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ABSTRACT 

This dissertation addresses itself to the problem faced by a robot 

in recovering from failures during execution of a task. Failures occur 

partly because sensory information is inaccurate, partly because 

effectors do not always perform as expected, and partly because the 

domain in which the robot operates cannot be characterized exactly. 

Robot systems with automated planners have traditionally dealt with the 

problem of error recovery by merely replanning to achieve the desired 

goal, without attempting to characterize the failure in any way 

whatsoever. 

The central idea in this thesis is that planning recovery from 

failures has its own special techniques, distinct from those used in 

conventional planning systems. 'IWo viewpoints, looking at the past for 

an explanation of the failure, and looking at the current situation to 

attempt a characterization of the failure state, provide powerful 

heuristics for error recovery. This thesis suggests that these 

heuristics can be formalized as failure reason analysis and multiple 

outcome analysis, ·and that knowledge relevant for such analysis can be 

provided through a failure reason model and a multiple outcome model 

associated with each action. 

'Il1e 

knowledge 

failure reason model 

about why actions 

provides a means for representing 

fail, like bumping into an object to be 

grasr.ed because of servoing errors or because of inaccurate information 

about the location of the object. The model also provides knowledge 
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required for distinguishing between the different reasons for failure. 

Finally, it includes recorrunendations of corrective actions to be taken 

if failure is attributed to a specific reason. This model in used in 

failure reason analysis in building a failure tree representing possible 

explanations of the failure. The explanations represented in the tree 

are then used in planning recovery.' 

The multiple outcome model provides a way of representing the 

possible outcanes of an action, like bumping onto the object or bumping 

onto the ground in the immediate vicinity of the object, ignoring the 

fact that these outcomes could be the result of several different 

reasons. Knowledge required to distinguish between different outcomes 

is provided as part of the model. In cases where the immediately 

available information is inadequate to identify the outcome of an 

action, the multiple outcome model provides a basis for executing 

actions to serve as information gathering steps. 'llle novel feature here 

is that information gathering is directed by specific expectations about 

the state of the world. 

A computer implementation of a program called MEND has providea a 

medium for exploring the above idea. MEND has been designed to automate 

recovery from failures in simple manipulation tasks to be performed by 

the JPL robot, but the techniques used in MEND have greater generality. 

A first implementation of MEND established the basis of this 

investigation. A second version, which has been designed to correct 

some limitations of the first version, has not yet been fully 

implemented arrl integrated with the JPL robot system. 
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The techniques of planning recovery from failures through failure 

reason analysis and multiple outcome analysis are contributions to the 

subject of robotics. r-bre imp:>rtantly, however, the problem of error 

recovery is recognized to be a member of a larger class of problems 

involving knowledge representation and common sense reasoning, both of 

which are core topics in the study of artificial intelligence. '!he 

solution presented in this thesis makes some new contributions to these 

core topics. 
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INTRODUC'rION 

1.1 PROBLEM DESCRIPI'ION 

A robot performs a task by executing a plan of actions. During 

execution the robot may encounter a variety of unforeseen circumstances, 

some of which prevent successful completion of the task. Even simple 

actions such as reaching out to grasp a rock cannot be guaranteed to 

succeed in the absence of dynamic sensory feedback as in visual 

monitoring of manipulation tasks. The hand may bump onto the rock 

because of manipulation errors or because of erroneous information about 

the location of the rock. Failures such as these occur because sensors 

and effectors are inaccurate, and because the world in which the robot 

operates cannot be characterized exactly. 

0..lr goal is to design a robot in such a way that it can recover 

from failures in a graceful and intelligent manner. Robot systens with 

automated planners have traditionally dealt with the problem of error 

recovery by merely replanning to achieve the desired goal, without 

attempting to characterize the failure in any way whatsoever. 

The central idea in this thesis is that planning recovery from 

failures has its own special techniques, distinct from those used in 

conventional planning systems. The techniques of recovery planning are 

based on knowledge about failures -- why they occur, what can be done 

about them, etc. '!Wo viewpoints, looking at the past for an explanation 

of the failure, and looking at the current situation to attempt a 



- 2 -

characterization of the failure state, provide powerful heuristics for 

error recovery. 

A computer implementation of a program called MEND has provided a 

medium for exploring the above idea. MEND has been designed to automate 

recovery from failures in simple manipulation tasks to be performed by 

the JPL robot, but the techniques used in MEND have greater generality. 

A first version of MEND established the basis of the investigation 

reported here. A second version, which has been designed to correct 

some limitations of the first version, has not yet been 

implemented and integrated with the JPL robot system. 

1. 2 AN OVERVIEW OF MEND ----------

FJGURE LI 

NON 
Ri:AL TIME 
(PLANNING) 
COMPUTER 

fully 
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Let us consider an example to illustrate the problems involved in 

recovery from failures, and some of the features of the solution 

incorporated in MEND. The robot hardware that is controlled by MEND 

consists of two TV cameras, a laser rangefinder, a manipulator, and a 

vehicle [Figure 1.1]. Suppose that the robot is given the simple task 

of picking up a rock within irrunediate reach. Performing this task 

involves locating the rock using the rrv cameras possibly using the 

laser rangefinder to augment the camera data) , positioning the hand 

around the rock, and grasping the rock [Figure 1.2]. Assume that the 

hand bumps into the rock when attempting to position the hand around the 

rock. 

l'v\OVE. I'\ AtJI> 
'{"o Gl\.ASP R.OCI::. 

FIGURE t.2 

Any robot system designed to recover from failures must be able to 

detect them. In the above example, the manipulator system triggers the 

failure, bringing MEND into action. In other cases, MEND has to make 

explicit checks of certain conditions to detect whether or not something 

has gone wrong. MEND's execution monitoring is pragmatic in the sense 
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that only those conditions that are easy to check on the basis of the 

available information are tested. A consequence of this lack of 

comprehensiveness is that failures can propagate down the plan and may 

be detected only at a subsequent step. This places an additional burden 

on the recovery scheme. At this point we merely note the intimate 

relationship between execution monitoring and error recovery. 

Having detected a failure, MEND is confronted with the problem of 

dealing with the unexr;iected event. Two general heuristics provide 

guidelines to planning recovery. 

1.2.1 Failure reason analysis 

The first heuristic suggests that recovery actions can be found by 

determining why the failure occurred. The process of finding an 

explanation for the failure is termed failure reason analysis. 

Knowledge necessary for failure reason analysis is provided through a 

failure reason model associated with each action. The failure reason 

model represents knowledge about the different reasons for failure of an 

action, the way in which they may be distinguished, and finally about 

what can be done to recover from a si;:>ecific kind of failure. 

MEND represents possible explanations for a failure in a structure 

called the failure tree, an example of which is shown in Figure 1. 3. 

'Ihe tree consists of a linked set of failure nodes and action nodes. 

There are four basic types of fa ilure reasons that are dealt with in 

MEND and they are information errors, 

precondition er~, and constraint errors. - . --- Each failure node is 
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f'\OVE ~/\t-1.l> 
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1-0U'cTION 1.0C.I<. 

associated with a failure type and a specific reason for failure. 

Action nodes are linked to an action in the plan being executed. An 

example of an explanation represented in Figure 1.3 is that the goal 

WITHIN-GRASP (node G) was never achieved by action MOVE-HAND-'.IQ-GRASP, 

tiecause of an Op:!rational SERVO-ERROR (node Fl) . 

Analysis of failures can now be thought of as the process of 

limiting the set of all possible explanations to the specific one which 

applies in a particular situation. MEND does this by limiting the set 

of failure reasons to be considered at each action node in the failure 

tree. Preconditions and constraints that have been independently 

verified can be eliminated from consideration as possible reasons for 

failure. More importantly, the distinctive features of the 

manifestation of the failure are used to limit the failure reason set. 

Figure 1.4 shows, for instance, a simple test and the implications of 

its results in eliminating some failure reasons from consideration. 
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Once an explanation has been found, recommendations of corrective 

steps can lead MEND to successfully planning recovery from failures. 

For instance, if the failure is attributed to SERVO-ERROR [Figure 1.3], 

then recovery can be simply achieved by repositioning of the hand as 

shown in Figure 1.5. 

LoCJl1E ~OCI( 
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1.2.2 Multiple outcome analysis 

The second heuristic ignores the reason for failure and suggests 

that recovery strategies can be found by determining what the outcome of 

an action is. This characterization is formalized as multiple outcome 

analysis and is directed by a multiple outcome model. 

L 

LEFT-TOVCH f\\G-Hr-ToUCJ-1 

Continuing with our example, MEND finds from the multiple outcome 

model that some of the p:>ssible outcanes of f(>sitioning the hand around 

the rock are as shown in Figure 1.6. Either the fingers could have 

bumped onto the object, or the hand could have bumped onto the ground 

because of overshoot. 'Ihe outcomes could be the result of servoing 

errors, object location errors, or a combination of these, but this is 

unimportant for multiple outcome analysis. MEND attempts to find the 

actual outcane of an action when failure has occurred by running a 

series of tests. These tests are based on the fact that each outcome is 

characterized by a set of conditions that must be true or false for that 

situation. To illustrate an example of such a set of conditions is 

shown in Figure 1. 7. 'Ihe important thing to note is that these 
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conditions can be checked on the basis of immediately available 

information. 

L!;;F'T TOOC..f.( SE~o~ oN 

~IG+rr IOl)CK Si:NSoft.. CANNOT Sf AC.TIVA-TED 

L HAN!> ON OB:fEC:r 

'Ille available information may not always suffice . to identify the 

failure state. In such cases the multiple outcome model directs ME.'ND in 

the execution of actions to collect the necessary information. Figure 

1. 8 shows a simple action and its functions in distinguishing between 

outcomes. 

Ac.:fl"N F1Nt\L STIHE 

LEFT- ~vMP- i£ST 

------t> 

L 

FtGui<..E. \·i 
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Finally, the multiple outcome model includes recorrunendations for 

recovery strategies for each possible outcome. An example of this is 

shown in Figure 1.9. 

L 

<;"EARG{ TO Tfi E Lf.FT 

..... l~~ 
101 

1. 3 orHER APPROACHES TO THE PROBLEM 

'llle problem of getting robots to do useful things has been tackled 

in two distinct ways, and each of these approaches has implications for 

the way in which failures are handled. We shall refer to the two 

approaches as the higher level language approach and the planning 

approach. The distinction between the two methodologies becomes blurred 

in certain systems. Nevertheless it is a useful distinction for our 

discussion. 

In the higher level language approach, each robot task requires the 

writing of a program. For instance, in the Stanford Hand-Eye System 

[Feldman 7la, 7lb], every perceptual and manipulation task required the 

writing of a strategy control program. The strategy control program 
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could be designed to deal with failures. However, the system itself had 

no knowledge about failures Qnd how to deal with them. Continuing 

studies at Stanford have led to to the develoµnent of AL [Finkel 74], a 

specialized language for automated assembly tasks. 

can be dealt with by explicit programming for each 

Here again, failures 

task. Subroutines 

can encapsulate some recovery strategies, but incorporating knowledge 

about failures in subroutines has many limitations. For example, it 

becomes difficult (or even impossible) for the system to analyze 

failures an::] attribute the failure to a previous action that did not 

produce the desired result. In MEND such analysis becomes feasible 

because of a more explicit representation of knowledge about failures. 

Consider now the planning approach. Here tasks are specified as a 

goal state to be achieved. An automated planner finds a sequence of 

steps to achieve the goal. In systems of this sort, failure during 

execution can be dealt with by replanning from the failure state to the 

goal state. It would seem that this provides a natural solution to the 

problem. 

However, there is a basic problem in this whole approach that makes 

it difficult to deal with failures in a direct way. If we consider 

WITHIN-GRASP(RO::K) to be the desired goal state of positioning the hand 

to grasp an object, a failure such as bt.nnping into the rock will be 

respon::]ed to by replanning to achieve the goal. It would not be 

difficult for the planning system to determine that this can be done by 

locating the rock, and then positioning the hand. 'Ibis is fine, but 

such a system would be incapable of recognizing that simple 
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repositioning of the hand would be adequate if the failure were the 

result of servoing errors. To state it in more general terms, modelling 

actions merely in terms of preconditions and postconditions is not 

adequate in analyzing what caused the failure and what can be done about 

it. Such analysis in needed to construct practical recovery strategies. 

A number of systems falling within the planning paradigm are 

described, in spite of the fact that the above criticism can be levelled 

against them. 'Ihey are described because they embody some important 

concepts relevant to our discussion. 

The planning approach is exemplified by the SHAKEY system [Raphael 

71, Fikes 71]. Plans produced by STRIPS, the SHAKEY planner, were 

structured into triangle tables. 'Ihe triangle tables gave precise 

meaning to the concept of a kernel -- the set of conditions that were 

relevant to the execution of the plan. Specifically, the important 

property is that the truth of the kernel associated with each action in 

a plan ensured that the subsequent steps would succeed (barring 

operational failures). Furthermore, this concept allowed SHAKEY to be 

clever in replanning from failures by attempting to achieve intermediate 

goal states. 

Nilsson[73] has dealt briefly with the problem of error recovery in 

studying nethods for integrating planning and execution. He identifies 

two kinds of events -- failures and surprises -- that a robot must deal 

with in a dynamic and uncertain world . His notion of failures includes 

execution time failures which we are concerned with, but also 

encompasses failures in planning. Execution time failures were handled 
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by the simple means of repeating the failed action, but the system had 

no good understanding of whether. this would work or not. 

