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ABSTRACT

Access to reliable power sources in remote locations is a recurring engineering chal-
lenge for both large and small applications. The developing world struggles with
power connectivity in remote villages, while sensor networks strain with power
limitations of batteries or short-lived turbines. Energy harvesting based on fluid-
induced vibration provides a potential robust alternative for in-situ power genera-
tion, furnishing means for a decades long supply of power. Yet, one of the main
challenges in the design of flow energy harvesters is understanding the mecha-
nisms that drive their motion. Fluid-structure interaction problems often span a
large parametric space and require considerable computational resources to resolve
the necessary dynamic details for reliable designs.

This thesis aims to address this challenge for a piezoelectric internal flow energy
harvester developed in conjunction with NASA Jet Propulsion Laboratory for in-
well, deepwater sensor and actuator systems. Through exploratory experimentation,
a configuration consisting of a piezoelectric beam within a converging-diverging
channel in axial flow generated considerable power at moderate flow velocities
when compared to other devices of the same size. The current device, though
adapted to a more robust configuration based on flextensional actuators, still main-
tains the same fluid-structure interaction: the instability that ensues forces the sys-
tem into self-sustained oscillations that produces consistent power output for flow
rates above a critical threshold.

To understand and quantify this behavior, we develop an analytical framework
based on a leakage-flow type instability, which curtails the shortcomings of ex-
pensive numerical simulations once verified. The formulation consists of a quasi
one-dimensional simplification of coupled fluid-structure equations, which are lin-
earized for classical stability analysis. The stability boundary and critical prop-
erty predictions are verified through a set of fully coupled fluid-structure immersed
boundary direct numerical simulations. Experiments are carried out in tandem to
quantify the dynamics of the harvester, specifically targeting the critical flow rate
threshold. The analytical framework is expanded to include flow in the spanwise
direction of the beam, and results to a simplified geometry of the harvester com-
pared with those from experiments. Agreement between predicted critical values
suggest that leakage-flow may be the principal mechanism for fluid-induced vibra-
tion within our device. The model can serve as the foundation of initial exploration
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of design parameters, and perhaps more powerful devices in future endeavors.
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cal values at ĥ = 0.05 and ĥ2ReL = 0.5, case 2 in table 4.2. . . . . . 98



xiv

4.14 Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ =
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ĥ2ReL and k̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 Table of cases for constant channel flow simulations with elastic-

translating boundary conditions. Parameters m̂bc and k̂ are varied. . . 109
4.5 Table of cases for cantilever beam in a diffuser. Parameters α[◦] and

k̂ are varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6 Table of cases for elastically-mounted rigid beam in a diffuser. Pa-

rameters m̂bc and α[◦] are varied. . . . . . . . . . . . . . . . . . . . 115
5.1 Table of flow path parameter dimensions illustrated in figure 5.2. . . . 120
5.2 Table of relevant piezoelectric stack properties. . . . . . . . . . . . . 124
5.3 Table of structural material properties [93, 94]. . . . . . . . . . . . . 126
5.4 Table of frequency predictions by finite element modal analysis (FEA)

and Euler-Bernoulli (E-B) beam theory. . . . . . . . . . . . . . . . . 128
5.5 Table of experimental flexure settings based on qualitative set-screw

torque level, with approximate torque values shown. . . . . . . . . . 131
5.6 Table of mean displacement and force [N] results for flexure settings

in table 5.5, with least-squares best fit stiffness values k0 [N/m]. . . . 132
5.7 Table of experimental flexure values for flexure dynamic test. Setting

details are shown in table 5.5. . . . . . . . . . . . . . . . . . . . . . 143



xx

5.8 Table of calculated elastic-translating boundary condition properties
for flexure settings in table 5.5. . . . . . . . . . . . . . . . . . . . . 144

5.9 Table of critical values for flexure settings listed. The critical veloc-
ity, Reynolds and Mach numbers are calculated at the throat. . . . . . 159

5.10 Table of experimental non-dimensional parameters for tested flexure
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.1 Table of parameters for constant channel flow simulations with vary-
ing m̂ and and k̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.2 Table of parameters for constant channel flow simulations at m̂ = 100
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(û1)i. SPOD mode 1 shape at discrete frequency i.

αm. Effective separation angle for quasi-1D experimental simplified geometry.

δ. Beam transverse displacement.

Û(·). ∂
∂t (·).

γg. Ratio of specific heats.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Access to reliable electricity in remote locations has been a global challenge since
the inception of the power grid. Lack of infrastructure, cost, and low reliability often
prohibit the connection of rural areas, secluded villages, and scientific monitoring
stations to centralized power; the developing world being disproportionally affected
by the former two [1]. As of recent, decentralized power generation has become a
strong candidate to bridge this gap, especially as hydrokinetic technologies become
viable. Turbines designed for either wind or river operation, along with tidal energy
harvesting represent are a few technologies that can [2] or have been implemented in
the Amazon, Africa, and Alaska to either replace old or provide new power sources
to communities [3].

Similarly, environmental energy harvesting has become a feasible alternative for
sensor networks as electronics come to be more efficient [4]. The landscape of rel-
evant applications tackled by decentralized power can be broken down into power
requirements and reliability. Sensor networks may have power budgets O(10−3 −
101) [W] dependent on data rates and system architecture [5]; but likely require
maintenance-free operations for decades due to access costs (i.e. excessive number
of sensors or inaccessible locations). Small rural villages, on the other hand, often
require O(103 − 105) power generation, but reliability is perhaps more flexible con-
tingent on available resources (i.e. local repair expertise and access to replacement
parts) [3, 6].

A more immediate application can be found in the vein of distributed sensing: in-
situ power generation would enable the combination of remote sensing and control
to optimize the delivery of hydrocarbons. The deployment of inflow control valves
(ICVs) with integrated sensors for pressure, temperature, flow rate, and composition
in deepwater wells has been shown to increase the amount of recoverable hydrocar-
bons in place [7–9] and to impact not only financials, but the environment. By
decreasing the number of wells drilled to develop a reservoir, along with increas-
ing the reservoir’s hydrocarbon recovery efficiency, such a system has the ability to
wholly decrease drilling activities globally. The step-change in technology conver-
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sion from cabled to in-situ power generation systems bypasses the reliability short-
comings of leaking or shorted control-lines, their connections, and operational costs
associated with their deployment. Benefits also include increase in the reliability of
other well equipment that are safety critical (i.e. pressure containment) by reducing
feed-throughs and leak paths necessary for cabled connections, for example. More
importantly, it allows the deployment of multiple independent actuator-sensing sys-
tems such that production can be optimized for reservoirs, where production inter-
vals are appropriately discretized, monitored, and controlled. The power budget for
this application, which includes sensing, actuation, and communication is as low
as O(1) [W] when coupled with power management electronics. The longevity re-
quirement of any power generation device, however, is the same as other downhole
equipment: it must survive a minimum of 20 years without maintenance. Costs
associated with well hardware repair and upkeep is equivalent to those of drilling a
new well, which makes system reliability requirements as critical as those of power
generation.

Ensuring devices robustly generate power over decades of maintenance-free func-
tionality remains as large a challenge as meeting the power budget itself. Turbine
designs alone, for example, can generate from fraction to thousands of watts indi-
vidually [10]. However, the most reliable turbines to date fall well short of the 20
year desired lifetimes [10, 11], with wear and friction central to their failures [12].
Moreover, turbine devices are often miniaturized in applications discussed, which
makes them even more susceptible to these failure mechanisms [13].

1.2 Fluid-Induced Vibration Energy Harvesting
Fluid-induced vibration based energy harvesting refers to a structure or series of
structures that are placed in a flowing fluid to extract energy from the ensuing vi-
bration and/or deformation. Steming from the spurt of efficient electronics, FIV
energy harvesting research has been especially active since the early 2000’s. Har-
vesting concepts range from flow driven magnets to forced piezoelectric elements
for energy transduction, with power outputs O(10−7 − 104), though largely depen-
dent on device length scales [14, 15]. Piezoelectric elements are particularly at-
tractive for solid-state transduction since structural vibration can be converted into
electricity without the wear of moving mechanical parts [13, 16]. By coupling the
structure with a piezoelectric transducer, direct energy conversion can be achieved
without the use of rotating machinery, bearings, or gears. This shifts the primary
failure mechanism from wear to structural fatigue. Thus, unlike conventional tur-
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bines, these devices may enable decades of reliable electricity generation in remote
locations with minimal maintenance.

The power output fundamentally necessitates that the flow exert an oscillating force
onto the structure [17]. Large oscillating fluid forces are often associated with flow
instabilities. When these forces constructively couple with the motion of a struc-
ture, large structural displacements can ensure and achieve a regime favorable to
flow-energy extraction. This describes the essence of fluid-structure interaction
(FSI) instabilities, which occur regularly in many engineering applications, though
most designs vehemently seek to avoid them. FSI instabilities often lead to noise,
vibration, and failure of structures, vehicles, and devices [18]. Of particular interest
to this work, is the flutter type FSI , which relies on a positive feedback between the
natural modes a vibrating structure and aerodynamic forces. The well known failure
of the Tacoma bridge represents a drastic case of single degree-of-freedom torsional

flutter due to the separated flow-structure coupling [19]. Flutter can be manifested
in axial flows over flexible structures, also known as flag instability. This has been
explored as an energy harvesting mechanism for the Flutter-Mill by Tang, Païdous-
sis, and Jiang [20]. Other specific configurations include cross-flow instabilities
[21], which has been responsible for a number deepwater risers failures [22], but
also used as a concept for large scale FIV power generation [14]. Similarly, coher-
ent vortex shedding from diffusers in transitory stall is another flow instability that
may have direct application in power harvesting given its geometrical simplicity
[23].

Figure 1.1: Leakage-flow instability illustration. The pressure profile as flow with
flow rate Q bypasses a structure moving with velocity V induces a net force in the
direction of the structure’s motion [24].

FSIs can also be amplified when they occur in confined flow paths. When the flow
paths are narrow in nature and surround an elastic body, the instability is known as
a leakage-flow type instability (LFI). LFIs are likely to occur in the configuration
illustrated in figure 1.1. These small passages are susceptible to instabilities because
of the significant impact a small area change has on local velocities and pressures
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[24]. They have been identified as the cause of fatigue failures in nuclear reactor
cooling systems in the late 1960s. LFI remains largely unexplored in the context
of flow-energy harvesting, and is ultimately where we will focus our effort in this
thesis.

1.3 Flextensional Flow-Energy Harvester
In a joint effort with the Advanced Actuators Technologies group at the NASA Jet
Propulsion Laboratory (JPL), we designed flow-energy harvesters to power sensors
and actuators within an oil well [25–27]. The design philosophy we implemented
is based on a trade-off between eliciting strong fluid-electro-mechanical coupling
and avoiding the device’s dominant failure mode.

In our initial study, a bimorph transducer mounted as a cantilever within a nozzle-
diffuser channel geometry proved to be exceptional at extracting electricity from the
flow [25]. The device generated ∼ 0.02 W [28] and a factor of 5 times more power
than that of flow-energy harvesting devices of similar volume [15]. Through further
testing, however, the device failed due to fatigue at flow rates that would otherwise
yield peak power production. Specifically, the same stresses responsible for the
increase in power relative to other devices also exceeded the fatigue limit of the
piezoelectric material. Even after ruggedization of the transducer and decreasing
the total power output, failure occurred in the span of hours [26].

To increase the robustness of the structure, a flextensional actuator-based device
was proposed [27]. Two main ideas motivated this design change to combat fatigue
and degradation limitations: moving piezoelectric materials out of the flow path,
and ensuring that the piezoelectric materials are sustained in compression only, as
opposed to failure-inducing tension seen during bending.
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Figure 1.2: Flextensional actuator illustration (left), and bimorph actuator illustra-
tion (right).
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Figure 1.2 illustrates the two actuator types. In the flextensional actuator , the
piezoelectric material is comprised of PZT ceramic stacks that are located inside
a flexure and pre-stressed in compression. As the top of the flexure moves up and
down, the motion is converted into compression of the PZT at its core. In con-
trast, the bimorph forcing places a bending load on the two piezoelectric sheets,
which alternate in compression and tension (where brittle ceramics are known to
fail). Different choices of piezoelectric materials, such as polyvinylidene fluoride
(PVDF), were considered in the bimorph configuration, but this caused unaccept-
ably large decreases in electromechanical conversion efficiency. By comparison,
the flextensional actuator is approximately twice as electromechanically efficient as
the PZT-based bimorph.

The evolution of the flextensional flow-energy harvester can be seen in figure 1.3
by contrasting the original, double flextensional armature to the most recent single
flexure design (tested in this chapter).

Fixed	
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  Flow	
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(a) Original flextensional flow-energy harvester with commercially available actu-
ators.

Flow

PZT 1

PZT 2

Fixed Base
Flexure

Nozzle-Diffuser

BeamCenter 
Mount

Set-Screw

(b) Current version of flextensional flow-energy harvester with custom designed
flexure.

Figure 1.3: Evolution of flextensional flow-energy harvester design, contrasting
original version in [26] (1.3a ) to current version tested (1.3b).
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A number of changes occurred, including beam interface with actuators, mount de-
tails, and the flow path, though to a smaller degree. These have amounted to a
change in overall power output by a factor of two [26, 27]. The flexure mechan-
ics of energy conversion in figure 1.3 works in the same way as the flextensional
illustrated in figure 1.2: the up and down motion of the cantilever translates into re-
lease and compression of the pre-stressed PZT elements inside of it. The elements
are always in compression and out of the flow path, as noted before. However,
the mechanism by which flow incites the translating motion of the cantilever is no
longer discernible between the many instabilities discussed in section 1.2: the dif-
fuser geometry may be operating at transitory stall, a flag-type instability may be
driving the pressure differences through trailing edge vortex shedding, and the small
throat size may be driving a leakage-flow instability. Of course, a combination of
these mechanisms may be at play, driving the system to instability as an aggregate
to incite fluid-induced vibration.

1.4 Stability of Elastic-Member in Confined Flows
The stability of an elastic member within a constant channel, or as part of the chan-
nel has been studied for many decades [29–33]. A number of physical applications
fall under this canonical problem, including wind instruments [34, 35], human snor-
ing [36, 37] or vocalization [38], enhanced heat transfer systems [39, 40], and, as it
concerns the topic of this thesis, flow-energy harvesting [25–28]. The flutter insta-
bility boundary is often the essential result sought, as the functional requirements
of engineering designs (i.e. flow-energy harvester, heat management systems) or
the manifestation of sound in natural systems (i.e instruments, snoring, voice) are
dependent on it.

Direct solution of the fluid-structure interaction by solving the coupled Navier-
Stokes and structural equations are, on the other hand, recent. Two dimensional
FSI algorithms were used to study channel flow [37, 39], and most recently, to
assess the effect of Reynolds number on the flutter boundary [41].

Yet, a challenge with fluid-structure systems is the large number of parameters nec-
essary to describe the subset of possible system regimes; fully coupled computa-
tional approaches often require considerable computing time to span a segment of
this parameter space. A more tractable but less accurate (or versatile) approach in-
volves reduced-order modeling for the structure displacement and velocities, with
fluid forces approximated via simplified equations of motion. The early work of
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Miller [30], extended in [29] soon after, appear to be the first to address the diver-
gence instability in channels within nuclear reactor cooling systems in this light.
More recent work by Guo and Paidoussis [42] takes an inviscid approach to un-
derstanding the onset of flutter in a symmetric channel. Alben [43] solves for the
inviscid flutter boundary using a vortex sheet model, and Shoele and Mittal [39]
extend a plane wake vortex sheet method by Alben [44] in unconfined flows to
constant, asymmetric channel flow.

However, as evident from the recent results of Cisonni et al. [41], the inviscid treat-
ment of the flow for small throat-to-length ratios, ĥ, poses difficulties to predicting
instability boundaries which generally depend on the Reynolds number, particularly
when it is small.

More in line with Païdoussis [24] definition of leakage flow is the work Nagakura
and Kaneko [33] and Wu and Kaneko [45]. They employ a viscous formulation
of fluid forces for elastic beams in channel flow originally proposed by Inada and
Hayama [31] for rigid plates in converging or diverging channels. Fujita and Shin-
tani expanded it to cylindrical constant channels [46–48]. Yet, it remains unclear
what the parameter bounds are for which the dynamics transition from mostly vis-
cous to mostly inviscid. This thesis address this challenge in particular detail for
the two-dimensional case in chapter 4.

1.5 Leakage Flow Instability Hypothesis
Previous work noted in sections 1.2 and 1.4, along with our initial experiments
can inform the plausibility of different instability mechanisms driving in the cur-
rent flextensional flow-energy harvester. In particular, by comparing experimental
results of the original bimorph based energy harvesters in [25, 28], which main-
tain a similar flow path as in figure 1.3b, to known flutter boundaries for different
mechanisms can help formulate a hypothesis for further exploration.

Starting with the unconfined, two-dimensional flag flutter boundary [49], predicted
flow speeds for flutter onset are ∼ 4 times faster than what is experimentally ob-
served in [28]. Conversely, by considering the flutter boundary for the inviscid
channel flow model by Shoele and Mittal [39], the flutter onset is predicted at lower
flow speeds than those seen experimentally [28].

Work by Doaré, Sauzade, and Eloy [50] and Doaré et al. [51] suggest that effects
of the flow along the spanwise direction cannot be ignored in our system, as the
spanwise gap in both the original bimorph and the current flextensional harvester
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is O(10−2) relative to the beam length. Furthermore, it suggest that a mechanism
like the one in [39] may be stabilized when such effects are considered. Finally, the
work of Inada and Hayama [31] and Nagakura and Kaneko [33] suggest that quan-
tifying viscous effects and channel shape may also be important when quantifying
the flutter boundary.

Hence, we take the approach of formulating and quantifying the stability effects of
a leakage-flow instability type, where channel shape, viscous effects, and spanwise
flow can be considered, and systematically discerned as significant to the onset of
flutter in the flextensional flow-energy harvester system.

1.6 Thesis Scope and Overview
The overarching goal of this thesis is to elucidate the fluid-structure instability that
drives the flextensional based flow-energy harvester. The hypothesis is that the
leakage-flow type instability is the primary cause, and that parameters associated
with it determine the stability boundary and structural oscillations (and power gen-
eration) that ensue.

We first develop a model for the leakage-flow instability under a quasi-1D approxi-
mation derived in chapter 2. Continuum equations of motion are simplified through
assumptions and parameter limits that represent the narrow passage and flow rate
modulation that are the intrinsic definition of leakage-flow. Two distinct models are
derived: the first considers leakage flow in the axial direction only, while the sec-
ond expands the same principles to include leakage flow in both the axial and beam
spanwise directions. The former model is compatible with the two-dimensional
direct numerical simulations, where details on its validity bounds are explored in
detail in chapter 4. The latter is compatible with the experimental set up, and is
used to successfully predict aspects of the flutter boundary for the flextensional
flow-energy harvester in chapter 5.

Chapter 3 documents the numerical implementation and verification of the axial
leakage flow model. It also contains the details of the immersed boundary projec-
tion algorithm for solving the two-dimensional direct numerical simulation (DNS)
and its corresponding internal flow verification case. Lastly, a set of data anal-
ysis algorithms including dynamic mode decomposition (DMD), spectral proper-
orthogonal decomposition (SPOD), and the Hilbert transform, are detailed as pre-
cursors to producing later results.

Chapter 4 presents a comparison between the axial leakage quasi-1D model and
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the two-dimensional fluid-structure interaction (FSI) DNS results for a broad set
of parameters. In particular, the results address the parametric validity bounds of
the quasi-1D model when predicting flutter boundary critical properties. We first
consider the comparison between channel flow geometries, then expand results to
the elastic-translating boundary condition at the beam leading edge and a diffusing
channel. The quasi-1D model is able to capture the stability boundary and critical
properties remarkably well through a wide range of parameters.

Experiments that detail the flextensional flow-energy harvester response are in chap-
ter 5, with its last section as a comparison between experimental results and the
quasi-1D model that considers spanwise leakage flow. We show that the model
prediction agrees well with experimental values, when considering an analogous
geometry to the real system.

We compile conclusions and future outlook in chapter 6.

1.7 Summary of Contributions
This section summarizes contributions within this thesis:

• Together with NASA JPL, partial conception, design, and development of
flextensional flow-energy harvester.

• Developed a reduced-order model for leakage -flow instability through sim-
plification of coupled fluid- structure equations of motion via a closure rela-
tion consistent with lubrication theory (chapter 2).

– Expanded model to include elastic-translating boundary conditions that
emulate the dynamics of the flexure mode of the flextensional flow-
energy harvester.

– Further expanded the model to account for leakage flow in the beam
spanwise direction. Developed its numerical implementation and solu-
tion algorithm.

• Derived and implemented elastic-translating boundary conditions, and inter-
nal flow capabilities to the fluid-structure immersed boundary algorithm by
Goza and Colonius [52] (chapter 3).

• Demonstrated the dominance of the leakage-flow type instability mechanism
for fluid-induced vibration of an elastic member in constant channel and dif-
fusing flows. This is done through a direct numerical simulation campaign
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and the successful replication of flutter stability critical properties by the
quasi-one-dimensional model (chapter 4) for a subset of parameters.

• Characterization and quantification of the dynamics of the flextensional based
flow-energy harvester (chapter 5).

– Developed method and apparatus for measuring flextensional properties
relevant to dynamical responses, including flexure stiffness and damp-
ing.

– Developed, built, and performed experimental campaign for quantifica-
tion of critical properties of flextensional flow-energy harvester under
flowing conditions.

– Demonstrated leakage flow as a feasible alternative for the main mech-
anism that drives the flextensional flow-energy harvester into flutter.
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C h a p t e r 2

LEAKAGE FLOW MODEL

2.1 Introduction
In this chapter we develop a model that combines the fluid equations with those
from the solid in a relevant but simplified form, to provide insights into the physical
mechanisms that drive the coupled fluid-structure system dynamics. The combined
fluid-structure equations are simplified by making assumptions and taking param-
eter limits that will be verified with numerical simulations in chapter 4, and com-
pared with experimental results in chapter 5. Assumptions and limits focus around
the leakage-flow definition discussed in chapter 1, which often refers to flow around
large center bodies through small passages, but also applies to general flows through
narrow passages [24, p. 1221].

The geometry of the flow-energy harvester is illustrated in figure 2.1 and dimen-
sional parameters in table 2.1. The elastic cantilever is placed in a symmetric con-
verging diverging channel. The flextensional transducer is modeled by connecting
the fixed end of the beam to a simple harmonic oscillator. We consider the voltage
output of the flow rate (characteristic velocity), geometrical parameters, and ma-
terial properties. This gives 23 dimensional quantities spanning four fundamental
dimensions: length l, mass m, time t, and current A. Through the Buckingham-Pie
theorem, these yield a total of 19 non-dimensional groups to determine the system
dynamics. This large number of a parameters makes a thorough numerical or exper-
imental investigation intractable. Hence, the purpose of the theory in this chapter is
to provide a simple model that allows us to analytically identify the most important
parameters affecting the stability of the system.

One of the simplest models of leakage flow instability was explored by Inada and
Hayama [31]. The passage was first constrained to rigid body translation in the
streamwise-normal direction and later included rigid body rotation [32]. In both
cases the flow rate and pressure profiles only depended on the streamwise direc-
tion. A similar analysis extended for a beam in a constant channel by Nagakura
and Kaneko [33], maintained the same leakage-flow forcing model but applied a
damped Euler-Bernoulli beam equation rather than the rigid-body motion coupling
to the elastic body. This analysis was further extended to include geometrical non-
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ā

ā

Figure 2.1: Illustration cantilever beam in a converging-diverging channel geometry
(right) with simple harmonic boundary condition (left).

Table 2.1: Table of fluid-structure-electrical dimensional parameters.

Variable Description Dimension
δ beam displacement l
x beam length coordinate l
t time t
V voltage m ∗ l2 ∗ t−3 ∗ A−1

p pressure m ∗ l−1 ∗ t−2

Uc characteristic velocity l ∗ t−1

k0 flexure stiffness m ∗ t−2

c0 flexure damping m ∗ t−1

m0 flexure mass m
Re electric resistance m ∗ l2 ∗ t−3 ∗ A−2

L beam length l
hb beam thickness l
b beam width l
ht throat height l
xt throat location l
R radius of curvature l
αi nozzle contraction angle rad
αo diffuser expansion angle rad
ρ f fluid density m ∗ l3

µ f fluid viscosity m ∗ l−1 ∗ t−1

ρs beam density m ∗ l−3

E Young’s modulus m ∗ l−1 ∗ t−2

ν Poisson’s ratio ND
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linearities associated with large displacement of the beam [45]. Fujita and Shintani
[48] also explored a similar form of leakage-flow forcing for flexible cylinders, us-
ing the Euler-Bernoulli equation for the structure, in a constant cylindrical narrow
passage, while adding a flow and pressure component in the azimuthal direction
[46, 47]. Comparison to experiments were also made in [48].

Fundamentally, power extraction from the flow is contingent on the energy con-
version from fluid kinetic into structural kinetic and potential energy, later to be
transduced into electricity through piezoelectric crystals. The characterization of
structural energy can be ascertained by the amplitude δ and velocity Ûδ of the elastic
member. We would like to characterize, through the physics, when these quanti-
ties will grow or decay as a function of parameters in table 2.1. The purpose is to
develop a set of linear equations in δ and Ûδ and to assess their stability relative to
some equilibrium point δ0 and Ûδ0. We frame our analysis in part inspired by these
authors, and apply our framework to the flow-energy harvester.

The analysis within this chapter derives equations of motion from control volume
and applies closures consistent with infinitesimal equations through limiting param-
eter cases. This is done in order to formulate a physical description that elucidates
the appropriate ranges of those parameters in table 2.1 where solutions are applica-
ble, which remains an open question through much of the aforementioned literature.

The derivation will consist of the following steps:

1. Develop an expression for pressure of the exerted by the fluid, as a func-
tion of δ and its derivatives on the elastic member through the Navier-Stokes
equations and conservation of mass;

2. Linearize the result in δ and its derivatives;

3. Close the system with the linear elastic description of δ using conservation
and constituent relations.

We begin by considering the case b � L such that the flow is approximately two-
dimensional. This is further simplified to a quasi-one-dimensional system of equa-
tions in the axial direction. We first consider a clamped cantilever, and then add
a moving leading-edge boundary condition to model the flextensional device as a
simple harmonic oscillator.
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Finally, we extend the model to consider the three-dimensional leakage flow for the
finite span case. The effect of confinement in the spanwise direction was detailed by
Doaré et al. [50, 51] theoretically and with numerical simulations for the unconfined
(in the normal direction) flag configuration [50], and in experiments [51]. Their
results showed that only at small spanwise gap to length ratios, C

L , would the two-
dimensional instability boundaries be observed. Furthermore, they showed that
even at C

L = O(10−4), a large discrepancy between stability boundaries was still
seen relative to the two-dimensional model. Though this work is done for standard
flag case outside of a channel, the spanwise confinement effect is likely significant
in the flow-energy harvester problem, and as discussed in chapter 5, is crucial when
comparing model predictions to experiments.

Our work in this chapter is motivated in part by the previous work of Inada and
Hayama [31] and Nagakura and Kaneko [33]. We seek, however, tangible paramet-
ric bounds on the validity of the model. This required a different approach to the
derivation of equations of motion from previous literature: we start with a control
volume analysis and look for relations to close openly defined terms. The form
of the closure provides the validity bounds we seek. The final equations are only
similar to previous work when constrained to specific cases, such as a rigid beam or
constant channel. Even in those cases, however, they differ in coefficients derived
through our closure relations. Hence, model derivation steps presented are believed
to be novel in the context of leakage-flow. In addition, the generalization of equa-
tions to arbitrary channel shapes with an flexible member and a moving boundary
condition is also believed to be novel, along with its expansion to include flow in
the beam spanwise direction.

2.2 Fluid Equations of Motion in Two Dimensions
To develop a relation between pressure, beam displacement and its derivatives, we
consider the control volume V defined in x̂ and ŷ illustrated in figure 2.2, which cor-
responds to a small section of one of the channels in figure 2.1 with h0 representing
that shape of the channel and the lower boundary δ as the “top” of the beam. The
channel gap is defined by the top surface of the channel h0, which is a function of
axial position x but fixed in time, and the shape of the beam δ, which varies both in
time and as a function of x.

The vectors that describe the unit normal direction to each boundary, ni for i ∈ Z :
[1, 4] are
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Figure 2.2: Two dimensional channel control volume.

[n1 · · · n4] =
[
1 −1 −h′0(x) δ′(x, t)
0 0 1 −1

]
. (2.1)

where the prime denotes ∂
∂x (·).

Note that | |n3 | | =
√

1 + h′20 and | |n4 | | =
√

1 + δ′2, while | |n1 | | and | |n2 | | have

magnitude 1. The ˆ(·) notation represents unit vectors (i.e. n̂3 =
n3
| |n3 | | ). Because δ

varies with time, the control volume in figure 2.2 is moving, with n̂1, n̂2, and n̂3

stationary, and n̂4 having a speed of Ûδ.

We begin with the integral form of mass conservation ([53, p. 98]),

∂

∂t

(∫
V
ρ f dV

)
+

∫
∂V
ρ f ur · n̂dA = 0 (2.2)

where ρ f is the density of the fluid, and ur is the velocity relative to the control
volume. Since the lower boundary moves with the fluid, the relative normal velocity
is zero there.

By applying equation 2.1, ur , incompressibility, and taking the limit as x2 → x1 of
equation 2.2,

∂

∂t

(∫ h0

δ
dy

)
+

∂

∂x

(∫ h0

δ
udy

)
= 0. (2.3)

Next, we consider the integral form of the Navier-Stokes equations in two dimen-
sions on V ([53, p. 102]),

∂

∂t

(∫
V
ρ f udV

)
−

∫
∂V

(
ρ f u

)
ur n̂dA =

∫
∂V
σn̂dA = −

∫
∂V

Pn̂dA + Fvisc (2.4)



16

where σ is the stress tensor that is separated into a normal pressure component P

(positive P is in the negative n̂ direction when n̂ points outside the control vol-
ume V , per fluid mechanics convention) and a viscous term Fvisc. No body forces
are considered in 2.4. Once again, applying equations 2.1 and ur to equation 2.4,
assuming incompressibility, taking the limit as x2 → x1, we obtain

∂

∂t

(∫ h0

δ

[
u

v

]
dy

)
+

∂

∂x

(∫ h0

δ

[
u2

uv

]
dy

)
=

−1
ρ f

{
∂

∂x

(∫ h0

δ

[
P

0

]
dy

)
−

[
h′0
−1

]
P |y=h0 +

[
δ′

−1

]
P |y=δ − Fvisc

}
. (2.5)

In arriving at equation 2.5, we used the no-slip boundary condition and that the
channel is gradually varying in the streamwise direction, h′20 � 1 and δ′2 � 1,

such that
√

1 + h′20 ≈ 1 and
√

1 + δ′2 ≈ 1 for x ∈ [0, L].

Our goal is to relate P to δ and derivatives through conservation laws. The current
form of equations 2.3 and 2.5 have δ as factors and as integration limits; however,
mass conservation allows a change of variable to relate δ to the system flow rate.
By defining the flow rate in the x̂ as

Qx =

∫ h0

δ
udy, (2.6)

equation 2.3 simplifies to

− ∂δ
∂t
+
∂Qx

∂x
= 0, (2.7)

since the h0 is not a function of time. Similarly, the x̂ component of equation 2.5
becomes

∂Qx

∂t
+
∂Nx

∂x
= − 1

ρ f

{
∂

∂x

(∫ h0

δ
Pdy

)
− h′0P |y=h0 +

∂δ

∂x
P |y=δ − Fvisc,x

}
. (2.8)

where Nx is

Nx =

∫ h0

δ
u2dy. (2.9)
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Next we quantify the viscous term Fvisc for an incompressible Newtonian fluid.
Considering its integral form in equation 2.4,

Fvisc = µ f

∫
∂V

(
∇u + ∇u>

)
n̂dA, (2.10)

where µ f is the fluid dynamic viscosity, and only the divergence-free part of the
strain tensor remains. Applying n̂ from equation 2.1 and geometrical constraints to
the channel gap, along with dividing by x2 − x1, we obtain the x̂ component of the
viscous term,

Fvisc,x = lim
x2→x1

[
µ f

x2 − x1

∫ x2

x1

(
−2

∂u
∂x

∂y

∂x
+
∂u
∂y
+
∂v

∂x

)����y=h0

y=δ

dx

]
, (2.11)

from equation 2.8. To make further progress, we need a closure relation forNx and
Fvisc,x in term of Qx and δ, whereupon 2.7 and 2.8 specify a relationship between P

(or Qx) and δ and its derivatives. Equation 2.7 can then be used to relate Qx to δ,
and P becomes only a function of δ and its derivatives in equation 2.8.

