Bit-Serial Reed-Solomon Decoders in VLSI

Thesis by

Douglas L. Whiting

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

198%

(Submitted August 22, 1984)

ii

BIT-SERIAL REED-SOLOMON DECODERS IN VLSI

Copyright © 1985 by Douglas L. Whiting. All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system, or transmitted in any form or by any means without
the prior written permission of the author.

iii

Acknowledgements

Because a large fraction of my adult life has been spent as a student at Caltech, a complete
list of the people who have aided my academic progress is much too long to be included here.
However, a few individuals deserve special mention. My parents gave me financial assistance for
years as well as constant encouragement and support. It was the enthusiastic teaching of Bob
McEliece that first attracted me to this area of research, and his insights and interest have kept
me on the right road ever since. Cal Jackson has spent countless hours customizing TEX to my
often exacting whims; his suggestions, comments, and incredibly painstaking proofreading have
been invaluable. Many thanks to Chuck Seitz, who was a helpful adviser through my Master’s
Thesis research. Bob Anderson, Anne-Marie Brest, Neil Brock, and Brenda Roder all worked
valiantly on the decoder floor plan and the cell layout, showing that a decoder chip is possible,
although not easy. The friendship of Gary Clow, John Tanner, John Ngai, and many others has
made school an enjoyable place to be, and the proofreading and advice of Bill Dally have been
particularly appreciated over the past few months. But most of all, I am grateful to Dee, Claire,
and Wendy, for their constant love and for the joy that having a family brings to my life.

This work was sponsored in part by the Defense Advanced Research Agency, ARPA Order
#3771, and monitored by the Office of Naval Research, Contract #N00014-79-0597, and by a
National Science Foundation fellowship.

iv

Abstract

Reed-Solomon codes are known to provide excellent error-correcting capabilities on many types
of communication channels. Although efficient decoding algorithms have been known for over
fifteen years, currently available decoder systems are large both in size and in power consumption.
Such systems typically use a single, very fast, fully parallel finite-field multiplier in a sequential
architecture. Thus, more processing time is required as the code redundancy increases. By using
many arithmetic units on a single chip, it is possible to exploit the concurrency inherent in the
decoding algorithms to attain performance levels previously possible only with large ECL systems.

An investigation into the structure of binary extemsion fields reveals that the common
arithmetic operations used in decoding can be implemented quite efficiently in a bit-serial fashion,
using any of several bases over GF(2). Berlekamp’s dual-basis multiplier is generalized to the
product of two arbitrary field elements, and a necessary and sufficient condition is then derived
for the existence of a self-dual basis. Efficient methods for bit-serial multiplicative inversion are
also discussed, greatly reducing the complexity traditionally associated with this operation.

Using these bit-serial techniques, several architectures for implementing each phase of
the known Reed-Solomon decoding algorithms are presented and compared. Simple methods
are presented to allow power-sum syndrome decoders to handle codes with a variety of block
lengths and redundancies. Each approach comes within a factor of logn (where n is the block
length of the code) of the recently derived asymptotic lower bounds for both time and area.
Results from a student project to lay out a prototype decoder chip using the Berlekamp-Massey
algorithm are also discussed. By utilizing the parallelism inherent in the key equation solution,
these architectures can decode received words at a speed independent of the redundancy of the
code.

Contents

Acknowledgements

Abstract

Figures and Tables

Chapter 1. Introduction

1.1
1.2
1.3

Chapter 2. Finite Fields

21
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3. Coding Theory

3.1
3.2
3.3
3.4
3.5
3.6

Reliable Digital Communication.,
Conventional Reed-Solomon Decoder Systems
Parallel Computation: Two Analogies

Groups and Rings
Fields e e e e e e e
Extension Fields
Primitive Eiements
Conjugation e
Linear Functions e
Discrete Fourier Transforms over Finite Fields

Linear Block Codes
Distance Metrics L. e e e
BCH and Reed-Solomon Codes
The Key Equation
Correcting the Errorso oo o
Performance of Reed-Solomon Codes

10
12
14
16
17
18

vi

Contents

Chapter 4. Bit-Serial Multiplication. 36
41 Motivation 36

4.2 Area-Time Tradeoffs in Multiplier Design. 36

4.3 Resolving Field Elements into Basis Components 39

44 Choosing an Optimal Basis 40

4.5 Factorable Linear Transformations 40

4.6 Applying the Transformations. 45

47 TheFirst Bit of the Product 49

48 Self-DualBases. 51

49 Nearly Self-DualBases. 54
4.10 Shift-and-Add Multipliers 56
4.11 Other Bit-Serial Operations 57
Chapter 5. Reed-Solomon Decoding Algorithms. 59
5.1 Historical Overview 59

5.2 The Key Equation Revisited. 61

5.3 Berlekamp Algorithm L. 62

5.4 Berlekamp-Massey Algorithm 71

5.5 Euclidean Decoding Algorithm 71

5.6 Berlekamp-Welch Algorithm. 75

57 LiwAlgorithm 80

5.8 Blahut's Time-Domain Decoder 84

5.9 Other Decoding Algorithms 86
Chapter 6. Bit-Serial Decoder Architectures 88
6.1 Partitioning the Decoder. L. 88

6.2 Bit-Serial Syndrome and Remainder Computation. 89

6.3 ChienSearch. 93

6.4 Key Equation Solution. 97

6.5 DBerlekamp-Massey Decoder 99

6.6 VLSI Implementation of Berlekamp-Massey Decoder. 105

6.7 Euclidean Decoders. L o 108

6.8 Berlekamp-Welch Decoder L L. 118

6.9 Results and Applications. 119
Chapter 7. Conclusion 122
Appendix A. Normal-Basis Multiplication 123
Appendix B. Gilbert Model Probability Computation. 125
Appendix C.Tables. e 142

References

vii

Figures and Tables

Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1.
1-1.

1-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-1.
4-2.
4-3.
4-4.
4-5.
51,
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
511.
512,
5-13.

6-1.
6-2.

RS Decoder Performance, 3
Parallel Sorting Configuration. 5
Eight-point FFT Flow Diagram 6
DFT Computational Node. 7
Coding on a Digital Channel2

Using Hamming Distance to Correct t Errors. 23
Frequency Constraints on Reed-Solomon Codewords. 25
Example of a Concatenated Coding Scheme 32
The Gilbert Charnel Model 33
Gilbert Model Error Statistics For Interleaved RS Codes 34
A Shift-and-Add Multiplier over GF(16) 37
Order Estimates for GF(2™) Multiplier Structures. 38
Dual-Basis Multiplier. 46
Normal-Basis Multiplier over GF(16) 48
Dual to Canonical Basis Change Over GF(256). 56
General Shift-and-Add Multiplier - 57
Block Diagram of Typical Syndrome Decoder 61
Massey's View of Key Equation 63
Berlekamp Algorithm L L 64
Inversionless Berlekamp Algorithm 66
Modified Berlekamp Algorithm L. 67
Examples of Linear Scaling Transformations, .. 68
Berlekamp Algorithm with Erasures 69
Berlekamp-Massey Algorithm with Erasures 70
Euclid’s Algorithm with Erasures 73
Berlekamp-Welch Algorithm with Erasures. 77
Modified Berlekamp-Welch Algorithm with Erasures. 79
Liu Decoding Algorithm 81
Blahut's Time-Domain Decoding Algorithm 85
Decoder Block Diagram, .. 88

Deccder Timing Diagram 89

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Table

Table

Table

6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.

6-1.

B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9

B-10.
B-11.
B-12.
B-13.
B-14.

C-1.
C-2.
C-3.
C-4.

viii

Figures and Tables

Dual-Basis Syndrome Computation. 90
Shift-and-Add Syndrome Computation 91
Remainder Computation. 92
Subcode Frequency Window 92
Chien Search Implementation 94
Forney Algorithm Using Chien Search Units 95
Possible Interpretations of Shortened Codes 96
Syndrome Modification for Shortened Codes 98
Berlekamp-Massey Key Equation Cell 100
Decoder Cell Topology 101
Berlekamp-Massey Controller Timing Diagram. 102
Berlekamp-Massey Coefficient Cell 106
Decoder FloorPlan 107
One Bit Slice of Dual-Basis Multiplier 109
Non-Systolic Euclidean Key Equation Solver. 111
Systolie GCD Cell 112
Non-Systolic Interleaved Encoder 113
Systolic Interleaved Encoder., 114
Systolic Decoder Structure. 117
Half of Berlekamp-Welch Key Equation Cell 119
Area-Time Comparison of Key Equation Architectures 120
RS Code Interleaved toDepth d. 126
Effect of Interleaving, p, =104 129
Effect of Interleaving, pe = 107% 130
Effect of Interleaving, pe = 10=% 131

Effect of Interleaving, p, = 10~°. 132

Effect of Interleaving, p, == 10~Y2, 133
Effect of Interleaving, p. = 107, 134
Effect of Interleaving, p, = 10~18 ., 135
Bit Error Probability Contours, d =1 136
Bit Error Probability Contours, d =2 137
Bit Error Probability Contours, d =4 138
Bit Error Probability Contours, d =38 139
Bit Error Probability Contours, d=16. 140
Bit Error Probability Contours, d=o00. 141
Irreducible Polynomialsover GF(2) 143
Irreducible Trinomials, z* +z8 + 1, 0over GF(2). 144
Prime Factorizationof 2™ — 1. 145

Log/antilog Table for GF(16) 145

Chapter 1

Introduction

1.1 Reliable Digital Communication

Communication can be defined as the transfer of information from one point to another over a
channel or medium. Because the channel separates source and destination points in either space
or time (and often both), there is a finite probability that the information received will differ
from the transmitted data. Although all information is ultimately transmitted in an analog form
over the channel, this thesis will be concerned exclusively with digital data, i.e., systems in which
analog values are quantized at some point in the communication process. Such quantization
allows rigorous analysis using discrete mathematics. For example, in the paper that gave birth to
the science of information theory, Shannon showed that, by adding propetly chosen redundant
information to the data transmitted, communication can be made arbitrarily reliable [46]. The
required amount and complexity of this redundancy obviously depends on the channel: in general,
as the medium becomes more sensitive to noise or interference, more overhead is required.

