
COLLISION DETECT I ON AND AVOIDANCE IN

COMPUTER CONTROLLED MANIPULATORS

Thesis by

Shriram Mahabal Udupa

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1977

(Submitted September 14, 1976)

- i -

To My Pa1te.n-t6

- ii -

ABSTRACT

This dissertation tackles the problem of planning safe

trajectories for computer controlled manipulators with two

links and multiple degrees of freedom.

There are two ways to look at safe trajectory planning.

The first concerns itself with planning trajectories in

empty space; obstacles enter into consideration only

indirectly in that they determine what part of the

maneuverable space is free. The second considers obstacles

alone; free space considerations are of secondary

importance. We show how these complementary views can be

used to advantage in the safe trajectory planning problem.

Obstacles are naturally described in cartesian space

and trajectories in joint space. If obstacles and

trajectories are both represented in one space, collision

checks would not require the constant and expensive

conversion between the , two spaces. We show how it is

possible to decompose the planning task so as to get the

best of both cartesian space and joint space

representations, and yet avoid the constant conversion

overhead problem.

- iii -

We show how the principles of hierarchial decomposition

can be used to reduce the complexity of the manipulator

trajectory planning problem. Different strategies are used

for maneuvering far away from obstacles and for maneuvering

close to obstacles. A characterization of large chunks of

empty space makes maneuvering far away from obstacles very

easy. A characterization of obstacle configuration types

simplifies planning of maneuvers close to obstacles.

The key ideas in the representation that make it

possible to realize the above claims are:

1) the identification of a hierarchy of abstraction

spaces that permit simplified manipulator descriptions.

These spaces make it possible to model the manipulator as

two line segments, a single line segment, or incredibly as a

point.

2) the identification of primitive trajectory types

that make collision detection, trajectory hypothesis and

modification numerical~y tractable.

3) the polyhedra-model of obstacles and the

identification of one-time-only transformations on obstacles

that significantly simplify trajectory planning.

4) a neat characterization of empty space. Empty space

is approximated by easily describable entities called

charts; the approximation is dynamic and under program

control; the approximation can be selective, and thus it is

- iv -

easy to make incremental modifications to the charts.

The thesis describes a model for collision detection

and avoidance systems for computer controlled manipulators.

The justification for the model lies in the computer

implementations for 2D and 3D manipulator systems. These

systems incorporate a significant portion of the model. The

promising performance of the implementation makes fast

collision avoiders a distinct possibility.

The solution presented treats manipulators with a

sliding joint, and permits the manipulator to transport

objects which can be enclosed within the minimum bounding

cylinder of the manipulator link. Modifications of the

solution that permit handling of large objects are

indicated. An extension of the solution that solves the

problem for manipulators with only rotary joints is

described.

A consequence of ~he investigations into the collision

detection and avoidance problem has been the identification

of execution-time strategies for terminal phase motion.

Guidelines have been presented for incorporating proximity

sensors into the manipulator system.

- v -

ACKNOWLEDGEMENTS

I would like to thank Professor Giorgio Ingargiola for

getting me started and Professor G. D. McCann for helping

me successfully complete my work. My thanks to my thesis

supervisor, Professor Meir

during the intermediate

Weinstein, for

years; his

his guidance

patience and

understanding have been of invaluable help, and his

attitudes and approaches to problems have considerably

influenced my ways of looking at things.

I would like to thank Dr. William Whitney and Mr.

Leonard Friedman for their active interest in the research

reported here. Their critical evaluation of an earlier

draft of this report considerably enhanced its readability

and completeness.

I would like to thank Sankaran Srinivas and Scott Roth

for the many long discussions that significantly enhanced

both the technical content and the presentation of this

thesis. · I owe a lot to them and to Kent Stevens for making

my stay at Cal Tech so much more pleasant and rewarding.

I would like to acknowledge the help of the DEC PDP-10

computer at Cal Tech with whom I have spent many pleasant

evenings.

- vi -

Finally I would like to thank

providing me with financial

graduate years.

Cal Tech

assistance

and JPL

throughout

for

my

- vii -

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS v

LIST OF ILLUSTRATIONS xi

1. INTRODUCTION
1.1 Autonomous Manipulation
1.2 Trajectory Planning
1.3 An Example

1.}.1 The Problem
1 .3.2 Toe Solution
1.3.3 Discussion

1.4 Historical Perspective
1.5 Overview of the Report

1
1
3
b

13
14

2. A THEORETICAL FRAMEWORK 20
2.1 Solution Criteria 23
2.2 Representation 24

2.2.1 Real Problem Space
2.2.2 Primary Problem Space
2~2.3 Secondary Problem Space
2.2.4 Trajectory Envelopes
2.2.5 Concluding Remarks

2.3 Planning 40
2.3.1 Two Approaches
2.3.2 Overview of Planning
2.3.3 Initialization
2.3.4 Goal Feasibility and Impossible Situations
2 . 3 . 5 M i d - ,sect i on P 1 ann in g
2.3.6 Terminal Phase Planning
2.3.7 Discussion

2.4 Comparison with Previous Work 52
2.4.1 Manipulator and Obstacle Models
2.4.2 Free Space Models
2.4.3 Trajectory Models
2.4.4 Planning

2.5 Summary and Conclusions 58

- viii -

3. MANIPULATOR MODELS 63
3.1 The 2D Manipulator 63
3.2 The 3D Manipulator 65
3.3 The Scheinman Arm 68

4. ENVIRONMENT DESCRIPTION 75
4.1 The Nature of Obstacles 76
4.2 Primary and Secondary Maps 79
4.3 2D Environment 81

' 4.3.1 Data Structures
4.3.2 Operations
4.3.3 Input Specifications

4.4 Extending 2D Ideas b6
4.5 3D Environment 90

4.5.1 Data Structures
4.5.2 Operations
4.5.3 Input Specifications

5. FREE SPACE MODELS 104
5.1 Joint Space and Cartesian

Space 106
5.2 The Fixed Grid Model 10d
5.3 The Variable Grid Model 109
5.4 The Dynamic Chart Model 110
5.5 Chart Taxonomy 114
5.6 Charts in 2D 116

5.6.1 Data Structures
5.6.2 Operations

5.7 Extending 2D Ideas 120
5.8 Charts in 3D 123

5.b.1 Data Structures
5.8.2 Operations

6. TRAJECTORY MODELLING AND CALCULATION 138
6.1 2D Trajectory ,Primitives 140
6.2 3D Trajectory Primitives 141
6. 3 ,Trajectory Calculation 142

7. GOAL FEASIBILITY AND
IMPOSSIBLE SITUATIONS 145

7.1 Feasibility Study 145
7.2 Impossible Situations 146

- ix -

8. MID-SECTION PLANNING 150
8.1 Path Planning for a Point 153
8.2 Boom Planning in 2D 155

8.2.1 Preliminaries
8.2.2 The Main Algorithm

8.3 Forearm Planning in 2D 160
8.3.1 Circle Motion
8.3.2 Pgram Motion
8.3.3 Partial Forearm Planning

8.4 Extending 2D Ideas 165
8.4.1 Cartesian Space Straight Lines
8.4.2 Boom Space Straight Lines
8.4.3 Forearm Planning

b.5 Boom Planning in 3D 172
8.5.1 Theta-Phi Space Planning
8.5.2 R Space Planning

8.6 Forearm Planning in 3D 175
8.6.1 Sphere Motion
8.6.2 Pgram Motion

o.7 Summary and Conclusions 180

9. TERMINAL PHASE PLANNING
9.1 2D Channels
9.2 3D Configuration Types
9.3 Comments

1b8
1b9
190
192

10. SYSTEM DE~AILS 196
10.1 Why Two Systems? 196
10.2 Implementation Details 198

10.1 2D System
10.2 3D System

10.3 A critical Review of the
Current Implementation 201
10.3.1 Size of Software
10.3.2 Subgoal Characterization
10.3.3. Haqdling Large Objects

11. CONCLUSIONS 205
11.1 Safe Trajectory Planning 205
11.2 Key Ideas in the Solution 206
11.3 Suggestions for Future Work 209

11.3.1 Planning During Execution
11 .3.2 Nature of Constraints
11.3.3 Multiple Manipulators
11.3.4 Anthropomorphic Manipulators

REFERENCES

APPENDIX 1.
APPENDIX 2.
APPENDIX 3.

- X -

The JPL Robot
Circular Ordering
Program Listings

LIST OF TABLES

218

221
225
226

2.1 The Representation Hierarchy 60
4.1 Obstacle Types 92

- xi -

LIST OF ILLUSTRATIONS

1.1 A Simple Example
1 .2 .Basic Ideas
1.3 Boom Tip Locus
1.4 Boom Tip Locus With

Terminal Phase Planning

2.1 Safre Trajectory Planning
2.2 The Structure of Regions
2.3 Terminal Phase Planning

3.1 The 2D Manipulator
3.2 The Simplified 2D Manipulator
3.3 The Simplified 3D Manipulator
3.4 The Scheinman Arm
3.5 Reference Frames for

Link-Joint Pairs of Arm

4.1 A Primary Map
4.2 Decomposition of an Obstacle
4.3 Simple Enlargement
4.4 Enlargement Transformation
4.5 Dilation
4.6 Membership Determination

5.1 The Fixed Grid Model
5.2 The Variable Grid Model
5.3 The Dynamic Chart Model
5.4 Chart Refinement - 1
5.5 Chart Refinement - 2
5.6 Random Placement of Regions
5.7 Uniform Grid of Regions
5.8 Minimum Bounding Viewbox

7.1 Blocked Boom
7.2 Blocked Forearm

16
17
18

19

61
62
62

71
71
72
73

74

99
100
1 0 1
10 1
102
103

131
132
133
134
135
136
136
137

149
149

- xii -

8.1 Linear Approximation
8.2 Modified Linear Approximation
8.3 ~rajectory Fixing
8.4 Extreme r values
8.5 Circle Motion
b.6 Pgram Motion
8.7 Theta-phi Space Heuristics
d.8 Forearm Plane Sector

9. 1 2D 'Channe 1
9.2 S-area
9.3 Obstacle Configuration Types

11.1 An Anthropomorphic Manipulator

A1.1 The JPL Robot

182
182
183
i84
1?35
1d6
1b7
187

194
194
195

217

224

- 1 -

CHAPTER 1

INTRODUCTION

This chapter introduces the problem of collision

detection and avoidance in computer controlled manipulators.

It discusses the relevance of the problem in the more

general context of autonomous manipulation, and illustrates

the problem by an example. The chapter concludes with a

historical review of collision detection and avoidance, and

an overview of this report.

1.1 AUTONOMOUS MANIPULATION

Autonomy in manipulation means that the operations of a

manipulator are not controlled directly by a human operator;

they are controlled by a programmed system [Bejczy (1972)].

There are two classes of computer controlled manipulator

systems:

(1) Numerical Control Machines Manipulators in such

systems are programmed for specific tasks. A human programs

the complete motion of the manipulator on an analog or a

digital computer, or he physically guides the manipulator

through the desired motion and the motion is recorded in

digital form on tape. The only function of the computer is

to recall and execute these pre-programmed motions. A new

task or a change in the environment requires complete

- 2 -

reprogramming. The system cannot cope with any unforseen

contingencies during operation. Such manipulators are used

in industrial robot applications [Olesten (1970)].

(2) Programmable Systems These are general purpose

manipulator systems. Such a system is not programmed for a

specific task but has knowledge about the manipulator's

capabilities and the universe of discourse built into it.

Using this knowledge the system can plan a specific course

of actions in response to information re8eived in the form

of commands from humans or data from its sensors.

be interested in programmable systems only.

We will

To interact with such a general purpose manipulator

system, the user is provided with a formal language for

describing computational processes related to the

application domain (industrial automation, planetary surface

exploration etc.). Using this language the user can specify

how objects are to be manipulated and how the manipulator

should maneuver around objects. Since the system has

extensive models of ihe universe of discourse, the user is

relieved . of the burden of specifying all his requirements

explicitly. By making use of its internal models, the

system analyzes the input requirements and determines how

the manipulator will achieve its goals. Once the planning

is completed the planned trajectory is ex ecuted. During the

execution phase, the system can modify the planned

- 3 -

trajectory based on real-time evaluations of any sensory

data it may acquire.

A general purpose programmable system of the type

described in the last paragraph does not exist. Various

aspects of the complex problem have been and are being

tackled. I will restrict myself to considering the problem

of planning the motion of the manipulator from an initial

configuration to a new configuration. Considerable progress

has been made on the problem of executing such a planned

trajectory on a real manipulator. Thus it should be

possible to interface my planning system with any system

running manipulator hardware. Very little, however, is

known about modifying trajectories dynamically based on any

sensory data that the system may acquire during execution.

I will briefly touch upon this last problem in sections 9.3

and 11.3 but my central problem will be trajectory planning.

1.2. TRAJECTORY PLANNING

Trajectory planning deals with how to move the

manipulator from a given initial configuration to some new

configuration. The manipulator we are interested in is a

hand/arm system that is capable of positioning the hand at

any point within the maneuverable space and with any

orientation. To do so requires three degrees of freedom in

- 4 -

two dimensions and six degrees of freedom in three

dimensions. Figures 3.1-3.2 show 2D manipulators and

Figures 3.3-3.5 and 11.1 show 3D manipulators. For the 3D

manipulator we need three degrees of freedom for the hand

position and three for the hand orientation thus making a

total of six degrees of freedom. There is one joint

associated with each degree of freedom. Figures 3.1-3.5

show a two link manipulator with a sliding joint that is

called a mechanical manioulator. Figure 11.1 shows a three

link manipulator with a rotary joint replacing the sliding

joint. Such a manipulator is called an anthropomorphic or

humanoid or elboweq manipulator.

The description of the manipulator's state can be

provided either as a vector specifying the various joint

angles or as a position and orientation of the hand. The

former representation is called a configuration and is said

to be a representation in joint variable space or joint

soace. The latter is a representation in cartesian spac~.

The subspace of joint spa~e generated by the three boom

joints is called boom space. Given a position and

orientation in cartesian space, determining the joint angles

which will place the manipulator in the desired

configuration is called the QQ§_ition problem. Solving the

position problem for the initial and goal position and

orientation will specify how much each joint is to be

- 5 -

rotated to effect the transformation.

I n addition to reaching the goal configuration, there

may be other explicit statements about the intermediate

states that the manipulator must go through. These

statements are called constraints. An example of a

constraint is : keep the forearm horizontal during motion.

This is a useful constraint if the manipulator is carrying a

cup of coffee and does not want to spill the coffee. In

general the manipulator will have to move through space that

may contain obstacles. These obstacles need to be avoided.

Further the various manipulator joints have limits on the

values they can take. In any movement of the manipulator

these limits have to be respected. Obstacle avoidance and

prevention of joint angle limit violations may be considered

as additional constraints.

A trajectory specifies the manipulator configuration as

a function of time. A trajectory locus i~ the curve a

trajectory traces in joint variable space. Equivalently,

the trajectory is a parameterized repr~sentation of the

trajectory locus, the parameter being time. The trajectory

planning problem is to find a trajectory locus that will

take the manipulator from the start to the goal

configuration subject to any given constraints. The boom

planning problem is to find a trajectory locus for the three

- 6 -

joints associated with the boom. Forearm planning refers to

planning a trajectory locus for the three joints associated

with the forearm. Trajectory planning includes boom

planning and forearm planning, and any interactions between

the two.

Trajectory

trajectory from

calculation deals

a trajectory locus.

with computing a

The executive system

responsible for servoing the movement of the physical

manipulator uses the trajectory representation of the

motion. Excellent work on trajectory calculation and

servoing has been done by Paul(1972) and Lewis(1974). I

will therefore restrict myself to the problem of determining

the trajectory locus. I will be using the terms trajectory

and trajectory locus interchangeably. Since I will be

restricting myself solely to the planning problem, this

should not cause any confusion.

The trajectory planning problem is further restricted

to that of collision detection and avoidance. Collision

detection is concerned with testing for collision with

obstacles and joint limit violations. Collision detection

is performed by simulating the motion of the manipulator

along th e proposed trajectory. Collision avoidance is

concerned with avoiding potential collisions and joint limit

violations. The terms collision avoidance and safe

- 7 -

trajectory planning will be used interchangeably.

To summarize, the problem that is of interest is

collision detection and avoidance in mechanical

manipulators. The solution that is presented permits the

manipulator to transport objects which can be enclosed

within the minimum bounding cylinder approximating the

manipulator link. Extensions and modifications to the

solution to permit handling of large objects and

anthropomorphic manipulators are indicated.

I have presented the trajectory

computer controlled manipulators in

However the results of this study

planning problem for

an abstract manner.

have an immediate

application to the Jet Propulsion Laboratory (JPL) robot. A

brief description of the JPL robot is presented in Appendix

1. Many engineering design decisions had to be made in

implementing the solution to the collision detection and

avoidance problem. The decisions were made in a manner to

suit the JPL robot's 0anipulator [Dobrotin and Scheinman

(1973), Lewis(1974)]. The solution to the safe trajectory

planning problem presented here is also applicable to the

anthropomorphic manipulator of Figure A3.1. Appendix 3

describes the details of the solution t6 the anthropomorphic

manipulator.

- 8 -

1.3 AN EXANPLE

We are attempting to solve the collision detection and

avoidance problem for the three-dimensional manipulator.

Since visualizing objects in three dimensions is difficult

let us ' consider the problem in two dimensions. Figure 1.1

shows an example in 2D. In this report I have drawn

extensively on examples from the 2D system. Once the 2D

system is understood and the similarities between the 2D and

3D systems noted, it is quite easy to visualize the 3D

solution.

1.3.1 The Problem

The manipulator has two links and three degrees of

freedom. The larger link called the boom slides back and

forth and can rotate about the origin. The smaller link

called the forearm has a rotational degree of freedom about

the tip of the boom. The tip of the forearm is called the

hand. S and G are t ,he initial and final 'JOnfigura tions of

the manipulator. Any real manipulator's links will have

physi'Jal dimensions. The line segment representation of the

links is an abstraction. The physi0al dimensions of the

manipulator can be accounted for and how this is done is

described later in the report. For now, let us remain with

the simple two line segment model.

- 9 -

The closed polygons in the figure represent polygonal

approximations to obstacles; these polygons may be concave

or convex, and there is no limit to the number of sides.

The problem is to plan a collision free trajectory that

will get the manipulator from S to G.

1.3.2 The Solution

Since the boom is much larger than the forearm the boom

is the more constraining of the two links. To plan the safe

trajectory let us, therefore, plan a safe boom trajectory

first and then try to maneuver the forearm safely along the

boom tip locus.

Boom Planning We can try to get the boom tip from S to

G along the shortest path between the two boom tip locations

-a straight line boom tip locus. In Figure 1.2 the shaded

area represents the area that the boom will sweep when the

boom tip traces a straight line from S to G. We notice that

the shaded area int'ersects with the L-shaped object. To

avoid collision with the L-shaped object an intermediate

point P is chosen and the boom tip is required to go through

P. We can then apply the above procedure recursively to the

sections SP and PG. Figure 1.3 shows the final boom tip

locus that guarantees boom safety.

- 10 -

Forearm Planning Suppose boom planning ends

successfully and that it finds a sequence of straight line

segments such that if the boom tip travels along t0ese lines

the boom will travel safely from S to G. Then if we can

maneuver the forearm safely along the boom tip locus we will

have found a safe trajectory for the entire manipulator.

This is not easy. Furthermore, the maneuverability of the

forearm near the goal configuration is very limited. This

requires that the forearm be oriented "favorably" when the

manipulator nears the goal.

Execution ~he above planning procedure results in a

trajectory locus. Trajectory calculation routines use this

trajectory locus to generate a trajectory. The executive

system in charge of operating the hardware uses this

trajectory to move the manipulator.

Embellishments Planning can be

phases called mid-section phase

decomposed into two

and terminal phase.

Mid-section phase has ~lready been described. We could use

it to plan safe trajectories relatively far away from

obstacles. Terminal phase planning uses obstacle

configuration dependent heuristics and we use it to plan

motions near the start and goal configurations. Using

mid-section and terminal phase planning results in a simpler

trajectory. Figure 1.4 shows the boom tip locus for the

- 11 -

simpler trajectory.

1.3.3 Discussion

The safe trajectory planning problem deals with finding

one safe trajectory from an infinite set of safe

trajectories. This latter set is a subset of the set of all

trajectories the manipulator can execute. Computing a

member of or determining membership in this set of safe

trajectories is a computationally expensive affair. Thus

anyone hoping to find a solution to the safe trajectory

planning problem has to determine how to reduce the size of

the search space and how to keep the computation tractable.

The following is a list of questions, the answers to

which will provide a solution to the collision avoidance

problem.

1) How can collision checking be done efficiently? If

the physical dimensions of manipulator links ·are included,

collision detection becomes even more expensive. Are

simpler descriptions of the manipulator possible?

2) How should the initial trajectory hypothesis be

done?

3) On detection of a collision how should trajectory

modification be done?

4) How are obstacles, especially the ones with

- 12 -

irregular shapes, to be represented? Intuitively we feel

that maneuvering far away from obstacles should be easy. Is

it possible to realize this expectation in a computer

program?

5) Is the problem of safe trajectory planning better

dealt with as planning trajectories in free space rather

than as a collision detection and avoidance problem, or is a

judicious choice of both approaches possible? How then does

one represent free space?

6) What are good tiprimitives" for trajectories? The

primitives should simplify collision checking and make easy

trajectory hypothesizing and modifying.

7) Obstacles are naturally described in cartesian space

and trajectories in joint space. Since the two are

represented in different spaces, collision checks require

constant and expensive conversion between the two spaces.

Should obstacles, therefore, be described in joint space or

should trajectories be represented in cartesian space, or is

it possible to use both spaces judiciously?

8) What are good planning heuristics? Should we use

the same heuristics for maneuvering close to obstacles and

far away from obstacles?

9) If safe trajectory planning is irreparably complex

(computationally speaking) can some part of the planning be

done at execution-time? Would sensors help in acquiring the

- 13 -

necessary data for execution-time planning? What should

these sensors be?

This dissertation provides satisfactory answers to the

questions raised here. These answers provide solutions to

the colLision detection and avoidance problem and make it

numerically tractable. The solution is described for

manipulators with a sliding joint (see Figures 3.1-3.5).

1.4 HISTORICAL PERSPECTIVE

Collision avoidance problems became manifest when

computer controlled manipulators came into existence during

the mid~sixties. Pieper(1968) was one of the first to

investigate the problem. Paul(1972) did some ex~ellent work

on trajectory calculation and servoing. Lewis(19'74) applied

Paul's work to the JPL manipulator and also tackled the safe

trajectory planning problem. Widdoes(1974) made by far the

most serious attempt at the problem of collision avoidance.

None of these earlier attempts could handle the complexities

similar to the ones illustrated in the example of Figure

1.1. A comparison of my solution to the safe trajectory

planning problem, with those of Pieper, Lewis and Widdoes is

described in section 2.4.

- 14 -

1.5 OVERVIEW OF THE REPORT

This dissertation presents the solution to the safe

trajectory planning problem at a number of different levels.

The reader may choose to stop at any level and he should

have a , good understanding of the solution. If he is

interested in knowing more he can go to the next level of

detail. A necessary consequence of such an approach to

describing anything is repetition. Definitions,

descriptions of motivation, representations, algorithms etc.

get repeated and are presented in greater detail and often

in a slightly different context. The reader who plans to

read the entire thesis should be prepared for this.

The problem l am interested in is the safe trajectory

planning for the 3D manipulator. To simplify thB problem I

first solved the problem for a two-dimensional manipulator.

Though a simple generalization to three dimensions is not

possible, the solution to the two-dimensional problem was

very useful in coming

three-dimensional problem.

up with a solution to the

Chapter 2 provides a theoretical framework for the

solution to the collision detection and avoidance problem.

For a casual reader interested in knowing the main features

of the solution, chapters 2 and 11 should suffice. Chapter

2 restricts its discussions to the three-dimensional

- 15 -

problem.

The presentations in chapters 3-9 follow a uniform

pattern. The first few sections deal with the motivation

and matters of general interest to both the two- and

three-dimensional problems. This is followed by the

solution to the 2D problem, and a discussion of the natural

generalization of the 2D solution and the problems, if any,

with such a generalization. The solution to the 3D problem

concludes the chapter. Chapters 3-6 explore the models of

different entities in the universe of discourse. They

include the manipulator, the obstacles in the environment,

the free space available for maneuvering, and trajectories.

Chapter 7 discusses goal feasibility analysis, Chapter 8

trajectory planning in regions relatively far removed from

obstacles and Chapter 9 discusses trajectory planning closer

to obstacles.

Chapter 10 presents system details and a critical

review of the 2D and 3D implementations. Chapter 11

concludes the report with a presentation of the key ideas of

the solution and discusses some directions for future work.

Appendix 1 gives a brief descriptiqn of the JPL robot.

Appendix 2 describes an ordering relation. Appendix 3

indicates how to get further details on the implementations.

\:

- 16 -

I
I
j
I

0 v. ·-·----·-;r. ---------- -----------·----·--··-- ---------- ----------------
i
I

i
I
I
I

I

Figure 1. F· An Example

- 17 -

F:igure 1. 2 . Basic Ideas

- 18 -

Figure 1. 3 Boom Tip Locus

- 19 ...

___ _j

Figure 1. 4 Boom Tip- Locus witl;t Terminal Phase Planning

- 20 -

CHAPTER 2

A THEORETICAL FRAMEWORK

The trajectory planning task may be pictured as shown

in the flowchart of Figure 2.1. The manipulator system on

initialization is given a description of the environment.

The environment will change due to the manipulator picking

up, transporting and putting down objects elsewhere. The

environment may also be reinitialized to something

completely new. It is assumed that such reinitializations

are infrequent compared to the total number of trajectories

planned. This assumption is referred to as the infrequent

environment initialization hyoothesis.