2.2.1 Lubrication Like Closure for Nx and Fvisc,x

Thus far, equations 2.3 and 2.5 only have restrictions on compressibility and deriva-
tives of the channel geometry, which encompass a fairly broad range of problems.
Here, we consider further restrictions to the channel geometry associated with the
flow-energy harvester designs discussed in chapter 1. Assuming incompressibil-
ity, we begin with continuity and the infinitesimal Navier-Stokes equations in two
dimensions for a Newtonian fluid, where ∇ · σ = −∇P + µ f∇2u,

∂u
∂x
+
∂v

∂y
= 0 (2.12)

ρ f
Du
Dt
= −∂P

∂x
+ µ f

(
∂2u
∂x2 +

∂2u
∂y2

)
ρ f

Dv

Dt
= −∂P

∂y
+ µ f

(
∂2v

∂x2 +
∂2v

∂y2

) . (2.13)

Considering the relevant dimensional scales from figure 2.1 and those listed on
table 2.1, we would like to non-dimensionalize equations 2.12 and 2.13 in a way
to take limits over relevant parameters to yield a useful expression for the velocity
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profile u. We choose the length scale associated with x as L, and velocity associated
with u as Uc. Those are rather clear choices. A less obvious choice is the length
scale associated with y, hence we define h̄ ∼ h0 − δ as a representative channel
gap length scale that will not necessary increase significantly over L, given the
restrictions from 2.8 on h′20 and δ′2. The value of h̄ will depend on the h0 function
and initial value for the beam shape δ |t=0, if other than 0. The relation between
dimensional and non-dimensional values, the latter with (·)∗ notation, are

x∗ =
x
L
, y∗ =

y

h̄
, u∗ =

u
Uc
, t∗ =

Uc

L
t. (2.14)

The scaling for v is also not obvious. In the absence of an initial beam velocity
Ûδ |t=0, we consider continuity from equation 2.12; substituting the non-dimensional
quantities in 2.14 and normalizing,

∂u∗

∂x∗
+

(
L

h̄Uc

)
∂v

∂y∗
= 0. (2.15)

In order to satisfy continuity, either the two terms are identically 0 or they are equal.
Taking the latter hypothesis, the appropriate scaling of v is the factor in front of the
∂
∂y∗ (·). Lastly, P is of the order of the stagnation pressure Pin driving Uc. The
relevant non-dimensional parameters are

x∗ =
x
L
, y∗ =

y

h̄
, u∗ =

u
Uc
, v∗ =

L
h̄Uc

v, t∗ =
Uc

L
t, P∗ =

P
Pin

. (2.16)

Substituting 2.16 into 2.13,

ε2
hReL

Du∗

Dt∗
= − 1
Λ

∂P∗

∂x∗
+ ε2

h
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

ε4
hReL

Dv∗

Dt∗
= − 1
Λ

∂P∗

∂y∗
+ ε4

h
∂2v∗

∂x∗2
+ ε2

h
∂2v∗

∂y∗2

, (2.17)

where we have defined

εh =
h̄
L
, ReL =

ρ f UcL
µ f

, Λ =
µ f LUc

Pin h̄2
, (2.18)

as the gap ratio, Reynolds number, and Bearing number, respectively. These pa-
rameters are those expected from lubrication theory ([53, p. 319]). We now take
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the limit as εh → 0, where the channel gap becomes narrow relative to the beam
length, and equation 2.17 becomes

0 = − 1
Λ

∂P∗

∂x∗
+
∂2u∗

∂y∗2

0 = − 1
Λ

∂P∗

∂y∗
.

(2.19)

In this limit we can easily solve for u∗. From the ŷ momentum, P∗ = P∗(x, t),
independent of y∗, yields v∗ ≈ 0. The x̂ momentum gives, after applying the no-slip
boundary condition at y∗ = δ

h̄
and y∗ = h0

h̄
, a parabolic u∗ profile in y∗,

u∗ =
1

2Λ
∂P∗

∂x∗

(
δ

h̄
− y∗

) (
h0

h̄
− y∗

)
. (2.20)

The first task is to define Nx in terms of Qx . We begin by evaluating Nx from
equation 2.9,

Nx =
h̄
4

(
Uc

Λ

∂P∗

∂x∗

)2 ∫ h0/h̄

δ/h̄

[(
δ

h̄
− y∗

) (
h0

h̄
− y∗

)]2
dy∗ = − 1

120

(
Uc

Λ

∂P∗

∂x∗

)2 (δ − h0)5

h̄4
.

(2.21)

Using the definition in equation 2.6 and integrating u∗ in equation 2.20,

Qx =
h̄Uc

12Λ
∂P∗

∂x∗

∫ h0/h̄

δ/h̄

(
δ

h̄
− y∗

) (
h0

h̄
− y∗

)
dy∗ =

1
12

(
Uc

Λ

∂P∗

∂x∗

)
(δ − h0)3

h̄2
. (2.22)

Looking closely at equations 2.21 and 2.22, we can define Nx as

Nx =

∫ h0

δ
u2dy = ξx

Q2
x

h0 − δ
, (2.23)

where ξx can be considered a “profile factor” that characterizes the velocity pro-
file dependence on y. For the parabolic profile of u∗ in equation 2.20, ξx = 6/5
considering equations 2.21 and 2.22, while for an uniform u∗ in y∗, ξx = 1.

Next we quantify the viscous term Fvisc based on u∗. Taking the limit as x2 → x1

of 2.11 and substituting the non-dimensional parameters in equation 2.16 (Fvisc,xf

remains dimensional),
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Fvisc,x =

[
−2εh

µ f Uc

L
∂u∗

∂x∗
∂y∗

∂x∗
+
µ f Uc

h̄
∂u∗

∂y∗
+ εh

µ f Uc

L
∂v

∂x

] y∗=h0/h̄

y∗=δ/h̄
, (2.24)

and by taking the limit as εh → 0 and substituting u∗ from equation 2.20

Fvisc,x ≈
µ f Uc

h̄
∂u∗

∂y∗

����y∗=h0/h̄

y∗=δ/h̄
= µ f

(
Uc

Λ

∂P∗

∂x∗

)
δ − h0

h̄2
. (2.25)

We can solve equation 2.22 for the quantity in the parenthesis above, and rewrite
2.25 in terms of Qx ,

Fvisc,x ≈ −12µ f
Qx

(h0 − δ)2
. (2.26)

Equations 2.21 (with ξx = 6/5) and 2.26, along with the conclusion that P = P(x, t)
allow us to close equation 2.8,

∂Qx

∂t
+

∂

∂x

(
ξx

Q2
x

h0 − δ

)
= − 1

ρ f

∂P
∂x
(h0 − δ) −

12µ f

ρ f

Qx

(h0 − δ)2
, (2.27)

without much regard to the ŷ component of equation 2.5, since v∗ ≈ 0.

In addition to the two-dimensionality of the flow, equation 2.27 is valid under the
following conditions:

1. Axial variations in channel gap are not large: h′20 � 1 and δ′2 � 1;

2. The characteristic length of the channel gap is small: εh � 1;

3. Inertial effects associated with velocity profile are small: ε2
hReL � 1.

Condition 3 enforces the inertial term in the infinitesimal equation (left-hand-side
of equation 2.17) to be small relative to pressure and viscous stresses. The inertia
associated with the motion of the channel walls, in particular δ, is captured by
Qx and ÛQx in equation 2.27. The normalized profile u∗ is a function of δ and h0,
and that ε2

hReL � 1 implies that the u∗ profile behaves quasi-statically, and that
its shape adapts almost instantaneously when compared with Ûδ. This may pose a
problem if the beam has a large initial velocity Ûδ |t=0 ∼ Uc, so that the scaling of
equations 2.16 is no longer appropriate. We will, however, focus on understanding
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the dynamics around Ûδ |t=0 = 0 for the analysis at hand (although δ |t=0 , 0 is
allowed). In essence, equation 2.27 allows us to capture the inertial effects of the
moving channel walls, while the lubrication theory closure allows us to ignore the
inertial effects associated with changing the shape of u∗.

Condition 3 also indicates that for a fixed channel geometry, there is an upper limit
on the Reynolds number for which the model is valid. That upper bound, however,
may be quite large for very narrow channels. Thus, possibility of turbulent flow
at high Reynolds number can be accounted for, however crudely, by adjusting the
profile shape factor and the equation for Fvisc,x. It is reasonable to supposed that
turbulence “flattens” profile such that ξx ≈ 1 and that Fvisc,x can take the form of a
turbulent correlation. Following [31, 33], we write

Fvisc,x = −
f (Qx)

4
Q2

x

(h0 − δ)2
(2.28)

where f is the Fanning friction factor and takes the form [54],

f =


48Re−1
h if Reh < 1000

0.26Re−0.24
h if Reh ≥ 1000

. (2.29)

Reh is the local Reynolds number based on the channel gap h0 − δ and is simply

Reh =
ρ f Qx

µ f
, (2.30)

with the onset of turbulence at Reh = 1000. We note here that Fvisc,x term for
f < 1000 in equations 2.28 and 2.29 is identical to equation 2.26. We can include
in the model the profile factors that we derived

ξx =


6/5 if Reh < 1000

1 if Reh ≥ 1000
. (2.31)

Substituting equation 2.28 into equation 2.27,

∂Qx

∂t
+ ξx

∂

∂x

(
Q2

x

h0 − δ

)
= − 1

ρ f

∂P
∂x
(h0 − δ) −

f
4

Q2
x

(h0 − δ)2
. (2.32)
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2.2.2 Channel Entrance Length
Another interesting scenario that must be discussed in one where the inlet veloc-
ity profile is uniform in y (ξx = 1), but the channel flow is laminar, such that the
profile evolves along x from uniform into parabolic in y and uniform in x. The
channel section between uniform and fully developed parabolic profiles is the en-
trance region. The profile evolution is described well both as an analytical exercise
and through numerical modeling in [55] and [56]. A good approximation for the
entry region Le in laminar, two-dimensional channel flow is,

Le

L
≈ 0.063ε2

hReL, (2.33)

scaling with the same viscous parameter that determines the importance of the in-
ertial term in lubrication equation 2.17. To appropriately consider non-parabolic
inlet conditions, we must hold Le

L small or, if possible, consider the evolution of
the velocity profile in x, and bring it into the closure relation, such as defined in
equations 2.29 and 2.31. We opt for the former in subsequent chapters, especially
since this is consistent with condition 3 for the validity of the lubrication closure.

2.2.3 Pressure Boundary Conditions
In order to solve equations 2.27 and 2.7 uniquely, two pressure boundary conditions
are required. This is due to the extra order of ∂

∂x (·) gained by satisfying conservation
of mass, making the highest derivative of pressure second order in x. The form of
the pressure boundary conditions presented here will allow for the consideration
of lossy inlet and outlet conditions, where stagnation pressure is lost. One of the
simplest and common empirical treatments is to let the stagnation pressure loss ∆Po

∆Po =
ζ

2
ρ f U2, (2.34)

where ζ is the “loss coefficient” associated with a specific device and flow, and U is
an appropriate velocity scaling, typically the average velocity along a duct’s axial
or primary flow direction. Dimensional analysis indicates that ζ is often a function
of Re and geometrical parameters, depending on the specific process. Examples in-
clude abrupt expansions or contractions, orifice plates to restrict the flow, frictional
channel flow, separated flow in diffusers, to name a few [57] . Figure 2.3 illustrates
the input pressure Pin at the system inlet, the pre-inlet pressure drop ∆P1, the chan-
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nel inlet boundary pressure P |x=0, the channel outlet pressure P |x=L , a post-outlet
pressure drop ∆P2, and the pressure at the system outlet Pout.

Figure 2.3: Channel geometry illustration with pressure boundary conditions.

We define Pin and Pout as constants and will relate P |x=0 and P |x=L to flow param-
eters next. In the spirit of simplicity, we begin with the steady Bernoulli equation
with the added pressure drop looking upstream of the channel inlet,

Pin +
1
2
ρ f ū2

in = P(t)|x=0 +
1
2
ρ f ū2(t)|x=0 + ∆Po1 (2.35)

where ūin and ū|x=0 are the y averaged velocities at the system inlet and the channel
inlet respectively,

ū =
1

h0 − δ

∫ h0

δ
udy =

Qx

h0 − δ
. (2.36)

When ∆P1 takes the form in equation 2.34 assuming a dependency on the channel
inlet velocity ū|x=0, using the definition of ū in equation 2.36, we can solve equation
2.35 for P(t)|x=0,

P(t)|x=0 = Pin +
1
2
ρ f ū2

in −
(ζ1 + 1)

2
ρ f

[(
Qx

h0 − δ

)2
]

x=0

. (2.37)

Similar to equation 2.35, the outlet relation is

P(t)|x=L +
1
2
ρ f ū2(t)|x=L = Pout +

1
2
ρ f ū2

out + ∆Po2. (2.38)

Substituting equation 2.34 for ∆P2, with a dependence on the channel outlet veloc-
ity ū|x=L , again using the definition of ū, and solving for P |x=L ,
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P(t)|x=L = Pout +
1
2
ρ f ū2

out +
(ζ2 − 1)

2
ρ f

[(
Qx

h0 − δ

)2
]

x=L

. (2.39)

Appropriate values for ζ1 and ζ2 depend on the flow regime and geometry. If no
stagnation pressure is lost at either the inlet or the exit, ζ1,2 ≡ 0. A typical inlet
loss correlation for a sudden contraction (SC) is given in [57, p. 388] valid for
d/D ≤ 0.76,

ζSC ≈ 0.42

[
1 −

(
d
D

)2
]

; (2.40)

while an expression for the loss coefficient for a sudden expansion (SE) is also given
as,

ζSE =

[
1 −

(
d
D

)2
]2

, (2.41)

and obtained via a control volume analysis neglecting shear stresses in the corner
separated flow. The variable d is the hydraulic diameter of the contraction/expansion
small dimension, while D is hydraulic diameter of the contraction/expansion large
dimension. The hydraulic diameter is defined as

DH = 4
A
P , (2.42)

where A is the area and P is the perimeter of a relevant flow cross-section.

If we further define the system inlet as a reservoir, where Pin is the upstream stag-
nation pressure (ūin = 0), and the system outlet velocity to equal that of the channel
outlet (ūout = ū|x=L), equation 2.37 becomes

P(t)|x=0 = Pin −
ζin
2
ρ f

[(
Qx

h0 − δ

)2
]

x=0

(2.43)

and equation 2.39 is simplified to

P(t)|x=L = Pout +
ζout
2
ρ f

[(
Qx

h0 − δ

)2
]

x=L

. (2.44)



25

Equations 2.43 and 2.44 are those found often within the leakage-flow literature
([31–33]), which are restricted versions of equations 2.37 and 2.39. The loss coef-
ficients are redefined as

ζin = ζ1 + 1,

ζout = ζ2,
(2.45)

where ζin ≥ 1 and ζout ≥ 0 for anisentropic phenomena at the channel inlet and
outlet, with the equality holding when no stagnation pressure drop occurs.

2.2.4 Linearization of Pressure
Choosing the generalized lubrication closure, the coupled partial differential equa-
tions for the hydrodynamic pressure with the aforementioned conditions are (below
for reference),

− ∂δ
∂t
+
∂Qx

∂x
= 0, (2.7)

and

∂Qx

∂t
+ ξx

∂

∂x

(
Q2

x

h0 − δ

)
=
−1
ρ f

∂P
∂x
(h0 − δ) −

f
4

Q2
x

(h0 − δ)2
. (2.32)

for f and ξx values in equations 2.29 and 2.31, respectively. The pressure boundary
conditions are shown in equations 2.43 and 2.44. Nonlinearities appear in both
δ and Qx in equation 2.27. Since the goal is to understand the stability of the
equilibrium beam shape δ0 as a function of parameters on table 2.1, linear stability
analysis of the coupled fluid-structure system is appropriate.

Thus far, we have two coupled partial differential equations with δ, Q, P variables.
We begin the linearization by expanding all of them at order ε about their respective
equilibrium (0 subscript) value,

P(x, t, ε) = p0(x) + εp1(x, t) (2.46)

and

Qx(x, t, ε) = qx0(x) + εqx1(x, t) (2.47)
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for the hydrodynamic variables. We will show shortly that qx0 is in fact not a
function of x, but rather the constant steady flow rate due the steady pressure profile
p0(x). Considering the channel geometry h0, we can define the beam shape δ as a
perturbation of order ε to the channel gap and expand the perturbation term as a
sum of basis functions gi(x) with amplitudes ai(t), for i ∈ Z : [0,∞],

h0(x) − δ(x, t) = h0(x) − (δ0(x) + εδ1)
= he(x) + εδ1

= he(x) − ε
∞∑

i=0
ai(t)gi(x),

(2.48)

where we define he = h0 − δ0 as the equilibrium channel gap. Lastly, we must
linearize f (Qx) around qx0,

f (Qx) ≈ f (qx0) + (Qx − qx0)
[

d f
dQx

]
Qx=qx0

= f0 + εηqx1(x, t), (2.49)

where η = d f /dQx and obtained by taking a derivative of equation 2.29 in Qx .

We begin integrating both sides of mass conservation conservation equation 2.7 by
x,

Qx(x, t) = Q̄x(t) +
∫ x

0

(
∂

∂t
δ(x, t)

)
dx1, (2.50)

where Q̄x(t) is the flow rate at x = 0. Since we have expanded the left-hand-side
Qx in powers of ε, we must also expand Q̄(t) as

Q̄x(t) = Q̄x0 + εQ̄x1(t). (2.51)

Substituting equations 2.47, 2.48, and 2.51 into 2.50,

Qx(x, t, ε) = qx0(x)+εqx1(x, t) = Q̄x0+ε

[
Q̄x1(t) +

∫ x

0

(
∂

∂t
δ1(x, t)

)
dx1

]
, (2.52)

where we note that the integration variable Q̄x0 is the constant steady flow rate at
x = 0. Combining this with the left-hand-side equilibrium flow rate qx0(x), it stands
that
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qx0 = Q̄x0 = constant, (2.53)

where both describe the steady, uniform flow rate at x = 0 due to p0(x). Substituting
equations 2.46, 2.47, and 2.48 into x momentum equation 2.32, collecting powers
of ε and equating its coefficients, we obtain differential equations for each order ε.
For ε0, we have

d
dx

p0(x) = ρ f q2
x0

(
ξx

d
dx he(x)
he(x)3

− f0
4 he(x)3

)
, (2.54)

which is separable and can readily be integrated from 0 to x to obtain

p0(x) = p0(0) + ρ f q2
x0

(
ξx

∫ x

0

d
dx2

h0(x2)
he(x2)3

dx2 −
∫ x

0

f0
4 he(x2)3

dx2

)
, (2.55)

where p0(0) is the constant pressure at x = 0. The two integration constants, qx0 and
P̄0 can be solved using the linearized boundary conditions, obtained by substituting
linear δ and Qx into equations 2.43 and equating ε0 coefficients,

p0(0) = Pin − ζin
ρ f qx0

2

2 he(0)2
; (2.56)

and similarly for equation 2.44,

p0(L) = Pout + ζout
ρ f q2

x0

2 he(L)2
. (2.57)

Substituting p0(0) from equation 2.56 into 2.55,

p0(x) = Pin − ρ f q2
x0

(
f0
4

∫ x

0

dx2

he(x2)3
− ξx

∫ he(x)

he(0)

dhe

h3
e
+

ζin

2 he(0)2

)
, (2.58)

and the constant qx0 by equating 2.57 to 2.58 evaluated at x = L,

qx0 =

√√√ Pin − Pout

ρ f

[
ζout

2he(L)2
+

ζin
2he(0)2

− ξx

(∫ he(L)
he(0)

dhe
h3
e

)
+

f0
4

(∫ L
0

dx2
he(x2)3

)] . (2.59)
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The steady equations here at similar to those obtained by Inada [31], assuming
ξx = 1, and δ0 = 0. Equation 2.58 has three distinct terms in the parenthesis, the first
with f0 as a factor represents the pressure drop due to viscous effects as a function
of the integral equilibrium gap shape over x; the second integral, multiplied by ξx ,
comes from the inertia term and is only a function of the initial (x = 0) and the
current (at x) gap size, representing the pressure change due to the gap expansion
or contraction; and the third is solely due to system inlet conditions. If ζin = 1
(minimum allowed value from equation 2.45), then the only pressure drop comes
from accelerating the flow to the average inlet velocity. Equation 2.59 shows that, as
expected in incompressible flow, the steady flow rate is a function of the difference
in system inlet and outlet pressures, Pin and Pout, rather than their absolute values.
To get the absolute steady pressure at a location x, only two out of Pin, Pout, or qx0

need to be specified, and the third can be calculated from equation 2.59.

Next we collect and equate coefficients to ε1 to obtain the linear perturbation to
p0 and qx0 as a function of δ1 and hence as linear function of basis coefficients ai.
From the integrated mass conservation equation in 2.52,

qx1(x, t) = Q̄x1(t) +
∫ x

0

(
∂

∂t
δ1(x, t)

)
dx1. (2.60)

From the x momentum equation,

∂

∂x
p1(x, t) =

[
ξx
ρ f q2

x0

he(x)3
∂

∂x
(·) − 3

he(x)
d

dx
p0(x)

]
δ1(x, t) −[

ρ f

he(x)
∂

∂t
(·)+ 2ξx

ρ f qx0

he(x)2

(
∂

∂x
(·) − 1

he(x)
d

dx
he(x)

)
+

ρ f qx0

2 he(x)3
(

f0 + η
qx0
2

)]
qx1(x, t) ,

(2.61)

is a PDE in x and t that depends on δ1 and qx1 and their equilibria. Similar to
the 0th order case, continuity is substituted for qx1 (equation 2.60), and equation
2.54 for dp0

dx , such that ∂p1
∂x only depends on δ1, its derivatives, the components of

flow rate at x = 0, qx0 and Q̄x1(t), and can be integrated in x to obtain p1. This
is tractable to the extent that the integrals of the right-hand-side of equation 2.61
can be evaluated in some manner. We use the 1st order of the boundary condition
expansion to determine Q̄x1: the ε1 coefficients of the pressure boundary conditions
are,
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p1(0, t) =
2 (Pin − p0(0) )

he(0)
δ1(0, t) − ζin

ρ f q0

he(0)2
q1(0, t) (2.62)

and

p1(L, t) =
2 (Pout − p0(L) )

he(L)
δ1(L, t) + ζout

ρ f q0

he(L)2
q1(L, t) . (2.63)

Equations 2.62 and 2.63 are where the dependence of the beam’s boundary con-
ditions enter the pressure operator, both through δ1(0, t) and qx1(0, t) in equation
2.60. They must be defined through constraints imposed on the specifics of the
elastic member, done so in the next section.

Hence, substituting equations 2.54, 2.58, 2.60 into 2.61, integrating the result from
0 to x, closing the relation for p1(0, t) and Q̄x1 with equation 2.62 and 2.63, and
substituting the basis expansion of δ1 as in equation 2.48, we obtain an expression
for p1 that is linear in the coefficients ai and Q̄x1, where Û(·) = d

dt (·),

p1(x, t) = Tf(x)Q̄x1(t) +
∞∑

i=1

(
Mfi(x) Üai(t) + Cfi(x) Ûai(t) + Kfi(x)ai(t)

)
. (2.64)

The coefficients Mfi(x), Cfi(x), and Kfi(x), represent the mass, damping, and stiff-
ness parts of the fluid pressure operator, and Tf(x) is a boundary forcing term pro-
portional to Q̄x1 that arises from the (originally nonlinear) boundary conditions.
Similar to solving for qx0, the boundary condition equations 2.62 and 2.63 give an
ordinary differential equation to describe the evolution of Q̄x1 in time,

Û̄Qx1(t) = GqQ̄x1(t) +
∞∑

i=0

(
Bqi Üai(t) + Dqi Ûai(t) + Eqiai(t)

)
. (2.65)

The terms Bqi, Dqi, and Eqi do not depend on x, but rather the integral from 0
to L in x that includes each basis function gi. Gq is a scalar and also does not
depend on x, but rather on the integral of he in x from 0 to L. Furthermore, p1

is formulated so that it depends on qx0, and not on Pin and Pout, meaning that the
operator, and its stability, only depend on qx0 rather than any absolute pressure
measure of the system. All coefficients in equations 2.64 and 2.65 were obtained
using the MATLAB symbolic engine and can be seen in their full form in appendix
A.
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2.3 Fluid-Structure Coupling
The fluid pressure described in the previous sections acts on the elastic member.
We now must develop equations that describe the beam displacement as a function
of applied hydrodynamics forces.

2.3.1 Structure Equations of Motion
Considering a material control volume in figure 2.4 illustrating a section of the
elastic member shown as boundary 4 (lower boundary) in figure 2.1 in transverse
vibration, we apply Newton’s second law to derive the Euler-Bernoulli beam equa-
tion [58, p. 494] ,

ρsbhb
∂2

∂t2 δ(x, t) +
∂2

∂x2

(
EI

∂2

∂x2 δ(x, t)
)
= Fnet(x, t), (2.66)

where b is the cross-section span, hb is the beam thickness, E is Young’s modulus,
I is the cross-section area moment of inertia, and Fnet is the net external force acting
on the beam. The labels in figure 2.4 are F for shear stresses, Mo for moments, and
pressures are labeled according to figure 2.5.

Figure 2.4: Illustration of control volume free-body diagram of beam cross-section.

The Euler-Bernoulli model assumes the following:

1. The bending wavelength is much larger than the cross sectional dimensions
of the beam, and hence only valid for the lower wavenumber solutions (re-
stricting solution to lower eigenvalues in equation 2.76);
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2. Rotational inertia is negligible. Specifically, the translational inertia in ŷ is
much greater than that from the rotation of the element in the control volume;

3. Beam extension, or displacement in x̂ direction, is negligible compared with
the transverse displacement δ(x, t) in ŷ direction;

4. Shear displacement is negligible as compared to δ(x, t).

Assumptions 3 and 4 forces the parallel constraints illustrated in figure 2.4 between
top and bottom, left and right faces of the control volume. It also follows from
assumption 3 that since there is no beam extension, flow shear stresses do not impact
the motion of the elastic member. Lastly, assumption 1 restricts L >> hb, and is
consistent with condition 1 from the pressure operator derivation in section 2.2.1,
such that

Fnet(x, t) ≈ Pbot(x, t) − Ptop(x, t).

2.3.2 Structural and Viscous Damping Models
We note that equation 2.66 does not include solid/structural energy dissipation
terms. Banks and Inman [59] discuss the mechanisms for energy dissipation rel-
evant to Euler-Bernoulli beam model, and provide experiments and methods to
obtain empirical coefficients. Damping mechanisms are attributed to internal and
external (to the solid) forms of energy dissipation. Internal mechanisms include
those modeled as proportional to the strain-rate, for example, such as Kelvin-Voigt
damping, which takes the form,

Fd ∼
∂5δ

∂4x∂t
, (2.67)

or time- or spatial- hysteretic, where the damping term includes the history of the
previous strains in the system (in time and space) added to the current strain-rate. In
addition to the partial-differential equation, these forms modify the standard beam
boundary conditions that include the strain terms, such as the standard “free-end”,
discussed later in this section. External damping on the other hand may take the
form of viscous damping from the surrounding fluid, for example. It is considered
the simplest damping model and often referred to as Rayleigh damping,

Fd = c
∂δ

∂t
, (2.68)
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where c ≥ 0 is the damping constant that defines the damping force Fd proportional
to the beam velocity. Hence, it is evident that the “external” damping should be
included in Ptop and Pbot as part of the Fnet on the structure, most notably in the
absence of flow. However, as we take the limit of qx0 → 0 in equations 2.64 and
2.29, f0 →∞. A number of issues arise with the current formulation of the pressure
operator in this limit, primarily that the lubrication closure no longer holds, and that
the model 2.7 and 2.32 no longer represent the dominant form of the fluid forces
on the elastic member. Sader and Eysden in [60–62] explore the fluid force in an
unconfined, stagnant fluid for long, narrow, thin beams, where they show that the
appropriate hydrodynamic viscous force scaling is Reω1 =

ρ fωvac,1b2

4µ f , where ωvac,1

is the fundamental resonant angular frequency of their respective beam in a vac-
uum. Their hydrodynamic force formulation follows an adaptation of Rosenhead,
using boundary layer theory around an oscillating cylinder [63] corrected for a flat
plate. Although the confinement in a channel may ultimately prove dominant in
the stagnant limit, the appropriate viscous time scale still remains only defined by
properties of the structure. However, as qx0 increases and the channel flow-through-
time, h̄L

qx0
, becomes the appropriate time scale for the viscous forces, we recover the

current hydrodynamic pressure model.

Hence we believe that Rayleigh damping is therefore not appropriate for the qx0 > 0
formulation of the hydrodynamic pressure and not included in the structural equa-
tions of motion. In the spirit of simplicity, we choose to also not include internal
structural damping in the structural system, although this can be done by including
a term such as 2.67 in equation 2.66, and adapting the expansions to satisfy the
appropriate boundary conditions applied to the free end.

2.3.3 Structure Boundary Conditions
To uniquely solve the structural model 2.66, four boundary conditions are neces-
sary. In this section we consider two types of boundary conditions that are rele-
vant for the flow-energy harvester problem. First is the typical cantilever bound-
ary, where the leading edge is clamped and trailing is free. Second is the elastic-
translating boundary used to emulate the dynamics of the flextensional transducer.

Clamped-Free Boundary Condition

The clamped-free boundary, where the leading edge is clamped and the trailing
edge is free, is defined as
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δ(0, t) = 0,
∂

∂x
δ(0, t) = 0,

∂2

∂x2 δ(L, t) = 0,
∂3

∂x3 δ(L, t) = 0. (2.69)

Clamped means no allowed displacement or rotation. Conversely, the free end al-
lows translating and angular motion, but has zero transverse load and zero moment.

Elastic-Translating Boundary Condition

The second boundary condition of interest it one where the ŷ displacement, ā, is de-
termined by the dynamics of a second system, while the remaining three boundary
conditions are those of the clamped-free beam,

δ(0, t) = ā,
∂

∂x
δ(0, t) = 0,

∂2

∂x2 δ(L, t) = 0,
∂3

∂x3 δ(L, t) = 0. (2.70)

As illustrated in figure 2.1, we characterize the dynamics of the leading edge trans-
lation as the response to a simple harmonic oscillator to the reacting force fr ,

m0
b
Ǖa + c0

b
Û̄a + k0

b
ā = fr, (2.71)

where m0
b , c0

b , and k0
b are the boundary mass, damping, and stiffness constants per

unit span. The reacting force fr is equivalent to the integral of the force acting
on the structure, which is simply the integral over the beam length of the pressure
difference between the channels,

fr =
∫
∂V

f f dA =
∫ L

0

(
Pbot − Ptop

)
dx

=

∫ L

0

[
pbot

0 − ptop
0 + ε

(
pbot

1 − ptop
1

] )
dx,

(2.72)

where the right-hand-side is the linearized net force on the structure. Expanding ā in
orders of ε, substituting equation 2.72 into equation 2.71, and once again collecting
and equating coefficients, we have the equilibrium equation for the boundary as

m0
b
Ǖa0 +

c0
b
Û̄a0 +

k0
b

ā0 =

∫ L

0

(
pbot

0 − ptop
0

)
dx, (2.73)

and ε1 terms as
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m0
b
Ǖa1 +

c0
b
Û̄a1 +

k0
b

ā1 =

∫ L

0

(
pbot

1 − ptop
1

)
dx. (2.74)

To account for the boundary movement within the beam shape, we augment the
expansion of δ(x, t)

δ(x, t) = ā0 + δ0(x) + ε (ā1(t) + δ1(x, t)) . (2.75)

We must also redefine the system equilibrium as he(x) = h0(x) − (δ0(x) + ā0). To
solve for he, equation 2.73 must be solved in conjunction with equation 2.90. As
before, symmetric channels (htop

0 = −hbot
0 ) is a sufficient condition for δ0(x) = 0

and ā0 = 0 as an equilibrium, which is where we will focus our analysis.

2.3.4 Discretization Basis Functions
The solutions to the homogeneous version of partial differential equation 2.85 can
provide insight to the solution of equation 2.93. In conjunction with the boundary
conditions, they provide a set of basis functions we use to discretize the equations of
motion in order to solve the fluid-structure system numerically. In solving equation
2.93 through separation of variables, we recover the eigenvalue problem to the one-
dimensional biharmonic operator,

d4φ

dx4 + β
4φ = 0. (2.76)

When considered in the domain x ∈ [0, L] with appropriate boundary conditions,
the solutions φk , k ∈ Z : [1,∞], may provide a complete basis by which any
square integrable function can be expanded [58, 59]. Physically, φk represent the
orthogonal modes of a linear-elastic beam, represented by equation 2.85. The addi-
tion of damping and forcing terms by the hydrodynamic pressure in equation 2.93
will change the modes, such that they are no longer orthogonal, but coupled (non-
normal). Sader [60] discusses this briefly when deriving a model for the dynamics
of a three-dimensional cantilever in stagnant fluid. If modes are not changed consid-
erably, the undamped modes may remain a good representation of modified mode
shapes. Here we consider “a good representation” as one where the series expan-
sion may need fewer terms to obtain a desired error level when compared to other
basis functions such as cubic-splines and Chebyshev polynomials. The solution to
the biharmonic operator eigenvalue problem is given by
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φ(x) = A cos(βx) + B sin(βx) + C sinh(βx) + D cosh(βx), (2.77)

where the boundary conditions can be used to determine β and coefficients A, B, C,
and D. We will consider two structure boundary conditions in our analysis.

