent at very high rotational rates of the inner cylinder. Fensterma-
cher, Swinney and Gollub (1979) did an experimental investigation of the transition
to chaotic Taylor-Couette flow. The cylinders had a radius ratio of 0.877 and an
aspect ratio of 20. Water was used as a working fluid and the radial component
of velocity was measured using Laser-Doppler Velocimetry. The power spectrum of
their velocity time series at B/R.=1.2 showed a single frequency confirming the wavy
vortex flow. At R/R.=10.06, they observed a second fundamental frequency which
was two orders of magnitude lower in power than the first one. At R/R.=12, a broad
weak component was observed in the power spectrum that was classified as chaotic.
At R/R, ~22, there were no sharp peaks seen in the power spectrum, which indicated
the disappearance of the traveling waves. For values of the Reynolds number close to
40 times the critical Reynolds number, their results showed that the Taylor vortices
still existed.

The fluid motion corresponding to the second fundamental frequency seen in the
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power spectrum of Fenstermacher, et al. (1979) was identified in a flow visualization
experiment conducted by Gorman and Swinney (1982). They found that the second
frequency corresponded to the modulation of the azimuthal waves. They observed
this modulation as a periodic flattening of the wavy-vortex outflow boundaries and
named this flow regime as Modulated Wavy Vortex Flow (MWVF). With the aid
of a complicated mirror arrangement and a frame-by-frame analysis of the movie
films, they discovered 11 doubly periodic flow states. Each state was labeled with
two integers m and k, where m denoted the number of azimuthal waves and k was
related to the phase angle between the modulation of the successive azimuthal waves
by A¢ = 2wk/m. For k=0, all the azimuthal waves flattened at the same time and
for k=1, every other wave flattened.

The flow becomes even more complex if either radial heating or superimposed
axial flow (Shih and Hunt, 1992; Gardiner and Sabersky, 1978) are present or if the
cylinders are eccentrically oriented (Cole, 1967; 1969). Gardiner and Sabersky mea-
sured heat transfer coefficients for the flow in the annular space between an inner
rotating cylinder and an outer stationary one, with superimposed axial flow. The
experiments were done with water as the working fluid for three different Prandtl
numbers. They observed that heat transfer coefficients increased with the onset of
Taylor vortices. Experimental heat transfer data were also presented for four differ-
ent radius ratios and for several combinations of outer to inner cylinder speeds by
Bjorklund and Kays (1959). Cole’s results showed that eccentricity had a stabilizing
effect on the flow which resulted in a higher critical Reynolds number. The effects of
a radial temperature gradient on the stability of Taylor-Couette flows has been the
subject of considerable investigation (Ali and Weidman, 1990; Chen and Kuo, 1990).

Two dominant parameters in heated Taylor-Couette flow are the Reynolds number

(R = wr;b/v) and the Grashof number (Gr = gB(1} — T5)b%/v?). In the definition of
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Gr, 11 and T3 are the temperatures of the inner and the outer cylinders respectively.
Typically in an experiment, the Reynolds number is increased by increasing the rota-
tional speed of the inner cylinder and the Grashof number is increased by increasing
the temperature difference between the inner and the outer cylinders. As these two
parameters are varied, the flow changes from one state to another and there is a
subsequent change in momentum and heat transfer characteristics. Another focus of
this work is to understand these transitions and document the transport properties.

Stability analyses show that when gravity is neglected and the Reynolds number
is sufficiently high that the Taylor cells are stabilized when T; > T, and destabi-
lized when 75 > T} (Yih, 1961; Lai, 1962; Becker and Kaye, 1962; Walowit, Tsao and
DiPrima, 1964). Roesner (1978) included the effect of gravity through the Boussinesq
approximation (Gray and Giorgini, 1976) but only considered axisymmetric distur-
bances. He showed that isothermal Taylor cells are stabilized by both negative and
positive radial heating, and the stability boundaries are perfect symmetric with re-
spect to the direction of radial heating. Ali and Weidman (1990) tested stability with
respect to non-axisymmetric disturbances of both toroidal and helical type and found
that the number of critical modes increased dramatically for large radius ratio. Chen
and Kuo (1990) took into account the effects of both the centrifugal and gravitational
potential on the axisymmetric stability problem. They concluded that the stability
boundary depended on the ratio of the centrifugal and the gravitational potentials,
the Prandt]l number and the Grashof number.

Snyder and Karlsson (1964) performed an experimental study with a small an-
nulus using glycerine/water mixtures. They found that small temperature gradients,
both positive and negative, stabilized the Taylor cells, and that heating the inner
cylinder was slightly more stabilizing than heating the outer one. They also observed

that sufficiently large temperature gradients destabilized the flow, causing a spiral
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form of instability, and concluded that stability is affected by the axial flow induced
by gravity. Sorour and Coney (1979) used oil of high Prandtl number to conduct
experiments in a small annular gap. They reported flow destabilization for small pos-
itive temperature gradients, and they observed only toroidal vortices over the whole
range of their experimental parameters. The discrepancy between these two experi-
ments may be due to a large difference in the Prandtl number of the fluids used. A
novel experimental study was performed by Kataoka, et al. (1977) with the aid of an
electrochemical technique under the assumption of analogy between heat and mass
transfer. They reported that the regular sinusoidal variation of the Sherwood num-
ber (Sh) is distorted by an added axial flow and both the mean and the amplitude
are greatly reduced. Ball and co-workers (1989) performed a parametric study of the
mean heat transfer rates across the annular gap for three different radius ratios. Their
results show that the heat transfer can be described by a power-law relationship and
correlated as functions of the Reynolds number and radius ratio.

Numerical simulations for axisymmetric, isothermal Taylor-Couette flow have
been performed by Meyer (1967) using a finite difference technique. Computation
of steady axisymmetric Taylor vortex flow by a transient implicit method was also
performed by Alziary De Roquefort, et al. (1978). Numerical computation of time-
dependent Taylor vortex flows in a finite-length annulus was done by Neitzel (1984).
The transient development of a Taylor vortex structure was discussed and the axial
wavelength was compared with experimental results for an impulsively started cylin-
der. Wave speeds of traveling waves have also been computed numerically for axially
periodic flows in infinite-length cylinders with a pseudospectral technique by King,
et al. (1984). Their computations show that the wave speed for a given radius ratio
decreases with increasing Reynolds number until a plateau is reached. In this plateau

region, the wave speed normalized by the inner cylinder rotation frequency increases
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monotonically from 0.14 at 17=0.63 to 0.45 at n=0.95. They also concluded that there

was a much weaker dependence of the wave speed on the axial wavelength, azimuthal
wave number, and the aspect ratio. The transition from Taylor vortex flow to wavy
vortex flow was also numerically studied by Edwards, Beane and Varma (1991). Their
results of the critical Reynolds number for the onset of wavy vortex flow, azimuthal
wave numbers and wave speeds were in good agreement with experimental values for
a radius ratio of 0.87 and aspect ratios between 8 and 34. Similar computations of
Taylor vortex flow and wavy vortex flow were also presented by Marcus (1984). He
used a fractional step scheme and solved the equations pseudospectrally. Marcus con-
jectured that the traveling waves were a secondary instability caused by the strong
radial motion in the outflow boundaries of the Taylor vortices and were not shear
instabilities associated with inflection points of the azimuthal flow. He also demon-
strated numerically that at the point of onset of the traveling waves, the speed of the
waves was equal to the angular velocity of the fluid at the center of the Taylor vor-
tices. Coughlin and Marcus (1992) did numerical simulations of modulated waves in
Taylor-Couette flow using a three-dimensional initial value code for imposed values of
the axial and azimuthal periodicity. They showed that both the ‘two-traveling-wave’
(GS flow) and the ‘non-traveling modulation’ (ZS flow) were instabilities of the out-
flow jet between adjacent Taylor vortices. Moser, et al. (1983) used a spectral method
for solving the incompressible Navier-Stokes equations between concentric cylinders.

The effects of buoyancy on bifurcation in small-to-moderate aspect ratio Taylor-
Couette systems have been studied numerically by Ball and Farouk (1987, 1988). A
more recent numerical work by Kuo and Ball (1997) in a wide gap, n = 0.5, and a
finite aspect ratio, I' = 10, show onset of spiral flow in certain Reynolds number and
Grashof number parameter space.

When the centrifugal acceleration is of the same order as the acceleration due
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to gravity, the density variation of the fluid becomes important for instabilities that
are primarily centrifugal. The effect of this density variation is accounted for in the
centrifugal term, in addition to the Boussinesq approximation for gravity. Therefore
the present study examines the interaction of gravitational and centrifugal potentials
with the radial temperature gradient. The simulations reported here are motivated by
the need to characterize the thermal environment that is encountered during chaotic
and fully turbulent flows. The method by Moser, et al. (1983) is extended to solve
both the heat equation and the equations of motion, which are coupled through the

centrifugal and gravitational potentials.

1.3 Dynamical Systems and Deterministic Chaos

In any fluid system, the motion of a fluid particle is governed by the Navier-Stokes
equations and the equation of continuity, with constraints imposed by the bound-
ary. These equations together with the appropriate boundary conditions constitutes
a dynamical system. The solution of these equations gives the time evolution of the
system. It is very important to characterize a dynamical system quantitatively by
a few meaningful numbers, called invariants of the system. These invariants help in
classifying or identifying the physical source of the observations and provide means
to make models for prediction and control of the nonlinear system.

The irregular, chaotic motion that is generated by nonlinear systems whose dy-
namical laws uniquely determine the time evolution of a state of the system from a
knowledge of its previous history is called deterministic chaos (Schuster, 1987). Non-
linearity is a necessary but not a sufficient condition for a dynamical system to exhibit
chaos. The observed chaotic behavior in time is neither due to external sources of

noise nor £o an infinite number of degrees of freedom. The reason for irregular motion
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is the property of the nonlinear system of separating initially close trajectories expo-
nentially fast in a bounded region of phase space. It is therefore practically impossible
to predict the long-time behavior of chaotic dynamical systems, because in practice

the initial conditions can only be fixed with some finite accuracy.

1.3.1 Dynamical systems

The simplest example of a dynamical system is the linear harmonic oscillator. The

equation of motion of such a system can easily be derived as :

d*z

Usually, this is written as a system of two first-order ordinary differential equations:

ey

a Y

dy

Wy _ 1.2

The solution of the linear harmonic oscillator with the initial conditions; z(0) = z,,
y(0) =0is & = x,cost, y = —z,sint. Shown in Fig. 1.3 are the solutions which are
periodic orbits in the phase space, (z,y). The trajectory is a limit cycle which repeats
itself every period. For two incommensurate frequencies associated with the motion,
the trajectory would be quasi-periodic. If this were plotted in a three-dimensional
phase space, it would look like a donut shaped structure called a torus. In general, if
there were q incommensurate frequencies, the motion would be g-periodic.

A more complex example of a nonlinear dynamical system is the damped oscillator.

The equations are :



12

o _

a Y

d

gg = —sinz—y (1.3)

The system has damping and it will eventually come to rest at the fixed point of the
system, (z=0,y=0). This stationary point is the simplest example of an attractor
(Fig. 1.4). An attractor is the limit set of the trajectory as time goes to infinity. The
basin of attraction is the set of states in phase space in which all initial conditions

approach the attractor.

1.3.2 Chaotic attractors

A chaotic attractor has the following properties:

i. The motion is bounded in phase space.
ii. The motion is deterministic.

iii. The motion is sensitive to initial conditions.

The first property means that the motion occurs in some finite region of the phase
space. The second property means that if the equations of motion were solved exactly,
the trajectory in the phase space would be known exactly for all times. The third
property is what is called SIC (Sensitive dependence on Initial Conditions). This
means that the evolution of the system from two slightly different initial conditions
will be totally different. The two trajectories will diverge exponentially in time, no

matter how close they are. This divergence can be quantized by a positive Lyapunov
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exponent. Lyapunov exponents characterize the exponentially fast divergence or con-
vergence of nearby trajectories in phase space. If the Lyapunov exponent is negative,
the divergence decreases with time. For limit cycles, the Lyapunov exponent is zero
and the trajectories stay close to each other at all times.

For the trajectories to diverge exponentially yet remain bounded, the attractor
undergoes continuous stretching and folding. The chaotic attractor has a highly
complex topology, which is usually fractal. Due to this fractal nature of the attractor,
its dimension is always a non-integer. The dimension of a point, a line and a torus is
zero, one and two respectively. Another important characteristic of a chaotic attractor
is that the motion on the attractor is aperiodic. Therefore, a frequency spectrum from
a chaotic dynamical system is broad-banded, but it is important to note that a broad-

band frequency spectrum is insufficient by itself to classify a system as chaotic.

1.3.3 Transitions in Taylor-Couette flow

Taylor-Couette flow is a nonlinear and dissipative dynamical system. The forcing
comes from the inner rotating cylinder. This flow undergoes various transitions
(Brandstater and Swinney, 1987) as the rotation rate of the inner cylinder is in-
creased. The experimental facility of Brandstater, et al. (1987) had a radius ratio of
0.875 and an aspect ratio of 20.