The input consists of the position and orientation of

the manipulator for the goal configuration. The output is a

list of typed intermediate configurations, the type

indicating the nature of the subsequent section of the

trajectory. The trajectory calculation program · uses these

type specifications when generating trajectories to run the

hardware.. The first step in the planning process is to

hypothesize a trajectory. Following this is an iterative

step which checks for collisions. If there is potential

dan ge r, the proposed trajectory is modified and the

iteration continued. If the trajectory is safe t he planning

is over. Let us consider the steps in trajectory planning -

- 21 -

hypothesize and modify trajectories, and ch e ck collisions

in greater detail.

The routines that hypothesize and modify trajectories

will find it very convenient to have a good characterization

of 1) Large empty spaces, because a trajectory designed to

pass through large empty spaces is very likely to be safe.

2) Terminal obstacle configurations, since special

heuristics can be associated with different obstacle

configurations, thereby increasing the chances of proposing

a collision free trajectory at the first try. What are good

representations for empty spaces and obstacles? What are

good heuristics for hypothesizing trajectories? How and

where should trajectory modification be effected so that the

same problem does not recur, and that new problems do not

arise? This dissertation provides answers to these

questions.

Collision detection has its own problems, making it

computationally expen~ive. Since it is a computation which

is repea~ed many times it is essential to make this step

efficient. Trajectories are most conveniently described in

joint variable space while obstacles are described naturally

in cartesian space. When the manipulator moves, its links

trace a volume in cartesian space called the traieatory

envelope. Collision detection involves che cking

- 22 -

intersections of the trajectory envelope (represented in

joint variable space) and obstacles (represented in

cartesian space). Since the two are represented in

different spaces, intersection checks require constant

conversion between the two spaces. This makes the checks

expensive and is referred to as the conversion overhead

problem. Should obstacles, therefore, be described in joint

variable space or should trajectories be represented in

cartesian space or is it possible to use both spaces

judiciously? This thesis ShOHS how it is possible to use

the best of both the joint variable and cartesian space

representations. .Again, safe trajectory planning can be

viewed as a) maneuvering in free space, and b) avoiding

obstacles. This thesis shows these complementary views can

be used to advantage in solving the planning problem.

Now, the complexity of planning is a function of how

the manipulator is modelled. This thesis shows that the

manipulator can b2 modelled in a number of problem spaces of

increasing abstraction. Starting with a simple and direct

model of ~wo connected cylinders, we go to show how the

manipulator can be modelled as two connected line segments,

a single line segment, and incredibly as a point! If we

model the manipulator as two connected cylinders we will be

operating at the most complex level; with a point model of

the manipulator the planning problem will be the simplest.

- 23 -

This thesis describes the different problem spaces, their

properties, how they are generated and the relationship

between them.

The solution will be presented in two parts

representation and planning. Section 2.1 outlines the

criteria for a satisfactory solution. The last section of

this chapter is a survey of the past work as seen in the

framework of my solution.

2.1 SOLUTION CRITERIA

We are looking for a system that solves the trajectory

planning problem in a variety of obstacle configurations.

We want a system that plans safe trajectories in a time

comparable to the execution time of the trajectories, which

for the JPL robot's arm is between 5 and 10 seconds. The

system need not produce a truly optimal plan. In fact an

optimal plan is often not worth the extra computation

required to produce it. At the same time the system should

not produce blatantly stupid plans. We do not want the

manipulator to do any unnecessary acrobatics. The system

should perform well in simple and commonly occurring

situations and it may take more time on difficult problems.

It should be able to recognize when things go out of hand

and ask for assistance from a human when that happens.

- ?4 -

2.2 hEPRESEN~ATION

The representation aims at simplifying the tasks of

hypothesizing and modifying trajectories, and 0hecking the

safety of proposed trajectories. The entities in the

universe ' of discourse that need to be represented are the

manipulator, the obstacles in the environment, the

maneuverable free space and trajectory envelopes.

The infrequent initialization hypothesis, in effect,

says that a large number of trajectories are planned for any

given environment. In view of this it is worthwhile looking

for alternative problem spaces where the computational

complexity of trajectory planning might be less.

Multiple

engineering

problem

and

spaces

science.

are extensively used

The time-domain

in

and

frequency-domain analysis of dynamic systems is a classic

example. Whenever multiple representations are used

equivalence of the representations is of great importance.

Intuitively, equivalence

existence of solutions in

of representations guarantees the

the alternative space when a

solution exists in the first and vice versa. The second

important aspect about multiple representations is c onc e rned

with transformations between spaces.

- 25 -

The r~presentation hierarchy of Table 2.1 shows three

problem spaces. The table also describes the representation

of every entity in the world in each of the three problem

spaces. The relationship between the three problem spa~es

is described first and the individual spaces are described

next. The description of a problem space includes the

representations for the four components of the world, their

inter-relationships and how they are generated. Their use

in trajectory planning is described in section 2.3.

The first space is called the real problem space and is

closest to the real world. A solution to the trajectory

planning problem in this space is a solution to the

trajectory planning problem in the real world. The converse

is true if one ignores the fact that obstacle ~hapes are

approximated by bounding polyhedra. When a solution to the

trajectory planning problem in one space implies a solution

in the other and vice versa, the two spaces are said to be

equivalent(w).

* The concept of equivalence used here is in the sense
described in Chapter 4 of Shoenfield(1967).

- ?6 -

Solving the trajectory planning problem in the real

problem space is easier than doing so for the real world.

The task, however, is still quite difficult. We therefore

identify a new space called the primary problem space, that

is equivalent to the real problem space and wherein the ,

complexity of the task is greatly reduced. The reasons for

the simplicity of trajectory in the primary problem space

will be presented later. The process of generation of the

primary problem space ensures that the trajectory in the

primary problem space is identical to a trajectory in the

real world i.e. there is an identity transformation

relating the solution in the two spaces.

The primary problem space simplifies the trajectory

planning problem considerably as compared to the real

problem space. However, forearm planning is still quite

expensive and so a third space called the secondary QLOblem

space, is introduced to simplify forearm planning. The

secondary problem space admits a simple description of the

manipulator; the manipulator consists of just the boom. As

a consequence of this simplicity the primary and secondary

problem spaces are not equivalent. For, it may ha·ppen that

there is a solution to th e trajectory planning probl em in

the primary problem space but not in the secondary space.

However, a solution in the secondary problem spa c e always

implies a solution in the primary problem space. This is

- 27 -

discussed in detail in section 2.2.3. Trajectory planning

in the secondary problem space is so simple that it more

than justifies planning in a problem space that is not

equivalent to the real world. Again, as in the primary

problem space, the process of generation of the secondary

problem space ensures that there is an identity

transformation relating trajectories in secondary space to

trajectories in the real world. The primary problem space

is an extension(*) of the secondary problem space.

The relationship between the three spaces is summarized

below:

Real Problem Space

Primary Problem Space

Secondary Problem Space

where A => B means a solution in space A implies a solution

in space ·B and A <=> B means A => B and B => A.

* The concept of extension used here is in the sense
described in Chapter 4 of Shoenfield(1967).

- 28 -

2.2.1 Real Problem Soace

Any object the manipulator is likely to collide with is

termed an obstacle. On the JPL robot (see Figure A1.1)

obstacles would include the platform, the interface

electron{cs rack, the TV and laser rack, the wheels and

their motors etc. If the robot is operating in an outdoor

environment a boulder within the manipulator's reach would

be considered an obstacle. Some of the obstacles have well

defined geometric shapes such as parallelepipeds, cylinders,

toroids etc. Others, especially natural obstacles are very

irregular in shape. Since collision detection involves

determining intersection of shapes, the more complex the

shape, the more the computational effort. Also, the less

succinct the description, the more will the storage

requirements be. To reduce the storage requirements and the

computational time for intersection checking, the obstacles

are replaced by their enclosing polyhedra. These polyhedra

may be concave or convex. There is also no limit on the

number of faces and thus the approximation by polyhedra can
.

be accurate to any arbitrary degree. The sst of polyhedra,

each approximating a real obstacle, is called the map.

The maneuverable soace is the complement of the volume

occupied by elements of the map, with respect to the

manipulator's workspace.

- 29 -

The collision detection and avoidance system handl e s

computer controlled manipulators which can be abstractly

described as having two links and multi-degree of freedom.

An example of this class of structures is the Scheinman arm

shown in Figure 3.4 LDobrotin and Scheinman (1973),

Scheinman (1969)]. Abstractly, the arm consists of a

manipulator post and two links, one called the boom and the

other called the forearm. When looking along the boom at

the forearm, the boom is either on the right or the left

side of the manipulator post. This gives rise to the notion

of a right-handed and left-handed manipulator, and is called

the lateral property. Since the manipulator post is fixed,

it can be considered to be an obstacle. The boom and the

forearm have physical dimensions, length, breadth and width.

When these links move they trace a volume in spac~ and the

trajectory envelope, therefore, is a two-element three

dimensional solid.

Figure A3.1 shows a humanoid "two" link and six-degree

freedom manipulator. [Winston (1974), page 221]. It has a

rotary joint in the center of the arm (an "elbow"). It

differs from the manipulator of Figures 3.4-3.5 in that all

its joints are rotary; the mechanical manipulator of

Figures 3.4-3.5 have one sliding joint. The mechanical and

humanoid manipulators are similar in all other respects.

- 30 -

2.?.2 Primary Problem Space

The primary problem space admits simplified manipulator

descriptions which simplify trajectory planning while still

maintaining equivalence with the real problem space.

Instead ' of considering the manipulator as consisting of two

solid links, the manipulator is viewed as consisting of a

single line segment and having no lateral property. In

order to preserve the equivalence with the real problem

space, appropriate transformations are made on the obstacle

and maneuverable space descriptions. It is very essential

that these transformations have the following minimality

property: the transformations need to be computed only once

or if this is not possible then the number of times the

transformation is computed should be far less than the

number of trajectory computations. Otherwise the advantage

gained by using the simplified representation would be lost

in the generation of the representation.

Consider the minimum bounding cylinders for the boom

and the forearm. The finite axis of the cylinder bounding

the forearm is the single-line segment model of the

manipulator. I will now describe how such a simple view of

the manipulator lS possible while still preserving

equivalence with the real problem space.

- 31 -

First consider a two-line segment model of the

manipulator. The finite axes of the cylinders bounding the

boom and forearm are used for this model. In order to

preserve equivalence we enlarge the obstacles. Let k be the

radius of the cylinders. Each polyhedron in the map is ,

subject to the enlarge transformation. The transformation

generates a new polyhedron such that every point on the

surface of the new polyhedron is at least a distance k away

from the nearest point on the surface of the old polyhedron.

The enlarged polyhedron is called a primary obstacle. The

set of primary obstacles is called the primary map. With

line-segment models of the manipulator links, the trajectory

envelope is now two connected surfaces, one called the boom

surface and the other the forearm surface. The maneuverable

space is called primary free space and is the complement of

the volume occupied by primary obstacles with respect to the

manipulator's workspace. The original collision detection

and avoidance problem is equivalent to the simplified

collision detection and avoidance problem for the line links

and the . enlarged obstacles of the primary problem space.

The enlargement transformation needs to be done just once.

Next, in order to ignore the lateral property of the

manipulator and still maintain equivalence between the real

and primary problem spaces, appropriate one-time-only

transformations are used to generate a left primary mao and

- 32 -

a right primary map. The polyhedra descriptions in these

maps reflect the manipulator characteristics. This finer

classification of maps was left out of Table 2.1 so as to

keep the table simple.

Finally, the single element description of the

manipulator is made possible by a transformation called

survey which permits the boom to be viewed as a single point

instead of a finite line segment. The trajectory envelope

will then be the forearm surface generated by the motion of

the forearm line segment. Survey when applied to free space

results in a chart. The nomenclature sterns from the use of

charts for navigation. A chart generated to represent

primary free space is called a primary chart. To see what

survey does we start with primary free space. Consider the

set of all points in the primary free space such that the

entire boom is safe from collision if the boom tip were

positioned there. This subset of free space is called

navspace (for navigational space). ~he survey

transformation approximates navspace by boxes in r-theta-phi

space cilled regions and the set of regions is called a

chart. Corresponding to the left and right primary maps we

have the left primary chart and the right QTimary chart.

Again, to keep matters simple, the finer classification of

charts was left out of Table ?.1.

- 33 -

Regions are structured entities (see Figure 2.2). They

are made up of sectoroids and sectoroids are composed of

Bases. The pasc (Q£rallelepiped in ~herical coordinates)

is the smallest unit. The choice of the parallelopiped in

spherical coordinates as the unit of shape is based on how

the planning routines will use them. Pascs, sectoroids and

regions are bounded by constant phi and constant theta

surfaces. All pascs in a sectoroid have

limits. All sectoroids in a region have the

the same phi

same theta

limits. Pascs have associated with them a maximum and

minimum r value, called rmax and rmin respectively,

indicating the safe limits of the boom extension. The

difference between the maximum and minimum r value is called

the safe limit interval. Similar to pascs, sectoroids and

regions have associated with them maximum and · minimum r

values indicating the best possible safe limits of the boom

extension. A region, sectoroid or pasc is considered

impassable if the safe limit interval is l~ss than some

prespecified value.

Regions essentially are an approximation to the points

in navspace. This approximation is dynamic and can be

changed by higher level programs. The approximating

procedure is called refinement, and the refinement level is

called resolution. The system can refine areas where the

manipulator needs to maneuver in to a greater resolution,

- 34 -

while elsewhere the resolution may be quite crude. This

flexibility is very useful because refining every part of

free space to the finest level possible is expensive and

often quite unnecessary. This flexibility permits the

system t~ decide where refinement is essential and what the

resolution should be. If the resolution of a particular

part of the environment is not adequate, the system can

refine that portion of the maneuverable space. This is

termed the selective refinement capability. As a result of

this capability, the survey transformation is not a one-time

operation. This is the price that has to be paid for the

flexibility. Since there is a limit to the precision of

placement of the hardware the process of refinement will not

continue indefinitely. The data structures generated during

the refinement process are saved for reuse. Selective

refinement makes incremental modifications to the chart very

inexpensive. Incremental modifications are necessitated by

minor changes in the environment that might result from the

transporting of objects from one place to another.

The concept of navspace permits considering the boom as

a single point. Navspace and its approximation by charts is

thus crucial to safe trajectory planning. The reason for

imposing a structure on charts is to have some selectivity

in terms of what parts of navspace should be refined and to

what level. It is important to note that the exact nature

- 35 -

of a region and its components is irrelevant to the concept

of navspace and collision checking. The choice of boxes in

r-theta-phi space as the unit is dictated by the choice of a

particular planning strategy described in section 2.3.3.

The concepts of navspace and charts, however, are ,

independent of planning strategies.

2.2.3 Secondary Problem Space

In the primary problem space the manipulator was viewed

as a single line segment with no lateral property. The

secondary problem space admits a still simpler description

of the manipulator a single point. Unfortunately, as

mentioned earlier, the secondary problem space

representation is not equivalent to the primary problem

space. However the primary problem space can be made an

extension of the secondary space and to do so appropriate

transformations are made on primary obstacles. As before we

require that these transformations satisfy the minimality

property (see section 2.2.2).

First consider the two line segment model of the

manipulator. The finite axes of the cylinders bounding the

boom and forearm are used for this modet. Suppose we ignore

the forearm. The trajectory envelope will be the boom

surface generated by the motion of the boom line segment.

- 36 -

The polyhedra in the primary map are enlarged by the length

of th e forearm. This enlargement results in secondary

obstacles and a secondary map. The maneuverable .space is

called secondary free space and is the complement of the

volume occupied by the secondary obstacles with respect to

the manipulator's work space.

The single point description of the manipulator is made

possible by applying the survey transformation to secondary

free space resulting in a secondary chart. Secondary charts

are composed of secondary regions. Whenever the boom tip is

in a secondary region the following are true 1) by

definition of the region the entire boom is free of

collisions, and 2) since secondary regions are generated

using secondary obst~cles, the forearm is . free from

collision irrespective of its orientation. The trajectory

envelope at this level then is the line generated by the

motion of the boom tip. A complex two-element trajectory

solid has thus been reduced to a line. The refinement

process for secondary charts is similar to primary charts

and so are all the attributes and transformations discussed

in the context of primary charts. In secondary problem

space too, there are left and ri~~ secondary~ and left

and right secondary charts.

the finer classification

2. 1 .

Again, to keep matters simple,

of charts was left out of ~able

- 37 -

If the manipulator needs to maneuver close to

obstacles, secondary problem space is of no use. The

"gross" representation of the forearm results in the system

complaining that trajectories close to obstacles are not

feasible. Of course this does not mean that a trajectory
'

necessarily does not exist. The finer model of the forearm

as a line segment (as in primary problem space) should

result in better performance. This is what I meant when I

said that if a solution to the trajectory exists in

secondary problem space then there is a solution in primary

problem space, while if there is no solution in secondary

problem space it does not mean there is no solution in

primary problem space. Equivalently, the above remark is

same as saying that every safe trajectory in primary problem

space need not be a safe trajectory in secondary problem

space.

Looked at slightly differently, the ideas of secondary

problem space representations (the secondary charts in

particular), are a formal characterization of the intuitive

ideas of ease of maneuvering in large chunks of empty space

far away from obstacles. The reduction of the trajectory

solid to a line makes the expectation co me true. Sinc e,

close to obstacles, secondary problem space representations

are not fine enough, primary problem space representations

will have to be used. With primary probl e m space

- 38 -

representations the trajectory envelope is a surface and

this is in accordance with our intuitive feeling that

maneuvering close to obstacles is not as easy as maneuvering

far away from them. A judicious use of se8ondary and

primary problem space representations will significantly ,

reduce the search space for good candidate trajectories, and

considerably simplify the collision detection and avoidance

task.

Left and right primary maps, and left and right

secondary maps were described as four different entities,

and so were the charts. For efficiency considerations, in

the implementation, left and right primary obstacles are

grouped together, and so are left and right secondary

obstacles. With charts, the primary and second~ry regions

are grouped together while the left and right regions remain

distinct.

2.2.4 Trajectory Envelooes

The , discussion of the three problem spaces showed how

simpler and simpler manipulator descriptions reduced the

complexity of the trajectory envelope from the two-element

solid to a single surface, the trajectory surface, or even a

single line, the trajectory trace. Collision detection

involves the determination of the intersection of the

- 39 -

trajectory envelope and the obstacle faces. The complexity

of this task depends on the nature of the trajectory

envelope. It is therefore imperative that we look for

additional constraints to further reduce the complexity of

collision checking. Since obstacle faces are planes in

cartesian space, if the trajectory surface (trace) were a

plane (line) in cartesian space, collision checking would be

simple.

Since the manipulator hardware permits each of the

joints to be operated independently it should be possible to

get the boom tip to trace cartesian space straight lines.

However, planning cartesian space straight line loci for the

boom tip is beset with computational problems. We choose

therefore to settle for a boom space straight line locus for

the boom tip. Boom space is the subspace of joint variable

space generated by the three boom joint variables. This

straight line in boom space can then be approximated by a

sequence of straight lines in cartesian space. Safety of

the boom tip locus guarantees the safety of the entire

manipulator only when the locus passes through a secondary

chart. Elsewhere the trajectory envelope is still a surface

and, to make collision checking tractable, constraints on

forearm motion have to be introduced. We choose the

following trajectory primitives for the forearm. When the

boom is moving, the forearm tip shall trace a straight line

- 40 -

in cartesian space parallel to the approximated boom tip

locus, and when the boom tip is stationary the forearm shall

move in a single plane. These constraints on the boom and

forearm result in the decomposition of the trajectory

surface into a sequence of parallelograms and sectors of a

circle, enormously simplifying the collision detection task.

2.2.5 Concluding remarks

The primary and secondary problem space representations

along with the restrictions on the nature of the trajectory

make the trajectory planning problem numerically tractable.

Precisely how these representations are used in planning is

described in the next section.

2.3 PLANN:NG

The first step in the planning process is to

hypothesize a trajectory. Following this is . an iterative

step which checks for collisions. If there is potential

danger, the proposed trajectory is modified and the

iteration continued. If the trajectory is safe the planning

is over (see Figure 2.1). The central aim is to reduce the

planning time. It is therefore essential that very few

errors be made during trajectory hypothesizing and

suggesting of modifications since errors will need costly

- 41 -

fix-ups that the system can ill afford.

Hierarchy, separability and reversibility are the key

concepts in planning. The principle of reversibility states

that if a trajectory from S to G is collision free then the

same trajectory backwards from G to S is also collision

free. Hence for collision detection and avoidance it does

not matter whether a trajectory from S to G or G to S is

planned. Separability means the decomposition of the goal

into disjoint, reasonably independent parts. Hierarchy is

used in the usual sense. For each part of the goal the most

important aspects are tackled first

next. This is applied to every stage of

and the lesser ones

the process. If

some decisions made at a higher level do not pan out, local

corrections are made. If the local fix-ups do not solve the

problem the system returns to the next higher level for

replanning. Some indication as to what went wrong is

preserved and is used during subsequent attempts at

planning. At each stage it is ensured that the system will

terminate its activities in a finite amount of time. If the

system is not successful in solving the problem it gives up

and asks for human help.

The goal is specified

orientation of the forearm.

as a 3-space position and

The position problem for the

goal is solved. In other words, the joint angles which will

- 42 -

place the manipulator in the goal configuration are

determined and the ones corresponding to the starting

manipulator configuration (same lateral configuration) are

chosen.

2.3.1 Two Approaches

Conceptually, since the trajectory envelope has the

simplest description in the secondary problem space,

planning should start in that space. Having planned as much

of the trajectory as possible in the secondary problem

space, the system should attempt to plan the rest of the

trajectory in the primary problem space. In both spaces the

system should use the principles of hierarchy and

separability. The main drawback of this appro~ch is that

the problem of interfacing between the two spaces has no

easy solutions.

Another approach to planning is the following Plan

the boom trajectory in primary problem space. For parts of

the boom tip locus that lie within the secondary chart (of

secondary problem space) no forearm planning needs to be

done. For the remaining forearm planning is

carried out. Instead of starting with secondary problem

space and then going over to primary problem space, the

second scheme starts with primary probl em space. The

- 43 -

partial solution in primary problem space is "refined" using

the secondary problem space. This alternative way of

looking at the trajectory planning problem solves the

interface problems that plagued the first scheme. The

details of the second approach will now be presented.

2.3.2 Overview of Planning

The trajectory planning problem is separated into three

phases. The first is a goal feasibility analysis phase, the

second is the mid-section planning phase and the last is the

terminal planning phase. At the feasibility analysis stage,

the goal feasibility is checked and any necessary

refinements of the charts are carried out. The terminal

phase activities use the reversibility principle and plan

trajectories near the initial and final configurations. The

mid-section phase deals with midway trajectory planning.

For the terminal phase, forearm and boom planning iterate

until a satisfactory boom tip location for starting the

mid-section trajectory is found. For the mid-section,

planning proceeds hierarchially. Boom trajectory is first

planned using the primary charts alone. For portions of the

boom tip locus that do not lie in the secondary chart,

forearm planning is done. The separability principle is

used in boom planning; the trajectory for the theta-phi

joints is planned first and the r-joint is fixed next.

- 44 -

If a safe forearm trajectory cannot be found, the

nature of the problem is identified and is used to revise

the boom trajectory and another attempt at forearm planning

is made. If the system is unable to come up with a safe

trajectory even after a prespecified number of attempts, it

resorts to a configuration switch.

used to plan a trajectory to get

goal, this time however, in

The same techniques are

the manipulator to the

a different lateral

configuration.

Initialization

If this also fails,

of the environment

the system gives up.

and each of the three

phases in planning is discussed in the next few paragraphs.

Note that planning incorporates simple strategies. It

may so happen that the system fails to find a solution when

there exists one in the real world. It is unlikely that

such situations will be encountered except in some

pathological obstacle configurations.

2.3.3 Initialization

The system is initialized with a description of the

environment. The system uses the input polyhedra and

generates primary and secondary obstacles for the left and

right, secondary and primary maps. All the charts are

generated for a default resolution. The regions of the

charts will be further refined as and when necessary. The

- 45 -

initialization needs to be done once for

environment.

2.3.4 Goal Feasibility and Impossible Situations

every new

Goal feasibility is done before planning begins. It

includes boom placement and forearm placement safety checks.

It determines whether the boom tip lies within a pasc of a

primary region. If not the appropriate region is ·repeatedly

refined until either the goal boom tip position is within a

pasc or the resolution limit is reached and the system

returns complaining that the goal is not feasible. The

forearm feasibility study involves checking whether in the

final configuration the forearm is safe from collision. If

the forearm is not safe the goal is deemed not feasible.

During mid-section phase boom planning, the system

keeps a watch for situations which would get the boom stuck.

If the boom cannot be maneuvered out of an area, the system

complains. Again, during forearm planning along a proposed

boom tip locus, the system looks out for situations which

would get the forearm stuck. The system requests a boom

trajectory refinement if this happens. Such situations are

called impossible sit~ations.

- 46 -

2. 3. 5 tvlid -section P lannin_g

Boom Planning : Boom planning is separated into two

phases. The first deals with a theta-phi space trajectory

and the s econd fixes the trajectory in the r-dimension.

The system hypothesizes a boom tip locus that is linear

in the theta-phi joints. A list of primary regions through

which this trajectory passes is computed and certain minimal

checks on the safe limit intervals of the regions in this

list are made. =r for example a region is impassable a

fixed number of attempts are made to further refine the

region. If the region is still impassable, subgoals are

introduced to avoid this region. The heuristics minimize

the number of subgoals and aim for subgoals in regions with

large safe limit intervals. If the start or go~l boom tip

position is completely boxed in by impassable regions the

system complains that the goal is not feasible.

