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ABSTRACT

This dissertation addresses high Reynolds number turbulent boundary layers flows
with different inhomogeneous surface roughness distributions using large eddy sim-
ulations. The stretched vortex subgrid scale model for the outer flow LES is coupled
with a virtual-wall model for the friction velocity with a correction accounting for

local roughness effects.

A semi-empirical model that describes a fully developed rough-walled turbulent
boundary layer with sand-grain roughness length-scale ks = X that varies linearly
with streamwise distance is first developed, with a dimensionless constant. For
large Rey and a free-stream velocity Up /Z XM, a simple log-wake model of the
local turbulent mean-velocity profile is used that contains a standard mean-velocity
correction for the asymptotic, fully rough regime. A two parameter,, ;m” family of
solutions is obtained for which U7 (or equivalently C¢) and boundary-layer measures
can be calculated. These correspond to perfectly self-similar boundary-layer growth
in the streamwise direction with similarity variable z , X” where z is the wall-
normal co-ordinate. Results over a range of are discussed for cases including the
zero-pressure gradient (m = 0) and sink-flow (m = 1) boundary layers. Model
trends are supported by high Re wall-modeled LES. Linear streamwise growth of
boundary layer measures is confirmed, while for each , mean-velocity profiles and

streamwise turbulent stresses are shown to collapse against z ,, X”. Inner scaled
velocity defects are shown to collapse against z , where is the Rotta-Clauser
parameter. The present results suggest that these flows may be interpreted as the

fully-rough limit for boundary layers in the presence of small-scale, linear roughness.

Next, an LES study of a flat-plate turbulent boundary layer at high Re under non-
equilibrium flow conditions due to the presence of abrupt changes in surface rough-
ness is presented. Two specific cases, smooth-rough (SR) and rough-smooth (RS)
transition are examined in detail. Streamwise developing velocity and turbulent
stress profiles are considered and sharp departures from equilibrium flow properties
with subsequent relaxation are shown downstream. Relaxation trends are studied
using integral parameters and higher-order mean flow statistics with emphasis on
Re and k{ dependence. Results are compared with RS experiments at matched

Re , and show good agreement in terms of recovery rates.

Finally, the case of static, impulsive wall-roughness in flows at high Re is addressed
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using the same LES framework. The initial perturbation from smooth-to-rough
appears to dominate the flow behaviour with the length of the impulsive patch
showing little effect on recovery rates at matched Re and k. The resulting trends

show good agreement with low Re experiments and support the wall-modeled LES

framework as a suitable method for analysing high Re flows in practical applications.
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Chapter 1

INTRODUCTION

1.1 Turbulent boundary layers

Turbulent ows are characterised by irregular, time-varying yet often distinguishable
features with statistics determined by uctuations about a mean state. An early
visualisation of turbulence was presented by Reynolds in his 1883 experiments
[67], broadly categorising the behaviour of pipe ow as either “direct' (laminar)

or ‘sinuous' (turbulent). Often, one considers the concept of eddies, a description
of structures within ows, which occupy distinct length-scales. Richardson's [68]
notion is a particularly useful one when visualising the e ects of turbulence - that the
larger eddies eventually break up and result in the formation of smaller eddies, in an
energy transfer mechanism to smaller scales that is elegantly described as the “energy
cascade'. The range of scales involved in turbulent ows through this cascade [62],
from the largest inertial scales to the smallest ones dominated by viscous forces and
dissipation, present interesting challenges from both experimental and numerical
perspectives.

Practical ows often occur adjacent to wall boundaries and in con ned geometries.
Prandtl [64] introduced the concept of the boundary layer through his idea that
viscous e ects are con ned locally to a thin wall-parallel layer adjacent to a solid
body, assuming the "no-slip' condition due to frictional e ects. Boundary layer
ows, given their prevalence in engineering applications such as airfoils, engines,
pipe ows, ducts and channels have naturally been subject to detailed analysis and
experimental studies. Signi cant contributions were made by von Karméan [87]
and Millikan [48], through the idea of the log-law for mean velocity pro les and
its associated multiplicative constanthow named after him. Coles [20] further
extended this idea by introducing the law of the wake to complete the presently
accepted description of the mean velocity pro les in turbulent boundary layers,
which we shall explore in the following pages.

The structure of the boundary layer moving away from the wall can be considered
(in the mean sense) as follows. In the near wall region known classically as the
viscous sublayer, the velocity” = TGeu scales linearly withz", the inner-scaled

wall normal coordinate. The limit of this region has been shown to be arpund
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through various experimental programs. The overlap region between this viscous
sublayer and the logarithmic pro le identi ed by Karman is known as the bu er
layer, where the e ect of viscosity diminishes. The log-law itself, as stated by von
Karman can be expressed as (1.1),

n= +C (1.1)

with the friction velocityu = -, zthe wall normal coordinate, and a constént
which is a consequence of the speci c geometry. The addition of a wake-function
(1.1) in the outer part of the boundary layer [20] then completes the classical
description of the turbulent boundary layer mean velocity.

u_ 1
uiz—ln 24 + const + —W z (1.2)

whereW!ze °is the wake-function, and, the Coles wake factor, may vary with
the streamwise coordinate in non-equilibrium ows. In his 1956 manuscript, Coles
also provides a physical interpretation of the law of the wake making reference to
large-scale mixing processes with stronger inertial in uence than viscous in uence.
The imposition of the no-slip wall condition then necessarily modi es the exterior
of the boundary layer to what we now know as the wake-region of the boundary
layer.

Logarithmic dependence of streamwise Reynolds stresses omas proposed by
Townsend [86] and has been observed in experiments by Marusic and Kunkel [45]
and Squire et al. [82]. Recent boundary layer experiments have provided evidence
for the onset of log-law behaviour at = 200 [59, 56]. Boundary layers have
been shown to require both inner (via the lengthscale ) and outer scaled (via

the boundary layer thicknes$ quantities for a full description of the mean velocity
and Reynolds stres&i%iostatistics, Whereli0 represent turbulent uctuating velocity
components. Key integral parameters describing the growth of a turbulent boundary
layer include the displacement thickness momentum thickness, skin-friction

Ct¢ and the shape-factaf = + . Power-law behaviour has been suggested by

_ b
Barenblatt and Prostokishin [5], such that= C; 24 . while this question remains

under investigation, there is compelling evidence through computational solutions
and experiments for the log-law behaviour at high Reynolds numbers [11, 82].
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Techniques such as hot-wire anemometry, particle image velocimetry, oating ele-
ment balances, Preston-tube methods and oil- Im interferometry have been devel-
oped to enable observations and analysis of speci ¢c parameters, length and time
scales to inform detailed mathematical modeling and predictive capabilities for a
range of turbulent ow conditions. The e cacy of various measurement techniques
is tied to speci c ow con gurations. Marusic et al. [46] provide a review of key
developments and questions that require careful investigation irRegirbulence.

The issue of accurate wall-shear stress measurements is identi ed as an important
step towards enabling strong conclusions about parameter dependence Rehigh

In internal ows such as pipes and channels, “equilibrium' is said to have been
achieved with streamwise invariance in the mean velocity and turbulence quantities.
Marusic et al. [46] refer to the strict de nition of Rotta [69], requiring invariance

in streamwise quantities with respect to the local length and velocity scales; the re-
guirement for two similarity measures in boundary layer ows (basedwn and

z+ ) drives their suggestion for a de nition of equilibrium based on the relaxation
of velocity de cit in the outer region.

1.2 Roughness in engineering applications

This section provides a broad overview of roughness in practical ows, with refer-
encesto key studies. A detailed discussion of rough-wall e ects speci c to boundary
layer ows follows in chapter 2. Wall roughness e ects can be deliberate and de-
sirable, as in the use of shark-skin riblets with speci ¢ geometric parameters to
reduce drag [22], or an undesirable, natural result of deterioration in engineering
materials, such as that observed in piping, aerospace and naval applications. Even
with advanced manufacturing techniques, it has been shown that roughness e ects
appear in nominally smooth wall ows at high Reynolds numbers [47]. Mckeon
et al. [47] found that their pipe ow measurements did not display roughness e ects
until Rep > 136 10°, whereRe is the Reynolds number based on pipe diam-
eter. Flows with internal and external geometries are known to behave di erently
compared with the canonical smooth-walled scenario under, rstly, the mere pres-
ence of roughness, and secondly the speci ¢ type of roughness involved. Turbulent
ows modi ed by roughness are demonstrable in atmospheric and oceanic bound-
ary layer ows, with forest canopies, urban architecture [89] and ocean-land surface
topography [6] representing signi cant modi cations to the ow from the ideal
smooth surface. In many applications this represents a direct impact on operational
costs [77] due to an increase in drag, providing further incentives for an improved



understanding of rough-wall turbulent ows.

Rough walls present themselves in a variety of geometries, from the classical sand-
grain roughness studied by Nikuradse [57] to riblet [22], cuboidal block elements
[7] and sinusoidal roughness elements [44] studied more recently. Each of these
roughness geometries can be de ned by various measures including, but not limited
to the maximum roughness crest height, the root-mean-square value of individ-
ual peaks, or by using the Hama [29] roughness function to assign an equivalent
sand-grain roughness measlee Given the complexity of the roughness scales
and geometries involved, the at plate turbulent boundary layer, with allowances
for roughness and modi ed surface nishes o ers a platform using which we can
study, both experimentally and numerically, the main characteristics of rough-wall
ows to inform detailed modelling and predictive capabilities over more compli-
cated boundary geometries. Rough-walled at plate TBL with sand-grain type
roughness of lengthscalkg (as introduced by Nikuradse (1933) in his pipe- ow ex-
periments) have been studied experimentally by Prandtl and Schlichting (1934) and
in a similarity scaling analysis by Granville (1958). Jiménez [35] has identi«dd

as an important parameter in determining the in uence of roughness on turbulent
boundary layers, whereis the boundary layer thickness akglis the equivalent
sand-grain roughness. The wall-normal extent to which each form of roughness
a ects the boundary layer is then dependent on the regime (smooth, transitionally
rough or asymptotically rough) in whick = ksu ¢« and e<ks lie. Colebrook

[19], Nikuradse [57] and Moody [52] contributed greatly to early research through
experiments and empirical modeling. The Moody diagram for pipe ow friction
factors [51] is one of the best known tools for characterising the roughness in a form
amenable to a simple calculation of skin-friction. Modern experiments [24, 82]
have generated vast datasets on the fundamental boundary layer roughness problem,
and are a promising step towards developing advanced modeling techniques.

