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ABSTRACT

Regardless of the plant model, robust flow estimation based on limited measure-
ments remains a major challenge in successful flow control applications. Aiming
to combine the robustness of a high-dimensional representation of the dynamics
with the cost efficiency of a low-order approximation of the state covariance matrix,
a flow state estimator based on the Ensemble Kalman Filter (EnKF) is applied to
two-dimensional flow past a cylinder and an airfoil at high angle of attack and low
Reynolds number. For development purposes, we use the numerical algorithm as
both the estimator and as a surrogate for the measurements. In a perfect-model
framework, a reduced number of either pressure sensors on the surface of the body
or sparsely placed velocity probes in the wake are sufficient to accurately estimate
the instantaneous flow state. Because the dynamics of these flows are restricted to
a low-dimensional manifold of the state space, a small ensemble size is sufficient
to yield the correct asymptotic behavior. The relative importance of each sensor
location is evaluated by analyzing how they influence the estimated flow field, and
optimal locations for pressure sensors are determined.

However, model inaccuracies are ubiquitous in practical applications. Covariance
inflation is used to enhance the estimator performance in the presence of unmodeled
freestream perturbations. A combination of parametric modeling and augmented
state methodology is used to successfully estimate the forces on immersed bodies
subjected to deterministic and random gusts. The robustness of high-dimensional
representation of the dynamics to the choice of parameters such as the Reynolds
number is inherited by the estimator, which was shown to successfully estimate
the reference Reynolds number on the fly. Spatial and temporal discretization can
constitute a second source of errors which can render numerical solutions a biased
representation of reality. Left unaccounted for, biased forecast and observation
models can lead to poor estimator performance. In this work, we propose a low-
rank representation for the bias whose dynamics are represented by a colored-noise
process. System state and bias parameters are simultaneously tracked online with
the Ensemble Kalman Filter (EnKF) algorithm. The proposed methodology is
demonstrated to achieve a 70% error reduction for the problem of estimating the
state of the two-dimensional low-Re flow past a flat plate at high angle of attack
using an ensemble of coarse-mesh simulations and pressure measurements at the
surface of the body, compared to a bias-blind estimator. Strategies to determine
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the bias statistics and to deal with nonlinear observation functions in the context of
ensemble methods are discussed.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation

In the aeronautical context, unsteady conditions, such as the ones that would result
from a maneuver or from the occurrence of gusts, are ever present. The agility and
maneuverability of a fighter or the perceived level of comfort of a commercial aircraft
could be significantly enhanced if we could robustly estimate the instantaneous flow
state from the available measurement data (e.g. pressure readings on the wings and
fuselage), and act accordingly using closed-loop flow control[1]. In this work we
focus on one of the two key ingredients to any successful closed-loop control design:
the ability to predict the state of a fluid system and forecast its evolution.

Figure 1.1 can be used to describe how different scientific communities have been
approaching the dilemma between model complexity (x-axis) and estimation rate
(y-axis). Estimation rate refers to the number of forecasts per unit time, and,
for on-line estimation, is set by the system’s dynamics but highly constrained by
the available computational power. The gray area between the axis represents
the choices of model complexity and estimation rate that are achievable with the
currently available computational power. The horizontal dashed line represents the
minimum estimation rate that would allow us real-time prediction. Because standard
estimation techniques don’t scale well with an increasing number of degrees of
freedom, the control engineering community will generally favor low-rank models
that preserve limited, but dynamically important, features of the system. On the
other hand, fluid mechanicists, particularly those in the CFD community, typically
use every addition to the available computational power to simulate models that are
more complex and reliable than their predecessors, even if these simulations take
months.

If performing closed-loop control is the end goal of this estimation, then the real-
time requirement is fundamental, and only the solutions that lie above the horizontal
dashed line are ultimately useful. In the flow control community, one common ap-
proach is to use dimensionality reduction techniques such as Balanced Truncation[2]
or Eigenvalue Realization Algorithm [3] to highlight the most important features of
the dynamical system under scrutiny. The resulting reduced-order models (ROM)
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can be made small enough to allow the use of the standard algorithms, but their
well-known fragility to the specification of initial conditions and flow parameters
(e.g., Reynolds number) can constitute a major applicability limitation. Therefore,
it would be desirable to seek more robust solutions that lie close to the intersection
of the real-time barrier with the computational power barrier.

Figure 1.1: Schematics on the current development of estimation techniques in the
fluid mechanics context.

Although several state estimation techniques have been developed, their application
to fluid dynamics is challenging due to the nonlinearity and high dimensionality of
the underlying physical phenomena. Fluid systems are represented by spatially con-
tinuous models and any suitable discretization results in high-dimensional discrete
models. Whereas feedback control applications require real-time state estimation,
the computational cost of standard control techniques such as the Kalman filter [4]
do not scale well with increasing flow complexity and faster time scales. Also,
numerical simulations require appropriate boundary and initial conditions that are
often uncertain[5]. Measurement data can provide the necessary information to
close the gap between simulation and experiments. The development of method-
ologies for the seamless integration of measurement data and (often sophisticated)
mathematical models is the goal of a research area know as data assimilation (DA).
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1.2 Bibliographic Review

Table 1.1 summarizes recent works on data-driven flow estimation. Two main
goals have driven the fluid mechanics community to combine numerical models and
experimental data: flow reconstruction and flow prediction.

The first application is as a form of extending the experimental reach by performing
what is commonly referred to as enhanced experiment or hybrid simulation. As
pointed out by Nisugi, Hayase, and Shirai [6], taken individually, computational
fluid dynamics (CFD) and experimental data lack the ability to fully represent the
physical phenomena under scrutiny. Despite being a direct observation of the true
physics, experimental data is inevitably corrupted by noise and only a small subset
of the relevant physical information can be measured1. In addition, there can be
uncertainties and biases in the transduction process. On the other hand, limited
computational resources restrict our ability to accurately represent the underlying
flow physics, especially for higher Reynolds numbers. Moreover, assumptions
regarding the initial and boundary conditions are often too simplistic to accurately
represent the conditions that would be encountered in an experimental setting. But,
despite all these limitations, a numerical solution allows for the evaluation of physical
quantities that are unattainable using instrumentation. By combining the strengths
of both approaches, the resulting hybrid solution is able to provide flow information
that is consistent with the observed experimental data and recovers quantities that
were not directly observed in the experiment Hayase [7].

Nisugi et al. [6] and Hayase et al. [5] incorporated measurement data into a
simulation using a feedback controller whose constant gain was determined by trial
and error to obtain the best fit to experimental data. Other researchers formulated
this problem from a variational perspective, in which they seek to minimize a cost
functional describing the data mismatch subjected to constraints2[8]. Papadakis and
Memin [9] and Gronskis, Heitz, and Memin [10] treated the system dynamics as
deterministic, and used a variational framework to estimate the initial and boundary
conditions that were most consistent with the available observations.

Suzuki et al. [11, 12] examined the problem of estimating the flow past a NACA
0012 airfoil for different angles of attack and Re between 103 and 104. Their

1This limitation can manifest itself in many ways: limited field of view, limited temporal and
spatial resolution, methodological inability to measure some quantities (e.g., vorticity or Reynolds
stresses), etc.

2The constraints can be dynamical, such as enforcing the estimate to be a solution of the
Navier-Stokes equations, or kinematic, such as enforcing the divergence-free condition.
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assimilation approach consisted in taking a weighted averaged of the DNS solution
and a rectified version of the experimental data. The rectification procedure ensured
that the added data satisfied the divergence-free condition. Their conclusion was
that the hybrid simulation performed better3 than an unsteady Reynolds-averaged
Navier-Stokes (URANS) simulation for higher angles of attack. Foures et al. [13]
and Symon et al. [14] used a variational method to incorporate observations of
the mean velocity profile into a RANS simulation in order to reduce the amount
of measurement noise and estimate physical quantities, such as the Reynolds shear
stress, that were not directly measured.

The second goal of data assimilation has closed-loop control in mind. In this case,
the estimator accuracy requirements must be weighed against turnaround time (see
Fig. 1.1). Within the flow control community, the most common approach to flow
estimation is the development of reduced-order models (ROMs) whose number of
degrees of freedom are small enough to be tractable with the classical estimation
techniques. Provided these models have a low number of degrees of freedom,
then the classical control techniques become feasible. Gerhard et al. [15] used a
3-mode POD-Galerkin model (enhanced with the shift mode) to design a controller
to suppress vortex shedding behind circular cylinders at low Reynolds numbers.
Aleksic et al. [16] used data from 15 pressure sensors and a 5-mode Galerkin model
to decrease and stabilize the drag of a 2D bluff body. Ahuja and Rowley [2] used
a 22-mode ROM obtained by Balanced Truncation to design a LQG controller for
the flow past an inclined flat plate. Flinois and Morgans [3] used the Eigenvalue
Realization Algorithm (ERA) to construct an unstable 10-mode ROM which was
then used to design H∞ controllers to stabilize the system. These ROMs, however,
are fragile with respect to initial conditions and flow parameters like the Reynolds
number[1]. Alternatively, researchers such as Fukumori and Malanotte-Rizzoli [17]
and Suzuki [18] proposed the use of reduced-order approximations to the Kalman
filter that restrict the correction to the larger scales of the solution and alleviate the
computational cost involved.

As an alternative approach, researchers in fields such as meteorology, oceanography
and geophysical fluid dynamics have developed data assimilation algorithms that
are inherently capable of dealing with high-dimensional nonlinear systems and high
volumes of measurement data [19, 20]. These methods take advantage of the
increasingly available computational power and efficient parallel implementations,

3The hybrid simulation produced better estimates for the lift coefficient and the dynamics of the
vortical structures in the shear layer.



5

and had not, until recently, received much attention from the flow control community.
A three-paper series by Bewley and his collaborators aimed to apply Kalman filtering
to devise a state estimator for laminar [21] and turbulent channel flow[22, 23].
Following a rigorous derivation of stochastic models for the system noises, they
were able to successfully track the wall-normal velocity and vorticity based on
pressure and wall skin friction. For the turbulent channel flows, an Ensemble
Kalman Filter was shown to achieve at least one order of magnitude less error than
previously reported in the literature at 20 viscous units from the wall. Around the
same time, Kato and Obayashi [24] used the Ensemble Kalman Filter to estimate
the velocity field behind a square cylinder by assimilation of pressure measurements
at the faces of the body. These two papers appear to be the first application of
ensemble-based estimation methods to classical fluid dynamics problems.

Recent applications of the EnKF include Kikuchi, Misaka, and Obayashi [25], who
compared the performance of a EnKF and a Particle Filter applied to a POD-Galerkin
model of the problem of the flow past a cylinder, and Kato et al. [26], who used a
variation of the EnKF to achieve synchronization between a RANS numerical simu-
lation of a steady transonic flow past airfoils and pressure experimental data. Mons
et al. [27] used an ensemble Kalman smoother and other ensemble-based variational
methods to reconstruct freestream perturbation history based on measurements taken
on and around a circular cylinder subjected to it.

While the use of ensemble methods make the estimation of complex flow systems
viable, it also renders the estimator more vulnerable to the deleterious effects of
modeling errors. However, past works in flow estimation did very little in proposing
ways of quantify and mitigate these effects, and the advent of a robust and efficient
error control methodology could potentially improve the performance of sequential
estimators.
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Table 1.1: Summary of the recent contributions to the area of flow estimation.

Estimated Flow

Reference IP/DA4 Methodology Description Re5
Estimated
Quantities

Estimator
Model

Measurements

Bewley and Protas [28] DA Adjoint
Incompressible 3D

turbulent channel flow
100 Initial State

Linearized
N-S

Skin friction and
pressure

distribution
Hayase, Nisugi, and

Shirai [5] and Nisugi,
Hayase, and Shirai [6]

DA
Constant-gain

observer
Flow past a square

cylinder
1200 Velocity field DNS

Pressure on square
faces

Hoepffner et al. [21] DA KF/EKF 3D Laminar channel flow 3000
Wall-normal
velocity and

vorticity

Linearized
N-S

Skin friction and
pressure

distribution

Chevalier et al. [22] DA EKF
3D Turbulent channel

flow
100

Wall-normal
velocity and

vorticity

Linearized
N-S

Skin friction and
pressure

distribution
Ruhnau, Stahl, and

Schnorr [29]
DA Adjoint Synthetic turbulent flow 10 Vorticity field DNS Optical flow

Papadakis and Memin [9] DA Adjoint
Incompressible 2D

turbulent field

Not
re-

ported
Initial State DNS Velocity field

Continues on next page...
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Table 1.1 – Continued from previous page
Estimated Flow

Reference IP/DA Methodology Description Re
Estimated
Quantities

Estimator
Model

Measurements

Suzuki, Ji, and
Yamamoto [11] and
Suzuki et al. [12]

DA
Weighted
average

Flow past a NACA 0012
103 −

104 Velocity field DNS TR-PTV

Colburn, Cessna, and
Bewley [23]

DA EnKF
3D Turbulent channel

flow
100

Wall-normal
velocity and

vorticity
DNS

Skin friction and
pressure

distribution

Kato and Obayashi [24] DA EnKF
Flow past a square

cylinder
1200 Velocity field DNS

Pressure on square
faces

Suzuki [18] DA
Low-rank

Approx. EKF
Planar jet flow 2000 Velocity field DNS TR-PTV

Gronskis, Heitz, and
Memin [10]

DA Adjoint
Flow past a circular

cylinder
172

Boundary and
initial conditions

DNS Vorticity field

Foures et al. [13] IP Adjoint
Flow past a circular

cylinder
150

Reynolds stress
tensor

RANS Velocity field

Kato et al. [26] IP EnKF
Transonic flow past an

airfoil and a wing
106 −

107
Flow variables +

turbulent viscosity
RANS cp on surfaces

Continues on next page...
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Table 1.1 – Continued from previous page
Estimated Flow

Reference IP/DA Methodology Description Re
Estimated
Quantities

Estimator
Model

Measurements

Kikuchi, Misaka, and
Obayashi [25]

DA EnKF/PF
Flow past a circular

cylinder
1000 ROM coeffs

POD-
Galerkin

ROM

Velocity in the
wake

Mons et al. [27] DA
EnKS/4DVar/

4DEnVar
Circular cylinder
subjected to gusts

100
Boundary and

initial conditions
DNS

cp, CD , CL and
velocity field

Mons, Chassaing, and
Sagaut [30]

DA Adjoint Rotating cylinder 100 Initial State and Ω DNS
CD , CL , and
velocity field

Meldi and Poux [31] DA
Filtered-

Covariance
KF

Circular Cylinder/Thick
Plate

100/
80000

Velocity and
pressure field

DNS/DDES Velocity field

Symon et al. [14] and
Symon [32]

IP Adjoint Flow past an airfoil 13500
Reynolds stress

tensor
RANS Velocity field

Darakananda et al. [33] DA EnKF Inclined flat plate 500
Vortices strengths

and positions

Aggregated
vortex
model

Pressure on the
surface

Present Study[34, 35] DA EnKF
Incompressible 2D flow

past a cylinder, a flat plate
or an airfoil

100/200
Vorticity field and

additional
parameters

Unresolved
DNS + Bias
modeling

Velocity in the
wake or pressure
on the surface



9

1.3 Mathematical Background

By the very nature of an estimation problem, the state x ∈ Rn of any dynamical
system6 is only knowable up to a certain level of uncertainty. Mathematically, this
behavior is represented by a random vector whose possible values correspond to
individual realizations of the underlying random process. The probability that its
value falls in any given subset A ∈ Rn of the state space is given by

P(x ∈ A) =
∫

A
ρ(x)dx , (1.1)

where the probability density function (PDF) ρ : Rn 7→ R+ satisfies∫
Rn
ρ(x)dx = 1 . (1.2)

For any function f of the state, we define the corresponding expected value by

E[ f (x)] =
∫
Rn

f (x)ρ(x)dx . (1.3)

When it is necessary to make explicit which PDF the expectation refers to, the
notation Eρ[·] will be used.

An alternative way of describing the PDF of a random variable is through a sequence
of central moments αi given by

αi =

 x̄ = E[x] i=1
diMx

dti

���
t=0

i>1 ,
(1.4)

where Mx(t) = E[exp(tT (x− x̄))]7 is the corresponding moment-generating function.
In particular, note that the first-order moment α1 = x̄ corresponds to the mean of
the distribution, and the second-order central moment α2 correspond to the auto-
covariance matrix Cxx . According to the inverse theorem, if Mx(t) is finite for all
t ∈ {x ∈ R | ‖x‖ < a} for some a > 0, then Mx(t) uniquely determines the PDF of
x. Therefore, in order to track the time evolution of the state of a system, one needs
to predict how the PDF changes over time, either directly or indirectly (by tracking
its moments).

4IP stands for Inverse Problem, and DA stands for Data Assimilation. The latter differs from the
former by assuming a temporal evolution of the variable being tracked.

5This quantity is defined differently for each problem.
6Despite the fact that the dynamics of fluid systems are inherently infinite-dimensional, we

employ a discretization scheme to produce a finite-dimensional approximation suitable to be used in
a computed simulation.

7Note that variable t here has the same dimension as x, so that Mx(t) is a scalar function.
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Besides the mean, another important feature of the PDF is the mode. The mode rep-
resents the most likely value of the corresponding random variable. Mathematically,
it is given by

mx = arg max
x∈Rn

ρ(x) . (1.5)

Note that the mode need not to be unique and secondary modes corresponding to
local maxima may be present.

1.3.1 Weighted Inner Product and Norm

For an ordered pair u, v ∈ Rn, we denote the corresponding Euclidean inner product
as

〈u, v〉 = uTv (1.6)

and its induced L2-norm as

‖u‖2 = 〈u, u〉 ≥ 0 , (1.7)

where the equality holds if, and only if, u = 0.

For any positive-definite symmetric matrix A, the A-induced weighted norm is given
by

‖u‖A = ‖A−1/2u‖ . (1.8)

1.3.2 Gaussian Random Variables

A Gaussian8 random variable (GRV) on Rn is characterized by its mean x̄ ∈ Rn

and a positive-semidefinite covariance matrix C ∈ Rn×n, and is often denoted as
x ∼ N(x̄,C). Its associated PDF is given by

ρ(x) =
1

(2π)n/2(det C)1/2
exp

(
−

1
2
‖ x − x̄‖2C

)
. (1.9)

The matrix C−1/2 is often called the precision matrix of the Gaussian random vari-
able. Note also that for a GRV, the mean and mode of the distribution coincide.
Gaussian-distributed random variables can be completely represented by their mean
and variance, linear combination of GRVs are also Gaussian-distributed, and apply-
ing linear operators to such variables will always result in new Gaussian-distributed
random variables.

8Sometimes referred to as a normal variable.
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1.3.3 Conditional Distributions

If (x, y) ∈ Rn×p is a jointly varying random variable, the conditional PDF ρ(x |y) is
defined as

ρ(x |y) =
ρ(x, y)
ρ(y)

, (1.10)

where ρ(y) corresponds to the marginal PDF of y given by

ρ(y) =

∫
Rn
ρ(x, y)dx . (1.11)

1.3.4 Bayes’ Theorem

Bayes’ theorem states that for a jointly varying random variable (x, y) ∈ Rn×p

ρ(x |y) =
ρ(y |x)ρ(x)

ρ(y)
. (1.12)

This theorem is one of the cornerstones of the Bayesian inference, and expresses how
prior beliefs (ρ(x)) should be updated to account for new evidence (ρ(y)) assuming
a model that describes the likelihood of obtaining determined data given that the
state (ρ(y |x)) is known. The resulting distribution (ρ(x |y)) is often referred to as
the posterior.

1.3.5 Maximum a Posteriori vs Minimum Variance Estimates

An estimator x̃(y) is a function of the observation y ∈ Rp that aims to provide
the best estimate of x according to some criteria. In the Bayesian context, a first
important notion of optimality is the minimization of the mean square error (MSE),
given by the trace of the error covariance matrix

MSE(x̃) = tr
{
E[(x̃ − x)(x̃ − x)T ]

}
= E[(x̃ − x)T (x̃ − x)] . (1.13)

The minimum-MSE estimator is then defined as the function

x̃M MSE (y) = arg min
x̃:Rp 7→Rn

MSE(x̃) . (1.14)

It can be shown [36] that as long as the underlying PDF admits finite mean and
covariance matrix, the minimum variance estimate is the conditional mean

x̃M MSE (y) = E[x |y] . (1.15)
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A second possible optimality criteria is carried out by the maximum a posteriori
(MAP) estimator. It is defined as the mode of the posterior distribution obtained by
applying Bayes’ theorem.

x̃M AP(y) = arg max
x̃:Rp 7→Rn

ρ(x̃ |y) = arg max
x̃:Rp 7→Rn

ρ(y | x̃)ρ(x̃)
ρ(y)

= arg max
x̃:Rp 7→Rn

ρ(y | x̃)ρ(x̃) . (1.16)

Note that when the posterior is Gaussian, the MMSE and the MAP estimator are
equivalent since the mode and the mean of a Gaussian coincide.

A third criteria would be the maximum likelihood (ML) estimator. Here x̃(y) is
defined as the state that is more likely to produce the observed y, regardless of any
a priori information on x. In other words,

x̃ML(y) = arg max
x̃:Rp 7→Rn

ρ(y | x̃) . (1.17)

Note that the ML and MAP estimators coincide when the prior is a uniform distri-
bution.

MMSE estimators are global in the sense that they summarize the information
contained in the whole PDF when evaluating the conditional mean. On the other
hand, MAP estimators only highlight local features of the posterior PDF, something
that can be troublesome if the posterior is multi-modal, for instance.