On starting the rotation of the inner cylinder, the first flow encountered is cir-
cular Couette flow. The only non-zero velocity is the azimuthal velocity, which has
a radial dependence. This is time independent and corresponds to a fixed point.
Upon increasing the Reynolds number, the next transition is to Taylor Vortex Flow
(TVF) at a critical Reynolds number (R, = 118.4). The Taylor Vortex Flow arises
from symmetrical supercritical steady bifurcations from the base flow. The flow is

still time independent but periodic in the axial direction. This also corresponds to a
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fixed point. Upon further increasing the Reynolds number, another transition is made
to Wavy Vortex Flow (WVF) at approximately R/R.=1.3. The Wavy Vortex Flow
is a time-periodic supercritical bifurcation (a Hopf bifurcation) from Taylor Vortex
Flow to Wavy Vortex Flow. This is a first time-dependent solution with breaking
of the azimuthal symmetry. The waves travel around the cylinder with a constant
speed. The trajectory is a limit cycle in phase space and hence the corresponding
attractor dimension is 1. A power spectrum would show a fundamental frequency
corresponding to the azimuthal wave number and its harmonics. As the Reynolds
number is increased further, Modulated Wavy Vortex Flow (MWVF) is formed at
R/R.=10. This is doubly-periodic with an attractor dimension of 2. There are two
incommensurate frequencies and the flow is on a torus. At even higher Reynolds num-
ber (R/R.=11.7), the flow becomes chaotic or “weakly turbulent”. The calculated
fractal dimension is 2.4 for R/R.=12.4. The largest Lyapunov exponent becomes
positive and the frequency spectrum is broad-banded. Hereafter, with the continu-
ous increase of Reynolds number, the flow becomes “fully turbulent” and the fractal
dimension continues to increase monotonically. The aim of the experimental part of
this thesis is to determine whether such a “weakly turbulent” or chaotic regime of the
flow exists in the Taylor-Couette experimental setup, which was initially designed for

high Reynolds number studies.

1.3.4 Reynolds number dependence of the attractor dimen-
sion

For a given dynamical system there is an upper limit to the value of the attractor
dimension. This is simply the dimension of the phase space of the system. In the
case of a dissipative dynamical system, the dimension of the space occupied by the

attractor is, in general, less than the dimension of the phase space. This happens
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because dissipation damps some of the degrees of freedom. For example, if the phase
space is three dimensional, then the attractor dimension must be less than three. Also
there can be only one positive Lyapunov exponent because the attractor is bounded.
There must be at least one negative Lyapunov exponent associated with the direction
of contraction because the final volume is smaller than the initial volume. There
is also a zero Lyapunov exponent because different points on the same trajectory
neither diverge nor contract. On the other hand, the volume in phase space of a set
of trajectories is conserved for attractors in conservative systems.

Since the solutions of the Navier-Stokes equations are functions of a continuous
range of spatial points, the phase space is infinite dimensional. In the derivation of
these equations, it is assumed that the medium is continuous. This assumption is
justified because viscosity damps out the fluid motion on a scale much larger than
the distance between molecules. However, in a physical system, there is a finite
number of particles per volume and thus the phase space must be finite dimensional.
Mathematically, the dissipative part of the Navier-Stokes equations must restrict the
solutions to a finite dimensional attractor as well. Intuitively, both the number of
excited modes and the dimension of the attractor must increase with the increase in

the energy input to the system. Constantin, et al., (1985) estimated that:
d~ R (1.4)

where d is the number of degrees of freedom and R is the Reynolds number. This
derivation had no prior knowledge that the spectrum of homogeneous isotropic turbu-
lence is the Kolmogorov spectrum. In the inertial range, the energy spectrum exhibits

a scaling behavior:
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where k£ is the magnitude of the wave number vector and n is close to 5/3. The
spectrum with n=>5/3 is the famous Kolmogorov spectrum. The assumption that the
energy spectrum in the flow is the Kolmogorov spectrum gives a more conventional

estimate of :

2
2
T

(1.6)

Both the above estimates are valid for very high Reynolds number and are inapplicable
at low and medium Reynolds numbers. Therefore fluid systems have a finite number
of degrees of freedom, and the number of degrees of freedom generally increases with

the increase in Reynolds number.

1.4 Objectives
The numerical simulations were performed with the following objectives:

i. Verify a fully spectral numerical method to study the effects of the gravitational
and the centrifugal potentials on the stability of heated, incompressible Taylor-

Couette flow.

ii. Document the information about the frequencies and amplitudes of the thermal

environment in this ow.

iii. Map the different stable states in the flow for a fixed Reynolds number and

different Grashof numbers.

iv. Calculate the local and average heat transfer coefficients in the Reynolds num-
ber and Grashof number parameter space and compare them with the existing

experimental results.
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v. Investigate the existence of a hysteresis loop in radially heated Taylor-Couette

flow.

vi. Perform time delay analysis on local heat transfer coefficient time series obtained
from the numerical simulation and calculate the dimension of the flow. The
dimension can then be used for making models to predict the value of the heat

transfer coefficient.

In addition to the numerical simulations, experimental studies of isothermal Taylor-
Couette flow were also performed to investigate the dependence of the attractor di-
mension on the Reynolds number. The experiments were also conducted to verify
the existence of a “chaotic regime” before the flow became fully turbulent at higher

Reynolds numbers.

1.5 Organization of This Report

Chapter 2 begins with some general comments about DNS. An analogy between
the Stokes equations and the Navier-Stokes and energy equations is drawn. Taylor-
Couette flow with radial heating is introduced and the boundary conditions are dis-
cussed. In section 2.4, the momentum equations and the energy equation governing
the velocity and the temperature fields are given. The divergence-free vector expan-
sion solution for the velocity and the temperature are included in section 2.5. A
detailed treatment of the vector functions and the quasi-orthogonal functions is pro-
vided, as is a discussion of the nonlinear terms and the time-advancement scheme.
Both scalar and parallel code implementations are presented, including the corre-
sponding speed-up. Section 2.11 presents the results of the code validation. Several
cases of isothermal and heated Taylor-Couette flow were run and validated. Compar-

isons are also made with linear stability analysis.
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A time delay analysis of velocity time series using dynamical systems methods
is discussed in chapter 3. Reconstruction of the attractor, the choice of a suitable
time delay, and the calculation of the attractor dimension is described in details. In
section 3.2, the time delay method is validated by applying the procedure to a model
system given by the Lorenz equations. A description of the experiment facility, data
acquisition and velocity time series measurements using a hot-wire anemometer is
also given. Various states and transitions in Taylor-Couette flow are studied and the
adequacy of the experimental apparatus to study transitions in Taylor-Couette flow
is investigated.

Chapter 4 contains the results. Comparisons are made with experimentally avail-
able data from two different sets of experiments. Maps of different stable states in the
flow are presented. The space and time averaged heat transfer coeflicient from the
inner to the outer cylinder is reported. The variation of the size of the Taylor cells
with increasing Grashof number is discussed. In section 4.2, a numerical study of the
existence of a hysteresis loop is also conducted. The validity of Colburn’s analogy
is checked in section 4.3. Finally, a time delay analysis of the time series obtained
from the experiments and numerical simulations of Taylor-Couette flow is performed.
Also, the power spectra, the reconstructed attractor, and the estimates of the attrac-
tor dimension are given at the conclusion of the chapter.

The dissertation ends with conclusions in chapter 5 summarizing the results of

the study.
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Figure 1.1: Sketch of the pump.
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Figure 1.3: Phase space for a simple harmonic oscillator.
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Figure 1.4: Phase space for a damped oscillator.
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Chapter 2

Methodology I: Numerical

Simulations

2.1 Background

With the development of large-scale sequential and parallel computers, direct numer-
ical simulation of complex fluid flows has become feasible. Direct Numerical Sim-
ulation (DNS) is a technique for studying turbulence that compliments laboratory
experiments. In DNS, the associated partial differential equations are numerically
solved. Turbulent flows contain a wide range of length and time scales. The length
scale is bounded above by the geometric dimension of the flow field and bounded be-
low by the action of viscous dissipation. Hence a numerical simulation must resolve
all spatial and temporal scales important in the problem. Since the range of these
scales increases with Reynolds number, DNS is limited to low Reynolds numbers.
Fluid flow DNS are now routinely performed using spectral methods. The fun-
damental step is the reduction of the original partial differential equations to a set
of ordinary differential or algebraic equations that can then be solved by existing

numerical techniques. For infinitely smooth solutions, spectral methods have a very
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high accuracy. The advantage of using a spectral method is not the high accuracy
that can be obtained for large number of modes, but rather the small number of
modes needed for a reasonably accurate solution. The use of a small number of
modes becomes additionally important in three-dimensional simulations as there is
a limited number of modes available in each spatial direction. If periodic boundary
conditions are present in the flow, then spectral methods based on Fourier expansion
functions become the natural choice. Fourier spectral methods are easy to apply to
unbounded flows, but problems arise for wall-bounded flows. The imposition of the
no-slip boundary conditions in the direction normal to the wall degrades the accu-
racy of these Fourier functions. Another constraint to the Navier-Stokes equations
is the continuity equation. Both the no-slip boundary condition and the continuity
constraint must be imposed at every time step during the time evolution of the in-
compressible Navier-Stokes equations. Moin and Kim (1980) have shown that these
constraints cannot be properly enforced if an explicit time-advancement is used; the
corresponding solution obtained is incorrect. On the other hand, an implicit time-
advancement of the pressure and the viscous terms lead to the correct solution.

Various methods have been used for solving the three-dimensional time-dependent
Navier-Stokes equations. Moin and Kim (1980) expanded the flow variables into
Fourier series in the homogeneous directions and the Chebyshev polynomials in the
direction normal to the wall. They solved the continuity equation directly rather than
the Poisson equation for pressure. Implicit time differencing was used for the pres-
sure and the viscous terms, while the remaining terms were treated explicitly. They
concluded that by solving the continuity equation instead of the Poisson equation for
pressure, and by treating the pressure and the viscous terms implicitly, the problem
of a nonconvergent series solution for the dependent variables can be avoided.

Marcus, Orszag and Patera (1982) developed an initial value code to study the
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various transitions in cylindrical Couette flow. The authors used a splitting scheme
which consists of three time steps. The first step is an advection step in which the
nonlinear terms are time-advanced explicitly, giving an intermediate velocity field.
In the second step, the pressure correction is applied with the continuity constraint
on the second intermediate velocity field. In the final step, the viscous correction is
performed to yield the final velocity field. This final velocity field is not completely
divergence-free, since the continuity equation is enforced in the second fractional step.
They also reduced the time-splitting error by solving the pressure equation with an
inviscid boundary condition and by using a Richardson extrapolation. Similar ap-
proaches were used by Orszag and Kells (1980) for the channel flow and by Patera
and Orszag (1981) for the flow in a pipe.

Leonard and Wray (1982) developed a new numerical method for the simulation
of pipe flow. They used divergence-free vector functions in the expansion of the ve-
locity field. These vector functions also satisfied the viscous boundary conditions. A
spectral representation based on Jacobi polynomials demonstrated rapid convergence
of the eigenfunctions as the number of radial modes was increased. The same method
was used by Moser, Moin and Leonard (1983) to solve incompressible Navier-Stokes
equations in a plane channel and between concentric cylinders. For the cylinder
problem, this method yielded doubly-bordered, band-diagonal matrices which were
efficiently solved in 2351 operations, where L denotes the number of radial modes.

The method of Moser, et al. (1983), is followed here. Again, the trial functions
satisfy the continuity constraint and the no-slip boundary condition. Pressure in the
incompressible Navier-Stokes equation is not a thermodynamic variable satisfying an
equation of state, but rather an implicit dynamic variable which adjusts itself instan-
taneously in a time-dependent flow to satisfy the incompressibility or divergence-free

condition. Hence, satisfying the continuity equation eliminates pressure and there is
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no need to solve a Poisson equation if the pressure is not desired. The Navier-Stokes
equations and the energy equation are solved together for the Taylor-Couette prob-
lem. The trial functions are appropriately chosen to satisfy the constant temperature

boundary conditions as well.

2.2 Forced Stokes Equations

The method described by Moser, Moin and Leonard (1983) is used here for numer-
ically solving the incompressible Navier-Stokes equations and the energy equation
between two differentially heated, concentric cylinders. A part of the numerical ma-
terial presented in this thesis appears in Moser, et al. (1983) but it is included here
for completeness.

The forced Stokes equation is given by:

9% 1
V.V =0 (2.1)

V=0 at the boundaries

where V' is the velocity field, P is the dynamic pressure and f is a known forcing
function.

The Navier-Stokes equations and the energy equation are almost similar to the
forced Stokes equations. The only difference is that the nonlinear terms in both the
momentum and the heat equation are replaced by a known forcing function in the
Stokes equations. Therefore, if these nonlinear terms are computed explicitly, any
scheme for solving the forced Stokes equations can be used for solving the Navier-

Stokes equations and the energy equation. The explicitly computed nonlinear terms



26
become the forcing function in the Stokes equations. The viscous and diffusion terms

in the momentum and the heat equations are time-advanced implicitly; this method

is appropriately called a mixed explicit-implicit one.