1.3 Overview of dissertation

The overarching subject of this dissertation is the computational study, using large-
eddy simulations, of zero pressure gradient (ZPG) turbulent boundary layer (TBL)
ows with spatially varying roughness, which represent an interesting class of prob-
lems in engineering applications. We have begun the discussion with notes on the
broader topics of turbulent boundary layers and wall roughness in this introductory
chapter. Rough-wall theory and existing experimental studies are reviewed in chap-
ter 2, followed by a description in chapter 3 of the numerical methods and code used
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in this dissertation. An interesting class of ows with constant skin-friction is then
addressed in chapter 4 by means of semi-empirical model development and LES
using the stretched vortex subgrid-scale model with wall-modeling that incorporates
a term accounting for surface roughness. This is followed by a study of at plate
TBL with isotropic, spatially varying roughness in chapter 5, where non-equilibrium
ows owing to transitions between smooth-rough and rough-smooth surfaces are
studied using large-eddy simulations over a rang®efandk:. Chapter 6 then
explores the e ects of a static patch of roughness that extends a short distance in
the streamwise direction, across the entire spanwise extent of the computational
domain, on an otherwise smooth walled boundary layer ow at likgh A nal
summary of the results, and concluding remarks are presented in chapter 7.



Chapter 2
BACKGROUND

2.1 Governing equations
The governing equations for ows considered in this dissertation are the incom-
pressible M << 1, M = Mach number) Navier-Stokes equations (2.1).

@' @i _ 1 @) @Ul @ -0 2.1)

@ ’@, @ @@’ @

u; denotes the velocity eldx represent spatial coordinates,s the kinematic
viscosity, the density. These equations describe the conservation of mass and
momentum within the ow eld.

2.2 Rough-walled TBL

The theory behind the e ect of wall roughness is brie y highlighted in this section
as a precursor to the classi cation of roughness elements based on ow properties.
We begin with the logarithmic velocity pro le in turbulent boundary layers with a
velocity de cit U* due to roughness (2.2), as stated by Clauser [17].

u Zu ksu

— |n—+A u*
u

(2.2)

where, for simplicity of exposition, the Coles wake function has been omitted. Here
u represents the friction velocity, which is related to the wall shear stigssch

that , = u?where isthe densityAis a constant o set parameter. Henceforth,
the application of inner scaling via < will be denoted by & superscript, for
example,ki = ksu * , whereks is the equivalent roughness lengthscale of the
“k-type' (a discussion of this terminology follows). Studies have shown [61] the
need for an o set parametérto capture the e ect of ow displacement relative to
the wall due to roughness.

1 1z+ "%y

T Kk
uﬂz—ln 28 oA v M

(2.3)
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Figure 2.1 presents the idea of the log-layer velocity de cit using LES mean pro les
for purely smooth and purely rough-walled turbulent boundary layers. The example
presented uses a virtual-wall model, which, through a slip velocity prescription
based on the vorticity dynamics negates the requirement for DNS-like resolution in
the near-wall region. Thus the rst point demonstrated in this case is in the log-layer
(the bu er layer10 z* 100and the viscous sub-layer faf / 5 [62] are not
explicitly resolved on the computational grid).

Figure 2.1: Typical inner-scaled mean velocity plots showing log-layer deldit =
f1k{°in rough-wall ow. Annotations describe lled symbol curves. Sample data
from wall-modeled LES performed as part of this dissertation. Dashed lines show
log-law dependence on inner scaled wall uaits

In (2.2) the form of U™ is not speci ed. The image reproduced in gure 2.2 [35]
compiles experimentally determinedJ* from the hydrodynamically smooth to
the fully rough regimes, and highlights that each surface type requires individual
treatment if we wish to successfully model the mean- ow e ects over a large range
of ki. A priori determination oks remains an interesting question, and techniques
such as minimal-channel DNS [44] have been developed to allow rapid calculation
of U™ and therefore a determination kf from the mean velocity log-layer for
various roughness geometries.

Typically U™, measured from experiments, alloksto be calculated using the



Figure 2.2: Reproduction of Figure 3 from Jiménez [35]. Log-law velocity de cit
U™ as a function okZ; , the Reynolds number based on the equivalent sand-grain

roughnes&s. Symbols and broken lines represent speci c types of roughness, detail

in Jiménez [35]. Solid line represents Colebrook'’s full-range interpolation formula
U* = llog!l+ 0:26kZ; ©

asymptotic roughness assumptidg; is not directly tied to a geometric rough-
ness measurement (but is representative of the roughness kefhier than the
boundary layer )[82], and in this dissertation is used as the equivalent sand-grain
roughness parameter [57]. Attempts have been madekgtbheneasured geometric
guantities - Flack and Schultz [24] identify the roughness root-mean-square height
k:ms and skewnessi as important measures that correlate the roughness function
in the fully-developed regime, suggesting (2.4). In their stkdy> 75is taken as

the asymptotically rough regime.

ks  4:43kmstl + 50037 (2.4)

We also note the work of Simpson [79] in the development of correlations for three-
dimensional roughness patterns, including the recognition that lergevould
result in roughness e ects visible across the extent of the boundary layer.
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In the sense used here, we classify the sand-grain type roughness ksythe' "
roughness as stated by Jiménez [35], such thk is large, withk® >> 1. An
alternative class of roughness perturbations isdhigpe', and the roughness height
relative to the boundary layer thicknesss large (low «ks), such that the roughness

in uence extends much further into the boundary layer than Wwitiipe roughness.
d-type walls consist of grooves in between individual roughness elements, where
sheltering behaviour is observed such that the outer ow is isolated from the groove
resulting in partial slip-wall boundary conditions [35].

Townsend's hypothesis is an important consideration in rough-walled TBL; he
stated that [86] at higiRe the structure of turbulence in a boundary layer remains
una ected by the exact nature of the roughness, rather through a boundary condi-
tion e ect in the viscous sublayer. The wall-normal extent of the direct in uence

of roughness elements is termed the roughness sublayer. Studieskviyibe"
elements have supported this hypothesis [76, 66, 78, 26], and departures from the
Townsend hypothesis have been attributed to low valueslqf typically when two-
dimensional roughness e ects become signi cant. Schultz and Flack [76] studied
the rough-wall boundary layer, providing evidence for Townsend's wall similarity
hypothesis and concluding that with su cient separation between the roughness
scale and the largest turbulence scales, the outer layer remains una ected except for
a boundary condition prescription vieandu , the friction velocity. In terms of ex-
periment design, Jiménez [35] suggests that experiments be condukged 400,

with <ks > 40 for roughness to a ect less than half the log-layer extent. Flack et.

al [25] have experimentally shown that the rough element in uence extends up to
three times the sand-grain equivalent height, with the potential for disruption of the
near-wall cycle as this value is approached.

Hama [29] showed the universality of the log wake law (2.2) through experiments
on pipe, channel and zero-pressure gradient boundary layer ow. The Colebrook
[19] interpolated form of the roughness function captures both transitional and fully-
rough regimes, and o ers a simple model amenable to practical ow problems, and
in computational solutions to capture statistics in complex wall-bounded turbulence.

The speci c geometry of roughness, despite resulting in the saldie has been
experimentally shown to have some e ect on the turbulent parameters such as the
Reynolds stresses [2]. One must therefore exact caution when applyindgJthe
formulation to arbitrarily complex roughness element geometries. Equilibrium ows
over uniformly rough and smooth walls have been studied in great detail recently
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by Squire et al. [82], who presented a detailed comparison between smooth and
rough walls for26 ki 155and2890 ¢y 29900 Schultz and Flack [76]
considered rough-walled boundary layer owsupge = U; ¢ =2710Q being
the momentum thickness, determining thaf™ exhibits in ectional behaviour
when plotted againdt! in the case of three-dimensional Gaussian roughness.

2.3 Computational studies of turbulent boundary layers

The abundance of boundary layer ows in physical applications necessitates the
development and evaluation of numerical solutions of the equations of uid motion.
Of these, Direct Numerical Simulation (DNS) provides the most accurate (and the
most computationally expensive) solution to ow problems. Other methods include
Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and
hybrid RANS-LES. RANS and hybrid RANS-LES approaches are typically found
in commercial applications. In the context of this dissertation, we only discuss DNS
and LES in greater detalil.

2.3.1 Direct Numerical Simulations (DNS)
The method o ering the highest delity (subject to appropriate understanding and
application of numerical stability issues, order of accuracy of di erential equation
solvers, and mesh-design) in computational results is referred to as DNS. The
computational cost, in terms of the number of nodes required scaRe aghere
represents the Taylor lengthscale. It can be shown that the majority of modes
resolved through DNS lie in the dissipative range [62], motivating the pursuit of
methods which focus on the larger, more tractable scales which dominate the energy
spectrum while modeling the e ect of the smallest, dissipative scales. DNS has
been applied to problems such as transition to turbulence [74], channel ows at low
Re[38], turbulent boundary layer ow aRe up to940[88]. Given our focus on
high Re ow solutions in this dissertation, we highlight the work of Lee and Moser
[41], whose DNS of channel ow aRe = 5200is (as of July 2018) the highest
achievedRe carried out on petascale computer architectures, representing months
of wall-clock time.

2.3.2 Large Eddy Simulations (LES)

LES can further be classi ed into wall-resolved (WRLES) and wall-modelled (WM-

LES) formulations. Recent work has demonstrated the e cacy of LES in complex
ow phenomena; examples include ows with transition to turbulence [75], wall-
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resolved boundary layer ows with separation and re-attachment [12] and ow over
grooved cylinders (WRLES) at high Reynolds numbers [10]. WMLES has been
used to study highRee ects in turbulent boundary layer, channel and pipe ows
[16, 31, 72]. An opportunity exists to develop the capability to carry out LES in
complex ow scenarios with the ultimate goal of providing a viable alternative to
DNS while expanding the problem scope and minimally compromising solution
accuracy. Figure 2.3 presents a visual representation of the scale interactions in
turbulence using an image of storm clouds on Jupiter (retrieved from NASA APOD,
7/26/2018). We present the main idea of the presence of multiple lengthscales in
turbulent ows, and schematically demonstrate the grid-requirements for LES and
DNS by considering visually discernible eddy lengthscales in gure 2.3. Interac-
tions of ows with wall boundaries introduces added complexities through vorticity
generation near walls (not shown in the image).

