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ABSTRACT 

Quantum dynamical calculations for the collinear Cl + HCI ~ CIH + Cl, a 
+ DCI ~ CID + Cl, and Cl + TCI ~ CIT + Cl reactions on low and high barrier 

potential energy surfaces are presented and discussed within the framework of the 

hyperspherical coordinate representation. Vibrational excitation of the reagent 

diatomic is found to decrease the reaction rate for the low barrier surface and 

increase the reaction rate for the high barrier surface. Quantum mechanical 

streamline calculations and tunneling fractions are used for analysis, and discussion 

of the results is made in terms of the topology of the potential surface, in which the 

skew angle and barrier height of the system play a leading role in explaining the 

dynamics of the reaction. 



INTRODUCTION 

Collinear triatomic light atom exchange reactions of the type Cl + 

H(D,T)Cl ~ CIH(D,T) + Cl, in which the first diatomic bond is broken while the 

second is created, are considered within the framework of quantum reactive 

scattering. Confinement of the reaction process to a straight line to avoid the 

complicated mathematics associated with molecular rotations introduces an 

artificial constraint on the reaction forcing it to react in a fictitious configuration. 

However, it is hoped that insight concerning the full three-dimensional reaction 

process can be gained from such a one dimensional analysis, especially in regard to 

the effects of translational and vibrational energy distributions. In this sense the 

collinear circumstance serves as a good first step for the testing of methods 

applicable to the more intense three-dimensional calculations. 

The Cl + HCl ~ CIH + Cl reaction, classified as a heavy-light-heavy (H-L­

H) reaction, sports a very small skew angle which has made it difficult to 

efficiently perform calculations on. However, the development of hyperspherical 

coordinate methods for collinear chemical reactions has permitted accurate 

quantum calculations on both H-L-H and dissociative systems, neither of which 

were well represented by conventional approaches based on natural collision 

coordinates.24-26.54.S9 Examination of the hydrogen atom transfer between two 

heavy atoms has especially benefited from the hyperspherical coordinates ability to 

accurately represent the large curvature encountered in such systems. 1.3·7·9.15-16.30.33.37-

41 As a result of these investigations it has been determined that the collinear light 

atom transfer reactions typically exhibit characteristics such as oscillating reaction 

probabilities, 7•16 highly favored vibrational adiabaticity, 12•13 and equivalent reaction 

probabilities for nonreactive and reactive off-diagonal transitions. The specific 

reactions of this research also feature sharp resonance spectra. 46 All of these 

phenomena tend to be quantum in nature.42.47.SO.S2 

In order to effectively discuss the title reactions, this document is organized 

by first presenting a detailed overview of the mathematics and physics of quantum 

reaction dynamics for a general collinear triatomic system. Each aspect of the 
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theory is discussed separately and independently of the others in order to focus on 

the structure of the numerical implementation of the mathematics. Initially the 

coordinate representation of the Hamiltonian and the separation of the Schrodinger 

equation are addressed, followed by a discussion of the Renormalized Numerov 

propagator. The final step in obtaining reactive scattering information is discussed 

in the asymptotic analysis section where the projection of numerical solutions and 

the establishment of physically meaningful data is outlined. The final section in the 

mathematical description of chemical reactions is dedicated to the analysis of 

quantum streamlines. 

Quantum mechanical streamline calculations supply a great deal of valuable 

information pertaining to the wave function in the interaction region of the 

potential energy surface. Specifically, they provide otherwise unobtainable 

information about the reacting system as it goes from its initial to its final 

configuration by revealing more details of the collision mechanism than can be 

inferred from the product distribution alone. The streamlines can be thought of as 

quantum mechanical analogs to the classical trajectories of a single particle of 

corresponding reduced mass traveling through the potential surface. In addition, 

through the appearance of vortices and their penetration into classically forbidden 

regions of configuration space, streamlines provide a pictorial way of gaining 

information on important quantum effects such as resonances and tunneling which 

classical trajectory calculations fail to account for. Finally, the will be a crucial 

component in the analysis of the sensitivity of the reaction rate to the barrier height 

for vibrationally excited state systems. 

The second part of this thesis will present new results for the collinear Cl + 

H(D,T)Cl reactions, emphasizing the effects of vibrational excitation on the 

reaction probabilities, for which little attention has been previously directed. It is 

perceived that the barrier height of the potential energy surface plays a vital role in 

the fmal reaction rate upon vibrational excitation of the reagent diatomic molecule. 

This observation is in itself not surprising, however the outcome is actually the 

opposite of what one intuitively expects for the lighter two of the three isotopes. 

That is, that vibrational excitation produces an increased reaction rate for a high 
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barrier surface and a decreased reaction rate for a low barrier surface. A full 

streamline analysis of the reacting process is utilized in order to discern the 

physical reasons for this observance. 
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COLLINEAR REACfiVE SCA TIERING 

One of the most rudimentary chemically reactive processes occurs in the 

gas phase when a single atom collides with a diatomic molecule, subsequently 

dissolving the first chemical bond and forming the second. Triatomic exchange 

reactions of this type are of the form A + BC ~ AB + C or A + BC ~ AC + B, in 

which the atom A is free to react with either end of the diatomic molecule. The 

mathematics associated with the rotations in three-dimensional space for such a 

reaction are complicated and in order to avoid them the reaction can be 

superficially confined to a straight line. Collinear configurations, although 

substantially simpler than their three-dimensional counter parts, assist in direct 

analysis of the effects of the vibrational and translational degrees of freedom 

available to a chemical reaction and in many cases constitute the dominant 

geometrical path of the reaction. 

The coordinate system for a general collinear reaction is shown in Figure 

1. 32 When atom A collides with molecule BC the most convenient coordinates to 

describe the process are r~ and R~ which are the BC internuclear distance and the 

distance from A to the center of mass of BC respectively. The reverse reaction, in 

which C collides with BA, is described by the coordinates r; and ~. Neglecting 

spin interactions and removing the motion of the system's center of mass furnishes 

the nuclear motion Hamiltonian in either the a or y coordinate frame 

n? d2 1i2 d2 
' ' 

H= -----+V(R r) 
2 ':1'2 2 ':1'2 a'a' 

IJ. A,BC oRa IJ. BC ora 

1 

There are two reduced masses in each reference frame, one being the reduced mass 

of the diatomic molecule and the other that of the separate atom and molecule. In 

a coordinates these reduced masses are explicitly written 
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msmc 
llBC = ' 

(ms +me) 
mA (ms +me) 

llA,BC = . 
mA +ms +me 

2 

The kinetic energy components of the Hamiltonian describe the vibrational motion 

of the diatomic molecule and the relative kinetic motion of the atom as it moves 

with respect to the diatomic center of mass. The potential energy term is obtained 

from solving the electronic motion in three dimensions and is electronically 

adiabatic in the cases presented here. 

In order to understand the basic mechanism of a three particle chemical 

reaction the motions and interactions of the particles are needed. Therefore, 

solutions to the nuclear motion Schrooinger equation, 

subject to the appropriate asymptotic conditions, are sought. The asymptotic 

conditions are the boundary conditions of this two dimensional partial differential 

equation and come from the region of configuration space where the physical wave 

function is specifically known to be a linear combination of diatomic vibrational 

wavefunctions only depending on the variable r~. Due to the fact that the bound 

vibrational wavefunctions differ significantly from zero only over a relatively small 

range of r~, and that grouping together both the forward and backwards reactions 

exhibits no loss of generality, the asymptotic conditions can be written simply as 

4 

where A is equivalent to either the a or y representation and An~ denotes the 

initial state of the reagents. The - stands for the asymptotic form of the 

wavefunction and literally means that either R~ ~ oo or ~ ~ oo. For the a 

arrangement, the reaction as R~ ~ oo is indicative of atom A advancing toward the 

diatom BC in vibrational state n~ with relative wavevector k' . , superimposed on a 
an, 

sum of waves describing BC molecules in vibrational state na retreating from atom 
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A with wave vector k~ . 
a 

The behavior at ~ -7 = is that of the reactive 

scattering term consisting of AB molecules in vibrational state ny moving away 

from atom C with relative wave vector k~. Note that in this scenario it is the a 

channel that contains the term for the incoming wave since it describes the initial 

state of the reaction. The relation describing the conservation of energy can be 

written as 

iz2k'2. 
E= an"+E. 

2jl A,BC ana 

iz2 k'2 iz2 k'2 
__ a-'""=-+ E = ..,._, + E 
2j.l.A~C an, 2!l~u Yn., 

5 

with EA.n indicating the internal state energy eigenvalues of the vibrational states 
~ 

<!>~ ( r ... ). The diatomic vibrational motion is quantized but the wave numbers and 

the total energy, which is a known quantity, are not. Thus the reagents collide 

with an established relative kinetic energy in a given internal state from which state 

resolved reaction probabilities can be acquired. 

A reactive process with reagents in the state designated by the quantum 

numbers an~ and products in A.n... has a scattering amplitude t;::::. For open 

channels, channels for which E ~ EA.n~, the corresponding flux is v~~ It~~ 1
2

, where 

v~ is the relative motion velocity of the channel. The collision cross-section of 
~ 

this reaction is the dimensionless probability given by the ratio of the incoming and 

reactive fluxes: 

6 

At this point the physical interpretation of the reaction is that of a particle 

of mass llA,Bc moving quantum mechanically from the reagent region a to the 

products region of configuration space denoted by the coordinates ( R~, r~). 

However, the products region in these coordinates does not correspond to the true 

diatomic AB well produced in the reaction. Furthermore, the reverse reaction is 

not characterized by simply reversing the direction of the particle in the same 



8 

space, but rather by tracing a particle of mass J.!c,BA in the configuration space 

defmed by the coordinates (~,r;). Neither the reduced masses nor the coordinate 

axes are interchangeable between the two systems. Consequently, the skew angles 

of these two potential energy surfaces, the acute angles made between the R~ and 

r~ axes, differ with each a function of the masses of the associated atoms, 

7 

Thus, the potential surface is apt to change shape under the transformation 

between a and y coordinates. 

Obviously it is advantageous to be able to work in a coordinate space 

which satisfies the intuitive meaning of the particle motion and pennits an equally 

convenient description of both the forward and reverse reactions. In order to 

summarize the entire collision process with the motion of a single reduced mass J.l, 

the coordinate system introduced by Delves is exploited and can be generated by 

an elementary mass scaling of either the a or y coordinates in the following 

manner, 

Ra = aaR~ 
-1 • 

ra = aa ra aa = (JlA,BC /JlBc ),X 
8 

~=ar~ 
-1 • 

'r = ar 'r ay = (Jlc,BA /Jl BA )X· 

The resulting Hamiltonian encompasses a single reduced mass which is 

independent of the choice of coordinates and can be written in a general form with 

'A depicting either a or y 

9 

The single reduced mass Jl is equally weighted in terms of all three atomic masses 

in this sense and is 
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10 

Using this mass scaling, the change of coordinates from the a toy set has a simple 

form and the two systems reduce to one having a skew angle that equally well 

represents both the forward and reverse reactions. The concurring transformation 

( J\x, ra) ~ ( R'Y, rJ corresponds to a rotation in the Delves' mass-scaled 

configuration space with a clockwise angle of rotation 

11 

Under this transformation the potential energy surface does not change shape, 

since now the two axes systems are orthogonal, and thus the motion of the ABC 

system in one physical dimension is akin to the motion of a particle of reduced 

mass in a two mathematical dimensional space. The subsequent skew angle of the 

system is measured between the Ra and ~ axes 

12 

and consequently has dynamic significance. One peculiarity of the collinear 

restrictions on the reaction is that in these skewed coordinates the Ra axis 

transforms into the r'Y axis and ~ into ra. 

Solving the Schrodinger equation has been assailed from a diversity of 

angles with the most popular techniques exploiting the coupled channel method. 

In this approach two variables are used; the first variable, x, is held constant while 

the second variable, y, surveys the potential with the assumption that the limits of y 

reside in regions of the potential having very large energies. A one dimensional 

Hamiltonian in the variable y, at a fixed x, with potential v(x,y) yields a set of 

eigenfunctions in which the wave function can be expanded. In a sense the 

Hamiltonian is separated into two variable dependencies. From this point, a set of 

coupled ordinary differential equations with x dependent coefficients is solved. 

