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ABSTRACT

The intensity and Rayleigh linewidth have been mea-
sured as a function of temperature and scattering angle
for light scattered by concentration fluctuations near the
critical point of the binary liquid system 2,6-lutidine-
water.

From the intensity data it is found that y = 1.26+0.02
and v = 0.61%0.07. From the linewidth data the mutual
diffusion coefficients were calculated as a function of
temperature. It is found that the diffusion coefficient
decreases as the critical point is approached. The be-
havior of the linewidth as a function of k& was compared
with the Kawasaki theory without the nonlocal viscosity
and vertex corrections. General agreement with some sys-
tematic deviations is observed.

The shear viscosity anomaly in the same system was
also studied in detail by measuring the shear viscosities
as a function of temperature near the critical point.
Results of analyses indicate that the viscosity is at most
weakly divergent, with an exponent ¢ = *0.001.

Light scattering techniques have been employed to
measure the mutual diffusion coefficient D as a function
of concentration in ten binary mixtures and the thermal
diffusivity x in nine pure liquids and one binary mixture.

The diffusion coefficient was also measured at one or two
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concentrations for four binary mixtures. The values ob-
tained are in excellent agreement with the available
literature data determined by more classical methods. Un-
der most circumstances light scattering is found to offer
a fast and accurate way of determining x and D.

The turbidty t and the decay rate I' of the density
fluctuations have been measured as a function of tempera-
ture on the critical isochore of ethane near the critical
point.

From the turbidity data absolute values of isothermal
compressibilities and correlation lengths were calculated.
The isothermal compressibility K,, and the correlation

T
length £ are found to behave as:

K l.24to.llx10—3(AT/TC)-l'ZZSiO'Oz atm™ !

dk

L

-0.644+0.02 R

g 1.64+0.20 (AT/TC)

From the I' data thermal diffusivities, thermal conductivi-
ties and excess thermal conductivities were calculated as

a function of temperature. It is found that the thermal
diffusivity does not exhibit a simple power law behavior
whereas the excess thermal conductivity does with aniexpo—
nent of ¥y = 0.605x0.02. The singular part of the decay
rate Fs, was compared with the Kawasaki expression with the
nonlocal viscosity correction. It is observed that the

nonlocal viscosity correction together with the vertex
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and the correlation funétion corrections improve the
agreement between the theory and the experiment.

The results for the isothermal compressibility, the
thermal conductivity and the excess thermal conductivity
are in very good agreement with the available literature

data.
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I. INTRODUCTION
A. Laser Light Scattering in the Study of Transport and
Critical Phenomena

Dense phases present an almost insoluble theoretical
problem, thus one has to rely heavily on experiments to
obtain microscopic and macroscopic information. X-ray
scattering, neutron scattering, light scattering, ultra-
sonics, nmr and esr are but a few of the techniques used
in studying dense fluids.

Light scattering in itself is quite diverse. The pres-
ent work only covers the use of gquantitative measurements
of the intensity and the spectrum of the scattered light
in the study of transport and critical phenomena.

(L} was the first one to relate the intensity of

Einstein
the light scattered by a fluid to the macroscopic proper-
ties of the fluid such as the isothermal compressibility
and the dielectric constant. His treatment was later

(2)

extended by Ornstein and Zernike to account for the

anomalous increase in the intensity as the critical point

(3,4) the fre-

is approached. It was further shown that
quency spectrum of the scattered light contained transport
coefficient information. However, until the development
of gas lasers and the optical beating spectroscopy tech-

niques in the 1960's it was not possible to make quanti-

tative measurements of the spectrum of the scattered light
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to obtain the transport coefficient information. This was

due to the fact that the needed resolution, between l/lO7

and 171014

, Simply was not available from the ordinary
light sources and the spectrometers.

Light scattering is an especially useful tool near
the critical point for two reasons: Light is scattered
strongly as the critical point is approached, giving a
good signal to noise ratio, and no macroscopic gradients
are needed. As a result in the recent years light scat-
tering has been used very extensively in studying critical
phenomena.

Compared to the fluids near their critical points
and to the suspensions of macromolecules, liquids such
as benzene or liquid mixtures at room temperatures scatter

-
3 to 10> times less. Due to this

light by a factor of 10
small signal, useof light scattering to determine the
transport coefficients ), the thermal diffusivity and D,
the mass diffusivity, has been very limited and inconclu-
sive as to the applicability of the method. In this work
we have remedied this by showing that the data obtained

by light scattering is as good as any of the results

obtained by the more classical techniques.
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B. Critical Phenomena(s’G)

Formally a "critical point" is defined as the point
where the first derivatives of the thermodynamic potential
remain "continuous" while only the higher order deriva-
tives such as compressibility, specific heat or suscepti-
bility are divergent or change discontinuously.

As the critical point is approached the microscopic
fluctuations in density, energy, concentration etc. in-
crease and can effectively reach macroscopic magnitudes.
Correspondingly the related second thermodynamic deriva-
tives become very large or tend to infinity. Currently
there is a lot of both theoretical and experimental inter-
est in the study of critical phenomena. Most of the
interest stems from the fact that within experimental
error almost all of the systems studied behave similarly
near their critical points. The interest is mostly to-
wards determination of asymptotic laws governing the
approach to the critical point. These laws are charac-
terized by the critical exponents.

A critical point exponent describes the behavior,

near the critical point, of a general function F(e), with

g = IT—TC|/TC. It is defined by,
A = Lim [log F(e)/log €] (1)
e+0

The limit denoted by A is called the critical exponent
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for the function F(e). 1In short this is written as
F(e)ﬁAeA. This notation does not imply F(€)=Aex; although
the converse is true. In general the function F(e) has

the form:
F(e) = AeM(L + BeX + ce¥ +e++), (x,y>0) (2)

Sufficiently near the critical point the leading term
dominates the behavior of the function and thus the criti-
cal exponent ) can easily be determined from a log-log
plot. Obviously the complete functional form provides more
information but is not easy to determine. A second reason
for the interest in the critical exponents is that there
exists a large number of relations among them. Some of
these relations arise from fundamental thermodynamic and
statistical mechanical considerations and some are based

on less general assumptions.
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II. THEORY
A. Intensity of the Scattered Light

Einstein(l)

showed that the light is scattered by a
dense medium due to the local fluctuations in the dielec-
tric constant €'. His original treatment did not include
the time dependence of the fluctuations and the correla-
tions between the scattering volume elements. Using the
equations of electricity and magnetism he derived the
result:
I = Gsin®¢[exp(ik- (¥)-F,))<Ae' (F)) be' (F,)>dT,dF,  (3)

where

G = (I_kD)/(16m°R?)
I is the scattered intensity, I, is the incoming intensity,
ko is the wave number of the incoming light, ¢ is the
angle between the direction of polarization of the incoming
light and the plane of scattering, R is the distance from
the scattering volume to the detector, r is the vector
from the origin to the scattering element, and k is the
change in the wave vector of the scattered light defined
by:

k = 472 sin(0/2) (4)

where A is the wavelength of the incident light in vacuum,
6 is the scattering angle and n is the refractive index of

the medium.
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The fluctuations in the dielectric constant can be
expressed in terms of the fluctuations in a complete set
of local variables. Thus one can in principle derive an
explicit expression for the intensity of the scattered
light in terms of measurable thermodynamic quantities.
However, we will only deal with two special cases here:
a pure fluid near its critical point and a binary mixture
near its critical solution point. 1In a pure fluid the
fluctuations in the dielectric constant can be considered
to be the result of fluctuations in density and temperature

which are statistically independent variables(7).

Ae' (p,T) = (3e'/3p)qpbp + (ae'/aT)pAT (5)
Close to the critical point:
(Be'/ap)TAp>>(ae'/3T)pAT (6)

(note that this approximation is very good for most pure
ligquids even away from the critical point, see Ref. (7)
pages 35-36.)
We then have

Ae' (p,T) = (38'/8p)TAp (7)

substituting this into Eg. (3) we obtain
. o 2 2 -—. mm— _'_ — =
I = G sin ¢(Be'/ap)Tj]exp(1k (rl r2))<Ap(rl)Ap(r2)>

drldrz. (8)

If we further define Apk to be the Fourier transform of



Ap(Y) given by,

Apy = Jexp (ik-T) Ap (T)dr. (9)
Eqg. (8) can then be written as
I = G sin®p(3e'/3p) 2<| 00, | %>, (10)

Assuming that there are no correlations between the fluc-

tuations in different volumes,
2
<|ap|?> = <|ap| %> (11)

where Ap is the thermodynamic or k=0 limit. From thermo-

(7)

dynamic fluctuation theory we have,

<|Ap|2> = K,,BT, per unit volume (12)

T

B is the Boltzmann constant, K,, is the isothermal compres-

T
sibility and T is the absolute temperature. Substituting

Eqg. (12) into Egq. (10) we obtain,
I=G sin2¢(pas'/3p)%KTBT. (13)

In the above derivation it was assumed that no correla-
tions existed between the different scattering volumes,
which is true away from the critical point but not near
the critical point, where the density fluctuations reach
almost macroscopic dimensions. Ornstein and Zernike(z)

remedied this problem; in their treatment the correlation

function is dominated by the long range tail given by,
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<bp (1) 40 (F,)> « (1/r)exp(-r/E) (14)

where r=|f1-fé] and £ is the two particle correlation
length. Using this correlation function Ornstein and

Zernike (shortened to 02 from here on) obtained:

<|AokI2> X (1+k2£2)"lg2. (15)

The constant of proportionality can be determined by

comparing the k=0 limit of Eg. (15) with Eg. (12) to get:

<Japyl?> = (kpBTo?) (1k%g%) 7L, (16)

Also from this comparison we see that OZ-theory predicts
KTN£2, or using the corresponding critical exponents

we have y=2v. Finally for the intensity of light scattered
by density fluctuations in a pure fluid, close to the

critical point, we have

L oan

I =206 sin2¢(pae'/ap)%KTBT(l+k2£2)—
or

1(0,8) (1+k%g2) "L, (18)

I(k,8)

For a binary mixture near its critical point we
assume that the fluctuations in the dielectric constant
are mainly due to the fluctuations in the local concen-

tration, i.e.



Ae' = (36'/8C)T PAC (19)

C is the concentration. Again using the thermodynamic

fluctuation theory to determine the thermodynamic limit(s)

<|ac|®> = BT/ (3u'/3C), o (20)

Including the 0Z correction together with the propor-
tionality constant we obtain for the intensity of scat-
tered intensity from a pbinary mixture near its critical
temperature,

1

I =g sin2¢(ae'/aC)§ PBT(au'/BC);1P(1+k2g2)' (21)

We would like to point out that u'is a specially defined

1(9)

chemical potentia and if one replaces u' by u the

chemical potential of one of the components Eg. (21)

becomes(lo):
I =G sin®g(de'/3C) %C(C-1)BT (p (2u/30) , 1) TH(L4kEP) T (22)
Equations (21) and (22) can be rewritten as:

I(k, &) = 1(0,8) (1+k’g%) 7L, (23)

Equations (17) and (21) were derived for the absolute
scattered intensity, If we are only interested in the

relative intensities, they reduce to
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I(k,8) = AK, sin2¢/(l+k2€2) (24)
for a pure fluid and
I(k,E) = A'(u/3C) glpsine/ (14x%Eh) (25

for a binary mixture.

According to Egs. (24) and (25) a plot of the
inverse scattered intensity versus k2 (called an 0Z plot)
will be a straight line with the slope being proportional
to the correlation length squared and the intercepts being

1

proportional to K; and (du/3C), , respectively. Both
14

K;l and (2)11/8C),I,’P are predicted to have the asymptotic
temperature dependence eY (€=|T—TCI/TC). Thus the inter-
cepts of the 0Z plots will be proportional to eY and the
slopes will be proportional to eYEZ, but the 0Z theory
yields y=2v, where v is the critical exponent associated
with the correlation length ENE_V. Therefore the slopes
should be independent of temperature if the 0Z theory is
valid.

Egs. (24) and (25) can be integrated over all angles

to obtain the following expressions for the turbidity Tt:

T = AKTF(a) (26)

T A'(au/BC);}P F(a) (27)

where a = 2(k°£)2 and F(a) is given by,

F(a) =[(2a%+2a+1)/a3]11n(142a) - 2(1+a)/0.  (28)
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In most cases measurement of the turbidity is simpler
than measurement of the intensity as function of the
scattering angle. Thus one can obtain the same information
from turbidity measurements using Egs. (26) and (27).

d(lz) that in the immediate neigh-

It has been suggeste
borhood of the critical point 0%Z plots show a downward
curvature, indicating deviations from the 0Z theory.
Previous to these experimental findings Fisher(l3) had

proposed that the 0Z correlation function should be

replaced by the more general function:

<bp (F1)8p (F,) > (1/x™* M) exp (~x/E) (1+Q(x/€)) (29)

where n<<1.