Figure 2.3: Schematic representation of turbulent scales on Jupiter storm clouds.
Red boxes highlight eddies of various lengthscales. White boxes highlight examples
of grids that may be used in computations. DNS resolves smaller scales, LES
requires additional equations to model their e ects. Image reproduced from NASA-
APOD, annotated for purposes of this dissertation.
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Chapter 3

SUBGRID-SCALE MODELLING AND NUMERICAL METHOD

3.1 Overview

The present LES uses the stretched vortex (SV) subgrid scale (SGS) model in the
outer ow developed by Misra and Pullin [50], with extensions by Chung and Pullin
[16] for smooth-walled turbulent boundary layer ows. In this model SGSs are
assumed to be comprised of vortices with orientation determined by the resolved
scale velocity eld. The outer ow LES is coupled to the near-wall model through

an ODE for the friction velocity obtained via the wall-normal integration of the
wall-parallel Itered streamwise momentum equation. Information from the outer
LES serves as an input to this ODE. This ODE incorporates a dynamic value for
the Karman constant, and is not restricted to a speci c form of inner scaling for
the unsteady terms. Detailed descriptions of the model have been compiled by
Inoue and Pullin [31], Saito, Pullin, and Inoue [71], Chung [14]. The following
sections discuss the numerical method, subgrid scale and wall-modelling techniques
in some detail. This chapter captures the common aspects of the LES and numerical
techniques applied to the ows in chapters 4, 5 and 6.

3.2 Large-eddy simulation with wall modelling
Expressing the velocity eld;x;y; z t°in terms of the Itered scale!x;y; zt°and
uctuating componentsiolx; y; z t° such thati1x; y; z t° = g1x; y; z t°+ uiolx; Yy, z t°
allows us to write the formally Itered Navier-Stokes (NS) equations

@ @ _ @, Cdea @ @&

= = 4, == =1 — =0 A
e & @& @ @& @& Gy

for the Itered velocity eld ex; y, zt° whereT; @u; &g is the subgrid

stress tensor and where subscripted variables denote three Cartesian components in
the x (streamwise)y (span-wise) and (wall-normal) directions respectively with
corresponding velocity componentsv andw. ¥ ° denotes Itered quantities as
described in Chung and Pullin [16], presently viewed as a strictly formal construc-
tion. Henceforth we make the assumption that the formally ltered velagigan

be identi ed with the resolved velocity in the LES.
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3.2.1 Stretched vortex SGS model

We apply the the stretched vortex (SV) subgrid-scale (SGS) model [49, 16, 31]
in the present work. This is a structure-based approach in which we assume that
the subgrid turbulent motion in each cell is given by approximately axisymmetric
tubes in every computational cell. The orientation of these vortices is given by the
eigenvectors of the local resolved scale strain-rate tensor. Consid&rig) the
vortex orientation, the subgrid stress is modelled as

Ti= ij &¢€ K (3.2)

where the model for the subgrid energy, and energy spectrum, is obtained using
the approach of Lundgren [43] on the stretched spiral vortex local solution to the

eqguations of uid motion.
1

1 2k2
K = E1kodk; Elko=Kg #3k 3exp —— (3.3)
ke 3j3
wherek. = < ¢represents the cut-o wavenumber =  y y - 1'3, itis tied to

the grid spacing given by the subscripted Cartesian coordinatesy an§; € e}’
gives the projection of the resolved-scale strain-rate onto the SGS vortex direction.

Integration gives
1

1 1 !
K = EKg » 3 2y, 8tV u® texpt wedu; (3.4)
t
Kg = Kg 23 5’3 iS a group constant obtained by matching structure functions to
the local resolved-scale ow [16, 31], with, = 12 «3jgj°*2, and ¢ = k¢ . Inthe
present implementatiog’ is aligned with the principal extensional eigenvector of
§;. The advantage of such a model is that the local cell-size is the main adjustable

parameter (The model is still subject to some assumptions in its derivation).

3.3 Wall model with roughness: friction velocityu

3.3.1 General discussion

In wall-resolved LES, the viscous length scat@ is resolved or partially resolved
near the wall. By partially resolved we mean that the viscous length scale is
resolved in the wall-normal direction but may not be fully resolved in the wall-
parallel directions. Wall-normal resolution usually requires the use of a stretched
mesh that has higher resolution near the wall. A recent example is the work
of Cheng et al. [13] who use wall-modelled LES for ow past a cylinder up to
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Reynolds numbeRe&, based on the cylinder diameter and the free-stream velocity
uptoRe = 85 10°.

In wall-modelled LES, a speci c wall model is used to represent both the e ect
of the wall itself and also the anisotropic character of near-wall eddies. The wall
viscous scale is not resolved and in fact may be orders of magnitude smaller than
the local mesh size in any co-ordinate direction. In particular the Chung & Pullin
wall model introduces a raised virtual wall at height above the actual wall.

As will be seen, in the rough-wall extension [71], the wall roughness scale, for
example the sand-grain roughness scale, must be smallehgh#frthis condition

is not satis ed, the roughness would begin to be of the order of the wall-normal
cell spacing, which would require speci ¢ modelling of its geometry. In this sense,
the present wall model is limited by the constraint that the roughness scale must be
subgrid.

We apply the virtual-wall model (VWM) [16, 31, 12] and include within it a

correction that is determined by the local distribution of roughness on the wall
boundary as shown by Saito, Pullin, and Inoue [71]. The key assumption used
within this wall-model is the presence of near wall vortices whose size scales with
distance away from the wall. Two key aspects of the VWM are highlighted here. The
wall-parallel streamwise momentum equation is rst combined with the assumption
of inner scaling oru and eu as velocity and length scales for the near-wall

subgrid, streamwise velocity. For the canonical at plate weqalrrive at an ordinary
wXy;t°

di erential equation (ODE) for the friction velocity 1x;y;t° = at each
wall point. ODE coe cients are obtained dynamically through coupling with the
outer LES at the rst few wall-normal grid points. The locally determimeds then
combined with a log-linear approximation to a slip velocity at a raised or virtual
wall plane at a speci ed distandg from the wall. hg is thus a model parameter and

is subgrid in the sense thag < h, whereh  zis rst wall-normal grid position.
The virtual-wall concept leads to the idea of an interfacezat hy between the
outer LES and the wall-modelled regian hg. In the [16] approach the outer
LES informs the wall model by supplying some information in the form of resolved-
scale ow quantities and the wall model responds by supplying a slip velocity as an
e ective Dirichlet boundary condition for the outer LES. The two major elements
of the model are an ODE to calculate and the subsequent evaluation of both a
slip and a wall-normal velocity using a local wall-equilibrium based on Townsend's
attached-eddy hypothesis.
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The e ect of hyp on the turbulent mean velocity pro les has been explored by Chung
[15], and is presently linked to the wall-normal cell size such that 0:18 ,.
Reynolds-averaged Navier-Stokes equations are not necessary in the near-wall region
with u 1x;y;t° and thereforeh ho eu is calculated dynamically. Cheng,
Pullin, and Samtaney [12] develop a two-dimensional wall-model and demonstrate
its e cacy in the case of boundary layer ows with separation.

3.3.2 Ordinary di erential equation for u .

The focus of this dissertation is on attached ows, hence the one-dimensional
version based on the streamwise equation of the virtual wall model is used in the
numerical setup. In both wall-modelling approaches, the ow is assumed to be in
local equilibrium when developing the equation tor. The present development

of the wall model follows the detailed derivation given by Saito, Pullin, and Inoue
[71]. We denote streamwise, spanwise and wall-normal coordinates, respectively by
X, Y, andz while u, v, andw are the corresponding velocity components. Following
Saito [70] wall-parallel Itering and wall-normal integration operators are de ned

by

11
eixy,zto= XAy 210G X% Gy Y edddyt (3.5
1
, 1 " el v 2 d 3.6
1y = @ VA
héi 1x; y° K e Xy, 22 dz (3.6)

where € denotes wall-parallel ltering anth i denotes a wall-normal average, and
c is the Iter cuto length given by the SGS model.

We now obtain the ODE for the friction velocity . Let the wall shape bg = kix; 2°

with kix; y° = Oand de nefix;y° kix y° z The object °representsa ltering

with some length scale (of order the wall-parallel grid size) over the wall-parallel
plane. We denote the wall-normal (into the wall) by= r fejr fjon f = 0.
Attention is now focused on a small control volume at the channel wall with

y dimensions given by the local wall-parallel grid sizeg, Yy (the local grid
size), and wall-normal dimension of scdlewhich at this stage is arbitrary. The
subgrid roughness assumption is that all scabes y andh are much larger than

the maximum roughness scale which can be takemagk!x; y°j. Of the control
surface that surrounds the control volume, four wall-normal surfaces intersect the
wall while the wall itself is the bottom surface. We now apply top-hat Itering in the
wall-normal direction and averaging as de ned above to the streamwise momentum
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equation to give an integral form over the control volume

y {
g udV = nuu+Pro— ds (3.7)

where = 2 S andS is the strain-rate tensor. In (3.7) the right-hand side is the
momentum ux through the planes de ning the control volume. The exterior forces
are pressure, and viscous terms.

For a non-planar wall the wall pressure contribution is nite. Since the roughness
is subgrid with unknown detailed shape, then both the integrated pressure and
viscous terms are generally unknown at the level of wall-modeling. We proceed
by aggregating all ux contributions, including unknown terms, and interpret ux

di erences between parallel wall-normal surfaces by using wall-parallel derivatives.
This then gives, for the cell-averaged streamwise momentum equation

@EI+@ﬁUI+@fJVI+}ijh: @ +_@
@ @& @ h @, h@, )
X X
} ! Ende n:ruds :
h x vy X
w w
(3.8)

Isn this equation, the streamwise component of the wall normal unit veatgrasd
 denotes an integral over the wall. The unknown pressure and viscous terms due
to roughness are now characterised by the de nition of the wall- friction velocity

X X
21 EnXdS
Xy Xy

n:r udS= E_W; (3.9)

where™y is now the total surface drag force per unit projected areat&mubw
refers to an average over the intersection of the control volume (cell) and the wall.
Equation (3.8) can now be written as
i ui vi 1, . 1 1
@ai | @bu @t + Zfiwjn = 1@, @ 1, (3.10)
@ @& @ h @&, h@, h
It is recognised that,, contains both pressure and viscous contributions and so
represents a pressure-viscous force per unit area rather than a pure viscous force as
for the smooth-wall case. The smooth-wall case is recoveredkishy® 0 and
n = 10; 1; 0°.
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3.3.3 Inner scaling ansatz

Following [16] the unsteady term in Equation (3.10) is now treated with a general
form of inner scaling combined with an empirical roughness correction to represent
the additional momentum de cit, and increased surface drag, produced by the
roughness elements. This downward shift is presently modelled using a general
roughness functionU*. This can be included in the inner-scaling ansatz as

ax y, zto=u ixy;t° Fy z* u* k& ; (3.11)

wherez" = zue+ andkf = u ke . In(3.11),F; 1z"°appears for smooth and rough
walls, whilst U* kg is the roughness correction function expressed in terms of
an equivalent sand roughneksandki ksu ¢ . Using this and now applying a
the wall-normal average we obtain

Ut k! dz (3.12)

Hereu = u 1x;zt°and so varies both temporally and from point-to-point across
the wall. Di erentiating (3.11) with respect to then gives

@ diz"Fe dtki U*°
— = FRiz'o+ Z'FAz Ut kI kI UT K = i ;k;

@
(3.13)

Appling wall-normal averaging as de ned by (3.6) then leads to

@U’i — % k+ @ U+ .
@ u ° e
Whereujy, is interpreted as the right-hand side of (3.11). Subsequently this will be
replaced or identi ed with the streamwise velocity obtained from the LES at the
rst grid point away from the wall. Equation (3.12) can then be written in the form
@. Qi@ _@ ujh QU
— i = == = K=
@ @ @ @ u @s
We remark that (3.15) follows from (3.11) - (3.12) for arbitr&yz °©and U*1kZ°.
Itis particularly useful thatintegrals &%z °do not appear in equation (3.15) owing

(3.14)

(3.15)

to cancellation. Hence, perhaps surprisingly, this function need not be known in
detail for the operation of the wall model.