Basis Functions for Clamped-Free Boundary Condition

The first is the clamped-free boundary, where the leading edge is clamped and the
trailing edge is free. From equation 2.69, we have

φi(0) = 0,
∂

∂x
φi(0) = 0,

∂2

∂x2 φi(L) = 0,
∂3

∂x3 φi(L) = 0. (2.78)

Equation 2.77 with boundary conditions 2.78 gives the complete solution with
eigenfunctions

φk(x) = cosh(βk x)−cos(βk x)+
[
cos(βk L) + cosh(βk L)
sin(βk L) + sinh(βk L)

] (
sin(βk x) −sinh(βk x)

)
,

(2.79)

and characteristic equation

cosh (βk L) cos (βk L) + 1 = 0 (2.80)

for k ∈ Z : [1,∞]. The first six values are listed in table 2.2.

Table 2.2: Table of solutions to the characteristic equation 2.80.

β1L β2L β3L β4L β5L β6L
1.8751 4.6941 7.8548 10.9955 14.1372 17.2788

Hence, for boundary conditions 2.69, the equations 2.96 can be approximated with
a finite expansion using eigenfunctions 2.79, so that k ∈ Z : [1, n], such that

gi(x) =


0 for i = 0

φi(x) for i = [1, n]
. (2.81)
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Basis Functions for Elastic-Translating Boundary Condition

The elastically translating boundary condition stems from equation 2.70, where we
apply the basis φi(x)

δ(0, t) = ā,
∂

∂x
φi(0) = 0,

∂2

∂x2 φi(L) = 0,
∂3

∂x3 φi(L) = 0. (2.82)

Making use of linear superposition to obtain a solution to equation 2.91 with data
2.70 that satisfies equation 2.74, we use the basis expansion 2.79, from 1 to n terms,
such that ai satisfy data 2.78 and ā1 satisfies equation 2.74. We can further define,

δ1(x, t) = ā1(t) +
m∑

i=1
ai(t)φi(x) =

n∑
i=0

ai(t)gi(x), (2.83)

where a0(t) = ā1(t) and the basis functions are augmented such that

gi(x) =


1 for i = 0

φi(x) for i = [1, n]
. (2.84)

2.3.5 Fluid-Structure Coupled Operator
In the current formulation, we disregard the spanwise direction in the Euler-Bernoulli
beam equation,

ρshb
∂2

∂t2 δ(x, t) +
∂2

∂x2

(
EI2D

∂2

∂x2 δ(x, t)
)
= Pbot(x, t) − Ptop(x, t), (2.85)

where

I2D =
h3

b

12(1 − ν2)
(2.86)

is the cross-section area moment of inertia (in two Dimensions), and Pbot(x, t) and
Ptop(x, t) are the pressure operators for the bottom and top channels respectively.
Figure 2.5 illustrates the force balance as a function of beam shape. To connect the
pressures in the top and bottom channels, we write the geometrical constraint,

htop
0 (x) − δ

top(x, t) +
(
δbot(x, t) − hbot

0 (x)
)
= htop

0 (x) − hbot
0 (x), (2.87)
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where we recover the simple relationship

δ(x, t) = δtop(x, t) = −δbot(x, t). (2.88)

The geometrical constraint for the total gap size of the two channels means that we
only have one shape of the beam, δ, that relates the two pressures.

Figure 2.5: Illustration hydrodynamic force balance as a function of beam shape.

Substituting the linear expansion for δ and P into equation 2.85, and assuming that
E and I are spatially uniform in x,

EI2D
d4

dx4 δ0(x) + ε
(
ρshb

∂2

∂t2 δ1(x, t) + EI2D
∂4

∂x4 δ1(x, t)
)
=

pbot
0 − ptop

0 + ε
(
pbot

1 − ptop
1

)
. (2.89)

Here we note that the left-had-side of equation 2.89 depends only on δ, as it rep-
resents the internal stresses and acceleration of the beam. The right-hand-side,
however, depends on the channel gap size, which includes h0 and δ (he). Equat-
ing ε coefficients, we can solve for the equilibrium beam shape δ0 by solving the
nonlinear ODE at 0th order,

EI2D
d4

dx4 δ0(x) = pbot
0 − ptop

0 , (2.90)
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where pbot
0 and ptop

0 are the equilibrium pressures in equation 2.58 evaluated at hbot
0

and htop
0 , respectively. Here we note that if htop

0 = −hbot
0 , making the system sym-

metric, the right-hand-side of equation 2.90 is zero, and hence a sufficient condition
for the equilibrium beam shape δ0 to also equal zero. Due to the nonlinear nature of
p0, and the broad definition of h0(x), other equilibria may exist. Although we will
focus our analysis on the stability of δ0 = 0 case, equation 2.90 gives the means
to tune he to yield different equilibria and perhaps different system behaviors. The
linear term at ε1 follows,

ρshb
∂2

∂t2 δ1(x, t) + EI2D
∂4

∂x4 δ1(x, t) = pbot
1 − ptop

1 , (2.91)

where

pbot
1 − ptop

1 = Tbot
f (x)Q̄

bot
x1 (t) −

∞∑
i=0

(
Mbot

fi (x) Üai(t) + Cbot
fi (x) Ûai(t) + Kbot

fi (x)ai(t)
)
−[

T top
f (x)Q̄

top
x1 (t) +

∞∑
i=0

(
M top

fi (x) Üai(t) + Ctop
fi (x) Ûai(t) + K top

fi (x)ai(t)
)]
,

(2.92)

are the first order pressure perturbations from equation 2.64 evaluated at the the top
and bottom channels, and includes the substitution of equation 2.88 and the basis
function expansion for δ1. By expanding δ1 on left-hand-side of equation 2.91 using
the same basis functions, we obtain a coupled, linear ODE for ai,

∞∑
i=0

(
Msi(x) Üai(t) + Csi(x) Ûai(t) + Ksi(x)ai(t)

)
= Tbot

f (x)Q̄
bot
x1 (t) − T top

f (x)Q̄
top
x1 (t) −

∞∑
i=0

[(
Mbot

fi (x) + M top
fi (x)

)
Üai(t) +

(
Cbot

fi (x) + Ctop
fi (x)

)
Ûai(t)+(

Kbot
fi (x) + K top

fi (x)
)

ai(t)
]
,

(2.93)

where

Msi = ρshbgi(x), Ksi = EI2D
d4

dx4gi(x), (2.94)
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and Csi is the damping term associated with the moving boundary condition, to
be defined in the next sub-section, in our current formulation. We note that Csi

can also be associated with internal damping models of the beam if any are in-
cluded in equation 2.85, although none currently are. Equation 2.93 represents the
fully-coupled linear fluid-structure operator, and can account for two independent
channels. Looking at the fundamental structure of equations 2.90 and 2.93, in order,
allows us to understand the dynamics of the system. To construct a discrete opera-
tor that can be evaluated, we carry out the Galerkin projection of equation 2.93 on
a subset of basis functions g j for j ∈ Z : [0, n] to formulate its weak form,

∫ L

0

n∑
i=0

(
Msi(x) Üai(t) + Csi(x) Ûai(t) + Ksi(x)ai(t)

)
g j(x)dx =∫ L

0

(
Tbot

f (x)Q̄
bot
x1 (t) − T top

f (x)Q̄
top
x1 (t)

)
g j(x)dx −∫ L

0

n∑
i=0

[(
Mbot

fi (x) + M top
fi (x)

)
Üai(t) +

(
Cbot

fi (x) + Ctop
fi (x)

)
Ûai(t)+(

Kbot
fi (x) + K top

fi (x)
)

ai(t)
]
g j(x)dx.

(2.95)

Coupled with equation 2.65, we can rewrite the system of equations in matrix form
as the evolution of states ai, Ûai, and Q̄x1, by solving for Üai,



Ûa0
...

Ûan

Üa0
...

Üan

Û̄Qbot
x1
Û̄Qtop

x1



=


0 1 0 0

M−1K M−1C M−1Tbot M−1T top

−[Ebot
q + Bbot

q (M−1K)] −[Dbot
q + Bbot

q (M−1C)] −Bbot
q (M−1Tbot) [Gbot

q − Bbot
q (M−1T top)]

E top
q + Btop

q (M−1K) Dtop
q + Btop

q (M−1C) Gtop
q + Btop

q (M−1Tbot) Btop
q (M−1T top)





a0
...

an

Ûa0
...

Ûan

Q̄bot
x1

Q̄top
x1



,

(2.96)

where the following exist in Rn+1 × n+1,



40

Mi j =
1

Ni j

∫ L

0

(
Msi(x) + Mbot

fi (x) + M top
fi (x)

)
g j(x)dx,

Ci j = −
1

Ni j

∫ L

0

(
Csi(x) + Cbot

fi (x) + Ctop
fi (x)

)
g j(x)dx,

Ki j = −
1

Ni j

∫ L

0

(
Ksi(x) + Kbot

fi (x) + K top
fi (x)

)
g j(x)dx,

(2.97)

where the norm is defined as,

Ni j =

∫ L

0
gi(x)g j(x)dx. (2.98)

The following exist in Rn+1 × 1,

Tbot
j =

1
Ni j

∫ L

0
Tbot

f (x)g j(x)dx

T top
j = − 1

Ni j

∫ L

0
T top

f (x)g j(x)dx.
(2.99)

The vectors Bq, Dq, and Eq exist in R1 × n+1, and are the evaluated coefficients in
equation 2.65 for their respective channels. The state vector is comprised of the
coefficients of the expansion ai, their time derivatives Ûai and the forcing flow rate
from the top and bottom channels, Q̄top

x1 and Q̄bot
x1 . Equation 2.96 is the linear time

evolution of the state vector, and by evaluating it at an equilibrium point, calculated
by solving the nonlinear equation 2.90, its eigenvalues and eigenvectors dictate
what rate and shape a small disturbance will grow or decay. The part that remains
is defining the structural boundary conditions and an expansion basis gi that satisfy
them.

Structural Constants for Elastic-Translating Boundary Condition

When applying the elastic translating boundary conditions with basis functions in
equation 2.84, we augment the structural constants to include those in the boundary
equation 2.74,

Msi =


m0
b for i = 0

ρshbgi(x) for i = [1, n]
, (2.100)
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Csi =


c0
b for i = 0

0 for i = [1, n]
, (2.101)

Ksi =


k0
b for i = 0

EI2D
d4

dx4gi(x) for i = [1, n]
. (2.102)

When definitions in equations 2.100 - 2.102 are considered in equations 2.95, 2.97,
and 2.99, then equation 2.96 becomes the linear map including a translating bound-
ary condition in data 2.70 defined by 2.71 as a0(t) and Ûa0(t) states. We will re-
fer to these equations are the quasi-1D model with either clamped-free or elastic-
translating/moving boundary conditions in the subsequent text.

2.3.6 Non-Dimensional Fluid-Structure Equations
To non-dimensionalize the coupled fluid-structure equations, we begin by assuming
that the top and bottom channels are symmetric to simplify the hydrodynamic op-
erator to a single length scale. Hence, similar to the lubrication closure, we define
h̄ ∼ he as a constant that is characteristic of the channel gap. With the characteristic
velocity is Uc =

qx0
h̄

, and motivated by equation 2.61, we see the relevant pressure
parameter p1 ∼ ρ f U2

c . We define the relevant time scale as the flow through time
over L, as the primary flow is along the beam length, and write all parameters as:

x∗ =
x
L
, t∗ =

qx0

h̄L
t, h∗e(x∗) =

he(x)
h̄

,

gi
∗(x∗) = gi(x)

h̄
, P∗ =

2
ρ f

(
h̄

qx0

)2

, Q̄∗x1(t
∗) = Q̄x1(t)

qx0
.

(2.103)

Normalizing P, equation 2.93 simplifies to,

∞∑
i=0

M∗i
d2ai

dt∗2
= −

∞∑
i=0

[
C∗i

dai

dt∗
+ K∗i ai

]
− T∗f Q̄∗x1. (2.104)

where the coefficients are,
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M∗i =
2

ρ f L2

(
Msi + 2Mfi

)
= M∗si + M∗fi,

C∗i =
2

ρ f qx0

h̄
L

(
2Cfi + Csi

)
= C∗fi + C∗si,

K∗i =
2
ρ f

h̄2

q2
x0

(
2Kfi + Ksi

)
= K∗fi + K∗si,

T∗f =
2
ρ f

h̄2

qx0

(
2Tf

)
.

(2.105)

We examine the definition of the fluid coefficients in more detail by aggregating
parts of equations in appendix A, where we can separate viscous, geometrical, and
boundary terms from one another. Looking closely at equations A.1 - A.8, they
consist of integral and differential operators of the channel geometry, he and gi,
often multiplied by either ξx , f0, η, ζin, or ζout. We will define viscous terms as
those integral and differential operators with a factor of either f0 or η (subscript
v), geometrical or nonlinear as those with a factor of ξx or only a function of the
geometry (subscript g), and boundary terms those with factors of either ζin or ζout

(subscript b). For disambiguation, we will list the parameter dependence, before
the semi-colon, as each term is defined. Non-dimentionalizing the mass term from
equation A.1, as defined in equation 2.105,

M∗fi =
4

ρ f L2 Mfi = 4M∗gi(x∗). (2.106)

Similarly, the damping term from equation A.2,

C∗fi =
4

ρ f qx0

h̄
L

Cfi

= 4
(
C∗gi(ξx; x∗) + C∗bi(ζout; x∗)

)
+ 4

(
L
h̄

) (
f0
2
+

qx0η

4

)
C∗vi(x∗),

(2.107)

the stiffness term from equation A.3,

K∗fi =
4
ρ f

h̄2

q2
x0

Kfi

= 4
(
K∗gi(ξx; x∗) + K∗bi(ζin, ζout; x∗)

)
+ 4

(
L
h̄

) (
3 f0
4

)
K∗vi(x∗),

(2.108)



43

and the flow rate forcing term in equation A.4,

T∗f =
4
ρ f

h̄2

qx0
Tf

= 4
(
T∗g (ξx; x∗) + T∗b (ζin, ζout; x∗)

)
+ 4

(
L
h̄

) (
f0
2
+

qx0η

4

)
T∗v (x∗).

(2.109)

We must also non-dimentionalize the ODE 2.65 for Q̄x1,

dQ̄∗x1
dt∗

=

∞∑
i=0

[
B∗qi

d2ai

dt∗2
+ D∗qi

dai

dt∗
+ E∗qiai

]
+ G∗qQ̄∗x1. (2.110)

where the coefficients are, for acceleration in equation A.5

B∗qi =
1

h̄L
Bqi = B∗qgi(x∗), (2.111)

for velocity in equation A.6,

D∗qi =
1

qx0
Dqi

=
(
D∗qgi(ξx; x∗) + D∗qbi(ζout; x∗)

)
−

(
L
h̄

) (
f0
2
+

qx0η

4

)
D∗qvi(x∗),

(2.112)

for displacement in equation A.7,

E∗qi =
h̄L
q2

x0
Eqi

=
(
E∗qgi(ξx; x∗) + E∗qbi(ζin, ζout; x∗)

)
−

(
L
h̄

) (
3 f0
4

)
E∗qvi(x∗),

(2.113)

for the forcing flow rate in equation A.8,

G∗q =
h̄L
qx0

Gq

=
(
G∗qg(ξx; x∗) + G∗qb(ζin, ζout; x∗)

)
−

(
L
h̄

) (
f0
2
+

qx0η

4

)
G∗qv(x∗).

(2.114)

Equations 2.106 - 2.109 and 2.111 - 2.114 show that the hydrodynamic boundary
and geometrical terms are not impacted by the length scale of the gap h̄, but rather
the “shape” of the channel gap along the axial direction. However, by changing the
relative scaling of the channel, h̄

L , we affect the viscous term. Looking specifically
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at the laminar flow case as defined in equation 2.29, and the definition in equation
2.49,

η =
d f

dQx

����
Qx=qx0

= − 48
Reh̄

1
qx0
= − f0

qx0
, (2.115)

the coefficients of all viscous terms simplify to

3
4

f0
L
h̄
=

36
Reh̄

L
h̄
∼

(
ε2

hReL

)−1
, (2.116)

as defined in the lubrication closure in equation 2.18. Once again, the parameter
ε2

hReL appears an the dominant viscous ratio, rather than ReL or εhReL = Reh. As
ε2

hReL increases, two important things occur:

1. Viscous effects diminish, as all the viscous coefficients for equations 2.106 -
2.109 and 2.111 - 2.114 become small;

2. The hydrodynamic model with the lubrication closure becomes less repre-
sentative of the flow physics since inertial terms in equation 2.17 become
important, as noted in condition 3 in section 2.2.1.

We now examine the relevance of structural non-dimensional parameters. First
considering the elastic-translating boundary conditions from equation 2.70 using
the non-dimensional structural terms in equation 2.105,

M∗si =
2

ρ f L2 Msi =


2
(

1
ρ f L2

m0
b

) (
h̄
L

)
for i = 0

2
(
ρshb
ρ f L

) (
h̄
L

)
g∗i (x∗) for i = [1, n]

, (2.117)

C∗si =
2

ρ f qx0

h̄
L

Csi =


2
(

h̄
ρ f qx0

c0
bL

) (
h̄
L

)
for i = 0

0 for i = [1, n]
, (2.118)

K∗si =
2
ρ f

h̄2

q2
x0

Ksi =


2
(

h̄2

ρ f q2
x0

k0
b

) (
h̄
L

)
for i = 0

2
(

h̄2E
ρ f q2

x0

I2D
L3

) (
h̄
L

)
d4

dx∗4g
∗
i (x∗) for i = [1, n]

. (2.119)
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The parameters for the clamped-free boundary condition in equations 2.70 are the
elements of equations 2.117, 2.118, and 2.119 applicable for i = [1, n]. Writing the
coupled system as proportional to the non-dimensional order of magnitude for each
term for the beam, where we aggregate with like terms parameters in F∗ 1, we have

(
h̄
L

) [(
ρshb

ρ f L

)
F∗sM +

(
h̄2E
ρ f q2

x0

I2D

L3

)
F∗sK

]
∼ F∗fg + F∗fb +

[(
h̄
L

)2

ReL

]−1

F∗fv, (2.120)

and similarly for the elastic boundary condition,

(
h̄
L

) [(
1

ρ f L2
m0
b

)
F∗sbM +

(
h̄

ρ f qx0

c0
bL

)
F∗sbC +

(
h̄2

ρ f q2
x0

k0
b

)
F∗sbK+(

ρshb

ρ f L

)
F∗sM +

(
h̄2E
ρ f q2

x0

I2D

L3

)
F∗sK

]
∼ F∗fg + F∗fb +

[(
h̄
L

)2

ReL

]−1

F∗fv. (2.121)

The four non-dimensional parameter that appear in the clamped-free system are
shown in table 2.3. An additional three pertain only to the moving elastic boundary
condition, shown in table 2.4. Equations 2.120 and 2.121 illustrate the general effect
of each non-dimensional parameter on individual terms in the equations of motion.
Clearly ĥ scales the influence of structure as compared with the fluid right-hand-
side, indicating that as it diminishes, the fluid terms will dominate the dynamics.
As mentioned, ĥReh dictates the fluid viscous effects. Once the elastic boundary
condition is included, its structural parameters then play a role on the overall system
dynamics are well.

The total number of non-dimensional parameters with the elastic-translating bound-
ary conditions is 7. Not all parameters in table 2.1 have been used in the fluid-
structure portion of the analysis, namely those relating to electrical quantities. We
also note that ht , xt , R, αi, and αo are parameters used to describe the shape of the
channel, all either with units of l or non-dimensional. Once the gap is normalized
by h̄, then the remaining l dimensional parameters will also be normalized by h̄,
and their contribution embedded into the F terms in equations Equations 2.120 and

1Subscripts s for structure, f for fluid, b for boundary, M for mass, C for damping, K for stiffness,
and as previously defined, g for geometrical, v for viscous. The point of this exercise is not to define
the non-dimensional expressions for F∗, but to show the coefficients that scale as a function of
dimensional parameters forming non-dimensional groups.
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Table 2.3: Table of clamped-free fluid structure non-dimensional parameters.

Variable Expression Description
m̂ ρshb

ρ f L mass ratio

k̂ h̄2E
ρ f q2

x0

I2D
L3 stiffness ratio

ĥ h̄
L = εh gap or throat ratio

ĥReh ε2
hReL =

(
h̄
L

)2
ReL viscous parameter

Table 2.4: Table of elastic-translating fluid structure non-dimensional parameters.

Variable Expression Description
m̂bc

1
ρ f L2

m0
b boundary mass ratio

k̂bc
h̄2

ρ f q2
x0

k0
b boundary stiffness ratio

ĉbc
h̄

ρ f qx0L
c0
b boundary damping ratio

2.121. The span b will be discussed further in the next section, as we derive the
quasi-1D model that includes spanwise leakage flow.

2.4 Fluid Equations of Motion including Spanwise Leakage Flow
In this section we consider the quasi-1D leakage model with the additional influence
spanwise flow. The goal of this analysis is to introduce leakage flow rates into the
system as additional states that augment the two-dimensional equations. In similar
fashion to section 2.2, we consider a three-dimensional control volume analysis of
the half-span section of the channel in order to obtain an expression that contains
the ẑ momentum terms 2. Figure 2.6 illustrates the control volume boundaries, with
only half of the channel demarcating the control surfaces in ẑ. The surface normal
vector are

[n1 · · · n6] =


1 −1 −h′0(x) δ′(x, t) 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

 , (2.122)

similar to equation 2.1. The beam span b defines the characteristic length in ẑ, and
we assume the beam is rigid in z, such that δ = δ(x, t). Solid walls are in n3 and n4.

2If the total span is considered, the spanwise flow rates are canceled in momentum conservation
because of the symmetry of the flow in the problem.
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(a) Three-dimensional channel control volume.

(b) Front view of three dimensional channel control volume.

Figure 2.6: Three-dimensional control volume illustration for the spanwise quasi-
1D leakage flow model.

Starting with mass conservation in equation 2.2 and the three-dimensional velocity
vector, we have

∂

∂t

(∫ b/2

0

∫ h0

δ
dydz

)
+

∂

∂x

(∫ b/2

0

∫ h0

δ
udydz

)
+

∫ h0

δ
wdy

����
z=b/2

= 0, (2.123)

where the same limits and assumptions were applied to obtain equation 2.123 and
in equation 2.3. Next we consider the integral momentum conservation in 2.4.
Following the same steps as in equation 2.5, we have
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∂

∂t

©­­­«
∫ b/2

0

∫ h0

δ


u

v

w

 dydz
ª®®®¬ +

∂

∂x

©­­­«
∫ b/2

0

∫ h0

δ


u2

uv

uw

 dydz
ª®®®¬ +

∫ h0

δ


uw

vw

w2

 dy

��������
z=b/2

=

− 1
ρ f


∂

∂x

©­­­«
∫ b/2

0

∫ h0

δ


P

0

0

 dydz
ª®®®¬ −

∫ b/2

0


h′0
−1

0

 P |y=h0 dz +
∫ b/2

0


δ′

−1

0

 P |y=δdz+

∫ h0

δ


0

0

P |z=b/2 − P |z=0

 dy − Fvisc

 . (2.124)

From the definition of Qx in equation 2.6, we define now define an equivalent vari-
able in ẑ,

Qz(x, z, t) =
∫ h0

δ
wdy. (2.125)

Applying equations 2.6 and 2.125 to 2.123, mass conservation simplifies to

∂Qx

∂x
+

2
b

Qz |z=b/2 = −
∂δ

∂t
. (2.126)

The two-dimensional axial momentum in equation 2.8 is integrated in z and aug-
mented by a nonlinear cross-term

Nxz =

∫ h0

δ
uwdy, (2.127)

so that

∂

∂t

(∫ b/2

0
Qxdz

)
+

∫ b/2

0

∂Nx

∂x
dz + Nxz |z=b/2 =

− 1
ρ f

{∫ b/2

0

[
∂

∂x

(∫ h0

δ
Pdy

)
− h′0P |y=h0 +

∂δ

∂x
P |y=δ

]
dz − Fvisc,x

}
, (2.128)

The system has an additional spanwise momentum equation,
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∂

∂t

(∫ b/2

0
Qzdz

)
+

∂

∂x

(∫ b/2

0
Nxzdz

)
+ Nz |z=b/2 =∫ h0

δ

(
P |z=b/2 − P |z=0

)
dy − Fvisc,z (2.129)

with the nonlinear advection term in z,

Nz =

∫ h0

δ
w2dy. (2.130)

The goal of this analysis it to obtain an expression for the pressure as a function of
δ and Qz. Once again, we must find a closure for the advection terms Nx , Nz, and
Nxz, along with Fvisc,x and Fvisc,z. We must also relate the local pressure values in y

and z to the integrated pressure over y and z.

2.4.1 Closure Relations for N, Fvisc, and Evaluated Quantities
Similar to section 2.2.1, we consider the infinitessimal Navier-Stokes equations in
three dimensions with the lubrication theory non-dimensionalization as before in
equations 2.16 and 2.18

ε2
hReL

Du∗

Dt∗
= − 1
Λ

∂P∗

∂x∗
+ ε2

h
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
+ ε2

hε
−2
b
∂2u∗

∂z∗2

ε4
hReL

Dv∗

Dt∗
= − 1
Λ

∂P∗

∂y∗
+ ε4

h
∂2v∗

∂x∗2
+ ε2

h
∂2v∗

∂y∗2
+ ε−2

b ε4
h
∂2v∗

∂z∗2

ε2
bε

2
hReL

Dw∗

Dt∗
= − 1
Λ

∂P∗

∂z∗
+ ε2

hε
2
b
∂2w∗

∂x∗2
+ ε2

b
∂2w∗

∂y∗2
+ ε2

h
∂2w∗

∂z∗2

, (2.131)

with the additional nondimensional spanwise parameters εb =
b
L and w∗ = w

U εb. In
taking the limit εh → 0, we simplify equation 2.131 to

0 = − 1
Λ

∂P∗

∂x∗
+
∂2u∗

∂y∗2

0 = − 1
Λ

∂P∗

∂y∗

0 = − 1
Λ

∂P∗

∂z∗
+ ε2

b
∂2w∗

∂y∗2

. (2.132)

We would like to use equation 2.132 to inform a choice of u and w that are consistent
with the problem at hand. In particular, we would like a simple choice that captures
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the essence of the profiles given the symmetry of the problem in ẑ. Arguments
in this section are heuristic, with the goal of providing a simple starting point for
assessing the effect of spanwise leakage.

The first assumption is that the flow remains largely one-dimensional in x for u and
v, so that we recover the parabolic profile of u∗ = u∗(x∗, y∗, t∗) in equation 2.20
from section 2.2.1, with v ≈ 0. Next, we assume that no net pressure is externally
applied in z, and that any ∂P∗

∂z∗ is due to the motion of the channel walls. In that, w∗

must be odd in z =
[
− b

2,
b
2
]

and w∗ |z=0 = 0 and P∗ symmetric in z =
[
− b

2,
b
2
]

due to
the symmetry of the geometry shown in figure 2.6. If ∂P∗

∂z∗ , 0 and P∗ = P∗(x, z, t),
the spanwise component in equation 2.132 can be integrated twice to also recover a
parabolic profile of w∗ in y∗, with the no-slip conditions, as done for u∗. Combined
with a linear function in z, the simplest that satisfies the specified symmetries, we
assume a functional form for the spanwise velocity profile as

w∗(x∗, y∗, z∗, t) ∼ z∗
(
δ(x∗, t∗)

h̄
− y∗

) (
h0(x∗)

h̄
− y∗

)
. (2.133)

Substituting the form in 2.133 into the spanwise component of 2.132, we acertain
that

P∗ ∝ z∗2. (2.134)

With the profile relation specified in the form 2.133, we can define the advection
terms as in equation 2.23,

Nz =

∫ h0

δ
w2dy = ξz

Q2
z

h0 − δ
, (2.135)

and

Nxz =

∫ h0

δ
uwdy = ξxz

QxQz

h0 − δ
(2.136)

where ξz and ξxz are the constant profile shape factors for spanwise velocity and
the cross-coupling between spanwise and axial velocities, respectively. The Fvisc,x

takes the form in equation 2.26, with Fvisc,z similarly defined as

Fvisc,z ≈ −12µ f
Qz

(h0 − δ)2
. (2.137)
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The remaining terms are the definition of relations between evaluated and integrated
quantities of P and Qz in y and z. We define the integrated quantities in z as our
new set of model variables, normalizing them such that they represent the spatial
average of P and Qz over z =

[
0, b

2
]
,

P̄ =
2
b

∫ b/2

0
Pdz, (2.138)

and

Q̄z =
2
b

∫ b/2

0
Qzdz. (2.139)

Using the relation in the form 2.133 for the w∗, we have the evaluated flow rate at
z = b/2

Qz |z=b/2 = 2Q̄z . (2.140)

Similarly for the center-line channel pressure using the form 2.134

P |z=0 =
3
2

P̄. (2.141)

Applying equations 2.23, 2.135, 2.136 - 2.141 into mass conservation in 2.126,

∂Qx

∂x
+

4
b

Q̄z = −
∂δ

∂t
(2.142)

Similarly, substituting the equations into axial momentum equation 2.128, we have

∂Qx

∂t
+

∂

∂x

(
ξx

Q2
x

h0 − δ

)
+ 4ξxz

QxQ̄z

b (h0 − δ)
= − 1

ρ f

∂P̄
∂x
(h0 − δ) + Fvisc,x. (2.143)

The viscous term in equation 2.143 is defined as in equations 2.28 and 2.29. Lastly,
substitution into spanwise momentum equation 2.129 yields,

∂Q̄z

∂t
+

∂

∂x

(
ξxz

QxQ̄z

h0 − δ

)
+ 8ξz

Q̄2
z

b (h0 − δ)
=

− 2 (h0 − δ)
bρ f

(
P |z=b/2 −

3
2

P̄
)
−

12µ f

ρ f

Q̄z

(h0 − δ)2
, (2.144)



52

The last undefined quantity is the boundary value P |z=b/2. The shape factor ζz =
6
5

and ζxz = ζx , depending on system Reh

2.4.2 Pressure Boundary Condition in z

The boundary value for P |z=b/2 is an additional boundary condition that needs to be
defined according to the problem in figure 2.6. Boundary conditions from section
2.2.3 hold with the averaged spanwise pressure P̄ at the end points x = 0 and x = L.
We maintain the same form to define the pressure at the edge surface z = b/2, such
that

P(x, t)|z=b/2 = p0(x) +
ζout,z

2
ρ f

(
2Q̄z(x, t)

h0 − δ

)2
. (2.145)

Equation 2.145 states that when Q̄z = 0, the pressure at the boundary is the steady
pressure of the two-dimensional channel p0. This is consistent with assumptions
in section 2.4.1 used to obtain the velocity profiles. The pressure loss coefficient is
ζout,z. The effect of this boundary condition framework is equivalent to accounting
for any pressure losses in the movement of the flow through the side z segments of
the geometry that connect the top and bottom channels, for example. The pressure
loss coefficients may be a function of the gap size in z, between the end of the span
of the cantilever at b

2 and a rigid channel wall. With the assumption that the flow
remains largely in the axial direction, the system effectively reduces to one where
the z boundaries are thought to be unconfined. This means that flow in x on surface
5 in figure 2.6 is the same as that of surface 6.

2.4.3 Linearization
Since we are interested in the stability of the system, we linearize equations 2.142,
2.143 and 2.144 as we did the two-dimensional system in section 2.2.4, with the
redefinition of P as P̄. We substitute variable expansions in equations 2.47, 2.48,
2.49, and the addition of the average spanwise flow rate,

Q̄z = qz0(x) + εqz1(x, t), (2.146)

into equations 2.142, 2.143 and 2.144. The last assumption we will make is that
the spanwise steady flow rate qz0(x) = 0. As stated through the closures in section
2.4.1 in order to obtain the w∗ profile, we associate the leakage flow Q̄z with the
movement of the channel walls. The symmetries that ensue are the basis for the
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linear z profile applied. In specifying the boundary condition in equation 2.145, we
ensure that indeed when qz0(x) = 0 the boundary pressure does not pose a pressure
gradient in equation 2.144, such that P̄ = P |z=b/2 = p0. Moreover, by specifying
the equilibrium qz0(x) = 0 directly, the ε0 order system of equations becomes the
original two-dimensional system, such that p0 in equation 2.58, and qx0 in equation
2.59 are the ε0 order solution for the spanwise system of equations as well.

