An EnKF-based Flow State Estimator for Aerodynamic
Problems

Thesis by
Andre F. C. da Silva

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2019
Defended September 5th, 2018



© 2019

Andre F. C. da Silva
ORCID: 0000-0002-8125-6010

All rights reserved

ii



iii

To my lovely wife.
Without her help, sacrifice and encouragement,

it simply would’ve never been.

"It is the glory of God to conceal things,
but the glory of kings is to search things out."

Prov. 25:2 (ESV)



iv

ACKNOWLEDGEMENTS

First and foremost, I would like to praise God, the author and finisher of all things,
for graciously sustaining me at each step of the journey. To Him be honor and glory

forever.

I could not have completed this thesis without the guidance, support, encouragement,
and counsel of many individuals. Walking alongside me at different stages of the

journey, each of them in their own particular way taught me much.

No words can express my admiration to my wife, friend and helper Raquel. Only
those close to us know the sacrifices she and my son Daniel had to make so I could
pursue this degree, and I am forever grateful for their unwavering love and perennial
encouragement. I’m also grateful to my parents for their lifelong support and for
teaching me to value of education and pursue excellence. They all have helped to

forge who I am today and have made this accomplishment possible.

I own a debt of gratitude to my advisor, Tim Colonius. His unique way of approach-
ing problems with curiosity and optimism will always amaze me. I was indeed
fortunate to enjoy his mentorship, guidance, and friendship over the last four years.
I would also to express my gratitute to my thesis committe (Guillaume Blanquart,
Beverley McKeon, and Andrew Stuart) not only for serving in this capacity, but also
for the valuable feedback they provided on this thesis. In particular, I am indebted
to Andrew for the many meetings in which we discussed the many versions of my
estimator. Likewise, I want to acknowledge David Williams and Jeff Eldredge for
the many helpful insights provided during the many teleconference meetings we
attended.

I’m profoundly thankful to each ot the past and current members of the Computa-
tional Flow Physics group: Oliver Schmidt, George Rigas, Gianmarco Mengaldo,
Erick Salcedo, Kevin Schmidmayer, Aaron Towne, Sebastian Liska, Jomela Meng,
Jaesoon Choi, Chen Tsai, Andres Goza, Kazuki Maeda, Luis Phillipe Tosi, Ke Yu,
Marcus Lee, Ethan Pickering, Benjamin Stevens and Jean Spratt. I’ve learned a

great deal from each of them and was profoundly touched by their comradery.

I would be remiss to not acknowledge my friends and peers in the MCE incoming
class of 2014, without whom I would probably not have survived the first year.
In special, I own a great deal of gratitude to Jaeyun Moon, whose friendship was

crucial in many moments of this journey.



v

I’m also thankful for the care and hospitality of the brothers and sisters from Calvary
OPC and Pasadena OPC. Their display of the Christian love truly made the solitude

of the last nine months bearable.

Finally, but not least, I'm forever indebted to my extended family and friends back
in Brazil and elsewhere. Those are the ones that cheered, prayed and willed me
through this doctorate. Every small token of remembrance and affection were of

extreme importance for me.

I would like to thank the support of the Brazilian Air Force, and of the Ministry
of Education of Brazil (Capes Foundation) through a Science without Borders
scholarship (BEX 12966/13-4). This work was also supported in part by a grant
from AFOSR (FA9550-14-1-0328) with Dr. Douglas Smith as program manager.



vi

ABSTRACT

Regardless of the plant model, robust flow estimation based on limited measure-
ments remains a major challenge in successful flow control applications. Aiming
to combine the robustness of a high-dimensional representation of the dynamics
with the cost efficiency of a low-order approximation of the state covariance matrix,
a flow state estimator based on the Ensemble Kalman Filter (EnKF) is applied to
two-dimensional flow past a cylinder and an airfoil at high angle of attack and low
Reynolds number. For development purposes, we use the numerical algorithm as
both the estimator and as a surrogate for the measurements. In a perfect-model
framework, a reduced number of either pressure sensors on the surface of the body
or sparsely placed velocity probes in the wake are sufficient to accurately estimate
the instantaneous flow state. Because the dynamics of these flows are restricted to
a low-dimensional manifold of the state space, a small ensemble size is sufficient
to yield the correct asymptotic behavior. The relative importance of each sensor
location is evaluated by analyzing how they influence the estimated flow field, and

optimal locations for pressure sensors are determined.

However, model inaccuracies are ubiquitous in practical applications. Covariance
inflation is used to enhance the estimator performance in the presence of unmodeled
freestream perturbations. A combination of parametric modeling and augmented
state methodology is used to successfully estimate the forces on immersed bodies
subjected to deterministic and random gusts. The robustness of high-dimensional
representation of the dynamics to the choice of parameters such as the Reynolds
number is inherited by the estimator, which was shown to successfully estimate
the reference Reynolds number on the fly. Spatial and temporal discretization can
constitute a second source of errors which can render numerical solutions a biased
representation of reality. Left unaccounted for, biased forecast and observation
models can lead to poor estimator performance. In this work, we propose a low-
rank representation for the bias whose dynamics are represented by a colored-noise
process. System state and bias parameters are simultaneously tracked online with
the Ensemble Kalman Filter (EnKF) algorithm. The proposed methodology is
demonstrated to achieve a 70% error reduction for the problem of estimating the
state of the two-dimensional low-Re flow past a flat plate at high angle of attack
using an ensemble of coarse-mesh simulations and pressure measurements at the

surface of the body, compared to a bias-blind estimator. Strategies to determine
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the bias statistics and to deal with nonlinear observation functions in the context of

ensemble methods are discussed.
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Chapter 1

INTRODUCTION

1.1 Motivation

In the aeronautical context, unsteady conditions, such as the ones that would result
from a maneuver or from the occurrence of gusts, are ever present. The agility and
maneuverability of a fighter or the perceived level of comfort of a commercial aircraft
could be significantly enhanced if we could robustly estimate the instantaneous flow
state from the available measurement data (e.g. pressure readings on the wings and
fuselage), and act accordingly using closed-loop flow control[1]. In this work we
focus on one of the two key ingredients to any successful closed-loop control design:

the ability to predict the state of a fluid system and forecast its evolution.

Figure [I.1] can be used to describe how different scientific communities have been
approaching the dilemma between model complexity (x-axis) and estimation rate
(y-axis). Estimation rate refers to the number of forecasts per unit time, and,
for on-line estimation, is set by the system’s dynamics but highly constrained by
the available computational power. The gray area between the axis represents
the choices of model complexity and estimation rate that are achievable with the
currently available computational power. The horizontal dashed line represents the
minimum estimation rate that would allow us real-time prediction. Because standard
estimation techniques don’t scale well with an increasing number of degrees of
freedom, the control engineering community will generally favor low-rank models
that preserve limited, but dynamically important, features of the system. On the
other hand, fluid mechanicists, particularly those in the CFD community, typically
use every addition to the available computational power to simulate models that are
more complex and reliable than their predecessors, even if these simulations take

months.

If performing closed-loop control is the end goal of this estimation, then the real-
time requirement is fundamental, and only the solutions that lie above the horizontal
dashed line are ultimately useful. In the flow control community, one common ap-
proach is to use dimensionality reduction techniques such as Balanced Truncation[?2]]
or Eigenvalue Realization Algorithm [3]] to highlight the most important features of

the dynamical system under scrutiny. The resulting reduced-order models (ROM)
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can be made small enough to allow the use of the standard algorithms, but their
well-known fragility to the specification of initial conditions and flow parameters
(e.g., Reynolds number) can constitute a major applicability limitation. Therefore,
it would be desirable to seek more robust solutions that lie close to the intersection

of the real-time barrier with the computational power barrier.

Faster system dynamics

Real time

Offline @ Moore’s Law

Tractable Intractable

Estimation rate

Control engineering

Fluid mechanics

Model complexity (fidelity)

Figure 1.1: Schematics on the current development of estimation techniques in the
fluid mechanics context.