To apply Shannon’s theorem in practice, an engineer must select an acceptable error
probability and design the system to that specification. There are several basic approaches
to achieving a given level of reliability in communication. First, the designer can attempt to
improve the channel characteristics by employing more sophisticated modulation/demodulation
schemes, more powerful transmitters, more sensitive receivers, etc. On the other hand, using
coding theory, redundant information can be added to provide error detection and/or correction
capabilities. One very powerful method of increasing reliability by using coding techniques is
to request a retransmission when errors are detected [2]. However, such a scheme presupposes
that retransmission is possible (which will not always be the case) and that the probability of
error-free transmission is acceptably high. This approach will not be studied here, although it
can be very effectively coupled with error correction. Instead, the coding technique of interest
here involves the use of errar-correcting codes (ECC) to both detect and correct any errors which
have occurred in transmission. Each of these approaches will inevitably increase the system cost,
whether measured in physical size, power consumption, data latency, or development dollars.
However, all of these methods can be important, and it is clear that some mixture of coding and
channel improvements will minimize a given cost metric in meeting the reliability objective.

Introduction 1.2 Conventional Reed-Solomon Decoder Systems

One interpretation of Shannon's theorem is that it is an inefficient use of resources to
build a channel that is overly reliable. However, until recently, the cost of implementing powerful
error-control codes in a communication system has been prohibitively high, and unfortunately
this cost barrier often stems as much from a lack of appreciation of Shannon’s theorem and
coding principles as from the actual ECC hardware. Thus, in all but the highest performance
or cost-insensitive applications, the tradeoff has usually been to improve the channel characteris-
tics, employing only relatively unsophisticated coding techniques (if any). The advent of VLSI
offers the promise of incorporating the entire coding system onto a single integrated circuit.
Encapsulation of the low-level coding details into an inexpensive chip will allow an engineer to
make more intelligent decisions about the tradeoffs involved in reliable system design. For ex-
ample, in magnetic data storage, the proper compromise may well be to employ ECC and use
less sophisticated read/write electronics with a higher bit density, thus providing higher capacity
and lower cost storage that is more reliable despite the higher raw error rate, as compared to a
conventional system. The purpose of this thesis is to propose a set of architectures and arithmetic
techniques that will allow one particular type of coding system to be integrated onto a chip.

1.2 Conventional Reed-Solomon Decoder Systems
Although the need for reliability in communication is universally recognized, the criterion for
acceptable data integrity varies widely from application to application. Typically, communication
systems such as telephone or digital audio in which the final output is an analog value can allow
a much higher error rate than channels where the output is to be further processed in its digital
form. For example, a bit error rate of 1072 is generally acceptable for the telephone switching
network, while such a figure would be catastrophic in a digital magnetic storage system. Further,
raw error statistics for channels of interest are even more diverse. In some cases, errors are roughly
independent from bit to bit, while many media are characterized by bursts of errors; often, soft
(analog) information extracted from the demodulator can aid tremendously in reconstructing the
corrected data, but on other channels a quantized (bard) output is all that is realistically of help.

Such diversity in the error statistics and the reliability requirements of different channels
obviously implies that no single error-correcting code can meet the needs of every application.
However, Reed-Solomon codes are among the most versatile and powerful codes available, with
an inherent capability of correcting both random and burst errors and of incorporating a limited
amount of soft decision information. Thus, Reed-Solomon (RS) codes are a prime candidate
for VLSI implementation. Efficient RS encoder design is relatively well understood [5], but the
problem of optimal decoder architectures for VLSI remains an open question. The chapters of
this thesis lead up to an efficient set of methods for implementing both the finite-field arithmetic
and the decoding algorithms, utilizing as much parallelism as possible.

Before beginning our investigation, it will be helpful to review the architectures of some
RS decoders that have actually been implemented using conventional digital logic as a point
of comparison. Cohen, in his doctoral thesis, examines three different RS decoder systems in
terms of performance and chip count [19]; his results are briefly summarized in the first three
rows of table 1-1. The last row of this table is somewhat of an extrapolation of the previous
data to the next generation of RS decoders. In chapter three we will explain the significance
of the numbers in the column labeled ‘Code,’ but for our purposes here it suffices to know that
all the decoders work over the same field, have the same block length, and can correct roughly
the same number of errors. Thus, it makes sense to compare the performance of these systems.
The chip count and clock rate give some indication of the hardware complexity of each decoder,

Introduction 1.2 Conventional Reed-Solomon Decoder Systems

and it should be noted that these numbers will vary from implementation to implementation.
The final performance measure is throughput, in terms of decoded bits output per second when
the maximum number of errors must be corrected. Again, these figures are subject to variation
depending on the particular system configuration; in general, it is possible to trade hardware for
speed.

Processor Type Chip Count | Clock Rate Code Throughput
8086 microprocessor 25 6MHz (255,243) 20Kb/sec
2901 bit-slice 30 4MHz | (255239) | 200Kb/sec
microcoded GF1 70 16MHz (255,239) 3Mb/sec
?? (parallel) 1 20MHz (255,239) 20Mb/sec |

Table 1-1. RS Decoder Performance

Cohen’s first decoder uses a standard microprocessor, with the critical loops programmed
in assembly code and the rest of the software compiled from a high-level language. Such a
system is obviously fairly small and inexpensive; however, a large performance overhead is
paid for the instruction fetch and decode time, not to mention the inefficiency of performing
finite-field arithmetic using integer operations. The 2901 bit-slice decoder overcomes some of
these limitations by providing a log/antilog table that is easily accessible to the datapath, thus
allowing field multiplication to be performed in a few microcycles. Also, the micro-instruction
fetch is executed in parallel with the previous micro-operation, and instruction decode time is
virtually eliminated by this pipeline. However, the microcode width chosen for this decoder does
not allow a branch to occur in parallel with an arithmetic operation. The GF1* architecture
extends the microcode width to allow totally independent control of branching and arithmetic
operations. Also, a full finite-field multiplier is included to allow very efficient implementation of
the polynomial operations used most frequently in decoding, such as polynomial evaluation and
convolution. For example, the GF1 processor can evaluate a polynomial of degree n in only n+6
microcycles. Thus, the GF1 decoder achieves high performance by very carefully matching its
instruction set to the problem at hand. It is clear that a combination of these area-time tradeoffs
can be chosen to produce a decoder that minimizes the cost function for a given performance
objective.

One characteristic of these systems is that if only a few (namely, less than three) errors
occur in a block, it is possible to optimize the decoder software to take advantage of this fact. Such
a technique is often referred to as average-case optimization. If the probability of more errors
is small, by using elastic buffers the system can achieve an average throughput rate significantly
higher than the worst-case figures given in table 1-1. Also, a large percentage of the decoder time
is spent in syndrome computation; as we shall see in chapter three, these syndromes constitute
a minimum set of values needed to locate and correct any errors. By casting the syndrome
computation into hardware, it is easily possible to detect the case of no €ITOrs, 50 an average-case
optimized decoder would never have to spend time on error-free data. Such an approach is but
another example of an area-time tradeoff, and the particular application at hand determines
whether the additional throughput justifies the increased hardware cost. Whether average-case

* GF1 is a trademark of Cyclotomics, Inc.

Introduction 1.3 Parallel Computation: Two Analogies

optimization is desirable depends on the channel chosen. However, Shannon’s theorem implies
that a very low average error rate constitutes inefficient use of the communication medium
(assuming that coding is free); thus, because for other than a small number of errors, the decoding
throughput is roughly constant {19], the worst-case performance is an important parameter of
these systems.

Observe also that all of Cohen's architectures are basically identical: each machine is
sequential, taking little advantage of the parallelism inherently available in the decoding algo-
rithms. In fact, virtually all conventional RS decoders have been built around the same principal
architecture, using only one finite-field arithmetic unit. As Cohen has shown, many clever tricks
can be employed to boost the performance of sequential computing machines for a given applica-
tion, but the techniques used to improve performance by two orders of magnitude from the 8086
decoder to the GF1 system are all well-known methods of conventional computer architecture.
It can be argued that such approaches have a performance ceiling for any given implementa-
tion technology, simply because of limits on the clock cycle time. Thus, as the complexity of
the problem, which in this case is measured by the number of correctable errors, increases, the
throughput is guaranteed to decrease for any sequential architecture.

1.3 Parallel Computation: Two Analogies

While a decoder using a sequential processor has some of the drawbacks mentioned above, it
also provides several benefits. Perhaps the most important of these advantages is flexibility: by
changing the software, a variety of codes can be handled, and various higher level functions {such
as 1/0) can be incorporated. For many applications, the disadvantages may not be of concern,
while flexibility is of paramount importance. A GF1 type processor in VLSI could therefore
be very useful; however, such a chip does not require any architectural innovations and thus is
not of particular interest from a research standpoint. The question then arises: are there VLSI
decoder architectures that provide substantially higher performance (for a given technology)
without sacrificing flexibility? In the remaining chapters of this thesis several such possibilities are
presented and examined. Before proceeding, however, it will be instructive to discuss two familiar
examples that illustrate some of the distinctions between parallel and sequential approaches to a
given computation. These examples will also provide motivation for the throughput extrapolation
claimed in the last row of table 1-1.

The first example is sorting: given a partial order denoted by =< and a sequence of values
a; for 0 € ¢ < n, find a permutation 7 of the indices such that Ar(i) = Qr(i41) for all 7.
Sorting has been exhaustively studied [1, 33], and many efficient methods are known for sorting
using a sequential processor. All sequential sorting techniques involve at least nlogn operations,
and generally there is a tradeoff between the complexity of the algorithm and its performance.
Also, if we are given partial information, such as knowing that the sequence is already almost
sorted (by some metric), it may be possible to employ a less complex algorithm without suffering
a performance penalty.

Now consider a parallel sorting machine of size n. How fast can the data possibly be
sorted? Also, because the complexity of the architecture chosen will be directly reflected in the
circuit area, what is the cost of the associated architecture? Before considering these questions,
let us make a simplifying assumption. Let us suppose that the values are only made available
one at a time; similarly, suppose that only one value of the result sequence can be output at
a time. In other words, the values must be at least written into the machine and then read
out of the machine after the sorting is complete. This assumption will almost always hold in

Introduction 1.8 Parallel Computation: Two Analogies

VLSI, especially in light of the pin count limitation on chips; so even if the values are obtained
in parallel, they will have to be serialized, with time delay O(n). Given such an assumption, the
best we can possibly hope for is that, as soon as the last value is written into the machine, the
first sorted value is available to be read from the machine. Subsequent reads should produce the
remaining elements in sorted order. Such a sorter operates in linear time, T = O(n), which is
optimal, given our assumption.