1.3.6 Dynamical Systems

A general discrete-time controlled dynamical system can be characterized by a se-
quence of functions fk ∈ C(Rn×Rc,Rn), often referred to as the forecast model, that
describe the time evolution of the state of the system subjected to some control input.
These functions represent the available deterministic knowledge about the system at
hand. When nondeterministic or unmodeled aspects of the underlying physical phe-
nomenon are present, their effect can be taken into account stochastically. Consider
the stochastic dynamical system

xk+1 = fk(xk, uk) + µk , (1.18)

where fk is a general function of the n-dimensional state xk , uk is a c-dimensional
control input vector, and µk is an i.i.d. sequence with PDF ρs that accounts for state
disturbances and process noises. The subscript k refers to quantities taken at time
t = tk . The trajectory of this system corresponds to a Markov chain for which

ρ(xk+1 |xk) = ρs(xk+1 − fk(xk, uk)) , (1.19)
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so that the probability that xk+1 ∈ S ⊂ Rn is given by

P(xk+1 ∈ S |xk) =

∫
S
ρs(x − fk(xk, uk))dx . (1.20)

We also assume that system is at least partially observable, and that there is a
function h ∈ C1(Rn,Rp) that maps the state to any observable quantity. Since in
any realistic measurement methodology involves uncertainties (noise), the typical
observation model will take the form

yk = h(xk) + νk . (1.21)

where h(x) is the observation function (yk is a p-dimensional vector), and νk is an
i.i.d. sequence with PDF ρo that represents the sensor noise. Thus,

ρ(yk |xk) = ρo(yk − h(xk)) , (1.22)

so that the probability that yk ∈ S ⊂ Rp is given by

P(yk ∈ S |xk) =

∫
S
ρo(y − h(xk))dx . (1.23)

1.4 Data Assimilation

Given a dynamical system, there are two ways of estimating its current state. A
first one requires knowledge of the state at previous times, and a forecast model that
describes the time evolution of the system. Combined, they can be used to estimate
the trajectory of the system. The accuracy of theses predictions, however, relies
not only on the preciseness of our estimate of the initial conditions but also on the
reliability of the model itself. The fidelity of the chosen model is limited not only
by our understanding of the dynamics of the system, but also by how fast are we
expected to produce such estimate given computational resources.

A second approach requires access to measurement data from the actual system and
an observation model, a function that approximately describes the mapping between
the state of the system and any available observable quantity. The problem of finding
the "best" estimate of the state(s) that conforms to the observed data according to
the model at hand is an inverse problem. Again, the accuracy of this estimate relies
upon the reliability of the assumed mapping between the state and measurements,
and the signal-to-noise ratio of the available data.



14

Given these two estimates for the state of the system, one predicted from inaccurate
previous estimates and another inferred from limited available data, the goal of the
data assimilation is to determine the optimal strategy of managing the available re-
sources and combining them in order to produce an estimate that meets the accuracy
requirements.

DA methods can be classified as variational and sequential. The goal of variational
methods is to optimize the estimated trajectory of the system over a given time inter-
val while fulfilling model dynamics and conforming to the available measurements.
The problem formulation involves the definition of a cost function (which penal-
izes the mismatch between predicted and measured data and enforces the system
dynamics) in terms of a control variable (e.g., initial state). The evaluation of the
optimal control variable typically involves iteration and derivatives in the form of
a sensitivity, or adjoint, model. On the other hand, sequential methods get their
name from the fact that they are usually formulated as a sequential repetition of
two basic steps: when new measurements are available, corrections are applied to
the state estimate (analysis step); then, the state statistics are propagated forward
in time using the available dynamic model (forecast step) until new measurements
become available again. Figure 1.2 shows a graphical representation of a sequential
estimation process. The points and oval regions represent, respectively, the mean
and uncertainty (which can be seen as a contour level of the underlaying PDF) of
each estimate. Estimation methodology combines model prediction (blue figure)
to the state inferred from the measurements (red figure) to yield an improved state
estimate (green figure).

Algorithmically speaking, sequential methods are more flexible with respect to the
choice of forecast models. Because they do not require the corresponding linearized
forward and adjoint operators, models can be treated as black boxes. In terms of
performance, sequential methods tend to favor the use of more complex models in
real-time applications, since a single forward integration is needed.

In the following sections, we present a summary of the existing state of knowledge
for sequential methods as it is presented in the literature[19, 36, 38–40].
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Figure 1.2: Graphical representation of the estimation process. Reproduced from
[37] with permission.

1.4.1 Kalman Filtering

The fundamentals of optimal filtering9 were laid down by Kalman [4]. The classical
Kalman filter provides a rigorous solution for the state estimation of linear systems
under Gaussian-distributed noise. The goal of Kalman filtering is to use measure-
ment data to construct an estimate of the state xk which is optimal in the sense that it
minimizes the estimation variance (or, equivalently, maximizes the likelihood) [41].
The estimate is regarded as a Gaussian-distributed random variable which is charac-
terized by its mean xk and covariance Ck . Assuming linearity, fk(x, u) = Fk x + Bku

and h(x) = Hx Eq. 1.18 and 1.21 can be rewritten as

xk+1 = Fk xk + Bkuk + µk (1.24a)

yk = Hk xk + νk . (1.24b)

We also assume both µk and νk are zero-mean, Gaussian, and white random pro-
cesses (µk ∼ N(0,Qk) and νk ∼ N(0, Rk)) that are uncorrelated in time (E[µk µ

T
l ] =

Qkδkl and E[νkν
T
l ] = Rkδkl , where δkl is the Kronecker delta)10.

Defining Yk = {y1 y2 · · · yk} as the set that collects all the measurements taken
from the system up to time t = tk , it can be shown that the optimum filtering process
for the unforced system (u = 0) can be synthesized in two steps [42]:

9In this context, filtering is used to refer to the problem of determining the state of a system from
noisy measurements.

10The matrices Rk ∈ R
p×p and Qk ∈ R

n×n are called the covariance matrices for the measurement
and process noises, respectively.
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• Dynamic update (or Forecast Step): The mean and covariance of the state
at the next assimilation step is estimated using Eq. 1.24a.

If the initial state is represented by a Gaussian random vector with mean
x̄0 and C0, the linear dynamics will preserve Gaussianity and the forecast
is completely described by its mean and covariance. Since the noise is
independent of the state

¯̂xk+1 = E[xk+1 |Yk] = E[Fk xk |Yk] + E[µk |Yk]

= FkE[xk |Yk] = Fk x̄k (1.25a)

Ĉk+1 = E[(xk+1 − ¯̂xk+1)(xk+1 − ¯̂xk+1)
T |Yk]

= E[Fk(xk − ¯̂xk)(xk − ¯̂xk)
T FT

k |Yk] + E[µk µ
T
k |Yk]

+ E[µk(xk − ¯̂xk)
T FT

k |Yk] + E[Fk(xk − ¯̂xk)µ
T
k |Yk]

= FkCk FT
k +Qk , (1.25b)

where the hat is used to represent forecast variables.

• Measurement update (or Analysis Step): A new set of measurement data is
incorporated into the estimate following Bayes’ rule. If the prior distribution
corresponds to the forecast estimate, the posterior distribution is given by

ρ(xk+1 |Yk+1) =
ρ(yk+1 |xk+1,Yk)ρ(xk+1 |Yk)

ρ(yk+1 |Yk)
. (1.26)

Since Gaussian distributions are self-conjugate with respect to Gaussian like-
lihoods, the posterior distribution is also Gaussian:

exp
(
−

1
2
‖x − x̄k+1‖

2
Ck+1

)
= α exp

(
−

1
2
‖yk+1 − Hk+1x‖2R −

1
2
‖x − ¯̂xk+1‖

2
Ĉk+1

)
,

(1.27)
where α is a normalizing constant. Equating quadratic and linear terms in x

in the exponents gives, respectively

C−1
k+1 = Ĉ−1

k+1 + HT
k+1R−1Hk+1 (1.28a)

C−1
k+1 x̄k+1 = Ĉ−1

k+1
¯̂xk+1 + HT

k+1R−1yk+1 . (1.28b)

Using the Woodbury matrix identity, Eq. 1.28a becomes

Ck+1 =
(
Ĉ−1

k+1 + HT
k+1R−1Hk+1

) −1

= Ĉk+1 − Ĉk+1HT
k+1

(
R + Hk+1Ĉk+1HT

k+1

) −1
Hk+1Ĉk+1

= (I − Kk+1Hk+1)Ĉk+1 , (1.29)
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where Kk+1 = Ĉk+1Hk+1

(
R + Hk+1Ĉk+1HT

k+1

) −1
is the so called Kalman

gain. Note that here the inversion is performed in the measurement space
(p-by-p matrix inversion). The Woodbury matrix identity can be used again
to yield

Kk+1 = Ĉk+1Hk+1

(
R + Hk+1Ĉk+1HT

k+1

) −1

= Ĉk+1Hk+1

(
R + Hk+1Ĉk+1HT

k+1

) −1
×( (

R + Hk+1Ĉk+1HT
k+1

)
− Hk+1Ĉk+1HT

k+1

)
R−1

= Ĉk+1Hk+1

(
I −

(
R + Hk+1Ĉk+1HT

k+1

) −1
Hk+1Ĉk+1HT

k+1

)
R−1

=

(
Ĉk+1 − Ĉk+1HT

k+1

(
R + Hk+1Ĉk+1HT

k+1

) −1
Hk+1Ĉk+1

)
HT

k+1R−1

=
(
Ĉ−1

k+1 + HT
k+1R−1Hk+1

) −1
HT

k+1R−1 , (1.30)

which corresponds to a inversion in the state space (n-by-n matrix inversion).

Substituting Eq. 1.29 in Eq. 1.28b,

x̄k+1 = Ck+1

(
Ĉ−1

k+1
¯̂xk+1 + HT

k+1R−1yk+1

)
= (I − Kk+1Hk+1) ¯̂xk+1 +

(
Ĉ−1

k+1 + HT
k+1R−1Hk+1

) −1
HT R−1yk+1

= (I − Kk+1Hk+1) ¯̂xk+1 + Kk+1yk+1 = ¯̂xk+1 + Kk+1
(
yk+1 − Hk+1 ¯̂xk+1

)
,

(1.31)

where the difference
(
yk+1 − Hk+1 ¯̂xk+1

)
is often referred to as the innovation

vector. If the Kalman filter works optimally, the innovation sequence is
expected to be white.

Another important consequence of the fact that the posterior is a Gaussian is
that its mode can be used as a proxy for its mean. Therefore,

x̄k+1 = arg max
x∈Rn

exp
(
−

1
2
‖yk+1 − Hk+1x‖2R −

1
2
‖x − ¯̂xk+1‖

2
Ĉk+1

)
= arg min

x∈Rn

(
1
2
‖yk+1 − Hk+1x‖2R +

1
2
‖x − ¯̂xk+1‖

2
Ĉk+1

)
. (1.32)

This last equation highlights the optimization perspective of the analysis step
of the Kalman Filter[43], and will play a fundamental role later on in this
work.
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Taken together, these two steps resemble a Luenberger observer with an adaptive
observer gain. It requires the storage and propagation of the covariance matrix, an
operation that has a nominal complexity of O(n3). Therefore, the computational
cost of the filter rapidly increases with the number of the degrees of freedom of the
system and soon becomes intractable for real-time applications.

The Extended Kalman Filter (EKF)

Devising an optimum state estimator for systems modeled by nonlinear dynamics
with measurement data that is a nonlinear function of the state is more challenging.
Prospects for rigorously addressing the problem typically end up being too narrow
in applicability or too computationally expensive [44].

For weakly nonlinear problems, the so-called Extended Kalman Filter (EKF) [45] is
considered the standard technique. Assuming the dynamics are weakly nonlinear,
the EFK linearizes the dynamics about the estimate mean and uses the resulting
Jacobian matrices (Eq. 1.33) to evaluate the Kalman gain and update the surrogate
covariance matrix. In most cases, the nonlinear dynamics is still used to update the
estimate mean.

Fk =
∂ f
∂x

����
x=x̂

Hk =
∂h
∂x

����
x=x̂

(1.33)

Note that the EKF still requires an explicit evaluation of the covariance matrix
and tracks its evolution as the simulation progresses. In comparison to the stan-
dard Kalman Filter, the EKF incurs the extra cost of computing the appropriate
linearization at each assimilation step.

Higher-order Kalman Filters

According to nonlinear filter theory [36], in general, the evolution of the conditional
mean and covariance matrix depends on all the moments (an infinite number of them)
of the conditional density function. In fact, the time-evolution of the state PDF is
governed by the Fokker-Planck equation (also known as the Kolmogorov Forward
equation), a n-dimensional PDE. The only exception is, as shown by Jazwinski [36],
the classical KF (Gaussian prior and likelihood, and linear forecast and observation
models), for which the first two moments fully describe the filter.

Therefore, numerically, we must consider finite-size approximations of the posterior
PDF by means of a parametrization. If all PDFs can be considered nearly-Gaussian,
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all odd central moments can be neglected, and higher-order even moments can be
written in terms of the variance. The extended KF corresponds to the case where all
moments higher than second are neglected. A corresponding second-order filter can
be obtained by retaining the 4th-order central moments. In that case, the resulting
second-order filter is given by[36]

• Forecast:

¯̂xk+1 = E[xk+1 |Yk] = fk(x̄k) +
1
2

[
∂2 f Ĉk

]
(1.34a)

Ĉk+1 =

[
∂h
∂x
(x̂k)

]
Ck

[
∂h
∂x
(x̂k)

] T

+Qk . (1.34b)

• Analysis: (
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T

+
1
2

[
∂2hĈ2

k∂
2h

] )
b∗k

= yk − E[h(xk)|Yk−1] −
1
2

[
∂2hĈk

]
(1.35a)

zk = ẑk + Ĉk

[
∂h
∂x
(x̂k)

] T

b∗k , (1.35b)

where{
∂2hĈ2

k∂
2h

}
i j =

n∑
k,l,p,q=1

∂2hi

∂xk∂xl
(x̂k)

∂2h j

∂xp∂xq
(x̂k)

{
Ĉk

}
lp

{
Ĉk

}
kq (1.36a)

{
∂2hĈk

}
i =

n∑
j,k=1

{
Ĉk

}
j k

∂2hi

∂x j∂xk
(x̂k) . (1.36b)

Note that the second-order filter equation differs from the EKF equations by the
presence of the terms

[
∂2 f Ĉk

]
,
[
∂2hĈk

]
and

[
∂2hĈ2

k∂
2h

]
. This implies that the

effect of nonlinearities in the dynamics of the conditional mean depends on the
magnitude of the product between the second partial derivative of the forecast and
observation models, and the estimation error variance. Therefore, even for systems
in which the second partial derivatives of the model are small in comparison to
their respective first derivatives, the nonlinearities can play a important role at early
times of the estimation history, when the variance of the estimate is typically large.
Moreover, analyzing Eq. 1.35a (see appendix D), we can note that the addition of
the extra term to the RHS plays the same role of a bias correction term and ensures
the innovation vector has zero expectation (an optimality feature of the Kalman
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filter). Note that its magnitude scales with the estimation variance. Furthermore,
the importance of the extra term added to the LHS can be accessed by comparing it
to the magnitude of R. Because it has a damping effect on the corrections, ignoring
it leads to overcorrections.

The Unscented Kalman Filter (UKF)

The robustness and reliability of the EKF is impaired by the linearization process.
For example, Julier and Uhlmann [46] showed that even a trivial nonlinear transfor-
mation from polar to Cartesian coordinates is enough to yield significant deviations
in tracking the correct state. For cases where there are strong nonlinearities, the
Unscented Kalman Filter tends to deliver better results [47]. This scheme provides
an alternative to the explicit evaluation of the second derivatives of the forecast
and observation model, by employing a deterministic sampling scheme (unscented
transformation) to generate a set of points around the prior mean (sigma points)
which are propagated by the nonlinear functions and then used to reconstruct the
posterior mean and variance with second-order accuracy. Although it has been
demonstrated that it delivers excellent results, it requires 4n + 1 sigma points (or
2n + 1, if there is no process noise) for the forecast step and 4p + 1 sigma points for
the analysis step, and the corresponding computational cost11 becomes prohibitive
for large systems.

1.4.2 3D-Var

A well-known alternative for sequential data assimilation of high-dimensional sys-
tems is the 3D-Var[48]. Just like the Kalman filter, 3D-Var can be formulated as
an observer in which the gain is calculated to minimize a cost function, with the
general format

J(x) = [y0 − h(x)]T R−1 [y0 − h(x)] +
[
x − x f

]
Σ
−1 [

x − x f
]

, (1.37)

where y0 is the measurement taken from the tracked system, x f is the prior estimate
for the state, h(x) is the observation function. R, as a measure of the reliability
of the measurements, is a constant matrix that weights the measurement mismatch.
Differently from the KF methodology that regards Σ as time-varying estimate of the

11Although more expensive than a KF for a given number of degree of freedom, the cost scaling
is the same (O(n3)) if we assume the forecast model to have cost O(n2).



21

state covariance matrix, 3D-Var regards it as a predefined constant weight matrix.
Since there is no explicit tracking of the covariance matrix, 3D-Var is far less
computationally demanding than KF, but estimator performance depends heavily on
the a priori choice of Σ. For a general function h(x), the minimizer of Eq. 1.37 is
usually obtained using an appropriate iterative method (e.g., quasi-Newton method).
If h(x) = Hx is a linear function, the minimizer of the aforementioned cost function
is given by

xk = x̄k + K(yk − Hx̄k) , (1.38)

where K = ΣHT (
R + HΣHT ) −1 is a constant matrix.

1.4.3 Ensemble Methods

The most complete description of the state of the system under scrutiny is given
by its probability density function ρ(x). For applications in fluid mechanics, the
dimension of the domain of integration can easily be of order O(106) or more, and
a direct numerical evaluation of this integral (using an appropriate quadrature rule)
is prohibitive. This difficulty can be interpreted as one of the manifestations of
the curse of dimensionality, first introduced by Bellman [49]. It indicates that the
number of samples needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with respect to the number of degrees of freedom
(i.e., dimensionality) of the function.

Instead, one can adopt a Monte Carlo approach and represent the PDF as a com-
bination of Dirac delta functions corresponding to an ensemble of q independently
drawn random samples from ρ(x), denoted as xi,

ρMC(x) =
1
q

q∑
i=1

δ(x − xi) , (1.39)

for which the expected value of f (x) can be evaluated as

EMC[ f (x)] =
∫

f (x)ρMC(x)dx =
1
q

q∑
i=1

f (xi) . (1.40)

It can be shown [39] that EMC[ f (x)] is an unbiased estimate of E[ f (x)], whose
variance converges to zero according to

Var[EMC[ f (x)]] =
1
q

Var[ f (x)] , (1.41)
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where

Var[ f (x)] =
1

q − 1

q∑
i=1
( f (xi) − E[ f (x)])2 . (1.42)

Note that rate of convergence 1/√q is independent of the dimensionality of the state.
That notwithstanding, the number of particles required to achieve a given accuracy
threshold surely depends on the dimensionality of the state. Usually, one can expect
at least some number in the same order of magnitude of the dimensionality of the
state.

For all the KF variants that were discussed so far, the computational cost of the prop-
agation of the covariance matrix Ck has the same order of magnitude as n evaluations
of the forecast operator and becomes quickly prohibitive for large systems.

Particle Filter (PF)

Under nonlinear dynamics, the Probability Density Function (PDF) of the estimate
need not remain Gaussian, and the first two moments cease to fully represent the
state. Instead, the Fokker-Plank PDE, that describes the evolution of the full PDF
in time, can be discretized using a Lagrangian method (something that can be
interpreted as a Monte Carlo sampling) to yield what is commonly referred to as
Particle filters[23, 50]. Here no assumption is made on the shape of the state PDF.
The dynamical model is responsible for forecasting the trajectory of these particles
through time. Measurement data is incorporated into the description of the PDF
by assigning weights to each of the particles which are updated whenever new
measurements are available. Thus,

ρMC(x |y) =
1
q

q∑
i=1

wiδ(x − xi) , (1.43)

where the weights are computed as normalized likelihoods:

wi =
ρ(y |xi)∑q

i=1 ρ(y |xi)
. (1.44)

The PDF of the observations conditioned to the state is described by measurements
statistics, and is usually taken to be a Gaussian:

ρ(y |xi) ∼ exp
(
−

1
2
[y − h(xi)]

T R−1 [y − h(xi)]

)
. (1.45)
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Note that the measurements don’t influence the trajectory of the particle. Therefore,
there is no guarantee that the particles will remain in the region of the state space that
is relevant to the measurement data obtained. Consequently, a considerable fraction
of the ensemble may end up with negligible weights, hindering the accuracy of the
scheme. This feature of the method is the most common cause of filter divergence.
In order to avoid this issue, the ensemble must be constantly resampled to ensure
the particle to remain relevant. Leeuwen [50] describe several methodologies to
accomplish this task. That notwithstanding, because PF schemes rely on the direct
sampling of a n-dimensional state space, the curse of dimensionality [49] is severe
for these techniques, and they are only computationally tractable for systems of
reduced dimension.

If the state and the likelihood can be described as approximately Gaussians, the need
for resampling can be eliminated by employing an ensemble variant of the Kalman
filter, namely the Ensemble Kalman Filter (EnKF).

1.5 The Ensemble Kalman Filter (EnKF)

Aiming at overcoming the computational cost limitation, Evensen [51] proposed a
Monte Carlo approximation to the KF in which the internal state of the estimator is
represented by an ensemble of particles so that the corresponding ensemble mean
and covariance matrix are used to approximate x̄ and C. This method was named
Ensemble Kalman Filter (EnKF), and since then has been extensively used for
high-dimensional systems (thousands of degrees of freedom or more) associated
with a computationally onerous forecast (as in meteorology, oceanography and
geophysical flows Bengtsson, Snyder, and Nychka [52], Evensen [53], and Anderson
and Anderson [54]). In such context, this technique has shown to provide a correct
estimate of the first two moments of state of the system even for a small ensemble
size (provided that the Gaussian assumption appears to hold) [55].

The main advantages of the EnKF in comparison to the variational methods or
standard KF formulations are:

• It does not require the adjoint of the dynamical model.

• It has low storage requirement (comparing to the storage needed to store the
full state statistics).

• It has a natural probabilistic interpretation under a Bayesian perspective.
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Figure 1.3: Schematic representation of the EnKF algorithm.

• Due to its formulation in terms of independent particles, it is embarassingly
parallel.

1.5.1 Algorithm

Figure 1.3 shows a schematic diagram of the EnKF algorithm. Having an ensemble-
based representation of the state in mind, consider an ensemble of q initially indepen-
dent states sampled from a normal distribution with predefined mean and covariance
matrix. The expected value of the system state corresponds to the ensemble average
of these states

x̄k =
1
q

q∑
j=1

x( j)k . (1.46)

Defining the scaled state perturbation matrix Ak as

Ak =
1√

q − 1
[x(1)k − x̄k · · · x

(q)
k − x̄k] , (1.47)

and the scaled output perturbation matrix H Ak (assuming the linearity of the obser-
vation function, i.e., h(x) = Hx) as

H Ak =
1√

q − 1
[y
(1)
k − ȳk · · · y

(q)
k − ȳk] , (1.48)
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where y
( j)
k = h(x( j)k ) and ȳk is the ensemble average of the outputs, one can finally

compute the ensemble covariance matrix

Ck = Ak(Ak)
T , (1.49)

which is an estimate of the state covariance matrix.

