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ABSTRACT OF

"ON ORDER AND TOPOLOGICAL PROPERTIES OF RIESZ SPACES"

by
C. D. Aliprantis

Chapter 1 contains a summary of results on Riesz spaces fre-
quently used in this thesis,

Chapter 2 considers the real linear space ‘;{b(L’ M) of all order
bounded linear transformations from a Riesz space L into a Dedekind
complete Riesz space M, The order structure of the Dedekind complete
Riesz space fb(L, M) is studied in some detail. Dual formulas for
T(f+), T(f") and T( Ifl) are proved. The linear space of all extendable
operators from the ideal A of L into M is denoted by XE(A,M). Two
theorems are proved:

(i) ¥ @ < T is extendable, then T has a smallest positive extension Tm’
given by Tm(u) =sup{T(v):v €A; < v < u} for all u in 1,

(ii) The mapping T - (T+)m - (T-)m from X;(A,M) into Xb(L, M) is a
Riesz isomorphism,

Chapter 3 studies integral and normal integral transfqrmations.

Some of the theorems included in this chapter are:

(i) ¥ T GXS(A,M) is a normal integral, then so is Tm'

(ii) If L is 0-Dedekind complete and M is super Dedekind complete,
then T in a(b(L, M) is a normal integral if and only if NT =
{ueL:|T|(|u]) = 8} is a band of L.
(iii) If L is o0-Dcdekind complete and M is super Dedekind complete and
if there exists a strictly positive operator for L into M, then L is super

Dedekind complete,



(iv) If M admits a strictly positive linear functional which is normal,
then the normal component Tn of the operator @ < T € 5(‘;(L, M) is
given by Tn(u) = inf {sup T(ua): 6 < ua1~u} for all u in LT,

Chapter 4 studiesaordered topological vector spaces (E, 7) with
particular emphasis on locally solid linear topological Riesz spaces.
Order continuity and topological continuity are considered by introducing
the properties (A, o), (A,i), (4,ii), (A,iii) and (A, iv), Some results from
this chapter are:

(i) If (L, 1) is a locally solid Riesz space, then (L, 7) satisfies (A, i) iff
every rT-closed ideal is a o-ideal, and (L, 1) satisfies (A, ii) iff every
r-closed ideal is a band.,

(ii) If (L, 7) is a metrizable locally solid Riesz space with (A, ii), then
L satisfies the Egoroff property.

(iii) If (L, 1) is a metrizable locally solid Riesz space, then both (A, i)
and (A, iii) hold iff (A, ii) holds. A counter example shows that this is not
true for non-metrizable locally solid Riesz spaces,

The fifth and final chapter considers Hausdorff locally solid Riesz
spaces (L, 7). The topological completion of (L, 7) is denoted by (AL, ‘7\').
Some results from this chapter are:

(i) (i,;) is a Hausdorff locally solid Riesz space with cone Tt = E =
the T-closure of LT in f_,, containing L. as a Riesz subspace,

(ii) (/f,,?-) satisfies the (A, iii) property, iff (L, r) does.

(iii) ('IL, ;) satisfies the (A, ii) property, if (L, 1) does,
(iv) If 7 is metrizable, then (i.,;-) satisfies the (A, i) property if (L, 7) does,

(v) If Lp is a normed Riesz space with the (sequential) Fatou property,

then ,I:JS has the (sequential) Fatou property.
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CHAPTER 1

RIESZ SPACES

1. 1. NOTATION AND BASIC CONCEPTS
Let L be a real vector space with the zero element denoted by 6.
We say that L is partially ordered by <, if < is an order relation of L,
i.e., a reflexive, transitive and antisymmetric relation, such that
(i) f < g implies f+h < g+h for every h in L,
(ii) 6 < f implies § < af for every real a > 0.
The notation, g > f for f < g, will also be used. The subset, Lt =
{feL:0 < f}, is called the (positive) cone of L.
It is easily verified that LT satisfies the following properties:
(@ Lf+LfcL?
(8) aL* ¢ LY foralla >0
(v Lfn-L"=1{(01.
Conversely, if the subset L+ of the real vector space L satisfies
the above three properties (a), (B), (vy), then the relation < defined by
f < g, whenever g-f € L+, partially orders L as described above.
Given two elements f,g of the (partially) ordered space L, we
say that h is an upper (resp. lower) bound if f < hand g < h (resp.
h < fandh < g). If for every pair f,g in L the least upper bound or
supremum (denoted by f V g) and the greatest lower bound or infimum
(denoted by f A g) with respect to the ordering exists in L, then

L is said to be a Riesz space or a vector lattice. The notion of a

Riesz space is essentially due to H. Freudenthal [4 Jand L. V.

Kantorovich [10] and was inspired by an address of F, Riesz (see also



[25] and [26]).

In a Riesz space L we shall denote the elements of f V 6, (-f) V 6,
f v (-f) by f+, f~ and |f| , respectively, It is not difficult to verify that
an ordered vector space is a Riesz space, if and only if, the supremum
of every element of L. and the zero element of L exists in L.

The elements f,g of L are called orthogonal or disjoint, if

|£] A |g| = 6. This will be denoted by f L g.
In the next theorem we exhibit a number of simple properties of

Riesz spaces.

THEOREM 1.1. Let L be a Riesz space. Then we have:

(i) f-gVh=(f-g)A(f-h), f+gV h=(f+g) V (f+h), f+ gA h=
(£+g) A (£4h), alfVg) = (af) V (0g), affAg) = (af) A (ag) for all f,g in L
andallocz 0,

» _ S + - A - .
(i) f+g=fvg+fag, |[f] =f +£7, £=£ -£7,§ Lf forall f,gin

L. So, in particular f+ g =f{ Vg_i_f_f,g_i_riL"' and f 1g,

(iii) ||£] - lgl] < £+ gl < |£] + |g| for all f,g in L,

(iv) (Birkhoff's identity) [f Vh =g Vh|+|fAh-g Ah| = | f - g for all

f,g,h in L,

(v) (Birkhoff's inequalities) [f vh - g Vh| < |[f-g], [fAh-gAR| <

lf - gl for all f,g,h in L, so, in particular |f+ - g+| < [f - g and

!f- 'g-l ot |f 'gl, for all f,g in L,
(vi) (f4g) Ah<fA h+gAh for all f,g,h in LY,

(vii) (Riesz decomposition property). If u,f,g € L and 6<ugt+eg,

then there are u;su, € L+ such that 6 < uy < f, 6 < u, < g and

u=u1+u2.



For a proof of the above theorem, for a number of examples of
Riesz spaces and some other simple properties we refer to [18].
Note, Statement (iv) was first proved by G. Birkhoff in [1], (1St ed, ,

Th. 78, p. 109). See also [8].

In the following discussion, L will denote a Riesz space. The

order interval [f,g] is defined to be the empty set, if f < g is not satisfied,

and the set {h € L: f < h < g}, if f < g is satisfied. A subsetD of L is

called order bounded if D - [f,g] for some interval [f,g] of I.. A subset

D of L is bounded from above (resp. from below), if there exists f in L
such thath < f for all h in D (resp. f <h for all h in D). The subset D
of LL has a supremum (resp. infimum) in L, denoted by sup A (resp. inf A),
if A is bounded from above and the least upper bound exists in L (resp. if
A is bounded from below and the upper lower bound exists in L),
A sequence {fn} of elements of L is called increasing if f, <f, <...,

and decreasing if f; > f, > ... . This will be denoted by f T or f I,

1

respectively, If fn'P and f = sup{f 1} exists in L, we write fan. Similarly

for a decreasing sequence, If fan then f) 1f for every subsequence
n

{fkr.l} of {fn}.

The indexed subset {fa: a € {a} } of L is said to be directed upwards

or downwards, if for every pair 0ys Oy € {a} there exists oy € {a} such

that fc,3 > fy Vfccz or fa3 < falA faz, respectively., If {fa} is directed

1
upwards we shall write faf. If faTand f = sup {fa} exists in L, we shall

write fan. Similarly if {fcx} is directed downwards. If {fa: a € {a}}is
a directed downwards indexed set we can define a relation on {a} as

follows: 0y z OLZ if f o f It is not difficult to show that this relation

ay ="ap’

directs {a} in the sense of [12] (p. 65). Therefore the system



{fa: o € {a} ]} is a net according to [12], with the property f(xl < fOLZ if

a; 2 a,. Now, if {fa: a € {a} ] is a given net we say that {fa}is directed
downwards and we write fa $if o 2 a, implies faz < f(11 in L. It is easy
to verify that the indexed set {fa:a € {a}} is directed downwards with
respect to the previous definition. For this reason, sometimes we shall
use net notation for downwards directed systems without further expla-
nation. Similarly for upwards directed indexed sets.

The basic properties of the directed systems are summarized in

the next theorem.

THEOREM 1. 2, For upwards indexed systems in a Riesz space

L we have:

(i) Efd i i g, 18 then fa+ gB(a,TB)f + g,
(ii) Efa $ f then )\fa M for all )\ 2 0,

(iii) _Iifa+ gB(aTB)f+ g, fOL ng_g_ggBT, then &g e,

)

A similar theorem is true for downwards directed systems.

(iv) ¥ f 11, g g, thenf Vg_ 1 fVgandf Ag fAg.
Big Thggte thenty Veg t )t Veandtoneg Ty

For a proof and more details see [18], Chapter 2.

A Riesz space L is called Dedekind complete, if every non-empty

subset of L bounded from above has a supremum, or equivalently, every
non-empty subset of L bounded from below has an infimum. The Riesz

space L is called o-Dedekind complete, if every non-empty at most

countable subset of L bounded from above has a supremum. The Riesz

space L is called super Dedekind complete, if every non-empty bounded

subset D of L has a supremum, which is also the supremum of an at
most countable subset of D.

The following theorem gives some information concerning the

above notions,



THEOREM 1.3, Let L be a Riesz space. Then we have:

(i) L is Dedekind complete if and only if for every indexed system {foc}

such that § < fonT§ g, we have :t'OL 1 f, for some f in L,

(ii) L is 0-Dedekind complete if and only if for every sequence {fn} such

that 9 < fnT < g, we have fn'l”f for some f in L,

(iii) L is super Dedekind complete if and only if for every indexed system

{foc} such that § < faTg g, we have fan for some f in L, and for some

sequence {f c {f_} we have f, 1f.
—— t0p = Vgl = Op

For a proof we refer to [18], Th, 23.2, p. 124.

A Riesz space L is called Archimedean, if the relation § <nu <v

for some u, v in LT andalln =1,2,... implies u= .

The next theorem characterizes the Archimedian Riesz spaces,

THEOREM 1.4, Let L. be a Riesz space. Then the following

statements are equivalent:

(i) L is Archimedean.

(ii) Given any directed set {fa}, faTg fy in L, and writing G = {g eL:

g 2 fOL for all a}, the downwards directed system {g -fa:g €G, a € {a}}

satisfies g - foc d 6.

(iii) Given any directed set {fa}’ fa$z fy in L, and writing G = {g €L:

g < f(x for all a}, the downwards directed system {fa-g:g €G, a € {a}}

satisfies foc -g 0.
For a proof see [18], Th. 22.5, p. 115,

A vector subspace A of L is called a Riesz subspace of L if for

every f,g in A we have thatf V g (taken in L) is in A. A vector subspace



A of L is called an ideal if || < |g| and g in A implies f € A, An ideal
A is called a band, if for every subset of A whose supremum exists in L
the supremum is also in A, or equivalently, if § < fa tfin L and
{fon} C A implies { in A.

Obviously, arbitrary intersections of ideals are ideals and
arbitrary intersections of bands are bands. For every non-empty subset

D of L. we define the orthogonal complement of D, Dd to be the set of all

vectors of L which are orthogonal to every element of D, i.e.,
Dd = {f €L:f 1g for everyg € D}, Itis easily verified that D9 is a band
of L for every non-empty subset D of L.

Given a non-empty subset D of L there exists a smallest ideal
cbntaining D, namely the intersection of all ideals containing D. (The
family of all ideals containing D is non-empty since L is one of them.,)
This smallest ideal is called the ideal generated by D, and will be denoted

by A Similarly, there is a smallest band containing D, namely the

D
intersection of all bands containing D. (L is one band containing D, so
the family of all bands containing D is non-empty.) This band is called
the band generated by D and will be denoted by {D].

The ideal generated by the element u will be denoted by Au and

will be called the principal ideal generated by u. Obviously,

A= {fEL; |£f] < n |u| for some n €NJ}. A principal ideal is any ideal
of the form Au. The band generated by the element u is called the

principal band generated by u, and will be denoted by Bu. A principal

band is any band of the form B, for some u in L. Obviously B = {Au].
If A is an ideal of Land § < u € {A}, then @ s v, 4 u for some

directed system {ua} C A. More precisely we have: given the ideal A;



@< u€{A}if and only ifu = sup{v €A: §< v < u} (see (18], Theorem
20.2, p. 108).

The band A of L is called a projection band, if L = A (3 A4,

The next theorem characterizes the projection bands,

THEOREM 1.5. I A ¢ L denotes a band of the Riesz space L,

then the following statements are equivalent.

(i) A is a projection band.

(ii) For every u in LY the supremum of the set {v € A: g <v <u} exists

in L,

e

For a proof see [18], Theorem 24.5, p. 133.

A Riesz space L has the projection property (resp. the principal

projection property), if every band (resp. every principal band) is a

projection band. A Riesz space L has sufficiently many projections if

every non-zero band contains a non-zero projection band. For the inter-
relation of the above concepts see [18], Theorem 25.1, p. 137.
Let A and B be two ideals of the Riesz space L., Then A is said

to be order dense in B if {A} D B. In particular, A said to be order

dense in L, or simply order dense, if {A} = L, The ideal A of L is

called quasi-order dense in L if Add = L, and A is called super order

dense if for every u € LY there exists a sequence {un} C A such that

6 < u 1 u. Finally the ideal A is called a 0-ideal if for every countable
subset of A whose supremum exists in L. the supremum is also in A, or
equivalently, if 6 < £ 1fin L and {fn} C A implies f € A,

An element e in LT, e # @ is called a strong (order) unit if

Ae = L, i.e., if for every f in L there exists an integer n such that



f < ne. Finally, ife € L+, e # 9, e is called a weak unit if the band gen-
erated by e is the whole L, i.e., Be = L

We proceed with the following theorem,

THEOREM 1,6, Let L be a given Riesz space. Then we have:

(i) ¥ L is Archimedean, in order an ideal A € L be order dense it is

necessary and sufficient that Ad = {0].

(ii) L is an Archimedian Riesz space if and only if {A} = Add for every
dd

ideal A ¢ L, In particular, if A is a band, then A = A", for Archimedean

Riesz spaces,

(iif) If L is Archimedean A () A9 is an order dense ideal for every ideal

A of L.

(iv) If L has a strong unit e, then there exists a compact Hausdorff space

X such that L is Riesz isomorphic to a linear subspace of C(X). Moreover,

the functions of L separate the points of X. (Two Riesz spaces L and M

are called Riesz isomorphic if there exists a one-to-one linear mapping T

from L onto M such that T(f V g) = T(f) V T(g) for all f, g in L; C(X) is_the

Riesz space of all continuous real valued functions defined on X with

ordering f < g whenever f(x) < g(x) for all x € X).

For a proof of the above theorem see [18], Theorem 22. 3, p. 114,
For statement (iv) see also [29].
Note, The necessity of statement (i) of the above theorem is due to
T, Ogasawara (see [22], V. I, Ch., 2, §3, Theorem 2), and the sufficiency

of (i) is due to W, A. J. Luxemburg (see [15], Note XV Th. 48. 3,

A’
p. 416). Statement (iv) is due to K. Yosida ([29])).



1. 2. ORDER AND UNIFORM CONVERGENCE

Let L be a Riesz space and let {fn} be a sequence of L, We say

that {fn} order converges to f in L, if there exists a sequence {gn} of L

such that lfn - fl <e, for all n and g, 4 6 in L. In this case we shall
L

write f = (0) - lim f,, or f
n-+4 ® o
We can verify easily that, if fn-—(-?-)—> f and fn—ﬂ-y- g, then f = g,

Similarly the indexed system (or a net) {fa} order converges to f if there

exists an indexed system {ga} such that Ifon - £] < g, for all o and gq J6

in L. In this case we shall write f = (o) -~ lim fa’ or fa—io—)a f. I

(o) (o) (9) , o
fa——-—pf, gB—-——y g then )‘foc + pg, —— M + pg for all A, €R and
(c, B)

(o) (o)

fon VgB—-——-> fvg, fOL A gB——-—-—> f A g. In particular we have
e |49, | 5], ag 1o, g,
A subsetV of L is called order closed whenever {fn} c V and

_(_ci_) f implies f € V. The collection of all order closed subsets of L

f
n
satisfies the three axioms required for the closed sets of a certain topology

in L, which is called the order topology. Unfortunately, the order topology

is not a linear topology for L, in general,

The pseudo-order closure of a set S C L is defined by S' = {f € L

there exists {fn} C S such that fn—g?—)-)f}.

If clS denotes the closure of S with respect to the order topology
we have S € §' C (S')'C - .. C clS. It is not difficult to verify that S' = c1S
if and only if S' = (S')".

The Riesz space L has the diagonal gap property, if given any

double sequence {fn :n,k=1,2,...}in L, any sequence {fn :n=1,2,...1}
k

(o) (o)

in L and any fo in L such that fnkm fn forn=1,2,... and fn___> fO’

<n, <... such that

there exists a sequence {fni' k(ni)} where n, 2
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(o)
fn ), Kn) ——— %,
1 U (is4)
The Riesz space L satisfies S' = c1S for all S € L if and only if L

has the diagonal gap property. For more details and proofs see [18],
pp. 80-87.

The Riesz space L is called a K+—space or a space with the

boundedness property, if it has the property that a subset A of L is order

bounded, i.e., A ¢ [f,g]for some f,g in L, if and only if, for every
sequence {fn} C A and every {)‘n} S R such that A -0, we have
Anfn-—(e-)-a 6. For examples of K+-Spaces and more details we refer to

[30], pp. 165-172.

The sequence {fn} C L is said to be relatively uniformly conver-

gent to f in L (and f is called a relative uniform limit of {fn 1), if there

exists some u in L' and a sequence [en} of non-negative real numbers
such that lfn - fl S e u for all n and & 4 0 inR, or equivalently, if for
every ¢ > 0, there exists no( ¢) such that lfn - f| < eufor alln 2 no(e).

It is possible for a sequence {fn} to have more than one uniform limit.

If L is Archimedean relative uniform convergence implies order con-
vergence, so relative uniform limits are uniquely determined. The
relative uniform convergence of an indexed system {fa} is defined
similarly., For a complete discussion for the above notions of convergence
we refer the reader to [18], Chapter 2 and to [33].

It is easily verified that if f 1 f then fn—(—")-> f, and that if fnT
and fn—ﬁl—r f then fn +f. A similar result holds for indexed systems.
For Archimedean Riesz spaces, it is also true, that if )‘n - A (inR) and
£ 19, sinL, maty g (D, 5

The sequence {fn} is called an e-relative uniform Cauchy

sequence if there exists an element ¢ € L+ such that for cvery ¢>0, there
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exists Ne > 0 with lfn -fml < e-e for all n,m 2 Ne' The Riesz space L

is called relatively uniformly complete if for every e € L+, each e-

relatively uniformly Cauchy sequence has an e-relative uniform limit, If
L is Archimedean then L is uniformly complete if and only if every mono-
tone e-uniform Cauchy sequence has an e-uniform limit ((18], Theorem

39. 4, p. 253).

1. 3. RIESZ HOMOMORPHISMS

Given two Riesz spaces L and M and a linear mapping mfrom L into

M we say that 1 is a Riesz homomorphism if w(f Vg) = m(f) V m(g) for all

f,g in L, or equivalently m(fA g) = m(f) A m(g) for all f,g in L, or equivalently,
m(fA g) = 6 in M, whenever fA g = § in L. The Riesz spaces L and M are

called Riesz isomorphic if there exists a Riesz homomorphism 7 from L

onto M which is also one-to-one. In this case 11 is called a Riesz isomor-
phism., The Riesz homomorphism m of L into M is called a Riesz 0-

homomorphism if 1 preserves countable suprema, i.e., if it follows from

f= Sup{fn:n €N}in L, that m(f) = sup{m(f )} holds in M and 7 is called a

normal Riesz homomorphism, if it preserves arbitrary suprema, i.e,, if

it follows from f = sup{fa} in L, that m(f) = Sup{ﬂ(fa)} holds in M (see
[18], pp. 98-104, and chapter 9).

Given a Riesz space L and an ideal A of L the real vector space
L/A is a Riesz space with the ordering [f] < [g], (here [f]denotes the
equivalence class of f) if there are two elements f',g'; f' € [f], g' € [g]
such that f' < g' in L. The canonical projection m:L - L/A, n(f) = [f]
for all f € L, in a Riesz homomorphism (see [18], p. 102).

Next we prove a useful lemma.
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LEMMA 1. 7. Let L be a Riesz space and let {fa: a € {a}} be a

net of L such that fa g g for all o z G‘O’ for some or,o € {a}, and fa._ﬁ_)_; £,

Then f < g.

PROOF, Foror,Zor,Owehave ()Sgi-g:gi-gi(1 =
lg Vi -g Vfal < lf - fal by Birkhoff's inequality. Since fa—L)-)—->8 it

follows that |f - fon' < h(x 4 6 in L, for some net {ha} of L. So,

B < VI-g<h .
= & #2 % Oéaoe
therefore,

gvi-g=0, iie., f<g . ®m

We conclude the above discussion by introducing some notation.