— > —> —

Figure 1-1. Parallel Sorting Configuration

In fact, such a machine can be built in VLSI {49]. The architecture consists of a linear
array of identical cells, each of which has the ability to perform a comparison and a swap; every
cell communicates only with its two neighbors. Thus, the communication required is particularly
simple, as shown in figure 1-1. This technique actually has area-time complexity O(n?), since the
hardware has size O(n), and the time required is also O(n). The algorithm employed is essentially
the bubble sort, which is inefficient on a sequential machine. However, because many of the
operations of the bubble sort are executed here in parallel, such an architecture is optimal in
many practial respects, particularly in light of its simple interconnection topology. Also, observe
that, even given the information that the input data are in almost sorted order, it is not possible
(or necessary) to improve the performance of the sorter without drastic increases in complexity.

Our second example is the discrete Fourier transform (DFT) over the complex numbers.
In the following chapter the DFT is defined for finite fields, but for the sake of illustration the
complex field will suffice here. In fact, we shall see in chapter three that this example has more
than a superficial relationship to the problem of decoding, because the power-sum syndromes are
a subset of a DFT defined over the finite field of interest. Given a sequence of complex values a;
for 0 < i < n, define the kb frequency component A, by

n—1
Ak = Z w"‘a,- y

=0

where w = ¢~ % isa primitive n*h root of unity. On a sequential machine, the usual complexity

measurement for the DFT involves the number of multiplications, and clearly a brute force
computation of the sequence Aj requires n® such operations. However, a much more clever
scheme, known as the Fast Fourier Transform (FFT), can be used to compute all frequency
components in time proportional to nlogn [1, 33, 48]. The FFT is particularly efficient for
digital computation when n is a power of two. There are many variations of the FFT, but each
approach takes advantage of the relationships between various powers of w to transform from
the time-domain values a; to the frequency-domain vector Ay in log n iterations, each of size n.

The FFT is characterized by butterfly patterns as shown in figure 1-2, which illustrates
the data flow of a decimation-in-time FFT for n = 8. The points at which segments intersect

Introduction 1.8 Parallel Computation: Two Analogies

Ay o . N A,
Ap N N A,
Ay o W° A,
dg Cw‘;>_1<w2 As
d, o > A,
Ay &7, _ As
Az o4 Aq
a5 Ok ——o o A7

Figure -2, Eight-point FFT Flow Diagram

represent adders, and coefficients along a segment represent a multiplication by the constant.
The O(nlogn) structure of the FFT is clearly visible in this figure. Let us now consider a parallel
implementation of the DFT, with hardware complexity on the order of n. If we choose an FFT
structure, so that the time complexity should be O(log n), observe that each computational node
in the network has to communicate with log n other nodes, including some which are quite distant
(no matter how the nodes are arranged). Further, given the same assumption we made above, to
read in the data requires time n, so it appears that our solution has area-time complexity O(n?).
While it is possible to implement the FFT with only hardware of size O(log n) [48], the storage
required will still be O(n).

Consider now a much simpler approach to DFT computation, one which will be par-
ticularly useful for coding applications, where only a fraction of the spectral components A, need
to be computed. Observe that, if we interpret the input value a; as the coefficient of z' in a
polynomial a(z), then Ay = a(w*). Using Horner’s rule, a(z) can be evaluated recursively. In
other words, given the time-domain values in the order a,_;,an_o, ..., ay, ag, let us compute an

Introduction 1.8 Parallel Computation: Two Analogies
N—=i AL
k
W
A, <
k T~

Figure 1-3. DFT Computational Node

iterative sequence of values b;, finally producing the frequency component Ag. Set by = 0 and
define

by =wkbi_y +ap-; for i=1,2...,n,

so that A, = b,. Clearly, Ax can be computed using an adder and a single multiplier involving
the fixed constant w¥, as shown in figure 1-3. This approach to DFT computation has several
advantages. First, assuming the data can be read into the system only one value at a time,
as soon as the last value is input, the computation is complete; i.e., the computation time is
dwarfed by I/O time. Second, each computational node is now totally independent, with no
communication from node to node. As a result, if only a portion of the spectrum is required,
only the nodes to calculate those values of interest need be included. Third, observe that the
multiplier involved in the node which computes A, can be specialized to the case of w*, which
may involve considerable hardware savings. Lastly, note that n no longer has to be a power of
two. Although this technique corresponds to a brute force computation of the DFT, it can be
as efficient as an FF'T approach in terms of area-time product, given our assumption; further,
it is considerably more flexible and easier to wire, which will be extremely important for VLSI
implementation.

Several conclusions about parallel computation can be drawn from these and other ex-
amples, particularly in respect to VLSI. In general, the correct measure of complexity in parallel
architectures is not computation but communication. Thus, methods that are quite effective
on sequential machines can be extremely difficult to implement in parallel, and vice versa. For
example, as we saw in the case of sorting, often it is inefficient to optimize for average-case per-
formance in parallel algorithms. Instead, a brute force approach, providing enough parallelism to
handle the given problem, eliminates any distinction between average-case and worst-case per-
formance and greatly simplifies the system design. Also, input and output time must be taken
into consideration for VLSI simply because of pin count limitation; very often, if this time can
be utilized for calculation, the I/O time will dominate the computation time, as we have seen in
the previous two examples.

Our aim is to produce decoder architectures that take advantage of the parallelism avail-
able in the decoding algorithms. However, we must first lay a foundation for such discussions.

Introduction 1.3 Parallel Compatation: Two Analogies

Chapter two gives a brief introduction to finite fields and the algebraic tools that are important
for coding theory applications. Chapter three presents an overview of the major concepts of linear
block codes, with an emphasis on Reed-Solomon codes in particular. Appendix C contains several
tables which are useful for dealing with finite fields. These chapters are included as background
to make the thesis self-contained and do not present any significant contributions to the field.
Several original results are presented in the remaining portions of the thesis, however.
In Chapter four, efficient structures for performing finite-field arithmetic in digital logic are
examined. A general expression for the transformations involved in bit-serial multiplication is
derived. This expression includes Berlekamp’s dual basis multiplier and Omura’s normal basis
multiplier as special cases, and it is shown that the dual basis multiplier is not restricted to
multiplication by a constant. Next, the necessary and sufficient condition is derived for the dual
basis to be identical to the canonical basis, which consists of consecutive powers of a primitive
element. Also, it is shown how reciprocals over the field can be computed in an efficient bit-serial
fashion; traditionally multiplicative inversion has been considered quite costly. In Chapter five,
known decoding algorithms for Reed-Solomon codes are reviewed and compared. Techniques
for erasure initialization in the Berlekamp and Euclidean decoding algorithms are presented
which fit much more naturally into hardware than previous approaches. Using these results,
in Chapter six we introduce several decoder architectures that utilize as much parallelism as
possible and are suitable for VLSI implementation. In particular, for a ¢ error correcting code
over GF(2™), these architectures have area A = O(mt) and pipeline period P = O(1) . Our
decoders have the property that the throuphput in bits per second is directly related to P ; i.e.,
a 10 MHz clock rate implies a 10 Mbit /sec decoder throughput. Further, it is shown that a single
decoder chip can handle a variety of redundancies and block lengths with little area overhead.
Appendix A presents a proof that normal basis multiplication involves roughly twice the number
of product terms as a dual basis multiplier. Appendix B uses the Gilbert model and presents a
method of computing exact output bit error probabilities for Reed-Solomon codewords of a given
blocklength, redundancy, and depth of interleaving. Previous attempts at such computations
have assumed that all character errors are independent, but our method allows direct modelling
of bursty channels by introducing an extra degree of freedom. These results represent a significant
contribution to the techniques available for design and implementation of Reed-Solomon decoders.

Chapter 2

Finite Fields

2.1 Groups and Rings
In this chapter we will examine the structure of finite fields (also known as Galois fields, in
honor of their discoverer) to lay a foundation for the results developed in the following chapters.
Our purpose here is not to give an in-depth tutorial on the beautiful theory of Galois fields;
many excellent texts are available which provide such an introduction on various levels of detail
[4,10,29,34]. In fact, a background in complex analysis provides a good grasp of the concepts
underlying finite fields; unfortunately the subject is often approached from a more theoretical
point of view which can tend to obscure the relationship between Galois fields and the more
familiar complex field. It is hoped that some analogies here can help bridge this gap. Also, in
proving several helpful facts about functions over finite fields, we will introduce the notation used
throughout the rest of this thesis.

An algebraic structure consists of a set of elements and the associated operator(s). Among
the structures of interest for coding applications are groups, rings, and fields. A group is a set of
elements G and an operator o, which satisfy the following axioms:

1. Closure: Vg,h€G, goh€eG.

2. Associative: V/,9,h€G, fo(goh)=(fog)oh.

3. Identity: Je€ G, suchthat eog=goe=yg, Vg€GQG.

4. Inverse: Vg€G,3g7'€G suchthat gog l=glog=ce

Such a group is specified by (G,o,e). Familiar examples of groups are: the integers under
addition, (Z, +,0), the nonzero complex numbers under multiplication, (C, X, 1), and the positive
rationals under multiplication, (Q, X, 1). Observe that, for example, addition modulo some value
z also forms a group, such as (Z, + (mod z),0), where z is a positive integer, or (R, + (mod z),0),
where z is a nonzero real number. Often the group operator has a physical interpretation, such
as the rotations of objects in a plane, which is isomorphic to (R, + (mod 27),0). In the group
axioms, it is not specified that the operator will be commutative; i.e., go h = h o g for every
a,b € G. For example, the set of all non-singular n X n matrices over a field (such as the reals)
forms a group under matrix multiplication, but it is not commutative for n > 1. However, in

10
Finite Fields 2.2 Fields

all the structures with which we shall be concerned, group operators will be commutative; such
groups are known as commutative or Abelian.

A subset H of G which satisfies all of the group axioms is said to be a subgroup; for example,
the even integers form a subgroup of the additive group of the integers. A fundamental property
of finite groups, known as Lagrange’s theorem, relates the size of subgroups to the parent group
and will prove useful in our investigation of the multiplicative structure of finite fields.

Theorem 2.1. (Lagrange) If G is a finite group, the number of elements in any subgroup H,
denoted by |[H |, is o divisor of |G|.