The notion of surprises is a consequence of a dynamic world in 

which other agents play a role in changing the world. Nilsson suggests 

that these probl~ns be tackled by the use of demons set up to watch for 

certain conditions. 'lhe demon would transfer control to a higher level 

executive when its activating conditions were made true. The hope was 

that the higher level executive would be able to deal with the surprise 

since it was the one which set up the demon. 

Surprises are dealt with in an interesting manner by Hayes[75]. 

His system uses a representation of robot plans that make explicit the 

relationship between decisions and subgoals. New information is dealt 

with by discarding portions of the plan which are dependent on the new 

information. Replanning fills in the rest in a manner appropriate to 

the new situation. 

MEND does not specifically deal with the problem of surµrises, and 

will remain oblivious to new information about the world as long as it 

does not cause an immediate failure. It deals with the situatio~ when 

failures occur, but is short-sighted in not checking for future 

failures. 

Sacerdoti describes a system called NOAH [Sacerdoti 75] which uses 

a data structure called a proc~>dural net for planning and execution. 

NOAH does not have a good model of why actions fail and therefore 

resorts to a hierarchical search for an erroneously executed substep 
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when a failure is detected. Having identified the substep which failed, 

NOAH resp:::mds by replanning to achieve the intended effects of this 

action. 

'llle approach that has been adopted in MEND is closest in spirit to 

that taken by Sussman and Goldstein. Sussman's system, HACKER [Sussman 

73], is designed to learn to build structures in the BLOCKS world, and 

Goldstein deals with the problem of debugging incorrect "line drawing" 

programs through a system called MYCROFT [Goldstein 74]. 'Ihe main 

difference is that their systems are addressed to the problem of 

handling conceptual errors. 'lhese conceptual errors arise either as a 

result of a lack of knowledge about the domain or because of an 

erroneous first attempt at planning, where interactions between related 

steps are not considered. In spite of this basic difference, ~1e can 

make a i;x>int of comparison with HACKER. HACKER's analysis of failure 

reasons is based on an explicit representation of the previous states of 

the world in different contexts and an implicit representation of 

previous actions in the control frarries created by calls on the action 

routines. Such mechanisms are quite impractical. In analyzing 

failures, MEND does not have access to the previous states of the world, 

and can only use currently available information and a record of actions 

that have been executed. 
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1. 4 AN OVERVIEW OF THE REPORI' 

The following two chapters describe the hardware and software of 

the JPL robot, the structure of MEND, the world model, the 

interpretation of actions, and the detection of failures. Chapter 4 

describes the process of failure reason analysis and how it is used in 

recovery from failures. A number of scenarios illustrate MEND's 

capabilities. Chapter 5 presents a brief outline of multiple outcome 

analysis and discusses the problem of integrating failure reason 

analysis and rnul tiple outcome analysis. The final chapter swrunar izes 

the results, discusses the limitations of MEND, and .suggests ~ssible 

extensions. 



- 15 -

THE JPL ROBor -------

2.1 INTRODUCTION 

The problem of error recovery discussed in the previous chapter was 

studied as part of the Jet Propulsion Laboratory's research program in 

robotics. In fact the results reported in this thesis are · abstractions 

of the design concepts implemented in a module called MEND which is one 

of the components of the robot software system. Tnis thesis gained 

substance from some of the actual problems encounter~ in the JPL robot 

system, and these problems placed realistic requirements on the program 

designed for error recovery. 

'Ihis chapter gives an overview of the JPL robotics program, 

describing its motivation, hardware, tasks and goals for the robot, the 

components of the system, and their structural relationships. 

2.2 JPL PR(X;RAM OBJECTIVES 

Robots, autonomous or semi-autonomous · machines with human like 

capability, are considered essential for planetary exploration. 

Machines that perform tasks on a step by step basis under human control 

are very inefficient when there is significant time delay in 

conununication between the hwnan control center and the machine. 

Difficulties are further exaggerated because of limitations in channel 

capacity. Because conditions in the territory to be explored are either 
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largely unknown, or at least unpredictable in detail, manipulation and 

locomotion will have to be achieved by execution of a large number of 

highly conservative steps. It is only by such means that environmental 

hazards can be avoided with reasonable chance of success. The above 

considerations motivate the JPL robotics research program. 'Ihe long 

range goals of the project are to demonstrate the usefulness of 

artificial intelligence concepts for integrated robot systems, and 

arrive at guidelines for their design. More specifically, the irrmediate 

goals of the program are to build a breadboard robot system. This will 

be described next. 

2. 3 JPL ROBOT HARO'JARE 

'Ihe hardware of the breadboard robot system is shown in Figure 1.1. 

The manipulator, TV cameras and the laser rangefinder are mounted on a 

four wheeled vehicle. 'Ihe hardware thus provides for three essential 

functional capabilities -- manipulation, vision and locomotion. 

2.3.1 ARM hardware 

'Ihe manipulator is a modified version of the Scheinman arm and is 

described by Dobrotin[73]. Figure 2.1 shows the kinematic configuration 

of the JPL manipulator. It has six degrees of freedom which allow the 

hand to be placed in an arbitrary position and orientation. The hand is 

a parallel jaw mechanism and has touch sensors mounted on the inside of 

the fingers. The positions that can be reached define the vx:>rk space of 
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the manipulator. A detailed study of the work space of the JPL 

manipulator has been performed by Bejczy[72]. The manipulator can lift 

objects of about five pounds, and fast system response makes it possible 

for most trajectories to be executed within five seconds. 

'Ihe manipulator is driven by permanent magnet torque motors. 

Electro-mechanical brakes hold the manipulator in position without the 

need for driving the motors. Feedback information is made available 

from each joint by means of potentiometers for T?Osition information, and 

tachometers for rate inforrr0tion. 'Ihese are used by the servo loops 

implementing the real time control of the manipulator. Subsequent 

chapters will show the importance of position feedback information for 

purposes of error recovery. 
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Figure 2.2 shows the reference frame which is used for manipulation 

purposes. 'Ibis reference frame will be called the robot coordinate 

system. The actual position of the hand will be referred to as the 

position in robot coordinates. 'Ihe position of the manipulator can be 

computed from the joint angles as measured by the potentiometers. 'Ihe 

equations defining this transformation are given by Lewis (74]. Let us 

call the position computed in this manner, the position in hand 

coordinates. In general the position in robot coordinates will be 

different from the position in hand coordinates because of potentiometer 

errors, digitization errors and conversion errors. This error will be 

called the robot-hand position~' and as we shall see is the cause 

of several kinds of errors. 
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2.3.2 EYE hardware 

The combination of the TV camera and the laser rangefinder system 

will be collectively referred to as the vision system [Williams 76]. 

Both are mounted on a pan and tilt mechanism and provide the primary 

means of sensing the environment. 

'IWo solid state (charge-injection device) TV cameras provide stereo 

image data to the robot. The image array has 244 lines with 188 

elements per line. '!he laser rangefinder is built around a gallit.nn 

arsenide pulsed laser. The resolution in the workspace of the robot is 

about a quarter inch in the horizontal direction and a half inch ~n the 

vertical direction. 

As with the manipulator, there is ·a position error that is to be 

contended with in the vision system. The coordinates of a point as 

determined by the vision system will be called the position in eye 

coordinates. These are the coordinates that will be used for 

positioning the manipulator in a desired location. 'Ihe robot-eye 

position error can cause certain failures in manipulation, and these 

will be discussed in later chapters. 

2.3.3 VEHICLE hardware 

The vehicle provides for the mobility of the robot. The four 

wheels are independently driven by rx: torque motors. The front and rear 

wheels can be steered independently by an Ackerman type double steering. 

'rhe load capacity of the vehicle is about 500 pounds and travel speed is 



- 20 -

limited to about l mile/hour. Position feedback is available through 

odometers. Tachometers provid~ velocity information and a directional 

gyro compass provides directional reference. 

Tne vehicle has only recently been integrated into the system. It 

has not been considered in detail in the investigation reported here. 

2.4 TASKS AND GOAI.S 

An extensive study has been performed delineating science 

requirements for a Mars roving mission [Choate 72]. The science 

requirements of such a mission provide goals for an investigation such 

as the one undertaken in the JPL robotics research program. The 

breadboard system, however, is limited to a much narrower set of 

immediately realizable goals. 

Consider sample collection. Tne problem of deciding what rocks are 

of scientific interest is beyond the capabilities of the system, and is 

likely to remain so for some time to come. 'Ihese decisions are ~o be 

made by a team of science experts, who will monitor the activities of 

the robot and make selections of samples to be collected and decide what 

experiments are to be conducted, etc. To give a feeling for the 

interactions involved in such a semiautonomous system we describe a 

hypothetical scenario. 
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Supp.Jse that the robot is cormnanded to pick up a specified rock and 

to put it on a viewing table • . To achieve this the robot will have to 

use the vision system to build a three dimensional model of its 

environment and in particular to determine the location of the rock. 

Deciding on a grasping orientation, the robot will then compute a 

trajectory for moving the hand into a l,?OSition appropriate for grasping 

the object. After picking it up, it will then compute a second 

trajectory to place the rock on the viewing table. We can imagine that 

the viewing table makes it convenient for examining the rock more 

closely, in order to make a decision whether or not it is worth keeping. 

Such decisions are likely to be time consuming and in the meantime the 

robot can be commanded to do other tasks. Perhaps a rock can be removed 

from an experiment chamber and transp.Jrted to a sample container. Once 

the decision has been made about the rock on the viewing table, the 

robot can then be corrnnanded, for instance, to discard the rock. 

We note that some interactions are essential for scientific 

reasons. However, we expect the robot to make many operational 

decisions about when to use vision, or how to grasp a rock, on its own. 

It is in this connection that error recovery becorres important since we 

would like to minimize operational interactions. 'lbe reasons for this 

have been discussed in detail in several studies[Hooke 74, Whitney 74], 

and from a pragmatic p.Jint of view, these reasons provide a major 

motivation for systems with automated error recovery. 
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2.5 SYSTEM CCMPONENTS AND STROCTURAL ORGANIZATION 

From a software point of view, one of the major problems in 

building a robot is the integration of manipulation, locomotion and 

vision. The JPL robot system embodies one approach towards this 

problem. 'Ihe rationale and design considerations have been described in 

detail by Weinstein[75a, 75b]. 
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'Ihe functional capabilities of the robot hardware are incorporated 

within three software modules for manipulation, locomotion and vision. 

'Ihese modules are called ARM, ROVER and EYE respectively, and are 

collectively referred to as operative m<Xlules. The operative modules 

are controlled by the OPerative executive ( OPX ) , which in turn 

receives commands from the Robot Executive ( REX ) • 'lbese five modules 
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are sepa.rate concurrent processes, hierarchically structured as shown in 

the Figure 2.3 [Srinivas 73a, 7~b, Stevens 74, Roth 75]. 

Figure 2.3 shows the actual division of the modules between two 

different computer installations. The software on the PDP 10 is largely 

written in SAIL [Vanlehn 73] , while the software for the SPC 16 at JPL 

is written in FORTRAN. Each of the modules on the PDP 10 is implemented 

as a separate job. Communication between jobs is achieved through a 

message passing mechanism called MAILER. 

RD130\ 
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Note the division of the operative modules into two components. 

The details of Figure 2.3 will be largely ignored in the subsequent 

sections of this report, and the more abstract structure of Figure 2.4 

will be used. The components of this figure will be described in 

functional terms in the following subsections. 
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2.5.1 Robot Executive System l REX l 

REX serves as the interface between the human supervisor and the 

rest of the robot software. Such an interface is necessary because the 

robot is not a completely autonomous system, and ultimate control 

resides in the human supervisor. The supervisor is thus provided with a 

set of commands to control and monitor the activities of the in~egrated 

system. One of the design requirements is that REX be almost 

irrunediately responsive to the human supervisor. It is for this among 

other reasons that REX is a separate process running concurrently with 

the rest of the robot software. 

Through REX the human supervisor can interact with the robot in the 

following ways. He can: 

(1) Create, edit and delete plans. A plan editor is incorporated as 

part of REX. 

(2) Request execution of plans and abort plan execution. 

(3) I:etermine the status of the system to many levels of detail. 

(4) Trace the flow of control and data between the different modules. 

2.5.2 The Operative.Executive J. OPX .L 

The operative modules are individually responsible for the specific 

functional capabilities of the robot. To achieve a collective effort 

these modules are integrated by means of OPX. OPX achieves this by 

invoking primitive actions 

order specified in a plan. 

execution of plans. 

implemented in the operative modules in an 

Tnus the primary function of OPX is the 
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Plans are structured sets of action units or other plans. 

language allows for concurren~ execution of action units 

different operative modules through a CCBEGIN-COEND feature. 

The plan 

in the 

However, 

we will restrict plans to sequential list of actions in this study. 

Each action unit specifies the operative module to be invoked and the 

specific action routine to be called. OPX sends to the appropriate 

operative module a message requesting the execution of a primitive 

action. en completion of the action, OPX continues with plan execution 

by repeating the above process with the next action unit. When the plan 

has been successfully executed a completion message is sent up to REX. 