We can now obtain an ordinary di erential equation (ODE) for at each wall
grid-point by substituting (3.15) into (3.10) and by making a simple approximation
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of the Itered-averaged nonlinear terms as valuey & h (one-point estimates).
This gives

@u @v @ (R @
— = = Ctwj+-— U
du — @ h @ h @ h h Jh h @ h h . (3 16)
dt @jh ,@U" ' '
U Ca
S

The wall-normal heighh is arbitrary. Previous experience ([16, 70, 13]) indicates
that a good choice fdn should correspond to the rst or second grid cell of the LES
domain. Surface roughness appears in (3.16) as the derivatiue‘oith respect

to k. Note that sinces is dynamic then bothZ and this derivative will also be

a dynamic part of the right-hand side of the ODE. We also remark that (3.16) can
be used for boundary layer ows in the presence of pressure gradient (the present
focus is still on the zero pressure gradient case). As pointed out by Saito, Pullin,
and Inoue [71] (3.16) can in principle be extended to two wall-parallel co-ordinates
and also to wall curvature e ects. Generalisation to arbitrary roughness functions
with multiple scales and horizontal distribution® 1k s k"% k™" ::2is also
possible.

3.3.4 Slip velocity at a virtual wall

A summary of the derivation of the slip velocity is given by Inoue & Pullin [31].
This is not given presently in detail. But the main idea is to utilize the attached-eddy
hypothesis by assuming that in the wall-modeled re@ionz  hp, the near-wall
eddies are attached and almost parallel to the wall, while in the outer LES the
eddies are detached and have no knowledge of the wall save for the e actasf
incorporated in the slip velocity t= hg. For smooth walls this gives a log-relation

for the slip velocity above smooth walls as

a=u iIog Z +A; (3.17)
K1
where
K= K (3.18)
IR W '

is a dynamically calculated von Karman constant. In (3.1B); is an estimate of

the Reynolds stress obtained from the outer LES at the rst grid point and the vertical
momentum mixing constant is given by; = 0:45has been calculated by matching
model Reynolds stresses from both the outer LES and the wall-modelled region at
Z = hg using the Townsend attached-eddy model [16]. The qualtis/a measure
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of the local subgrid turbulent kinetic energy obtained from the stretched-vortex
model as described above. This can be extended to rough surfaces by incorporation
of the roughness correctiord™ kZ . This leads to the model pro le in the overlap
layer above rough surfaces as

1
@a=u K—Iog Z +A U kI (3.19)
1

Equation (3.19) is now used to calculate a slip-velocity boundary condition at the
at, lifted virtual wall at hg > kx; z°. This requires that the roughness be subgrid.
The slip velocity can then be expressed as

8 jh,= U Kilog hy +A U* ki ; (3.20)
1

Typically, the height of the virtual wahyg is determined as some fraction of the rst
grid size, and presentlyy = 0:18  is used following [16].

To implement the wall model, (3.16) is solved far. Then the log-relation in
Equation (3.20) is used to obtain the slip velocity at the lifted virtual wajl athg.
Coupling with the outer LES occurs because some terms (3.16), as well as the shear
stressTyy needed for evaluatink§ 1, are supplied by the outer LES. In turn the wall
model supplies the slip velocity for the outer LES. Any roughness type for which a
model of U*1kZ°is known can be incorporated.

3.3.5 Wall-normal velocity boundary condition
We have yet to discuss the wall-normal velocity at the lifted wall. The Itered
continuity equation is

—+ =+ —=0 (3.21)

Integrating (3.21) i  hg and assuming zero ltered span-wise velocity gives the
wall-normal velocity as

® jh,= ho%: (3.22)

Again using an inner-scaling argument for the derivative leads to the wall-normal
velocity boundary condition,

@ ijh K @uU*

o U — (3.23)

@ jhoz ho
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3.3.6 Example of roughness function
Jiménez [35] gives an extensive discussion of roughness functions for various sur-
faces. A particular U* will generally be determined by the speci ¢ surface type
through either theory, experiment or perhaps DNS at moderate Reynolds number. It
is considered an input to the present wall model. As a speci ¢ example that will be
used in the present work, we discuss brie y the Colebrook empirical formula that
spans smooth wallk{ 5) through the roughness transition regime to the fully
rough limitk{ > 100

u* = 1 log 1+ k¢ : (3.24)

K1

where is a de ned constant. Equation (3.16) then becomes
L@UT_ 1 ks (3.25)

k =
P E¢ Kil+ kS

while (3.20) is then

. 1 1
8jn,=U —Ilog hy +A —log 1+ ki : (3.26)
K1 K1

It will be evident from the above discussion and development that the present wall
model e ectively assumes that, in the wall-modelled region, the ow is in a state of
local equilibrium with the wall state be this either smooth or rough. In the present
applications, this will constitute a rather thin slab of or@& 1% of the local
boundary-layer thicknessgg (the exact value varies with grid resolution). The use

of Townsend's hypothesis is an essential statement that the wall surface state is
communicated to the outer ow through the friction velocity. However there is two-
way inner-outer coupling in the sense that the outer LES information also a ects the
local wall state in determining .

Due to the local, dynamic nature of the present wall models a spatially and
temporally varying function. Consequently, bdth and thus U*1kZ° also vary
spatially and temporally on the wall. In referring to LES results that follow, we use
the notatiorti to refer to either time or spatially averaged values but, for simplicity,
rede neu” = ueU ,U;j = Uy *U.

The inclusion of the wall-model with a roughness correctith »Z Yonly modi es

the near-wall behaviour, and the outer LES, coupled through the ODE farthe
wall-model, is modi ed only through interaction with the modelled inner dynamics.
This is consistent with the notion of outer ow modi cation due to changes in
boundary condition through the inclusion of surface roughness in a physical sense.
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3.3.7 Details of the numerical method
The numerical method implemented for LES of boundary-layer ow in this disser-
tation is described in detail in publications [31, 12, 83], with key aspects presented
here. The discrete form of the Navier Stokes equations (incompressible) are given
as follows,

un+1 un 3

1 1
- ©p ENu” ENu” 1 * o Lu™t+ p*t+ Lu"+ 0] (3.27)

with the discretised divergence free condition given by

Du™?! = pj* (3.28)

In (3.27) and (3.28)N represents the convective operaidis the divergence oper-
ator,L is the Laplacian operatadg is the gradient operatdn; andb, represent the
boundary condition vectors for the momentum equation and divergence-free equa-
tions respectively is the discretised velocity eld. We can de ne an operafoto
implicitly represent the advection-di usion component of the momentum conserva-
tion equation. The speci c form oA is tied to the numerical approximation in the
time-stepping, and discussed shortly hereafter. A three-stage low-storage Runge-
Kutta method [81] is used to integrate (3.1) and (3.16) in time with the inclusion of
the fractional-step method [60] at each stage. We summarise the equations of this
temporal scheme speci c to the present implementation here,

dt
Au"l=r"+ by A=I 2L 3.29
u r nP1 Re ( )
dtt n+ ,°DGp=1Du ™! +hy° (3.30)
Hn+1 =u n+1 dtt n+ n°Gp . (3_31)
|
rM=dt  oNu" Nu" '+ Lu"+Dbje (3.32)

Constants,; n; n; nforn=0; 1 2are detailed in Spalart, Moser, and Rogers [81],
and we do not list them here for brevity. The formulation presented in (3.29)-(3.32)
serve as an approximate solution of the matrix-vector (LU diagonalised) form of
(3.27). By treating the wall-normal viscous term implicitly, we obtain a modi ed
Helmholtz equation for the velocity update together with a pressure Poisson equation
followed by the velocity correction step [31]. Solving the pressure Poisson equation
facilitates the projection of the intermediate velocity eld (which is not necessarily
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divergence free) onto a divergence-free eld while keeping its vorticity constant.
The time step is constrained by the CFL number, with the maximum allowable value
determined by the velocity eld such thataxjuje ;jvje y;jwje Ldt 1.

For spatial discretisation, a fourth-order accurate nite-di erence scheme is utilised
in thex andz-directions while Fourier-series expansions of the velocity and pressure
terms are employed in the-direction, since we assume spanwise periodic ow.

A staggered grid is used, following the scheme of Morinishi et al. [53] in the
streamwise/wall-normak( z) plane where thaf w°velocity components are stored

at the centers dix; z) cell faces with cell-centered storage in théirection.. The
skew-symmetric form of convective terms is utilised to improve energy conservation
and de-aliasing behaviour. To ensure the usage of a consistent stencil in the interior,
ghost points are utilised in the exterior of the domain (in the non-periodic directions
of the ow), with boundary conditions in th& anduv terms determined by the
discretised continuity and momentum conservation conditions respectively. The
Poisson equation for pressure reduces to a sequence of one-dimensional equations
in the wall-normalz-direction through a combination of spectral representation

in the spanwisey coordinate with a fast-cosine transform xn(hence we term

this framework a pseudo-spectral code). The overall numerical method has been
validated using lowRe direct numerical simulations [31] of the turbulent boundary
layer.