Although several state estimation techniques have been developed, their application
to fluid dynamics is challenging due to the nonlinearity and high dimensionality of
the underlying physical phenomena. Fluid systems are represented by spatially con-
tinuous models and any suitable discretization results in high-dimensional discrete
models. Whereas feedback control applications require real-time state estimation,
the computational cost of standard control techniques such as the Kalman filter [4]
do not scale well with increasing flow complexity and faster time scales. Also,
numerical simulations require appropriate boundary and initial conditions that are
often uncertain[S]]. Measurement data can provide the necessary information to
close the gap between simulation and experiments. The development of method-
ologies for the seamless integration of measurement data and (often sophisticated)

mathematical models is the goal of a research area know as data assimilation (DA).



1.2 Bibliographic Review

Table [I.1] summarizes recent works on data-driven flow estimation. Two main
goals have driven the fluid mechanics community to combine numerical models and

experimental data: flow reconstruction and flow prediction.

The first application is as a form of extending the experimental reach by performing
what is commonly referred to as enhanced experiment or hybrid simulation. As
pointed out by Nisugi, Hayase, and Shirai [6], taken individually, computational
fluid dynamics (CFD) and experimental data lack the ability to fully represent the
physical phenomena under scrutiny. Despite being a direct observation of the true
physics, experimental data is inevitably corrupted by noise and only a small subset
of the relevant physical information can be measured!] In addition, there can be
uncertainties and biases in the transduction process. On the other hand, limited
computational resources restrict our ability to accurately represent the underlying
flow physics, especially for higher Reynolds numbers. Moreover, assumptions
regarding the initial and boundary conditions are often too simplistic to accurately
represent the conditions that would be encountered in an experimental setting. But,
despite all these limitations, a numerical solution allows for the evaluation of physical
quantities that are unattainable using instrumentation. By combining the strengths
of both approaches, the resulting hybrid solution is able to provide flow information
that is consistent with the observed experimental data and recovers quantities that

were not directly observed in the experiment Hayase [7]].

Nisugi et al. [6] and Hayase et al. [5] incorporated measurement data into a
simulation using a feedback controller whose constant gain was determined by trial
and error to obtain the best fit to experimental data. Other researchers formulated
this problem from a variational perspective, in which they seek to minimize a cost
functional describing the data mismatch subjected to constraint§?[[8]]. Papadakis and
Memin [9] and Gronskis, Heitz, and Memin [|10] treated the system dynamics as
deterministic, and used a variational framework to estimate the initial and boundary

conditions that were most consistent with the available observations.

Suzuki et al. [[11} 12]] examined the problem of estimating the flow past a NACA
0012 airfoil for different angles of attack and Re between 10° and 10*. Their

This limitation can manifest itself in many ways: limited field of view, limited temporal and
spatial resolution, methodological inability to measure some quantities (e.g., vorticity or Reynolds
stresses), etc.

2The constraints can be dynamical, such as enforcing the estimate to be a solution of the
Navier-Stokes equations, or kinematic, such as enforcing the divergence-free condition.
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assimilation approach consisted in taking a weighted averaged of the DNS solution
and a rectified version of the experimental data. The rectification procedure ensured
that the added data satisfied the divergence-free condition. Their conclusion was
that the hybrid simulation performed better| than an unsteady Reynolds-averaged
Navier-Stokes (URANS) simulation for higher angles of attack. Foures et al. [[13]]
and Symon et al. [14] used a variational method to incorporate observations of
the mean velocity profile into a RANS simulation in order to reduce the amount
of measurement noise and estimate physical quantities, such as the Reynolds shear

stress, that were not directly measured.

The second goal of data assimilation has closed-loop control in mind. In this case,
the estimator accuracy requirements must be weighed against turnaround time (see
Fig. [I.T). Within the flow control community, the most common approach to flow
estimation is the development of reduced-order models (ROMs) whose number of
degrees of freedom are small enough to be tractable with the classical estimation
techniques. Provided these models have a low number of degrees of freedom,
then the classical control techniques become feasible. Gerhard et al. [[15] used a
3-mode POD-Galerkin model (enhanced with the shift mode) to design a controller
to suppress vortex shedding behind circular cylinders at low Reynolds numbers.
Aleksic et al. [16] used data from 15 pressure sensors and a 5-mode Galerkin model
to decrease and stabilize the drag of a 2D bluff body. Ahuja and Rowley [2] used
a 22-mode ROM obtained by Balanced Truncation to design a LQG controller for
the flow past an inclined flat plate. Flinois and Morgans [3|] used the Eigenvalue
Realization Algorithm (ERA) to construct an unstable 10-mode ROM which was
then used to design H., controllers to stabilize the system. These ROMs, however,
are fragile with respect to initial conditions and flow parameters like the Reynolds
number|/1]. Alternatively, researchers such as Fukumori and Malanotte-Rizzoli [17]
and Suzuki [18]] proposed the use of reduced-order approximations to the Kalman
filter that restrict the correction to the larger scales of the solution and alleviate the

computational cost involved.

As an alternative approach, researchers in fields such as meteorology, oceanography
and geophysical fluid dynamics have developed data assimilation algorithms that
are inherently capable of dealing with high-dimensional nonlinear systems and high
volumes of measurement data [[19, 20]. These methods take advantage of the

increasingly available computational power and efficient parallel implementations,

3The hybrid simulation produced better estimates for the lift coefficient and the dynamics of the
vortical structures in the shear layer.
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and had not, until recently, received much attention from the flow control community.
A three-paper series by Bewley and his collaborators aimed to apply Kalman filtering
to devise a state estimator for laminar [21]] and turbulent channel flow[22, [23].
Following a rigorous derivation of stochastic models for the system noises, they
were able to successfully track the wall-normal velocity and vorticity based on
pressure and wall skin friction. For the turbulent channel flows, an Ensemble
Kalman Filter was shown to achieve at least one order of magnitude less error than
previously reported in the literature at 20 viscous units from the wall. Around the
same time, Kato and Obayashi [24] used the Ensemble Kalman Filter to estimate
the velocity field behind a square cylinder by assimilation of pressure measurements
at the faces of the body. These two papers appear to be the first application of

ensemble-based estimation methods to classical fluid dynamics problems.

Recent applications of the EnKF include Kikuchi, Misaka, and Obayashi [25]], who
compared the performance of a EnKF and a Particle Filter applied to a POD-Galerkin
model of the problem of the flow past a cylinder, and Kato et al. [26], who used a
variation of the EnKF to achieve synchronization between a RANS numerical simu-
lation of a steady transonic flow past airfoils and pressure experimental data. Mons
et al. [27]] used an ensemble Kalman smoother and other ensemble-based variational
methods to reconstruct freestream perturbation history based on measurements taken

on and around a circular cylinder subjected to it.

While the use of ensemble methods make the estimation of complex flow systems
viable, it also renders the estimator more vulnerable to the deleterious effects of
modeling errors. However, past works in flow estimation did very little in proposing
ways of quantify and mitigate these effects, and the advent of a robust and efficient
error control methodology could potentially improve the performance of sequential

estimators.



Table 1.1: Summary of the recent contributions to the area of flow estimation.