During execution of the plan OPX is still responsive to rressages 

from REX. OPX can therefore determine the status of the operative 

module, abort the plan, or turn on tracing, so that the flow of control 

becomes explicit to the user. 

2. 5. 3 The Operative Modules (ARM, EYE, and ROVER) 

action capabilities of 

the 

The operative modules implement primitive 

robot. 'llle implementation is termed an action unit, and a 

primitives on which more collection of such action units defines the 

complex plans are based. 

The implementation of these primitive actions is a difficult task 

in itself. As example we consider some action units in each of the 

operative modules. 
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(1) ARM MO VETO 

The MOVE'I'O action unit takes the manipulator from its current 

location to the specified goal position. In doing so it has to 

find a trajectory such that collisions are avoided. 'lbe 

manipulation system implemented by I.ewis[74] includes a simple 

collision detector, but the system is likely to show markedly 

improved capability with the integration of the software developed 

by Udupa[76]. Udupa's solution is based on a theoretical framework 

which makes the task of collision detection and avoidance 

computationally tractable. 

Once the trajectory has been determined, the joint angles need 

to be determined as a function of time, so that the manipulator 

will trace the desired trajectory.. 'Ibis again is a fairly complex 

task involving both kinematics and dynamics of the manipulator. 

I.ewis[76] has implemented a very elegant solution to this problem. 

(2) EYE : LOCATE 

To U::X:ATE an object, the vision system needs to segment the 

digitized TV picture. Once the picture has been segmented the 

scene is analyzed, and a three dimensional model of the scene is 

built up using a combination of laser and stereoscopic information. 

Both segmentation and building 3-D models are difficult tasks 

involving considerable computational power. Williams[76], who has 

presented an overview of the JPL robot vision system, discusses 

these and other problems. 
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(3) Rover : GOro 

For the robot to be mobile, . a path planning algorithm [Udupa 74, 

Thompson 75] is necessary. Given a description of the environment, 

the -path planning algorittun finds a safe route to the goal 

location. The GOro action unit then takes the vehicle along the 

planned route. 'Ihe real time control of the vehicle is an 

extremely difficult problem especially in uneven and hazardous 

terrains. A first version['Ihompson 76] of such a real time 

controller and a path planner is now capable of moving the vehicle 

around in a relatively flat environment in which rocks of various 

sizes are strewn around. 

2.6 EXAMPLE OF EXECCJrION 

Consider a simple plan called PICKUP with the following structure: 

(rock) 
BEGIN 
LCX:ATE (rock); 
MOVE-HAND-'1'0-GRASP (rock); 
GRASP (rock) 
END 

(We will use the convention that identifiers in lower case letters are 

uninstantiated parameters.} The human supervisor starts things rolling 

by corrunanding REX to execute the plan PICKUP with the parameter RCCKl. 

The plan is instantiated (with ROCKl for "rock") and then sent to OPX 

for execution. 
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OPX begins execution by invoking vision to UX:ATE RCA':Kl. This 

results in a TV picture being taken. 1l1e picture is digitized and then 

segmented. ROCI<l i.s identified in the segmented image and the vision 

system then builds a three-dimensional model of the rock. A descriptor 

of ROCKl is returned which contains information about its location, 

width, height, support level, etc. 

On receiving a completion message from the EYE operative module, 

OPX sends the next action unit to the ARM module. With the newly 

updated data for ROCKl, the ARM module determines an orientation for 

positioning the hand around the object. Trajectory computation is 

performed and the ARM executes the trajectory. A COllll?letion message is 

then sent to OPX. OPX continues execution by sending the GRASP action 

unit to the ARM module. 'Ihe ARM module· executes GRASP. The completion 

message from this action unit signals plan completion. OPX sends a 

message to REX with this information. 

2.7 ERRORS AND A MODULE FOR ERROR RECOVERY --- -- - --- -- --·· ----

The execution of the plan PICKUP(ROCKl) described in the previous 

section assumes that every action succeeded in achieving its goal. 

Consider a case in which the hand bumps onto the object, instead of 

being correctly positioned around it. On detecting such an error, the 

ARM module sends an error message to OPX. OPX terminates plan execution 

by aborting the plan. An error message is sent up to REX, and the human 

supervisor is given the responsibility of planning recovery. 
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The goal of this thesis is to automate recovery from such failures. 

For this puq:ose a module called MEND has been implemented and its olace 

in the robot structure is shown in Figure 2.5. The following chapters 

will describe MEND's capabilities and its internal structure. To 

illustrate the techniques used by MEND in planning recovery from 

failures, several scenarios dealing wi th the Hand-Eye subsystem of the 

JPL robot will be described. 
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A DESCRIPrION OF M&l\JD 

3.1 INTRODUC'rION 

In the previous chapter the need for a recovery system like MEND 

was explained. The relationship of MEND with other modules of the JPL 

robot system was briefly described. In this chapter we take a look at 

its internal structure. This chapter also describes the representation 

of knowledge about actions, the world model, the interpretation and 

execution of actions, updates to the world model and other details of 

MEND. 

In its initial conception, MEND was expected to come into play only 

when a failure was detected. We can depict such a relationship as shown 

in Figure 3.1. 
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Tasks or goals are specified to the robot executive system which 

translates these into actual changes in the real \'K>rld. If a failure is 

detected during execution of the task, then MEND receives an error 

message describing the failure. MEND responds to this by analyzing the 

failure and suggesting appropriate corrective steps. These corrective 

steps are structured into a recovery plan which is then sent over to the 

executive system. 

Tne first version of MEND that was implemented reflected this 

initial idea. Its limitations provided a major motivation of the system 

as it exists now. Among other things it became clear that there was a 

need for a much more intimate relationship between the execution of 

plans and the analysis of failures. 'Ihe second version of MEND plays a 

much more important role in the system. The description in this report 

is a conceptualization of this second version. 

3. 2 THE INTERNAL STROCTURE OF MEND -- -- ---- ----- -- ---

MEND consists of many parts which interact together to execute 

plans, recover from failures etc. Every computation in MEND has access 

to three entities and these are shown in Figure 3. 2. Knowledge about 

actions is built into the system and is not modified by any computation. 

'Ihe world model represents the current state of the \'K>rld and the robot. 

The execution of actions results in utx'lates to the \'K>rld model to 

reflect the changes in the real \'K>rld. Tne execution trace represents 

information about the plan currently in execution, such as what action 
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is to be executed next, what previous action failed, what corrective 

actions were taken, etc. 'Ihese entities are discussed in more detail in 

later sections. 

3.2.1 Execution of plans with MEND 

At first we ignore the problem of error recovery and merely 

consider the execution of plans. Figure 3.3 indicates the flow of 

control between the different computations in MEND, and the tVK> major 

states that MEND can be in when quiescent. 

Some notational conventions are first described. Circles represent 

states and rectangles represent computational processes. Transitions 

from a state are activated when a message is received. Messages 

received by MEND are enclosed in square brackets with the sender being 

identified as a prefix to the message. A process can have several 

outcomes and can lead to other states or processes. Typically when a 

process leads to a state, a message is sent to another module (OPX). 
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PLAIJ- (IJl TIA-TOR. 

f\C{IQN- I/JI TIA-TOR. 

These messages are enclosed in circular brackets, the receiver being 

identified as a pref ix to the message. 

With these conventions in mind, we can easily interpret Figure 3.3 

in the following manner : If MEND receives a message indicating that 

plan execution is to be initiated, it readies itself for plan execution. 

PI.AN-INITIATOR builds a structure representing the plan to be executed 

and initializes the status by pointing to the first action in the plan. 

It then transfers control to ACTION-INITIATOR. ACTION-INITIATOR checks 

preconditions to verify that the action can in fact be executed. Then 

the action is interpreted by ACTION-INTERPRETER in terms of simpler 

action primitives which are directly executable by the operative system. 

A message requesting execution of the primitive is sent to OPX and MEND 
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goes into the EXECUTE state. When MEND receives a completion message, 

ACTION-COMPLETOR checks that the results are as expected, updates the 

world model, updates the plan status and then transfers control to 

AC'rION-INITIATOR if there are more actions to be executed. Typically a 

cycle of ACTION-INITIATOR's and ACTION-CCMPLE'I'OR's will sequence through 

the plan until execution of the plan is completed. When this occurs, 

PIAN-Ca1PLETOR cleans up the execution tr ace and returns MEND to the 

IDLE state. 

3.2.2 MEND with error recovery 

Mo A 

(t•H rurj 

.DEC \DER 

FR.A 

FIGURE 3.4-
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MEND, as represented in Figure 3.3, monitors the execution of plans 

by checking preconditions before executing actions and by checking 

postconditions to ensure that actions have been performed correctly. 

'Ihe figure does not indicate what MEND does when these checks fail or if 

an error message is generated by an operative module as a result of 

executing an action. Figure 3.4 answers this issue. 

We can immediately note from Figure 3.4 that there are two ways in 

which failures are detected and control can be transferred to FRA, the 

failure reason analyzer. 'l'he path from the state EXECUTE to FRA 

represents those situations where failure is detected by the primitive 

actions. It is not always possible to rely on the primitives to detect 

the failure since failure is meaningful only in the context of the 

specific way in which the primitive is being 'used. These failures are 

detected by ACTION-COMPLE'IDR which has knowledge about the 

post-conditions of the actions interpreted by MEND. 

'Ihe checking of preconditions, which is done as part of the 

ACTION-INITIA'IDR, is a way of anticipating and avoiding failures during 

execution. If the preconditions are found to be false, the PLAN-PATCHER 

is called to achieve these preconditions. If they have been only 

partially verified then these are marked as being UNVERIFIED in the 

execution trace, and execution is allowed to continue. (This will be 

explained in greater detail.) 

FRA, DECIDER, flU and PLAN-PA'D:HER perform 

responsible for handling recovery from failures. 

failure and finds one or more ex?lanations for the 

the computations 

FRA analyzes the 

failure. DECIDER 
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provides a means of integrating failure reason analysis with multiple 

outcome analysis. In cases where the failure reason analysis has 

provided a simple solution for planning recovery, DECIDER transfers 

control to the PIAN-PA'D:HER. Otherwise, MOA is called. In analyzing 

multiple outcomes MCli\ may find that the available information is 

inadequate. In such circumstances MEND resorts to model-driven 

information gathering by asking for execution of simple actions, and 

going into an ACQUIRE state. On completion of the information gathering 

step, multiple outcome analysis is continued. When analysis is complete 

the PIAN-PA'.ICHER is called with the results ot the analysis. 

PLAN-PATCHER uses the results of the analysis to find a set of 

corrective steps and patch the plan in execution. 

3. 3 WORLD MODEL 

'Ihe state of the world is represented in MEND through a set of data 

structures that will be collectively referred to as the 'M'.)rld model. 

Typically, other systems model the world in terms of assertions 

represented as lists of items. MEND's representation is much more 

structured and tailored around the entities that it needs to deal with. 

The advantage of this is ease of accessing and efficiency of 

implementation, with the associated disadvantage of non-uniform 

procedures for accessing and updating the data base. Accessing of the 

world model occurs in several ways. ACTION-INTERPRETER needs to use 

information about the location and orientation of objects in 

interpreting actions in terms of simpler pr imi ti ves. An 
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INTERPRET-ROurINE associated with actions is programmed to access the 

world model to determine such information. In other words, knowledge 

about the way in which data are represented in the world model is built 

into these procedures. 

Another set of procedures that access the world model are the 

INITIATE-ROurINE's. These routines check preconditions and constraints 

applicable to the action with which they are associated. In MEND 

checking of preconditions and constraints is somewhat different from 

traditional robot problem solving systems. We illustrate with an 

example. C.onsider the precondition WITHIN-GRASP (ROCK) for GRASP (ROCK). 

'Ihe INI'rIATE-ROurINE for GRASP will check that the hand position is 

within a small tolerance limit of the known location of the ROCK. If 

this check fails, then the precondition will be considered to be false. 

However if this condition is found to be true, MEND recognizes that this 

precondition may still not be true because of J;>OSsible inaccurate 

information about the location of the ROCK. If in addition, though, 

MEND finds that the touch sensors in the hand are activated, then it 

will consider WITHIN-GRASP to be true. The main J;>Oint to be noted is 

that precondition . testing is not equivalent to looking for an 

appropriate assertion in the world model, or to deducing this from other 

assertions. 

A third set of procedures, the FINISH-UP-ROurINES associated with 

each action, update the world model and check completion conditions. 
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There are four entities about which information needs to be 

represented, and they are the state of the hand, objects, stations and 

frames. We discuss each of these in turn. 
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'!he hand state descriptor is updated after execution of any ARM 

action. The values of all the joint angles of the manipulator are 

recorded as attributes of the hand descriptor. From these joint angles 

it is possible to. calculate the position of the hand, the sliding 

vector, and the approach vector in the Cartesian robot coordinate system 

[Figures 2.2, 3.5], but these are redundantly represented in the hand 

state descriptor. (The sliding vector refers to the vector along which 

the fingers move when the hand is opened or closed. '!he approach vector 

points in the direction of the fingers. Both these are indicated in 

Figure 3.5.) The hand state descriptor also includes information about 

the state of the touch sensors, and a]:x)ut the finger separation. 
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In addition to the above data, additional information is stored as 

part of the hand state descriptor. An attribute called GRASP-STATE 

indicates whether the hand is holding an object, touching an object, or 

whether the hand is empty. Another attribute, the GRASP-HEIGHT records 

the z coordinate of the hand whenever an object is grasped. This piece 

of information is useful in determining how far above the station the 

hand should be when attempting to place the grasped object at a desired 

location. 