The system next plans the r joint. Piecewise linear

trajectories in the three boom joint angles are what is

being attempted. Failure at any level results in a return

back to the next higher level for replanning. Back at the

topmost lev e l the syst em tries a confi guration swi tc h. The

initial choice is the same lateral configuration at the goal

as at the start. The last choice is th e alternate lateral

configuration. Planning starts using the same strategies.

- 47 -

If this second attempt is unsuccessful, the system gives up.

Planning the r joint trajectory is done at three levels

region, sectoroid and the pasc level. At each level two

steps are taken. Consider, for example, the two steps at

the regfon level. We are interested only in those regions

the boom tip locus passes through. The first step handles

the problem of two adjacent regions having a disjoint (rmax,

rmin) interval. The second step handles the problem of the

locus lying outside the (rmax, rmin) interval of a region it

passes through.

Having planned the boom trajectory, the forearm joint

angle trajectory is planned. By definition of the charts

and the restrictions imposed on boom trajectories, it is

clear that the planned boom tip locus is a curve which is

linear in r-theta-phi and which always lies within the

regions of the primary chart. The first step in the forearm

planning is to identify sections of this curve that do not

lie within some secondary chart region. Only for these

sections does forearm planning have to be done. The forearm

planning along one such section is described next.

Forearm Planning The primitives for forearm

trajectory are two types of motions called the sphere and

pgram motions. During sphere motion the boom is stationary

and the forearm moves in the plane formed by the lines

- 48 -

passing through the initial and final forearm

configurations. It is obvious that during sphere motion the

hand traces part of a circle.

The boom tip locus is approximated by a sequence of

straight line segments in cartesian space. During pgram

motion the boom is moving and the forearm moves along a

straight line parallel to the boom tip locus. Pgram motion

generates a parallelogram for a trajectory surface and hence

the name. The trajectory surface is a plane for both types

of motions. The circular boundary of the surface generated

by sphere motion is replaced by straight line segments.

These simplifications make collision detection and avoidance

num erically tractable. Tne basic heuristic used for the

forearm planning is to get the forearm in the wake of the

boom and thereby decrease the chances of a forearm

collision.

2.3.6 Terminal Phase Planning

Term~nal phase planning uses obstacle configuration

dependent heuristics and the nomenclature arises from the

observation that near the start and the goal, obstacle

configuration specific heuristics ar e most lik ely to be

useful. As a consequence of the reversibility principle we

ne ed not distinguish betwe en departure from start and

- 49 -

approach to the goal. The strategies and heuristics for

terminal phase planning are described next.

The terminal phase strategy consists of planning pairs

of adjust and move motions. The adjust motion orients the

forearm to reduce the chances of a collision during the

subsequent move motion. A sequence of such pairs of motions

puts the boom tip at a safe point, from which the

mid-section strategies take over. A safe point is a point

in a secondary pasc, or if there is no secondary pasc with a

reasonable safe limit interval then it is a point in a

primary pasc whose safe limit interval exceeds a

prespecified value. Figure 2..3 shows one adjust-move pair

motion for an example in two-dimensions. The adjust move

(A) aligns the forearm with the dotted line. The subsequent

move motion (B) retracts the boom tip to P2 from P1.

During move motion the boom tip moves along a line

collinear with the forearm and away from the hand, and the

forearm maintains its orientation in cartesian space (see

Figure 2 .. 3). This motion continues until either the boom

tip reaches a safe point (and terminal phase planning is

over) or a potential collision is recognized. In the latter

cas e , the system proceeds with another adjust and move

motion pair. At the end of every such pair of motions a

check is made to see that progress is being made. If the

- 50 -

manipulator joint angles remain unchanged, the system

returqs a failure.

The adjust motion orients the forearm to reduce the

chan~es of a collision during the subsequent move motion.

For this ' motion, the nature of obstacle configurations is

more important than the nature of the obstacle itself. Thus

the fact that the obstacles form a cave-like structure is

more important for orienting the forearm than the fact that

one of them is a prism. Obstacle configurations · have been

boom tip location and forearm classified. For any

orientation the heuristics, associated with the

confi~uration types, give by how much and in what direction,

the forearm should move. The obstacle configuration of

Figure 2.3 is called a 2D channel. The heuristics

associated with a 2D channel suggest that the forearm should

be aligned with the dotted line.

Terminal phase planning is one of the most expensive

components of the safe trajectory planning problem. This

componen t can be factored out and done at execution time

using hardware proximity sensors. Section 9.3 describes the

input/output charateristics of these sensors, and the logic

that is required to analyze the sensory data.

- 51 -

2.3.7 Discussion

Boom planning deals with finding a path through the

primary chart. Obstacles influence the trajectory only

indirectly. Since charts represent free maneuverable space

as such: I call this planning as finding ~ safe trajectory

through empty space. This is to be contrasted with forearm

planning where it is the obstacles that directly influence

the determination of the trajectory locus. I refer to this

sort of planning as determining safe trajectories .Q_y

avoiding collisions. Note how these complementary views of

safe trajectory planning have been used to advantage.

The introduction to this chapter mentioned cartesian

space and joint space representations of obstacles and

trajectories, and the conversion overhead problem. The main

issue was to determine in what space should obstacles and

trajectories be represented to make safe trajectory planning

efficient. The representation and planning described in the

last two sections provide the answer. Boom trajectory loci

and cha~ts (empty space) are represented in joint space,

while obstacles and forearm trajectory loci are represented

in cartesian space. This choice is very convenient. The

best ·part of this solution is that the conversion overhead

problem is also solved; only one conversion of the boom

space straight line locus to cartesian space straight line

- 52 -

locus is required.

2.4 COMPARISON WITH PREVIOUS WORK

Work on restricted versions of the collision detection

and avoidance problem have been attempted by Pieper(1968),

Lewis(1974) and Widdoes(1974). None of these earlier

systems came anywhere close to handling the complexities

illustrated in the example of Figure 1.1. Furthermore, the

solutions were often plagued by computational

inefficiencies. I will discuss the work of Pieper, Lewis

and Widdoes under the topics of representation and planning.

2.4.1 Manipulator and Obstacle Models

The systems of Pieper, Lewis and Widdoes ' model the

manipulator links as cylinders. In my solution the physical

dimensions of the boom and the forearm can be accounted for

by extending the sizes of the obstacles appropriately. For

any given environment, the obstacles need to be enlarged

only once while collision detection has to be done much more

often. Since checking for collision of line segments with

obstacles is computationally less expensive than d etecting

collision of cylind er s with obstacles, my treatment of the

manipulator as two line segments proves to be

computationally better.

- 53 -

Widdoes and Pieper model obstacles as infinite planes,

cylinders and spheres. Lewis models obstacles as prisms.

These representations greatly simplify collision detection

but often result in loss of valuable maneuverable spa~e.

Pieper and Widdoes would approximate a wedge by a sphere

with diameter equal to the diagonal. Lewis would

approximate the wedge by an enclosing prism. Both

approximations can be quite crude depending on the nature of

the wedge. My solution models obstacles by their enclosing

polyhedra. A representation as polyhedra, with no limits to

the number of faces will reduce the loss of maneuverable

space. When the loss of maneuverable space is not crit~cal,

the obstacles can be represented as prisms.

2.4.2 Free Space Models

Lewis has no explicit representation of free space.

Pieper defines the notion of a region. The workspace of the

manipulator is divided into 64 equal parts called regions.

Each region is a cube in cartesian space. Each region is

associated with a list of objects that intersect with the

region. The computation of the properties (the list of

objects associated with the the region) needs to be done

just once for any given environment.

- 54 -

Widdoes has a more elaborate representation of free

space~ He has four boom strategy world models. The first

one is for the back of the boom. The next two are . for the

front of the boom - one for the initial forearm orientation

and another for the final forearm orientation. The fourth

one is a model for forearm transitions from the initial to

the final orientation. Each model is a uniform two

dimensional grid in the first two joint angles. Each

element of the grid is called a region and has associated

with it an r-value. For the first model, the r-value

denotes the minimum boom extension for which the region is

guaranteed to be collision free. For the remaining models,

the r-value denotes the maximum boom extension for which the

manipulator is safe from collisions or for which the forearm

transitions from the initial to final orientations is

guaranteed to be collision free.

The models are generated by covering each surface of

the obstacles with a mesh of points. Consider the

generation of the back-boom model. The maximum extent of

the boom for which the back of the boom will collide with

the point is computed. Since the boom is modelled as a

cylinder, the range of the first two joint angles for whi~h

the back of the boom will collide with the point is

calculated. The computed distance is the r-value resulting

from this object for all regions in the model which

- 55 -

intersect the range of the first two joint angles. In the

case of the back-boom model, for each region the minimum of

the r-value contributions is chosen as the desired r-value.

Similar computations are made for the other models.

The most severe limitation of this representation is

that these models have to be recomputed every time the

forearm configuration is changed. Further, the forearm

transition model requires the initial and final orientations

of the forearm to be known. The orientations may not always

be known as is the case when more than a single maneuver is

needed to get the forearm out of a complex obstacle

configuration (see Figure 1.1, for example). In such cases

the intermediate orientations need to be determined rather

than be considered as given.

The idea of having an explicit internal representation

of free space is Widdoes' best contribution. However, since

he did not decouple the boom and the forearm, and because of

his manipulator model the generation of the internal

representations became computationally expensive.

In my solution free space models are a crucial

ingredient of the primary and secondary problem spaces. I t

is these free space models which permit greatly simplified

manipulator and trajectory envelope descriptions.

- 56 -

2.4.3 Trajectory Models

Lewis and Widdoss specified the time histories of the

joint variables as polynomial sequences. What compli~ated

their solution was that they placed no constraints

whatsoever on the relationship between the different joint

angles. Independent joint angle movement of cylindrical

links resulted in complex 3-space trajectory envelopes to be

generated when the manipulator moved. These volumes made

trajectory planning very expensive. The independence of

joint angle movement also forced Pieper, Lewis and Widdoes

to end up checking the safety of the trajectory by checking

the safety of the manipulator at a finite number of . points

along the trajectory. This scheme though safe enough in

practice does not always guarantee a collision free

trajectory. Furthermore, there is no way of knowing whether

the trajectory is in a relatively obstacle free environment

or a cluttered environment. Thus there is even no hope of

achieving any saving by adjusting the placement of points at

which collisi9n checks are made.

Lewis suggests

trajectories between

the storing of

commonly accessed

precomputed safe

arm positions and

orientations. He recognizes that such a scheme will be a

valuable addition to any collision detection and avoidance

scheme but that it does not solve the probl em.

- 57 -

In my solution the simplified manipulator descriptions,

the .concept of a trajectory locus and the primitive

trajectory types that constitute a trajectory locus, all

result in simple and numerically tractable trajectory

envelopes.

2.4.4 Planning

Pieper and Lewis have an environment independent

trajectory hypothesizing scheme. There is no notion of a

trajectory locus. Planning results in a trajectory. Each

joint of the manipulator is planned independent of the

others. The safety of the manipulator is checked at a

finite number of points along the trajectory and

intermediate points are introduced to avoid any detected

collision. Pieper uses clever strategies for selecting

intermediate points but these strategies are not complete

and they often introduce new problems causing the system to

flounder.

Widdoes decomposes planning into boom and forearm

planning. His free space models enable him to restrict his

space of potential candidate trajectories to start with.

Thus .his trajectory hypothesis stage in planning is more

sophisticated than those of Pieper and Lewis. His free

space model computations and the use of optimization

algorithms

starting

Collision

- 58 -

for picking out a good candidate from his

set of candidates, however, are expensive affairs.

detection and avoidance by in~roducing

intermediate points is very similar to those of Pieper and

Lewis.

The planning in my system is more sophisticated in

terms of the use of the general principles of hierarchy and

separability. The planning heuristics, however, are quite

simple and there is almost no searching in the traditional

sense. Boom planning is treated as path planning through

empty space, and forearm planning as that of collision

avoidance. The goal is to plan safe trajectories. The

underlying representations provide for the best possible

choice between the two ways of looking at the problem

maneuvering in free space, and avoiding collisions.

2.5 SUMMARY AND CONCLUSIONS

The chapter began with a discussion of th e trajectory

planning problem and criteria the solution must satisfy.

This was followed by a discussion of the computer

representations of the entities in the universe of discourse

for the three problem spaces and the use of these spaces in

trajectory planning. Finally there was a brief description

of the previous work on collision detection and avoidance.

- 59 -

To summarize,

attempts, has

my

a

solution, in

large amount

contrast with the earlier

of knowledge about

trajectories, obstacles, manipulators and free space - built

into the programs. The planning system makes good use of

the powerful principles of hierarchy and separability. The

planning heuristics, however, are simple but yet effective

in practice and their efficacy and ease of use is due to the

underlying representations.

As mentioned in section 1.2.2 a slight modification to

the solution for the mechanical manipulator provides a

solution to the humanoid manipulator problem. The solution

for the humanoid arm is the same as the general solution

with the following differences

1) For a given position and orientation

there are essentially four solutions to

of

the

the

~0

hand

Table 2. 1 The Rep!esentation Hierarchy

ELEMENTS
IN

OBST.ACLES/ WORLD EMPTY

PROBLE MANIPULATOR ENVIRONMENT SPACE
SPACE

Secondary
Single · Point Region/

{Boom Tip)
Secondary

Chart

SECONDARY
Single Line Secondary Secondary
s~gmcnt Obstac~~e/
(.Boom) Secondar):" Map Free ·space

Single Line Primary

"Segment Region./
(Forearm) Primary

Chart

PRIMARY
Two Line Primary
Segments Obstacle/ Prima.ry
(Boom and Primary ,Map Free Space
Forearm)

Two Solid
Polyhedra/ Segments Maneuvera-ble

REAL (Boom and M.a.p Space
Forearm)

- - ------- -~~~----

TRAJECTORY

ENVELOPE

Line

Surface

{Boom)

Surface

(Forearm)

Two Connected
Surfaces

{Boon"\ and
Forearm)

T'VO Connected
Solids

(Boom and
Forearm)

I

C1'
0

In,put: goal

position and

orientation

modify

trajectory

Figure 2. 1

- 61 -

hypothesize

trajectory

110

Safe Trajectory Planning

yes

Output:
sequence
of typed
intc r1ncdiat.e
configurativns

- 62 -

theta

~ect:oroid

_] t . -
Region

,.,_ phi

Pasc

Figure 2. 2 The Structure of R.egions

A adjust rnoli.on

B move nlO\ ion

Figure 2. 3 Terminal I.Jhase Planning

- 63 -

CHAPTER 3

MANIPULATOR MODELS

This chapter presents models for a computer controlled

manipulator and their relation to obstacle avoidance

problems.

3.1 THE 2D MANIPULATOR

Figure 3.1 illustrates a 20 manipulator, a three link

and three joint structure. The first of the links is called

the shoulder; the shoulder is a line of fixed length and

rotates about the origin. The next link is called the boom;

the boom is a line that slides back and forth at the tip of

the shoulder. The final link is called the forearm and the

forearm is also a line that can rotate about the ' tip of the

boom. The 2D manipulator has three degrees of freedom

corresponding to the rotational capabilities of the shoulder

and forearm and the sliding joint at the . shoulder-boom

connection. When looking along the boom at the forearm, the

manipulator is either on the right or the left side of the

shoulder. This gives rise to the notion of a right-handed

and left-handed manipulator respectively, and is called the

lateral property.

- 64 -

There is an equivalent description of the manipulator

for .trajectory planning purposes. This description is

possible because the shoulder link is of fixed length and

can rotate about the origin. The new model is obtained by

replacing the shoulder link by a circle, called the

post-circle. The post-circle has its center at the origin

and its radius equal to the length of the shoulder link. As

before the boom slides back and forth. In addition it

rotates about the origin always remaining tangential to the

post-circle. The number of essential links in the

manipulator has been reduced to two; the boom now has two

degrees of freedom and the forearm, as before, has a single

degree of freedom. The lateral property is still valid for

the alternative representation.

The advantage of this alternative formulation of the

manipulator description is that it permits a useful

simplification. The post-circle may be reduced to a single

point. The boom then slides in and out and rotates about

the origin and there is no longer any distinction between a

right-hanaed and a left-handed manipulator. The 2D

manipulator with the post-circle radius equal to zero is

called a simolifieq ?.D manipulator (see Figure 3.2). The

collision detection and avoidance problem for the simplified

2D manipulator has all the essential characteristics of th e

problem for the general 2D manipulator and yet it is devoid

- 65 -

of unnecessary complications. The rotational joints of the

boom .. and forearm are called theta and phi joints

respectively and the sliding joint of the boom is called the

£ joint. Figure 3.2 shows these joint variables.

A set of computer programs implementing the solution to

the collision detection and avoidance problem for the

simplified 2D manipulator was written and tested. The

computer representation of the manipulator has the r, theta

and phi values, and several other attributes of the

manipulator such as the x-y coordinates of the boom and

forearm tips are also saved.

3.2 THE 3D MANIPULATOR

Since the simplified 20 manipulator is easier to .

visualize, I will first describe its three-dimensional

analogue called the simplified }Q manipulator (see Figure

3.3). The simplified 3D manipulator has two links. The

boom and the forearm are both straight lines and have three

degrees of freedom each. The three degrees of freedom of

the boom correspond to the ~ theta and phi variables in a

spherical coordinate system. The boom passes through the

origin and its three degrees of freedom permit the boom tip

to be positioned anywhere within a sphere with center at the

origin. Two of the three degrees of freedom of the forearm

- 66 -

let its tip trace the surface of a sphere with the boom tip

at the center of the sphere. These two rotational joints of

the forearm are called f theta and f phi respectively (the

prefix f indicating forearm values). The last of the three

degrees of freedom of the forearm, called f osi, lets it

turn about its axis. For collision detection and avoidance

purposes, this last degree of freedom is superfluous when

the manipulator is not handling large objects.

For the three dimensional analogue of the 20

manipulator, the alternative representation of the 2D

manipulator will be generalized. The post-circle now

becomes a cylinder with its axis along the z-axis and is

called the post-cvlinder. The 3D manipulator again has two

links, the boom and the forearm, each with thre~ degrees of

freedom. The boom slides back and forth; it rotates about

the z-axis always remaining tangential to the post-cylinder

with the tangential point lying in the X-Y plane; it goes

up and down (theta variation) again remaining tangential to

the post cylinder and the tangential point lying in the X-Y

plane. The notion of left-handedness and right-handedness

is valid for the 3D manipulator too. The 3D manipulator is

right-handed if, when looking at the forearm along the boom,

the manipulator is on the right side of the post-cylinder;

otherwise, the manipulator is said to be left-handed.

- 67 -

Since the post-cylinder is fixed it is treated as an

obst~cle. The post-cylinder is replaced by a hypothetical

infinite cylinder of radius equal to the distance of the

axis of the boom from the axis of the post. Note that for

the general 3D manipulator too, the boom and the forearm are

straight lines.

The collision detection and avoidance system for the 3D

manipulator has been implemented. I have essentially

followed Lewis(1974) in solving the position problem for the

3D manipulator. The main differences are

1) Joint 2 or theta lies between 0 and pi and not

between - pi and + pi. Lewis treats negative joint 2 values

to imply right-handed configurations and positive values to

imply left-handed configurations.

2) Joint 1 or phi values are not identical for the

left- and right- configurations. Lewis has them identical.

3) The lateral property of the manipulator is

explicitly represented and is not left as just the sign of

an angle. As in the 2D manipulator, in addition to the

joint angles, several other attributes describing the

manipulator are included.

- 6S -

3.3 THE SCHEINMAN ARM

The 2D and 3D manipulators described above are

abstractions of a class of computer controlled manipulators.

The Scheinman arm shown in Figure 3.4 is an example of this

class LDobrotin and Scheinman(1973), Lewis(1974)]. It is a

six degree freedom device allowing the forearm tip or the

hand to be positioned anywhere and with any orientation

within the limits of the joint angles. This is the

manipulator that is used on the JPL robot (see Appendix 1).

Abstractly, such a manipulator may also be described in

terms of links and joints. There are six links, each

connected to the next by a joint. Figure 3.5 shows the

different joints and the coordinate frames for describing

the link-joint pairs of the Scheinman arm. There are two.

kinds of joints, prismatic or sliding, and revolute. Link1

is called the post. Link2 is called the shoulder. Link3 is

called the boom. Link4 and link5 are non-existent because

the manipulator design is such that there are three revolute

joints meeting at the tip of the boom. Link6 is the

forearm. Except for joint 3, which is prismatic all the

joints are revolute. Joint1 is called phi, joint2 is theta,

joint3 is £, joint4 is f theta, joint5 is f phi and joint6

is f psi. The prefix "f" indicates that the angl e s refer to

the forearm.

- 69 -

The links in the Scheinman arm are all solid objects.

When the manipulator moves its links trace out a volume in

three space called the trajectory solid. The manipulator

colliding with an obstacle implies that the space occupied

by the obstacle intersects with the trajectory solid.

Collision detection involves checking whether the trajectory

solid intersects with every obstacle in the environment.

Greater the complexity of the shapes of the obstacles and

the trajectory solid, the more expensive is the intersection

check.

The intersection checks can be simplified if the

manipulator links are treated as straight lines by applying

some transformation to the obstacle shapes and sizes. If k

is the radius of a cylindrical envelope of a manipulator

link, then, for collision avoidance all we need is that the

axis of the link be at least a distance k away from the

nearest obstacle surface. If by application of an enlarging

transformation to obstacles, every point on the surface of

the enlarged obstacle is made at least a distance k away

from the nearest point on the original obstacle, then for

obstacle avoidance purposes, the manipulator links may be

treated as just straight lines having no physical

dimensions.

- 70 -

When a manipulator with straight line links moves in

three ·. space, a surface called the trajectory surface, is

generated. Checking for intersection of a surface and a

volume is computationally simpler than checking for

intersec~ion of two volumes. Furthermore, the enlarging

transformation needs to be applied only once and from then

the enlarged obstacle descriptors alone need to be used.

This enlarging transformation is described in detail in

Chapter 4.

Note that when the radius of the minimum bounding

cylinders for the boom and forearm of the Scheinman arm is

reduced to zero we get the ·generalized 3D manipulator. If

obstacles are enlarged appropriately, the links on the

Scheinman arm can be considered as straight line . segments.

Hence, from now on, for the 3D system we will be considering

only the generalized 3D manipulator.

- 71 -

y

X

~post-circle -- right-handed n1anipula

- - -left-handed 1nanipulatc

Fi.gu:re :>. 1 The 2- D Manipulator

forearm

yJ.
boorn

X

Figure 3. 2 The Sin1plificd 2- D 11anipulator

- 72 -

boom

~
1/.

""':-~- f' ___-j ~
....A..... ,r<"'' ' ·""· /,

' / ' .!J...
1 ...O~v """"'
l <<·
f

I
J
I
I
I
I
r
r

' I
J

Figure 3. 3 The Simplified 3-D Manipulator

139. 1-r-2 _,

BOOM REAR

LINK 1 (POST) Cl.2.l)

MEASURE.MENTS IN em

Figure 3. 4:. The Scheinman Arm

-..]

w

Figure 3. 5 Reference E:'rames for Link-Joint Pairg
of Schcinman Arm

-J
~

- 75 -

CHAPTER 4

ENVIRONMENT DESCRIPTION

In a broad sense the environment will include the

manipulator, the obstacles, the objects that are to be

manipulated and the free space within the reach of the

manipulator. The representation of the manipulator has

already been described. Free space representation will be

described in the following chapter. This chapter will be

concerned only with the representation of obstacles. From

here onwards, the term environment will be used in a

restricted sense to describe the set of obstacles in the

workspace of the manipulator.

The manipulator operates in a static environment. The

manipulator is the only active agent. The trajectory

planning system can be initialized to plan in different

environments. In between such initializations, the

environment is assumed to remain unchanged except for the

changes brought about by the manipulator's actions, such as

moving objects around. Furthermore it is assumed that the

environment initializations are infrequent in comparison

with the number of trajectories planned. This was referred

to earlier as the infrequent environment initialization

hypothesis. With this assumption it becomes reasonable to

spend some computational effort in generating internal

- 76 -

representations of the environment which can simplify

trajectory planning. To put it differently, since

trajectory planning will be performed more often than

environment initialization, any transformation of the

environment descriptions to reduce the computational load on

the trajectory planning routines is justified. The

initialization assumption is infrequent environment

justified in practice. The scenarios envisioned for the JPL

robot always require the robot to get to a site, explore the

site using scene analysis and then perform a variety of

tasks that involve manipulation. These tasks include

picking up and transporting rock and soil samples, deploying

scientific instruments etc. The number of trajectories

planned easily outnumbers the number of sites visited.

4.1 THE NATURE OF OBSTACLES

Obstacles will be both regular and irregular in shape.

Man-made objects on the robot (Figure A1.1) such as the

platform, the wheels, the wheel motors, the TV rack etc.

are regular objects and can be described as cylinders,

parallelepipeds, or as unions of these shapes. Irregular

objects would primarily be boulders and rocks and the

manipulator may need to maneuver near them. Any

representation of obstacles that is chosen should be capable

of handling these irregular shapes. Since compactness of

- 77 -

representation is crucial, the irregular shapes will have to

be approximated by regular shapes. The important questions

are what regular shapes to use for the approximation and how

good an approximation is essential.

In the discussion on manipulator models I indicated how

collision detection is performed; it is done by simulating

the motion of the manipulator in cartesian space and

checking whether the area swept, by the manipulator links

during motion, intersects with the volume occupied by the

obstacles. The numerical complexity of these intersection

checks increases with the complexity of the shapes of

trajectories and obstacle surfaces. Considerable simplicity

can be achieved by using polyhedra - plane faced objects

to approximate obstacles. Lines and planes are represented

by linear equalities and handling linear expressions is

numerically very simple. If there is no restriction on the

number of faces of a polyhedra and if both concave and

convex polyhedra are allowed, a three-dimensional object can

be approximated to any arbitrary degree of accuracy by a

polyhedron.