Estimated Flow

Estimated Estimator
Reference IP/DA*| Methodology Description R » Measurements
Quantities Model
Skin friction and
] o Incompressible 3D . Linearized
Bewley and Protas [|28] DA Adjoint 100 Initial State pressure
turbulent channel flow N-S
distribution
Hayase, Nisugi, and )
R o Constant-gain Flow past a square ) Pressure on square
Shirai [5] and Nisugi, DA ) 1200 Velocity field DNS
L observer cylinder faces
Hayase, and Shirai [6]
Wall-normal Skin friction and
1 Linearized
Hoepftner et al. [21] DA KF/EKF 3D Laminar channel flow 3000 velocity and . pressure
vorticity distribution
Wall-normal Skin friction and
] 3D Turbulent channel Linearized
Chevalier et al. [22] DA EKF 100 velocity and pressure
flow N-S
vorticity distribution
Ruhnau, Stahl, and
, DA Adjoint Synthetic turbulent flow 10 Vorticity field DNS Optical flow
Schnorr [29]
Not
] Incompressible 2D
Papadakis and Memin [9] DA Adjoint re- Initial State DNS Velocity field
turbulent field ed
porte

Continues on next page...
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Table 1.1 — Continued from previous page

Estimated Flow

Estimated Estimator
Reference IP/DA  Methodology Description Re » Measurements
Quantities Model
Suzuki, Ji, and 3
, Weighted 10° -
Yamamoto [11] and DA Flow past a NACA 0012 L0* Velocity field DNS TR-PTV
average
Suzuki et al. [[12] g
Wall-normal Skin friction and
Colburn, Cessna, and 3D Turbulent channel
. DA EnKF 100 velocity and DNS pressure
Bewley [23] flow O R
vorticity distribution
] Flow past a square Pressure on square
Kato and Obayashi [24] DA EnKF ) 1200 Velocity field DNS
cylinder faces
_ Low-rank
Suzuki [18] DA Planar jet flow 2000 Velocity field DNS TR-PTV
Approx. EKF
Gronskis, Heitz, and Flow past a circular Boundary and
] DA Adjoint 172 DNS Vorticity field
Memin [|10] cylinder initial conditions
] Flow past a circular Reynolds stress
Foures et al. [[13] 1P Adjoint 150 RANS Velocity field
cylinder tensor
, Transonic flow past an 10% — Flow variables +
Kato et al. [26] 1P EnKF ; RANS cp on surfaces
airfoil and a wing 10 turbulent viscosity

Continues on next page...



Table 1.1 — Continued from previous page

Estimated Flow

Estimated Estimator
Reference IP/DA  Methodology Description Re » Measurements
Quantities Model
POD-
Kikuchi, Misaka, and Flow past a circular Velocity in the
i DA EnKF/PF 1000 ROM coeffs Galerkin
Obayashi [25] cylinder wake
ROM
1 EnKS/4DVar/ Circular cylinder Boundary and ¢p, Cp, Cr and
Mons et al. [27] 100 DNS
4DEnVar subjected to gusts initial conditions velocity field
Mons, Chassaing, and o ) ) o Cp, Cr, and
_ DA Adjoint Rotating cylinder 100 Initial State and Q DNS )
Sagaut [30] velocity field
Filtered-
) ] ) Circular Cylinder/Thick 100/ Velocity and )
Meldi and Poux [31] DA Covariance DNS/DDES Velocity field
Plate 80000 pressure field
KF
Symon et al. [14] and o o Reynolds stress )
] 1P Adjoint Flow past an airfoil 13500 RANS Velocity field
Symon [32] tensor
Aggregated
] Vortices strengths Pressure on the
Darakananda et al. [33] DA EnKF Inclined flat plate 500 » vortex
and positions surface
model
Incompressible 2D flow Vorticity field and  Unresolved Velocity in the
Present Study[34(35] DA EnKF past a cylinder, a flat plate  100/200 additional DNS + Bias wake or pressure
or an airfoil parameters modeling on the surface




1.3 Mathematical Background

By the very nature of an estimation problem, the state x € R" of any dynamical
system is only knowable up to a certain level of uncertainty. Mathematically, this
behavior is represented by a random vector whose possible values correspond to
individual realizations of the underlying random process. The probability that its

value falls in any given subset A € R" of the state space is given by

P(x € A) = /p(x)dx , (1.1)
A

where the probability density function (PDF) p : R"”  R™ satisfies
/ po(x)dx =1. (1.2)
For any function f of the state, we define the corresponding expected value by

Bl = [ fnpods (1.3

When it is necessary to make explicit which PDF the expectation refers to, the

notation EX[-] will be used.

An alternative way of describing the PDF of a random variable is through a sequence

of central moments «; given by

x = E[x] i=1

1.4
i>l (1-4)

where M (1) = E[exp(t (x —)E))is the corresponding moment-generating function.
In particular, note that the first-order moment @; = X corresponds to the mean of
the distribution, and the second-order central moment @, correspond to the auto-
covariance matrix C**. According to the inverse theorem, if M,(¢) is finite for all
t € {x e R|||x]| < a} for some a > 0, then M,(t) uniquely determines the PDF of
x. Therefore, in order to track the time evolution of the state of a system, one needs
to predict how the PDF changes over time, either directly or indirectly (by tracking

its moments).

41P stands for Inverse Problem, and DA stands for Data Assimilation. The latter differs from the
former by assuming a temporal evolution of the variable being tracked.

SThis quantity is defined differently for each problem.

Despite the fact that the dynamics of fluid systems are inherently infinite-dimensional, we
employ a discretization scheme to produce a finite-dimensional approximation suitable to be used in
a computed simulation.

"Note that variable ¢ here has the same dimension as x, so that M,(¢) is a scalar function.
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Besides the mean, another important feature of the PDF is the mode. The mode rep-
resents the most likely value of the corresponding random variable. Mathematically,
it is given by

my = arg max o(x) . (1.5)
Note that the mode need not to be unique and secondary modes corresponding to

local maxima may be present.

1.3.1 Weighted Inner Product and Norm

For an ordered pair u, v € R", we denote the corresponding Euclidean inner product
as
vy =ulv (1.6)

and its induced L2-norm as
llul|* = (w,uy >0, (1.7)

where the equality holds if, and only if, u = 0.

For any positive-definite symmetric matrix A, the A-induced weighted norm is given
by
luella = 1A~ ull . (1.8)

1.3.2 Gaussian Random Variables

A Gaussian®| random variable (GRV) on R” is characterized by its mean ¥ € R”
and a positive-semidefinite covariance matrix C € R™", and is often denoted as
x ~ N(&, C). Its associated PDF is given by

_ 1 LTI
PO = O exp( HE x||c) . (1.9)

The matrix C~'/? is often called the precision matrix of the Gaussian random vari-
able. Note also that for a GRV, the mean and mode of the distribution coincide.
Gaussian-distributed random variables can be completely represented by their mean
and variance, linear combination of GRVs are also Gaussian-distributed, and apply-
ing linear operators to such variables will always result in new Gaussian-distributed

random variables.

8Sometimes referred to as a normal variable.
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1.3.3 Conditional Distributions

If (x, y) € R™? is a jointly varying random variable, the conditional PDF p(x|y) is
defined as

X,
plxly) = A 2 (1.10)
p(y)
where p(y) corresponds to the marginal PDF of y given by
p(y) = / p(x, y)dx . (1.11)
Rn

1.3.4 Bayes’ Theorem
Bayes’ theorem states that for a jointly varying random variable (x, y) € R™?

oxly) = pPO1X)p(x)

LASAL A 1.12
() (1.12)

This theorem is one of the cornerstones of the Bayesian inference, and expresses how
prior beliefs (o(x)) should be updated to account for new evidence (o(y)) assuming
a model that describes the likelihood of obtaining determined data given that the
state (p(y|x)) is known. The resulting distribution (p(x|y)) is often referred to as

the posterior.

1.3.5 Maximum a Posteriori vs Minimum Variance Estimates

An estimator X(y) is a function of the observation y € R? that aims to provide
the best estimate of x according to some criteria. In the Bayesian context, a first
important notion of optimality is the minimization of the mean square error (MSE),

given by the trace of the error covariance matrix
MSE(%) = tr {E[(X — x)(% - x)"]} = E[( - x)" (¥ - x)] . (1.13)
The minimum-MSE estimator is then defined as the function
Iumse(y) = arg min MSE(X) . (1.14)

It can be shown [36] that as long as the underlying PDF admits finite mean and

covariance matrix, the minimum variance estimate is the conditional mean

Fmmse(y) = E[x|y] . (L.15)
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A second possible optimality criteria is carried out by the maximum a posteriori
(MAP) estimator. It is defined as the mode of the posterior distribution obtained by
applying Bayes’ theorem.
s B Sl p(y|%)p(x)
Emap(y) = arg iii}{}g‘w p(X]y) = arg ;z:ﬂl{}f}%w W
_ Do(X) . 1.16
arg_max p(y|%)p(¥) (1.16)

Note that when the posterior is Gaussian, the MMSE and the MAP estimator are

equivalent since the mode and the mean of a Gaussian coincide.