3.3.2 Object descriptor~ 

Each object is represented as an item in the data base, and is 

described by various attributes. 'Ihe vision system estimates the 

location of the object from a stereo view of the scene with additional 

information from the laser system in some cases. It also estimates an 

orientation of the object (the axis of the longest dimension), the 

grasping direction, the width along the grasp direction, and the height 

of the object, the support level, and other such details. All these are 

represented as part of the description of the object. In addition to 

these an attribute called ABSTRACT-LOCATION indicates whether the object 

is at a station, in the robot's hand, or whether the fingers are merely 

touching the object. 'lhis information is useful in testing 

pre-conditions and also in interpreting the attributes of an object in a 

meaningful manner. For instance, if the object has been gras~d, then 

the location of the object is determined from the hand position and not 

from its LOCATION attribute. A point to note about the representation 

in MEND is that there is redundancy in the the world model. If the 
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ABSTRACT-u::x:ATION indicated that the object is in the robot's hand, the 

GRASP-ST.~TE of the hand will alse indicate that the robot is holding the 

object. This redundant description makes it convenient to get the 

necessary information directly rather than by an associative or pattern 

directed search. 

3.3.3 Station descriptors 

Stations provide a means of naming some designated locations. 

These locations can either be on the ground or on the robot platform. 

Station O::::CUPAN:Y indicates whether or not there is an object at the 

station. This will be checked, for instance, before an object is 

transported to the station to be placed there. A 

STATION-TOLERANCE-LIMIT can be specified and later used in determining 

whether a placement of the object at the station is within acceptable 

limits. 

3.3.4 Frame descriptor 

A frame defines the position, s liding vector and approach vector of 

the hand, and is useful in specifying intermediate configurations when 

t he hand moves from one location to another . With a good obstacle 

avoider built into the manipulation system it should be possible to 

eliminate this low level of dealing with hand configurations. 

they are necessary in the current system to avoid obstacles. 

However, 
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3. 4 KNOOLEDGE ABOUT ACTIONS 

The implementation of ARM, EYE, and VEHICLE provide higher levels 

of the robot system with action primitives. These primitives can be 

used to achieve various results. For instance, the primitive MOVETO 

which can move the hand from one position to another, can be used to 

position the hand around the object or to transport the object from one 

position to another. In the first case, it would be reasonable to check 

that the hand is empty before begining execution of the action, while in 

the latter case it is necessary to verify that the object to be 

transported is in the hand. Modelling of actions directly in terms of 

these primitives is difficult because of the different conditions that 

apply in different circumstances. 

MEND thus models a slightly higher level set of actions which are 

specialized for different functions. MOVE-HAND-TO-GRASP(object), for 

example, is· a specialization of MOVETO with the implicit pur!;X)se of 

positioning the hand around the object to be grasped. When the human 

specifies a task by writing a plan composed of these higher level 

actions there is an implicit notion of its intended effects. It is this 

notion of purpose or intent that makes it lX)ssible to recover from 

failures in actions in a reasonable manner. 
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Each action is represented in MEND as an item in the data base, and 

has both a declarative and procedural component[Figure 3.6]. Tne 

declarative model is represented as triples in an associative data 

base[LEAP data structures in SAIL - Vanlehn 73], and a triple (A IV) is 

interpreted to mean that attribute A of item I has value V. A partial 

description of the declarative model of MOVE-HAND-TO-GRASP is shown 

below: 

(ACTION-TYPE MOVE-HAND-To-GRASP(ROCK) EFFF.cTOR) 

(PRE.cONDITION MOVE-HAND-TO-GRASP (ROCK) (EJl1Pl'Y-HAND)) 

(PRECONDITION MOVE-HAND-TO-GR~SP(ROCK) (OPEN-HAND)) 

(NEEDED MOVE-HAND-'l'O-GRASP (ROCK) LO:ATION (ROCK)) 

(RESULT MOVE-HAND-TO-GRASP (ROCK) WITHIN-GRASP (ROCK)) 
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This model represents the fact the MOVE-HAND-TO-GRASP is an 

effector action, that it has a par~neter called RO:K, that one of its 

pre-conditions is EMPI'Y-HAND, that the location of the Ro:K is needed 

information, that its intended result is WITHIN-GRASP(RO:K), and so on. 

'lhe procedural component consists of an INITIATE-ROITTINE, an 

INTERPRET-ROurINE, FINISH-{JP-ROurINE, a FRA-ROurINE, and a MOl\-ROurINE 

associated with the action [Figure 3. 6]. ACTION-INITIATOR for 

instance, calls the MOVE-HAND...JI'O-GRASP INITIATE-ROITTINE to check 

parameter types and preconditions. 

Let us now take a brief look at the actions that have been modelled 

for demonstrating error recovery in simple manipulation tasks. 

3.4.1 ARM actions 

(1) MOVETO(frame) 

This action defines the most primitive caµability of the 

manipulator to move from one location to another. 'I'he parameter of 

MOVETO specifies the desired absolute position and orientation of 

the manipulator. This action is not directly modelled in MEND but 

the following specializations of this action are. 

(la) MOVE-HAND...JI'O-GRASP (object) 

The expected result of this action is to position the hand such 

that the fingers surround the specified object. The initiation 

routine will check that the hand is empty, that the fingers are 

open, and that the object is graspable. The INTERPRET-ROUrINE 
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determines a position and orientation which is appropriate for 

grasping the object. In general this could be a difficult problem 

requiring a good understanding of the shapes of objects and the 

resulting constraints on how the object can be grasped. However, 

for the simplified world that MEND is being tested in, this is 

relatively straightforward. In fact, a grasp orientation is 

suggested by the vision system. 

(lb) MOVE-HAND-TO (frame) 

The only difference between this action and the primitive MOVETO is 

that the INITIATE-ROUrINE will check that there is nothing in the 

hand. 

(le) APPROACH (object) 

Sometimes it is necessary to position the hand near the object so 

that the location of the object can be determined relative to the 

hand. This action positions the hand at a point some small 

distance above the object. 1he INITIATE-ROurINE will check that 

the hand is not holding any object. 

(ld) TRANSPORT (object, station) 

An object which has been grasped can be transported to a station 

where it is to be placed. Preconditions that are checked ensure 

that the object is the hand, and that the station is unoccupied. 

The INTERPRET-ROurINE will use the information recorded in the 

GRASP-HEIGHT attribute of the hand state descriptor in computing a 
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hand position which will result in the object gently bumping onto 

the desired station. The FINISH-UP-ROUrINE will check that the 

station tolerance limit is not exceeded. 

(le) MOVE-OBJECT...!JD (object, frame) 

This is similar to MOVE-HAND-'"l'O except that in this case an object 

is expected to be in the hand. 

(2) SEPARATE(finger!separation) 

This action results in the fingers being opened (or closed) to the 

desired finger 

s pee ial i za tions • 

(2a) GRASP(object) 

separation. This action again has several 

Execution of this action results in the object being grasped 

provided that the fingers have been positioned around the object. 

'lhe motors driving the fingers are kept active for a short period 

of time even after the object has been sensed by means of the touch 

sensors. 'lhis is done so that the hand gets a firm grip on the 

object. The INITIATE-ROUTINE will check that the position of the 

hand and the known position of the location of the object indicate 

that the object is WITHIN-GRASP. However, this test does not 

guarantee that the object is really within grasp because of 

possible errors in the location of the object. The 

FINISH-UP-ROUTINE will update the ABSTRACT-LOCATION of the object 

to indicate that the object is in the robot's hand. The 
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GRASP-STATE and GRASP=-HEIGHT attributes of the hand descriptor are 

also updated. 

(2b) CLCSE!UNTIL!TOUCH(object) 

'Ihis is similar to GRASP. However the fingers stop moving the 

moment the touch sensors are activated. Often it is a good 

heuristic to gently close the fingers around the object and then 

squeeze tight in order to GRASP the object. After execution 

ABSTRACT-LOCATION will merely indicate that the hand is touching 

the object. 

(2c) LE']X;Q(object, station) 

This merely SEPARATES the fingers to release the object. It 

verifies that there is an object in hand and that hand is at the 

station. 'Ihe FINISH-UP-ROurINE will change station OCCUPANCY to 

occupied, updates the ABSTRACT-I.CX::ATION of the object to indicate 

that it is AT(station). 

3.4.2 EYE action units 

(1) UX:ATE (object) 

This action assumes that the object has been identified either by 

specifying an approximate location, or by certain distinguishing 

features of the object. A new descriptor is created by the 

FINISH-UP-ROurINE and the different attributes updated with the 

information provided by the execution of this action. 
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( 2) LCCATE-REIATIVE-TO-HAND (object) 

On occasion it is necessary to determine the position of an object 

accurately. Part of the difficulty in determining the location 

accurately is the discrepancies between the hand coordinate system 

and the eye coordinate system. To avoid this problem the hand is 

brought close t.o the object, and the location of the object 

determined relative to the hand. As with locate, 

UX::ATE-RELATIVE...JI'O-HAND updates data structures describing the 

object. 

3. 5 THE EXECUI'ION TRACE 

A new execution trace is created by PLAN-INITIATOR whenever a new 

plan is to be executed. It starts off as a set of ncrles strung together 

to represent the plan to be executed. Each node is associated with an 

action and its parameters. A NEXT-TO-BE-EXECUTED pointer indicates 

which action is to be executed next. An example of an initial structure 

is shown in Figure 3.7. 

Several things get added to the trace as execution proceeds. 

Before beginning execution of an action, the INITIATE-ROUI'INE will mark 

all unverified preconditions and constraints by creating triples of the 

form: 

(UNVERIFIED NODE~ WITHIN-GRASP (ROCK) ) 

(UNVERIFIED NJDE~ GRASPABLE (ROCK)) 
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After successful execution, the NEXT-TO-BE-EXOCUTED p::>inter is 

moved ahead to the next node. If failure occurs and PLAN-PATCHER 

successfully finds a recovery plan, it will modify the execution trace 

by creating new nodes for the action to be executed. 

for failure in ~DE-B of Figure 3.7, corrected by a 

'Ihe new structure is shown in Figure 3.8. 

We show an example 

single step plan. 
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After execution of the recovery plan, execution will continue with 

the node following the failed action. 
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FAILURE REASON Al\lALYSIS 

4.1 INTRODUCTION 

MEND uses two different strategies for recovery from failures. In 

this chapter we discuss how ME'ND analyzes failure and how the results of 

this analysis are used in planning recovery. Let us first take a look 

at a classification of failure reasons. 

4.2 A CIASSIFICATION OF FAILURE REASONS 

MEND's analysis of failures reflects an understanding of four kinds 

of failures. These are operational errors, information errors, 

precondition errors, and constraint errors. We discuss each of these in 

turn. 

Actions can fail to achieve their intended result because of 

certain inherent problems in executing the action. These errors are 

peculiar to the specific operation being performed and are therefore 

referred to as operational errors. We can see a number of examples of 

these kinds of errors in the JPL robot. For instance, the manipulator 

may deviate from the planned trajectory in moving from one location to 

another. 'Ibis operational error of servoing will not often have any 

serious consequences, but in some cases it can cause the manipulator to 

bump into the object to be grasped. 
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The process of determining the location of objects is subject to 

several operational errors. Calibration, resolution limits, noisy data 

and other such reasons are all contributing factors in producing 

erroneous information. For our purposes there is no need to distinguish 

between them, and we will deal with them collectively as a single 

operational error. There is the possibility of confusion here, and we 

reiterate that the operational error does not refer to the inaccuracy in 

the location. This inaccuracy is a consequence of the operational 

error. 

If the robot fails in positioning the hand correctly around the 

object because of inaccuracy in the location of the object, MEND will 

recognize this to be the result of an information error. We see that 

the operational error in locating an object has shown up as an 

information error when attempting to pick up the object. 

Before executing an action the initiate routine will check 

preconditions and constraints. If .any of these are found to be false 

the PI.AN-PA'ICHER will attempt to make them true before continuing with 

the execution of the action. If all the preconditions of actions could 

be checked and verified, there would be no reason for failu~es to occur 

because of precondition errors. However, it would be unrealistic to 

expect a robot to check these preconditions exhaustively, since some of 

them are inherently difficult to check. Therefore, the execution 

monitoring in MEND does not require that all preconditions be absolutely 

verified before executing an action. In some cases executing subsequent 

steps may be the simplest way of finding out that they were or were not 
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satisfied. For instance, checking to see that an object is truly within 

grasp before actually grasping the object is unnecessary and exi;:.ensive, 

since the very action of grasping will immediately indicate whether this 

is true or not. Even when previous actions were executed with the 

intentions of making these preconditions true, the robot cannot always 

dei;:.end on their being true since these previous actions may themselves 

fail for the various reasons under discussion. In any case, the 

consequence of not verifying preconditions is that after execution of an 

action, failure can be attributed to the falsity of preconditions. It 

is with this interpretation in mind that we talk of precondition errors. 

(Similar comments apply to constraint errors discussed later.) 