Proof: Consider the cosets of G of the form gH = {gh | h € H}, where g is some element of G.
Using the group axioms, it can be shown that these cosets form a partition of the elements of G:
note gyH and goH are identical sets if and only if g>'g1 € H, and each element of G belongs to
exactly one distinct coset. Because all elements of the group can be partitioned into sets of size
[H]|, |G| must be a multiple of |H|. &

A ring R has two associated operators, normally termed + and X (or addition and
multiplication, respectively), in which (R, +,0) forms an Abelian group, and multiplication is
closed and associative with respect to the set R. The additional ring axiom provides a link between
the two operations:

5. Distributive: Va,b,c€R, a X (b+c)=(a X b)+(a X ¢).

The additive identity is usually denoted by 0, and the additive inverse of a is written —a. If
multiplication has an identity element, it is called 1, and the ring is said to have a unit element;
if multiplication is commutative, the ring is said to be commutative. We will always deal with
commutative rings with a unit element. Such a ring will be denoted by (R, +, X,0,1). Some
examples of rings are: the integers, (Z,+, X,0,1), where addition and multiplication are the
familiar integer operations; the integers modulo m, where m is an integer, (Z, + (mod m), X
(mod m), 0,1); polynomials over the integers, written (Z[z], +, X,0, 1), where the operations are
polynomial addition and multiplication; and polynomials over a field I modulo a polynomial
g(z), written (F|[z],+ (mod g(z)), X (mod g{(z)),0,1). Typically in writing out a product, the
multiplication sign will be omitted; e.g., ¢ X b = ab.

2.2 Fields

A field F is a commutative ring in which the nonzero elements form a group under multiplication.
In other words, every nonzero element a of the field has a multiplicative inverse, normally written
a~1. Although fields can be denoted similarly to rings, such notation is rarely used. Examples of
fields include the rational numbers, the real numbers, the complex numbers, and the integers mod
a prime p. From the above discussion, this latter structure forms a ring, and it is a straightforward
task to prove that all elements of this ring have multiplicative inverses. Thus, the integers mod
a prime p form a field which is denoted GF(p), for the Galois field with p elements. A subset of
F which satisfies the field axioms is known as a subfield; for example, the rationals are a subfield
of the reals, which are in turn a subfield of the complex numbers. One consequence of the field
axioms is that addition, subtraction, multiplication, and division can be performed algebraically
just as in the complex field. For example, methods such as the quadratic formula apply to all
fields where the formula makes sense; similarly, as we shall see later, an n-point discrete Fourier

transform can be computed in any field that contains a primitive n'® root of unity. Thus, to a

11
Finite Fields 2.2 Fields

large extent, the algebraic methods learned in complex analysis can be employed over any field,
finite fields in particular.

The reader will observe that some of the structures given in the above examples consist
of a finite number of elements, while others have infinite size. For example, there are an infinite
number of integers, but the integers mod m contain exactly m distinguishable elements. Although
some properties apply only to finite structures (typically involving the size of some subset of
elements, such as Lagrange’s theorem), most of the results of abstract algebra apply equally to
both finite and infinite structures. This generality allows us to understand many facets of finite
fields by analogy with the more familiar complex arithmetic.

An important parameter of any field is known as the characteristic, which is informally
defined as the number of times any nonzero element must be added to itself to produce zero. To
show rigorously that this concept is well defined, consider the replication operator o, which takes
as arguments an integer n, known as the replication count, and a field element a, and returns a
field element:

Qea=0

lea=a

nea=(n—1)ea)+a.

Clearly any expressions in the replication count involve integer operations, while the expressions
in a involve field operations. If, for n < 0, we define n e ¢ = |n|e(—a), then for all integers n,m,
(nea)+(mea)=(n+m)ea. Similarly, ne(mea) = (nm)ea. Now, for n 0, and a,b 5£ 0,
it is clear that n e ¢ = 0 if and only if n e b = 0, since

ba_l(noa) =neb.

The characteristic is thus defined as the minimum n for which n e 2 = 0 for any a 5 0.
If this number is infinite, as for example in the rationals or reals, the field is said to be of
characteristic zero. The characteristic specifies the smallest subfield of the field. That is, clearly
the multiplicative identity must be an element of any subfield, and by closure so must all elements
of the form z = n e 1, as well as the multiplicative inverse of . For example, if the field is of
characteristic zero, the smallest subfield is isomorphic to the rationals, since the elements n e 1
constitute the integers, and the replication operator applied to the reciprocals of the integers
produce the rest of the rationals. Obviously, any such field has an infinite number of elements,
so no finite field can be of characteristic zero.

It can easily be shown that if a field does not have characteristic zero, it must have
characteristic p, where p is prime. Suppose that the characteristic of a field F is p = km, where
both k and m are greater than one. Then,

O=pea==ke(mea)=rFkeb=>ba""(kea),

where b = m e g, implying that k e a = 0. However, p was the smallest such integer, and clearly
k < p. So, by contradiction, p must be prime; in particular, any finite field must be of prime
characteristic. It is not difficult to show, using the above properties of the operator e, that the
elements ne 1, for 0 < n < p, form a subfield isomorphic to GF(p), and because this is the
smallest possible subfield of F, it is unique. Thus, we may without loss of generality refer to it
as GF(p).

12
Finite Fields 2.8 Extension Fields

2.3 Extension Fields

From the above discussion, every field F contains a subfield which is isomorphic either to the
rationals or to GF(p) for some p, depending on the characteristic of F. This fact can also be
construed as a statement about the construction of fields. In other words, to build a large field,
we must begin with the smallest field of the given characteristic. Consider the following theorem.

Theorem 2.2. A finite field F of characteristic p is actually a vector space over GF(p).

Proof: We will prove this theorem by constructing a basis for F. Clearly GF(p) is a subfield of
F. Pick any nonzero field element as the first basis vector, and call it gy. Obviously, there are p
distinct elements of the form apo, where a € GF(p), and apo = 0 if and only if a = 0. To apply
the induction step, suppose that we have a set of elements B = {y; € F|i=0,1,...,k -1},
which are linearly independent with respect to GF(p); that is,

k—1
Za,-u,-=0 iff a;i=0, i=01,... k-1,

§=0

where each a; is an element of GF(p). Consider the subset K of F which is spanned by B. If K
= F, the basis is complete. However, if K is a proper subset of F, pick p; to be any element of F
which is not in K. Now observe that the new set {4} is also linearly independent, since clearly
tx 7% 0, and if there exists a non-trivial linear combination of the u;’s which is zero, then aj
must be nonzero, because the elements of the old set B are linearly independent. That is,

k k-1 k—1
0= Z aifhg implies pe = ag’t Z aipy = Z(ak_lai)lti,
=0 =0 =0

which is a contradiction because px was chosen to be not in the span of the set B. This process
continues until the set B spans the entire field. Now, because the set B is linearly independent
with respect to GF(p), each element of F has a unique representation as a linear combination of
the elements of the basis. |

Two results follow immediately from this theorem. First, observe that if there are m
elements in the basis B, the field F consists of exactly p™ elements, so any finite field of
characteristic p must have size p™ for some positive integer m. The field F is said to be an
extension field of degree m over GF(p). The concept of extension fields carries over into infinite
fields as well: m is defined to be the dimension of the vector space. Also, the underlying field
does not have to be the smallest field available; e.g., complex numbers are a two-dimensional
extension of the reals. Note that the degree of the extension does not have to be finite; for
example, it is quite possible to have an infinite field of characteristic p, and both the reals and
the complex numbers are infinite extensions of the rationals. However, for coding applications,
finite extensions are sufficient.

Second, field addition can now be performed component-wise using GF(p) addition, regard-
less of the basis chosen, since

m—1

c=a+b= Z(Gi+bi)ﬂi;

=0

13
Finite Fields 2.8 FErtension Fields

if a = Z::;)l aspi and b = E:’;‘Ol bii¢. Thus, it is clear that any of the well-known methods
of linear algebra can be applied here to produce a new basis which may be more suited to the
particular task at hand. For purposes of implementation, we will choose p = 2; then field
elements can be represented as vectors over GF(2), with each component a Boolean value, so that
field operations lend themselves naturally to digital logic. For example, since GF(2) addition is
equivalent to the Boolean exclusive-Or (XOR) operation, a serial adder can always be implemented
over GF(2™) using two shift registers and a single XOR gate. One particularly nice aspect of
fields of characteristic two is that 1 + 1 = 0 or 1 = —1; i.e., because there is no distinction
between addition and subtraction, all signs can be ignored.

Now the question remains: how do we construct finite extensions of a given field? A very
familiar example will serve to illustrate the method. Let us choose as the underlying field the real
numbers. The first step is to find an irreducible polynomial over the reals, such as f(z) = z% + 1;
in this case we have m = 2. Obviously, there are many other such polynomials, but they are all
of degree two and will produce the same extension field. Let ¢ be a root of f(z), so that 12 = —1.
We choose as our basis for the extension the first two integer powers of i, namely {1,:}. Clearly
these two elements must be linearly independent with respect to the reals; otherwise, 1 would
satisfy a linear polynomial over the reals, contradicting the irreducibility of f{z). Each element z
of the new field is represented by a pair of real values (z, y); in other words, z = z + fy. Addition
over the field is performed component-wise:

21 + 29 = (171 + iy1)+(:t:2 + iyz) = (171 + 172)+ i(y1 +y2).

However, multiplication is somewhat more complicated, involving the fact that i? = —1:

z1zg = (21 + 11 (T2 + iy2) = 7122 + i(Taye + 223) + i 2y1¥e = (2122 — Y1) + i(Z1ye + T2y1)-

Similarly, the formula for division can be derived.

Of course, it is no surprise that we have just constructed the field of complex numbers.
The importance lies in the method by which we obtained this new field. The fact that f(z)
was irreducible implies that the first m powers of a root, call it «a, are linearly independent
with respect to the underlying field F. Alternatively, f(z) is known as the minimal polynomial
of a with respect to F; i.e., it is the polynomial of smallest degree over F which has « as a
root. Essentially the elements of the extension field can be thought of as polynomials, with the
root a of f(z) being used as the indeterminate; in fact, the distinction between the root o and
the indeterminate z begins to fade, since higher powers of a can be reduced using f(z) to a
polynomial in « of degree less than m. Given an irreducible polynomial f(z) over F and a root
@, the extension field denoted by F|a| is the smallest field containing both F and o; the extension
is of degree m, where m is the degree of f(z). Arithmetic in F|a] is defined to be polynomial
arithmetic modulo f(z), with coefficient arithmetic performed over F; in other words, using the
fact that f(a) = 0, powers of the form o' for i > m are reduced to polynomials in « of degree
less than m.