A third criteria would be the maximum likelihood (ML) estimator. Here X(y) is
defined as the state that is more likely to produce the observed y, regardless of any

a priori information on x. In other words,

Emr(y) = arg max p(y[X) . (1.17)

Note that the ML and MAP estimators coincide when the prior is a uniform distri-

bution.

MMSE estimators are global in the sense that they summarize the information
contained in the whole PDF when evaluating the conditional mean. On the other
hand, MAP estimators only highlight local features of the posterior PDF, something
that can be troublesome if the posterior is multi-modal, for instance.

1.3.6 Dynamical Systems

A general discrete-time controlled dynamical system can be characterized by a se-
quence of functions f; € C(R" xR R"), often referred to as the forecast model, that
describe the time evolution of the state of the system subjected to some control input.
These functions represent the available deterministic knowledge about the system at
hand. When nondeterministic or unmodeled aspects of the underlying physical phe-
nomenon are present, their effect can be taken into account stochastically. Consider

the stochastic dynamical system

X1 = fe(Xk, up) + pi s (1.18)

where fj is a general function of the n-dimensional state xi, uy is a c-dimensional
control input vector, and y is an i.i.d. sequence with PDF p; that accounts for state
disturbances and process noises. The subscript k refers to quantities taken at time

t = tx. The trajectory of this system corresponds to a Markov chain for which

p(xks1lxk) = ps(Xe1 = fi(xn, u)) (1.19)
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so that the probability that x;+; € S € R" is given by

P(xis1 € Sl) = /S ps(x = files u))dx (1.20)

We also assume that system is at least partially observable, and that there is a
function 1 € C'(R",R”) that maps the state to any observable quantity. Since in
any realistic measurement methodology involves uncertainties (noise), the typical

observation model will take the form
Yk = h(xk) + v . (1.21)

where h(x) is the observation function (y, is a p-dimensional vector), and vy is an

i.i.d. sequence with PDF p, that represents the sensor noise. Thus,

PYklxr) = po(yi — h(xy)) , (1.22)

so that the probability that y, € § € R” is given by

POy € Slxi) = /S poly — h(xe)dx (1.23)

1.4 Data Assimilation

Given a dynamical system, there are two ways of estimating its current state. A
first one requires knowledge of the state at previous times, and a forecast model that
describes the time evolution of the system. Combined, they can be used to estimate
the trajectory of the system. The accuracy of theses predictions, however, relies
not only on the preciseness of our estimate of the initial conditions but also on the
reliability of the model itself. The fidelity of the chosen model is limited not only
by our understanding of the dynamics of the system, but also by how fast are we

expected to produce such estimate given computational resources.

A second approach requires access to measurement data from the actual system and
an observation model, a function that approximately describes the mapping between
the state of the system and any available observable quantity. The problem of finding
the "best" estimate of the state(s) that conforms to the observed data according to
the model at hand is an inverse problem. Again, the accuracy of this estimate relies
upon the reliability of the assumed mapping between the state and measurements,
and the signal-to-noise ratio of the available data.
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Given these two estimates for the state of the system, one predicted from inaccurate
previous estimates and another inferred from limited available data, the goal of the
data assimilation is to determine the optimal strategy of managing the available re-
sources and combining them in order to produce an estimate that meets the accuracy

requirements.

DA methods can be classified as variational and sequential. The goal of variational
methods is to optimize the estimated trajectory of the system over a given time inter-
val while fulfilling model dynamics and conforming to the available measurements.
The problem formulation involves the definition of a cost function (which penal-
izes the mismatch between predicted and measured data and enforces the system
dynamics) in terms of a control variable (e.g., initial state). The evaluation of the
optimal control variable typically involves iteration and derivatives in the form of
a sensitivity, or adjoint, model. On the other hand, sequential methods get their
name from the fact that they are usually formulated as a sequential repetition of
two basic steps: when new measurements are available, corrections are applied to
the state estimate (analysis step); then, the state statistics are propagated forward
in time using the available dynamic model (forecast step) until new measurements
become available again. Figure[I.2]shows a graphical representation of a sequential
estimation process. The points and oval regions represent, respectively, the mean
and uncertainty (which can be seen as a contour level of the underlaying PDF) of
each estimate. Estimation methodology combines model prediction (blue figure)
to the state inferred from the measurements (red figure) to yield an improved state

estimate (green figure).

Algorithmically speaking, sequential methods are more flexible with respect to the
choice of forecast models. Because they do not require the corresponding linearized
forward and adjoint operators, models can be treated as black boxes. In terms of
performance, sequential methods tend to favor the use of more complex models in

real-time applications, since a single forward integration is needed.

In the following sections, we present a summary of the existing state of knowledge

for sequential methods as it is presented in the literature[|19, |36, [38-40]].
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Figure 1.2: Graphical representation of the estimation process. Reproduced from
[37] with permission.

1.4.1 Kalman Filtering

The fundamentals of optimal filtering®| were laid down by Kalman [4]]. The classical
Kalman filter provides a rigorous solution for the state estimation of linear systems
under Gaussian-distributed noise. The goal of Kalman filtering is to use measure-
ment data to construct an estimate of the state x; which is optimal in the sense that it
minimizes the estimation variance (or, equivalently, maximizes the likelihood) [41].
The estimate is regarded as a Gaussian-distributed random variable which is charac-

terized by its mean x; and covariance Cy. Assuming linearity, fi(x, u) = Fyx + Bru

and h(x) = Hx Eq. and can be rewritten as

Xir1 = Frxp + Bruy + M (12421)

Yk = Hyxp + vy . (1.24b)

We also assume both py; and vi are zero-mean, Gaussian, and white random pro-
cesses (ux ~ N(0, Qx) and v; ~ N(0O, Ry)) that are uncorrelated in time (E [ plT] =
Q16 and E[vkvlT] = R0y, where 0y is the Kronecker delta

Defining Yy = {y; y2 --- yx} as the set that collects all the measurements taken
from the system up to time ¢ = ¢, it can be shown that the optimum filtering process

for the unforced system (# = 0) can be synthesized in two steps [42]:

°In this context, filtering is used to refer to the problem of determining the state of a system from
noisy measurements.

10The matrices Ry € RP*P and Q; € R™ " are called the covariance matrices for the measurement
and process noises, respectively.
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* Dynamic update (or Forecast Step): The mean and covariance of the state
at the next assimilation step is estimated using Eq.

If the initial state is represented by a Gaussian random vector with mean
Xo and Cp, the linear dynamics will preserve Gaussianity and the forecast
is completely described by its mean and covariance. Since the noise is

independent of the state

B = Blxs1 Ve = E[Fexe|Ye] + E[ue| Y2 ]

= FiE[x¢|Yi] = Frxk (1.25a)
Cra1 = Bl(xke1 = Tir) ket — Fee) Y]

= B[Fi(xi = £1)(ox = 20" F 1Y) + Elpepeg Y]

+ Bl (e — %) FL Y] + BIFe(xx — Fi)a Y]

= FyCyFl + Q. (1.25b)

where the hat is used to represent forecast variables.