The ε1 equations are: the integrated conservation of mass (as in equation 2.50),

qx1 =

∫ x

0
Ûδ1dx1 −

4
b

∫ x

0
qz1dx1 + Q̄x1(t), (2.147)

axial momentum,

Ûqx1 + 2ξxQ̄0
∂

∂x

(
qx1
h0

)
+

Q̄0

2h2
0

(
λ0 +

η

2
Q̄0

)
qx1 =

ξx
Q̄2

0

h2
0

∂δ1
∂x
− 3
ρ f

∂p0
∂x

δ1 − 4ξxz
Q̄0
bh0

qz1 −
h0
ρ f

∂ p̄1
∂x

(2.148)

and spanwise momentum,

Ûqz1 + ξxzQ̄0
∂

∂x

(
qz1
h0

)
+

12µ
ρ f h2

0
qz1 =

h0
3ρ f

p̄1. (2.149)

Manipulation is required to obtain an expression for p̄1 as a function of δ1, qz1, and
their derivatives. It is not useful to show the full form of the expression because of
its length and complexity. However, the following steps are carried out in MATLAB
symbolic toolbox that can be followed: first we differentiate in x equation 2.148,
then substitute equation 2.147 into the result of the previous step. Next, we solve
equation 2.149 for Ûqz1 and substitute the resulting expression into the previous result
for the combined set of equations. We can then separate the pressure dependent
terms as,

p̄′′1 +
( h′0

h0

)
p̄′1 −

12
b2 p̄1 = r(x, t), (2.150)

where we have an inhomogeneous ODE for p̄1 with the right-hand-side r(x, t) as
a forcing term containing δ1 and its derivative, along with qz1 and its derivatives.
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Equation 2.150 cannot be solved analytically for arbitrary forms of h0. Two solv-
able forms of h0, however, are for constant and linear channels. For each of those
cases, 2.150 is solved with variation of parameters, such that

p̄1 = p̄1,h + p̄1,p, (2.151)

where the fundamental solutions are found by solving the homogeneous problem
(r(x, t) = 0), then used through the convolution in the variation of parameters inte-
gral to obtain the particular solution p̄1,p. Finally, the full unique solution is calcu-
lated by solving for the coefficients of the homogeneous form through the pressure
boundary conditions x = 0 and x = L from equations 2.62 and 2.63, which, as
noted, are the same between the two- and three- dimensional models. The funda-
mental solutions for the constant channel case are two real exponential functions,
while those for the linear system are a set of modified Bessel functions. These
steps are carried out symbolically to ensure mistakes are minimized, and an imple-
mentable form of p̄1 is readily obtained.

Once p̄1 is defined, two other relations are needed to complete the hydrodynamic
system of equations. Just like in section 2.2.4, we must solve for the ODE that
describes the boundary forcing flow rate Q̄x1 in equation 2.147. This is done by
substituting p̄1 into equation 2.150 and solving for Û̄Qx1 in terms of δ1, qz1, and their
derivatives. The last equation of the system is the time evolution of qz1, which is
obtained by substituting p̄1 into equation 2.148 and solving for Ûqz1 in terms of δ1,
qz1, and their derivatives once again.

2.4.4 Fluid Structure Coupling and qz1 Discretization
Similar to steps in 2.3.5, the coupled fluid-structure system is closed with the struc-
tural equations through the net force applied on the beam as the pressure difference
of the bottom and top channels. We constrain the model to a symmetric set of linear
channel shapes, and apply p̄1 from equation 2.151 to the fully coupled system in
equation 2.91. Eigenfunctions from equations 2.81 or 2.84 are used to expand δ1

depending on the beam boundary conditions; however, the beam eigenfunctions do
not enforce the boundary values for qz1 at x = 0 and x = L. Specifically, qz1 |x=0 is
determined by the ODE in time attained when equation 2.149 is evaluated at x = 0
and the pressure boundary condition at x = 0 in equation 2.62 applied,
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Ûqz1 |x=0 =
h0

3ρ f
p̄1

����
x=0
− ξxz Q̄0

∂

∂x

(
qz1
h0

)����
x=0
− 12µ
ρ f h2

0
qz1

�����
x=0

. (2.152)

Terms that depend on the x derivative are obtained prior to being evaluated as dis-
cussed in section 2.4.3. The same is done for the boundary value qz1 |x=L , with the
pressure boundary condition at x = L applied from equation 2.63,

Ûqz1 |x=L =
h0

3ρ f
p̄1

����
x=L
− ξxz Q̄0

∂

∂x

(
qz1
h0

)����
x=L
− 12µ
ρ f h2

0
qz1

�����
x=L

. (2.153)

The spanwise flow rate is expanded as

qz0(x, t) = q̃z0(t)
(
1 − x

L

)
+

n∑
i=1

q̃zi(t)ψi(x) + q̃zL(t)
( x

L

)
, (2.154)

where i ∈ Z : [1, n]. We use the principle of linear superposition to obtain the
solution of the inhomogeneous boundary problem as the sum of solutions that sat-
isfy the inhomogeneous boundary conditions, but homogenous equation, and those
that satisfy the homogeneous boundary condition, but inhomogeneous problem. A
sine series expansion, truncated at n terms, is used since homogeneous Dirichlet
boundaries are necessary,

ψi(x) = sin
(
iπx
L

)
. (2.155)

Applying the expansion of δ1 in gi(x) and qz1 in ψi(x),
(
1 − x

L

)
, and

( x
L

)
, we sim-

plify the coupled equations of motion (for a symmetric channel) obtained through
steps discussed in section 2.4.3 and closed with the structural equations. First, the
fluid coupled equations are

n∑
i=0

(
Msi(x) Üai(t) + Csi(x) Ûai(t) + Ksi(x)ai(t)

)
= −2Tz(x)Q̄x1(t) −

2
n∑

i=0

(
Mzi(x) Üai(t) + Czi(x) Ûai(t) + Kzi(x)ai(t)

)
− 2

m∑
j=0

Hz j(x)q̃zi(t),
(2.156)

with Msi, Csi, Ksi defined in equations 2.100, 2.101, and 2.102 respectively. Co-
efficients Tz, Mzi, Czi, Kzi, and Hzi are defined through solving the hydrodynamic
system described in section 2.4.3. Similarly, the dynamics of Q̄x1 are given by
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Û̄Qx1(t) = GQQ̄x1(t) +
n∑

i=0

(
BQi Üai(t) + DQi Ûai(t) + EQiai(t)

)
+

m∑
j=0

HQ j q̃zi(t), (2.157)

and the spanwise leakage dynamics as

Û̃qz1(t) = GqzQ̄x1(t)+
n∑

i=0

(
Bqzi Üai(t)+Dqzi Ûai(t)+Eqziai(t)

)
+

m∑
j=0

Hqz j q̃zi(t). (2.158)

Coefficients for ai, Ûai, and q̃zi are also determined through the hydrodynamics
forces and discussed in section 2.4.3. They include the boundary values in equations
2.152 and 2.153 at i = 0 and i = m, respectively. We obtain the semi-continuous
system in time through a Garlerkin projection of equation 2.156 onto test functions
gk(x), and of equation 2.158 onto test functions ψk(x) as in section 2.3.5. Finally,
writing the fully coupled operator as



Ûa0
...

Ûan

Üa0
...

Üan

Û̄Qx1

Û̃qz0
...

Û̃qzn+1



=


0 1 0 0

M−1
z Kz M−1

z Cz M−1
z Tz M−1

z Hz

EQ DQ GQ HQ

Eqz Dqz Gqz Hqz





a0
...

an

Ûa0
...

Ûan

Q̄x1

q̃z0
...

q̃zn+1



. (2.159)

We restrict m = n + 1, where i = m is the boundary value for qz1 at x = L.
The system of equations in 2.159 emulates the form of the two-dimensional model
in 2.96, however it has been simplified for a symmetric channel and includes the
spanwise leakage flow rates as states of the system.

2.5 Linear Stability Analysis
The premise of linear stability analysis is to understand the dynamics of a linear
operator through its eigendecomposition. In particular, we are interested in solving
the problem,
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Avi = λvi, (2.160)

where A is either the operator in equation 2.96 or 2.159, and [λi, vi] is an eigenvalue-
eigenvector pair of A. An unstable system requires Re[λ] > 0, such that a degree of
freedom within the system will exponentially grow unbounded. The flutter instabil-
ity is characterized as Re[λ] > 0 with Im[λ] , 0. By tracking the evolution of λ as a
function of parameters in the system, in particular those in tables 2.3 and 2.4, we can
track when, if ever, the system reaches the marginally stable (also called neutrally
stable) point Re[λ] = 0 with Im[λ] , 0 [64]. This is defined as the flutter boundary
and assessed in detail in chapters 3, 4, and 5 for the flow-energy harvester fluid-
structure system. The varied parameter is called the bifurcation parameter if indeed
a bifurcation is encountered. By definition, the flutter instability is reached through
a Hopf bifurcation, defined as when a system equilibrium point looses stability with
Im[λ] , 0. Another bifurcation of interest is the steady type, where Re[λ] > 0 with
Im[λ] = 0. The ensuing instability is called divergence in the fluid-structure lit-
erature [24]. The eigenvector vi gives the mode shapes in terms of displacement,
velocity, and the driving flow rate Q̄x1. For operator in equation 2.159, this list also
includes the spanwise flow rates qz1. When plotting mode shapes, we restrict the
state-space to those of the transverse amplitude coefficients, ai.

The equations from this chapter are used to solve the eigenvalue problem in equa-
tion 2.160, where the flutter boundary is sought as different parameters are varied.
Flutter indicates the onset of a parameter combination that is likely to give rise to
high power extraction regimes. This is discussed as experimental results are ex-
plored in chapter 5.
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C h a p t e r 3

NUMERICAL METHODS FOR SIMULATIONS AND DATA
ANALYSIS

3.1 Introduction
In this chapter we describe the numerical implementation and validation of the
quasi-1D model and the fluid-structure direct numerical simulation algorithm. We
will also describe the signal processing methods used to obtain relevant quantities
from the computed and measured data sets.

3.2 Quasi-1D Model Numerical Implementation
We discretize the continuous operators in equations 2.90, 2.96, and 2.159 using the
eigenfunctions described in either equation 2.81 or 2.84, for clamped-free or elas-
tic translating boundary condition, respectively; and equation 2.154 for the span-
wise flow rate expansion. All cases analyzed in this thesis are symmetric about the
center-line, as shown in figure 2.1, such that δ0 = 0, Ûδ0 = 0, and for the cases that
include the translating boundary condition, ā0 = 0 and Û̄a0 = 0, are the equilibria the
system is linearized about. The linear equations are developed using the MATLAB
symbolic toolbox, the spatial derivative operators are calculated analytically with
respect to each basis expansion, gi(x), or equilibrium channel shape, he(x), and the
integral operators in coefficients A.1 - A.8 are calculated with MATLAB’s adap-
tive step quadrature integral function, with an absolute tolerance of 10−10 and
relative tolerance of 10−6. The Galerkin projection operator step in equations 2.97
and 2.99 is calculated using Simpson’s quadrature rule [65]. The number of basis
functions kept in the expansion is 6 for all cases, was found, through trial and error,
to converge the first two beam eigenvalues (lowest frequency modes) to within a
tolerance of 10−2 in convective time units.

3.2.1 Leakage Flow in Constant Channel Verification
We verify the algorithm’s implementation by comparing our results to those of Na-
gakura and Kaneko [33], who carried out a similar analysis for a cantilever in a
constant, symmetric channel. They employed nonlinear operators 2.7 and 2.32 with
he = h̄ = constant, and ξx = 1 for all Reynolds numbers, with the same definition
for f as in equation 2.29. The work of Wu and Kaneko [45] also provides another
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reference, where the authors compared numerical simulations to the original linear
stability work [33], and use the same data set for their comparison. The Euler-
Bernoulli beam equation is employed with viscous damping,

ρshb
∂2

∂t2 δ(x, t) + ξiωiρshb
∂

∂t
δ(x, t) + EI

∂4

∂x4 δ(x, t) = pbot
1 (x, t) − ptop

1 (x, t), (3.1)

where ξi is the modal damping coefficient and ωi are the angular frequencies of
each mode of the undamped beam (solution to the homogeneous PDE 2.85). This
is different from the model proposed in section 2.3.2, and is only used in this section
to compare with existing results. Nagakura and Kaneko [33] parameters are shown
in table 3.1. Although they report that the cantilever was made from bronze, they
provide no reference for their chosen value of modal damping coefficient ξi = 0.01,
for all i. There also is no discussion around other forms of material damping that
may dominate the behavior of the system (especially at low flow rates), as discussed
by Banks and Inman [59].

Table 3.1: Nagakura and Kaneko [33] constant channel dimensional parameters.

.

Parameter Value Units
ρ f 1.20 kg/m3

µ f 1.80e-05 Pa*s
ρs 8.78e+03 kg/m3

E 1.10e+11 Pa
ξi 1.0e-02 ND
hb 2.0e-04 m
b 1.0e-01 m
L 2.0e-01 m
h̄ 2.5e-03 m

qx0 0 - 5e-2 m2/s
ζin 1 ND
ζout 0 ND

The flow rate per unit span is varied from 0 to 5.0e-2 [m2/s] in the simulations.
We compare two data sets extracted and replotted from [33] and [45]: the spectrum
evolution of the system as qx0 is increased for the parameters in table 3.1, and
the neutral stability line, or flutter boundary, characterized by critical dimensional
velocity Ūcr =

qx0cr
h̄

as a function of dimensional throat size h̄. Figure 3.1 shows
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Figure 3.1: Comparison of eigenvalues λi as a function of flow rate per unit span
qx0 to simulation results in [33]. The plot shows the path as qx0 is increased.

good agreement between the eigenvalues of the four beam modes for the range of
flow rates. The current work is plotted from qx0 = 0, while [33] from a small finite
value not disclosed in the article.

In our results, the flutter boundary is computed as the interpolated Ūcr where the
first eigenvalue λ becomes marginally stable (Re [λ] = 0). The corresponding crit-
ical angular frequency ωcr = Im [λ] |Ūcr . A detailed description of the method is
in section 4.2.4. This is in contrast with the energy formulation in [33] used to
characterize the marginally stable point, where Ūcr corresponds to its value when
no energy is added or removed from to the beam. Figures 3.2 and 3.3 show good
agreement between the critical quantities of the model and our implementation. The
flutter boundary in Ūcr is not an injective function of h̄ because the boundary repre-
sents a crossing from stable to unstable dynamics, but also from unstable to stable
for a subset of parameters. That is seen specifically h̄ ≈ 0.0025 m values in figures
3.2 and 3.3.

The agreement shown in figures 3.1, 3.2, and 3.3 gives us confidence that the cou-
pled equations have been implemented correctly, and that the numerical algorithm
produces results similar to others in the literature. Our model predicts the exper-
iments as well as previous models [33, 45] do, most notably capturing the mode
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Figure 3.2: Comparison of critical velocity Ūcr as a function of throat size h̄ to
experimental and simulation results in [33] and [45].
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Figure 3.3: Comparison of critical velocity Ūcr as a function of throat size h̄ to
experimental and simulation results in [33] and [45].

switching seen in the transition from lower to higher ωcr in figure 3.3: as h̄ de-
creases, progressively higher frequency modes bifurcate through a Hopf type into
instability. A detailed study on these dynamics follows in section 4.2.
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3.3 Fluid-Structure Immersed-Boundary Direct Numerical Simulation
In order to validate aspects of the quasi-1D model developed in chapter 2, we em-
ploy a two-dimensional fluid-structure algorithm developed by Goza and Colonius
[52] that uses the immersed boundary (IB) projection method along with Newton-
Raphson approach to solve the strongly-coupled fluid-structure system. Strong-
coupling ensures that the nonlinear constraint between the fluid and the structure
is enforced at each time step, and is necessary for accurate computation of large
structural deformations.

Details of the flow solver can be found in [66, 67], the IB force solution in [68,
69], and the strongly-coupled algorithm in [52, 70, 71]. The current implementa-
tion uses a corotational formulation of the structural equations for the beam, where
strains are assumed small within constituent material equations in the beam-local
frame [72]. The beam-fluid non-dimensional parameters that govern the dynamics
are defined as

ReL =
ρ f UcL
µ f

, m̂ =
ρshb

ρ f L
, k̂ =

EI
ρ f U2L3 , (3.2)

and similar to those in table 2.3. The characteristic velocity Uc is one appropriate
for the flow, and EI is the (dimensional) bending stiffness of the beam per unit span.
I for two dimensions is defined in equation 2.86.

The stationary multi-body implementation did not require changes to the algorithm
in [67], and the inlet boundary condition to the channel is implemented by prescrib-
ing a finite velocity profile at a set of Lagrangian mesh points distributed across the
inlet plane.

The initial discrete delta function used in the IB method is constructed as follows.
We specify an initial kernel over 3 support points,

ψ
(3)
h (r) =



1
3h

[
1 +

√
1 − 3

(
|r |
h

)2
]

|r | ≤ h
2

1
6h

[
5 − 3|r |

h −
√

1 − 3
(
1 − |r |h

)2
]

h
2 ≥ |r | ≤

3h
2

0 otherwise

, (3.3)

where h is the support grid spacing, r is the relative position of the smearing point
to the center of the delta function, with |r | as its magnitude. This kernel is then
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smoothed three times using the recursive formula developed by Yang et al. [73] and
studied in detail in [68],

S [g(r)] =
∫ r+1/2

r−1/2
g(r̃)dr̃, (3.4)

such that its support is a total of 6 points. The full expression for ψ(3),∗∗∗h can be
found in the appendix B, where each ∗ represents the consecutive application of
equation 3.4 to the resulting smoother discrete delta function kernel. This kernel
was chosen in contrast to others because it presented good computational time and
accuracy of local stresses. We find, just as Goza et al. [68], that smoother dis-
crete delta functions yield better local force predictions, which translates into more
accurate system responses for a given discretization.

3.3.1 Internal Flow Fluid-Structure-Interaction Verification
The algorithm has been verified extensively in [71] for external flows, where regimes
of the standard and inverted flags 1 were explored and compared to results from
other strongly-coupled fluid-structure solvers. In this section, we verify the algo-
rithm for internal flows using the suggested benchmark of an elastic member in an
internal, incompressible, laminar flow [38, 74–76].

The IB projection method as developed by Colonius and Taira [66, 67] uses a multi-
domain approach to treat its far-field zero vorticity boundary condition. This means
that the geometry solved as internal flow lives as part of a larger, quiescent fluid cell.
This verification exercise is in part to ensure that the inlet and equivalent outflow
boundary conditions behave as other algorithms do when solving a similar problem.

The geometry consists of a cylindrical bluff body within a slightly asymmetric
channel and a flexible cantilever (standard clamped flag) immediately downstream
in its wake, as illustrated in figure 3.4. The cantilever is infinitesimally thin, but has
a structural thickness according to its bending stiffness and mass ratio. Its equiv-
alent numerical thickness will be discussed in further detail in section 4.2, but is
inconsequential for cases in this section. The parabolic profile has an average ve-
locity Ū = Uc, which is the characteristic velocity for the Reynolds number ReD

based on the cylinder diameter D. We consider the same two cases as in Shoele
1Standard refers to a flag with clamped or pinned leading edge, where as inverted the pinned or

clamped boundary condition is at the trailing edge.
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Figure 3.4: Illustration of FSI DNS validation geometry by [74].

and Mittal [76]: ReL = 350 (ReD = 100) and ρs
ρ f
= 10 as case 1, and ReL = 700

(ReD = 200) and ρs
ρ f
= 1 as case 2, both with the same k̂.

Table 3.2: Non-dimensional and mesh parameters for DNS FSI verification cases
in terms of beam length L.

Parameter Case 1 Case 2
ReL 350 700
m̂ 0.5710 0.05710
k̂ 0.0218 0.0218

∆x∗ = ∆x/L 0.00571 0.0028
∆t∗ = ∆tUc/L 5.714E-4 2.86E-4

Re∆x = ReL∆x∗ 2 2
CFL = ∆t∗/∆x∗ 0.3 0.3

Table 3.2 denotes the relevant meshing and non-dimensional parameters for each
case in terms of the beam length L, per equations 3.2. The two-dimensional fluid
grid has uniform spacing ∆x in x̂ and ŷ, and defined as ∆x∗ when normalized by
L. The Lagrangian grids used as immersed boundaries on all bodies have a spacing
∆s∗ = 2∆x∗, including the cylinder, walls, inlet, and beam. There are a total of
88 Lagrangian points on the beam for cases 1 and 176 for case 2. The target grid
Reynolds number Re∆x for all cases is 2, and the target CFL = 0.3, with ≈ 2600
time steps per beam tip oscillation cycle for case 1 and ≈ 3500 time steps per cycle
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for case 2. This ensures that the fluid-structure algorithm is stable and resolved.
The total simulation time horizon is over 70 L convective time units for cases 1 and
and 20 for case 2. The beam tip has reached a steady amplitude and frequency for
at least 8 cycles before results were measured in both cases.

FSI DNS Verification Results

Figures 3.5 and 3.6 show an instantaneous snapshot of the flow velocities when the
cantilever is at its peak amplitude for cases 1 and 2, respectively. The wake of the
cylinder is clearly visible in both cases, with x̂ velocities fastest at the cylinder top
and bottom, and at the channel restriction point by cantilever tip. Stagnation points
can be seen at the cylinder surface closest to the inlet, and the tip displacement is
visibly higher for case 1 than case 2.

Figure 3.5: Case 1 (table 3.2) velocity contour plot when beam tip (i.e. trailing
edge) is at its maximum amplitude.
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Figure 3.6: Case 2 (table 3.2) velocity component contour plot when beam tip (i.e.
trailing edge) is at its maximum amplitude.

Figure 3.7 shows the length normalized ytip and xtip displacements of the beam
(i.e. trailing edge) for the last two tip oscillation cycles in our simulations. T is
the L convective time immediately before the last two oscillations. Our results are
compared to those in the appendix of [76]. The length scale in all plots is L (as
opposed to D) and the origin is at the leading edge of the beam, as illustrated in
figure 3.4. The data acquired from [76] was scaled accordingly to reflect the correct
length and time scale. The time history of tip displacements appear to be in fair
agreement, both in x̂ and ŷ.

Table 3.3 with our appended values is reproduced from [76], notably with a rescal-
ing of L as the reference length scale. The definition of measured values are

Am

L
=

max
[
ytip

]
−min

[
ytip

]
2L

, St =
f L
Uc

, CD =
2Fx

ρ f U2
c L
, (3.5)

where f is the dimensional frequency of oscillation. Fair agreement between all val-
ues is seen both case 1 and case 2. The general spread among measured quantities
for case 1 is smaller than that of case 2, but our results appear to fall within the vari-
ance of previous algorithms. These results give us confidence that our discretization
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Table 3.3: Quantitative comparison of measured values for FSI DNS verification,
with cases defined in table 3.2.

# Sources A/L St CD

Case 1 Current FSI DNS 0.260 0.663 1.285
Shoele and Mittal [76] 0.254 0.665 1.197
Turek and Hron [74] 0.237 0.665 1.180

Bhardwaj and Mittal [75] 0.263 0.665 1.017
Tian et al. [38] 0.223 0.665 1.174

Case 2 Current FSI DNS 0.142 1.000 0.774
Shoele and Mittal [76] 0.125 0.945 0.709
Turek and Hron [74] 0.103 0.910 0.657

Bhardwaj and Mittal [75] 0.117 0.980 0.629
Tian et al. [38] 0.091 1.015 0.617

parameters and the boundary conditions replicate results that are consistent with the
literature.
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Figure 3.7: Comparison of beam tip displacement for case 1 with data set in ap-
pendix of [76]. The data includes Shoele and Mittal (2014) [76], Bhardwaj and
Mittal (2012) [75], and Turek and Hron (2006) [74].
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3.3.2 Immersed-Boundary Elastic-Translating Boundary Condition
In section 2.3.3, structural equations and their discretization were augmented to
include the elastic-translating boundary condition. We describe here an implemen-
tation of this boundary condition in the IB framework.

we can discretize it in time using an implicit Newmark scheme consistent with [52],(
4
∆t2

m0
b
+

k0
b

)
āk+1 +

c0
b
Û̄ak+1 − frk+1 =

m0
b

(
4
∆t2 āk +

4
∆t
Û̄ak + Ǖak

)
, (3.6)

2
∆t

āk+1 − Û̄ak+1 =
2
∆t

āk + Û̄ak, (3.7)

where we have split the terms that depend on the current time step k from those that
depend on the future time step k + 1 of size ∆t. We have added two states, Û̄ak+1

and āk+1 and two equations, 3.6 and 3.7, to the fluid-structure system. The force
frk+1 is naturally part of the existing system through the fully discretized Navier-
Stokes equations. Equations 3.6 and 3.7 can be directly implemented into [52]. The
only modification is to include the damping term, but solely at the boundary node;
the remainder of the equations are formulated such that all states can be readily
included into the discrete system of equations.

3.4 Signal Analysis Methods
Three techniques are used to provide insight into the fluid-structure system dynam-
ics in both simulations and experiments. First, the dynamic mode decomposition, or
DMD, allows for a clear distinction between the growth and decay rates of multiple
beam modes. We apply DMD to FSI DNS results to extract comparable dynamical
quantities to the quasi-1D model eigenvalues and eigenmodes. In a noisy experi-
mental environment, we employ the spectral proper orthogonal decomposition, or
SPOD, to understand the limit cycle behavior of the system where noise and multi-
mode dynamics exist in the data set. Lastly, we use the Hilbert transform to measure
single mode decay and frequency in structure impulse-response experiments of the
flow-energy harvester flexure. This section comprises a discussion of each method’s
mathematical formulation and implementation.

3.4.1 Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) is a data decomposition technique that ap-
proximates the eigenmodes of the linear operator that best describes the dynamics
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of the system, i.e. from one time instance to the next. Developed over the last
decade [77] as an alternative or complement to POD, it provides a means of assess-
ing the time coherent, large scale structures as a linear map that does not require
modes to be orthogonal. The linear map is also fully described by a single eigen-
value per degree-of-freedom, which encompasses one growth- or decay- rate and
one frequency per mode. This highlights that time, not space, is orthogonalized in
the method [77, 78]. Another notable result by Chen, Tu, and Rowley [79] estab-
lishes the equality of DMD to the discrete Fourier transform (DFT) in zero-mean
periodic data, when snapshots are linearly consistent 2.

We employ DMD in chapter 4 to calculate growth/decay rates and frequencies of the
beam in FSI DNS simulations, which are compared to the quasi-1D model eigen-
values. Similarly, DMD modes are analogous to quasi-1D eigenmodes, and their
shapes qualitatively compared.

Figure 3.8: Illustration of elastic member displacement and discrete formulation of
data matrix elements.

We choose the transverse displacement δ, illustrated in Figure 3.8, as the primary
quantity to characterize the fluid-structure system dynamics. The Lagrangian co-
ordinate s follows the arc length of the beam, with ŷ displacement at discrete si

(i ∈ Z : [1, p]) and time t j ( j ∈ Z : [1, n] ) as δ(si, t j) = δ
( j)
i . We define the data

matrix X,

X =


δ
(1)
1 δ

( j)
1 . . . δ

(n)
1

δ
(1)
i δ

( j)
i . . . δ

(n)
i

...
...

. . .
...

δ
(1)
p δ

( j)
p . . . δ

(n)
p


∈ Rp×n. (3.8)

The rows of X are measurements of points along the beam, and the columns are
the time series for each point with size ∆t. For typical fluid applications, p � n,

2This is when snapshots, or the columns of the data matrix, share the same nullspace.
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as the discretization of the fluid-domain requires a large number of points as com-
pared to the number of time steps analyzed. However, p � n for our system as i

only spans the one-dimensional beam discretization. Specifically, p ∼ 102 while
n ∼

[
104 − 105] for our X matrices processed. This poses issues due to rank limita-

tions of X when calculating DMD eigenvalues, as they become very susceptible to
variations in the time segment length (as seen in [80, pg. 12]). To overcome this, we
implement an augmented data matrix as typically done in the eigensystem realiza-
tion algorithm (ERA). ERA was developed in the controls community to identify
the lowest order linear operator that describes an output data set from specified in-
puts. Tu et al. in [80, pg. 20–23] describe the connection between DMD and ERA
modes, and the benefits of augmenting the data matrix as,

H′ =



δ
(1)
1 δ

(l)
1 . . . δ

(N)
1

δ
(1)
k δ

(l)
k . . . δ

(N)
k

...
...

. . .
...

δ
(1)
p δ

(l)
p . . . δ

(N)
p

δ
(1)
p+1 δ

(l)
p+1 . . . δ

(N)
p+1

...
...

. . .
...

δ
(1)
2p δ

(l)
2p . . . δ

(N)
2p

...
...

. . .
...

δ
(1)
( nN )p

δ
(l)
( nN )p

. . . δ
(N)
( nN )p



∈ R( nN )p×N, (3.9)

where l ∈ Z : [1, N], p < N ≤ n ∈ Z is the total number of snapshots in each time
series block, k ∈ Z : [1,

( n
N

)
p] is the index for the augmented states. Matrix H is

the input matrix, and a segmented version of the time series of X: we have defined
a new time series length N < n, divided the original into blocks and appended
each block to the columns of H. We choose N > n

N p such that k is still the small
dimension, with typical values of n

N used range from 1 to 4 at most. The output
matrix is
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H =
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2p . . . δ

(N+1)
2p

...
...

. . .
...

δ
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( nN )p

δ
(l+1)
( n
N+1 )p

. . . δ
(N+1)
( nN )p



∈ R( nN )p×N, (3.10)

Following the ‘exact DMD’ procedure [80], we compute the reduced singular value
decomposition (SVD) of H,

H = UΣV∗ (3.11)

where U ∈ C n
N p× n

N p is unitary, Σ ∈ C n
N p× n

N p is diagonal containing the singular
values, and V∗ ∈ C n

N p×N . We define matrix

Ã ≡ U∗H′VΣ−1, (3.12)

where U∗ and V are the conjugate transposes of U and V∗, respectively. Solving
for the eigenvalue problem for Ã as Ãwk = σkwk produce DMD eigenvalues σk .
Solving for the eigenvectors vectors w, the DMD modes are

ûk =
1
σk

H′VΣ−1wk . (3.13)

Since Ã represents the discrete linear map between sequential data sets H and H′,
we obtain growth/decay rates and angular frequency (DMD spectrum) at each σk

from inverting the exponential solution,

λk = ln
(σk

∆t

)
. (3.14)

In contrast to POD modes, which are arranged according to each mode’s energy
content in the data, DMD modes are not arranged in any particular order. POD
naturally selects the modes that are dynamically significant, where as we must un-
derstand from the data set which DMD eigenvalue eigenmode pair best represents
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it. Assuming the underlying dynamics come from a linear time-invariant system,
the physically meaningful eigenvalues should remain fixed in time. Therefore, by
varying the time segment for which we define X (along with H and H′), we can
discern physical modes as those that are associated with invariant eigenvalues. Let
X1 and X2 be different data matrices as defined in equation 3.8, both as subsets of
a single time series for the beam in figure 3.8. Let λl be the DMD spectrum of X1

and λq that of X2. A mode ûl is physically meaningful if its corresponding λl meets
the condition

min
q

[
|λl − λq |

]
< D, (3.15)

where D is the invariant tolerance and defined as 1E-2 for our cases. Once physi-
cally meaningful eigenvalues have been determined, we track the least stable eigen-
value λmax = maxλm {Re [λm]}, where λm is the set of λl that meets criteria 3.15
(m ≤ l).

The last step is to check whether λmax captures what is observed as the dynamics of
the tip response, δ( j)p . This is done by fitting a exponential to the peaks of δ( j)p , and
taking a DFT of the demodulated signal, such that the segment is represented by

δ
( j)
p ∼ eζ j∆t cos (ωmax j∆t) . (3.16)

The signal phase and absolute amplitude are not necessarily relevant for our com-
parison, only the amplitude growth/decay ζ and the oscillating frequency ωmax. We
compare ζ to Re[λmax] and ωmax to Im[λmax]. If the system is dominated by a sin-
gle frequency response, this gives us confidence that we have obtained the correct
DMD eigenvalue and eigenmode pair. If more than one more dominates the re-
sponse, the check provides a general search area for the decay rate and dominant
frequencies. If no λl meets criteria 3.15, we increase the n

N ratio and iterate. Simi-
larly, we may iterate with a longer time series that captures the linear portion of the
dynamics better, for example.