For k&>>1 his result may be expressed as:

I(k,£) = 1(0,¢)(L+k2g2) (M/2)-1 (30)

This form does indeed predict a downward curvature very
close to the critical point. Experimentally it is quite
difficult to distinguish between Egs. (23) and (30) due
to the fact that n<<l. Fisher's analysis also predicts
that for kg<<l the slopes of 0Z plots will be temperature
dependent. |

P. Calmettes and coworkers(l4) have integrated Eqg.

(30) to obtain t. Their F(a) is as follows:



- Fue

-2
+ -’41 )] -na (1+a) }

—~

[(1+2a)ﬁ/2-l]{l+a[2— % +a2(2+

NS

(31)

F(a) = - - —
3 n n n
o 2‘(1"’ '2—) (2+ -i)

Experimentally one usually assumes that the 0%

theory is valid and 1 is deduced from the relation between

the critical exponents y, v, and n:
Yy £ (2-1)v . (32)

Numerical studies on model systems indicate that n=0.06.
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B. The Spectrum of the Scattered Light

In the previous section we were only interested in the
intensity of the scattered light. If we also want to
find out about the spectrum of the scattered light the

complete expression for the intensity would be:

I1(K,u) = G sin’¢s (K,w) (33)

where S(k,w) is the generalized structure factor which
contains the information about the fluctuations and w is
the change in the angular frequency of the scattered
light. S(k,w) is defined by Van Hove to be the space and
time Fourier transform of the two body autocorrelation

function of the fluctuations in the medium(ls):

S(E,w)=]]fexp{[if-(fl-fz)+iwt]}<Ae'(fi,t)Ae'(fz,0)>

drldrzdt. (34)

One can obtain an explicit expression for S(k,w) either
by using molecular theory of scattering or by using
linearized hydrodynamics. Using hydrodynamic theory is
the easier approach. We will illustrate it for a binary
mixture. To keep the algebra simple we will assume that
the concentration fluctuations are the main source of

scattering,

Ae' = (BE'/GC)T PAC (35)
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Substituting Eq. (35) into Eq. (34) and performing the

space Fourier transforms we obtain,
s(k,w) = Jexp (iwt) <AC, (t)AC_,; (0)>dt. (36)

To evaluate the time integral we have to know the time
dependence of the concentration fluctuations. We can get
the time dependence by solving the diffusion equation for
AC.

In a binary liquid the solute particle current J is

given by the phenomenological equation
J = -LVu = -L(3u/3C), ,VC (37)
14

where L is the Onsager kinetic coefficient for diffusion,
u is the solute chemical potential. The solute particle

flow must also satisfy the continuity equation
VeJ + 3C/3t = 0 . (38)

Combining Egs. (37) and (38) yields the diffusion
equation:

3c/at = Dv3C (39)
where D=L(3u/3C)T’P is the mutual diffusion coefficient

(also called the mass diffusivity). The concentration

fluctuation AC must also satisfy the diffusion equation:

3AC/3t = DVZ(AC). (40)
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Taking the Fourier transform of both sides we have

-Dk? (AC (41)

i

BACk/at k) .

Solving (41) yields,

AC, (t) ACk(O)exp(~Dk2t) . (42)

Substituting into (36) and evaluating gives:

s(k,w) = <|ac, |%>{20k?/ [ (0k?) 2+ w21} (43)

which is a Lorentzian centered about the frequency of
the incident light. The width of the Lorentzian 2T is
2Dk2. Thus by measuring the linewidth one can get the
diffusion coefficient of the solute.

Using the hydrodynamic approach Mountain(le) has

obtained the following results:
s(k,w) °8%<|ap, | 2> 1(c_~c ) /c ) 2xkd) /1D %+ WPl (49)
p Vv P
for a pure fluid and,

S(k,w)csn(ae'/ac)g'T[BT/(au/BC)P'T]{2Dk2/[(Dk2)2+w2]}
+(8£'/BT)é'P[BT/CPIZ{Zka/[(xk2)2+m2]} (45)

for a binary mixture with x>>D.
In the above equations Cp is the heat capacity at constant

pressure, CV is the heat capacity at constant volume,
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X is the thermal diffusivity (x = AT/pCp, XT is the ther-

mal conductivity).

The above expressions were derived using the lin-
earized hydrodynamic equations which are valid when the
size of the fluctuations are much smaller than the wave-
length of the light (i.e. k&<<1l). Thus they apply only
away from the critical point. As the critical point is
approached the fluctuations in density and concentration
increase in size and are no longer small compared to the
wavelength of the light and they are also correlated, as
we have seen in the previous section.

(17) was the first one who tried to modify

M. Fixman
the hydrodynamic equations so that they would be appli-
cable close to the critical point. His result for the
linewidth was (from here on all the equations will be
written only for a pure fluid; the equivalent formulas

for a binary mixture can be obtained by replacing x with

D) :
r = yk2(1+k%g?) . (46)

Experimentally it was found that this expression was valid

"

up to k&=1l, or in the "nonlocal hydrodynamics" region.

According to the dynamical scaling theory approach

developed by Ferrell et 2£(18) and Halperin and Hohen-

(19)

berg the k and § dependence of a transport property
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are connected. The main assumption of dynamical scaling
is that the decay rate of the fluctuations, I', can be

described by a homogenous function of k and 1/§, that is

I = ¢(k,1/8) = k%¢(1,1/kE) = £ 2¢(kE,1) (47)

In the hydrodynamic region, k&<<1l, P=xk2. Comparing this
with Eq. (47) we see that x=£2 2. From a mode-mode
coupling analysis of transport Kadanoff and Swift(zo) pre-
dicted that in the hydrodynamic regime ¥ should be in-
versely proportional to the correlation length, indicating
that z=3 in Eq. (47). Using this value of z in Eg. (47)
we obtain F=k3¢(l,0) for k&>>1. Thus the dynamical scaling
theory predicts that in the critical region the linewidth
should be independent of § or temperature.

Kawasaki(Zl) developed the mode-mode coupling theory

further and obtained an explicit expression for the

function ¢. His result is
_ 2 3 4 -1
I'' = (BT/1l6n*) (2k“/7) [x+x "+ (l=-x")tan ~(1/x)] (48)

where x=1/k§. The parameter n* was defined as the high
frequency limit of shear viscosity and was treated as a
constant. For kg<<1l Eq. (48) reduces to F=(BTk2/6nn*£);
comparison with the hydrodynamic theory result gives
I'=BT/6mn*{. Ferrel(ZZ) has also obtained Eg. (48) by using

decoupled mode theory and his derivation is much simpler.
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Ferrel's basic assumption is that the density and the
velocity fluctuations are statistically independent. 1In
the result for x if we replace xy by D we see that it is
exactly the same as the Stokes-Einstein relationship for
the diffusion coefficient of spherical solute particles
with radius § in é solvenﬁ of viscosity n*.

Kawasaki function (Egq. (48)) represents the behavior
of the linewidth I' quite well in general, but systematic

d(23'24) and the

deviations from it have been observe
definition of the parameter n* has been questionable from
the start due to the fact that the experimental shear
viscosity shows a weak anomaly as the critical point is

approached(zs'zs)

. The ambiguity of n* has been removed

by Kawasaki and Lo(27) by relating n* to the experimentally
measured shear viscosity n*=n(k=0,T)/f(k§). The function
f(k€) is given numerically in Ref. (27). Lo and Kawa-

(28) have also obtained the first order vertex cor-

saki
rections to Eg. (48) in the case of a binary mixture.
Both of the mentioned improvements are in the direction of
increasing the agreement between the theory and the
experiment.

Recently it was pointed out that the Kawasaki line-
width expression was based on the validity of the 02

correlation function form, and thus may need corrections.

Numerical correction factors for more general correlation
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functions have been obtained by Swinney and coworkers(zg).

Chang et §£(24) have obtained the following expression

using the correlation function proposed by Fisher.

2 ~ 2
(BT/8mn*) [ (1+x2) /%1 {x+ [247+ E 2L A1) "y 0y (Fean™tx) )
r/k3= - U

(1+7) (1+ g)[x-tan(ﬁtan—lx)]

with x=kg. (49)
For n=0 Eg. (49) reduces to Eq. (48).

Finally it was shown that the Kawasaki linewidth
expression applies only to the singular part of the line-
width and one has to subtract off the normal part before
making any comparisons between the theory and the

experiment(24'29'30).
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C. Light-Beating Spectroscopy

There are several excellent review articles covering

this subject in detail (B. chy (31) (32)

k(33)).

, Cummins and Swinney
and Benede Here we will only discuss the technique
very briefly to show how one obtains the optical spectrum
from the photo current spectrum.

The power spectrum Pi(m) of the current is given by

the Wiener-Khintchine theorem:

P, (w) = (1/n)jexp(iw?)ci(?)d? (50)

where Ci(?) = <i(t)i(t+7)> is the current autocorrelation
function, i(t) is given by i(t)=ecE*(t)E(t), e is the
electronic charge, ¢ is a suitably defined quantum effi-
ciency and E*(t)E(t)=I(t) is the instantaneous intensity.
Taking the discrete nature of the photocurrent into account

we obtain the following for Ci(?)(32):

c; (M = e<i>s (M + <i>?g?) (@) (51)
where g(2)(?) is the normalized second order correlation
function defined by:

g(z)(?) = <E* (£)E(t)E* (t+T)E (t+T)>/<E*E>2. (52)

From here on the treatment depends on whether we use
homodyne detection, only scattered light falling on the

phototube, or heterodyne detection, both scattered and
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unscattered light falling on the phototube.
a. Homodyne detection

| The field of monochromatic light scattered by a fluid
or a solution of macromolecules is a Gaussian random pro-

cess and it is characterized by an autocorrelation function
Cp(T) = <E*(L)E(t+T)> = <1>g 1) (7) (53)

where g(l)(?) is defined as the first order normalized

correlation function. For a random Gaussian field

g(z)(?) can be expressed in terms of g(l)(?) (References
(34) and (35))
g @ =1+ D% (54)

The normalized correlation functions we are concerned

with in this study are of the form,
(L) = _ T R
g (1) = exp( 1on)exp( rit|) (55)
corresponding to a Lorentzian optical spectra given by:

I(w) (<I>/27) [exp(iwT)exp (-T'|T])daT

(56)
<I> (T/1)/ (T2+w?) .

The photocurrent spectrum associated with this field is

found from Egs. (50), (51) and (54) to be

2<i>2 (2r/m) _—

P, (w) = e<i>/m + <i>2§'(w) + A
= (2T)°+ w
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We see that the photocurrent spectrum consists of three
components, the first term is the shot noise term, the
second is the dc term that is normally blocked out in
analyzing the spectrum and the third term is a Lorentzian
with a width twice that of the optical spectrum.
b. Heterodyne spectroscopy

Completely general treatment of the heterodyning case
is quite complex and difficult. We will assume that the
intensity of the local oscillator is much larger than
the intensity of the scattered light, a condition that is
met in this study, then the current autocorrelation func-
tion given in Eq. (51) simplifies considerably. For the
autocorrelation functions of the local oscillator and

the scattered field we have:

<is(t)> ec<E§(t)Es(t)> 2 (58)

| (59)

. % _
<ip,(t)> = eo<Ef ()E[ (t)> ecIELO

where Es is the field under study and

_ .0
E (t) = E

Loexp(—J.wLot) is the local oscillator field.

Since <I, > >> <I_> we can expand Ci(?) using

Lo

E(t) = Es(t) + EO (60)

Loexp(-lw
(32)

LOt) 14

to obtain
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C,(T) = ei  8(D) + i2 4+ <i_>{exp (iu ?)gél)(?)

Lo Lo Lo Lo

(61)
+exp(—iwLo?)g§(l)(?)}.

Using the above current autocorrelation function in the
Wiener-Khintchine theorem, Eq. (50) yields the photocur-
rent spectrum.

2

Pi(w)=(eiLo)/(2ﬁ) + iL

Oé(w) + (62)
<i >
Lo 'S Jexp (iwT) [exp (iw
27

i

Lo?)gél{?)+exp(-iwLo?)gg(lk?)]d?.

Substituting in gél)(?)=exp(—iwo?)exp(-rl?|) we obtain

for the photocurrent spectrum:

2 ., 2iLO<is>(P/n)
§' (w) +
© [w-]w -w l]2+P
o Lo

L (63)

Pi(w) = elLo/n + i

2

For unscattered light coming from the same laser Wy S=W

which is the case in this study, Eq. (63) reduces to

2i_ <i_>(T/m)
Lo 2s (64)

206'(w) +

Pi(w) = elLo/ﬂ + i

(w2+T2)
The first term is the shot noise term, the second is the
dc component and the third is a Lorentzian identical in
shape to the optical spectrum.

c. Discussion

In the above simplified treatment we have assumed

that:
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1. Only one coherence area was involved in the detection
process, (Acoh=2A2/Q, 2 is the solid angle the source
subtends at the detector.).