From the discussion so far it may seem that information and 

precondition errors can both be traced back to operational errors. This 

is largely true but with a small qualification. We cannot ex-p2ct a 

robot to keep a record of its activities (the execution trace) that is 

infinitely long. 'lherefore it is not always possible to trace back the 

reason for failure to an operational error. Also, the plan may have 

been produced with certain conditions being assumed to be true of the 

initial state of the world. In both these circumstances MEND recognizes 

some si;:.ecial cases : initial information error and initial condition 

error. 

Finally, an action can fail because there are some constraints that 

must be satisfied for successful execution. An example of this is that 

the object should be MOVABLE before the robot can transport it from one 

place to another. In a sense, these are merely special cases of 
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preconditions with the limitation that the robot has no way of making 

them true. Of course, what is a "constraint" for one robot may be 

merely a "precondition" for a robot with a larger set of capabilities. 

But lacking omnipotence any robot will have certain limitations and thus 

encounter situations that it can do very 1 i ttle about. Constraints, 

therefore, model certain limitations in the capability of the robot. 

4.3 THE FAILURE TREE -- ·-----

The results of failure reason analysis are represented in a 

structure called the failure tree. We first describe this structure, 

before looking at how it is built. 

A 

Fl Gu RE 4 · \ 

Figure 4.1 is an example of a failure tree. 'Ihere are two types of 

nodes in a failure tree -- failure nodes and action nodes. Failure 

nodes are represented by circles and action nodes by rectangles. Action 
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nodes are linked to a node in the execution trace through a plan link 

which is not explicitly shown in the above figure. Each failure node 

identifies the failure and its type, and may point up to one or more 

actions nodes through one of several kinds of links. 'Ihe NAB (Never 

Achieved By) and IPB (Incorrectly Provided By) are tw::> examples of such 

links. Action nodes point up to failure nodes through a PRFF, the 

"possible reason for failure" link. 

'Il1e example in Figure 4.1 can now be interpreted in the following 

manner Goal G was never achieved by action A because of one (or more) 

of two possible reasons Fl and F2. Fl indicates that the failure could 

have been the result of an operational error, while F2 represents data 

incorrectly provided by action B. 

The types of failure that are associated with failure nodes are the 

ones we have discussed earlier (operational, information, precondition, 

and constraint errors) with one addition. 'Ihere is a special "failure 

type" which occurs only at the root of the tree and this represents a 

goal failure {GOAL-FAILURE). Of)erational and constraint failure nodes 

do not point up to anything since they are local to the failed action. 

Precondition nodes may link upward to action nodes that were intended to 

achieve the precondition. When such links are missing it means that no 

action was executed to achieve this condition. It therefore represents 

an initial condition error. Similarly, information failure nodes link 

upward to actions that provides the needed information, and missing 

links indicate initial information errors. 
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4.4 BUILDING A FAILURE TREE 

The idea behind failure reason analysis is to find an explanation 
~ 

of the failure. By explanation we will mean a chain of reasons 

represented by a path from the root node of the failure tree to one of 

its leaf nodes (G - A - F2 - B - F3 in Figure 4.1). If we consider all 

possible reasons for failure at each action node, then the failure tree 

represents all possible explanations for the failure. Clearly, only one 

or a few will be relevant in any particular situation. We can now think 

of failure reason analysis as the process of limiting this set of all 

possible explanations. Of course, it will not always be possible to 

find a single explanation and MEND has to deal with several possible 

explanations in certain cases. 

We next ask what can be done to constrain the set of explanations. 

Several things suggest themselves. Any unsatisfied precondition or 

constraint can be the cause of the failure. However if we know that the 

preconditions and/or constraints have been satisfied then the failure 

cannot be attributed to these causes. 'Ihe execution trace in which 

unverified preconditions and constraints are noted down provide the 

information necessary for this purpose. We reiterate here that a 

precondition is not considered to be verified because a previous action 

was executed to achieve this, but rather is considered to be true when 

independent tests verify the truth of the precondition. To consider a 

trivial example, OPEN-HAND is verified by checking that the finger 

separation is equal to the maximum separation. Typically other robot 

systems verify preconditions by looking for explicit assertions in the 
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data base or by "deducing" the truth of these conditions from other 

assertions. The result of this is no distinction can be made between 

those preconditions that can be verified directly from feedback 

information and those that are only surmised to be true because a 

previous action was supposed to achieve this goal. 

A second important way in which the failure nodes branching from an 

action can be cut down is by looking at the manifestation of the 

failure. Different reasons for failure manifest themselves in different 

ways, and by identifying distinctive features of the failure situation 

sane of the reasons for failure can be shown to be impossible or at 

least unlikely. 

c 

' \ ' \ ', \ 
' \ \ 

B 

A 

I 

I 

> 
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'Ihirdly, the history of actions can show that certain explanations 

are impossible. Consider, for instance the situation in Figure 4.2. 

Suppose that no reasons for failure of action C can be found. In that 

case we can conclude that B could not have failed because of F2. If 
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there are no other reasons for failure of B besides F2, we can further 

conclude that A. could not have failed because of Fl. Such reasoning can 

· significantly cut down the set of possible explanations, thereby 

pointing out the real explanation of the failure. 

In building a failure tree (i.e. in analyzing failures), MEND 

applies constraints at each action node, builds a tree, and finally 

cleans up the tree by eliminating the explanations that can be shown to 

be impossible on the basis of the history of actions. 'Ihe following is 

an overview of the tree building algorithm: 

1. Find the set of possible failure reasons. 

2. Eliminate verified preconditions and constraint failure from this set 

by looking at the execution trace. 

3. look for distinctive features of the manifestation to further 

constrain the set of failure reasons. 

4. For each of the remaining failure reasons create failure nodes and 

link the action node to these newly created failure nodes. 

5. For precondition failure nodes find from the execution trace the 

previous action responsible for making the precondition true. For 

information failure nodes find the previous action which provides the 

necessary information. Create an action node for each of the 

previous actions so determined. 

6. Repeat the above process for the newly generated action nodes. 

7. Clean up the failure tree by eliminating impossible explanations 

(i.e. apply the process described in connection with Figure 4.2). 
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4. 5 THE FAILURE REASON r-DDEL 

We can now see that to execute the algorithm outlined in the 

previous section we need a model of actions that will provide the 

necessary information. 'Ihis is precisely what the failure reason model 

is all about. 

Firstly, the model should identify the set of p::>ssible failures. 

Operational failures are represented explicitly through a set of 

associations as shown below: 

(OPERATIONAL-ERROR MOVE-HAND-TO-CRASP(ROCK) SERVO-ERROR) 

(OPERATIONAL-ERROR MOVE-HAND-TO-cRASP(ROCK) COLLISION) 

(OPERA:rIONAL-ERROR LJX:ATE(ROCK) INACCURACY) 

Knowledge about other types of failures is implicit in the action model 

as presented earlier. Any precondition, constraint, or needed 

information is recognized as a '[X)Ssible reason for failure by MEND. 

Figure 4. 3 below shows the corresrxmdence between the action model and 

the failure tree. 
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Fl (OPERATIONAL-ERROR MJVE-HAND-TO-GRASP (ROCK) SERVO-ERROR) 

F2 (OPERATIONAL-ERROR MOVE-HAND-TO-GRASP(RCX::K) COLLISION) 

F3 (NEEDED MJVE-HAND-TO-GRASP (RCX::K) LOCATION (RCX::K) ) 

F4 (CONSTRAINT MOVE-HAND-TO-GRASP (RCX::K) GRASPABLE (Rcx::K)) 

FS (PRECONDITION MOVE-HAND-TO-GRASP(ROCK) F.MPI'Y-HAND) 

F6 (PRECONDITION MOVE-HAND-TO-GRASP(RCX::K) OPEN-HAND) 

Molff • H~tJ~­
lo -(,fl:.l'l~i' 

'lhe knowledge necessary to eliminate some possibilities on the 

basis of their manifestation is highly domain dependent. '!his knowledge 

is incorporated in a procedure, the FRA-ROOTINE. The FRA-ROOTINE tests 

for the presence or absence of distinctive features of the failure in 

the current state of the world. 'Ihese tests indicate that certain 

failure reasons are impossible, that others are likely, and so on. 
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To see what the FRA-R::>urINE is all about let us consider what 

information about the manifestation of the failure of MOVE-f-lfu\lD...JI'O-GRASP 

can be used in constraining the set of failures. Figure 4.4 shows what 

the MOVE-HAND-TO-GRASP' FRA-ROlJrINE does. At each node in the tree, a 
' 

condition is tested and the appropriate branch taken depending on the 

truth or falsity of the result. 'Ihe leaf nodes of the tree specify a 

list of failure reasons that are considered possible in that specific 

context. 'Ihe rationale for the results produced by the FRA-ROurINE is 

not justified here, but is discussed when some scenarios are described 

in a subsequent section of this chapter. 
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We note several important points about the FRA-ROurINE. "As with 

precondition testing, the conditions being tested are easily computed 

using the data in the world model and the feedback information. For 

instance, the condition NEAR-DESTINATION is checked by verifying that 

the final position of the hand is within a pre-specified limit of the 

planned destination. Similarly, PESV is checked by testing that the 

projection of the position error (the difference between the the actual 

position of the hand and the planned position) on the sliding vector 

exceeds a pre-set tolerance limit. 

Secondly, note that the routine illustrated in Figure 4.4 assumes 

that the preconditions EMPI'Y-HAND and OPb'N-HAND have been made true, and 

does not consider how failure resulting from falsity of these conditions 

will manifest itself. The reason that this is possible is that 

execution monitoring will catch these precondition errors and will not 

allow execution of this action to continue unless they have been 

satisfied. Also note that the FRA-ROurINE represents a procedural 

incorporation of knowledge about the manifestations of failure. 

It may seem unreasonable to make such assumptions or to embody such 

knowledge implicitly in procedures, when designing a general purpose 

system, but I believe it is essential to build in such simplifications 

when designing a practical system. It is perhaps appropriate to mention 

at this point that my philosophical viewpoint is that the flexibility of 

reasoning about actions from a declarative model can be carried only so 

far. A lot of discussion about declarative versus procedural 

representations is canpletely pointless since they are not considered in 
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the context of the goals of a well defined system. The decisions that 

were made in designing MEND are tailored to meet specific goals 

considered desirable for the JPL robot, with the consequence that MEND 
I 

cannot "reason" about certain aspects of its knowledge base. In a 

different context, Martin[74] voices a similar viewpoint, and points out 

in connection with the MACSYMA system that "the implications to the 

system design of facts like the cornmutability of plus are so great that 

the system must be built assuming them to be true". 

To get back to our discussion of the failure reason model. 'Ihere 

is a problem in using t..11e FHA-ROurINE to limit the set of failure 

reasons in step 3 of the algorithm presented in the previous section. 

'lhis is because this ~outine requires information about the state of the 

world in making its decisions. This means that previous states of the 

world need to be represented. To keep this information around would be 

quite unrealistic in any large system, even using a stack like mechanism 

for representing only the incremental changes. 

There are two ways of tackling this problem. Execution monitoring 

can be extended by running the FRA-ROurINE regardless of whether or not 

a failure occurred and marking the failure possibilities in the 

execution trace. Later, if failure reason analysis is necessitated in a 

subsequent action, this possibility list presents a "swrunary" useful for 

analysis. 
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A different strategy is to ignore the possibility of failure when 

there is no explicit triggering of the failure, and to later ask what 

failures could have escaped detection at the time of execution. This is 

answered by the representation of facts such as the one shown below, 

(PI'RIG (NEEDED MOVE-HAND-TO-<iRASP (ROCK) LO::ATION (ROCK) ) NTRIG) 

\.Vhere PI'RIG = POSSIBLE-TRIG:;ER 

and NTRIG = NULL-TRIGGER, 

\.Vhich says that a location error in the position of th,e rock could go 

untriggered when executing MOVE-HAND-TO-GRASP. (The reason for this is 

that if the location error is sufficiently large, the hand will 

completely miss the object.) With these facts in hand, MEND can 

irrunediately determine the set of failure reasons to be considered in 

step 3 of the failure tree building algorithm, without having to run the 

FRA-ROUTINE for previously executed actions. 

An assumption implicit in the latter approach is that any triggered 

failure has already been dealt with. 1he first approach is a more 

general technique .but will perform unnecessary computations in 

situations where plans are successfully executed. 

There is one other aspect of the failure reason model which has 

nothing to with the analysis per se, but provides information about what 
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to do in case failure is attributed to a particular kind of failure. An 

example of this is shown below: 

(TO-CORRECT (OP-ERROR MHI'G(RCX:K) SERVO-ERROR) MHI'G-REC-PLANl(RCX:K)) 

where OP-ERROR = OPERATIONAL ERROR 

and MHTG-ROC-PIANl = (rock) 
BEGIN 
MOVE-HAND-TO-GRASP (rock) 
END 

This says that to correct an operational error of servoing in 

MOVE-HAND....ir0-GRASP the plan MHTG-REX:-PIANl should be executed. 

MHTG-ROC-PLANl will attempt recovery by simple repositioning of the 

hand, and this is appropriate for servoing errors. In general, 

110-CORRECT steps are provided for each operational error. 

Constraint errors on the other hand have no such "imperative 

knowledge"[Goldstein 74] about what to do, since the robot does not have 

the capability to correct such failures. if failure is attributed to a 

constraint error, the plan is aborted and MEND seeks human aid. 