Figures 3.9, 3.10, and 3.11 illustrate this procedure for an example data set from a
stable, constant channel flow FSI DNS simulation discussed in detail in section 4.2.
Figure 3.9 shows the full time series of two beam locations, the tip at δp and at the
beam half-way point, δp/2. Two subsets of the full time series are also shown for
the two beam location, where T1 > T2 are time shifts to obtain each subsegment.
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The data matrices X1 for segment with a time shift T1 and X2 for a time shift T2, are
built from equation 3.8, and their respective H′ and H follow from equations 3.9
and 3.10. The exponential fit and power spectral density for the tip displacement in
the X1 are shown in figure 3.10, with ζ = −0.011 and ωmax = 3.77. Figure 3.11
then compares the positive frequency DMD eigenvalues and the fit parameters ζ
and ωmax.
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Figure 3.9: Stable beam time series at the beam tip, δp and at beam midpoint, δp/2.
The figure illustrates a segment data set X1 (3.9a) and X2 (3.9b) with a time shift of
T1 > T2, respectively.
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Figure 3.10: Beam tip δ( j)p for X1 segment. The figure illustrates the exponential fit
(3.10a) with a ζ = −0.0111 and the DFT of the demodulated signal (3.10b) with
ωmax = 3.77.
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Figure 3.11: Comparison of DMD eigenvalues (shown for Im[λ] > 0 ) and fit pair
(ζ, ωmax) from the beam tip time series.

In practice, if the system is dominated by a single eigenmode eigenvalue pair, as in
the example, proceeding with the algorithm in reverse order may be desirable: by
finding ζ and ωmax that describe the tip displacement first, λmax can be informed
and narrowed, and the verification step becomes the comparison between X1 and
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X2 DMD spectra.

Lastly, because of the X augmentation to produce H and H′, ûk ∈ C
n
N p×1. In order

to compare mode shapes with the quasi-1D model, we employ a similar procedure
to ERA and restrict the observables to the first p elements of ûk . This is equivalent
to producing a reduced order model from H with the same dimension as the output
of the dynamical system represented by X [80]. λm and the restricted ûm provide
direct quantitative measures for a comparison between FSI DNS time series and the
eigendecomposition of the quasi-1D model equations.

3.4.2 Spectral Proper Orthogonal Decomposition
Proper orthogonal decomposition (POD) is a method used widely in fluid mechan-
ics to find flow coherence through modes that optimally capture the energy within
a data set [78, 81, 82]. In this context, the data set and energy, or norm, must be de-
fined, and often encompass only the spatial dimension in typical applications [78].
The spectral proper orthogonal decomposition is the frequency domain version of
POD, which captures optimal modes with an energy definition in space and time.
Though introduced many decades ago [83, 84], a recent analysis [78] elucidates its
strength as a tool for extracting coherence in the dynamics that include stochastic
white-noise forcing. They also draw a direct relation between the method, DFT,
DMD, and the resolvent. SPOD relates the correlation of an ensemble of measure-
ments in time an space by identifying and ordering modes at a particular frequency
that have the strongest coherence first. The mode ordering gives a sense of the
dimensionality of the problem over the spectrum, but also at each individual fre-
quency. Specifically, SPOD not only answers whether preferential frequencies ex-
ist in the system dynamics, which shapes captures what percentage of the energy in
that frequency. We employ SPOD on experimental data consisting of video frames
of the elastic member in turbulent flow (ReL ∼ 106, Reh̄ ∼ 104). The resulting
SPOD modes provide a means to filter the time-domain data, and understand the
predominant dynamics of the data set. Specifically, whether the system exhibits
limit cycle or amplifier/intermittent state behavior in our case [85].

To begin, we consider the definition of the data matrix from figure 3.8 and in equa-
tion 3.8. Assuming that the system is stationary and consistent with the procedure
in [78, 86], the DFT of each row of our X is carried out using Welch’s method
[87]. In the procedure, each discrete time series is segmented into 50% overlapping
blocks of size n f ≤ n, Fourier transformed, and assembled into a Fourier domain
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data matrix X̃ fl at each discrete frequency fl ,

X̃ fl =


δ̃
(1)
1 δ̃

(k)
1 . . . δ̃

(N)
1

δ̃
(1)
i δ̃

(k)
i . . . δ̃

(N)
i

...
...

. . .
...

δ̃
(1)
p δ̃

(k)
p . . . δ̃

(N)
p

 fl

∈ Cp×N, (3.17)

where l ∈ Z : [1, n f ], N ≥ 1 ∈ Z is the total number of blocks in Welch’s method,
k ∈ Z : [1, N] is a Fourier realization of the data and block number index. Elements
in X̃ fl are

δ̃
(k)
i =

1
√n f

nf
2 (k+1)∑

j=
nf
2 (k−1)+1

δ
( j)
i e
−2π
√
−1(l−1) j−1

nf , (3.18)

for a rectangular windowing function, and discrete frequencies

fl =


l−1
n f∆t for l ≤ n f /2
l−1−n f

n f∆t for l > n f /2
. (3.19)

We build the cross-spectral density matrix at each fl ,

S̃ fl =
∆t

n f N
X̃ flX̃

∗
fl ∈ C

p×p, (3.20)

where X̃∗fl is the conjugate transpose of X̃ fl and ∆t is the time increment for the se-
ries. S̃ fl is hermitian and represents the cross-correlation of measurement i Fourier
coefficients with all other measurements, averaged over all realizations. We can
eigendecompose S̃l ,

S̃l = ÛlΣlÛ∗l (3.21)

where Ûl is unitary (along with its conjugate transpose Û∗l ) and its columns (ûi)l
are orthonormal eigenvectors of S̃l . Σl ∈ Rp×p is a diagonal matrix with its entries
as the eigenvalues (σi)l in descending order. (σi)l can be interpreted as the amount
of energy its pair (ûi)l contains at fl . The cross-spectral density at each fl is tensor
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invariant tr(Ŝl) = tr (Σl), and represents the total energy at each frequency. The
fraction of energy each mode contains is

(σ̂i)l =
(σi)l
tr(Σ̂l)

. (3.22)

The system may be reduced further if a single (σ̂i)l , (ûi)l pair contains most of the
energy at these peak frequencies. In systems where both holds true, it is often useful
to understand the dynamics of these predominant modes. Frequencies where tr(Σ̂l)
peaks indicate periodic behavior, but do not discern between periodic oscillations
characteristic of a limit-cycle, or intermittent periodic behavior associated with a
stochastically forced under-damped system. However, the SPOD modes provide
a means to filter the original time domain data and discern those states exactly.
Schmidt, Colonius, and Bres [85] first explored this by projecting time domain
pressure data onto the leading SPOD modes to find intermittent behavior of noise
in a turbulent jet. Here, we would like to do the same by projecting the time domain
beam displacement data onto the leading SPOD beam shapes.

Suppose the system has m < n f peak frequencies in tr(Σ̂l). To explore the time
behavior of the most energetic modes at each peak frequency, we build a basis,

Φ̂ =
[
(û1)1, · · · , (û1)m

]
∈ Cp×m, (3.23)

where subscript 1 in û1 indicates the leading mode. We would like to approximate
the time domain data X as

X ≈ Φ̂A (3.24)

where A is the matrix with coefficients of each basis (rows) in Φ̂ over time (columns).
To solve for A,

A =
(
Φ̂
∗
Φ̂

)−1
Φ̂
∗X. (3.25)

where Φ̂
∗

is the conjugate transpose of Φ̂. The columns of Φ̂ are not orthogonal,

and
(
Φ̂
∗
Φ̂

)−1
accounts for the cross-coupling between the modes. By construction,
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modes are orthonormal within a single frequency, but not across frequencies when
only considering the spatial norm3.

The map between A and X is, in essence, a spatial filter that when applied to the
time-domain data elucidates how each shape û1 behaves in time. With X built as
transverse displacement δ( j)p , each basis in Φ̂ represents a beam mode shape and the
columns of A their amplitudes at a particular instance in time.

Since A represents beam displacement over time, the velocity of each shape can be
defined as dA

dt and estimated through a discrete time derivative for the data set. We
can access a two-dimensional phase-portrait of each mode, and discern their indi-
vidual dynamics: periodic orbits will be closed orbits (donut shape), while amplifier
states as points clumped around the origin, as the mode is perturbed stochastically,
but decays back to its equilibrium.

3.4.3 Hilbert Transform
The Hilbert transform is widely used in signal processing to obtain the “analytic”
equivalent from real valued signal [88], and it is particularly helpful in obtaining the
instantaneous growth or decay from dynamical systems [89–91]. We will employ
the Hilbert transform to estimate flexure parameters in chapter 5 by considering the
real valued voltage output from piezoelectric elements.

To begin, we define the Hilbert transform of the real valued signal in time V(t) as

H {V(t)} = 1
π

∫ ∞

−∞

V(y)
t − y

dy, (3.26)

which represents the complex part of the analytical signal z(t),

z(t) = zRe(t) + izIm(t) = V(t) + iH {s(t)} . (3.27)

Using Euler’s formula, equation 3.27 becomes

z(t) = A(t)eiφph(t), (3.28)

where we the modulating amplitude is
3Modes across frequencies are orthogonal in the temporal sense. However, if the spatial

modes are considered in the projection framework here, they are not orthogonal in that the norm
(û1)∗i (û1)j , 0 for i , j.
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A(t) =
√

z2
Re(t) + z2

Im(t), (3.29)

and instantaneous phase

φph(t) = tan−1
(

zRe(t)
zIm(t)

)
. (3.30)

The discrete formulation and implementation of the Hilbert transform is performed
in MATLAB with the hilbert function. Least-square linear fits are used to find
the exponential decay of V as the slope of ln A(t) over t from equation 3.29, and its
angular frequency as the slope of φ(t) in equation 3.30.
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C h a p t e r 4

TWO-DIMENSIONAL MODELING AND SIMULATION
RESULTS

4.1 Introduction
In this chapter, we present numerical results for both the analytical quasi-1D model
derived in chapter 2 and the fluid-structure interaction direct numerical simulations
discussed in chapter 3. The comparison between modeling and simulations allows
us to assess the validity of the model assumptions and, in doing so, the physical
mechanisms that drive the fluid-structure dynamics. We begin with a constant chan-
nel flow geometry and test model predictions against those of the DNS over four
relevant non-dimensional parameters: mass ratio, stiffness ratio, throat-to-length
ratio, and the Reynolds number. Next, the translating leading edge is added as a
simple harmonic oscillator and dynamics are compared to include the additional
parameter set from the boundary. Finally, we define that channel geometry as a
diffuser and appraise model predictions considering also a channel diffuser angle
for both cases where the elastic member is an elastically-mounted translating rigid
mean and a cantilevered flexible beam.

4.2 Cantilever in Constant Channel Flow
A detailed overview of previous work in channel flows was given in section 1.4.
The primary thrust of this study is to understand the physical mechanisms that drive
the fluid-structure instabilities of an elastic member in channel flow. The quasi-1D
model applies assumptions and simplifications to the coupled equations of motion,
where as the FSI DNS algorithm solves the full equations numerically, where sim-
plifications are not physical but in the discretization of the equations. Hence, we
are fundamentally comparing two imperfect models that approach reality in their
respective limits. In contrasting them, we must connect their input parameters and
boundary conditions such that the overall physics are evaluated rather than their nu-
merical or implementation differences. When a reduced-order model is derived on
parameter assumptions based on a particular mechanism, verifying its results lends
credibility to the mechanisms themselves. In this vein, we use the FSI DNS results
to verify the flutter boundary for a range of parameters for the quasi-1D model. By
asserting the robustness of the quasi-1D model prediction to these parameter ranges
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(in tables 2.3 and 2.4), we assess the extent to which a leakage flow type instability
drives the system dynamics.

This section is organized as follows: first we formulate the channel flow problem,
with its geometry and boundary conditions in 4.2.1. The specifics of the FSI DNS
numerical discretization follows in section 4.2.2, which defines mesh parameters for
the FSI DNS. Then a grid study follows in section 4.2.3, setting an ĥcorr for compari-
son between FSI DNS and quasi-1D results in section 4.2.4. An extensive computa-
tional effort was carried out with more than 4000 FSI DNS simulations and 100,000
cpu/hrs to map the flutter instability boundary over the range of non-dimensional
parameters. The parameter ranges chosen were loosely based on flow-energy har-
vester dimensions and proportions (shown in figure 5.2), but are primarily devised
to test conditions derived in section 2.2.1 for the validity of the quasi-1D model.
We follow the DNS study with a comparison between the quasi-1D model results
with those of existing inviscid model in section 4.2.5, and a set of detailed stabil-
ity boundary predictions in the parameter ranges validated. Finally, we include the
elastic-translating boundary condition and, once again, compare DNS results with
those of our model.

4.2.1 Problem Formulation
The FSI DNS computational domain is illustrated in figure 4.1. The coordinate sys-
tem has its origin at the beam leading edge, and the channel is defined at a constant
halfwidth, h̄. The initial beam position δ(s, 0) = 0, and its velocity is ∂

∂t δ(s, 0) = 0,
where s is the Lagrangian coordinate that describes the beam parametrized by its
arc length. The boundary conditions are clamped and free for leading and trailing
edges of the beam, respectively. A uniform velocity profile is specified at the in-
let as Uin and used as the reference parameter for non-dimensionalization of other
quantities. The channel boundaries are no-slip immersed boundaries. The flow is
impulsively started and the beam is perturbed by a small body force at the initial
time step in order to break symmetry.
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Figure 4.1: Illustration for fluid-structure constant channel domain and boundary
conditions.

Figure 4.1 is contrasted with the domain in figure 2.3, where quasi-1D model pa-
rameters are illustrated. First, the steady flow rate, qx0 (the steady part of Qx in
figure 2.3), specified for the quasi-1D model constitutes half the integrated x̂ flow
velocity (in the channel) over ŷ from −h̄ to h̄ immediately downstream of the inlet.
The beam boundary conditions for the quasi-1D model are the same as the DNS.
As discussed in section 2.2.1, the quasi-1D model results are independent of the in-
let velocity profile. Results also do not depend on inlet and outlet distances except
through loss coefficients ζo1 and ζo2 defined in equations 2.35, 2.37. We assume that
stagnation pressure loss at either end is negligible and take the no loss coefficients
values, ζo1 = 0 and ζo2 = 0 for the remainder of this section.

Lastly, we are interested in the dynamics near the DNS initial conditions, which,
apart from the small body force to deflect the beam, represents a (potentially un-
stable) equilibrium for both the DNS and the quasi-1D model. In this limit the
coordinate x, shown in both figures 2.3 and 4.1, coincides with the Lagrangian co-
ordinate s in figure 4.1. For small perturbations, the Lagrangian beam shape then
becomes the beam ŷ displacement, δ(x, t).

We will use DMD to find the least-stable mode of the DNS results using the pro-
cedure discussed in section 3.4.1. These results are directly comparable with the
eigenvalues and eigenmodes of the quasi-1D linear operator in equation 2.96, and
describe the linear dynamics of the system. In order to compare to DMD growth
rate, only the most dynamically significant eigenvalue of the quasi-1D will be
shown as well. If this eigenvalue has an imaginary part (and complex conjugate
pair since the data matrix is real), we will track the positive frequency counter-
part. Given the non-dimensionalization in 2.104 and 3.2, the model eigenvalues and
DMD spectrum, represented as λ, are scaled with the inverse of non-dimensional
convective time units. The Strouhal number is
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St =
Im [λ]

2π
=

fsL
U
, (4.1)

where fs is the dimensional frequency response of the beam.

4.2.2 FSI DNS Discretization and Data Analysis
The FSI DNS Eulerian mesh is uniform in x̂ and ŷ with grid spacing ∆x∗ = ∆x

L

similar to the verification cases in section 3.3.1. Because the parametric study spans
a wide range of ReL and ĥ values, with over 4000 simulations are carried out, the
∆x∗ is automatically determined by the most restrictive of three conditions: the grid
Reynolds number Re∆x ≤ 2; the minimum number of grid elements in ĥ is 20; the
minimum number of elements on the beam surface is 160,

∆x∗ = min
{

2
ReL

,
ĥ

20
,

1
160

}
. (4.2)

The Lagrangian grid spacing is always ∆s∗ = 2∆x∗, as suggested in [68]. The
time step size ∆t∗ is determined by holding the CFL = ∆t∗

∆x∗ = 0.2 for the ∆x∗

that satisfies the criteria 4.2. These conditions were determined by trial and error
to capture least 200 time steps per beam oscillating cycle for all results. The grid
Reynolds number chosen captures fluid advection and diffusion terms well. The
resulting ∆x∗, ∆t∗ combination produces results within acceptable wall-time for the
number of simulations ran in this study. We explore the effect of grid refinement
from criteria 4.2 in our results in section 4.2.3.

Data Analysis

To help clarify results in subsequent sections, we step through a representative ex-
ample of the FSI DNS data to obtain critical flutter values. The relevant dimension-
less parameters for the clamped-free boundary conditions are derived in section
2.3.6, and defined in table 2.3 (reproduced here for reference).

The beam displacement response is analyzed for each simulation in the series. We
show in figure 4.2 a segment of the beam tip displacement over time for the two
k̂ values in the series immediately adjacent to the stability boundary: k̂ = 4.17 as
stable and k̂ = 4.11 as unstable. The figure also shows the least-squares fit to the
exponential function coefficient ζ that captures the envelope of the amplitude decay
and growth of each segment, respectively. Their power spectra are shown in figure
4.3, with respective peak angular frequencies labeled ωmax.
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Table 4.1: Table of fluid structure non-dimensional parameters in FSI DNS grid
convergence study.

Parameter Value
m̂ 100
k̂ [3 - 4.5]
ĥ 0.05

ReL 200
ĥ2ReL 0.5
∆x∗ 0.0025

0 10 20 30 40

j"t$

-6

-4

-2

0

2

4

6

/ p
=L

#10!6 k̂ = 4:17 1 = !0:011

Ae1j"t$

/jp

(a) Stable k̂ = 4.17.

0 10 20 30 40

j"t$

-1.5

-1

-0.5

0

0.5

1

1.5

/ p
=L

#10!5 k̂ = 4:11, 1 = 0:011

/jp
Ae1j"t$

(b) Unstable k̂ = 4.11.

Figure 4.2: Beam tip amplitude time segment for FSI DNS results in table 4.1 for
stable and unstable k̂ values.
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Figure 4.3: Beam tip amplitude power spectrum for FSI DNS results in table 4.1
for stable and unstable k̂ values.

Each DNS result is processed according to the procedure in section 3.4.1. We now
plot the result of the DMD procedure as the physically meaningful spectra of k̂ =

4.11 and k̂ = 4.17, once again, along with their tip displacement fit parameter ζ ,
ωmax pairs in figure 4.4. The λ tracked corresponds to λ = maxλi Re [λi] and can be
seen as the ones closest to ζ and ωmax pair at each k̂.
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Figure 4.4: Comparison of dynamically significant DMD spectra (shown for
Im[λ] > 0 ) and fit pair (ζ, ωmax) for k̂ = 4.11 and k̂ = 4.17.
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Figure 4.5: DMD λ for simulation series in table 4.1.

Figure 4.5 shows λ values obtained through this process for all 24 simulations in
the series in table 4.1.

The flutter boundary critical values, k̂cr, is calculated as the linearly interpolated
result between the stable and unstable (superscripts j and j + 1, respectively) k̂

values corresponding to the stable and unstable values of Re[λ] at Re[λ] = 0,

k̂cr = −Re
[
λ( j)

] (
∆k̂
∆λRe

)
+ k̂( j). (4.3)

where ∆k̂ = k̂( j+1) − k̂( j) and ∆λRe = Re
[
λ( j+1)] − Re

[
λ( j)

]
. Similarly, the critical

angular frequency, Im[λ]cr, is the interpolated value of Im[λ] across the boundary
at Re[λ] = 0,

Im [λ]cr = −Re
[
λ( j)

] (
∆λIm
∆λRe

)
+ Im

[
λ( j)

]
, (4.4)
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where ∆λIm = Im
[
λ( j+1)] − Im

[
λ( j)

]
. For the data set in table 4.1, k̂cr = 4.14 and

Im [λ]cr = 3.78.

To illustrate the FSI DNS solution as the beam amplitude increases in time, we
select a representative unstable parameter set from table 4.1, where k̂ = 3.07 <

4.14 = k̂cr, as seen in figure 4.5. The cantilever tip time evolution is shown in
figure 4.6 with ∆t∗ =5E-4, with exponential growth rate ∼ 0.4.
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Figure 4.6: FSI DNS cantilever tip amplitude time evolution for case in table 4.1 at
k̂ = 3.07.

The x velocity profile within the channel at different snapshots in t∗ = j∆t∗ are
shown in figure 4.7. The cantilever can be seen to still remain close to its equilib-
rium at t∗ = 7.5. A slight shape change can be seen at t∗ = 20, and quickly evolves
of the next 5 convective time units to tip displacements close to the channel walls.
The snapshot at t∗ = 25 illustrates how the restriction of the upper channel over
most of the length of the cantilever corresponds to higher axial velocities. This can
also be seen toward the final 10% of the cantilever length on the lower channel as
well. A resemblance to the second orthogonal Euler-Bernoulli beam mode becomes
apparent after t∗ = 22.5. This can be seen in the normalized DMD mode shown in
figure 4.8 in both the real and imaginary parts of the model shape.

Hence, the system shown becomes unstable at a single eigenvalue corresponding
to a single mode shape. The critical parameters when the stable-to-unstable transi-



89

tion occurs is acquired via simulation over a range of parameters and interpolating
between the set that captures negative and positive growth rates.

(a) t∗ = 7.5.

(b) t∗ = 20.

(c) t∗ = 22.5.

(d) t∗ = 25.

Figure 4.7: FSI DNS x velocity contour snapshots at different convective time units
t∗ for case in table 4.1 and k̂ = 3.07.
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Figure 4.8: Real and imaginary parts of unstable FSI DNS mode for case in table
4.1 at k̂ = 3.07.
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4.2.3 Grid Convergence and Effective Beam Thickness
The convergence of the FSI DNS beam dynamics as a function of the spatial dis-
cretization is explored through a grid refinement study. Once again, the parameter
set in table table 4.1 is chosen for this analysis. This is because they insure that the
lubrication-theory approximations introduced in section 2.2.1 are satisfied, and thus
the quasi-1D model is expected to accurately represent the fully-coupled system. k̂

is varied as the bifurcation parameter, while m̂, ĥ, and ĥ2ReL are held constant;
DMD eigenvalues are calculated for ∆x∗, ∆x∗

2 , and ∆x∗
3 , where ∆x∗ satisfies criteria

4.2. The procedure described in section 3.4.1 is applied to the beam displacement
results from simulations with the parameter ranges in table 4.1 and for each refined
∆x∗ value.

Figure 4.9 shows the real and imaginary parts of the least-damped eigenvalue for all
k̂ and ∆x∗ grid values. The leading quasi-1D model eigenvalues are also shown for
parameters in table 4.1. As the FSI DNS grid is refined, the DMD spectrum appears
to be converging to the model eigenvalues: the real part of the DMD spectrum
are monotonically moving toward the real part of the model eigenvalues; yet most
notably, the imaginary part of the DMD spectrum is moving down for points where
k̂ < 3.6 and up for k̂ > 3.6, approximating the quasi-1D curve shape.

To better understand the slow λ convergence, we consider the beam thickness in
light of the immersed boundary projection method. If the Eulerian mesh does not
resolve the physical thickness of the beam, the immersed boundary produces an “ef-
fective” beam thickness that is proportional to ∆x∗. This phenomenon is caused by
the discrete kernel of the delta function (equation 3.3) being always positive, in ad-
ditional to the unidirectional flow conditions on both sides of the beam (i.e. moving
in the +x̂ direction). The IB projection method ensures that the no-slip condition
is exactly enforced at each Lagrangian IB point. Once the discrete delta function
smears it onto the flow, the Navier-Stokes equations are altered by the wall forcing
for Eulerian points within the delta function kernel support. The flow outside its
support, however, behaves as if the no-slip condition had been applied at the IB
point locations. This effective thickness is not necessarily a physical quantity and
cannot be systematically measured, but an upper bound for the effective thickness is
the number of Eulerian support points of delta function kernel (6 for equation 3.3)
and expected to vary with ∆x∗. By refining ∆x∗, we are also decreasing the beam’s
effective thickness, and slightly increasing the channel size. This effect would be
more pronounced as ĥ decreases, when the dynamics become a stronger function
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Figure 4.9: DMD spectrum and quasi-1D model eigenvalues in DNS grid refine-
ment study.

of ĥ [39, 41, 42, 76].

Running the full parametric study with the finest grid in figure 4.9 presents issues
due to computational resource restrictions and time constraints1. These problems
would be significantly amplified should the actual beam thickness need to be re-
solved by the Eulerian mesh.

1∆x∗ grid results require approximately 32 hours of wall-time computation, while ∆x
∗

3 grid
requires approximately 13 days.
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Figure 4.10: DMD spectrum and quasi-1D model eigenvalues for corrected channel
width ĥ.

Hence, we explore instead altering the channel thickness within the quasi-1D model
to understand whether the slight change in channel width could explain the slow
convergence. Figure 4.10 shows the comparison of the DMD spectrum for ∆x∗ and
the quasi-1D model with a corrected channel width,

ĥcorr = ĥ − 1.7∆x∗, (4.5)

which gives an effective beam thickness slightly smaller than 3.5 Eulerian cells (or
slightly larger than 1.5 Lagrangian cells). This result replicates the DMD spectrum
extremely well, both in shape and in the instability boundary at k̂cr = 4.17; it
also confirm the sensitivity of the dynamics to ĥ, and lends creditability to the
plausibility of the convergence hypothesis. Hence, we apply the grid criteria 4.2 in
subsequent results presented in section 4.2.4. We assume that the effective beam
thickness is captured by equation 4.5 when comparing between FSI DNS DMD
spetra and quasi-1D eigenvalues for all grids in this study.
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4.2.4 Comparison of FSI DNS and Quasi-1D Model Results
The aim of this section is to understand non-dimensional parametric values where
the quasi-1D model is a good approximation of the fluid-structure physics. Specif-
ically, we choose our parameter set to assess the boundary of conditions described
in section 2.2.1:

1. Axial variations in channel gap are not large: h′20 � 1 and δ′2 � 1. This
implies higher wave-numbers beam modes are not well captured. At a con-
stant ĥ, higher modes are excited as m̂ decreases. Here, we will restrict our
analysis to m̂ > 1 and to the first two unstable modes of the beam.

2. The characteristic length of the channel gap is small: ĥ � 1. The analysis is
restricted to ĥ ≤ 0.125.

3. Inertial effects associated with velocity profile are small: ĥ2ReL � 1. We
will explore a wider margin of the viscous parameter and present detailed
results up to ĥ2ReL < 10, but focus on those around ĥ2ReL ∼ 1.

Similar to section 4.2.2, FSI DNS simulations are run for a set of parameters,
with k̂ as the bifurcation parameter in all simulations. For each parameter trio[
ĥ, m̂, ReL

]
, we find the pair k̂cr and Im[λ]cr as the critical values for the flutter

boundary per equations 4.3 and 4.4.

We first explore the flutter boundary (i.e. k̂cr) at a constant ĥ and ReL as m̂. ReL

values are chosen such that ĥ2ReL remains constant across the different ĥ values
tested. Table C.1 in appendix C shows the non-dimensional input parameter ranges
and grid information for this first combination of FSI DNS simulations, along with
∆x∗ and corresponding ĥcorr values used. Since the k̂ values were adapted in order
to find the flutter boundary for each parameter triplet, the table also shows the max-
imum ∆k̂, ∆λRe, and ∆λIm across the instability boundary for all m̂ values within
the range specified. Table 4.2 is a summary of table C.1.

Convention in the literature [39, 41, 76] is to have solid-centric non-dimensional
groups as opposed to the fluid-centric ones shown in table 2.3. A good reason for
this representation is the clear observation of the mode switching behavior, as the
non-dimensional frequency when scaled with structural parameters remain constant
for each mode. We will follow this convention with our results, and introduce two
new dimensionless groups as combinations of m̂ and k̂,
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Table 4.2: Table of cases for constant channel flow simulations with varying m̂ and
k̂.

Case # ĥ ĥ2ReL ReL m̂ k̂
1 0.0250 0.5000 800 [100 − 2] [0.01 − 50]
2 0.0500 0.5000 200 [100 − 1] [0.04 − 50]
3 0.0500 1.2500 500 [100 − 1] [0.01 − 2.5]
4 0.0500 2.5000 1000 [100 − 1] [0.01 − 2.5]
5 0.1250 0.5000 32 [100 − 1] [0.0008 − 40]
6 0.1250 1.2500 80 [100 − 1] [0.008 − 40]

U∗ =

√
m̂

k̂
=

ts

t f
, M∗ =

1
m̂
. (4.6)

U∗ represents the ratio of the solid time scale ts to that of the fluid t f . In this space,
U∗ is a proxy for k̂ and M∗ for m̂. The solid-centric frequency response can be
calculated from the Strouhal number as

f ∗s = U∗St = fsts, (4.7)

where St is defined in equation 4.1.

Flutter Boundary as a Function of Mass and Confinement

Results in this section are given in the order of table 4.2. We present the (the stable-
to-unstable) flutter boundary transversed by increasing U∗cr, as well as the solid-
centric frequency response f ∗scr, as functions of ĥ and M∗. Relevant representative
mode shapes are also shown.

Figure 4.11 shows the narrowest channel at ĥ = 0.025. The quasi-1D model pre-
dicts the flutter boundary exceptionally well for the range of M∗ simulated. The
corresponding beam mode shapes are given in figure 4.12, and these are qualita-
tively similar in both the DMD and quasi-1D results. We attribute small oscilla-
tions superimposed onto the primary mode shape to the DMD data matrix having
components from the impulsive start and body force perturbation at t = 0. Mode
switching is evident as M∗ increases from 0.01 to 0.3: not only is there an abrupt
jump in f ∗scr, but an additional effective node appears in both the real and imaginary
parts of the modes shown. Specifically, figure 4.12 shows unstable mode shapes at
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two M∗ values: 0.01 and 0.3. The corresponding U∗ is shown at the top of each
mode shape, and chosen as the second unstable discrete U∗ point from U∗cr for the
FSI DNS DMD modes. The companion quasi-1D mode is shown for the closest
quasi-1D discrete U∗ result available. Mode shapes are normalized by the magni-
tude of the largest component within each respective vector, so that the amplitudes
plotted are independent of the underlying x grid, and a qualitative comparison can
be made more easily between shapes. This format is followed for subsequent mode
shape figures in the cases that follow.

Modes at M∗ = 0.01 in figure 4.12 resemble mostly a combination of the fun-
damental and second orthogonal beam modes in equations 2.79 and 2.80 (index
k = {1, 2}), while modes at M∗ = 0.3 bear a resemblance to the third orthogonal
beam mode (index k = {1, 2, 3}).

Similar results for U∗cr, f ∗scr, and mode shapes are seen in figures 4.13 and 4.14, re-
spectively, where the channel has been doubled in width to ĥ = 0.05 holding ĥ2ReL

constant. In particular, we confirm that quasi-1D model replicates the flutter bound-
ary well for all M∗ values simulated. Quasi-1D results show multiple boundaries at
a single value of M∗. The second boundary point is at a given M∗ is representative
of a second eigenvalue crossing the stability boundary in the stable-to unstable di-
rection as U∗ increases. This is true for all flutter boundary plots shown that lack
the injective mapping between M∗ and Ucr

Figures 4.15 and 4.16 show similar results for the case where ĥ2ReL is raised to
1.5, holding ĥ = 0.05 . The flutter boundary has moved to higher values of U∗,
indicating stabilization with increasing ReL . Quasi-1D and FSI DNS modes still
mirror each other, but M∗ = 0.01 and M∗ = 0.3 are now primarily composed
combinations of the fundamental and second orthogonal beam modes. This shift
can be seen as the mode switching inflection point has moved higher in M∗ relative
to cases 1 and 2.

A further increase ĥ2ReL = 2.5 yields results in figures 4.17 and 4.18. The quasi-1D
model marginally under-predicts the FSI DNS boundary in figure 4.17 (i.e quasi-
1D model is less stable), with the bias increasing with M∗. Consequently, the mode
switching M∗ point and higher mode boundary are under-predicted, yet f ∗scr remains
in close agreement. The modes at M∗ = 0.01 in figure 4.18 also show some dis-
agreement, with the DMD results resembling orthogonal beam mode three more
than the quasi-1D model.
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Further increasing ĥ causes an increasing discrepancy between the DNS and quasi-
1D model prediction at higher M∗ values. Figure 4.19 shows the flutter boundary
for ĥ2ReL = 0.5, but with ĥ = 0.125. The model accurately predicts flutter prop-
erties for M∗ < 0.2, but underestimates the higher mode boundary and critical
frequencies for M∗ > 0.4. This is also evident in the mode shapes in figure 4.20, as
the M∗ = 0.01 modes are in agreement, but the M∗ = 0.3 modes are not. Holding
constant ĥ = 0.125, but further increasing ĥ2ReL to 1.25 in case 6, figures 4.21
and 4.22, we also begin to see larger differences in the lower M∗ range. The quasi-
1D model over-estimates the flutter boundary (i.e model is more stable) relative to
the FSI DNS simulations for M∗ < 0.2 but under-estimates it for M∗ > 0.4, also
missing the mode switching M∗ point. f ∗scr values remain well predicted through all
values of M∗, however, as long as the system is in the correct branch.