2.3 Flow Configuration

A sketch of the flow configuration in (r, 0, z) cylindrical coordinates is shown in Fig.
2.1. The radii of the inner and the outer cylinders are r; and r,, respectively, and
the radius ratio is defined as n = r;/r,. The inner cylinder rotates with a constant
angular velocity w about the vertical z-axis while the outer cylinder is stationary.
The two cylinders are at different uniform temperatures. The temperature of the
inner cylinder is T; and that of the outer one is 7;. Gravity acts in the negative
z-direction, which makes it perpendicular to the radial temperature gradient. The
centrifugal force is parallel to the temperature gradient. The temperature differ-
ence can be assumed sufficiently small so that the density is treated as a constant
everywhere in the Navier-Stokes equations, with the exception of the gravitational
(z-momentum equation) and the centrifugal (r-momentum equation) terms, i.e., the
Boussinesq approximation. All other fluid properties are assumed to be independent
of temperature. The flow is axially periodic (i.e., infinite aspect ratio) and no-slip
boundary conditions are used at the inner and the outer cylinders. Figure 2.2 shows
schematically, the familiar axisymmetric counter-rotating Taylor cells. The axial dis-
tance between a pair of Taylor cells is A and b is the gap width. The axial wavelength

is normalized by the gap width to define L,, L, = A/b.
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2.4 Momentum and Energy Equations

The non-dimensional momentum equations are cast into the form of “forced Stokes

equations” :

V- V=0
ov 1
E—~VP—§V><V><V+f (2.2)

with (tr, ug,u;) = (0,1,0) at the inner cylinder

and (ur,ug,u,) = (0,0,0) at the outer cylinder

where f =V x W + B, W =V x V and B is the body force. The non-dimensional

energy equation is given by:

oT 1
E“FV'VT—PrR

with T =1 at the inner cylinder

VAT (2.3)

and T =0 at the outer cylinder

In the previous equations, the length scales, the velocity scales, the time scale and the
dynamic pressure are non-dimensionalized by the gap width (b), the inner cylinder
velocity (wr;), b/wr; and w?r;? respectively. The temperature is non-dimensionalized
as (T — Ty)/(Ty — T3). The non-dimensional equations governing the flow for the
velocity component (u,, ug, u,), pressure P and temperature T are (in rotational
form):

Continuity:

Oou, u, 10up Ou,

or + T +;%+ 0z

=0 (2.4)
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Momentum:
Oup | uwgOur  Oup | Ou, | Oug
a o0 Far “ar Yo
(1 T\ % _ 0P
(1 /6 (T TO)) r - 87'
+i(i82ur 1 0uy 182u9 0%u, B 82u2)
R r? 062 r2 00 r 0007 022 oroz
Oug  Uyug N Oug U ou, U Ou,
ot T tr or r 00 r 06
au,g o 10P 1.1 8u@
T = ree TEGor (25)
ug N 0%uy N 10u, 1 0%u, 1 0%u, N azu@)
72 Or? r2 00 rordld  r0z00 022
ou, . %+u ou, +@6uz B %
o "oz "o T a9 "o
0P N iéauz 10y, A%u,
 dz  R'ror r Oz ordz
u, 106%u, 106%uy Gr _
o T e romee Tl )
Energy:
6_T + 8_T + %G_T + O_T — (2 6)
Ot Ur or r 00 uzﬁz N '
1 (lﬁ_T N 0*T n l@zT n 82T>
Pr R'r Or or?  r2 02 022
where,
A _ 3
Ro i g 9T =T
v v
V *
P?":a ﬂ:ﬁ(T1~T2>

Here R is the Reynolds number, Gr the Grashof number, Pr the Prandtl number,
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and (* is the non-dimensional thermal expansion coefficient of the fluid. Geometric
parameters include n and L,. Another useful parameter is the acceleration ratio,
A = w?r;/g, which is the ratio of the centrifugal to gravitational accelerations. It can

be derived from the independent parameters (A = R*3*[1/n — 1]/Gr).

2.5 Divergence-Free Vector Expansions

The three-dimensional incompressible equations of motion, together with the energy
equation, are discretized using a Chebyshev/Fourier spectral method. Writing the

solution V; and T, as a truncated series expansion, using trial functions as basis

functions:

Vi(r, 0, z,1) ZZZ&W w(r; Ky, K, )e Kol ik zz (2.7)
Ko K. 1=0

Ts(r, 0, z,1) Zzz'yjml T(r; Ko, K, YKol il (2.8)
Ky K, 1=0

where K,=j2r/L,, —N,/2<j<N,/2-1

K9:m27r/L9, —N9/2§m§N9/2—1

where K, and Ky are the wave numbers, L, and Ly are the periods in the z and 0
directions respectively. The expansion coefficients are given by «;jmu(t) and vjmi(t);
uy(r; Ky, K,) and 7(r; Ky, K,) are the r-trial functions for the velocity and the tem-

perature fields chosen to satisfy the following continuity constraint and the boundary
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conditions:

V - uy(r; Ky, K, )etFefeiE=z — ¢
ul(,’ﬂ =TiTo; K97 KZ) =0 (29)

TZ(T' =T To; K@J KZ) =0

For a sufficiently large number of modes N,, Ny and L, the velocity field Vi(r, 0, z, t)
and the temperature field Ts(r, 0, z,t) are assumed to be complete and fully represent
the flow.

In the method of weighted residuals (MWR), the test functions are used to ensure
that the differential equation is satisfied closely by the truncated series expansion.
This is achieved by minimizing the residual or the error in the differential equation
produced by using the truncated series instead of the exact solution, with respect to
a suitable norm. In other words, the residual satisfies an orthogonality condition with
respect to each of the test functions. Test functions for the velocity (&,e *KefeKz7)

and temperature (¢,,e~ #6957} fields are chosen such that:

n(r=ri,10; Ko, K,) =0 (2.10)

wm(r =Ti To; K@? Kz) . ﬁ == 0

where 71 is a unit vector normal to the wall. The series expansion solutions (2.7)
and (2.8) are substituted into the momentum and the energy equations (2.5) and
(2.6). The equations then are dot multiplied by a set of test functions and integrated
over the entire computational domain. The pressure term is eliminated from the

momentum equations using integration by parts. Consequently, the following set of
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equations are obtained for each wave number pair K, and Ky:

L dozl
/ Em - wyrdr = *-—Zaz/ &m -V X qul rdr
+ [ frar
d%/ U -7y rdr = Z’yl/ (0 V27, rdr
" ~PrR o

[ v

(2.11)

(2.12)

where f and g are the nonlinear terms from the Navier-Stokes and the energy equa-

tions. f denote the Fourier transform of f and V x is the Fourier-transformed curl

operator. The partial differential equations are reduced to ordinary differential equa-

tions for the expansion coefficients am(t) and vjmi(t). The resulting ODE’s can be

written as:

(a1
. d 1 .
ol Dy+ @

(2.13)
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where

Aml = /TTO Em - uy rdr

Bm,l = /TTO Em - Vﬁxul rdr
Fro= [ f rar

ém,l = /TTO W - T TdT

DmJ _ [ Um -/V—an rdr

Ti

Cm=[ W g rdr

Ti

A, B, C and D are matrices and F' and G are column vectors. Equation (2.13) is a
system of coupled linear ordinary differential equations and can be solved using any

standard numerical scheme.

2.6 Vector Functions

The present spectral method uses spectral expansion functions that inherently satisfy
the boundary conditions and the divergence-free constraint. Many such functions
that would satisfy the above-mentioned properties exist. The result is an immense
freedom in the choice of the trial and the test functions. During the construction of
the vector functions, it should be ensured that the resulting matrices A, B, C' and D
(section 2.5) have small bandwidths.

The trial functions (u;) and the test functions (&,,) for the velocity are split into
two classes (v, u;) and (&8, &). The two classes have two different functional

forms. This is analogous to independently selecting two components of the velocity

vector. The third component comes from the continuity constraint. It is also advan-
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tageous to decouple the equations for u; from the equations for u;". The reason for

doing this is to make the matrices A and B tightly banded. The decoupling con-

straints are:

To
&n

ri

To
m

i

To
£+
m
T4
To
Em
T

~u; rdr =0 (2.14)
u rdr =0

: V/XVXUZ_ rdr =0

- Vﬁxuf rdr =20

The following vectors are chosen which satisfy the decoupling constraint (2.14) :

1 g -1 K, g
uﬁ = VX g1 = —nN; g
0 g+ %t g,
—1 g —1 Kz aqi
u =Vx| g |= K, g
0 g+ =K g,
&h=vxvx| g, (2.15)
0
i Qm
£ =V x Vx* O
0
T =Ny
ll:bm = Pm
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Here g;, h;, @ and P, are functions of r and ¥V x* is the complex conjugate Fourier-
transformed curl operator. Derivative with respect to r is denoted by ’. To enforce
the boundary conditions, it is required of the r-trial and r-test functions that they

satisfy the following conditions:

h(r=ry1,) =0 (2.16)

Enforcing g;(r = 7;,7,) = 0, constrains the tangential velocity uy to satisfy the
condition:
811,9
i =0 2.17
Or Lr=r;r, (217)

There is no physical reason for the tangential velocity to satisfy the above derivative
condition. To eliminate this problem, two extra vectors are added to the test and the

trial functions:

u = | -2 K, k (2.18)
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Since hj(r = 7i,1,) # 0, Oup/Or can now have any arbitrary value at the walls,
selected by the appropriate solution. With the selection of all the vector functions,

the resulting ODE’s are:

o dot . da® 1 - . .
A+ +2 B+ + B+ 0 Fr
v T T plBaT H Bla) ¢
. da~ . daY 1 . .. .
A:% + A;d% = 5(Boa™ + Bya®) + I (2.19)
. dat . da— - da® 1. . . .
RS YT SRR
¢ =~ p
i~ PrrTTC

where the matrices A, B, C and D are given by:

(A8Vy = [ €2 b rdr

Ty

(B{j)m,l = / ’ En - Vﬁxuf’ rdr

. To
C(m,l = / wm -7 rdr
T4

Dm,l = / ’ U, - @\271 rdr

and the vectors ' and G are:

R R

Gm:/“’wm-grdr



36
The subscript (b) and superscript (a) of A, B and F' can be 4+, — or 0. For the case

K, =0 and Ky # 0, the following vectors are used:

—i=tg 0
w=1 g |, w=]|o0 (2.20)
0 hy
zli Qm 0
En= Q. |, &=1]o0
0 P,

When K, = 0 and Ky = 0, the above vectors are incomplete and the following vectors

are used:

0 0
u = ;= 2.21
I YV IR 0 (2.21)
0 hy
0 0
0 F,

2.7 Quasi-Orthogonal Functions

The r-expansion functions g;, h;, @, and P, consist of Chebyshev polynomials. The
Chebyshev polynomials are efficient in resolving the boundary layers near the walls.
Also, they are cosine functions after a coordinate transformation; thus the Fast Fourier
Transform (FFT) can be used for computing the nonlinear terms. Pure orthogonal
functions would give rise to diagonal matrices. At the same time, extra conditions

on higher derivatives of these orthogonal functions are imposed, which leads to some
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convergence problems. Therefore, quasi-orthogonal functions are used, yielding band-
diagonal matrices and the solution converges rapidly. The quasi-orthogonal functions
are constructed by taking linear combinations of Chebyshev functions, because the
Chebyshev functions themselves do not satisty any boundary conditions. These func-

tions are given by:

g =r(1—y*)*Tiy)

he=r(1—y*)Ti(y) (2.22)
7"2 Tm_2 Tm Tm 2
= (1-— y2)1/2(4(m —Dm  2(m—1)(m+1) - 4(m —|—+1)m)
1
P, = W(Tm—l — Tnt1)

Here

which makes y = —1 at r = r; and y = +1 at r = r,. The set of coupled ODFE’s
(2.19) is written as a single equation. The form of the resulting matrix is shown in
Fig. 2.3. This is called a doubly-bordered band-diagonal matrix and can be inverted

using any standard scheme (Press, Flannery, Teukolsky and Vetterling, 1992).

2.8 Nonlinear Terms

The nonlinear terms act as forcing terms to the implicit part of the calculation and
are computed using the pseudospectral (collocation) technique. In the pseudospec-
tral method, the inverse discrete Fourier transform is used to transform the Fourier-
Chebyshev coefficients to physical space, perform a multiplication to compute the

nonlinear terms (f and g), and then use the forward discrete Fourier transform to
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compute f and §.

It is required to solve Eqns. (2.2) and (2.3) with non-homogeneous boundary
conditions. However, the expansion functions defined in Eqns. (2.15), (2.18), (2.20)
and (2.21) only satisfy homogeneous boundary conditions. To make both the velocity
and the temperature boundary conditions homogeneous, the laminar Couette flow
velocity solution and the steady state conduction solution are subtracted from the

actual velocity and temperature fields respectively such that:

V' =V — Ve (2.23)

T =T-1T¢

where Vop and T are given by the analytical solution of the Navier-Stokes and the

energy equations:

0
= i i 1
ver MR =T (2.24)
0
In -
Tp = —
In &

Now V’ and T" satisfy the homogeneous boundary conditions. This change leads to
incorporation of some additional terms in the nonlinear part, which can be performed
without any difficulty. The treatment of the boundary conditions is given in Appendix
A.

When the nonlinear terms are evaluated as described above, the method is not
truly a spectral Galerkin method, but is called a ‘pseudospectral method’. The ad-
vantage of this method is that the nonlinear terms can be evaluated faster. The

disadvantage is that in the process of evaluating the nonlinear terms by this method,
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a small error is introduced in the numerical solution. The error is called an ‘aliasing
error’. It is unknown how aliasing affects the real solution. Fully resolved numerical
codes are not affected by aliasing errors. But codes with marginal resolution are most
susceptible to the problem of aliasing. In all of the computations performed here, the
nonlinear terms were computed on a grid large enough to eliminate aliasing by the %

rule (Canuto, et al., 1988).