If X is a non-empty set, we denote by £ (X) the set of all finite
subsets of X, The inclusion relation C directs F(X) in the sense of [12],
p. 65. In this work, f (X) will be considered directed as above, by <.

Note. R denotes the set of real numbers and N the set of natural numbers,
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CHAPTER 2

THE SPACES f(L, M) AND a'(b(L, M)

2.1, INTRODUCTION

Let L and M be two Riesz spaces. We shall denote by & = L (L, M)
the real linear space of all linear transformations from L into M, and by
°{b =ofb(L, M) the real subspace of all order bounded linear transformations
from L into M, i.e., T is in fb(L, M) if T(A) is an order bounded subset
of M, whenever A is an order bounded subset of L.

A linear transformation T in JC(L, M) is called positive, denoted by
6 < T, whenever @ < f € L, implies 0 < T(f) in M. We write T < TZ’

Tys Ty €X(L, M) to indicate that § < T, - T,. The set of all positive linear

1* 2
transformations of (L, M) will be denoted by i+ = ;(+(L,M). It is easy to
verify that f(L, M) c ,;(b(L,M), and that 5f+ is a positive cone for fb( L, M),
and consequently for ;f(L, M), Therefore, (‘fb,i"') is a (partially) ordered

vector space. In the particular case of M =R we denote the linear space

,;(’b(L,R) by L7, i.e., L, (L,R) = L, and we call L™ the (order) dual of L.

LEMMA 2.1. Let L. and M be two Riesz spaces with M Archi-

medean. Assume that T is an additive function from LY into M+. Then,

T is uniquely extendable to a positive linear transformation from L into

M.
For a proof see [30], pp. 205-206. Note that the extension is

given by T(u) = T(u') - T(u") for all u in L.
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2.2, THE ORDER STRUCTURE OF x‘b(L, M)
We start with the following basic theorem dealing with the order

structure of the space fb(L,M).

THEOREM 2.2, (L.V. Kantorovich [9], F., Riesz [25]). Let L

and M be two Riesz spaces with M Dedekind complete., Then, the

(partially) ordered vector space (;(b,f) is a Dedekind complete Riesz

space,

For a proof we refer to [23], Proposition 2,3 on page 22. Note

also that the following formulas hold:

T'(f) = sup{Tg:g €L; 6 <g Sf}
T™(f) = sup{-Tg:g €L; g<g <f}; £ €L’ (1)
| T](£) = sup{|Tg|:g €L; |g] £}

It is also true that T 1 T in fb(L, M) implies T (u) 1 T(v) for all u in e

Note., Theorem 2,2 was proved by F. Riesz in a very special case (see

[25]). The general Theorem 2.2 as it is stated here was established by

L. V. Kantorovich (see [9])).

REMARKS. (i) The linear mapping |T| is called by W. A, J.
Luxemburg and A, C. Zaanen the linear modulus of the transformation
T (see [17)).

(ii) It is not difficult to verify that T1 \Y% T2 and Tl A T2 for Tl’ T2 €
fb(L, M) are given by the formulas:
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(Tl \% TZ)(u)

+
sup{Tl(ul) + Tz(uz):ul,u2 €L u;+u, = u}

(T1 A TZ)(U‘)

; +
1nf{T1(u1) + Tz(uz):ul,uz €L’ u; + u, = ul

for all u € LY (see [23], p. 22).

(iii) For Riesz spaces with the principal projection property there are |
also some other formulas for T+, T  and ITI (see [17]), Theorem 2.2,
p. 425).

(iv) Suppose that {Ta} is a family of operators of,;(;(L, M) such that the

supremum of the set

n g B
El To, (W) 1w, € L7 Elui =u, o, €{a}

exists in M for each u in L+.
For each u in L+, we define S(u) as follows:

n n
- . +. -
S(u) = sup 1}31 Tai(ui) ru, €L i§1 u =u,a, € {a}

It is easy to verify that S is an additive mapping from LY into M+.
Hence; it is extendable, by Lemma 2,1, to all of L, It follows that S is
the supremum of {Toc: a € {a}lin ,,'(b(L, M). For more details see [23],

p. 21.

Our next goal is to derive some formulas which are ""dual'' to
the formulas (1) of Theorem 2, 2.

We proceed with the following lemma.

LEMMA 2,3 (Hahn-Banach). Suppose that p is a mapping from

the Riesz space L into a Dedekind complete Riesz space M such that




16

p(f+g) < p(f) + p(g); p(Af) = Ap(f) for all f,g in L and all non-negative L.

If T is a linear mapping defined on a linear subspace A of L with range

in M such that T(f) < p(f) for all f € A, then T can be extended to a linear

mapping T1 on L into M such that Tl(f) < p(f) for all f in L.

See [23], p. 79.

THEOREM 2.4, Let LL and M be two Riesz spaces with M

Dedekind complete. I g < T € fb(L, M), then we have:

(i) T(') = sup{S(H:S €L, (L, M); 6<S < T}
(i) T(f7) = sup{-S(f):5 €L (L,M); § <S < T}
(ii) T(|£]) = sup{|S()]:s €Z, (L, M); |S| g T}

for every f _1_13 L.

PROOF, We prove the third formula first. Assume f in L and
define the function Tf on L* by the formula Tf(u) = sup{T(u A nlfl) :
n=1,2,...}for all u in L',

It follows easily that ‘the function defined by p(u) = Tf( Iul) for all
u in L is a positive sublinear mapping such that p(u) = lul) for all u
in L,

Let, now, A= {\Mf: X €ER} and let S be the linear mapping from
A into M defined by S(Af) = Ap(f) for all X inR. According to Lemma 2,3
there is an extension S1 of S to all of L such that Sl(g) < p(g) for all g in
L. It follows easily from the last relation that S1 € fb(L,M). Hence
T(]£]) g sup{S(]£]):S € £ (L,M); |S| £ T}. On the other hand,

0 < |S| < T implies that [S(f)| < [S|(]£]) < T(|£]), so sup{|S(H]:
s €& (L,M); 8] < T} ¢ T(|f]), hence the third formula has been proved.

For the first formula we apply the same arguments using as

sublinear mapping
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+ +
p,(g) = sup{T(g"'A nf'):n=1,2,...}.
The second formula follows from the first by noting that f = (-f)+. ®

Note. From the above proof we see that the above suprema are

actually maxima,

The next two theorems give more information about the structure

of (L, M).

THEOREM 2.5. Let L and M be two Riesz spaces with M

Dedekind complete, Suppose that Ta~(—°l+ T in J(b(L, M). Then

T (9 9, 1) in M for all f in L.

PROOF, Assume that Ta—-(g)—p T in ‘;(b(L’ M), Then there exists
anet {S_}¢ &;,(L, M) such that ITa- T| < 5,46 in L, (L, M). It follows

then that

[T (0 - T®)] = (T, - TUD| < [T - TlC£)h) g s l£h ¢ 6

for every f in L, i.e., Ta(f)——(-?l-eT(f) for every f in L, Note that we
used the relation § = §(|f]) = (inf Sa)( |£]) = inf{Sa( |£])} mentioned in

Theorem 2.2.8

THEOREM 2,6, Let LL and M be two Riesz spaces with M

Dedekind complete. Assume further, that {Ta} is a net of,'(b(L, M) such

that [T | < S for all o and some S in X} (L, M).

I T(f) = (o) - lim Toc(f) exists in M for every f in L, then T is in

(04
I (L, M),

PROOF. It is evident that T € £(L, M). We have to show only

that T is order bounded. So, assume u € L+ and v € L, with g <v <u
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It follows from Ta(v)—(—i T(v) that ITa(v) |—19)—> 'T(V) | But,
| T(v)| < lTal(v) < S(v) < S(u) for all a implies |T(v)| < S(u), by
Lemma 1.8, So, IT(V)I < S(u) for all v in Li such that § <v <u, i.e.,

T £ aﬁo(L, M), =
The next theorem is a kind of converse of Theorem 2. 2.

THEOREM 2.7. Let L and M be two Riesz spaces with L. # {6 }.

Let o{;b(L,M) = ‘Z’b denote the real vector space of all ordered bounded

linear mappings from L into M. If the ordered vector space (Z ,,;f+) is

a Dedekind complete Riesz space, then M is a Dedekind complete Riesz

space,

PROOF. Assume 6§ < uaT <u,in M. We have to show that
Uy tu in M for some u in M. Let ¢ be a non-zero positive linear func-

in i be such that (D(fo) = 1. Such an {, exists

tional of L, and let f 0

0
since ¢ # 6.

For o € {a} we define a linear mapping Ta in -{b(L,M) as follows:
Toc(f) = (f) uy s for all f in L.

It follows easily that § < T T < T, where T € S(b(L, M), T(f) = p(f) u,
for all f in L, By hypothesis ,;(b(L,M) is a Dedekind complete Riesz
space, Hence there exists S in ;fb(L, M) such that TaT S. In particular
we have Toc(fO) = ‘D(fO)ua = ua']“g S(fo). We show next that S(fo) is the
least upper bound of the net {ua} in M. Swuppose that u, £ w for all a.
Then we have TOL < Tw € b(L, M) for all o in {a]}, where Tw(f) = p(f)w,
for all f in L. Hence S < TW and so, in particular, S(fo) < Tw(fo) =

(p(fo)w = w. This shows that uaTS(fo), i.e., M is Dedekind complete.®
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Similarly we can prove the following theorem,

THEOREM 2,8. Assume once more that L. and M are two given

Riesz spaces with L™ # {0#}. Assume further that (fb,f) forms a

super Dedekind complete Riesz space, Then M is a super Dedekind com-

plete Riesz space,

THEOREM 2.9. If Liand M are two given Riesz spaces with M

Dedekind complete and with L™ # {9}, and if‘;(ob(L, M) has a strong unit,

then M also has a strong unit.

PROOF, Let 6 <o be in L™ as in the proof of Theorem 2.7, and
let 6 < TO Eafb(L, M) be a strong unit for fb(L, M). Given u in M we
determine Tu in b(L, M) by Tu(f) = p(f)u, for all f in L, Then we have
6 < Tu < nTO for some n in N, from which it follows that 6 < Tu(fo) <

nTO(fO), or §<u <=nTO(fo), i, e., To(fo) is a strong unit for M.m

The Riesz space L is called universally complete, if every system
{ua} of mutually disjoint elements in LY has a supremum (see [18],

Definition 47. 3, p. 323).

THEOREM 2. 10, Let L be a Riesz space having a non-zero

positive linear functional and let M be a Dedekind complete Riesz space.

Assume that fb(L,M) is universally complete. Then M is universally

complete,

PROOF, Let be a positive linear functional of L. such that
[0
(p(fo) =1, for some fo in L+, and let {ua} be a mutually dis joint system

of M+.
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We show that the system {Ta}, Ta(f) = (f) U for all f in L,
is a mutually disjoint system of elements of ,’(Z(L, M). To this end

assume that oy + ey and f € L+. Then we have

D
A

< (Tgp A Top)l) 5 Ty (6) A T, (6)
= (o(f) - %‘2_) A (pl(f) - uaz) = p(f) (uon1 A U-c(,z) = (f)-6=86.

So, Tg A Tg, = 6 in O‘GO(L, M). It follows that

T = sup[Ta} = sup{\éF L ¥ GF({G})}
(o

exists in fb(L, M). But from the remark (ii) following Theorem 2. 2 we

have that

V T |(f) =s Z}T(f)feL 2f=f}
(aEF )0 p{océF o acr © 0

=supl T olf)u :f €L T f =fl<c T u =V
ger & @ a acF © ok ¢ ger ¢

The last equality holds since {ua} is a mutually disjoint family (see
Theorem 1.1 (ii)).

Since, now, itis evidentthat V u < (V T )(fo) it follows that
acF & % qeF

(v T )(fo) \Y u, for every F in f({a}). Since V T il 1nf(L M),

a€F o.€F a€F

it follows from Theorem 2.2 that V u_ =( V T )(fo) 1 T(fo) in M, i.e.,
acF ¢ qeF @ F

sup{ua} =sup{ V u :F € F({adl = T(fy) in M, and this shows that M is

a€F
universally complete.m

2.3. EXTENSION OF ORDER BOUNDED LINEAR OPERATORS

Let L and M be two Riesz spaces with M Dedekind complete, and

let A be an ideal of .. Assume that T is an order bounded
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1;1near operator from A into M. The order bounded transformation S

from L into M is called an extension of T, if S(u) = T(u) for all u in A,
i.e., S=T on A. In this case we call T an extendable transformation.

It is easy to verify that if § < T € .,(b(A, M) and if T is extendable, then

T has a positive extension on L. Indeed, let S be an extension of T. Then,

if u € A+ we have

S+(u) = sup{S(v):v €L;  <v <u}

= sup {T(v):v €A; B<v _<:u} = T+(u) = T(u)

i.e., st is a positive extension of T.

More generally, if S is an extension of T then ST is an extension of
T+ and S~ is an extension of T . In other words, T is extendable if and
only if T and T~ are both extendable.

More details about extensions are included in the next theorems.

THEOREM 2.11. Let L, and M be two Riesz spaces with M

Dedekind complete, and let A be an ideal of L. Then the set of all

extendable order bounded transformations of A forms an ideal of ofb(A, M).

PROOF. We denote by fbe(A, M) the set of all extendable order
bounded transformations from A into M., Obviously, Ibe(A, M) is a
vector subspace of ffb(A,M). We prove next that 6 < S < T, and
T € ;(’be(A,M) implies S €L, °(A, M), i.e., that$ is extendable.

We may suppose without loss of generality, that T is defined on

all of L, Then we note that

s(f) < Isth] < s(l£]) < T(]£]) for all f in A
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and that the function p: L - M, p(f) = T(lfl), f € L, satisfies the properties
of the Lemma 2.3. Hence S is extendable to all of L, as a linear trans-
formation S1 satisfying the relations Sl(f) = S(f) for all f in A and
() < p() = T(|£]) for all { in L.

Since, p(f) = p(-f) we get that ISl(f)I % plf) = T([fl) for all f in
L, and this implies that S1 € fb(L, M). Thus S is extendable. The con-
clusion that Ibe(A,M) is an ideal of Zb(A,M), now follows from the
earlier observation that T Eofbe(A, M) if and only if TV and T~ are both in
Z.C(A,M), and so, in particular T € X,°(A, M) implies |T| = ™ 4 T

in f]:(A. M). w

THEOREM 2.12. Let L and M be two Riesz spaces with M

Dedekind complete, and let A be an ideal of L. Suppose that 6 <

T € fb(A,M) is an extendable transformation. Then T has a smallest

positive extension Tm on all of L, in the sense that for any positive

extension S of T on L we have Tm < Sin f}D(L, M). Moreover

Tm(u) = sup{T(v): v €A; 6 <v < u}

for all u in L+.

PROOF, Let £(T) = {S € fb(L, M): S =T on A and S > 6}.
By assumption g(T) # ¢. Since £ (T) is bounded from below by 6 in
fb(L, M) and fb(L, M) is a Dedekind complete Riesz space the infimum
of £(T) exists in fb(L, M). So, let T_ = inf{S: S € £(T)}. Obviously,
T  <SforallSce¢ E(T). So, we have to show that T € E£(T). We

note that, if Sl,S are in £ (T) then S1 AS, > 0 and for each < u €A

2

we have
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(S; A S,)(u) = inf{S)(u)) + S,(u,): uj,u, €LY u +u, = u}

1

; g +. ~
1nf{Sl(u1) + SZ(uZ)‘ u,u, €AT; u; +u, = u}

inf{T(ul) + T(uz) = T{u): Uy, U, € A+; uptu, = u}l = T(u)

So, S, A S2 € E (T) and this shows that g (T) is directed downwards in

1
fb(L, M), It follows, now, from Theorem 2. 2 that Tm e £(1).

To derive the formula of the theorem we proceed as follows,

Since T is extendable, it is easy to verify that sup{T(v): v € A;
b<v < u} exists in M for all u in L+. So, let S(u) = sup{T(v): v € A;
B<v< u}l, u € L+. It is easily verified that S is an additive mapping
from LT into M+, Consequently, by Lemma 2.1 S is extendable uniquely
to a positive operator on L, which we shall denote also by S. Obviously
S is a positive extension of T, Hence Tm < S.

On the other hand, if U is a positive extension of T, u € L and

v € A such that § <v <u then

T(v)

U(v) < Uw)

so S(u) = sup{T(v): v €A; 6 <v < u} < U(u), or S < U, which implies that

S<T . Thus S=T_.®
= m m

THEOREM 2,13, Let L and M be two given Riesz spaces with M

Dedekind complete and let A be an ideal of I.. Then there exists a linear

mapping T » T__ on fbe(A, M) into fb(L, M) such that for § < T € ,,z”be(A,M)

the image Trn is the unique smallest positive extension of T to I.. The

mapping is an injection and the set of all images Tm is a band of fb(L,M).

Moreover, this mapping is a Riesz isomorphism (into).
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PROOF. We shall show that the mapping T - T__ from (£, (A,M))"
into .Z’;(L, M) is additive. We note first that, if § 5 T €£,°(A, M) then
the set {T(v): v €A; @ <v < ul}, u € L+, is directed upwards to Tm(u). So,
using this and Theorem 1. 2(iv) we see that, if 6 <u€Land <,

T E.fbe(A, M), then we have

(T + U)m(u) = sup{(T+U)(v): v €A; 6 <V <=u}

sup{T(v): v €A; 8 <v <u}+ sup{U(v): v €A; 6 <v <u}

1
=

+ U
m m

. + .
Tm(u) + Um(u) for all u in L', i.e., (T+ U)m

Since fb(L, M) is an Archimedean Riesz space, it follows from Lemma
2. 1 that this mapping can be extended uniquely to a linear mapping from
e s . . . +
"fb (A, M) into fb(L, M). The extension is given by T - Tm =(T )m -
- (T')m where T+, T  are the positive and negative parts, respectively,
of T in Z°(A, M).
If, now, T_ =6, then (T7)_ =(T7)_, so T = T  on A, which
m m m
implies T = T o T™ = @, on A, This shows that the mapping is one-to-omne,

From Theorem 2. 11 it follows easily that the set of all images is
a band of ,‘GD(L,M).

We show that T - Tm is a Riesz isomorphism (into). Assume
firstg< T, U € oz’be(A,M). Then it is obvious that TV U__is a positive
extension of TVU, so(TVU),_< T _ VU_. On the other hand, for a

m:= “m m
given positive extension S of T V U we have § < T <Sand §<U < SonA,
soT <S <S,U_<S <SonlL, thus T_VU_<S which implies that
ms= m = m:= m = m m =
T vU <(TvU)_,so(TVvU)_ =T VU . (Note that we used the
m m = m m m m

fact: § < T < U in X:)e(A,M) implies 6 < T_<U_ in fb(L, M) ).
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Now assume T, U € fbe(A,M). Then we can write T = T1 - TZ’

U=1U; - U, withg<T,U, € fbe(A,M), i=1,2. So, we have

1 2

8<T+T,+ Uy, U+T,+7U,¢€ fbe(A,M). It follows, now, from the

2’ 2

above proved fact that [(T + T, + UZ) V(U + T, + UZ) ]m = (T + T, + UZ)m

2
v (U + T, + UZ)m = [Tm +(T,+ Uz)m] v [Um +(T, +U2)m]. So, we get
Tm vu = [Tm+ (T2+ Uz)m] Y [Um + (T2+U2)m] - (T2+ UZ)m
= (T + T, + U,) V(U+ T, + UZ)]m -(T, + U,) = T+ T, + U,)

V(U + T2 + UZ) - (T2 + UZ) ]m =(TV U)m. This completes the proof.®

THEOREM 2. 14, Let LL and M be as in Theorem 2. 13. _I£_ A _1_s_

a projection band of L, then every T in ;fb(A, M) is extendable. So, in

this case ,{be(A,M) and °{b(L’ M) are Riesz isomorphic.

PROOF. Since L=AQ A every element u in L has a unique decom-

. _ d . - C .
position u = U+ Uy, uy €A, u, €A, If PA’ L - L is the projection

defined by PA(u) =uy, then ToP , is an extension of T for every T in

A
,fb(A, M).