Clearly the structure F[a] forms a ring; to prove that it is a field we need merely show that
every nonzero element has a multiplicative inverse. Let hA(z) be a nonzero polynomial of degree
less than m, and let b = h(a). Obviously, b 5% 0, since f(z) is the minimal polynomial of «.
Now, since f(z) is irreducible, it is relatively prime to h(z). Therefore, using Euclid’s algorithm,
we can find polynomials u(z) and v(z) such that

u(z)h(z) + v(z)f(z) = 1. (2.1)

14

Finite Fields 2.4 Primitive Elements

Evaluating (2.1) at £ = «, with ¢ = u(a), we find ab = 1, since f(a) = 0. In other words, a =
b~!. But by choosing h(z) appropriately, we can generate any nonzero element b; in particular,
for a given field element b = Y 7' b;af, pick h(z) = 7! b;z!. Again, note the lack of
distinction between the indeterminate z and the root a. Now we have a constructive method for
finding multiplicative inverses of nonzero elements of F|a], leading to the following theorem.

Theorem 2.3. Given an irreducible polynomial f(z) of degree m over a field F, where o 13
any root of f(z), the set
b € F}

forms a field with respect to the operations of polynomial addition and multiplication mod f(z).

Fla] = { "i ba'

=0

Proof: Clearly the set Fla] forms a commutative ring, and we have just seen that all nonzero
elements have multiplicative inverses. Therefore, Fla] is a field. R

Turning our attention strictly to finite fields, i.e., finite extension fields over GF(p), let us
present a few well-known facts without proof. First, it can be shown that all finite fields must
have the form given in Theorem 2.3 {29, section 5.5]. But for what m do irreducible polynomials
of degree m exist over GF(p)? It turns out that there are irreducible polynomials of every degree
for all p. In other words, a finite field of size ¢ exists if and only if ¢ = p™ for some prime
p and positive integer m. Further, any two finite fields of the same size can be proven to be
isomorphic. Thus we can speak of the field with p™ elements without ambiguity; this field is
known as GF(p™). Armed with these facts, we can construct finite fields of any size using the
method outlined above.

2.4 Primitive Elements

Theorem 2.1 provides a good understanding of the additive structure of F = GF(p™) : field
elements can be considered as vectors over GF(p), with addition performed component-wise.
Although the representation of multiplication will vary depending on the particular basis chosen,
we will show that the multiplicative group of F is quite simple. Let us denote the nonzero elements
of the field F by F*; i.e., the multiplicative group of F. For any element a € F*, we define a* as
follows:

a® =1

al =a

a* = ad*™!
a—k — (a—l)k

In other words, this exponentiation operator is to multiplication what e is to addition. With each
element a of the group F* is associated a positive integer |a|, known as the order of a, which is
defined as the minimum positive exponent k for which a* = 1. In retrospect, the characteristic
of the field F is just the additive order of the nonzero field elements; similarly, the concept of
the order of an element can be defined for any group.

Consider now the set of elements {a) = {a*|{=10,1,2,...}. Clearly {a) contains exactly
|a] distinct elements, and it is easy to see that {a) forms a subgroup of F* under multiplication;

15
Finite Fields 2.4 Primitive Elements

in fact, ({a), X, 1) is isomorphic to (Z,+ (mod |a|),0). But, by Lagrange’s theorem, |a| = |(a}|
must be a divisor of IF'I. We have just proved the following corollary to to Lagrange's theorem:

Corollary 2.4. The order of every element of a group must be a divisor of the group size.

The group ({a), X,1) is known as cyclic, because all group elements can be expressed as
some power of a; the element a is known as the generator of (a). Finite cyclic groups have
a particularly simple structure, since, as mentioned above, they are isomorphic to the integers
under addition mod the group size. We are now ready to prove that the multiplicative group of
a finite field is cyclic.

Theorem 2.5. The multiplicative group F* of GF(p™) is cyclic. In other words, there exists
an element a € F* such that |o| = |F*| = p™—1. @ is known as a primitive element of GF(p™).

Proof: Let n = IF'I = p™ — 1, and consider the polynomial g(z} = z™ — 1. By the previous
corollary, every element of F* is a root of ¢(z), which therefore factors linearly over F:

fr)=z"-1=][(- a).

a€F*

Now, if d|n, gs{z) = z¢ — 1 divides g(z), 5o g4(z) must also factor linearly. In other words, for
every divisor d of n, there are exactly d elements of F* which satisfy gg(z).

If we denote by N4 the number of elements of F* of order d, clearly Ny 5 0 only if d|n.
Consider the Euler phi function ¢(d), defined as the number of positive integers less than or equal
to d which are relatively prime to d. For any integer d, by considering the prime factorization of
d, it can easily be shown that '

d=Y_¢(r), (2.2)

r|d

where the sum includes all positive factors of d, including 1 and d. We now claim that Ny = ¢(d),
which we shall show by induction on d. Clearly N; = 1 = ¢(1). So, let us assume that for all
proper divisors r of d, N, = ¢(r). From the above argument, there are exactly d elements of F*
which satisfy g4(z); clearly all elements of order d must come from among this set, as well as all
elements of order r < d where r|d. In other words,

Ne=d-)Y N,

rid
r<d

which can be simplified using (2.2) to find Ny = ¢(d), as we were to show.
By induction, N, = ¢(n), so there are exactly ¢(n) primitive elements of GF(p™). &

The multiplicative structure of GF(p™) can thus be characterized very simply. Observe
that a primitive element of GF(p™) is a primitive nth root of unity, and the minimal polynomial
of a primitive element is known as a primitive polynomial. Given a primitive element «, every
nonzero field element a = af for some §, with 0 < { < n = p™ — 1, so elements of F* can
be specified by their logarithm to the base . In fact, one common method of implementing
multiplication over finite fields is to use log and antilog tables. Also, by theorem 2.5, primitive
d*h roots of unity exist in GF(p™) if and only if d|n; each such root can be expressed as a™? for
some primitive element c.

16
Finite Fields 2.5 Conjugation

2.5 Conjugation
The proof of Theorem 2.5 relies heavily on the interplay between field addition and multiplication
in discussing the factorization of the polynomial z® — 1. In fact, most of the algebraic results
dealing with finite extension fields are intimately related to the roots of polynomials over the
base field. A very familiar example is again found in the complex numbers. Given a root ¢
of z2 + 1 over the reals, observe that —i is also a root. Thus, the linear mapping defined by
(z+ iy)‘ == z — i1y, known as complex conjugation, is an automorphism of the complex numbers
which clearly does not alter the real numbers. In other words, the choice of i as the root was
totally arbitrary; we could just as well have chosen —i, so interchanging these two roots cannot
change the way field arithmetic works. In this particular case, it can be shown that complex
conjugation is the only such (non-trivial) automorphism.

In general, conjugation is defined as a permutation of the roots of an irreducible polynomial
f{z) which produces an automorphism of the associated extension field, leaving the underlying
field intact. Since arithmetic in the extension field is independent of the particular root chosen,
all roots of f(z) are conjugates. The set of such automorphisms forms a group which can be
related to the structure of the extension field. Over finite fields, conjugation can be expressed
very simply: the generator of the automorphism group of GF(p™) with respect to GF(p) is the
mapping z — z?. Consider the following lemma:

Lemma 2.8. In GF(p™), (z + y)”lr = z?" + y*". In other words, raising to @ power of p is a
linear operation.

Proof: For k = 0, the theorem trivially holds. For & = 1, using the binomial theorem, we have

P
X p . s
P = E ' iy p—i
(:l:+y) '=0(‘).(Zy)
But, for 0 < ¢ < p, (’:) is divisible by p. Since the field is of characteristic p, all the intermediate
terms drop out, and we are left with

(z+y) ==z +y*.
Now, assume by induction that the theorem holds for all 1 < £+ 1. Then

k+1

e+ o =(+op) =@+ P =P+ P =

In particular, for fields of characteristic two, squaring becomes a linear operation, as well
as raising to any power of two. Using this lemma, it can easily be shown that the set of roots of
an irreducible polynomial f(z) over GF(p) is exactly the set of conjugates of a given root ¢, i.e.,
{a?'}. Thus, all automorphisms of the field GF(p™) which fix GF(p) have the form z — z?" for
some non-negative integer k. Observe that k¥ = 0 produces the identity automorphism, but so
does k = m, since every element of the field is a root of z?” — z = (z — 0)(z" — 1).

The subfields of F=GF(p™) can also be determined by considering conjugation. Suppose
that GF(pd) is a subfield of F. Then, F* must have a multiplicative subgroup of order p¢ — 1,
implying that (p? — 1)|(p™ — 1), which holds only if d|m. If d|m, then zP* — z factors linearly
with roots in F, and, in fact, the roots of this polynomial form the field GF(p?). In other words,
GF(p™) has GF(p?) as a subfield if and only if djm. From Theorem 2.2, F forms a vector space
of dimension m/d with respect to this subfield. Given a primitive element o of F with respect
to the subfield, the roots of the primitive polynomial of o are given by the conjugates . So
conjugation is defined by both the underlying field and the extension field.

17

Finite Fields 2.6 Linear Functione

2.6 Linear Functions

The previous sections have provided a brief introduction into the arithmetic structure of Galois
fields. In the ensuing sections, we examine various types of linear functions over finite fields
of characteristic two; however, these results can be extended to all finite fields. Consider an
arbitrary function f(z) from GF(2™) into itself. Given an ordering of the field elements z;, f(z)
can be specified by 2™ values:

flzi)=1a; for 1=0,1,...,2™ ~1.

Let p; be the Lagrangian interpolation polynomial of z; with respect to these points; i.e.,

2m—1 z r
— 3
o= T 222
j=¢ Ti—Zj
I

Clearly pi(z;) = 8;,;, where § is the Kronecker delta, and deg(p) < 2™. Thus,

2m—1 gm—1
f(z)= E aipi(z) = Z Jizt.
(=0 =0

In other words, any function from GF(2™) into itself can be expressed as a polynomial of degree
less than 2™.
Now suppose that f(z) is a linear function; i.e.,

fz+y)=f(z)+fly), Vz,y€ GF(2™).

Linearity implies that f can be entirely specified by its actions on a basis, since if {u; | i =
0,1,...,m— 1} is a basis, then

[(z) = f(> x.-u.-) =)= 3 wie fu),

i=0 =0

where each z; € GF(2). Every basis element can map into any field element, so there are exactly
2m)" = 2m® distinct linear functions. By a simple counting argument, we can derive the
polynomial form of f(z). Because conjugation is a linear operation, the functions z2' are linear.
Thus any function of the form b(z) = 31— b;z%" is linear, where each b; € GF(2™), and there
are exactly 2m* such functions. Further, they are all distinct because b(z) is identically zero if
and only if each b; = 0; otherwise a polynomial of degree 2™~! would have 2™ roots. So, all
linear functions from GF(2™) into GF(2) must have the form

m—1

fl@) =Y ai®,

=0

where each a; € GF(2™). These functions may also be thought of as linear transformations,
since GF(2™) is an m-dimensional vector space over GF(2), so a linear function f(z) can also be
expressed as a binary matrix.