How accurate a polyhedral approximation to a regular or

irregular shape should be depends on · a number of factors.

From the view of collision detection and avoidance, the

storage requirements and the time required to analyze an

- 78 -

obstacle will both increase with the number of faces of the

polyhedron, or equivalently, with a better approximation of

the irregular obstacle. However, loss of maneuvera~le space

decreases with a better approximation. If the manipulator

will not be maneuvering near an obstacle, the loss of

maneuverable space will not hurt and a crude approximation

will suffice. If maneuverability is crucial, the price for

better approximation will have to be paid.

For the current 2D and 3D systems, obstacle

descriptions are input by a human, and the human decides

about the degree of approximation. It is not inconceivable

that scene analysis programs with some knowledge about the

goals of the manipulator will be doing this in the future.

Obstacles

detail. In

obstacle also

parallelepiped

are represented at different levels of

addition to a polyhedral representation, an

has a description of its envelope, a

in (r, theta, phi) coordinates. The

non-intersection of a trajectory surface with the enclosing

parallelooipeds clearly eliminates the obstacle from further

considerations. Intersection of the two does not imply

anything definite and a more careful check is called for.

The details of the representation of obstacles in 2D and 3D

are presented in sections 3 and 5 of this chapter.

- 79 -

4.2 PRIMARY AND SECONDARY MAPS

Obstacles are represented by their approximating

polyhedra. These polyhedra may have any number of faces and

may be concave or convex. The set of obstacles in the

workspace of the manipulator is called a map.

In Chapter 3 on manipulator models, I said that the

manipulator links can be represented by straight lines if

obstacles in the environment were enlarged by the radius of

the manipulator link. A primary obstacle is an obstacle

obtained by enlarging a real obstacle description by the

radius of the manipulator links. The set of primary

obstacles is called the primary map. Figure 4.1 is an

example of a primary map for the two-dimensional problem.

The polygons in the figure represent primary obstacles. The

details of the enlargement transformation are given in

sections 3 and 5.

It turns out that planning the manipulator trajectory

for the first three joints, or the boom trajectory, is

computationally simpler than planning trajectories for the

last three joints, the forearm trajectory. Checking for

forearm collisions is what makes the planning expensive. If

possible we would like to avoid having to check the safety

of the forearm. This should be possible when maneuvering

away from obstacles, where there are large chunks of free

- 80 -

space. An accurate characterization of regions away from

obstacles is obtained by introducing the notion of a

secondary obstacle. A secondary obstacle is a primary

obstacle enlarged by the length of the forearm. The set of

secondary obstacles is called the secondary mao. The

importance of the secondary map arises from the following

observation. Suppose that in the initial and final

configurations, the manipulator does not collide with any

secondary obstacle. Suppose further that there exists a

boom trajectory, from the initial to the final

configuration, that is safe from collisions with any

secondary obstacle. The forearm can then be guaranteed to

be free of collisions all along the proposed trajectory,

independent of its orientation.

It was mentioned in section 2.2.2 that it would be

desirable to have a transformation whereby one could avoid

having to consider the lateral property of the manipulator

at each step of the planning process. Appropriate

one-time-only transformations are used to generate a left

primary map and a right orimary map and a left secondary map

and a right ~econdary ~ap. The polyhedra descriptions in

these maps reflect the manipulator confi guration

characteristics.

- 81 -

4.3 20 ENVIRONMENT

This section describes the implementation of the

environment of the simplified 2D manipulator syst~m. The

data structures are described first and the descriptions of

the oper~tions that can be performed on them follow.

Decomposition, dilation and enlargement are the three

operations that are described. Finally the format of the

input obstacle descriptions is discussed.

4.3.1 Data Structures

Obstacles are represented by closed polygons (Figure

4.1). Their descriptions ar,e given in a right-handed

coordinate system with origin at the base of the simplified

2D manipulator. Obstacle description includes i fixed set

of attributes and a body. The body is represented by a

linked list. A linked list representation is essential

because the decomposition operator chops up the obstacle,

resulting in the body being rearranged, and this

rearrangement is easily carried out by pointer adjustments.

The fixed

description of

attributes of the obstacle include a

its (r, theta) envelope, the coordinates of

the center of gravity, the number of entries in the body of

the polygon and the type. Since the theta values have a

period of 360 degrees, the ordering of the real numb ers

cannot

great~_r

which

- b2 -

always be used to decide whether a given angle is

or less than another angle. A special ordering

takes the circularity into consideration has been

defined. The details of this circular ordering definition

are given in Appendix 2. The envelope description includes

the rmin, rmax, theta-min and theta-max values. The type of

the polygon indicates whether the origin is inside the

polygon, on an edge, at a corner of the polygon or outside

the polygon. Primary and secondary obstacles are obtained

by enlargement transformations and therefore may have the

origin on their inside or on the boundary.

The body is a linked list of edge-corners. The order

of these edge-corners is the order in which they are

encountered when traversing the boundary of the polygon in

an anticlockwise manner. Each edge-corner has a pointer to

the next edge-corner and descriptions of the corner and edge

that form the edge-corner. The description of a corner

includes its cartesian and polar coordinate values and the

slope of the line joining the origin to the corner. The

descriptors of an edge consist of coefficients of the

equation of a line collinear with the edge. The signs of

these coefficients are so adjusted that points interior to

the polygon are on the positive side of the edge.

- 83 -

4.3.2 Operations

The decomposition transformation chops up a concave

polygon into disjoint convex components whose union gives

the concave polygon. Figure 4.2 is Figure 4.1 redrawn with

concave polygons decomposed into convex polygons. The

dotted lines inside the concave polygons show where the

decomposition was effected. The main idea is as follows:

Check every corner of the polygon. If all the corners are

convex the polygon is convex. Otherwise at the first

concave corner, extend the edge of the previous edge-corner

to cut the polygon into two parts. Apply the decomposition

transformation to the two parts recursively. Since the

sibling polygons have fewer corners than the parent polygon,

the recursion terminates. The algorithm that has been

implemented in the 2D system is an iterative version of the

recursive algorithm described above. The iterative version

is much faster but the careful book-keeping that needs to be

done complicates its description.

The ~nlargement transformation enlarges an obstacle.

Given a polygon OBS and a distance k, the procedure returns

a new polygon NOBS. Every point on the boundary of NOBS is

at least a distance k away from its nearest point on the

boundary of OBS. Enlarging convex polygons is simpler than

enlarging concave polygons. Hence all concave polygons are

- 84 -

replaced by their convex subcomponents and

enlarg~ng transformation applied.

then the

The simplest scheme for enlargement is shown in Figure

4.3 which shows the original polygon OBS and the enlarged

polygon NOES. NOBS is generated by drawing a line parallel

to every edge at a distance k and outside OBS. NOBS has as

many edges and corners as OBS. The main shortcoming of this

scheme is that the distance d between corresponding corners

P, P' say, is given by

d = k I sin(A I 2)

where A is the internal angle between the edges meeting at

P. As A gets smaller d increases. Large values of d will

result in making unavailable useful maneuverable space.

A refinement of the earlier scheme is shown ~ in Figure

4.4. In addition to drawing lines parallel to edges of OBS,

lines are drawn perpendicular to the angular bisectors of

the internal angles of the polygon. These lines are drawn

outside OBS and at a distance k from the corner. The

refined scheme gives twice the number of edges and corners

in NNOBS as in OBS. NNOBS will need approximately twice the

amount of storage for its attributes as NOBS but the loss of

maneuv erable space is reduced considerably.

- 85 -

Dilation is the last of the transformations that may be

perform~d on a polygon. Dilation requires the following to

be done for each edge of the polygon. If the foot of the

perpendicular from the origin to the edge falls inside the

edge then the edge is split into two at the foot of the

perpendicular; a new edge-corner is introduced into the

body of the polygon at the foot of the perpendicular, and

the size of the polygon incremented by one. Computing

intersection of the given edge and a line through the origin

and perpendicular to the edge, and determining whether the

point is interior to the edge is straightforward. Figure

4.5 shows a polygon and two virtual corners P and P' that

get added as a result of dilation.

Given any finite segment of a straight line, the point

on it and closest to the origin is one of the following:

a) the foot of the perpendicular from the origin

to the line, if the foot is inside the finite line segment,

or

b) one of the two end points.

Determining the point, that is closest to the origin

and lies on the section of an edge, is done repeatedly by

routines that refine and

(described in Chapter

generate navspace

5). Dilation

approximations

simplifies this

computation by eliminating one of the two possible choices.

As a result of dilation, no edge has the foot of the

- 86 -

perpendicular from the origin strictly inside it. The

desired point is, then, one of the end points of the

section.

Dilation is another example of a one-time

transformation which eliminates repeated computations. This

elimination, however, has not been achieved without

overheads. Apart from the overhead of computing the

transformation, run-time storage requirements for obstacle

descriptions will be higher.

4.3.3 Input specifications

The input consists of the number of obstacles followed

by obstacle specifications. Obstacle specifications include

the number of corners (or edges) followed by · cartesian

coordinates encountered on an anticlockwise traversal of the

polygon boundary.

4.4 EXTENDING 20 IDEAS

In 26 obstacles are represented by closed polygons.

These polygons may be concave or convex and may have any

number of sides. Three transformations - decompose, enlarge

and dilate were defined for the polygons. A natural

extension of the representation to three dimensions is to

use polyhedra to model obstacles. Of course the structure

- b7 -

of a polyhedron is much more complex and the storage

requirements for storing the attributes of a polyhedron much

more severe. Furthermore, some difficulty may be

anticipated in the 3D versions of the three transformations

decompose, enlarge and dilate. These extensions are

described in the following paragraphs.

In 2D the structure of the polygon is described

implicitly by the ordering of the linked list representation

of the body of the polygon. In 3D we have to describe not

just the polygonal faces but also the relationship between

the faces. A variety of representations are possible (see

for example, Newman and Sproull (1973), part IV). The

problem is to determine which of the representations is the

best. A knowledge of the 2D obstacle representation is not

of much help. The solution to the 20 problem, however, had

clearly identified how obstacle descriptions are used in

trajectory planning - for computing charts (see Chapter 4)

and for forearm planning (see Chapter 8). The

representation which facilitated these computations was

chosen and it is described in section 4.5.

A 3D decomoosition operator exactly analogous to the 2D

decomposition operator can be defined. Whenever two faces

meeting at an edge form an interior angle greater than 160

degrees, one of the planes is extended to cut the polyhedron

- 88 -

into two. The decomposition operator is then applied

recurs~vely to the two parts. This solution is neither

elegant nor simple since very extensive book-keepin~ needs

to be done when the two sibling polyhedra are generated.

Rather than implement such a scheme, I decided to leave it

to the human entering the environment description to

decompose any concave polyhedra into convex subcomponents.

The enlargement transformation again has no simple 3D

counterpart. In the 20 case, enlargement resulted in a

polygon with twice the number of sides, one for each corner

and edge of the original polygon. In the 30 a similar

solution will result in thrice the number of faces in the

new polyhedron, one for each face, edge and corner of the

original polyhedron. The storage requirements for such a

polyhedron are very severe. Furthermore, in the 20 case it

is very easy to verify that the enlarged polygon is well

defined. This is not so for the 3D case. As faces of the

new polyhedron are generated one of them may "chop offt1 a

face, corner or an edge that was generated earlier.

A simple scheme that avoids these problems is one that

results in a new polyhedron each face of which is parallel

to one· face of the old polyhedron. This scheme is well

defined and results in a polyhedron whose storage

requirements are significantly less (since there are less

- 89 -

number of faces, edges and corners) than the generalized

enlarg€ment would produce. The only drawback of the simple

enlargement transformation compared to the gener~l one is

that the loss of maneuverable space is large whenever the

original polyhedron has a sharp corner or two faces meeting

at a small angle.

There is no direct generalization of the 20 dilation

operator. . The 3D version of dilation introduces a virtual

corner whenever the foot of the perpendicular from the

origin

edge.

to a face or an edge falls inside the face or the

Unlike in the 2D case where dilation results in the

introduction of a new edge-corner, the 3D dilation results

only in the addition of a virtual corner to the description

of the face or the edge. A virtual corner is a foot of the

perpendicular from the origin to a face or an edge. It has

the same attributes as any other corner and it differs from

a corner in that it lies either strictly inside an edge or

strictly inside a face.

- 90 -

4.5 3D ENVIRONMENT

This section presents the implementation of the

obstacle descriptors for the environment of the full-fledged

3D manipulator. The data structures are described first,

the operations next and finally the input specifications.

4.5.1 Data Structures

Obstacles are described by closed convex polyhedra.

The human who inputs the environment data has to decompose

concave polygons into convex components. Obstacles are

described in a right-handed coordinate system with the

origin at the center and top of the manipulator post. The

orientations of the axes are as shown in Figure A.1.

Obstacle descriptors include a fixed set of attributes, and

a description of corners, edges and faces. The abstract

data structures will be described first. The specific

implementation decisions, wherein packed data structures and

scaling transformations are extensively used, will follow.

The fixed attributes of an obstacle include the

following

1) center of gravity,

2) description of its (r, theta, phi) envelope,

3) the number of corners, edges, virtual corners and

faces,

- 91 -

4) pointers to the start of the descriptors of the

corners, edges, virtual corners and faces, and

5) obstacle type.

The envelope description includes the minimum and maximum r,

theta and phi (for both left- and right- handed

configurations) values. As in the 20 case the circular

ordering relation defined in Appendix 2 is used.

The obstacle type (table 4.1) is one of the following :

free, bound, support or cover. An obstacle is of type bound

if the origin is inside the obstacle, cover if the obstacle

is above the X-Y plane and the Z-axis passes through it,

support if the obstacle is below the X-Y plane and the

Z-axis passes through it, and free otherwise. Obstacles of

type support and cover have phi-ranges of 360 degrees and

theta ranges of (theta, 180) and (0, theta) respectively for

some theta. Bound obstacles have a 360 degree phi-range and

1d0 degree theta-range, while free obstacles have phi and

theta ranges of less than 180 degrees.

- 92 -

TABLE 4.1 OBSTACLE TYPES

!Obstacle-type Phi-range
!

'Free

Support

Cover

Bo\,lnd

< 180

360

360

360

Theta-range

< 180

(Theta, 180)

(0, Theta)

180

Primary and secondary obstacles are obtained by enlargement

transformations and therefore may have the origin on their

inside or on the boundary. Virtual corners were defined in

section 4.4. As in the 2D case, the point on an edge or a

face that is closest to the origin is of interest. Instead

of having to compute this information repeatedly it is best

to compute it once and save the results of the computation

as virtual corners of the polyhedron.

The fields describing a corner are the (x, y, z)

coordinates and some joint angle values. The joint angles

correspond to the r, theta and phi values of the boom if the

boom tip were positioned at the corner. There are two phi

values corresponding to the left-handed and right-handed

manipulators.

- 93 -

Chapter 2 described left primary and left. secondary

maps and right primary and right secondary maps. In the

implementation there is only one primary map and only one

secondary map. Left-phi

manipulator is left-handed and

when the manipulator is

characteristics of obstacles

manipulator configurations.

values are used

right-phi values

right-handed.

are identical

when the

are used

All other

for the

The attributes of interest for an edge are its two end

points, its length, the normalized direction cosines of the

the edge and a field indicating whether there is a virtual

corner on the edge. If there is a virtual corner, the field

is a pointer to the virtual corner or else it is zero. The

two end points define a direction of the edge, from the

first to the second corner.

The description of a face has a body and the following

fixed set of fields: the center of gravity of .the polygon,

the normalized direction cosines of the normal to the face

and the distance of the face from the origin, the (r, theta,

phi) envelope of the face, the number of edges and corners

on the face, a pointer to the neighboring face and the type

of th~ face. The signs of the direction cosines and

distance are adjusted so that points interior to the

polyhedron are on the positive side of the plane. The

- 94 -

envelope of the face is similar to the envelope of the

polyhedron. The body of the polygon consists of a sequence

of e-c-entries. An e-c-entry has a direction, an edge

pointer and a corner pointer. The sequence of edge and

corner pointers enumerates the boundary of the polygon in

order. The direction of an e-c-entry specifies whether the

edge is traversed along or against its defined direction.

There is no order imposed on the organization of the

corners and edges and virtual corners. However, the polygon

entries are sorted by the minimum r value of the polygon

envelope. The faces are therefore saved as a linked list

and the start of the face list points to the face with the

least r value.

Some comments on the implementation of the above data

structures: Many of the fields of the various data

structures described above require less than a full word

descriptor. Since storage requirements are . critical ~

packed representation is used. Some of the fields are of

type real while others are of type integer. For various

system reasons it was decided that a single array will be

used to store all the fields of an obstacle. Real arrays

could not be used because the hardware automatically

normalizes real variable

information in the packed

values and consequently destroys

data structures. If integer

- 95 -

arrays are used without appropriate sca~ing of values the

loss in precision would be intolerable. All real entries

are therefore scaled and the scale factor is the same for

all. It is not easy to give precise estimates of the

overheads involved in accessing packed data structures and

performing scaling operations.

4.5.2 Operations

In the 2D case the operations on the obstacle data

structure were decomposition, enlargement and dilation.

Decomposition for the 3D problem was not implemented. A

scheme similar to the 2D problem should be easy to design.

The enlargement and dilation transformations are described

next.

The enlargement transformation's functions are similar

to those of the 2D enlargement operator. Given a polyhedron

OBS and a distance k, the transformation gener~tes a new

polyhedron NOBS. Every point on the boundary of NOBS is at

least a distance k away from its nearest point on the

boundary of OBS. A face is drawn parallel to each face of

OBS at a distance k and outside of OBS. The interior of the

new set of faces defines NOBS. The details of the corners

are computed by finding intersection of the new faces. Once

the coordinates of the corners are known, the edge

- 96 -

representations are easily computed. The computations of

the rest of the attributes of NOBS proceeds as before. As

mentioned in section 4.4, the loss of maneuverable space is

large whenever OBS has two faces meeting at a small angle or

when there is a sharp corner.

The dilation transformation adds virtual corners to the

description of polyhedra. As in the 20 case, the purpose of

dilation is to simplify the computation of the point that is

closest to the origin and lies on the section of a face or

an edge. Virtual corners were defined in section 4.4.

Virtual corner descriptions are saved as attributes of the

edge or face that is responsible for it.

Determining the foot of the perpendicular from the

origin to a line or plane is easy. Determining. whether a

point is inside an edge is also simple, especially, if

parametric representation of lines is used. Determining

whether a point P lies inside a convex polygon in cartesian

space is more complex. Figure 4.6 describes how the

membership of a point P in a convex polygon is determined.

P1 is a corner and CG is the center of gravity of the

polygon. Q is the vector from P1 to CG, Q is a vector from

P1 to P and~ is a unit vector along an edge from P1. We

evaluate the dot product

(~ * Q) (~ * Q) - (1)

- 97 -

where "*"is a cross product and "e" is a dot product of two

vectors. In Figure 4.6(a), (1) evaluates to a negative

number and in Figure 4.6(b), (1) evaluates to a positive

number. If for any edge of a face, (1) is negative, the

point under consideration is outside the face.

identity [Brand (1957), · page 34] gives

Lagrange's

Since the direction cosines of edges are normalized, ~·~=1

and so the determinant is easily evaluated.

One final remark: Since any cross section of a convex

polyhedron is a convex polygon, the faces of a convex

polyhedron are convex polygons. Thus the above analysis for

determining the membership of a point P in a face is

adequate for our purposes.

4.5.3 Inp~t Specifications

The input consists of the number of obstacles followed

by obstacle specifications. Obstacle specifications include

the number of faces, edges, corners and the maximum number

of edges per face, data on corners, edges and faces, and the

- 98 -

face-corner structure. The maximum number of edges (or

corners) per face is used in allocating storage. Data for

corners consist of the (x, y, z) coordinates of the point,

for edges they consist of the names of the two end points,

and for planes they consist of the number of corners on the

face followed by a list of corner-edge names. The edge

names are positive or negative depending on whether the edge

is traversed in its natural direction or not when the

boundary of the face is traced. The face-corner structure

data give the names of three corners on each plane. The

names of corners, edges and planes are positive integers

starting at zero and incremented by one.

- 99 -

I
l
I
l

- 1--- -----·+ ·-··-·-----·--·--"----·--- .. --------
1

I
I
I
I

I
!

Figure 4. l A Primary Map

. 100 -

I
. t .,

I

I
I
I
.,
I
I

I
I

I
!

----'--- -----1-- ·------+·---·.-------~ ----- ·--·-~ . ··-----·---·--·-··· ----
1

I
I
!
i
I

J

Figure 4. 2 Decomposition of an Obstacle

- 101 -

d · = R I sin (A/2)

Figure 4. 3 Shnple Enlarge1nent

Figure 4. 4 Enlargen1ent Transforn1alion

\

\

\

\

\

- 102 -

+--

Figure 4. 5 Dilation

P, . P 1 --Virtual Corners

- 103 -

(a) (a~' b) • (a*~) negative

c~a
· ~~1

(b) (a ~:' b) · (a),'c £..) positive

Figure 4. 6 Membership Determination

- 104 -

CHAPTER 5

FREE SPACE AND NAVSPACE MODELS

Obstacles are conveniently described in cartes~an space

and manipulator trajectories are best represented in joint

variable space (a six-dimensional space). The complexity of

the collision detection and avoidance problem is partly due

to having these two diverse representations. If obstacles

and trajectories could both be represented in one space, the

overhead of conversion between the two spaces would be

eliminated.

Additional complexity in the collision detection and

avoidance problem arises because of the physical dimensions

of the manipulator links. The enlargement transformation

(Chapter 4) applied to obstacles permitted a V·ery simple

description of the manipulator as two straight line

segments. Further simplification becomes possible if the

manipulator is modelled in more abstract spaces .where it can

be considered as just a single line segment or as a single

point instead of two straight line segments.

This chapter presents free space models that would

avoid the conversion overhead problem, and transfor mations

on these models that would admit simplified manipulator

descriptions.

occupied by'

Free

primary

spac e is the complement of the volum e

obstacle s with resp ect to th e

- 105 -

manipulator's workspace. The dynamic chart model for free

space and the algorithms for generating and refining them

are presented here. The model simplifies the boom

trajectory planning enormously. Using the model the motion

of the boom in the maneuverable space of the manipulator can

be reduced to the motion of a point in a chart. A simple

extension of the model gives the notion of secondary charts,

which is a formal characterization of the intuitive concept

of free space relatively far away from obstacles. Within

secondary charts the forearm can be ignored. This makes

forearm planning trivial. Outside of the secondary charts,

however, forearm planning has to be tackled in its full

complexity.

This chapter begins with a discussion of the ~otivation

for free space models and then describes three models. Each

succeeding model is a refinement of the previous one. The

first two models are deficient in many respects but their

usefulness lies in clarifying important issues and leading

to the dynamic chart model. All three models have been

implemented for the simplified 2D manipulator and their

characteristics are described here for the 2D problem. The

dynamic chart model and some of its general properties

applicable to both the 2D and 3D problems are described in

section 4. Section 5 is on chart taxonomy. Section 6

presents the implementation of the 2D dynamic chart model.

- 106 -

Section 7 describes the obvious extension of the 20 solution

to three dimensions and its problems. A critical evaluation

of the 20 system identifies features whose complexity does

not justify their utility. This makes it possible to find a

more efficient 3D solution. Section b presents the

implementation of the cleaner 3D dynamic chart model.

5.1 JOINT SPACE AND CARTESIAN SPACE

Obstacles in 3D are described in a cartesian coordinate

frame and three values are required to describe a point.

Such a description will be termed a cartesian soace

representation. The 3D manipulator has six joints and a

description of its configuration can be provided either as a

six component vector specifying the various joint angles or

as a position and orientation of the forearm. The former

description is called a joint variable §Pace representation

of the manipulator. A trajectory is a configuration as a

function of time. The obstacles are naturally described in

cartesian space and trajectories in joint variable space.

If obstables and trajectories could both be represented in

one space, the overhead of conversion between the two spaces

would be eliminated and the problem of collision detection

and avoidance made more tractable.

- 107 -

The infrequent initialization hypothesis says that in

any environment a large number of trajectories will be

planned. Therefore representing obstacles in joint variable

space would be better than representing trajectories in

cartesian space. The transformation needed to represent

obstacles in joint space would hopefully need to be only

once for every environment. Representing trajectories in

cartesian space on the other hand will require, for

collision de~ection, a conversion into cartesian space every

time a trajectory is planned.

A point in cartesian space needs only three values to

identify it uniquely. Joint variable space is a six-

dimensional space.

specification of

There is therefore a redundancy in the

a cartesian space point making it

impossible to find an isomorphism between cartesian space

and joint variable space. Physically what this ' means is

that the hand can be at any point in cartesian space in an

infinite set of orientations. However, an isomorphism

exists between cartesian space and boom-space, a subspace of

the join£ variable space generated by the three boom joint

variables. For the general 3D manipulator the mapping

between cartesian space and boom space is isomorphic only if

the left- and right-handed configurations of the manipulator

are accounted for explicitly. The existence of isomorphism

simplifies boom planning but does not do much for forearm

- 108 -

planning. The reason for this is that the world the forearm

sees depends on the location of the boom tip and

tip can be located at an infinite set of

Consequently there is an infinite set of mappings

the boom

points.

of the

obstacle~ and free space into the forearm space. No finite

characterization of this infinite set of mappings is

possible and the best one can do is to compute a member of

this set as and when the need arises and discard it later.

5.2 THE FIXED GRID MODEL

There exists a 1-1 and onto mapping between cartesian

space and boom space. Free space comes in odd shapes

depending on the shapes of the obstacles. The fixed grid

model is a simple minded approximation scheme. It

approximates the jagged free space available for maneuvering

the boom by sectors in r-theta space. Figure 5.1 shows an

example of the free space approximation. The polygons in

the figure represent obstacles. Boom planning is done using

single-joint ~t £ time strategy.