Precondition and information errors are not directly associated 

with corrective steps and are treated somewhat differently than 

operational errors. Since operational errors are local to the action 

under consideration, all that is needed is knowledge about how to fix 

the situation. For precondition errors the obvious thing is to 

reachieve the failed precondition before trying the action again. But 

before this can be done, some of the effects of the failed action must 
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be undone. After the precondition has been achieved, other steps must 

be redone to get execution back on the right track. 'lhe PLAN-PATCHER in 

MEND implicitly incorporates this knowledge and recognizes that there 

are three parts to recovery from precondition errors undo certain 

effects, reachieve precondition, and redo the undone steps. Knowledge 

about what needs to be undone and what needs to be redone is part of the 

failure reason model. For example, 

(UNOO-STEPS (PROCONDITION GRASP (ROCK) wrrHIN-GRASP (ROCK)) OPEN) 

(REOO-STEPS (PRECONDITIOO GRASP (ROCK) WITHIN-GRASP (ROCK)) GRASP (ROCK) ) 

says that if failure in GRASP is attributed to the precondition error of 

the object not being WITHIN-GRASP, the OPEN undoes the effect of GRASP, 

and that GRASPing the object needs to be redone after WITHIN~RASP has 

been reachieved. 

'Ihe situation is entirely similar for information errors, with the 

one difference that instead of reachieving the precondition, the 

intermediate step between undoing and redoing is that of getting the 

needed information • . 

Facts such as these are used by the PLAN-PATCHER. We will describe 

how this works when discussing the scenarios that illustrate MEND's 

capabilities. 
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4.6 SCENARIOS 

In this section we look at several scenarios to illustrate how MEND 

copes with failures in simple manipulative tasks. 

4.6.1 An operational failure 

l..OCJITI: (£Jiek1) 

Consider the plan shown in Figure 4.5. en execution the action 

UX:ATE updates the \'K>rld model with the location, orientation, support 

level, and other details of RX:Kl. 'I.be fingers are then opened in 

preparation for the next action of positioning the hand around the 

object. Preconditions are checked and finding them to be true MEND 

computes a grasping orientation and interprets MOVE-HAND-'1'0-GRASP in 

terms of the primitive MOVE'.ID. 'I.be robot finds on execution of this 

action that tolerance criteria is not met and the primitive signals a 

failure by triggering 'IDLE~E-EXCEEDED. 



- 67 -

MEND immediately recognizes the possibilities shown in Figure 4.3. 

FS and F6 are immediately eliminated from consideration since the 

preconditions were found to be true before execution. 'Ihe FRA-ROurINE 

associated with MOVE-HAN0-1ro-GRASP is then run. Since only a tolerance 

error was triggered this routine returns SERVO-ERROR (Fl) as the only 

possibility. The FRA-ROurINE eliminates COLLISION (F2) because there 

was no SATURATION, which is a second way in which the primitive MOVE'ID 

can trigger failure. (We are using saturation of the joint motors 

driving the manipulator as a sensor. Proximity sensors [Johnston 74] 

will more effectively provide information about $UCh situations by 

detecting impending collisions.) lDCATION-ERROR (F3) and J:iOI'-GRASPABLE 

(F4) are not impossible, but are considered to be unlikely in the 

absence of saturation. 'I.he rationale behind this is that a location 

error in the object to be grasped or largeness of the object (making it 

NOI'-GRASPABLE) are likely to cause the hand to bump onto the rock, 

causing one of the joints to saturate. 

of't:.it.A11otJftL. F-ltltol.. 
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In any case, the result of running the FRA-OOurINE is that the 

failure tree is pruned to the simpler structure shown in Figure 4.6. 

Since the error is an operational error, the PIAN-PA'ICHER looks for the 

TO-CORRECT plan associated with SERVO-ERROR in the failure reason model 

of MOVE-HAND-'I'O-GRASP. The corrective step is patched in and the 

modified plan is shown in Figure 4.7. MOVE-HA.ND-TO-GRASP will be 

interpreted in exactly the same way as before, with the result that the 

corrective step is equivalent to repositioning the hand. 

4.6.2 An information error 

Consider a small change to the previous scenario and assume that 

the hand actually bumped onto the rock. Also assume that the rock had 

been previously picked up indicating that it is both GRASPABLE and 

MOVABLE. This time failure is triggered by two conditions -- SATURATION 

and TOLERANCE-EXCEEDED. SATURATION indicates that one of the motors 

driving the manipulator saturated because the movement of the hand was 

obstructed in some way. 
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~ before MEND starts with the possibilities represented in Figure 

4.3. However, in this case verification of the preconditions and 

constraints eliminate 001'-GRASPABLE (F4), NOI'-EMPTY-HAND (F5) , and 

OOI'~PEN-HAND (F5) [Figure 4.8]. SATURATION indicates that coilision 

into an obstacle has to be considered a possibility, but FRA-ROurINE 

eliminates this. by verifying that the hand is near the object to be 

grasped. Fl and F3 representing servo error and object location error 

respectively can both cause the hand to bt.nnp onto the rock, but their 

manifestations are slightly different. By looking at the position error 

along the sliding vector MEND can tell the difference. If such a 

positional error is found, it irrlicates that there was a servoing error. 

On the other hand its absence indicates that there was no servoing error 

and that failure must be attributed to other reasons. Let us consider 

the latter situation, the result being the elimination of SERVO-ERROR 

(Fl). The possibilities are now represented by the structure shown in 

Figure 4. 9. 
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Since F3 represents an infonnation error, MEND continues the 

analysis by looking back at the execution trace for an action which 

either FIND's or PROVIDE's the desired information about (LO:ATION 

ROCKl). By simple pattern matching this action is identified as 

LOCATE (RCX::Kl). MEND looks for reasons for failure in LOCATE 's failure 

reason model and finds: 

(PI'RIG (OPERATIONAL-ERROR I.DCATE(RCX::K) INACCURACY) NTRIG) 

This fact indicates that the inaccuracy in LOCATE may go undetected. 

'Ihe failure tree after this part of the analysis is shown in Figure 

4.10. 
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FlGURE 4.10 

'Ille PIAN-PA'ICHER uses the explanation represented by the failure 

tree in Figure 4.10 to determine the recovery plan. 'lhe UNOO-STEPS and 

REOO-STEPS associated with the information failure in MOVE-HAND-TO-GRASP 

shown below, 

(UNOO-STEPS (NEEDED MHTG (ROCK) LOCATION (ROCK)) NULL-PLAN) 

(REDO-STEPS (NEEDED MH'ffi (ROCK) LOCATION (ROCK)) MH'ffi (ROCK)) 

are used to correct the failure by patching together the plan shown in 

Figure 4.11. 
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Continuing the recovery planning by looking at F3-·LOCATE-F7 in the 

failure tree, the PLAN-PATCHER corrects the operational error in locate 

by using, 

(TO-CORRECT (OPERATIONAL-ERROR U:X:ATE(RCCK) INACCURACY) IJJC-ACC(RCX::K)) 

where LOC-ACC : (rock) 
BEGIN 
APPROACH (rock) : 
LCX:ATE-REIATIVE-TO-HAND (rock) 
END 

to modify the structure in Figure 4.11. to that shown in Figure 4.12. 
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4.6.3 An anamolous situation --- -- ----- -----

Assume that the recovery plan of Figure 4.12 is put into execution, 

arrl that the hand again bumps onto the rock. If we consider a similar 

situation to that in section 4.6.2, then MEND would continue the 

analysis represented in the tree of Figure 4.9 by producing the failure 

tree shown in Figure 4.13 instead of that shown in Figure 4.10. 'Ihe 

reason for this is that the search for the action which provided the 

information about the location of RCX:Kl will now find the recovery 

action LCX::ATE-REIATIVE-TO-HAND rather than the original LCX::ATE. Since 

there are no known failures for UJCATE-RELATIVE-TO-HAND, the chain of 

failure reasons G-F3-? is found to be inappropriate, and MEND has no 

way of explaining the failure. In such anamolous situations, MEND 

aborts the plan arrl seeks human aid in planning the recovery. 
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We consider the plan shown in Figure 4.5 again. Asstnne that 

MOVE-HAND-To-GRASP does not trigger any failure, and that GRASP fails to 

find the object. 'Ihe failure tree after analysis is shown in Figure 

4.14. 

Figure 4.14 shows too PJSsible explanations. In such cases, the 

PIAN-PA'ICHER uses a pre-stored severity code with each failure reason to 

choose an explanation. 'Ihe precondition error in GRASP has the greater 

severity code, and G-F2-F3-F4 is the preferred explanation. The 

corrected pla~ is shown in Figure 4.15. 
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Figure 4.16 shows a plan which will result in RCX:K2 being placed on 

a viewing station. Assume that the rock is not movable. TRANSPORT will 

trigger failure through SATURATION. 'Ihe possible reasons for failure 

are shown in Figure 4.17. 
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Assuming that preconditions have been verified, F5 and F6 can be 

el irninated. 'lhe TRANSFORT FRA-ROlITINE will immediately remove F3 from 

consideration, because it will find that the hands touch sensors are 

still activated. Finding that the hand has not moved, Fl and F2 are 

rejected as possible reasons for failure. This leaves F4, the 

constraint error, as the only possible ex?lanation. 'lhe plan is 

aborted, since nothing can be done about constraint errors. 

4.7 COMMENI'S AND CCMPARISONS 

'lhe main advantage of failure reason analysis as presented here is 

that it provides a method of directly focussing attention on the source 

of the failure, by using knowledge about actions, the manner in which 

they fail, and the history of previous actions. 

Traditionally robot systems have merely dealt with the problem by 

trying to plan to the "nearest" intermediate subgoal, as for instance in 

the SHA.KEY system. 'lhis method places the entire burden of recovery 

from failures on the planner and no advantage is taken of the the 

information implicit in the reason for failure. In this context of 

planning, we can think of the results of failure reason analysis as 

constraining the search space of solutions that the planner has to deal 

with. 

Sussman has tackled the problem of failure reason analysis but in a 

slightly different context. The reason for (or underlying cause of) 

failures that he considers are domain independent goal interactions, 
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occuring because of incomplete knowledge about the Y.Qrld. MEND assumes 

that knowledge about the Y.Qrld is correctly represented in the system 

and further that the plan being executed is conceptually correct. 

Nevertheless failures occur because of operational errors of various 

sorts, something which is not dealt with by Sussman in the HACKER 

system. 

Similar comments apply to Goldstein's system MYCROFT[Goldstein 74) 

which debugs programs in the turtle world of line drawings. An 

additional difference is that there is no real notion of execution 

monitoring. Execution proceeds to completion and failure to produce the 

desired line drawing is detected at the very end. 

Sacerdoti[75] gives an example of NOAH's approach towards error 

recovery. 'Ihe hierarchical approach taken in identifying the reason for 

failure is perhaps the best that can be done when no knowledge is 

available about why actions fail and how such failure manifests itself. 

But, I believe that it is possible to build in such knowledge into any 

system, to effectively aid the planner in deciding what to do. 

Sacerdoti also discusses a problem involving tx:>Stconditions, arrl 

its use in execution monitoring. He points out as an example that a 

robot should check that a pulley it has installed does not wobble. The 

FINISH-UP-ROUTINES in MEND are expressly intended to check 

postcorrlitions. Furthermore, if the reason for the wobble is considered 

to be completely local to the installation process, it can be handled 

trivially in MEND by modelling the wobble as an operational error in the 

INSTALL-PULLEY action, and by providing appropriate recovery procedures. 
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In fact, if we consider the wobble to be an unlikely event then we can 

even allow the robot to continue its assembly task and wait for the 

wobble to manifest itself, and then correct the problem. 

Certainly the major limitation in MEND is the simple minded 

approach taken by the PLAN-PATCHER. It has no real understanding of why 

its plans work and merely pieces together these actions. Furthermore, 

it has no concept of the the higher level goals to which the plan is 

addressed (as for instance, that a rock is being picked up and 

transported to an instrument station and measurements are going to be 

taken, etc.). In this respect, the Haye's system and Sacerdoti's 

system, NOAH, are far better, and something like those mechanisms are 

necessary in making MEND adaptable to rrore complex domains. 

In tracing back precondition errors (or information errors), MEND 

reasons that the precondition is not true, perhaps because it was never 

achieved by a previous action. Restricting failure reason analysis to 

only this kind of reasoning has certain limitations that are discussed 

next. 

A simple case .that is not handled by MEND is one in which a 

precondition is achieved but later destroyed by the execution of a 

subsequent step. It would not be too difficult to consider extendirlg 

the tree building program to look for actions which may destroy a 

precondition established by a previous step. However, before making 

such an extension, we can ask whether it is really necessary for the 

kind of system we have in mind. I think that the need for such a 

mechanism is doubtful because such interactions problems should have 
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been avoided in the first place when planning the task. 

In a dynamic world, preconditions could become false as a 

consequence of the activities of other agents of change. We know very 

little about how to take account of the intentions of other agents who 

may or may not cooperate in the execution of tasks, and extensions in 

this direction are 1 ikely to be quite difficult. 

Finally, it would be roc>re appropriate to deal with a certain subset 

of precondition errors as mechanism failures. If we find that a car 

cannot be driven to the airport, we could attribute the failure to a 

precondition error (or constraint error) of the car being Nor-DRIVABLE. 