18

Finite Fields 2.7 Discrete Fourier Transforms over Finite Fields

As a particular example which will prove useful later, let us examine the class of binary-

valued linear functions over GF(2™). Consider the linear function trace, denoted Tr(z), which is
defined by

m=—1
Tr(z) = E z?
=0
If y = Tr{z), then, applying the conjugation operator,
m-—1) m-1 i1
A= =T e e =y,
=0 =0

since z2” = z. In other words, y is a root of the equation 0 = 32 — y = y(y — 1), implying
that y € GF(2). Thus, the trace is a linear function from GF(2™) into GF(2). How many such
functions can there be? Given a basis {4}, each basis element can map into either 0 or 1, so there
are exactly 2™ binary-valued linear functions. Now consider the class of linear transformations
bs(z) = Tr(Bz), where 8 € GF(2™). Clearly these functions are binary valued, and because bs(z)
is a polynomial of degree 2™~! or less, it is the zero function if and only if # = 0. Thus, there
are 2™ distinct such functions. By this simple counting argument, we see that any binary-valued
linear function must have the form Tr(8z) for some 8 € GF(2™).

2.7 Discrete Fourier Transforms over Finite Fields

The concept of discrete Fourier transforms is well understood in the realm of complex numbers.
However, an examination of the proofs for the various properties of the Fourier transform reveals
only two essential requirements: arithmetic must take place over a field, and there must be a
primitive n*® root of unity in the field. From the preceding discussions it is thus clear that
Fourier transforms can be defined over finite fields as well, with a single restriction. In the
complex case, a primitive root of unity is available for every integer n and is given by a = e"'af‘,
but over GF(2™), primitive n*® roots of unity exist only when n|(2™ — 1). Given this constraint
we make the following definition.

Definition. Consider the field GF(2™), and a positive integer n which divides 2™ — 1. Given
a vector of field elements v = (vp,v1,...,v,—;), and a field element o with |} = n, the Fourier
transform of v, denoted by V = (V,V1,...,V,_,), is defined as

Vk == Z v,-a"'. (23)

By analogy with the complex case, we may call the index i time and the index k frequency,
although there is no physical significance associated with these terms. Similarly, the vector v
is known as the time-domain vector, while the vector V is called the frequency-domain vector
or spectrum. It will be our convention for the rest of this thesis that, where the distinction
makes sense, lower-case vectors will represent time-domain signals, while upper-case vectors are
the corresponding frequency-domain vectors. For example, components of received (and possible
garbled) Reed-Solomon words will be denoted by s;, while the syndromes, which form part of
the Fourier transform of s, will be written Sj.

19

Finite Fields 2.7 Discrete Fourier Transforms over Finite Fields

We now proceed to state (without proof) many of the properties of the Fourier transform
as defined above; most of these properties are identical to those of the complex transform. Again,
these facts can be generalized to fields of characteristic p # 2, but several simplifications result
from considering only GF(2™). The interested reader should refer to Blahut [10, chapter 8] for
an detailed explanation of these concepts, complete with proofs, since these theorems are taken
directly from Blahut's presentation, adapted to the case ¢ = 2™.

Theorem 2.7. (Inversion) A vector is related to its Fourier transform, as defined in (2.3), by

n—1
vy = Z Via™ . [|

=0

Theorem 2.8. (Convolution) If e; = fig; for i=10,1,...n—1, then

n-—1

E;= Z Fj—knGr, for j=0,1,...,n—1,
k=0

where the double parentheses represent modulo n arithmetic on the indices. |

Theorem 2.8. (Translation} If {v;} & {Vi } is a Fourier transform pair, then the following
are also Fourier transform pairs:

, {avi} & {Viesr))
and {v((,-_l))} < {aka } [|

Theorem 2.10. (Polynomial Representation) If we represent the Fourier vectors v and V as
polynomzials,

n—1 n—1
v(z) = Z vizt and Viz)= E Viezk
k=0

i=0
then

Vi == v(ak) and v = V(a—"). 5§

This last theorem makes clear a certain duality between polynomials and Fourier vectors,
which we shall often use implicitly. At certain points during a discussion it will be convenient to
refer to vectors as polynomials, and at other times we will find it more useful to refer to them as
vectors. Often the transition between points of view will be quite abrupt, depending on the need
at hand, so the reader should familiarize himself with these concepts. The Fourier transform
will allow us to couch many coding theory concepts in terms which are already familiar from
traditional complex analysis.

20

Chapter 3

Coding Theory

3.1 Linear Block Codes

For any digital communication channel, there is a discrete set of values, sometimes termed letters
or characters, which can be sent and received; often, the letters will be individual bits. A
particular sequence of such letters is known an a word. For our application, a code is defined
as a set of words known as codewords which can be transmitted over a channel. Typically the
information to be sent is divided into packets, and each packet is encoded by some rule to produce
a codeword before being modulated and sent. The receiver takes the incoming (and possibly
garbled) word from the demodulator and decodes it to produce the most likely candidate for the
original codeword, from which the original information is then extracted, as shown in figure 3-1.
Hopefully, the introduction of coding provides some system advantage, because clearly there is
a cost associated with building the encoder and decoder. This coding gain is often measured in
reliability or in the use of a simpler (less expensive) modulator/demodulator on the given channel.

In this chapter we will examine the basic concepts of linear block codes in general and
Reed-Solomon codes in particular. In a block code, each codeword is composed of exactly n
characters: n is known as the block length of the code. By contrast, in another major class of codes,
known as convolutional codes, the codewords contain an infinite stream of characters; in practice
the sequence is truncated at some point. Although convolutional codes have many important
applications, we will not consider them in detail in this thesis. For digital implementation, each
letter of the channel alphabet can be represented by a fixed number of bits, so we may consider
a character to be an element of a finite field F; thus, codewords in a block code form vectors of
length n over F:

c=(Co,Cl,-..,Cn_1),

where each ¢; € F. A code is said to be systematic if the information characters always appear
unaltered in some subset of the letter positions; the remaining locations in the codeword are
known as parity or check locations. Systematic codes can be desirable because, if an uncorrectable
error pattern occurs, often a large portion of the information characters are nonetheless correct,
so much of the data is recoverable. Linear block codes have the property that the sum of any two
codewords is also a codeword, where addition is performed componentwise. In other words, linear

21

Coding Theory 8.1 Linear Block Codes
Information —> Encode Modulate
Channel
7))
CC
Demodulate Decode —>|nformation

Figure 8-1. Coding on a Digital Channel

block codes form a subspace, say of dimension k, of a vector space of dimension n over F. Such
codes are fairly well understood because they lend themselves to analysis using standard methods
of linear algebra. For example, it can be shown that, by using an appropriate encoding technique,
every linear block code is systematic. If the dimension of a linear code is k, the corresponding
code is known as an (n, k) code, meaning that there are k information letters and n — k& parity
characters; the code is said to have redundancy n — k.

For a given application, the complexity of an appropriate code and its associated encoding
and decoding rules will depend on both the error statistics of the given channel and the desired
level of reliability. For example, if the raw error probability is acceptable, then the information
can be sent unaltered over the channel. However, if higher reliability is required, redundant
information must be added to allow the decoder to reconstruct the transmitted codeword and
thus extract the desired information. Let us define the rate of a code to be the ratio of the number
of information bits to the total number of bits in the codeword. The reader is cautioned that,
according to this definition, rate has nothing to do with speed; instead, it is a measure of the
efficiency of the code: the lower the rate, the more overhead is required, in terms of redundant
information. Obviously, the rate R satisfies the inequality 0 < R < 1, and an (n, k) linear
code has rate R = k/n. One simple coding scheme is known as the n = 3 repetition code: the
encoder sends the information three times and the decoder takes a majority vote on the three
received messages. Such codes exist for all positive n and have rate 1/n; in fact, adding no
redundancy corresponds to the n = 1 repetition code. Although repetition codes allow simple
implementation, they are not very powerful; usually, codes with much higher rates can be used
to achieve the same level of reliability, at the cost of more complex encoders and decoders.

Stated formally, Shannon’s channel coding theorem [46] asserts that for any discrete
memoryless channel there exists a number C, known as the channel capacity, with 0 < C < 1,
such that for all ¢ > 0 and all R < C, there exists a code with rate > R and an accompanying
decoding algorithm which, when used on the given channel, has a probability of decoding error
which is less than €. Of course, no actual channel is perfectly discrete and memoryless, but
the theorem has been extended to several other channel models [40], and in many instances the
channel of interest approximates one of these models fairly closely. Shannon’s theorem provides

22
Coding Theory 3.2 Distance Metrics

an existence proof for good codes, as the block length of the code becomes asymptotically large;
however, the channel coding theorem gives no hints about the construction of such codes. Further,
in real life we must contend with finite block length, so it is not clear initially whether Shannon’s
result can be meaningfully applied to practical problems. Fortunately, many powerful linear
block codes have been discovered which are quite useful in practice, although they may not meet
Shannon’s asymptotic bound.

3.2 Distance Metrics

A grasp of the distance metric used in coding theory is fundamental to an understanding of how
codes can be used to correct errors. The Hamming weight of a vector x = (%o, ..., Tn—1), denoted
wg(x), is defined as the number of nonzero components of x. If we define a scalar function

0, z=0;
5(1‘)-_—{1, z?.é()’

then the Hamming weight can be formally defined by

Let us define the Hamming distance between two vectors x and y, denoted du(x,y), as the
number of components in which the two vectors differ. Clearly, the Hamming distance is just the
Hamming weight of the difference between the two vectors; i.e.,

n—1

du(x,y) = wy(x—y) = Y_ 6(z: - y:).

=0

Further, it can be easily shown that the Hamming distance obeys the triangle inequality, so it is
a metric in the rigorous sense of the term over any given vector space.

An important parameter of any code C is known as the minimum distance or dmin, Which
is defined as the minimum Hamming distance between any two distinct codewords:

dnin(C) = xn;’iélc du(x,y)= xrr)llienc wh(x—y).
X7y Xy

Now suppose that x and y are two distinct codewords of a linear block code. Then the vector
z = x —y is also a codeword; choosing y to be the zero vector, we clearly see that all nonzero
codewords can be expressed in this form. So, if € is a linear block code, then the expression for
the minimum distance can be simplified to

dmin = Min wy(x).
X0

In other words, to find dp,y, it is sufficient to find a nonzero codeword with the lowest possible
weight. Conceptually, a minimal weight codeword can be found by exhaustive search, although
such a search is practically feasible for only the simplest codes. Instead, an algebraic construction
is typically given for the codewords, allowing the minimum weight to be determined analytically.