There are two important problems with this model. The

first is the loss of valuable maneuverable space due to the

approximation. The arrow in Figure 5.1 points to a subset

of the free space that is lost due to the approximation. If

the loss is to be avoided the entire representation has to

- 109 -

be computed to a very fine detail. This is expensive and is

often ~nnecessary because the manipulator may never maneuver

in certain areas. The second problem is that this

representation can handle only those trajectories which

involve single joint motions. If the boom tip traced any

other type locus, boom collision checking would be

expensive. Even with single joint motions of the boom,

forearm collision checking is expensive. when the boom

moves keeping its r-joint value constant the boom tip traces

a circle. When the boom tip traces a circle the trajectory

area generated by the motion of the forearm is complex,

resulting in forearm collision checking being time

consuming. Thus a planning strategy that is good for the

boom will perform poorly for the forearm, and a strategy

that works for the forearm will cause problems fo~ . the boom.

5.3 THE VARIABLE GRID MODEL

In order to find a representation of free space that

avoids the loss of valuable maneuverable space that occurs

in the fixed grid model, the variable grid model was

introduced. An example of the free space approximation

using this is shown in Figure 5.2. The polygons in the

figure represent obstacles. The basic idea is to have the

grid point placement be controlled by the obstacle

descriptions. Each polygon is first approximated by a

- 110 -

series of constant r and constant theta lines, called the

r-theta envelooe. Of these, the ones that are between the

origin and the obstacle are used to set up the variable grid

model. An attempt to find an r-theta envelope such that the

extra space occupied by the r-theta envelope is less than

some prespecified fraction of the obstacle area did not lead

to anything interesting. So a few simple heuristics were

used instead. This model suffers from the same two problems

as the fixed grid model.

5.4 THE DYNAMIC CHART MODEL

The dynamic chart model solves the two problems that

plagued the fixed and variable grid models. Examples of

free space approximations using this are shown in Figures

5.3 5.5. The polygons in these figures are obstacles.

The permissible boom trajectories are ones where the boom

tip traces straight lines or one in which a linear

relationship between the boom joint angles is maintained.

The single-joint-at-a-time trajectory problem is solved

by deciding to model not the available free space but

navspace, the set of boom tip locations for which the entire

boom is safe. This is a crucial observation. For, in

navspace, the boom can be considered to be a point and the

movement of the boom no longer results in a complex

- 111 -

trajectory envelope but in just a line. The boom trajectory

planni~g no longer involves any intersection checks for

areas or volumes but is concerned with joining two points by

a line which is constrained to pass through well

characterized regions. The areas enclosed by the dotted

lines in Figures 5.3 - 5.5 are approximations to navspace.

The loss-of-maneuverable-space problem is solved by

imposing a structure on navspace. Navspace is approximated

by charts comprised of boxes in r-theta-phi space called

regions. Figure 5.3 shows six regions each of angular width

60 degrees. The region boundaries are indicated by radial

lines with thick arrows at their ends.

Navspace approximation is dynamic and can be changed by

other high level programs. The approximating ptocedure is

called refinement and the refinement level is called

resolution. Resolution refers to the angular width of the

region. The greater the resolution, or equivalently the

smaller the angular width of a region, the better the region

approxim~tes the relevant part of navspace. Since there is

a limit to the precision of placement of the hardware there

is a limit to the maximum resolution handled by the system.

Associated with each joint is the smallest angular change

the hardware can resolve. The minimum of these ranges over

the different joints is called the minimum angular range of

- 112 -

the manipulator hardware. The minimum angular range

determines the maximum resolution handled by the system.

The syste@ can refine to a greater resolution areas

where the manipulator needs to maneuver in, while elsewhere

the reso~ution may be quite crude. This flexibility is very

useful because refining every part of free space to the

finest level possible is expensive and often quite

unnecessary. This flexibility permits the system to decide

where refinement is essential and what the resolution should

be. If the resolution of a particular part of the

environment is not adequate, the system can refine that

portion of the free space. This is termed the selective

refinement capability. Figure 5.4 is the same as Figure 5.3

except that the portion -Of the free space between OP1 and

OP2 has been refined. Note that point S which was not

within a region is now inside a region. Figure 5.5 is

another example of refinement; it is the same as Figure 5.4

except that the portion of the free space between OP3 and

OP4 has been refined. Point G is now brought within a

region. This capability makes incremental modifications to

the region data structures inexpensive. Incremental

modifications are necessitated by m~nor changes in the

environment that might result from the transporting of

objects from one place to another.

- 113 -

Regions in 3D are made up of sectoroids and sectoroids

are composed of pascs (see Figure 2.2). The pasc

(~rallelepiped in ~pherical QOOrdinates) is the ~mallest

unit. eases, sectoroids and regions are bounded by constant

phi and tpeta surfaces. All pascs in a sectoroid have the

same phi limits. All sectoroids in a region have the same

theta limits. Pascs have associated with them a maximum and

minimum r value, called rmax and rmin, signifying the safe

limits of the boom extension. Situations occur where, for

the given angular limits, there does not exist a safe boom

position for any extension whatsoever. Such a situation is

indicated by equal rmax and rmin values. The difference

between rmax and rmin is called the safe limit interval.

Similar to pascs, sectoroids and regions have associated

with them maximum and minimum r values, called ·rmax and

rmin, signifying the best possible safe limits of the boom

extension. A region,

impassable if the safe

prespecified value.

sectoroid or pasc is considered

limit interval is less than some

In 2D regions are composed of sectoroids only. Similar

to the 3D case, sectoroids and regions in 2D are again

bounded by constant theta lines and have maximum and minimum

r values associated with them. The definitions of safe

limit interval and impassable are valid for 2D too.

- 114 -

It is worth reiterating the distinction between the

concept of navspace and its approximation by charts, and the

choice of a specific structure for the constituents of the

chart. Navspace and its approximation by charts is very

crucial to collision checking since it permits the boom to

be considered as a single point. The reason for imposing a

structure on charts is to have some selectivity in terms of

what parts of navspace would be refined and to what level.

The exact 'nature of the region and its components is

irrelevant to collision checking. The choice of a box in

r-theta-phi (for 3D) and a box in r-phi (for 20) is dictated

by the choice of a particular planning strategy described in

Chapter ~.

5.5 CHART TAXONOMY

The motivation and some introduction to the notion of

secondary obstacles and secondary maps have already been

presented in Chapter 4 and the introduction to 'this chapter.

The chart approximating navspace of the primary map is

called the primary chart, and the chart for the secondary

map is called the secondary chart. The pascs, sectoroids

and regions are appropriately prefixed with primary and

secondary according as they are members of the primary chart

or secondary chart.

Again, the

characterization

from obstacles.

- 115 -

idea of secondary

of large chunks

Within secondary

charts is a precise

of empty space far away

regions, for collision

detection and avoidance, the manipulator can be considered

to be a singl e point. This simplifies trajectory planning

significantly.

In order to be able to ignore the lateral property of

the manipulator, left and right maps are generated.

Corresponding to these two types of maps we have four

charts, the left primary chart, the right primary chart, the

left secondary chart and the right secondary chart.

Conceptually the primary and secondary charts are

similar. Storage considerations necessitate the merging of

the two into one. There is thus a left chart and· a right

chart and each has attributes of the associated primary and

secondary chart. Since the organizations of the left chart

and the right chart are the same only one of . them, called

the chart will be described in the following two sections.

The char.t components will be regions and a region will

consists of sectoroids. In 3D sectoroids will be made of

pascs. Regions, sectoroids and pascs have various

attributes describing them. Of these the only ones that are

not common to both primary and secondary charts are the r

values indicating the maximum and minimum safe boom

- 116 -

extensions. The r values for the

secondary chart components are computed

map and the secondary map respectively.

5.6 CHARTS IN 20

primary chart and

using the primary

This section describes the data structures for charts,

regions and sectoroids in 2D and the operators that can act

on them. Figures 5.3 - 5.5 show examples of charts in 2D.

5.6.1 Data Structures

Charts are represented as linked lists of regions,

permitting easy addition and removal of regions. Region

description includes a fixed set of attributes and a body.

The body is represented by a linked list. A linked list

representation is essential because the refine-chart

operation chops up regions resulting in a rearrangement of

the body, and this rearrangement is easily carr~ed out by

pointer adjustments.

The fixed attributes of a region include the

resolution, size, theta limits and their tangents, maximum

and minimum r values for the primary and secondary charts

between the theta limits of the region, and pointers to the

beginning and end of the body. The resolution is an integer

and indicates that the angular width of each sectoroid is

- 117-

resolution times the minimum angular range (see definition

in section 5.4). The size gives the number of sectoroids

per region. The theta limits specify the maximum and

minimum theta values of the region. The theta interval is

open at the lower end and closed at the upper end. Since

the theta values have a period of 360 degrees, the circular

ordering described in Appendix 2 is used to order the theta

values. To avoid having to compute the tangents of the

theta limits repeatedly, they are also saved. The r values

indicate the maximum and minimum safe boom extension values.

Finally the set of fixed attributes includes pointers to the

start and end of the sectoroid list forming the body.

The body of a region is a linked list of sectoroids.

The attributes of a sectoroid include its theta limits and

their tangent values, the maximum and minimum r values for

the primary and secondary charts between the theta limits of

the sectoroid and a pointer to the next sectoroid. The

theta limits are similar to the theta limits of the parent

region. The angular width of the sectoroid is determined

implicitly by the resolution of the region. The maximum and

minimum r values for a sectoroid, again, are similar to the

corresponding region attributes. The rmin and rmax of a

region are respectively the minimum of rmin and maximum of

rmax of the component sectoroids. The final attribute is a

pointer to the next sectoroid, the sectoroids being arranged

- 118 -

in increasing values of their theta-min value.

5.6.2 Operations

The permissible operations on charts are generate-chart

and refine-chart. These are implemented using the region

operation generate-region. The region operation is

described first followed by the chart operations.

The generate-region operator is given the theta limits,

the desired resolution and the primary and secondary maps,

and it generates a region along with all its attributes.

The only attributes that are complex to compute are rmax and

rmin. We will be interested in computing the rmax and rmin

for a sectoroid. The rmax and rmin for a region will then

be easy to compute. In fact, we only need to know how to

compute rmax for a sectoroid. To compute rmin, we first

compute rmax for the sectoroid obtained by rotating its

theta limits by 180 degrees; rmin is then the difference

between the length of the boom and the rmax for the rotated

interval. A function called maximum safe boom extension

(MSBE) computes the rmax within any sectoroid.

MSBE first determines the subset of the map that

intersects the given theta interval. The maximum safe

extension, max-ext, is set to the maximum permissible boom

extension. The obstacles in the map are sorted by their

- 119 -

rmin and so are the obstacles in the chosen subset. The

minimum of the maximum safe boom extension permitted by each

of the obstacles is the desired rmax. The analysis of each

obstacle proceeds as follows. If the rmin of the obstacle

is less than max-ext, the obstacle is analyzed in detail.

The detailed analysis includes the following for each edge

of the polygon. The section of the edge lying within the

specified theta limits is computed. The knowledge of the

slopes of the region's theta limits makes this very easy.

The introduction of virtual corners by the dilation

transformation ensures that the extrema of the distance,

from the origin, of points on the line are at the two end

points of the line. Max-ext is set to the minimum of its

current value and the minimum of the r value of the two end

points of the line.

The generate-chart operator generates six regions each

60 degrees wide with a default resolution of 180. This

resolution is equivalent to an angular width of 60 degrees

for the sectoroid theta interval.

The refine-chart operator is given the theta limits,

the desired resolution and the primary and secondary maps.

The operator refines the given interval to a degree such

that the resolution of every region in it is greater than or

equal to the desired resolution. Figures 5.3 5.6 are

- 120 -

examples showing selective refinement. All regions within

the giv~n interval with resolution better than the specified

value are left untouched. A region that intersects the

given interval has the common part chopped off from it. A

new region having the desired resolution is developed over

the common interval using the generate-region operation.

5.7 EXTENDING 2D IDEAS

In 2D a region is a box in r-theta space. There are no

restrictions over the length of the theta interval. Rmax

and rmin denote the maximum and minimum safe boom extensions

over the given theta interval. This definition has a

natural extension to the 3D problem. A region in 3D is

specified as an arbitrary rectangle in theta-phi that has

associated with it an rmax and rmin. Since in 2D regions

can be of any angular width the corresponding theta-phi

rectangle for the 3D region can have any theta width and any

phi width.

The operators that are needed are, as before,

generate-region, generate-chart and refine-chart. The next

few paragraphs show how the last of these operators runs

into considerable difficulty when a direct extension of the

corresponding 2D operator is attempted.

- 121 -

In two dimensions, refine-chart first computes all

regions that intersect the given interval. Those regions of
',

this set that have a resolution better than the specified

value are left alone while the others get chopped up into

two sections, one lying within and the other outside of the

given interval. New regions with the desired resolution are

developed over the inside sections.

A similar approach at the 3D level leads to two

problems. Figure 5.6 shows an example of region placement

in the theta-phi plane. The dotted rectangle is the area

that is to be refined. The first of the problems is that

having the theta-phi space occupied by a random assortment

of regions, it is difficult to find the set of relevant

regions intersecting any given rectangle in theta-phi space.

The other and the more important problem is that the chopped

up sections of regions will no longer be rectangles in

theta-phi. Figure 5.6 shows a region on the boundary that

is chopped up and whose shaded part is no longer

rectangular. Since by definition regions have to be

rectangl ~ s in the theta-phi space, additional computations

are necessary before the non-rectangular section can be

considered as a region.

- 122 -

The solution to the first problem is to insist that

regions be not arbitrary rectangles, but uniform squares

covering the theta-phi plane. Figure 5.7 shows a uniform

grid of regions in the theta-phi plane. This is no

restriction at all, since in terms of approximating

navspace, -it is equivalent to the seemingly more general

scheme.

There are two possible solutions to the second problem.

The first is to decompose the concave remnant of the region

into convex subcomponents and the second is to refine the

entire problem region (without chopping it up) to the

desired resolution. The first is no good because it is

computationally expensive and is plagued with horrible

book-keeping chores. So we adopt the second'solution.

To summarize, we require that

1) all regions be squares of the same size in the

theta-phi space, and

2) an entire region will get refined if it intersects

the given area and has a resolution less than the desired

value.

These requirements simplify the algorithms for refine-chart.

Generate-chart is similar to its 2D counterpart. The

complexity of generate-region, however, is considerably more

in 3D than in 2D, because of the extra dimension involved.

- 123 -

With this introduction I will describe the data structures

for charts, regions, sectoroids and pascs and the three

permissible operations on them.

5.8 CHARTS IN 3D

5.8.1 Data Structures

A chart is a two-dimensional array of regions. The

position of a region in the array indicates its position in

the theta-phi plane. Regions are squares in the theta-phi

plane (30 degrees wide). In all there are seventy-two

regions. There could have been 18 or 288 or some other

integer number of regions. If there are too many regions,

the storage requirements will increase. If there are too

few regions, each of them will occupy a large theta-phi

square. The reason for imposing structure on navspace

through the introduction of regions etc. was to provide

some selectivity in terms of what parts of navspace would be

refined and to what level. Having very few regions would

destroy this goal. We wanted a number that is neither too

small nor too large. This led to the choice of seventy-two

as the number of regions. Region description includes a

fixed set of attributes and an array of sectoroids. The

sectoroid description also includes a fixed set of

attributes and an array of pascs.

- 124 -

The fixed attributes of a region include the theta and

phi limits, the resolution, the grid-size, the region-size

and the rmax and rmin for the primary and secondary charts

over the given theta-phi square. The theta and phi limits

specify the maximum and minimum theta and phi values,

respectively, of the region. The two intervals are equal

and are both open at the lower end and closed at the upper

end. The circular ordering defined in Appendix 2 is used

for ordering the phi values. The resolution is an integer

and indicates that the angular width of each sectoroid and

pasc is the resolution times the minimum angular range (see

definition in section 5. 4) . The phi angular width of a

sec toroid is the same as the theta angular width of a

component pasc and they are both equal to the grid-size.

There are as many pascs in a sectoroid as ·there are

sectoroids in a region and region-size indicates this

number. Rmax and rmin indicate the maximum and minimum safe

boom extension values.

The sectoroid attributes include two things. The first

is the phi-maximum of the phi interval over which the

sectoroid is defined. The second consists of rmax and rmin

for the primary and secondary charts over the sectoroid

theta-phi area. The theta-phi area covered by the

sectoroid, is the full theta interval of the region but the

phi interval is only of size equal to the region grid-size

- 125 -

and extends up to the phi-maximum of the sectoroid.

The pasc attributes are similar to the sectoroid. The

first is the theta-maximum of the theta interval over which

the pasc is defined. The second consists of rmax and rrnin

for the primary and secondary charts over the pasc theta-phi

area. The pasc theta-phi area is of width equal to the

region grid-size and extends up to the theta-maximum of the

pasc and the .Phi-maximum of the parent sectoroid.

5.8.2 Operations

The allowable operations on charts are generate-chart

and refine-chart. These are implemented in terms of the

region operator generate-region.

The generate-chart operator generates a 12 * 6 array of

regions each with a default resolution of 90. This

resolution is equivalent to an angular width of 30 degrees

which is the angular size of the region. Generate-chart

uses the operator generate-region described below.

The refine-chart operator is given the theta and phi

limits of a rectangular area, the desired resolution and the

primary and secondary maps. The operator ensures that all

regions of the primary and secondary charts that intersect

the given area will have a resolution greater than or equal

- 126 -

to the desired value. It does so by first computing a list

of all regions which intersect the given area. Those

regions of this set that have a resolution better than the

desired value are left untouched. The others are replaced

by newly generated regions that have the desired resolution.

The new regions are obtained by using the operator

generate-region described next.

The generate-region operator is given the theta and phi

limits of the region, the desired resolution, the primary

and secondary maps and whether the region generated is for

the left or right chart. The operator generates a region

along with all the attributes of the region.

The only attributes that are complex to compute are the

rmax and rmin fields. We will be interested, pri~arily, in

computing the rmax and rmin for a pasc. The rmax for a

sectoroid is then the maximum of the rmax of the sectoroid

pascs and the rmin for a sectoroid is the minimum of the

rmin of the sectoroid pascs. Similarly the rmax and rmin

for a region are computed by knowing the corresponding

values for the region's component sectoroids. In fact, we

only need to know how to compute rmax for a pasc. To

comput e rmin, we first compute rmax for the pasc obtained by

rotating its theta and phi limits by 180 degrees and

changing the manipulator configuration from left to right or

- 127 -

right to left; the difference between the length of the

boom and the rmax for the rotated interval is the value of

rmin. A function called maximum safe boom extension (MSBE)

computes the rmax within any pasc.

MSB~ computes rmax by finding, for all the planar faces

of obstacles that go through the theta-phi box of the pasc,

the point on them and inside the theta-phi box that is

closest to the origin. Constant-theta surfaces are cones

and consequently their intersection with planes gives second

degree curves. Finding the closest point to the origin on a

planar figure bounded by a second degree curve is

computationally expensive. A conservative simplification is

to replace the theta-phi boxes by a minimum bounding viewbox

that is a pyramid whose axis extends to infinity. Two of

the faces of the pyramid are the constant-phi surfaces. The

remaining two faces enclose the constant-theta surfaces.

Figure 5.8(a) shows a cross sectional view of the theta-phi

box and the minimum bounding viewbox. Figure 5.8(b) shows

the projection of the minimum bounding viewbox on the X-Y

plane. Note that one face of the viewbox is tangential to

the outer cone while the other is strictly inside the inner

cone. The apex of the viewbox is at the same point where

the theta-phi box had its apex.

- 128 -

MSBE first computes the subset of the map that has

obstac~es that have a non-trivial intersection with the

viewbox.

set to

The maximum safe extension of the boom, max-ext is

the maximum permissible boom extension. The

obstacles in the map are sorted by their rmin and so are the

obstacles in the chosen subset. The minimum of the maximum

safe boom extensions permitted in the viewbox by each of the

obstacles is the desired rmax.

The analysis of each obstacle proceeds as follows. If

the rmin of the obstacle is less than max-ext, the obstacle

is analyzed in detail. Analysis of an obstacle means the

analysis of the corners, edges and faces of the obstacle.

Since the faces of an obstacle are sorted by rmin of the

faces, the number of faces that need to be considered is

reduced.

Corner Analysis For each corner of the

obstacle, if the distance of the corner from the origin is

less than max-ext and the corner is inside the viewbox then

max-ext is set to the distance of the corner.

Edge Analysis The following computations are

done on each edge of the obstacle. If there is a virtual

corner on the edge then max-ext is updated with the distance

of the foot and the analysis of the edge is over. Updating

max-ext with a distance is assigning max-ext the minimum of

its current value and the distance. Otherwise, the section

- 129 -

of the edge lying within the viewbox is computed using a

generalization of the Sutherland and Cohen clipping

algorithm [Newman and Sproull (1973)] and max-ext is updated

with the distances of the end points of this section.

Face Analysis : The following computations are

carried out on each face of the obstacle. If the rmin of

the face is less than max-ext then the face is analyzed in

detail. If there is a virtual corner on the face and it

lies inside the viewbox then max-ext is updated with the

distance of the virtual corner and the analysis of the face

is over. If the face is outside the viewbox then also the

analysis of the face is over. Otherwise, a complete face

analysis is called for. This involves the analysis of four

pseudo-edges generated by the intersection of the four faces

of the viewbox and the given obstacle face. What ~. this means

is that, with respect to the viewbox, the effective part of

the obstacle face may be much less than the entire face.

Since the closest point to the origin lies somewhere along

the boundary of the effective part, the possible

pseudo-edges generated by the intersection of the viewbox

faces with the obstacle face have to be considered. The

pseudo-edge analysis computes the following for each face of

the viewbox. If the obstacle face does not intersect the

infinite viewbox face then that viewbox face is ignored.

Otherwise, the standard edge analysis is carried out on the

- 130 -

finite edge generated by the intersection of the finite

obstacle face and the infinite viewbox face.

~ lost free space

- 131 -

j

· I
I

Figure 5. l · The Fixed Grid Model

- 132 -

---------- ··

A .
. TI lost free space

Figure .5. 2 The Variable Grid Model

- 133 -

~ - -......,.
Jfl'''_...,. _. ... 7 -....._''I ,

/ ~ : I '
I /' : I ,

I/ I . '/'-'·'
I / I I/ ,/ '

I I : I , . ..- . . \.-,
It I ! /,/ / ----"\ \
f. I ~/.. . . -- }

·- - - - ----· i ·-·- c_!·----·--··'-r~=:-: :::_ _______ ,_I_-'""- ·- ·~--~---~------- t;;----- -

t I : I
\ 1 I 1 \, I .//~ /
, I ·" ./ ""')........ J
', ' .,, I \ / J

~ ' ./
~ i / , '~
,,~ -- ;_-- _,..,... _,.

------~

I
I r \

\

Figure 5. 3 The Dynamic Chart Model

- 134 -

,,----
/"'\"' --:---

/ }' t

/ " / /
I 1

I I
I f I, .//
i I ! I/'// - - - ••""'\ ~

./
I

r ' ov.~~--- ' . ~-~-·-· __________ --- - __j --·--·---·r · --- -------·---r---1 - --- --- ,--- ·- ----------- P-
\ (\ I I

' h\ ·: I ' :\ \ , ' j' ' r/ t \ \ \ / I
\, \ \ /

\. ,, \/ ,...., I

'.. '. J ', ,' J , r , '... '
c-...._ ' }. ;, '" ---t \ / __ ;

I

I
f

\ ...
\
)l

_) s

Figure 5. 4 Chart Refinement - 1

~-----....

~
\

'
\

; '

\
\
\

\
\

' ' '

- 135 -

I

I
I

I
-I
I
l

\

Figure 5. 5 . Chart Refinement - 2

J
p4

~ p3

"' /

\

- 136 -

r- -- -- ---,
I I
1 I
I I

' f I

:
r
I

L- · ~....-.... ------ , -~.J~

~ ~

Figure 5. 6 Random Placement of Regions

theta

A

(0, 0)

(pi /2, (pi/2,
-pi) Di}

·----·
0

):.:-phi

--

(0, pi)

Figure 5. 7 Uniform Grid of Regions

I
I

,
,

~ ,

- 137 -

constant phi surfaces

constant theta surfaces

(a) · Viewbox and cross section of theta-phi box

y

-------------T~------0-+------~~~---------------------J-. X
\
\

' ' ·, -
(b) Projection of viewbox in X- Y plane

Figure 5. 8 Minimun1 Bounding Viewbox

- 138 -

CHAPTER 6

TRAJECTORY MODELLING AND CALCULATION

When the manipulator's links move they trace a volume

in 3-space called the trajectory envelope. The

represen~ation hierarchy of section 2.2.1 showed how it is

possible to reduce the complexity of the trajectory envelope

from a two-element solid to a single surface or even a

single line. The single surface is called the trajectory

surface and the line the trajectory trace. Collision

detection requires determining the intersection of the

trajectory envelope and the obstacle faces. The complexity

of this task depends on the nature of the trajectory

envelope. A surface or even a line can be such as to make

this intersection check numerically very expensive. It is

therefore imperative that we look for additional constraints

to further reduce the complexity of collision ~hecking.

Since obstacle faces are planes in cartesian space, if the

trajectory surface were a plane in cartesian space collision

checking would be simple. This chapter discusses trajectory

primitives that will simplify collision checking.

For the trajectory surface to be a plane in cartesian

space, the boom tip locus must be a straight line in that

space. The cartesian space straight line locus for the boom

tip was implemented for the 20 problem. There is an

- 139 -

extension of the 2D algorithm for three dimensions.