The last conclusion follows immediately from Theorem 2. 13.®

THEOREM 2. 15. Let LLand M be two Riesz spaces with M

Dedekind complete, Suppose that A € L is a Riesz subspace of L such

that for every f in L, therc cxists u in A such that |f| -~ u. Assume

further that T is a positive linear mapping from the Riesz space A into

M. Then, T can be extended to a positive linear transformation from L

into M,

PROOF. According to our hypothesis for given f in LY the set

{T(u): u € A; f <u} is non-empty and bounded from below by zero in M.
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Therefore inf{T(u): u € A; £ < u} exists in M. Let p(f) = inf {T(u): u € A;
|f] < u}, £ €L
Then we can easily verify that p is a sublinear mapping from L
into M,
It is also evident that T(u) < T( lu[)= p(lul) = p(u) for all u in A, So, it
follows from Lemma 2,3 that T has an extension TZ’ on L into M, such
that Tl(f) £ p(f) for all f in L. It follows now easily that ITl(f)l = p(f)
for all f in L, and from this it follows easily that T, € fb(L, M), and

that T1+ =Ton A.B

EXAMPLE 2,16, Let L and M be two Riesz spaces with M # {9},
Dedekind complete and with L having a strong unit. Let A = {de: X €R],
where e is a strong unit of L, Then A is a Riesz subspace of L satisfying
the hypothesis for the Theorem 2.15. Now assume h € M+, h # 6; define
the positive linear mapping T:A - M, T(\e) = \h. According to Theorem

2,15, T has a positive extension on L into M.,
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CHAPTER 3

INTEGRAL AND NORMAL INTEGRAL TRANSFORMATIONS

3.1, THE CONCEPT OF AN INTEGRAL

Let L be the Riesz space of all real valued, Lebesgue integrable
functions defined on [0, 1] with ordering f < g whenever (%) < g(x) for all
x € [0,1]). We consider the following linear functionals on L, LI L - R,
o, (f) = fol f(x) dx, f € L, i.e., ¢, is the usual Lebesgue integral, and
©y" L->R, <p2(f) = f(o), f € L, We can check easily that fn,l, @ in L,
implies ¢’l(fn) J 0 and (pz(fn) J0inR. Also fa’l' 6 in L implies (pz(fa)l, 0
in R, but not necessarily (Dl(f(x) 4 0 as the following example shows, Con-

sider the system

0 if x€q
{f ra € F(lo,1D13, f(x) = ; x €[0,1] ,
1 if x¢a

1
then f_ 0 in L, but ml(fa) = Io fa(x) dx = 1, for all a.

In the next definition we characterize the above properties. We

have the following.

DEFINITION 3.1. Let L and M be two given Riesz spaces, A

transformation T in I(L, M) is called an integral (resp. a normal integral),

if T(fn)—(i)y. § in M (resp. T(fa)i’)_> § in M) whenever fn—(-ﬂ; § in L

(resp. faﬂ> 6 in L).

It is evident that a normal integral is an integral but the converse

is not always true as the above example shows. If L is Dedekind complete
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and M = R, there is an interesting result in [13], concerning the question
'"Is every integral normal ?'',
The following theorem follows immediately from Definition 3. 1,

and generalizes a result due to H, Nakano (see [21], Theorem 19.1, p. 68).

THEOREM 3.2. Let L and M be two given Riesz spaces with M

having the boundedness property and with I, Archimedean. Then every

integral T in Z(L, M) is order bounded, i.e., T € J?)(L,M).

PROOF. Let T € f(L,M) be an integral and let A be an order
bounded subset of L, We prove that T(A) is an order bounded subset of
M. So, let {T(fn) :fn € A} be a sequence of T(A), and let {)\n} C R be

such that )‘n - 0. Since L is Archimedean and A is order bounded in L,
it follows that )\nfn—(—e)—> 6 in L, hence; since T is an integral, it follows
that )\nT(fn) = T(ann)ﬁ)—e 6. So, from the boundedness property of M
it follows that T(A) is an order bounded subset of M, i,e., T € fb(L,M).l

The next section deals with normal integrals.

3. 2. THE BAND OF NORMAL INTEGRALS

The next theorem characterizes the set of all normal integrals of

sfb(L, M) and is due to T. Ogasawara (see, [22], Vol. II).

THEOREM 3,3, Let L and M be two Riesz spaces with M

Dedekind complete, Then, the set of all normal integrals of fb(L, M)

forms a band in the Dedekind complete Riesz space fb(L, M).

For a proof see [30], Theorem VIII. 3. 3 on page 216.
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A similar argument shows that the set of all integrals of fb(L,M),
(M Dedekind complete) denoted by (fb)C = (afb(L, M) )c forms a band of

Z

b(L, M).

The next theorem gives a sufficient condition for an integral to be

a normal integral,

THEOREM 3.4, If L is a super Dedekind complete Riesz space and

M is a Dedekind complete Riesz space, then every integral of J\ob(L, M) is

a normal integral, i.e., (fb)n = (ofb)c.

PROOF., LetT € ;(’b(L, M) be an integral. Since T € ;(b(L, M) is
an integral if and only if ITI € fb(L, M) is an integral, according to the
previous theorem, we can assume that T is positive, Now, let Ua J 6 in
L, then T(Uoc) Jh > 6 in M for some h in M+. Since L is super Dedekind

complete for some sequence {U“n} < {ch}’ we have U It follows

6.

o ¥

then from the integrability of T that T(UOL ) 46, so 9 >h, i.e., h =0, and
L z

this shows that T is a normal integral . ®

Given a Riesz space L we say that the order convergence on L is
stable if fn—(—o—)—> 6 implies )\nfn—iol—> p for some sequence {)‘n} of positive
real numbers such that 0 < A 1+ (see [337]).

The next theorem deals with the above concept.

THEOREM 3.5, Let LL and M be two Riesz spaces with M Dedekind

complete, Assume that the order convergence on L is stable. Then

every transformation T in dfb(L, M) is an integral, i.e., fb(L, M) =

(L (L, M) .
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PROOF. Assume T € £ (L,M) and £ 4 § in L. So, in particular
we have fn(—o)> @; hence there exists a sequence {)‘n} < R such that
0 <) T+ with \_f —(o—)->6.
n nn
Since {)\nfn} c L' is order bounded in L (an order convergent

sequence is order bounded) the sequence {)‘nT(fn)} is also order bounded

in M. So, there exists g in M+ such that l)‘n T(fn)l < g for all

n=1,2,..., or
IT(£ )] <+-g for n=1,2
n = )\ 9 9000 °
n
But M is Archimedean, since it is Dedekind complete. So, —)}— g 40 in
n

M. Henoe T(fn)LOL 6 inM, ie., T € (X, (L,M))_m

THEOREM 3.6, Let L and M be two Riesz spaces with M

Dedekind complete, and let A be an ideal of L, Assume that T G.Z’b(A, M)

is a normal integral and assume further that T is an extendable trans-

formation,

Then the minimal extension Tm of T, determined by Theorem 2.12

is a normal integral.

PROOF. Assume § < ua‘l‘u in L, and assume v €A, 0 <v <y
then § < v /\ua'fv/\u= v in L, and since {v /\ua} C A and A is an ideal
of L. we have also thatv A ua'rv in A, It follows, now, from the assump-
tion that T is a normal integral on A, that T(v A ua) 2 T(v) in M (here we
assume that T > 6, without loss of generality). So, Tm is also positive.
This shows that T_(u ) #h ¢ T, (u), for some h in MT, since M is
Dedekind complete,

But T(v A ua) = Tm(v A ua) = Tm(ua) <h in M, so T(v) < h., Using the
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formula Tm(u) = sup{T(v): v €A; 6 <v< u} provided by Theorem 2. 12 we
find Tm(u) < h, i.e., Tm(uor,) T Tm(u), and this shows that Tm is a normal

integral of fb(L’ M).m

The following theorem can be similarly proved.

THEOREM 3.7 Let L, M and A be as in Theorem 3. 6 and assume

T € fbe(A,M). I T is an integral then Tm is an integral.

THEOREM 3.8, Let L, and M be two Riesz spaces with M Dedekind

complete and also having a strong unit. Assume that T € fb(L,M) is such

that poT is an integral of L™ for each GRS M~. Then T is an integral of

X, (L, M).

PROOF., Without loss of generality we can suppose that T is posi-

tive. If fn J 6 in L, then T(fn) Jhin M, for some h of M. We show that

= f,. Assume thath > g, Then the Minkowski functional defined by
P(g) = inf{A > 0: |g]| < e}, where e is a strong unit of M, is a norm
since M is Archimedean, so p(h) > 0,

Let K= {Ah: A €ER} C M, and @(\h) = Ap(h), A € R. Then ¢ is a
non-zero positive linear functional defined on K. It follows then that ¢
has a positive extension on all of M (see [16], Note VI, Theorem 19, 2,

p. 661)., But then we have (p(T(fn)) = ((poT)(fn) y 6, and also 0 < p(h)
= (h) £ @(T(fn)) = ((poT)(fn) for all n, a contradiction. So, T is an

integral.®m

The next section deals with Dedekind completions and extensions.
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3.3. DEDEKIND COMPLE TION AND EXTENSIONS

Let L and L1 be two given Riesz spaces,

DEFINITION 3.9. The Riesz space L1 is called a Dedekind com-

pletion of L if

(i) L, is Dedekind complete,

1

(ii) L is embedded in L1 as a Riesz subspace (more precisely, there is

a one-to-one mapping of L into a Riesz subspace L:l of L1 preserving the

(finite) algebraic and order relations; we shall think of L and L1 as

———

identical).

(iii) For every f, in L, we have

£, = sup{f € Li:f < £} = inf {g €L:f <g}

If L1 is a Dedekind completion of L., then L1 is Dedekind complete,
so in particular L1 is Archimedean which shows that L is Archimedean.
H., Nakano has proved that a Riesz space L has a Dedekind com-
pletion if and only if Li is Archimedean, and that any two Dedekind com-
pletions of L are Riesz isomorphic (see [19], Theorems 30. 2 and 30, 3;
see also [18], Theorem 32.5, p. 191).
The following theorem tells us that ( £, (L, M)_and ( ;(’b(Ll, M))_

are isomorphic,

THEOREM 3, 10, Let L1 be the Dedekind completion of the

Archimedean Riesz space L, and let M be a Dedekind complete Riesz

space, Thenevery < T € ‘fb(L’ M) can be extended to a positive linear

operator on L1 into M and for 6 < T € (J(b(L, M) )n the extension is unique

and normal which shows that ( fb(L, M) )n and (fb(Ll, M) )n are Riesz

isomorphic.
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PROOF. Assume §< T € fb(L, M). Since L. is the Dedekind

1
completion of the Archimedean Riesz space L we have u = sup{f € L+:
f <u} = inf{g EL+:u§g} for all u ELil-.

This shows in particular, that every element u of Lil- is minorized

by some element of L., It follows from this observation and the fact that
M is Dedekind complete that S(u) = inf {T(g): g € L+; u<gl}exists in M
for every u in Lf.

+ ) +
If, now, Ups v, € Ll and if fl,fz € L.’ are such that uy 5 fl and

< f,, then ujtu, < £ +f e L*. So, S(u;+u,) < T(f +f

Y2 = 20 1792 = 2t 2 2)

= T(fl) + T(f from which it follows easily that S(u1+u2) < S(ul) + S(u
+
1°

f1+f

2)'

We also

2),
It is also evident that S(Au) = A\S(u) for all A > 0 and all u in L

note that S(u) = T(u) for all u in L+.

Similarly the function V(u) = sup{T(f): f € L+; f< u} u in Lf is

+

well defined on Ll

and satisfies V(u1+u2) > V(ul) + V(uz), V()\ul) =

AV(u,) for all u in L;’ and all A > 0. We also note that V(u) = T(u),

12 %2
for all u in LY,
Hence; the mapping p: L1 - M, p(f) = S( lfl), fe Ll is a sublinear

mapping satisfying

T(f) < T(|£]) = S(|£]) = p(f)  for allf € L

It follows from Lemma 2.3 that T can be extended to a linear mapping

T1 on L1 into M such that Tl(f) < p(f) for all {f in Ll'
+

1

In order to prove thatevery § < T € (fb(L, M) )n has a unique

It follows now easily that T, is a positive extension of T to Ll'

positive normal extension, we observe that if we set Mu = fg € LT g = u}

and M, = {f € Lt.s < u}for any u in Lf, then the set
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M -m = {g-f:g € M, fE€ mu} is directed downwards to zero in L,
It follows, now, from the fact that T is a normal integral on L that

S(u) = inf{T(g): g € L+; g 2 ul=sup{T(f): { € L+; f < u} =V(u. This
shows that S is additive on Lii'. Hence, by Lemma 2. 1, S can be extended
uniquely to all of Ll' It is evident that S is normal on Ll'

Now let Sl be another positive normal extension of T, Since the

for all u in L+ we have

set {f € L. s < u} is directed upwards to u in L, 1

$,(u) = sup{S (f): f ¢ L™ f<u)=sup{T(): £ €L £ <u}=5() ,

i.e,, S, = S.

1
Hence the positive normal extension is uniquely determined. It
now follows easily that (fb(L, M) )n and (a'(b(Ll, M) )n are Riesz iso-
morphic. B

Some sufficient conditions for a Riesz space to satisfy one of the

completeness properties are given in the next theorem.

THEOREM 3,11, Let LL and M be two Riesz spaces and let 7 be a

normal Riesz homomorphism from L onto M, i.e., T is a Riesz homo-

morphism which is also a normal integral. Then we have

(i) If L is 0-Dedekind complete then M is 0-Dedekind complete,

(ii) I¥ L is Dedekind complete then M is Dedekind complete.

(iii) If L is super Dedekind complete then M is super Dedekind complete.

PROOF. (i) The proof can be found in Theorem 65.2 of [18], page
450,
(ii) A proof is given in [18] (Theorem 66.3, p. 457). Here we give a

different proof,
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Let L be Dedekind complete, and let § < faTS f in M. Since T is
an onto Riesz homomorphism, for each a € {a} we have TT(ua) = fOL for
some u, € L+, and also mT(u) = f for some u € L+.

For each ) = {a;,... ,ocp} € f({a}) we define the element

p
W)\ = 'V uai A u
i=1

Obviously 6 < Wy TS u. It follows from the Dedekind completeness of L

that Wy Tw for some w € L+, so n‘(w)\) Tm(w) since m is a normal integral,
p p
But TT(WX) = .V m(ug )| A m(u) = .V m(uy )
i=1 1 i=1 1

This shows that the sets {n(w)\)} and {n(ua)} have the same upper bounds
in M, So, foc #m(w), and this shows that M is Dedekind complete.

(iii) By (ii) we know that M is Dedekind complete., Consider the same
situation as in (ii), we have w)\n Aw for some {w;\n} - {Wx} according to
the super Dedekind completeness of L, so, TT(W)\n)T mw). Now let {f, } be
such that fanT and m(wy ) éfan < m(w) foralln=1,2,... . It followz,
now, easily that fanfn(\jvl), and this shows that M is super Dedekind

complete.®

3.4. A GENERALIZATION OF A THEOREM BY H. NAKANO

We begin with the following definition.

DEFINITION 3, 12, Let L be a Riesz space with the following

properties:

(i) L is Dedekind complete,

(ii) L is a K+-space, i.e., Ac L is order bounded if {fn} C A and
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A. - 0inR, implies A _f ——-(—0-)—>6 in L.
n — —_—4t "n'n e

(iii) A sequence {fn} C L (o)-converges to zero if and only if (D(fn) - 0 in

R for every ¢ €L _ = (Jfb(L,R) )n.

We shall call every space with the above properties an R-space.
Examples of R~-spaces are provided by the Riesz spaces of the

form IRX, where X is a non-empty set.

LEMMA 3,13, A subset A of a R-space L is order bounded if and

only if ¢(A) is bounded in R, for every ¢ in L;.

PROOF. It is evident that A C L and A order bounded implies
©(A) bounded in R for all ¢ in L;. We show that the converse also holds.
To this end, assume A C L, and that ¢(A) is bounded in R for all ¢ in
L;:. Let {f } C Aandlet {A_} R be such that \_ =+ o, inR. Then, we
have (p()\nfn) = )\n(p(fn)-» o, since {(p(fn)} is bounded in R. So, according
to property (iii) of the Definition 3. 12 )\nfn——i-(—)-)-;. 6 in L, and so from (ii)

of the same Definition we have that A is order bounded in L. ®

The next theorem is due to H. Nakano (see [19], Theorem 46. 5,

p. 252).

THEOREM 3, 14. If L is a 0-Dedekind complete Riesz space,

{(pn} c L~ and if, for every f in L, o(f) = lim ¢, (f) exists and is finite,
- - n-+o

then ¢ is also in LN.

We generalize this theorem as follows,

THEOREM 3, 15, Let L be a 0-Dedekind complete Riesz space and

let M be an R-space. Suppose that {Tn} c fb(L,M) and that
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T(f) = (o) -lim T_(f), exists in M for every f in L. Then T is in 5(’b(L, M).

N+
PROOF., Let A be an order bounded subset of I, and assume

¢ € M; Then (@oT)(f) = @(T(£)) = @((0) -lim T (f)) = lim @(T_(£))
n-+tow Nn- 4

= limr(lcffz'n)(f). But ¢ € Mn and Tn € a{b(L, M), implies (poTn € L for
n=1,2,..., soby (Nakano's) Theorem 3. 14 we also have @oT € LN, so

(@ oT)(A) = ¢(T(A)) is a bounded subset of the real line for all ¢ € M; .
It follows now from Lemma 3, 13 that T(A) is an order bounded subset of

M, so T eoﬁD(L,M).l

3.5. SOME PROPERTIES AND SOME CHARACTERIZATIONS OF
INTEGRALS AND NORMAL INTEGRALS

We begin with the following definition.

DEFINITION 3,16, Let L, and M be two Riesz spaces with M

Dedekind complete. For every operator T of fb(L,M) the subset

{f €L:|T[(|£]) = 0} is called the null ideal of T and is denoted by N ...

THEOREM 3. 17, Let LL and M be as in Definition 3. 16. Then we

have:

(i) For every T in b(L, M), NT is an ideal of L and NT = NITI =

NT"’ n NT_-

(ii) For every T in (‘fb)n’ N,g is the smallest band which includes both
d d

NT+ and NT"'

PROOF., Trivial.m

THEOREM 3, 18, Let L be a 0-Dedekind complete Riesz space

and let M be a Dedekind complete Riesz space., Assume < T € ‘fb(L’ M)
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is an integral. Then the operator § < T ¢ fb(L/NT,M) defined by

"f([f]) = T(f), is an integral.

PROOF, It is evident that T is well defined. Since T is an integral,
NT is a o-ideal; hence the canonical projection f » [f], from L onto
L/NT’ whose kernel is N, is a o-homomorphism ([18]), Theorem 18,11,
p. 103). Now assume [fn] J[6]in L/NT. Without loss of generality
we can suppose that fn~le=>__' 6. It follows from the o-Dedekind complete-
ness of L that fn Jfin L, for some f in 5 So, we have also [fn] JIf]

in LL/N therefore [f] = [0], sof ENT.

T’

But, T being an integral implies that
T(E, D = TEDY T = g in M,
i.e., T is an integral of ;(’b(L/NT, M).®m

The next theorem gives a sufficient condition for {NT} to be a

projection band.

THEOREM 3,19. Let L be a 0-Dedekind complete Riesz space

and let M be a super Dedekind complete Riesz space. Assume

T € fb(L, M). Then NTd is a projection band of L, It follows in partic-

d
ular that L = {N 5} @ N .

PROOF. Since NT = NIT' we can suppose that T 2 6. Assume
uweLt. We shall prove that sup{v GN,g: 6 <v <u}exists in L (see

Theorem 1, 5),

d
i

consequently the set {T(v): 8 <v <u; v € N,?} is directed upwards and is

Evidently, the set {v €N, :8 <v <u} is directed upwards in L;
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bounded in M, Letf = sup{T(v): 6<v <u;V GNTd} . The super Dedekind

completeness of M implies that T(vn) t £ for some sequence {Vn} c N,%,
6 gvn <u, forn=1,2,... . We can suppose that vn't in L, By the
o-Dedekind completeness of L, we have that T t v, & N,g. We show that
v, = sup{v GNS: 8 <v §u} If not, there exists v EN,g, A<v<u

satisfying v_<v_Vv=w<u, sow-v ENd, andv Vw-v =(w-v )+

o o = o T n n n

+_ o ) )

> (w -vo) =Wev_ > @, which implies that T(vn vV w) T(vn) 2 T(w vo)

> 6.
But then it follows that T(w —vo) + T(vn) = T(Vn Vw) <f for all

n=1,2,... . Hence; T(w-vo) +f<f, or T(w-vo) = @, a contradiction.
Since L is a 0-Dedekind complete Riesz space it is in particular

Archimedean, so we have that N%d= {N

d dd _ d
L=N.@® N =N @ (N }.e

T} (see Theorem 1. 6). So,

The next theorem characterizes the normality of an integral in

some particular cases,

THEOREM 3,20, Let L be a 0-Dedekind complete Riesz space

and let M be a super Dedekind complete Riesz space., The integral T of

fb(L, M) is a normal integral if and only if NT is a band of L.

PROOF. Assume that § < T is a normal integral of afb(L, M).

Let § < u, 4uin L, {ua} C N Then we have 6 = T(ua) 2T(u), so

Tl
T(u) =6, i.e., u GNT, and this shows that NT

Now let § < T be an integral of ‘fb(L’ M) and N

is a band of L.
T be a band of L.
We show that T is a normal integral of ‘fb(L’ M). To this end, let

u, J 6 in L, We show next that T(ua) J 8 in M,
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Applying Theorem 3. 19 we see that L = NT @ N,g; therefore we
may suppose that {ua} c NTd.

Since M is Dedekind complete and T(ua) 4 > @, we have T(ua) Jh
in M, for some h € M+. It follows from the super Dedekind completeness
of M that T(uan) Jh for some sequence {uan} = {ua}, uOLHl, > 6 in L,

But, the 0-Dedekind completeness of L shows that uy |, uin L for some
n

u € L+' hence, T(u
2 ? o)) ¥ T(u) in M since T is an integral of fb(L, M), so

h = T(u). Suppose now thath > §. Then u > . Since u, 46, it follows
that for some uao we must have uOL0 A u < u; hence, T(u-u A uao) > 6.