It does not make sense to ask whether any previous action was taken to 

make the car DRIVABLE. The roc>re appropriate question is what in the 

mechanism of the car has failed and why it caused the failure. It \'X>uld 

then be possible to deal with the failure of the cars by fixing, for 
' 

instance, the carburetor instead of finding alternative means of 

transportation. Rieger[76] has developed schemes for representing the 

functioning of mechanisms, and these can perhaps be used for recovery 

from mechanism failures. Extensions to handle these cases will be 

useful for the JPL robot, where we could imagine situations in which the 

robot responds to failure by replacing the hand affixed to the 

manipulator by another. 
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MULTIPLE OUTC0'1E ANALYSIS 

5.1 INTRODUCTION 

The previous chapter discussed one approach to the error recovery 

problem. Failure reason analysis attempts to find an explanation for 

the failure. 'llle actions to be taken to recover fro~ the failure were 

derived in a relatively straightforward manner from the failure tree 

representing the results of the analysis. 

This chapter suggests an alternative view of the problem. The 

historical cause of the failure is deemphasized. In contrast, attention 

is focussed on the actual state of the world after failure has occurred, 

and on how this state differs from the expected state of the ....urld. 

In order for a system like MEND to capitalize on this in 

formulating recovery from errors, it needs a model of what the outcomes 

of an action can be, how to tell them apart, and finally what can be 

done about it. 1his model will be referred to as the multiple outcome 

model and in the current implementation is implicit in a MOA-ROtJrINE 

associated with each action. 

The main computational steps in the process of multiple outcome 

analysis are shown in the Figure 5.1. We will merely illustrate 

multiple outcome analysis by discusssing recovery from failure in 

r-K)VE-HAND--T<H:;RASP and GRASP. 
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5.2 AN EXAMPLE : M:>VE- HAND-'1"0-GRASP 

Failure reason analysis for MOVE-HAND-To-GRASP has already been 

illustrated in chapter 4. Here we will consider multiple outcome 

analysis for the same action. A subsequent section will compare these 

two schemes and suggest ways of integrating the two techniques. 

5.2.1 The set of possible cases 

'lhe set of possible outcomes of an action constitutes the first 

aspect of the multiple outcome model. The classification of the 

possible states of the world resulting from execution of 

MOVE-HAND-TO-GRASP into qualitatively distinct outcomes is shown in 

Figure 5. 2. 
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For reasons of clarity the graphical representation shows only 

two-dimensional picture of the hand, though the implementation is 

designed to handle the three-dimensional. case. Each category represents 

an infinity of possible situations, but it is easy to qualitatively 

distinguish between the cases. LEFT-TOUCH and RIGHT-'roUCH are identical 

except for the fact that the finger in contact with the object is the 

left finger in case 1 and the right finger in case 2. We define the 

left finger to be that which lies in the direction of the sliding 

vector. IX)UBLE~roucH occurs when both fingers contact an object which 

is wider than the ma:ximum finger separation. 

way of grasping the object in that particular 

In such a case there is no 

orientation. PALM-TOUCH 

can occur only with an object whose height is greater than the length of 

the fingers. The IN-GRA.SP case is only marginally erroneous in that the 

hand bt.nnps into the ground because of overshoot. Finally, OUTSIDE-GRASP 

is a catchall which captures all cases where the object is not within 

grasp. No special significance is to be attached to the fact that the 
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object is shown on the right of the hand in the figure for this 

particular case. 

It is important to ask why we do not include cases such as the one 

shown in Figure 5.,3. 

L 

NOi EM.,rY H.ANb 

Clearly cases 1 - 6 are ones which can occur only when the finger are 

completely open. This suffices for our purposes since precondition 

testing will verify that the fingers are open. If not, an action will 

be executed which will result in opening the fingers. 

5.2.2 Feedback information and anal~sis of cases 

1bere are two steps to the process of distinguishing between 

possible outcomes. The first is the analysis of tirunediately available 

information and the second is the acquiring of new information necessary 

for analysis. Both of these steps are based on knowledge about 

distinctive features of each outcane and this knowledge is again part of _ 

the multiple outcome model. 
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Feedback information that is relevant for the analysis of failure 

in the MOVE-HAND-T~RASP is given by the hand state descriptor. Among 

other things it specifies the coordinates of the hand and the state of 

the touch sensors. Combined with data about the object, this 

inforrration can be used t o eliminate some of the six cases from 

consideration. We know, for example, in case 1 that the coordinates of 

the hand must be approximately the same as the height of the object. If 

this is not the case, then clear ly we net.:.d not consider this cqse any 

longer . 
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Figure 5. 4 above summarizes the relationships between test 

conditions and outcomes. A "l" in the ( i, j) th entry in the table 

indicates that test condition T(i) must be true of outcome O(j), and a 

"-1" indicates that T(i) must not be true. Several algorithms are 

possible for using the information in the table in eliminating choices 

from consideration. 'lhe algorithm implemented in MEND is graphically 

depicted in Figure 5. 5. 

E L.l Ml N lrf.E 

-t 

+ 

FIGURE. S.5 

'lhis algorithm works by eliminating choices on the basis of tests 

performed sequentially. Certain tests will be unnecessary in that they 

will eliminate cases which have already been dropped from consideration. 
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The result of this process of analysing the feedback information is 

a smaller set of possible outcomes. If the number of cases has been 

limited to a single case then recovery planning can be initiated without 

any further step. It is possible though that the set of possible 

outcomes is larger than one. Under these circumstances MEND cannot plan 

the recovery. It needs to acquire more information than is immediately 

available through feedback, to further distinguish between the cases. 

This will be the subject of the next section. 

5.2.3 Acquiring information and further analysis 

'Ihe information available directly through feedback will in cases 

be inadequate for the purposes of identifying the state of the world as 

one of the predefined set of possible outcomes. In such cases selected 

actions can be executed to acquire more information. 

CKle of the things that the robot can do to find out the state of 

the world after failure in MOVE-HAND-'1'0-GRASP is to use vision. 'lbere 

are both conceptual and pragmatic reasons for avoiding this. 'Ihe 

conceptual objection is that a universal mechanism is being applied 

without any attempt to make maximal use of the information that is 

already available. A partial step towards avoiding this would be to 

make available to the vision system a model of what it can expect to 

find. In this particular case this model will be the set of possible 

outcomes of the MOVE-HAND-TO-GRASP action, restricted by the analysis of 

feedback information. However, the use of such models in simplifying 

the complexity of vision analysis is not a very well understood problem. 
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From a pragmatic point of view, the vision system that is currently 

part of the robot is a complex program which is slow in yielding 

results. 'Ihus it makes sense to avoid use of vision if information can 

be acquired by other rreans which are simpler from a practical point of 

view. Figure 5.6 shows the tests appropriate for the 

MOVE-HAND-'1'0-GRASP. The tests are all simple ARM actions that yield 

useful information. 

LJ:-FT !3tJMl' 
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FtGU~f~ 5.f, 

'lbe TOUCH-TEST simply closes the fingers and checks whether the 

touch sensors are activated. The LEFT-BUMP-TE.ST moves the hand up by a 

small amount, moves "left" along the sliding vector by an amount equal 

to the finger separation, and then moves down. If the hand bumps onto 

something at a non trivial distance above the ground, then the test 

gives a positive result. The RIGHT-BUMP-TEST is analogous, with the 

hand being moved in the opposite direction. 
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If IN-GRASP or PAI..M-TOUCH [Figure 5. 2] belong to the set of 

possibilities, then the TOUCH~TEST is applied. If the object is 

detected by the touch sensors, MEND recognizes that the problem has been 

solved, and no rrore tests are performed. If the touch sensors are not 

activated, then the above two cases IN-GRASP and PAL.~-TOUCH are 

eliminated from the set of possibilities. Regardless of the result of 

the test, the fingers are opened. The other tests can give 

unpredictable results if OUTSIDE-GRASP is among the set of 

possibilities. In such circumstances, MEND resorts to vision. If 

OUTSIDE-GRASP has been eliminated by analysis of feedback information 

and LEFT-TOUCH belongs to the set of PJSsible outcanes, then the 

LEFT-BUMP-TEST is run. If the test gives a positive result, then case 2 

(RIGHT-TOUCH) is eliminated. Otherwise, case 1 (LEFT-TOOCH) case is 

removed from consideration. If any further analysis is required, then 

the RIGIT-BUMP-TEST is run. 

5.2.4 Recovery planning 

Dynamic information gathering introduces a difficulty in that the 

actions taken to acquire information change the state of the world. 

'Ihus one of the criteria to be placed on the information gathering 

actions is that their effects be simple to characterize. Further, these 

actions should have a high probability of success and should not cause 

any failures of their own. 
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'Ihe state changes that result do not necessarily make the recovery 

steps more complex. In fact,. there are cases when the information 

gathering steps actually produce desirable side effects. For example if 

the result of the '!OUCH-TEST is positive, MEND has not only identified 

the error state but has further achieved a state from which success in 

grasping the object can be almost guaranteed. 

Figure 5. 7 shows the recovery actions to be taken on identification 

of the error state. 'Ihey need no detailed explanation, and the only 

point to note is the following: 'rhe parameter for the search routines 

specifies the starting point of the search. By noting the hand state 

when the failure occurred and using it as the starting point of the 

search, the search strategies can be made independent of any information 

gathering steps that may have been executed. 
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5.2.5 Anamolous Situations 

In our discussion in the previous sections, we have ignored the 

possibility of several kinds of anamolous situations. The first kind of 

anamolous situation that can occur is the elimination of all tx>ssible 

cases. This can happen because of two distinct reasons. The model of 

possible outcanes that MEND has been provided with may not be 

comprehensive in categorizing all situations, or the information on 

which the analysis is based may be erroneous. Whatever the reason, 

finding a null set of possibilities, MEND will abort the recovery 

planning. 

'Ihe possibility of keeping a record of the tests per formed and 

their effects in eliminating cases has been considered. Such a record 

would allow MEND to deal with anamolous situations by reconsidering 

certain outcomes that have been eliminated from consideration. 

L 

A second kind of anamolous situation arises when MEND's analysis 

points to a catalogued case which is somewhat different from the actual 

situation. For instance, MEND will respond to the situation illustrated 
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in Figure 5.8 by a SFARCH-LEFT recovery strategy, imagining it to be a 

simple LEFT-'IDUCH situation. However, the recovery plan will fail 

because the object is too large and hence not graspable. 

5. 3 A SOCOND EXAMPLE : GRASP 

In general, the set of IJOSsible failure outcanes of GRASP are not 

very well definL>d. However, in cases where the failure is the result of 

the operational error SLIDE-Our, the failure outcanes to be considered 

are shown in Figure 5. 9. 

x 
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(In contrast to the previous figures, we show a "side" view of the hand 

in which we see the outside face of the fingers. The small cross in the 

middle of the fingers indicates that the sliding vector is pointing away 

fran the reader.) The rationale behind the outcomes shown in figure 5. 9 

is graphically illustrated in Figure 5.10. 

Feedback data does not provide any useful information in 

distinguishing between the two cases. 'Ihus a dynamic information 

gathering step PI'SV-BUMP-TEST is resorted to. This test and its effects 
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are illustrated in Figure 5.11. 'lhe fingers are not opened before this 

test is executed and this has the advantage of making the outcanes of 

this test simple and well defined. 
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'Ihe Pl'SV-BUMP..JI'EST indicates whether or not the object is to the 

left or right of the hand viewed with respect to the sliding vector. 

'Ihe corrective stefG are to open the hand and then to move the hand to 

grasp the rock at its newly estimated location. 
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5.4 FAILURE REASON ANALYSIS VERSUS MULTIPLE OUTCCME ANALYSIS 

MEND uses both failure reason analysis and multiple outcome 

analysis in tackling the error recovery problem. 'Ihese schemes are not 

to be thought of as competing strategies. Rather they complement each 

other in natural way, suggesting a possible integration of the two 

schemes. I.et us first make a comparison of the two schemes. 

To make our comparison concrete we again consider the performance 

of failure reason analysis and multiple outcome analysis for 

MOVE-HAND-TO-GRASP. Consider a case in which the hand bumps into the 

object to be grasped and FRA (the failure reason analyzer in MEND) 

concludes that the failure is the result of a location error. 'Ihe 

recovery based on this analysis locates the object more accurately and 

attempts to reposition the hand around the object. 'Ihis is quite 

satisfactory in the sense that it solves the problem. It is 

unsatisfactory, however, for two reasons. Firstly, it does not make 

maximal use of the available feedback information. Secondly, it does 

not recognize that the important thing for recovery is the relative 

[X>Sition of the object with respect to the hand, regardless of the 

reason for the failure. 

Multiple outcome analysis exploits the availability of feedback 

information, and goes even further by acquiring necessary but missing 

information. With such analysis it is possible to characterize the 

relation between the hand and the object even without accurate 

information about the location of the object. Such a characterization 

would be pointless if the robot had to eventually determine the location 
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of the object (using vision) in order to effect recovery. '!his is not 

the case, as the earlier example 'has shown, and MEND can suggest the use 

of specialized actions which are simple and which achieve the immediate 

goal of positioning the hand around the object. 