The filtering algorithm can be summarized as a succession of two steps: a forecast
step (or dynamic update) and a analysis step (or measurement update).

Forecast Step

The state of each ensemble member at the next time step is estimated using the
(possibly nonlinear) dynamic model (Eq. 1.18):

x̂( j)k+1 = f (x( j)k , uk) + g(x
( j)
k )µ

( j)
k , (1.50)

where the hat is used to represent forecast variables. If applied to a linear system,
this ensemble approach reduces the cost associated with the time-propagation of the
state statistics from O(n3) (classical KF) to O(n2q) (EnKF). Since typical ensemble
sizes are no larger than O(102), the overall cost is usually reduced by several orders
of magnitude.

Analysis Step

The ensemble members are corrected in order to minimize the error with respect
to the measurements in the presence of noise and model uncertainties. There are
several paths that lead to the EnKF analysis formula. We here adopt the optimization
approach by looking for the minimizer of the cost function

J(x) =
1
2
‖ yk − Hx‖2R +

1
2
‖ x − x̂k ‖

2
Ĉk

=
1
2
[yk − Hx]T R−1[yk − Hx] +

1
2
[x − x̂k]

TĈ−1
k [x − x̂k] . (1.51)

This optimization problem is then restricted to the affine space generated by the
prior estimate of each of the ensemble members and the subspace spanned by the
scaled perturbation matrix Âk . In other words, we look for a solution in the form

x = x̂k + Âkv , (1.52)
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where v ∈ Rq is the correction coefficient vector.

After performing the proposed change of variables, we can restate the objective of
the analysis step as finding

v = arg min
v∈Rq

J(v) (1.53)

for each of the ensemble members, where

J(v) =
1
2
‖v‖2 +

1
2
‖yk − Hx̂k − H Âkv‖

2
R . (1.54)

Since J(v) is quadratic in v, the solution is unique and corresponds to the root of

DJ(v) = v − (H Âk)
T R−1(yk − Hx̂k − H Âkv) = 0 , (1.55)

which is given by

vk =
[
I + (H Âk)

T R−1(H Âk)
] −1
(H Âk)

T R−1(yk − Hx̂k) (1.56a)

= (H Âk)
T [

R + (H Âk)(H Âk)
T ] −1

(yk − Hx̂k) , (1.56b)

where we have used the Woodbury matrix identity to obtain the alternative solution.

Notice that here we have the possibility to choose between performing the analysis
in the ensemble space (q-by-q matrix inversion - Eq. 1.57a), or in the measurement
space (p-by-p matrix inversion - Eq. 1.57b), depending on which one is more
advantageous[56]. In either case, q � n or p � n such that an enormous reduction
in computational expense is achieved compared to the KF/EKF.

The final solution is then obtained by projecting these coefficients back to the state
space:

xk = x̂k + Âk
[
I + (H Âk)

T R−1(H Âk)
] −1
(H Âk)

T R−1(yk − Hx̂k) (1.57a)

= x̂k + Âk(H Âk)
T [

R + (H Âk)(H Âk)
T ] −1

(yk − Hx̂k) . (1.57b)

Algorithmically, when the inversion is done in the measurement space, instead of
solving for vk , the representers’ formulation proposed by Evensen and Leeuwen [57]
is used: [

R + (H Âk)(H Âk)
T ]

bk = (yk − Hx̂k) (1.58a)

xk = x̂k + Âk(H Âk)
T bk , (1.58b)
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where the columns of Âk(H Âk)
T are called the representers and represent the influ-

ence vectors for each measurement. The vector bk then represents the magnitude
by which each of the representers actuates in x̂.

For each ensemble member, yk must be independently sampled from a normal
distribution whose mean is the measurement vector obtained from the estimated
system, and whose variance is Rk . Due to this sampling step, this algorithm is often
referred to as perturbed observations (or stochastic) EnKF. Although this procedure
introduces an additional sampling error, previous work by Lawson and Hansen [58]
suggested it performs better in the presence of nonlinearities than deterministic
alternatives.

It is worthy to note that one never needs to explicitly compute the covariance Ĉk

since it suffices to evaluate Âk(H Âk)
T and H Âk(H Âk)

T . Both the Particle Filter
(PF) and the EnKF algorithms share the same forecast step, but their analysis steps
are distinct. While in the PF the posterior PDF corresponds to a linear combination
of the prior ensemble whose weights are calculated using the Bayes’ rule, the EnKF
assign equal weights to all particles and correct the ensemble members themselves
according to Kalman’s update rule[23]. Because the particles themselves are driven
towards the measurements, the need for resampling is eliminated.

1.5.2 Initialization Scheme

In order to keep the cost at tractable levels, it is desirable to use ensemble sizes that
are much smaller than the dimension of the state. Thus, being able to efficiently
sample the initial ensemble plays a fundamental role in the filter performance.
Therefore, following Evensen’s scheme[19]:

1. Using a long series of snapshots obtained from a long simulation of the phe-
nomenon we are interested in, we build the data matrix X̂ = [x(1) x(2) · · · x(N)]

and obtain the corresponding POD modes by computing the singular value
decomposition

x̄ =
1
N

X̂1N×1 (1.59)

1
√

N − 1
(X̂ − x̄11×N ) = UΣVT , (1.60)

where x̄ is the mean flow.
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2. In order to generate q independent initial ensemble members, we restrict it to
the subspace spanned by the first q POD modes:

A0 = qr(randn(q)) (1.61)

X0 =
√

q − 1ŨqΣ̃q A0 , (1.62)

where Ũq corresponds to the first q columns of U, and Σ̃q is the upper-left
q × q submatrix of Σ. Here randn(q) represents a q × q matrix whose
entries where independently sampled from a zero-mean Gaussian distribution
with unitary variance, and qr(·) correspond to an implementation of the QR
decomposition.

A similar approach can be used to generate the ensemble of noise vectors needed to
force the dynamics:

Ak = qr(randn(q)) (1.63)

Mk = α
√

q − 1ŨqΣ̃q Ak , (1.64)

where α is a parameter that controls the noise magnitude. In this case, the corre-
sponding error covariance matrix is given by Q = α2ŨqΣ̃

2
qŨT

q .

1.5.3 Ensemble Size

Were the KF hypotheses to hold (linearity of forecast and observation models and
Gaussianity of all variables and noise processes), optimality can only be expected as
q→∞. Under nonlinear dynamics, this sub-optimum filter can only be expected to
provide estimates for the first two moments of a possible general state PDF. In fact,
Le Gland, Monbet, and Tran [59] demonstrated that in general the EnKF exhibits
a q−1/2 rate of convergence to the estimate asymptotic PDF. However, this limiting
distribution may differ from the optimum filtering distribution, which may be multi-
modal or exhibit other higher-order features in the presence on nonlinearities.

In a practical setting, the ensemble size q required to guarantee accuracy will
depend on the effective state space dimension (the dimensionality of the manifold
in which the most relevant dynamics is confined) and on our ability to recognize
and sample this subspace[55]. Nevertheless, typical ensemble sizes do not exceed
a few hundreds in view of the available computational power, and for such small
ensemble sizes the EnKF exhibits some interesting characteristics.
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Since the correction added to each ensemble member during the analysis step is a
combination of the forecast ensemble states, the analysis step operates only in the
subspace spanned by the ensemble at hand [60]. Therefore, the choice of initial
ensemble can limit, at least initially, the effectiveness of the correction applied by
the estimator to the ensemble members. The impact of this choice on the long-
term behavior of the filter is highly dependent on the dynamical system itself. A
very strong attractor, for instance, can render the choice of initialization scheme
secondary.

1.5.4 Covariance Inflation

Many sources of error in the EnKF are extrinsic, i.e., external, to the filtering
scheme being used. These include the loss of Gaussianity due to the presence of
nonlinearities and by inaccurate models. Dealing with these errors will be a major
theme of this thesis, but they all have in common the fact that they are related to the
choice of forecast and observation model and are not directly related to the EnKF
algorithm.

On the other hand, some error sources are intrinsic to the EnKF methodology and
may be present even when perfect linear models are employed and all Gaussianity
requirements are met. The main source of intrinsic error in the ensemble Kalman
filter is the sampling error [61]. As pointed out in the previous section, even
though the ensemble statistics are expected to slowly converge to their true value,
the improved performance claim laid out by ensemble methods is built upon the
hypothesis that just a reduced number of ensemble members (q < 100) may suffice
to represent the first and second-order statistics of high-dimensional systems (n �).

The undesirable effects off under-sampling are twofold: generation of spurious
cross-correlations, and underestimation of error covariances. When Houtekamer
and Mitchell [62] first reported these issues, they used the analogy of inbreeding
to describe the problem: the gain used to update the ensemble is computed using
estimated for the statistics evaluated from the same ensemble. Later, Leeuwen [63]
noted that a finite ensemble size leads to a consistent underestimation of the error
variance. To use a CFD analogy, the EnKF behaves as if the error term in the
modified equation (where the sampling takes the place of the discretization) always
acts by damping the variance of the system.

In the absence of process noise and for a fixed measurement noise level, as the
estimated covariance decreases, the weight given to the measurement data in the
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analysis step decreases and eventually becomes negligible. This phenomenon is
known as covariance collapse, in reference to the fact that the ensemble members
collapse onto a single trajectory. The effect of the sampling errors will accelerate this
collapse, and this leaves the filter vulnerable to ignoring new information contained
in the measurements.

Aiming to mitigate the effects of the under-sampling errors, Bocquet [61, 64, 65]
proposed a variant of the EnKF called Finite-size Ensemble Kalman Filter (EnKF-
N) that assumes a different prior in the analysis step. Since the true values of the
ensemble mean and covariance matrix are unknown, Bocquet argues that the prior
should be represented by a multivariate Student’s t-distribution with q − 1 degrees
of freedom. The associated cost function

J(v) =
1
2

y − h(x̂k + Âkv)
2

R +
q
2

ln
(
1 +

1
q
+ ‖v‖2

)
(1.65)

no longer has an explicit analytical formula for its minimizer (even when h(x)

is linear), and the solution needs to be found iteratively. A nice feature of this
formulation is that the Gaussian prior is recovered as the ensemble size tends to
infinity. Even though this scheme obtained good results when compared to other
methodologies to mitigate under-sampling errors, the cost involved in minimizing
the modified cost function can be prohibitive. Bocquet and Sakov [64] showed that
when h(x) is linear, the minimizer can be easily found by splitting the optimization
problem in two: a scalar non-quadratic dual cost function on a compact interval,
and a Kalman-like quadratic function.

Due to these challenges, an ad-hoc correction to under-sampling has become com-
mon. The technique is a combination of covariance localization (CL) and covari-
ance inflation (CI). The issues raised by the spurious cross-correlation is usually ob-
served when estimating dynamical systems in which the variables become spatially
uncorrelated beyond some characteristic separation (e.g., a length scale in turbulent
flows). It is statistically expected that small ensemble sizes will not be able to accu-
rately capture this vanishing cross-correlation, and degrade the performance of the
estimator. Hamill, Whitaker, and Snyder [66] proposed a localization scheme that
explicitly enforces a decorrelation length in the computed cross-covariance matrix:

Ĉk = L · (Âk ÂT
k ) , (1.66)

where

Li, j = exp

(
−

d2
i j

l2
corr

)
(1.67)
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is a localization matrix whose entries enforces a decorrelation pattern onto the
ensemble-evaluated cross-covariance matrix. The dot product here corresponds to
the element-wise multiplication, di, j corresponds to the spatial distance between the
ith and jth entries in the state vector, and lcorr is some characteristic decorrelation
length for the problem in scrutiny.

The covariance inflation, on the other hand, artificially increases the ensemble
covariance in order to weight the measurement data more heavily. Kelly, Law, and
Stuart [67] showed that for a large enough inflation, the boundedness of the EnKF
can be guaranteed. In general, the covariance inflation can be implemented as

x̂( j) = ¯̂x + α(x̂( j) − ¯̂x) + β( j) , (1.68)

where β( j) is the additive covariance inflation vector that is usually drawn from a zero-
mean normal distribution with covariance S, and α is the multiplicative covariance
inflation parameter. Both Whitaker and Hamill [68] and Bocquet, Raanes, and
Hannart [65] suggested that multiplicative inflation is especially useful in mitigating
the pernicious effects of the sampling errors associated with a small ensemble while
additive inflation seems to be most effective in capturing sources of error that do not
depend on the assimilation process such as the system modeling error. However,
any practical implementation of an additive scheme requires prior knowledge of this
modeling error (namely, a way of producing the matrix S). Multiplicative CI can
delay the collapse of the covariance, while using additive CI will enforce a lower
bound to the system covariance. In addition, the inflation parameter must be chosen
carefully to avoid a divergent result.

The simplest multiplicative covariance inflation scheme is the one suggested by An-
derson and Anderson [54] (AA), in which α is a scalar (typically, α ∈ [1.005, 1.05]).
This scheme corresponds to use gk(xk) =

√
Ĉk . Its effect on the analysis scheme

can be better understood by considering a slightly modified version of Eq. 1.51 that
now includes the inflation parameter α. Using the posterior mode as a proxy for the
posterior mean, we seek to minimize

J(x) =
1
2
‖ yk − h(x)‖2R +

1
2α
‖ x − x̂k ‖

2
Ĉk

=
1
2
[yk − h(x)]T R−1[yk − h(x)] +

1
2α
[x − x̂k]

TĈ−1
k [x − x̂k] , (1.69)

where the first term penalizes the data mismatch between the observed measurement
yk and the ones predicted by the proposed observation model, and the second term
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penalizes the distance from the estimate forecast by the proposed dynamical model.
The relative importance between these two models is prescribed by the matrices
R (measurement noise variance) and Ĉk (ensemble prior variance) that represent,
respectively, the level of reliability that is attributed to the data and the forecast
model. Note that the multiplicative covariance inflation acts by reducing the relative
importance of the second term in the cost function. As the filter is led to have a
decrease sense of reliability in the prior, corrections tends to be more aggressive
when inflation is present. Also, according to Luo and Hoteit [69], there is a direct
connection between the multiplicative covariance inflation and robustness of the
solution (in the H∞ sense).

After analyzing the effect of sampling errors introduced by limited-size ensembles,
Sacher and Bartello [70] concluded that more inflation is needed when observations
lead to large corrections to the estimate. Later, Whitaker and Hamill [68] proposed
an inflation scheme termed relaxation-to-prior spread (RTPS). In this case, α takes
the form of the vector

αi = 1 + θ

(
σb

i − σ
a
i

σa
i

)
, (1.70)

where θ is a scalar (typically, θ ∈ [0.5, 0.95]), and σb
i and σa

i are, respectively, the
prior and posterior ensemble standard deviation for the i-th state variable. Note that,
because α is now a vector, its multiplication with the perturbation vector (x̂( j) − x̄)
must be performed component-wise.

1.5.5 Enforcing Constraints

The corrections issued by the classical EnKF to each of the ensemble members are
drawn from the subspace spanned by the perturbation matrix Âk . Whatever linear
constraints enforced to the prior ensemble members will, therefore, be preserved
on the posterior ensemble. That is the case for the divergence-free and no-slip
conditions in the fluid flow problems considered in this thesis.

This property, however, can be disrupted by ad-hoc covariance inflation and lo-
calization schemes. Since the AA CI scheme results in particles that are linear
combinations of the previous ones, they will naturally satisfy any kinematic con-
straints (boundary conditions). That is not the case with the RTPS scheme, which
may yield non-conforming particles since each state variable is updated indepen-
dently. We present an a posteriori fix for this error in the context of fluid flows in
section 2.1.
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1.5.6 Nonlinear Observation Function

As shown in section 1.5.1, the usual EnKF algorithm is suitable for handling both
linear and nonlinear dynamical models. In both cases, the forecast step is carried
out by applying the dynamical model to each of the ensemble members. When non-
linearities are present, however, there is no guarantees of preserving the Gaussianity
of the state. In general, an error is introduced here by only tracking the first two
moments of the underlying PDF.

In the analysis step, the formal goal is to find the mean of the posterior distribution,
as this is the state that minimizes the mean square error. Since the posterior mean is
cumbersome to evaluate, the common approach is to approximate it by the posterior
mode. Thus, we must search for the minimizer of Eq. 1.69 that belongs to the affine
subset generated by the prior estimate x̂k and ensemble perturbation matrix Âk .

The solution to this optimization problem must fulfill the zero-gradient criterium

DJ(x) = −
[
∂h
∂x
(x)

] T

R−1[yk − h(x)] +
1
α

Ĉ−1
k [x − x̂k] = 0 . (1.71)

When the observation function is linear, i.e., h(x) = H(x), J(x) is a quadratic in x

and the DJ(x) has a single root given by

xk = arg min
x∈ x̂k+span(Âk )

J(x) (1.72a)

= x̂k +
[
HT R−1H + (αĈk)

−1)
] −1

HT R−1(yk − Hx̂k) (1.72b)

= x̂k + αĈk HT [
R + αHĈk HT ] −1

(yk − Hx̂k) . (1.72c)

However, when h(x) is nonlinear, J(x) is no longer quadratic and may not be convex
or have a single minimum. Furthermore, as the gradient H(x) = ∂h

∂x (x) is now state
dependent, Eq. 1.72 cannot be used to directly compute the minimizer of the cost
function. Several remedies have been proposed, which are discussed next.

Implicit Linearization

This approach was proposed in an appendix of Evensen [19]. We start by creating an
augmented state vector that merges both the state and the predicted measurements.
The new observation function simply selects the second part of the state vector and
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is, therefore, linear.

zk =

[
xk

yk

]
= f̃ (zk−1) + µ̃k

=

[
f (xk−1)

h( f (xk−1) + µk)

]
+

[
µk

νk

]
(1.73)

yk =
[
0 I

]
zk = Gzk . (1.74)

The associated cost function is

J(z) =
1
2
‖ z − ẑk ‖

2
Ĉzz
k

+
1

2α
‖ yk − Gz‖2R , (1.75)

where

Ĉzz
k =

[
Ĉxx

k Ĉxy
k

(Ĉxy
k )

T Ĉyy

k

]
(1.76a)

=
1

q − 1

q∑
j=1
(ẑ j

k − z̄k)(ẑ
j
k − z̄k)

T (1.76b)

= Âz
k

(
Âz

k

) T
. (1.76c)

Since this function is quadratic in z, the minimizer is given by

zk = arg min
z∈ẑk+span(Âz

k
)

J(z) = ẑk +
[
GT R−1G + (αĈzz

k )
−1)

] −1
GT R−1(yk − Gẑk) (1.77)

= ẑk + αĈzy
k

[
R + αĈyy

k

] −1
(yk − h(x̂k)) . (1.78)

Projecting this solution back to the state space:

xk = x̂k + αĈxy
k

[
R + αĈyy

k

] −1
(yk − h(x̂k)) . (1.79)

It can be shown that this approach corresponds to an implicit linearization about the
ensemble mean (see Apendix A). Therefore the error associated with this approx-
imation scales with Ĉk , as the variance is a measure of the distance between the
particles and the ensemble mean, as well as hxx( ¯̂x), which measures how strong the
nonlinearities are. This approach should work well as long as h(x) is a monotonic
function of the state (at least locally around the ensemble mean) and is not strongly
nonlinear. The residual ‖Gzk − h(xk)‖2, i.e., the difference between the analyzed
measurement to the observation operator applyied to the analized state, is a measure
of the approximation introduced by this algorithm, as this quantity is expected to be
zero when linear observation functions are employed [19].
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Iterative Optimization

Here our approach is to directly minimizing Eq. 1.69 in order to find the posterior
mode. Several schemes are proposed in the literature to solve this problem. In the
following sections, we present these approaches as well as an improved methodology.

Newton-Raphson GMRES solver The Newton-Raphson (NR) method is a root-
finding algorithm that is can be employed to search for roots of Eq. 1.71. Starting
with a initial guess x0, successive estimates of the root are obtained by the recurrence
formula

D2J(xi)∆vi = −DJ(xi)

xi+1 = xi + ∆xi . (1.80)

Evaluating the NR increment requires the computation and inversion of the Hessian
of the cost function. The exact evaluation of D2J, which requires the evaluation of
hxx(x), is often nontrivial and practically unfeasible. Instead, we use Eq. 1.52 to
rewrite the cost function as

J(v) =
1
2
‖v‖2 +

1
2

yk − h
(
(x̂( j)k + Âkv)

)
− ν
( j)
k

2

R
(1.81)

and its first derivative is given by

DJ(v) = v −

[
∂h
∂x

(
ẑ( j)k + Âkv

)
Âk

] T

R−1
(
yk − h

(
ẑ( j)k + Âkv

)
− ν
( j)
k

)
, (1.82)

which only requires that we know the result of applying ∂h(x)/∂z to the columns
of Âk , something that is usually available in the form of a linearized observation
model. Then, following the example of Ahuja and Rowley [2], the second derivative
D2J can be obtained using the finite difference formula

D2J(v∗)∆x =
DJ(v∗ + ε∆v) − DJ(v∗ − ε∆v)

2ε
(1.83)

for a sufficiently small ε .