It follows, now, that T(u A uao) < T(u) = h, But uan/\ uao JuA uao,
so T(uy, Auy ) ¥ T(uAuy )< h

n 0 0

This implies that T(uOLn A uao) Ah <hin M for some index

0

n, €N. Selecting now a, in {a}, such that ual < g A uOLO we obtain
h = T(ual) Ah< T(uano A uao) A h <h, a contradiction,

This shows that h = §, and this completes the proof.®

Note. The proof of the necessity in the above theorem does not depend

on the assumption that L is o0-Dedekind complete,

Given two Riesz spaces L and M and a linear transformation from
L into M, we say that T is strictly positive if T(f) > @ in M, whenever
f> @9 in L.

With respect to this definition we have the following theorem,

THEOREM 3, 21, Let L and M be two given Riesz spaces with M

super Dedekind complete, and let T be a strictly positive linear trans-

formation from L into M. Then we have:
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(i) X 6< u, tu, then 6 < uan 4 u for some sequence {uan} c {ua}. It

follows in particular, that L is super Dedekind complete if it is 0-Dedekind

complete,

(ii) X T is a strictly positive integral of ,,fb(L,M), then T is a normal

integral.

PROOF., (i) Assume < u, fuin L. Then T(ua)'f h in M for
some h in M+. Since M is super Dedekind complete there exists a
sequence {uy } < {u_}, uy 4 suchthat T(uy ) th. If uy 4uis not valid,
n - a a‘n n n

then there exists u, <u such that uyy < u, for alln €N. Then, since
n =

0
u, tu and Uy < uwe must have g Vug - ug = (uao - u0)+ »> 6 for some
index a € {a}. But then U, v uan - ug_ > (uao -uo)"' > @ for all n. It
follows then from the strict positivity of T that T(uao \ uan) - T(uan)

2 T( (uao - u0)+) > 6. Since u, fuin L, for given n there exists an index
By € {a}, such that uBn 2 uao \% uan; hence, h > T(uBn) > T(uan) +

T( (uao - u0)+) for all n, a contradiction., This shows that Yo 4u. The

last assertion follows from [14], Theorem 3.

(ii) Part (ii) is an immediate consequence of part (i).m

COROLLARY 3.22, Let L be a Dedekind complete Riesz space

and let M be a super Dedekind complete Riesz space, Assume also that

d
T fb(L,M). Then N,

if T is an integral, then T restricted to Ng

is a super Dedekind complete Riesz space and

is a normal integral,

PROOF., The proof follows from the previous theorem by

observing that T restricted to NTd

itself is a Dedekind complete Riesz space.®

is strictly positive and that N3 by
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3. 6. RIESZ ANNIHILATORS AND INTEGRALS

Given two Riesz spaces L and M with M Dedekind complete, the
Riesz annihilator A® of a subset A of L is defined by A® = {T € X (L, M)):
T(f) = 9, for all f € A}, Evidently A° is a linear subspace of afb(L, M).

For any subset B of o'fb(L, M) the inverse Riesz annihilator °B is
defined by °B = {f € L: T(f) =  for all T € B}. Evidently °B is a linear
subspace of L,

We have the following theorem.

THEOREM 3, 23. Assume that L, and M are two Riesz spaces with

M Dedekind complete, Then we have:

(i) If A is an ideal of L, then A° is a band of XLy (L, M).

(i) If B is an ideal of ;(b(L, M), then °B is an ideal of L.

(iii) I B is an ideal of (X,)_, then °B is a band of L.

PROOF. (i) We show first that T € A® implies |T| € A®. To this
end, it suffices to show that lTl(u) = @ for every positive u in A. Now,
given § <u € A, it follows from [f| <u, thatf € A, and so T(f) = 6, which
implies by Theorem 2.2 |T|(u) = sup{|T(f)|: f € L; |£| < u} =86

Now, let S € £ (L, M), and [S| < |T|. Then |T| € A®, and so
|| € A trivially, It follows then from |S(u) | < |S|(u) = @, that
S(u) = § for every u in A+, so S € A°, This shows that A® is an ideal
of p{b(L,M). It remains to prove that if {Ta} < A® and ¢ < TaT T in
a{b(L, M), then T € A°, Since Ta(u) = @ for every a € {a} and every
6 < u € A and since T(u) = sup{Ta(u)} by Theoren 2.2, it follows that

T(u) = @ for every u €A+, so T € A°,
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(ii) We prove that f € °B implies Ifl €°B. Given T € B+, it follows

from [S| < T, thatS € B, and so S(f) = 6, which implies that
T(|£]) = sup{[s(8]: s € L (L, M); [S| £ T} = o

according to Theorem 2, 4.

Now letg € L, f € °B, and lgl 1 |£]. Then lfl € °B, and so
lg| € °B trivially. It follows then from |T(g)| < |T[(|g]) = 6, that
T(g) = 6 for all T € BY, sog € ®°B. This shows that °B is an ideal of L.
(i) Let 6 < u fu, {u}g °B, and B ¢ (Z),- Then obviously
6 = T(ua) 1 T(u) for all 8 < T €B, so T(u) = 6, for all § < T € B. Thus,

u € °B, and so °B is a band of L.®@

THEOREM 3,24, Let L and M be two given Riesz spaces with M

Dedekind complete., Assume that O(M:) = {0}, and that for the operator

6< T € £ (L, M) we have poT €L for all p € M_ .

Then T is an integral of fb(L, M).

PROOF. Let fn.Le in L., Then T(fn) Jh in M for some 6 < h € M.
It follows, now, from our hypothesis that ((poT)(fn) = (D(T(fn) N o(h) =6
for all < ¢ € M: Since O(M:) = {9}, we geth =0, so T(an 6. This

completes the proof. ®

EXAMPLE 3,25, Let L = C(X), where X is a completely regular
Hausdorff topological space with the property that every point is a P~
point, i.e., with the property that every intersection of a countable
family of neighborhoods of the point is again a neighborhood of the point,

but not a discrete point. For an example of such a space S, see [5],
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Problem 13P, Assume further that M is a Dedekind complete Riesz
space with o(M’;’) = {@}. Thenevery < T € ,fb(L, M) is an integral,

To see this, we first note that § <o € M~ implies 6 < @oT € L™
and that u | @ in L, implies u_(x) {0 inR for every x € X (see [15],
Note XV, Example 50,7, p. 420). But then it follows from a well-known
result (see [31], Problem 150).

So, Theorem 3. 24 shows that T is an integral. ®

3.7. THE COMPONENTS OF AN ORDER BOUNDED TRANSFORMATION

Given two Riesz spaces L and M with M Dedekind complete we
denote by (£,)_ = (X, (L, M))_, (,fb)c = (£, (L, M))_ the bands of the nor-
mal integrals and integrals, respectively, of ofb(L, M).

It follows from the fact that fb(L’ M) is a Dedekind complete

Riesz space (Th. 2.2) that

Ll = (L)@ ((£,))°
L (LM = (L), ® ((Z,))°

d d
We shall denote the bands ((,,{.b)n) , ((;(b)c) by (X ) g (Kp) g
respectively, and we shall call the elements of (fb)sn the normal
singular integrals and the elements of (fb)S the singular operators,
respectively.

So, we have
LM = (L) @ Ly, = (L), @ &),

It follows, now, from the above relation and (fb)n c ("fb)c that

("fb)sn 2 (‘;(b)s’ hence we have ("fb)sn = [("fb)sn n (‘fb)s] @ (‘xb)s'
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We denote the band ("fb)sn n (,fb)s by (‘fb)sn o» and call the

elements of (afb)sn c singular integrals. Then we have the following

decomposition for fb(L, M).

LpLaM) = (X)), @ L)y, . @ Ky

i.e.,, every T € fb(L,M) has a unique decomposition T = Tn + Tsn c

+ Ts (= Tc + Ts) where the elements on the right are in (,,fb)n, (fb)sn,c

and ("(b)s’ respectively.
It is easy to see ([18], Theorem 14, 4(ii)) that

+ _ ot + F o @ - -
il -Tn+Tsn,C+TS,T _Tn+Tsn’C+TS,
Tl = It b+ T, L+ T,

are the decompositions of TT, T~ and | T|, respectively.
The operator Tn is called the normal (integral) component of T,
and the operator TC = Tn + Tsn,c is called the integral component of T,
Next we shall investigate some of the properties of the different

components of T,

We start with the following lemma.,

LEMMA 3,26, Assume that L and M are two Riesz spaces with

M Dedekind complete, We consider the following mappings from Lt

into M+:

(i) TL(u) = inf {(0) - lim T(un) 10 < u, tu}
—_ N+
(ii) TL(u) = inf{(0) - lim T(ua): 6 < u, tu}

(iii) T(u) = inf{(o0) -limOLT(ua) tu2u |6}

84
for every u € L+, where § < T € fb(L, M). Then TL, T. and T are

additive on LT,
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The proofs for T, and T

PROOF. We give the proof for T L

Le
are similar,
It is evident that TL(u + V) < TL(u) + TL(v) for all u,v € L+.
For the reverse inequality assume that u,v € LY and
6w tutv, By the Riesz decomposition property (Th, 1. I(vii)) we

. +
can writew_=u_+4+v_, u,v_ €L forn=1,2,..., andu_ tu v_14v,
n n n’ n’ n n , n

It follows from this that T(wn) = T(un) + T(vn), and so, (0) -lim T(wn)

N +4®
= (o) - lim T(un) + (o) -lim T(vn) > TL(u) + TL(V). Hence, TL(u+ v)
n-+o n-+o
2 TL(V). This completes the proof. ®

The following theorem is due to W, A, J. Luxemburg and A, C,

Zaanen (see [16], Note VI, p. 663, and [15], Note XV, p. 441).

THEOREM 3.27, Let L be a Riesz space and let § < ¢ € L. Then

for every u € LT we have:

(i) <pc_(u) = inf {lim (p(un) | ul.
(ii) (pn(u) = inf{lirgg(za) 10 < ua']‘ ul.
(iii) @, (u) = sup{lim (p(ua) ruzu d 0}.

We generalize this theorem as follows:

THEOREM 3, 28. Let L and M be two Riesz spaces with M

Dedekind complete, Assume that 0(M';) = {6} or that M admits a strictly

positive integral. E 6<TE fb(L, M), then for every u € L+ we have:

(i) Tc(u) = inf {(0) - lim T(un) :6< u ¢ u}.
n—-+«
(ii) Tn(u) = inf {(0) - lim T(ua) 10< v, ¢ u}.

(04
(iif) T (u) = sup{ (o) -lin& T(ua) fuzug y6}.
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PROOF. We verify the formula (i). A similar argument will
prove (ii) and (iii).

We note first that the set {(0) -1lim T(un): 6<u, 1u} is directed
downwards in M and that it is bounded by 6. According to Lemma 3. 26,

T, is additive on L", hence by Lemma 2.1, is uniquely extendable to the

whole L. We shall show next that T_ is an integral of afb(L, M) under the

L
assumption O(M;) = {0}. (A similar argument will work in the case in
which M admits a strictly positive integral, Note that in this case by
Theorem 3, 21 the strictly positive integral is also a normal integral,)

5 . +

So, let w 4 6 in L. Then TL(un) Jh >26inM for some h € M.
It suffices to show that h = 6,

To this end, let 6 < ¢ € Mn. Then we have (onL)(un) =
<p(TL(un)) ;w(h) in R, But, as we shall verify later, ¢0TL = ((DoT)C.
So, we have (<poTL)(un) = (<poT)C(un) 40 in M, hence p(h) = 6 for all
8< o€ M';, and since O(M;) = {9} it follows that h = 0.

To verify that (poTL = ((poT)L we proceed as follows, Assume
u € L+, then we have (using the earlier remarks) (<poTL)(u) — (p(TL(u)) =

¢ (inf {(0) - lim T(un) 16 < u ¢ u}) = inf{p({(0) ~lim T(un) 16 < u tudl =
: n-® n-+
inf {(0) - lim(@oT)(un) t0<u 4 u} = ((poT)L(u).
n-4

Now the relation § < T < T implies that TL = (TL)C §TC.

L

On the other hand we have TC < T and from this it follows that (TC)L §TL.

But from the definition of (TC)L (similarly as for TL) it follows that
(TC)L =T

= @
TL TC'

o’ thus TC o TL‘ Combining the above two relations we get

COROLLARY 3,29, Let L., M and T be as in Theorem 3, 27.

Then we have:
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(i) The set of all f € L for which there exists a sequence 6 < u K

such that TC(|f|) = (0) -lim T(uw ) = sup{T(u ):n=1,2,...} is an ideal
n-—a+m
of L.

(ii) The set of all £ € L for which there exists a directed system

6 < v, Tlfl such that Tn(]fl) = (o) =1lim T(ua) :a € {a}}is an ideal of L,
a
(iii) The set of all £ € L for which there exists a directed system

|£] > u 6 such that Tsn([fl) = (o) -lim T(u ) is an ideal of L.
a

PROOF, We prove (i). The proofs of (ii) and (iii) are similar,
It is obvious that the set described in (i) is a2 Riesz subspace of L, We
have only to show that if |g| < |f|, f,g € L such that T_([f]) =
(o) -lim T(u ), for some sequence § < u 1 1£|, then T ( lg]) =
(o) —Illi;:[‘(vn), for some sequence § < v 1 Ig |

n-+o
Define v
n

(w, v lgl - lgh)

6 < unv Igl = Igl Tlfl \ Ig' - lgl = Ifl - lgl it follows from Theorem

u Algl, then < v_ 1 |gl|, and T(v ) = T(u_ -

T(un) - T(un v Igl - 'g') forn=1,2,... . Since

3. 28 that
T (lg]) £ (o) -1lim T(v_) = (0) -lim T(u)) - (o) -limT(u_V [g| - |g]) <
n-to n—+ n-+4 ® B

< T (e - T lf] - lgh = T (leh

so (o) -lim T(vn) = T(lgl)..
n-—4w©

THEOREM 3,30, Let L, M and T be as in Theorem 3. 28, Then

we have:

(i) In the formula Tc(u) = inf {(0) - lim T(un) 0w 1 u} the greatest
n-+e» -
lower bound is attained for all u in L' if and only if NTs is super order

dense in L.
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(ii) In the formula Tn(u) = inf {(0) - lim T(ua) 10 < u, fu} the greatest
a
lower bound is attained for all § < u € L if and only if N is order
= Gy i

dense in L(TS = Tsn,c + TS).

n

PROOF, Trivial, ®

A Riesz space L is said to have the Egoroff property if, given
any u € LY and countably many sequences 8§ < U du forn=1,2,...,
- k

there exists a sequence § < vmir u, and for every pair (m,n) an index

j(m,n) such thatv < % im,n) (see [18], Chapter 10).

We have the following theorem,

THEOREM 3,31, Let L, M and T be as in Theorem 3, 28. Assume

further that L has the Egoroff property and that M is super Dedekind

complete. Then we have: Tc(u) = min{(0) - lim T(un) g u b u} for
n-—-4o

every u in L+.
PROOF: According to Theorem 3. 28 we have
Tc(u) = inf{(0) - lim T(un) 10w 1u}, for all u € L,
n—+4o -
Since M is super Dedekind complete, there exists a double sequence
{unk} C L such that § < W 11; u and ( (o) -ilif(unk)) ;rl Tc(u).
By the Egoroff property there exists a sequence 6 < L 4u such

that VLSV for given pair (m,n). Hence

= 'n, j(m,n)’

6 < T(vn) < T(un’ j(m,n)) < T(un’ k) for k > jlm,n) .

So, 8 < T(v.) < (o) -1lim T(u_,) foralln=1,2,... . Itfollows from
= n' = - nk
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Lemma 1, 7 that (o) -1im T(vn) < Tc(u). Since the converse inequality is
n-t®
evident we conclude that (o) -1im T(vn) = Tc(u). This completes the
n -4
proof, B

THEOREM 3,32, Let L and M be as in Theorem 3. 31, and let

T €(K,) . Then the subset N, = {f € Li: [T|(]£])= 0} is an ideal with
S

the property that for every f € L there exists a sequence {fn} c NT such

that f]: Tf+ and fx; 4+£f". In particular N, is a super order dense ideal of

T

Lo

PROOF, The proof is analogous to that of [14], Cor. 20.7,
Note VI, p. 664.®
The following theorem characterizes the inverse Riesz annihilator

of ( of b) in terms of a continuity property.
s

THEOREM 3, 33, Let L and M be as in Theorem 3, 28. Let

ZH(L, M) be the subset of L consisting of all f € L such that [£| > u ¥ 6

implies T(u }—25 g in M for all T € &£, (L, M). Then LAL,M) = (L) ,
implies in M for all Then .

and hence LML, M) is an ideal of L.

PROOF. Assume first thatf € £XL,M). Let 9 <T € Z (L, M).
For any sequence § Su 1 |£] we have |f] 2 l£] - u }6, so T(u) rT(£)),
since f € LML, M). It follows that
TC(IfI) = inf{(0) -lim T(u ): @ <u_ el 3 = T(l£))
n-+ow
and hence Ts(lfl) = @, In particular, if < T € (Xb) , then T = Ts’
= 8

so T(|£f]) = 6. This shows that |f| € o(;(b) and since °( ;(b) is an
s s
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ideal of Li by Theorem 3, 23, it follows that f € o(fb)s' Hence
;fa‘(L, M) ¢ O(Ib)s. Conversely, letf € o(¢,‘I~f’b)$, so lf[ € 0(.-:(b)s. Then
T(|£]) = for all T € (Ib)s, in particular for all < T € (Jfb)s.

Now let, [f| 2 u 6. X o< TeL, (LM), then T=T_+T,.
So, it follows from Tc(un) 46 and Ts(un) = @ that T(un) J 6. But then
T(un)—(o—)> @ in M for every T € cfb(L,M), sof € Xa(L, M). Hence;

0(.,fb) = ;(a(L,M). This completes the proof.@
g =

THEOREM 3, 34, Let L and M be as in Theorem 2.8, and let A

be an ideal of L such that ,’(b(A, M) can be identified with (fb) in the
o ——

sense that

(i) the restrictions on A of different elements of (pfb) are different, and
c

(ii) every T, € of (A, M) has an extension T onto all of L such that
SVery ‘a b
T €(Xy) -
c
Then A ¢ XML, M) and A® = (X XL, M))° = (L) .
—_— = B ]

PROOF. Iff €A, and |f]| > u 6, thenfor g< T € fb(L,M) we
have that TA (the restriction of T on A) is positive and, since, it is an
integral by hypothesis, T(un) J 6. Hence AC ,{a(L, M). From this it
follows easily that (£,) ¢ [°(fb) 1° = (LH4L,M))° c A®. Using (i)

s = s =
and (ii) we see that @ £ TE fb(L,M) and T=gon A, imply T = Ts; hence
A% (L) .
- ]
So, (LML, M))° = (Xy) =A% m
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CHAPTER 4
ORDERED TOPOLOGICAL VECTOR SPACES AND

TOPOLOGICAL RIESZ SPACES

4, 1. THE BASIC THEORY

We recall that an ordered vector space is a real vector space E
with an order relation < satisfying the two conditions
(i) f<g implies f+h <g+h for everyh €E
(ii) 6 <f implies § < af for every real a = 0.

The subset K = {f € L:f > @} is called the (positive) cone of E
with respect to the ordering <. The cone K has the following three
properties:

(a) K+ KC K
(B) oK ¢ K for everyreal a 2 0
(v KN -K= {6}

The above three properties characterize the cone K as well as the
ordering <. If a subset K of a real vector space E satisfies the properties
(a), (B) and (y) then the relation f < g, if g -f € K is an ordering for E
satisfying the conditions (i) and (ii). The pair (E, K) where K is a cone
of E will indicate an ordered vector space E with ordering induced by K.,

Directed upwards and downwards systems in E are defined
exactly as in the case of the Riesz spaces,

The ordered vector space (E, K) is called Archimedean if the
relation nf < g for all n €N and some f, g in E implies f < 6. Note that

if (E, K) is a Riesz space this definition is equivalent to that of

Archimedean Riesz spaces., The element e € K is called an order (strong)
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unit of E, if for every element f € E there exists A > 0 (depending on f)

such that £ < le. (E, K) is called g-Dedekind complete, if 6 < fn = fo

implies £ 4f for some f € E. Similarly (E, K) is called Dedekind com-
n

plete if 6 < fa‘]*ffo implies fa’l‘f for some f € E, Finally, (E,K) is

called super Dedekind complete, if it is Dedekind complete and fan
implies fy 7f for some sequence {fa*n} c {fa} ;

The cone K is called generating if E = K-K, If K is generating
and (E, K) is 0-Dedekind complete then (E, K) is a Riesz space.

The triple (E, 7,K), where K is a cone of E, 7T is a linear topology
(not necessarily Hausdorff), i.e., a topology 7 of E such that the
operations (f,g) = f+g from (E, 1) x (E, 1) into (E, 1) and (),f) - \f from
R x (E, 7) into (E, 7, R with its usual topology, are both continuous, is
called an ordered topological vector space.

The cone K of the ordered topological vector space (E, %, K) is
called 7-normal, if there exists a neighborhood basis for the 7~
neighborhoods of zero consisting of full sets. A setV ¢ E is defined to
be full, if for every pair f,g in V such that f < g we have that
f,g]l={h €E:f <h<g}CV.

A characterization of the normal cones is given in the next theorem.

THEOREM 4.1. Let (E, »,K) be an ordered topological vector

space, Then the following statements are equivalent,

(i) K is a s-normal cone.

(ii) For every two nets {fa}, {ga} of E such that 6 <f < g, for all o

and ga-_t) 0, it follows that fa Tse.
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For a proof of Theorem 4. 1 see [23], p. 62.