2. The incoming light provides a pure monochromatic field.
3. The measurements are done over sufficiently long
periods of time to obtain the ensemble averages.

Without going into the details the effects of devia-
tions from the above assumptions are as follows: If the
signal does not come from one coherence area, the ratio
of the signal term to the shot noise term is less than
the theorethical maximum. Experimentally it is possible
to maximize the signal to shot noise ratio by varying the
pinhole sizes, which define the scattering volume and
the scattering angle, changing the distances between
the pinholes and the detector and the sample and by
focusing the incident light to decrease the scattering
volume. The incoming light is never perfectly monochro-
matic even for lasers operating in single mode. In this
study we have used a Coherent Radiation Model 52A Argon
Ion Laser in multimode operation. Cummins and Swinney(32)
extend the treatment given above to multimode lasers and
show that the result obtained for a monochromatic source
also hold for a multimode laser without any modifications.

All of the results given above were in terms of <i> the
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ensemble average of the photocurrent. Experimentally if
one uses a swept filter spectrum analyzer, the time is
quite finite and thus there are fluctuations in the
detected photocurrent. The fluctuations in the photocur-
rent are not a problem in the case of correlators, which
determine the current autocorrelation function, and with
real time spectrum analyzers. With correlators and real
time spectrum analyzers it is possible to average the
signal over very long periods of time and approach the

ensemble averages very closely.
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Abstract
Measurements have been made at the critical mixing
composition of the system 2,6-lutidine-water for a (TC-T)
range of 0.001°-7.5°C for the intensity and Rayleigh
linewidth and of 0.007°-27.4°C for the shear viscosity.
We find that

-10) « (¢ (1+26%0.02)

(0.5541+0.015) 5

D = (0.290£0.020) (&) x10”™° em?/sec

Ep = (2.92:0.19) ()~ (0-36720.015) g

where e=(Tc-T)/Tc, Ic(O) is the intensity extrapolated to
zero angle, &s the correlation length from intensity mea-
surements, D the mutual diffusion coefficient, and EF the
correlation length obtained from fitting the Kawasaki
equation to linewidth measurements with the above value

of D. We find that the Ornstein-Zernike-Debye theory is
valid for (TC—T)>0.03°C and the Kawasaki mode-mode coupling
theory gives a good overall description of the behavior of
the linewidth of the Rayleigh line. The Kadonoff-Swift-
Kawasaki result y-y=v seems to be valid with V=V =V We
also find that the excess shear viscosity does not exhibit
a simple power law dependence on (TC—T) as the critical

temperature is approached.
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INTRODUCTION

In recent years there has been considerable interest
in.critical phenomena, both theoretical and experimental.
Critical exponents have been obtained for single compo-
nent and binary liquid systems. One of the shortcomings
of the previous experiments has been the fact that each
experimenter obtained only one or two critical exponents.
To obtain a complete set of critical exponents one has to
go to three or four sources, for which experimental results
might differ considerably due to different sample purities,
experimental techniques, and temperature calibration and
control. This is especially true in the case of binary
systems where due to different amounts of impurities pres-
ent, thermodynamic properties such as the critical tem-
perature can change significantly. In this paper we report
results near the lower consolute point of the system 2,6-
lutidine-water for the exponents Yy, Y-y, V¥, Vgr and Vp
determined by light scattering techniques and for the

exponent ¢ determined by shear viscosity measurements.
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BRIEF THEORY
Detailed theories of critical phenomena have been de-
veioped(l-4). Here we will only outline the results of
these developments with the necessary equations for data
analysis.

A. Intensity

(1)

Einstein was the first to derive an expression for

the intensity of scattered light in terms of density and

concentration fluctuations. His theory was later extended
(2) (3)

by Ornstein and Zernike and by Debye (referred to as

the 0ZD theory) to include the long range correlation
effects. According to the Debye theory, the relative scat-
tered intensity due to concentration fluctuations in a

binary critical mixture can be approximated by the relation

T/T
< (1)

C on 2
(T/Tc)-l+K 2°/6

n oc¢

I.(K)

in which c¢ denotes the concentration, n the refractive in-
dex of the mixture, T, the critical mixing temperature, 2

(3)

the Debye interaction parameter , and K is the wave

vector given by

K = 5%5 sin(6/2) A = wavelength of the light
6 = scattering angle (2)
n = refractive index of the

medium
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(5)

Fisher proposed:
Ic(K)

1.(0)

= g172/1g2% + xH 12 (3)

where gs is a temperature-dependent correlation length (the
subscript s indicates that it is obtained from scattered
intensity measurements) and n is a small number whose mag-
nitude indicates the degree of deviation from the 0zZD
theory.

Using the "scaling law" concept we can represent the

asymptotic temperature dependence by

1710) « &Y (4)
-V
_ s
&g = Esos (5)
=i _
where ¢ = ————— , From Eq. (3) we find that y, n, and Vg
T

are related cby

Y = (2-m)vg (6)

B. Frequency Spectrum

Expressions for the central part of the frequency
spectrum (Rayleigh line) of scattered light have been
derived at three levels of complexity:

l) Linearized hydrodynamics: The dynamics of density

and concentration fluctuations are described by the lin-

earized equations of hydrodynamics giving the following

expression for the Rayleigh line(e):



-31-
2 k. T
o€ B 2DK
S(Krw) = ( ) )(
oC (au/ac)p,T (DK2)2+w

k_T\2 2
9€ B 2x K
(§T)c,p( cp) ((xK2)2+w2) (7)

2
+

2

Here D is the mutual diffusion coefficient, € the dielec-
tric constant, kB the Boltzmann constant, u the chemical
potential, x the thermal diffusivity, cp the heat capacity
of the mixture at constant pressure, and w the change in
frequency from the incident frequency.

For many binary solutions and solutions of macromole-
cules the second part of Eq. (7) is negligible compared to
the first part, and the Rayleigh line is a single Lorent-
zian with a halfwidth T' given by

I = DK? (8)

Since correlation effects were neglected, Eg. (8) is only
valid away from the critical point (i.e., for K£r<<l).

2) Nonlocal hydrodynamics: As the critical point is

approached, the increasing range of correlations destroys
the local nature of hydrodynamics. Fixman(7) modified the
hydrodynamic equations to include the effect of the long
range correlations. Solutions of Fixman's equation lead

(8)

to a Lorentzian whose linewidth is described by

I = DK? (L + £2K%) (9)
gr is a temperature dependent correlation length and the

subscript indicates that it is determined from linewidth
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measurements. Far from the critical point, K&r << 1, and

Eg. (8) is recovered.

3) Mode-mode coupling: Recently Kawasaki(4) has

carried out a detailed theory of mode-mode coupling of
fluctuations in fluids and has derived the following
closed expression for the Rayleigh linewidth which applies
to all values of Kgr:

k,T 3
_ _"B” 2K -
r= oo S tep

n* is the high frequency part of shear viscosity and is a

1

+(KEp) "+ (1- (k) ) tan ™t (ke ) } (10)

constant. For K&, << l, Eq. (10) reduces to Egq. (8), with
D given by D=kBT/6nn*£r . For Kg, < 1 we obtain

2 32,2
I = DK“(L + & K°E7) (11)

which is identical to Egqg. (9) except for the factor 3/5.

In the limit KEP >> 1, Eq. (10) becomes

I = AK> (12)
where A is given by
kgT 3
A = 16“* = ‘g- 'ITDEI-. (13)

Ferrell(g) has developed an alternative derivation of Eqg.
(10).

Using the "scaling law" approach, the mutual diffusion
coefficient and the correlation length Er are predicted
to have the asymptotic temperature dependence:

D = DOEY-w (14)
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Er - EOE (15)
Since n* is a constant in the Kawasaki theory, y-¢ = v

¢ (10)

PI
Kadanoff and Swif predict the same result from a
mode-mode coupling analysis of transport coefficients in
the critical region.

C. Viscosity

The temperature dependence of the viscosity of nearly
all pure and multi-component liquids can be adequately
represented over a limited range of temperature by the
Arrhenius equation:

(16)

Hiw

log n=A4a+

A and B are constants independent of temperature.
Attempts have been made to separate the viscosity of
binary systems near the critical point into an anomalous

part An and a normal part nc1=(11)

n=4n + Ny (17)
In particular, these efforts have concentrated on deter-
mining a critical exponent ¢ for the viscosity at the
critical concentration defined by

An = ne® + ... (18)

Attempts have also been made to analyze the relative

anomalous viscosity in the form(lz)
An gt L., (19)
Ne1

(13)

Debye, Chu and Woermann and also Woermann and
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Sarholz(l4)

noted that the viscosity of several binary
liquid systems near the critical temperature can be repre-
sented by an empirical equation of the form

BEBEEy 1t (20)

n= (e
This equation has the same asymptotic behavior as Eq. (19)
thus presenting an alternative way of determining the
critical exponent ¢.
Some of the recent theories predict finite viscosi-

(4,10,15)

ties at the critical point . For this purpose a

generalization of Eg. (18) is

An = % (e?-1) + G (21)
Fisher‘lG) pointed out that Eg. (21) corresponds to a cusp

for 0<¢<1l, a power law divergence for ¢<0 and a loga-

rithmic divergence for ¢=0.
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EXPERIMENTAL

A. Materials

"Baker" grade 2,6-lutidine was dried over anhydrous
calcium sulfate. The dry lutidine was distilled under dry
nitrogen using a fractionation column. A high reflux to
distillate rate was used and only the center cut repre-
senting a boiling point range of 0.2°C was kept. Distilled
water was filtered through a 25 mu millipore filter to
remove any dust and was degassed under vacuum. The purity
of the lutidine was checked by gas chromatography using
a 3/16" diameter column of length 15' packed with
Carbowax 20M adsorbed on 80/100 Chromosorb P. No impurity
peaks were observed with a detection threshold of 0.02%.

A stock solution of mole fraction 0.0658 lutidine
was prepared by weight and mixed under nitrogen. After
making allowances for handling and evaporation, the
overall accuracy of the composition was approximately 0.1%.

B. Light Scattering Spectrometer

A schematic drawing of the spectrometer is shown in
Fig. 1. A triangular optical rail was mounted on a Micro-
Inch microscope base to obtain a highly flexible and
accurate optical turntable. The cell could be moved in
X,Y,2 directions with an accuracy of 0.02 mm or better,
and the scattering angles could be read to within one

minute of arc.
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A thin vertical wire at the center of an empty scat-
tering cell was used as a reference for alignment. The
fihal accuracy of the alignment was approximately equal
to the thickness of the reference wire, 0.08 mm. For
intensity measurements two slits 25 mm apart were used to
define the scattering angle. For linewidth measurements
two pinholes 30 cm apart were used to define the scattering
volume. The laser and the optics were mounted on a heavy
machinist's table which was isolated from the floor by
neoprene rubber pads.

A filtered fluorescin solution (0.6 mg/100 ml) was
used to calibrate the spectrometer for intensity measure-
ments. The observed scattered intensity was constant to
within 1% over an angular range of 50°-120° and to within
5% over 20°-140°. With a 30 mm O.D. cell the corrected
intensity was constant to better than 1% from 20° to 150°.

The output intensity of the laser was stabilized to
+0.2% by a feedback circuit. As a second check the inten-
sity of the main beam was measured using a silicon-diode
detector.

C. Temperature Control and Measurement

The primary temperature controlling device was a
P. M. Tamson Viscometer bath with a control of *0.002°C.
Critical temperatures of the light scattering samples

were determined by suspending the cells in a large, water-
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filled test tube which in turn was submerged in the bath.
The temperature fluctuations within the sample were esti-
mated to be less than *0.0005°C. The critical temperature
was checked both before and after scattering measurements.

The temperature of the light scattering cell during
intensity and linewidth measurements was controlled by
inserting the cell in a brass block. A helical water
channel was cut in the outer rim of the block which was
sealed in an insulating jacket of lucite. The viewing
slit was sealed with saran-wrap. Water from the viscom-
eter bath was circulated through the brass block. In
this way the temperature of the sample could be regulated
to +0.001°C for several hours. Typical long term drifts
did not exceed 0.005°C/day. The temperature of the room
was also.controlled to $0.2°C during measurements. Careful
observations were made which confirmed that negligible
heating effects were produced by irradiating the cells
with the laser.

A platinum resistance thermometer (Electric Thermom-
eter Inc., Type 6-20) was used in all the temperature
measurements. This had previously been calibrated against
an N.B.S. certified Leeds and Northrup platinum resistance
thermometer. The resistance of the thermometer was mea-
sured using a L & N Guarded Potentiometer (Catalog No.

7550) and a Hewlett Packard 419A D.C. Null Voltmeter.
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An N.B.S. certified 1002 L & N standard resistor was used
as a reference. Both the standard resistor and the thermom-
etér were of N.B.S. approved design. The resolution of
the circuit was better than 0.0005°C.