Thus, ĥ ≤ 0.05 and ĥ2ReL ≤ 0.5, the results support the claims associated with the
lubrication closure, and show that the quasi-1D model predicts critical flutter values
well in this limit. This remains true even as condition 1 is violated as M∗ increases
past mode switching. Results where ĥ2ReL = 0.5 is kept constant and ĥ increases
from 0.025 to 0.125 illustrate that, indeed, as we violate condition 2, the quasi-
1D boundary predictions worsen. Their results miss the mode switching M∗ along
with the critical properties for M∗ ≥ 0.4. Yet even at ĥ = 0.125, critical values
for M∗ < 0.2 remain well approximated by the model. This indicates that as long
as condition 1 holds, and only the lowest mode is considered, the model remains
accurate. Cases where we hold ĥ = 0.05 constant and increase ĥ2ReL from 0.5 to
2.5 (ReL from 200 to 1000), show that condition 3 does not restrict the quasi-1D
model to ĥ2ReL � 1 for accurate predictions. This is true as condition 1 is violated
with increasing M∗ through mode switching. However, considering case 6, we see
the ĥ effect as we violate 2. In summary, condition 2 appears to be the strongest
restriction: as long as ĥ remains small (i.e. ĥ ≤ 0.05), the quasi-1D model predicts
the flutter boundary for a wide range of M∗.
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Figure 4.11: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.025 and ĥ2ReL = 0.5, case 1 in table 4.2.
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Figure 4.12: Comparison of real and imaginary parts of unstable mode near flut-
ter boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.025 and
ĥ2ReL = 0.5 (case 1 in table 4.2).
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Figure 4.13: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.05 and ĥ2ReL = 0.5, case 2 in table 4.2.
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Figure 4.14: Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.05 and ĥ2ReL =

0.5 (case 2 in table 4.2).



99

10!2 10!1 100

M $

0

2

4

6

8

10

U
$ cr

Unstable

Stable

FSI DNS
Quasi-1D Model

(a) U∗cr as a function of M∗.

10!2 10!1 100

M $

0

5

10

15

f
$ sc

r

Stable

Unstable

FSI DNS
Quasi-1D Model

(b) f ∗scr as a function of M∗.

Figure 4.15: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.05 and ĥ2ReL = 1.25, case 3 in table 4.2.
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Figure 4.16: Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.05 and ĥ2ReL =

1.25 (case 3 in table 4.2).
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Figure 4.17: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.05 and ĥ2ReL = 2.5, case 4 in table 4.2.
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Figure 4.18: Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.05 and ĥ2ReL =

2.5 (case 4 in table 4.2).
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Figure 4.19: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.125 and ĥ2ReL = 0.5, case 5 in table 4.2.
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Figure 4.20: Comparison of real and imaginary parts of unstable mode near flut-
ter boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.125 and
ĥ2ReL = 0.5 (case 5 in table 4.2).
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Figure 4.21: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.125 and ĥ2ReL = 1.25, case 6 in table 4.2.
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Figure 4.22: Comparison of real and imaginary parts of unstable mode near flut-
ter boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.125 and
ĥ2ReL = 1.25 (case 6 in table 4.2).
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Flutter Boundary as a Function of Viscosity and Confinement

Here we restrict fluid-to-structure mass ratio M∗ = 0.01, and explore the robust-
ness of the quasi-1D model predictions when only the lowest mode is considered.
Condition 1 is automatically satisfied, and we plot U∗cr and f ∗scr with ĥ2ReL as the
bifurcation parameter for several values of ĥ in order to understand the model ac-
curacy when varying conditions 2 and 3, respectively. Table 4.3 summarizes the
parameter space, with further details in each entry given in table C.2 in appendix C.

Table 4.3: Table of cases for constant channel flow simulations with varying ĥ2ReL
and k̂.

Case # ĥ ĥ2ReL k̂
1 0.05 [0.1-4.5] [0.01 − 80]
2 0.125 [0.1-9.5] [0.01 − 50]

In case 1, ĥ = 0.05 and ĥ2ReL ranges from 0.1 to 4.5, with an equivalent ReL =

1800 at the upper limit. The flutter boundary is shown in figure 4.23 with U∗cr

and the frequency response in f ∗scr of the quasi-1D model closely replicating results
from FSI DNS. A deviation appears in U∗cr when ĥ2ReL ≈ 3, but fscr is steadfast.
Representative modes are shown in figure 4.24 at ĥ2ReL = 3 and agree well with
one another. In case 2, ĥ = 0.125 and ĥ2ReL ranges from 0.1 to 9.5, with an
equivalent ReL = 608 at the upper limit. Critical values at the flutter boundary
are shown in figure 4.25. Similar to case 1, quasi-1D results agree reasonably well
over the range of ĥ2ReL , with a slight deviation near ĥ2ReL = 2. Most notable,
however, is the agreement at ĥ2ReL > 5, as both results appear to asymptote to a

line U∗cr ∼
(
ĥ2ReL

)1/2
. Modes are shown in figure 4.26, with FSI DNS mode having

more resemblance to the third orthogonal beam mode than the quasi-1D mode.

In summary, results show that the quasi-1D model is able to predict critical values
at the flutter boundary reasonably well for ĥ ≤ 0.125 and ĥ2ReL ≤ 10 for M∗ =

0.01, corresponding to a “heavy” beam. The results at ĥ2ReL � 1 are particularly
surprising given the use of condition 3 in the quasi-1D lubrication closure relation.
Recall, however, that this bound appears to only hold in the limit where M∗ � 1.
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Figure 4.23: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.05 and M∗ = 0.01, case 1 in table 4.3.
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Figure 4.24: Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.05, M∗ = 0.01,
and ĥ2ReL = 3 (case 1 in table 4.3).
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ĥ2ReL

0

5

10

15

20

U
$ cr

Unstable

Stable

FSI DNS
Quasi-1D Model

(a) U∗cr as a function of ĥ2ReL .
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Figure 4.25: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.125 and M∗ = 0.01, case 2 in table 4.3.
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Figure 4.26: Comparison of real and imaginary parts of unstable mode near flutter
boundary from quasi-1D model (left) and FSI DNS (right) at ĥ = 0.125, M∗ = 0.01,
and ĥ2ReL = 3. (case 2 in table 4.3).

4.2.5 Quasi-1D Flutter Boundary Comparison to Inviscid Model
Given results from section 4.2.4, the ability of the quasi-1D model to predict the
flutter stability behavior even when ĥ2ReL is not small appears promising. We
would like to compare quasi-1D predictions in cases where ĥ2ReL � 1 while ĥ �
1 to an inviscid flow solution. Shoele and Mittal [39] derive such an inviscid model
for channel flow and explore the flutter stability boundary as a function of ĥ. ĥ =

0.05 is the lowest parameter value of ĥ they provide. Thus, taking the case for
ĥ = 0.05 and ĥ2ReL = 1.25 as the starting point, we compare U∗cr as a function of
M∗ for ĥ2ReL = [1.25−50] (ReL = [500−2×104]) for the lowest frequency mode
branch. Results are shown in figure 4.27. Notable trends appear as the viscous term
is increased: first, as ĥ2ReL increases from 1.25 to 2.50, the system is stabilized as



106

the stability boundary shifts upwards. Yet as ĥ2ReL is further increased to 12.50 and
thereafter the system is destabilized for M∗ > 0.03, with the boundary eventually
disappearing for 0.03 < M∗ < 0.2 at ĥ2ReL = 50. This means that no matter
the stiffness of the system, the first mode is unstable if the beam is heavy enough.
The original stabilization trend for increasing ĥ2ReL remains true, however, for
M∗ < 0.03. Furthermore, as ĥ2ReL becomes large, the quasi-1D flutter boundary
appears to near the inviscid results acquired from [39], with the mode switching
inflection nearly matching over all ĥ2ReL boundaries shown.

Shoele and Mittal [39] conjectured based on earlier DNS studies [76] that ReL ≈
200 was enough to consider the system inviscid at least over the ĥ values in their
study. Though this may be true for ĥ > 0.125, the inviscid behavior boundary for
ĥ = 0.05 appears to be ReL ≈ 2× 104 from figure 4.27. Predictions of the quasi-1D
model indicate that the choice of ReL for inviscid treatment is a strong function of
ĥ.
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Figure 4.27: Comparison of flutter boundary for lowest frequency mode between
different quasi-1D model (Q1D) ĥ2ReL values and inviscid model by Shoele and
Mittal [39] at ĥ = 0.05.

In light of these results and those in section 4.2.4, we utilize the quasi-1D model to
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produce the complete flutter boundary for M∗ = 0.01 in figure 4.28 and M∗ = 0.1
in figure 4.29. Both figures only show the flutter boundary for the lowest frequency
mode branch. Three trends become apparent from these plots: first, as M∗ in-
creases, the lowest frequency mode is destabilized significantly; as ĥ2ReL increases,
the mode is stabilized. This stabilization is accelerated at higher ĥ, for values for
ĥ2ReL < 10. Figure 4.27 shows that opposite is true as ĥ2ReL is increased further.
Lastly, as ĥ increases, the lower mode is stabilized.

Though f ∗scr remains within a narrow range for the lowest frequency mode, an inter-
esting pattern arises as ĥ2ReL and ĥ are varied. Bands of lower frequency appear
alternating with higher frequency states in both M∗ values. This indicates that these
parameters have an effect on the frequency response, but it is much less pronounced
than their effects on the stability boundary as judged by U∗cr.

(a) U∗cr contours vs. ĥ2ReL and ĥ. (b) f ∗scr contours vs. ĥ2ReL and ĥ.

Figure 4.28: Quasi-1D predicted critical flutter values as a function of ĥ2ReL and ĥ
at M∗ = 0.01.
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(a) U∗cr contours as a function of ĥ2ReL and ĥ. (b) f ∗scr contours as a function of ĥ2ReL and
ĥ.

Figure 4.29: Quasi-1D predicted critical flutter values as a function of ĥ2ReL and ĥ
at M∗ = 0.1.

4.2.6 Elastic-Translating Boundary Condition in a Constant Channel
We now consider the elastic-translating boundary condition defined in section 2.3.3
for the quasi-1D model, and in section 3.3.2 for the FSI DNS. The problem ge-
ometry is shown in figure 4.30, with its leading edge boundary condition specified
as a simple harmonic oscillator, via non-dimensional parameters m̂bc, ĉbc, and k̂bc

defined in table 2.4.

Uin = 1

L = 1

ā ā

h̄

�h̄

3h̄

Elastic-translating BC

Figure 4.30: Illustration of linear diffuser flow geometry for cantilevered beam
(top), and elastically-mounted rigid beam (bottom).

We will, once again, explore agreement between the model and FSI DNS simu-
lations that map the stability boundary in k̂ space. Our results are plotted in the
convention of U∗, as before, defined in equation 4.6. Given results from section
4.2.4, we restrict M∗ = 0.02, ĥ = 0.125, ĥ2ReL = 0.5 as the beam parameters that
critical properties are well captured by the clamped-free quasi-1D model, but at the
“boundary” of criterion 3, where ĥ � 1 criterion.
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Since the clamped-free boundary condition is the limiting case where the boundary
stiffness, k̂bc → ∞, we choose k̂bc = 0.01 to probe the dynamics in the opposite
limit of low flexure stiffness. Once again, k̂ is the bifurcation parameter, and the
k̂cr (or U∗cr) is mapped as a function of m̂bc as defined in table 2.4. The structural
damping parameter ĉbc = 0 for all cases. Table 4.4 shows the case run in this
section, with m̂bc and k̂ parameter ranges shown. Parameter and spatial grid details
for can be found in table C.3 in appendix C.

Table 4.4: Table of cases for constant channel flow simulations with elastic-
translating boundary conditions. Parameters m̂bc and k̂ are varied.

Case # ĥ2ReL ReL m̂ ĥ k̂bc m̂bc k̂
1 0.5 32 50 0.125 0.1 [ 7 - 1800] [ 0.42 - 41.67 ]

Figure 4.31 shows the critical values for cases in table 4.4. The stability boundary in
U∗ agrees well between the FSI DNS and quasi-1D model. In particular, the mode
branching that occurs as m̂bc decreases appears to be well captured. Similarly, the
critical frequency trend is replicated, though with a slight under prediction by the
model. A representative mode is shown in figure 4.32 for m̂bc = 100, also showing
good qualitative agreement between model and DNS DMD results.

By spanning 3 orders of magnitude in m̂bc with a low boundary stiffness value
(k̂bc = 0.01), results from figure 4.31 indicate that the model also provides a good
approximation of the dynamics when the elastic-translating boundary condition is
introduced into the system.

(a) U∗cr as a function of m̂bc.
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(b) f ∗scr as a function of m̂bc.

Figure 4.31: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.125, M∗ = 0.02, and ĥ2ReL = 0.5 for all cases in table 4.4.
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Figure 4.32: Comparison of quasi-1D model (left) and FSI DNS (right) normalized
unstable mode shapes at ĥ = 0.125, M∗ = 0.02, m̂bc = 100.

4.3 Diffusing Channel Flows
Constant channel flow results have shown that the quasi-1D model is able to predict
critical properties for the flutter instability over a wide range of parameters. The
model was also successful in predicting the stability boundary for the system with
a translating leading edge.

↵

↵

Uin = 1

L = 1

(a) Cantilevered beam.

↵

↵

Uin = 1

L = 1

ā ā

h̄

�h̄

3h̄

Elastic-translating BC

(b) Rigid beam.

Figure 4.33: Illustration of linear diffuser flow geometry for cantilevered beam
(bottom), and elastically-mounted rigid beam (top).

We would like to broaden parameter set once again to include diffuser geometries.
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In particular, we would like to assess the flutter boundary as angle α is increased
from the constant channel cases (α = 0◦). Figure 4.33 illustrates a symmetric
diffuser with both a cantilevered and an elastically mounted rigid beam at its center.
As before, the translating boundary condition is constrained to up and down motion
as a simple harmonic oscillator. Because of the large parameter space, we consider
both geometries separately when comparing FSI DNS results to quasi-1D model
predictions. We further restrict the cantilever to M∗ = 0.02 and the rigid body to a
low stiffness case k̂bc = 0.1, as done previously.

4.3.1 Cantilever in Diffusing Channel
We begin with the cantilever within a diffusing channel configuration. As men-
tioned, we restrain cases to heavy beams, with M∗ = 0.02 (m̂ = 50), and consider
two parameter sets, both of which assess the bifurcation parameter k̂ as function
of diffuser angle α. Table 4.5 shows a summary of cases and parameters, with
table C.5 in appendix C containing simulation mesh and flutter boundary interpo-
lation details. The upper bound of α = 6◦ (h′0 = tan 6◦ ∼ 0.1) is chosen to ensure
that both condition h′20 � 1 is satisfied, along with ensuring that the flow remains
attached to the walls of the channels.

Table 4.5: Table of cases for cantilever beam in a diffuser. Parameters α[◦] and k̂
are varied.

Case # ReL ĥ2ReL m̂ ĥ α[◦] k̂
1 200 0.5 50 0.05 [ 1 - 6 ] [ 50 - 0.1 ]
2 400 6.25 50 0.125 [ 1 - 6 ] [ 0.83 - 0.042 ]

Representative FSI DNS flow contour snapshots of x velocity are shown in figure
4.34 for the two cases considered on table 4.5 at α = 6◦. Plots shown are for sta-
ble U∗ simulations after at least five L based convective time units. The velocity
profiles can be seen as attached to diffuser walls, evident by the non-negative ve-
locity values and, consequently, the lack of a recirculation zone within either top or
bottom channels.
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(a) Case 1.

(b) Case 2.

Figure 4.34: Snapshot contours of x velocity for representative stable U∗ simula-
tions in table 4.5 cases at α = 6◦. Snapshots are taken after least five L based
convective time units.

The first case is ĥ2ReL = 0.5 at ĥ = 0.05, where the quasi-1D model predicted the
FSI DNS stability boundary extremely well in a constant channel geometry. The
parameters fall within the original criteria for model validity, ĥ � 1, ĥ2ReL �
1, and the gradual δ and h0 variation is satisfied by the heavy beam constraint
(M∗ = 0.02), ensuring only the lowest system mode bifurcates into flutter. Results
of critical values are shown in figure 4.35 and a representative mode shape at α = 2◦

in figure 4.36. Starting with the latter, mode shapes agree well qualitatively and
appear to resemble the second orthogonal beam mode. The critical values also
appear to be well captured by the model, especially at the lower diffuser angles, with
the model overestimating the stability boundary and underestimating the frequency
response especially at α = 6◦, both by about 10%. The system becomes more stable
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as α increases. The flow remains attached to channel walls for all tested α values,
ascertained by ensuring axial flow profile is unidirectional over the entire channel
gap for the length of the elastic member.
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(a) U∗cr as a function of α.
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Figure 4.35: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.05, M∗ = 0.02, and ĥ2ReL = 0.5 for all cases in table 4.5.

Figure 4.36: Comparison of quasi-1D model (left) and FSI DNS (right) normalized
unstable mode shapes at ĥ = 0.05, M∗ = 0.02, and α = 2◦.

The second case is taken at ĥ = 0.125 and ĥ2ReL = 6.25, which is at the upper
end of applicability of the quasi-1D model based on the results given in section 4.2,
where the flutter boundary was only correctly predicted at small M∗ values. Critical
values shown in figure 4.37, however, show good agreement with the FSI DNS up to
about α ≤ 2◦, at which point mode-switching takes place in the model prediction.
Both leading and the second eigenvalues, λ1 and λ2, respectively, are shown and
labeled in figure 4.37 to clearly distinguish stability branches as the U∗cr curves
intersect. The mode switching can be seen as λ2 becomes the least stable eigenvalue
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over λ1 at α ∼ 2◦ and thereafter. Once again, the model prediction misses the mode
switching point and the subsequent dynamics at these higher values of ĥ and ĥ2ReL

for increasing α, where condition h2
0 � 1 is increasingly violated. The critical

frequency response prediction by the model agrees well with the DNS results if λ1

had remained the least stable eigenvalue, however the model predicts f ∗scr ∼ 10 for
α ≥ 2◦. The mode shapes at α = 2◦ are plotted in figure 4.38 and show qualitatively
good agreement, resembling the second orthogonal beam mode.

When comparing figure 4.35 to figure 4.37, we see that the stabilizing effect when
increasing α is stronger in case 1, where ĥ = 0.05 and ĥ2ReL = 0.5, than at the
higher values associated with case 2. This should be contrasted with the FSI DNS
results, which are qualitatively similar to each other in both cases. The monoton-
ically increasing U∗cr trend in case 1 is also seen in the FSI DNS data in case 2,
although the trend is not replicated in case 2 model results, as it misses the mode
switching point after α > 2◦.

In summary, the quasi-1D model captures the effect of the diffuser angle (over the
range of angles tested) provided that ĥ and ĥ2ReL are sufficiently small to ensure
the assumptions of the lubrication theory closure.
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(a) U∗cr as a function of α.
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Figure 4.37: Comparison of FSI DNS and quasi-1D model flutter boundary critical
values at ĥ = 0.125, M∗ = 0.02, and ĥ2ReL = 6.25 for all cases in table 4.5.
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Figure 4.38: Comparison of quasi-1D model (left) and FSI DNS (right) normalized
unstable mode shapes at ĥ = 0.125, M∗ = 0.02, α = 2◦.

4.3.2 Elastically-Mounted Rigid Beam in Diffusing Channel
Next, we consider an elastically mounted rigid beam set up. As done in the constant
channel evaluation of the moving boundary condition, the aim is to consider a case
where k̂bc is low and span the flutter boundary and frequency over wide range of
m̂bc. Table 4.6 shows a single case where we consider α the bifurcation parameter
as a function of m̂bc, with the complete table for individual simulation sets and mesh
parameters in appendix C, table C.4.

Table 4.6: Table of cases for elastically-mounted rigid beam in a diffuser. Parame-
ters m̂bc and α[◦] are varied.

Case # ReL ĥ2ReL k̂bc ĥ m̂bc α[◦]
1 400 6.25 0.1 0.125 [ 0.1 - 10 ] [ 0.1 - 10 ]

Figure 4.39 shows critical αcr and Stcr values for FSI DNS and quasi-1D model.
The rigid beam is stable at α ≈ 0◦ and becomes unstable at αcr over the α ranges
simulated. The agreement is reasonable in both the boundary and frequency re-
sponse plots, where a destabilization behavior is evident as m̂bc increases. Since the
beam is rigid, no mode shapes are shown, as only motion in transverse direction
can exist in the response.
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(a) U∗cr as a function of m̂bc. (b) Stcr as a function of m̂bc.

Figure 4.39: Comparison of FSI DNS and quasi-1D model elastically mounted
rigid beam flutter boundary critical values at ĥ = 0.125 and k̂bc = 0.1 for all cases
in table 4.6.

4.4 Summary
The flutter boundary determined from the FSI DNS is well predicted by the quasi-
1D model when parameter values are selected so that the assumptions underlying
the lubrication-theory closure are met. Moreover, our results show that the validity
bounds are flexible: by enforcing ĥ � 1 strictly, the model is able to predict flutter
properties at both large ĥ2ReL and M∗ values. The agreement with FSI DNS values
at high ĥ2ReL is surprising; yet it is corroborated by the comparison between the
inviscid model flutter boundary by Shoele and Mittal [39] as ĥ2ReL � 1. The
inclusion of the elastic-translating boundary condition does not alter these findings:
the quasi-1D prediction of critical values over a wide range of boundary parameters
also agrees well with those predicted by FSI DNS.

The flutter boundary is also well predicted for the range of diffuser angles modeled
and simulated. In particular, the bifurcation diffuser angle for the rigid beam can
be predicted over a wide range of mass ratios when the elastic-translating leading
edge boundary stiffness is low. When considering the cantilever-diffuser geometry
at parameter values within lubrication theory bounds, the flutter stability boundary
is also well predicted for diffuser angles < 6◦.

In successfully replicating the stability boundaries from the FSI DNS simulations,
the quasi-1D model corroborates the hypothesis that the leakage flow instability is
the driving mechanism for the response.
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C h a p t e r 5

EXPERIMENTAL STUDY OF FLEXTENSIONAL
FLOW-ENERGY HARVESTER

5.1 Introduction
In this chapter, we explore the flextensional flow-energy harvester design from an
experimental standpoint in the context of fluid-structure interaction. The structure
is first characterized with the finite element method in order to understand the fun-
damental properties of the structure that dictate its dynamics when driven by fluid-
flow. Experiments are then carried out to measure structural properties associated
with the flexure, including its effective stiffness, mass, and damping. Finally, we
measure the device’s dynamical response as a function of flow rate. Specifically,
we ascertain when the system achieves high amplitude self-sustained oscillations,
where the energy conversion from fluid motion to structural vibration is larger than
other regimes observed. The last portion of this chapter compares the predicted re-
sponse from the model proposed in chapter 2 to the experimental results. We use the
voltage output from the piezoelectric stacks as a measurement tool, and as a proxy
to system dynamics. The primary goal is to characterize the fluid-structure inter-
action and understand its underlaying physics rather than to optimize the electro-
mechanical design. No energy harvesting circuitry has been implemented in the
current set up.

5.2 Flextensional Flow-Energy Harvester Design
The flow-energy harvester based on flextensional actuators was first introduced by
Lee et al. [26]. Typically, flextensionals are used due to their ability to convert
small motion and large forces to small forces and large motions [26]. The idea is to
fundamentally invert the use of the actuator as a transducer, and convert the large
structural motion into large stresses (and resulting power) onto the piezoelectric
elements.

Figure 5.1 illustrates the current flextensional flow-energy harvester. The design has
a flexure that supports two piezoelectric stacks (PZT 1 and PZT 2) through a center
mount that is attached via set-screw, which allow for multiple flexure structural
properties.
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Figure 5.1: Current version of flextensional flow-energy harvester with custom de-
signed flexure.

The amount of torque applied to the set-screw pre-stresses the piezoelectric stacks,
and consequently changes the dynamical properties of the flexure. Adding or re-
moving torque to the set-screw is how we will change the stiffness k0, damping c0,
and effective mass m0. Measuring those properties will be discussed in more detail
in section 5.3.

The flow path begins from a round ≈ 15 mm diameter inlet into the test section.
The flow impinges on the fixed base and is directed onto the top and bottom paths
illustrated in figure 1.3b. The beam is centered along channel, such that the flow
path is symmetric. Figure 5.2 illustrates the top channel, with dimensions listed
in table 5.1. The flow is converging for L2 ≈ 0.1L along x until it bypasses the
constriction at the throat h̄, and expands with θ = 19◦ diffuser for ≈ 0.7L. The
remaining 0.3L the diffuser tapers off into < 1◦ exit at the end of the beam. The
total expansion is ≈ 15:1 from h̄. The test fluid is air at standard temperature and
pressure. This is primarily the case because of initial issues with water and oil
experiments: pump-driven flow loops, even with pressure attenuators, would alter
the dynamics of the harvester considerably. Using air as the test fluid is a good,
low cost iteration at obtaining a data set that could be used to initially characterized
the system, in preparation for future, gravity driven liquid tests, if necessary. Air is
also representative of a potential subset of applications in carbon dioxide injection
wells, for example. However, the ultimate goal is to reproduce results through the
theory developed in the previous chapters, which are agnostic to fluid type as long
as the foundational assumptions hold. This will be discussed in further detail in
section 5.5 of this chapter.
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(a) Axial cross-section of flow geometry illustrating flow path.

(b) Cut section a-a downstream of the throat and illustrated in 5.2a

Figure 5.2: Illustration of flow path and relevant geometry. Values and units are
listed on table 5.1.

The detailed exploded view of the flexure assembly is shown in figure 5.3. The
flexure and the beam are made of a single aluminum stock, and comprise the moving
structure that will be assessed. The fixed base is fastened with screws to both the
test section and the flexure, with mounting holes shown in the figure.

The flexure behaves like a translational spring that transfers motion from the beam
surface normal direction into compression and expansion of the piezoelectric stacks.
The stacks are pre-stressed at the center such that the piezo-elements are always in
compression. The set-screw and pre-stressing system is also illustrated in figure
5.3 as part of the assembly. As the flexure moves above the channel centerline, the
bottom stack is compressed, and the top stack is released from their pre-stressed
conditions. The reverse happens when the beam moves below the channel center-
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Table 5.1: Table of flow path parameter dimensions illustrated in figure 5.2.

Variable Value Units
L1 70 mm
L2 5 mm
L3 19.4 mm
L 40.7 mm
h1 9.8 mm
h2 2.3 mm
h3 9 mm
h̄ 0.62 mm
b 14 mm
b1 16.5 mm
hb 0.7 mm
θ 19 deg

line, the up and down motion giving rise to two voltage signals that are 180◦ out of
phase.

Finally, figure 5.4 shows a picture of the assembled test section. Vacuum grease
and rubber inserts are used to seal and restrain the flow path to that in figure 5.2. An
electrical fitting is used to connect the piezoelectric stacks to the data acquisition
card on the outside of the test section.
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Figure 5.3: Flexure assembly exploded view.

Figure 5.4: Test Section for flowing experiments.

The combination of the flow path, the structure, the piezoelectric elements, and the
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electronics comprise the flow-energy harvester design. All parameters are intercon-
nected and may affect the system power output. The complexity of the system, and
the sheer number of variables make it difficult to exactly predict system behavior,
and not the intension of this work. Our thrust is, however, to better understand the
underlaying mechanisms that give rise to power generation, and identify relation-
ships between parameters that more strongly affect the power output than others,
primarily from the view of fluid-structure interaction.

5.2.1 Piezoelectric Stacks
Piezoelectric stacks are composed of multiple thin, alternately poled, piezoelectric
layers “stacked”, or mechanically connected in series, and electrically in parallel.
They operate in what is known as 33 mode, where the applied force is parallel to the
poling direction. The effective piezoelectric charge coefficient d∗33 and capacitance
of stacks C∗ are a function of the number of the piezoelectric layers n, the charge
coefficient d33, and capacitance C of each layer,

d∗33 = d33n, C∗ = n2C. (5.1)

This layering results in a high capacitance piezoelectric material that is better matched
to electrical loads in comparison with a single piece piezoelectric element (mono-
lithic element) of the same dimensions [27]. The ability to have stack piezo-
elements, as opposed to bimorphs or unimorphs, allows a more robust and efficient
harvester design: the former through the larger electromechanical coupling in the
33 direction, and latter by ensuring that the the piezoelectric ceramic is always in
compression. We begin with the constituent equations of piezoelectric materials
when strains are small [92],

Di = e(σ)i j E (e)j + d(d)im σm (5.2)

εk = d(c)j k E (e)j + s(E)kmσm (5.3)

where Di is the three dimensional (spatial) electric displacement vector (Coulomb/meter2),
εk is the strain in vector representation and dimensionless, E (e)j is the applied elec-
tric field vector in three spatial dimensions (Volt/meter) and σm is the stress in vector
form (Newtons/meter2). The piezoelectric constants are the dielectric permittivity
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e(σ)i j (Farad/meter), the piezoelectric coefficients d(d)im and d(c)j k (Coulomb/Newton or

meter/Volt), and the elastic compliance s(E)km (meter2/Newton), which is the inverse
of the material modulus. We restrict equations 5.2 and 5.3 to the stack motion in
the 33 mode, and solve for the electric field in equation 5.3 and strains in the poling
direction (component 3),

ε3 = s(D)33 σ3 + g33D3, (5.4)

E (e)3 = −g
(D)
33 σ3 + β

T
33D3, (5.5)

where the constants are: s(D)33 as the open-circuit elastic compliance, g33 the piezo-
electric voltage coefficient, and βT

33 the free dielectric impermeability constant.
Applying the dimensions of each layer and we recover the open circuit voltage
(D3 = 0), as

VOC = −
d33
Cp

F, (5.6)

where Cp is the static capacitance of the material and F is the applied force. Under
short-circuit condition (E (e) = 0), we have the equivalent charge produced as

Q = −d33F . (5.7)

When a resistor is placed in parallel with the stack, its response to a step input force
is that of an RC circuit with the capacitor having an initial voltage equivalent to the
open circuit step-force voltage. Figure 5.5 shows the schematic of this circuit. The
voltage V(t) is measured across the resistor Re

Figure 5.5: Piezoelectric circuit schematic.
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Using Kirkoff’s law and the capacitance of the piezo as C∗p, we write equation of
motion and solve the first-order system for the voltage as a function of time. The
solution is the typical exponential decay,

V(t) = Vine
−t

ReC
∗
p . (5.8)

If the time constant τ = ReC∗p is large enough, the system will act as a low-pass
filter: any oscillating voltage upstream of the resistor (opposite to ground) at a
frequency fres that satisfies,

fres �
1

2πτ
= fc, (5.9)

will not pass through the resistor (to ground). The oscilloscope at V in figure 5.5 will
therefore measure it as if the system was an open circuit. We implement the circuit
in figure 5.5 and choose an Re large enough such that the resonances of the structure
satisfy condition 5.9. Specifically, we expect the stacks to act as strain gauges for
high enough frequencies, where output oscillating voltage is proportional to the
flextensional displacement. This can be seen from equation 5.6 and converting F to
displacement using the stiffness of the piezo-elements. Table 5.2 lists the properties
of the piezoelectric stacks used along with the resistor chosen for our measurements
(manufactured by STEMinC - part number # SMPAK155538D40 5x5x36mm). The
cut-off frequency from equation 5.9 and properties on table 5.2 is fc = 0.65 [Hz].

Table 5.2: Table of relevant piezoelectric stack properties.

Variable Value Units Description
C∗p 3.6 µF stack capacitance
Ks 2.8E7 N/m stack stiffness in 33 mode

Ls ×Ws × Hs 5x5x36 mm dimensions
Re 68 kΩ circuit resistor
τ 0.245 s RC time constant

Dm 40 µm maximum displacement

The stack piezoelectric elements, along with circuit in figure 5.5, were used for all
voltage measurements discussed in this chapter.