Natural collision coordinates constitute the bulk of traditional choices for x and y. 
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In this case three regions of configuration space are established, two equivalent to 

the asymptotic regions of the reactant and product channels and the third 

corresponding to the interaction region. Unfortunately, reactive processes 

involving the exchange of a light atom between two heavy atoms or the complete 

dissociation of the system are inaccessible using these coordinates. The 

dissociative process is indescribable because natural collision coordinates typically 

don't sample the dissociative plateau region of configuration space, thus restricting 

calculations to energies well below those of break up collisions. The light atom 

exchange reactions are difficult for reasons based on their small skew angles. For 

such processes the scaled distances are highly compressed in the strong interaction 

region and the gradient of the potential energy increases rapidly. The symmetric 

stretch coordinate, which is perpendicular to the reaction coordinate, is very broad 

and can support a much larger number of bound states than the diatomic wells 

characterizing the reactant and product channels. This makes for an unusually 

intense calculation requiring a significantly higher number of basis functions for 

convergence than would be expected considering the asymptotic channels alone. 

More recent advances in reactive scattering exploit the convenience of 

hyperspherical coordinates to obtain reactive transition probabilities. 

Hyperspherical coordinates, which are the same as the circular polar coordinates 

(p,a) in collinear scattering, are distinguished by the use of a coordinate measuring 

the size of the system, namely p. Unlike the natural collision coordinates of earlier 

methods, hyperspherical coordinates have no channel specialization and can 

therefore be implemented over all areas of configuration space. Consequently, the 

dissociative plateau is adequately described and calculations for break up collisions 

are possible. Furthermore, the angular coordinates more accurately represent the 

saddle point regions of very skewed systems allowing for a thorough description of 

the rapidly changing gradient of the potential surface in that area Finally, since the 

angular coordinate in the strong interaction region does not remain perpendicular 

to the reaction path, the number of basis functions needed in that area does not 

increase as it did in the other cases where the symmetric stretch mode was very 

soft and held many bound states. 
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In hyperspherical coordinates the one dimensional nuclear motion 

Hamiltonian in Delves' mass scaled form with the single reduced mass transforms 

into 

H(p,a)=- -+--+--- +V(p,a), -1i
2 

[ d
2 

1 a 1 d
2 

] 
2~ dp2 p dp p2 da2 13 

and the Schrodinger equation at a given total energy becomes a function of the 

polar coordinates p and a, 

H\jf(p, a)= E\jf(p, a). 14 

To avoid the mixed derivative arising from the second order differential equation 

the wave function is written in the form 

15 

and evaluation of the SchrOdinger equation yields 

-1i2 [ a2 1 a2 J [ tz2 J - -::;-2+-2 -;--?: Bi(p,a)+ V(p,a)---2 -E Bi(p,a)=O. 16 
2~ op p oa 81J.p 

The role of x in the coupled channel procedure is played by the variable p 

and thus upon selecting a constant value labeled p, the variable a is allowed to 

span the full range of the skew angle. At this point a complete orthogonal set of 

discrete basis functions in the variable a, but which are also parametrically 

dependent on p, are obtained from solving the relation 

[ 
tz2 ()2 ( -) -] ( -) -

2 
--

2 
+V a;p -£~ Y1 a;p =0 

21J.p da J 
17 
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The above equation contains both a kinetic energy term and a potential energy 

function in the variable a and is the equivalent of a Hamiltonian in a with 

eigenvalues E ~ and eigenfunctions Yj (a; p). These functions are called the surface 

functions in collinear scattering. The total wavefunction is expanded in these 

functions 

'I'Jp,a) = p-~Bj(p,a) = p-~Lbij(p;p)Yj( a;p), 18 
j=! 

plugged into the Schrodinger equation which is multiplied by Y~: (a; p), integrated 

over the variable a and rearranged to give 

19 

-
Due to the orthogonality of the surface functions at each p, the kinetic energy is 

diagonalized but the expressions for the potential remain more complex. In this 

expression the potential matrix elements are defined as 

Vj~:(a;p) = r- Yj( a;p) V( a;p) Y*( a;p) da, 

Vj~:(p;p) = r- Yj(a;p) V(p;a) Y~:(a;p) da, 
20 

where the second is referred to as the interaction potential matrix element. 

Rewriting the expression in matrix form, which makes for simple implementation, 

gives 

b"= Wb 21 
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with the matrix W defmed in terms of the diagonal matrices E and I and the 

nondiagonal matrices v(a;p) and v(p;p), 

-2 [ ] -2 - 2~p 1 2~ 2~p . - 2~ . -w --2 -2 e- -2 +-2 I--2 -2 v(a,p)+-2 v(p,p). 
tz p 4p tz tz p tz 

22 

This is the most convenient form of the coupled channel Schrodinger equation for 

evaluation of the second derivative expression for the many propagation schemes 

available. 
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RENORMALIZED NUMEROV METHOD 

Solving the coupled channel Schrodinger equation consists of evaluating 

the eigenvalue problem of one variable, to get surface functions, while propagating 

in the other, which the surface functions are parametrically dependent on. 

Integrating Schrodinger's equation in hyperspherical coordinates is best 

accomplished with an outward integration procedure that is initiated deep within 

the strongly repulsive potential region, corresponding to small values of p, and 

completed at a distance sufficiently far out that the reactive channels have 

separated completely, a region of the potential analogous to large values of p. 

Eigenfunctions of the angular variable can be numerically determined by standard 

algorithms, but integration in the hyperradius requires one of the many numerical 

approaches to solving linear second-order differential equations, which are not 

quite so readily available in computation libraries for multidimensional problems. 

The coupled-channel Schrodinger equation is most conveniently written in 

the form of a matrix differential equation 

1 

where 

Q(p;i)) = (~i) E I-w(r;P)]. 2 

In this sense, b(p; p) is the 'wavefunction' matrix, I the identity matrix, and 

W(p;p) a symmetric potential matrix. In one dimension, when Q is positive and 

usually written as k2 the solutions are oscillatory with local wavenumber k, but 

when k2 is negative the solutions grow or decay exponentially at a local rate (­

k2) 112. A particularly simple and efficient method for solving these types of 

differential equations is the renormalized Numerov algorithm.21 .22 
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The Numerov method is derived from the Schrodinger equation by first 

approximating the second derivative by a three point difference relation, 

3 

In this expression the symbol bn means b(pn;p) . The O(h2
) error term, where h 

is the distance between an equally spaced set of grid points in the variable p, has 

been written out explicitly and can be derived from the taylor expansion of an 

arbitrary function, 

2 3 
J(x) = fo +xf' +!__ /' +!..__ /" + 

2! 3! 
4 

which gives 

2 3 
f±1 = J(x =±h)= fo ±h/ + h

2 
/' ± h

6 
/" +0(h4 ). 5 

The differential equation itself yields 

2 
"" d b --[-Qb] n - 2 p=p dp n 

6 

again keeping in mind the notation symbolized by the subscripts. Substituting this 

expression into the three point recursion relation and rearranging terms to simplify 

the equation gives the three point recurrence formula from which the renormalized 

Numerov algorithm follows, 



16 

A convenient substitution is made by defming the matrix 

8 

to give 

9 

Solving this equation for either b,.+1 (p; p) or b,._1 (p; p), provides a recursion 

relation for integrating either forward or backwards in p. Two transformations are 

performed next, the first being 

10 

which when substituted back into the recurrence relation gives an expression 

across three points of the grid again denoted by the subscripts 

11 

with the symmetric matrix 

12 

This transformation is advantageous in that at each step the value ofF requires one 

less multiplication to calculate than does the corresponding value of b. The 

determinental relation ji- T,.j > 0 is assumed true. Failure of this relation is 

indicative of too large a grid spacing for at least some of the components of the 

wavefunction. In the limit h~O and II-T,.j-71. If the determinant deviates too far 

from this limiting value, truncation error arises. In an extreme case the numerical 

solution will break into an unphysical oscillation with a node at every grid point. 

The difficulty tends to occur near the origin where the diagonal elements of the 

potential matrix can become very large and positive in value. A simple solution to 
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this problem comes from recognizing that the wavefunction is negligibly small 

since the potential is so large. The potentials can thus be truncated to some high 

value with out effecting the solution in any significant way. 

The second transformation results in defming the ratio matrix 

13 

from which the desired two term recurrence relation results, 

14 

The quantity R,. is much easier to deal with than the value Fn because it does not 

grow exponentially in the classically forbidden regions of the potential as does the 

latter. This equation can be solved once the value of the initial term R 0 is 

specified. The initial grid point lies deep in the repulsive potential region at the 

point p0 where the initial values of the wavefunction are very small and the 

corresponding value of the inverse of the initial term is 0. Exceptions do occur for 

this condition, the most immediate being the calculation of the bound states of the 

hydrogen atom. Once the initial state had been determined, the equation can be 

iterated from small p to large p and if the iteration is stopped at any point along 

the way both the quantities R" and Rn-1 are available. The wavefunction at the 

three points Pn-1, Pn' and Pn+1 can then be calculated to within a normalization 

factor, 

b,.+l = N(I-T,.+1f 1
R,., 

b,. =N(I-T,.t, 15 

b,._1 = N(I- T,._J-
1 
R::1• 

This is where the designation of the renormalized Numerov method comes in since 

a renormalized wavefunction is calculated at each step. The method is very stable 

and converges to the desired solution easily for complicated problems such as this 
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where the potential has a double minimum separated by a very high barrier. The 

Numerov algorithm is also free of overflow and linear dependence problems and 

thus no special programming precautions are needed. 

Shore identifies four of the five sources of error possibly found in 

numerical results.56 These include round off errors, termination errors, toleration 

errors and truncation errors. Round off error is inherent to most numerical 

calculations not utilizing integer arithmetic. If the wavefunction is forced to be 

zero at an artificial boundary point the introduction of termination error is possible. 

The truncation error is a function of the grid spacing h and comes from the 

replacement of the differential equation with the approximate finite difference 

equation. Numerical calculations determine that this error is given by 

M = C h4 +C h6 + ... en.nc 4 6 16 

which is consistent with the h4 accuracy of the traditional Numerov method. All of 

these errors can be adjusted with the appropriate choice of parameters, except the 

round off error. A fifth source of numerical error comes from cutting an infmite 

set of coupled differential equations down to the finite set necessary for 

computation. 

Reactive scattering information comes primarily out of the reactance and 

scattering matrices. These can be established once the propagation has been 

performed by projecting the wavefunction onto the diatomic basis at the 

asymptotic value of p. To do this the logarithmic derivative of the wavefunction is 

needed and can be established from the renormalized Numerov formalism using the 

matrix formula derived by Blatt. The derivative of the wavefunction at a point is 

given by 

17 

This expression has an error term on the order of h5 which is poorer than the order 

h6 of the basic Numerov formula. However, it has been shown that the cumulative 



19 

error of the Numerov algorithm at a point is of the order lz4. The logarithmic 

derivative expression is produced when the derivative of the wavefunction is 

calculated, within the normalization factor, by substituting the equations for bn-1 

and bn+l followed by multiplying on the right by the inverse of b at the point Pn· 

Cancellation of the normalization factor gives 

y(pn;p) = h-'(An+,Rn- An_, R:~,)(I- Tn) 18 

where the matrix A is defined as 

19 

A measure of the quality of the calculation is directly obtainable from an 

analysis of the symmetry of the logarithmic and reactance matrices. At the inner 

most value of p the inverse of the ratio matrix is inherently symmetric and the 

iterative procedure subsequently yields a symmetric U matrix and therefore a 

symmetric R matrix at each point. The deviation from symmetry in the reactance 

matrix is a direct measure of the convergence of the integration and the error 

accumulated in the calculation. 
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PROJECTION AND ASYMPTOTIC ANALYSIS 

Separating the problem of obtaining arbitrary solutions to the coupled 

channel SchrOdinger equation from the problem of imposing asymptotic boundary 

conditions appropriate for acquiring solutions of physical relevance, comes about 

with the determination of the reactance and scattering matrices. From the 

scattering matrix state-to-state reaction probabilities are evaluated. 