The base ow is span-wisey] periodic, has a prescribed velocity, derived from
the zero-vorticity condition with an inviscid outer ow at the upper boundary of the
computational domain and a convective boundary condition at the streamwise exit
plane as follows,

d @ @

Wiop = Uz a; @ = Uclf@; (3.33)

whereU:12° is the mean streamwise exit velocity and the displacement thickness is
given by

1 L J
= 1 — dz (3.34)
0 1

The valued <dxis represented by a single streamwise average [31]. A turbulent
initial condition is used, and turbulent ow is sustained through an in ow condition
generated by a recycling method speci ¢ to the domain formulation, but based on
the work of Lund, Wu, and Squires [42], and described in greater detail in chapters
4 and 5.
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Chapter 4

SEMI-EMPIRICAL MODEL FOR TBL WITH LINEAR
VARIATION IN SURFACE ROUGHNESS

This chapter includes results and discussions adapted from

[1] A.Sridhar, D.I. Pullin,and W. Cheng. Rough-wall turbulentboundary layers
with constant skin friction . In:Journal of Fluid Mechanics818 (2017),
pp. 26 45.doi: 10.1017/jfm.2017.132

4.1 Overview

In this chapter, we examine an interesting class of turbulent boundary layer ows
with constant skin-friction. In adhering to the overall theme of this dissertation,
we identify, based on previous experimental data [37] and similarity analysis [85],
a class of equilibrium turbulent boundary layer ows which occur when the wall
comprises of a linearly increasing equivalent sand-grain roughness medasure
Skin-friction typically represents an important metric in engineering analyses and
practical applications, and it is therefore of interest to examine these ows in greater
detail. We focus on zero pressure gradient ows in this chapter, but brie y comment
on the results for Falkner-Skan and sink ows.

4.2 Background

Turbulent wall-bounded ows with streamwise constant skin-friction coe cient
Cs comprise an interesting class of turbulent ows with mean- ow self-similarity.
Examples forinternal ows are turbulent pipe ow and open channel ow that exhibit
streamwise statistical invariance. For fully developed turbulent ow in a pipe of
diameterD with statistically uniform sand-grain type surface roughness whose
length scaleks satis esks*D << 1 and wherek{ ksu ¢ is su ciently large,

the experiments of Nikuradse [57] showed that the average wall-friction coe cient
Ci =2yt u§°, ("w is the average wall shear stress agdhe bulk ow speed)
becomes independent of Reynolds numBes up De when this is su ciently
large, and depends only d@eD. This is referred to as the fully-rough regime
(see Jiménez [35] for a discussion) where the dominant near-wall physics length
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scale isks rather than the viscous scaleu , whereu? = » is the square of the
wall friction velocity. Using a roughness correction suggested by Colebrook [19],
Moody [52] developed an empirical characterisatio@efRa,, ks D° known as the
Moody diagram that covered part of the transitionally-rough regime (where both
Reg, andkgs* D e ects are present), and the fully-rough regime.

The ow of a zero-pressure-gradient turbulent boundary layer (ZPGTBL) at large
Reynolds number over a plate covered with sand-grain type roughness of streamwise
constanks was considered by Prandtl and Schlichting [65] and Granville [28]. For

a plate of lengthL, when Rg = U; L becomes large, Granville developed

a model showing that ikseL << 1 is held constant, then the total steam-wise-
integrated frictional drag coe cien€Cp becomes independent Big_ at su ciently

large values and depends only &g L. Here the local skin-friction coe cient
Ci1Rq; kse L; x* L°also becomes independen®d butis not streamwise constant.

A class of boundary-layer ows with spatially constant skin-friction coe cient was
discussed by Rotta [69] who gave quantitative arguments for the hypothesis that, for
the ratio of the local outer ow speed to the skin-friction velocity to be spatially
invariant, surface roughness whose sand-grain-type scakaries linearly with
streamwise distance must be present. Speci c parameterisations or calculations
were not provided. Kameda et al. [37] measured the wall skin friction for a at-plate
boundary layer over a wall in the presence of a two-dimensikftgpe roughness

with length scale that varied linearly with distancérom the leading edge. They
observed thatl] was nearly constant ir and that the layer thickness increased
linearly with X. This idea was developed further by Talluru et al. [85] who used a
self-preserving analysis based on the equations of motion to argue that the data of
Kameda et al. [37] support self-similarity of the ZPGTBL when x.

In this chapter we rst develop a simple semi-empirical model for high Reynolds
number turbulentboundary-layer ows with streamwise spatially-varying, nominally
sand-grain-type surface roughness in the presence of an outer ow whose velocity
variesad); = P x™whereP is a dimensional constant. The model makes use of the
log-wake law with assumed streamwise constant parameters combined with a fully-
rough representation of the streamwise velocity roughness correction, and further
utilises the von Karman boundary-layer integral equation under the assumption that
all terms are constant in the streamwise direction. This showsk¢h@bportional

to streamwise distance is required for closed, self-similar solutions. Several
cases of interest are discussed and comparisons with the results of Kameda et al.
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[37] are made. The main focus is the zero-pressure gradient turbulent boundary
layer. Large-eddy simulations (LES) of this ow using a wall-model with linearly-
varying streamwise roughness are presented. The LES utilises the stretched-vortex
subgrid-scale model of Misra and Pullin [49] combined with the virtual-wall model
(VWM) [16, 31] for high-Reynolds number turbulent ow thatincorporates modeled
subgrid wall roughness [71]. It is found that, at su ciently large Reynolds number,

U7 = Ui *u becomes independent Bfg, and depends only on the dimensionless
parameter that characterises the roughness growth. Comparisons of LES results
with model predictions are discussed.

4.3 Flows with linear roughness

4.3.1 Mean velocity pro le

We consider turbulent boundary layers with power-law wall-roughiess K x"
whereks is the local surface roughness height at the streamwise co-ordinatk

an origin such that botks and all measures of the boundary layer thickness are
zero atx = 0. The length-scale of streamwise roughness variatida'tst ™. A
Reynolds numbeRg, U; 1x°xe is considered su ciently large that ow is fully
turbulent. It is assumed that the velocity pro le within the boundary layer at any
streamwise station is given by the classical log-wake relationship

utze 1 1z+"u

K
== log —— + w 2 ur

+ A (4.1)

where is the Karméan constang, a suitably de ned wall-normal distancé an

o set constant\W the wake function withWt1° = 2 [20], the Coles wake factor
and" aroughness o set parameter. The latter is often used to account for an overall
wall-normal shift of the logarithmic region in the presence of wall roughness: see
Squire et al. [82] for discussion. It is expected that Ok In the LES to

be described, rst, the roughness is considered subgrid gtbmaller than the
near-wall cell size, and second, we will mainly consider ows for whiekgs >> 1.
Hence this correction is presently neglected by taKirgO.

In (4.1) U*1k{°is a roughness function that quanti es the e ect of surface rough-
ness on the mean velocity prole. Various forms of)*1k{° are discussed in
Jiménez [35]. An implicit present assumption is that the streamwise variation of
Utk{°is su ciently slow that the developing boundary layer can adjust to local
roughness conditions. We assume a standard form for fully rough conditions

1
Uk{°==log ki + A B; (4.2)
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whereks = ksu « , whereB 8:5is a constant. In (4.2 is to be interpreted as
the equivalent sand-grain roughness of the surface in the sense of Nikuradse [57].
This gives

§1I09k5+ wZ +B z<
uzo S
— - = 4.3
T3 (4.3)
_1’ zZ>
u
where the length scaleis de ned such that
U 1
Uy —==log — +2 +B: 4.4
1 g ke (4.4)
We utilize a simple model for the wake function [63].
w Z =2sif 2—2 : (4.5)

The displacement thickness and the momentum thicknessan now be obtained
as

u
= 1 — dz
0 Uz
1+
= B+ 2 + |Og1 .kso’ (46)
1
u u
= — 1 — dz
0 Ul Ul
2 4+2 B+ °+211+ O°logt ek 4 Q- 4.7)
= 21 B+2 +|Ogl .ksooz ' .
where 1 .
Q=st°o  Zdz=185194 (4.8)
0

In both (4.6) and (4.7) the log-wake pro le is used downzae= 0. This gives
integrable singularities &= 0. Since at large Reynolds number with> ks, the
roughness sub-layer can be expected to make negligible contributions to the overall
mass and momentum transport across the boundary layer, the error incurred is small
while the analytical simpli cation is substantial. Also, it can be seen in (4.6) and
(4.7)thatboth and show anonlinear dependence onThe possible dependence

of on surface roughness conditions has been discussed in the literature [40, 37].
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In the following model it will be required that be streamwise constant and so this
approximation will be used subsequently.

The Rotta-Clauser parameter, sometimes used as a measure of the outer scale of the
boundary layerisde nedas U; . Using (4.4) and (4.6) it follows that

1+
= (4.9)
This is independent of the following model development.
4.3.2 Two-parameter model
The Karman integral relation can be written as
d _u®_duo,, (4.10)
d x B Up Uq dx ' '

whereU; = U1 1x° u = u 1x° We now consider conditions under which all terms

of (4.10) are constant. This immediately implies thatU; is independent ok,

and that X. It then follows from (4.4) that «ks is independent ok and so
kstxO. Ifitis assumed that all of B; are independent of, then, since X,

it follows from (4.6) and (4.7) that both x and X. Since kstxO then

the only possibility isks  x in agreement with Rotta [69], Kameda et al. [37],

and Talluru et al. [85] for the zero-pressure gradient boundary layer Wherns

constant. Sinca = 1then the ow does not contain a nite length scale associated

with the streamwise variation of roughness and, at I&tgg is therefore fully self

similar with similarity variable proportional te» X. Hence we put

ks= X (4.11)

where is a dimensionless constant. For power law outer velocity prdJes=
P x™whereP is a dimensional constant it can now be seen that the second term on
the right-side of (4.10) is constant for arbitrary

Next we put = X, where isto be determined. Henceks = « . Substituting
(4.4), (4.6) and (4.7) into (4.10) and simplifying then gives

22 + 14 8m+2B 1+3mP+ °+ 1 +mi4+6 00
4 11+2mP Q+2 1+3mPiL+ © logte °=0: (4.12)

The above can be summarised as follows: We B; as given numerical constants
(independent ok) giving a two-parameteim;, © model. For giveritmy ©, (4.12)
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is then a transcendental equation fathat can be solved numerically. We note in
passing that, for given, (4.12) can be in fact be solved analytically fdr ° giving
closed form solutions. But we prefer to x as the physical control parameter and
so proceed numerically. Onces knownU; eu follows from (4.4) while ¢x

Re *Rg and *x Re<*Rg can be obtained from (4.6) and (4.7) respectively.
For generam, and at nite viscosity , there exists a length scalles PO ™1” and

a streamwise Reynolds numbRe, = P x*™e | The casen = 0 corresponds to
the ZPGTBL withP = U; for which the length scale is the inverse of the unit
Reynolds numbed; » . An exception ism= 1 where no length-scale exists and
the Reynolds number is independentxof

Asymptotic behaviour when ! 0

If log* °is neglected compared withg® °in (4.12), an asymptotic form forwhen
I 0can be obtained. For illustrative purposes we display thisifer0 only as
2 2

= +HOT: (4.1
14+ 2+2B 11+ % 4 Q 21+ ° log» Y © (4.13)

When ! 0so thatjlog» ¥%p> 1, this becomes

2

——— — +HOT: 4.14
X 11+ ©log» Ya ( )

Substitution into (4.6) and (4.7) gives

2 2

— + HOT: -
X log» Ya X log» Ya

+ HOT: (4.15)
Substitution of (4.13) into (4.4) then shows that
1
Ui = =logt °+Olog® logt °®; IO (4.16)

and is singular in this limit. It can be veri ed that (4.9) is satis ed to leading order
and further, that when ! 0, H « | 1. The model is not asymptotic to
smooth-wall ow when ! 0. Smooth-wall ow always requires a description of
Reynolds number e ects which are not included in the analysis.