D. Light Scattering Measurements

Before any measurements were taken, the laser and the
other electronics were allowed to warm up for at least
four hours. During this time the sample came to thermal
equilibrium for the first large temperature change.

Three sizes of sample cells made from precision bore
nmr tubing by Wilmad Glass Company were used: 15 mm O.D.
(13.5 1.D.), 10 mm O.D. (9.1 mm I.D.), and 5 mm O.D. (4.5
mm I.D.). For intensity measurements only the 10 mm 0.D.
cell was used.

Intensity measurements were taken at 10° intervals
from 30° to 50° and 110° to 130°. From 50° to 110° data
were taken at 5° intervals. The measured intensity usually
reached its final value within 10 minutes of a temperature
change. However, at least 45 minutes of equilibration time
was allowed between measurements.

Frequency spectra were taken over an angular range
25° to 120°. At least three spectra were taken at each
value of AT and 6; in this way the statistical uncertain-
ties in the halfwidths were decreased. Only the 10 mm and

5 mm cells were used for small AT measurements which were
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made only at 0=98° with the smaller cell. Comparative
data with the 15 mm and 10 mm cells indicated no observable
effect of multiple scattering on the measured linewidths.

Turbidity measurements were made with the same spec-
trometer with a square sample cell and the detector placed
at 0° angle. The transmitted light intensity at a large
AT (l14°C below Tc) was used as a reference intensity I,
The intensities at smaller AT values were related to
turbidity o by the relation

I, = I, exp(-ad) (22)

where d is the distance through which light is transmitted
in the fluid.

E. Viscosity Measurements

A modified size 50 Canon-Fenske viscometer, mounted
conventionally in the water bath was used to measure viscos-
ities. Times were measured by a Lab-Chron (Model 1402)
timer which could be read to a tenth of a second.

To prevent shifting of composition and Tc due to
evaporation, the viscometer was not open to the atmosphere.
Before putting in a new sample the viscometer was evac-
uated and then was allowed to saturate with the vapors
from a large stock solution which was kept at the same
temperature as the viscometer. Dry air was bled in until
atmospheric pressure was reached. The sample was introduced

into the viscometer with a 10 ml syringe.
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The viscometer was calibrated and used according to
NBS Monogram 55. Run times were of the order of 700 seconds
and the reproducibility in repeated runs was never worse
than 0.1%.

F. Data Treatment

For the intensity data we have considered the fol-
lowing correction factors: (1) Volume, (2) Attenuation,
(3) Dust and stray light, and (4) Multiple scattering.

Volume corrections are necessary because the photo-
tube "sees" different volumes at different angles of

observation(l7)

. The scattered intensity after volume
correction is I=Ip sin® where Ip is the measured inten-
sity.

Attenuation correction: The incident intensity Io

of the light beam is decreased to I the transmitted

£’
intensity, after it has travelled a distance d through

the medium: It= Ioexp(-ad), where a is the turbidity
coefficient. For a cylindrical cell d=2R, R is the inner
redius of the scattering cell.

Dust and stray light were corrected for by deter-
mining the excess scattered intensity Iex at a large AT
value (13°C) and subtracting from the observed intensities
(AT<6°C) . The excess scattered intensity after attenuation
correction is Iex(a) exp(—ZaR).(ls)

The value of the scattered intensity after volume,
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attenuation, dust and stray light corrections is(l8)

_I(e) = (Ip(e)—xex(e) exp(-2aR)) sin 6 exp(2aR) (23)

The lutidine-water system is highly turbid; to eliminate
multiple scattering one has to go to smaller path lengths
as AT is decreased. We could not gb to a 5 mm scattering
cell due to serious reflection problems. As a result we
did not make intensity measurements for AT values less
than 0.017°C.

The Lorentzian spectra obtained for linewidth studies
were computer-fitted using a Marquardt least squares
algorithm(lg)to obtain the halfwidths. The reproducibility
between repeated measurements was better than 5%.

The measured kinematic viscosities were converted to
dynamic viscosities using our own density data. Density
measurements were made by suspending a calibrated pycnom-
eter in the water bath. The reproducibility of the densi-
ties was never worse than 0.0l%. The overall absolute

accuracy of the viscosity values is better than 0.3%.
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RESULTS

A. Intensity Measurements
Solving Egs. (1) and (3) for I;l(K) at a constant
temperature T, we get

from Eq. (1) I"l = A + BK2 = A + B'sin26/2 (24)

from Eq. (2) I 121(0) [1+£§ Kzll'?‘./2 (25)

where A and B' are temperature dependent constants. If
0zZD theory holds, a plot of reciprocal intensity versus
sin26/2 should be a straight line as shown in Fig. 2.

The downward curvatures in an 0ZD plot of small
angles and large values of AT were caused by excess scat-
tering due to dust and stray light. Eventually the excess
scattered intensity became small compared to the scattered
intensity due to concentration fluctuations and the down-
ward curvature disappeared.

The upward curvatures at large angles have been
observed virtually in all binary liquid mixtures in strong-
ly opalescent regions(la) and have been attributed to
multiple scattering(zo-zz).

We also observed small upward curvatures at small
angles for small AT values (AT<0.1°C). The curvature was
significant compared to experimental uncertainties for
AT=0.017°C data set. We believe this was also due to mul-

tiple scattering rather than being a real deviation from

the 0ZD theory. We did not use this set of data in our
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curve fittings. Thus we conclude that within experimental
error, Eq. (24) holds for our data and n=0 in Eq. (25).

| Taking n = 0 we fitted our data to Eq. (25) using
least squares to get a value of I;l(O) and Ei for each
temperature. AT dependences were determined using Egs.
(4) and (5). Our results are y=1.260+0.020, Eo=2.00t0.20 A
and v3=0.6110.08. We have plotted on a log-log scale
I;l(O) vs. AT in Fig. 3 and £_ vs. AT in Fig. 4. We tried
to eliminate the effects of multiple scattering in ES
by rejecting the data below 0.1°C.

B. Linewidth Measurements

Hydrodynamic region (KEr << 1) : Our 45 data points

for which K£,<0.15 (as determined in the following para-
graphs)accurately establishes the K2 angle dependence.

We determined D the mutual diffusion coefficient by finding

2

the limiting value of I‘/K2 as K°+0 for each temperature.

A least squares fit of Eq. (14) to our data yielded

2 cmz/sec and y-y = 0.554+0.015.

D, = (0.290£0.020) x10"
A log-log plot of D vs. AT is shown in Fig. 5.

Nonlocal hydrodynamics region (Kir < 1): Using our

data we find that small deviations from hydrodynamic
behavior are accurately described by Fixman's equation
(Eg. (9)). We also find that it is quite hard to get
reasonable statistical accuracy for the parameters Ero and

Vpe. We think this is due to the high correlation between



-
the four parameters in Eq. (9). A least squares fit to our
100 points in the range K&, < 1 gave:

o=(0.24i0.02)X10—5

cm?/sec, Y-¥ = 0.53%0.02, p =0.420.6 2
and vr=0.7i0.2. Using Do and Y-y values obtained from the
diffusion coefficient changes Ero and Vp values slightly
but does not decrease the statistical uncertainties

significantly.

Critical region (K&r >> 1): We find that very near

the critical point the linewidth exhibits the predicted
temperature independent K3 behavior (Eq. (12)).

We also made a least squares analysis of the data for
all regions using the complete Kawasaki expression (Eqg.
(10)). Wwithout fixing any parameters, we obtained the fol-
lowing "best fit" values from our 123 data points, which
cover a AT range of 0.001°C to 7.5°C:

Ep = 3.0£0.2 R

o
Vp = 0.541+0.015
n* = 2.87+0.24 centipoises

Using the relationship

A = ;%;; = %WDEF
we get
A = 9.2¢0.8x10 14 cm3/sec
D_ = 0.260£0.020x10"> cm’/sec

The Kawasaki equation with these values for the parameters
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is shown in Fig. 6 along with the experimental data. The
data in the region 0.2<K£r<1.0 show a small systematic
departure from the Kawasaki theory as has been observed in
other investigations(23’24).

As opposed to allowing all three parameters to vary
independently. the Kawasaki expression can also be fitted
to the linewidth data with gro and Vp as adjustable para-

5cmz/sec, the experimental value

meters and D_ = 0.290x10"
obtained in the procedure previously described. With no
significant change in the quality of the fit, we obtained
the following values: EFO = 2.92+0.19 & and vr=0.567t0.015.
As a second method the fit was made replacing n* with
experimental shear viscosity data yielding §F0= 3.50£0.24 A
and Vp = 0.570+0.013.

The use of experimental viscosities eliminated the
slight systematic deviations around K{ = 1 but introduced
systematic deviations of the order of 1% in the ranges
KE << 1 and K§ >> 1.

We feel that the values of gro and Vp obtained by
fixing D, are the most meaningful results to report for

the fit of the Kawasaki theory to linewidth data.

C. Viscosity Measurements

Compared to the well known divergences of I;l(O),
and D, the behavior of shear viscosity in binary mixtures

is not very well established due both to a lack of good
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data and theory. Much of the ambiguity is due to different
methods of subtracting off the "normal" part of the shear
viscosity. To gain some insight into the problem we used
two different equations to represent the "normal" behavior.

Assuming that the Arrhenius equation, Eq. (16), gives
an adequate description of the "normal" part of the visco-
sity, from the first three data points we obtain

5 3386

n = 2.703 10 =

exp [ ] centipoises

However, using this equation we obtained significant

excess viscosities for AT values as large as 18°C. We think
this was due to the inadequacy of the Arrhenius equation.
Since the lutidine-water system at the critical concen-
tration is 94 mole percent water, we felt that the "normal"
behavior would be dominated by water. Therefore as a second

method we used the equation

2
A(TO-T) + B(TO—T)

Np
1oglOn = (26)
Ty C+T
where Np = 4.9923 centipoises
o
To = 6.089°C
A = 1.848+0.017
B = 0.002077+0.000059
C = 86.233+0.949

The parameters A, B and C were determined by a least

squares analysis of the first 7 data points assuming that
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no excess viscosity existed for AT > 14.4°C. Equation (26)
has been successfully used to represent the behavior of
the viscosity of water which also shows large systematic
deviations from the simple Arrhenius equation(zs’zs).
Experimental data along with the two equations used are
shown in Fig. 7 for large AT values. Figure 8 shows the
experimental data for small values of AT.

The "excess" viscosities obtained using both methods
of characterizing normal behavior are shown in Fig. 9. We
have fitted Eq. (21) to both sets of data to obtain the
following sets of parameters:

a) From excess viscosities determined by using the

Arrhenius equation,

H" = -0.0950+0.0023 centipoises
G = -0.179+0.012 "
¢ = -0.0017+0.0028

b) Fom excess viscosities determined by using Eq. (26),

H" = -0.0759+0.0013 centipoises
G = -0.268+0.0085 L
¢ = -=0.00049+0.00045

We have also determined the exponent ¢ for the excess
viscosity without first subtracting off the "normal" part.
Expressing the total viscosity by

n = An + ncl(T)

using Eq. (21) for An and either Eq. (16) or Eq. (26) for
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ncl(T), we obtained the following values for the exponents:
]
¢

The quality of the fits in both cases was excellent with

-0.00065+*0.00014 (from Eq. (17))

+0.00238+0.00022 (from Eg. (26))

the standard deviation being 0.0202 for the first method
and 0.0114 for the second method.
When we used Eq. (20) to analyze the total shear

viscosity we obtained

A =0.,408+0.017
B =11.68+0.38
¢ = -0.0507+0.0046

The quality of the fit was not very good and there were
systematic deviations of about 2%. Limiting the fit of data
to AT < 8°C improved the quality of fit slightly, yielding
$ = -0.0407%+0.0022. The values of dynamic viscosities are
given in Table I as a function of AT.

The errors quoted are what we believe to be the real
errors and not the standard deviations obtained from

unweighted least squares fittings.
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DISCUSSION
We have determined the critical composition and tem

perature of the lower consolute system 2,6-lutidine-water

to be XL = 0.0658, Tc = 33.37,%0.01°C, compared to the

2%
previously reported values of XL = 0.065%0.001,

r, = 33.57°c®”), x = 0.067, T_ = 33.93:0.005°c(?®),

X, = 0.0665, T, = 34.06°C‘?®), ana x_ = 0.0632, T_=33.927°
C(30). We would like to note that we could reproduce the

Tc of Ref. (27) just by duplicating the conditions (air
saturation) under which it was measured.

Our light scattering results for the exponents vy,

Y=V, Y, Vgr and vr are shown in Table II along with measure-
ments on other simple fluids and on binary mixtures.