* Measurement update (or Analysis Step): A new set of measurement data is
incorporated into the estimate following Bayes’ rule. If the prior distribution

corresponds to the forecast estimate, the posterior distribution is given by

k11 xk+1, Ye) o(Xk+11Ye)
P(Vi+11Ye)

Since Gaussian distributions are self-conjugate with respect to Gaussian like-

P11 Yes1) = (1.26)

lihoods, the posterior distribution is also Gaussian:

1 - 1 , 1 = 0
exp | =5 llx = Xertll,,, | = @exp | =5l = Herrxllg = Slx = Tl ]
(1.27)
where « is a normalizing constant. Equating quadratic and linear terms in x

in the exponents gives, respectively

Ciar = Cidy + H{, R iy (1.28a)
Citr %kt = Cil Run + Hi R i (1.28b)

Using the Woodbury matrix identity, Eq. [[.28a] becomes
. ~ -1
Crr1 = (Ckil +Hy R 1Hk+1)
A A A -1 A
= Cir1 — Crr1HY | (R + Hk+1Ck+1HkT+1) Hy1Crs

= - Kk+1Hk+1)ék+1 , (1.29)
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. R -1

where Kj.1 = Cri1Hiq (R+Hk+lck+lH]Z+1) is the so called Kalman
gain. Note that here the inversion is performed in the measurement space
(p-by-p matrix inversion). The Woodbury matrix identity can be used again

to yield

. . -1
Kiv1 = Cry1Hyyn (R + Hk+1Ck+1H/{+1)
. . -1
= CiatHpar (R+ Hen G HY, ) %
((R + HierCnHL,, ) = Hear o HE, ) B!
A A -1 A _
= Cry1His1 (1 - (R + Hk+le+1HkT+1) Hk+1Ck+1H/{+1) R
A A T A r \7! A T p-1
= (ck+1 = CenHL,y (R + HiiCnHL, ) Hk+lck+1) HJ, R
A - _l -
= (Gl + HL R ) HL R, (1.30)
which corresponds to a inversion in the state space (n-by-n matrix inversion).
Substituting Eq. [[.29]in Eq. [1.28D]
- A-1 3 T p-l
X1 = Cra (Ck+1xk+l +H R )’k+1)
z A-1 T p-1 L
= (I = Ky 1Hps1)Xp41 + (Ck+1 +H, R Hk+1) H R "yt

= (I — Kis1Hi 1) Zp1 + Kie1 Va1 = Rert + Kot (Ves1 — Her1 %e41)
(1.31)

where the difference ( Vi+l — Hk+1§k+1) is often referred to as the innovation
vector. If the Kalman filter works optimally, the innovation sequence is

expected to be white.

Another important consequence of the fact that the posterior is a Gaussian is

that its mode can be used as a Pproxy for its mean. Therefore,
X = 21 ” ”2 21 ” 3 ”C2
X arg max €x H X X=X A
k+1 g eRn p Yk+1 k+1A1IR k+1 ol
. 1” ”2 _1 || ~ X ”2 (1 3 )
= arg min H + X=X A . 32
gxeR" 2 Yk+1 k+1X[|R ) k+1 Crst

This last equation highlights the optimization perspective of the analysis step
of the Kalman Filter[43], and will play a fundamental role later on in this

work.
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Taken together, these two steps resemble a Luenberger observer with an adaptive
observer gain. It requires the storage and propagation of the covariance matrix, an
operation that has a nominal complexity of O(n®). Therefore, the computational
cost of the filter rapidly increases with the number of the degrees of freedom of the

system and soon becomes intractable for real-time applications.

The Extended Kalman Filter (EKF)

Devising an optimum state estimator for systems modeled by nonlinear dynamics
with measurement data that is a nonlinear function of the state is more challenging.
Prospects for rigorously addressing the problem typically end up being too narrow

in applicability or too computationally expensive [44]].

For weakly nonlinear problems, the so-called Extended Kalman Filter (EKF) [45]] is
considered the standard technique. Assuming the dynamics are weakly nonlinear,
the EFK linearizes the dynamics about the estimate mean and uses the resulting
Jacobian matrices (Eq. [1.33) to evaluate the Kalman gain and update the surrogate
covariance matrix. In most cases, the nonlinear dynamics is still used to update the

estimate mean.
_of
T dx

_oh

F 7"
k ox

H (1.33)

x=X x=X

Note that the EKF still requires an explicit evaluation of the covariance matrix
and tracks its evolution as the simulation progresses. In comparison to the stan-
dard Kalman Filter, the EKF incurs the extra cost of computing the appropriate

linearization at each assimilation step.

Higher-order Kalman Filters

According to nonlinear filter theory [36]], in general, the evolution of the conditional
mean and covariance matrix depends on all the moments (an infinite number of them)
of the conditional density function. In fact, the time-evolution of the state PDF is
governed by the Fokker-Planck equation (also known as the Kolmogorov Forward
equation), a n-dimensional PDE. The only exception is, as shown by Jazwinski [36],
the classical KF (Gaussian prior and likelihood, and linear forecast and observation

models), for which the first two moments fully describe the filter.

Therefore, numerically, we must consider finite-size approximations of the posterior

PDF by means of a parametrization. If all PDFs can be considered nearly-Gaussian,
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all odd central moments can be neglected, and higher-order even moments can be
written in terms of the variance. The extended KF corresponds to the case where all
moments higher than second are neglected. A corresponding second-order filter can
be obtained by retaining the 4th-order central moments. In that case, the resulting

second-order filter is given by([36]]

¢ Forecast:

_ 1 A

Tier = BlxealVe] = fulf) + 5 (02 Ci (1.342)
. oh on |7
Crot1 = | 7=(&)| Cx | =) + Ok . (1.34b)
ox ox
* Analysis:
R+ %(;e) ¢ @(ﬁ) T+1[82hézazh] b
O0x k k ox k 2 k k
1 .
= vk — Bla(x)[Yer] - 5 [970C] (1.352)
A A ah A r *
2k = 2k + Cp —(xk) bk’ (1.35b)
ox
where
. i 0%h, 0%h; . .
O*hC?0%h} .. = L(® L) {C ¢ 1.36
{ k }U (9xk(9xl(Xk)(9xp(9xq(Xk){ k}lp{ k}kq ( a)
k,1,p,q=1
{0*hCi}, = Z {Ci}. Ol (%) (1.36b)
l J.k=1 ]ka d

Note that the second-order filter equation differs from the EKF equations by the
presence of the terms [azfék] , [(’)Zhék] and [Gzhégézh] . This implies that the
effect of nonlinearities in the dynamics of the conditional mean depends on the
magnitude of the product between the second partial derivative of the forecast and
observation models, and the estimation error variance. Therefore, even for systems
in which the second partial derivatives of the model are small in comparison to
their respective first derivatives, the nonlinearities can play a important role at early
times of the estimation history, when the variance of the estimate is typically large.
Moreover, analyzing Eq. (see appendix [D), we can note that the addition of
the extra term to the RHS plays the same role of a bias correction term and ensures

the innovation vector has zero expectation (an optimality feature of the Kalman
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filter). Note that its magnitude scales with the estimation variance. Furthermore,
the importance of the extra term added to the LHS can be accessed by comparing it
to the magnitude of R. Because it has a damping effect on the corrections, ignoring

it leads to overcorrections.

The Unscented Kalman Filter (UKF)

The robustness and reliability of the EKF is impaired by the linearization process.
For example, Julier and Uhlmann [46]] showed that even a trivial nonlinear transfor-
mation from polar to Cartesian coordinates is enough to yield significant deviations
in tracking the correct state. For cases where there are strong nonlinearities, the
Unscented Kalman Filter tends to deliver better results [47]]. This scheme provides
an alternative to the explicit evaluation of the second derivatives of the forecast
and observation model, by employing a deterministic sampling scheme (unscented
transformation) to generate a set of points around the prior mean (sigma points)
which are propagated by the nonlinear functions and then used to reconstruct the
posterior mean and variance with second-order accuracy. Although it has been
demonstrated that it delivers excellent results, it requires 4n + 1 sigma points (or
2n + 1, if there is no process noise) for the forecast step and 4p + 1 sigma points for
the analysis step, and the corresponding computational cos{'T| becomes prohibitive

for large systems.