The next theorem gives some information for the s-closure of K,

THEOREM 4., 2. Let (E, r,K) be a Hausdorff ordered topological

vector space with the cone K y-normal. Then the p-closure of K is a

r-normal cone,

PROOF. We prove first that K is a cone. From the continuity of
addition and multiplication it follows that K+ K - K and aK c K for all
a2 0, so, K will be a cone if KN -K = {g].

To prove this, letf € K N -K. Then there are two nets {foc}’ {ga}

of K such that fa—Trf and ga—‘r-r -f. It follows then that 6 < fa < fa + ga_f_;.

Hence from Theorem 4.1, we get that fa—T> 6. Since T is a
Hausdorff topology we have also that f = §.

Now let << denote the ordering induced on E by K, and assume
that g << f_ << ga-—T>6.

According to Theorem 4.1, K will be a normal cone if we show
that { —T» 6. Since f €K for all o, we have ({ + V) NK # ¢ for all
V € U, = the set of all r-neighborhoods of zero, So, for each (a, V) there

6

exists an element h(qa,v) € V such that

6 < foc+ h(a, V) .

Similarly, ga-fa €K for all o, implies that for every (a, V) there exists
an element U(a, V) €V such that § < 8g " fOL + U(a, V).

So, we have

0 <f +h(a,V) <g_ +h(aV)+UaV)—s0 .
- e - @ (o, V)
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It follows, now, from Theorem 4.1 that fa + h(a,V)—-T—>6, from

which we obtain fa—T—) 6, by observing that h(a,V)-jee.-

Note. Theorem 4, 2 is a generalization of a known theorem for

Hausdorff locally convex ordered spaces (see [23], p. 63). A different
proof of Theorem 4.2 was also given by M. Duhoux (see [2], p. 4,
Theorem 1. 1),

Normal cones have the property that the order bounded subsets

of E are also topologically bounded. We have the following theorem.

THEOREM 4.3, I the cone K of an ordered topological vector

space (E, 7, K) is 7-normal, then every order bounded subset of E is

r-bounded.

For a proof see [23], p. 62.

As a consequence we have that if K is a f~normal cone, then
every T-continuous linear functional is order bounded.

The order vector space (E, K) is called a Riesz space if the least
upper bound of any two elements of E exists in E,

A general discussion of the theory of Riesz spaces is given in
the beginning of the present work.

If L is a Riesz space (more precisely the pair (L, L+)) and if ¢
is a linear topology of L (not necessarily Hausdorff), i. e., a topology T
for which the algebraic operations are continuous, then (L, T) is called
a topological Riesz space,

If there exists, in addition, a basis for the P-neighborhoods of

zero consisting of solid sets, (a subset of V of 2 Riesz space L is called
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a solid, if |f| < |g| and g € V implies f € V), then the topological Riesz
space (L, T) is called a locally solid Riesz space.
Given a topological Riesz space (L, T), the following five mappings
are called the lattice operations of L.
(i) (f,g) - fA g, from (L, s x (L, r) into (L, 7)
(ii) (f,g) - f Vg, from (L, ) X (L, 7) into (L, T)
(iii) £ - 7, from (L, 7) into (L, T)
(iv) f - £, from (L, 7) into (L, 7)
(v) f - 'fl, from (L, 7) into (L, 7).
It is not difficult to verify that continuity of one of them implies
continuity of the other four.
A characterization of the locally solid Riesz spaces is given by

the following theorem.

THEOREM 4.4. Let L be a Riesz space and let r be a linear

topology of L, i.e,, let (L, 7) be a topological Riesz space. Then the

following statements are equivalent,

(i) (L, T) is a locally solid Riesz space.

(ii) L+ is a T-normal cone and the lattice operations are continuous.

For a proof see [23], page 104, Proposition 4. 7.

4,2, THE PROPERTIES (A, o), (A,i), (A,ii), (A,iii), AND (A, iv)

Following W, A, J. Luxemburg and A, C. Zaanen ([16], Note X)
we introduce the following conditions for an ordered topological vector

space (E, 7, K):
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(A, o) : unl,e and {un} is a r-Cauchy sequence implies un—T-)e,

(A,i) : u J 6 implies un—l). o,

(A, ii) : u, 4 6 implies ua—r—r R

(A,iii): 6gu P <u  implies that {un} is a 7-Cauchy sequence, i.e.,
every order bounded increasing sequence in (E, 7) is a 7-Cauchy
sequence,

(A,iv):  6< u, t Sy, implies that {ua} is a 7-Cauchy net, i.e., every
order bounded set in (E, 7) which is directed upwards is a
7-Cauchy net.

Obviously (A, ii) implies (A,i), (A, i) implies (A, o) and (A, iv)
implies (A, iii). The following examples show that many other implica-

tions do not hold in general, not even in locally solid Riesz spaces.

EXAMPLE 4.5. (i) Let L be the Riesz space of all real valued
functions defined on an uncountable set X and such that for every f € L
there exists a real number f(®) such that given any ¢ > 0, we have
lf(x) - f(°°)| > ¢ for finitely many x. In other words, L = C(Xw), where
X » is the one point compactification of the set X considered with the
discrete topology. Let T be the locally solid topology generated by the
norm p(f) = sup{|f(x)|:x € X}.

Then (L, 7) satisfies (A, i), but not (A, ii) and (A, iii).

(ii) Let L be the Riesz space of all real continuous functions defined on
[0,1], i.e., L=C [0, 1] and let T be the locally solid topology generated
by the norm p(f) = Iol If(x)l dx. Then (A, iii) holds but (A, i) does not.

(See [18], Exercise 18, 14, p. 104.)
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(iii) Let 0 < p <1 and let L be the real vector space of all real
valued Lebsegue measurable functions defined on [0, 1], such that
1 p
[Tl dt <+ =
0
Then L becomes a Riesz space under the ordering f < g when-
ever f(x) < g(x) for all x € [0, 1],

Givenn €N, § >0 and F = {xl,... ,xn} - [0, 1] we define the set

1
1 -
LI {f eL:jO |£(t)| P at <= and If(xi)l <§ for i=1,...,n}

For F varying over £ ([0,1]), n over N and § over (0,+ =) we get a
family of sets {WF,n, 6} which is a filter basis for a neighborhood system
of the origin for a uniquely determined linear topology r of L (see [7],
page 81).

Obviously each W is a solid set. So, (L, 7) is a locally

F,n, s
solid Riesz space.

We can verify easily the following properties:
(1) 7 is a sequentially complete (but not complete) Hausdorff non-
metrizable locally solid topology for L.
(2) (A,i) and (A, iii) hold, but (A, ii) does not hold. To see (2), consider

the net {fa 1

0 if x€q
£ (=) = , a €fF([0,1], for (A,ii).
1 if x¢a

The property (A, i) follows from Lebsegue's dominated convergence
theorem and from the fact that fa.l, 6 in L implies fa(x) JO0 inR for all

x € [0,1]. Property (A, iii) is easily verified.
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(3) L is 0-Dedekind complete but not Dedekind complete,

(iv) The product of the spaces in (i) and (ii) gives a locally solid
Riesz space without (A, i), (A, ii) and (A, iii) (with respect to the product
topology).

(v) Let L be the real vector space of all sequences which are
eventually zero, i.e,, f is in L if f(k) = 0 for all k 2 ng for some n
(depending on f), The cone K consists of the zero element and of all
sequences of L such that their last non-vanishing component is strictly
positive, Then (L, K) is a non-Archimedean Riesz space,

Let 7 be the linear Hausdorff topology of L generated by the norm

Hell = 2 [£(n) |

n=1

Then the topological Riesz space (L, 7) satisfies condition (A, ii) but not
(A, iii).
Note that T is not locally solid and also that K is not 7-normal,
This also shows that (A, ii) does not imply normality of the cone.®
Note, The Riesz space L of the example (v) has many interesting
properties, We list some of them.,
(i) The order of L is a linear order, i.e., for given f,g in L, at least
one of the velations f < g and g < f is valid in L.
(ii) L is non-Archimedean (as already was mentioned).
(iii) L is relatively uniformly complete.
(iv) L has the Egoroff property.
(v) L™ = {6}

+

(vi) L is r-dense in L, where r is the linear topology defined above.
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We show next that (A, iii) and (A, iv) are equivalent,

LEMMA 4,6, Let (E, 7,K) be an ordered topological vector space.

Then the following statements are equivalent:

(i) (E, 1,K) satisfies condition (A, iii).

(ii) (E, 1,K) satisfies condition (A, iv).

PROOF. Obviously (ii) implies (i). We show that (i) implies (ii).
To this end let § S u, 1< u, and assume that {ua} is not a 7-Cauchy net.
This means that there exists a neighborhood U of zero such that for every

a € {a]} there exist ap,a > o with um1 -u

ay £ U. Letnow V be a circled

2
neighborhood of zero such that V4V ¢ U. We claim that for every a € {al,
there are two indices 0ps Gy such that g 2 o, > o and satisfying

Ugy ~ Yoy EV.

Indeed, if this is not the case we must have u,_ -

a1 uOLZ €V for

every pair of indices Oys Oy such that o z ay _>__ o. Now, for the given
Bl’ BZ z o we pick an index d‘l such that 0 = Bl z o and o i BZ z Q.
Then we have, uBl - uBZ = (uB1 - ual) - (uB2 - uaz) EV+VCU a
contradiction. This establishes the assertion.,

Let a, be an index. We pick two others Ays Qg such that

nv

o> -
Gy Z Gy 2 0y and uOL3 uOLZ £V,

Let also Oys Og be such that Og

nv

> -
¢, 2 0, and uOLS u0L4 d V, and
so on,
The sequence {ua } satisfies g < ugy 4 < u, and it is not a
n n' =

+-Cauchy sequence, a contradiction.

Hence, (A,iii) implies (A,iv). ®
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Note. It is not difficult to verify that (A, iii) is also equivalent
with the following statement: Every sequence {fn} c E such that

6 < fnl, in E, is a 7-Cauchy sequence,

4.3, TWO BASIC THEOREMS CONCERNING TOPOLOGICAL AND
ORDER PROPERTIES

We begin with the following.

THEOREM 4.7. Let (E, 7,K) be an ordered topological vector

space with K r-closed. Then we have

(i) E is an Archimedean ordered topological vector space,.

.. T .
(ii) If f,4and f —f, then faT finE,

Similarly for decreasing nets,

PROOF, First we note that 7 is a Hausdorff topology since K is
a T-closed cone,
(i) Let nf <g, forn=1,2,... . Then we have ¢ < %g-f—l;—f. Since
K is 7~closed we have -f €K, or { < 6.
(ii) For fixed o € {a.} we have 6 % fB -fa for all B > o, so, since
o<f,-f —T>f-f, we see that f-f 2 @ for alla € {a}, i.e., fis an
upper boun%'zi'ooxc' the net {foc}’ Let now foc < g for all 0. Then we have

6< g -fa-—‘r>g -f, so using once more that K is r-closed we obtain

g-f €K, or f < g. Hence fa1f.l

THEOREM 4, 8. Every band in a Hausdorff locally solid Riesz

space (L, 7) is, r-closed.

PROOF., LetD be a non-empty subset of L, and let f € Dd. Then
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there exists a net {fa} c Dd such that f.a—‘r>f. Now if g € D it follows
from Theorem 4. 4 that g = lfocl A lgl 55 |£] A|g| and hence (since 1 is
a Hausdorff topology) Ifl A ]g] =6, i.e., f € Dd. This shows that Dd is
a r-closed band of L.. Since every band A of L satisfies A = Add (see

Theorem 1, 7(ii)) it follows easily that every band of L. is T-closed. ®

We recall that a Riesz space L has a countable order basis if
there exists an at most countable subset of L, such that the band generated
by this subset is the whole space. The next corollary gives a sufficient
condition for the existence of a countable order basis for Hausdorff

locally solid Riesz spaces,

COROLLARY 4.9, If a Hausdorff locally solid Riesz space (L, 1)

is separable then L has a countable order basis,

PROOF., Assume that (L, r) is separable, and let {f : n=1,2,... ]
be a T-dense subset of L., Let A be the band generated by the system
{fn}, then A is r-closed according to the previous theorem. It follows

then that A = L.. Hence A has a countable order basis @

THEOREM 4, 10, Let (L, 7) be a metrizable locally solid Riesz

space, Then every o-ideal is r-closed,

pe

PROOF. Letf —>fand {fn} C A where A is a o-ideal of L.
Since fr':——'r—>f+ (Theorem 4. 4), without loss of generality we can assume
that {£ }g ANLY, feanL?,

We define the sequence

n
gn=(:izlfi)/\f, for n=1,2,... .
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Then we have 6 < g " {gn} C A and 6 gf-gn Si-f Af< lf-fnl for
n=1,2,... . Sog —Tsf.
n
It follows from Theorem 4, 7 that § < gn']“ f. Since A is a o-ideal

of L it follows thatf €A, soA = A, i.e., A is r-closed.®

The following example shows that the Hausdorff property of the

topology + cannot be removed from Theorems 4, 7 and 4. 8.

EXAMPLE 4,11, (i) Let L be the plane with the lexicographic
order, i.e,, let L = [R2 with ordering f = (fl,fz) > = (gl,gz), whenever

fl > g, or £, = g1 and fz 2 g85- Then L is a non-Archimedean Riesz

1
space, Consider now the semi-norm p of L defined by p(f) = lfll,

f = (fl,fz) € L. It is easily verified that § <f < g implies o(f) < p(g) and
that p(f) = p( lfl) for all f € L, So, p defines a non~-Hausdorff locally

solid topology # on L, i.e., (L, 1) is 2 locally solid Riesz space which,

as mentioned earlier, is non-Archimedean, Consider now the sequence
£ =(0,n), n=1,2,... of L. Then we have 6 < fn']‘in Land p(f ) = 0 - 0,
so, fn—l>9 in (L, 7), but the sup{fn:n €N} does not exist in L.

(ii) Comsider L = C [0, 1] with the usual order and define the Riesz semi-
norm p, by p(f) = sup{|f(x)|:x € [0,%]} for all f € L. Then p defines a

locally solid topology s for the Archimedean Riesz space L. Note that

the band B = {f € L:f(x) = 0 for all x € [%, 1]} is not T-closed.®

4.4, SOME CHARACTERIZATIONS OF (A, i) AND (A, ii) PROPERTIES
. FOR LOCALLY SOLID RIESZ SPACES

The next theorem gives a characterization of the (A, i) property

for locally solid Riesz spaces,
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THEOREM 4. 12. Let (L, 7) be a locally solid Riesz space. Then the

following statements are equivalent.

(i) (L, 7) satisfies the condition (A, 1i).

(ii) Every r-closed ideal is a o-ideal.

PROOF, (i)=(ii). Trivial.
(ii)=>(i). Let B8 < un'I‘ uin L and let U be a solid r-neighborhood of §. We
choose a solid T-neighborhood V of zero such that V4V € U, Let a be
such that 0 <a < 1 and (1-a)u €V,

The conclusion now follows by a way completely analogous to that

of Theorem 47,3 of [15], Note XIV, p. 244, ®m

COROLLARY 4, 13, Let (L, 1) be a metrizable locally solid Riesz

space satisfying condition (A,i). Then an ideal A of Liis r-closed iff A

is a o=-ideal of L.,

PROOF. This follows immediately from the above Theorem

and Theorem 4. 10,8

The next theorem generalizes a result of T, Ando and W, A, J.
Luxemburg (see [15], Note XIV, p. 244), and can be proved as Theorem

4, 12.

THEOREM 4, 14, Let (L, 1) be a locally solid Riesz space. Then

(L, 7) satisfies (A, ii) iff every s-closed ideal of L is a band.

COROLLARY 4. 15, Let (L, 7) be a Hausdorff locally solid Riesz

space satisfying condition (A, ii). Then an ideal A of L is 7-closed if

and only if A is a band of L,
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PROOF, This follows immediately from the above Theorem and

Theorem 4. 8.8

For Hausdorff locally convex Riesz spaces which are also locally
solid there exists another characterization of the (A, ii) property. The

next theorem can be found in [24], page 54,

THEOREM 4. 16, Let (L, 7) be a Hausdorff locally convex, locally

solid Riesz space. Then the following statements are equivalent,

(i) (L, 7) satisfies the (A, ii) property.

(ii) (L, »)! - L;, i, e., the topological dual of (L, 7) consists only of

normal integrals,

For locally convex, locally solid Hausdorff Riesz spaces we have

also the following theorem,

THEOREM 4, 17, Let (L, 7) be an Archimedean locally convex,

locally solid Riesz space. Then the following conditions are equivalent,

(i) Every t-closed ideal of L is a band.

(ii) For every 9 < o € L' the null ideal N(D is a band.

(iii) Every order dense ideal in L is r-dense.

In particular, it follows from Theorem 4. 14 that all the above

conditions are equivalent to the (A, ii) property.

PROOF. The proof is analogous to that of Theorem 35, 6 of [16],

Note X, p. 513, and so we omit the details.®
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THEOREM 4. 18, Let (L, 1) be a Hausdorff locally solid Riesz

space satisfying condition (A, ii), and let M be a super Dedekind complete

Riesz space, Assume further that T € (;fb(L, 1\/[))sn e Then T = @,

if and only if, NT is a r-closed ideal.

PROOF, Obviously if T = 9, then N, = L, so NT is a r-closed

T

ideal, Letnow T € (gf’b) with N, r-closed, By Theorem 4. 7(i), L

sn, C T

is Archimedean and therefore NT is order dense in L, Using

is also a band in L.

T
So, altogether we have that L = {NT} = N%d =N

Theorem 4., 14 we see that N

T i,e., T=6.8

4,5, THE EGOROFF PROPERTY

We recall that 2 Riesz space L has the Egoroff property if
6 = u'nk 1’2 u, n=1,2,,.. implies the existence of a sequence {vn} such
that 9 < v, 1 and for each pair (m,n) there exists an index j(m,n) such

thatv., < u_ . .
m = n, j(m,n)

THEOREM 4, 19, Let L be a Riesz space and assume that L

admits a metrizable locally solid topology 7, which also satisfies condition

(A, ii).

Then L has the Egoroff property,

PROOF. Let {W_:n €N} be a countable basis for the origin for

the topology T consisting of solid sets and such that

Wn+1 +Wn+1 - Wn’ for n=1,2,...

1]

Assume that § < u € L and § < upk lt uforn=1,2,... . For every pair
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of indices (m, n) we determine anindex j(m,n) such that u-u_ . €
n, j(m, n)
. . T : .
Wm+n‘ This can be done since u - un, k—&? 6 according to the hypothesis,

Evidently we may assume that j(m, n) increases as m increases, For

m fixed and a = {nl,...,np} € F(N), let

p
u. = /\ u :
a " {y ny,i(m,n)

Then we have

P P
g<u-u =u- A u_ . =V (u-u_ . )
= a j=1 ni’ J(m9 ni) j=1 ni’ J(m’ ni)

P
< D (u-u, . ) EW et W cw__ .
= 41 ni,J(m,ni) mtn, m+np = " m
Since Wm is a solid set we have
u-u €W_, for all o € F(N) . (D

Obviously the set {ua} is directed downwards, and writing V =
{fveL:v< u, for all a} we have w, -V 4 6, according to Theorems

(a, v)
1. 4 (iii) and 4, 7(i). It follows from property (A, ii) that

u —v——Tq-G . (2)
@ (a, v)

Combining (1) and (2) we obtain the existence of an element 6 < v EV

suchthat < u-w__ €EW_+W _ CW . Now let
= m m m=  m-1
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Since w__ < u for all n andall m=1,..., £ we have

. < .
n, j(m,n) = "n, j(4,n)
Zzé un’ i( 8, 1) for all n, Furthermore 0 § Z,V,Tg u and
6<u-2Z

<u-w GWE_I, sou-4Z, 6 €W

) 4 y 4-1
follows from Theorem 4. 7(i) that 8 <Z g Au.

and therefore Z!?,_L u. It

So the sequence {ZL} satisfies all the conditions required for the

Egoroff property and this completes the proof, B

Note. The same proof works if the topology 7 is not locally solid

and metrizable but it is metrizable with L+ T-closed and T -normal.

APPLICATION 4, 20. LetL = Lp( [0,1]), 0 <p <1 and let T be
the metrizable locally solid topology generated by the neighborhoods
1
W o=ffe L:_J‘O l£(x; |Pax < ¢}
It is easy to verify that L satisfies condition (A, ii) (using the fact
that Lp is super Dedekind complete, see [18], p. 126, Ex., 23.3(iv)).

Thus Lp satisfies the Egoroff property.®

THEOREM 4. 21. Let L be a Riesz space and let (M, 7) be a

metrizable locally solid Riesz space satisfying condition (A, ii), which

is also super Dedekind complete. If there exists a strictly positive

integral from L into M, then L has the Egoroff property.

PROOF. Using the technique of Theorem 4. 19 the proof can
follow the same pattern as in Theorem 33, 11(ii), of [16], Note X,

p. 493. We omit the details ®

Note. By Theorem 4.19 M has also the Egoroff property.
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The following example shows that strict positivity of T is

essential in Theorem 4. 21,

EXAMPLE 4, 22, Let X be an uncountable set such that L = iRX
does not have the Egoroff property (see [18], Ex, 67, 6(v), p. 465 or

Theorem 75.3, p. 511), and let M = R with its usual topology.