2.9 Time-Advancement Scheme

The viscous and heat conduction terms are treated implicitly using the Crank-Nicholson
scheme, whereas the convective terms are time-advanced explicitly using the second-

order Adams-Bashforth scheme. The time discretized equations are :

(4- %B)a”“ = (A+ 2A—RB) Z; (3Fm — 1) (2.25)
(= sp gDl = (O g b G (56—

where A, B, C, D, F and G are defined in Eqgn. 2.19. The ODE’s are in the unknowns
a’s and 7’s, which are the Fourier-Chebyshev coefficients. Once these coeflicients are
known, the entire velocity and the temperature field is determined.

The integrals in the matrices A, B, C and D in the above equations are numerically
computed once, using Gauss-Chebyshev quadratures and are stored in the computer’s
memory to be used at every time-step. The matrices themselves are functions of the
wave numbers K, and Kj. Therefore, to construct the matrices, the wave numbers
are simply multiplied by the stored integrals. Storing the full matrices for the wave
number pairs K, and Ky is memory extensive and is not done here. The vectors F' and
G are also numerically computed. In the above equations, At is the non-dimensional

time-step. A time-step of 0.05 was used in all the computations, which yielded a
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maximum Courant number of 0.75, where the Courant number C' is defined as:

Uy

Ar

vikdve

szrAt(

) (2.26)

+|

2.10 Parallel Computing

The numerical code was written in Fortran and was initially implemented on the
SGI Onyx computer. SGI Onyx is a scalar machine with an P21 processor and a
clockspeed of 75MHz. The simulations with 16 modes in all the three spatial directions
(16%) could be run quickly on this machine, but 32% calculations were taking much
longer. To make the run time shorter for 32% calculations, a parallel version of the
same code was also written in Fortran. The parallel code was implemented on the
Paragon L38 supercomputer. It has a maximum of 512 compute nodes. Each node is
an Intel i860XP microprocessor. The configuration is a 2D mesh of 16 rows and 36
columns. Memory per compute node on Paragon is 32MBytes with peak performance
of each of its node being 75MFlops. Each i860XP is approximately two and a half
times slower than an IP21. "

The domain decomposition was done by breaking the 3D problem into a number
of 2D problems. For example, a 323 simulation was decomposed into 32, 2D problems.
In other words, 32 processors were used to run a 32% simulation. The benchmarks
for the parallel speed-up are given in Tables 2.1 and 2.2. The tables show that the
speed-up for 162 and 32 calculations are 2.5 times and 9 times respectively. The
efficiency for a 32° simulation is approximately 70%. However, the efficiency for a 163

simulation is a mere 40%. The efficiency is defined as:

1 t
R b Sre) 2.27
emeency number of parallel processors (tp : ( )
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Here t; and ¢, are the time taken by the scalar and the parallel machines respectively.
The relative speed of the scalar machine with respect to each parallel processor is
given by S,.;. Subsequently, all the 16% simulations were performed on the scalar

machine and 32° simulations were performed on the parallel supercomputer.

2.11 Code Validation

Code validation was achieved by computing several states of isothermal and heated
Taylor-Couette flows. These states were then compared with a large body of existing

theoretical, experimental and numerical literature on Taylor-Couette flows.

2.11.1 Isothermal Taylor-Couette flow

The first state to be computed was that of circular Couette flow. For n=0.9, the
critical Reynolds number for the onset of Taylor vortices is 131.61 (DiPrima and
Swinney, 1981). A Reynolds number lower than this value gives rise to pure Couette
flow. An analytical solution for Couette flow exists, and shows a non-zero azimuthal
velocity with a radial dependence. The axial and the radial velocities are identically
zero. Shown in Fig. 2.4 is the analytical solution (solid line) and the numerical
solution (symbol) for R=100 and ,=2.007. The numerical solution agrees with the
analytical solution for Couette flow.

The second flow state to be computed was that of Taylor-Couette flow. In Moser,
et al. (1983), the tangential velocity as a function of r at the axial location where
the radial velocity is zero is presented. Their result is plotted in Fig. 2.5 (solid line).
The solid circles are the results from the present numerical calculations for R=400,
17=0.833 and L,=1.05. The calculations were performed using 32 Fourier modes in the

z and 0 directions and Chebyshev polynomials through 22" order in the r direction.
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The resulting flow is axisymmetric and there is an excellent agreement between the
calculated azimuthal velocities and the results of Moser, et al. (1983). Shown also
in Figs. 2.6, 2.7 and 2.8 are the radial, tangential and axial velocity contours in the
r-z plane. Plotted in Fig. 2.9 are the velocity vectors showing the familiar counter-
rotating Taylor vortices. The adjacent Taylor vortices are of equal size.

A determination of the critical Reynolds number for the onset of Taylor vortices
is performed for four different radius ratios. The axial wavelength selected is the
wavelength corresponding to the minimum critical Reynolds number given by the
linear stability analysis. To check for the critical Reynolds number, perturbations
are introduced in the simulation. If the perturbations decay in time (with the flow
eventually reaching a steady state) then the flow is stable. Otherwise the flow is
unstable. The results are summarized in Table 2.3. The error margin in R for
17=0.95 indicates that the disturbances died down for R=184 and grew into Taylor
cells for R=186. A linear stability analysis (DiPrima and Swinney, 1981) shows that
the critical Reynolds number for the onset of Taylor vortices for infinite aspect ratio
concentric cylinders is approximately 185. Since the simulation run time required
to reach a steady state is inversely proportional to (R-R.), it becomes numerically
difficult to simulate the flow with Reynolds number close to the critical Reynolds
number. Hence the exact critical Reynolds numbers cannot be determined. Within
the uncertainty of 41, the critical Reynolds numbers obtained from the numerical
simulation agree well with the linear stability analysis.

Calculations of torque were also performed for two different radius ratios. The
Reynolds numbers chosen for the wide gap (n=0.5) and the narrow gap (n=0.9) were
78.8 and 195 respectively. Torque per unit length, normalized by pu3 is given by:

G= 27rrR<dir(rﬂ9) — 27, (2.28)
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where Ty is the z-averaged tangential velocity. Experimental values for the torque are
given by Donnelly and Simon (1960). The results are compared in Table 2.4. The
results agree quantitatively within 3%. The reason for this discrepancy could be due
to the fact that the axial wavelength was not measured in the experimental study.
The torque has been shown to be sensitive to the axial wavelength (Meyer, 1967). In
the simulations the axial wavelengths (L,=1.988 for n=0.5 and L,=2.009 for n=0.95)
corresponding to the minimum critical Reynolds number was used. This assumption
is appropriate considering the fact that the Reynolds number was slowly increased
above the critical value.

The critical Reynolds number for the transition to non-axisymmetric Taylor-
Couette flow was also calculated for n=0.875, L,=2.007 and m=1 (one wave in the
azimuthal direction). The flow was computed with 32 Fourier modes in the z and 6
directions and with Chebyshev polynomials through the 32" order. The base flow
was taken to be axisymmetric Taylor vortex flow, and then the perturbations were
added in the 6 direction. The perturbations grew into Wavy Vortex Flow (WVF)
for R=131 and settled back to axisymmetric Taylor Vortex Flow (TVF) for R=129.
Thus the critical Reynolds number computed for this flow is 1301 which is close to
the value of 131 reported by Jones (1981). The Reynolds number was slowly increased
to 142 and m=2 wavy vortices were formed. The wave speed corresponding to this
flow was computed to be 0.4544-0.001. The error margin in this case is based on the
time step. The wave speed also agrees well with the value of 0.455 reported by Jones
(1981).

For a slightly higher Reynolds number, Fig. 2.10 shows the radial velocity contour
in the z-0 plane, midway between the inner and the outer cylinders. The flow is for
R=150, L,=2.007 and 1==0.9 . Three azimuthal traveling waves (m=3) are seen in

the figure.
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2.11.2 Radially heated Taylor-Couette flow

The first radially heated flow state to be validated was the solution of the axial

velocity as a function of 7. The axial velocity given by Choi and Korpela (1980) is:

u,(r) = Gr (1—=7*)(1=37n%) —4n*Iny
S0 16(-nPR |\ (1-n?)?+(1—-n*)Inn
((1 =)’ =14+ (1 - na%)
B "’Q]W] (220)

where R is the Reynolds number, Gr is the Grashof number and 7 is the radius ratio.
The cases for a heated inner cylinder (Gr=2000) and a heated outer cylinder (Gr=-
2000) for R=50, n=0.9 and L,=2.007 are shown in Fig. 2.11. The solid line is the
analytical solution given by Eqn. (2.29) and the symbols are the simulation results.
The analytical solution is predicted well by the numerical code for both the Grashof
numbers. Figs. 2.12 and 2.13 also show the axial velocity vectors for the above cases
in the r-z plane. For Gr=2000, the buoyancy induces an upward flow near the inner
cylinder wall and a downward flow near the outer one. The direction of flow reverses
for Gr=-2000.

The accuracy of the code was also checked by comparisons with linear stability
analysis (Chen, et al., 1990) for n=0.9, L,=2.007 and Pr=0.71. The results are
summarized in Tables 2.5 and 2.6. Table 2.5 refers to constant density simulations
(8* = 0) and Table 2.6 refers to simulations where the density depends on tem-
perature. The critical Reynolds number (R.) for the onset of Taylor cells and the

computed wave speed (c) agree very well with the linear stability theory.
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Machine Time per step for a 16 simulation
Scalar 1.0s
Parallel (16 processors) 0.4s

Table 2.1: Benchmark for 16% parallel speed-up

Machine Time per step for a 32% simulation
Scalar 13.5s
Parallel (32 processors) 1.50s

Table 2.2: Benchmark for 323 parallel speed-up

Critical Reynolds number
Radius ratio (n) | Axial wavelength (L) Present simulation | Stability analysis
0.95 2.009 185+1 184.99
0.70 2.001 80+1 79.49
0.60 1.994 72+1 71.72
0.50 1.988 68+1 68.19

Table 2.3: Critical Reynolds number for the onset of Taylor vortices.

Torque
Radius ratio () | Reynolds number (R) Present simulation | Experimental
0.95 195 5.418x10° 5.258 x 10°
0.50 78.8 1.486x10° 1.478x103

Table 2.4: Torque calculations.
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Casef Stability  Analysis Simulation
1n=0.9 of Chen and Kuo

L,=2.007 (1990)

Pr=0.71

(1)

Gr=200

p*=0

R, 132.39 132.4+0.2

c 0.00142 0.0014240.00001
®)

Gr=-200

p7=0

R, 132.39 132.440.2

¢ —0.00142 —0.0014240.00001

Table 2.5: Comparison with linear stability theory for constant density.

Caseff Stability  Analysis Simulation
1n=0.9 of Chen and Kuo

L,=2.007 (1990)

Pr=0.71

1)

Gr=200

5*=0.133

R, 134.91 134.8+0.2

c 0.00130 0.00131+0.00001
(2)

Gr=-200

£*=-0.138

R, 129.96 130.0+0.2

c —0.00153 —0.001524-0.00001

Table 2.6: Comparison with linear stability theory for temperature dependent density.
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Figure 2.1: Flow geometry and boundary conditions.
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Figure 2.2: Schematic of isothermal Taylor cells.
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Figure 2.4: Analytical and numerical tangential velocity profile for circular Couette
flow.
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Figure 2.5: Tangential velocity for R=400, n=0.833 and L,=1.05 at the axial location
with zero radial velocity.



o1

u

r

0.139851
0.121711
0.10357
0.08543
0.0672895
0.0491491
0.0310086
0.0128682
-0.00527222
-0.0234127
-0.0415531
-0.0596935
-0.077834
-0.0959744
-0.114115

Figure 2.6: Radial velocity contours for R=400, n=0.833 and L,=1.05 in the r-z
plane.
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Figure 2.7: Tangential velocity contours for R=400, n=0.833 and L,=1.05 in the r-z
plane.
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Figure 2.8: Axial velocity contours for R=400, =0.833 and L,=1.05 in the r-z plane.
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Figure 2.9: Velocity vectors for R



35

u

r

0.044124
0.0389407
0.0337575
0.0285743
0.0233911
0.0182079
0.0130246
0.00784142
0.00265821
-0.00252501
-0.00770823
-0.0128915
| -0.0180747
-0.0232579
-0.0284411

Figure 2.10: Radial velocity contours for R=150, n=0.9 and L,=2.007 in the z-6
plane.
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Figure 2.11: Axial velocity as a function of r for R=50, n=0.9 and L,=2.007 for
Gr=2000 and Gr=-2000. The solid lines are the analytical solutions and the symbols
are the present simulation results.
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Chapter 3

Methodology II: Time Delay

Method and the Experiment

3.1 Introduction

Typically, a time series would be measured at a single spatial point from an experiment
and Fourier analysis would be performed to obtain information on the frequency
content of the signal. If the power spectra is broad-banded, then it is possible that
the source of the signal is a low dimensional dynamical system. Chaotic time series
data are observed routinely in experiments on fluid flow and other physical systems.
There are methods in nonlinear time series analysis to extract information from time
series measurements. One such method of using time delay coordinates to reconstruct
the entire phase space of an observed dynamical system was introduced by Takens
(1981). The aim of the experimental part of this thesis is to use the time delay method
and to verify whether a chaotic regime is encountered before the Taylor-Couette flow
becomes fully turbulent at very high rotation rates of the inner cylinder.