The GMRES scheme can then be used to iteratively solve for the NR increment ∆vi.
Because this approach requires two layers of nested iterative loops (GMRES + NR),
the analysis step becomes prohibitively expensive.
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Gauss-Newton solver Since the cost function (Eq. 1.69) we want to minimize is
a sum of squares, we can avoid the need of computing the second derivatives of h(x)

by employing Gauss’ approximation to the Hessian matrix

D2J(v) ≈ I +
[
∂h
∂x

(
ẑ( j)k + Âkv

)
Âk

] T

R−1
[
∂h
∂x

(
ẑ( j)k + Âkv

)
Âk

]
. (1.84)

Substituting this expression back into the NR formula, one obtains

vi+1 = vi −

(
I + B(vi)T R−1B(vi)

) −1 [
vi − B(vi)T R−1

(
yk − h

(
ẑ( j)k + Âkv

i
)
− ν
( j)
k

) ]
=

(
I + B(vi)T R−1B(vi)

) −1
×[ (

I + B(vi)T R−1B(vi)

)
vi − vi + B(vi)T R−1

(
yk − h

(
ẑ( j)k + Âkv

i
)
− ν
( j)
k

) ]
=

(
I + B(vi)T R−1B(vi)

) −1
B(vi)T R−1

[
yk − h

(
ẑ( j)k + Âkv

i
)
+ B(vi)vi − ν

( j)
k

]
(1.85a)

= B(vi)T
(
R + B(vi)B(vi)T

) −1 [
yk − h

(
ẑ( j)k + Âkv

i
)
+ B(vi)vi − ν

( j)
k

]
,

(1.85b)

where
B(vi) =

[
∂h
∂x
(x̂k + Âkv

i)Âk

]
. (1.86)

This iteration is very similar to Iterated Extended Kalman Filter (IEKF) scheme
[36, 71], but restricted to the ensemble span. Due to this restriction, an explicit
representation of ∂h(x)/∂x (or its adjoint) is not required. The evaluation of B(v)

only requires that we know the result of applying ∂h(x)/∂x to the columns of Âk .
If even this is not available (in the form of a linearized model, for instance), one can
still estimate it using Eq. 1.83.

This algorithm converges in one iteration when h(x) is linear, but has no convergence
guarantee in the nonlinear case. Bjorck [72] showed, however, that the increment ∆v
obtained by the Gauss-Newton scheme is always a descent direction for J, and, if the
algorithm converges, it will converge to a local extremum of J. Therefore, a damped
increment β∆v, where 0 < β < 1 is determined using a line search algorithm, can
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be used to ensure convergence.

vi+1 = (1 − β)vi + β
(
I + B(vi)T R−1B(vi)

) −1
B(vi)T R−1[

yk − h
(
ẑ( j)k + Âkv

i
)
+ B(vi)vi − ν

( j)
k

]
(1.87a)

= (1 − β)vi + βB(vi)T
(
R + B(vi)B(vi)T

) −1[
yk − h

(
ẑ( j)k + Âkv

i
)
+ B(vi)vi − ν

( j)
k

]
, (1.87b)

where β is the first value in the sequence 1, 1/2, 1/4, . . . , 2−n for which the Armijo-
Goldstein step principle[72]

‖J(vi+1)‖2 ≤ ‖J(vi)‖2 −
1
2
β

(
‖∆vi‖2 + ‖R−1/2B(vi)∆vi‖2

)
(1.88)

is satisfied.

The iterative process ends when ‖vi+1 − vi‖∞ ≤ ε1, J(vi) − J(vi+1) ≤ ε2J(vi) or the
pre-set maximum number of iterations is exceeded Imax . In this work, ε1 = 10−6,
ε2 = 10−4 and Imax = 10.

Dealing with nonlinear observation functions in the context of Kalman filtering by
using iterative schemes is not a new endeavor. The iterated Kalman filter (IKF)
proposed by Jazwinski [36] follows a very similar algorithm, and was later in-
terpreted as a Gauss-Newton scheme [73] and a Picard iteration [74]. Zupanski
[75] was possibly the first researcher to propose a iterative scheme in the context
of ensemble-based estimators. He proposed a variant of the ensemble transform
Kalman filter (ETKF[76]) to minimize a cost function (or maximize the correspond-
ing likelihood function) similar to Eq. 5.40. Gu, Oliver, et al. [77] later suggests
an iterative Gauss-Newton update formula for the EnKF in which the observation
function was linearized about each of the intermediate ensemble means.

The major differences between the algorithm proposed here and the one of Gu,
Oliver, et al. [77] are:

• Linearization is performed about the current estimate of the conditional mode
for each of the ensemble members as opposed to using the ensemble mean.
As a consequence, convergence is usually obtained with 5 iterations or fewer
(as opposed to twice that, if the linearization about the ensemble mean is
used)
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• Since ensemble statistics no longer needs to be evaluated after each iterative
step in order to update the linearization, the analysis step can be performed in
parallel

Another important detail is that when nonlinearities are present, there is no guarantee
that the posterior remains a Gaussian and, therefore, the mode(s) and the mean may
no longer coincide. The magnitude of this discrepancy, which may be considered
yet another bias source, scales with the error variance, and therefore is expected to
decrease as the estimator converges.

1.6 Outline of the Contributions in this Thesis

In this thesis we propose to apply the Ensemble Kalman Filter to the problem of
estimating both the flowfield and the forces exerted on a body by a low-Re flow from
measurements that would be available in an experimental setting. In Chapter 2, we
describe the numerical solver that will be used as both the estimator model and the
surrogate for the truth. In addition to a brief summary of the Immersed Boundary
Lattice Green Function (IBLGF) method that is used to simulate the flow, we show
how this methodology can be extended to obtain the relations that are required for
integrating a IBLGF-based model into the EnKF. The chapter then concludes by
presenting an overview of the numerical setup of the different flows that will be
considered throughout the thesis.

In Chapter 3, we survey the characteristics of the EnKF estimator under idealized
conditions, i.e. in the absence of modeling errors. We start by accessing the impact
of measurement noise levels, and schemes for initializing the ensemble, perform-
ing covariance inflation, and dealing with nonlinear observation functions. Using
Evensen’s representers formulation, we recall that the filter corrections are related to
the ensemble cross-covariance matrix between the state and the measurements. This
matrix is shown to reproduce some of the conclusions of structural sensitivity anal-
ysis for the same types of flows, and is used to propose a methodology for optimal
sensor placement. The optimality of the implemented estimator is accessed for both
pressure and velocity measurements by analyzing the whiteness of the respective
innovation sequence. The Chapter concludes with a comparison between EnKF and
3D-Var methodologies.

Since the computational cost of forecast and observation models have a significant
impact on the runtime of these estimators, dealing with modeling errors is a practical
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inevitability. When these errors have non-zero mean and are left unaccounted for,
the introduced bias can severely impair the estimator performance. In Chapter 4 we
investigate one source of modeling error, namely uncertainty (or misspecificiation)
of model parameters. Two strategies to deal with these errors are discussed: agnostic
and state augmentation approaches. In the first test case we emulate misspecified
boundary condition (BC), represented by different kinds of freestream perturbations,
and the challenge is to be able to continuously12 estimate the freestream velocity
using only pressure measurements on the surface of the airfoil. In the second
test case we emulate a misspecified initial condition (IC), and use use the state
augmentation approach to estimate the Reynolds number in the reference run. Our
ability to estimate a critical parameter on the fly shows how the EnKF can overcome
a common fragility displayed by estimators based on reduced-order models.

Sometimes, however, model errors must be dealt with by treating their effects
(mitigating the resulting bias) rather than their sources (fixing the model). In Chapter
5, we examine a more challenging modeling error, namely the use of under-resolved
models13 to estimate real flows. A direct representation of these errors can be
especially challenging for ensemble methods. In order to overcome these limitations,
we propose a low-rank representation for the modeling error, and use colored-noise
processes to represent the dynamics of the slow-varying portion of the bias. The
Ensemble Kalman Filter framework is then employed to simultaneously correct
both the state and bias parameters. The proposed methodology is demonstrated
using the twin-experiment strategy: using a Navier-Stokes equations solver with
immersed boundaries capabilities, the state of a fine-grid two-dimensional low-
Re flow simulation past an inclined flat plate is estimated using an ensemble of
coarse-mesh simulations and pressure measurements taken on the surface of the
plate. Finally, Chapter 6 summarizes the most important findings and proposes
some avenues for future work.

12Differently from the misspecified IC case, the estimator needs to remain responsive to further
changes in the freestream at later estimation times.

13Even though one could minimize this error by discretization refinement, the associated addi-
tional cost is undesirable and often prohibitive.
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C h a p t e r 2

NUMERICAL METHOD AND FLOWS CONSIDERED

2.1 The Numerical Method

The dynamics of the flow are represented by the discretized 2-D incompressible
Navier-Stokes equations, and the simulations were carried out using the Immersed
Boundary Projection Method (IBPM)[78, 79] enhanced by the Lattice Green’s
Function (LGF) formulation [80, 81]. The LGF formulation exactly enforces the
free-space boundary condition at infinity for the Poisson equation even though the
computation domain is restricted to a snug region of non-zero vorticity near the
immersed body.

2.1.1 The Immersed Boundary Projection Method (IBPM) in an Accelerating
Frame

Consider the non-dimensional incompressible Navier-Stokes equations written in
the inertial frame with a singular immersed boundary force f added to the momentum
equation

∂u f

∂t
+ u f · ∇u f = −∇ · p +

1
Re
∇2u f +

∫
Γ

f(ξ(s, t))δ(ξ − xf)ds (2.1a)

∇ · u f = 0 (2.1b)

u f (ξ(s, t)) =
∫

x
u f (x)δ(x − ξ)dx = ub(ξ(s, t)) , (2.1c)

where u and p are the velocity and pressure variables. Now, consider a accelerating
frame that moves with linear velocity U f (t), and rotates about the origin of accel-
erating frame with angular velocity Ω(t), as described by Tsai and Colonius [82].
The relationship between the velocities and vorticity evaluated in each of the two
reference frames is given by

u f = ur +Ω(t) × xr + U f (t) (2.2)

ω f = ωr + 2Ω(t) , (2.3)

where the subscripts f and r denote variables in the inertial and accelerating frames,
respectively.
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Therefore, the momentum equation written in the accelerating frame is given by
[82] (

∂ur

∂t

)
r
+ ur · ∇ur = −∇ · p +

1
Re
∇2ur

− ÛΩ(t) × xr − 2Ω(t) × ur −Ω(t) × (Ω(t) × xr) −

(
∂U f

∂t

)
f

+

∫
Γ

f(ξ(s, t))δ(ξ − xr)ds . (2.4)

The boundary conditions for Eq. 2.4 are [83]
ur(t) → −U f (t) −Ω(t) × xr

ωr(t) → −2Ω(t)
p(t) → p∞(t)

as ‖xr ‖ → ∞

ur(t) = 0 on Γ .

In order to make the boundary conditions consistent with the LGF framework, we
use the change of variables proposed by Tsai [83]:

u′ = ur +Ω(t) × xr + U f (t) (2.5a)

ω′ = ωr + 2Ω(t) (2.5b)

p′t = pt − p∞ −
1
2
‖U f (t)‖2 , (2.5c)

where
pt = p +

1
2
‖ur ‖

2 −
1
2
‖Ω(t) × xr ‖

2 − U f · (Ω(t) × xr) (2.6)

is the total pressure.

By taking the curl of Eq. 2.4 and applying the change of variables, we obtain the
vorticity equation

∂ω′

∂t
= ∇ × (ur × ω

′) −
1

Re
∇ × (∇ × ω′) + ∇ ×

(∫
Γ

f(ξ(s, t))δ(ξ − xr)ds
)

. (2.7)

Similarly, by taking the divergence of Eq. 2.4 and applying the change of variables,
we obtain the pressure equation

∇2p′t = ∇ · (u × ω′) + ∇ ·
(∫
Γ

f(ξ(s, t))δ(ξ − xr)ds
)

, (2.8)
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subjected to the boundary conditions
u′(t) → 0
ω′(t) → 0
p′t(t) → 0

as ‖xr ‖ → ∞

u′(t) = Ω(t) × xr + U f (t) on Γ .

These equations are discretized using a staggered-mesh finite-volume formulation
[78]. In this framework, different flow quantities are evaluated on distinct positions
within the unit cell. Figure 2.1 shows how the velocity components u and v, the
pressure p, the vorticity ω and the streamfunction ψ are placed with respect to the
primal cell and its respective dual. We will consider a uniform grid with equal grid
spacing h in the x and y directions.

Figure 2.1: Variables placement on a staggered grid with respective dual mesh.

By appropriately discretizing the continuous differential operators in Eq. 2.7, the
following semi-discrete DAE system is obtained

∂ω′

∂t
= CT N(ω′) −

1
Re∆

CTCω′ − CT H f (2.9a)

EC(CTC)−1ω′ = Eu′ = −Ω(t) × xr − U f (t) , (2.9b)

where C is the discrete curl operator, H = ∆s
h ET is the regularization operator,

E is the interpolation operator, Re∆ = Re h
L is the grid Reynolds number and

N(ω′) = ur × ω
′ is the discretization of the nonlinear advection term. The surface

stresses f here represent the action of the fluid on the immersed body (hence the
minus sign). Details about the construction of the discrete operators can be found
in the Appendix A of Colonius and Taira [79].

The matrices H and E are constructed to represent a discrete version of the convo-
lution integral that appears in both the vorticity equation and the IB constraint. The
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continuous delta function is approximated by its discrete counterpart, the discrete
delta function (DDF). There are several options of DDFs in the literature (see Fig.
2.2 for some examples) that differ from each other by their support (how many cells
around the IB point the force is spread out and the velocity is interpolated from)
and degree of smoothness (how many continuous derivatives the DDF has). The
balance between these two features will determine the smoothness of the evaluated
IB forces and the perceived sharpness of the IB for a given grid resolution. In this
work, we use the smoothed 3-point DDF of Yang et al. [84]

φ∗3(r) =
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(2.10)

It was also noted by Goza et al. [85] that using a 1 < ∆s
h < 2 is beneficial with regard

to producing smoother force distributions.
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Figure 2.2: Comparison between different choices of the discrete delta function.

The evaluation of the nonlinear term requires the procurement of the velocity field
from the vorticity field. This is accomplished via the evaluation of the streamfunction
ψ using the lattice Green’s function.

ω′ = CTu′ = CTCψ (2.11)

u′ = −CL−1ω′ , (2.12)



44

where −CTC corresponds to the scalar Laplacian operator operating over the cell
vertices. The solution to this discrete Poisson equation has an explicit analytic
solution in the form

u(m) = [φ ? f ](m) =
∑
p∈Z2

G(m − p) f (p) , (2.13)

where m is the mesh index vector, and G is the fundamental solution of the Poisson
equation in an infinite Cartesian mesh (see Appendix B for more details). Assuming
that the regions with nonzero vorticity are compact, this convolution can be evaluated
efficiently using the fast Fourier transform (FFT) and the convolution theorem.

Two time marching scheme options are available. The first approach uses the
classical second-order Crank-Nicolson/Adam-Bashforth (CNAB2) temporal split
scheme [78, 87]. The second uses a integrating factor approach to avoid the stiffness
introduced by the viscous terms in the Navier-Stokes equation, and a half-explicit
Runge-Kutta (HERK) scheme, specially suitable to deal with systems of ODEs with
algebraic constraints, is used as the time marching scheme [88]. In both cases, the
resulting fully-discrete equations are solved using block-wise LU decomposition.
The results for the cylinder and airfoil (with exception of section 5.9) were obtained
with the HERK scheme, while the flat plate cases were run with the CNAB2 scheme.

The same time-marching framework is also used to enforce the no-slip condition in
the posterior state (see section 1.5.5 for further details on this). The non-conforming
part of the state can be projected out of the solution by applying a single iteration of
the selected time-marching scheme with ∆t = 0.

2.1.2 CFL Constraint

Since an explicit time-marching scheme will be used as part of the dynamical model
of the estimator, the stability of the solution is conditioned to a CFL constraint.
The corrections applied by the estimator can create regions of the solution with
high velocities, which can lead to the divergence of the solution. This is the
most common cause of estimator crash. Because the corrections are scaled by the
ensemble variance, and are proportional to the data mismatch, this issue is more
likely to occur early on in the estimation history.

There are basically two parameters that can be adjusted to prevent estimator diver-
gence due to CFL constraint violation: the numerical time step and the covariance
inflation magnitude. The first one is an obvious choice, but a smaller time step
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will necessarily increase the cost of the forecast step, and therefore it is interesting
to use the largest possible time step. In fact, one can use a varying time step that
increases as the the data mismatch and ensemble variance decrease, saturating at a
safe maximum limit. In the simulations carried out in the present work we used

∆t = min
(
∆tmax,

‖C0‖

‖Ĉk ‖
∆t0

)
, (2.14)

where C0 is the initial ensemble covariance matrix, ∆t0 is a sufficiently small time
step, and ∆tmax is the time step used to run the reference simulations.

An alternative is to make corrections smaller by weighting more the a priori pre-
diction. This can be done either by increasing the measurement noise level or
decreasing the ensemble variance. To that end, it may be advisable to pull back the
magnitude of covariance inflation in use.

2.1.3 The Pressure Solver

The IBLGF framework is also used to evaluate the corresponding free-space pressure
field. Discretizing 2.8, one obtains

DGp′t = DN(u) − DH f , (2.15)

where G is the discrete gradient operator (which is the dual of the divergence
operator D = GT ).

It can be shown that DG also corresponds to the scalar Laplacian operator, but
operating over the cell centers. Therefore, Eq. 2.15 correspond to a discrete Poisson
equation on an infinite grid, which can be solved using the LGF. With the total
pressure in hands, the pressure coefficient can be evaluated from Eq. 2.6:

cp =
p − p∞

0.5ρ‖U f ‖
2 = 1 −

‖ur ‖
2

‖U f ‖
2 + 2

p′t
‖U f ‖

2 +
‖Ω × xr ‖

2

‖U f ‖
2 + 2

U f · (Ω × xr)

‖U f ‖
2 . (2.16)

Figure 2.3 shows an example of the evaluated pressure field for the flow past a
cylinder. As we would expect from a IB method, when closed bodies are present,
there is also a non-unique pressure distribution corresponding to the region inside
the body.

2.1.4 The Semi-Discrete Force Update

In the IBLGF framework, f plays the role of a Lagrange multiplier that enforces the
no-slip boundary condition at each of the body points, and whose value is obtained
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Figure 2.3: Contour plot of the computed pressure coefficient field, overlapped with
isocurves of vorticity.

as a byproduct of the time-marching procedure. However, sometimes1 it is necessary
to obtain these forces from the vorticity field at a instantaneous moment in time.
For that end, a semi-discrete approach is used.

Thus, by taking the time derivative of the algebraic constant equation and substituting
the vorticity equation in

EC(CTC)−1 dω
dt
=

dub

dt

EC(CTC)−1
(
−

1
Re

CTCω + CT N(w) − CT ET f̃
)
=

dub

dt

ECL−1CT ET f̃ = ECL−1
(

1
Re

Lω + CT N(w)
)
+

dub

dt

f̃ (ω) = (ECL−1CT ET )−1
[
ECL−1

(
1

Re
Lω + CT N(w)

)
+

dub

dt

]
. (2.17)

All these operators are already used by the time marching scheme, therefore the
implementation is straight-forward. Note that this map between state (ω) and forces
( f̃ ) is nonlinear due to the presence of the convective term in the right-hand side.
Also, since the implemented time-marching scheme is second-order accurate (both
the CNAB2 and HERK), the force so obtained is a second-order approximation to
the force obtained using this semi-explicit scheme, as Fig. 2.4 indicates.

1In the EnKF context, an instantaneous update of the IB forces is necessary when process noise
is present or when iterative schemes are used to deal with a nonlinear measurement function.
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Figure 2.4: Convergence plot for the semi-discrete force update.

The forces obtained by either the time-marching or the force update are often noisy, a
consequence of the ill-conditioning of the integral equation of the first kind expressed
by Eq. 2.1c. Goza et al. [85] proposed a post-processing scheme that filters out the
high-frequency spurious oscillations given by f f ilt = EWH f , where

Wii =

{
1/(H1)i (H1)i , 0
0 otherwise .

(2.18)

Note also that the problem of finding the force acting on the IB points is ill-posed
when a closed body is present. On those bodies, the IB forces are only determined
up to a constant normal component (as such a force distribution would have zero
resultant on the fluid). The actual value for this constant that is computed by this
scheme will depend on the implicit regularization provided by the choice of discrete
delta function and grid resolution. In practice, this constant normal component
can be quite large and, as a consequence, the pressure inside the body (computed
using the formulation presented in section 2.1.3), can achieve extreme values. This
behavior can be prevented by enforcing, a posteriori, a fixed value for this constant
normal component. In Chapter 3, this value was chosen to be zero2.

2Note that individual choices have absolutely no impact in the flowfield outside the body.
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2.1.5 The Linearized Force Update

Although obtaining a matrix representation of the linearized force update operator
may be challenging, the IBLGF framework can be used to compute the action of the
linearized operator on a vector

∂ f̃
∂ω
(ωb)ω = (ECL−1CT ET )−1

[
ECL−1

(
1

Re
Lω + CT ∂N

∂w
(ωb)ω

) ]
, (2.19)

where
∂N
∂w
(ωb)ω = ub × ω + u × ωb (2.20)

is the linearization of the convective term of the Navier-Stokes equation and ub is
the velocity field associated with ωb, the solution about that the linearization takes
place.

2.2 The Problem of Interest

In this work, we will be studying methodologies that are suitable of dealing with
dynamical systems that share the following characteristics:

• high-dimensional numerical model

• sparse spatially-restricted observations

• nonlinear forecast and observation models

In particular, we will be interested in estimating the state of the low-Re incompress-
ible flow past 2D canonical bodies. This flow is characterized by laminar vortex
shedding with a well-defined frequency. For the cylinder at Re = 100, we expect a
Strouhal number of St = 0.165[89]. For the other two geometries, the correspond-
ing Strouhal number can be estimated using the Reynolds number associated to the
projection of the chord into the direction perpendicular to the incoming flow. We set
the angle of attack (AoA = 30°) and Reynold number (Re = 200) for the inclined
flap plate and airfoil, so that the projected Reynolds number (Re sin(AoA) = 100) is
equivalent to the cylinder case. Figures 2.10, 2.9, and 2.6 exemplify these charac-
teristics for the flat plate, NACA 0009 airfoil and the circular cylinder, respectively.

The lattice Green’s function formulation enables us to restrict the computational
domain to the region close to the body and the wake (nonzero vorticity region).
Nevertheless, the cylinder case requires about 15000 degrees of freedom for a
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grid resolution corresponding to Re∆ = 4 (which is borderline high for obtaining
physically relevant results), and the flat plate and airfoil cases require 60000 degrees
of freedom for the same resolution level and domain size. That notwithstanding, it
is important to note that these flows exhibit low-rank dynamics. Figure 2.5 shows
the fraction of the variance of the solution (computed using a sufficiently long run)
that is left out by keeping only the leading POD modes. About 25 modes are enough
to retain 99.9% of the variance in all cases.
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Figure 2.5: Low-rank behavior of the low-Re incompressible flow past inclined flat
plate and airfoil (NACA 0012).