Unfort~nately this 3D extension has no simple decomposition

and is, computationally, an expensive solution. To

understand why a natural extension of the 2D algorithm is

computationally expensive requires an understanding of how

boom tip loci are planned. The reader will therefore have

to wait till Chapter 8 where boom planning is discussed.

Section 8.4 on "Extending 2D Ideas" discusses the problems

with cartesian space straight line loci for the 3D boom tip.

We therefore settle for a straight line boom tip locus not

in cartesian space but in boom space; and this is

relatively easy to compute. Since straight lines in boom

space have no linear counterpart in cartesian space, this

curve is approximated by a sequence of straight lines in

cartesian space. Forearm planning is done along these

approximated sections so that plane faced trajectory

surfaces are generated.

Chapter 2 stated that the collision detection and

avoidance system's activities resulted in a list of typed

intermediate configurations of the manipulator, where the

type indicated the nature of the subsequent section of the

trajectory. The constraints discussed in the first two

sections of the chapter will be examples of the type

specifications.

- 140 -

The first two sections of this chapter present the 2D

and 3P trajectory primitives. The third section briefly

describes the trajectory calculations that need to be done

for running the hardware.

6.1 2D TRAJECTORY PRIMITIVES

The straight line in cartesian space constraint is

implemented for the 2D system and so the discussion will be

restricted to the 2D problem. The constraints require that

the boom tip always move along straight line sections in

cartesian space. The forearm is restricted to two types of

motion. When the boom tip is stationary the forearm tip

traces a circle, and when the boom tip is moving the forearm

tip traces a locus that is a straight line parallel to the

boom tip line.

The trajectory surface is a parallelogram when the boom

is moving and is the sector of a circle when the boom is

stationary. The first is a figure bounded by straight lines

and the second has straight lines and a second degree curve

for a boundary. Checking for intersection of polygons and

the parallelogram is very quick. With the sector, the

intersection checks are somewhat more expensive. Circles

are expensive during intersection checks because a square

root computation takes 10 to 20 times the time for a simple

- 141 -

arithmetic operation.

6.2 30 TRAJECTORY PRIMITIVES

The constraints require that the boom joint angles be

linear in each other during the motion from the start to the

goal. The boom tip thus traces straight lines in boom

space. Boom planning is now made numerically simple

compared to the straight line in cartesian space trajectory.

The forearm motion is again restricted to one of two

types depending on whether the boom tip is moving or is

stationary. When the boom is stationary the forearm tip

moves on the surface of a sphere such that the forearm is

always in the same plane. When the boom tip is moving, we

would like the forearm tip to move such that a linear

trajectory surface is generated in cartesian space.

Unfortunately, the cartesian space description of the

straight line in boom space is nonlinear. To simplify

matters, the boom space straight line is approximated by a

sequence of cartesian space straight lines. Along any such

cartesian space straight line segment the forearm tip moves

along a straight line parallel to the segment (both the

segment and the forearm tip being in the same cartesian

space plane).

- 142 -

The trajectory surface is therefore a parallelogram

when the boom is moving and is the sector of a circle when

the boom is stationary. The parallelogram is easy to

handle. The sector of a circle is somewhat more complex for

the same reasons mentioned in the 20 case.

6.3 TRAJECTORY CALCULATIONS

..
'I' he terms "t r'a j e c t 0 r y n and " t raj e c t 0 r y l 0 c us " were

defined in section 1.2. The trajectory planning routines

compute a trajectory locus. To generate a trajectory a

sequence of positions and orientations along the trajectory

locus is selected. The position problem is solved for each

of the intermediate configurations. Interpolation

polynomials are computed for each joint; these polynomials

specify the behavior of the manipulator between intermediate

configurations. The set of sequences of polynomials in

time, one for each joint, specify the trajectory. The

polynomial sequences are used by the trajectory servoing

routines for running the hardware. If the intermediate

configurations are "close" to each other, the trajectory

will result in the manipulator tracing a curve in joint

space that is close to the trajectory locus that was

planned. This will guarantee safety of the manipulator.

This section briefly reviews previous results on polynomial

trajectories.

- 143 -

Polynomial trajectories are trajectories where the time

histories of joint angles are specified as polynomial

sequences. Polynomial trajectories have been extensively

studied by Paul(1972) and Lewis(1974). The popularity of

polynomial trajectories arises from the facts that

continuity of joint variable position, velocity and

acceleration can be guaranteed and the coefficients of the

polynomials are calculable non-iteratively.

The five cubic polynomial sequence is used to compute

the time history of a joint between any two intermediate

positions. This trajectory appears to minimize the "wander"

and "overshoot" problems that occur with other polynomial

sequences such as the cubic-quartic-cubic or

quartic-cubic-quartic [Lewis(1974)].

Joint angle limit

accounted for by the

violations have

collision detection

already been

and avoidance

routines. Joint angle acceleration limits, however, need to

be taken care of. The extrema of the acceleration will

occur at end points of the trajectory section because the

acceleration of a cubic trajectory is linear. The ratio of

the maximum acceleration to the limit acceleration can be

determined for the relevant joints, the maximum of these

ratios computed and the time interval scaled up

proportionate to the square root of this acceleration rate.

- 144 -

This guarantees observation of the acceleration limits and

eliminates the need to recompute polynomial coefficients.

The details are presented in Lewis(1974).

The trajectory typing is used implicitly in various

places. Consider the trajectory calculation in 3D for

example. With straight line trajectories in boom space,

only one polynomial sequence has to be computed. The other

two joint angles are linearly related to the first one and

so they are easily computed once the first one is known.

However, polynomial trajectories have to be computed for

each of the forearm joints. Cartesian space straight line

trajectories are calculated by computing polynomial

trajectories through a large number of points along the

cartesian space line.

- 145 -

CHAPTER 7

GOAL FEASIBILITY AND IMPOSSIBLE SITUATIONS

The first section of this chapter discusses the goal

feasibility analysis that is carried out before planning

begins. The second section discusses how the planning

system is constantly on the watch for situations where it

would be unable to find a safe plan. If as a result of some

partial planning activity the system realizes that a goal is

unattainable, the system will immediately abandon the

planning and inform the human supervisor of the failure.

7.1 FEASIBILITY STUDY

The static analysis is done before any planning is

attempted. It includes boom placement safety ~nd forearm

placement safety checks. If the goal boom tip position is

within a primary pasc, boom placement is feasible.

Otherwise, the system repeatedly refines the area in the

immediate vicinity of the goal until either the goal boom

tip is within a pasc or the resolution limit is reached and

the system returns complaining that the goal is not

feasible. The area of the chart that undergoes refinement

is similar in the two systems. For the 2D case the area is

ten degrees on either side of the goal theta value. For the

3D case it is ten degrees on either side of the theta and

- 146 -

phi values of the goal configuration. A Fibonacci

incrementing scheme is used in the 2D case to determine the

resolution at the next refinement. In the 3D case a simple

doubling (binary) scheme is employed i.e. the angular width

of pascs/sectoroids is halved at each new try.

The forearm feasibility check is very simple. If the

forearm is safe from collisions in the final configuration

of the manipulator, forearm placement is feasible.

Otherwise the system complains.

1.2 IMPOSSIBLE SITUATIONS

Unlike the feasibility study of the last section, this

section refers to analysis that is carried on during

trajectory planning. Though the manipulator may ba safe in

the goal configuration, there is no guarantee that it can be

maneuvered into that position. An example of such a

situation is given in figure 7.1. The figure shows the

start and goal configurations of the manipulator. The.

manipulator cannot get to G because the shortest distance

between A and B along a line through the origin is less than

the length of the boom. Such a situation cannot be

identified by the goal feasibility analysis phase. It is

identified during the mid-section planning by checking the

safe limit intervals of all the regions that the boom tip

- 147 -

locus passes through. If the safe limit interval is below a

prespecified limit, further refinements of that region are

attempted. In 2D the refinement is carried on ~ntil the

safe limit interval exceeds the prespecified limit or the

resolution limit is reached; in the latter case the system

returns failure. In 3D the refinement is carried on to a

resolution level eight times greater than the starting

resolution of the region i.e. the region is refined three

times. At the end of each refinement the safe limit

interval is checked and if it is greater than the

prespecified limit the refinement is terminated. If even at

the end of three attempts the safe limit interval is below

the limit, the trajectory is modified to pass through a

neighboring region. The system can recognize situations

when the start or goal boom tip position is ~~ompletely

enclosed by impassable regions since this occurs when there

are no more neighboring regions available for subgoal

placement. On such occasions the system complains that the

goal is not feasible.

The above analysis ensures the feasibility of

maneuvering the boom into the final configuration.

Maneuverability of the boom into the final position does not

ensure that it will be possible to maneuver the forearm

safely along the proposed boom tip locus. Figure 7.2 gives

such an example. In the figure S and G are the start and

- 14e -

goal boom tip positions. The dotted line is the boom tip

locus. At point A, the distance ABC is less than the length

of the rorearm, and thus there is no way to maneuver the

forearm safely along the proposed boom tip locus. At points

on the boom tip locus that are relatively far away from

obstacle faces the forearm will not, in general, be the

source of any insurmountable difficulties. Close to

obstacles, as is often the case near the starting and goal

configurations, freezing the boom tip locus with complete

disregard to the forearm can lead to problems. This is the

motivation for introducing the terminal phase planning stage

as distinct from the mid-section planning phase. The

terminal phase is responsible for planning of maneuvers

close to obstacles and the mid-section phase deals with

planning of maneuvers relatively far away from ~9bstacles.

This separation greatly reduces the chances of the forearm

getting stuck.

- 149 -

goal

Figure 7. 1 Blocked Boorn

Figure 7. 2 Blocked Forearn1

- 150 -

CHAPTER 8

MID-SECTION PLANNING

An activity that a manipulator routinely performs is

that of transporting obje8ts. In the simplest case the

object i3 resting on a flat support both in the initial and

final states. These supports are obstacles that the

manipulator must avoid bumping into. Of course the

situation could be more complex. The object might be inside

a cave like recess or may need to be deposited in a box etc.

Specific obstacle configurations (cave, crater, channel

etc.) suggest specific heuristics for maneuvering near or

about them. Maneuvering in the absence of obstacles

likewise suggests special heuristics.

Trajectory planning is decomposed into two ·'. different

phases called mid-section phase and terminal phase. Each

phase embodies a planning strategy and specific heuristics.

Heuristics may be refined or added to the strategy without

destroying the flavor of the strategy. Terminal phase

planning uses obstacle configuration dependent heuristics

while mid-section planning uses obstacle independent

heuristics. The nomenclature arises from the observation

that near th e start and goal, obstacle configuration

specific heuristics are most likely to be useful, while in

between, the obstacle independent heuristics are probably

- 151 -

more useful. Mid-section planning is discussed in this

chapter while terminal phase planning and the interactions

between the two are presented in the next.

Mid-section planning strategy views trajectory planning

as consisting of boom planning and forearm planning. Of the

two components boom planning is considered to be more

important. Once a boom trajectory is planned, the planning

of a forearm trajectory to follow the boom is attempted. If

a safe forearm trajectory is found then trajectory planning

is over. Otherwise the failure is analyzed and the analysis

used to modify the boom trajectory. After boom trajectory

modification another attempt at forearm planning is made.

If the system cannot find a safe trajectory after a

prespecified number of iterations, it returns a fa~lure.

There are two good reasons for considering boom

planning to be more important than forearm planning. First,

the boom on the JPL arm is almost four times as iong as the

forearm. Thus the boom is likely to be the more

constraining of the two. Second and more importantly, the

notion of navspace (see Chapter 5) and its approximation by

charts permits the boom to be treated as a single point.

Thus boom planning is reduced to path planning for a point

through the chart and does not involve any intersection

checks that normally go with planning the motion of a finite

- 152 -

sized link. This reduction makes the boom a natural

candid~te for planning before the forearm.

Mid-section boom planning operates in two modes. The

first mode is used when terminal phase planning is also a

part of the trajectory planning process and the second mode

is used when mid-section planning alone is used to plan the

complete trajectory. In the first mode mid-section planning

is a one-shot affair and a direct trajectory from the start

S to the goal G is planned. In the second mode, a safe

point P is made a subgoal. A safe point is a point in a

secondary pasc, or if the safe limit interval of the

secondary pasc is very small, it is a point in a primary

pasc whose safe limit interval exceeds a prespecified value.

Planning then proceeds from S to P and from G to P. Using

the reversibility principle the G to P trajectory is

reversed and the two trajectory sections together · form the

complete solution.

The reason for introduction of these two modes of

operation is best conveyed by an example. Suppose

mid-section planning alone is used for the problem of Figure

1.1. If a direct trajectory from S toG is planned, the

system will have no idea as to what orientation the forearm

should be in as the manipulator approaches the goal

configuration. Since, in the goal configuration, forearm

- 15 3 -

maneuverability is severely restricted, a wrong choice of

forearm orientation as the manipulator enters the channel

near the goal will require expensive backtracking. To avoid

this two direct trajectories, one from the S towards G and

the other from G towards S are planned. The two trajectory

sections are matched at a safe point P. If terminal phase

planning were incorporated, the peculiarities of obstacle

configurations near S and G would be handled by the terminal

phase planning routines. The mid-section planning would

then be responsible for maneuvering in areas away from

obstacles and a direct trajectory computation would suffice.

6.1 PATH PLANNING FOR A POINT

Within navspace, the boom can be considered to be a

point and boom planning reduces to path planning for a point

through the chart approximating navspace. Point path

planning is based on an adaptation of the well known

algorithm for approximating a curve by a sequence of

straight lines such that every point on the curve is within

distance e from the line segment approximating the portion

of the curve the point is on. The recursive algorithm is

best explained using figure 8 • 1 • Let line AB be the first

approximation to the curve. Let point c be the point on the

curve farthest from AB. If the distance of c from AB is

within the tolerance limit then AB is the desired

- 154 -

approximation. Otherwise the curve is split at

curve AC and curve CB. The algorithm is

recursively to sections AC and CB.

C to form

now applied

A straightforward adaptation of this simple algorithm

serves a~ the basis for boom planning. Note that the above

algorithm works even if different thresholds were used for

different parts of the curve. This observation gives a clue

as to how the linear approximation algorithm can be used for

point path planning. Note that each region has associated

with it an rmax and rmin that specify the safe interval

limit, or an e, within which the boom tip must lie when it

goes through that region.

Figure 8.2 shows how the modified linear approximation

algorithm works. The dotted lines show adjacent .\regions of

a part of a chart and their safe limit intervals. Every

pair of neighboring regions has a non-trivial intersection

of their (rmin, rmax) interval. S and G are th~ start and

goal boom tip locations. Boom planning conceptually

proceeds as follows. Join the start and goal boom tip

positions by a straight line. Find the set of regions the

line passes through. For each region compute the maximum

and minimum r value of the points on the section of the boom

trajectory passing through it. If the r values are within

the (rmin, rmax) interval for every region the trajectory

passes through,

determi~e the

- 155 -

then boom planning is over.

region where the violation is

Otherwise

worst and

introduce a point inside it as a subgoal and rep~at the

above process recursively. In Figure 8.2 the arrow points

to the plgce where the violation is the worst and shows the

subgoal P. The final desired locus consists of the two line

segments SP and PS.

A further generalization of the simple recursive

curve-approximation algorithm is possible. The

approximating line segments need not be straight lines but

can be any desirable curve. In fact for the 3D system the

algorithm is used to plan a boom tip locus that is linear in

the boom joint angles.

8.2 BOOM PLANNING IN 20

e.2.1 Preliminaries

Boom planning is equivalent to finding the path of a

point through the charts; the path consists of a sequence

of cartesian space straight lines joining the start (S) and

goal (G) boom tip locations.

The theta = 180 degrees position is a dead zone for the

2D boom. Given S and G there are two ways of getting to G.

One of these would require going through the 180 degree line

- 156 -

and this trajectory is avoided. The permissible direction

of trave_l is the one that does not cross the 180 degree

mark. The circular ordering defined in Appendix 2 works

only for angles less than 180 degrees and so if the angular

spread between S and G in the permissible direction of

motion is more than 180 degrees, a subgoal is introduced

near about the theta = 0 degree line. This would ensure

that between any two subgoals the angular spread in the

permissible direction of travel is less than 1b0 degrees.

Note that subgoals are always introduced at safe points.

Furthermore, it is convenient to assume that the theta

value of the goal is not less than the theta value of the

start. In case it is not so, S and G are interchanged, a

safe trajectory planned and finally the points along the

locus reversed. The reversibility principle (section 2.3)

justifies interchanging S and G and reversing the locus.

d.2.2 The Main Algorithm

This subsection describes the main algorithm for direct

mid-section trajectory planning between two boom tip

locations S and G. The algorithm is an elaboration of the

scheme outlined in section b.1. It is assumed that

1) Sand G are such that the theta value of G is

greater than the theta value of S,

- 157 -

2) the boom tip locus will be in the smaller of the two

angula~ ranges between S and G, and

3) the theta = 180 degree line will not cross the boom

tip locus.

Assumptions (2) and (3) are made valid by introduction of

suitable subgoals.

Region list computation The first step of the algorithm

computes the list of regions, called Rlist, the straight

line SG passes through. Figure 8.3 shows an example where

Rlist has five regions in it. Rlist is then sorted in

increasing order of the minimum theta value of the regions.

If the safe limit interval of any of these regions is less

than a prespecified value, the region is refined until

either the safe limit interval is large enough or the

resolution limit is reached. In the latter case the

trajectory planning is abandoned.

Trajectory fixing= 1 The second step attempts to get

the straight line locus to lie within region safe limit

intervals. Adjacent regions that have intersecting (rmin,

rmax) intervals are grouped together. If Rlist is

decomposed into more than one such group, subgoals are

introduced in the boundary region of each group. Figure 8.3

shows two such groups, the first containing regions RO and

R1 and the second containing R2, R3 and R4. Two subgoals PO

- 158 -

in region R1 and P1 in region R2 are introduced. PO and P1

are coonected by a radial line. Simple heuristics decide on

the r value of PO and P1. At the end of this proc~ss the

boom tip locus will be a sequence of straight lines SPO,

POP1 and P1G. Each element of this sequence is either

radial or passes through a set of regions where every pair

of neighboring regions has a non-trivial intersection of

their (rmin, rmax) interval. The radial section of the

trajectory is safe and the algorithm of section 8.1 is

applied to each non-radial section.

Trajectory fixing - £At the end of the second step,

the boom tip locus is a sequence of straight lines and each

element of this sequence is either radial or non-radial.

The non-radial section lies within the (rmin, rmax)

intervals of the regions it passes through. The third step

is very similar to the second step and operates with

sectoroids instead of regions.

The sequence of straight line segments obtained after

the three step planning process is the desired safe boom tip

locus.

Extreme L values To simplify computing the extreme r

values of a straight line through a region, it is seen that

the foot of the perpendicular from the origin to the

straight line does not fall inside the line. Figure 8.4

- 159 -

shows examples where the dotted lines show three adjacent

regions. S and G are the start and goal boom tip locations

and the foot of the perpendicular to SG from the origin is

at P. P is inside SG.

If the foot is inside the line and is also inside the

(rmin, rmax) interval of a primary sectoroid, then the foot

is treated as a subgoal. In Figure 8.4(a) P is inside a

sectoroid (solid boundaries) and is introduced as a subgoal.

If the foot is inside the line but not inside a primary

sectoroid, a subgoal is introduced at the same theta value

as the foot such that the foot is within a primary sectoroid

and this algorithm is repeated recursively for the two

straight line sections so obtained. Figure 8.4(b) shows P

lying outside the sectoroid r-limits. Q is therefore

introduced as a subgoal and the foot of the perpendicular

routine applied recursively to SQ and QG. Simple heUristics

decide on the r value of Q.

At the end of this process . it is assured that the

extreme r values of any section of the candidate boom tip

locus is at the end points of the section. This operation

is carried out on every non-radial section of the boom tip

locus.

- 160 -

b.3 FOREARM PLANNING IN 2D

The boom tip locus is a sequence of straight line

sections. No forearm planning is required for parts of

these sections that lie within the secondary chart. This

section first discusses forearm planning for a segment of

the boom tip locus that is completely outside the secondary

chart. Subsection 8.3.3 contains a discussion on how this

scheme is used to handle boom tip locus sections that are

partly inside and partly outside the secondary chart.

The forearm is restricted to two types of motions

called the circle and pgram motions. During circle motion

the hand traces a circle and the boom is stationary. During

pgram motion the hand traces a line parallel to the boom tip

locus generating a parallelogram for the trajectory ~_ surface.

Pgram motions occur when the boom moves. Forearm motions

consist of sequences of pairs of circle and pgram motions.

Circle motion computations determine the best forearm

orientation the forearm can be placed in for the subsequent

pgram motion. The pgram motion continues until the

parallelogram generated by the forearm motion is just short

of touching an obstacle or the end of the current boom tip

locus section is reached. If the former happens then

another pair of circle and pgram motions follows.

- 161 -

After every pair of circle and pgram motions a check is

made to see whether the manipulator has advanced. If the

manipulator joint angles are different then planning is

continued. Otherwise forearm planning is abandoned and the

system returns to the top level requesting a modification of

the boom trajectory. Implementation of the boom tip

trajectory modification has not been completed. In the

current implementation the system only prints a failure

message.

~.3.1 Circle Motion

Figure b.5 illustrates definitions connected with

circle motion. The forearm joint angle of -pi (in practice,

the lower forearm joint angle limit) is called the most

favored prientation. The safety of the boom trajectory

having already been guaranteed, if the forearm is placed at

its most favored orientation, the chances of a forearm

collision would be reduced tremendously. However it may not

be possible to achieve such a forearm placement due to

obstacles. The angular interval, about the forearm's

current orientation, over which it can move safely is called

the S-interval (for safe interval). With regard to forearm

placement, the best that can be done is maximum (most

favored angle, minimum (S-interval)). Circle motion

computations determine this angle.

- 162 -

Now, the forearm circle is defined as a circle with

center _ at the boom tip and the length of the forearm as

radius. To determine the S-interval, the system first

computes the r-theta envelope of ,the forearm circle. Next

it makes a list of all the obstacles whose r-theta envelope

intersects the forearm circle's r-theta envelope. For each

obstacle it determines the forbidden phi interval, which is

an interval of phi values for which there is a forearm and

obstacle collision. The complement of the union of the

forbidden phi intervals is a set of safe phi intervals. Of

this set, the interval that contains the current forearm phi

value is the one that determines the forearm mobility. The

forbidden phi interval of an obstacle is the union of the

forbidden phi intervals of its edges. This is computed by

determining the phi values of the intersection of \ the edge

with the forearm circle. Note that an edge is ignored if it

is completely outside the forearm circle.

8.3.?. Pgram Motion

Figure 8.6 illustrates definitions connected with pgram

motion. During pgram motion the boom is moving and the

forearm tip traces a line parallel to the boom tip locus.

In Figure 8.6 GS and F1F2 are the boom tip and forearm tip

loci respectively. Such a forearm motion generates a

parallelogram, called pgram, and hence the name pgram

- 163 -

motion. Pgram motion computations determine how far this

parallelogram can be extended along the current boom tip

locus· section. Two terms that will be used in the following

discussion will now be defined. The parallelogram whose

base is the full length of the current boom tip locus

section is called the full pgram. The line collinear with

the forearm at the begining of the current boom tip locus

section is called the I-line, for initial line. In Figure

e.6, parallelograms GSF1F2 and PSF1Q are the full pgram and

pgram respectively and SF1 is the I-line.

The system first determines the r-theta envelope of the

full pgram. Next it makes a list of all obstacles whose

r-theta envelope intersects the above envelope. For each

obstacle, the point on its boundary and within the full

pgram and closest to I-line is called the danger point of

the obstacle. The danger point of an edge is similarly

defined. From amongst the set of danger points, the one

closest to I-line represents the point the 'forearm will

first collide with if it attempts to trace the full pgram.

The corresponding point (P, in Figure 8.6) on the boom tip

locus determines the extent of safe travel along the current

boom tip locus and the given initial forearm orientation. A

circle motion at this point will reorient the forearm and

ready the system for another pgram motion.

- 164 -

Danger point determination The danger point of an

obstacl~ is the danger point of one of its edges. The

danger point of an edge is determined by finding the point

on the section of the edge that lies inside the full pgram

and is closest to the I-line.

A computationally simpler scheme for determining the

danger point of obstacles is the following: Define ftlocus

to be the finite line traced by the forearm tip as it moves.

In Figure 8.6 line F1F2 is the ftlocus. Consider the set of

all corners of the obstacle that are inside the full pgram,

and the points of intersection of every edge of the obstacle

and ftlocus (both treated as finite. line segments). The

point in this set that is closest to I-line is the danger

point of the obstacle.
'· ~ .

b.3.3 Partial Forearm Planning

This subsection describes forearm planning . along boom

tip locus sections that are partly inside and partly outside

the secondary chart. The two cases that need to be

considered are one where the end of the section alone is

within a secondary chart and the other where the beginning

alone is inside. The first case is handled by the general

techniques outlined earlier in this section. In the second

case the circle motion computation can be eliminated and the

- 165 -

forearm placed in the most favored orientation. Being

within a secondary chart guarantees the safety of the

forearm independent of its orientation.

8.4 EXTENDING 2D IDEAS

Cartesian space straight line trajectories for the boom

tip worked very well for the 2D problem. Unfortunately they

don't work as well for the 3D system. This section

discusses in some detail the reasons for their failure. The

reasons are not obvious. It was only after a substantial

part was implemented that some of the issues were cleared.