The measured signal is usually contaminated by two different sources. The first
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source is the perturbations from the environment and the second source is the data
acquisition system. This undesirable contamination is often referred to as ‘noise’.
The source of the signal could be a linear or a nonlinear dynamical system. The
power spectrum of a signal from a linear system has distinct spectral peaks with some
broad-band noise. Once the signal of interest is identified, Fourier space is the natural
domain to separate it from the noise. This is possible because the signal and the noise
reside in different frequency ranges of the power spectrum. On the other hand, the
power spectrum of a signal from a chaotic dynamical system is broad-banded. The
measured signal contains both the signal of interest and the contamination. Fourier
analysis is of little help in separating the two. Usually, though, the noise from the
data acquisition system is of high frequency and some kind of low pass filtering is still

reasonable and routinely done, as long as one bears in mind the implications of it.

3.1.1 How to reconstruct the attractor ?

To embed the attractor in m-dimensional space, m independent measurements need
to be made from a dynamical system. Experimentally it is difficult to measure more
than a few signals. Usually a single point measurement of a variable is obtained as a
time series. It is possible to reconstruct the entire phase space of a dynamical system
from this single point measurement because of the “embedding theorem” of Takens
(1981). The theorem states that m-dimensional vectors, x (¢, 7), can be constructed
from the time series, v(t), by choosing a suitable time delay, 7.

The vectors:

x(t, 7)=[ov(t), v(t+71), vt+27)...... v(t+ (m —1)7) | (3.1)

are some unknown nonlinear transformation of the actual variable of the physical sys-
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tem. It is not important to know this nonlinear transformation between the physical
variable and the signal for the purpose of constructing the phase space. Any smooth
nonlinear change of variable will act as a coordinate basis for the dynamics of the sys-
tem. For m large enough, the attractor dimension will be the same as the dimension
of the reconstructed attractor. The embedding theorem (Takens, 1981) states that if
the embedding dimension, m, is one more than twice the attractor dimension, then
the attractor will certainly be unfolded. This condition is not necessary for unfolding
but is sufficient and indicates that the maximum number of components in the time
delay vector should be m. In the process of calculating the dimension of an attractor,
the embedding dimension is increased in steps until the attractor dimension attains
a constant value. Methods of calculating the optimal embedding dimension are also

given by Buzug, et al. (1992).

3.1.2 Time delay

The embedding theorem of Takens states that any time delay would work for the
construction of m-dimensional vectors. This is true theoretically for a data set which
is free of any contamination. But experimentally this is not the case. If 7 is too
small, then the vectors would be very close to each other and it would be very hard
to distinguish them due to the presence of noise. If 7 is too large, then v(¢) and v(t+7)
would be statistically independent. This is because the motion on the attractor is
ergodic and the projection of an orbit on the attractor onto the two directions would
be more or less random.

One way to determine the time delay is to compute the auto-correlation function:

C(r) = / v(t)u(t + 7)dt (3.2)
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and choose the value of 7 for which the auto-correlation function becomes zero. The
zero of the auto-correlation function indicates the time lag at which v(¢) and v(t +7)
become linearly independent. However, a chaotic time series arises from a dynamical
system which is inherently nonlinear. Therefore a more general independence of the
coordinates is required. The mutual information function, I(7), is an entropy based

concept and is derived from Information theory. It is defined as:
1(7) = [ [ POXCY ) log[ P(X, Y)/P(X)P(Y)|dX dY (3.3)

where X = v(t) and Y = v(t + 7). P(X) and P(X,Y) are the probability density
and the joint probability density. Given the value of v(t), the mutual information
function gives the accuracy with which v(t + 7) can be predicted. Since v(t) and
v(t + 7) denote the coordinates of the reconstructed phase space, they should be
independent of each other. Therefore, the time delay corresponding to the first local
minimum (Fraser and Swinney, 1986) of the mutual information function is a good
choice. A new method for the estimation of the mutual information to experimental

time series from different locations in the flow is also given by Buzug, et al. (1994).

3.1.3 Dimension calculations

The attractor dimension is one of the most important invariants of a dynamical sys-
tem. The dimension is roughly the number of independent variables needed to model
the underlying phenomenon in a dynamical system. Investigations by Brandstater,
et al. (1987) have shown that the flow undergoes a series of transitions before it
becomes fully turbulent. They encountered a “weakly turbulent”, low-dimensional
chaotic attractor as the inner cylinder Reynolds number was increased. The subject

of investigation in the experimental part of this thesis is whether such a low dimen-
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sional strange attractor exists in the flow and, if so, what happens to its dimension
as the inner cylinder speed is increased.

There are many different kinds of dimension, such as the fractal dimension, the
pointwise dimension and the correlation dimension (Farmer, et al., 1983). They can
all be derived from the definition of generalized dimensions:

. 1 logy, B
= lim

D
e~0g—1 loge

(3.4)

q

where P; is the probability of finding a point in the i** box of size e. For the limit
as ¢ approaches 0 the fractal dimension results. For the limit as ¢ approaches 1 the
pointwise dimension or the dimension of the natural measure is obtained. It is also
defined as:

< log N z
Dy = lim og V(e) >
e—0 log €

(3.5)

where N(¢) is the number of points in a ball of radius e. The averaging is done
over different referencing points z. For the limit as ¢ approaches 2 the correlation
dimension is obtained. It is similar to the pointwise dimension but the averaging is
done over the number of points N(e).

1 N
D2 = lim g < (6) 2
e—0 log €

(3.6)

Dy is the lower bound for the dimensions and Dy > D; > D,. As an empirical
rule, for an m-dimensional embedding, 2™"2 reference points are used, so that the
reference points fill up the phase space equally densely.

Fractal dimensions were also calculated by Pfister, et al. (1992) and Buzug, et al.

(1992) in a Taylor-Couette experiment. They measured the axial velocity component
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of the flow field with Laser-Doppler velocimetry and the phase space was reconstructed
by using delay time coordinates. Silicon oil was used as the working fluid. Their
system showed all the three well-known routes to chaos: the period doubling cascade,

intermittency and the break-up of a torus.

3.1.4 Modeling

The information about the phase space, such as the temporal evolution of the tra-
jectories and the dimension of the attractor, can be used for making models such as
predicting the value of the heat transfer coefficient for aperiodic flow. These models
can then be used for predicting future behavior of the dynamical system, i.e., ex-
tracting the value of v(¢ + 1) given a long time series of v(t). The simplest nonlinear
method of local forecasting would be to find the nearest neighbor of v(t), say, v(p),
and then predict v(p + 1) as the future value for v(¢ +1). An improvement on this
would be to take a collection of near neighbors of the point v(¢) and make the aver-
aged value of their images the prediction.

One way of making models is that of local neighborhood to neighborhood maps
(Abarbanel, 1996). It is assumed that a local functional form exists for the evolution
of the dynamics z — F®(z) in the neighborhood of the point v(¢):

M
FO(x) =3~ a(j, )%, (x) (3.7)

Jj=1

The functions ®;(z) are a basis set and can be polynomials. The number of basis
functions chosen is M. The model is made in the d-dimensional subspace of the

embedding m-dimensional space. Hence, v(t) is a d-dimensional vector. The action
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of the map F®(z) on v(t) gives v(t + 1) such that:

v(t+1) = FO(u(t)) (3.8)
= ;a(j,t)fbj(v(t)) (3.9)

The coefficients of the model can be determined by minimizing

N M ‘ 2
2ot +1) =3 a5, 1)2,;(v (1)) (3.10)

over N nearest neighbors of the point v(t), given by v®(t); i=1,2,....N. Solving
this linear problem gives the coeflicients a(j,t) for each observed point v(t) on the
attractor. Now, given a point z(0) to predict the evolution of the system, one would
search the v(t) to find a point nearest to z(0). Call this v(p). Then the local map

£

»(7) is constructed from its N nearest neighbors and F,(z(0)) gives the next point

z(1) on the trajectory of the attractor. The process could be iterated far into the

future for prediction.

3.2 Time Delay Method Validation

To see how well the time delay method works, it is applied to a model system. The

celebrated Lorenz equations are chosen for this purpose. The equations:

i =o(y—x)
Yy =-—y—xz+re (3.11)

z =uay— bz
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exhibit chaos for c=10, r=28 and bz%. These equations are solved using a fourth
order Runge-Kutta method. The initial conditions are (0)=20, y(0)=0 and z(0)=10,
with a time step of 0.01. Shown in Fig. 3.1 is the projection of the trajectory on
the z-z plane. Now only the z-values are kept and, y and z values are discarded. It
remains to be seen whether the phase space of the original Lorenz attractor can be
reconstructed and the dimension correctly calculated using only the z-values obtained
from integration of the Lorenz equations. Before the phase space is plotted, a suitable
time delay must be chosen. The mutual information function of the z-values is plotted
in Fig. 3.2. As discussed previously, the first local minimum is an optimum choice
for the time delay. Therefore, a delay of 7=0.17 (17 time steps) is chosen for the
time delay coordinates. Figure 3.3 shows the value of z(t + 7) plotted against z(t).
The celebrated butterfly pattern is again obtained, with remarkable similarity in the
structure with Fig. 3.1. If the delay time is too small, for example 2 time steps, then
the reconstructed phase plot shows a line at an angle of 45° (Fig. 3.4). In Fig. 3.5,
the trajectory is plotted in phase space with a delay of 150 time steps. It is seen that
the points on the attractor spread out, if the delay time is too large.

The Lorenz attractor has an estimated fractal dimension of 2.06. From the re-
constructed phase space with a delay of 17 time steps, the correlation dimension is
calculated. The correlation dimension is based on the idea that the number of points
N(e) in a hyper-sphere of radius e scales with the attractor dimension. Plotted in
Fig. 3.6 is a graph of log N(¢) versus loge. A constant slope of approximately 2 (Fig.

3.7) is clearly visible, and reflects the fractal dimension of the attractor.

3.3 The Experiment

The details of the experimental setup and the data acquisition system are briefly

discussed in the following two sections. A more detailed description is available in
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Shihx (1994).

3.3.1 Setup

The experimental setup consists of two concentric cylinders. The inner rotating cylin-
der has an O.D. of 20.96 cm and is made of aluminum. The stationary outer cylinder
is made of plexiglass and has an 1.D. of 23.50 cm. The inner cylinder is mounted to a
hollow shaft which is driven by a Sabina 220 volt, 2 hp d.c. motor with a maximum
rotation rate of 1750 RPM. The height of the annulus is 50.80 cm and the gap width
is 1.27 ¢cm. This results in an aspect ratio, h/b of 40, and a radius ratio, r;/7, of
0.89. The Reynolds number is defined as R = wr;b/v where r; is the radius of the
inner cylinder, w is the angular velocity of the inner cylinder, b is the gap width and
v is the kinematic viscosity. The critical Reynolds number for the onset of Taylor
vortices in a very large aspect ratio apparatus for a radius ratio of 0.89 is 125.67.
The working fluid is air. The rotation speed of the inner cylinder is measured by an
optical encoder. One revolution of the inner cylinder produces 1000 pulses from the
encoder. These pulses are sampled at a frequency of 100kHz using one of the channels

of the data acquisition system.

3.3.2 Data acquisition

The hot-wire data is collected using a personal computer. A Das-20 data acquisition
board manufactured by MetraByte Corp., with a maximum sampling rate of 100kHz
is used for this purpose. The board has a resolution of 12-bits and there are 16
single-ended input channels. The SSH-4 simultaneous sample and hold board is used
for acquiring two time series at the same time. The SSH-4 board can sample up
to a maximum of 4 channels with less than 40 nanoseconds of channel to channel

sample time uncertainty. It was necessary to acquire data from two spatial locations
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simultaneously for the purpose of performing cross correlations.

3.3.3 Time series measurement

Four 0.635cm diameter holes are drilled in the circumferential direction at the mid-
height location for velocity measurements. A hot-wire anemometer manufactured by
Dantec Electronic, Inc., is used to measure the velocity at a point midway in the gap
between the inner and the outer cylinders. The 55P11 type hot wire measures both
the radial and the azimuthal components of the velocity. The hot wire is placed on
a probe stand and the probe holder can traverse in the radial direction with a high
degree of precision. The hot-wire probe can measure velocity in the range of 0.15 m/s
~ 500 m/s. But for the present experiment, it was calibrated in the range 0.15 m/s ~
3 m/s. It has a maximum frequency response of 100kHz. The output of the hot-wire
is a voltage. If the actual velocity is desired, then it has to be converted using King’s
law. But for time delay analysis, the voltage signal itself was used because there is a

smooth transformation between the voltage and the velocity.

3.4 Taylor-Couette Flow Validation

3.4.1 Couette flow

It is imperative to confirm that features of a Taylor-Couette flow found in the liter-
ature can be repeated in the experimental facility. A number of experiments were
done to validate the experimental system, such as the existence of the Couette flow
velocity profile. As the rotation of the inner cylinder is slowly increased, Taylor cells
are formed at a particular Reynolds number. Any Reynolds number lower than the
critical value should give rise to a featureless Couette flow. Figure 3.8 shows the

analytical and the experimental tangential velocity profile at the mid-axial position
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of the annulus for R=106.5. There is close agreement between the two values.