As for the measurements, having the future experimental applicability of the con-
clusions drawn by this study in mind, it is important to only observe quantities that
would be accessible in a typical laboratory setting. Thus, observable quantities
consist in either the velocity components sampled in several positions in the wake
of the body, producing the kind of data that resemble time-resolved PIV data, or
the stresses on the surface of the body, from that the pressure distribution can be
estimated. While the velocity field is a linear function of the vorticity field, the
force distribution acting on the immersed boundary retains a dependency on the
advection term of the N-S equations, and is therefore a nonlinear function of the
vorticity field. This distinction will have an important impact on the accuracy of the
estimation problem.
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2.2.1 Low-Re Flow Past a Circular Cylinder

The first test case is the canonical flow past a circular cylinder at ReD = 100.
At this Reynolds number, the flow is still essentially two-dimensional [90] and is
characterized by coherent vortices in the wake known as the Karman vortex street.
The dynamical system is deterministic, and, apart from synthetic noise added to
the measurements, the only randomization is associated with the initial conditions.
Thus, the goal is to use the EnKF to track the phase of the vortex street.

Figure 2.6: Vorticity contours for the flow past a circular cylinder at Re = 100.

The grid resolution is 25 points by diameter (which yields a system with about
15,000 degrees of freedom), and velocity components sampled at 14 equidistant
points in the flowfield (see Fig. 2.7) are assimilated into the filtering process every
0.1 convective time units.

2.2.2 Low-Re Flow Past a NACA 0009 Airfoil

The second test case is closer to the motivation presented in the introduction section.
The performance of the estimator is now analyzed when applied to the problem of
the flow past a NACA 0009 at 30 degrees angle of attack and Reynolds number 200.
The grid resolution is 50 points per chord and the pressure at distinct locations over
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Figure 2.7: Flow past a circular cylinder: location of the velocity measurement
points in the flowfield.

the airfoil (see Fig. 2.8) are taken as measurement data every 0.05 convective time
units.

Figure 2.8: Location of the pressure measurement points over the surface of a NACA
0009 airfoil.

2.2.3 Low-Re Flow Past a Inclined Flat Plate

The third test case is the flow past a flat plate at 30 degrees angle of attack and
Reynolds number 200. The state of this system is represented by the vorticity at
each of the grid points. With the purpose of analyzing the effects of resolution,
meshes with grid Reynolds numbers (Re∆ = Re∆x/c where ∆x = ∆y is the grid
spacing) equal to 1 (200 points per chord), 2 (100 points per chord) and 4 (50
points per chord) are used. This simple geometry was considered in addition to the
previous airfoil case to minimize changes in the body geometry as the grid resolution
is refined. As for the measurements, we sense the pressure at 10 equidistant locations
over the plate every 0.05 convective time units.
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Figure 2.9: Vorticity contours for the the flow past a NACA 0009 airfoil at AoA =
30 deg and Re = 200.

Figure 2.10: Vorticity contours for the flow past a flat plate at AoA = 30 deg and
Re = 200.

2.3 Performance Evaluation Metrics

In order to evaluate the performance of the estimator, the following metrics will be
used throughout the thesis:

• State estimate error (measures how the estimated state differs from the refer-
ence state):

Ex =
‖ x̄ − xre f ‖

‖xre f ‖
. (2.21)
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• Observation estimate error (measures how the estimated observation differs
from the measured data):

Ey =
‖ ȳ − yre f ‖

‖yre f ‖
. (2.22)

• State ensemble RMS (measures the spread of the ensemble state estimates):

RMSx =

√√√
1

q − 1

q∑
i=1

‖x(i) − x̄‖2

‖ x̄‖2
. (2.23)

• Observation ensemble RMS (measures the spread of the ensemble observation
estimates):

RMSy =

√√√
1

q − 1

q∑
i=1

‖y(i) − ȳ‖2

‖ ȳ‖2
. (2.24)
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C h a p t e r 3

ESTIMATION IN A PERFECT-MODEL FRAMEWORK

The estimator performance will be significantly impacted by the choice of how
to model and observe the tracked system. The definition of the predictive model
must be a compromise between accuracy and cost. The predictive model should
be accurate enough to alleviate the burden laid upon the error control techniques
(stochastic forcing, covariance inflation, etc) while keeping the computational time
controlled. On the other hand, the choice of what and where to measure will not
only limit the accuracy of the state/output estimates, but will also determine if the
estimation task is feasible at all (detectability1).

In this section, we discuss how tuning the different estimation parameters affect
the performance of the estimator in a perfect model framework. We show that the
representers of the estimator (defined in Eq. 1.58b) provide guidance on sensor
placement. Each subsection focuses on a distinct aspect of the EnKF methodology
and is sorted by the test problem that was used to perform the analyses.

3.1 Flow Past a Circular Cylinder

Throughout this section, the flow past a circular cylinder at Re = 100 (see section
2.2.1 for more details) was used as test problem. The grid resolution was set to 25
points by diameter (Re∆ = 4), and velocity measurements were taken at different
locations in the wake every 0.1 convective time units. The AA multiplicative
covariance inflation scheme (see section 1.5.4) with α = 1.05 was used.

3.1.1 Effect of the Assimilation Interval

The frequency with which the estimator must obtain new measurements must be
a compromise. A lower bound is defined by the parallel efficiency of the EnKF
algorithm. Assimilation shouldn’t occur too often because the analysis step is
inherently a serial procedure and requires a big volume of data transfer in order to
evaluate the necessary ensemble statistics.

1Detectability is a weaker notion of observability. While observability requires all nontrivial
modes to produce a non-zero output, detectability only requires neutral and unstable modes to
produce non-zero output.
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On the other hand, the characteristics of the dynamical system impose an upper
bound on the assimilation interval. New measurements must be frequent enough to
ensure that the corrections issued by the estimator can overcome the divergence of
the most unstable modes of the dynamical systems. It is also important to ensure
that the assimilation frequency is faster than any relevant time scale of the problem.

Unless otherwise noted, the assimilation interval for the results presented in this
thesis is 0.05 convective time units, which corresponds to a rate of 120 measurements
per vortex shedding cycle.

3.1.2 Effects of the Initialization Scheme

Figure 3.1 shows how different choices of the initial ensemble impact the evolution
of the estimate error when the ensemble size is held fixed at 24 members. In the
first case, we initialize the flow field with zero-mean random numbers, while in the
second case, we add random perturbations to the true mean flow. Finally, in the third
case, we add the first 24 POD modes to the mean, but with coefficients randomized.
In all cases, the ensemble initial variance matches the reference run variance. When
the initial condition is restricted to the POD subspace, the estimator convergences
within a few convective time units, whereas, unsurprisingly, the more random initial
conditions take longer to converge. Physically speaking, the timescale associated
with the domain size in the x-direction is about 6 units, and the estimator must wash
out the random initial condition over this time period while a transient takes place
that leads to different realizations of the flow with distinct vortex shedding phases.

Figure 3.2 presents the evolution of the state estimate error and ensemble RMS for
different ensemble sizes. Provided that the dynamics is relatively sparse in the POD
space and the most energetic subspace is captured by the initial ensemble, the tran-
sient behavior of the estimator appears to become independent of the ensemble size.
This behavior indicates that the sampling error decays more rapidly than the ex-
pected q−1/2 when a POD-based initialization is used. Another interesting behavior
that is portrayed in these plots is the collapse of the variance. For smaller ensemble
sizes, the ensemble RMS decreases rapidly, limiting the effectiveness of further
corrections to the state as the confidence on the internal state is overestimated. As a
consequence, error converges in a slower rate then when fewer ensemble members
are used. However, if modeling errors were present, the increasing disregard for
new external information coming from the measured data may lead the estimator to
diverge.
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Figure 3.1: Effect of the choice of the initial ensemble on the estimator performance
for the flow past a circular cylinder at Re = 100 using velocity measurements.
The ensemble has 24 members and the measurement error level is R = 10−4Ip.
( ) corresponds to a zero-mean random initial condition, ( ) corresponds to
the mean flow plus random perturbations and ( ) corresponds to the mean flow
plus randomized leading POD modes.
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Figure 3.2: Estimator performance for increasing ensemble sizes applied to the prob-
lem of the flow past a circular cylinder at Re = 100 using velocity measurements.
Measurement error level is set to R = 10−4Ip.
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3.1.3 Effects of the Measurement Noise Level

The measurement noise level also impacts the performance of the estimator, since the
reliability of sensor data should be weighted against the internal state of the estimator.
As the data assimilation proceeds, the estimated state uncertainty decreases and
may reach an error level for which further corrections become secondary. Figure
3.3 shows how a lower noise level favors the estimator performance in the case of
velocity sensors. Note that reducing the noise covariance level by two orders of
magnitude reduces the ensemble RMS by one order of magnitude. Kelly, Law, and
Stuart [67] and Sanz-Alonso and Stuart [91] showed that, for linear models and in
the absence of process noise and modeling errors, the long-term error and variance
levels are directly linked to the measurement noise level.
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Figure 3.3: Estimator performance for distinct measurement noise levels applied
to the problem of the flow past a circular cylinder at Re = 100 using velocity
measurements and 16 ensemble members. ( ), ( ) and ( ) correspond,
respectively, to measurement noise covariance matrices R set to 10−2Ip, 10−4Ip and
10−6Ip.

3.1.4 Analysis of the Representers

Figure 3.4 shows the measurement influence fields (representers) for different mea-
surement locations, as defined in Eq. 1.58b. Each of these vectors represents the
expected value of the cross correlation between the state and each of the measure-
ments. It comprises two pieces of information: its magnitude provides a comparative
measure on how strongly the data gathered from each of the sensors contributes to
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the correction, and its shape shows where in the flowfield these corrections take
place. The highest values are achieved for measurements taken 2 to 3 diameters
downstream of the cylinder. The obvious conclusion is that measurements taken
at points where there is no variation amongst the ensemble members are useless.
Interestingly, the measurement locations with higher representer magnitudes is the
ones closer to the so-called wavemaker region [92], as shown in Fig. 3.4f. Note,
however, that this analysis is made a posteriori. As such, it can be used to evaluate
the relative relevance of the data obtained from each of the sensors, and propose
changes to the disposition of sensor locations.

3.2 Flow Past a NACA 0009 Airfoil at High Angle of Attack

Throughout this section, the flow past a NACA 0009 airfoil at Re = 200 and
AoA = 30° (see section 2.2.2 for more details) was used as test problem. The grid
resolution was set to 50 points by diameter (Re∆ = 4), and pressure measurements
were taken at 10 equidistant points on the surface of the airfoil every 0.05 convective
time units. The RTPS multiplicative covariance inflation scheme (see section 1.5.4)
with θ = 0.95 was used. The ensemble size was set to 24, and is initialized using
the POD-based scheme shown in section 1.5.2.

Figure 3.5 shows the estimated lift coefficient evolution for this baseline setup. The
behavior of the ensemble variance, here represented by the width of the shaded area,
can be analyzed using Eq. 1.58a. Before the first analysis step, the variance of the
ensemble-predicted measurements HkĈk HT

k is much larger than the measurement
noise level Rk (see vertical bar near the y-axis). As a consequence all ensemble
members are strongly corrected toward the true solution in the first time step. At
subsequent times, corrections are increasingly damped as the estimate converges
to the true flow state and the perceived uncertainty of the estimated measurements
decreases.

3.2.1 Effects of the Covariance Inflation Scheme

We now analyze the effect of using different choices of covariance inflation (CI)
scheme. These schemes delay the decrease in the ensemble covariance (see Figs.
3.6c and 3.6d) and, as a consequence, achieve a smaller error than the one obtained
without inflation (see Figs. 3.6a and 3.6b). Because a constant factor is used to
inflate the covariance in the AA scheme, the error subspace spanned by the ensemble
is preserved. The corrections in this case are structurally similar to those that would
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(a) (b)

(c) (d)

(e) (f) Wavemaker region. Reproduced from
[92].

Figure 3.4: Measurement influence fields (representers) for the horizontal compo-
nent of the fluid velocity at selected measurement locations. Ensemble size was 16
members and R = 10−4Ip. All the figures have the same contour levels.

have taken place in the absence of inflation, but their amplitude is more aggressive.
The RTPS scheme, on the other hand, is more complex. The inflation magnitude is
local and dependent upon the previous analysis step (for θ = 1, the forecast spread is
recovered). Because of these characteristics, the RTPS scheme can in fact change the
subspace spanned by the ensemble. This extra variability is possibly the reason for
the distinct behavior at early times and may be even desirable for some applications.
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Figure 3.5: Estimated lift coefficient for the flow past a NACA 0009 airfoil using
pressure measurements and the RTPS covariance inflation scheme (θ = 0.95).
The dashed line ( ), the solid line ( ), and the shaded area ( ) represent,
respectively, the reference solution, the EnKF estimate, and the ensemble min-max
envelope (R = 10−4Ip). The bar on the vertical axis represents the initial ensemble
spread.

3.2.2 Effect of the Number of Measurements: an Iterative Approach for
Optimal Sensor Placement

The relative magnitude of the measurement influence fields (representers) are now
used to iteratively search for the best locations for sensor placement. Starting with
a simulation in which measurements are taken at all immersed boundary points, the
following methodology was adopted:

1. A simulation is run for T convective time units. At each analysis step, the
representers are sorted in descending order by their L2 norms and the leading
n are selected.

2. A histogram is used to represent how often each representer is selected during
the simulation.

3. The n most frequent sensor locations according to the aforementioned his-
togram are selected.

4. A new simulation is run with only the selected sensor locations and the process
is repeated until the desired number of sensors is achieved.
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(d) Ensemble RMS: AA scheme.

Figure 3.6: Estimator performance for different multiplicative covariance inflation
schemes applied to the flow past a NACA 0009 at high angle of attack. Ensemble
size is 24 and the sensor noise level is set to R = 10−4.

The length of the simulation T must be chosen carefully. If too small a T is chosen,
sensor locations more relevant to the filter transient behavior will be favored. On
the other hand, a longer simulation length will favor the sensor locations associated
with the filter long-term behavior and the initial filter performance may be hindered.
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Here, T was set to 20 convective time units, which is about when the estimation
statistics reaches a long-term stationary value.

Figure 3.7 shows a subset of the histograms obtained for the airfoil problem. In-
dexing starts at the trailing edge and increases as the airfoil surface is transversed
in the counterclockwise direction. Starting with the first iteration, the regions close
to the leading and trailing edges are favored. These regions play an active role
in the formation and release of the vortices that characterize this particular flow
and, therefore, pressure measurements taken at these locations should be especially
effective to determining the state of the system. In fact, the estimator is able to
track the vortex shedding phase with as few as 1 measurement located at either the
leading or trailing edge.
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Figure 3.7: Histograms used in the iterative process of finding the optimal pressure
sensor placement for the airfoil problem. Indexing starts at the trailing edge and
increases as the airfoil surface is traveled in the counterclockwise direction. The
blue bars ( ) represent the active sensors for that particular simulation, and the red
bars ( ) represent the sensor locations selected for the next iteration.
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The estimated state error, whose norm was previously presented in Fig. 3.6, is
visualized at final instant of the estimation in Fig.3.8. Since no modeling errors are
present, a global match is achieved even with local measurements after the estimator
synchronizes with the reference solution.

(a) Estimated solution.

(b) Reference solution.

Figure 3.8: Estimated and reference vorticity field 20 convective time units after
estimator initialization using a single pressure sensor optimally placed near the
leading edge.

3.3 Flow Past an Inclined Flat Plate

In this last section, the flow past an inclined flat plate at Re = 200 and AoA = 30°
(see section 2.2.2 for more details) was used as test problem. The grid resolution
was set to 50 points by diameter (Re∆ = 4), and pressure measurements were taken
at 10 equidistant points on the plate (including leading and trailing edges) every
0.05 convective time units. The RTPS multiplicative covariance inflation scheme
(see section 1.5.4) with θ = 0.90 was used.
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3.3.1 Computational Time Expenditure

As pointed out in the introduction, the EnKF methodology is highly parallelizable.
The only serial step of the algorithm is represented by the evaluation of the en-
semble statistics (or the perturbation matrices, when the ensemble transformation
is employed), which requires gathering information from only ensemble members.
Because we can choose between performing the matrix inversion in the Kalman gain
calculation either in the measurement space or the ensemble space, the analysis step
is usually relatively inexpensive2.

Figure 3.9 shows how the computational time is distributed among the different
filtering steps for a simulation (q = 60) using pressure measurements and the implicit
linearization scheme. We separate the evaluation of measurements estimates from
the two classic Kalman steps since this task is readily parallelizable at the ensemble
level, but some researchers consider to be part of the analysis step. Note that the
analysis step, the only part of the algorithm that is intrinsically serial, corresponds
to a minor fraction of the time (about 2%). Because only 12 threads were used in
this case, there is still space for a speed up in the ensemble level, not to mention that
the forecast and observation models may be parallel in its own right.

3.3.2 Effect of Nonlinearity in the Measurement Function

We first analyze how the choice of the method to deal with the nonlinear observation
function impacts the performance of the estimator in a perfect-model framework.
Here, the reference solution was taken to be a simulation carried out in the same
resolution level used by the estimator. Whenever the iterative method (Gauss-
Newton) is used, the initial guess is obtained by the implicit linearization scheme.
Since the maximum-likelihood estimate produced by the iterative method will only
correspond to the minimum variance estimate in the case of a linear observation
function, it is expected the posterior variance obtained by the iterative method will
be larger than optimal. It was also noted that, at the initial assimilation steps, the
iterative scheme achieves a reduction of the cost function of at least two orders
of magnitude. As the estimation progresses and the state variance decreases, the
magnitude of the corrections decreases and the cost improvement also becomes
marginal (see Fig. 3.10a).

2Either because the computational cost associated with the forecast of a large ensemble is
prohibitive or, as as happens in the present study, the size of the measurement vector is reduced.
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Figure 3.9: Time spent in each of the filtering steps for the EnKF simulation with
pressure measurements, implicit linearization scheme, and q = 60. Twelve threads
were used to split the computational load in the forecast step and when gathering
measurements.

Despite its simplicity and lower cost, the implicit linearization scheme performs
surprisingly well compared to the iterative method. Figure 3.10a shows that this
scheme performs better, or at least similarly, than the iterative scheme for all the
studied measurement noise levels (R). It is not clear how well the linearization about
the ensemble mean is supposed to approximate the conditional mean (minimum error
variance) of the posterior distribution, but results seem to indicate that it yields a
better approximation than the iterative method.

In the absence of nonlinearities and modeling errors, the terminal state error level
is supposed to decrease as the measurement noise level decreases (see [93]). Since
errors due to the presence of nonlinearities in the observation function are expected
to scale with hxxĈxx

k [36], and Fig. 3.10b shows that lower R consistently produces
smaller variances, the saturation of the state error at 10−3 for both the schemes
is unexpected. Further study is necessary to investigate what source of error,
independent of R or Ĉk , is dominating the long-term behavior of the filter.

3.3.3 Optimality of the Analysis Step

If a Kalman filter works optimally, the time sequence of the innovation vectors
rk = yk − h(xk) is white. The whiteness of this sequence is an indicative that
the filter is able to extract all available information from the measured data and
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(b) Observation error evolution.

Figure 3.10: Effect of nonlinear observation model in the estimator performance
in the perfect-model framework. Solid lines correspond to the iterative (Gauss-
Newton) method and dashed lines, to the implicit linearization scheme.

incorporate it into the estimate. Therefore, the extent to which the innovation is
white can be used as a measure of the filter optimality. The optimality of the
EnKF will now be evaluated using both pressure and velocity measurements for the
inclined flat plate case.

In order to verify the zero-mean requirement, we evaluate the expectation normalized
innovation, which is defined as

r̄∗ = E
[

rk

yk

]
, (3.1)

where the expectation is taken in time. Table 3.1 shows the values of r̄∗ correspond-
ing to the use of either pressure or velocity measurements for estimation window of
10 convective time units. If the whiteness hypothesis holds, the entry-wise sum of r̄∗

is supposed to distribute as a Gaussian with zero mean and variance tr(R)/N , where
N = 10/0.05 = 200. If r is white, there is a 13% chance for pressure measurements
and a 73% chance for velocity measurements that we would measure

∑
r̄∗i this far

from zero.

Table 3.1: Norm of the mean normalized innovation for different choices of mea-
surements.

Pressure Velocity∑
r̄∗i 0.3397% 0.1203%
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In order to be a white sequence, in addition to having a zero mean, the sequence
r′k = rk − E[rk] should be uncorrelated in time. Figure 3.11 shows two examples
of the autocorrelation function of such sequences for two measurement locations.
Any values outside the dashed lines representing the confidence bounds should be
considered significant because they are unlikely to occur just by chance. Thus, these
results indicate that the innovation sequence is white for the velocity measurement
but not for the pressure measurement, which exhibit some correlation for 1 lag.

In order to provide a more systematic way of accessing the whiteness of innovation
vector, two tests proposed by Matisko and Havlena [94] will be used to demonstrate
this hypothesis. They are based on the analysis of the autocorrelation function of
the innovation sequence. For an innovation sequence of length N , we first compute
the auto-covariance matrix 3

M∗(τ) = E[r′kr′Tk+τ] =
1√

N(N − τ)

N−τ∑
k=1

r′kr′Tk+τ , (3.2)

where τ ∈ N. The correlation function can be then obtained by appropriately
normalizing the previous equation

Mi j(τ) =
M∗i j(τ)√

M∗ii(0)M
∗
j j(0)

, (3.3)

where the subscripts i j denotes a specific entry in the respective matrix.

Test 1: Innovation Autocorrelation Function

If r′k ∼ N(0, R), then we expect Mii(τ) ∼ N(0, 1/N) for τ > 0, i.e., for each τ > 0 and
1 ≥ i ≥ p, the value of

√
N Mii(τ) can be regarded as being independently sampled

from a Gaussian distribution with zero mean and unitary variance. Therefore, the
auxiliary function

Φ j(τmax) = N
τmax∑
τ=1

(
Mj j(τ)

) 2 , (3.4)

where τmax is the maximum lag being taken into consideration, is expected to
distribute as a chi-squared distribution with τmax degrees of freedom. The innovation
sequence r′k is considered white if, for 1 ≤ τ ≤ τmax ,

Φ j(τ) < qτ5% , (3.5)
3Note that we have used a non-conventional pre-multiplying constant for the auto-covariance

matrix definition. Its value is chosen so that M(τ) are i.i.d for τ > 0.
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(a) Autocorrelation function for the innovation corresponding to
the pressure measured at the trailing edge.
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(b) Autocorrelation function for the innovation corresponding to
horizontal velocity measured one diameter downstream of the
flat plate.