The set of mathematical solutions for a collinear reaction have an 

asymptotic form in the A. arrangement channel given by 

1 

where the <1> are the complete discrete set of diatomic basis functions which satisfy 

the relation 

2 

The solutions to the set of equations 

3 

are written in the form 

4 

H h ffi . AA.'n~. and BA.nA.~J..~· . . -1/2 . h ere t e coe ICients 1 "' are mtegrat1on constants, v1_ IS t e 
Anf.. AnJ.. 

channel velocity and kAnJ.. is the channel wavenumber. JAnJ.. and GAnJ.. are 
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diagonal matrix elements describing the relative translational motion of an atom 

and a diatomic molecule through the incoming and outgoing plane waves as a 

function of the wavenumber 

open channels 
5 

closed channels 

open channels 
6 

closed channels. 

In matrix notation this relation for the coefficients becomes 

7 

The scattering matrix is defmed as the matrix that generates the matrix of 

outgoing wave coefficients B when acting upon the matrix A of incoming 

coefficients, 

B=SA. 8 

When the initial state and flux of collision reagents is known, then the scattering 

matrix enables the determination of the final states and fluxes of the products. An 

alternative way of writing the expression for the g involkes the more simplistic 

nature of real rather than complex algebra and has the form 

9 

In this instance the new integration constants C and D are related by the reactance 

matrix R in the same way A and B are related by the scattering matrix. All the 
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matrices are now real and are obtainable through real quantities. The 1:> and e are 

diagonal sine and cosine matrices representing standing waves, thus they carry no 

flux. They can be obtained immediately from the I and 0 by writting the 

trigonometric form of the imaginary exponential expressions. Their elements are 

given by 

open channels 

10 
closed channels 

cos( k/..n1.. R')...) open channels 

e( -lk~..n~..iR~..) 11 
closed channels 

Both the scattering and reactance matrices are unique, in other words for a 

given set of incoming states, there is only one possible set of outgoing states. It is 

crucial to note that both matrices are functions of the total energy of the system. 

The scattering matrix is symmetric, a basic result of quantum mechanical 

microscopic reversibility, however only the open portion, that subblock spanned by 

the indices of the open rows and columns, of the reactance matrix is expected to be 

symmetric. Furthermore, the open part of the scattering matrix is unitary and thus 

conservation of particle flux is adhered to. Computationally, the reactance matrix 

is much easier to obtain than the scattering matrix but it is ultimately the latter 

which is desired. The open parts of the two are related by 

12 

from which the real and imaginary components of the scattering matrix are made 

functions of the reactance matrix 

S 0 = ReS 0 +ilmS 0 13 
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ReS 0 =(l-R 0 2)(1+R 0 2r
1 

ImSo =2Ro(l+Ro2rl. 

14 

15 

Another quantity of interest is the scaled configuration space scattering 

amplitude which is directly related to S by 

16 

As mentioned before, the square of the scattering amplitude is proportional to the 

state-to-state reaction probability with a proportionality constant determined by 

the ratio of the scaled channel velocities. Combining these last two expressions 

provides the relation between the scattering matrix elements and the reactive 

transition probabilities for collinear collision dynamics, 

17 

All of these equations have been expressed in the distance vectors rA. and RA. 

rather than in the hyperspherical coordinates used in the integration scheme. Thus 

it becomes necessary to 'project' the solutions in one set of variables onto the 

other set. The projection itself is a change of basis from the surface functions to 

the asymptotic solutions. 

The asymptotic wavefunctions are functions of the inter atomic distance of 

the diatomic molecule and thus are independent of the distance between the atom 

and molecule. However, the surface functions are dependent on both distances 

subject to the constraints of constant p and varying angle. There are two common 

procedures for accomplishing the desired change of variable. The first is the 

constant R projection. In this case the hyperspherical surface functions are 

projected onto the diatornics at a constant value of R. The alternative is the 

projection of the asymptotic functions onto the surface functions at a constant 



24 

value of p. It has two major advantages over the constant R approach. The first is 

that the expression for the reactance matrix is a function of the logarithmic 

derivative of the wavefunction rather than a function of both the wavefunction and 

its derivative separately, as is the case for the constant R projection. Secondly, in 

the constant p projection calculation there is no need for an extra projection 

region, a typical requirement in the constant R formalism. 

Expansion of the wavefunction in the hyperspherical basis set and 

hyperradial coefficients is written as 

'l'i(p,a) = p-l/2 :Lb1(p;p)YAa;p), 
k 

while the asymptotic wavefunction expanded in the diatomic basis is written 

'Jfi (R,r)- Lgf (R)<I>z (r ), 
l 

18 

19 

the full set of quantum numbers represented by i, j, k and I. In the asymptotic 

region these two expressions are matched to give 

p-l/2 Lb1 (p;p)Yk( a;p) = L g; (R)<!>1(r ). 20 
k l 

The coefficients bL (p; p) are functions of p but are also parametrically dependent 
-

on p as are the surfacefunctions. If both sides of this equation are multiplied by 

the function Yj (a; p) and integrated over the angular variable a, we obtain 

a max 

p-1/Z L J b1(p;p) Yk(a;p) Yj(a;p) da 
k 0 

21 
a max 

= L J gf(R(a,p))<!>z(r(a,p)) Yj(a;p) da 
l 0 

and from implementing the orthogonality of the surface functions 
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a max 

p-l/2b~(p;p) = L I gf(R(a,p))cpl(r(a,p)) Y)a;p) da. 22 
l 0 

The matrix element F? is defined 
J 

and rewriting the above expression in terms of this value yields 

Urn ax 

p-l/2b~(p;p) = L I Fj(r(a,p),a;p)gj(R(a,p)) da. 
l 0 

23 

24 

This equation can be written in matrix form if the integral and sum are 

interchangeable; 

Urn ax 

p-l/2b(p;p) = I F(r(a,p),a;p) g(R(a,p)) da. 25 
0 

One must be careful in retaining the meaning of such an expression; the integral 

indicates that each matrix element of the product matrix of F and g is integrated 

over the range defined by the angular variable a. 

Recall the definition of g as a function of the sine, cosine and coefficient 

matrices which were related by the reactance matrix, 

D=RC ~ 

Substituting g into the integral equation gives 
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Clmax 

p-lf2b(p;p) = JF(r(a,p),a;p)v-lf2 [~(R(a,p))+e(R(a,p))R }ta C. 28 
0 

At this point it becomes convenient to define the matrices A and B. in the following 

manner, 

Clmax 

A(p;p)= JF(r(a,p),a;p) v-1/2 ~(R(a,p)) da 29 
0 

Clmax 

B(p;p) = JF(r(a,p),a;p) v-1/2 e(R(a,p)) da 30 

0 

which, when put back into the equation for b provide 

31 

The C matrix can be eliminated by implementing the logarithmic derivative y. The 

inverse of the matrix b is 

32 

and its derivative is given by 

p-1/2 db(p;p) = b(p;p) +[dA +dB RJC. 
dp 2p3/2 dp dp 

33 

Combining the two to fulfill the definition of the logarithmic derivative yields 

1 [d A dB ] -I y=-1+ -=+-=R [A+BR) , 
2p dp dp 

34 

which can be rearranged to solve for the reactance matrix 
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R =[dB- xnn]-1[xA- d A] 
dp - - dp ' 

1 
X= y--1. 

2p 

35 

So the reactance matrix is determined from the logarithmic derivative matrix 

obtained in the hyperspherical coordinates and the projection is accomplished 

through the matrices A and J!. It is useful to see the actual forms of these matrices 

in terms of the two basis sets and the derivatives involved. 

The matrix A was defmed above but it is crucial to remember that it has 

both open and closed pieces. The matrix elements turn out to be 

allllll 

~~(p;p)= I Fj(r(a,p),a;p) v;-lf2 sin(k;R(a,p))da open channels 
0 

36 
allllll 

~~(p;p)= I Fj(r(a,p),a;p) v;-1/2 e(lt;IR(a,p))da closed channels 
0 

a 

~~ (p;p) = TFJ (r(a,p ),a;p) v;-1/2 cos(k;R( a,p ))da open channels 
0 

37 
allllll 

~~(p;p)= I Fj(r(a,p),a;p) v;-1/2 e(-lk,IR(a.p))da closed channels. 
0 

The differentials of these matrix elements are more complicated and when F is 

written out the immediate dependence on the variables R and r of the diatomic 

basis set becomes obvious. To evaluate the derivatives correctly the following 

expression is used, 

(j_) = cosa(1...) +sin a(i_) . 
Clp a ClR r dr R 

38 
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The derivative matrix elements become 

a .... 

J v;-1/2 dri Yj sin(k,R) sina+<I>,Yjv;lflki cos(k,R)cosa da 
0 

a T v;lfl dri Yj cos(kiR) sina-cj>iYjvi-1/lki sin(k,R)cosa da 
0 

a 

Tv~lfl d<l>i y)-1-t;IR) sin a-"' f.v~lfllk·le(-l.t;!R) cosa da 
' dr J '~'• J ' ' 

0 

open channels 

39 

closed channels 

open channels 

40 

closed channels. 

These are the expressions for the matrix elements which get programmed. Each 

element is calculated and then placed in its respective matrix. When all four 

matrices are complete, the R matrix is calculated using matrix multiplication and 

inversion routines. The desired quantity is the upper left hand corner of the 

scattering matrix corresponding to the energetically accessible states. This 

submatrix can be calculated using only the open part of the reactance matrix. As a 

result only the open columns of the reactance matrix are needed which can be 

obtained using only the open columns of A and its derivative. The exceptionally 

nice part of this is that the exponentially growing terms, which are functions of R, 

are not needed in the final calculation of R and the computational errors inherent 

to such functions are completely avoided. The exponentially decreasing functions 

are still needed though and can cause problems if left unchecked. The best way to 

deal with these is to multiply the exponential function by another exponential 

function with a positive argument. It can be shown that this transformation does 

not change the elements of the open-open corner of the reactance matrix but do 

tame the elements corresponding to closed channel rows which can poison the 

other values. 
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QUANTUM MECHANICAL STREAMLINES 

Quantum mechanical strearnlines17-20.34.36•4445•60 provide a great deal of 

information pertaining to the wavefunction in the interaction region of the 

potential. Specifically, they make known how the reacting system goes from its 

initial to its final configuration by revealing more details of the mechanism of the 

collision than can be inferred from the product distribution alone. Regions of 

configuration space where the reaction may or may not be found are visible in 

probability and flux density contours from which the current density and 

streamlines are calculated. Streamlines act as the quantum analogs of the classical 

trajectories of a single particle of corresponding reduced mass traveling through 

the potential surface. Therefore, streamlines show how the features of the surface 

effect the flux flow represented by j and also aid in explaining how the surface 

effects change with energy. In addition, through the appearance of vortices and 

their penetration into classically forbidden regions, streamlines provide a pictorial 

way of obtaining information on significant quantum effects such as resonances 

and tunneling. 

Vortices arising in a streamline calculation constitute the most curious of 

features and have been found to have vital influence on the interpretation of 

dynamic results. They have been found to be associated with the nodes of the 

wavefunction and the angular momentum found in a vortex is quantized. 

Derivations of these conclusions only depend on the single-valued nature of the 

wavefunction and its continuity. The vortices result from interference phenomena 

of the wavefunction and generally appear in locations which are independent of the 

features of the potential energy surface. 

The solution of problems in classical hydrodynamics is associated with 

finding suitable expressions for the velocity fields describing the flow of the 

situation. The velocity field of fluid motion is conveniently expressed in terms of a 

scalar field function whose gradient is the velocity. A vector field in 

hydrodynamics describes both the direction and magnitude of the velocity of a fluid 

particle at any time t. In quantum mechanics this corresponds to the current 

density vector field given by 
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·""~ -_!!:_[ ~* v ""~- ""~ (v ""~ )*] J - 2~ 'I' phys 'I' phys 'I' phys 'I' phys • 1 

The quantity j has characteristics analogous to those of the vector field describing 

the flow of a two-dimensional fluid on a surface. 

Madelung's derivation of quantum hydrodynamics leads to an expression 

of the wavefunction in the form 

2 

where the probability density is everywhere real and continuous and the phase <pis 

defmed up to an integer multiple of 2rr, except at nodal points. Two real 

hydrodynamical equations can then be obtained from the separation of the 

Schrodinger equation into its real and imaginary parts 

-
1
-V<p • V<p + V + Vquant = E = [- d<p], 

2Jl dt 
3 

4 

Excluding the last term of the first equation, these two expressions are the laws of 

motion for a fluid of noninteracting classical particles. The classical Hamilton­

Jacobi equation is modified by the expression Vquant and the expression for the 

conservation of probability density uses the local mean velocity 

5 

where j is the expression for the current density for a quantum mechanical system 

as written above in equation 1. The extra potential term is created by quantum 

mechanics and it provides an explanation as to why the quantum fluid can flow into 

the regions of coordinate space where classical particles are forbidden, 
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subsequently resulting in tunneling. This term is a function of the probability 

density, 

( 
li2 ) 1 

=- 2Jl [ 2("'*"'rr v. v("'*"'t 6 

+( ~:) 2( 'I'* 'I' t r2 
( V( 'I'* 'I')"") • ( V( 'I'* 'I' t ). 