14.2 3D-Var

A well-known alternative for sequential data assimilation of high-dimensional sys-
tems is the 3D-Var[48]]. Just like the Kalman filter, 3D-Var can be formulated as
an observer in which the gain is calculated to minimize a cost function, with the

general format
J(x) = [yo = h()]" R [y — h(0)] + [x — xp] =7 [x = x/] (1.37)

where yy is the measurement taken from the tracked system, xy is the prior estimate
for the state, /(x) is the observation function. R, as a measure of the reliability
of the measurements, is a constant matrix that weights the measurement mismatch.

Differently from the KF methodology that regards X as time-varying estimate of the

! Although more expensive than a KF for a given number of degree of freedom, the cost scaling
is the same (O(n%)) if we assume the forecast model to have cost O(n?).
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state covariance matrix, 3D-Var regards it as a predefined constant weight matrix.
Since there is no explicit tracking of the covariance matrix, 3D-Var is far less
computationally demanding than KF, but estimator performance depends heavily on
the a priori choice of . For a general function /(x), the minimizer of Eq. is
usually obtained using an appropriate iterative method (e.g., quasi-Newton method).
If h(x) = Hx is a linear function, the minimizer of the aforementioned cost function
is given by

X = Xx + K(yr — Hxy) , (1.38)

where K = HT (R+ HZH") ~1is a constant matrix.

1.4.3 Ensemble Methods

The most complete description of the state of the system under scrutiny is given
by its probability density function p(x). For applications in fluid mechanics, the
dimension of the domain of integration can easily be of order O(10°) or more, and
a direct numerical evaluation of this integral (using an appropriate quadrature rule)
is prohibitive. This difficulty can be interpreted as one of the manifestations of
the curse of dimensionality, first introduced by Bellman [49]]. It indicates that the
number of samples needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with respect to the number of degrees of freedom

(i.e., dimensionality) of the function.

Instead, one can adopt a Monte Carlo approach and represent the PDF as a com-
bination of Dirac delta functions corresponding to an ensemble of ¢ independently

drawn random samples from p(x), denoted as x;,
14
puc() = = ) 0x =), (1.39)
i=1

for which the expected value of f(x) can be evaluated as
q
1
Euclf0] = [ Fopuctods == 1), (1.40)
i=1

It can be shown [39] that Ey¢[f(x)] is an unbiased estimate of E[f(x)], whose

variance converges to zero according to

VarlEyclf(]] = éVar[f(x)] , (1.41)
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where

q
Varlf(0) = — D () =B/ W) (142
i=1

Note that rate of convergence 1/+/q is independent of the dimensionality of the state.
That notwithstanding, the number of particles required to achieve a given accuracy
threshold surely depends on the dimensionality of the state. Usually, one can expect
at least some number in the same order of magnitude of the dimensionality of the

state.

For all the KF variants that were discussed so far, the computational cost of the prop-
agation of the covariance matrix Cy has the same order of magnitude as n evaluations

of the forecast operator and becomes quickly prohibitive for large systems.

Particle Filter (PF)

Under nonlinear dynamics, the Probability Density Function (PDF) of the estimate
need not remain Gaussian, and the first two moments cease to fully represent the
state. Instead, the Fokker-Plank PDE, that describes the evolution of the full PDF
in time, can be discretized using a Lagrangian method (something that can be
interpreted as a Monte Carlo sampling) to yield what is commonly referred to as
Particle filters[23, 50]. Here no assumption is made on the shape of the state PDF.
The dynamical model is responsible for forecasting the trajectory of these particles
through time. Measurement data is incorporated into the description of the PDF
by assigning weights to each of the particles which are updated whenever new

measurements are available. Thus,
1<
pac(aly) = = D widlx = ). (1.43)
i=1

where the weights are computed as normalized likelihoods:

__ pOylx)
> pOlx)

The PDF of the observations conditioned to the state is described by measurements

(1.44)

i

statistics, and is usually taken to be a Gaussian:

pOo1x) ~ exp (=3 [y = HC)l” B [y = ()| (145)
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Note that the measurements don’t influence the trajectory of the particle. Therefore,
there is no guarantee that the particles will remain in the region of the state space that
is relevant to the measurement data obtained. Consequently, a considerable fraction
of the ensemble may end up with negligible weights, hindering the accuracy of the
scheme. This feature of the method is the most common cause of filter divergence.
In order to avoid this issue, the ensemble must be constantly resampled to ensure
the particle to remain relevant. Leeuwen [50] describe several methodologies to
accomplish this task. That notwithstanding, because PF schemes rely on the direct
sampling of a n-dimensional state space, the curse of dimensionality [49] is severe
for these techniques, and they are only computationally tractable for systems of

reduced dimension.

If the state and the likelihood can be described as approximately Gaussians, the need
for resampling can be eliminated by employing an ensemble variant of the Kalman
filter, namely the Ensemble Kalman Filter (EnKF).

1.5 The Ensemble Kalman Filter (EnKF)

Aiming at overcoming the computational cost limitation, Evensen [51]] proposed a
Monte Carlo approximation to the KF in which the internal state of the estimator is
represented by an ensemble of particles so that the corresponding ensemble mean
and covariance matrix are used to approximate X and C. This method was named
Ensemble Kalman Filter (EnKF), and since then has been extensively used for
high-dimensional systems (thousands of degrees of freedom or more) associated
with a computationally onerous forecast (as in meteorology, oceanography and
geophysical flows Bengtsson, Snyder, and Nychka [52]], Evensen [53]], and Anderson
and Anderson [54]). In such context, this technique has shown to provide a correct
estimate of the first two moments of state of the system even for a small ensemble

size (provided that the Gaussian assumption appears to hold) [55].

The main advantages of the EnKF in comparison to the variational methods or

standard KF formulations are:

* It does not require the adjoint of the dynamical model.

* It has low storage requirement (comparing to the storage needed to store the

full state statistics).

* It has a natural probabilistic interpretation under a Bayesian perspective.
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Figure 1.3: Schematic representation of the EnKF algorithm.

* Due to its formulation in terms of independent particles, it is embarassingly

parallel.

1.5.1 Algorithm

Figure[[.3]shows a schematic diagram of the EnKF algorithm. Having an ensemble-
based representation of the state in mind, consider an ensemble of ¢ initially indepen-
dent states sampled from a normal distribution with predefined mean and covariance
matrix. The expected value of the system state corresponds to the ensemble average

of these states
1 .
R >l (1.46)

—gex? g, (1.47)

and the scaled output perturbation matrix H Ay (assuming the linearity of the obser-

vation function, i.e., h(x) = Hx) as

1 _ _
A = =3y = T = 3l (148)

q_
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()
k
compute the ensemble covariance matrix

where y,”’ = h(x,&i)) and yj is the ensemble average of the outputs, one can finally

Cr = Ar(Ap)T (1.49)

which is an estimate of the state covariance matrix.

The filtering algorithm can be summarized as a succession of two steps: a forecast

step (or dynamic update) and a analysis step (or measurement update).

Forecast Step

The state of each ensemble member at the next time step is estimated using the
(possibly nonlinear) dynamic model (Eq. [I.18)):

2 = 6 u) + g (1.50)

where the hat is used to represent forecast variables. If applied to a linear system,
this ensemble approach reduces the cost associated with the time-propagation of the
state statistics from O(n?) (classical KF) to O(n*q) (EnKF). Since typical ensemble
sizes are no larger than O(10?), the overall cost is usually reduced by several orders

of magnitude.