Figure 3.11: Examples of the sample autocorrelation function for different mea-
surement locations. Horizontal dashed lines correspond to the associated upper and
lower confidence bounds, respectively.
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where qτ5% is the 5th percentile of the chi-squared distribution with τ degrees of
freedom. This criteria can be interpreted as follows: left to random chance, there is
only 5% chance of observing values bellow qτ5%, and, therefore, actually observing
this occurrence is indicative that the corresponding sequence is white.

Figure 3.13 shows the curves for Φ(τ) corresponding to the horizontal and vertical
components of the velocity measurements. The fact that the curves don’t grow in-
definitely but saturate after a finite number of lags is an indication that the sequences
are not periodic. Moreover, most of the curves remain below the dashed line cor-
responding to the 5%-significance interval, indicating that the data corroborates the
whiteness hypothesis for the innovation sequences corresponding to those measure-
ment locations. However, there is strong evidence of correlation for the horizontal
velocity measured 4 chords downstream of the plate, and a weaker evidence for the
vertical velocity two chords downstream in the top row.

Comparing Fig. 3.12 with Fig. 3.13, one can clearly see that the velocity measure-
ments are more efficiently assimilated to the estimate than the pressure measure-
ments. This loss of optimality in the pressure measurement case is not surprising
given the fact that the pressure observation function is nonlinear. It is also notewor-
thy the fact that the pressure locations in the second half (close to the trailing edge)
of the plate display stronger evidence of not being white.

Test 2: Best Auto-regressive Model

If r′k is a white sequence, then the best auto-regressive model to represent the data
should be of zeroth order. The general expression for an ARn model is

r′k =
n∑

i=1
Λir′k−i + εk , (3.6)

where Λi ∈ R
p×p are the model coefficients, and εk is a noise process. The auto-

covariance matrices computed for the previous test can be used to obtain the appro-
priate coefficients Λi by solving the multivariate Yule-Walker equations:

M∗(0) M∗(1) · · · M∗(n − 1)
M∗(1) M∗(0) M∗(n − 2)
...

. . .
...

M∗(n − 1) M∗(n − 2) · · · M∗(0)



Λ1

Λ2
...

Λn


=


M∗(1)
M∗(2)
...

M∗(n)


⇐⇒ MΛ = b . (3.7)
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Figure 3.12: Optimality of the EnKF with pressure measurements as perceived
from the decay of the innovation autocorrelation function. Measurement points are
numbered from the leading edge to the trailing edge.

The residual covariance matrix, whose norm is a measure of goodness of fit of the
corresponding ARn model, is given by

S2 = M∗(0) −
n∑

i=1
Λi M∗(i) = M∗(0) − ΛTMΛ . (3.8)

Since norm of the residual is expected to be non-increasing as one increases the
order of the auto-regressive model (as a lower-order model is a special case of
higher-order models), it is necessary to use some penalizing criteria to avoid over-
fitting. Following Pukkila and Krishnaiah [95], we adopt the BIC criterion that uses
a penalty term of the form g(n) = np2 log N . Therefore, finding the optimal order
corresponds to solving

nopt = argmin
0≤n

Φ(n)

= argmin
0≤n

[
N log

(
det(S2)

)
+ np2 log N

]
. (3.9)

Figures 3.14 and 3.16 display the values of the cost function Φ(n) for each of the
measurements locations. The auto-regressive orders that correspond to the minimum
values of the cost function for each of the measurement locations are presented in
Fig. 3.15 and 3.16 for pressure and velocity measurements, respectively. For the
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(a) Horizontal velocity measurements.
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(b) Vertical velocity measurements.

Figure 3.13: Optimality of the EnKF with velocity measurements as perceived
from the decay of the innovation autocorrelation function. Measurement points are
numbered from left to right, and from the bottom to the top.
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Figure 3.14: Optimality of the EnKF with pressure measurements as perceived by
finding the best AR model that represents the innovation sequence.

most part, the results from the second test corroborate the ones obtained from the
first test. Consistently with the previous observations, the innovation sequences
associated with pressure measurement taken in the second half of the plate exhibit
wider correlation, with 3 being the maximum number of lags. As for the velocity
measurement points, most innovation sequences are deemed white, with the single
exception being the horizontal measurement 4 chords downstream of the plate,
where a one-lag correlation was indicated. The only conflicting result is relative
to the velocity location in the upper row that, having been flagged as non-white by
the first test, is now cleared by the second test. In general lines, both tests agree
with the assessment that the filter is able to assimilate velocity measurements more
efficiently.

3.3.4 Comparison to the 3D-EnVar

The 3D-EnVar is a variant of the 3D-Var (presented in section 1.4.2) in which we
use an ensemble to build a low-order representation of the constant matrix Σ.

X =
[
x(1) x(2) · · · x(N)

]
Σ =

α

N − 1

(
X −

1
N

X11T
) (

X −
1
N

X11T
) T

= αAAT , (3.10)
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Figure 3.15: AR order attributed by the second test to each of the pressure measure-
ment points.
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(a) Horizontal velocity measurements.
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(b) Vertical velocity measurements.

Figure 3.16: Optimality of the EnKF with velocity measurements as perceived by
finding the best AR model that represents the innovation sequence.
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Figure 3.17: AR order attributed by the second test to each of the velocity measure-
ment points. First and second values correspond, respectively, to the horizontal and
vertical component of the velocity vector.

where the data matrix X is built of a sequence of snapshots sampled during a long
integration of the model. Since an ensemble of model states will naturally have
a variance that is too large to represent the actual error in the model forecast, a
parameter α is used to scale it. In other words, we can understand α as a covariance
deflation parameter. This methodology provides a consistent way of building the
weighting matrix for the 3D-Var, and also allow us to understand the impact of
the covariance inflation alone. As a consequence of this particular choice for Σ,
the search for a minimizer of the associated cost function is also restricted to the
low-dimensional affine subset generated by the prior estimate x̂ and the perturbation
matrix A.

Figure 3.18 shows the performance of the 3D-EnVar scheme for different values of
the parameter α. Measurements consist of the velocity components sampled at 15
different locations (c.f. Fig. 2.7) and have noise covariance matrix R = 10−4Ip.
Note that the presence of the scaling factor is able to improve the performance by
almost two orders of magnitude (for α = 0.25). For higher values of α, the action of
the model prediction as a regularizing term is minimized, and the long-term error is
the poorest. In fact, in the limit we would be substituting the prior estimate x̂ by the
solution of the inverse problem Hx = y. This is a ill-posed problem (since p << n)
that can be very sensitive to the measurement errors. On the other hand, when α is
too small, the relative reliability of the prior is larger than any information that can be
extracted from the measurements, and, consequently, any corrections will be small
(which explains the slower convergence rate experienced by the α = 0.001 case).
The optimal case, which merges the right amount of information from the model
forecast and the measurements, corresponds to intermediate values. Extrapolating
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this idea, one can understand why the underestimation of the system variance, which
commonly takes place when small ensemble are used in the EnKF, is detrimental.
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(b) Observation estimate error.

Figure 3.18: 3D-EnVar estimator performance for different values of α applied to
the problem of the flow past a flat plate at Re = 200 and AoA = 30° using velocity
measurements. Measurement error level is set to R = 10−4Ip.

Even though the 3D-EnVar is much less expensive than the EnKF, it has two main
disadvantages. First, its performance is highly dependent on the proper choice of
Σ and α. On the other hand, the EnKF performance is fairly robust with respect to
choices of initial ensemble (c.f. section 1.5.2) and covariance inflation magnitude
(c.f. section 3.2.1). Second, it does not provide any information on the estimation
error. Although having its magnitude underestimated by the EnKF, a fair amount of
information can be obtained from the structure of the estimated covariance matrix.

3.4 Summary

In this chapter, we sought to understand how different elements of the algorithm,
such as measurement noise levels and covariance inflation schemes, impact the
performance of the estimator. We analyzed approximate schemes that generalize
the EnKF framework to deal with nonlinear observation functions, and showed
evidence that they perform less optimally then when linear functions are used.
We showed a correspondence between the representers field and regions of high
structural sensitivity of the flow, and used that information as guidance for optimal
sensor placement.
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Although understanding the characteristics of an EnKF estimator in a perfect-model
framework is important to obtain a better understanding of the filter dynamics, prac-
tical models are rarely able to exactly capture all the features of a dynamical system.
In the next chapter, we take our first step into dealing with model inaccuracies by
analyzing how the EnKF framework can be used to estimate model parameters.
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C h a p t e r 4

ESTIMATION WITH UNCERTAIN PARAMETERS

In practical applications, the success of the estimator is contingent on the accuracy
of the model chosen to represent the dynamics. Imprecise or misspecified boundary
conditions or incorrect a priori assumptions about flow parameters such as the
Reynolds or Mach number can result in modeling errors that, left unaccounted for,
can severely impair the estimator capabilities of accurately tracking the trajectory
of the system. Examples of such parameters includes boundary conditions or flow
parameters such as the Reynolds number.

If any further information about the sources of these errors is either unknown or
ignored, a first strategy is what we call the agnostic approach. Following this
approach, no modification to the model itself is proposed and multiplicative co-
variance inflation alone is used to reduce the perceived reliability of the estimator
model in comparison with that of the data gathered from sensors1. Recall that in-
flating the ensemble covariance is equivalent to weighting the actual measurements
to the detriment of the ones predicted by the estimator internal state [67], allowing
more aggressive corrections to the state and enhancing the estimator responsiveness.
This approach, however, has limitations. Artificially driving the state toward the
measurements usually leads to larger state errors. If the modeling errors are large
enough, a closer match in terms of observations may lead to completely unphysical
states.

Provided that modeling errors can be tracked to theirs sources and suitable para-
metric models can be designed to represent them, an alternative strategy is possible.
Following the augmentation approach[96], the new parameters are added to the
state vector and the new augmented state is estimated using the EnKF framework.

In this chapter, we investigate the applicability of these two strategies to the problem
of estimating freestream velocity pertubations and uncertain Reynolds number from
pressure measurements taken on the surface of the immersed body.

1The multiplicative covariance inflation here can be understood as a process noise whose co-
variance matrix is a multiple of the state covariance matrix.
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4.1 Freestream Velocity Perturbation

In order to investigate the capabilities of the agnostic approach, the basic framework
introduced in section 3.2 is maintained but perturbations are introduced to the
freestream velocity of the nature run, affecting both the forecast and measurement
evaluations. The reference solution is randomly perturbed by setting the freestream
velocity to

U∞(t) = 1 + 0.1F1(ξ(t)) , (4.1)

where ξ(t) is a random Gaussian noise sequence and F1(·) is a 8th-order Butterworth
filter with a predetermined cutoff reduced frequency ( f c/Ure f ). Initially, we adopt
the agnostic approach and no modification to the estimator model is made other than
increasing the multiplicative covariance inflation parameter. The RTPS inflation
scheme is chosen over the AA scheme in order to introduce some variability to the
subspace (spanned by the prior ensemble) from which corrections are drawn at each
analysis step.

Figure 4.1 shows the ensemble lift coefficient evolution for two different choices of
covariance inflation magnitude and ensemble size. Increasing the former leads to a
more aggressive correction behavior that tends to yield noisier estimates. To some
extent, this tendency can be mitigated with a larger ensemble size. A combination
of both strategies usually leads to enhanced tracking capabilities.

Alternatively, having the augmentation approach in mind, we propose to model the
freestream velocity as exhibiting a linear behavior between two consecutive analysis
steps, such that the state vector is then augmented [96] with the inclusion of the
freestream perturbation ξ and its time derivative Ûξ. The dynamic model for them is
a simple integrator with the derivative being propagated as a constant, as shown in
Eq. 4.3.

U∞(tk) = 1 + ξk (4.2)

ẑk =


x̂k

ξ̂k

Û̂ξk

 =


f (xk−1)[
1 ∆t

0 1

] [
ξk−1
Ûξk−1

]  + µ̃k = f̃ (zk−1) + µ̃k , (4.3)

where ∆t is the time interval between two data assimilations, µ̃k ∼ N(0, Q̃) is a
Gaussian-distributed augmented noise vector whose associated noise covariance



79

0 5 10 15
0.6

0.8

1

1.2

tU∞
c

C
L

0.95

1

1.05

U∞

(a) Ensemble size 24 and θ = 1.05.
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(b) Ensemble size 48 and θ = 1.20.

Figure 4.1: Estimated lift coefficient for airfoil with randomized freestream velocity
using the RTPS covariance inflation scheme (R = 10−4Ip). The dashed line ( ),
the solid line ( ), and the shaded area ( ) represent, respectively, the reference
solution, the EnKF estimate, and the ensemble min-max envelope. The dotted line
( ) represents the actual freestream velocity that the airfoil is subjected to.

matrix is given by

Q̃ =


Q 0 0
0 0 0
0 0 σ

 . (4.4)

This approach of simultaneously estimate both state and parameters is often referred
to as joint estimation, and has the advantage of taking into account the cross-
correlation between the state and the parameters.

First we analyze the performance of the estimator when the airfoil perform a smooth
deceleration to 75% of its initial value over 13.3 convective time units so that 87.5%
is achieved after 20 convective time units of the beginning of the simulation. The
deceleration profile is given by

U∞(t) = 1 −
α

2
erfc

(
−

√
πβ

α
(t − t0)

)
, (4.5)

where erfc(t) is the complementary error function, α is the saturation value, β is
the slope at t = t0, the reference time at which the perturbation reaches half of its
saturation value.

Figure 4.2 shows some interesting features of the EnKF. Because the IB forces
acting on the body are a function of the vorticity field, and the freestream velocity
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and acceleration, the lift (the sum of the vertical components of these forces) is a
good global performance indicator for this estimation problem. For early times, the
CL ensemble variance is larger than the perfect model case due to extra degree of
uncertainty added by the presence of a perturbation of unknown magnitude, but the
estimator is able to obtain the right phase after just 2 convective time units and most
of the perturbation tracking is performed while the estimator has already a good
estimate for the state of the system.

Figure 4.3 shows how the parameters estimate evolves with a increasing inflation
magnitude. For early times, the poorer estimates are consistent with the transient
behavior that was observed in Fig. 4.2. The impact of the covariance inflation
parameter is more pronounced in the acceleration, in which higher values lead to a
better overall tracking but noisier initial estimates.
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Figure 4.2: Estimated lift coefficient for decelerating airfoil (75% of its initial
velocity over 13.3 convective time units) using the RTPS (θ = 0.9) covariance
inflation scheme and R = 10−6Ip. The dashed line ( ), the solid line ( ),
and the shaded area ( ) represent, respectively, the reference solution, the EnKF
estimate, and the ensemble min-max envelope. The dotted line ( ) represents the
actual freestream velocity that the airfoil is subjected to.

If the same deceleration is performed over a single convective time unit, keeping
all others parameters the same, the performance of the estimator degrades (see
Fig.4.4). The reason is that the freestream velocity only changes after 17 convective
time units after the beginning of the simulation, when the estimator internal variance
already reached its lower limit and the responsiveness of the estimator to external
changes is already low (dashed line in Fig. 4.6). Therefore, it is necessary that
the innovation norm grows before the estimator responds accordingly, leading to



81

0 10 20 30

0

0.1

0.2

tU∞
c

|ξ(t)|

θ = 0.80
θ = 0.90
θ = 0.95

’Reference’

(a) Free stream velocity perturbation.

0 10 20 30

0

1

2
·10−2

tU∞
c

d |ξ(t)|
dt

(b) Free stream velocity perturbation deriva-
tive.

Figure 4.3: Joint parameter/state estimation for an airfoil decelerating to 75% of its
initial value over 13.3 convective time units. The measurement noise level is set to
R = 10−6Ip.

the significant response delay observed in Fig. 4.4. Increasing the multiplicative
covariance inflation would help to delay the variance decay, but its effectiveness will
be directly linked to the size interval between the beginning of the estimation and
the deceleration event. Also, a multiplicative covariance inflation that is too high
will lead to noisier estimates for early estimation times.

Alternatively, one could stochastically force the parameter dynamics to keep their
variance in a level that is high enough to ensure responsiveness. For this particular
problem, we choose to force the disturbance derivative with a zero-mean Gaussian-
distributed random quantity with a variance level one order of magnitude below the
maximum expected derivative level so that the parameters ensemble covariance is
kept above a minimum threshold (see solid line in Fig 4.6). Figure 4.5 shows that
this addition enhances the estimator tracking performance.

Figure 4.8 shows how the magnitude of the variance of the process noise added to the
acceleration parameter impact the error in the freestream perturbation estimation.
The error in both plots is normalized by the maximum perturbation encountered
within the time interval in consideration. Note that increasing the uncertainty
perceived by the estimator leads to improved tracking performance. As another
consequence of this added uncertainty, the min-max envelope for the CL estimate
also expands, as presented in Fig. 4.5.



82

Figure 4.4: Estimated lift coefficient for decelerating airfoil (75% of its initial
velocity over 1 convective time units) using the RTPS (θ = 0.9) covariance inflation
scheme and R = 10−6Ip. The dashed line ( ), the solid line ( ), and the shaded
area ( ) represent, respectively, the reference solution, the EnKF estimate, and the
ensemble min-max envelope. The dotted line ( ) represents the actual freestream
velocity that the airfoil is subjected to.

Figure 4.5: Estimated lift coefficient for decelerating airfoil (75% of its initial
velocity over 1 convective time units) using the RTPS (θ = 0.9) covariance inflation
scheme and R = 10−6Ip, and explicit stochastic forcing to the parameters dynamics
(σ = 10−8). The dashed line ( ), the solid line ( ), and the shaded area ( )
represent, respectively, the reference solution, the EnKF estimate, and the ensemble
min-max envelope. The dotted line ( ) represents the actual freestream velocity
that the airfoil is subjected to.
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Figure 4.6: Evolution of the estimated parameters covariance for an airfoil decel-
erating to 75% of its initial value over one convective time unit. The measurement
noise level is set to R = 10−6Ip and the RTPS inflation level is set to θ = 0.90.
The dashed line ( ) corresponds to the unforced simulation and the solid line
( ) represents the estimation dynamics with the explicit stochastic forcing in the
perturbation derivative dynamics (noise covariance level 10−8).
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Figure 4.7: Joint parameter/state estimation for an airfoil decelerating to 75% of its
initial value over one convective time unit. The measurement noise level is set to
R = 10−6Ip and the RTPS inflation level is set to θ = 0.90.
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Figure 4.8: Error in the estimation of the freestream parameters for an airfoil decel-
erating to 75% of its initial value over one convective time unit. The measurement
noise level is set to R = 10−6Ip and the RTPS inflation level is set to θ = 0.90. In
both plots the error is normalized by the maximum perturbation in the interval.

The same methodology can be applied to the random freestream perturbation case.
Figures 4.9 and 4.10 show the estimator performance when the freestream velocity
is randomly perturbed (cutoff frequency is 2). Different from the deceleration case,
the perturbations are already present at the beginning of the simulation, and the
estimator must be able to filter out the effects of the unknown initial condition while
tracking the changes in the freestream. This fact accounts for the longer transient that
the estimator experiences. Again, the explicit stochastic forcing plays a fundamental
role in keeping the estimator responsive to changes in the freestream velocity at late
estimation times.

4.2 Uncertain Reynolds Number

As it was pointed out in the introduction, one of the most common drawbacks of
reduced-order models is its fragility to initial conditions and parameters such as
the Reynolds number. This characteristics limits the applicability of such models
outside of its design envelope. A popular approach to this problem is to create a
library of models that spans the parameter space and interpolate between them as
needed[97]. Because it uses a full-rank model, the EnKF inherits its robustness to
initial conditions, and gives us freedom to choose the initial ensemble as we see fit.
As seen in section 3.1.2, the initialization of the ensemble plays an important role
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Figure 4.9: Estimated lift coefficient for an airfoil subjected to random freestream
perturbation (reduced cutoff frequency is two) using the RTPS covariance inflation
scheme (θ = 0.9) and R = 10−6Ip. The dashed line ( ), the solid line ( ),
and the shaded area ( ) represent, respectively, the reference solution, the EnKF
estimate, and the ensemble min-max envelope.
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Figure 4.10: Joint parameter/state estimation for an airfoil subjected to random
freestream perturbations (reduced cutoff frequency is two). The measurement noise
level is set to R = 10−6Ip and the RTPS inflation level is set to θ = 0.90. The
dashed line ( ) corresponds to the actual perturbation, and the solid line ( )
represent the estimated values with the explicit stochastic forcing in the perturbation
derivative dynamics (magnitude 10−8).
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in the transient behavior of the filter. If uncertain, any relevant parameter can be
estimated on the fly by adopting the augmented state methodology.

In this section, we seek to estimate the Reynolds number corresponding to the
reference solution. The state vector is augmented with the estimate for Re, whose
dynamics is represented by a persistent model with a lower-bound saturation.

ẑk =

[
x̂k

R̂ek

]
=

[
f (xk−1)

max(Rek−1, 5)

]
+ µ̃k = f̃ (zk−1) + µ̃k , (4.6)

where µ̃k ∼ N(0, Q̃) is the augmented noise vector whose covariance matrix is given
by

Q̃k =

[
Q 0
0 σ

]
. (4.7)

Figure 4.11 shows the evolution of the estimate for Re for the flow past a flat
plate with pressure measurements. The spatial discretization for the estimator is
identical to the reference run, but the parameter initial ensemble is sampled from
Re0 ∼ N(150, 75)with any sample below 5 being rejected. Similar to what happened
with the freestream velocity estimation, a transient behavior corresponding to the
estimation of the vorticity field is observed for early times. After just 2 convective
time units, the Re estimate converges to its reference value. In these results, we set
σ = 0, as the tracked parameter is expected to be constant and the only uncertainty
is associated with its initial value.
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Figure 4.11: Estimated Re for the flow past an inclined flat plate using pressure
measuremerts and the RTPS covariance inflation scheme (θ = 0.9 and R = 10−4Ip).
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4.3 Summary

The results of chapter 3 showed that the EnKF methodology was capable of effi-
ciently estimating the initial condition (represented by the phase of the limit cycle)
of a high-dimensional fluid system using limited measurements. In this chapter,
we investigated how the augmentation approach can be used to simultaneously es-
timate model parameters (Reynolds number) and boundary conditions (freestream
perturbations). Process noise was shown to play a fundamental role in controlling
the estimator long-term receptivity to new events.