A streamline of j is a curve everywhere tangent to the j vector at every 

point P in configuration space. The corresponding equation of motion for the fluid 

particle is 

7 

where j~R. and j~). are the components of the current density vector for each axis. 
). ). 

The streamlines are a particular solution to this differential equation. This equation 

can be solved either by defining the stream function <l> or by integrating starting at 

any point in configuration space. The stream function is actually a consequence of 

the continuity of the system and for two dimensional motion in the mathematical 

space the stream function is defined by 

8 

9 

In contrast to the equations defining the velocity potential, the scalar field whose 

gradient is the velocity, one of the components of the current density is the 

negative derivative of the field function. As expected the stream function always 

satisfies the principle of continuity, 
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10 

Lines of constant <I> are found to be streamlines. The equation for the streamlines 

in terms of the stream function is 

11 

where jR~l. and t''l. have been used. This equation is the total differential d<l>, with l. rl. 

respect to distance, of the function <1>. Hence any streamline can be expressed as a 

function of <I> and is described by the relation d<l> = 0. Another way of looking at 

it is to recognize that the streamlines are simply the contour lines of the stream 

function. In addition, each streamline carries with it an element of flux. The 

streamlines never cross since everywhere the wavefunction is single-valued and 

continuous. The concept of streamlines comes from the motion associated with a 

fluid, whereas the idea of a classical trajectory is associated with the motion of a 

single particle. The differences become apparent when one considers that through 

any point in the potential a number of classical trajectories may pass and the 

direction of the flux through the point is a weighted average of the directions of 

the trajectories. 

It has already been stated that the quantum mechanical streamlines do not 

cross due to the single-valuedness of the wavefunction. This resulted directly from 

the continuity equation from which other consequences also arise. Applying the 

divergence theorem to the vector field shows that for any closed contour C which 

encircles the reaction zone, the integral 

12 

vanishes. The area inclosed by the contour C is denoted by A and the boundary 

line element is dl. The normal flux of j through a line segment connecting any two 



33 

streamlines is independent of the placement or shape of the line. This flux is a 

constant between the two streamlines and is a consequence of the conservation of 

particle flux in the chemical reaction. The total flux is related to the incident flux 

by 

13 

The total current can be devided into three separate kinds which do not mix 

due to the noncrossing nature of streamlines. If the two streamlines which become 

tangent to the energy contour of the potential at the total energy E are considered, 

then the current between these two limiting streamlines is the classical current. 

This current is confined exclusively to the classically allowed regions of 

configuration space. Combined, the other two types of currents contribute to 

tunneling. They can either sample the regions of configuration space where the 

atoms become very close or where the atoms are spread farther apart than the 

bonds typically go. These currents are the inner and outer currents respectively. 

Each type of current is constant across any cut through the potential beginning and 

ending where the wavefunction is zero. The coefficient arising from taking the 

ratio of the tunneling flux to the incident flux is multiplied by the total reaction 

probability to give the tunneling probability for the reaction. If the asymptotic 

form of the wavefunction consists of only the ground vibrational state, then j~ = 0 
). 

and jil = hko (1-P) in the reactant channel. Similarly, in the product channel the 
). 2jJ. 

magnitude of the component of j transverse to the channel is zero and the 
magnitude of the component parallel to the channel is equal to j k~.. This means 

that the streamlines enter the saddle point region parallel to the reactant channel 

and exit parallel to the product channel. The general form of j for both asymptotic 

regions indicates that if more than one vibrational state is energetically available 

the transverse component of j no longer vanishes. This results in an expected 

oscillatory behavior for the streamlines in the asymptotic regions. 
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Cl + H(D,T)CI ~ CIH(D,T) + CI 

REACTIONS 

REACTION PROBABILITIES 

STREAMLINES 

TUNNELING FRACTIONS 

RESONANCES 
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Tiffi Cl + HCl REACTION 

Hydrogen atom transfer from one halogen atom to another is a process that 

constitutes a majority of the reactions whose difficulties in the calculations of 

reactive cross-sections are a direct consequence of their small skew angles. The 

exchange of a hydrogen atom between two chlorine atoms is just such a reaction 

and until the advent of hyperspherical coordinate approaches reliable reactive 

transition probabilities for this process were unobtainable except through 

experimental means. Dynamical information about the chemistry of this exchange 

reaction becomes available with the implementation of a spherical polar 

representation and the analysis provided by streamline and tunneling fraction 

calculations. 

The Cl + HCl ~ C1H + Cl reaction6 and its hydrogen isotope counterparts 

are important reactions for the experimental and theoretical considerations of the 

effects of vibrational excitation on reaction probabilities and rate constants. The 

question addressing the vibrational relaxation of excited reagents is also of concern 

because the effective vibrational deactivation by potentially reactive atoms, such as 

Cl, represents a large loss of potential power in some chemical laser systems. They 

are also fascinating model systems for the study of the many competing energy 

transfer processes and chemical reactions occurring under nonequilibrium 

conditions. Vibrational deactivation is considered an important elementary step in 

the quantitative description of nonequilibrium situations found in flames, electrical 

discharges, and laser induced chemical reactions. 

This reaction has continued to be an evasive one. Although the tight 

curvature of the reaction path can now be addressed appropriately in the 

hyperspherical framework, the nature of the potential energy surface still draws 

investigation both experimentally and theoretically. Saddle point regions of the 

potential having a wide variety of barrier heights match different sets of 

experimental data and span a large enough range that quantum calculations 

produce significantly different results for collinear reaction probabilities. Classical 

trajectory calculations have also been performed on this reaction.48.S7 
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THE ClHCl POTENTIAL ENERGY SURF ACE 

The nature of the 0 + HCl potential energy surface has been the subject of 

a great deal of conflict in both the experimental and theoretical literature of the 

past. One of the original controversial issues stemmed from contradictions to the 

experimental work of KleinZ7 that proposed the ClHCl potential surface contained 

a well rather than a barrier in the strong interaction region as he proposed. 

Evidence for this conclusion came about from the assignment of infrared spectra 

observed in matrix isolation studies by Noble and Pimentel.ref·6 More recent 

research has shown that the spectroscopically bound species, leading to the 

conclusion that the surface contained a well, was ClHCl- rather than ClHO itself.43 

Even though this issue has been settled, the issue encompassing the height of the 

reactive barrier has not. 

Electronically nonadiabatic processes such as 

Cl(ZPX) + HCl(v = 1) --7 Cl(ZP~) + HCl(v'= 0) 

are energetically possible, however direct experimental measurements of the rate 

coefficient for this reaction have shown that the vibration-electronic energy 

transfer contributions to the deactivation of vibrationally excited HCl constitute 

less than one percent of the overall process. 28 Thus an electronically adiabatic 

potential energy surface is typically assumed for describing ground electronic 

collision dynamics for the collinear dominated reaction. 

Klein's experiments of 1964 yielded an Arrhenius activation energy around 

0.259 eV. The experimental calculations done by Noble and Pimentel were 

supported by the results of BOBE calculation in an analysis of symmetric X-H-X 

species. Both provided a well depth of -0.067 eV. However, it seemed unlikely 

that the symmetric Cl-H-Cl complex would remain stable with respect to 

dissociation into ClH and Cl, and two groups have since determined the species 

observed was the isolated ClHCl- anion. Pulsed HCl chemical laser experiments 
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by Kneba and Wolfrum28 have lead to a proposed barrier height of 0.373 eV. Ab 

initio calculations by Meyer9 gave a barrier height of 1.36 eV at the restricted 

Hartree Pock self-consistent field level. This valued appeared too high and the 

coupled electron pair approximation suggested a barrier in the range of 0.725 eV. 

Addition of the remaining correlation errors reduced the barrier to a value 

somewhere between 0.083 and 0.311 eV. The best agreement with experimental 

rate constants was observed for a LEPS surface with a 0.0415 eV barrier. 

However, the best agreement with vibrational relaxation rate coefficients comes 

from employing surfaces with wells. The assortment of possible descriptions for 

the transition region of the potential has not converged towards a conclusive 

answer and thus reactive scattering using a variety of surfaces still provides 

valuable information on the reaction. 

Garrett and Truhlar have performed ab initio POL-CI calculations 

augmented by a dispersion term to evaluate the potential for the ClHCl reaction. 11 

They discovered that the saddle point has a nonlinear geometry and thus the 

minimum energy path is not collinear as was previously assumed. This was 

especially surprising for the case with the hydrogen atom in the middle. Their 

calculations provided a barrier height of 0.446 e V at the POL-CI level and 0.273 

eV at the POL-CI plus dispersion level. However, it turns out that the collinear 

geometry is only about 1 kcaVmole higher in energy than the nonlinear saddle 

point. 

Two different LEPS surfaces51 were used in the current quantum 

mechanical calculations. The two potential energy surfaces correspond to those 

used by Smith55 for classical trajectory calculations an have parameters listed in 

Table 1. Surface A has a barrier height of 0.285 e V and conforms closely to the 

experimentally determined activation energy.Z7 This is near the upper limit as 

established by the ab initio calculations9 and resemble the values predicted after 

correcting for dispersion interactions in Garrett and Truhlar's work. 11 In contrast, 

the barrier of surface B lies near the lower limit at 0.096 e V and shows much 

better agreement with the quasiclassical trajectory calculations and experimental 

deactivation processes for 35CI + D37CL Since surfaces A and B have barriers 
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close to the upper and lower limits for this reaction it is reasonable to expect the 

actual value of the barrier to lie somewhere in-between. Both surfaces are shown 

in Figures 2-4 and their corresponding minimum energy path profiles are shown in 

Figures 5-7 for the Cl + HCl, Cl + DCl, and Cl + TCl reactions respectively. The 

horizontal lines indicate the vibrational energies of the isolated H(D,T)Cl(v=O) and 

H(D,T)Cl(v=l) diatomics. 

FEATURES OF THE REACTIONS 

Results for the collinear Cl + HCl reaction, and its hydrogen isotopic 

equivalents D and T, are presented with an emphasis on the effects of vibrational 

excitation on state-to-state and total reaction probabilities and rate constants, for 

which little attention as previously been directed. The crucial element of curiosity 

is that the barrier height of the potential surface plays the vital role in determining 

the final reaction rate when the reagents are vibrationally excited, but in a manner 

completely contrary to expectations. Other phenomena stemming from the unique 

structure of highly skewed reactive systems are also found in these three reactions. 

All three reactions exhibit an overall oscillatory behavior in the reaction 

probability verses energy profiles. Two major points of difference arise between 

the reactive systems under consideration. The first is that the frequency of 

oscillation increases as the mass of the central atom decreases. Secondly, as the 

energy increases the curves oscillate more slowly. The oscillatory reaction 

probability, which has been found to be characteristic of heavy-light-heavy 

chemical systems and has been observed in quantum mechanical systems such as I 

+ HI ~ IH + I, can be described to some degree quantitatively by a simple 

semiclassical WKB approximation.1•4 

By examining the state-to-state reaction probabilities it becomes readily 

apparent that all three of these reactions are dominated by conservation of the 

vibrational quantum number. Weighted Delves' polar coordinates are 

exceptionally useful in the analysis of the adiabatic effects of heavy-light-heavy 
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reactions. As a result, vibrationally adiabatic molecules are supported in the strong 

interaction region of the potential energy surface. Many calculations have shown 

that the vibrational adiabatic approximation improves as the mass ratio of the light 

atom to that of the heavy atom decreases. It has also been found that the 

nonadiabatic transitions are nearly equal in the reactive and nonreactive realms. 

Superimposed on the reaction probability curves is a very distinct and sharp 

resonance spectrum. For the hydrogen exchange reaction the surface appears to 

support more resonances as the barrier height decreases. As the mass of the 

central atom increases the resonances increase in number on both surfaces. The 

resonances are most noticeable in the adiabatic transition curves but are also 

present in the nonadiabatic transitions. 