As can be seen from Table II, our results agree quite
well with other single component and binary systems. Our
(Y-¥) value seems to be slightly low compared to the rest.
However, if we subtract the ¥ value of 0.674 for CO2
obtained by Murthy and Simon(Bl) from the y value of 1.219

for CO, obtained by Lunacek(32), we obtain a (y-y) wvalue

2

of 0.545 for CO, which is in excellent agreement with our

2
result. Recently it has been suggested that the (y-y)

values should be corrected for the background effects.
When correction is made for the nonsingular contribution

to thermal conductivity the exponent (y-¢y) drops from 0.73

(11)

to 0.62 for CO2

. The same suggestion has also been
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made for the binary mixtures where the Onsager coefficient
for diffusion is claimed to have a nonsingular part(34).

| We have not made any corrections for the background
term whose existence has not been proven for any binary
system by independent experiments. Sengers and coworkers(34)
obtain a positive background correction due to the fact
that their Vp obtained from Kawasaki expression is larger
than Vg obtained from intensity measurements. We have
Vg > Vp which would indicate a negative background
correction.

From intensity data we find that within experimental
error Y=2vs and 1 = 0. Mode-mode coupling theories(4'lo)
predict that y-y = Vp e Our values of (y-y¥) = 0.554%20,015
and Vp = 0.567:0.015 seem to verify this. There has been
some question about the equality of the correlation lengths
determined from intensity and linewidth measurements. Our
results from intensity data &SO = 2.0+£0.2 ﬁ, L 0.61+0,08
compare favorably with values of Ero = 2.92+0.19 &,

Vhn = 0.567+0.015 from linewidth measurements. Values of

r
Vp and Yy reported for the isobutyric acid + water system
by B. Chu(33) seem to indicate a significant difference
between Vg and Vp but error bars are not gquoted.

We find that the overall behavior of the linewidth
of the Rayleigh line is quite well described by the

Kawasaki theory, even though small systematic deviations
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exist for K& = 1. These are removed of we replace the
viscosity in the Kawasaki expression with the experimental
shear viscosities. This approach may not be valid since
the viscosity in the theory is n*(K,£) at large K values(4)
rather than n(0,£). However, Kawasaki states that it is
possible to identify the high frequency viscosity n* (K,&)
with the experimental viscosity n(0,£). The use of experi-
mental viscosities brings the correlation length exponent
closer to the one determined from intensity measurements.

A similar observation has been made for the system 3-methyl

(34). We could not make an independent

pentane-nitroethane
check on the theory using correlation lengths determined
from intensity measurements as has been done by Sengers

(34) as the correlation lengths from our

ans co-workers
intensity measurements do not cover a sufficiently large
AT range.

The high frequency viscosity n* obtained from a least
squares fit of the linewidth data varying all three para-
meters independently is 2.87t0.20 cps. When the experimen-
tal Do is employed and Ero and Vp are varied, n* is found
to be 2.65%0.20.cps. These values can be compared with an
estimate of 2.62 cps which is obtained by extrapolating the
experimental shear vescosity data under the assumption

that the critical viscosity is nondivergent.

As is seen from our values for the viscosity exponent
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¢, the lutidine-water system exhibits basically the same
type of viscosity anomaly that has been observed for upper

consolute systems(l3r14,35)

. However, due to hydrogen
bonding the temperature dependence of viscosity away from
the critical point is more complex than that represented by
a simple Arrhenius equation(27).

Although the magnitude of the excess shear viscosity
and the rate of increase depend on the method of subtrac-
tion of the normal part, the changes in the exponents
obtained from measurements close to the critical tempera-
ture are not significant as is seen in Fig. 9. Our expo-
nents for the "excess" shear viscosity are much smaller
than most of the values reported in Table III, which leads
us to believe that the excess shear viscosity is at most
logarithmically divergent or exhibits a very strong cusp
at the critical point. Of the four methods of analysis
used, three predicted very small negative exponents and
and one a very small positive exponent. In all four fit-
tings the last experimental point was lower than the pre-
dicted values. This difference is larger than the experi-
mental uncertainty, which might indicate a trend toward
a finite viscosity. Similar rounding off has been observed
previously(35). However, we feel that on the basis of the

data it is not possible to distinguish between a loga-

rithmic divergence and a strong cusp. One thing is evident
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from our data; the viscosity anomaly is not a strong one as

36
has been suggested by the data of Barber and Champion( )

and Woermann and Sarholz(14)

, or by the mean field theo-
ries given in Table II. We think that the method of de-
fining the "normal" part is responsible for the sharp
rise in the excess viscosity for large AT values as is
demonstrated in Fig. 9. Significant excess viscosities
exist for AT values as large as 10°C and one has to be

careful in defining what are normal and what are excess

contributions to momentum transport.
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TABLE I

SHEAR VISCOSITIES AS A FUNCTION OF AT
= o
Tc 33.372°C

AT®°C n (centipoises)
27.420 4,992
23.714 4,240
20.550 3.726
18.341 3.423
17.112 3.273
14.938 3.027
14.372 2,971
12.454 2,788
11.154 2.675
10.501 2.625
10.217 2.599

9.392 2,535

8.484 2.471

7.335 2.394

6.375 2,332

5.385 2.275

4.414 2.224

3.935 2,203

3.441 2.177

2.473 2.149

1.650 2,132

1.008 2.136

0.646 2.156

0.443 2,180

0.313 2,205

0.276 2,219

0.257 2,224

AT°C n (centipoises)

0.231 2.221
0.197 2.232
0.160 2.251
0.129 2.267
0.106 2.290
0.080 2.309
0.063 2.336
0.038 2.377
0.025 2.404
0.017 2.439
0.013 2.453
0.007 2.470
-0.008 2.403%

*

The average viscosity
for the two phases
during separation



TABLE II

SUMMARY OF CRITICAL EXPONENTS FOR A NUMBER OF SYSTEMS

System Ref. Y Y=y Y S r
Xe 23 0.751%0.004
Xe a 1.26
Xe b 1.244 0.57%0.05

1.228
SF o 1.26%+0.02
co, d 0.73+0.02
co, 32 1.219+0.010 0.633+0.01
co, 31 0.674+0.002
Isobutyric acid-water 33 1.24*0.05 0.68%20.04 0.56 0.62 0.41
n-Hexane-nitrobenzene e 0.66+0.02 0.70+0.10
Aniline-cyclohexane 24 0.61+0.07 0.588+0.06
Phenol-water f 1.32+0.03 0.68+0.03 0.66+0.04 0.58+0.10
Polystyrene-cyclohexane g | 0.77 0.58
e gl 35 1.231%0.04 0.616+0.013
This

2,6-lutidine-water ——

1.26x0.02 0.554+0.015 0.71+0.035 0.61+*0.08 0.567+0.015

=E G
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TABLE II(continued)
Ref.

a M. Vicentini-Missoni, J. M. H. Levelt Sengers, and
M. S. Green, Phys. Rev. Letters 22, 389(1969)

b M. Giglio and G. B. Benedek, Phys. Rev. Letters 23,
1145(1969)

c G. B. Benedek, in Polarization Motiere et Rayonnement

Livre de Jubile en L'honeur du Professeur A. Kastler

(Presses Universitaire de France, Paris,1969)

d H. L. Swinney and H. Z. Cummins, Phys. Rev. 171,
152(1968)

e H. Chen and N. Polonsky-Ostrowsky, Opt. Commun. 1,
64(1969)

b P. N. Pusey and W. I. Goldburg, Phys. Rev. Letters 23,
67 (1969) ’

g N. Kuwahara, D. V. Fenby, M. Tamsky, and B. Chu,
J. Chem. Phys. 55, 1140(1971)
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TABLE III
SUMMARY OF VISCOSITY SINGULARITIES

System Ref. Exponent Equation

Iso-octane-perfluoro-
heptane 13,14 -0.07 a
Phenol-water 13,14 -0.05 a
Isobutyric acid-water 13,14 -0.05 a
Isobutyric acid-water 45 +0.12 bl
Hexane-nitrobenzene 14 -0.04 a
Cyclohexane-aniline 14 -0.04 a
Cyclohexane-aniline 42 0(log) d
3-Methylpentane-
nitroethane 43 -0.04 a
3-Methylpentane- 1
nitroethane 44 0.005+0.014 b
2,6-Lutidine-water gl -0.050+£0,.002 a
work 1
-0.0017+0.0028 o]
~0.0005£0.0004 c?
~0.00065%0.00014 b2
0.00238£0.00022  b>
THEORETICAL PREDICTIONS
Mean Field Theories
Fixman 47 n e /2
Deutsch, Mountain -1/2
and Zwanzig 48 nove
Kawasaki 49 finite
Scaling Theories
Kadanoff and Swift 10,15 ‘ n v lne or finite

Kawasaki 4 finite
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TABLE III (continued)

= A+Be ¢

A
"Ts

ncl(T)

(e®-1) + Ngp (T) + D

Be + C

n_. (1) = e/T

cl 2
_ CAT 4+ EAT
T]cl(T) = B exp = T AT

= ne - A, ¢_
&n = n- n(T) = ¢(e 1) +'B
n.p (T) defined by Eq. (16)
ncl(T) defined by Eq. (26)

An = -Aln(e) + B



-63-

FIGURE CAPTIONS
Fig. 1. A schematic of the light scattering spectrometer

Fig. 2. Plot of reciprocal scattered intensity in
arbitrary units vs. sin2(9/2). Only a representa-
tive seven of the twenty isotherms studied are
shown here.

Fig. 3. Log-log plot of 1(0)"L vs. AT. The solid line is
given by log I(0)~! = -0.218+1.260¢.

Run 1 @; Run 2 o. The lowest AT point was not

employed in the least squares fit.

Fig. 4. Log-log plot of the correlation lengths from
intensity measurements vs. AT. The solid line is

given by € = 2.0e70-61 3,

Fig. 5. Log-log plot of the mutual diffusion coefficient
D vs. AT. The solid line is given by
D = 0.290e%°7%%x107> cm?/sec.

Fig. 6. Log-log plot of I‘/K3 vs. (KEI,)-l for the AT range

0.001° - 7.5°C. The solid line is given by the
Kawasaki linewidth expression with the parameters
n*=2.87 cps, v;=0.541, and £, =3.0 A.

o

Fig. 7. Plot of shear viscosity vs. T for large T values.
-=--- Eqg. (16);
given in the text.

Eg. (26), using the parameters

Fig. 8. Plot of shear viscosity vs. T for small AT values.

Fig. 9. Log-log plot of An vs. AT for two representations
of the "normal" viscosity.
® N,y from Eq. (16); o Ne1 from Eq. (26).
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MEASUREMENT OF MUTUAL DIFFUSION
COEFFICIENTS AND THERMAL DIFFUSIVITIES

BY QUASI-ELASTIC LIGHT SCATTERING*

Erdogan Giulari, Ronald J. Brown, and C. J. Pings

Division of Chemistry and Chemical Engineering
California Institute of Technology

Pasadena, California 91109

(Draft for publication, complete with figures and
references, will be submitted to AIChE Journal.
The two values of thermal diffusivity for benzene-
toluene mixtures were obtained by R. J. Brown who
also did most of the editing. For extra data see

Tables X to XXVI.)

*Research supported be the Directorate of Chemical
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34045.
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ABSTRACT

Quasi-elastic light scattering techniques have been
employed to measure the mutual diffusion coefficient DAB
as a function of concentration in eight binary mixtures and
the thermal diffusivity x in nine pure liquids and two
binary mixtures. The mass diffusivities obtained are
accurate to typically 3% while thermal diffusivities are
known to 5%; both types of values are in substantial
agreement with the available bulk values. Under most
circumstances light scattering is found to offér distinct
advantages over the standard techniques for determining

mass and thermal diffusivities.



SCOPE

Because both the mutual diffusion coefficient and
.the thermal diffusivity appear in transport equations,

a knowledge of their values is of'particular importance
in many chemical engineering applications. However,
there exists a relative scarcity of reliable mass and
thermal diffusivity data. In recent years with the
advances in laser technology, spectroscopic methods, and
the theory of light scattering by fluids, quasi-elastic
light scattering techniques have been successfully used
to measure macromolecular diffusion coefficients and

mass and thermal diffusivities for systems in the neighf
borhood of their critical point. 1In these cases light

is scattered very strongly by the large entropy or
concentration fluctuations, In contrast, normal mixtures
and pure liquids scatter 104-105 times less — thus, there
have been only a few attempts at determining Dap and x
fér these systems,

The objective of this study was to establish quasi-
elastic light scattering as a convenient tool for the rapid
and accurate determination of mass and thermal diffusivities.
Mutual diffusion coefficients as a function of concentration
are reported for eight systems. Extensive literature data
exist for most of the mixtures studied. Thermal diffusivity
measurements for nine pure liquids and two mixtures are also

reported and compared to the values calculated from conven-
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tional measurements of density, heat capacity, and thermal

conductivity.
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CONCLUSIONS AND SIGNIFICANCE

Using guasi-elastic light scattering, the thermal
diffusivity x and the binary mutual diffusion coefficient
Dap have been measured for a variety of pure liguids and
binary mixtures. The resulting values are in close agree-
ment with the available bulk values and are accurate to
about 3% for mass diffusivities and 5% for thermal
diffusivities., Because neither type of measurement is
dependent on the imposition of a macroscopic gradient,
many of the problems associated with conventional bulk
measurements are eliminated.