Assume that X € X is a fixed point, and let m: L, = IR be defined

by m(f) = £(x,.), for all f € L.

als
It is easy to show that T is a normal Riesz homomorphism from

L onto M. Note in this case that 1 is positive but not strictly positive.®

It is known that not every Riesz subspace of a Riesz space with
the Egoroff property has the Egoroff property. For an example consider
the space Ll( [0,1]), i.e., the Riesz space of all equivalent classes of
the Lebesgue integrable functions of [0,1]. Then Ll([O, 1]) has the
Egoroff property but the Riesz subspace C[O, 1] does not. (See [18],
page 464, Exaraple 67, 6(iii) ).

The next example gives an interesting application of Theorem 4. 21,

APPLICATION 4.23. Let(X,X,y) be 2 measure space with
w(X) <+, Assume 0 <p <+ = and that L is a Riesz subspace of Lp
which is closed with respect to the order topology. Then L has the
Egoroff preperty.

To see this pick g suchthat 0 <q <1 and 0 <qg <p. Since

p(X) <+« we have L_ C Lq (see [6], p. 196, Theorem 13, 17).

P
Consider now the identity mapping T: L - Lq’ i.e., T(f) = f for

all f € L., We show that u J 6 in L implies u $0in Lq. Indeed, if
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. - . . :
w Yf2 6 in Lq, then u Zu A kJfA kin Lp. This shows (using our
hypothesis) that f Ak € L (k(x) = k, for all x € X), sofA k= 6 for all
k €N, It follows now thatf = @,

The result now follows immediately applying Theorem 4.21.8

The next theorem gives one more sufficient condition for a Riesz

space L to have the Egoroff property.

THEOREM 4, 24, Let L be a Riesz space containing an ideal A

with A' = L, i.e., the pseudo order closure of A is L. Suppose further

that A, considered as a Riesz space, has the Egoroff property.

Then L has the Egoroff property.

PROOF. We first show that for every f € L+, there exists a
sequence {fn} of A such that @ f__fn']“f. To this end, let f € L.+. Since

A' = L we have fn——(—ol>f for some sequence {fn} of A, It follows now

n
that f+—b-)-> f and also that g =(\/ f+)/\f_£(_)l> f, {g. }¢c AT, so
n n \,Z; n n’ =

0 < gan. In other words A' = L if and only if AO = L (Ao = the o-ideal
generated by A in L),

Assume now that g < unkl’i uin Lforn=1,2,... . Let {gr} be
a sequence of A such that § < g, 4u. But then for fixed n and r we have

A< LURTRAR - S -3 in A, From the Egoroff property of A we obtain a
= k

r
L

indices (m, n) there exists an index jr(rn,n) such that

sequence {Z  : ¢ €N} C A such that § < ZI};, + g, and for each pair of
- - J2

k k
1 r
< : < . ® = ’
Zm = Yn, jr(m, n) Ay = un,‘]r(m,n) bt Yk [\__{1 r\=/1 Zﬂ, for

k=1,2,... . Then it follows easily that 9 < u 4u and, given a pair of

fom—y
-

.. . . T
indices (m, n), we determine Jr(m, n) such that Zm < un,jr(m,n)'



71

<

e . _ r
So, if j(m,n) = max{Jr(m,n) :r=1,,..,m}, then we have Zm < un’ bty

forr=1,...,m and so,
e T
V z

< .
S B “n, j(m, n)

A

m m v
u =V V Z
m 4=1 r=1 L

This shows that the sequence {um} satisfies all the properties required

for the Egoroff property of Li and this completes the proof, 8

COROLLARY 4. 25. Let L be a Riesz space and A an ideal of L.

Then A has the Egoroff property.

PROOF. The proof follows from the above theorem and the known
result that A' is a Riesz subspace of L (actually an ideal), (see [18],

p. 242, Theorem 63, 1).8

COROLLARY 4, 26, If A is an order dense ideal of a Riesz space

L with the Egoroff property and if L. has the diagonal gap property, then

L, has the Egoroff property.

PROOF., This follows immediately from the above theorem since

clS = S' for all S ¢ L (see [18], p. 83, Theorem 16.7).®

4,6, THE INTER-RELATION OF PROPERTIES (4, i), (A, ii),
(A, iii) AND (A, iv).

We start with the following.

THEOREM 4, 27, Let L and M be two Riesz spaces with M

Dedekind complete., Assume that there exists a metrizable locally solid

topology T on L which satisfies condition (A,ii). Then ("fb)n = (;(b)c,

i,e,, every integral of be(L, M) is a normal integral,
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PROOF, It is enough to show that § < uy 4u in L implies
6 < uy fufor some sequence {u, }< {u }. To this endlet {V_:n €N}
- n n°= - a n
be a basis of 7 for the origin in L consisting of solid sets and such that
Vn+1 + Vn+1 < Vn forn=1,2,... . Now let § & ua'ru in L., Since (A, ii)
is satisfied we have that u-ua——L 6. So for given n € N we have, for

some q_, f<u-uy € Vn and we can suppose that uy 4. Now let m €N.
= n n

Then we have f <u-uy <u-uy € Vm for n > m, and this shows that
= - =

uan-—T> u, It follows now from Theorem 4, 7(ii), that uy 4 u, and this
n

completes the proof.®

Note. The same argument can be carried out if 7 is not a

locally solid metrizable topology for L but it is a metrizable and LY is

T-closed and T-normal,

The following example shows that metrizability of the topology 7T

is essential,

EXAMPLE 4, 28. Let L be the Riesz space of all real valued
Lebesgue integrable functions on [0, 1], with the ordering defined by
f <g, whenever f(x) <g(x) for all x € [0,1]. Let T:L - R denote the
Lebesgue integral, i.e., T(f) = Iol f(x) dx for all f € L, Then, T is an
integral of L, as easily follows from the Lebesgue dominated con-
vergence theorem (note that fn J 6 in L implies fn(x) J0 inR for all
x € [0,1], but T is not a normal integral (see the discussion before
Definition 3. 1)),

The family of semi-norms (px)x ¢ [0, 17" defined by px(f) = If(x)i
for all f € L, defines a Hausdorff non-metrizable locally solid (also

locally convex) topology 7 on L.
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We prove that (L, 7) satisfies condition (A, ii). To this end, let
g < u, {0 in L, It is easy to verify that this implies ua(x) 40 inR for

all x € [0,1], so px(ua) = ua(x),l,o for all x € [0,1], i.e., ua—-T—>6.l

Note. Theorem 4. 27 also shows that for the Riesz space L of

Example 4, 28 there is no metrizable locally solid topology 7 satisfying

condition (A, ii).

THEOREM 4, 29, Let (E, r,K) be a metrizable ordered topological

space with K r-closed, and let {Wn: n €N} be a basis for the neighbor-

hood system of the origin for + such that Wn+l+Wn+1 < Wn’ forn=1,2,... .

Then we have:

(i) If 6 < ua'r is a 7-Cauchy net, then there exists a sequence

{uan} e {ua} such that uan’r and LY €W _forallnandalla 2 a .

Furthermore any upper bound of the sequence {uy } is an upper bound
; n
for the net {ua}.

(ii) If every order bounded increasing r-Cauchy sequence has a rT-limit,

and 9 < Uy < Uy is a r-Cauchy net then u = sup u exists and the

o e . N T
sequence {u(1 } in (i) satisfies sup uy = u. Furthermore ua——‘-)- u.
b L n’ — — L

(iii) ¥ E is 0-Dedekind complete, and 8 < u, ? <y, is a s-Cauchy net,

then u = sup u, exists, and the sequence {uy } in (i) satisfies sup uy = u
e " T ee———r n

PROOF, Letn €N and let Wn be the corresponding neighborhood
from the basis {Wn}. Since 6 < u is a 7-Cauchy net there exists

a, € {a} such that ua—uan €W _foralla za,. We can suppose uan’t .

Now let uy < v for all n, and let a € {a} be fixed. For given n, let
-

By, € {a} be such that B, 2 and B, > a . Then we have
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6 < V-uan = (v-va) + (ua-uan) < (V-ua) + (U-Bn"uan)- We put

pu
= - = , < -
W uBn uan EWn, n=142,..., so Wn—>9 and 0 <u ua+ W for

n=1,2,... . Since K is r-closed it follows that § < u - u,» or u, <vwv
for all a, i.e., v is an upper bound of {ua}.

(i) Let 8 < u, ? < u, be a r-Cauchy net and let {uy } € {ua} be the
= = o =

0

sequence determined by (i), Then we have ugy -ugq €W_, for
n+m n a

m=1,2,..., so {uy } is a 7-Cauchy sequence. Hence, by hypothesis
n

Uy, __I.>u for some u and by Theorem 4, 7(ii) uy 1 u. It follows from (i)
n n

that Uy 4u Let n, 2 ntl be such that u- uOLk & Wn+1 for all k > ny. Then

we have u-u = (u-uano) + (uano -ua) € Wn+1 + Wkg Wn for all
_— T
a 2 (xno, -Xe) u—ua € Wn for all o 2 ano, i, e., ua.._.;u.

(iii) Let A < ua‘rg U

in part (i). It follows from the 0-Dedekind completeness of E that

be a 7-Cauchy net, and let {uy } be the sequence
n

sup uyg exists in E, so sup U, exists in E and sup u, = Sup ug .=
n n

We continue with the following theorem,

THEOREM 4, 30, Let (E, 1,K) be a metrizable ordered topological

vector space with K 7-closed. Then the following conditions are equivalent.,

(i) E is 0-Dedekind complete, and (A, i) holds.

(ii) Every order-bounded increasing sequence in E has a ~-limit.

(iii) E is super Dedekind complete, and (A, ii) holds.

PROOF. (i)=p(ii). Let 6 < unT <u Then u_% u for some u € L.

0.
Since (A, i) holds in (E, 7) it follows that un——T> u.
(ii)=>(iii). We will show first that (A, ii) ktolds, Let vy 46. In order to

show that ua—l)e we may replace {ua} by {ua 1E = ao} for any fixed
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ag € {a}, i.e., we can assume immediately that u) Z U, 46. Then

65 uy-u,t uys SO {uo - ua} is a r-Cauchy net by (A, iii)<> (A, iv)
according to Lemma 4, 6, But then by Theorem 4, 29, part (ii), it fol-
lows immediately that ua—‘r> 6. We prove now that E is super Dedekind
complete, To this end, let 8 < u, 4 < uin E. It follows now from
Lemma 4. 6 that {ua} is a T-Cauchy net, Applying Theorem 4. 29, part
(ii), we get easily that there exists a sequence {uan} < {ua} such that

uanT u, = sup U

(iii)=»(i). Obvious.®
The metrizability of T is essential as Example 4. 5(iii) shows,

THEOREM 4, 31, Assume that (E, 7, K) is a metrizable ordered

topological vector space with K r-closed and r-normal. Consider the

following statements:

(i) (E, r, K) satisfies (A, i) and (A, iii).
(ii) (E, 7, K) satisfies (A, ii),

Then (i) implies (ii). If in addition (E, K) is a Riesz space then (ii)

implies (i).

In particular, for metrizable locally solid Riesz spaces both (A, i)

and (A, iii) hold if and only if (A, ii) holds.

PROOF, (i)=»(ii). Let ual, 6. We can suppose that § Su_ < u,.
Then we have § < uy - U, Y. It follows from Lemma 4, 6 that {uo - ua}
is a 7-Cauchy net., From Theorem 4. 29 it follows that there exists an
increasing sequence {uo -uy } such that any upper bound of {u - ua}is
n

also an upper bound of {uo -uqy }, and vice versa, Obviously uan¢ and if
n
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Uy ZW> ethenuo-ua Suo—wandsou-u < u,-w <u, for all a,

n n a 0 0

a contradiction. Hence, uy |, 6. Since (A,i) is valid we conclude that
n

Ug, .._T_> 6. Now let V be a full r-neighborhood of zero. Then uy €V

n n
for some n,. Itfollows from <u_ < u € V whenever o > a, that

0 =0 = Ong =0

Uy €EVif o > cxno, i.e., ua_i'+9. Assume now that (E, K) is also a
Riesz space. From Theorem 4. 7(i) we know that E is also Archimedean,
We show next that (ii)=y(i).

Obviously (A, i) is satisfied, Now let § < un'r < u, in E, Let

0

V={veEE:v> w s forn=1,2,...}. Since E is an Archimedeam Riesz

space it follows from Theorem 1, 4 that u-u, ( N ) 6 and so by (A, ii),
v,n

v-v, (—T—? . This implies in particular that {v - un} is a 7-Cauchy net,
v,n

From this it follows that {un} is a r-Cauchy sequence.®

COROLLARY 4.32. If every order bounded increasing #-Cauchy

sequence of a metrizable locally solid Riesz space (L, ) has a T-limit

(in particular if (L, 7) is complete) then (A, ii) and (A, iii) are equivalent,

Furthermore, if in this case the equivalent conditions (A, ii) and (A, iii)

hold, then L is super Dedekind complete,

PROOF. By the previous theorem if (A, ii) holds then (A, iii) holds.
Now assume the metrizable locally solid Riesz space (L, 7) has the stated
property and that (A, iii) holds., But then statements (i) and (ii) of
Theorem 4. 29 are satisfied and so from the same Theorem it follows that

(A, ii) holds and that L is super Dedekind complete, ®

Example 4. 5(iii) shows that non-metrizable locally solid Riesz
spaces (L, 7) can satisfy (A, i) and (4, iii) but not (A, ii). Note that the

space of Example 4, 5(iii) is sequentially complete but not complete,
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The Hausdorff property of 7T is also essential for the above
theorem, in other words, we cannot replace the assumptions ''T is
metrizable' with''t has a countable basis for the neighborhood system
of the origin'' as the following example shows. Consider the Riesz space
of Example 4. 5(iii) and consider the same neighborhood, WF,n, 5 with

the restriction that F EF(Q), where Q is the set of all rational numbers

of [0,1]. The collection {WF :F € F(Q), n €N, § >0} defines a

n, §
non-Hausdorff locally solid topology 7 on L, which has a countable basis
for the neighborhoods of the origin. Note that both (A, i) and (A, iii) hold
but (A, ii) does not,

The following theorem tells us that (A, iii) implies (A, ii) for com-

plete ordered topological vector spaces with closed cones.

THEOREM 4. 33, Let (E, 7,K) be a T-complete ordered topological

vector space with K r-closed. Then (A, iii) implies (A, ii), and so, in

this case, (A,iii) implies (A, i).

PROOF,. By Lemma 4. 6 we know that (A, iii) is equivalent to
(A,iv). Now, let § < v 4u in E. Since (A, iv) is valid, {ua} is a

T7-Cauchy net, and so, by the r-completeness of E, uo{’—T')uO for some

ug € L. It follows from Theorem 4. 7(ii) that u = Ugs SO ua—-I-)u. m

It is not known if the condition (A, ii) implies (A, iii) in general,
The next theorem shows that this is true for Archimedean topological

Riesz spaces,

THEOREM 4, 34, Let (L, T) be an Archimedean topological Riesz

space (for example, a Hausdorff locally solid Riesz space). Then (A, ii)
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implies (A, iii), and so, in this case, (A, ii) implies both (A, i) and

(A, iii).

PROOF. Assume that (L, T) satisfies (A,ii). Let 6 < un’r < uin L,

The set {v € L:v 2 u forn=1,2,...} is non-empty and, since L has

the Archimedean property, we have v - w ( ! ) 6 (see Theorem 1, 4),
v,n
It follows from (A, ii) that v - un_l_> @, so, in particular the
(v, n)

net {v -un} is a 7-Cauchy net. From this it follows easily that {un} is

a 7-Cauchy sequence.B

COROLLARY 4, 35. Let (L, 7) be a Hausdorff T-complete locally

solid Riesz space. Then (A,ii) holds if and only if (A, iii) holds, In

particular, if (A, ii) holds, then L is Dedekind complete.

PROOF., The proof follows immediately from Theorems 4.7, 4,33
and 4. 34.
If now (A, ii) holds and 6 < u, T < u then from (A, ii) & (4, iiil) &
T

(A, iv) we see that {ua} is a r-Cauchy net, hence u,—>u for some n € L.

It follows from Theorem 4.7 that 9 < uairu, i.e,, L is Dedekind complete ®

An ideal P of L is called a prime ideal if whenever f A g is in P
implies f in P or g in P, Any ideal containing a prime ideal is neces-
sarily prime. For more details about prime ideals we refer the reader
to [18], Chapter 5.

An element § <u of L is called an atom if B<w<u g<v<u
and wA v =9 implies w= 0 or v= 0. A Riesz space L is called non-
atomic if L does not contain any atoms. A typical example of a non-

atomic Riesz space is the space C[O 1y (See [18], p. 146).
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THEOREM 4, 36, Let (L, T) be a Hausdorff locally solid Riesz

space, Suppose that L, is non-atomic and that the Int(L+) is non-empty.

Then (L, T) does not satisfy the (A, ii) property.

PROOF. Assume that (L, 7) satisfies the (A,1ii) property. Then
it follows from Theorem 4. 14 that every r-closed ideal of L is a band.
Now let P be a prime ideal of L. Then P is a r-closed prime ideal of
L, Hence it is a band of L, If (—P-)d # {6} then there is an element § <u
in (I—D-)d. Since L is non-atomic there are two elements g <u; < v,
6<u §uwithu GF,a

A u, = 0. But then it follows that Uy EE or u

2 1 2 2
contradiction. This shows that (_15)d = {@}. Since L is also Archimedean
(see Theorem 4. 7(i)) it follows that P = ('F)dd = L (see Theorem 1, 7(ii)),
i,e,, every prime ideal of Li is r-dense., We show next that every ideal
of L is 7-dense, To this end let A be an ideal of L such that A # L. Let
f<u €Land u not in X Then there exists an open T-neighborhood of
zero V such that (u+V) NA = ¢, Consider the set S =@+ V)N LY. Then

S is a lower sublattice (see [18], p. 203) which does not intersect A, By
the prime ideal separation theorem ([18], Theorem 33,4, p. 202, The
same proof works if we replace the element fo by the lower sublattice S),
it follows that there exists a prime ideal P of L with AC P and P NS = ¢,
But then since Int(L+) # ¢, S contains a non-empty open set, as easily
verified, and this shows that P is not r-dense in L, a contradiction to
what was already proved. Hence very ideal of L is r~dense. Now let
O<u € Landletg<w = @, Consider

<u, <w <_ilsuchthatwll\w

1 2 2

the band generated by Wi, BWI' Then w, ¢ Bwl and by Theorem 4, 8 BWl

is 7-closed, Hence BWl = -]-B-W = L, a contradiction, Thus (L, 7) does
1

not satisfy the (A, ii) property.®



80

We close this chapter by exhibiting another characterization of
the (A, ii) property for locally convex, locally solid Hausdorff Riesz
spaces, The proof is completely analogous to that of [16], Theorem

36,2, Note XI, p. 577.

THEOREM 4, 37, (Luxemburg-Zaanen). Let (L, ) be a Hausdorff

locally solid, locally convex Riesz space. Then the following statements

are equivalent.

(i) (L, 7) satisfies (A, ii).

(ii) Every band of L! is o(L', L)-closed.
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CHAPTER 5
THE TOPOLOGICAL COMPLETION OF A HAUSDORFF

LOCALLY SOLID RIESZ SPACE

5.1, INTRODUCTION

It is known that every Hausdorff topological vector space (E, T)
has (up to topological and algebraic isomorphism) a unique completion (ﬁ,'?'),
i.e., there is a Hausdorff complete topological vector space (ﬁ,;) such
that (E, ) is a dense subspace of (]33,;) (see 7], p. 17 or [7], p. 131).

It is also known that if {V} is a neighborhood basis for the -
neighborhoods of zero then {V}, where V is the T-closure of V in 1?_‘., is
also a neighborhood basis for the 7-neighborhoods of zero in E (see [27],
p. 17).

We suppose next that (L, 7) is a Hausdorff locally solid Riesz
space. We shall denote the topological completion of (L, 7) by (f.a, :J:).
Our purpose is to investigate which properties of (L, T) are inherited also
by (L, 7).

The above problem has been investigated by W, A, J. Luxemburg
([15], Note XVI) in thé case of normed Riesz spaces and by I. Kawai and
M. Duhoux in the case of Hausdorff locally convex, locally solid Riesz
spaces (see [11] and [2], respectively). Some questions of the general

problemr also were studied by D. H. Fremlin in [3].

5.2. THE COMPLETION SPACE (1,7

We start with the following important theorem,
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THEOREM 5.1, Let (L, r) be a2 Hausdorff locally solid Riesz

A A A
space and let (L, 7) be the topological completion of (L, 7). If Er denotes

A A A
the T-closure of o in L, then tisa cone of /I\.;, and (L, ;) with this cone

is a Hausdorff locally solid Riesz space, In particular it follows that L

A
is a Riesz subspace of L.

PROOF. According to Theorem 4, 2, ?.4+ is a T-normal cone of
(’L,;), since LY being a r-normal cone of L implies that LY is also a
~ Vad
r-normal cone of L,
A
Let now +: L = L be defined by f —» f'. Then + is a uniformly
continuous mapping from (L, 7) into the 'f?-complete Hausdorff topological
vector space (i., :;-). Hence it can be extended uniquely to a uniformly
continuous mapping p from T into L (see [12], p. 195, Theorem 26).
A A A
We show next that p(f) = /f\ V @ in ’i. To this end, letf € L, Then
T % + )
fa__yf for some net {fa} of L, It follows from fa > fa that p(fa) f(x
+ + _— ) B Boawt  TF - N
= fa -fOL € L', which implies p(f) -f €L =L, i.e., p(f) > f in L.
. A A + A A A, A
Obviously we have also that p(f) € L'. Now, letf < gand g < g in L.
% T

and 8o—> g , then

A
We pick two nets {f_}, {g} of L' such that £ T, 3
= -f T ¢
we have ha ga - i.
But,from the relation @ = foc = ga - hOL € L+ it follows that

sog, - p(ha) € LY and from this we get (by taking the 7-
J\.l..
i

+ +
= >
Eqa "8y = hoc’
S A ) AT A > . ~
limits) that g - p(f) € L", i.e., g 2 p(f) in L. This shows that p(f) =
in i It follows now from Theorem 4, 4 that (/I:.,/‘) with the cone ,f_.+ is a

(#-complete) Hausdorff, locally solid Riesz space., The assertion that

A
L, is 2 Riesz subspace of L is obvious from the above discussion. @
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The next theorem gives a chracterization of L in order to be an

~
ideal of L.