3.4.2 Taylor vortex flow

For the radius ratio, 7=0.89, the critical Reynolds number for the onset of Taylor
cells in an infinite system is approximately 125.67 (Edwards, et al., 1991). To find
the critical Reynolds number in the experiment, the inner cylinder rotation speed is
slowly increased in steps and air is blown axially in the annulus. The hot-wire signal
is closely monitored. With the formation of the Taylor cells, sharp dominant peaks
also start to appear on the hot-wire signal. These peaks are the result of toroidal
Taylor vortices drifting past the hot-wire probe with the mean velocity of the axial
flow. The vortices appear at the inner cylinder RPM of 14, which translates into a
Reynolds number of 1254-3. This value is close to the value of 125.67.

Similarly, the axial wavelength corresponding to the critical Reynolds number is
also measured. The mean velocity of the air blown axially is known a priore from a
previous calibration. The time lag between two peaks is obtained from the hot-wire
velocity trace. Knowledge of the velocity and the time lag enables the determination
of axial wavelength of a pair of Taylor vortices. The axial wavelength normalized by
the gap width obtained in this fashion is found to be 2.0064-0.004 which is very close

to the theoretically obtained value of 2.007.

3.4.3 Wavy vortex flow

The next transition is to a wavy vortex flow regime where traveling waves are formed
in the azimuthal direction. The critical Reynolds number for the onset of wavy
vortex flow is determined by means of a cross-correlation technique. Two hot-wire
probes are placed at an azimuthal angle of 90°. The signals from both the wires are

simultaneously recorded using a SSH-4 data acquisition board. Before the waves are
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formed, the signals are identical because the flow is axisymmetric and there is no axial
blowing. With the formation of the azimuthal waves, a time lag is observed between
the two signals. The formation of the azimuthal waves occurred at R/R.=1.0940.05.
This value is very close to a numerical value of R/R.=1.089 reported by Edwards,
et al. (1991). At this Reynolds number, it is also determined that the number of
azimuthal waves formed is 2. From the time lag and the distance between the two
probes, the wave velocity can also be calculated. The wave velocity normalized by
the velocity of the inner rotating cylinder is evaluated to be 0.495. As reported by
Coles (1965), the angular velocity of the waves is close to half the angular velocity
of the inner rotating cylinder. The value reported by Coles agrees with the value of

0.495 obtained in the present experiment.

3.4.4 Measurements of axial wavelengths

The axial wavelengths are determined as a function of the Reynolds number. The
rotation of the inner cylinder is increased steadily. Since the experiment is designed
to study very high Reynolds number flows, it is very difficult to increase the rotation
very slowly. The highest RPM studied here for the wavelength measurements is 125.
The process is called a ‘steady acceleration’ in the sense that the RPM of the inner
cylinder is increased in steps of not more than 4. After every step increase of the inner
cylinder speed, the system is given 15 minutes for relaxation. The measurements of
the axial wavelength is then made from the hot-wire trace of the velocity time series.
The wavelengths normalized by the gap width versus R/R, are plotted in Fig. 3.9.
Also plotted on the same graph are the measurements made by Koschmieder (1979)
for a radius ratio of 0.896. Both the results show that the wavelengths increase with
the increase of the Reynolds number. The present results agree quantitatively within

7% of those obtained by Koschmieder.
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Figure 3.1: Projection of the Lorenz attractor on the z-z plane.
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Figure 3.2: Mutual information for Lorenz equations using only the z-values.
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Figure 3.3: Reconstruction of the Lorenz attractor using a time delay of 17 time steps.



74

20 -

10 |-

X(t+2)

-10

x?t)
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flow.
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Chapter 4

Results

4.1 Heat Transfer Results

The code is compared with experimental results. One of the results from Kataoka,
et al. (1977) is re-plotted in Fig. 4.1 (symbols). In their experiment, they measured
the local coefficient of mass transfer on the outer cylinder. The Schmidt and Grashof
numbers are not given in the paper, but are estimated to be of order 10° and 100,
respectively. The figure also shows (solid lines) the numerical results for the local
Nusselt numbers obtained for the numerical simulation for the same n and L, but for
a Pr=0.71. For Gr=100, the effect of natural convection is small and the flow state
remalns axisymmetric; hence in the heat transfer calculations, the Grashof number
is taken to be zero. The local heat transfer coeflicient is based on the temperature
difference between the bulk of the fluid and the outer cylinder. The comparison
between the mass transfer experiments and the heat transfer calculations show rea-
sonable agreement. The simulations show that the adjacent Taylor cells are of equal
size for Gr=0. However, the relative size of the Taylor cells varies with the increase
in the differential heating of the two concentric cylinders. The slight difference in the

relative size of the Taylor cells is also seen in Fig. 4.1 from the experimental values
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of Kataoka, et al. (1977). This difference is probably due to a small Grashof number

(based on mass transfer) effects. Note that the exponent for the Prandtl number has
a value of 0.375, which was chosen to bring the results closer together. If the exponent
is 0.333 (as used in the experiments), the values from the simulations are found to be
smaller than the experimental values. The present simulation, when performed with
a higher Prandtl number, give slightly higher Nusselt numbers. The case for R=110,
L,=1.88, n=0.617 and Gr=0 for different Pr is shown in Fig. 4.2. The simulation
cannot be run for a very high Pr because the energy equation becomes stiff.

The second set of experiments used to validate the code is from the heat transfer
experiments of Ball, et al. (1989). In this experiment, the walls were maintained
at uniform temperatures. The inner cylinder was heated by a cartridge heater and
the outer cylinder was cooled by passing an ethylene glycol-water mixture through
a flexible plastic hose coiled around it. The mean equivalent conductivity, K, is
defined as the ratio of the average convective heat transfer coefficient (hz;3) to the
heat transfer coefficient for pure conduction. The average convective heat transfer
coefficient is based on the temperature difference between the inner and the outer
cylinders. In Fig. 4.3 (symbols), K., is plotted versus R? for n=0.565, L,=1.991,
Gr=1900 and B*=0.053. The normalized wavelength of approximately 1.991 is the
critical wavelength corresponding to the critical Reynolds number for a radius ratio of
0.565 as given by the linear stability analysis. It is assumed that the axial wavelength
remains fairly constant for the range of Reynolds numbers studied here, and that this
critical wavelength is chosen as the axial period of the flow. The result shows a power
law behavior (solid line), which has a lower coefficient and a higher exponent than
the result presented by Ball, et al. (dashed line). This discrepancy arises because of
the variation of axial wavelength with axial distance, which results from the thermal

conditions at the ends of the experimental apparatus (Ball, personal communication).
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The simplifying assumption of no axial temperature gradient could be another source
of discrepancy between the experiment and the numerics. The simulations also show
that for G'r=1900, as the Reynolds number is varied, the relative size of the adjacent
counter-rotating Taylor cells change. This agrees qualitatively with the flow visual-
ization studies of Ball, et al. (1989).

Figure 4.4 shows that the heat transfer results are very sensitive to the imposed
axial wavelength. Plotted is the variation of the calculated K., with L,. The same
average heat transfer coeflicient can be achieved by two different wavelengths: one
below the isothermal critical value (L,=1.988) and the other above it. A similar re-
sult was shown by Meyer (1967) in numerical calculations of torque (Fig. 4.5). The
author concluded that the experimentally observed torque is somewhat lower than
the numerical torque; it is speculated that the same is true for the heat transfer as
well. Hence, if an axial wavelength was chosen for the numerical simulation that dif-
fered from the critical wavelength (either larger or smaller), the predicted equivalent
conductivity would decrease and the predicted results would probably be closer to
the experimental values from Ball, et al. (1989)

Apart from calculating the local and the average heat transfer coefficient, it is
important to know how the flow evolves from one state to another as Gr is varied.
Figure 4.6 presents a map of different stable states in the flow for a fixed Reynolds
number and different Gr. For each different value of Gr in the plot, the flow was com-
puted by imposing the temperature difference at t=0 and allowing the flow to evolve
to its asymptotic state. For low |G|, axisymmetric Taylor Vortex Flow (TVF) is the
stable state. Outside this range, n=1 stripes are formed. With the formation of spiral
flow, the Taylor vortices become inclined. The angle of inclination of the Taylor cells
from the horizontal (¥) increases as higher order spirals are formed. Figure 4.7 shows

a schematic of spiral flows for n=1 and n=2. These spirals move an axial distance
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of nL, for one rotation around the inner cylinder. The flow becomes aperiodic for
higher Gr.

Similar stripes were also seen in the flow visualization experiments of Snyder and
Karlsson (1964) and Ball, et al. (1989). Stripes of larger inclination angle, up to
n=~6, were observed by Snyder and co-workers for higher heating in a small annulus
(n = 0.957). Higher spiral modes are formed for narrower gaps (Ali, et al., 1990).

Increasing Gr decreases the heat transfer coefficient (K,,) within the axisymmet-
ric TVF regime. The increase in the axial velocity as a result of increasing Gr not
only delays the onset of Taylor vortices but also causes a damping effect on the heat
transfer. A similar effect of decreasing of the average Sherwood number by an added
axial flow was also observed by Kataoka, et al. (1977). The mean equivalent con-
ductivity, K.,, increases significantly with the formation of n=1 spiral flow and it
continues to increase with Gr until the flow becomes aperiodic with a subsequent
decrease in K.; near Gr==42400. The map is nearly symmetric about the Gr=0 axis.

For 7=0.6, the map is shown in Fig. 4.8. The map is similar to the one shown in
Fig. 4.6 for n=0.5 except for the point Gr=-2000. For this value of Gr, n=2 spiral
flow is formed and is not seen for positive Gr. The heat transfer characteristics are
the same as that for n=0.5.

A similar map is shown for n=0.7 in Fig. 4.9. Again, axisymmetric Taylor vortex
flow is seen for low |Gr|, but the n=1 spiral flow is formed for a broader negative
range of Gr and for a narrower positive Gr. The n=2 spiral flow is formed for higher
negative G'r and is not formed for positive Gr. The flow becomes aperiodic out-
side this range. The heat transfer has similar effects as for n=0.5 (Fig. 4.6) in the
TVF regime. However, instead of K., increasing monotonically in the n=1 spiral
flow regime, a plateau is formed for both positive and negative Grashof numbers.

A significant increase in K., is observed with the formation of n=2 spiral flow, and
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K, increases with further increase in Gr in this regime of flow. This map is not
symmetrical about the Gr=0 axis. The asymmetry grows with the increase in the
value of A.

The variation of the size of the Taylor cells with the increase in the value of Gr is
shown in Fig. 4.10. The axial velocity contours are plotted in the r-z plane for n=0.7,
L,=2.001, R=100 and Pr=0.7. The figure illustrates two important phenomena. The
first is the change in the size of Taylor cells and the second is the formation of n=1
spiral flow. For Gr=0, there is no effect of natural convection, and both the Taylor
cells are of equal size. As Gr is increased, a natural convection current is set up.
For a positive Gr, the direction of the convection current is upwards near the inner
cylinder and downwards near the outer cylinder. As a result of this, the Taylor cell
that has the same direction of circulation as the natural convection current increases
in size. The counter-rotating cell, on the other hand, becomes smaller. The counter-
rotating cell becomes very small for Gr=900. The flow remains axisymmetric. As
Gr is increased to 1000, the cell cannot become any smaller and n=1 spiral flow is
formed. The transition marks an increase in the Nusselt number, which is the result
of an increase in the radial velocity component of the fluid.

The variation of heat transfer as a function of z and 6 is shown in Fig. 4.11
(Gr=0), Fig. 4.13 (Gr=-1200), Fig. 4.15 (Gr=-1700) and Fig. 4.17 (Gr=-2100). All
the four cases are for ==0.7, L,=2.001, R=100 and Pr=0.7, which corresponds with
map of Fig. 4.9 for the equivalent thermal conductivity. For Gr=0, the flow is ax-
isymmetric and the Nusselt number is only a function of z. For Gr=-1200 and -1700
the variation is sinusoidal in both z and 6 because the flow contains n=1 and n=2
spirals. The surface has more foldings for Gr=-1700 (n=2 spiral flow). For Gr=-2100
the Nusselt number varies with 2z and 6 in a more complicated way because the flow

is within the aperiodic regime. The radial velocity contours corresponding to Figs.
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4.11, 4.13, 4.15 and 4.17 are plotted in Figs. 4.12, 4.14. 4.16 and 4.18, respectively.
For Gr=-1200 and -1700, n=1 spiral flow and n=2 spiral flow are clearly evident.
The radial velocity contours for Gr=-2100 show that the flow is wavy and there is no
single dominant frequency.