23
Coding Theory 3.2 Distance Metrics

Figure 3-2. Using Hamming Distance to Correct ¢ Errors

The parameter dp;, determines how many errors can be corrected by a code. Suppose
that a codeword x is transmitted over the channel, and a possibly corrupted version x + y is
received. The number of character errors which have occurred is obviously e = wg(y). For what
values of ¢ can a decoder correctly determine the original codeword r or, equivalently, the error
pattern y? The answer to this question is given in the following theorem, which we will prove by
geometric arguments.

Theorem 3.1. If a code has minimum distance dmin = 2t+1, then any error pattern of weight
t or less can be corrected.

Proof: We will prove this result by giving a decoding algorithm. With the Hamming distance
metric, it is possible to define a sphere of radius r about a vector x as the set of vectors which
lie within Hamming distance r of x. Consider spheres of radius ¢ about each codeword in the
vector space. Because dmin = 2t + 1, all of these spheres are disjoint, as shown in figure 3-2. If a
codeword x is transmitted, then the received vector x + ¥ lies within the sphere centered about
x if and only if e = wy(y) < t. Therefore, the error pattern can be decoded (i.e., corrected) by
the following algorithm: pick the codeword which is closest in Hamming distance to the received
vector. By the above argument, this procedure is well-defined and guaranteed to produce a unique
result as long as e <¢t.

Notice that the theorem provides only a sufficient condition; in other words, if dpj, =
2t + 1 it may be possible to correct some error patterns of weight greater than ¢. Unfortunately,
the algorithm presented in the above proof is rarely feasible to apply in practice, but it does give
an indication of the goal of a mazimum-likelihood decoder. Basically, the idea is to produce a
codeword which is closest to the received vector by an appropriate metric, so that the output of
the decoder is the most likely transmitted codeword. If errors in distinct characters are roughly
independent, then the Hamming distance is probably an acceptable metric, while if errors tend
to occur in bursts (or more complicated patterns), a different metric will be necessary. For
many applications the Hamming metric is used to design a code, and then variations such as
interleaving (which will be discussed later) are employed to match the characteristics of the code
to the channel at hand.

Observe that, at least conceptually, a maximum likelihood decoder performs some sort of
correlation of the received word with every codeword. Thus far we have discussed errors as a
binary phenomenon; however, often the demodulator can extract analog information which can be

24
Coding Theory 3.8 BCH and Reed-Solomon Codes

used to assign probabilities that the given received value actually corresponds to each letter of the
channel. For example, suppose that a value of 1.0 is transmitted to convey binary information,
but the receiver can observe any real value. If we assume that the channel introduces noise with
a Gaussian distribution, then upon reception of the value 0.9 we have some level of confidence
that a +1.0 was in fact sent. Taking such information into account in the decoding process
is often termed soft decision decoding, as opposed to hard decision decoding, in which all input
values are quantized to the nearest possible channel letter before the decoding process begins. On
most communication channels, utilizing soft information can greatly enhance the error-correcting
capability of a code, at the cost of additional complexity in the decoder. Convolution codes
are attractive because, using the Viterbi algorithm [40], considerable soft information can be
incorporated into the decoder with very little overhead.

In general, it is much more difficult to incorporate soft information into the decoding
process for block codes, although some advances have been made in this direction [6]. However,
one very simple type of soft decision can be readily utilized in Reed-Solomon and related codes.
Often, the demodulator can determine that the letter currently being received is in error; such
a character is termed an erasure. If there are r channel letters, an erasure effectively assigns a
probability of 1/r to each of the possible characters. Although this information is fairly weak,
as compared to a more complex comparison and probability assignment, introducing erasures
into a decoder can produce significant gains in reliability for a given channel. Each erasure
effectively reduces the distance of the code by one, since a decoder can no longer determine
which codeword(s) differ from the received word in that component. Thus, by Theorem 3.1, each
pair of erasures decreases the number of correctable errors by one; equivalently, each erasure
corresponds to half an error. Later in the chapter we will discuss more powerful schemes, known
as concatenated codes, which can take advantage of the best features of block codes without
sacrificing the coding gain provided by soft decision decoding.

3.3 BCH and Reed-Solomon Codes

From a pedagogical point of view, it is perhaps easiest to define and explain the properties of
Reed-Solomon codes in terms of the Fourier transform over finite fields [10]. As we shall see
below, such a formulation is quite similar to the original exposition by Reed and Solomon [45],
although for implementation purposes a more algebraic approach has often been adopted. Using
the properties of the DFT outlined in the previous chapter, all of these viewpoints can be related
fairly simply, and it is also possible to derive the more general class of BCH codes, which are
named after their discoverers, Bose, Chaudhuri, and Hocquenghem. Using Fourier transforms to
explain linear block codes has the added benefit of allowing engineers to utilize intuition which
they have already developed about the DFT. In fact, in retrospect it has become clear that much
of coding theory is closely connected with standard techniques of digital signal processing.

Definitlon. Consider the field GF(2™), and a positive integer n which divides 2™ — 1. Let o
be a primitive n*® root of unity in GF(2™). Given an integer L, where 0 < L < 7, an (n,n — r)
Reed-Solomon code over GF(2™) is defined to be the set of all vectors
c = (Cchl,---,Cn—-I)
of length n over the field whose Fourier spectrum with respect to a,
C= (COJClv . -'an—l))
where Ci, = Y17} c;af* | satisfies Creky) =0 fork=0,1,....r—1. 3

1==0

25
Coding Theory 3.8 BCH and Reed-Solomon Codes

*

Time Doma

M

C,lClC,| - - - o

0. 0lC T 1c

L4r

Cl-IC

L—-1

.

Frequency Domain

Figure 3-8. Frequency Constraints on Reed-Solomon Codewords

In other words, an RS code is defined to be the set of all vectors whose spectral components
are zero in a fixed frequency window, as illustrated in figure 3-3. Clearly the (n,n — r) code has
redundancy r, and there are n —r information characters per codeword. The figure suggests that
one encoding method is to start in the frequency domain with any spectrum which is zero in
the specified window and then to perform an inverse transform, producing a valid time-domain
codeword. Unfortunately, such an encoding rule is not systematic, and encoder implementations
based around the inverse transform are not particularly efficient. There are two other equivalent
interpretations of figure 3-3. First, using the polynomial representation of ¢ (Theorem 2.10),
observe that the definition implies

el) =0
for k=0,1,...,r — 1. In other words, c(z) is divisible by the generator polynomial of the code,

L+r-1
g(z) =]_1 (I - ak)’

which has degree r. A systematic encoding rule using this viewpoint is to interpret the information
characters p; as a polynomial

n—r—

p(z) = Z piz’,

=0

and let h(z) = z"p(z) (mod g(z)) be the remainder when z"p(z) is divided by g(z). The polynomial
¢(z) = z"p{z)— h(z) is then clearly divisible by g(z) and is thus a codeword. Very simple encoders

26
Coding Theory 3.8 BCH and Reed-Solomon Codes

can be built to perform this polynomial division [5]. In the second alternative viewpoint, which
is essentially identical to the original presentation of Reed and Solomon, the frequency-domain
vector is viewed as polynomial:

n—1 n—r—1
C(Z) = Z C,,xk = ZL+r z CL+,+ka = .'I:L+’D(I),
k=0 k=0

where deg(D) < n —r, since z" = 1 for all values of the field. Then
¢i = Cla™) = a~ U+ D(a~). (3-1)

Although this interpretation is not particularly attractive for implementation, the minimum
distance properties of the code can be easily derived from (3.1):

Theorem 3.2, The minimum distance of an (n,n —r) Reed-Solomon code i3 dpyjy = r + 1.

Proof: Suppose instead that there is a nonzero codeword of weight ¢ < r + 1. Then ¢; = 0
for all but e indices; in other words, by (3.1}, the polynomial D(z) has n — e > n — r — 1 roots.
However, no polynomial can have more roots over a field than its degree, and we saw above
that deg(D) < n—r —1. So, dmip > r+ 1. Now considering ¢ as a polynomial, observe that
¢(z) = g{(z) is a codeword and has weight r + 1,50 dyyjy <r+1. §

Each redundant character thus increases the distance of a Reed-Solomon code by exactly
one; clearly the addition of a check character can do no more than this, and such codes are known
as mazimum distance geparable. Typically we will choose r = 2t in order to be able to correct ¢
errors. One nice feature of Reed-Solomon codes is the ease with which code rate can be traded
for correction capability: two extra check characters always allow one additional error (or two
erasures) to be corrected. While it is in theory possible to correct 2t erasures, this course is rarely
chosen, because there is insufficient redundancy to help insure that additional errors have not
occurred. Also observe that, when inspected on a bit level, RS codes have an inherent capability
of correcting error bursts, since a single code error can correspond to up to m consecutive bit
errors. In particular, a ¢ error-correcting code over GF(2™) can always handle error bursts up to
1+ m(t — 1) bits long, as well as some slightly longer bursts, depending on how the bit errors are
aligned with respect to character boundaries. Further, for ¢ > 1, multiple smaller bursts can be
corrected. Thus, RS codes are well-suited to a mixture of random and burst errors.

Both Reed-Solomon and BCH codes are called cyclic because any circular rotation of the
components of a codeword produces another codeword. To prove this assertion, note that, given
a codeword c(z), the polynomial zc(z) is formally a codeword also, since it has zeroes at all the
appropriate locations; however, it has degree n:

n—1 n—l1
zc(z) = Z it = 2™ + E cimpz'.
i=0 i=1
But since g(z) is a divisor of z"* — 1, z" = 1 (mod g(z)). That is,

n—1 n—1
ze(z) = cpey + Z Cimp ' = Z c((,-_l))z" (mod ¢(z)),

f===1 =0

27
Coding Theory 3.8 BCH and Reed-Solomon Codes

where the double parentheses again indicate arithmetic mod n. The latter sum is exactly a
circular rotation of ¢(z), and since it is congruent to zc(z) mod the generator polynomial g(z), it
must also be a codeword. Repeated applications of this argument prove that all rotations of c¢(z)
are in fact codewords. An alternative proof of this fact relies on the translation properties of the
Fourier transform: a circular shift in the time domain corresponds to multiplying each frequency
component Ck by of, which does not change the zero pattern, thus assuring that the rotated
vector is also a codeword. This property will prove quite useful for implementing portions of the
decoder in hardware.