THEOREM 5,2, Let (,I:;, :—) be the topological completion of the

Hausdorff locally solid Riesz space (L, 7). Then the following statements

are equivalent,

(i) L is an ideal of L.

(ii) Every order interval of L is r-complete.

PROOF, (i)=(ii). Since [f,g]l=f + [g, g-f]it is enough to show
that every interval [0, ul, u € LY is T-complete. So, let { fa} be a T-
Cauchy net such that § <f Swufor all o € {a}, u is fixed in LY. Then
fa——i;f in /I:, for some fin /f_, It follows that @ glf <u, and so, since L
is an ideal of L, we obtain f in L, i.e., [6,ul is T-complete.
(ii)=»(i). Assume § < fg u, 'f € i‘ and u € L+. We have to show that £
is in LY, since L is a Riesz subspace of T. We pick a net {fa} - e
such that fa_?) 'f\ We may suppose that § < fOL < u for all a, otherwise
we replace each fa by foc A u. The T-completeness of [9,u] and the
Hausdorff property of T imply that f is in 1, i.e., that L is an ideal of ,i...l

Note, If L is an ideal of /I:., then L is order dense in ?_., i.e,,

d 7

A +
, then fa-——->f for some net {fa} of L",

{L}= L. Indeed if < f €L
7.5 , d
therefore 6 = fa /\?——)f =@, so f = 9 and hence L." = {§}. Thus

R L A

The next theorem deals with the embedding of L. into L and gen-

eralizes a result of I, Kawai (see [11], p. 296, Theorem 4. 1).
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THEOREM 5.3, Let (L, 7) be the completion of a Hausdorff

locally solid Riesz space (L, 7) and let I: L —» Ii.. be the embedding of L

into L., i.e., I(f) = £ for all f € L,

Then the following statements are equivalent,

(i) Iis a normal integral of fb(L L), d.e.; £ .1,9 in L implies f 16 in

A
L, or in other words, the embedding of L into L, preserves arbitrary

suprema and infima,

(ii) For every r-Cauchy net {foc} of LY such that fcx_(?')—’ 6 in L, we have

that fa_7_> 6.

PROOF. (i)=»(ii). Let {f }¢ LY be a 7-Cauchy net such that
(o) ——> 0 in L. It follows that there exists a net {ga} < L' such that

6 < foa < e 40 in L. By hypothesis we have also ga.]( 6 in /L We note

that {fa}, being a T-Cauchy net, is also a F-Cauchy net, so fa—laf, for

some £ € L. But, for fixed g € {a} and a > B8 we have §fa <g, < gg

which shows that 0 Slf\g gg in /I:;, for all g € {a]}. It follows then that

A

f=6, so fa--—ye, i.e,, fa—> 6.

(ii)=>(i). Let fa.1,6 in L, and assume that f >t > @ for alla € {a} in L.

We have to show that £ . Let {g)\} be a net of LT such that gx__‘r_;_.f.

Then we have lg)\ A £ -)f\l = ng A fa SfA foc’ < lg)\—lf\l for all a, A\. This
shows that g, Af (TT&)_)f In particular we have that {g)\ A fc,} is a r-
Cauchy net of L. We also have 6 < g, A £ sf ()\.L )9 in L. From our
hypothesis it follows that g)\/\ f W 6. Hence f = @ and this shows
that £ {9 in L.m

THEOREM 5.4, Let (L, T) be 2 Hausdorff locally solid Riesz

space. Then the following statements are equivalent,
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(i) L=1, i.e., Lis r-complete.

A A A A ~ A A~
(ii) For every f,g € L with f <g, there exists f € L such that f <f <7g,

Theorem 5,4 is a corollary of the following general theorem,

THEOREM 5,5, Let L be a Riesz subspace of the Archimedean

Riesz space K, Then the following statements are equivalent.

(i) L=K.

(ii) For every f,g € Kwith f <g, there exists u €L such thatf <u < g.

PROOF. It is evident that (i)=»(ii). We have only to show that
(ii)=»(i). To this end let 9 < u* €K, Let Au* be the ideal generated by
u* in K, Then L, =L ﬂAu* is a Riesz subspace of A 4 such that for
every £¥,g* in A s % < g*, there is u € L, with £ <u< g™,

By the Yosida Representation Theorem (see Theorem 1. 7(iv))
there exists a Hausdorff compact topological space X such that Au* is
Riesz isomorphic to a Riesz subspace Au* of C(X), with Ti}“(x) =1, for
all x € X, and with Au* separating the points of X, Let VXO be an open
neighborhood of the point %0 of X and let x be a point of X not in VXO.
Then there exists a function f € :&u* such that ?(x) =2 and?(xo) =0,
Without loss of generality we can suppose that /f‘ is positive, otherwise

f+. Let Vx be an open neighborhood of x, such that

AL

we replace E by

:?(y) > 1lforallyc€ V- Then the function of Ru*’ g = satisfies
P

6<g < ut =1, g(xo) = 0 and g(y) =1forally€ Vx' Since

x-v. ¢ U v. and x-v,

*0 = x €X-Vy * 0

is compact, there exist neighborhoods {V4 :i=1,...,n} such that
i



0 i=1 i
Let gg = V g =V g
i=1 i=1

A Lol A . A _
Then g9 EAu*, g(x) = 1 for all x not in on, go(xo) =0, and
A N

6 < 2o < u, =1,

If now X consists of one point then C(X) = R and from this it

A

follows easily that/u‘* € L and so u* € L.

Let now X be consisting from more than one point and let Xy Xy
in S be such that % # X)e We pick two open neighborhoods Vxl’ sz of

A A

xy and X5 X5 = @. Let fl and f2 be in
A f,f <=1, f(x,) =f,(x,) =0, £,(x) = 1 for all
Au*suchthategfl,f Swk =1, 1(xl—-zxz-- » £1(x) = or all x

2
A A A
fz(x) = 1 for all x notinV_ . Since ?1 <u¥, f

respectively, such that VX1 nv

A
not in V < u¥, there

2

%, It follows from this

Xl’

are gl,gz & ,IL, such that f

A A
< u¥, fz

1, sow*¥ is in

A
nA
>

1
N\
easily that g1 ng =§1 ng = "o%

g2

>

1° Thus @*€ L1 c L.

This shows that L = K. ®

A sufficient condition for some order properties of L to be inherited

A
in L is given in the next theorem.

THEOREM 5.6, Let (L, ) be a Hausdorff locally solid Riesz

space and assume that L is an ideal of i. Then we have:

(i) ¥ L is o-Dedekind complete, then i is 0-Dedekind complete.

(ii) If L is Dedekind complete, then 1. is Dedekind complete .
I p

PROOF. The proof is similar to that of Theorem 66.5 of [15],

Note XVI, p. 665 . 8
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5.3, THE PROPERTIES (A, ii) AND (A, iii) ARE PRESERVED UNDER
TOPOLOGICAL COMPLETION

The next theorem deals with property (A, iii).

THEOREM 5. 7. The topological completion (L, 7) of the

Hausdorff locally solid Riesz space (L, 7) satisfies condition (A, iii) if

and only if (L, 7) satisfies condition (A, iii).

PROOF, Obviously (L, 1) satisfies condition (A, iii) if (i., ?)
satisfies (A, iii).

Now let (L, 7) satisfy (A, iii) and let @ < fn‘l' in ?.. We have to show
that {fn} is a ?'-Cauchy sequence, To this end let U be a solid 7-
neighborhood of zero and let V be also a solid P-neighborhood of zero such
that V+ V + VU,

We construct next a sequence {Vn} of solid ?’-neighborhoods of
zero such that V

=Vanan+1+V cV ,forn=2,3,.... Todo

1 ntl = 'n
this, start with V1 =V, Next, pick a solid ?—neighborhood of zero W1
such that W, + W, ¢ V. LetV, = W,. Now pick a solid T-neighborhood
of zero W2 such that W2 + W2 c Wl' LetV; = WZ‘ Proceeding this way

we construct the above sequence {Vn}.
Given n € N, choose an elementgn € L such that lf -g |ev .
n n n+l
n
Construct the sequence {fn} of LT defined by fn = A 8; for n=1,2,... .
i=1
Then it is evident that § < fn.l,in L. It follows then, from condition
(A, iii) on (L, 7), that {fn} is a 7-Cauchy sequence and so surely it is a
?’-Cauchy sequence (see the note after Lemma 4, 6), This shows in

particular that Ifn - fml €Viforalln,m2n We also have that

0.
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A A n n n
fn_fn=fn-/\ giz.\/ (fn—g1)—.v (f1-gi)f
i=1 i=1 i=1
n
< Z [f-g| €Vy+ V4. 4V _cV,
=Y -
A A 2
fn-fnggn-fn§.§1 'fi-gil = Ve
A o A A
So, |f -f | < Z |f.-g.| €V, ive., |[f -f | €Vforalln=1,2,... .
n n _i=1 1 1 n n

Now, for n,m > n, we have

£ % | <l -6 l+l6 -€ |+]f -%T |evevsveu

A

Hence ,% -t | €U, for all n,m > n,, which shows that f -f €,
n m =70 n m

for alln,m > n,, i.e., {fn} is a 7-Cauchy sequence.m

Applying Corollary 4. 35 we see that condition (A, ii) is satisfied
in (f_., 7) if and only if (A, iii) is satisfied in ('f_‘, ;—). This observation gives

rise to the following theorem,

THEOREM 5.8, If the Hausdorff locally solid Riesz space (L, 7)

satisfies condition (A, ii), then the topological completion (i., ?r) of (L, 7

satisfies also the condition (A, ii).

PROOF., From Theorem 4. 34 it follows that (L, 7) satisfies con-
dition (A, iii) and from Theorem 5, 7 we see that (f.., ;) satisfies (A, iii).
It follows now from the observation preceding Theorem 5. 8 that (i;, ;-)

satisfies (A, ii). &
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The converse of Theorem 5.8 may be false as the following

example shows,

EXAMPLE 5,9, Let L = C[O, 17’ and let 7 be the Hausdorff
locally solid topology generated by the (Riesz) norm p(f) = I()l lf(x)ldx.
Then L satisfies (A, iii) but not (A, i) (see Example 4, 5(ii)), so in
particular not (A, ii). The completion 1. is the Riesz space Ll( [o,1], i.e.,
the Lebesgue equivalence classes with the usual ordering, with 7 generated
by the (Riesz) norm p([f]) = J‘()l |£(x)| dx and Tt = {[f):f >0 ae. )] Itis

not hard to verify that (L, 7) satisfies (A, ii).®

As we have seen, condition (A, iii) in (L, 7) implies condition (A, ii)
in (i, ?‘), and so, using Corollary 4, 35 we obtain that condition (A, iii) in
(L, T) implies Dedekind completeness in i; Also, since the condition
(A, iii) in (L, T) implies (A, ii) in (L, T) we have always that (A, iii) in (L, 7)
implies (A, i)in (i, /’l").

Next, we shall investigate under what conditions (A, 1i) in (L, T)
implies (A, i) in (i, ?). Example 5.9 shows that (A,i) in (L, ?) does not

imply (A,i) in (L, 7), not even for normed Riesz spaces.

5.4, UPPER AND LOWER ELEMENTS IN THE METRIZABLE CASE

We shall assume next that the topology T of the Hausdorff locally
solid Riesz space (L, T) is metrizable, i.e., the topology T is generated

by a distance, or equivalently, there exists a countable basis {Vn} for
o3

the T-neighborhoods of zero such that nol Vn = {6} (see [7], Theorem 1,

p. 111), We shall call (L, 7) in this case, a metrizable locally solid

Riesz space,.
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Given a metrizable locally solid Riesz space (L, T) we define the

following subsets of L

_ Ao A . +. ? A
U= {f €L: E{fn} cL; 6% fn’l‘andfn——>f}
= Fek. +, T2
A= {f EL.H{fn} c L gt dandf —f}

We call the elements of U upper elements and the elements of A
lower elements,

It is easy to verify that U and A are cones of 1. and that they are
closed under the lattice operations.

Concerning the metrizable locally solid Riesz spaces we have

the following Lemma,

LEMMA 5,10, Let (L, T) be a metrizable locally solid Riesz

space. Assume V is a T-neighborhood of zero of 1 and 6< fe /L Then

A ” A .
there exists an element u € U such that f < Gand 4-f € V, or in other

A
words, every positive element of L is the T-limit of a decreasing sequence

of upper elements,

PROOF. First we pick a countable basis {Vn} of solid T-closed

neighborhoods of zero of L such that

Vv c V. _, for n=1,2,...

ntl * Vn+1 = 'n

Choose a vV, from {Vn}. Since 6 < fe L we have fn-—l)? for some
sequence {fn} of LY. This implies that {fn} is a 7-Cauchy sequence.
Let {gn} be a subsequence of {fn} such that |gn+1 - gnl € Virnt2

forn=1,2,..., and let,
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gl ent, n=1,2,...

n-1
un = gn+ ;/__;1 Igi+1 -

Then W1 " Y% T 8hy1 780 + |gn+1 -gnl Z 8 forn=1,2,..., which shows
that § < u 4 in L. Further {un} is a ¥-Cauchy sequence, as we can
easily verify, so un-—t;'ﬁ, for some 4 € 1. Since g, S v forn=1,2,...
and gn—-";) f in 1, we have also that f < 4.

It follows, now, from

A n-1 A n-l A
lu -%| < lg, -f] + El g5y -85l € ley - £l + El Viezdi € len -+ Vi

that u -1 € Vk’ for sufficiently large n. Since Vk is 7-closed it follows

that u-f € ¥

A A
Given n €N pick an upper element fn such that f < %n’ and

A A A n L
i -fev . Lety = i/=\1 f.n=1,2,....

Then 'gn is an upper element for all n, fg Ién for alln=1,2,...,
N

-f<f -fe Vn’ - 'én-lrf This completes the

N LN A
gn,[,ln L, and 9 <g N

n

proof.m

The following lemma is the ''dual'' of Lemma 5, 10 and can be

proved in a similar manner as Theorem 60. 6 of [15], Note XVI, p. 649.

LEMMA 5,11, Let (L, 7) be a metrizable locally solid Riesz

space, Assume V is a T-neighborhood of zero of ?_,, and 6 < fe ’I:

Pl

Then there exists an element 4 € A, such that u < fand f- € V, or in

A
other words, every positive element of L is the F-limit of an increasing

sequence of lower elements.
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The following simple lemma will be useful later,

LEMMA 5,12, Let (L, 7) be a Hausdorff topological Riesz space

with L+ T-closed and T-normal (for example, a Hausdorff locally solid

Riesz space). Assume that for the two nets {fcx}’ {ga} of L we have

P
8 §fq¢§ga¢,and ga-fa——> 6.

Then, fon‘l‘f in L, if and only if, 84 Jfin L,

PROOF, Assume 8 <f J<g, ¥ ga-fa-—L 6 and that £ £ > 6 in
L. Letg, >g32finL, foralla € {a}. Then, g ~f = (ga-fa)+
z (g -f(x)+ i 8. Since ga-fa—-"—')G and L+ is a r-normal cone it follows
that (g -fa)+__f_>9 (see Theorem 4. 1). But (g —fa)'l' 1' (g -.f)+ =g-f, So,
it follows from Theorem 4.7 thatg-f =0 or g =1, i.e,, ga¢f in L,
Now, if @ f__fa.j,f__ ga.l,, ga-fa_.l,e and ga.l,f in L, then we have
0 cf-fAf t=fAg -fAf g -f,T>0. So, £-£A t —>9. Hence
by Theorem 4. 7 we obtain 0 < f-fA fa 46, sof=£fA fcx f__fa for all
a € {a}. Since gaJ/ f and fa < g, for all o it follows from Theorem 4. 7

that fa~1vf in L, ®

5.5, THE PROPERTIES (A, i) AND (B, i) IN THE METRISABLE CASE

We prove first that the property (A, i) is preserved under topological

completion of the metrizable locally solid Riesz spaces.

THEOREM 5. 13. The completion (L., 7) of the metrizable locally

solid Riesz space (L, T) satisfies (A, i) if (L, 7)satisfies (A, i).

PROOF. Let {Vn} be a countable basis of the neighborhood system

of the origin of # consisting of solid sets and let Ifnl' 6 in L. We shall
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A
show that fn—-T—> 6.
For a givenn €N, let ﬁn € U be such that g Slf\n < a
A P n
W -f €V_. This is possible by Lemma 5.11, Letw_ = AU €U,
n n n 1
A A A A A A
< i - -
then we have 9<=fn¢=wn\|,1nL, an<516<=vvn fnéu f €V , for
a) A T
n=1,2,,.., sow_-f —s,
n n
Since %n 0 in i, it follows from Lemma 5, 12 that svn 46 in ?.;
A A
This shows that we may assume that {fn} c U, i.e., that {fn} is a
sequence of upper elements,
Now, let Vk be one neighborhood from the sequence {Vn}. Given

A
n €N, choose an element gn € LY such that fn “8, eV and

k+nt+2’
A A
< f . Note that this is possible since {fn} c U

n
" VAN gi€L+, forn=1,2,... . Then we have
i=1

A no 4

~ » n
egf -f =f - N g.=

n
n n n 1 »
=1 =

o

L N
< L (f-g) €V +V \4

e S V3t T V2 © Vel

So, f -f €V forn=1,2,... .
n n

k+1°
Now we observe that fn.l, 6 in L, so fn——T) 6 since (A, i) holds in

(L, 7). This implies that fn—I+ 6. In particular we have f €V, , for all

kt+1

cV fornino,

kel ¥ Vg1 & Ve

A A
n > ng. So, we have fn = fn 4 (fn-fn) eV
N . A ?
hence fn € Vk’ for n 2 n,, i.e., fn——> 0.@

THEOREM 5. 14. Assume that (L, 7) and (M, 0) are two Hausdorff

locally solid Riesz spaces with (L, ) metrizable and with (M, o) satisfying

(A,i).
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¥ T (L, 7) - (M, 0) is a continuous linear operator which is also

A N A
an integral, then the unique linear continuous extension T : (L, ?-) - (M, 6‘)

is also an integral.

PROOF. Without loss of generality we can assume that § < T.
The unique continuous linear extension /’f‘, of T, follows from [12] (p.
195, Theorem 26), and obviously we have g < 'f‘ Let ﬁn $0 in /I:. We
have to show that 'f(ﬁn) 46 in M. We can assume that {ﬁn} € U. Indeed,

° . A
as in the previous theorem we can construct a sequence {wn} <€ U such
A

A A _ A -4 T Ly A A
that g cu <W_, forn=1,2,... and wo-u — 6. So, 9§T(un)$§ T(WnN

n
forn=1,2,... and 6 < ’II\'(&/n) - "f(ﬁn) = ’i‘(ﬁn-%n)i . Using Lemma
5. 12 we can see that our assertion is valid. So, let {?J.n} C U be such
that ﬁn J 0 in i, We have to show that ’i‘(ﬁn) J 6 in M. Assume that
%(?ln) > h 2 6 forn=1,2,... and some h € M.

Let W be a solid 5-neighborhood of zero of M, and let W, be

another G-neighborhood of zero of K/I such that W1 + W, ¢ W, We choose
A A

next a solid 7-neighborhood V of zero of L such that T(?z) € W1 for all

4 €V. Let _{Vn} be a basis for the neighborhood system of the origin of

'I:; consisting of solid sets and such that V +V Vn, n=1,2,...

n+l n+l§

and V, + V gV.

1 1

Given n €N pick an element § < u € Lt such that A< u < an and

n
2 un-unEVn. Let Wn=i/}1ui’n=1’2"" . Then obviously w40

in L, and so, T(wn) 46 in M. Hence it follows from (A, i) in (M, o) that

AN

T(wn)-gr 8. So, in particular T(wn) g W1 for alln 2 n,.

We observe now that



R N n no n
egun-wn=un-/\1ui=_\{(u -ui)g.\_/(u-u) <
i= i=1 i=1
. A
< T (y-u) €EVi+...+V CV +V,CV ,

i=1
A A A A A A
sou -w_€V forn=1,2,... . Hence §<h< T(u) =T(u -w_)+ T(w))
n n =" = n n n n
€W, +W, cWiforallnn, So, h €W for all G-neighborhoods W of
zero of I’\\/I Since 0 is a Hausdorff topology we have %= 6, i.e.,

%(Gn) 4 8. This completes the proof.m

Next we introduce two more conditions for given topological

ordered vector space (E, 7, K).