4.3.3 Self-similar mean-velocity pro les
If the outer ow is given by xing m, the only remaining parameter is the roughness
slope , and so all quantities are then functions ofFor  xed, the mean velocity
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pro le can now be written in a self similar form with similarity variable ze* x°

1 : ) .
o % logt °+2 sir? > 1o + B < 1o
- = 417
3 (4.17)
- UI, > 1 0 :
Using continuity, the wall-normal velocity component is
1 ro
= 1 COS — + sin — ; < 10
wize
u ) 1 01 (0}
1+ ; > 1 O
' (4.18)
The streamline slope at= = 1 °xis
dz 10114 O
— = : 4.19
dx . B +2 +logt?t % © (4.19)

The above model can easily be formulated witheplaced by a speci ed value of

kse as the independent parameter. While this is somewhat closer to the concept
of the fully-rough limit of the Moody diagram, with helges playing the role of

kse D for a pipe ow, we nonetheless retainas the parameter because this will be

de ned by a given roughness pro le.

4.4 Some special cases
Three cases of interest are:

4.4.1 Falkner-Skan ows

For Falkner-Skan type boundary layer owsy = 12 °where > 0Ois a
wedge double angle. Here the streamwise co-ordix&ts an origin at the start of
the boundary layer anch > 0. The pressure gradient is favourable and it may be
expected that is approximately constant. This case is not discussed further.

4.4.2 The zero-pressure-gradient turbulent boundary layem = 0

Herex > Owherex = Ois the virtual origin of the boundary-layer growth. Tables4.1
and 4.2 show the model parameters calculated numerically for four values-aft
numerical values of B; are speci ed withm = 0. For several values of, (4.12)
isthen solved numerically for=«x. The quantity eks =1 ¢x%1ksex°= e can



Table 4.1: Numerical results for boundary layer with= 0, ks =

30

X, Xx > 0.

= 0:384 B=8:5 = 0:55using the model of Y4.3.2. Values okpeci ed with

other quantities calculated from model as described in Y4.4.2.
U7 % < = % K

10 7 4046 608 104 7:36 104 7:40 103 7:40 107

10 6 3503 815 104 1:.02 103 886 103 886 10°

10 ° 2960 114 103 1:49 103 1:10 102 1:10 10°

10 4 2430 169 103 2:39 10° 144 102 1:43 17

10 3 1922 271 103 428 10° 2:04 102 2:04 10

Table 4.2: Numerical results for boundary layer with= 0, ks =

X, X > 0.

= 0:384 B=8:5 = 0:36using the model of Y4.3.2. Values oBpeci ed with

other quantities calculated from model as described in Y4.4.2.
Ui < x =3 K

10 7 3991 623 104 748 104 842 103 842 10¢

10 6 3438 845 104 1:.04 103 1.01 102 1.01 10

10 ° 2895 119 103 153 102 125 102 1:25 10°

10 4 2365 179 103 245 10° 1:63 102 1:63 1(?

10 3 1856 296 103 4:42 103 2:32 102 2:32 10

Table 4.3: Comparison of present model of Y4.3.2 with experiments of Kameda
etal. [37: =00055 m=0, =0:384B=85. rc = Ujeu isthe
Rotta-Clauser parameter. Valuestbffor experiment obtained using an average of

, tabulated in Talluru et al. [85].

Case Uy M %’ T(C H=—
Model 0:70 1621 (000380 1666 9264 188
0:55 1567 (000407 1826 9286 182
Expt 15:56 000477 1943 7833 1:83
Table 4.4: Numerical results boundary layer sink ow with= 1, ks = X,

x < 0. =0:384 B=285 = 0using model of Y4.3.2. Values ofspeci ed
with other quantities calculated from model.

Ui e e "o &
10 7| 3697 338 104 394 10% 559 103 559 10° 0:538
106 3143 461 104 552 104 666 103 6:66 10°  0:545
10°| 2598 658 104 824 104 821 103 821 10* 0:556
104| 2065 100 10° 1:34 10° 1:.06 102 1:.06 10* 0572
103| 1553 165 10° 2:49 10° 1:49 102 1:49 101  0:600
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then be calculated which enables calculatiopru using (4.4). Finally <x
Re *Rgand *x Re*Rg are calculated using (4.6) and (4.7) respectively.

We x = 0:384 B = 8:5which are standard values ( we note that these cannot be
independently selected). The value ofs somewhat uncertain. We use a standard
value = 0:55. Solving (4.9) for gives = 1 « 2 1 1Inthe LES to be
described it was found that for the higher resolution runsgg = 3:54independent

of . If we identify o9 (LES) = (model), then we calculate = 0:36 which

will be taken as an alternative value. These values are used in Tables 4.1 and 4.2
respectively which can be taken to show the e ect obn the calculated results.
Calculations were also done (not shown) using an alternative algebraic form of the
wake functionW'ze ° (see Jones, Marusic, and Perry [36]) with small e ect on
calculated quantities for the same speci ed; . In the tables it may be seen
that as increaseslJ; *u decreases meaning th@t increases with increasing
roughness in qualitative agreement with rough-wall pipe ow.

The roughness elements used by Kameda et al. [37] for the ZPGTBL were of two-
dimensional riblet-like form with rectangular cross section. Their hdightwidth

w ratio waskew = 1 while the element separation wds+ w°k = 4. The local
root-mean square roughness height is = 3+4k and the riblet height increased
linearly asdkedx = 0:00125 In order to compare results of the present model
with Kameda et al. [37], the equivalent sand-grain roughke$sr the rectangular
roughness elements must be determined. We estimate this at a single station and
assume a linear dependence on the distarfoem the leading edge. From Figures

7 and 9 of Kameda et al. [37],U"  13:2 atx = 3:340m while from their Figure

4,C¢ = 0:00826givesU™ = 15:56. Usingk; kstUj ¢ % U™, their unit Reynolds
numberofJ; » = 6:24 10°m !and substitutinginto (4.2) with= 0:384 B = 8:5

then givesks 0:018m atx = 3:340m. This gives = kg*Xx = 0:0055which is

3:7 times the growth irk given bydkedx = 0:00125[37]and more thar8 times

the rms value of the surface roughness. Values of equivalent sand-grain roughness
that are substantially larger than the physical roughness scale have been observed
previously. For example Squire et al. [82] report that the equivéddefur a speci ¢
sand-paper roughness is abb8times the measured wall-normal root-mean-square
length scale of the surface pro le.

Results from the present model with= 0:0055are shown in Table 4.3 for two
values of = 0:70, the value suggested by Kameda et al. [37], and 0:55. In
making a comparison with experiment we have identied g99. The present
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model assumes the existence of a log regime. Jiménez [35] remarks khat40
is needed in order to produce a nite log layer, otherwise the log-layer may be
suppressed by the wall-normal extent of the viscous roughness sublayer. Kameda

etal.[37] nd <k 194. Since we have

1

K = %’ Re: (4.20)
S

then largek{ > 100 (asymptotically rough regime) coupled with largeye ks
requires largRe . In Kameda et al. [37]Re 2200 4030which is on the low
side for this.

4.4.3 Boundary-layer sink owm= 1

Boundary layer sink ow given byn = 1. Here, to a good approximation we

may take = 0 [21, 36]. For this case < 0 with the origin of x at the sink.
Hence < 0, < 0. The calculated parameters for this ow are given in Table
4.4. These parameters can be seen to be qualitatively similar to the zero-pressure
gradient case. Pure sink ow exhibits some special features. Rigt= P is
constant; the Reynolds numbers at all streamwise stations are the same, and so there
exists a family of sink ows with parametd?s . In other words, with? and xed,

large Reynolds number cannot be achieved with a su ciently long plate. Second,
the boundary layer for pure sink ow for the smooth-wall case is of equilibrium
form and is self-similar [21]. As a result, the present model applied to sink ow
with linearly reducing roughness can in fact be mapped into the smooth wall case.
Calculation shows that the equivalencéussU; © ! «P. So for pure sink ow,

both the smooth-wall ow and the sink ow with linearly decreasing roughness at
large Reynolds number are self similar.

While the Clauser parameter = < ,, dpedx is useful mainly for ows with
adverse pressure gradients [18], it is interesting that this is exactly constant for the

present class of rough-wall ows. It is straightforward to show that
2
U
m —=

= = (4.21)

and is negative for ows with favourable pressure gradients. Valuesfer 1are
given in Table 4.4. These can be seen to be small in magnitude.

4.4.4 Recycling
For generating the in ow, we refer to the recycling method by Lund, Wu, and Squires
[42], in which the components of in ow velocity, including mean and uctuation
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parts, are mapped from the ow eld at an internal plane. This mapping idea
originates from the scaling-similarity property of boundary layer ow. Similar

to the classical scaling, the recycling method recognises an inner region and an
outer region. In the original recycling method for zero-pressure-gradient turbulent
boundary layer ow, velocity components in the inner region are mapped using the
law of wall, which means the scaled coordinateis= ze1* with I* = eu . In

the outer region, velocity components are recycled using the defect law, where the
scaled coordinate is= z» with some measure of the boundary layer thickness.
For the entire recycling process, velocity components are scaledwsing

The formula used for the recycling method can thus be summarised as follows:

n = ore m= R (4.22)

where denotes the velocity component, either the mean streamwise velbzity

the mean wall-normal velocity'z°, or three uctuation componentsty; 2, v2y: 2°

andw?y: 2 . The subscriptsin and re for the inlet plane and recycling plane

indicate the position where velocity components are evaluated. The superscripts
inn and out denote di erent scaled coordinate as discussed above.