In both cases, however, we had prior knowledge that allowed us to create a parametric
model to address the source of modeling errors directly. It may be the case, however,
that the exact cause of the observed errors are unknown, or that the cost involved in
producing an exact cure is prohibitive. In the next chapter, we will focus on modeling
the bias (effect) introduced by the model, rather than correcting it (source).
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C h a p t e r 5

ESTIMATION IN THE PRESENCE OF RESOLUTION ERROR

If the source of the modeling errors is unknown, or the incremental cost involved in
directly fixing the model would render it prohibitive, the presence of these modeling
errors can be taken into account by treating them stochastically as process and
measurement noise. When these errors have nonzero mean, the bias introduced
by the forecast and observation functions can lead the estimator to converge to the
wrong solution or become unstable. In the context of ensemble methods when the
ensemble size is much smaller than the number of degrees of freedom of the forecast
model, biased models can be particularly harmful. Since the corrections applied to
the forecast state lie in the low-dimensional subspace spanned by the prior ensemble
perturbations, large dynamic bias can render the true state of the system unreachable.

Figure 5.1 highlights two of the main sources of estimation bias. A first source
is related to the optimality of the filtering scheme when nonlinear observation
functions are present. This source of error is discussed in sections 1.5.6 and
3.3.2. The second source of error is related to the model predictive accuracy. Poor
resolution or incorrect representation of the underlying physics can render the model
a biased representation of reality. Friedland [98] was one of the first to propose a
direct treatment of the forecast error. He proposed a two-stage sequential estimator
in which state and bias vector were treated independently, termed the Separate-bias
Kalman Filters (SepKF). Later, Dee and Da Silva [99] built upon previous work
to derive a rigorous method to independently estimate and sequentially correct for
forecast bias. Drecourt, Madsen, and Rosbjerg [100] compared this method to
the colored-noise Kalman Filter (ColKF), in which the state vector is augmented
to account for noise processes modeled by autoregressive models. These works,
however, all assume that the observation model is unbiased.

In this chapter, we develop a bias-aware estimator that allows us to use an ensemble
of coarse-grid simulations to robustly estimate both the state and the output of a
fine-grid reference run.
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Figure 5.1: Sources of bias in an Kalman-based estimator.

5.1 Resolution Error as a Source of Bias

Let f̃ (x) be the exact transition function of the Navier-Stokes equations, which maps
the infinite-dimensional solution x̃k−1 at time tk−1 to the solution x̃k at time tk ,

x̃k = f̃ (x̃k−1) , (5.1a)

yk = h̃(x̃k) + ε
m
k , (5.1b)

where εm
k ∼ N(0, R̃k) is a p-dimensional random error vector associated with the

measurement methodology that is independent of the state and uncorrelated in time.
Since both the state x̃ and the operators f̃ and h̃ are unattainable for practical
purposes, we introduce a finite-dimensional approximation for the model and state.
We notate the finite-dimensional approximations with the same symbols but without
the tilde.

Following Cohn[74], we define a projection operator Π that maps the the true state
x̃k onto its finite-dimensional representation xk = Π x̃k . The propagation of xk can
be represented as

xk = f (xk−1) + δk−1 , (5.2)

where

δk = Π f̃ (x̃k) − f (Π x̃k) . (5.3)

The forcing term δk represents the model error, and gathers errors from different
sources: discretization error, inaccurate boundary conditions, uncertain forcing, and
so on.
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Analogously, since the continuous state is never available for practical purposes, a
discrete version of the observation operator h(·) needs to be introduced:

yk = hk(xk) + ε
m
k + ε

r
k , (5.4)

where

εr
k = h̃(x̃k) − h(Π x̃k) (5.5)

= (h̃(x̃k) − h̃(Π x̃k)) + (h̃(Π x̃k) − h(Π x̃k))

is the error of representativeness [74]. This error can be further split into two
contributions: a first term that represents the effect of the exact operator on the
unresolved scales (aliasing), and a second term that represents the discretization
error of the operator itself.

5.2 Low-rank Representation of the Bias

Because δk depends not only on the state but also on the continuous operator f̃ ,
its value is unknowable from a deterministic point of view. Therefore, the most
common approach is to represent this error as a stochastic perturbation with known
bias and covariance.

Thus, we use
δk = Γxξk + µk , (5.6)

where Γx is a low-rank representation of the low-frequency behavior of the bias
and represents the available deterministic knowledge about the model error. The
second term (µk ∼ N(0,Qk)) represents the high-frequency portion of the bias, and
is modeled as white. In meteorology, Dee [101] and Cohn and Parrish [102] have
proposed models for Qk whose corresponding parameters can be tuned on-line.
These models often rely on a low-order representation of these matrices (a popular
choice is to use the slow modes of the forecast model).

A complete representation of δk requires an impractical amount of data and opera-
tions. Since the dimension p of the measurement vector obtained at any given time is
customarily smaller than the number n of degrees of freedom of the forecast model,
it is not possible to estimate all n(n + 1)/2 degrees of freedom of the covariance
matrix associated to δk in real time, regardless of the estimation procedure used
[101].
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The measurement resolution error can also be split in two terms:

εr
k = Γyηk + νk , (5.7)

where Γy is a low-rank representation of the low-frequency behavior of the bias, and
νk ∼ N(0, Rr) represents the high-frequency content of the error in the measurement
error. The measurement accuracy error εm

k is merged to νk , which represent the zero-
mean high-frequency portion of the observation error, which is now represented as
zero-mean Gaussian process with a combined covariance matrix R.

It is to be expected that ξk and ηk are auto-correlated in time. As a first option,
autoregressive models (AR)1 are the simplest way of representing this feature in the
discrete-time framework. Noise sequences obeying AR models are often referred
to as colored-noise sequences [100, 103]. If Nx and Ny are the orders for the
autoregressive models for the state and observation bias, respectively, then

ξk = ξ̄ +

Nx∑
i=1
Φ

x
i (ξk−i − ξ̄) + γx,k (5.8)

ηk = η̄ +

Ny∑
i=1
Φ

y
i (ηk−i − η̄) + γy,k , (5.9)

where γx,k ∼ N(0,Qb) and γy,k ∼ N(0, Rb) , and Φx
i and Φy

i should be determined
based on prior knowledge about the system under study. For example, if the Markov
condition holds (Nx = Ny = 1) and these error terms are supposed to vary in a much
slower time scale than the state dynamics, one can choose to use a persistent model
and set Φx = Φy = 1.

A second possibility that can be more suitable for periodic flows is to represent the
bias as a sum of harmonics of the system’s characteristic frequency. In this frame-
work, the columns of Γx and Γy and the bias coefficient ξk and ηk are represented
by complex vectors, and the bias dynamics are then given by

δk = <(Γxξk) + µk (5.10)

εr
k = <

(
Γyηk

)
+ νk , (5.11)

and

ξk = exp (Λx∆t) ξk−1 + γx,k (5.12)

ηk = exp
(
Λy∆t

)
ηk−1 + γy,k , (5.13)

1AR models differ from moving-average (MA) models by the fact that in the former the weights
are applied to the previous states, while in the latter the weights are applied to the input (noise).
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where Λx and Λy are diagonal matrices whose entries are also complex numbers.
The real part of these entries represents the mode’s growth/decay rate, which is
expected to be zero in a purely periodic flow, and the corresponding imaginary part
is related to the mode’s oscillatory frequency. Note that the noise terms γx and γy are
now complex random sequences with zero-mean Gaussian-distributed magnitude,
but uniformly-distributed phase.

In order to take advantage of an eventual nonzero cross-correlation between the
bias parameters ξ and η and the state x in the filtering process, these variables are
gathered in an augmented state vector (z =

[
xTξTηT

] T ) that will be estimated using
the algorithm proposed in the next section.

5.3 A Bias-aware Ensemble Kalman Filter

Having the standard ensemble Kalman filter presented in section 1.5 as a starting
point, bias-awareness can be achieved using the augmentation approach: the param-
eters corresponding to the low-rank bias models developed in the previous section
are appended to the original state vector.

The modifications to the two filtering steps can be summarized by:

Forecast Step: The state of each ensemble member (here denoted by the superscript
( j)) at the next time step is forecast using the (possibly nonlinear) dynamic model2:

ẑ( j)k =


x̂( j)k

ξ̂
( j)
k

η̂
( j)
k

 = f †(z( j)k−1) + µ
†( j)
k

=


f (x( j)k−1)

ξ̄ + Φx(ξ
( j)
k−1 − ξ̄)

η̄ + Φy(η
( j)
k−1 − η̄)

 +

µ
( j)
k

γ
( j)
x,k

γ
( j)
y,k

 . (5.14)

Assuming ns � n and no � n, the additional cost associated with the bias dynamics
should be negligible.

2Here the bias dynamics is represented by the AR1 model, but the algorithm can be easily
adapted to use higher-order auto-regressive models or the DMD-based periodic model.
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Thus, the prior statistics can be evaluated as

Ẑk =
[
ẑ(1)k ẑ(2)k · · · ẑ(q)k

]
(5.15a)

z̄k =
1
q

Ẑk1 (5.15b)

Ĉzz
k =

1√
q − 1

q∑
i=1

(
ẑ(i)k − z̄k

) (
ẑ(i)k − z̄k

) T
, (5.15c)

which can also be expressed in terms of the scaled ensemble perturbation matrix

Âk =
1√

q − 1
Ẑk

(
I − z̄k1

T
)

(5.16a)

Ĉzz
k = Â( j)

(
Â( j)

) T
. (5.16b)

Analysis Step: Taking after what was shown in section 1.5.1, we frame the analysis
step as an optimization problem. For each of the ensemble members, provided that
both the prior and the measurement distributions are Gaussian, the mode (maximum-
likelihood estimate) of the posterior distribution corresponds to the minimizer of
the cost function:

J(z) =
1

2α

G−1z − ẑ( j)k

2

Ĉzz
k

+
1
2

yk − h(x) − Γyη − ν
( j)
k

2

R
, (5.17)

while restricting [x − Γxξ ξ η]T = G−1z to the affine subset generated by the
prior estimate of the state ẑ( j)k and the subspace spanned by the scaled perturbation
matrix Âk , i.e.,

zk = argmin
z∈G(ẑ+Âk )

J(z) , (5.18)

where

G =


I Γx 0
0 I 0
0 0 I

 . (5.19)

The first term in the cost function acts as an regularization term by penalizing the
distance of the state (before bias correction) to the prior estimate, and the second
term penalizes the data mismatch between the observed measurement yk and the
ones predicted by the observation model (after bias correction). We also include the
parameter α representing the magnitude of the multiplicative covariance inflation.
In the simulation that led to the results shown in this chapter, the RTPS scheme was
used (see section 1.5.4 for details).
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5.3.1 The Linear Observation Function Case

When the observation function is linear, i.e. h(x) = Hx, the observation equation
can be written as

ŷ
( j)
k = H̃Gẑ( j)k + ν

( j)
k , (5.20)

where
H̃ =

[
H 0 Γy

]
. (5.21)

The restriction on the optimization space is enforced by means of a change of
variables

z = G
(
ẑ( j)k +

√
α Âkv

)
, (5.22)

where v ∈ Rq is the correction coefficient vector.

The analysis step objective is then defined as finding

vk = argmin
v∈Rq

J(v) , (5.23)

where
J(v) =

1
2
‖v‖2 +

1
2

yk − H̃G
(
ẑ( j)k +

√
α Âkv

)
− ν
( j)
k

2

R
. (5.24)

Since J(v) is quadratic in v, the solution is unique and corresponds to the root of

DJ(v) = v −
√
α

(
H̃GÂk

) T
R−1

(
yk − H̃Gẑ( j)k −

√
αH̃GÂkv − ν

( j)
k

)
= 0 , (5.25)

which is given by

v
( j)
k =

√
α

[
I + α

(
H̃GÂk

) T
R−1

(
H̃GÂk

) ] −1
(H̃GÂk)

T R−1
(
yk − H̃Gẑ( j)k − ν

( j)
k

)
(5.26a)

=
√
α

(
H̃GÂk

) T
[
R + α

(
H̃GÂk

) (
H̃GÂk

) T
] −1 (

yk − H̃Gẑ( j)k − ν
( j)
k

)
,

(5.26b)

where we have used the Woodbury matrix identity to obtain the second line.
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When the inversion is performed in the ensemble space (Eq. 5.26a), the final solution
is obtained by projecting these coefficients back to the state space:

z( j)k = Gẑ( j)k + αGÂk

[
I + α

(
H̃GÂk

) T
R−1

(
H̃GÂk

) ] −1
(H̃GÂk)

T R−1×(
yk − H̃Gẑ( j)k − ν

( j)
k

)
(5.27a)

= Gẑ( j)k + αGÂk

(
H̃GÂk

) T
[
R + α

(
H̃GÂk

) (
H̃GÂk

) T
] −1
×(

yk − H̃Gẑ( j)k − ν
( j)
k

)
. (5.27b)

Alternatively, when the inversion is performed in the measurement space, instead
of solving for vk , the representers formulation[57] is used:[

R + α
(
H̃GÂk

) (
H̃GÂk

) T
]

b( j)k = yk − H̃Gẑ( j)k − ν
( j)
k (5.28a)

z( j)k = Gẑ( j)k + αGÂk

(
H̃GÂk

) T
b( j)k . (5.28b)

5.3.2 The Nonlinear Observation Function Case

In section 1.5.6, we presented approximate schemes that generalizes the EnKF to
the case when h(x) is nonlinear. In the following sections, we follow the same steps
to obtain the modified equations corresponding to the bias-ware filter.

Implicit Linearization This approach can be understood as an approximation to
an extended Kalman filter in which the observation function is linearized about
the ensemble mean. Since the linearized operator is never explicitly computed, we
use the expression implicit linearization to refer to this scheme. We again start by
augmenting the state vector with the predicted measurements, and redefining the
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observation function to select the last variable of the augmented state vector.

ŵk =


x̂k

ξ̂k

η̂k

ŷk


= f †(wk−1) + µ

†

k

=


f (xk−1)

Φxξk−1 + (I − Φx)ξ̄

Φyηk−1 + (I − Φy)η̄

h( f (xk−1) + Γxξk) + Γyηk


+


µk

γx,k

γy,k

νk


(5.29)

ŷk =
[
0 0 0 I

]
ŵk = Lŵk . (5.30)

The associated cost function is

J(w) =
1

2α
G̃−1w − ŵk

2
Ĉww
k

+
1
2
‖ yk − Lw‖2R , (5.31)
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Ĉzz

k Ĉzy
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Ĉηη

k Ĉηy
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=
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(ŵ

j
k − w̄k)(ŵ

j
k − w̄k)

T (5.33b)

= Âw
k

(
Âw

k

) T
. (5.33c)

Using a change of variables similar to the one proposed in Eq. 5.22, Eq. 5.31 can
be rewritten as

w = G̃
(
ŵ
( j)
k +
√
α Âw

k v
)

(5.34)

J(v) =
1
2
‖v‖2 +

1
2

yk − LG̃(ẑ( j)k +
√
α Âkv)

2

R
. (5.35)
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Since this function is quadratic in v, the minimizer is given by
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where

LG̃ŵ
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The posterior solution is then given by

w
( j)
k = G̃ŵ
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k

[
I + α

(
LG̃Âw
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( j)
k

)
(5.39a)

= G̃ŵ
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Iterative optimization In this approach, the posterior mean is approximated by
the posterior mode, which is obtained by directly minimizing

J(v) =
1
2
‖v‖2 +

1
2

yk − h†
(
G(ẑ( j)k +

√
α Âkv)

)
− ν
( j)
k

2
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using an iterative method to find the root of
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Employing the damped Gauss-Newton scheme presented in section 1.5.6, one ob-
tains

vi+1 = (1 − β)vi + β
(
I + B(vi)T R−1B(vi)

) −1
B(vi)T R−1×[
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and β is the first value in the sequence 1, 1/2, 1/4, . . . , 2−n for which the Armijo-
Goldstein[72] step principle (Eq. 1.88) is satisfied. The iterative process ends when
‖vi+1 − vi‖∞ ≤ ε1, J(vi) − J(vi+1) ≤ ε2J(vi) or the pre-set maximum number of
iterations is exceeded Imax . In this work, ε1 = 10−6, ε2 = 10−4 and Imax = 10.

5.4 Identification of the Grid-resolution Model Error

The numerical error introduced by the different resolution levels is the source of
the bias that we will be interested in tracking. State statistics are estimated from a
dataset of the base solutions spanning a sufficiently long time window. Bias statistics
can then be estimated using the definitions presented in section 5.1:

∆ =
[
Πx f

2 − f
(
Πx f

1

)
· · · Πx f

n − f
(
Πx f

n−1

) ]
(5.44a)

δ̄ =
1

n − 1
∆1 (5.44b)
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x f

1

)
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1
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· · · Πh f

(
x f

n

)
− hc

(
Πx f

n−1

) ]
(5.44c)

ε̄r =
1

n − 1
E1 , (5.44d)

where the superscripts f and c correspond, respectively, to the fine and coarse
meshes, and Π is the interpolation operator between the fine and coarse meshes.

Figures 5.2 and 5.3 show the temporal mean of the bias fields of both the dynamics
(δ) and observation model (εr) between the Re∆ = 4 and Re∆ = 1 resolution levels
for both the airfoil and the flat plate case. In both cases, the mean bias in the
dynamics seems to concentrate near the body where the error introduced by the
immersed boundary dominates. Regarding the observation model, while in the flat
plate case most of the bias seems to be restricted to the leading and trailing edges
region, the airfoil case experiences a much more pronounced observation bias in the
entire surface. The large bias observed in the normal stresses for this case can be
explained by the fact that for a closed body the distribution of normal component
of the forces acting on it surface is only defined up to a constant (since a constant
normal force acting on an immersed body will have zero resultant).
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(a) Bias field for the observation model (ε̄r ).

(b) Bias field for the dynamic model (δ̄) in log scale.

Figure 5.2: Temporal average of the bias fields introduced by the resolution error
for the flow past an inclined flat plate when comparing the Re∆ = 1 (200 grid points
per chord) simulation to the corresponding Re∆ = 4 (50 grid points per chord)
simulation.
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Figure 5.3: Temporal average of the bias fields introduced by the resolution error
for the flow past an inclined NACA 0009 when comparing the Re∆ = 1 (200 grid
points per chord) simulation to the corresponding Re∆ = 4 (50 grid points per chord)
simulation.
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Figure 5.4: Fraction of the bias variance left out by using the corresponding first
POD modes for the flow past an inclined flat plate and a NACA 0009 airfoil.

The structure of the corresponding state and observation bias covariance matrices
can be analyzed by computing its Proper Orthogonal Decomposition (POD), which
can be accomplished by computing the left singular vectors of ∆ − δ̄ and E − ε̄r ,
respectively. The low-rank bias representation proposed in Sec. 5.2 is justified on
the fact that most of the bias variance is restricted to just a few directions in the state
space. As Fig. 5.4 indicates that for the flat plate and airfoil, respectively, retaining
the first ns = 25 state POD modes and no = 10 observation POD modes leaves less
than 0.01% of the variance to be modeled as white noise.

Therefore, matrices Γx , Γy, ξ̄ and η̄ in Eqs. 5.8 and 5.9 can be defined as

Γx =
[
δ̄ us

1 · · · us
ns

]
(5.45a)

Γy =
[
ε̄r uo

1 · · · uo
no

]
(5.45b)

ξ̄ = η̄ =
[
1 0 · · · 0

] T
, (5.45c)

where us
i and uo

i are the i-th leading POD modes of of ∆− δ̄ and E − ε̄r , respectively,
normalized by their respective variances. The auto-regressive model parameters are
set to φx

1 = φ
y
1 = e−∆t/τ, where ∆t is the time interval between two analysis steps,

and τ is a reference decorrelation time, here considered to be the vortex shedding
period. Alternatively, one could use a least-squares approach to determine the AR
coefficients that best fit the data used to construct the low-rank model. Figure 5.5
shows the prediction error for the best ARn model for each of the columns of Γx
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Figure 5.5: Prediction error corresponding to the best (in a least-squares sense)
ARn model for each of the POD modes selected to represent the bias. The order of
the corresponding auto-regressive model increases from 1 to 10 as the color of the
curves changes from dark to light.

and Γy. Note that the error for the first mode, the mean, is already low for the
AR1 model, since its coefficient is expected to remain constant. The error for the
remaining modes, however, decay slowly with increasing model order, indicating
that they are more strongly time-correlated. Even though the AR1 coefficients
obtained via least-squares differ from the initial guess based on a decorrelation time
equal to the vortex shedding period, the differences in performance of the resulting
estimator were small3.

A second approach to characterize the time coherency present in the bias is by using
the Dynamic Mode Decomposition (DMD) methodology developed by Schmid
[104]. Each of the resulting DMD modes describe a spatial structure that evolves
in time with a fixed growth/decay rate and oscillatory frequency. For a periodic
phenomenon, the growth/decay rate is expected to be very close to zero, i.e., the
Ritz values associated with the DMD modes should lay on top of the unitary circle
as it is indeed the case as shown in Fig. 5.6. Sorting the modes by their initial
magnitude, the leading modes can be selected to form the matrices Γx and Γy.
Figure 5.7 shows the prediction error of the low-rank model with different numbers
of DMD modes when tested in the same data used to generate the DMD modes.

3Higher-order AR models were also tested as alternatives for representing the dynamics of bias.
However, the resulting estimator demonstrated to be unstable for n > 2 even though the AR models
were verified to be stable themselves.
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Figure 5.6: Ritz values corresponding to the DMD modes of the bias (when a part
of a conjugate pair, only one of them is plotted).
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Figure 5.7: Prediction error corresponding to DMD-based low-rank models with
different number of DMD modes.
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Figure 5.8: Illustration of the different domains used for the evaluation of the state
error. The small circles on the surface of the plate represent the locations where the
pressure measurements are taken.