(B,i): 6 < u in L and {un} is r-bounded, then {un} is a r-Cauchy
sequence,
(B,ii): © s ua'r in \L and {ua} is 7-bounded, then {ua} is a 7-Cauchy net,
(A subset S of a topological vector space (E, 7) is called »~bounded
if for every r-neighborhood V of the origin there exists a positive num-
ber )\0 (depending on V) such that AS CViforall0< A< )‘0’ see [7],
p. 108).
Using a similar argument as in Lemma 4. 6 we see that (B, i) holds
if and only if (B, ii) holds, i.e., (B,i) and (B, ii) are equivalent,
The following theorem says that (B, i) is preserved under the

topological completion of a metrizable locally solid Riesz space,

THEOREM 5, 15, The topological completion (’i., /7\') of a metrizable

locally solid Riesz space (L, 7) satisfies (B, i) if and only if (L, 7)

satisfies (B, i).
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PROOF, Obviously if (i, ;-) satisfies (B, i) then (L, 7) satisfies
(B,i). So, assume (L, 7) satisfies (B, i) and let 6 = 'fn¢ be a F-bounded
sequence of I.. We have to show that {’f\n} is a 7-Cauchy sequence. To
do this, let {Vn} be a sequence of solid ’%—neighborhoods of zero such

_ -~ .
that Vn+l +V Vn’ forn=1,2,... . Picka Vk from {Vn}. Given

=
ntl =

n > k4 2 choose an element = € LY such that I?fn -gnl €V and con-

nt+l’
n
struct the sequence £ = V g., for n=k+3, kt4,... . Then we have
n_ . i
i=k+3
6<f tin L, and

f-f 2NV @-t)< V (@-T)< T la-f|ev
- = g. - < g.-1.) < g. -1, +. 6
e T R T 0 S S R 5 P S ke
N A n N
et VLS Vi fn-fngfn-gng_z Igl-fi] ,
i=k+3
for alln > kt+2, so,
~ n A
]fn-fn[§ 3 lfi-gilevk+z,

i=k+3

o .
hence Ifn-fn[ EVk+2 forn = kt+3,k+4,... .

On the other hand we have

n A n ~
6< 2 |f,-g.|T and {Z} [f.-g.]:n_?k—i—?}
T i=k+3 ! i=k¢3 * Y5

. A
is a2 7-Cauchy sequence. Hence

A

Z f-e | —T— 1,
i=lek3 n>kt3
n-—+4o

A ~ - n
for same f € L, It follows from Theorem 4, 7(ii) that 2 lfl -gi] 1 g, so,
i=k+3
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A o)
6 < ]fn-fnl < f, forn = k+3,kt+4,... . Using Theorem 4, 3 we see that
[g,f] is T-bounded, so {fn-fn:n > kt3} is T-bounded. This implies
A A
that {f - f } is T-bounded.
We observe now thatf =f£f - (:f\ -f Yforn=1,2,... and by
n n n n
hypothesis, {%n} is a 7-bounded sequence. Hence {fn} is a 7-bounded
sequence of II\.,, and so surely it is a 7-bounded sequence of L, Now,
since (L, 7) satisfies (B, i), {fn} is a 7-Cauchy sequence of L, and so,
it is also a 7-Cauchy sequence of L.
This implies, in particular, that lfn —fml EVk+2 for all n,m 2
n, > k+3,

Now, for n,m > ng, we have

+V + V V., ,

£ ~f [ gl -2 |+ ]e £ |+]¢ -£ | eV w2 € Vi

k+2 k+2

~

o) . A . A
so, fn-fm € Vk for all n, m > n,, i.e., {fn} is a 7-Cauchy sequence.®

The next theorem tells us that T has the Egoroff property if (L, 7)

satisfies (A, i), provided that T is a metrizable topology.

THEOREM 5, 16, Let (L, 7) be a metrizable locally solid Riesz

space., Then L has the Egoroff property if (L, 7) satisfies (A, i).

PROOF. Pick a countable basis {Vn} for the neighborhood system
of the origin of L, consisting of solid, T-closed sets and such that
Vn+1 + Vn+1 c Vn forn=1,2,,.. . Since (L, 7) satisfies (A, i), by
Theorem 5,12 (i,?) also satisfies (4, i).

A A A N A
NowletGSunkTuinL, forn=1,2,... . Since (L, 7)
= vk

satisfies (A, i) it follows that for every pair of indices n,m (n,m = 1,2,...)
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there is an index j = j(m, n) such that § < u - w, T € Vm+n and we

can assume that j = j(m,n) (m,n =1,2,...) is increasing in the variables

separately, Let

n
A - A -
Yn = A B g (ma=12,000)
k=1
then we have
g< % =% < 4 - n;\p a =
= Vm,n " Vm, ntp = “n, j(m,n) k=n k, j(m, k) ~
T?p (G U ) r@p (0 -7 )
= u_ . -u, . < u-u . <
kep B lm,n) Tk, j(m, k)T = T k, j(m, k)" =
n+p N
< Z_Zn (u - uk, e, k)) EVm+n + pus Vm+n+p < Vn ’
foralln=1,2,... andallp=1,2,... . This shows that the sequence
{ﬁm’n:n =1,2,...} is a #-Cauchy sequence for m = 1,2,..., so
' 5%, for some E’I\_,. Since ¥ J,inALandeg?f <
m, n m m PR O = m,n =
i <n

we obtain from Theorem 4. 7 that ¥ i) 4 in L and 0 <
m,n ) m = "m

n

Fromg<l-1 =\ (u-1u

m,n o1 k,j(m,k)) EVm+1+"'+V =

we obtain that 4 - U €V_,forn=1,2,..., . Since V__ is 7-closed
m, n m m

A A A T )
we see that u-u_ EVm form=1,2,..., so u —>u

A

Also, '\‘rm <9 for every p, implies Gm <u

s P m+1’p m+1’ falss
A

8 < um'f. Hence, by Theorem 4, 7, um'tu.

Furthermore, ﬁm§$ fork=1,2,...,n and so

m,n = Yk, j(m, k)

>

A

R A
. < un, j(m, n)* This shows that L has the Egoroff property. g

Note, We observe that in the proof of Theorem 5. 16 we used

only the metrizability property of 7 and the (A, i) property of (L, ?).

mtn = m
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Since (A, iii) on (L, ) implies (A, iii) on (i, ;) and so (A, i) on (i., :;‘-) we
can see that if the metrizable locally solid Riesz space (L, 7) satisfies

(A, iii) then (i., ;—) has the Egoroff property,

5,6, THE PROPERTY (A, 0) IN THE METRIZABLE CASE

We recall that the ordered topological vector space (E, T, K)
satisfies condition (A, o) whenever it follows from un,L 6 in E and {un}
7-Cauchy sequence that un—l-) 6. Obviously (A,i) or (A,ii ) imply (A, o),
but (A, o) does not imply necessarily (A,i). As an example consider E
to be the linear space of all real sequences which are eventually constant
with the usual ordering and r the topology generated by the (Riesz) norm
[1£]] = sup{|f(n)] :n €N}

It is also evident that if (E, 7,K) is r-complete then (E, 7, K)
satisfies the property (A, o),

The following theorem gives some characterizations of the (A, o)

condition for the metrizable locally solid Riesz spaces,

THEOREM 5, 17. Let (L, 7) be a metrizable locally solid Riesz

space, Then the following conditions are equivalent,

(i) L satisfies condition (A, o),

A

(ii) For every 9 < f € 'J:.J, there exists f € I, such that g <f{ £ f

(iii) For every @ < fe ?_., we have f = sup{f €L:0 £4 glf\}

(iv) The embedding of L into i., preserves arbitrary suprema and

infima, i, e., fa¢,6 in L, implies fcc’l'e in L,

(v) The embedding of L into /I:, preserves countable infima and countable

suprema, i.e,, fn4,9 _1_2 L, implies fn,Lei_n L.
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Note. Condition (iii) is expressed by saying that L is strictly

A
order dense in L.,

PROOF, (ii)&>(iii). Suppose that (iii) holds, and § <f € L. Since
f= sup{f € L: 9 gf <=%} in /I:, it follows that 0 < f _g_f, for some f in L,
and this shows that (ii) holds. Suppose now that (ii) holds, and 8 <=f € i.
Letg € L be such that f € L;ocf< /fimplies E X g. Assume further that

%, lf§ <f, then since (ii) holds, we have 6<f < f—-g < /f\ for some

UA

g
@ <f € L., This also implies, according to our assumptions, that
6<f §§, and so B < 2f < fwhich also implies § < 2f §§ Proceeding
inductively we see that @ <nf gffor n=1,2,... and §<f. This contra-
dicts the fact that 1. is Archimedean (Theorem 4.7). So g = f and this
shows that f = sup{f €L:6 < i< /f}
(iii)=>(iv). Letf ¢ @in L. If < f< £, for all o € {a} holds in 1., then
since (ii)é=>(iii) there exists an element < f € L such that  <f <f <f_
for all a € {a}, i.e., inf{fa}qf @ in L, a contradiction, This shows that

A
fa¢ 6 in L.
(iv)=> (v). Obvious.
(v)=>(i). Let fnJ,e in L and {fn} be a r-Cauchy sequence. Then fn——i)f
in i, for some T € 1, and so by Theorem 4. 7 we have fnJ,fin f.. Since
(v) holds we getf: 6, i.e., fn—T>9.
(i)=p(ii). Assume § <f € L. We show that if § < f <f, f € L implies { = g,
and this will be enough to establish (ii). To this end, let V be a solid 7-
neighborhood of zero in ’f.; By Lemma 5, 11 there exists g§ € A (a lower
element) such that, 6 gg g? and f-,é €V, So, there exists a sequence

g

{gn} < LY such that g < ob and gn-—‘r->§, so, in particular {gn} is a
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r7-Cauchy sequence, We show next that gnd, @ in L, Indeed, if

p<g < g, for all n, then by Lemma 4.7 we get that 6 <g < g < f, and
so by our hypothesis g = 6, i.e., gn\l, f in L, Hence, by property (A, o)
of (L, 7) it follows that gn-1> 6 in L, and so gn-i)e in L. This implies
that§ = . Butthen, f=f-08=f-g €V, for all neighborhoods V of the

origin of 1, and this implies thatf = §. @

COROLLARY 5,18, If a metrizable locally solid Riesz space

(L, 7) satisfies 1+ = U, i,e,, if every positive element of f.. is an upper

element, then (L, 7) satisfies condition (A, o).

PROOF. Let §<f €L. Then we have §< f_11 for some
sequence {fn} c L+, with fn—‘r;f\. So, in particular we have
f= sup{f € L: 9 < f gf}. It follows now from Theorem 5, 17 that (L, 7)

satisfies (A, o). m

Next we shall investigate under which conditions the Dedekind
completeness, 0-Dedekind completeness and super Dedekind complete -~
ness of L can be carried to the topological completion. We proceed with

the following lemma,

LEMMA 5,19, If a metrizable locally solid Riesz space (L, 7)

satisfies condition (A, 0) and if L is 0-Dedekind complete, then we have:

(i) Every interval of Lj_s_ r-complete, i.e,, [6, u]_i§_ 7 -complete for

every u € L+.

A A
(ii) r & U, i.e., every positive element of L is an upper element,

PROOF, Let'f\ EA, i,e,, let ? be a lower element. This means

el
there exists a sequence {fn} c 2 such that fn.} 3:" and fn—‘r;f\. So, in
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particular {fn} is a 7-Cauchy sequence, Since, g < fn Jin L and L is
o-Dedekind complete we have fn‘l' fe Lt in L, for some f, But then it
follows from Theorem 5.17 that £ = £ € L, So, A ¢ LY, i.e., the lower
elements of L are the positive elements of L.,

(i) Now let § gf <fandf € L. By Lemma 5,11 and the above
discussion it follows that there exists a sequence {fn} = L+, £ 1 and
fn-—:’;-)f. But then fn'T fo < fin L, so fo -fn\l, g in L, and {fo —fn} is a
r-Cauchy sequence. Hence, from condition (A, o) on (L, 7) we see that
fn—i9 f, so f=f € L, This shows that L is an ideal of L, The result of
(i) now follows immediately from Theorem 5. 2.

(ii) We only have to show that felt implies feUu. Thisisa

direct application of Lemma 5. 11 and the above discussion. ®m

Next we give an application of Lemma 5. 19,

We recall that a subset A of an ordered vector space (E, K) is
called order complete whenever it follows from{ 1< f in E and {fa}g A
that sup foc exists in E and sup fOL € A, A topological Riesz space (L, 7)

is called a locally order complete Reisz space if there is a neighborhood

basis of zero for T consisting of solid and order complete sets,
With respect to the above notions we have the following theorem

due to H, Nakano (see [20], Theorem 4.2, and [28]).

THEOREM 5, 20. If (L, 7) is a locally order complete Riesz space,

then every order interval is r-complete.

We use Lemma 5,19 to give a different proof of Theorem 5. 20 in
the case in which 5 is metrizable., It is evident that L is Dedekind

complete and so in particular it is 0-Dedekind complete, We prove next
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that (A, o) is satisfied in (L, 7). Indeed, if &n} is a 7-Cauchy sequence
of Land f | 6 in L, then we have f -f €V for all n,m > n,, where V

n n m =0
is a solid and order complete neighborhood of zero, So, for fixedn > ng;
we have f -f Y £ in L, thus f €V for all n > n,, and this shows

n m2ng n =0

that fn—Le, i.e.,, (A, o) is satisfied in (L, 7). The result now follows

immediately from Lemma 5,19,

THEOREM 5, 21. Let (L, r) be a metrizable locally solid Riesz

space satisfying condition (A, o).

(i) If L is 0-Dedekind complete, then . is o-Dedekind complete.

(ii) If L is Dedekind complete, then 1. is Dedekind complete,

(iii) If L is super Dedekind complete, then L is super Dedekind complete,

PROOF. From Lemma 5. 19(i) it follows that L is an ideal of L.
So, (i) and (ii) follow immediately from Theorem 5. 6.
(iii) It follows from Lemma 5. 19 that L is a super order dense ideal of /I\_;,
which by its own right is a super Dedekind complete Riesz space. Also by
(i) we have that 1 is a o-Dedekind complete Riesz space. The result now

follows from Theorem 29,5 of [18], p. 169.m

Note, The condition (A, o) is essential for Theorem 5.21. In
[15] (Note XVI, p. 665, Ex, 66.6) W, A, J., Luxemburg exhibits a super
Dedekind complete normed Riesz space Lp whose norm completion is not

even 0-Dedekind complete.

5.7. THE PROJECTION PROPERTIES

We begin with the following lemma.
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LEMMA 5.,22. Let (L, ) be a Hausdorff locally solid Riesz space,

Then the closure K}_r_1 (/L, ;-) of the projection band A of L is a projection

band of L., Moreover Ad = (X)d.

PROOF. Let A be a projection band of L, Then L = A () A%,
We will show that L = A Ad, where - denotes the closure in (i,, ?).
So, let @ gf € /I:« Then there exists a net {fa} c LT such that fa_L§.
But then, since L = A @ Ad we can write £ =1f' + f'", < {' €A,

o a a =
d
< f'c A - - 1 o1 oo £

§ <fy €AS, for alla € {a}, and so lfal fazl |fa1 fa2|+ lfal fazl,
for all a € {a} (see [18], Theorem 14. 4(i), p. 69).

The last relation shows that the nets {f! } and {fl)} are two F-

» A

Cauchy nets of 1. So f'a——z;?

d

T A A Val A
and f'' — f_ for some f.,f, € L.. So,
—Q

1 2 1’72
d

, il.e., L:K-&-A

. To show that A NAY = {06}, let
d

f=f1+f2€A_+A

6 < fean Ad. Then there are two nets of L+, {fa} Cc A and {got} c A

A
N A

such that fa—‘?;/f\ and ga—L f. Therefore 6 = foc A ga—-’i FAf= f; hence

f = @, and this shows that ?.. = K@ x:&.We show next that A and X_d- are
ideals of L. It is clear that A is a vector subspace of ’I: Now letg € A,
Then fa_i 3, for some net {fa} C A. But then {Ifal }< A and [falia l'f‘l 3
so |i] €A. Now, if g<f< §andg €A, it follows easily that f € K. This
shows that A is an ideal of i Similarly for F The conclusion, now,

follows from Theorem 24.1 of [18], page 131.®

We recall that the element § < e of a Riesz space L is called a
weak unit if B, = L, i.e., if the band generated by e is all of L, or in
other words, for Archimedean Riesz spaces, if it follows from f L e that
f=0.

The next theorem says that the completion (i,,fr) of the metrizable
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locally solid Riesz space (L, 7) has a weak unit under some conditions,

THEOREM 5.23. If a metrizable locally solid Riesz space (L, 7)

satisfies condition (A, o), then (i., /-;-) has a weak unit if (L, 7) has a weak

unit,

PROOF, Let § < e €L be a weak unit of L and let § < f € L be
such that? Le, IfB< f, there exists, by Theorem 5,17 an element
 <f €Lsuchthat 9<f <f, Butthenf re andf # 6, contradicting the
fact that e is a weak unit of L., Hence f = §, This shows that e is also

A
a weak unit of L..®

Note, The same result holds if L. has a weak unit and it is order

A
dense in L.
From the above two results the following theorem follows

immediately.

THEOREM 5,24. If a metrizable locally solid Riesz space (L, 7)

satisfies (A, o) if § < u € L and if the band generated by u, Bu is a pro-

jection band, then the closure of Bu in (’f_,,:;\-) is the band generated in I

by u. In particular, if sup{vA nu:n=1,2,...} exists in L for all

g <v € L, then sup{f/\ nu:n=1,2,... } exists in?.;for all 9<§ Gi, and

if v € L then sup{v Anu:n=1,2,... } in L equals sup{vA nu:n=1,2,...}

in L.,

PROOF, Since u is a weak unit of Bu it follows from Theorem
5.23 that u is also a weak unit of B:l (the closure in L of Bu)‘ Further -
more, by Lemma 5,22, Bu is a T-closed band of (i, :;'). By Theorem

A

4,9 every band is 7-closed, and so the smallest band containing u in L
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is E; The remainder of the theorem now easily follows from Lemma

5,22 and Theorem 5, 17(v).®

From the above theorem we might expect that the principal pro-
jection property and the projection property are preserved under
topological completion, at least in the case when 7 is metrizable and
satisfies condition (A, o). Unfortunately, as it was shown by W, A, J.
Luxemburg ([15], Note XVI, Example 65, 6, p. 663), this is not true,
and so Theorem 5,24 seems to be the best result we can get in that
direction without additional assumptions,

However, as we shall show next, T has sufficiently many pro-
jections, if L has sufficiently many projections, provided (L, 7) is as in

Theorem 5. 24.

THEOREM 5,25, Let (L, 1) be a metrizable, locally solid Riesz

space satisfying condition (A, 0). Then L has sufficiently many pro-

jections, if L has sufficiently many projections.

PROOF. Let A be a non-zero band of L, Then it follows from
Theorem 5,17 that A N L is a non-zero band of L (use part (iii) of
Theorem 5. 17 to show that A N L # {§} and part (iv) to show that A N L
is a band of L). But then there exists a non-zero projection band B of L
such that B € A, It follows from Theorem 5. 22 that the ?-closure B of B
in (/I:;,"‘;-) is a non-zero projection band of i So, from Theorem 4. 8 we

see that B ¢ A. This shows that L has sufficiently many projections.®

The next theorem gives a condition under which L has the pro-

jection property provided II‘_, has the projection property.
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THEOREM 5, 26. Let (L, 7) be a Hausdorff locally solid Riesz

space. Assume that L is an ideal of L. Then L has the projection

property if I, has the projection property.

PROOF, Assume L has the projection property and let B be a
band of L. We shall show that B N L is a band of L. It is obvious that
B N L is an ideal of L, Now let § < ua1'u in L, for some {ua} <€ BNL.
Since L is an ideal of ?.4, it follows that § - u, fuin f_,, and so, since B
isabandof L, u € B, i.e., B NL is a band of L. It follows from the
projection property of L that L = (B N L) @ (BN L)d, and so, from
Theorem 5. 22 we obtain L= B N L ® (BN L)d = (fi_ﬁ—i.) ® (m)d.

We show next that BN L = B, From Theorem 4.8 we see easily

>

that BN L B, Now, let § < f € B, Then there exists sone net

>

£} ¢ L such that g ¢ £ —T5%. But < £ A f-T5f Since L is an ideal
of L it follows easily that [fa A?} C L, and since B is a band of L we
have also that {f_ At} c B, i.e., {£, A f1c BN L. This shows that

A

feEBNL, so, B=BN L.

Hence L = B @ Bd, which proves that B is a projection band of

'f_., and this completes the proof.m

5.8. THE FATOU PROPERTIES

We recall that 2 Riesz space is called a normed Riesz space if
there exists a norm p such that p(u) = p( lul) for all u € L, and if
6 < f < gin L implies p(f) < plg) inR. Every norm of L satisfying the
above two properties is called a Riesz norm. We shall denote a Riesz

space L with the Riesz norm p by Lp'
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Following W, A, J. Luxemburg and A, C, Zaanen ([16], Notes II

and XIII) we use the following definition,

DEFINITION 5, 27. (Sequential Fatou property). A Riesz norm p

is said to have the sequential Fatou property whenever 0 < u tu implies

p(u_) 1 plu).

(Fatou property). A Riesz norm p is said to have the Fatou

property wheneverju 1 u implies plu ) 1 p(u).

It is evident that the Fatou property implies the sequential Fatou
property. Also, the property (A, i) implies the sequential Fatou property

and the property (A, ii) implies the Fatou property.

EXAMPLE 5,28, (i) Let L be the Riesz space of all continuous
functions on [0,1], i.e., L = C[O