Each of the previously mentioned phenomena will be addressed in turn with 

the major focus on the differences between isotopic systems and the changes in 

each feature with varying barrier height. The most crucial question centers around 

the low reactive probability for vibrationally excited reagents and how the dramatic 

change with barrier height arises. Quantum mechanical streamlines aid in 

determining weather or not this odd phenomenon is inherently quantum or classical 

in nature by mapping out the accessed regions of the different potential energy 

surfaces by the reactions. 

REACTION PROBABILITY PROFILES 

Collinear reactive transition probabilities of a Cl atom with a ClH(D,T) 

diatomic molecule are determined using renormalized Numerov integration in the 

coupled-channel method and are shown in Figures 8-10. The energy scale is that 

of the total energy of the system measured from the bottom of the reactant 

diatomic well, which is also the bottom of the product channel since the reactions 

are symmetric. For all three isotopic equivalents of this reaction, the change of 

basis between the sets of surface functions was performed using the inverse of the 

overlap matrix rather than the transpose. Therefore, all reported symmetry and 
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unitarity of the logarithmic derivative and scattering matrices is an absolute 

measurement of the accuracy of the calculation. 

For the Cl + HCl ~ ClH + Cl reaction 20 basis functions were used for all 

energies. The propagation began at p = 6.0 bohr and ended at p = 25.34 bohr with 

the projection of the logarithmic derivative at p = 25.18 bohr. Surface functions 

were calculated numerically every 0.10 bohr and there were 6 integration steps for 

each p including p itself. In all of these calculations p was taken as the first step 

in the integration sector. The skew angle of this reaction is very small at 13.54° 

and therefore the hyperspherical coordinate approach is ideal. Surface A was 

calculated with a base energy grid of 0.005 eV, however the resonances 

superimposed upon the reaction probability profile have denser energy grids 

ranging from 0.0001 to 0.0025 eV depending on the nature of the resonance. The 

surface B plot was calculated with a base energy grid of 0.0025 e V and the 

resonances with energy grids ranging from 0.00005 eV to 0.0002 eV. All results 

shown for energies up to 1.0 e V are converged to better than 0.5% on both 

surfaces and the highest energy calculations are converged to better than 0.8%. 

The Cl + DCl ~ ClD + Cl reaction probabilities were calculated with 28 

surface functions in order to get quality convergence at the highest energies 

plotted which have 8 to 10 available transitions. Again the surface functions are 

spaced apart by 0.10 bohr in the p coordinate and the calculation goes from p = 
6.0 bohr to p = 25.36 bohr. The energy grid for surface A is 0.005 eV and the 

grid for surface B is 0.001 eV. The skew angle is larger than that of the H 

exchange reaction opening up to an angle of 18.92°. The convergence for this 

reaction was better than 1.0% for energies below 0.70 eV and better than 2.0% for 

the higher energies recorded. 

Due to the complicated structure in the Cl + TCl ~ CIT + Cl reaction care 

was taken to generate accurate results for the transition probabilities without 

cluttering up the figures, thus the resonances are shown but not in their full form. 

The energy grids are constant but still fine enough to show the locations of the 

resonance structure, especially for surface B. Their are 36 surface functions and 

the integration goes from p = 5.0 bohr to p = 24.35 bohr with surface functions 
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taken every 0.10 bohr. This reaction has a slightly larger skew angle than that for 

deuterium at 22.92°. Convergence at the lower energies is better than 1.0% and at 

the higher energies better than 2.5% on both surfaces. State-to-all transition 

probabilities for the three reactions are compared in Figures 11 and 12 for the 

ground and first excited vibrational states on surfaces A and B respectively. 

Surface A has a barrier of 0.285 e V and all three reactions exhibit similar 

patterns for the ground state reaction by only displaying significant amplitude 

approximately 0.1 eV above the opening of the vibrational level and a smooth 

oscillatory pattern thereafter. A noteworthy point of interest follows if one 

considers that although the barrier height of this surface is 0.285 e V, there is a 

non-negligible fraction of both the deuterium and tritium reactions occurring for 

energies just below this energy. In contrast, the hydrogen exchange reaction 

probability is on the order of 1 o-7. This is an odd circumstance since all reactions 

below the barrier must occur via tunneling and lighter atoms are expected to tunnel 

more readily than their heavier isotopes, in this case the H more so than either the 

D or T atoms. Further comparison of the plots reveals that the most outstanding 

difference is the strong resonance appearing at E = 0.30 e V in the Cl + HCl 

reaction but which is absent from the heavier isotope exchanges. However, the 

deuterium and tritium reactions do show sharp resonance peaks at energies just 

above the opening of higher vibrational states. 

The vibrationally excited state reactions on surface A show a very distinct 

and sharp resonance pattern at the opening of the v=2 state for each isotope. Note 

that as the mass of the central hydrogen atom increases the resonances become 

wider. Furthermore, as the reaction changes from using H to T there are fewer 

resonances appearing in the excited state reaction in contrast to the increase in the 

number of resonances when considering the ground state case. There is a slight 

difference in the reaction probability plot for the tritium case compared to the 

other two. Initially the reactions for the two lighter isotopes are negligible until 

they suddenly jump to unity at a specific translational energy which occurs well 

before the opening of the second vibrational state and the resonances, but the 

reaction involving tritium exchange rises less dramatically, although it is also 
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negligible until some threshold translational energy is reached. It does not 

approach unity until well after the opening of the third vibrational state and well 

past the resonance structure. Compared to the ground state reactions, the excited 

state reaction probabilities become less regularly sinusoidal in their structure due to 

the increasing contributions of non-adiabatic transitions. 

Surface B reaction probability plots for all three reactions have a great deal 

more structure than those of surface A and have even more striking differences 

between isotopes. The barrier height of surface B is 0.096 e V, much lower than 

that of surface A and no tunneling through the barrier can be observed since the 

lowest open state for each reaction is higher than this energy. The ground state 

reactions all have the same general shape but the difference is in the low energy 

range of the deuterium reaction. Note how steeply the reaction probability rises in 

this case whereas for the hydrogen and tritium reactions, which are almost identical 

in shape, it is more gradual, reaching the maximum no less than 0.2 e V after the 

opening of the state. The second dramatic feature is that of the sets of resonance 

spectra occurring at the opening of each vibrational state. The ground state 

transitions for Cl + HCl has first a set of 5 resonances around the energy where 

v=l opens followed by a set of 7 resonances just before v=2 opens. The second 

set of resonances are very small but they do correspond exactly with the 7 

resonances in the excited state curve. Notice that each set of resonances occurs 

just before the opening of a vibrational state. The excited state reaction probability 

also shows a threshold resonance at an energy barely above v=l. In the C1 + DCl 

transition the ground vibrational state plot has a set of 4 resonances where v= 1 

opens and a small residue of the sets of 4 and 6 resonances appearing in the v=l 

plot at energies corresponding to the opening of v=2 and v=3. The tritium 

reaction is even more complicated supporting resonances in sets of 3, 5 and 6 seen 

in both the ground and first excited state reactions. These resonances are visible in 

both the adiabatic and nonadiabatic transitions of all three reactions. 

Comparing the three excited state plots reveals a startling phenomena. 

Apparently the reaction is drastically inhibited by vibrational excitation of the 

reagent diatomic molecule for the light atom reactions but is concurrently 
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accelerated for the tritium exchange as can be seen in the sudden jump to unity just 

after the state opens. This is very odd since all the v=1 states are well above the 

barrier and the reactions went quickly when the barrier was much higher. As 

previously mentioned, the H exchange reaction on this low barrier surface 

produces a threshold resonance, however, afterwards the reaction probability is 

near zero. The deuterium reaction begins initially but is quickly snuffed out until 

the second vibrational state energy is reached at which point it gradually rises, 

although whether or not the reaction probability eventually becomes unity or not is 

inconclusive from the data shown. Contrary to the delay of reaction seen for the 

lighter two isotopes, the tritium reaction appears to take off violently when the 

reagents are vibrationally excited. All three have multiple resonances appearing in 

sets but the hydrogen reaction only displays a single set of resonances, those just 

before v=2 opens, rather than a set before every opening vibrational state energy as 

seen with D and T. 

Looking at the reactive transition probabilities as they compare across the 

two surfaces brings out some very important questions. The first question is why 

does the reaction for ClH and CID occur so readily for the high barrier surface and 

so reluctantly for the low barrier surface when the reagents are vibrationally 

excited? Intuition would suggest the opposite to happen as it does in the tritium 

case. Secondly, why does the tritium reaction differ from the other two so greatly? 

If we argue that the mass of the tritium is the difference then why are the other two 

reactions so similar? After all, the mass ratio of D to His 2 but the mass ratio of 

T to D is 1.5. This would seem to indicate that the reaction with T should be more 

similar to the reaction with D than the D reaction is with the H reaction. Finally, 

how come the resonances on surface A tend to occur after the vibrational states 

open but on surface B they occur before the opening of the vibrational states. 

ADIABATIC APPROXIMATION 

State-to-state transition probabilities for Cl + H(D,T)Cl ~ ClH(D,T) + 0 

on both surfaces A and B are shown in Figures 13-18. All three reactions have 
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oscillating nonadiabatic and adiabatic reaction probabilities, but are dominated by 

the vibrationally adiabatic transition. Although they are primarily localized on the 

adiabatic transition plots, the resonance features also appear in the nonadiabatic 

curves. 

It is immediately obvious that over 95% of the reactive probability for 

hydrogen transfer preserves the vibrational quantum number for the ground state 

reaction on the high barrier surface at all energies considered, but that the other 

surface is only dominated by the adiabatic transition at energies below 0.80 eV. 

When the hydrogen atom is replaced with its deuterium isotope the preservation of 

the vibrational quantum number continues only not nearly as dramatically as when 

hydrogen is used. Only 85% of the total reaction probability is due to adiabatic 

transitions compared to the 95% in the hydrogen case. This is because of the 

doubling of the mass ratio between the light and heavy atoms of the reaction and 

the resultant opening of the skew angle. When tritium is used the nonadiabatic 

transitions contribute 30% to the total reaction probability. 

The differences between the isotopic systems are readily explained when 

one considers how the shape of the potential surface changes with increasing mass 

ratio. The potential energy surface for this class of reactions is characterized by 

the presence of two long almost parallel channels connected to a very wide 

transition state region. Consequently, the classical action variable for the motion 

parallel to the channel width remains largely unchanged during the slow approach 

of the reactants due to the modest change of the vibrational well over the 

vibrational period of a classical trajectory. The ClH vibration is then viewed as 

being transformed briefly, for half of a vibrational period or so, into the asymmetric 

stretching vibration of the ClHCl complex. Once the reduced mass has passed into 

the products channel its trajectory remains in the same vibrational state as the 

initial reactants. When the mass of the central atom is increased the skew angle 

also increases and the parallel nature of the potential channels is diminished. This 

leads to a greater change in the structure of the ClDCl or ClTCl complex as the 

asymmetric stretch mode along the minimum energy path becomes more 

complicated. The transfer of the central atom is not the same motion as it was in 
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the lighter atom case where the classical trajectory would bounce between two 

parallel repulsive walls. In these cases the classical trajectory can come free of a 

repulsive wall at an angle causing a different vibrational frequency as the particle of 

reduced mass continues into the products channel. Therefore, the vibrational 

quantum number of the products has a much greater chance for variation away 

from its initial value as the skew angle widens. 