Determinations require less than two hours for
thermal diffusivities and thirty minutes for mass diffusivi-
ties, juxtaposed to the more time consuming classical
approaches, On the basis of these experimental results,

light scattering techniques can be used effectively to

determine y and Dap for most liquid systems.
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For almost half a century it has been known that the
frequency spectra of light scattered from ligquids by entropy
and concentration fluctuations contain transport coefficient
information (Mandel'shtam, 1926; Landau and Placzek, 1934).
To resolve the extremely narrow lines predicted from the
theory of the distributed spectra, the resolving power (w°/w)
of the spectrometer must approach 1014. The best conven-
tional spectroscopic method, the spherical Fabry-Perot
interferometer, has a limiting resolution of 1:108. Only
with the advent of the laser as an intense, monochromatic
light source, and the development of optical homodyne and
heterodyne spectroscopy, has the study of the spectra from
concentration and entropy fluctuations become possible,
Cummins and Swinney (1969) and Chu (1970) have written exten-
sive reviews of the optical-beating techniques.

The earliest quantitative spectral measurements were
made on fluid systems near their critical point (Alpert,
1965; Ford and Benedek, 1965) and on macromolecular solutions
(Dubin et al, 1967). 1In contrast to the now extensive use
of quasi-elaStic light scattering techniques to study
critical phenomena and macromolecular dynamics there have
been only a few attempts to measure transport coefficients
in systems removed from their critical point., These efforts
by Lastovka and Benedek (1966), Aref'ev et al (1967),
ﬁerge et al (1969, 1970), and Dubois et al (1970) demonstrated
the feasibility of using light scattering techniques to deter-
mine transport coefficients., However, their limited results

did not conclusively establish light scattering as a reliable
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and efficient method for obtaining liquid diffusivities. The
systems chosen were selected for their high degree of scatter-
ing, thus facilitating signal detection. The possibility of
extending diffusivity determinations to other systems remained
unclear., In three of five cases where binary mutual diffusion
coefficients were measured, no conventionally determined data
existed for comparison. The thermal diffusivities measured
were not in agreement with bulk values calculated from
literature data.

We present data which indicate that light scattering
provides an accurate and convenient method of determining
mutual diffusion coefficients for a large class of binary

mixtures and thermal diffusivities for most pure liquids.
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THEORY

Light is scattered by optical inhomogeneities. The
physical reason for optical inhomogeneities in pure fluids
is density fluctuations, which concomittantly produce
fluctuations in the dielectric constant. In solutions,
concentration fluctuations are an additional cause of
fluctuations in the dielectric constant. These sources
of time dependent optical inhomogeneities modulate the
scattered light and produce the altered time dependence of
the scattered electric field that contains information about
the modes of fluctuation dissipation and hence the transport
properties of the scattering medium,

Beginning with the expression from classical scatter-
ing theory for the scattered electric field (Landau and Lifshitz,
1960)

E_(R,t) v e “1Ut jv a(r,t) exp [i(k -k) r ] dar (1)
and performing a Fourier decomposition on fluctuations in
the polarizability o, it is evident that only the Fourier
component

K=k - K @)

of the fluctuation is responsible for the scattering seen

at R, The scattering wave vector

K = 2<é%5> sin <%-> (3)
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Recognizing that the polarizability is proportional to the
dielectric constant € , description of the scattered field
reduces to the derivation of an expression for fluctuations
in the dielectric constant 8e(K,t).

Mandel'shtam (1926) and Landau and Placzek (1934) used
thermodynamic fluctuation theory in conjunction with the
macroscopic equations of heat conduction and mass diffusion
to describe the time decay of fluctuations in the dielectric
constant and the shape of the resulting distributed spectra.
They reasoned that fluctuations in density can be expressed
in terms of the independent thermodynamic variables, pressure
and entropy, i.e., adiabatic and isobaric fluctuations.
Modulation of light by adiabatic fluctuations of density
physicdlly represent local compressions and rarefactions of
the f£luid. Due to the elastic nature of the fluid, these
fluctuations propagate throughout the sample and can be
visualized as thermal elastic waves diffracted according to
the Bragg condition. These waves result in the Brillouin
peaks, which are not of further interest in this work.

Scatteriné from isobaric fluctuations in density is
associated with temperature or entropy fluctuations., The
dissipation of these fluctuations obeys the Fourier heat
equation and is controlled by the thermal diffusivity. The

component responsible for scattering is then

8T (K,t) = 6T(K,0) exp [-xK%t] (4)

Thus, fluctuations in temperature or entropy are exponentially

decaying functions localized in space. An analogous situation
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exists for the dissipation of concentration fluctuations in
binary mixtures. The diffusion equation is obeyed, and its
solution yields

S§C(K,t) = 6C(K,0) exp [-D, K’t] (5)

AB

Mountain (1966), Mountain and Deutch (1969), and
Kadanoff and Martin (1963) have presented a more rigorous
development in which the linearized equations of hydrodynamics
were used to solve for the time dependence of concentration
and density fluctuations. The results derived for a pure
liquid are identical to those obtained from classical thermo-
dynamic fluctuation theory; for binary mixtures, Mountain
and Deutch observed a term resulting from the dynamics which
does not appear from the thermodynamic theory (Miller, 1967).
This additional term is a result of the coupling of temperature
and concentration dissipation, i.,e., the Dufour and Soret
effects, Under the condition x>>DAB , which obtains for the
systems studied here, the formulae reduqe to those developed
- from thermodynamic fluctuation theory and the experimental
separation of the contributions from entropy and concentration
~fluctuations is possible,

The quantities of direct interest in quasi-elastic light
séattering are the density-density correlation function F(K,t)
and its Fourier transform, the dynamic structure factor S(K,w),

which is the spectrum of the electric field.
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For a pure fluid (Mountain, 1966)

F(K,t) = <p(-K)p(K,t)>

ve lsp 1> 1 TS exp [-szt]‘ (6)
CP
and
2 C C 2 K2
S (K,w)v< [8p(X) [*> —K2—2——7> (7
: Cp (xK®) “ 4w

For a binary mixture (Mountain and Deutch, 1969)

/ 2
o€ 2
F(K,t) » \5’6 - < I(SC(E) l > exp[—DAsztl
’

2
+ (g%) <| 6T(5)|2> exp t-szti (8)
P,C
and
2 2

S(K,w) ~ (%%) <lsc(x) P > [ 2Dyl

X —
h%mK%Z w2

2
e 2
+-<§Ti)C [sT ()] <> 2
d (xK ) +w (9)

subject to the condition X>>Dpg.

Equation (6) expresses the density correlation function in
the real time domain as a decaying exponential with a decay time
(the time required for the exponential to decay to e"1 of its
initial value) of (xK2)~l. The corresponding spectrum in the
frequency domain Eqn. (7) represents a Lorentzian with a half-
width at half-height of sz/Zﬂ Hz. Hence the thermal diffusion
process may be characterized by either an exponential decay time

or its conjugate half-width., Similarly, for a binary mixture
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with concentration fluctuations the dominant source of
scattering, the concentration correlation function Eqn. (8)

4 or the corresponding

is described by the decay time (DABKZ)-
half-width of Egn. (9), DABK2/2n. If temperature fluctuations
should dominate, the characterization parameters are identical
to those for a pure fluid.

The amplitude of the mass diffusivity term in Eqgn. (9)
is a function of the factors (6€/6C£,T and <|5c|2>. Thé
first term is dependent upon the difference between mass

reduced polarizabilities of solute and solvent, as is evident

from the Lorentz-Lorenz formula

g2 =41 pIc®L o+ (1-0) %2 (10)
3 my m,
and its derivative .
2 o o 1 1
de 4m (e+2)p 1% _ %2 - 3 e -1 (2~ 3] (11)
( 3¢ )P'T 3 T3 my i, Im e+ 2 P1 P2
=1

where p = [C/pl+(l—C)/92] is the mixture's density, oy is

the molecular polarizability, and m, is the molecular mass.

It is evident that the amplitude of the coﬁcentration term

in Eqn. (9) for a fixed composition is proportional to the
difference between refractive indices of the two components,
Experimentally one should expect reduced scattered intensities
for solutions with comparable solute-solvent refractive indices,
and a corresponding reduction in accuracy of the experimental
results,

The mean square concentration fluctuation term can be

expressed by

<|sc|? >p,p = KT (u]ac), .7 (12)
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where p is the chemical potenﬁial of solution, (8u|aC)P'T
is a complex function of activities and molecular weights,
but qualitatively as solute and solvent approach equal
concentrations the term should increase in magnitude.
Conversely, as the solution becomes more dilute in either
component, the intensity of scattering should decrease and

the accuracy of the associated data become poorer.
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APPARATUS AND EXPERIMENTAL METHODS

A schematic diagram of the light scattering spectrometer
used in this study is given in Figure 1. The laser, detection
optiés and sample were mounted on an NRC vibration isolation
table to prevent extraneous vibrations from contributing to
the time dependence of the scattered light. The incident
light beam was the 4880 £ line of a Coherent Radiation 52A
argon ion laser, Two pinholes with an angular acceptance of
0.2° defined the scattering volume, and the scattering angle
was determined by triangulation to better than 0.06°, Hetero-
dyne spectroscopy was employed, using a ten centimeter path
length cylindrical cell with optical gquality flat windows,
Stray light from imperfections and dust on the windows acted
as the local oscillator source, The detectof, an EMI 9634QR
phototube, carried the fluctuating photocurrent to a Saicor
43A Correlator. The autocorrelation function was collected
until the significant part of the function began to £ill the
memory — ten minutes to two hours was required, depending upon
the signal to noise ratio of the photocurrent. The four
hundred point autocorrelation function was then transferred
in digital form from the correlator to paper tape for subse-
quent computer analysis.

Sample chemicals of reageht grade were used without
further purification. The binary mixtures were prepared
volumetrically with an estimated accuracy of 0.5%. All samples

were multiply filtered through a fine fritted glass filter to
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remove dust, A Bausch and Laumb refractometer was used to
measure refractive indices; values have been corrected to

A = 4880 8., The samples were maintained at room temperature,
which did not drift more than 1°C during the course of an
experiment, Because Dpp and x exhibit a weak temperature
dependence (typically less than 0.5% per degree centigrade),
we estimate the maximum error due to temperature control
" to be less than 1%,

Current autocorrelation techniques were employed

instead of swept filter spectrum analysis because

correlation makes more efficient use of the signal and

is able to perform signal averaging on the correlation
function, thus improving the statistical accuracy of the data.
In the case of heterodyne spectroscopy, the photocurfent.
autocorrelation function is an exact replica of the density

‘(electric field) autocorrelation function, hence

C; (1) = <i(t)i(t + 1)> ~ F (K,t) (13)

and the decay time of the current exponential contains the
coefficient of interest. The points of the corrxelation
function were fit to a single exponential using the Marquardt
nonlinear least squares algorithm. The decay time for a pure
liquid
171 = yk? (14)
and the value of»K2 determine x. Values of 1 were collected over
a range of scattering angles. For the binary mixtures two exponen-

tials are observed. Because the magnitude of concentration

fluctuations in binary mixtures is generally greater than from
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temperature fluctuations, and because the decay time for thermal
diffusivity is smaller than from mass diffusivity by approximately
two orders of magnitude, the effect of thermal diffusion can be
compressed into the initial part (approximately ten points) of
the correlation function; these points are neglected in the fit
to determine the mass diffusivity decay time

-1 2

T = DABK : (15)

T values for D p were collected as a function of concentration

A
for a single scattering angle,

To measure thermal diffusivities for binary mixtures, one
must in general perform a two exponential fit to the data. Under
the special circumstances of similar refractive indices for solute
and solvent, density fluctuations become the predominant source
of scattering and the data may be analyzed solely in terms of
thermal diffusién. The two binary systems studied, toluene-
benzene and toluene-bromobenzene, satisfy the criterion of

matched refractive indices and hence have been analysed in terms

of Egs. (6) and (14).
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RESULTS AND DISCUSSION

Mutual diffusion coefficient measurements appear in Table 1I.
Thexrmal diffusivity results are compared in Table II with the
literature bulk values. Errors quoted in Table I are based on
twé standard deviations of the single exponential fit plus an
estimate of possible systematic errors. Errors'appearing in
Table II result from two standard deviations of the data to a
best straight line plus possible systematic errors. Mass
diffusivity values range in accuracy from 12% for dilute mixtures
to better than 1% for more egquimolar solutions. The accuracy
of- x values in all cases is better than 10% and is typically 5%.
In Figures 2-7, mutual diffusion coefficients from this study are
plotted as a function of concentration with comparative literature
data. Figures 8-11 exhibit values of the inverse aecay time of
the Rayleigh line as a function of the square of the scattering
wave vector for light scattered from concentration fluctuations
(Figure 8) and entropy fluctuations (Figures 9-11). Each datum
represents a single correlation funétion. Half-widths are related
to the exponential decay time T by .