The situation is not as one sided as the above argument may 

indicate. A characterization of the current state of the world on the 

basis of a detailed analysis may be unnecessarily expensive. For 

instance, an operational error of servoing can be corrected by simple 

repositioning of the hand. By ignoring the reason for failure MEND 

engages in a needless analysis which may involve dynamic information 

gatheririg. Multiple outcane analysis is therefore deficient in not 

making use of the history of the process that resulted in the current 

state . 

5.5 INTEGRATION OF THE 'lWO SCHF.MFS 

'Ihe above argument clearly indicates the need for integration of 

the two schemes. This has been done in MEND in a rather simple and ad 

hoc manner. MEND always begins by performing failure reason analysis. 

The results are sent over to DECIDER (Figure 3.2), which has a rather 

arbitrary classification of failure reasons into two categories of 

SIMPLE and COMPLEX. For the cases in which the failure reason has a 

SIMPLE recovery strategy, multiple outcome analysis is not performed. 

In other cases, MEND resorts to multiple outcome analysis, hoping to 

find a simpler recovery strategy. For the example we have been 

considering, SERVO-ERROR is considered a SIMPLE error and MEND recovers 
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by rei;x>sitioning the hand. Multiple outcome analysis is not done. On 

the other hand location errors aLe tackled by multiple outcome analysis. 

We have a rather ad hoc scheme based on our knowledge of what is 

SIMPLE and what is not. It seems unlikely that there are any general 

criteria for evaluating the effectiveness of these schemes so that this 

criteria can be used as the basis for integration. 'Ibis is because it 

is the specific properties of the task domain which determine the 

effectiveness of one strategy versus another. 
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SUMMARY AND CONCLUSIONS 

6 .1 INTRODUCTION 

This dissertation has addressed itself to a specific problem facej 

by a robot , system -- namely, that of recovering from failures in 

execution of a plan of actions. Failures occur partly because the robot 

operates in a domain which cannot be characterized exactly and partly 

because actions the robot takes do not always function as expected. 

Execution of plans needs to be monitored in order to detect errol'."s. 

A very conservative execution monitoring strategy would check a large 

nullber of conditions in an exhaustive manner to avoid failures at all 

costs. Such an approach tends to make robot systems impractical. TI.1is 

suggests that execution monitoring should be restricted to simple 

checks, and that mechanisms should be provided for dealing with failures 

as and when they occur. 

Traditionally, robot systems with automated planners deal with 

failures that have been detected by merely replanning to achieve the 

desired goal. A somewhat different appr\lach has been taken in this 

study, and this approach provides some simple and effective techniques 

for dealing with the problem of error recovery. 
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6.2 HISTORICAL N0rE 

The subject of error recovery was investigated in connection with 

the JPL robotics research program. Manipulative tasks proved to be a 

rich enough domain to illustrate several interesting aspects of this 

problem. The problem was tackled by designing a module called MEND, to 

be integrated with the existing robot software. A first version of MEND 

embodied a sim~ler scheme for error recovery than the one described in 

this report. This first implementation directed attention to certain 

limitations of the system, spurring a more detailed study of the 

problem. The results of this detailed study have been subsequently 

incorporated in the design of a second version of MEND, which is not yet 

an integral part of the JPL robot system. 

6.3 A DISCUSSION OF THE APPROACH ------ ------

The approach taken in MEND is quite different from the traditional 

manner in which the problem of error recovery has been tackled. Let us 

take a look at the differences. 
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We can irnag ine the execution of a task as a sequence of 

transformations which changes the world from an initial state, S(0), 

into a final state, S(n), which represents the goal of the robot. 

Figure 6.1 depicts the intermediate states of t he transformations from 

the 8(0) to S(n) which result from the execution of a plan of actions, 

A(eJ) • • • A(n-1). Assume that a failure is detected on execution of the 

action A(i). This means that the robot recognizes that the action A(i) 

has not produced the exr;:ected state S(i+l), but rather has resulted in 

some failure state S(f). 

I 'Ihe problem of error recovery is that of going from the failure 

state S(f) to the goal state S(n). Typically other robot systems treat 

S(f) as though it were some arbitrary state and respond to the failure 

by replanning to achieve the given goal. In such an approach there is 

no essential difference between error recovery [the transformation from 

S(f) to S(n)] and planning [for instance, the transformations from S(0) 

to S(n)]. Parts of the old plan can sometimes be reused, as for 

instance, by replanning from S(f) to S(j) so that the original plan can 

be used to go from S(j) to S(n). 

The central idea in failure reason analysis is that finding an 

explanation of the failure, i.e., understanding why action A(i) resulted 

in the state S (f) , can focus attention on where the problem lies and 

what can be done about it. With this viewpoint error recovery is seen 
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as something quite different from traditional planning in that we do not 

ask: 

What can be done to go from S (f) to s (n}? 

but rather ask: 

Why did action A(i) result in the state S(f)?. 

Of course, even if we do understand why the failure occurred, we 

are still confron1fd with the problem of going from the state S (f) to 

S(n). ME."'ND shows that even very simple strategies are effective in 

solving this latter problem, once an explanation for the failure has 

been found. 

Where does multiple outcome analysis fit in all this? Again, as in 

failure reason analysis, S(f) is recognized as being something special 

and not an arbitrary state of the .world. Since we know that S (f) 

resulted from the execution of an action, with a good model of the 

behavior of the action, we can determine the state S(f). Specifically, 

the action model predicts that S(f) is one of S(fl) ••• S(fm), and the 
\ 

problem in multiple outcane analysis is that of characterizing the state 

s (f) • '!his is done by looking for distinguishing features that 

characterize the failure states. The planning problem has been made 

trivial by including recommendations of corrective steps as part of the 

multiple outcome model of actions. 
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6.4 FEATURES OF THE SOLlTfION 

MEND's performance as part of the robot system is based on the fact 

that it monitors the execution of plans and detects failures. We 

discuss this and then outline the two strategies used by MEND in 

recovering from failures. 
/ 

"Any system which attempts to recover from errors should have the 

capability of detecting errors. A robot should thus be able to judge 

the progress of activities in leading towards a pre-specified goal. 

Such monitoring of activities, however, should not be so prohibitively 

expensive that the robot is paralyzed by indecision. 

MEND implements a simple execution monitoring strategy. 

Precondition testing in the INITIATE-ROUI'INEs incorrx>rates knowledge 

about what can be tested easily and what cannot. MEND allows execution 

to proceed even when some preconditions have not been absolutely 

verified. However, these are noted down in the execution trace as being 

unverified so that the information can be later used in analyzing 

failure. 

Errors are detected at two distinct levels of the system. At the 

hardware level, completion criteria provide the simplest test of 

success. Given success of the action at this level, software checks of 

certain simple conditions allow the detection of another class of 

errors. Tne FINISH-UP-ROurINEs are selective in applying only those 

tests which can be guaranteed to give results inexpensively. MEND again 

sacrifices completeness for efficiency, and allows certain errors to go 
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undetected. 'Ihese errors are often detected in a sirn?le way at 

subsequent steps in the execution of the plan. 

does not suffer significantly in spite of 

detecting errors. 

'Ihus MEND's performance 

its simple approach in 

'Ihe history of actions taken by the robot, the current state of the 

world, and the nature of the failure are all pieces of information that 

are useful in determining the cause of the failure. A classification of 

failure reasons into four basic types -- operational errors, information 

errors, precondition errors, and ~onstraint errors -- proves useful in 

deali119 with failures intelligently. 

MEND analyzes the failure by building a failure tree to represent 

the possible explanations for failure. Several constraints are used to 

limit the set of all JX>Ssible explanations. By keeping a record of 

unverified preconditions, MEND can eliminate verified preconditions as 

possible reasons for the failure. Knowledge about the manifestation of 

the failure is used to further limit the set of fX>SSibilities. Finally, 

some explanations are shown to be imrx>ssible on the basis of the history 

of actions. 

Having found an explanation of the failure, MEND patches a recovery 

plan based on very simple strategies appropriate to the different kinds 

of failures. Even such simple strategies prove adequate in producing 

recovery plans which are contextually appropriate. 
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6.4.3 Multiple outcome ~alysis 

MEND's capabilities are significantly enhanced by a second scheme 

of error recovery. This is based on a detailed model of the possible 

states of the world when an error has occurred. The states resulting 

from the execution of an action are characterized into a small number of 

qualitatively distinct outcomes. 

MEND analyzes feedback information in limiting the set of possible 

cases. A sequence of prefabricated tests eliminate cases from 

consideration. Often such analysis will be adequate to identify the 

outcomes of an action, in which case MEND has all the information it 

needs to plan recovery. 

'I'here are cases, however, when such analysis is inadequate to trim 

the choices do\>m to a single case. Under these circumstances Mh"""'ND 

executes actions as a means of gathering specific information that is 

useful in further disambiguating the choices. 

The result of the analysis is the 

outcome. Each failure outcome is 

id en tif ica ti on 

associated with 

recovery strategy, so that recovery from the failure 

immediate. 

of 

an 

is 

the failure 

appropriate 

simple and 
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6. 5 CONTRIBlJrIONS 

The techniques of planning recovery from failures through failure 

reason analysis and multiple outcome analysis are contributions to the 

subject of robotics. fibre importantly, however, the problem of error 

recovery is recognized to be a member of a larger class of problems 

involving knowledge representation and common sense reasoning, both of 

which are core topics in the study of artificial intelligence. The 

solution presented in this thesis makes some new contributions to these 

core topics. 

In regard to knowledge representations, this study has established 

certain guidelines for the structuring of knowledge about actions. 

Traditionally, actions have been simply modelled in terms of 

preconditions arrl postconditions.. This study has shown that by 

extending the model of actions to include a failure reason model and a 

multiple outcane model, a robot can more directly address itself to the 

problem of error recovery. 

'!he failure reason model is a means of representing the knowledge 

about why actions fail, knowledge about their manifestation, and finally 

knowledge about what can be done to correct failures. '!he 

classification of failure reasons is useful in structuring the knowledge 

about actions into categories that can each be easily and separately 

dealt with. 
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The multiple outcome model represents the possible outcomes of an 

action, knowledge about how they can be distinguished, and about what 

can be done about them. Such a model provides a systematic way of 

exploiting feedback information, that is typically available in any 

robot system. 

Failure reason analysis and multiple outcome analysis can be viewed 

in rather general terms as specialized techniques for performing common 

sense reasoning appropriate for planning recovery from failures. 'Ihe 

above models form an essential part of the knowledge base necessary for 

such reasoning. 

6.6 FUTURE WORK 

'l'he results reported in this thesis provide a solution to the 

problem of error recovery in robot systems that are relatively simple in 

some respects. Even for more complex robot systems, the techniques of 

failure reason analysis and multiple outcome analysis are likely to be 

very useful, but the limitations of MEND suggest directions for future 

efforts. 

'Ihe recovery strategies investigated have been 1 imited to those 

which achieve the intended effects of the failed action. More 

generally, an intelligent robot will have to -consider trying other 

alternatives which may equally well achieve the goal. For instance, 

finding that a rock cannot 

collection may look for 

be moved, a robot interested in sample 

another rock with similar properties. Such 
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strategies require a- representation of the larger set of goals to which 

a specific plan is addressed. Failure reason analysis is likely to play 

an important role in planning recovery, even in robot systems with more 

complex goal structures than the ones considered in this study. 

In general, recovery planning becomes expensive if 

abandons the whole plan because of a failure in one step. 

the robot 

By keeping 

interrelationships between different steps in the plan in an explicit 

form, it is possible to restructure and build upon the old plan in 

planning recovery. 

investigated but 

Sane preliminary ideas in this direction have been 

they need to be implemented as part of the system 

before it is becomes clear how well such a scheme will 'W'Ork. 
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APPENDIX 2 

A CCMBINATORIAL PROBLEM 

In multiple outcome analysis we are interested in identifying the 

failure state as one of a preconceived set of possible outcomes of an 

action. Identification involves the testing of conditions that allow 

one outcorre to be distinguished from another. From a theoretical 

standpoint one could ask for the minimum number of tests that need to be 

perfo rmed. This problem can be formulated in combinatorial terms, and 
1 

has applications in wide variety of situations. 

Let S be a set of n states, Sl, S2, ••• , Sn, and let The a set 

of m tests, Tl, T2, •.• , 'fut. _ Construct a matrix A of m rows and n 

columns with entries (-1, 0, 1) in the following manner: 

A(i, j) = 1 

A(i. , j) = -1 

A(i, j) = 0 

if test Ti = TRUE in state Sj 

if test Ti = FALSE in state Sj 

otherwise. 

We define such a matrix to be sufficient if: 

Vj Vk 3i ( (A ( i, j) = 1) and_ A (i, k) 
l~j~n l<k<,n l ' i<m -

k-tj 
(A( i, j) = -1 

= -1) or 

and A( i, k) = 1)) 

The intuitive interpretation of t he above definition is that the set of 
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tests is sufficient, if for any pair of states there exists at least one 

test which gives different results, thus allowing the states to be 

distinguished one from the other. 

Given a matrix A, the problem under consideration is that of 

finding a sutmatrix B (formed by deleting rows of A) with m' rows and n 

colt.nnns, which is sufficient and has a minimal number of rows. Many 

interestirg questions about the properties of such a minimal matrix 

arise, but we are primarily interested in a an efficient computational 

procedure that will find such a minimal sutmatrix. 