The section also provides the motivation for the choice of

boom space straight line trajectories for the boom tip. The

section concludes with a discussion of extensions of 2D

forearm pl~nning to 3D.

e.4.1 Cartesian Soace Straight Lines

Section 5.8 on "Extending 2D Ideas" discussed the

reasons for introducing a uniform grid of regions to

approximate navspace. A simple extension of the 2D ideas

will result in the following algorithm for boom ' planning

using cartesian space straight lines. Compute the list of

all the regions the trajectory will go through. Next, for

each region compute the maximum and minimum r values of

- 166 -

points along the section of the trajectory through it. The

analysis then proceeds as outlined in section 8.1. If no

part of the trajectory lies outside the (rmin, rmax)

intervals of the regions it goes through the trajectory is

safe. Otherwise a subgoal is introduced at the worst

violation point and the algorithm applied recursively to the

two halves of the trajectory.

As a consequence of operating in 3D the above algorithm

has two severe problems. The first is the computation of

the list of regions the trajectory passes through. This is

an expensive computation that has to be repeated every time

a subgoal is introduced because the region list changes with

a change in the boom tip locus.

The second problem is the determination of the maximum

and minimum r values along a section of the trajectory that

lies inside a region. These problems arise because one of

the region boundaries is the constant theta surf~ce which is

a cone, a second degree surface. Determining the end points

of a trajectory section inside a region requires computing

the intersection of a straight line with a second degree

surface in cartesian space. This requires a square root

computation and square root computations are 10 to 20 times

more expensive than simple arithmetic operations.

- 167 -

Note that in the 2D system the counterpart of the

constant theta surface is absent and therefore all the

compu~~tions were just solutions of linear equations. One

solution to the second problem is to conservatively

approximate the region boundaries by a minimum bounding

viewbox with cartesian space planar surfaces. Having to

compute these surfaces every time trajectory planning is

done is very expensive. On the other hand, saving the

computations will cost in storage. The solution is no

longer attractive when one considers the fact that such an

approximation has to be done at three levels

sectoroids and pascs.

regions,

There is more than the square root computation that

makes cartesian space straight lines bad and that is the

constant conversion between the boom space and cartesian

space at every point in the planning stage.

There is a partial solution to the above pr.obl ems and

it involves the definition of a region. The 0-onstant phi

surface is linear in cartesian space and so if the constant

theta surface were replaced by another surface that is

linear in cartesian space all the overhead associated with

the squar e root computations and the conversion between the

two spaces (boom and cartesian) would be avoided. A linear

surface to replace the constant theta surface is the

- 168 -

surface's tangent plane that is mid-way between the region's

phi boundaries. Regions are now no longer boxes in

r-t~€ta-phi space but are bounded by constant phi surfaces

and planes through the origin that are tangential to cones

mid-way between the phi-boundaries.

also have a similar structure.

Sectoroids and pascs

The complexity of

generate-region, generate-chart and refine-chart are quite

close to that of the same operators with the older

definition. The storage requirements are more, however,

because storing characteristics of a plane through the

origin requires three words while a constant theta surface

needs only one word of storage.

There is one problem that the above representation of a

region has not yet solved and that is having to recompute

the region list every time a subgoal is introduced. This

recomputation . has to be done at the level of sectoroids and

pascs too. The overhead of this need for repeated

recomputation is very significant. Thus though part of the

problems associated with the constant theta surface were

solved, cartesian space straight lines for the boom tip

locus had to be abandoned.

- 169 -

8.4.2 Boom Space Straight Lines

The better solution is to choose boom-space straight

line trajectories for the boom tip and stick to the original

constant theta and constant phi boundaries of regions. The

advantages are several. Space requirements are lesser for

the original region definition. Constant theta and constant

phi surfaces are very simple surfaces in boom space and so

determining maximum and minimum r values along a trajectory

section inside a region is trivial. Subgoal introduction

without having to recompute the region list is possible with

proper decomposition of the planning process. This is

achieved by planning the boom tip locus first in the

theta-phi space alone and then in r-space. The 3D point

path planning problem is thus reduced to a two-dimensional

plus a one-dimensional problem which is far simpler than

anything that was possible with the cartesian space straight

line trajectory algorithms.

The reader might, at this stage, wonder why boom space

straight line trajectories were not chosen in the first

place. I touched upon this matter in the introduction to

Chapter 6 on "Trajectory Modelling and Calculationn. Recall

that the notion of navspace permits the trajectory envelope

to be reduced to a single surface and that collision

detection requires determining the intersection of this

- 170 -

surface with obstacle faces. The complexity of this task

depend ~ on the nature of the trajectory surface. Since

obstacle faces are planes in cartesian space, inte~section

checking would be simple if the trajectory surface were a

plane in cartesian spac~. Now, the trajectory surface will

be a plane in cartesian space if

(1) the boom tip locus is a straight line in that

space, and

(2) the forearm were then restricted to move such that

the hand traced a line parallel to the boom tip locus. This

is what led us to try cartesian space straight lines for the

boom tip locus.

Now that we have settled for boom space straight line

trajectories for the boom tip locus what happens to the

complexity of the trajectory surface? Since boom space

straight lines have no simple representation in cartesian

space, the trajectory surface will be complex. But the boom

tip locus can easily be approximated by a sequence of

cartesian space straight lines and the forearm planning

routines need not know how the boom tip locus was arrived

at. This will make the trajectory surface a set of planes

and collision checks should therefore be simple.

- 171 -

One final point that is worth noting is that even

though we have to approximate the boom tip locus by

cartesian space straight lines, it needs to be done

once for every boom trajectory planning. Thus

conversioq overhead problem identified at the begining

Chapter 4 is reduced to a one-time conversion overhead.

only

the

of

The

advantage arises because an expensive computation is pulled

out of a loop and is done outside.

8.4.3 Forearm Planning

In 20 the forearm is restricted to circle and pgram

motions. The natural extension of the circle motion would

permit the forearm motion to move anywhere on the surface of

a sphere with length of the forearm as radius and the boom

tip as the center of the sphere. Of course this motion

would be subject to joint angle limits. The · natural

extension of the pgram motion would require that the forearm

tip trace a line parallel to the boom tip locus and thus

generate a parallelogram for a trajectory surface.

Now, trajectory hypothesis and modification, and

collision detection are expensive if the forearm tip is

allowed unrestricted motion on the surface of the above

mentioned sphere. Therefore we have to impose additional

constraints on the forearm motions to keep the planning

- 172 -

problem tractable. The constraint we impose is to require

that tbe forearm always travel in a cartesian space plane.

Thus piece-wise linear cartesian space planar surf~ces are

the only surfaces that the forearm may generate. With this

restrictipn, forearm planning is essentially similar to the

2D forearm planning problem. In fact forearm planning is

the only component of the 3D solution that is obtained as a

natural extension of the corresponding component of the 2D

solution.

8.5 BOOM PLANNING IN 3D

Boom planning in 3D is also equivalent to finding the

path of a point through the charts. This time the path

consists of. a sequence of boom space straight lines from the
~

start(S) to the goal(G) boom tip locations.

There is a lot of similarity between the 2D and 3D

planning systems. First, there is a permissible direction

of travel defined for the phi joint. This direction avoids

the (-175, 175) degree dead zone for the phi joint. Second,

a subgoal is introduced, if necessary, near the phi=O plane

to ensure that between any two subgoals the angular spread

in the permissible direction of travel is less than 180

degrees. Lastly, steps are taken to ensure that the phi

value of G is not less than the phi value of S.

- 173 -

There is a difference between the two systems in that

the 3D manipulator has the lateral property. The goal being

specffied as a cartesian space position and orientation of

the hand, the manipulator can be at the goal in either the

left- or right-handed configurations. The initial choice is

the same lateral configuration at the goal as at the start.

If it is not possible to find a trajectory to the goal

maintaining the same lateral configuration a subgoal with

theta=O is introduced. With theta=O the boom is vertical.

From the vertical position, the boom can turn the

manipulator into either a left-handed or a right-handed arm

and this makes configuration switching possible.

Thus, all that needs to be described is boom path

planning with no configuration switching and the phi angular

spread less than 180 degrees. Boom space straight line

trajectories are planned first in the theta-phi space and

then in the r space. The details are described below.

8.5.1 Theta-phi Space Planning

The discussion here deals with the two-dimensional

theta-phi space and a straight line means a curve linear in

theta and phi. A straight line joining S and G is chosen as

the desired locus. A list of primary regions through which

this line passes is computed. Certain minimal checks on the

- 17 4 -

safe limit intervals of the regions are made. If for

example a region is impassable a fixed number of attempts

are wade to further refine the region. If the region is

still impassable, subgoals are introduced to avoid this

region. Note that this is possible only because it is in

3D. The heuristics minimize the number of subgoals and aim

for subgoals in regions with large safe intervals. Figure

e.7 shows how a region R is avoided. In Figure e.7(a) R can

be avoided by introducing the subgoal A or two subgoals P

and Q. Subgoal A is chosen since the number of subgoals is

smaller. In Figure 8.7(b) since the number of subgoals is

identical, the choice is made on the basis of the safe limit

intervals of the regions in which the four points lie. If

the start or goal boom tip position is completely boxed in

by impassable regions the system complains that the goal is

not feasible.

8.5.2 B space planning

The theta-phi space planning resulted in a sequence of

theta-phi space straight lines which passed through regions

whose safe limit intervals were above a prespecified

threshold. R joint planning is next done at three levels -
region, sec toroid and the pasc level. At each level two

things happen. First a list is made of the elements -

region, sectoroid or pasc - the trajectory passes through.

- 175 -

Next the trajectory goes through a refining process

identical to the one described in "Trajectory Refining-1" of

sectien 8.2.2. The only difference is that boom space

straight line loci are used instead of cartesian space

straight lines. Hence the determination of the extreme r

values or the section of the locus through an element is

trivial - the extreme values are at the end points.

The sequence of boom space straight line segments

obtained after the theta-phi space and the three level -

region, sectoroid and pasc - r spaae planning is the desired

safe boom tip locus.

6.6 FOREARM PLANNING IN 3D

The boom tip locus is a sequence of boom space·., straight

line sections. No forearm planning is required for parts of

these sections that lie within the secondary chart. The

parts that are outside are approximated by car~esian space

straight lines. The forearm planning for a cartesian space

straight line segment of the boom tip locus that is

completely outside the secondary chart is discussed in this

section. The simplifications that are possible as a ·

consequence of the boom tip locus segment being partly

within and partly outside the secondary chart is exactly

similar to the 2D case described in section e.3.3 and so

- 176 -

will not be described again.

A~ in the 2D case the forearm is restricted to two

types of motions called the sphere and pgram motions.

During sphere motion the boom is stationary and the forearm

moves in the plane formed by the lines passing through the

initial and final forearm configurations.

motion the boom is moving and the hand

parallel to the cartesian space straight line

During pgram

traces a line

approximating

the boom tip locus. Pgram motion generates a parallelogram

for a trajectory surface and hence the name. Sphere and

pgram motions are counterparts of the circle and pgram

motions of 2D.

The boom tip locus is approximated by straight line

segments. Consider the plane generated by the movement of

the boom when its tip moves along a straight line section.

The forearm joint angles fphi, which will place the forearm

in this plane, and ftheta=-90 is called the most favored

orientation. The safety of the boom trajectory having

already been guaranteed, if the forearm is placed at its

most favored orientation, the chances of a forearm collision

would be reduced tremendously. The presence of obstacles

might make it difficult if not impossible to maneuver the

forearm from its current orientation into the most favored

orientation.

- 177 -

If the forearm is not already in the most favored

orientation, there is an infinite number of ways to maneuver

the fo~earm into this orientation. The one we permit is the

simplest for determining whether the forearm will collide

with an obstacle when attempting to do so. It requires that

the forearm travel in the plane determined by the lines

passing through the initial and the most favored

orientations. Such a plane is called the forearm plane.

Sphere motion computations determine how far the forearm can

travel in this plane before a collision will occur. Having

placed the forearm in this "best" orientation, a. pgram

motion is attempted.

The pgram motion computations determine how far the

forearm can travel, generating the parallelogram trajectory

surface as it goes along, before a collision will occur or

the end of the current boom tip locus section is reached.

In the former case another pair of sphere and pgram motion

follows. After every pair of sphere and pgram motions a

check is made to see whether the manipulator has advanced.

If the manipulator joint angles are different then planning

is continued, otherwise forearm planning is abandoned and

the system returns to the top level requesting a

modification of the boom trajectory.

- 178 -

As mentioned in section 8.4.3, with the restriction

that the forearm movement be such that it trace a planar

surfa e, 3D forearm planning is similar to 2D forearm

planning. 3D forearm planning requires computations similar

to the 2D forearm planning computations and similar to the

intersection checking of planes conducted by MSBE described

in section 5.8.2. Since feasibility of the ideas involved

in forearm planning has been shown by implementations

elsewhere, forearm planning for the 3D system was not

implemented.

8.6.1 Sphere Motion

The sector traced by the forearm if it moved from its

starting orientation to the most favored orientation is

called the forearm plane sector (FTS). Figure 8.8 shows an

example of a FPS. 0 is the boom tip, OS and OG 'are the

starting and most favored orientations of the forearm.

The system first determines the r-theta-phi envelope of

FPS. Next it makes a list of all the obstacles whose

r-theta-phi envelope intersects the above envelope. Every

face of every obstacle in this list that has its r-theta-phi

envelope intersecting the r-theta-phi envelope of FPS is

analyzed. If the face and FPS do intersect, the point on

the line of intersection that makes the smallest angle

- 179 -

(equivalently, the smallest tangent of the angle) with line

OS is cpmputed. The minimum of such angles determines the

limit to which the forearm can be safely maneuvered in the

forearm plane.

Since the boundary of FPS is a second degree curve,

determining the point that makes the smallest angle with OS

requires square root computations. To speed up sphere

motion computations, FPS can be approximated by a sequence

of triangles, each triangle subtending an angle, say, no

larger than 30 degrees at 0. Determining the point of

greatest constraint will then be reduced to solving linear

equations. The saving in speed has been achieved at the

cost of a conservative approximation to the area swept by

the forearm.
'·\ .

8.6.2 Pgram Motion

As in the 2D case, we define the terms I-liae and full

pgram. The line collinear with the forearm at the begining

of the current boom tip section is called the I-line, for

initial line. The full pgram is the cartesian space

parallelogram whose base is the full length of the current

boom tip locus section and one of whose sides is I-line.

- 180 -

The analysis of the extent to which the forearm can

travel before a collision will occur proceeds exactly like

the analysis for sphere motion computations. Instead of FPS

use the full pgram and instead of determining the smallest

angle a point on ~he line of intersection (of the face and

the plane) makes with OS, determine a point closest to

I-line.

The point on the boom tip locus corresponding to the

limiting safe forearm position determines, for the given

initial forearm orientation, the extent of safe travel along

the current boom tip locus section.

8.7 SUMMARY AND CONCLUSIONS

This chapter introduced the notions of mid-section and

terminal phase planning. Mid-section planning deals with

maneuvering the manipulator in regions relatively far away

from obstacles. Section 8.1 discussed a well-known linear

approximation algorithm and an adaptation of it that serves

to make it useful for boom planning. Section 8.2 discussed

cartesian space straight line trajectory planning for the

boom tip and section 8.3 introduced primitives for forearm

motions in 20. Section 8.4 discussed obvious extensions of

2D ideas. It showed that in 3D boom space straight line

boom tip loci are better than cartesian · space straight line

- 181 -

loci, and that the 20 forearm planning would work for 3D.

Section, 8.5 discussed 3D boom planning and section b.6 3D

forea~m planning. Chapter 9 presents terminal phase

planning.

The n~uristics used in planning are very simple. It is

the powerful representation schemes that lets the system

plan safe trajectories within reasonable computation times.

This dissertation is an example of the observation that with

better and more elaborate models of the environment the

system can get by with simpler and simpler planning

strategies.

..
A

- 182 -

c

Figure 8. 1 Linear Approximation

I
I

I
I

I
SG - -· trial

(SP, PG) -- final

Figure 8. 2 Modified Linear Approxi1nation

- 183 -

Figure 8. 3 Trajectory Fixing

- 184 -

Sectoroid
G

4-
(a) Foot of perpendicular in side

+
(b) Foot of perpendicular outside

Figure 8. 4 Extre1nc r Values

of
1-
/

- 185 -

direction of travel

A - S- interval

B - forbidden pni interval (obstacle)

C - forbidden phi in te rva l (edge)

Figure 8. 5 Circle ~11otion

- 186 -

1 g ram Paralle o r
trajecto y

----- ~ surface,...... ,..
Q ·-"~}?

,.,. ~2 • .-. • .::: :d;;o· ~ . -~ /1 _..,...,. .. > --::'l'

G~ --//s J

I-linej 1

· ure 8. Ftg

· n of dil·echo
travel

Motion 6 Pgram

- 187 -
. --. ...-. . ____. .