T = (2m)7H (16)
where I' represents the conjugate Lorentzian half-width of the
spectrum (Egs. 7 and 9), tﬁus the vertical axis represents both

the inverse decay time of the exponential correlation function and

the half-width of the corresponding Lorentzian.
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As seen from these plots, the linear dependence predicted
from theory by Egs. (14) and (15) is accurately obeyed. Least
squares fitting with statistical weighting has been used to
determine the best straight lines.

Figures 2 through 7 show that our mutual diffusion
coefficients are in excellent agreement with the bulk values
reported in the literature. Two other light scattering
measurements of mass diffusivities are available for comparison
— both are from the system carbon disulfide-acetone. Berge

5

et al (1970) reported D, = 2.32 x 10~ cmz/sec at room

temperature for a 10% by volume acetone mixture. Aref'ev

3 cmz/sec for

et al (1967) reported D,, = 0.30 * 0.04 x 10°
a 10% by weight acetone mixture at room temperature. 1In
comparison our values are 2.42 * 0.04 x 105 at 20.0°C for a

5 at 18.5°C for a

10% by volume mixture and 2,23 * 0.06 x 10
10% by weight acetone in carbon disulfide solution. It is

concluded that Aref'ev's value is questionable.
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The agreement between our values of thermal diffusivity
and the values calculated from bulk measurements of A, p and
c p data are satisfactory, as is evident from Table II.
Included in Table II are the only other light scattering
determinations of thermal diffusivity. Our value of 1.10

# cmz/sec for pure carbon disulfide is the same

3

+ 0,02 x 10~

as Berge's value of 1.1 x 107> cm’sec (Berge g&lgl, 1970) .

Bexrge and Dubois (1969) also reported x = 0,655 ¢ 0,070 x 10-3

2 5 . .
cm”/sec for benzene, which is low compared to our experimental

3

value of ¥ = 0,940 + 0,050 x 10~ cmz/sec and the bulk value

3 cmz/sec. Lastovka and Benedek

3

of x = 0.963 x 10

cmz/sec for toluene,
3

(1966) reported y = 0,879 £ 0,025 x 10~
which agrees with our value of 0.849 * 0.038 x 10 em? /sec.,
It should be noted that where possible ‘the quoted
literature values for thermal diffusivity are taken from
Touloukian, volumes 3 and 6. These volumes contain a compre-
hensive study of all the available data on liquid thermal
conductivity and heat capacity for selected substances; the
recommended reference values cited for each liguid have been
used in Table II. The variation in experimentally determined
thermal conductivities is of inferest. Some results for the

same system differ by as much as 50%, and variations of 25%

are not uncommon, thus reflecting the difficulties associated
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with the conventional thermal conductivity measurements. The
most significant problems are (1) conduction corrections —
ensuring that all of the supplied energy is used to establish
the observed temperature distributicn in the liquid; (2)
convection — differences in temperature cause density changes
which in turn establish convection currents and influence
heat transfer; and (3) radiation between the surfaces enclos-
ing the liguid. All of these effects may lead to an elevated
thermal conductivity. In contrast, quasi-elastic light
scattering does not require the imposition of macroscopic
temperature gradients, thus convection is not a serious
source of error, Clearly light scattering does not suffer
from the problems of radiation and conduction associated with
classical methods.

The limitations inherent to classical diffusion measure-
ments are not so serious, although large discrepancies exist
between values obtained by different investigators on the
same system, Johnson and Babb (1956) discuss the different
conventional techniques for determining mass diffusivities
as well as their limitations and the consistency of data
taken by several investigators. The most important limitation
of these techniques is the requirement of a macroscopic
concentration gradient. As a result, one generally obtains
an integral diffusion coefficient rather than the more meaning-
ful differential coefficient. .In addition, the popular
diaphragm cell technique requires calibration and is subject

to bulk flows (Board and Spalding, 1966); both can contribute



to errors in the measurements of Dpp- Quasi-elastic light
scattering needs no macroscopic concentration gradients and
is not subject to calibration errors or bulk flow, Scatter-
ing arises from microscopic fluctuations in concentration,
hence the measured diffusion coefficient is of a differential
form., Some techniques, such as the diaphragm cell, may
require days of operation for a single point, while light
scattering determinations take less than an hour., The most
precise conventional techniques employ interferometric
methods (Dunlop et al, 1972) for continuously analyzing the
changes of concentration with distance and time in a cell,.
Analysis of the data requires involved mathematical analysis.
These measurements are limited in the same way as light
scattering — they require a difference in refractive

index between sample and solvent, This is the most serious

limitation of the light scattering technique. Determinations

of D improve in accuracy and precision with (1) increasing

AB
refractive index differences between the binary components, as
is evident from the (BC/BC)P'T factor of Egn.(8), and (2) the
approach to equal concentrations, which is expressed in the

<|6C|>2 factor of the same equation.
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NOTATION

concentration, grams/cm3

specific heat at constant pressure, J/°K-
molecule

specific heat at constant volume, J/°K-
molecule

binary diffusivity, cmz/sec

scattered electromagnetic field
density-density autocorrelation function
scattering wave vector, cm_l

Bottzmann's constant, 1.38 x 19716 erg/deg.
incident wave vector, em™1

wave vector in direction of scattering, cm
molecular weight of ith species, gm/mole
mass of ith molecular species, gm
refractive index

observation wave vector, cm

position wave vector, cm

temperature, °K

time, sec

Greek Letters

L}

polarizability, cm3

half-width of Rayleigh line, Hz

fluctuation about the mean of a physical quantity
dielectric constant

scattering angle, degrees

thermal conductivity, J-cm/°K-sec

wave length of light in wvacuo, 4
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chemical potential, cal/mole
frequency, sec™1

mean density, molecules/cm_3

exponential decay time, sec

thermal diffusivity, cmz/sec

difference between incident and scattered frequency,

cycles/sec

incident frequency of laser light, cycles/sec
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Table I: Mutual diffusion coefficient data

Nitromethane-~Benzene T=20.0°C
Mole fraction nitromethane Dap xlOscmZ/sec.
0.155 1,99 ¢ ,14
0.293 1.63 = ,10
- 0,415 : 1.48 = .07
0.525 1.27 £ .02
0.624 _ 1.29 ¢ ,05
0.713 ’ . 1.35 £ .03
0.794 1.42 = ,04
0.869 1,50 =+ .04
0.939 1.56 & .07
N-Hexane -Benzene T=19,.9°C

Mole fraction hexane

0.0346 2,17 ¢ 99
0.0704 2,08 ¢ *10
0.146 2,11 + 06
0.226 2,09 + +04
0.312 2,29 ¢ 96
0.405 2,38 ¢ °0°
0.506 | 2.57 + *04
0.614 2,94 ¢ *05
0.732 ' 3,23 & <10
0.860 3,96 ¢+ -21
Acetone-Benzene T=19,9°C
Mole fraction acetone
0.0241 2,39 ¢ ,17

0.0598 2.34 £ .10



Table I: Continued

0.142

0.232

0.363

0.487

0.606

0.720

0.829

0.930
Methanol-Benzene
Mole fraction methanol

0.0429

0.104

0.196

0.279

0.354

0.485

0.594

0.687

0.767

0.837

0.898

0.952

0.977
Toluene-Bromobenzene
Mole fraction toluene

0.124

0.372
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2.24

i+

2,21

i+

2.39

i+

2.93

1%

2,66 %
2.92

-+

3.11

-+

3.27 ¢

.07
.04
.04
.09
.04
.05
.09
.12

T=20.0°C

1,91
1.27

I+

0.831%
0.730%
0.729+
0.791¢
0.960¢
1.18 ¢
1.44 =

"

1.68
2,00 *
2,08

+

2,22

I+

.04
.05

.19

T=19.9°C

1.13

i+

1.46

+

.13
.07
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Table I: Continued

0.622 1.56 = .12
0.798 1.74 = ,09
Methyl alcohol-Butyl alcohol T=19,5°C

Mole fraction methanol

0.361 0.518 + ,042

0.601 0.814 + .050

0.772 1.04 = ,07

0.900 1.14 =+ .06
Acetone-Carbon disulfide
10% by vol. acetone 2,42 * .04 T=20,0°C
10% by wt. acetone 2,23 + .06 T=18.5°C
Carbon tetrachloride - Carbon disulfide T = 18,6°C

Mole fraction carbon tetrachloride

0,0650 2.92 = .12
0,135 2,74 + .10
0,294 2.44 ¢ ,05
0,494 ' 2,34 + ,04
0.714 2,25 £ .09
0.849 2.13 £ .09
Ethanol-Benzene - T=18,6°C
Mole fraction ethanol
0.,0736 ' 1.16 * .04
0.144 1.00 + ,07
0.279 0.857 + ,011
0.501 , 0.891 + ,009
0.694 1.17 + ,05
0.858 1.52 + ,06
0.932 ) l.62 ¢+ ,05



TABLE II
THERMAL DIFFUSIVITIES OF PURE LIQUIDS AND BINARY MIXTURES

xx10° (cm?/sec)
System This study T (°C) Bulk Value* at 20°C

(pure liquids) :
Acetone 0.881+0.033 18.2 0.934 (Touloukian, vols. 3 & 6)
Benzene 0.956+0.040 19.5 0.963 (ibid.)
Bromobenzene 0.518+0.025 20,0 0.749 (Riedel, 1951; Shaw, 1969)
Carbon disulfide 1.10 +£0.04 19.3 1.29 (Bridgman, 1923; Shaw, 1969)
Carbon tetrachloride 0.719%0.016 20.0 0.771 (Touloukian, vols. 3 & 6)
Ethanolt 0.839+0.046 19.8 0.889 (ibid.)
n-Hexane 0.740+0.033 20.0 0.837 (1bid.)
Methanolt 1.16 £0.10 18.2 1.035 (ibid.)
Toluene 0.849+0.039 19.0 0.922 (ibid.)

(binary mixtures)
Toluene-bromobenzene
12.5% by vol. toluene 0.649%0.025 19.9
62.5% 0.688*0.039 19.9
Toluene-benzene
30.0% by vol. toluene 0.869%*0.040 20.0
50.0% 0.815x0.035 20.0
70.0% 0.772x0.030 20.0
90.0% 0.847+0.035 20.0

Other light scattering
determinations Reference

Benzene 0.655%0.070 ~ 20 (Berge, 1969)
Carbon disulfide 3.1 vo20 (Berge, 1970)
Toluene 0.879*0.025 20.0 (Lastovka & Benedek, 1966)

* In many cases it is possible to find C_ and A combinations that give closer
agreement with our thermal diffusivitiés.
t Single datum points were collected for methanol and ethanol.

-£0T-
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FIGURE CAPTIONS

Figure (1) - A schematic drawing of the light scattering
spectrometer used in this study.

Figure (2) - Mutual diffusion data for the nitromethane-
benzene system: A this work, T = 20,0%,2°C; QO Miller
and Corman (1959), T = 20.0°C.

Figure (3) - Mutual diffusion data for the acetone-benzene
system: A this work, T = 19.9:.2°C; O Anderson et al
(1958), T = 25,15°C.

Figure (4) - Mutual diffusion data for the n-hexane-benzene
system: A this work, T = 19.9%,2°C; O Lemonde (1938),
T = 5°C,

Figure (5) - Mutual diffusion data for the methanol-benzene
system: A this work, T = 20.0%.2°C; +, Caldwell and
Babb (1955), T = 27.06°C, T = 11.0°C; O Lemonde (1938),
T = 11°C.

Figure (6) - Mutual diffusion data for the ethanol - benzene
system: A this work, T = 18.6%,2°C; & Anderson et al
(1958), T = 25.15°C; O Lemonde (1938), T 15°C.

Figure (75 - Mutual diffusion data for the systems toluene-
bromobenzene and methanol-butanol,.
Toluene-bromobenzene: /\ this work, T = 19,.,9%,2°C;
A Burchard and Toor (1962), T = 29.6+,03°C,
Methanol-butanol: [J this work, T = 19.5%,2°C.
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Figure (8) - The inwerse decay time (ZﬂT)—l VS . K2 duwe

to concentration flutuation in a 10% (wl.) acetone-

. for the exponential

carbon disul fide mixture. (2n71)
correlation function corresponds to the Lorentzian half-
width ' (in Hz) of the spectrum.

Figure (9) - Inwerse decay time vs. K2 for pure carbon
disul fide.

Figure (10) - Inverse decay time vs. K2 for pure carbon
tetrachloride.