In generating the in ow velocity, a weighted function is de ned to combine the
velocity components in inner region and outer region. This procedure closely
follows the original recycling method, and its detailed description is not repeated
here. In the implementation of the recycling procedure, the mirroring method by
Jewkes et al. [34], which serves to almost remove the spatially quasi-periodic e ect,
is used.

4.4.5 LES performed

The LES were performed on arectangular domain. Parameters for the LES discussed
are summarised in Table 4.5. In what follows we refer to two streamwise co-
ordinatesx and x° related byx® = x  xg. The co-ordinatex® has originx® = 0

at the domain inlet while the origin of is the nominal at-plate leading edge.
Each individual LES was performed on a rectangular domain with inlet at

xo; X9 = 0 where the determination of is to be discussed. At the domain inlet,

in computational co-ordinatesyg, the 99% boundary layer thickness is set to unit
length. With speci ed andU; = 1this xes the nominal inlet Reynolds number
Re,, = 9o9U1+ . For each LES the xed parameters are theg U;; and
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the streamwise roughness growth rate We note thatks = x and denote by
kso = Xo the roughness height at the domain intet xo.

For given , denote the value ofe ks given by the empirical model (see Table 4.1)
by ! *ksmodet Then identifying go = , an initial estimate okg is

X0 = 1 1 X (4.23)

ks model

With xo known, LES is then performed with xed parameters and Witlealculated
asksix® = x = X0+ x° It was found that, following the usual transient
to statistically steady ow, 1x° obtained from the LES showed a strong linear
correlation withx® downstream of the recycling region, but that its virtual origin
was near to but not at the preseq@t An updatedxy was then calculated using
linear extrapolation of in x°to determine a virtual leading-edge origifi=  xo.
For each xed andReg, an iterative process was then used until a converged
Xo was obtained. Fol% accuracy, usually 1-3 individual LES runs were required.
We remark that (4.23) is used only as an initial guesxdan the iterative process
and is then abandoned. In this sense the present LES results are independent of the
empirical model.

In this way, LES were performed for= 110 %10 10 8 10 ’°, each with several
values ofRe,. The case = 1:25 10 3 was not considered because a log-layer
is not expected for this. The only physical length scale available for these LES is
*U; . Hence mean ow results in the physicad y° plane are presented as either
1Rg;Re®=1U; x*; U; < °oras scaled versions of these co-ordinates.

4.5 Results and discussion

Figure 4.1 shows); versusRe, for a series of higher-resolution (BH,CH,DH) LES
runs at di erent and at di erent inlet Reynolds numbers. Three rangefef

- lower, intermediate and higher - are shown for eachFor all cases, the results
displayed begin at the recycling plane and extend downstream. For all runs, some
e ect of the recycling regiorD  xeLy 0:2, can be seen just downstream of the
recycling plane. ARRg increasesy; remains almost constant for eachbut at
levels that vary with . Inthis sense these gures can be interpreted as essentially the
fully-rough, large-Reynolds number limit for the zero-pressure gradient boundary
layer owing over roughness whose scale increases linearly with

The corresponding variation &e with distancex is displayed in Figure 4.2 in both
linear-log (a) and log-log (b) form. Figure 4.2(a) indicates that all curves appear to
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(a) LowRe (b) IntermediateRe

(c) HighRe

Figure 4.1: Velocity ratidJ; for a range ofRe: Results represent individual LES
over di erent Rg,. Results plotted are for cas&H, CH, DH. Line key: ,

=104 ————— , =10% —-—- |, =106 .=, =107 Note
increasindJ; with decreasing .
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(a) Linear-linear plot oRe vs Reg

(b) Log-log plot ofRe vs Rg

Figure 4.2:Re versuskeg, with linear-linear (top) and log-log (bottom) axes. Cases
BH, CH, DH. Results represent individual LES over di ereRgg for casesBH,
CH, DH. See Fig. 4.1 for key. —::=—:—-. : Re Res..
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Table 4.5: Summary of zero pressure gradient LES with linear roughness: Numbers
represent the particular case gfletters represent di erent in owReg,, H represents

a high-resolution simulation. Letters represent order of magnituésof B : 108,
C:10° D: 10

Case Re Nx Ny N L_S L_Z L_g
1B 104 1:.01 245 10° 192 32 64 90 6 12
1C 104 101 2116 10° 192 32 64 72 6 12
1D 104 1:.01 245 1010 192 32 64 90 6 12
1BH 104 1:.01 245 10° 384 64 128 90 6 12
1CH 104 1:01 216 10° 384 64 128 90 6 12
1DH 104 1:.01 245 10°° 384 64 128 90 6 12
2B 10° 126 270 10° 192 32 64 90 6 7
2C 10° 1:26 2:70 10° 192 32 64 90 6 7
2D 10° 1:26 2:70 100 192 32 64 90 6 7
2BH 10° 101 270 10° 384 64 128 90 6 7
2CH 10° 1:.01 270 10° 384 64 128 90 6 7
2DH 105 1:01 2:70 10 384 64 128 90 6 7
3B 106 144 2:88 10° 192 32 64 90 6 7
3C 106 1:44 2:88 10° 192 32 64 90 6 7
3D 106 1:44 2:88 100 192 32 64 90 6 7
3BH 106 1:.01 2:88 10° 384 64 128 90 6 7
3CH 106 1:.01 2:88 10° 384 64 128 90 6 7
3DH 106 1:.01 2:88 10 384 64 128 90 6 7
4B 107 1:60 3:04 10° 192 32 64 90 6 7
4C 107 1:60 3:04 10° 192 32 64 90 6 7
4D 107 1:60 3:04 101 192 32 64 90 6 7
4BH 107 1:60 3:04 10° 384 64 128 90 6 7
4CH 107 1:60 3:04 10° 384 64 128 90 6 7
4DH 107 1:60 3:04 10° 384 64 128 90 6 7

Table 4.6: Symbol key for plots with multiple streamwise stations. Stations identi-
ed by Re.10°

N H

10 4 2:15 211 208 204
10 ° 2:63 258 253 249
10 6 2:81 277 272 268
10/ 2:97 293 288 284

converge to the same virtual leading edge, independent éfplot of Re versus
Re (not shown) shows similar trends. In Figure 4.2 some domain end e ects can
be seen for all LES. These are most pronounced for the largest value Bbth
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Figure 4.3: Friction velocity rati®J; versus . , HR-LES; , LR-LES. Solid
line; model of Y4.3.2 with = 0:384 B = 8:5, = 0:55. Dashed line; Model with

= 0:384B = 85 = 0:36. Symbols indicate values obtained from LES via
averaging fromx% L, = 0:2to x% L, = 0:90in order to avoid e ects of the outlet
boundary condition. Cas&€3H, DH.

plots clearly indicate an approximately linear growtlRe with slopes that depend
on but that appear sensibly independentR#,. Together, these plots indicate
an asymptotic state of the boundary layer at laRg that depends on the single
parameter .

In the following comparisons all model calculations use 0:384 B = 8:5 and

= 0:36 0:55. Plots of average values &ff and ¢x and gg*x obtained from
the LES are displayed in Figures 4.3 and 4.4 respectively. Both high resolution
and low resolution runs are shown for casgsD (intermediate and larg&e,
range). The LES values shown as symbols were obtained by streamwise averaging
from x% L, = 0:2to x% Ly = 0:90in order to avoid e ects of the outlet boundary
condition. In each gure, the solid and dashed lines indicates values derived from
the model of Y4.3.2 over a continuous range &r the parameter values shown in
the caption. In Figure 4.3, both the lower and higher resolution LES shows good
agreement foJ; with the model predictions for both values of The agreement
between the model and LES results feix in Figure 4.4(a) is also good. In Figure
4.4(b) we have plottedgge x for the LES and de ned by the log-wake law for
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(@) exversus

(b) exversus

Figure 4.4: x versus and e<x versus . For key, see Figure 4.3. LES results
represent gg versus .
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(@ =104 (b) =105

(c) =10° d =107

Figure 4.5: Mean velocity pro lesi* versuszeks = z+1 x° at four streamwise
stations for each . Results plotted are for cas€H. Values of as shown.
Symbols represent di erent streamwise stations. See Table 4.6 for key. Solid line;
(4.17) with =0:384 B=85, =055

the model. We note that Squire et al. [82] suggest1:26 o9 but this is not used
presently. Overall, Figures 4.1-4.4 indicate that the LES shows similar trends with
acceptable quantitative agreement with the semi-empirical model. At Rege
decreasing leads to increased; but slower streamwise boundary-layer growth.

Figure 4.5 shows mean-velocity pro legz%u versuszet x°for =10 % 10 °,

10 % 10 /. For each value of , four velocity pro les at streamwise stations indi-
cated in the gure caption are plotted. Reasonable collapse at eacindicated.

The LES show small near-wall e ects in the nal three near-wall grid points. Also
shown in each sub gure is the model mean-velocity pro le (4.17). These use the
values of shown together with = 0:384 B = 85and = 0:55. The model

pro le shows slightly highetJ; *u than the LES pro le for each consistent with

the di erences between results from the semi-empirical model and the LES shown
in Figure 4.3.
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(a) Velocity defect versugs go.

(b) Velocity defect versuge .

Figure 4.6: Velocity defedtJ; uwleu for arange of roughness slopesversus the
wall-normal coordinate. Single streamwise station for eaclshown for clarity. (a)
Versusze g9. (b) Versusze with Rotta-Clauser parameter=U; eu : Symbol
key: , =10% , =10%N, =10%H, =10 "
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. . . . @ .
Figure 4.7: streamwise velocity uctuations u*? >= Y. Four streamwise

stations for each shown. Note decreasing left to right. Dashed line is of the
form< u%*2>= B; A logtze ks with A; = 1:60. See Table 4.6 for key.

In Figure 4.6 the defect velocityy  Uq U is plotted against botk» g9 andze

One pro le for each of the four values of is plotted. Equations (4.3) and (4.4)
together suggest that; u” is a function ofze o9 independent of provided
we identify = gg9. This is because thelogtks® terms cancel. Thay; u*
can also be expressed as a functiorzof independent of is suggested by the
constancy of the ratioe o9 = 3:54across all inthe LES and also from the model
equation (4.9) that does not depend explicitly orFigure 4.6(b) shows reasonable
collapse againg* . The collapse is not as good agaipstgg in 4.6(a) where small
e ectsof can be seen.