A-~----·---·....- I
I • - •- ·- + II -r-.·--.--

•j
I I

G

I ,'
I

I ,'
I ;1

I
S R I

', I
' I I

~~~------ ----- - --f Q 

(a) 

~·-·-·-·-·-·4~ . .. 

I l -'·, 
I ·, 

I ,-------:-; G , 
I / 

/ sp---- / 
' / ' . / ' -----· / 

' ' l / 
-'-1------ ---- ·- __ V._ 
p' IQ 

(b) 

Figure 8. 7 Theta-phi Sp0ce HcurisU.cs 

.,... ... -- .............. , ..- ......... , ..... 
,' ... ' , ' ,' ' ,' . ' 

G \ 

Figure 8. 8 Forc~rn1 Plane Sector 



- 188 -

CHAPTER 9 

TERMINAL PHASE PLANNING 

Trajectory planning is decomposed 

phases called mid-section phase 

Mid-section planning was presented in 

chapter deals with terminal phase 

into two di.fferent 

and terminal phase. 

Chapter 8 and this 

planning. Each phase 

embodies a planning strategy and specific heuristics. 

Heuristics may be refined or added to the strategy without 

destroying the flavor of the strategy. Terminal phase 

planning uses obstacle configuration dependent heuristics 

and the nomenclature arises from the observation that near 

the start and goal obstacle configuration specific 

heuristics are most likely to be useful. 

Unlike the mid-section phase strategy, the \ terminal 

phase strategy consists of planning pairs of adjust .. and move 

motions. A sequence of such pairs of motions puts the 

manipulator in a state from which the mid-section strategies 

can take over. 

The move motions are simple. The boom tip moves along 

a line collinear with the forearm and away from the hand, 

and the forearm maintains its orientation in cartesian 

space. This motion continues until either the boom tip 

reaches a safe point (and terminal phase planning is over) 

or a potential collision is recognized. In the latter case, 



- 189 -

the system proceeds with another adjust and move motion 

pair. At the end of every such pair of motions a check is 

made to see that progress is being made. If the manipulator 

joint angles remain unchanged, the system returns a failure. 

The adjust motion orients the forearm to reduce the 

chances of a collision during the subsequent move motion. 

For this motion, the nature of obstacle configurations is 

more important than the nature of the obstacle itself. Thus 

the fact that the obstacles form a cave like structure is 

more important to terminal phase planning than the fact that 

one of them is a prism. Obstacle configurations can be very 

neatly classified and the process of identifying them gives, 

for any boom tip location and forearm orientation, the 

amount by which the forearm can move in a given direction. 

9.1 2D CHANNELS 

The world the forearm sees, for a give~ boom tip 

location, is a circle with center at the boom tip and length 

of the forearm as radius. For forearm collision checking 

purposes this world can be characterized by S-interval. 

S-interval was defined in section 8.3 to be the angular 

interval, 

which it 

S-interval 

about the forearm's current orientation, over 

can move safely. If the end points of the 

are not the forearm joint angle limits then the 



- 190 -

forearm is restricted in its motion on both sides, not by 

joint _angle limit stops but by obstacles. Such an interval 

is ref erred to as a 2D channel and is shown in Figure 9.1. 

The adjust motion heuristic for a 20 channel is to position 

the forearm in the center of the 2D channel. 

9.2 3D CONFIGURATION TYPES 

In three dimensions the world of the forearm, for any 

given boom tip location, is the sphere with center at the 

boom tip and the length of the forearm as radius. For 

forearm collision checking purposes this world is 

characterized by S-area. S-area is a 3*3 square in 

fphi-ftheta space and is centered at the (fphi, ftheta) 

value of the forearm. Each square of S-area is of side 5 

degrees. It has a 0 or 1 associated with it according as it 

is safe or not for the forearm to maneuver within the solid 

angle represented by the square. Figure 9'.2 shows an 

example of S-area with center at (pi/4, pilL~) and where the 

size of the component square is 5 degrees. A 

non-maneuverable square is shown shaded. 

The maneuverability considerations take into account 

forearm joint angle limits. Thus a square in S-area will be 

not maneuverable if joint angle limits would be violated 

when the forearm is inside it. Elsewhere the constant fphi 



- 191 -

and constant ftheta surfaces are first conservatively 

approx1mated by planes. Computations are then carried out 

to d termine whether any part of an obstacle lies within 

this pyramid and if so the original square in S-area is 

marked non-maneuverable. 

The obstacle configurations in the immediate vicinity 

of the forearm are classified according to the S-area 

patterns. Figure 9.3 shows some patterns and their names. 

Figure 9.3(a) is a crater; it could be a box too. S-area 

shows that the forearm is enclosed on the top, bottom, the 

sides and the front. Figure 9.3(b) is an arch. The forearm 

is now enclosed on the top, bottom and the sides but not in 

the front and back. Figure 9.3(c) is a right overhang and 

the forearm is enclosed on the top, bottom and the left. 

Similarly, Figure 9.3(d) is a left overhang. Figure 9.3(e) 

is a channel in 3D, having side and bottom enclosures. 

Other configuration types can similarly be identified. 

The adjust motion heuristics for these different 

obstacle configurations are determined in a straightforward 

manner. When inside a crater or an arch the forearm retains 

its current orientation. For all other configurations, the 

forearm moves to the boundary between the center square and 

the best neighbor square. The best neighbor square is 

defined as the one that is maneuverable and has the maximum 



- 192 -

number of maneuve~able neighbors. If there is more than one 

such candidate one of them is picked up at random. 

9.3 COMMENTS 

Termi~al phase planning uses the adjust and move 

motions described in this chapter. The adjust motion 

computations for the 3D problem are expensive if done in 

software. This is because the maneuverability of 9 squares 

has to be determined and each of them is an involved 

computation. Terminal phase planning has not been 

incorporated into either the 2D or 3D systems. 

Incorporating them into the 20 system will be simple but the 

30 system would require considerable programming effort. 

We saw that terminal phase planning using software is 

expensive. If terminal phase planning were done at 

execution-time, the computations could be speeded up with 

some hardware support. I am suggesting the use Qf proximity 

sensors with a sensitive volume spread over the solid angle 

subtended by a element of S-area. The sensor turns on 

whenever there is an object within (1) the solid angle 

monitored, and (2) within a distance equal to the length of 

the forearm. The sensors are all rigidly attached to the 

forearm. The logic for analyzing real-time data from an 

array of 9 or even 25 of these sensors is quite simple; the 



- 193 -

logic incorporates the simple adjust motion heuristics 

described in the last section. 

In section 1.1, when describing a prog~ammable 

manipulator system, I had indicated that very little is 

known abo~t modifying trajectories dynamically based on 

sensory data the system may acquire during execution. The 

use of proximity sensors described above would be a step in 

investigating execution time strategies. 



- 194 -

Figure 9~ 1 2-D Channel 

f theta 

A. 
! 

Figure 9. 2 S-aTea 

o ·maneuvcr2.ble 



- 195 -

(a) Crater (b) Arch 

--;;;·/-
r<----<---I .. _~L_ __ 

I /~ 
I ////i --- L_ .. -·· ·. --. / ---~ 

~~ 
(c) Right Overha.ng (d) Left Overhang 

(e) 3-D Channel 

Figure 9. 3 Obstacle Configuration Types 



1 0 • 1 ~:-H Y T W 0 S Y S T E tvl S ? 

- 196 -

CHAPTER 10 

SYSTEM DETAILS 

My goal was to solve the collision detection and 

avoidance •problem for the 3D manipulator. The difficulty of 

visualizing 3D objects added to the complexity of the 

problem. The natural thing to do was to consider a 

two-dimensional analogue of the problem and then hope to 

generalize it to three dimensions. Of course such 

generalizations do not always work and since the 2D system 

was very large (approx. 125 pages of source programs) it 

was indeed a big gamble that I took. 

Attempting to 

helpful. Operating 

solve the 2D problem was extremely 

in two dimensions made it. easy to 

visualize the different problem spaces and transformations 

between them. Again, it is easier to try out ideas in two 

dimensions than in three dimensions. This relattve ease of 

experimentation led me to implement the fixed and variable 

grid models of free space, and the experience so gained 

enabled me to hit upon the dynamic chart model, the most 

crucial component of my solution. Finally, having carried 

the solution to completion for the 2D problem, I had 

identified all the necessary components and their 

interactions for a solution in the 3D case. 



- 197 -

: had expected the generalization to three dimensions 

to be quite straightforward. I was wrong on three aspects 

and w~s right on one aspect of the generalization. The four 

parts that needed generalization were 

1 ) obstacle descriptions and definitions of 

transformation on obstacles 

2) chart and region structures 

3) boom planning and nature of the boom tip locus 

4) forearm planning 

In the first three cases the 3D solution is far more complex 

than the 2D one. Only in the fourth case is the 3D solution 

comparable in complexity to the 2D problem. I will not go 

into the details of what is a natural extension of the 2D 

solution and what its problems are. These details have been 

presented in sections 4.4, 5.7 and 8.4, each titled 

"Extending 2D Ideas". Section 8.4 discusses both boom and 

forearm planning. 

In conclusion I can only say that the task of finding a 

solution to the 3D problem would have been extremely 

difficult, if not impossible, had I not solved the 2D 

problem. I make this claim even after having said that in 

seventy-five percent of the cases, a direct generalization 

of the 2D solution to the 3D had not worked. I do so 

because the solution to the 2D problem gave me considerable 

insight into the collision detection and avoidance problem. 



- 198 -

10.2 IMPLEMENTATION DETAILS 

T~ e solution presented in the preceding chapters has 

been verified by designing and implementing computer 

programs. I would have liked to attach listings of the 

programs • along with this report. The large size of these 

programs makes it difficult, if not impossible, to do so. 

Almost all the programs were written in SAIL [VanLehn 

(1973)] and run on a DEC PDP10 computer. The PDP10 has a 

KA10 processor. The latest processor for the same computer 

operates about six times faster than the KA10. This should 

be borne in mind when looking at the performance figures for 

the implementation. Below are described a few details of 

the final versions of the 2D and 3D systems. 

10.2.1 2D ~ystem 

The 2D system consists of about 

approximately 5000 lines of SAIL code. 

organized into modules as follows 

Representation 

125 pages or 

Tne system is 

1. Environment- Decompose, enlarge and dilate routines 

2. Free space - generate chart and region and refine 

chart 



- 199 -

Planning 

1. Boom Planning 

~ . Forearm Planning 

3. 2Dplan - Planning executive 

Utility Routines 

1. Input I output- Environment and free space models 

need not be generated every time; once 

computed they are saved on disk and read 

whenever needed 

2. Plotting routines for the Tetronix and HP-plotter 

for visualizing obstacle transformations 

and navspace models. These were based on 

some routines written by Scott Roth. 

Executive 

Armplan - program that coordinated all the above 

modules 

Core requirements for the entire system are 40K or more 

depending on the number of obstacles the environment 

contains. The problem shown in Figure 1.1 is solved in 3 

seconds of CPU time. This timing is for unoptimized code 

(array bound checking suppression etc. is not done). 

Generate-chart and refine-chart routines all take less than 

a second of CPU time. The output of the collision detection 

and avoidance system has yet to be interfaced with a real 

manipulator. 



- 200 -

10.2.2 3Q System 

Qne to core limitations of 56K per job, the 3D system 

had to be organized as a multi-pass system. The passes and 

the length of the SAIL source text in pages are as follows 

Environment Data Processing (40 pages) 

Navspace Model Generation (35 pages) 

Boom Planning - Mid-section (50 pages) 

Forearm Planning - Mid-section (30 pages) 

Terminal phase planning (30 pages) 

Trajectory Calculation (10 pages) 

The trajectory calculation routines have been 

implemented before [Lewis (1974)]. I have implemented the 

first three passes. The fourth and fifth passes have been 

designed to a very detailed level but the implementation not 

completed. 

The core requirement for each pass is well ' below the 

56K limit. Execution times for the passes are in seconds of 

CPU time and I think it should be possible to plan complete 

trajectories within 10 seconds. Given a KL10 processor on 

the same PDP10 computer, this means that trajectories can be 

planned in a few seconds. 



- 201 -

10.3 A CRITICAL R~VIEW OF THE CURRENT IMPLEMENTATION 

10.3 Size of software 

The core requirement for the 3D trajectory planning 

system t~at does collision detection and avoidance is very 

high, especially, if one wants to build a minicomputer 

system controlling a manipulator. There are two comments I 

would like to make about this. 

1) The system handles a large number of special 

situations which seldom arise in practice. A significant 

reduction in size is possible if one is willing to give up 

"completeness" of solution and eliminate many of the special 

checks. 

2) One of my goals was to make the planning times 
'·, 

comparable to the execution times. With this in mind any 

piece of data that was used more than a few times was 

computed and saved; the saving in time is paid ,for in terms 

of storage. A careful look at the programs might indicate 

where some of the storage can be reduced at a small price in 

execution time. 



- 202 -

10.3.2 Subgoal Characterization 

Wb~never a collision is detected sub goals are 

introduced. The subgoal is always a configuration. 

Complete specification of a configuration is very often too 

much commi~ment. It would be desirable to have the planning 

system capable of planning with a set of possible 

configurations and delay deciding on the specific 

configuration until further downstream. 

A significant portion of the blame for the current 

characterization of subgoals lies in the use of the linear 

approximation algorithm for trajectory hypothesis and 

trajectory modification (see Figures 8.1-8.2). The ideas 

behind the dynamic chart model that permit very simple 

manipulator descriptions are valid independent of ~the basis 

for hypothesizing and modifying trajectories; they admit a 

single point description of the boom and consequently make 

boom collision detection almost trivial. So it should be 

possible to find different underlying strategies for 

hypothesizing and modifying trajectories that will permit 

better subgoal characterization. 



- 203 -

10.3.3 Handling Large Objects 

_Tfi e current versions of the implementation assume that 

the manipulator only transports objects smaller than its 

hand. Incorporating the capability of transporting larger 

objects is conceptually not difficult. The following points 

need to be considered for handling large objects 

1) Because of the selective refinement capability it is 

easy to make incremental changes to the charts. These 

changes are necessitated by the changes in the environment 

caused by the moving of obstacles. 

2) The object to be transported is first enclosed by a 

minimum bounding parallelepiped. A contraction 

transformation, the inverse of the enlargement 

transformation, is applied to the parallelepiped model. All 

collision detection and avoidance in the primary problem 

space is carried out using the smaller parallelepiped 

representation resulting from the ' contraction 

transformation. Contraction applied to objects being 

transported around, nullifies the enlargement done on 

obstacle descriptions. 

3) Primary problem space representations alone, and not 

secondary problem space representations, should be used for 

planning when the hand is carrying an object larger than its 

hand. 

4) Boom planning is carried out as before but forearm 



- 204 -

planning needs to be augmented by collision checks for the 

volume generated by the object in the hand. The types of 

moti ~ns the forearm executes are the same as before. The 

volume of space traced out by the object in the hand due to 

the motion of the manipulator is a polyhedron. Collision 

detection would now require determining intersections of 

polyhedra. Since the size of objects will vary there is no 

hope of finding an inexpensive one-time only transformation 

which will simplify this task. 



- 205 -

CHAPTER 11 

CONCLUSIONS 

This thesis presented a solution to the safe trajectory 

planning problem for mechanical manipulators. It discussed 

computer implementations of the solution for 2D and 3D 

manipulators with sliding joints. Section 1 of this chapter 

recapitulates the problem, section 2 presents the key ideas 

in the solution, and section 3 suggests directions for 

future work in this field. 

11.1 SAFE TRAJECTORY PLANNING 

We are interested in the safe trajectory planning 

problem for computer controlled manipulators with two links 

and multiple degrees of freedom. The system is given a 

complete description of the part of the environment in which 

the manipulator is to maneuver. The input is the goal 

posit1on and orientation of the hand. The 04tput is the 

trajectory locus, specified as a sequence of typed 

intermediate configurations, the type indicating the nature 

of the subsequent section of the trajectory. Trajectory 

calculation routines compute the trajectory from the 

trajectory locus generated by the planning programs. The 

executive system in charge of running the hardware uses the 

trajectory for servoing the joints on the manipulator. 



- 206 -

The solution presented permits the manipulator to 

transport objects 

boundlng cylinder 

Modifications to 

which can be enclosed within the minimum 

approximating the manipulator link. 

the solution to handle large objects were 

presented in section 10.3.3. Extensions permitting dealing 

with manipulators having only rotary joints(see Figure 11.1) 

are indicated in section 11.3.4. 

11.2 KEY IDEAS IN THE SOLUTION 

This section briefly summarizes the key ideas in the 

solution. Chapter 2 discussed the theoretical framework 

which tied together the points that will be discussed here. 

Chapters 3-9 provided more details on them. 

( 1) Simplified Manipulator Descriptions and ··Trajectory 

Primitives A simple and direct model for the manipulator is 

that of two connected cylinders, one representing the boom 

and the other the forearm. This dissertation identifies 

alternative problem spaces of increasing abstraction that 

permit simplified manipulator descriptions. The manipulator 

can be modelled as two line segments, a single line segment 

or unbelievably as a point! This thesis identifies 

primitive trpjectory types. These primitives along with the 

simplified 

detection, 

manipulator 

and trajectory 

descriptions make collision 

hypothesis and modification 



- 207 -

numerically tractable. 

f 2) Navspace and Charts Navspace is the single most 

important concept that reduces the complexity of the safe 

trajectory planning task. It permits the manipulator to be 

considered as consisting of just the forearm or as just a 

single point - the boom tip. Since navspace comes in odd 

shapes it is hard to characterize, but this dissertation 

provides ways of characterizing and using navspace. Some of 

the important ideas are 

a) Navspace is approximated by easily describable 

entities called charts. 

b) The approximation is dynamic and is under program 

control. 

c) The approximation can be selective, and t0us it is 

easy to make incremental modifications to the charts. 

d) The concepts of navspace and its approximation by 

charts are independent of any planning strategies. 

3) Transformations with Minimality Property The use of 

multiple representation spaces, for reducing the complexity 

of the trajectory planning problem, is made more effective 

by the use of transformations that satisfy the minimality 

property (see section 2.2.2). The enlargement, dilation and 

survey transformations satisfy the minimality property. If 

this had not been so the advantage gained by using the 



- 20t1 -

alternative problem spaces would have been offset by the 

expens i ve computations required to generate them. 

(4) Trajectory Planning in Empty Space and C'ollision 

Avoidance There are two ways to look at safe trajectory 

planning. The first concerns itself with planning 

trajectories in empty space; obstacles enter into 

consideration only indirectly in that they determine what 

part of the maneuverable space is free. The second 

considers obstacles alone; free space considerations are of 

secondary importance. This thesis shows how these 

complementary views can be used to advantage in the safe 

trajectory planning problem. Specifically, the boom 

planning problem is treated as planning trajectories in 

empty space and forearm planning is treated as a collision 

avoidance problem. 

(5) Cartesian Space and Joint Space Obstacles are 

naturally described in cartesian space and trajectories in 

joint space. If obstacles and trajectories are both 

represented in one space, collision checks would not require 

the constant and expensive conversion between the two 

spaces. This thesis shows how it is possible to get the 

best of both 

representations, 

overhead problem. 

and joint space cartesian space 

and yet avoid the constant conversion 

The trick lies in decomposing the 



- 209 -

planning task into boom and forearm planning, and the 

maneuverable space into navspace and obstacles. 

(6) Planning This thesis shows how 

hierarchial decomposition can be 

complexi~y of the trajectory planning 

the principles of 

used to reduce the 

problem. Different 

planning strategies are used for maneuvering far away from 

obstacles and for maneuvering close to obstacles. A formal 

characterization of large chunks of empty space makes 

maneuvering far away from obstacles very easy. A good 

characterization of obstacle configuration types simplifies 

planning of maneuvers close to obstacles. 

(7) Planning at Execution Time A consequence of the 

investigations into 

problem has been 

the collision detection and avoidance 

the identification of exedution-time 

strategies for terminal phase motion. Guidelines have been 

presented for incorporating proximity sensors into the 

manipulator system (see section 11.3.1). 

11.3 SUGGESTIONS FOR FUTURE WORK 

The characteristics of a general purpose manipulator 

system were presented in section 1.1. Section 1.1 indicated 

that no such general system exists and that research on 

various aspects of such systems is being done. I had 

indicated that considerable progress has been made on the 



- 210 -

problem of executing trajectories on real manipulators. Now 

the safe trajectory planning problem is solved. This 

sect ~on describes the next few steps that need to be taken 

in the march towards the design of a general purpose 

manipulator system. 

11.3.1 Planning during Execution 

I had indicated in section 1.1 that very little is 

known about modifying trajectories dynamically based on any 

sensory data that the system may acquire during execution. 

The discussion on terminal phase planning indicates how one 

might proceed in analyzing this aspect of manipulator 

systems. As a first try, proximity sensors could be put on 

the forearm and used in terminal phase planning. Later, one 

could experiment with force and tactile sensors and even 

visual feedback. The following paragraphs describe why it 

would be useful to have proximity sensors on the manipulator 

and how one might use them. 

We know that boom planning is simpler than forearm 

planning. The simplicity arises from the use of charts boom 

planning. Within a chart the boom can be considered as a 

single point and so boom planning reduces to path planning 

for a single point. The notion of charts is not useful for 

forearm planning because the charts change as the boom tip 



- 211 -

changes its position. Without some equivalent of a chart, 

the simplest description of the forearm will always be a 

line in 3-space and never a point. Collision checking with 

a line segment being more expensive than collision checking 

with a point, forearm planning will always be the more 

expensive component of the trajectory planning problem. 

Since there is no solution in software that will make 

forearm planning as simple as boom planning, we might look 

to see whether additional hardware support might help. 

Proximity sensors, mentioned in Chapter 9, are a 

possibility. They could be incorporated into the system as 

follows. We have the manipulator come out from the terminal 

position such that the boom tip is located at a safe point 

(for definition see section 2.3.6). This would be done 

during execution of the trajectory. The system then plans a 

safe trajectory from the safe point near the start to a safe 

point near the goal. This safe trajectory is executed. The 

hardware terminal phase controller then takes over to get 

the manipulator into the desired goal configuration. The 

hardware terminal phase controller implements the adjust and 

move motions described in Chapter 9. 

The proximity sensors suggested in Chapter 9 are 

different from the ones investigated by Bejczy and Johnston 

(1974) in that I require the sensitive volume to be spread 



- 212 -

over a much larger solid angle. 

11. ~.2 Nature of Constraints 

The characteristics of a general purpose programmable 

system presented in section 1.1 included a formal language 

for describing computational processes related to the 

manipulator. Using this language a user could specify how 

objects are to be manipulated and how the manipulator should 

maneuver around obstacles. Since the system has extensive 

internal models of the universe of discourse the user does 

not have to specify all his requirements explicitly. In 

particular the user need not worry about collision problems. 

In this dissertation we have solved the collision avoidance 

problem. The obvious next step is to incorporate this 

collision avoider into a larger system which analyzes more 

general constraints. 

11.3.3 Multiple Manioulators 

Considerable work on the use of two manipulators for 

assembly tasks has been done at the Stanford Artificial 

Intelligence Laboratory [Finkel et al (1974)]. The solution 

to the safe trajectory planning problem presented in this 

dissertation considered the manipulator to be the sole 

active agent in the environment. An interesting problem to 



- 213 -

tackle is one where two active manipulators are in the 

environment. Instead of checking for collisions with 

obs~acles alone, collision with the trajectory envelope of 

the second manipulator also needs to be checked. 

ConceptuaJly, now that we know how to handle one 

manipulator, handling two manipulators is easy. The 

complexity of any specific implementation of a system 

analyzing two or more manipulator trajectories will depend 

on the complexity of the interactions that are permitted 

between the manipulators. 

11.3.4 Anthropomorphic Manipulators 

For the purposes of this section let A-manipulator 

denote an anthropomorphic manipulator, and M-manipulator 

denote a mechanical manipulator. An example of an 

A-manipulator is shown in Figure 11.1(*). The last link is 

called the forearm, and is identical to the forearm on the 

M-manipulator. The first two links are called r-boom and 

f-boom. They accomplish the same purpose as the sliding 

joint of the M-manipulator. R-boom and f-boom have a hinge 

*The original figure is from Winston(1974). I have 
added a coordinate frame and names of links and joints to 
the figure. The additions are obvious from the fonts. 



- 214 -

joint, called psi, connecting the two. The boom tip is the 

front end of the f-boom link. The links r-boom and f-boom 

are of fixed length. Consequently, the r value of the boom 

tip, in the coordinate frame shown in the figure, has a 

one-to-6ne correspondence with the angle psi between the two 

links. The correspondence is expressed by 

r = r-boom * cos(psi I 2) + f-boom * cos(psi I 2) 

where r-boom and f-boom denote the lengths of the links 

r-boom and f-boom respectively. This observation is very 

crucial to the extension of the solution to the safe 

trajectory planning problem. 

As for the M-manipulator, we can identify the hierarchy 

of problem spaces real, primary and secondary - which 

permit simpler and simpler manipulator models. We use 

environmental models and trajectory primitives that are 

identical to the ones used by the M-manipulator solution. 

We have very similar free space models. We define 

A-navspace to be the set of all boom tip positlons of the 

A-manipulator, for which both the r-boom and f-boom are free 

from collisions. Note that the definition of A-navspace is 

very similar to the definition of navspace, the difference 

is that the boom of the M-manipulator is replaced by the 

first two links of the A-manipulator. Again, since 

A-navspace comes in odd shapes, we approximate it by easily 

describable entities called A-charts. A-charts are made up 



- 215 -

of A-regions which are identical. to the regions in the 

M-man~ulator case. 

Two complications arise in the case of the 

A-manipulator which prevent the direct application of the 

earlier ~elution. They are 

1) In the case of the M-manipulator, each region has 

associated with it a single (rmin, rmax) pair of numbers 

d~signating the safe r-limits of the boom extension. In 

case of A-regions, we can have more than one of these. Thus 

there are different "pockets" of safe maneuverable volumes 

for the same solid angle, and these pockets may be 

inaccessible from one another. 

2) The determination of rmin and rmax is not as 

straightforward as it is in the case of the M-manipulator. 

However, it is possible to compute the A-chart 

representation of A-navspace. Within the A-charts the 

three-link manipulator reduces to a single · link. If 

A-charts of the secondary problem space are used, the entire 

manipulator is reduced to a single point. Planning may now 

proceed as in the case of the M-manipulator. The concepts 

of terminal phase planning and mid-section phase planning 

are valid for the A-manipulator too. The equivalent of boom· 

planning is, however, more complex because of (1) above. 

Finally, since there are twice as many solutions to the 



- 216 -

position problem for the A-manipulator as for the 

M-manipulator, the planning programs have more alternatives 

to exhaust before they announce failure. 

In short, we will have a solution to the safe 

trajectory planning problem for A-manipulators if, in 

addition to the solution developed for the M-manipulator, we 

have 

1) inexpensive schemes for computing rmin and rmax, for 

the components of the A-charts, and 

2) an algorithm for point path planning within 

A-charts. 



- 217 -

,. C:chc i rY: ~o"ln l 1\ I . T. by \ I c • Des i o:wd <l • 

Jilt scale 

forearm / 
Si'tC IF I U~~ I Of~?_ 

------ ' n · lu s 0 hund 
. f frccoo ... r . .,, 

t degrees o . po··,ercd lcr ·fccdboc · ' I . t ,. i c motor , d t<lchomc . J,. I c c c ~ . . i o·ne t c r .1r1 

lo>tcqrill potuot . ~' -- 1.~ kg. . simple "'otions ·
1 

, Cc3f)<1Cit, 
1 

lt: most "·1 .•:. O.Jo comp c 
r.,. ,. -- l ~ccon--l to 
'. ' l l d . - - I . ) ~~~·n. 
'<>nlut '"" . 

3r 
... ,l 

1 
.
1

•
1 
cphe• c J r1cy -- '·'· • _, .... l"'' ., ~ c \J • - - 2 0 Clll • r ·' u I u ., ~ .,··.nL~p.Jcc · 

fiGUH.[ tl.l 



- 218 -

REFERENCES 

( 1) Bejczy, A. K. ' "t1achine Intelligence for 

Autonomous Manipulation", Proceedings of the First National 

Conference on Remotely Manned Systems, California Institute 

of Techno~ogy, Sep. 1972. 

(2) Bejczy, A. K. and Johnston, 

Techniques for Terminal Phase Control 

Motion", JPL Technical Report 760-98, Feb. 

A. 

of 

1974. 

R. , "New 

Manipulator 

(3) Brand, L., "Vector Analysis", John Wiley and Sons 

Inc., 1957. 

(4) Dobrotin, B. M. and Scheinman, V. D., "Design of 

a Computer Coritrolled Manipulator for Robot Research'', Third 

International Joint Conference on Artificial Intelligence, 

Stanford University, Aug. 1973. 

( 5) Finkel, R. -et al. , "AL, A Programming Sys tern for 

Automation", Stanford A.I. Memo 243, Nov. 1974. 

(6) Gill, A., "Visual Feedback and Related Problems in 

Computer Controlled Hand Eye Coordination", Stanford A.I. 

Memo 178, Aug. 1972. 

(7) Lewis, R.A., "Autonomous Manipulation in a Robot: 

Summary of Manipulator Software Functions", JPL Technical 

Report 33-679, Mar. 1974. 



- 219 -

(t>) Lewis, R. A. and Bejczy, A. K., "Planning 

Considerations for a Roving Robot. with Arm", Third 

Int~national Joint Conference on Artificail Intelligence, 

Stanford University, Aug. 1973. 

(9) •Newman, W. M. and Sproull, R. F., "Principles of 

Interactive Computer Graphics", McGraw Hill Inc., 1973. 

(10) Olesten, N. 0., "Numerical Control", John Hiley 

and Sons Inc., 1970. 

(11) Paul, R., "Modelling, Trajectory Calculation and 

Servoing of a Computer Controlled Arm", Stanford A.I. Memo 

177, Nov. 1972. 

(12) Pieper, D. L., "The Kinematics of Manipulators 

Under Computer Control", Stanford A.I. Memo 72, Q_ct. 1968. 

(13) Scheinman, V. D., "Design of a Computer 

Controlled tv1anipulator", Stanford A.I. Memo 92, Jun. 1969. 

(14) Shoenfield, 

Addison-Wesley, 1967. 

J. R. ' "Mathematical Logicn, 

(15) VanLehn, K. A., "SAIL User Hanual", Stanford A.I. 

Memo 204, Jul. 1973. 



- 220 -

(16) Weinstein, M., "A Framework for Robotic Design", 

Caltech Information Science TR-14, 1975. 

( 17) Weinstein, M. , "Structured Robotics", · Cal tech 

Information Science TR-15, 1975. 

(18) Whitney, W. M., "Hand-Eye System Design Book 

Functional Requirements", Robotics Research Program, JPL, 

Oct. 1974. 

the 

1974. 

( 19) ~~iddoes, C., "A Heuristic Collision 

Stanford Robot Arm", Stanford C.S. 

Avoider for 

Memo 227, Jun. 

(20) Winston, P. H., "New Progress in Artificial 

Intelligence", MIT AI-TR-310, 1974. 



- 221 -

APPENDIX 1 

THE JPL ROBOT 

The JPL robot research program aims at applying the 

methods of Artificial Intelligence and Robotics to the 

design of machines for planetary surface exploration. The 

machines are to perform without step-by-step human control 

on missions in which there is long round-trip communication 

time, limited communication channel capacity and conditions 

that may be largely unknown or unpredictable in detail 

[Whitney et al (1974)]. This requires that the machines be 

able to integrate sensory and motor functions in the 

autonomous performance of activities in response to high 

level commands issued by a human. The immediate goals of 

the project are to design and implement an integrated system 

that has vision (TV, laser etc.), manipulation and 

locomotion capabilities. 

The breadboard robot hardware (Figure A1.1) consists of 

a mobile vehicle, a six degree-of-freedom manipulator (the 

Scheinman arm), two vidicon TV cameras for stereo vision, a 

GaAs pulsed laser range finder, navigation and guidance 

sensors, tactile and proximity sensors, and a local 

minicomputer connected to remote computers, graphic 

displays, and operator consoles. 



- 222 -

The manipulator is a modified version of the arm used 

at ~ the Stanford A.I. Laboratory [Dobrotin and 

Scheinman(1973), Scheinman(1969)]. It has six degrees of 

freedom, allowing any desired hand position and orientation 

in an op~n or slightly obscured workspace. The maneuverable 

space is within a radius of 1.30 meters measured from the 

center of the base of the manipulator. The six joints 

connecting the links from the base to the hand are in the 

following sequence (see Figures 3.4-3.5) two rotary 

joints (providing shoulder azimuth and elevation action), a 

linear joint (providing in and out reach action), and three 

rotary joints (providing the wrist action) [Lewis and Bejczy 

(1973)]. The hand is presently a simple parallel jaw 

mechanism. The joints are driven by permanent magnet DC 

torque motors geared directly to the correspondlng links. 

Depending on the relative position of the links, tpe arm can 

handle loads of up to 5-8 pounds Earth weight. The arm 

servo control utilizes analog position measurements from the 

joint outputs and analog velocity measurements from the 

motor shafts. Holding torque at each joint is provided by 

electromagnetic brakes. The arm's structural stiffness and 

tight servo control can provide accuracy within a few tenths 

of an inch. 



- 223 -

The software system architecture is hierarchi~l with 

the robot executive (REX) controlling and monitoring the 

varj ous software subsystems. The various software 

subsystems are largely independent of each other. The 

issues related to the design of integrated robotic systems 

are very complex and are discussed elsewhere [Weinstein 

(1975)]. 



- 224-



- 225 -

APPENDIX 2 

CIRCULAR ORDERING 

Let x be such that -pi leq x leq +pi and x + 2 * pi = x 

and x 

Then the 

predicate 

y can be 

2 * pi = x. 

following 

grt ( x, y) . 

brought 

Let y satisfy relations similar to x. 

function written in SAIL defines a 

Intuitively, the predicate is true if 

to coincide with x by rotating it 

anticlockwise and by less than pi radians. 

SIMPLE BOOLEAN PROCEDURE GRT(REAL X, Y); 

IF (X GEQ 0 AND Y GEQ 0) OR (X LEQ 0 AND Y LEQ 0) THEN 

RETURN(X > Y) 

ELSE IF X GEQ 0 THEN RETURN(IF X = Y + PI THEN FALSE 

ELSE Y > X - PI) 

ELSE BEGIN 

X S~~AP Y; 

RETURN(IF X = Y + PI THEN FALSE 

ELSE Y < X - PI) 

£ND; 

where geq is greater than or equal, leq is less than or 

equal. 



- 226 -

APPENDIX 3 

PROGRAM LISTINGS 

The program listings of the 2D and 3D systems are 

available ~n microfilm with 

Len Friedman, 

Robotics Research Program, 

114-122 J. P. L., 

Pasadena, Ca 91103. 