Figure (11) - Inverse decay time vs. K2 from entropy

fluctuations in a toluene-benzene mixture.
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A LIGHT SCATTERING STUDY OF CRITICAL PHENOMENA

IN ETHANE

Erdogan Gulari and C. J. Pings

(Preliminary draft for publication, complete with
figures and references. For data not given in the

draft see Tables XXVII to XXXIV.)
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ABSTRACT

Extensive turbidity and linewidth measurements,

in the temperature range 0.0005°C < AT £ 10.6°C, have

been made on the critical isochore of ethane. The

results

K

31

where ¢
tivity.

and the

are:

= 1.24$0.11x1073 () 71+225%0.02 71

= 1.64+0.20x10 8 (g) 70-644%0.02

= 0.06%0.04

= 5.4:0.3x107 % () 70-605%0.02 ) o7l 7L ec7!

= 32.19+0.01°C

= 0.20440.0006 gr/cm>

= (AT/TC), and A; is the excess thermal conduc-
Our result for the isothermal compressibility

excess thermal conductivity are in good agreement

with independently made classical measurements.

By

comparing the singular part of the linewidths

with the Kawasaki linewidth expression containing no

adjustable parameters we find that apart from the non-

local viscosity correction correlation function modi-

fication and vertex corrections are needed to bring

the theory into good agreement with data for all k§.
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INTRODUCTION
First measurements of isothermal compressibility
by light scattering near the critical point of a fluid
were reported by Blosser and Drickamer(l), and the
first measurements of Rayleigh linewidths were made

(2} and by Ford and Benedek(3).

by Alpert and coworkers
Since then there has been a great deal of both theoret-
ical and experimental studies of critical phenomena
based on using light scattering techniques.

In this paper we present extensive turbidity and
linewidth measurements near the critical point of ethane

and analyze the data in the light of some recent theore-

tical developments.

BRIEF THEORY

Turbidity 1t is defined by

T = (1/L) 1n(I_/I) (1)
where L is the path length in the fluid, Io is the
incident intensity and I is the transmitted intensity.
According to Ornstein-Zernike theory, the intensity of
light scattered, per unit length, volume and incoming

intensity, by a fluid near its critical point is:
I(k) = AKj sin¢/ (1+k%E%) (2)

where A is given by A = (nz/k4)(pae'/ap)§BT with B the
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Boltzmann constant, €' the dielectric constant of the

fluid, k the change in the wave vector of the scatitered
light, A the wavelength of the incident light and § the
(4)

correlation length. Integration of Eg. (2) over all

angles yields the following expression for the turbidity:
= - 2 3 2
T = AﬂhT[(2a +20+1)/a”]1In(1+20) - 2(1l+a)/a (3)

where a=2(kog)2 and ko is the wave vector of the incident

light. In the limit of small o Eq. (3) reduces to:
T = (8/3)ﬂAKT . (4)

In the hydrodynamic region (kg<<1l), the Landau-
Placzek theory based on linearized hydrodynamic equations
predicts that the Rayleigh line will be Lorentzian in

shape with a half width given by:
I' = xk (5)

where X=}\T/pcp is the thermal diffusivity.
(5)

Using mode-mode coupling theory Kawasaki has
obtained the following expression for the singular part

of the linewidth valid for all k&,

4 ik o3,
e = [ 4+ %7+ {i-x"}tE =
gunx ( )tan (X

)] (6)
with n* being the high frequency limit of shear viscosity
and x is 1/k&. For k&<<1l Eqg. (6) reduces to Egq. (5) with

X=BT/6mn*. In the critical region, k&>>1, the linewidth
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is given by I'=BT/lén*. The definition of the high fre-
quency viscosity n* had been ambiguous, but recently

(6)

Kawasaki and Lo removed this ambiguity by relating it

to the experimentally measured shear viscosity,
n* = n(k=0,T)/£(kg) . (7)

The function f(k§) is given numerically if Ref. (6). For
the case of binary mixtures Lo and Kawasaki(7) have
obtained further numerical corrections to Egq. (6) taking
care of the simplest vertex correction. Finally it has
been suggested that Eq. (6) should be further modified

to take into account deviations from the Ornstein-Zernike

correlation function form(a'g).

EXPERIMENT

a. Materials

Ethane containing a nominal maximum impurity level
of 50 ppm was obtained from Cryogenic Service Corporation
of Glendale, California. A mass spectrometer analysis
done by an independent laboratory was supplied with the
sample cylinder. It showed 5 ppm methane, 5 ppm ethylene
and 15 ppm propane. Two gas chromatograph analyses and
one mass spectrometer analysis were done by us. The GC
analysis of ethane, which was further purified by freezing
and pumping to a high vacuum, showed “1-2 ppm methane,

“v1-2 ppm ethylene and no higher hydrocarbons. A second
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GC analysis done on the ethane in the main cylinder showed
6-8 ppm methane, 5 ppm ethylene with no higher hydrocar-
bons. The mass spectrometer analysis done on the same
sample showed no oxygen and water. It was not possible
to detect nitrogen in any of the above analyses due to the
fact that GC is not sensitive enough to detect parts per
million amounts, and all the nitrogen peaks in the
mass spectrum overlap with ethane peaks. We estimated
the amount of nitrogen by freezing the etnane with liquid
nitrogen and measuring the residual pressure. This pro-
cedure yielded an estimate of about 20 ppm.
b. Spectrometer

Our laser light scattering spectrometer has been

(lO). We have used a 400

described in detail elsewhere
point Saicor Sai-43A correlator to determine the auto-
correlation function of the photocurrent.
c. Temperature Control and lMeasurement

The main features of our temperature control and
measuring system were the same as those described in
Ref. (11). However, several important improvements have
been made. The temperature of the water bath was con-
trolled to better than #0.001°C with a Leeds and Northrup,
L & N, series 60 controller and an L & N microvolt

amplifier. The temperature of the light tight box con-

taining the optics and the sample was controlled to better
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than +0.03°C and was kept at a temprature very close to
the Tc of the ethane sample by a similar set up. The
laboratory temperature was also kept as constant as
possible and it never varied by more than 0.2°C during a
measurement. In this way it was possible to control the
temperature of the sample to 20.0005°C. Platinum resis-
tance thermometers were used for measuring and control.
The resolution of the measuring circuit was 0.0003°C. The
critical temperature was also measured with an NBS cali-
brated thermometer.
d. Density Measurements

Due to the scatter in the reported values of the
critical parameters for ethane we determined our own
critical density rather than relying on literature data.
The volume of the scattering cell was carefully cali-
brated withdistilled water, and the density was determined
by weighing the cell before and after loading it with
ethane. The weight of ethane in the cell could be deter-
mined with a precision of 0.05%. It was found that for
densities slightly above or below the critical density
the position of the meniscus changed by several milli-
meters if the temperature was lowered by 0.001° C below
the phase separation temperature. The critical density

was taken to be the density for which the position of the
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meniscus did not change. This strict criteria required
density changes as small as 0.0l1%. The accuracy of the
critical density is believed to be about 0.3%.

e. Turbidity Measurements

Turbidity measurements were made by placing the
phototube at zero degrees. Several different pinhole and
lens combinations were used over a time period of six
months and all the measurements were reproducible within
the experimental error. The current from the EMI 96340QR
phototube was measured by Keithley 602 Electrometer
combined with a Hewlett Packard 7004A XY-recorder. The
precision was better than 0.5%. The laser was stabilized
by a feedback control circuit; the output never drifted
by more than 1% during the course of a run.

Two cells were used in making the turbidity measure-
ments. One was a double pass cell with a path length of
12 cm used for 0.1°C < AT < 11°C. The other cell was a
piece of precision bore pyrex tubing having a path length
of 0.889 cm. This cell was used for AT<3°C. To take
care of gravity effects, if any, the beam height was
adjusted to the meniscus height and as a further check
measurements as a function of height were made at
AT = 10 millidegrees. IO was determined by a combination
of measuring the intensity at large temperature distances

from the critical and by measuring the transmitted
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intensity without the sample and correcting for the
different amounts of reflections at the interfaces.
f. Intensity Measurements

We have made intensity measurements at several angles

with the aim of determining I(O)—l

and thus extending

the range of our isothermal compressibility determinations.
Since we did not make extensive intensity measurements

we did not have enough data to determine the correlation
lengths from the intensity measurements accurately.

g. Linewidth Measurements

Our linewidth measurements cover the temperature
range of 0.0008°C < AT £ 7.509°C. The angular range
examined was 1.50 £ 6 £ 110. For large values of AT
heterodyne detection at small angles was used. Our mea-
surements at large angles were severely limited due to
very large linewidths measured I'=50 kHz. Thus if we went
to higher scattering angles we could not get enough data
points in the autocorrelation function to have high
statistical accuracy.

Approximately half of our linewidths measured were
taken by holding AT constant and changing the scattering
angle. The other half was taken by holding the scattering
angle constant while varying the AT. To detect gravi-

tational effects almost all of our measurements below
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AT = 0.020°C were taken as a function of height.

RESULTS AND DISCUSSION

We have determined the critical density of ethane
to be B 0.2044+0.0006 gr/cm3. For the critical tempera-
ture we have obtained two values, Tc= 32.200°C for the
sample which was further purified by freezing and pumping,
and Tc= 32.182°C for the sample loaded directly by gas
phase transfer from the main cylinder and used without
further purification. While the sample that was further
purified probably had much less methane and nitrogen, it
came into contact with more valves and tubing and was
loaded at close to the critical state conditions, thus
it is not very clear what caused the difference in the
critical temperatures. The "real Tc" probably is between
the two. Based on the above two determinations our best
estimate of the «critical temperature is Tc= 32,19*0.01%C,
Table I summarizes the best literature values together with
our values of e and Tc.
a. Results of Turbidity Measurements

All of our 103 measurements are shown in Fig. 1.
Using Eg. (4) absolute isothermal compressibilities were
Calculated from the turbidity data for AT 2 0.5°C. The

term (pae'/ap)g was evaluated using the Lorentz-Lorenz law
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and n = 1.119. This value of the refractive index was
obtained from the measurements of J. Hadrich and cowork-
ers fL) after a very small correction for wavelength
dependence. We have also calculated the compressibilities
from I(O)_l values determined from intensity measurements,
these were converted to absolute values by matching them
with those calculated from turbidity data at AT = 3.0°C.

Fitting our isothermal compressibility data with

the equation,

. -y
Ky = Kp (AT/T ) (9)

yields KO = 1.2440.11x10"3 atm ! and y = 1.225+0.02. The

error limits quoted in this paper are what we believe
to be realistic estimates of the errors rather than
standard deviations obtained from least square fits.
In making the least squares fit,KT values below AT = 0.05°C
were not used for possible effects of multiple scattering
and those below AT = 1.0°C determined from turbidity mea-
surements were not used for possible very small deviations
from Eq. (4). Including these points do not change the
quoted values of the parameters.

For comparison we have differentiated the PVT data

(14)

of Sage et gl(l3) and Beattie et al to obtain the

isothermal compressibilities. Table II gives the Ko

values determined in this way along with those calculated
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using Eg. (9) with the parameters given above. As can be
seen the agreement is very good. Blosser and Drickamer(l)

have reported K,, values determined by light scattering,

T
but their AT values are not stated making a comparison
impossible. Beattie et g£(14) also have three isotherms
below AT=0.1°C, but all of our attempts at obtaining
meaningful KT values from these failed. Due to the extreme
flatness, the reported PVT data is not smooth and accurate
enough for differentiation. All of our KT data is shown
in Fig. 2 along with those determinea from literature
PVT data.

Using Egs. (3) and (9) we have calculated the long
range correlation lengths as a function of AT from the
turbidity data for AT<1.0°C. A weighted linear least

squares fit to

_ -V
£ = ¢ (AT/T )

(10)
yields £ _= 1.64%0.20 A and v = 0.644%0.02. The data above
AT = 0.01° was weighted more than those below for several
reasons: Below 0.01°C the correlation lenygths become
comparable to the wavelength of light, thus Eq¢. (3) may
not be exact(ls). Multiple scattering may yield lower
values of 1. Especially around T=0.001°C, small gravity

effects that we could not detect may be present and the

relative uncertainties in AT values arce much higher, as a
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result theerror limits on the calculated correlation lengtns
can be as large as 50%. We feel that probably the first
two reasons are mostly responsible for the small system-
atic deviations seen in Fig. 3 showing the correlation
length aata. kgqual weighting of all the points change
v to 0.660.

We have also gained some insight into the process
of thermal equilibration of the sample by monitoring the
photocurrent as a function of time when a change in tem-
perature was made. Fig. 4 shows a typical trace of photo-
current versus time. If we assume that the photocurrent
reaches stecady state when the sample reaches thermal
equilibrium, then from Fig. 4 we can conclude that our
sample reaches thermal equilibrium within ten minutes
after a change of temperature. This can be compared to
the reported value of several days by Puglielli and

Ford(4) for SF_. at a comparable state. The short thermal

6
equilibrium is perhaps due to the good thermal contact
achieved in our apparatus 