Analysis Step

The ensemble members are corrected in order to minimize the error with respect
to the measurements in the presence of noise and model uncertainties. There are
several paths that lead to the EnKF analysis formula. We here adopt the optimization

approach by looking for the minimizer of the cost function

1 1 A
I = 3 llye = Hxll + 5 1x = el

2
1 _ 1 AL R
= E[yk - Hx]TR l[yk — Hx] + E[x - xk]TCkl[x — Xr] . (1.51)

This optimization problem is then restricted to the affine space generated by the
prior estimate of each of the ensemble members and the subspace spanned by the

scaled perturbation matrix A x. In other words, we look for a solution in the form

X=X+ Ay, (1.52)
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where v € RY is the correction coeflicient vector.
After performing the proposed change of variables, we can restate the objective of

the analysis step as finding
v = arg min J(v) (1.53)

veR4Y

for each of the ensemble members, where

1 1 . A
J(v) = S+ Sllye = Hx = HAevlg - (1.54)

Since J(v) is quadratic in v, the solution is unique and corresponds to the root of

DJv)=v — (HA) R ' (yx — Hix — HAxv) =0, (1.55)
which is given by
_ AN -1 AN ! AT p-1 -
vi = [1+ (HA)' R\ (HAY|  (HA)' R ' (yx — Hx) (1.56a)
N N A~ -1 R
= (HAY" [R+ (HAYHAY] ™ (e — Hi) | (1.56b)

where we have used the Woodbury matrix identity to obtain the alternative solution.

Notice that here we have the possibility to choose between performing the analysis
in the ensemble space (g-by-g matrix inversion - Eq. [[.574), or in the measurement
space (p-by-p matrix inversion - Eq. [1.57b), depending on which one is more
advantageous[56]. In either case, ¢ < n or p < n such that an enormous reduction

in computational expense is achieved compared to the KF/EKF.
The final solution is then obtained by projecting these coefficients back to the state
space:
Xp = X + Ak [I + (HAk)TR_l(HAk)] B (HAk)TR_l(yk - Hxy) (1.57a)
e LR oirrd : NIVAES .
= &k + Ak HAY)" [R+ (HAYHAY] ™ (v — Hiy) (1.57b)

Algorithmically, when the inversion is done in the measurement space, instead of
solving for v, the representers’ formulation proposed by Evensen and Leeuwen [57]]

is used:

[R + (HAN)HAN)| b = (yi — Hi) (1.58a)
xp = &k + Ar(HA) by (1.58b)
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where the columns of Ay (HA;)" are called the representers and represent the influ-
ence vectors for each measurement. The vector by then represents the magnitude

by which each of the representers actuates in X.

For each ensemble member, y; must be independently sampled from a normal
distribution whose mean is the measurement vector obtained from the estimated
system, and whose variance is Rx. Due to this sampling step, this algorithm is often
referred to as perturbed observations (or stochastic) EnKF. Although this procedure
introduces an additional sampling error, previous work by Lawson and Hansen [58]]
suggested it performs better in the presence of nonlinearities than deterministic

alternatives.

It is worthy to note that one never needs to explicitly compute the covariance Cy
since it suffices to evaluate Ay(HAy)" and HAy(HA)". Both the Particle Filter
(PF) and the EnKF algorithms share the same forecast step, but their analysis steps
are distinct. While in the PF the posterior PDF corresponds to a linear combination
of the prior ensemble whose weights are calculated using the Bayes’ rule, the EnKF
assign equal weights to all particles and correct the ensemble members themselves
according to Kalman’s update rule[23]]. Because the particles themselves are driven

towards the measurements, the need for resampling is eliminated.

1.5.2 Initialization Scheme

In order to keep the cost at tractable levels, it is desirable to use ensemble sizes that
are much smaller than the dimension of the state. Thus, being able to efficiently
sample the initial ensemble plays a fundamental role in the filter performance.

Therefore, following Evensen’s scheme[19]:

1. Using a long series of snapshots obtained from a long simulation of the phe-
nomenon we are interested in, we build the data matrix X = [x(') x@ o x(]
and obtain the corresponding POD modes by computing the singular value

decomposition

1,
X = NX]INXI (1.59)

1
N -1

(X — xlixy) = UZVT, (1.60)

where x is the mean flow.
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2. In order to generate g independent initial ensemble members, we restrict it to

the subspace spanned by the first ¢ POD modes:

Ay = gr(randn(q)) (1.61)
Xo = Vg - 10,2,A, (1.62)

where Uq corresponds to the first g columns of U, and iq is the upper-left
g X q submatrix of X. Here randn(q) represents a g X g matrix whose
entries where independently sampled from a zero-mean Gaussian distribution
with unitary variance, and gr(-) correspond to an implementation of the QR

decomposition.

A similar approach can be used to generate the ensemble of noise vectors needed to

force the dynamics:

Ay = gr(randn(q)) (1.63)
My = anJq - 10,5, A, (1.64)

where « is a parameter that controls the noise magnitude. In this case, the corre-

sponding error covariance matrix is given by Q = azﬁqié UqT.

1.5.3 Ensemble Size

Were the KF hypotheses to hold (linearity of forecast and observation models and
Gaussianity of all variables and noise processes), optimality can only be expected as
q — oo. Under nonlinear dynamics, this sub-optimum filter can only be expected to
provide estimates for the first two moments of a possible general state PDF. In fact,
Le Gland, Monbet, and Tran [59] demonstrated that in general the EnKF exhibits
a ¢~ /2 rate of convergence to the estimate asymptotic PDF. However, this limiting
distribution may differ from the optimum filtering distribution, which may be multi-

modal or exhibit other higher-order features in the presence on nonlinearities.

In a practical setting, the ensemble size g required to guarantee accuracy will
depend on the effective state space dimension (the dimensionality of the manifold
in which the most relevant dynamics is confined) and on our ability to recognize
and sample this subspace[55]. Nevertheless, typical ensemble sizes do not exceed
a few hundreds in view of the available computational power, and for such small

ensemble sizes the EnKF exhibits some interesting characteristics.
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Since the correction added to each ensemble member during the analysis step is a
combination of the forecast ensemble states, the analysis step operates only in the
subspace spanned by the ensemble at hand [60]]. Therefore, the choice of initial
ensemble can limit, at least initially, the effectiveness of the correction applied by
the estimator to the ensemble members. The impact of this choice on the long-
term behavior of the filter is highly dependent on the dynamical system itself. A
very strong attractor, for instance, can render the choice of initialization scheme

secondary.

1.5.4 Covariance Inflation

Many sources of error in the EnKF are extrinsic, i.e., external, to the filtering
scheme being used. These include the loss of Gaussianity due to the presence of
nonlinearities and by inaccurate models. Dealing with these errors will be a major
theme of this thesis, but they all have in common the fact that they are related to the
choice of forecast and observation model and are not directly related to the EnKF

algorithm.

On the other hand, some error sources are intrinsic to the EnKF methodology and
may be present even when perfect linear models are employed and all Gaussianity
requirements are met. The main source of intrinsic error in the ensemble Kalman
filter is the sampling error [61]. As pointed out in the previous section, even
though the ensemble statistics are expected to slowly converge to their true value,
the improved performance claim laid out by ensemble methods is built upon the
hypothesis that just a reduced number of ensemble members (¢ < 100) may suffice

to represent the first and second-order statistics of high-dimensional systems (n >>).

The undesirable effects off under-sampling are twofold: generation of spurious
cross-correlations, and underestimation of error covariances. When Houtekamer
and Mitchell [[62] first reported these issues, they used the analogy of inbreeding
to describe the problem: the gain used to update the ensemble is computed using
estimated for the statistics evaluated from the same ensemble. Later, Leeuwen [63]]
noted that a finite ensemble size leads to a consistent underestimation of the error
variance. To use a CFD analogy, the EnKF behaves as if the error term in the
modified equation (where the sampling takes the place of the discretization) always

acts by damping the variance of the system.

In the absence of process noise and for a fixed measurement noise level, as the

estimated covariance decreases, the weight given to the measurement data in the
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analysis step decreases and eventually becomes negligible. This phenomenon is
known as covariance collapse, in reference to the fact that the ensemble members
collapse onto a single trajectory. The effect of the sampling errors will accelerate this
collapse, and this leaves the filter vulnerable to ignoring new information contained

in the measurements.