When a reaction results in the transfer of a very light atom from one heavy 

atom to another, as in the case of the 0 + HCl ~ ClH + Cl, the translational 

motion of the heavy Cl atoms is hardly influenced. In other words, the 

translational motion of each Cl atom and of the entire system is almost completely 

conserved, E,eacr, rr = E prod, rr . Consequently, quasiconstants of the motion, such as 

the generalized vibrational quantum number, can also be approximately conserved 

throughout a collision.4 Separation of the Hamiltonian in an appropriate set of 

coordinates allows quasiconstants of the motion to be extracted if one of the 

descriptive coordinates is associated with the desired generalized vibration. As the 

mass ratio of the light atom to that of the heavy atoms decreases this separation 

prevails even more and the conservation of vibrational quantum number becomes 

more absolute. For this classification of reactions the large differences in masses 

points to an effective Born-Oppenheimer type adiabatic separation between the 

light atom motion relative to any of the heavy particles and the motion of the 

heavy particles themselves. In Delves' coordinates the hyperradial coordinate p 

depicts the slow relative motion of the approaching and separating Chlorine 

particles while the angular coordinate a corresponds to the vibrational movement 

of the light hydrogen atom. In these coordinates the potential surface is 

characterized by the nearly parallel nature of the two asymptotic channels arising 

from the large curvature in the transition state region. 
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OSCILLATING REACTION PROBABILITY 

For a symmetric reaction the potential energy function V(p,a.) is symmetric 

about the angle 8/2. Consequently, two independent sets of eigenfunctions, a 

symmetric set and an antisymmetric set, are supported in the angular coordinate at 

each hyperradial cut. Because all the coupling elements between the two sets of 

eigenfunctions vanish, the system of ordinary coupled differential equations in the 

coupled-channel expansion can be decoupled into two systems for the coefficients 

of the symmetric and antisymmetric surface functions. In the asymptotic region 

the potential has separated into two distinct channels and the symmetric and 

antisymmetric eigenvalues become degenerate. The asymptotic surface functions 

are written as a linear combination of the diatomic symmetric and antisymmetric 

states 

Upon separation of the Hamiltonian an infinite set of ordinary coupled differential 

equations for the coefficient functions b are obtained. The desired coefficients 

must then be written as a linear combination of the corresponding symmetric and 

antisymmetric coefficients in the manner 

In order to see where the oscillating nature of the reaction probability 

curves arises it is useful to look at the vibrationally adiabatic transitions which 

dominate these heavy-light-heavy reactions since the separability of p and a. causes 

the coupling elements between the vibrational states of the system to be small. 

Writing the asymptotic solutions to the Schrodinger equation in terms of the 

scattering matrix for the adiabatic case gives 
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where s;. and s:. are the amplitudes of the nonreactive and reactive outgoing 

waves respectively. Recall that the scattering matrix elements are complex 

quantities and therefore have an associated phase. Therefore, the scattering matrix 

elements can be written in terms of the elastic phase shifts ~~ and ~: , 

The reactive probability is proportional to the square of the magnitude of s:. thus 

eliminating the complex phase in the exponential and leaving a real quantity related 

to the oscillatory nature of trigonometric functions. Hence the zero order 

approximation to the reactive transition probability in a symmetric hydrogen 

transfer reaction becomes 

PR -ISR 
1
2 _ · 2(J:.g J:.") •.• - •.• - s1n -,. - -, •. 

This oscillating reaction probability can be understood as a two state interference 

pattern for scattering on the gerade and ungerade vibrationally adiabatic effective 

potentials. This phenomena originated from the vibrational adiabaticity of heavy­

light-heavy reactions. 

It is obvious from the figures that the oscillating reactive probability 

deviates from the proposed pattern across the energy range sampled. The 

explanation for this comes from Figures 62-64 which show the eigenvalue curves 

as a function of the hyperradius p. These curves have gerade and ungerade states 

for each pair of eigenvalues that begin separately but become degenerate in the 

asymptotic region. At small values of p the curves are nearly parallel due to the 

single well form of the interaction potential near the three atom coincidence. It is 

this strongly repulsive region of the potential that effects the high energy range of 
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the reaction probabilities. The result is a phase shift of both the gerade and 

ungerade states although because the curves are not exactly parallel these shifts 

change with increasing energy. A semiclassical analysis shows that the change is 

monotonically increasing as El'S., and is in accord with the infinitely steep wall 

collision model. At low energies the reaction probability is influenced by the 

behavior of these curves at larger p. In this region the phase ~ .. increases more 

rapidly with energy than does ~g due to the well in Eg. Therefore the difference in 

elastic phase shifts decreases slightly for low E. An analytic form incorporating 

these observances is 

_ . 2( b -x ) P...v - sm a+ Errans • 

The constant b is related to the mass difference and turning points and the constant 

a is associated with the low energy realm. In this expression the phase shift 

difference increases monotonically with Errans· 

Oscillations in the reaction probability are clearly seen in Figures 8-10 for 

the reaction Cl + H(D,T)Cl on surfaces A and B. For the ground state reactions 

the oscillatory behavior is very regular and smoothly decreases in frequency as 

both the mass of the central atom becomes larger and the energy increases. The 

differences between the two surfaces for all three cases include the presence of a 

very sharp peak in surface A at the lowest energies which is absent from surface B. 

In the hydrogen exchange reaction this first peak is a very strong resonance, 

however, it is not for the case of the heavier isotopes. There is no indication of a 

similar type of quickly oscillating structure in the low energy region on surface B. 

In fact surface B begins with very slow oscillations in the ground state, oscillating 

with a frequency more similar to that of the higher energy pattern seen on surface 

A. 

For Cl + HCl the state-to-state reactive probabilities for the energetically 

accessible transitions all show the sinusoidal tendencies peaking at approximately 

the same total energy. This pattern is seen on both the high barrier and low barrier 

surface. When the hydrogen atom is replaced with a deuterium atom and 
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subsequently a tritium atom the trend almost continues, where the peaks of the 

profiles occur near the same energy in all three transitions for the reactions on both 

surfaces in the ground state. The exception appears when tritium is exchanged on 

surface A. Both the off diagonal transitions tend to zero at the energy in which the 

adiabatic transition is a maximum. 

Looking at the vibrationally excited state transitions a semblance to the 

sinusoidal pattern exists but is distorted. Surface A has a sudden jump to unity for 

both of the smaller central atoms followed by a rather steep decrease. For 

hydrogen the reaction probability comes off of the steep decent into a widening 

curve at the bottom of the oscillation, appearing to decrease in frequency more 

rapidly than predicted. In the energy range between 0.8 e V and 1.4 e V the total 

reaction probability is dominated by the nonadiabatic transitions from the v=l 

vibrational state to the v=O and v=2 states. The breakdown of vibrational 

adiabaticity becomes apparent in this case and can be attributed to the strongly 

repulsive nature of the p eigenvalue curves and the opening of the second 

vibrationally excited state. 

For the deuterium reaction the decent from unity is slightly thwarted near 

the v=3 opening energy causing the reaction probability curve to take on a more 

linear shape and drastically changing the sinusoidal nature of the plot. Comparing 

the contributions of the reactive transitions show that the shape of the tail of the 0 

+ DCl reaction for the excited state is heavily influenced by a contribution from 

vibrational relaxation. The deuterium reaction state-to-state reaction probabilities 

on both surfaces tend to not have peaks and valleys in the same energy region. 

The difference from the pattern found in the hydrogen reaction is that the ground 

and first vibrational state do match each other for surface B but not for surface A. 

Simultaneously, the second excited state matches well with the ground state 

oscillations on surface A but with nothing on surface B. 

Contrary to both the afore mentioned reactions, the exchange of tritium 

does exhibit a nicely oscillating structure for the v=l total reaction probability, 

even though the requirements for adiabaticity are not as well satisfied for the 

heavier isotope. However, the state-to-state transitions in this case show that 



50 

excitation to the second vibrational level has the same qualitative shape as the 

adiabatic transition on both surfaces and that neither match the relaxation process. 

Overall is appears that many of the oscillations are synchronized but that the few 

which are not tend to be more random with increasing isotope mass and lead to the 

deviations from pure oscillatory behavior of the total reaction probability curves. 

A small skew angle and therefore a favoritism towards adiabatic transitions 

promotes the oscillating behavior of reaction probability verses energy curves of 

the collinear light atom exchange reaction between chlorine atoms. However, this 

same structure is seen in the off diagonal transitions and in some cases provides the 

overwhelming structure of the total reaction probability, especially at higher 

energies. 

REACfiON RATE CONSTANTS: 

One of the clearest means of viewing the effects of the different barrier 

heights on the rate of reaction between the two surfaces is with state-to-all 

reaction rate constant plots. The microcanonical rate constant is a function of 

energy and absolute temperature and can be calculated from the reaction 

probability by the relation 

In this expression it is important to note that the energy here is the relative 

translational energy and not the total energy of the system. An exponential term 

multiplies the probability of reaction and the area under the product curve is 

integrated. The constant in front of the integral is a normalization factor with the 

crucial point that the reduced mass used is that for atom A with the center of mass 

of molecule BC and not the total Delves' scaled reduced mass of the reaction. 

Rate constants in this form have units em molecule-1 sec-1 because this is a 

collinear reaction and is in one dimension. 
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The rate constants for the reactions are shown in Figures 19-21. Each 

picture shows both the ground state reaction and the excited state reaction on the 

same surface. Both the hydrogen and deuterium exchange reactions feature a 

slower rate constant on the lower barrier LEPS surface than on the higher barrier 

surface for vibrationally excited reagents. Clearly the ground state reaction rate on 

surface A is slower than the excited state reaction rate. It is also slower than the 

ground state reaction rate on surface B. Both of these observations make sense 

since the reaction should proceed more quickly if there is either less hindrance for 

completion, as seen with the lower barrier of surface B, or more energy available, 

as in the case of the excited diatomic molecules. Looking at the reaction rate 

curve for the excited state reagents on the low barrier surface however, does not 

make sense. This reaction rate is not only slower than the excited state reaction 

rate for surface A, but also the ground state reaction rate of surface B. At 

temperatures above 500° even the ground state rate constant for surface A is 

higher than that of the excited state rate constant on surface B. The reaction 

coordinate profiles show that there is more than sufficient energy to overcome the 

barrier, and with the reaction rate so much higher than that of the ground state on 

the A surface, there is no indication that vibrational excitation subverts reaction. 

The tritium reaction does not appear to be inhibited in the same manner 

when vibrational energy is added to the system. As one would expect, the rate is 

always faster for the excited state than for the ground state reaction. Secondly, the 

rate of reaction is substantially higher for the low barrier surface than for the high 

barrier surface for each comparative quantum level, especially in the low 

temperature range. For temperatures approaching 1500° the differences in rates 

on the two surfaces are relatively small. 

Somehow the reactions on the two surfaces are drastically dependent on 

the saddle point region of the potential giving completely different reaction 

mechanisms for different vibrational states. The phenomenon occurs for the light 

atoms H and D so one immediate argument is that tunneling contributions through 

the barrier are dominating the reactions on the high barrier surface. This 

suggestion has some merit, but the details of the tunneling paths are equally as 
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informative about the role of tunneling in favoring one reaction path over another. 

Whether or not the high barrier promotes reaction or the low barrier inhibits 

reaction will be determined most clearly with the aid of streamline plots of the 

current density and tunneling fractions of the reaction probability. 
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STREAMLINE ANALYSIS 

Answering questions about the reactive mechanism behind the transfer of 

H, D or T from one chlorine atom to another is best accomplished through the 

calculation of · quantum mechanical streamlines and flux density contours. 

Information analogous to that contained in the vector fields describing fluid flows 

can be extracted for the flow of a reaction through a potential surface with the 

probability current density j. This quantity not only traces out the path for reactive 

scattering through the potential surface but also provides a particle density map 

along that path. Knowing how tight or loose the particle flow is in particular 

regions provides the best insight of how and to what degree the surface features 

effect the reaction. 

The streamlines for the hydrogen, deuterium and tritium exchange 

reactions on surfaces A and B are plotted for a range of energies at the top of 

Figures 22-49. Each set of streamlines has been superimposed on the potential 

energy contours of the appropriate surface to explicitly show how the various 

regions effect the particle flow at each energy and how the flux changes as the 

energy increases. The dashed contour line labeled E is the potential contour at the 

specified energy for the streamlines. This contour represents the classical limits of 

the surface and any streamline which crosses E is inherently associated with 

tunneling flux. 

Another important aspect is that concerning the quantum vortices that exist 

m the streamline plots but which are not shown on the streamline figures 

themselves. These are circular flows, as can be seen in the schematic of Figure 

49.a, which contain no particle flux and in some cases may be associated with 

resonances. Streamlines starting at points in the region of a vortex form closed 

curves forming a boundary which no flux originating outside of may penetrate. 

The vortex is analogous to placing a solid object into a flowing stream and thus 

has the ability to force the flow of the particle flux in one direction or another. 

Typically five streamlines are superimposed on the potential contours. 