Finally, the frequencies and the amplitudes of local fluctuations of the heat trans-
fer coefficient (h) present in the flow are shown in Figs. 4.19, 4.20 and 4.21. The
three plots are for three different radius ratios of 7=0.5, 0.6 and 0.7. The frequency is
normalized by the cylinder frequency and the amplitude is normalized by the spatially
and temporally averaged heat transfer coefficient. For Gr=0, both the frequency and
the amplitude of local fluctuations of the heat transfer coefficient are zero. Figure
4.19 shows that for both Gr=1200 and -1200, the frequency normalized by the cylin-
der frequency is small (~0.01) but the normalized amplitude is high (~0.9). In the
spiral flow regime (n=1), the normalized frequency increases monotonically and the
normalized amplitude is fairly constant. Also, note a small dip in the normalized am-
plitude with the formation of n=1 spiral flow. Figure 4.20 shows the case for n=0.6.
As for n=0.5, the normalized frequency increases monotonically. For n=2 spiral flow,
f/f:=0.66. A similar dip, as for 7=0.5, in the normalized amplitude is observed with
the formation of spiral flow. Figure 4.21 shows that f/f.~0.35 for n=1 and the am-
plitude of local fluctuations of heat transfer is about 95% of hgz;- In contrast to the
cases for 7=0.5 and 0.6, the normalized frequency decreases monotonically in n=1
spiral flow regime. For n=2 spiral flow, f/f. remains practically constant at 0.74. The
normalized amplitude on the other hand increases monotonically with the increase
in the magnitude of Gr. The above information on the frequency and the amplitude
of local fluctuations of heat transfer is required as boundary conditions for a thermal
stress analysis of the shaft and cover of BWR pumps. With the assumption that the

frequency fluctuation is about 10% to 100% of the rotating speeds, the predictive
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models (Gopalakrishnan, et al., 1992) revealed crack depths that were comparable to

field observations for the shaft and cover.

4.2 Hysteresis

Coles (1965) observed as many as 25 different stable states at a given speed for
isothermal Taylor-Couette flow. The speed was reached by varying the acceleration
rates of the rotating cylinder. The final state in Taylor-Couette flow is thus widely
believed to be dependent on its previous history. Figure 4.22 shows the different stable
states present in the flow as Gr is slowly varied. The case is for n=0.7, L,=2.001,
Pr=0.7 and a fixed Reynolds number (R=100). The different states are marked from
1 to 7 in the symbol table in the order in which Gr is slowly increased and then
decreased. As Gr is slowly increased from 0 to 900, axisymmetric TVF is formed.
From Gr=1000 to 1700, n=1 spiral flow is formed; n=2 spiral flow is formed from
Gr=1800 to 2200. As G is decreased from 2200, n=2 spiral flow exists until Gr=>500.
There exist two different stable states (axisymmetric TVF and n=2 spiral flow) for
Gr=600, but with same heat transfer coefficient. Axisymmetric TVF is achieved
by slowly increasing Gr; then n=2 spiral flow is achieved by slowly decreasing Gr.
For Gr=400 to -1700, n=1 spiral flow is formed. With a further decrease in Gr,
n=2 spiral flow is formed for Gr=-1800 to -2300. The figure shows the property of

non-uniqueness by the existence of a hysteresis loop.
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4.3 Colburn’s Analogy

Most turbulent flows satisfy the famous empirical formula suggested by Colburn:
St.f(Pr)=Cs/2 (4.1)

where St is the Stanton number and C is the friction factor as defined below.

St — h@,z,i
p(wri)Cp
C — w 57272
d %P(W’i)E

For planar Couette flow, f(Pr) = Pr, but it is usually equal to Pr3 for turbu-
lent boundary layers. For circular Couette flow, there is an additional geometric
parameter(n). However, as n approaches 1, f(Pr) = Pr (Appendix B). Figure 4.23
shows the variation of f(Pr) with R for n=0.7, L,=2.001, Pr=0.7 and Gr=0. The
geometric factor has been incorporated into f(Pr) such that for n=0.7, f(Pr) = Pr
for circular Couette flow. The dots are the simulation results. The critical Reynolds
number for this radius ratio is 79.49. Therefore, for the points =60 and 70 (circular
Couette flow), f(Pr) = Pr. As the Reynolds number is increased, f(Pr) increases
and reaches a maximum just above Pr3 and finally becomes constant at 0.76=Pr%7".

Figure 4.24 shows a similar correlation for n=0.7, L,=2.001, Pr=0.7 and R=100.
Here f(Pr,Gr) is plotted with Gr for a fixed Reynolds number (R=100). The results

are similar to the stable states map shown in Fig. 4.9 for n=0.7.
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4.4 Time Delay Analysis

4.4.1 Experiment
Time series

The time series were collected using a hot-wire anemometer. The axis of the hot-wire
was kept parallel to the axis of the cylinders. In this position, the hot-wire measured
both the tangential and the radial velocity components. The wire was placed halfway
between the inner and the outer cylinders at the mid-axial position. Voltage time
series are shown in Figs. 4.25 and 4.26 for R/R.=1.6 and 11.1. The voltage signals
were sampled at 20Hz and 40Hz respectively. The mean voltage is subtracted and
hence, only the fluctuating component is shown in the figures. The time trace for
R/R.=1.6 (Fig. 4.25) show that the flow is in the periodic regime. For R/R,=11.1,

the flow has become vastly irregular.

Power spectra

The state of the fluid can be better understood from the power spectra. The power
spectra were obtained from the time series by Fast Fourier transform methods. Shown
in Figs. 4.27 and 4.28 are the corresponding power spectra for the time series in Figs.
4.25 and 4.26. In the first spectrum, for R/R.=1.6, there is only one fundamental
frequency and its harmonics. The fundamental and the harmonics are all above a flat,
experimental background noise. As the Reynolds number is increased (R/R,=11.1),
the system seems to be making the transition to turbulence. The background noise
rises well above the instrumental noise. The instrumental noise level was ascertained
by taking the power spectrum of a time series obtained in a quiescent medium. For
R/R.=11.1, the flow should be quasi-periodic. Quasi-periodicity is not clearly evident

from its power spectrum. It is conjectured that the second fundamental frequency is
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buried under the background fluid noise. The spectra for higher Reynolds numbers

are of a broad-band nature.

Reconstruction of the attractor

The attractor may be reconstructed from a time series by following the procedure
outlined in chapter 3 (section 1.1). Time delay vectors were created from the time
series, with each vector element chosen by a time delay. This carefully chosen set of
vectors spans the space in which the attractor was reconstructed. A suitable time
delay was needed to reconstruct the attractor. This time delay was estimated by
calculating the mutual information function, I(7), as explained in chapter 3 (section
1.2).

The mutual information functions calculated for the time series in Figs. 4.25
and 4.26 are shown in Figs. 4.29 and 4.30. For R/R.=1.6 (Fig. 4.29), there are
more than one minimum. Practically, the first minimum must be chosen over the
latter minima because the attractor gets folded upon itself, and it becomes extremely
difficult to extract the dimension and other information. For R/R.=11.1, the mutual
information reaches a minimum and then practically becomes a constant. The delay
time was found to be a function of the Reynolds number. Thus a delay time of 8 time
steps was chosen for R/ R.=1.6 and 11.1. This translated into a non-dimensional delay
time of 0.14 and 0.49 for the two cases respectively. The time was non-dimensionalized
using the time period of the inner rotating cylinder.

After calculating the time delay one may proceed with the reconstruction of the
attractor. The projections of phase plots in two dimensions for the time series are
shown in Figs. 4.31 and 4.32. For R/R.=1.6, the flow is periodic (WVF) and the
attractor should be a limit cycle, which is clearly seen in the figure. The thickness

of the limit cycle is due to the experimental noise. For R/R.=11.1, the flow should
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be quasi-periodic (MWVF) and the associated attractor should be a torus. The

reconstructed attractor is very fuzzy with very little features of a torus. The fuzziness

is probably due to background noise.

Dimension determination

As discussed in chapter 3 (section 1.3), the pointwise dimension D; and the corre-
lation dimension D, were computed. Both the dimensions were calculated using the
same algorithms, once by averaging the logarithm of the number of points and again
by taking the logarithm of the averaged points. There was no appreciable change
in these two calculated dimensions. Therefore only the pointwise dimension D; is
reported here. Embedding was done in six-dimensional phase space. Higher dimen-
sional embedding was also done with no change in the attractor dimension. For a
six-dimensional embedding, 256 reference points were chosen. These reference points
were selected using uniformly generated random numbers, so that the reference points
are spread out through the entire attractor equally.

Plots of log N{e) versus log(¢) for R/R.=1.6 and R/R.=11.1 are shown in Figs.
4.33 and 4.34. According to equations (3.5) and (3.6), the slopes of the graphs in
Figs. 4.33 and 4.34, in the limit € — 0, should give the dimension of the reconstructed
attractor. Graphs of the local slope, d[log N(€)]/d[log(¢€)] are shown in Figs. 4.35 and
4.36. For very small €, the number of points N(¢) and the slope both approach zero
because of the finite number of data points. Instrumental noise is dominant for a
slightly larger e. The m-dimensional hyper-sphere is smaller than the smallest scales
that can be resolved in the experiment. Since random noise resides in a higher dimen-
sion than the actual dimension of the attractor, the slope is seen to be higher. For
higher € (if the embedding dimension is sufficiently large), a constant slope reflects the

actual dimension of the attractor, which is of primary interest. For very large ¢, the
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hyper-sphere approaches the size of the attractor. The number of points, N(¢), sat-
urates to a value corresponding to the total number of data points and subsequently
the slope approaches zero. For R/R.=1.6, a slope of 1 is visible, which is the right
value for a limit cycle. For R/R.=11.1, there is no distinct region of constant slope.

Although the dimension is seen to be continuously decreasing from 4 to 0.

4.4.2 Computation

In the previous section, a time delay analysis of a velocity time series obtained from
a Taylor-Couette experiment is performed using the dynamical systems method. The

same method is used to analyze the time trace obtained from the numerical simulation.

Time series

The radial velocity halfway between the inner and the outer cylinders at the mid-axial
position is recorded at every time step. Figure 4.37 shows the fluctuating component
of the radial velocity (the mean velocity has been subtracted) for n=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=-1700. The flow is in the n=2 spiral flow regime. The
time trace looks regular and periodic. Shown in Fig. 4.38 is a similar velocity trace
for Gr=-2100. The time trace has become irregular and the flow is in the aperiodic

regime. Both the time traces are shown after the initial transients have died down.

Power spectra

The power spectra of the radial velocity time series were obtained by performing
a Fast Fourier Transform. Shown in Figs. 4.39 and 4.40 are the respective power
spectra for Gr=-1700 and Gr=-2100. The radial velocity contours at the mid radial
section are shown in Figs. 4.16 and 4.18. Figure 4.39 shows a fundamental frequency

at f/f.=0.74 and its harmonics. The flow is clearly periodic in nature. For the case of
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Gr=-2100 (Fig. 4.40), the peaks for Gr=-1700 are still present but their amplitudes

have slightly decreased. Also, other frequencies have appeared in the flow that are of

comparable power density.

Reconstruction of the attractor

The radial velocity vectors can be used for the reconstruction of the attractor by
following the method described in chapter 3 (section 1.1). Before the attractor can
be constructed, a suitable time delay must be determined. For this purpose, the
mutual information function is calculated from the time series for n=0.7, L,=2.001,
R=100 and Pr=0.7. The two cases for Gr=-1700 and Gr=-2100 are shown in Figs.
4.41 and 4.42. The mutual information for Gr=-1700 is periodic, as is expected for a
periodic signal. On the other hand, the mutual information for Gr=-2100 (Fig. 4.42)
reaches a minimum and then fluctuates above a constant value. From the figures, a
delay time steps of 60 and 30 were chosen for Gr=-1700 and -2100. The corresponding
non-dimensional times are 6 and 3 respectively.

The phase plots for Gr=-1700 and Gr=-2100 are shown in Figs. 4.43 and 4.44.
For Gr=-1700, a clean limit cycle is seen for n=2 spiral flow (periodic). The limit
cycle is triangular due to the presence of harmonic frequencies of the fundamental.
For Gr=-2100, the reconstructed attractor has become vastly irregular and the limit

cycle has disappeared.

Dimension determination

The pointwise dimension D; is calculated for the two different flows (n=2 spiral flow
and aperiodic flow). Plots of log N(¢) versus log(¢) for Gr=-1700 and Gr=-2100 are
shown in Figs. 4.45 and 4.46. The slopes of the graphs give the dimension of the

reconstructed attractor. The slopes for the above cases are shown in Figs. 4.47 and
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4.48. For G'r=-1700, a constant slope of approximately 1 is seen which reflects the
periodic nature of the reconstructed attractor. For Gr=-2100 (Fig. 4.48), the slope
continuously increases to a value of about 3.2. The constant slope region is small and
hence the dimension cannot be determined precisely. If there were three irrationally

related frequencies present in the flow, then the dimension of the flow would be 3.

4.4.3 Local heat transfer coefficient

The same process of time delay analysis is repeated for the local heat transfer co-
efficient. The time series for Gr=-1700 and -2100 is shown in Figs. 4.49 and 4.50,
respectively. The time series for the local heat transfer coefficient and the radial ve-
locity (Figs. 4.37 and 4.38) look very similar. The power spectra for the two Grashof
numbers are given in Figs. 4.51 and 4.52. The magnitude of the power is two orders
of magnitude higher than the corresponding power spectra for the radial velocity.
However, the peaks occur at virtually the same frequencies. The mutual information
calculations are shown in Figs. 4.53 and 4.54. Time delays of 6 and 3 were chosen
for Gr=-1700 and -2100 for the phase plots shown in Figs. 4.55 and 4.56. As for
the radial velocity case, a limit cycle is observed for Gr=-1700, which disappears for
Gr=-2100. Shown in Figs. 4.57, 4.58, 4.59 and 4.60 are the dimension calculations
for the local coeflicients of heat transfer. The dimension for Gr=-2100 is approxi-
mately 3.2, which agrees remarkably well with the dimension obtained from the radial
velocity time trace. Therefore, it is concluded that the local heat transfer coefficient
follow the radial velocity pattern, with the reason being the active role of the radial

velocity component in transferring heat between the two cylinders.
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Figure 4.1: Variation of heat (present simulation) and mass transfer (Kataoka, et al.,
1977) on the outer cylinder for n=0.617.