Aiming to mitigate the effects of the under-sampling errors, Bocquet [61} 64, 65]
proposed a variant of the EnKF called Finite-size Ensemble Kalman Filter (EnKF-
N) that assumes a different prior in the analysis step. Since the true values of the
ensemble mean and covariance matrix are unknown, Bocquet argues that the prior
should be represented by a multivariate Student’s t-distribution with g — 1 degrees

of freedom. The associated cost function
1 PN 1
Iw) = 5 ||y = A+ A + %m (1 - ||v||2) (1.65)

no longer has an explicit analytical formula for its minimizer (even when A(x)
is linear), and the solution needs to be found iteratively. A nice feature of this
formulation is that the Gaussian prior is recovered as the ensemble size tends to
infinity. Even though this scheme obtained good results when compared to other
methodologies to mitigate under-sampling errors, the cost involved in minimizing
the modified cost function can be prohibitive. Bocquet and Sakov [64] showed that
when A(x) is linear, the minimizer can be easily found by splitting the optimization
problem in two: a scalar non-quadratic dual cost function on a compact interval,

and a Kalman-like quadratic function.

Due to these challenges, an ad-hoc correction to under-sampling has become com-
mon. The technique is a combination of covariance localization (CL) and covari-
ance inflation (CI). The issues raised by the spurious cross-correlation is usually ob-
served when estimating dynamical systems in which the variables become spatially
uncorrelated beyond some characteristic separation (e.g., a length scale in turbulent
flows). It is statistically expected that small ensemble sizes will not be able to accu-
rately capture this vanishing cross-correlation, and degrade the performance of the
estimator. Hamill, Whitaker, and Snyder [66] proposed a localization scheme that

explicitly enforces a decorrelation length in the computed cross-covariance matrix:
Cv = L-(AcA}), (1.66)

where
d?
Lij = exp (—2—’) (1.67)

corr
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is a localization matrix whose entries enforces a decorrelation pattern onto the
ensemble-evaluated cross-covariance matrix. The dot product here corresponds to
the element-wise multiplication, d; ; corresponds to the spatial distance between the
ith and jth entries in the state vector, and /.., is some characteristic decorrelation

length for the problem in scrutiny.

The covariance inflation, on the other hand, artificially increases the ensemble
covariance in order to weight the measurement data more heavily. Kelly, Law, and
Stuart [67] showed that for a large enough inflation, the boundedness of the EnKF

can be guaranteed. In general, the covariance inflation can be implemented as
29 = F+ 2@V - F) + gV, (1.68)

where U is the additive covariance inflation vector that is usually drawn from a zero-
mean normal distribution with covariance S, and « is the multiplicative covariance
inflation parameter. Both Whitaker and Hamill [|68] and Bocquet, Raanes, and
Hannart [65] suggested that multiplicative inflation is especially useful in mitigating
the pernicious effects of the sampling errors associated with a small ensemble while
additive inflation seems to be most effective in capturing sources of error that do not
depend on the assimilation process such as the system modeling error. However,
any practical implementation of an additive scheme requires prior knowledge of this
modeling error (namely, a way of producing the matrix §). Multiplicative CI can
delay the collapse of the covariance, while using additive CI will enforce a lower
bound to the system covariance. In addition, the inflation parameter must be chosen

carefully to avoid a divergent result.

The simplest multiplicative covariance inflation scheme is the one suggested by An-
derson and Anderson [54] (AA), in which « is a scalar (typically, @ € [1.005, 1.05]).
This scheme corresponds to use gx(xx) = \/CTk . Its effect on the analysis scheme
can be better understood by considering a slightly modified version of Eq. [[.51]that
now includes the inflation parameter @. Using the posterior mode as a proxy for the

posterior mean, we seek to minimize

A

1 1 .
J(x) = = llye = R 7 + % llx — &l
a

2 C
1 1 N
= 5l - R R [k — h(x)] + 5ol = $TC M e - &, (1.69)

where the first term penalizes the data mismatch between the observed measurement

vx and the ones predicted by the proposed observation model, and the second term
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penalizes the distance from the estimate forecast by the proposed dynamical model.
The relative importance between these two models is prescribed by the matrices
R (measurement noise variance) and Cy (ensemble prior variance) that represent,
respectively, the level of reliability that is attributed to the data and the forecast
model. Note that the multiplicative covariance inflation acts by reducing the relative
importance of the second term in the cost function. As the filter is led to have a
decrease sense of reliability in the prior, corrections tends to be more aggressive
when inflation is present. Also, according to Luo and Hoteit [69], there is a direct
connection between the multiplicative covariance inflation and robustness of the

solution (in the H,, sense).

After analyzing the effect of sampling errors introduced by limited-size ensembles,
Sacher and Bartello [70] concluded that more inflation is needed when observations
lead to large corrections to the estimate. Later, Whitaker and Hamill [|68]] proposed

an inflation scheme termed relaxation-to-prior spread (RTPS). In this case, « takes

ob— o
a=1+0 (;) , (1.70)

the form of the vector

o4
l

where 0 is a scalar (typically, 6 € [0.5,0.95]), and O'ib and o are, respectively, the
prior and posterior ensemble standard deviation for the i-th state variable. Note that,
because a is now a vector, its multiplication with the perturbation vector () — )

must be performed component-wise.

1.5.5 Enforcing Constraints

The corrections issued by the classical EnKF to each of the ensemble members are
drawn from the subspace spanned by the perturbation matrix Ay. Whatever linear
constraints enforced to the prior ensemble members will, therefore, be preserved
on the posterior ensemble. That is the case for the divergence-free and no-slip

conditions in the fluid flow problems considered in this thesis.

This property, however, can be disrupted by ad-hoc covariance inflation and lo-
calization schemes. Since the AA CI scheme results in particles that are linear
combinations of the previous ones, they will naturally satisfy any kinematic con-
straints (boundary conditions). That is not the case with the RTPS scheme, which
may yield non-conforming particles since each state variable is updated indepen-

dently. We present an a posteriori fix for this error in the context of fluid flows in

section 2.1]
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1.5.6 Nonlinear Observation Function

As shown in section [I.5.1] the usual EnKF algorithm is suitable for handling both
linear and nonlinear dynamical models. In both cases, the forecast step is carried
out by applying the dynamical model to each of the ensemble members. When non-
linearities are present, however, there is no guarantees of preserving the Gaussianity
of the state. In general, an error is introduced here by only tracking the first two

moments of the underlying PDF.

In the analysis step, the formal goal is to find the mean of the posterior distribution,
as this is the state that minimizes the mean square error. Since the posterior mean is
cumbersome to evaluate, the common approach is to approximate it by the posterior
mode. Thus, we must search for the minimizer of Eq. [I.69that belongs to the affine

subset generated by the prior estimate £, and ensemble perturbation matrix Ay.

The solution to this optimization problem must fulfill the zero-gradient criterium

on, " 1.
DJ(x) = — a(x)] R yx — h(x)] + ;c,;l[x - %]=0. (1.71)

When the observation function is linear, i.e., h(x) = H(x), J(x) is a quadratic in x

and the DJ(x) has a single root given by

xp = argmin J(x) (1.72a)
x€Rg+span(Ay)

= &+ [H'RH + (2Co)™)| ™ H'R™ (3 — Hi) (1.72b)

= & +aCH [R+aHCHT] ™ (i — H&) - (1.72¢)

However, when A(x) is nonlinear, J(x) is no longer quadratic and may not be convex
or have a single minimum. Furthermore, as the gradient H(x) = g—fi(x) is now state
dependent, Eq. cannot be used to directly compute the minimizer of the cost
function. Several remedies have been proposed, which are discussed next.

Implicit Linearization

This approach was proposed in an appendix of Evensen [[19]]. We st