Each streamline is defmed as the line tangent to the current density vector at every 
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point. In the figures, the streamlines are drawn with a select group of the current 

density vectors in tact, denoted by the arrows. The current density vectors have a 

magnitude calculated at the center of the portrayed arrow and are drawn so that 

they conform to the curvature of the streamline as a whole. The center streamline 

is that for the largest current density calculated at the energy and the two 

streamlines on each side are spaced from the center line and from each other at a 

distance inversely proportional to the length of the current density vector at the 

point. The outer most sets of current density vectors carry very little of the 

reactive flux, a combined total of less than 5%, and are shown mearly as visible 

aids to the completeness of the figure. This is easily conferred through the current 

density profiles which will be discussed next. 

The plots accompanying the streamlines are the probability current density 

profiles. These diagrams show the cross-section of flux normal to each of the five 

cut lines placed perpendicular to the minimum energy path. Because of the 

continuity equation and its results the total flux though each of the five cuts is 

identical and is represented by the area of each curve. Therefore, the area under 

each curve is normalized and the amount of reactive flux passing through a general 

area of the potential can be estimated or calculated by looking at the fraction of the 

area of the curve that is in intersected by the current of interest. As the reaction 

proceeds through the surface the curves change shape either spreading out into a 

flatter shape, which means the flow is less constricted and more evenly distributed, 

or pulling up into a high peak indicative of a more condensed flow though a small 

cross-section of the potential. In some cases these curves have negative 

components which arise from the presence of vortices who's centers are at the 

nodes in the current density profiles. Two streamlines are superimposed on the 

potential surface along with the current density profiles. These two streamlines are 

the limiting streamlines of the reaction and are tangent to the energy contour E at 

one point.. Any streamlines lying between these two limiting streamlines carry 

exclusively classical flux, reactive flux that samples only the classical regions of 

configuration space. All other streamlines carry tunneling flux. 
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The five visible streamlines in each of the Figures 22-24 and Figures 25-

27 clearly show that the ground state reactions on surfaces A and B are quite 

different for the Cl + HCl --7 ClH + Cl reaction. When the reagents are in the 

ground vibrational state, the majority of the reactive flux passes through the strong 

interaction region of the potential on the corner cutting side of the saddle point for 

the high barrier surface. In other words, the reaction is more likely to occur if the 

configuration of the triatom complex has two stretched bonds. The bonds are 

longer and more strained than the minimum energy configuration which would be 

synchronous with the location of the saddle point. As the energy increases, the 

streamlines gradually shift towards the deep corner of the potential and the 

preferred mechanism of reaction comes close to resembling that predicted by the 

minimum energy path passing through the saddle point. This can easily be seen in 

the sequence of Figures 22-24, where the energy changes from 0.40 e V to 0.80 e V 

and the current density passing through the saddle point increases from nearly 

nothing to about 40% of the total flux. At the lowest energy, where only one 

vibrational state in the product channel is open, the streamlines tend to follow a 

straight path in the asymptotic regions of configuration space. However, as the 

total energy increases, surpassing the opening of additional vibrational states, the 

streamlines become more oscillatory. This is a result of the nonzero value in the 

transverse component of the current density vector introduced by the additional 

open states. In the current density profile diagram of Figure 24 the cut along the 

saddle point has a node, which can be attributed to a single vortex as shown in the 

top picture of Figure 49.a. This vortex is exclusively in the classically forbidden 

part of the potential. 

The reaction on surface B is different from that of surface A in that the 

preferred reaction path traverses to the left of the saddle point rather than to the 

right. This means that the reaction mechanism has a transition state complex in 

which the three atoms are more compressed, having typical bond lengths near or 

slightly shorter than those of the minimum energy configuration. Although the 

streamline plots show the largest set of current density vectors passing to the left 

of the saddle point in Figures 25-27, it is important to note that at each energy the 
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streamline to the right of center has arrows at least two to three times longer than 

those in the streamline left of center. From the current density profiles this is 

clearly emphasized and the resulting conclusion is that even though the largest 

current density vector tends to pass left of the saddle point, the largest fraction of 

reacting systems do follow the mechanism through the saddle point having the 

lowest energy configurations. This is especially true for the reaction with lower 

total energy. The reason for the favoritism towards this choice of reaction path 

becomes more clear when the saddle point cut of the normal flux density is 

considered. At the lowest energy a node, and therefore a vortex, is present at a 

point well within the energetically accessible region of the potential to the right of 

the saddle point. No such feature was seen for the low energy A surface case. 

The reactive flux is forced to go around the vortex and can therefore not cut the 

corner as it did in surface A. As the energy increases the vortex moves more 

towards the saddle point as in Figure 26. When the reaction becomes high enough 

a second vortex appears next to the first with the appearance of a second node in 

the normal flux curve. The lower schematic in Figure 49 .a shows this feature, 

though obviously the streamlines near the vortices carry an extremely small amount 

of flux. 

Figures 28-31 show the streamline and current density plots for the Cl + 

HCl vibrationally excited reaction. The reaction on surface A has two vortices, 

one right on the saddle point and a second slightly to the right of it, which move 

very little as the energy increases from 0.60 eV to 0.80 eV. Apparently these 

vortices are far enough into the corner of the potential that the reaction shortcuts 

its path by cutting the corner or passing to the right of the vortices. Surface B, on 

the other hand, has its two vortices blocking the region of the potential to the 

right of the saddle point. The reaction again has to proceed almost exclusively by 

means of a compressed transition state leading to a bobsleading type mechenism 

through the potential surface. This causes a problem for the vibrationally excited 

state reaction which results in the small reaction probability observed in Figure 8. 

there is also a vortex present earlier in the reagents channel. 
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From the streamline plots it is clear that the Cl + HCl ~ CIH + Cl reaction 

proceeds via a stretched transition state on surface A and a compressed transition 

state on surface B. For a diatomic reagent CIH in the ground vibrational state the 

reaction has no trouble reacting in either configuration since the ground state 

diatomic wavefunction has the largest amplitude near the equilibrium, or minimum 

energy, bondlength and due to its near symmetric distribution about this point can 

easily access both the compressed and extended configurations. Therefore, either 

mechanism is easily accessed and the reaction readily occurs for both surfaces A 

and B. For the vibrationally excited CIH molecule surface A still requires a 

stretched intermediate and surface B a compressed one. The vibrational 

wavefunction of the diatomic CIH is nearly antisymmetric although because the 

potential is a real function and not a harmonic oscillator, the vibration covers a 

larger extended bond range than it does a compressed bond range. This means 

that the hydrogen atom, which accounts for most of the vibrational motion as it 

bounces against the massive chlorine atom, spends more of its time further away 

from the Cl than it does when in the ground state. For surface A this is ideal since 

now the CIH bond is on average longer and the reaction can take place readily 

through the mechanism of a stretched three atom state. Consequently the reaction 

probability is very high as can be seen in Figure 8. However, this same situation 

applies to the B surface, but since the vortices of the B surface block critical 

regions if the potential and force the reactive mechanism to take on a compact 

configuration the reaction is hindered. From Figures 30 and 31 the streamlines 

clearly show that the reaction only occurs for diatomics with small transverse 

components of the current density vector, even at the higher energy where a 

second vibrational state is open. With the reaction in such a high vibrational state 

the hydrogen atom can potentially hinder the approaching Cl atom and keep it 

from getting close enough to have an effect on the diatomic Cl to initiate the 

reaction. 

The Cl + DCl ~ CID + Cl reaction streamlines are shown in Figures 32-41. 

The streamlines indicate that for surface A the reaction mechanism is the same as 

when hydrogen was used for both the ground and excited vibrational reagents. 
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The difference is the lack of appearance of the vortex at 0.80 eV for the ground 

state reaction. The deuterium reaction does take a path slightly closer to the 

saddle point than did the hydrogen reaction which is consitant with the deuterium 

atom having a larger mass and therefore a lower frequency vibration and a smaller 

deviation about the equilibrium bond length. The reaction on surface B is also 

similar to that of the hydrogen reaction except that again there is no vortex in the 

lowest energy diagram for the ground state and the two vortices for the excited 

state have moved outward from the saddle point region with increasing energy. 

The reaction involving tritium exchange also exhibits the same dynamic 

features in the streamline plots as the other two reactions for the high and low 

barriers. However, from Figure 10 we see that the reaction probability is strongly 

enhanced by the vibrational excitation on surface B although the mechanism still 

involves a compressed intermediate. This can be accounted for by the mass 

difference of the tritium atom which again causes the frequency of the vibration to 

decrease and the vibrational motion to remain much more confined to the region 

about the equilibrium bond length. The tritium atom spends more time closer to 

the Cl than did the H or D atoms upon an absolute time scale. This means that the 

tritium is not as easily accessed for long bond interaction and the A surface 

reaction probability is lower than for the other two isotopes. The B surface 

reaction is more favored with tritium for two reasons. First, the tritium is moving 

more slowly with respect to the Cl and the incoming Cl atom doesn't encounter the 

tritium as often as it would a H of D in the same vibrational mode. This allows the 

Cl to get closer for reaction with out having the central reaction jump across 

prematurely. Secondly, the CIT diatomic has a center of mass more towards the T 

than in either the H or D case. The mass of T makes it less insignificant to the 

translational motion of the diatomic and as it vibrates the Cl is effected. It is then 

possible that upon compression of the vibrating diatomic the Cl is brought closer 

to the approaching Cl atom by its extra motion in the vibrational mode and the 

reaction configuration is more readily achieved. 

In summery, the reaction on Cl with HCl or DCl favors an elongated three 

atom configuration and with the presence of two vortices when v=l on the high 
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barrier potential surface this transition state is forced giving a high reaction rate. 

In contrast, the two vortices on surface B are further from the saddle point 

location and actually block the potential region sampled by the reaction in surface 

A. Consequently, the reaction on surface B is forced to occur from a condensed 

three atom configuration which is less favored when the diatomic reagent is 

vibrationally excited. The result is a hindered reaction rate on surface B compared 

to that on surface A. 
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TUNNELING COEFFICIENTS 

The streamline representation provides a method for performing an exact 

tunneling calculation for the reaction on the two surfaces. The tunneling current is 

defmed as the current that originates in the reactant channel and arrives in the 

product channel by traversing a path which at some point cuts through the 

classically inaccessible region of configuration space marked by the contour E. 

The current density profiles give the best view of the amount of tunneling 

occurring in the reaction, and from them the tunneling fraction can be decomposed 

into its two types which either sample the repulsive portions of the potential walls 

or the dissociative plateau. 

The current density profile curves have plotted with them the limiting 

streamlines for the energy if the reaction of choice. As mentioned earlier the 

limiting streamlines are streamlines which are tangent to the energy contour E at a 

single point. There are thus two limiting streamlines for all the plots in this 

discussion since all the energies considered are higher than the barrier heights on 

the two surfaces. If the energy is lower than the barrier then all the reactive 

current is attributable to tunneling, since the reaction must tunnel through the 

barrier even at the saddle point. The two limiting streamlines separate the reactive 

current into three parts. Current flowing between the streamlines is classical 

current since it only samples the classically allowed regions of the potential. The 

other two parts of the reactive current are the inner and outer tunneling currents. 

Inner tunneling current crosses into the regions of configuration space where the 

potential is highly repulsive because either the diatomic molecule is compressed 

too far and the nuclear repulsion causes the energy to be very high, or the three 

atom complex is compressed to the point where nuclear repulsion or electronic 

cloud overlap again make the configuration energetically undesirable. The outer 

tunneling current is associated with stretched bonds that in an extreme case would 

result in dissociation. 

To calculate the tunneling contribution the area under the current density 

profiles are normalized and then separated in to three regions marked by the 
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intersection of the limiting streamlines' normal component with the cut transverse 

to the minimum energy path. The area of the curve is then separated in the three 

areas that correspond to the three types of current. The fraction of the total area is 

equivelent to the tunneling coefficients for the two types of tunneling. 

Figures 50-61 show the inner, outer and total tunneling percent of each 

reaction as a function of energy, as well as the inner, outer and total reaction 

probabilities due to tunneling. Surface A show 100% tunneling for all three 

reactions at the energies below 0.285 e V, which is the barrier height. In general 

the tunneling is very high for surface A at low energies but drops off drastically 

around 0.60 eV for all three reactions. Well over 95% of the tunneling is due to 

outer tunneling which corresponds to cutting the corner on the right side of the 

strong interaction region. This clearly fits with the streamline analysis of the 

reactive mechanism on surface A. At higher energies the inner and outer tunneling 

fractions are nearly equal though they both contribute less than 5% to the entire 

reaction probability. The excited state reactions do not have as much tunneling but 

again most of what is there comes from tunneling in the outer regions. 