125

5.2.2 Flexure Dynamics
One of the principal components of the energy harvester is the flexure. As part of
the design initiative, a number of finite-element models were built and tested using
in AutoCAD NASTRAN to understand and eventually tune details of the structure.
Two sets of finite-element models are discussed. The first is a modal analysis of
the structure with boundary conditions, while the second is a static structural dis-
placement that estimates the flexure stiffness. The former analysis is able to discern
the primary resonant frequencies and their mode shapes, which are important when
contrasting with how piezo-stacks pre-stress and the flow influence structural mo-
tion, as they are not encompassed in the simulations. In the latter, we estimate
the flexure stiffness, which is shown to correspond to the first, lowest frequency
mode for the structure. The same mesh is used for both sets of simulations and is
shown in figure 5.6 with respective boundary conditions. There are 170,000 nodes
as tetrahedral elements and at least 2 cells across the beam and flexure elements.

Figure 5.6: Finite element mesh used for static structural and modal analyses.

The boundary conditions are clamped for the interface with the fixed base, and
bonded for the piezoelectric elements. The pre-stress in each stack is not accounted
in these results. Lastly, the load shown, Fa, only applies to the static structural
simulation set. The flexure and center mounts are made of aluminum 6061-T6,
the set-screw is 304 stainless steel, and the piezoelectric material is lead-zirconate-
titanate (PZT-4) Navy-I type. Material properties used are listed in table 5.3.
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Table 5.3: Table of structural material properties [93, 94].

Variable Aluminum Steel PZT
Density [kg/m3] 2700 8000 7500

Young’s modulus [GPa] 68.9 193 64.5
Poisson’s ratio [ND] 0.33 0.29 0.31

Modal Finite-Element Analysis Results

Results from the modal finite element analysis consist of mode shapes and their cor-
responding eigenvalues, stated as dimensional frequencies here. The fundamental
mode of the system is at f1 = 169 [Hz] and its shape is shown in figure 5.7. The
amplitude of the modes shapes are arbitrary, and plotted for opposite phases in the
figure. This is followed by the second mode at f2 = 328 [Hz], shown in figure 5.8.
There is also the first, second, and third flexure bending modes at f3 = 1067 [Hz],
f4 = 1335 [Hz], and f5 = 1415 [Hz]. The first beam torsional mode at f6 = 1962
[Hz], and a second transverse mode occurs at at f7 = 2053 [Hz].

(a) (b)

Figure 5.7: Results for fundamental mode of flexure at f1 = 169 [Hz]. Figures
show snapshots of (a) up- and (b) down- wards movement of the mode shape. The
red dashed-lines represent that static shape and contour levels are representative of
stress concentration.

As seen in figure 5.7, the fundamental mode consists mostly of transverse move-
ment of the flexure. This is the “flextensional” mode and couples structural motion
strongest between the flexure and piezoelectric stacks, as evident by the lighter
coloring representative of higher stresses around the flexure support to the piezo-
elements. The mode also corresponds to a (mostly) rigid-body motion of the beam:
though the flexure moves up and down considerably, the cantilever itself remains
straight through the cycle of motion. This becomes evident when comparing to the
original static shape represented by the red dashed lines.
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(a) (b)

Figure 5.8: Results for second mode of flexure at f2 = 328 [Hz]. Figures show
snapshots of up- and down- wards movement of the mode shape. The red dashed
lines represent that static shape and contour levels are representative of total dis-
placement.

The modal analysis shows that the second and 7th modes are transverse bending
modes. To understand whether only the beam is excited at those frequencies, we
can compared the eigenvalues to those from classical Euler-Bernoulli beam theory.
We have defined the theory’s eigenfunctions in equation 2.79 and eigenvalues as
the solutions to the characteristic equation 2.80, listed on table 2.2. Hence, we can
calculate the theoretical clamped-free beam frequencies as

fi =
(βi L)2

2πL2

√
EI
ρsbhb

. (5.10)

I is the square cross-section moment of inertia for the beam in three dimensions,

I =
h3

bb

12
. (5.11)

Table 5.4 lists the FEA modal analysis and Euler-Bernoulli beam results, along with
the description of each mode. Property parameters and values used are in tables 5.1
and 5.3. We see that the first two transverse modes frequencies are slightly over-
predicted by ≈ 5.5% in classical theory.
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Table 5.4: Table of frequency predictions by finite element modal analysis (FEA)
and Euler-Bernoulli (E-B) beam theory.

# FEA [Hz] E-B [Hz] Description
f1 169 - flextensional transverse mode
f2 328 346 fundamental cantilever transverse mode
f3 1067 - flexure spanwise bending mode
f4 1335 - flexure transverse bending mode
f5 1415 - 2nd flexure transverse bending mode
f6 1962 - fundamental cantilever torsional mode
f7 2053 2167 2nd cantilever transverse mode

As results in flowing experiments will ascertain in section 5.4, the flow excites pri-
marily the first two modes of the flexure. Hence, it is important that we ensure
they can be captured as part of the model. Furthermore, the flow-energy harvester
excites the flexure primarily through a transverse force on the beam, where the pres-
sure difference between the top and bottom flow paths apply the net force onto the
structure. Since classical theory captures f2, and the mode shape in f1 is a rigid
body motion of the cantilever, we conclude that it is tractable to represent the f1
mode shape as the elastic-translating leading edge boundary condition. Moreover,
the simple harmonic oscillator discussed in section 2.3.3 has a physical analogue:
the flexure stiffness, damping, and mass that characterize the dynamics of the flex-
tensional mode at f1.

In summary, the modal analysis provides the fundamental mode shapes and justifies
the rigid body motion that characterizes the elastic-translating boundary condition.
It also suggests f1 as its representative frequency. Next we estimate the flexure
static stiffness and obtain estimates for the simple harmonic oscillator boundary
condition model.

Static Structural Finite Element Analysis

Figure 5.6 shows the static model details, including mesh, boundary conditions,
and the position of the load Fa. To measure the static stiffness of the flexure, we
obtain a relationship between applied force at the beam base versus the resulting
displacement. Considering steady verson of equation 2.71, where ā represents the
boundary condition amplitude, we can solve for the boundary condition stiffness as
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k0 =
b fr
ā
=

Fa

ā
. (5.12)

The applied force is then Fa = b fr , where fr is defined as the force per unit span and
b is the span of the beam. Figure 5.9 shows a representative displacement contour
for Fa = 10 [N].

Figure 5.9: Representative displacement at Fa = 10 [N] for static structural FEA.
Red dashed-lines represent the initial position before Fa is applied.

A series of 7 simulations were carried out with varying Fa. Figure 5.10 shows the
results as a function of the beam base displacement. The slope of the line is the
estimated stiffness k0FEA = 58, 366 [N/m]. The modal analysis has no mechanical
damping in its solution, therefore f1 = 169 [Hz] is the solution of equation 2.71 for
c0FEA = 0. We can now estimate the effective mass component from f1 as

m0FEA =
k0

4π2 f 2
1
= 0.052 [kg]. (5.13)

The values m0FEA = 0.052 [kg] and k0FEA = 58, 366 [N/m] are approximations for
those we should expect from the experimental measurements in section 5.3. They
represent an idealization of the boundary conditions (i.e. no stack pre-stress) and
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no damping. Though these conditions do not hold for the actual device, they help
our understanding of the structure and provide a check on device fabrication and
experimental set up.
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Figure 5.10: Fa as a function of displacement for 7 static structural FEA simula-
tions. The slope represents a stiffness value of k0FEA = 58, 366 [N/m].

5.3 Flexure Property Measurements
Two experiments are carried out to quantify the no-flow flexure properties, analo-
gous to the two sets of FEA simulations carried out in section 5.2.2. The flexure is
immersed in still air at standard pressure and temperature (STP) for all tests in this
section, defined here at 101352.9 [Pa] (14.7 [psia]) and 21.1 [◦ C] (70 [◦ F]). The
stiffness k0 is characterized first through a static stiffness measurement of force Fa

and displacement ā, mimicking the static structural FEA. The second experiment
measures the piezoelectric voltage output of the stacks when the flextensional fun-
damental mode is excited. The damped resonant frequency and exponential decay
rate are calculated from the voltage outputs. The solution to the homogeneous equa-
tion 2.71 ( fr = 0) is used to map the voltage response to the flexure damping c0 and
flexure mass m0.

Three flexure configurations are measured with values of set-screw torque used to
identify each. Since issues exist in solely considering set-screw torque as an in-
jective map to flexure properties, we only use it here to identify each case as we
proceed through the flexure property characterization. These issues mostly con-
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sist of uncontrollable conditions within the pre-stress mount hole, such as exact
alignment of set-screw and presence of oils or other elements that affect set-screw-
to-hole friction. Table 5.5 shows the three flexure settings as medium, most, and
least set-screw torque, and correspond to flexure settings 1, 2, and 3 respectively.
Replication of results need must be based on flexure properties rather than torque
values listed.

Table 5.5: Table of experimental flexure settings based on qualitative set-screw
torque level, with approximate torque values shown.

Setting # Torque Level Torque Values
1 midlevel 1.2 [N m]
2 highest 2.0 [N m]
3 lowest 0.8 [N m]

5.3.1 Flexure Static Stiffness Test
The flexure static stiffness measurement is carried out using the manual force test-
stand ES-20 (manufactured by MARK-10 Corporation), with both a displacement
dial and a series 2 digital force gauge (±0.5%). A custom mount was designed
and built to hold the flextensional fixed base such that the force piston interfaced
as close to the cantilever base as possible. Figure 5.11 shows an illustration of the
piston and the custom mount with the mounted fixed base and flextensional.

Flexure assembly

Force Piston

Force gauge attachment

Mount

Figure 5.11: Illustration of static stiffness test set up. Mount interface with force
piston.
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The force required to displace each flexure setting 5, 10, and 20 [mil] was measured,
with experiments repeated five times per flexure. Table 5.6 shows the mean results,
with variance from the repeated 5 small enough to be neglected here. Figure 5.12
shows the plotted stiffness values k0 [N/m] for each flexure setting, along with the
least-squares fit lines through the origin.

Table 5.6: Table of mean displacement and force [N] results for flexure settings in
table 5.5, with least-squares best fit stiffness values k0 [N/m].

Disp. [mil] Disp. [m] Flex. 1 [N] Flex. 2 [N] Flex 3 [N] FEA
0 0 0 0 0 -
5 0.000127 4.86 5.4 2.8 -

10 0.000254 9.12 10.04 5.44 -
15 0.000381 14.44 16 8.24 -

k0 Least-Squares [N/m] - 3.73E4 4.12E4 2.16E4 5.84E4

All experimental values fall under the finite element stiffness for the displacements
shown, with stiffest flexure setting is at ≈ 30 % of its value. This is believed to
be acceptable given the discrepancies between the FEA bonded and the experimen-
tal pre-stressed boundary conditions. Furthermore, the flexure stiffness appears to
correlate with the torque levels applied to the set-screw, from table 5.5. With the
information in table 5.6, we can note that flexure setting 2 is the most stiff, flexure
setting 3 is the least stiff, and flexure setting 1 falls in the middle, but closer to
flexure setting 3 in stiffness.

5.3.2 Flexure Dynamic Test
The flexure dynamic test consists of measuring the output voltage from the piezo-
electric elements as the flexure responds to an impulsive force. The load location
is shown in figure 5.6 as Fa, and chosen because it primarily excites the flexten-
sional mode described in section 5.2.2. The stack voltage response V(t) is a direct
analogue to the properties of the flexure: its decay rate and oscillating frequency
correspond to those of the flextensional plus the RC circuit response. As described
in section 5.2.1, a static load to the piezo-elements with a parallel resistor yields
an exponential decay with a time constant τ = ReC∗p . Similarly, the response of
the flexure to Fa are the results of the static stiffness test in section 5.3.1. If the
system is quickly unloaded, the stack dynamic voltage response is the open-circuit
voltage in equation 5.6 that follows its load F(t) as long as condition 5.9 is satisfied.
F(t) is proportional to the local strains through the stack stiffness Ke, which is, by
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Figure 5.12: Plots of Force over displacement results from table 5.6 and their least-
square fit lines representative of stiffness k0.

definition, proportional to displacements of the structure. Hence, with properties
listed in table 5.2, we expect the decay rate ζ = −4.09 [1/s] and condition 5.9 is
quickly checked and satisfied, as 169[Hz] � 0.64[Hz], from table 5.4. Though the
flextensional modal frequency here is the one expected through simulation, one of
the purposes of the test is to measure τ and f1 and re-assert condition 5.9.

The three flexure configurations from table 5.5 are considered. Each flexure is
tested when it is mounted onto the test section immediately after the flow tests have
been carried out in section 5.4. For each flexure setting, the experiment is repeated
at least 8 times, with initial forcing as Fa and −Fa. The |Fa | ∼ 20 [N] and only
considered in the sense that the system had an observable voltage response. The
static flexure displacement from |Fa | is ≈ h̄, defined in table 5.1.

The figures that follow in the rest of this section are a single representative sam-
ple for each flexure experiment. They illustrate the signal processing steps taken
to measure the decay rate ζ and response frequency ω for the analyzed response.
The line noise level Vn was characterized by measuring beginning and end signal
and found to be e−5.75 ≈ 0.003 [V] for flexure settings 1 and 2, and e−6.25 ≈ 0.002
[V] for flexure setting 3. It is largely attributed to grid power at 60 Hz, but also
amplified if the stacks are coupled more strongly to the structure, likely due to am-
bient vibrational noise (as in the case in flexures 1 and 2). The upper bound for
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each segment was adapted per flexure setting, as the piezo-element pre-stress con-
dition affects the maximum amplitude voltage response, along with the mechanical
flexure properties themselves. The primary consideration for choosing the upper
bound was whether nonlinear behavior from the unloading step was observed, and
defined as Vu > e−1 ≈ 0.37 [V] for flexure settings 1 and 2, and Vu > e−4.25 ≈ 0.015
[V] for flexure setting 3. Data is taken with an NI-DAQ 6212 BNC (National In-
struments) at 8 kHz sampling frequency. The reference voltage V0 = 1 [V] in log
voltage amplitude plots. In order to obtain the decay rate of the oscillating signal,
we implement the Hilbert transform described in section 3.4.3.

Flexure Setting 1
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Figure 5.13: Sample voltage output for flexure impulse response from a single
piezo-element in experiment .
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Figure 5.14: Decomposition of sample signal in figure 5.13 into a moving aver-
age from electrical circuit (5.14a) and the oscillating open circuit flexure forcing
component (5.14b).
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Figure 5.15: Sample voltage output for flexure impulse response illustrating Hilbert
transformed section.
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Figure 5.16: Analytic signal amplitude (5.16a) and phase (5.16b).

The flexure 1 representative full signal is shown in figure 5.13. The moving average
with 300 samples is shown in figure 5.14a, with the fit ζ = −4.17 ≈ 1

ReC∗p = −4.09
[1/s]. The subtracted oscillating part is shown in figure 5.14b, and processed with
the Hilbert transform in figure 5.15. Note that the time segment near zero in figures
5.14a and 5.14b are omitted due to the edge effects of the moving-average filtering.
This will hold true for all figures of this form. This flexure produced the cleanest
signal of all tested, as can be seen for the linear behavior of the analytic signal
amplitude in figure 5.16a. Representative ζ = −2.49 [1/s], and ω = 1166.6 [rad/s].
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Flexure Setting 2
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Figure 5.17: Sample voltage output for flexure impulse response from a single
piezo-element in experiment .
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Figure 5.18: Decomposition of sample signal in figure 5.17 into a moving aver-
age from electrical circuit (5.18a) and the oscillating open circuit flexure forcing
component (5.18b).
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Figure 5.19: Sample voltage output for flexure impulse response illustrating Hilbert
transformed section.
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Figure 5.20: Analytic signal amplitude (5.20a) and phase (5.20b).
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Figure 5.21: Sample voltage output for flexure impulse response illustrating Hilbert
transformed section.

0 0.2 0.4 0.6 0.8

t [s]

-10

-8

-6

-4

-2

0

lo
g
[V

=
V

0
]

1 = -13.082 [1/s]

Full Signal
Signal Section
Linear Fit

(a)

0 0.2 0.4 0.6 0.8

t [s]

0

200

400

600

800

1000
p
h
a
se
[r
ad
]

! = 1427.6293 [rad/s]

Full Signal
Signal Section
Linear Fit

(b)

Figure 5.22: Analytic signal amplitude (5.22a) and phase (5.22b).

The flexure 2 full signal is shown in figure 5.17. The moving average with 300 sam-
ples is shown in figure 5.18a, with the fit ζ = −3.73 [1/s], which is slightly lower
than the expect value of -4.09 [1/s]. We believe that it is within a reasonable margin
of error when considering the moving average filtering, least squares fitting, and the
variation within the capacitance of the piezoelectric elements. Figure 5.20a shows
the Hilbert transformed amplitude of the full signal, and an interesting behavior
emerges when comparing large and small amplitude voltage decay rates. In par-
ticular, the curve, unlike 5.16a, exhibits a nonlinear decay rate after approximately
log

[
V
V0

]
< −3. The angular frequency, however, is relatively fixed for the entire
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range from Vn to Vu. Therefore, we have split the system into a piecewise bilinear
fit, with figures 5.20a and 5.20b representing the linear values of ζ = −7.59 [1/s]
and ω = 1419.7 [rad/s] (early time segment); while figures 5.22a and 5.22b show
the section for small amplitude values that decay (ζ = −13.08 and ω = 1427.6
[rad/s] as late time segment). Flexure 2 has the highest stiffness and pre-stress con-
figuration out of all three settings, and it is plausible that the nonlinearity seen in
the analytic signal amplitude may be associated with a high pre-stress regime.

Flexure 3
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Figure 5.23: Sample voltage output for flexure impulse response from a single
piezo-element in experiment .



141

0.2 0.4 0.6 0.8 1 1.2 1.4

t [s]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

V
[V

]

1 = -4.6374 [1/s]

Moving Average
Exponetial -t

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4

t [s]

-0.06

-0.04

-0.02

0

0.02

0.04

V
[V

]

(b)

Figure 5.24: Decomposition of sample signal in figure 5.23 into a moving aver-
age from electrical circuit (5.24a) and the oscillating open circuit flexure forcing
component (5.24b).
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Figure 5.25: Sample voltage output for flexure impulse response illustrating Hilbert
transformed section.
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Figure 5.26: Analytic signal amplitude (5.26a) and phase (5.26b).

The flexure 3 representative full signal is shown in figure 5.23. The moving average
with 300 samples is shown in figure 5.24a, with the fit ζ = −3.97 [1/s], slightly
lower but within the expected range for the RC time scale variation. This flexure
represents the lowest stiffness and stack pre-stress conditions, which can be seen in
the phase fit from figure 5.24b, where ω = 781.1 [rad/s]. Another distinction from
the other flexure settings is the variation seen in the Hilbert transformed amplitude.

Summary

Results of the aggregated set of experiments for each flexure is shown on table
5.7. Flexure settings 1 and 2 (early time segment) show little variation among
different experiment realizations, while flexure 3 shows the highest. Flexure 2 (late
time segment) also shows considerable variation within its own data set, but also
when the mean is compared to that of Flexure 2 (early time segment) value. Simple
harmonic oscillator model parameters can be directly calculated from values in table
5.7, and discussed next. We quickly re-assert the frequency response through the
RC circuit by noting that the frequency responses for flexures 1, 2, and 3 are ∼
185 [Hz], ∼ 226 [Hz], and ∼ 122 [Hz], respectively, and all � 0.64 [Hz]. This
confirms that indeed the voltage output from the piezo-stacks behave as the open-
circuit voltage measurement. The frequencies for all frexure settings also are within
the ballpark of the FEA value of 169 [Hz], serving as a good validation of the
structural design.
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Table 5.7: Table of experimental flexure values for flexure dynamic test. Setting
details are shown in table 5.5.

Variable Flexure 1 Flexure 2 - early time seg. Flexure 2 - late time seg. Flexure 3
ω - mean [rad/s] 1167.6 1423.1 1430.7 767.7
ω - STDEV [rad/s] 0.348 4.055 3.849 18.821
ζ - mean [1/s] -2.471 -7.718 -13.916 -3.834
ζ - STDEV [1/s] 0.071 0.076 0.868 0.271

5.3.3 Elastic-Translating Boundary Condition Parameters
The flexure characterization in sections 5.3.1 and 5.3.2 provide the data necessary
to estimate the elastic-translating boundary condition coefficients as the analogue
to the flextensional mode. We can re-write the simple harmonic oscillator boundary
amplitude equation 2.71 into the standard, homogeneous form,

Ǖa + c0
m0
Û̄a + k0

m0
ā = Ǖa + 2ζ Û̄a + ω2

nā = 0. (5.14)

Recall that we want to obtain values for the mass m0, damping c0, and stiffness k0

terms (b is the spanwise beam width). Taking the Laplace transform into s from t

and solving the characteristic polynomial for s

s =
c0

2m0
±

√(
c0

2m0

)2
− k0

m0
= ζ ±

√
ζ2 − ω2

n. (5.15)

Equating the term outside the discriminant, we have

c0 = 2ζm0, (5.16)

where ζ is obtained from the experimental data set of each flexure setting. Next,
equating the discriminant term and substituting equation 5.16, we have the damped
frequency relation,

ω2 =
k0
m0
− ζ2 → m0 =

k0

ω2 + ζ2 , (5.17)

where we can solve for m0 explicitly from k0 values are in table 5.8 and ω and ζ

values in table 5.7. This allows us to solve for c0 from equation 5.16. Table 5.6
shows the calculated values for each flexure setting in table 5.5. The table also
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shows the estimated FEA stiffness and mass values for reference. All experimen-
tally measured values fall under, but within the same order as the estimated FEA
quantities.

Table 5.8: Table of calculated elastic-translating boundary condition properties for
flexure settings in table 5.5.

Boundary Constant Flexure 1 Flexure 2 (early time seg.) Flexure 2 (late time seg.) Flexure 3 FEA
k0 - (N/m) 3.73E4 4.12E4 4.12E4 2.16E4 5.84E4

m0 - mean (kg) 0.0274 0.0204 0.0201 0.0366 0.052
m0 - min (kg) 0.0274 0.0205 0.0202 0.0385 -
m0 - max(kg) 0.0274 0.0202 0.0200 0.0349 -

c0 - mean (kg/s) 0.135 0.314 0.560 0.281 0
c0 - min (kg/s) 0.139 0.319 0.598 0.316 -
c0 - max (kg/s) 0.131 0.309 0.522 0.248 -

Non-dimensional parameters will be defined in the next section at critical Qcr values
for the dimensional quantities in table 5.5 tested in the flowing conditions.

5.4 Flextensional Response to Fluid Flow Experiment
This section describes experiments of the flextensional energy harvester design in
flowing conditions. The goal of the experiment is to primarily quantify the critical
flow rate for different flexure properties, as discussed in previous sections and listed
in table 5.5. The dynamics of the flowing system are assessed by measuring the
voltage output from each piezoelectric stack, and by processing video images of the
beam. The spectral proper orthogonal decomposition (SPOD) discussed in chapter
3 is applied with the video data set to characterize predominant beam modes and
their amplitudes over time. As part of the data set, the maximum amplitude of
individual modes will be assessed, as well as hysteric effects as the bifurcation
is crossed while the system is in its self-sustained oscillating state (by decreasing
the flow rate). In the same vein as previous sections, we are interested in critical
parameter and the frequency response near the critical point. The following sections
will discuss the test set up, the video processing algorithm, and present the stability
results.

5.4.1 Flow Set up and Test Section
The test set up consists of lab air at standard pressure and temperature, once again
defined as 101352.9 [Pa] (14.7 [psia]) and 21.1 [◦ C] (70 [◦ F]). The flow path, start-
ing at the outlet of the lab air exhaust, follows onto a manual brass precision seal
needle valve used to control the flow rate into the flow meter (Aalborg 1000 L/min
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air - 3/4" NPT, mass flow rate calibrated relative to STP). The flow then passes
an upstream pressure gauge (G1 pressure transducer, 0-300 psi, ±0.5%) before en-
tering the inlet to the test section shown in figure 5.4. A second pressure gauge
is downstream of the outlet of the test section, and the exhaust air exits the system
through a muffler to decrease audible noise. The pressure gauges are used for safety
and rough validation of the flow rate, but the data set is not analyzed as part of the
system dynamics. The voltage data acquisition is the same as that for section 5.3.2,
where both piezo-stacks voltage responses are recorded accordingly. A LabView
VI is used for interfacing with the DAQ, recording stack voltage, pressure, and flow
rate data. Lastly, a camera (Z1 J5 Nikon 1200 fps) is set up directly facing the
flextensional. The system records high speed video for 3 consecutive seconds for
a total of 3600 images per video. Two sequential videos are taken as part of the
data acquisition process, for a total of 7200 images per data point processed. The
detailed experimental procedure can be found in appendix D.

Figure 5.27 shows a picture of the test set up with the data acquisition and control
apparatus.

Pressure gauge: P1(t) Pressure gauge: P2(t)DAQ: V (t)

Flow Meter: Q(t) Camera: �(t)

Figure 5.27: Flow test set up.

5.4.2 Video Data Processing Algorithm
The video data set is used primarily to characterize the transverse displacement of
a section of the elastic beam. The algorithm uses the Canny filter [95] in MATLAB
as an edge finding tool.
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(a) Flow test raw video image.

Origin

Estimated tip
x location

Beam top

Beam bottom
Failed conditions,
estimated values

(b) Flow test processed video image.

Figure 5.28: Shows contrast of raw and processed video images for flow test.

Figure 5.28 shows an example of a raw and a processed video frame. The algorithm
finds designated points within the image, uses a subset to calibrate and cross-check
the scaling in x and y coordinates, and finds the beam y position within a pre-
defined search window. Quality assurance (QA) features highlighted in the image
are the origin, marked as a red ×, and the predicted x position of the beam tip,
marked as a green ×. These are selected and manually verified for the first image of
the video. The blue circles near the marked ×’s are the automatically identified fea-
tures for subsequent images, and are cross-checked with the initial value to ensure
accuracy of the edge finding filter properties: all images with more than 1.5 pixel
variation are flagged for manual review.

The main features sought after are the beam top and bottom edges, shown as small
light red and blue ×, respectively, in near the center of the image. The algorithm
searches for beam edge locations within a pre-defined search window specified for
every video processed. In reference to the geometry in figure 5.2, the search window
begins at least 10 h̄ from L2 in the +x coordinate and extends to 0.94L. It spans
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past the farthest y point along the diffuser walls, both above and below the channel
center. Edges that qualify as part of the beam satisfy two conditions: first is a beam
thickness criteria, where the y spacing between two consecutive edges must satisfy,

hw < h̄ + toly, (5.18)

where toly is a tolerance of 2 pixels converted to spatial dimensions with the image
scaling. Second is a continuity criteria between two consecutive edge points in the
x coordinate,

∆yc < tolx, (5.19)

where tolx is 2 pixels. The search scheme works as follows:

1. Find all image edge points within predefined search window;

2. Loop through all pixels along x coordinate and apply condition 5.18;

3. For the subset of edge points that satisfy 5.18, apply condition 5.19;

4. If a top and bottom beam edge is not found for more than 10 discrete x coor-
dinate, iterate on Canny filver values and repeat all steps;

5. If no combination of edge finding filters are found that satisfy the 10 discrete
point limit, flag image for manual review.

For the failed point locations, the algorithm estimates the beam edge by either inter-
polating between edges, or extrapolating at most 10 points. This is the case shown
by red circles near the tip of the beam in figure 5.28. Through these processes, a
representative data set for the transverse position of the beam was obtained with an
accuracy of ±1.5 pixels. The conditional limits for what constitutes a flagged im-
age where chosen through iteration and are a function of the image resolution and
scaling. Values noted here worked well for the data sets presented. Over 500,000
images have been successfully processed with this algorithm in the current study.



148

5.4.3 Flexure Dynamics Results
The video and voltage data sets are processed for the three flexure settings over
flow rates ranging from 5 to 500 [L/min]. Modal decomposition using SPOD dis-
cussed in section 3.4.2 is carried out for the beam transverse displacements obtained
through the image processing algorithm. The voltage data set is processed through
peak extraction to obtain average amplitudes over the relevant time signal, and fast
Fourier transformed using Welch’s method to obtain the signal frequency response.
No other processing technique or filtering was applied to the voltage signals, as the
system is responding to oscillatory forcing that satisfies condition 5.91.

Flexure Setting 1

Starting with flexure setting 1, results are aggregated and shown as two sets of plots,
and kept consistent in subsequent flexure results subsections. The first, in figure
5.29, shows a single representative sample of the parameter space explored where
the system has reached self-sustained oscillations. The sample data set shown in
figure 5.29 is for flow rate Q = 246 [L/min], 38 [L/min] above the critical flow
rate at 208 [L/min]. The spectrum shows a clear peak at f1 = 197 [Hz], and the
corresponding mode shown containing more than 99% of the energy in f1. The
phase diagram shows a limit cycle behavior and the mode shape resembles the
rigid body motion of the cantilever base, denoting excitation of the flexure itself.
A second peak occurs at f2 = 341 [Hz], which corresponds to the fundamental
mode of the clamped-free cantilever. This can be seen from the predicted value in
table 5.4, and also from the mode shape shown. Though the extracted transverse
displacement data does not reach the cantilever base, the mode shape monotonically
decreases as x/L decreases without any appearance of a node. The illustrated mode
shape also contains over 99 % of the energy within f2. The phase diagram shows
the under-damped behavior, where the mode amplitude and velocity are perturbed
around their equilibria through fluid forcing, but constantly decay down toward it.
The under-damped mode is evident where states are gathered around the origin, as
a bunched set of points. The periodicity can be verified through the strong spectral
response in the power spectrum shown

A distinct third and fourth peak at 394 [Hz] and at 591 [Hz] are also evident on the
spectrum, and represent the second and third harmonics of the primary peak.

1The system is not responding to a constant force, as it did in section 5.3.2, giving rise to the
exponential decay from the RC circuit.
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The second set of plots, shown in figure 5.30, display the aggregate of amplitude
and frequency responses as a function of flow rate. The error bars correspond to the
standard deviation of the time series data, which can be seen in the phase diagram as
the thickness of the “doughnut” edges at Ûa1 = 0. Figure 5.30 shows the amplitude
of the displacement of mode 1 over the range of flow rates tested, first increasing
then decreasing. Recall that the amplitude is found from the SPOD analysis at the
frequency identified as mode 1, and corresponds to the y-axis in the phase diagram
shown in figure 5.29. The primary mode amplitude remains small until a critical
flow rate Qcr = 208 [L/min]. The critical point clearly demarcates a transition to
high-amplitude oscillation. Increasing the flow rate beyond Qcr, however, does not
change the amplitude much, there is eventually slightly decrease in amplitude as
the beam collides with the throat at the highest flow rate tested (at ∼ 400 [L/min]).
The frequency response appears constant until Qcr is reached, at which point it
increases slightly with increasing flow rate. A small hysteresis loop is evident as
the flow rate is decreased through Qcr. The system does not recover to the original
zero equilibrium until Qr = 179 [L/min]. This hysteresis suggests that the system is
undergoing a subcritical Hopf bifurcation as Q increases, giving rise to the bi-stable
region captured with the hysteresis loop.

The voltage response is shown in figure 5.31 with its amplitude and frequency
closely following the behavior of the primary mode in figure 5.30. A one-to-one
correspondence between the displacement and the resulting voltage output. This
is expected as the piezoelectric coupling is quasi-static in the sense that the stack
voltage tracks the strain of the flexure, as discussed in section 5.2.1.
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(a) Trace of cross-spectral density matrices at discrete frequen-
cies.

(b) Phase diagrams for mode 1 (left) and mode 2 (right).

(c) SPOD mode shapes for mode 1 (left) and mode 2 (right).

Figure 5.29: Representative SPOD data processed results for flexure setting 1in
table 5.5 showing self-sustained oscillating regime of mode 1 and under-damped
regime of mode 2.
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(b) Mode 1 frequency response as a
function of flow rate.

Figure 5.30: Video data set showing mode 1 amplitude and frequency as a function
of flow rate for flexure setting 1.
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(a) Piezoelectric voltage amplitude
response as a function of flow rate.
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(b) Piezoelectric frequency response
as a function of flow rate.

Figure 5.31: Representative voltage amplitude and frequency response for top
piezoelectric stack in flexure setting 1.

Flexure Setting 2

Flexure setting 2 results are shown in figure 5.32 for Q = 387 [L/min]. Once again,
the spectrum has a distinct peak but at a higher frequency of f1 = 226 [Hz] than
flexure setting 1. The phase diagram shows the limit cycle behavior and the mode
shape appears mostly as the excitation of the flexure, as before. The system dynam-
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ics exhibit strong coherence with mode 1 containing over 99 % of the energy within
f1. A second mode also occurs at the fundamental clamped-free beam frequency
of f2 = 342 [Hz] and displays the under-damped regime in the phase diagram of
its amplitude and velocity. Mode 2 shows a similar level of coherence within f2 as
mode 1 within f1, where it contains over 99 % of the energy in f2.