5.5 Effect of the Bias

In this section we consider the case when the low-resolution model is used to
track the high-resolution flat plate data without an explicit treatment of the model
biases. Since most of the bias in the system dynamics is restricted to the region
close to the body (see Figs. 5.2 and 5.3), we introduce a second error metric that
evaluates the mean-square error of the solution in the region outside the blue circle
represented in Fig. 5.8. In this way we can distinguish estimator errors associated
with forces on the immersed surface from those associated with the wake dynamics.
The measurement error level is set to R = 10−4 for all cases henceforward. Process
noise can be added to the low-resolution dynamics to inform the estimator of a
reduction of the perceived reliability of the dynamic model. Since it is presumed
that no information about the bias is available, additive covariance inflation (which is
equivalent to process noise in this context) will be sampled from the same subspace
from which the initial ensemble was taken but their variance is scaled by a factor λ.

Figure 5.9 compares the performance of the bias-blind estimator for different mag-
nitudes of process noise. The base case (without process noise) is represented by
the green curve. One can marginally improve this performance by adding the right
amount of process noise (red curve). This will increase the perceived reliability
of the measurements, increasing the responsiveness of the estimator and reducing
the observation data mismatch. Note, however, that the average error, both close to
the body (solid lines) and away from it (dashed lines) does not change significantly.
Also, this approach has its limits: too much noise will eventually dominate the
estimator dynamics (blue curve). That notwithstanding, the bias-blind estimator
final error is two orders of magnitude larger than the one that could be achieved in
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Figure 5.9: Bias-blind estimator performance highlighting the deleterious effect of
the dynamics and observation bias (R = 10−4). Black lines correspond to the mean
square error evaluated in the entire computational domain, while the gray lines
restrict this evaluation to the region outside an unit circle centered at the plate.

a perfect-model framework.

5.6 Bias-aware Estimation

In this section we evaluate the proposed bias-aware estimator performance when
the exact flat plate bias statistics are used to form the POD-based Γ matrices. The
AR1 model is chosen to represent the dynamics of the POD coefficients. Because
the proposed scheme only adds no + ns = 35 degrees of freedom to the much larger
state vector x (about 15000 degrees of freedom), the additional computational cost
is negligible. Figure 5.10a shows a 33% state error improvement for the entire
domain, while the error far from the body improves 60%.

The bias dynamics are forced with process noise with covariance matrices Rb =

λoIno and Qb = λs Ins . The existence of process noise leads to a sustainably larger
variance for the bias parameters, which allows for correction to be consistently made
throughout the estimation window. This feature is especially important for problems
like the present one, in which the bias cannot be considered slowly-varying. In fact,
the bias is expected to exhibit a periodic behavior as the flow itself is periodic with
the vortex-shedding period being the fundamental time scale. Figure 5.11 shows
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Figure 5.10: Bias-aware estimator performance (R = 10−4, λo =
√

10/10 and
λs =

√
10/10). Black lines correspond to the mean square error evaluated in the

entire computational domain, while the gray lines restrict this evaluation to the
region outside a unit circle centered at the plate.

how different choices of the noise magnitudes impact the state and observation
error estimates. Larges values for the noise parameters favor smaller measurement
mismatches (by allowing more aggressive analysis) at the expense of a possibly
larger state error.

As Fig. 5.10b indicates, bias correction decreases the pressure error by 80%. Figure
5.12 displays an example of the correction introduced by the proposed scheme to
the estimated output. Correction seems to be less effective near the leading edge,
possibly because of the large pressure gradients that appear in there regions. As
a consequence, global quantities like the lift coefficient also have their estimates
improved.

5.7 Imperfect Bias Statistics

The biggest weakness of the proposed methodology is the need of a priori knowledge
of the exact bias statistics, something that is rarely available. In order to show that
good performance can also be achieved with imperfect statistics, an intermediary
resolution (Re∆ = 2) is used in lieu of the fine-grid solution for the evaluation of
the bias statistics. The performance of the resulting estimator (shown in Fig. 5.13)
is very similar to the one obtained with the exact statistics. This seems to indicate
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Figure 5.11: Effect of the magnitude of the process noise to bias dynamics (R =
10−4). Solid lines correspond to the mean square error evaluated in the entire
computational domain, while dashed lines restrict this evaluation to the region
outside an unit circle centered at the plate.

that as long as one can estimate the structure of the bias, explicitly tracking it is
beneficial for the estimation.

5.8 AR-based vs DMD-based Bias Models

We now address the effect of different choices of models for the bias dynamics
on the performance of the bias-aware estimator. Figure 5.14 compares the POD-
AR1 estimator presented in the previous sections with the DMD-based estimator.
Recalling Fig. 5.7, we use 12 DMD modes to represent the observation bias
and 18 DMD modes to represent the state forecast bias, which makes the cost
comparable to the AR1 model setup. In terms of state error, both estimators have
comparable performance, but the DMD-based estimator delivers poorer estimates
for the estimated measurements.

5.9 Airfoil Case

Next we present the results of applying the bias-aware methodology to the airfoil
case. As shown in section 5.4 (Figures 5.3 and 5.2), bias is more pronounced in the
airfoil case. The bias-blind estimator displays a poorer performance in the airfoil
case than in the flat plate case. The error is particularly high at early times in the
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Figure 5.12: Estimated pressure on the surface of the flat plate at end of a simulation
window (tU∞/c = 20).
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Figure 5.13: Bias-aware estimator performance with imperfect statistics (R = 10−4).
Solid lines correspond to the mean square error evaluated in the entire computational
domain, while the dashed lines restrict this evaluation to the region outside a unit
circle centered at the plate.
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Figure 5.14: Effect of different choices of models for the bias dynamics on the
performance of the bias-aware estimator. Solid lines correspond to the mean square
error evaluated in the entire computational domain, while the dashed lines restrict
this evaluation to the region outside a unit circle centered at the plate.
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Figure 5.15: Bias-aware estimator performance (R = 10−4, λo = 1/10 and λs = 1)
for the inclined NACA 0009 problem. Solid lines correspond to the mean square
error evaluated in the entire computational domain, while the dashed lines restrict
this evaluation to the region outside an unit circle centered at the airfoil.

estimation window, when the measurement bias severely debilitates the accuracy of
the corrections.

Again, we model the bias dynamics using the POD-AR1 model (with the same
number of modes as before). Figure 5.15 shows that the bias-aware estimator
greatly improves the accuracy throughout the entire estimation window, achieving a
long-term error reduction of 85% for the state and 90% for the measurements. Figure
5.16 compares the estimated measurements to their real values before assimilation.
The bias scheme is able to successfully correct the stresses on the surface of the
airfoil. It can be noted, however, that most of the persistent error is located near the
trailing edge.

5.10 Summary

In this chapter we addressed the problem of using an ensemble of under-resolved
simulations to track the trajectory of the fully-resolved dynamical system. After
showing that a bias-blind estimator could only go so far, we proposed an alternative
method that improves the estimator performance by promoting bias awareness.
Combining a low-order representation of the modeling error with a suitable bias
dynamics, the methodology was able to improve the estimation accuracy of both
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Figure 5.16: Estimated pressure on the surface of the NACA 0009 at the end of a
simulation window (tU∞/c = 30).

the state and the output. Finally, we showed that the method’s dependency on
foreknowledge of the bias statistics can be alleviated by using extrapolated statistics.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

The main objective of this thesis was to obtain a better understanding of how
ensemble methods can be used to address high-dimensional estimation problems in
aerodynamics. More specifically we were interested in developing tools that would
enable us to robustly assimilate data into a full-fledged CFD code.

A dual-experiment methodology, in which the numerical algorithm is used as both
the estimator and as a surrogate for the measurements, was employed to investigate
the performance of an EnKF-based estimator for aerodynamic problems. The
estimator was demonstrated to provide a framework that combines the fidelity and
robustness of a high-dimensional representation of the dynamical system with the
computational efficiency of a low-order approximation of the state covariance.

While pursuing this goal, we were able to investigate several interesting aspects of
the estimation framework and propose novel strategies for sensor placement and
bias control. The EnKF-based estimator was successfully applied to the estimation
of the flowfield and the aerodynamic force acting on bodies immersed in a low-Re
flow, using measurements that reproduce the ones that are available in a laboratory
setting, namely, pressure on the surfaces and velocity in the wake.

6.1 Perfect model framework

A reduced number of either velocity or pressure measurements was successfully used
to estimate the phase of the vortex shedding, and thus the corresponding forces, in
flow past a cylinder or an airfoil. In terms of performance, global measurements,
such as the velocity in the wake, are more efficient in constraining the flow state.
Estimation based on local measurements, such as pressure on the surface, results
in longer transients before achieving the same state error level. However, using
pressure measurements makes the estimator more responsive in tracking the forces
acting on the body, which is especially desirable when freestream perturbations are
present.

For flows like the ones considered, whose the dynamics evolve on a relatively
small manifold, the results indicate that correspondingly small ensemble sizes are
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sufficient to provide a suitable representation of the covariance matrix and lead to
an asymptotic behavior of the estimator dynamics.

An analysis of the measurement’s influence fields (the so-called representers) pro-
vided interesting a posteriori information about those measurements that were most
effective during the filtering process. Thus, the representers provide useful guid-
ance on sensor placement. In the cylinder case, the region of highest influence was
coincident with the wavemaker region as predicted by structural sensitivity analysis.
In the airfoil case, pressure measurements taken close to leading and trailing edges
are most effective in the estimation process.

The effect of having a finite ensemble on the performance of the estimator, accelerat-
ing the collapse of the system covariance and generating spurious cross-correlations
between the state variables, was discussed. In this work, the chosen form to mitigate
this issue is by artificially inflating the covariance of the ensemble, a methodology
usually referred to as covariance inflation. Later on in the thesis, covariance inflation
was also used to weigh more the measurements in detriment to the forecast state as
a first form of taking forecast errors into account (agnostic approach).

Because the pressure is a nonlinear function of the vorticity field, the effects of
nonlinearities on the analysis step was discussed. Results indicated that, at least
for the problem in question, Evensen’s implicit linearization scheme outperforms
iterative schemes that approximate the posterior conditional mean by the conditional
mode.

The optimality of the estimation, as perceived from the time-correlation of the in-
novation sequence was evaluated. As expected, the estimator was able to optimally
assimilate velocity measurements, which are a linear function of the state of the sys-
tem, but not the pressure measurements, a nonlinear function of the state. Different
schemes to deal with nonlinear observation functions were discussed and evaluated,
and, surprisingly, the implicit linearization scheme first proposed by Evensen[19]
demonstrated better performance than the iterative methods for the analyzed prob-
lems.

6.2 Parameter estimation

Assuming that the source of the forecast errors is known, parametric modeling
can be used to upgrade the estimator model. The parameters and state variables
can be jointly estimated by using a augmented state-vector approach. Additive
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process noise can be introduced to ensure the responsiveness of the estimator to new
disturbances. Using this approach, both the flow state and the lift were successfully
estimated for an airfoil exposed to an unknown freestream velocity perturbation.
Under a deterministic deceleration, the estimator accurately captured a steep change
in the free-stream velocity (25% reduction of the initial velocity over 1 convective
time unit). When subjected to a sequence of random gusts (reduced frequency up
to 2 and amplitude up to 10% of the reference velocity), the estimator was able to
achieve synchronization after a transient period of about 10 convective time units.
Finally, the estimator was able to estimate the flow Reynolds number from pressure
measurements taken on the surface of a flat plate, demonstrating that the estimator
can be made robust to a range of initial conditions and uncertain parameters that
would be problematic to standard reduced-order models typically used for flow
control purposes.

6.3 A Bias-aware estimator

We also introduced a novel approach to use an EnKF framework to simultaneously
mitigate the effects of biased forecast and observation models. In lieu of treating
the bias as a single random variable, we split it into its slow and fast components.
Colored noise processes were used to model the time correlation exhibited by the
slow part of the bias, while the fast component is modeled by a white-noise process.
The restriction of the bias dynamics to the low-rank subspace that contains most of
the variance allows for a more efficient sampling of the state space and enables the
use of fewer ensemble members to satisfactorily represent the system statistics.

The performance of the proposed estimator is assessed by employing an ensemble of
coarse-grid simulations to track a fine-grid simulation of the low-Re flow past a flat
plate at high angle of attack. Measurement data consists of pressure at ten different
locations on the surface of the flat plate. The bias-aware estimator obtained about
70% state and observation error reduction for a marginal cost increment. Similar
performance was achieved even when imperfect bias statistics where used.

6.4 Summary of Contributions

The main contributions presented in this thesis can be summarize as follows:

• Extension of the IBLGF framework to evaluate the pressure field from the
vorticity field. Derivation of an IBLGF-based instantaneous mapping between
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the vorticity field and the immersed boundary forces (Chapter 2).

• Survey of the EnKF capabilities under ideal conditions (perfect-model frame-
work) which provided us a better understanding on how different parameters
(covariance inflation, ensemble initialization, measurement noise levels and
nonlinear observation schemes) affect the filter performance (Chapter 3).

• Optimal sensor placement based on the information contained in the repre-
senters matrix (Chapter 3).

• Demonstration of the EnKF capability of estimating the flow Reynold num-
ber and tracking rapidly changing freestream perturbation based on pressure
measurements on the surface of the body (Chapter 4).

• Development of a bias-aware estimator based on a low-rank bias model which
enables the user to use an ensemble of under-resolved simulations to track a
fully-resolved reference data (Chapter 5).

Another contribution of this project which was not directly reported here is a result of
cooperative effort with the UCLA and IIT. In Darakananda et al. [33], we combined
the EnKF with a low-order vortex model in order to estimate the separated flow over
a flat plate from pressure measurements on the surface of the plate. The estimator
was demonstrated to be able not only of synchronizing with the reference data but
also provide a good estimate of the aerodynamic force in the presence of sporadic
incident gusts.

6.5 Recommendations for future work

As documented in this thesis, ensemble methods are a very efficient way of integrat-
ing complex models into estimators. An obvious path forward is to use the EnKF
in conjunction with more complex flow configurations, which can include 2D cases
with higher Reynolds numbers. Despite no longer being an accurate representation
of reality, the resulting dynamics can display a chaotic behavior that may constitute
a good challenge for the estimator.

A next step would then be to assimilate actual experimental data. Suitable models in
this case would likely be three-dimensional and possibly require some appropriate
turbulence treatment. The increased cost due to the larger number of degrees of



116

freedom will require extensive and efficient use of parallel methodologies in order
to make real-time estimation possible.

Without doubt, the greater disadvantage of the proposed bias-aware method is the
requirements of some form of a priori representation of the bias statistics. Although
the results using extrapolated statistics are encouraging to the extent that they signal
that a series of a priori simulations may be able to provide enough information, a
methodology that forgoes the need for a priori statistics would be very welcome. A
very promising direction points towards multi-fidelity estimators, which intend to
leverage information obtained from different models (each of them with their own
strengths and fragilities) to optimize the ratio accuracy/cost. Still along these lines,
Multilevel Monte Carlo methods[105, 106] have been showing interesting results,
employing a sequence of models of increasing complexity.

Finally, recalling what was exposed in section 1.2, flow estimation can be an end in
itself (enhanced experiments), or an intermediary step to closed-loop flow control. A
robust estimation strategy can be the missing technological piece to the development
of the new generation of controllers.
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A p p e n d i x A

IMPLICIT LINEARIZATION

The scheme proposed by Evensen [19] to deal with nonlinear observation functions
can be understood as an approximate linearization about the ensemble-averaged
state. To see this, notice that each of the columns of H Âk is given by√
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and, therefore,
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These approximations are consistent with the approximate minimization of an ef-
fective cost function
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which corresponds to the cost function of an extended Kalman filter in which the
linearization is performed about the ensemble average instead of the prior state of
the particle.
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If h(x) is linear, i.e. h(x) = Hx, then
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and, thus, the standard EnKF analysis formula is recovered.
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A p p e n d i x B

LATTICE GREEN’S FUNCTION FOR THE 2D LAPLACE
OPERATOR

Lattice Green’s functions (LGF) can be used to efficiently solve Poisson problems
defined on the infinite integer lattice Zn, i.e.,

Lu(m) = f (m) m ∈ Zn , (B.1)

where L is the second-order discrete Laplace operator in Zn. In two dimensions
(n = 2, m = (m1,m2)), this operator is defined as

Lu(m1,m2) = 4u(m1,m2)

− u(m1 + 1,m2) − u(m1 − 1,m2) − u(m1,m2 + 1) − u(m1,m2 − 1) .
(B.2)

The solution of this operator for a single unitary charge placed at the origin is the
corresponding lattice Green’s function φ(m1,m2). In terms of this fundamental
solution, Eq. B.1 has an explicit analytic solution in the form

u(m) = [φ ? f ](m) =
∑
p∈Z2

φ(m − p) f (p) . (B.3)

Analytically, the LGF can be evaluated via the normalized Fourier integral

φ(m1,m2) =
1
(2π)2

∫ π

−π

∫ π

−π

cos(t1m1 + t2m2) − 1
4 sin2(t1/2) + 4 sin2(t2/2)

dt1dt2 . (B.4)

Numerically, however, the alternative expression derived by Buneman [107] is more
stable
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Away from the origin, the following asymptotic expansion can be used instead [108]
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Figure B.1: Comparison of the lattice Green’s function to its continuous counterpart
for h = 1.

where |m| =
√

m2
1 + m2

2 and γ ≈ 0.577206 is the Euler constant. For |m| > 30,
dropping the O(|m|−6) renders the truncated expression accurate to at least 10−12.

Defining (x, y) = hm, where h is the grid spacing, one can note that Eq. B.6 implies

φ(m) +
log h
2π

|m|→∞
−−−−−−→

1
2π

(
log(

√
x2 + y2) + γ +

log 8
2

)
, (B.7)

where 1/(2π) log(
√

x2 + y2) can be recognized as the Green’s function for the con-
tinuous counterpart of the Poisson problem in 2D. Note that the offset between the
discrete and continuous potential is made of two parts: a constant part and a grid
dependent part. Also, the behavior near the source differs significantly due to the
fact that the continuous potential is −∞ while the discrete one is set to zero.

In fact, it can be shown that the continuous and discrete solutions relate to each other
according to

u(x(m), y(m))
|m|→∞
←−−−−−− φ(m) ∗ f (m) +

1
2π

(
log h − γ −

log 8
2

) ∑
m∈Z2

f (m) (B.8)

and the offset between the two solutions depends not only on the grid spacing but
also on the net value of the source.

Consider the potential generated by two collinear charges (magnitudes 2 and -1).
Figure B.2 highlights the offset-corrected discrete potential along the centerline and
compares it to its continuous counterpart. Note that most of the error is restricted
to the vicinities of the charges.
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Figure B.2: LGF-based solution corrected to account for the offset. Left axis
compares the solution to the exact continuous potential, and right axis shows the
local error (h = 0.001).
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A p p e n d i x C

DISCRETIZATION OF THE NONLINEAR TERM U × ω

The nonlinear advection term in Eq. 2.7 correspond to the cross product ur × ω
′.

The challenge here is the fact that cross product use inputs from the faces of the dual
cell. In the present implementation of the code (which follows Colonius and Taira
[79]), the following interpolations schemes were used:

• x-velocity: primal-cell x faces to dual-cell x faces (primal-cell y faces)

uy
i, j =

1
4

(
ui, j + ui+1, j + ui, j−1 + ui+1, j−1

)
(C.1)

• y-velocity: primal-cell y faces to dual-cell x faces (primal-cell x faces)

vx
i, j =

1
4

(
vi, j + vi, j+1 + vi−1, j + vi−1, j+1

)
(C.2)

• vorticity: primal-cell edges to dual-cell x and y faces (primal-cell y and x
faces, respectively)

ωx
i, j =

1
2

(
ωi, j + ωi, j+1

)
(C.3)

ω
y
i, j =

1
2

(
ωi, j + ωi+1, j

)
(C.4)

Thus, the result of the cross product is given by

(u × ω)xi, j = vx
i, jω

x
i, j (C.5)

(u × ω)yi, j = −uy
i, jω

y
i, j (C.6)



133

A p p e n d i x D

THE ERROR INTRODUCED BY THE NONLINEARITIES IN
THE ANALYSIS STEP

Under the action of nonlinear forecast and observation functions, a Gaussian initial
condition may develop nonzero higher moments in such a way that the state PDF
is no longer characterized by just its mean and covariance matrix. The Extended
Kalman Filter (EKF) is a first-order approximation to the nonlinear filtering problem,
and is the most widely used solution in the industry.

Several second-order extensions to the KF, each of them corresponding to a different
choice on how to approximate the presence and action of higher-order moments, have
sice been proposed. A popular choice is to suppose that the PDF remains symmetric
(third- and higher-order odd central moments are negligible) and concentrated near
its mean (even central moment sequence can be truncated at some point). The
Gaussian second-order filter was developed by Jazwinski [36], and independently
by others researchers. It still assumes the prior to be Gaussian, but retains even
central moments up to the fourth-order when solving for the posterior mean. A brief
discussion of this algorithm can be found in section 1.4.1.

The goal in this appendix is to compare this second-order filter to its first-order
counterpart (EKF), as to better understand the behavior of the error being introduced.
Comparing the respective analysis equations written in the representers formulation
(inversion in the measurement space), one can see that the second-order representer
magnitude b∗k can be related to EKF counterpart bk byI +

1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈ2
k∂

2h
]  b∗k

= bk −
1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈk
]

(D.1)

b∗k =
I −

1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈ2
k∂

2h
]
+O(Ĉ2

k )


−1

×

©«bk −
1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈk
] ª®¬ . (D.2)
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If we assume 1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈ2
k∂

2h
]  < 1 (D.3)

then

b∗k = bk −
1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈk
]

+
1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈ2
k∂

2h
]
×

©«bk −
1
2

(
R +

[
∂h
∂x
(x̂k)

]
Ĉk

[
∂h
∂x
(x̂k)

] T
) −1 [

∂2hĈk
] ª®¬

+O(Ĉ2
k ) . (D.4)

The first line in Eq. D.4 represents the O(1) term, while the second line represents
the O(Ĉk) term. Note that the error in the O(1) term is indistinguishable from a bias
in the observation function, and it scales with hxx being fairly independent on Ĉk .
This conclusion seems to be in agreement with the results presented in Fig. 3.10.

Another particularly famous second-order approach to the nonlinear problem is the
Unscented Kalman Filter (UKF), which avoids the need for explicitly computing
higher-order derivatives of the forecast and observation models by introducing a
sampling strategy that is known as the unscented transformation. A brief description
of this methodology can be found in section 1.4.1, and further details can be found
in Wan and Der Merwe [47] .
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