Surface B also shows significant amounts of tunneling but for the excited 

state reaction the tunneling is dominated by the inner fraction. This is also 

consistent with the streamline analysis on the B surface which followed the 

reaction around the left side of the vortices. For the ground state reactions on this 

surface the outer tunneling is still higher than the inner tunneling but the inner 

tunneling is substantially larger than recorded for surface A. The outer tunneling is 

largely because of the nonzero contribution to the transverse component of the 

current density at the energies above the opening of the first vibrational state. 

Overall the tunneling fractions and reaction probabilities follow from the 

streamline analysis and correspond to the reaction paths for the two surfaces 

accurately. Tunneling in the tritium reaction for v=1 on surface B definitely 

contributes to the high reaction probability although most of the tunneling is from 

the bobsledding mechanism. The tritium atom definitely spends a greater amount 

of time in close quarters with its partner Cl for the B surface and therefore 

promotes the reaction which prefers this configuration. 
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QUANTUM MECHANICAL RESONANCES 

Resonances in molecular collisions justifiably draw a great deal of 

attention because of their profound effects on partial, differential and total 

scattering cross sections. They stem from the particular characteristics of the 

corresponding potential energy surface and are critically sensitive to the detailed 

topology of the surface. Resonances are a quantum mechanical phenomena that 

produce a sharp variation of the reaction probability at some resonant energy 

associated with the existence of a metastable state. Quantum mechanically, a 

metastable state is produced as a quasibound state trapped either in a well behind 

a barrier or between barriers. Therefore, in the case of reactive scattering over a 

barrier, resonances are invariably associated with the nearly bound states found in 

the well of effective potentials. Such metastable states associated with reaction 

barriers correspond to poles in the scattering matrix just as definitely as trapped 

states in classical mechanics correspond to standing waves in wells. 

The spectrum of resonances appearing in the collinear Cl + HCl ~ ClH + 

Cl reaction is clearly an outstanding feature in the reactive probability profiles. 

To understand the origin of these resonances it is most useful to return to the 

vibrationally adiabatic approximation that originally separated out and accounted 

for much of the structure of the curves. 

The Schrodinger equation for the collinear reaction in mass scaled Delves' 

polar coordinated is a function of a radial and angular variable as mentioned 

earlier. The wavefunction is expanded in terms of the vibrational functions which 

are solutions of the Schrodinger equation at fixed values of p. As before, this 

leads to a set of second order coupled differential equations for the expansion 

coefficients gv. The vibrationally adiabatic approximation consists of retaining 

only the terms with v'=v in the integrations over the angular variable giving 

[ 
1i2 d ] ( -) ----

2 
+Uv(p)-E gv p;p =0, 

2jl dp 
1 
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where the effective potential is defined m terms of the eigenvalues of the 

diatomics, 

2 

The diagonal term remains in this expression for U v leading to the approximation 

called the diagonally corrected vibrationally adiabatic hyperspherical model, 

(DIY AH).6 The spectrum of resonances can be analyzed to some degree using 

equation 2. 

For symmetric exchange reactions the symmetry of the potential gives rise 

to both symmetric and antisymmetric eigenfunctions for the angular variable. 

The corresponding eigenvalues are E~ and E~. The eigenvalue verses p effective 

potential curves are shown in Figures 62-64 for the ClHCI, CIDCI and ClTCl 

reactions respectively. The eigenvalues are obtained numerically during the 

evaluation of the surface functions. At large values of p the gerade and ungerade 

curve become degenerate and correspond to the diatomic reactant and product 

vibrations. In the interaction region these curves are separate with the gerade 

curve always lying below the ungerade curve. The various shapes of the curves 

gives rise to the possibility of bound states in the gerade plot and v ~ v shape 

resonances when the one dimensional Schrodinger equation is solved. It also 

implies the possibility of Feshbach resonances in other diagonal and off-diagonal 

reaction probabilities. The adiabatic potentials E~ and E~ are similar but not 

identical to the U vg and U vu potentials, producing bound states to within fair 

agreement of each other. If the diagonal corrections are neglected, some spurious 

resonances are predicted arising from the vibrationally adiabatic polar coordinate 

description of the scattering. 

Comparison of the adiabatic effective potentials for the two different 

surfaces suggests that for all three isotopes surface B can support more bound 

states than surface A. The ground state eigenvalue curves for surface A are 
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strictly repulsive for all three reactions whereas they contain effective wells for 

surface B. In this case it is not surprising that resonance structure is found in the 

ground state reaction probability plots of surface B and not in those for surface A. 

From these pictures it is also hypothesized that the four sharp resonances found 

on the vibrationally excited reaction probability plot of Figure 8 for surface A, 

correspond to four quasibound states caught in the effective potential well of the 

v=2 gerade curve. Similarly, the two sets of four and seven resonances in Figure 

8 should correspond to bound states on the v=l and v=2 gerade curves 

respectively, for surface B. Comparing the shapes of the pairs of v=l and v=2 

gerade curves for the two surfaces in Figure 62 shows that the B curve wells are 

deeper than those for the A surface, therefore it is not surprising to find more 

resonances for this system. The well depth of these plots is directly associated 

with the barrier height of the surface. Since the B surface has a much lower 

barrier and therefore a deeper well, more states can be supported. 

The same features appear to follow through the analysis of Figures 9 and 

10 for the ClDCl and ClTCl systems. These two systems have strong resonance 

structure occurring in sets, which suggests that several of the adiabatic effective 

potential curves support many bound states. From the figures it is also clear as to 

why the resonances for the hydrogen system occur just before the opening of the 

next vibrational state and for the deuterium and tritium systems they occur, or 

seem to occur, just after the vibrational state opens. In reality the resonances are 

still showing up at energies just below the new vibrational state and the bound 

states are found in the effective potential wells as they are in the hydrogen case. 

The difference is that the effective potentials are much closer in energy and the 

minima of some of the higher gerade plots tend to drop below the asymptotic 

value of the nearest eigenstate. Therefore the bound state energies appear at or 

just above a vibrational eigenvalue. Note that as the energy increases, the 

resonances seem to overlap more and the sets of spectra become less 

distinguishable. 
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To determine the exact energies of the quasibound state the phase shifts 

TJ~ (E) can be calculated, from which the resonant energies are found from the 

local maxima of the time delay function 

'tv (E)= 2/i drt. (E). 
dE 

3 

The resonances for the ClHCl reaction are shown in Figures 65-81 for the two 

surfaces. With them are plotted the corresponding Argand diagrams, which are 

simply the diagonal scattering matrix elements shown in the complex plane. The 

real and imaginary components are parametrized by the total energy of the 

reaction. In the absence of resonances Argand diagrams are almost circular in 

shape about the origin of the system of axes and traverse clockwise with respect 

to increasing energy. In this manner the magnitude of the diagonal scattering 

matrix element varies slowly and its phase decreases. This is characteristic of a 

direct reaction mechanism. The resonances, on the other hand, cause the phase of 

the scattering matrix element to rapidly increase, therefore abruptly changing the 

direction of the Argand plot from clockwise to counterclockwise. This is readily 

observed in Figures 65-81 where the resonances are so strong that they abruptly 

reverse the direction of the phase in a manner very unlike the typical smooth 

motion seen for other systems including H + H2, F + D2, F + H2, and F + HD. 

The sets of resonances all have a Breit-Wigner shape and the lack of symmetry is 

due to the interference with the background or direct contribution to the 

probability which, as discussed previously, is weakly energy dependent. 

Figures 65 and 7 4 show the two resonances that occur at the opening of 

the ground vibrational state of surface A and the excited state of surface B. 

Obviously these two resonances are quite different than the others both in their 

shape and in their Argand plots. The resonance in Figure 65 is much broader 

than the others and the resonance in Figure 74 is much smaller. These are 

threshold resonances and are associated with the opening of the state. Friedman 

and Truhlar10 show that chemical reaction thresholds are resonances, of the same 

type as those responsible for the sharp peaks seen in state-to-state reaction 
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probabilities though broader. Thus resonances are ubiquitous m chemical 

reactions. 

As mentioned earlier, a simple but intuitive physical interpretation is that 

often resonances, specifically shape resonances, can be associated with the 

trapping of the reactive system in a well. However, in these reactions, since there 

is no potential well the trapping is of a more sophisticated dynamic nature 

involving Feshbach processes.32 For this to occur, the reacting system must have 

at least two degrees of freedom. The essence of the mechanism is then that the 

energy becomes trapped in internal coordinates and the system is only able to 

separate into products if enough energy flows back into the reactive degree of 

freedom. This differs from the case of shape resonances in which the energy can 

be trapped in the same degree of freedom leading to reaction. 

For the Cl + HCl reaction the two degrees of freedom are p and a. The 

eigenvalue curves exhibit minima as functions of p and can support bound state 

eigenfunctions and eigenvalues E or long-lived virtual states. The dynamic 

resonances can be associated with these bound or virtual eigenvalues E which 

may be less than the vibrational quantum energy of the original state. When this 

happens, the energy of the system flows from the external degree of freedom, p, 

into eigenstates of the internal degree of freedom, a, which can be 

asymptotically closed but are locally open. This is called a closed-channel 

resonance. It is also possible for the system to have open channel resonances. 

The system becomes trapped in a state of the internal degrees of freedom leaving 

the external motion subject to the afore mentioned effective potential. The 

hyperspherical coordinates separate in a manner similar to the separation of the 

electronic and nuclear motion in the Born-Oppenheimer approximation for 

molecules. The angular coordinate plays a role similar to that of the electronic 

coordinate and the hyperradius to that of the nuclear coordinate. This was 

discussed earlier when the motion of the light atom, H, was very rapid compared 

to the motion of the heavy Cl atoms and had essentially no effect on their 

translational motion. 
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The resonances are attributed to trapped states in the effective potentials 

of the external motion coordinate. The two chlorine atoms separated by a 

hydrogen atom form a quasibound complex with energy highly concentrated in 

the motion of the central atom. The Chlorine atoms are hardly moving with 

respect to each and the motion of the hydrogen atom corresponds to that of a 

normal vibrational mode of the complex. A more detailed analysis of the lifetime 

scale for such a complex is possible and the exact assignment of the quantum 

states corresponding to each resonance can be obtained though an analysis of the 

wavefunction. 
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CONCLUSION 

The Cl + H(D,T)Cl ~ ClH(D,T) + Cl reactions have been studied on two 

analytical potential energy surfaces which correspond with the different results 

obtained in various experiments. The barrier height of the reaction is not known 

and therefore collinear reactive scattering results giving different conclusions about 

the reaction mechanism provide valuable insight to the determination of a more 

accurate surface and act as a precursor to three-dimensional studies of this 

reaction. The streamline and current density discussions of the vibrationally 

excited reaction aid in explaining the curious effect of an enhanced reaction rate 

for a high barrier and an arrested rate on a low barrier. Quantum vortices play a 

leading role in promoting this phenomena by prohibiting access to particularly 

critical regions of the potential in the strong interaction part of the two surfaces. 

They essentially promote the reaction on the high barrier surface by forcing the 

reaction to proceed via an elongated three atom configuration. The reaction on 

the low barrier is inhibited by the presence of two vortices which keep it from 

occurring either in an elongated transition or even at the low energy saddle point 

equilibrium configuration. The reaction is forced to occur through an unfavorable 

compressed three atom configuration that is even less favored when the vibrational 

state of the diatom is excited. The contributions to this effect from tunneling are 

actually higher for the reactions on the low barrier surface, which has almost no 

reactive flux, than they are for the high barrier surface. Therefore, tunneling does 

not play a major role in the obscure differences in the dynamics of the reaction on 

the two surfaces but seems to be rather a consequence of the concurring 

mechanism. The restriction to collinearity is an obvious limitation in assessing the 

importance of the effect in three-dimensions. However, approximate three­

dimensional quantum mechanical calculations on this system have been reported 

for ground state reagents and indicate that at least the oscillatory behavior in the 

reaction probabilities with energy persist. 5 Therefore it is not impossible that the 
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inhibition to the reaction rate for vibrationally excited systems on low barrier 

surfaces might also persist in three-dimensions since it is a quantum behavior due 

to vortices. 
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