Results of leading mode displacement and frequency in Q parameter space are
shown in figure 5.33. The onset of flutter happens at Qcr = 376 [L/min], almost
twice that of flexure 1. Mode amplitudes are comparable to those in figure 5.30,
yet the frequency response does not appear to change as flow rate increases. The
voltage amplitude and frequency response can be seen in figure 5.34. Once again,
the displacement and voltage data sets are in good agreement. An increase in volt-
age output magnitude by an additional 0.5V is evident relative to flexure 1. The
hysteresis loop ends at a flow rate of Qr = 334 [L/min] and is approximately the
same size as of flexure 1. This flexure configuration also represents the response
with the largest voltage magnitude.
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(a) Trace of cross-spectral density matrices at discrete frequen-
cies.

(b) Phase diagrams for mode 1 (left) and mode 2 (right).

(c) SPOD mode shapes for mode 1 (left) and mode 2 (right).

Figure 5.32: Representative SPOD data processed results for flexure setting 2in
table 5.5 showing self-sustained oscillating regime of mode 1 and under-damped
regime of mode 2.
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(b) Mode 1 frequency response as a
function of flow rate.

Figure 5.33: Video data set showing mode 1 amplitude and frequency as a function
of flow rate for flexure setting 2.
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(a) Piezoelectric voltage amplitude
response as a function of flow rate.
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(b) Piezoelectric frequency response
as a function of flow rate.

Figure 5.34: Representative voltage amplitude and frequency response for top
piezoelectric stack in flexure setting 2.

Flexure Setting 3

Figure 5.35 shows a representative data point from flexure setting 3 at a Q = 449
[L/min]. The spectrum shows a leading peak at f1 = 154 [Hz], with its leading
mode also presenting limit cycle behavior in its phase space. The second peak in
the spectrum is the second harmonic of the first peak at 308 [Hz], and the third peak
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corresponds to the under-damped fundamental beam mode at f2 = 341 [Hz]. Mode
2 is still chosen at f2 = 341 [Hz] for the mode projection step. Mode shapes once
again agree with the previous two flexure configurations. Mode 1 amplitude as a
function of Q however, presents a considerably larger hysteresis loop than either
flexure 1 or 2, with Qcr = 410 and Qr = 73 [L/min]. The displacement frequency
response also presents a stronger correlation to Q, as a shift of over 25 [Hz] occurs
at the onset of flutter but monotonically decreases to the initial value as flow rate
is also decreased to zero. An new phenomenon can be seen in figure 5.37; though
the voltage amplitude tracks the mode 1 displacement well, the frequency response

is a factor of two higher. This effect is caused by lightly pre-stressed piezoelectric
elements, as this flexure configuration represents conditions with the least amount
of torque applied on the set-screw. The phenomenology is as follows: once the
oscillation reaches the full extension at either the top or bottom of the flextensional
stroke, the decompressed stack looses contact with the structure. This in turn causes
a strongly nonlinear response that flips the sign of the voltage output, and appears
as a frequency doubling through the FFT. The nonlinear loss-of-contact behavior
has been observed by Sherrit et al. [96] as flextensional actuators loose their bond
between stacks and the flexure. Voltage amplitudes are also notably lower in flexure
setting 3 than the other two flexure configurations.
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(a) Trace of cross-spectral density matrices at discrete frequen-
cies.

(b) Phase diagrams for mode 1 (left) and mode 2 (right).

(c) SPOD mode shapes for mode 1 (left) and mode 2 (right).

Figure 5.35: Representative SPOD data processed results for flexure setting 3in
table 5.5 showing self-sustained oscillating regime of mode 1 and under-damped
regime of mode 2.
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(b) Mode 1 frequency response as a
function of flow rate.

Figure 5.36: Video data set showing mode 1 amplitude and frequency as a function
of flow rate for flexure setting 3.
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(a) Piezoelectric voltage amplitude
response as a function of flow rate.
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(b) Piezoelectric frequency response
as a function of flow rate.

Figure 5.37: Representative voltage amplitude and frequency response for top
piezoelectric stack in flexure setting 3.

Discussion

We can conclude from the results that flexure properties have a significant effect
on the stability properties of the system. Many aspects of the system response
remain the same between flexures, including the existence of a bi-stable region
and hysteresis loop, and strong self-sustaining oscillations after the critical point.
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All other modes remain stable for the parameter space spanned. Lastly, it appears
that the larger the structural stiffness, the greater the piezo-element output voltage.
This is particularly evident when comparing voltage output from flexures 2 and 3,
the most and the least pre-stressed setting. Table 5.9 in the next section presents
a compilation of all results for each flexure setting, including the relevant non-
dimensional parameters for the flow. Table 5.10 in the next section shows fluid-
structure non-dimensional values as defined in tables 2.3 and 2.4 in chapter 2.

Mach Number Calculation at Qcr

To understand the compressibility effects at the critical flow rate of the different
flexure settings presented, we estimate the Mach number at the throat first using
the speed of sound at STP, followed by a more detailed analysis using isentropic
relations. Assuming initially the that flow is near the incompressible limit,

MSTP =
Qcr
At

1
aSTP

=
Ucr
aSTP

, (5.20)

where aSTP is the speed of sound for air at STP, and At = b1(2h̄ + hb) − bhb is the
area at the throat of the flow path from figure 5.2a and dimensions in table 5.1. The
speed of sound can be estimated using the ideal gas law,

a =
√
γgRgT, (5.21)

where Rg = 287.0 [kg/J/K] is the specific gas constant for air, γg = 1.40 is the ratio
of specific heats for air [97], and T is the local temperature. At STP, aSTP = 344.3
[m/s].

The speed of sound calculation must account for compressibility effects as Mach
number approaches 1. The simplest analysis in this vein assumes that the flow
acceleration over the converging section of the flow path happens isentropically
for an ideal gas. Though pressure data was taken within the each experimental
run, the pressure tap locations and dynamic nature of the pressure signal are not
reliable enough to estimate the stagnation pressure to acceptable accuracy. Hence,
we choose to use the stagnation temperature To = TSTP = 295 [K], the stagnation
density ρo = ρSTP = 1.20 [kg/m3], and the mass flow rate measurement at the
critical flow rate,
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Ûmcr = ρSTPQcr = ρt AtUcr, (5.22)

to estimate the throat Mach number [98]. Considering equation 5.21, the definition
of mass flow rate 5.22, and stagnation temperature To and stagnation density ρo

isentropic ratios to their respective throat values,

To

Tt
= 1 +

γg − 1
2
M2

t , (5.23)

ρo

ρt
=

(
1 +

γg − 1
2
M2

t

) 1
γg−1

, (5.24)

we have

Ûmcr√
γgRgTo

1+γ−1
2 M2

t
Mt At

=
ρo(

1 + γ−1
2 M2

t

) 1
γ−1
. (5.25)

Equation 5.25 is an implicit relation between the fluid and flow properties andMt,
and is valid forMt ≤ 1 for air values. Table 5.9 showsMt values using approaches
described.

Table 5.9: Table of critical values for flexure settings listed. The critical velocity,
Reynolds and Mach numbers are calculated at the throat.

Critical Properties Flexure 1 Flexure 2 Flexure 3 Description
Qcr [L/min] 208 376 410 critical flow rate

Ucr [m/s] 163 286 313 critical velocity
MSTP 0.47 0.83 0.91 incompressible throat Mach number est.
Mt 0.53 1 1 compressible throat Mach number est.

ρt [kg/m3] 1.05 1.07 1.17 throat density est.
ReLcr 4.00E+05 7.35E+05 8.00E+05 critical length Reynolds number
Rehcr 6.1E+05 1.1E+04 1.20E+04 critical gap Reynolds number

Equation 5.25 suggests that the flow path with dimensions in table 5.1 chokes at
Qch ≈ 267 [L/min], implying that flexure setting 2 and 3 are choked at their critical
flow rates Qcr of 376 and 410 [L/min], respectively. An important note is that both
Qcr values are distinct and higher than Qch, as opposed to equal to it as a choked
condition would require. This is possible because the flow meter measurements
represent a mass flow rate rather than a purely volumetric one. Since the flow
control (needle) valve is upstream of the flow meter and the test section, by further
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opening the valve, we are increasing the upstream flowing and stagnation pressures,
which, in turn, increase the density at throat and allows for the higher mass flow
rate through the system. This happens despite the volumetric flow rate remaining
constant in the choked condition. To estimate the throat density for the choked
settings, we can solve for ρt in equation 5.22 by substituting Ucr = at using equation
5.23 to solve for Tt, followed by solving equation 5.21 for at. The incompressible
estimates forM for those same settings, also note in table 5.9, though not implying
choked flow, do suggest that compressibility likely plays a strong role in the flow
response with values close to 1.

Compressible and incompressible estimates for flexure setting 1 throat Mach num-
ber are with 15% of one another, and suggest the flow may have some compress-
ibility effects (M ∼ 0.5), but that it is not choked. The compressible estimates for
density at the throat are lower than the STP value, suggesting the compressibility
affects the mass ratio parameter between the solid and the structure. These dynam-
ics are relevant in the next section as we attempt to replicate these results using
models derived in chapter 2.

Fluid-Structure Non-Dimensional Parameters

The remaining parameters defined in tables 2.3 and 2.4 are calculated in table 5.10
at the critical velocity values, and include the definition of M∗ and U∗ in equation
4.6.

Table 5.10: Table of experimental non-dimensional parameters for tested flexure
setting.

Flex Cond. m̂ k̂cr M∗ U∗cr m̂bc k̂bc,cr M∗bc U∗bc,cr ĉbc,cr

Flex. 1 38.70 1.121 0.0258 5.87 970.21 91.132 0.0010 3.263 1.260
Flex. 2 - seg. 1 38.70 0.343 0.0258 10.62 718.67 30.804 0.0014 4.830 1.630
Flex. 3 38.70 0.288 0.0258 11.58 1329.5 13.582 0.0008 9.894 1.340

5.5 Comparison with Quasi-1D Model
We discuss the comparison between model prediction of critical properties and ex-
perimental results in this section. We begin by highlighting the shortcomings of
modeling the experimental geometry and flowing conditions with the framework
derived in chapters 2 and 4. Next, we propose a simplified geometry applied to the
quasi-1D model that considers spanwise leakage flow, derived in section 2.4, and
compare its predictions to experimental results.
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5.5.1 Discussion of Modeling Assumptions for Experimental Comparison
A number of potential issues arise when comparing experiments to models in chap-
ters 2 and 4. Though some have been discussed, we will highlight those we believe
most relevant in the context of contrasting experimental conditions to model as-
sumptions and restrictions in the subsections to follow. We will begin with flow
three-dimensionality and turbulence, followed by flow separation, and compress-
ibility.

Flow Three-Dimensionality and Turbulence

The flow path in the experiment has a spanwise gap between the channel wall and
the flexure of C = (b1 − b)/2 = 1.25 [mm], with spanwise gap-to-length ratio
C
L = 0.031 � 10−4. This indicates that, at least for the transversely unconfined
flag case, the spanwise flow plays a significant role in the stability properties of the
system, increasing the critical velocities necessary for the flutter onset in a given
flag configuration. As discussed in section 2.1, this is expected to be the case in the
experimental flow path as well, which renders both 2D DNS and the “axial only”
quasi-1D model, both discussed and compared in chapter 4, inadequate tools to
predict the experimental dynamics. The critical gap Reynolds number Reh � 1000
for all flexures tested, ensuring that the flow is fully turbulent as well. This further
ascertains that the 2D DNS will not capture the appropriate viscous effects due to
its low Reynolds number limitations, and that we must consider a turbulent friction
factor correlation within the quasi-1D model (as in equation 2.29). The inadequacy
of the axial quasi-1D model is validated when experimental conditions and param-
eters are applied, and no aspect for the experimentally observed regime is evident
in its results. Specifically, the model predicts an unstable flextensional mode at
a critical flow rates < 2 [L/min] and only through a divergence instability rather
than flutter. This holds true for all experimental flexure properties and also when
parameters are varied through a range of inlet and outlet loss coefficients, diffuser
expansion angles, throat sizes, throat positions, denoting that the divergence pre-
diction is robust to a wide range of model parameters. These results were essential
in the motivation for the development of the quasi-1D model in section 2.4, which
considers flow in the the spanwise direction of the beam.
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Flow Separation and Simplified Modeled Geometry

A linear plane-asymmetric diffuser consists of a diffuser with a flat lower boundary
and an upper surface that expands at a constant angle θ. This diffuser configuration
captures the essence of the geometry of our experimental flow path, illustrated in
figure 5.2, while the beam is near its equilibrium point. High Reynolds number
numerical and experimental studies suggest a θcr ≈ 7◦, independent of Reynolds
number for turbulent flows, where flow separation is triggered over the upper dif-
fusing wall [99–102]. As θ = 19◦ > θcr for our experimental set up, the flow regime
realized is one with a separation bubble that extends the entirety of the beam length
for all three flexure settings. Flow separation is not explicitly accounted for within
the formulation of the quasi-1D models, as the pressure distribution over x is cal-
culated for attached flow: a change in channel geometry would change the force
the beam. However, the model allows for anisentropic type phenomena at its inlet
and outlet boundary conditions. To account for flow separation within the quasi-1D
model, we propose a simplified geometry shown in figure 5.38. The figure shows
the model geometry, consisting of a diffuser with angle αm and an abrupt expansion
at its outlet. Three distinct features have been simplified: first the contraction sec-
tion has been removed under the assumption that losses there are negligible, such
that ζin = 1 in equation 2.45. This assumes that the net force contribution from the
converging section is also negligible. Second, we assume that the outlet boundary
pressure variation behaves as an abrupt expansion exists at the outlet, where ζout = 1
from equation 2.40.
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Figure 5.38: Illustration of spanwise quasi-1D geometry for comparison to experi-
mental results.

Third is that the separation bubble over the diffusing channel walls effectively serve
as a secondary diffuser boundary at an effective expansion angle of αm. The pres-
sure distribution on the beam surface behaves as if the flow had been attached
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and expanding at an angle of αm. Because of separation characteristics of plane-
asymmetric diffuser, we believe αm ≈ θcr. Though this cannot be shown in experi-
mental results, we assess critical flow rates over a range of αm, and discuss model
results in the context of a range of effective angles simulated. In addition, in order to
remain consistent with h′20 � 1 criteria, we upper bound our results to αm ≤ θcr = 7
[◦], where h0 ≈ 0.12. The geometrical parameters in the simplified geometry are
those of table 5.1, except the throat position L2 = 0. The fluid, structural, and
flexure properties are those of table 5.3 and the mean values in table 5.8.

Compressibility

As shown in table 5.9 and described in section 5.4.3, critical flow regimes for flex-
ures 2 and 3 are choked, while flexure 1 remains subsonic. Since throat Mach
numbers are unity for the former two cases, and a relatively large expansion exists
downstream of the throat, it is likely that a combination of shocks and expansions
follow. The lack of detailed pressure measurements immediately downstream of
the throat make it difficult to ascertain the actual flow regime, as another possibility
exists where the flow continues to accelerate into the supersonic range. However,
evident by the audible noise from the test section during flexure 2 and 3 runs as
similar to that of flexure 1 runs, we do not believe this to be the case, nor the shocks
to be particularly strong such that they extend a significant distance downstream
of the throat. We believe it reasonable to assume that the flow becomes subsonic
relatively quickly after bypassing the channel throat, and that the system expands
as suggested in figure 5.38. However, these effects are not negligible and likely
account in large part for quantitative discrepancies seen in the results shown in the
next section when comparing experimental measured critical values to those pre-
dicted by the incompressible quasi-1D model.

In the flexure 1 case, where the flow remains subsonic, compressibility effects may
be significant particularly if the structural response time scale is on the order of
the sonic flow speed. However, the flutter instability gives rise to a response at
f1 ∼ 200 [Hz], while the length based flow acoustic frequency is fa ∼ 8.3E3� f1.
This means that flow “information” in the form of an acoustic wave can travel mul-
tiple times the length of the cantilever, and that the flow has enough time to adapt
to changes in the structure’s shape. Hence, we believe that the effect of compress-
ibility is likely localized near the throat and that its primary effects is decreasing

the density of the fluid by ≈ 10%, consequently changing the mass ratio within that
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local region. Given the localization, limited density change, and the quasi-static be-
havior of structure relative to flow, we expect the incompressible model to be able
to replicate flexure 1 experimental response well as compared to those of flexures 2
and 3.

These descriptions from values in table 5.9 are only valid for throat sizes near the
equilibrium position of the beam; they are no longer valid once deflection ampli-
tudes grow large at unstable flutter cases. The physics that drive the fluid-structure
system in high amplitude cases may include a fluctuating Mach number, and signif-
icantly alter the flow regime and dynamics discussed here. These are not captured
by the linear stability analysis in the subsequent model results.

5.5.2 Experimental Comparison to Spanwise Quasi-1D Model
The tool developed that has the ability to address most of the aforementioned issues,
and more tractably be compared with experiments, is the incompressible quasi-1D
model with spanwise leakage flow (derived and discussed in section 2.4).

As discussed in section 5.5.1, figure 5.38 shows the simplified model geometry con-
sisting of a diffuser with angle αm to account for flow separation. The geometrical
parameters are those of table 5.1, except the throat position L2 = 0. The fluid,
structural, and flexure properties are those of table 5.3 and the mean values in table
5.8.

In the results to follow, we assess and discuss critical flow rates over a range of
αm, with the hypothesis based on the idea that, if the true diffuser angle θ is large
enough such that the flow is separated over most of its length, the resulting pressure
profile on the beam surface is similar to that of a diffuser near the separation angle
θcr. Since θ = 19◦ > θcr in figure 5.2, we characterize the flutter boundary for the
flextensional mode for diffuser angles αm = [1− 7]◦ for flexure setting 1 and 3, and
αm = [2−7]◦ for flexure settings 2 (the flextensional mode was stable αm = 1◦). The
range of flow rates simulated is qx0 =[0 - 500] [L/min]. Only the primary flexure
mode is considered for comparison with experiments. The modeled cantilever beam
modes are not relevant for experimental comparison due to the absence of material
damping terms, which most likely dominate the stability of the physical beams [59],
especially at higher modes. This is in contrast with the flexure mode, where we have
explicitly accounted for material damping in the model and by measuring flexure
properties in sections 5.3.1 and 5.3.2. Our retention of only the flexure mode is
supported by the experimental results presented in section 5.4, where for the flow
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rates considered, only the flexure mode was excited.

Beginning with flexure setting 1, figure 5.39 shows the spanwise quasi-1D model
results for the dimensional critical flow rates and frequency responses over αm,
along with the corresponding mean experimental values from table 5.9. The sta-
bility boundary trend has a convex shape, with a αm ≈ 3◦ representing the lowest
critical flow rate over the range of diffuser angles tested. Both quasi-1D critical
flow rate of 213 [L/min] and the critical frequency of 190 [Hz] at αm = 7◦ appear to
replicate the experimental values of 208 [L/min] ans 187 [Hz] remarkably well. Fig-
ure 5.40 shows a representative mode 1 shape near the critical point at αm = 7 [◦].
The mode shapes, both displacement and spanwise flow segments, are similar for
all αm values shown in figure 5.39. The beam shape agrees well qualitatively with
the experimental flextensional mode in figure 5.29. This can be seen primarily from
the dominant rigid body motion content, evident by the translation of the base. The
leakage flow rate mode shows an almost linear trend from channel inlet to outlet,
with flow direction switching from into-the-channel, or negative direction, at the
inlet to out-of-the-channel, or positive, at the outlet. The inlet spanwise flow direc-
tion is opposite that of the inlet axial flow term and of the same magnitude. Hence,
the model indicates that as flow enters the inlet axially, it leaves in the spanwise
direction at the same time. This trend remains true for all three modeled flexure
setting results, and highlights the importance of the leakage flow terms in addition
to the axial flow boundary condition.

(a) Critical flow rate versus diffuser angle. (b) Critical frequency versus diffuser angle.

Figure 5.39: Comparison between spanwise quasi-1D critical flow rate (left) and
frequency (right) to experimental quantities for flexure setting 1 from table 5.5.
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Figure 5.40: Flexure setting 1 representative mode 1 plots of transverse displace-
ment (left) and spanwise leakage flow (right) at αm = 7 [◦].

Figure 5.41 shows results for flexure setting 2. The early time segment variant
was chosen because voltage amplitudes in the data point near the bifurcation in
figure 5.34 are ∼ 0.2 [V], well within the early time segment amplitude bound.
Though the stability boundary convexity still remains, the comparison of values
between experiments and model are no longer in good agreement. The frequency is
overestimated by about 10%, and, if we keep the calibration of αm = 7◦, we over-
predict the critical flow rate by about 25%. A representative mode 1 shape is shown
in figure 5.42 for both transverse displacement and spanwise flow. The flexure
base displacement is evident though not as pronounced as that of flexure 1, but still
reproduces the shape of the experimental result in figure 5.32 qualitatively well.
The spanwise leakage flow is similar to results from flexure 1, with a linear trend
and opposing flow directions between inlet and outlet spanwise flows, as well as
inlet spanwise and inlet axial flows. Figure 5.43 shows critical property results for
flexure 3, with figure 5.44 showing its representative mode 1 shape. These echo the
descriptions of flexures 2: the convex shape of Qcr as a function of αm, with a model
over-prediction of critical flow rate and frequency at αm = 7 [◦]. Here, however,
beam shape only replicates the base motion seen in flexure 3 experimental data in
figure 5.35, missing the correct traveling wave form. The leakage flow rate mode
shape is similar to those of flexures 1 and 2.
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(a) Critical flow rate versus diffuser angle. (b) Critical frequency versus diffuser angle.

Figure 5.41: Comparison between spanwise quasi-1D critical flow rate (left) and
frequency (right) to experimental quantities for flexure setting 2 from table 5.5.
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Figure 5.42: Flexure setting 2 representative mode 1 plots of transverse displace-
ment (left) and spanwise leakage flow (right) at αm = 7 [◦].
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(a) Critical flow rate versus diffuser angle. (b) Critical frequency versus diffuser angle.

Figure 5.43: Comparison between spanwise quasi-1D critical flow rate (left) and
frequency (right) to experimental quantities for flexure setting 3 from table 5.5.
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Figure 5.44: Flexure setting 3 representative mode 1 plots of transverse displace-
ment (left) and spanwise leakage flow (right) at αm = 7 [◦].

The lack of agreement between experiment and model results for cases of flexures
2 and 3 are expected primarily because compressibility effects cannot be neglected
at their respective Mach numbers. This is also the case for flexure 1, although
considerably less since its experimental Mach number is less than half the other
two cases. The agreement between results however, particularly that of flexure 1,
suggests that the model may capture a considerable portion of the relevant physics.
This is in contrast to the quasi-1D model constrained to axial flow, where no aspect
of the dynamics could be captured within the parameter space in the experimental
geometry and material properties.
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C h a p t e r 6

CONCLUSIONS AND OUTLOOK

6.1 Conclusion
This thesis aims to elucidate the fluid-structure instability that drives the flexten-
sional based flow energy harvester, primarily focused on the leakage-flow instabil-
ity as a hypothesis.

Chapter 2 formulates this in quantitative terms by restricting the coupled fluid-
structure equations through assumptions that define leakage-flow. The full equa-
tions are subsequently solved through a two-dimensional fluid-structure interaction
direct numerical simulation algorithm in chapter 4, and the flutter instability onset
and critical values compared to those predicted by the reduced order model derived.
The agreement between FSI DNS and the quasi-1D model is remarkable for small
channel gaps in a range of viscous and mass parameters tested. This holds even as
the elastic-translating boundary condition is added to the system, along with a linear
diffuser though to a lesser degree. Results indicate that the leakage-flow instability
mechanism is a strong candidate as the primary source of fluid-structure instability
for heavy beams in channels with gaps less than 15% of the beam length. This is
valid for systems where the flow is approximately two dimensional.

Chapter 5 experimentally assesses the dynamics of the flextensional based flow en-
ergy harvester in air flow. Experiments characterize device mechanical properties
first, then appraise the system dynamics in a flowing setting. Critical flow rates
and frequencies are measured for three different flexures, with self-sustaining os-
cillations reached in tshe flextensional mode in all three tested cases. Furthermore,
hysteresis is observed as the flow rate direction is reversed, indicating a bistable
region and a subcritical Hopf bifurcation at the neutrally-stable point. Experimen-
tally measured values for the flutter onset are then compared with predictions of
the spanwise quasi-1D model developed in chapter 2. Results are encouraging: the
model is able to predict the critical flow rates and frequency response of the first
flexure setting, and is within a factor of 2 of flexure settings 2 and 3. The promising
aspect of these predictions is that though many effects are not captured, including
fluid compressibility, true frictional pressure loss, and flow separation, the crude ge-
ometry of a diffuser at its critical angle is able to estimate within reasonable bounds
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the stability properties of the experimental set up. This is in contrast with predic-
tions from the quasi-1D model that only accounts for axial leakage-flow: no aspect
of the dynamics, including the bifurcation type, was replicated for a wide range of
parameters near those in the experimental set up. That distinction in itself indicates
the importance of the spanwise flow, and three-dimensionality of the problem.

This work concludes that is it likely leakage-flow instability dominates the behavior
and drives the dynamics of the fluid-structure interaction seen in the flextensional
flow energy harvester system. More work is necessary to determine effects that
are loosely approximated, such as flow separation, or entirely not accounted within
the model, as compressibility. Yet the fundamental framework for reduced-order
modeling is valuable for predicting the flutter onset and critical values in narrow
channels, especially when beams are heavy relative to the fluid. Applications that
fall under these parameter ranges will find a relevant tool-set in this work.

6.2 Outlook
Two broad tasks are suggested as a continuation of this thesis. The first is valida-
tion of the reduced order models through further experimentation, augmenting the
model with more relevant physics as their importance becomes evident. Better flow
instrumented flextensional energy harvester experiments are likely a good starting
point. Measurements of effective spanwise flow, detailed velocity and pressure pro-
files over the beam surfaces, and more accurate assessment of flexure structural
properties would help in quantifying or better estimating system unknowns. An-
other set of experiments where flexures reach the limit-cycle regime at a Mach num-
ber less than 0.1, then with gradually increasing Mach number values, would quan-
tify the importance of compressibility in predicting stability boundaries. Lastly, a
set of experiments where diffuser angle can be varied would elucidate the effect of
flow separation on critical properties, especially when measurements suggested are
implemented.

The second task is using the models developed in this work to assess and design
new flow energy harvesters. One example is the convexity of the critical flow rate
stability boundaries found as a function of diffuser angle in section 5.5. By under-
standing the variation of the minimum unstable flow rate in αm, more unstable, and
perhaps more powerful, designs may be developed. Building an optimization algo-
rithm constrained by the model dynamics in chapter 2 appears a logical next step.
Iteration between model validation and the optimization is an obvious necessity,
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hence advancing both tasks simultaneously is seems like a sensible strategy.
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ĥ2 R

e L
R

e L
∆

x∗
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Table C.2: Table of parameters for constant channel flow simulations at m̂ = 100
and varying ĥ2ReL and k̂.

Case # ĥ ĥ2ReL ReL ∆x∗ ĥcorr k̂ ∆k̂ ∆λRe ∆λIm

1 0.05 0.1 40 0.0025 0.04575 [0.7 − 80] 0.920 0.057 0.158
1 0.05 0.5 200 0.0025 0.04575 [0.7 − 80] 0.920 0.280 0.356
1 0.05 1 400 0.0025 0.04575 [0.02 − 10] 2.242 0.021 1.107
1 0.05 1.5 600 0.0025 0.04575 [0.02 − 10] 2.242 0.131 2.669
1 0.05 2 800 0.0025 0.04575 [0.02 − 5] 1.540 0.010 0.849
1 0.05 2.5 1000 0.0025 0.04575 [0.02 − 5] 1.540 0.007 0.839
1 0.05 3 1200 0.0017 0.04711 [0.01 − 2.5] 0.770 0.015 0.623
1 0.05 3.5 1400 0.0017 0.04711 [0.01 − 2.5] 0.770 0.071 0.465
1 0.05 4 1600 0.0013 0.04779 [0.01 − 2.5] 0.770 0.103 1.565
1 0.05 4.5 1800 0.0013 0.04779 [0.01 − 2.5] 0.770 0.105 0.019
2 0.125 0.1 6.4 0.0063 0.11429 [0.08 − 50] 2.041 0.324 0.535
2 0.125 0.5 32 0.0063 0.11429 [0.08 − 50] 1.329 0.034 0.922
2 0.125 1 64 0.0063 0.11429 [0.01 − 2.5] 0.770 0.013 0.624
2 0.125 1.5 96 0.0063 0.11429 [0.01 − 2.5] 0.770 0.011 0.609
2 0.125 2 128 0.0063 0.11429 [0.01 − 2.5] 0.770 0.003 0.599
2 0.125 2.5 160 0.0063 0.11429 [0.01 − 2.5] 0.770 0.003 0.598
2 0.125 3 192 0.0063 0.11429 [0.01 − 2.5] 0.770 0.002 0.596
2 0.125 3.5 224 0.0063 0.11429 [0.01 − 2.5] 0.770 0.002 0.595
2 0.125 4 256 0.0063 0.11429 [0.01 − 2.5] 0.770 0.002 0.595
2 0.125 4.5 288 0.0063 0.11429 [0.01 − 2.5] 0.770 0.002 0.594
2 0.125 5 320 0.0063 0.11429 [0.01 − 2.5] 0.770 0.001 0.594
2 0.125 5.5 352 0.0063 0.11429 [0.01 − 2.5] 0.770 0.035 2.001
2 0.125 6 384 0.0052 0.11616 [0.01 − 2.5] 0.770 0.001 0.592
2 0.125 6.5 416 0.0052 0.11616 [0.01 − 2.5] 0.770 0.001 0.056
2 0.125 7 448 0.0045 0.11735 [0.01 − 2.5] 0.770 0.001 0.056
2 0.125 7.5 480 0.0045 0.11735 [0.01 − 2.5] 0.770 0.001 0.057
2 0.125 8 512 0.0039 0.11837 [0.01 − 2.5] 0.770 0.097 2.319
2 0.125 8.5 544 0.0039 0.11837 [0.01 − 2.5] 0.770 0.027 2.057
2 0.125 9 576 0.0035 0.11905 [0.02 − 5] 1.540 0.006 0.101
2 0.125 9.5 608 0.0035 0.11905 [0.02 − 5] 1.540 0.008 0.117
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ĥ
k̂ b

c
∆

x∗
h c

or
r

α
[◦
]

∆
α
[◦
]
∆
λ

Re
∆
λ

Im

1
40

0
6.

25
10

0.
12

5
0.

1
0.

00
31

0.
11

97
[0

.1
-1

0
]

1
0.

05
3

0.
03

9
1

40
0

6.
25

1
0.

12
5

0.
1

0.
00

31
0.

11
97

[0
.1

-1
0

]
1

0.
09

6
0.

04
2

1
40

0
6.

25
0.

1
0.

12
5

0.
1

0.
00

31
0.

11
97

[0
.1

-1
0

]
1

0.
11

0
0.

03
2



188

Ta
bl

e
C

.5
:T

ab
le

of
ca

se
s

fo
rc

an
til

ev
er

be
am

in
a

di
ff

us
er

.P
ar

am
et

er
s
α
[◦
]a

nd
k̂

ar
e

va
ri

ed
.

C
as

e
#

R
e L
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A p p e n d i x D

APPENDIX TO EXPERIMENTAL STUDY OF
FLEXTENSIONAL FLOW-ENERGY HARVESTER

D.1 Flextensional Response to Fluid Flow Experimental Procedure
The following is the procedure for running an individual flowing test:

1. Flexure is assemble onto its fixed base, and into the test section;

2. Wires are sealed from the test section rear;

3. Vacuum grease and rubber tape are placed around the top of the flow path to
minimize leakage paths other than those established in figure 5.2a;

4. Test section window is closed and bolted;

5. Electronics and data acquisition system are turned on;

6. Lab air valve is opened, while needle valve remains closed;

7. Needle valve is slowly opened to less than 5 [L/min];

8. Flow rate is increased in increments of ∼ 50 [L/min], but adapted near critical
points, and held for at least 20 seconds, after which video data is taken. A
manual time stamp is added to the video data set;

9. Step 8 is repeated through the critical point until a maximum flow rate near
450 [L/min] has been reached;

10. Flow rate is decreased in increments of ∼ 50 [L/min], but adapted near critical
points. Video data is taken after 20 seconds of constant flow;

11. Step 10 is repeated through the critical point until a minimum flow rate is
reached, near 20 [L/min].

12. The lab air valve is closed first, to ensure no air pressure remains between the
lab valve and needle valve section, then the needle valve is closed;

13. The test section window is removed and the flexure dynamic test is carried
out, as described in section 5.3.2.
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