Streamwise velocity variancesu®? > U2 obtained from the LES are shown

in Figures 4.7 and 4.8. In Figure 4.7, these are plotted agaihstx®. Again four
streamwise stations are shown in each plot. The three near-wall points are probably
a ected by the wall modeling and cannot be considered accurate. While the e ect
of can clearly be seen in the separation of the pro les when plotted agaist
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. . . . "3
Figure 4.8: Streamwise velocity uctuations u*? >= Y& versusz» . One

streamwise station for eachshown for clarity. Both sub-grid and total (sub-grid
plus resolved-scale) results shown. See Fig 4.6 for symbol key.

z*1 Xx° each pro le appears to have approximately the same slope in linear-log co-
ordinates. For the turbulent boundary layer over a uniformly rough wall, Squire et
al. [82] nd an approximately logarithmic pro le for streamwise velocity variances
with slopeA;  1:27. Figure 4.7 suggests the formu®2 >= B, © A logtze ks
whereA; is independent of . The light solid line in the gure has slop&;  1:60.

In Figure 4.8< u®? > s plotted againsts , with some degree of collapse over the
outer region. The pro les shown in both Figures 4.7 and 4.8 comprise the sum of
the resolved-scale component plus the sub-grid component obtained from the SGS
model. The latter are shown in Figure 4.8, where they are small but not negligible.

The constant skin-friction turbulent boundary layer has thus been identi ed as a
promising candidate for further study given the observed self-similarity and linear
boundary layer growth measures, as emphasised in this chapter with the zero-
pressure-gradient constant free-stream velocity=( 0) case. The simplicity of

the LES model suggests its utility in examining similar ows of the Falkner-Skan
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type - results suggest the existence oftanmP family of curves for skin-friction

that give a Moody-like diagram for turbulent boundary-layers. Contact withRew
experiments is restricted by the requirement of subgrid roughmes® < hp.

An appropriate experimental assessment of the ability to control the roughness
slope might lead to desirable skin-friction characteristics in applications. This is
made more relevant by the increasing prominence of small-scale manufacturing
technigues. While we have assumed that the origin of the boundary layer growth is
consistent with the origin of the linearly increasing roughness-scale; an opportunity
exists for the examination of a ow transition from the equilibrium smooth-walled
boundary layer to a fully rough boundary layer. The successful application of the
local velocity de cit correction U™tk{° to the virtual-wall model suggests the
possibility for the exploration of abrupt roughness changes. We address the latter
subject in chapter 5.
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Chapter 5

LES OF TURBULENT BOUNDARY LAYERS WITH ABRUPT
SPATIAL CHANGES IN ROUGHNESS

5.1 Overview

In this chapter, we extend our analysis of turbulent boundary layers with spatially
varying roughness to non-equilibrium ows. The non-equilibrium behaviour is
introduced to the ow by considering cases with abrupt streamwise changes in
boundary surface condition, for both smooth-rough and rough-smooth ows. This
type of ow has wide-ranging applications, particularly in the areas of atmospheric
boundary layers. Understanding the development of velocity and stress pro les
provides a basis for improved ow modelling and perhaps to applications in manip-
ulating drag characteristics.

5.2 Background

5.2.1 Implications of spatially varying roughness

A natural extension to the rough-wall boundary layer ow discussed in chapters 1
and 2, and the linear roughness variation studied in chapter 4 is the introduction of
abrupt changes in the roughness distribution. Such ows have been considered in
the context of atmospheric boundary layers by Chamorro and Porté-Agel [8], for
instance in the case of ow from oceans to landmasses, where the ocean is con-
sidered “smooth' and the land ‘rough’. Localised patches of bio-fouling or forest
distributions also present physically realistic examples of ows with spatially vary-

ing roughness. The distribution of rough elements on a surface can be classi ed
as homogeneous, heterogeneous, isotropic or anisotropic. Homogeneous roughness
speci es uniformity in the spatial and temporal description of roughness over the
entire domain of interest, such as in Nikuradse's (1933) sand-grain pipe ow exper-
iments. Anisotropy identi es directional bias due to the arrangement of roughness
elements, such as that present in the case of riblet surfaces at non-zero yaw angles
relative to the impingent ow [22, 58]. Smits and Wood [80] propose a classi cation
based on the severity of the perturbation relative to the upstream ow and the extent
of the validity of the boundary layer approximation in the developing downstream
ow. In this manuscript, we focus on isotropic, inhomogeneous sand-grain type
roughness with an abrupt streamwise transition from a smooth to rough condition
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and vice versa.

One of the key studies investigating the e ect of roughness transition in wall-bounded
ows is attributed to Antonia and Luxton [3, 4]. They conducted experiments of
rough-smooth and smooth-rough wall transition, using Preston tube measurements
to examine the streamwise development of skin-friction and mean velocity pro les.
More recently, the abrupt roughness variation problem has been studied by various
authors experimentally [23, 30] and using direct numerical simulations [32]. Saito
and Pullin [72] recently studied turbulent channel ows with smooth-rough-smooth
wall boundary transitions using large eddy simulations (LES), examining rst and
second order ow statistics in addition to the growing internal boundary layer (IBL).

Studies of internal boundary layers have been conducted by several authors, in-
cluding Antonia and Luxton [3, 4], followed by Ghosal [27] and reviewed in detail

by Savelyev and Taylor [73]. The IBL serves as a demarcation between the ow
immediately next to the wall a ected by the new surface condition, and the outer
region which adjusts to the new wall condition over several boundary layer thick-
nesses downstream. Savelyev and Taylor [73] comprehensively summarise various
growth formulae for internal boundary layers in the case of TBL transition between
two surfaces with di ering roughness scales. We note that in the present research
we consider transitions between ideally smooth and rough surfaces. Variation in
surface roughness has immediate consequences on the near wall behaviour and drag
characteristics of wall-bounded ows, and a detailed understanding of these param-
eters is critical to the development of models and simulation tools for engineering
applications.

5.2.2 Scope of present study

The present approach utilizes wall-modelled large eddy simulations (LES) of zero
pressure gradient at plate turbulent boundary layers with modelled sand-grain type
roughness as a tool to mitigate the computational costs associated with DNS, wherein
grid requirements scale @'Re>4°, allowing us to study the abrupt roughness
transition problem at high friction Reynolds numbBrs. We study distinct physical
scenarios - smooth-to-rougls B and rough-to-smoothRS transitions primarily

in the asymptotically rough regime such tkdt 100over the rough wall regions
andRe is in the rangel0* to 10°. Re is chosen as the measure of interest due to
its relevance to the skin-friction through.
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5.3 SV, SGS LES with wall modelling

We refer to chapter 3 for a detailed description of the numerical method. The same
Itered NS equations, stretched vortex subgrid scale model and virtual wall model
(with a roughness correction) described therein and are applied to this problem.
Chapter3 contains a detailed description of the wall-model with roughness.

5.3.1 Wall model with roughness correction: ODE for friction velocity u

In the present computational framework we use the virtual-wall model [16, 31,
12] with the roughness correctiorlJ* proposed by Hama [29]. The roughness
function U"1k°is a model speci c roughness correction that may vary across
the wall. In this chapter, we use the full-range interpolation formula of Colebrook
[19] which covers both the transitional and asymptotically rough regions, and allows
ks = ksx; y° on the wall:

1
U*= = logil+ Ko (5.1)
K1

where presently, = 0:26. (In chapter 4 we used the asymptotically rough form of
U*). We refrain from referring to this as the “universal' interpolation formula due

to the implication that this is valid for all engineering surfaces. Most LES reported

here havek{ > 100which places the local ow in the fully rough regime where
U* take the asymptotic form

1
U* = Zlogtkio+ A B (5.2)

where A andB are constants and = exp® *A B°. We note that (5.2) is given

for completeness and is not explicity utilised in the computations presented in this
chapter. Sincel is dynamically space and time dependent, Hgttand U*1kZ°

also vary spatially and temporally on the wall. In the present study, we are primarily
concerned with statistically stationary turbulence at large particle transit times in
the streamwise direction.

5.3.2 In ow and Boundary Conditions

A general description of the at plate TBL problem has been presentgdi.7.

The inclusion of spatially varying U™ in the wall velocities enables us to focus

on two distinct boundary layer ows, each describing the speci ¢ nature of the het-
erogeneity in the wall-roughness condition. These are smooth-to-rough (henceforth
referred to a$S R and rough-to-smoothiRS. The transition to a new wall condition
occurs abruptly over a single streamwise grid cell to simulate existing experimen-
tal investigations closely. Application of smoothing functions also introduces free
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parameters related to the extent over which the roughness transition occurs. Each
domain comprises of a recycling region, a development region (smooth or rough),
an instantaneous streamwise change in roughness which introduces heterogeneity,
and a uniformly smooth or rough zone thereafter for ow recovery. Usage of the
wall model of Chung and Pullin [16] in the case of abrupt roughness transitions is
based on the assumption that the ow adjusts immediately, within a single grid cell
in the streamwise coordinate, to the downstream surface change uphg. Here,

with u* = 11e °loglzez° wherez = 1:02 10 “ is the aerodynamic roughness
lengthscale in the restrictive case, the estimated streamwise adjustment length of the
roughness sublayer according to Cheng and Castro [B30g = 0:016, which in

the present case is 5 times lower than the streamwise grid extent.

Turbulent in ow is generated using the recycling method described in chapter 3.
In this section we address parts of the in ow generation recycling and bottom wall
boundary conditions that are unique to the spatially varying turbulent boundary
layer problem.

Smooth-Rough!SR: Recycling and bottom boundary

Figure 5.1 summarises the domain setup for $itewall transition. We employ a
recycling region to generate realistic smooth wall turbulent in ow upstream of the
SRtransition. For theSRcase, the recycling scheme described by Lund, Wu, and
Squires [42] is applied using a plahé:4 ;, downstream of the inlet (, is the 9%
boundary layer thickness at the inlet) and modi ed with the mirroring method of
Jewkes, Chung, and Carpenter [34] to remove spatial quasi-periodic e ects. This
method has been tested in smooth-wall boundary layer ows at IRegjey Inoue

and Pullin [31]. In discussing the resultgris the boundary layer thickness at the
location of transition, and we shift our streamwise coordinate origin to the location
of transition, such thatsg = 0 at this point.

Velocities are rst decomposed into meéh and uctuatingui0 components, and
again into the inner (superscripin) and outer layers (superscriptit) in the wall-
normal coordinate. The composite inlet velocity prolgniet iS then given by
(5.3)

0. - ~oinn inn . _oout Qpout .
1U|0|n|et - »Uloinlet+ 1l'Ii inIetl/“b Wt |n|9t01/z!' »Uloinlet+ 1ui inletl/‘\N1 |nlet01/4(5-3)
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