95

e pr=0.71
10 s pr=1
u pr=5
gl
E .l...l. .I-..l.
8 [ LI LI YL
i m 4 A W m A A m
7 - l.A:. .:A.l l.A:. .A .l
B ) . =) .
Q i ..‘. .‘ [ 3 ..‘. .‘ [ ]
FL 6 - L] N o ] u N o ]
D_ i A® o A® (N
~. B .A. .A- .A. .A-
> 5[ "o o "o o
prd - "e o" "o o"
A IA. .A- -A. .A-
: ..A. .A- ..‘. .A..
3 :_ "8 = LY ] $n
- n n -.‘ n
- .:o o" ) o"
2 [ F 1,@,!‘ 1‘&
1
0 : 1 1 L 1 ’ 1 1 1 1 ! 1] 1 1 1 I | L L L |
0.0 0.5 1.5 2.0

1.0
z/L,
Figure 4.2: Variation of heat transfer with Pr on the outer cylinder for R=110,
L,=1.88, n=0.617 and Gr=0.



96

8‘ [

- ° simulation
N 30}k power law fit
= - Ball, et al., (1989)
2 |
= [
- -
O
5 25
"O -
(- B
O |
@) i
T 20}
Q -
© |
=
8- n

1.5 |
L i
(o |
o i
@ i
= | I | | T

Figure 4.3: Variation of heat transfer rate with R? for n=0.565, L,=1.991, Gr=1900
and (*=0.053.



97

152
150 [ o o
148

1.46

T

1441
142

140 F

1.4 1.6 1.8 2.0 2.2 24 2.6

Figure 4.4: Variation of mean equivalent conductivity with L, for n=0.5, R=100,
Gr=1700 and £*=0.0128.
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Figure 4.5: Variation of torque with L, from Meyer (1967)
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Figure 4.6: Map showing different stable states present in the flow for n=0.5,
L,=1.988, R=100, Pr=0.7 and A=0.1285.
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Figure 4.8: Map showing different stable states present in the flow for 7=0.6,
L,=1.994, R=100, Pr=0.7 and A=0.2888.
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Figure 4.10: Change in the size of Taylor vortices with Grashof number for n=0.7,
L,=2.001, R=100 and Pr=0.7.
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Figure 4.11: Variation of heat transfer on the outer cylinder for n=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=0.

Figure 4.12: Radial velocity contours at the mid radial section of the two cylinders
for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=0.
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Figure 4.13: Variation of heat transfer on the outer cylinder for 7=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=-1200.

Figure 4.14: Radial velocity contours at the mid radial section of the two cylinders
for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=-1200.
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Figure 4.15: Variation of heat transfer on the outer cylinder for n=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=-1700.

Figure 4.16: Radial velocity contours at the mid radial section of the two cylinders
for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=-1700.
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Figure 4.17: Variation of heat transfer on the outer cylinder for n=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=-2100.

Figure 4.18: Radial velocity contours at the mid radial section of the two cylinders
for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=-2100.
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Figure 4.21: Variation of frequency and amplitude with Grashof number for n=0.7,
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Figure 4.26: Voltage signal for R/R.=11.1.
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Figure 4.32: Phase plot for R/R
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Figure 4.33: Plot of log N(¢) versus log(e) for R/R.=1.6
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Figure 4.34: Plot of log N(e) versus log(e) for R/R,=11.1
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Figure 4.37: Radial velocity signal for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=-
1700.

0.20
0.10
= 0.00 ” U
0.10
Qoo b2 o v
200 400 600 800 1000
time

Figure 4.38: Radial velocity signal for n=0.7, L,=2.001, R=100, Pr=0.7 and Gr=-
2100.
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Figure 4.40: Power spectrum of the radial velocity for n=0.7, L,=2.001, R=100,
Pr=0.7 and Gr=-2100.



121

5.0

information (bits)

ool v v
0 20 40 60 80 100

time

Figure 4.41: Mutual information of the radial velocity for n=0.7, L,=2.001, R=100,
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Pr=0.7 and Gr=-2100.
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Figure 4.56: Phase plot of the local heat transfer coefficient for n=0.7, L,=2.001,
R=100, Pr=0.7 and Gr=-2100.
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Chapter 5

Closure

5.1 Summary and Conclusions

Fxperiments and numerical simulations were performed to study the flow between
two concentric cylinders. The isothermal experimental studies were conducted to in-
vestigate the dependence of the attractor dimension on the Reynolds number. The
primary reason for the numerical simulations was to obtain information about the
frequencies and amplitudes of the thermal environment.

Isothermal experiments were conducted to compare with previous Taylor-Couette
studies for a range of Reynolds numbers. The critical Reynolds number for the onset
of Taylor vortices was confirmed for 7=0.89 and I'=40. The measured axial wave-
length corresponding to the critical Reynolds number was in close agreement with the
value reported by other experiments and from linear stability analysis. The critical
Reynolds number for the onset of wavy vortex flow, the wave number, and the wave
speed also confirmed that measurements from the experiment agreed with existing
literature on isothermal Taylor-Couette systems. The axial wavelengths were also
measured as a function of Reynolds number by steadily increasing the rotation of

the inner cylinder. The axial wavelength increased monotonically with the Reynolds
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number. For R/R.=1.6, the dimension of the attractor was found to be 1. Quali-
tatively, the dimension of the attractor increased with the Reynolds number but the
quantitative results at higher Reynolds number were contaminated by the background
noise.

Preliminary studies with a slightly heated axial flow showed that the temperature
fluctuations were also contaminated by noise, especially at higher Reynolds numbers.
Hence, it appeared that with the existing facility using air, experimental measure-
ments of the transitions at higher Reynolds numbers and with a radial temperature
gradient would not be feasible. Because of these reasons, the heat transfer experiment
was abandoned. In its place, direct numerical simulations were performed to study
the effects of the gravitational and centrifugal potentials on the stability of heated,
incompressible Taylor-Couette flow. Both the aforementioned effects have not been
considered together in previous numerical simulations. The three-dimensional equa-
tions were discretized using a Chebyshev/Fourier spectral method. Critical Reynolds
number and wave speed agreed well with linear stability theory. The study concen-
trated on the radius ratio, the Reynolds number, and the Grashof number parameter
space. The systematic investigation included heat transfer characteristics, maps of
different stable states, hysteresis, validation of Colburn’s empirical formula, and a
time delay analysis of the numerical time series of the radial velocity component and
the local heat transfer coefficient.

First, a study was performed to investigate the local variation of heat transfer
on the stationary outer cylinder. The variation was found to be sinusoidal. The
magnitude of the heat transfer was in agreement with the mass transfer experiments
of Kataoka, et al. (1977), with 0.375 as the exponent of the Prandtl number. The
Nusselt number slightly increased for higher Prandtl number (Pr=5). The mean

equivalent conductivity was also calculated as a function of the Reynolds number.
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The results showed a power law behavior, which had a lower coefficient and a higher
exponent than the experimental results of Ball, et al. (1989). The counter-rotating
Taylor cells were found to be of unequal ‘size for the case of radial heating. Also,
the heat transfer results were found to be sensitive to the imposed axial wavelength.
A similar axial wavelength dependence on the torque was also observed by Meyer
(1967). Maps showing different stable states present in the flow were also constructed
for n=0.5, 0.6 and 0.7. Higher mode spirals formed for negative Grashof numbers as
the value of A increased. In the axisymmetric Taylor vortex flow regime, higher radial
heating decreased the heat transfer coefficient. The formation of stripes were marked
by a significant increase in the heat transfer coefficients. The flow became aperiodic
for higher Grashof numbers. The plots of the local variation of the Nusselt number as
a function of z and 0 were also presented. For spiral flows, the heat transfer became
sinusoidal in both z and # and varied in a complicated way for aperiodic flow. The
validity of Colburn’s correlation was also investigated. The function f(Pr) was found
to be slightly lower than Prs (Note that the exponent is 0.77, which is higher than
%) for the range of Reynolds number numerically investigated.

The frequencies and the amplitudes of local fluctuations of heat transfer coefficient
were also presented for the three radius ratios (n=0.5, 0.6 and 0.7). The frequencies
for n=1 spiral flow were found to be 0.35 times the frequency of the rotating inner
cylinder and the amplitude of local fluctuations of heat transfer coefficient was about
95% of the mean. The thermal environment present in the flow could be the cause
for thermal stress fatigue in pumps in BWR power plants.

The frequency power spectrum for n=2 spiral flow showed the single fundamental
frequency and its harmonics for Gr=-1700. For Gr=-2100, new frequencies appeared
in the power spectrum. The power spectrum became broad-banded for even lower

Grashof numbers. The two dimensional projection of the reconstructed attractor
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showed a limit cycle for Gr=-1700. The limit cycle behavior disappeared at Gr=-

2100 and the reconstructed attractor became irregular. The pointwise dimension
calculation gave a value of approximately 1 for Gr=-1700. The dimension value in-
creased to about 3.2 for Gr=-2100 and the constant dimension region was found to
be small.

One of the interesting properties of the nonlinear Navier-Stokes equations is non-
uniqueness. With all other parameters fixed, the Grashof number was slowly varied
to examine the existence of a hysteresis loop in heated Taylor-Couette flow. It was
found that two stable states existed for the same Grashof number. One state was

reached by increasing the Grashof number and the other by slowly decreasing it.

5.2 Directions for Future Research

This research could be extended to study the effects of various geometric parameters
on the dimension calculations. The two geometric parameters are the radius ratio and
the aspect ratio. The aspect ratio study can show the effect of the change of volume
on the number of degrees of freedom of the physical system. Similarly, the study of the
effect of different radius ratios would reveal the importance of the concentric cylinders
in either maintaining order or increasing the dimension. Both of these studies need a
very flexible experimental facility. The effect of a radial temperature gradient on the
attractor dimension could be another interesting research area. Experimentally, the
inner cylinder could be heated with a cartridge heater and the outer cylinder cooled
with a cold water jacket. The negative temperature gradient would stabilize the flow.
The study can show the effect of local change in the energy of the system on its
dimension. Yet another study which would be of great importance is the correlation

between the various vortices in the flow (Dr. M. Gorman, private communication).
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If the vortices were well correlated, then the attractor dimension at a single point
would give the true dimension of the entire physical system. If the flow were not
correlated, then the estimated dimension would not represent the entire flow. Hence,
a single point measurement would only give a partial dimension and the degrees of

freedom of the physical system would be given by the sum of these partial dimensions.
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Appendix A

The Treatment of the Boundary

Conditions

The Navier-Stokes and the energy equations are given by:

%—ZZ*VP—%VXVXV—FVXW—FB
oT
E—FV-VT—PTR

VT

This can be re-written as:

where [y and Ly are linear operators:

ov 1
Ll(V):&—JrVPJrEVxVxV

or 1

el 2
2(T) = o prr’ L

(A.3)

(A.4)
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and

f=VxW-+B (A7)
g=-V.VT (A.8)
Defining V' and 1" such that:
V=V - Ver (A.9)
T=T-1T¢ (A.10)

where Vop and T are the analytical solutions of the Navier-Stokes and the energy
equations for circular Couette flow. Now V' and T" satisfy the homogeneous boundary

conditions. For the velocity field:

V' = V—Vor
Li(V') = LV —=Ver)
= L(V) = Li(Vor)
= f—=Li(Vor)
= VX (VXV)+B—Li(Vor)

= (V’ + VC’F) X (V X (V/ + VCF)) + B — LI(VCF) (All)

The right hand side of the previous equation gives the nonlinear terms for the Navier-

Stokes equations. Similarly, for the temperature field:
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T = T-1¢
Ly(T") = Lo(T —1T¢)
= Ly(T) — Ly(Tt)
— g0
— V.VT

= —(V'+Vep) - V(T' +T¢) (A.12)

The nonlinear terms for the energy equation is given by the right hand side of the

above equation.
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Appendix B

Derivation of Colburn’s Analogy

for Taylor-Couette Flow

The empirical formula given by Colburn is:
St.f(Pr)=C¢/2 (B.1)

where St is the Stanton number and C} is the friction factor as defined below.

St = 1z (B.2)
plwri)Cy
= g )
Also
koT
hgs; = _Z%gﬂ (B.4)
o M(LZH) %2;9 _ (B.5)
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For circular Couette flow, at the inner wall:

or| 11
or G r;lnn
% 1 1+ n?
or gﬂ_ml—vf

Substituting Eqns. (B.2), (B.3), (B.4), (B.5), (B.6) and (B.7) in Eqn. (B.1):

n°+1

f(Pr) = Pr(ln 77)772 —

Asn— 1, (In 77)2;_% — 1 and f(Pr) — Pr. Hence for circular Couette flow:

St.PT = Of/2

(B.8)

(B.9)