If greater burst protection is required, a technique known as interleaving can be employed
to enhance the burst-correction capabilities of the code. Interleaving involves shuffling characters
from different codewords so that bursts are distributed evenly throughout the codewords. For
example, consider a technique known as block interleaving, to depth d = 4; in other words, four
codewords a,b, ¢, and d are encoded by row and transmitted by column:

a’OJbOyCOJdOval!bl)C]l)dlya2;b2ycﬂyd‘21"-7an—lxbn—lycn—l;dn—l .

More sophisticated schemes are possible [22], but for our purposes it is sufficient to know that
interleaving to depth d roughly improves the burst error correction capability of a code by a factor
of d. In general, interleaving is used when the additional redundancy needed to correct a burst
directly is either unavailable (because of block length limitations) or too costly to implement.

At first, the restriction of block length to a divisor of 2™ — 1 could seem a significant
limitation. In some sense this is correct, but only in the case where a block length longer than
2™ — 1 is desired. Given a code of natural block length 7, it is always possible to shorten the
code to any length ng, where n > ny > r. The systematic encoding mentioned above which
involves the generator polynomial 9(z) suggests the construction for such a shortened code. If
both the encoder and decoder assume that all the high-order information characters (i.e., p; for
i > ng —r — 1) are zero, then these characters never have to be transmitted. Also, for the most
part it turns out that the only major effect on the encoder and decoder is that cycles of length n
are replaced by cycles of length ny. Thus, up to the limit of the field size, it is possible to select
both the redundancy and the block length as desired. It should however be noted that shortened
codes are no longer cyclic. One goal of our decoder structures will be to handle shortened codes
in an efficient manner.

Many other important codes can be derived using similar arguments. For example, it is
possible to append up to two information symbols to a Reed-Solomon codeword of natural length
n [10]; however, these eztended Reed-Solomon codes are not of particular interest here. Also,
it should be noted that the previous theorem applies to any code which has a zero frequency
window of length r. Suppose that we wish to design a code over a subfield of GF(2™); eg., a
binary code. Then all coefficients of the generator polynomial must be elements of the subfield
as well, so g(z) must have as roots not only of fori =L L+ 1,...,L+r—1 but all conjugates
of these elements (with respect to the subfield) as well. Such codes are known as the generalized
BCH codes, of which the binary BCH codes (12, 30| are the best known example. In terms of the
spectrum, the codewords must have zero components in the frequency window of interest and in
other spectral locations determined by the conjugacy constraints. The degree of the generator
polynomial and thus the amount of redundancy for a code with given dpi, will therefore increase
as the subfield decreases in size. Reed-Solomon codes are a special instance of generalized BCH
codes in which the two fields are identical; thus they are the only codes in the family which are

28
Coding Theory 8.4 The Key Eguation

maximum distance separable. In particular, each binary BCH code is a subfield subcode of a
Reed-Solomon code, so the decoder structures we will discuss in chapter six can handle binary
BCH codes as well, although perhaps somewhat inefficiently.

3.4 The Key Equation
Given the definition of Reed-Solomon codes, it is a fairly straightforward task to design an
encoder, at least conceptually. However, the arguments in the preceding section give no clue
about possible decoder algorithms or implementations. Subsequent chapters will deal with this
subject in depth. In preparation for such discussions, it will be instructive to derive a formal
statement of the decoding problem, using the Fourier transform. An alternative proof of the
minimum distance property of Reed-Solomon codes will serve as motivation for our derivation of
what has come to be known as the key equation, the equation which must be solved by a decoder.
It will be clear that this key equation also holds for the entire family of generalized BCH codes.
Our second proof of Theorem 3.2 proceeds as follows. Suppose that an (n,n — r) RS code
has minimum distance less than r + 1; in other words there exists some nonzero codeword ¢ with
wr(e) = e < r+ 1. Let I be the set of indices for which ¢; is non zero:

I={i|c5#0).

Clearly I contains exactly e distinct elements. Alternatively, indexing the components of ¢ by

field elements instead of integers, we may make the association ¢; — Cqi; then I corresponds to

a set of field elements. We will often talk about these two representations interchangeably.
Consider now the polynomial

L1
Az) = H(a":c -1)= Z Ajzd .
i€l =0
Note that the roots of A(z) correspond to the nonzero components of ¢; in other words,
Ae™*)=0 if and only if i #0. (3.2)

Using the polynomial representation property of the Fourier transform, we may assume that A(z)
corresponds to a frequency-domain vector. If we let A(z) be the associated time-domain vector,
then observe that (3.2) implies

Mci=0 for ¢=0,1,...,n—1. (3.3)

So, by Theorem 2.8 and (3.3), the convolution of A(z) and C() in the frequency domain is also
zero. Since A is of degree ¢, we find that, for all k&,

[
0= 3" A;Cie—s,

J=0

or, since Ag = 1,

€
Cu ==, A;Cl(k—s)- (34)

j=1

29
Coding Theory 3.4 The Key Eguation

In other words, the components of the Fourier transform of ¢ satisfy a (circular) linear recurrence
of length e < r + 1. However, since ¢ is a codeword, its spectrum is zero in a window of size
r. Beginning with this window, and applying (3.4) to complete the spectrum C, we see that in
fact all components are zero. Thus, ¢ is the zero vector as well, so by contradiction all nonzero
codewords have weight greater than r.

But now we can interpret (3.4) as a statement of the decoding problem. Let us assume
r = 2t for simplicity, although such an assumption is not necessary. Given a received vector
8(z) = c(z) + e(z), where c(z) is a codeword and e(z) is an error pattern of weight ¢ < ¢ + 1,
our goal is to find c(z), or equivalently, e(z). Let o(z) be the polynomial whose roots correspond
to the nonzero coefficients of e(z), similar to A(z) above. In this instance, o(z) is known as the
error-locator polynomial, because its roots determine the location of the errors in e(z). If we let
E be the Fourier transform of the error pattern, then the argument leading up to (3.4) can also
be applied in this case to yield:

e
Ee ==Y 0;Eu_). (3.5)

j=l1

But now consider the frequency window in which codewords have zero spectral components. Here,
Cx = 0, implying Sy = Ej, so we can compute a window into the spectrum of the error pattern
directly from the received word. Then, for k=L, L+1,...,L+2t—1,

[
Sk == 0S((k=7))- (3.6)

i=1

The values Si for Kk = L,L+1,...,L+ 2t — 1 are known as the power-sum syndromes. If we
can determine the coefficients of the recurrence relation (3.6), then the entire error spectrum can
be determined recursively from the syndromes, allowing the error pattern to be computed by
an inverse transform. This view of the problem is often known as transform decoding, in which
the syndromes are considered part of a Fourier transform and the error pattern is obtained from
an inverse transform of the completed error spectrum. In fact, any decoding method which
utilizes the power-sum syndromes can be considered a transform decoder, although the method
of computing the error pattern given o(z) may differ significantly from the procedure described
above.

Suppose now that we define a polynomial

2t—1

5(1,‘) = Z SL+k$k .
k=0

Let I be the set of indices corresponding to nonzero components of e, and consider the product
S(z)o(z). First we note that, in the window of interest, the syndromes are related to the error
pattern by

Sk = s(a¥) = e(c*) = E eia'® (3.7)
i€l

30
Coding Theory 8.5 Correcting the Errors

Using (3.7), we can derive the key equation:

2¢—1
a(z)S(z) = H(a‘z -1) z Sp4rz*
i€l k=0
_ 2t—1
= [J(ez~1)) (a* Y ejadli+)
i€l k=0 jel
‘ 2t—1
= [I(aiz -1) E(eja‘“’ E ok z*)
iel jel k=0
25t 2t
= H(a"z -1) Z e;adl i_—l (3.8)
iel jei o’z —1
= z eyad btz — 1) H(a";c —1)
J€El icl
i
=- Zaj"ej H(a"z —1) (mod z%%)
R

= w(z),

where w(z), defined in the last line of (3.8), is known as the error-evaluator polynomial, for reasons
which will become clear shortly. Note that deg(w) < e <t = deg(c). In other words, we need
to look for two polynomials o(z) and w(z), each of degree less than ¢t + 1, that satisfy

o(z)S(z) = w(z) (mod z%%). (3.9).

This is the syndrome key equation. Algorithms to solve (3.9) will be presented in Chapter five.
Clearly the power-sum syndromes depend only on the error pattern, not on the codeword,
while any other frequency component must depend on ¢(z). In fact, the syndromes constitute a
minimal set of information necessary to determine a correctable error pattern. The equivalent of
the syndromes in the time domain is the remainder polynomial, r(z) = s(z) (mod g(z)), which can
be easily calculated by reencoding the received word. Since Sp+k = r(a““‘) for all components
in the window, it is possible to compute the syndromes given the remainder. Similarly, by
the Chinese remainder theorem, the syndromes provide enough information to reconstruct r(z).
Decoding algorithms which utilize only r(z) are known as remainder decoding techniques, and in
Chapter five we shall see that there is a corresponding key equation for remainder methods.

3.5 Correcting the Errors |
Solution methods for the key equation will be deferred until later, but given the error polynomials
o(z) and w(z), how does one go about producing the error pattern? The method outlined above,
involving only the error-locator polynomial, is often referred to as recursive eztension in the
frequency domain. Because the error spectrum is known in the window, using (3.5) the entire
spectrum E can be computed given o(z), and an inverse transform produces e. While this
approach is conceptually enlightening, in practice the computation is not particularly efficient in
terms of area-time product.

31
Coding Theory 8.6 Performance of Reed-Solomon Codes

For reasons to be discussed in the following section, we will be largely interested in high-
rate codes, so a correction procedure involving only o{(z) and w(z), both of size less than the
redundancy of the code, would be very attractive. Fortunately, a fairly simple algebraic technique
can be used to produce the error values. Observe that 8k is in error if and only if o(a"‘) = 0,
so consider the value of the error evaluator w(z) at these points:

wla™) = o*le, [[(a"* - 1), (3.10)
i

for k € 1. The product in (3.10) reminds us of the form of the derivative o'(a~¥), if the error-
locator were defined over the complex field. In fact, a formal derivative can be defined for
polynomials over any field, and this operator obeys all the differentiation rules of standard
calculus. For example, (uv) = w'v + uv’ and (z*Y = kz*~1, so over fields of characteristic
2, all terms of the form z2* drop out on differentiation. If we make this formal definition of
o'(z), then for k € I, note that

o'la™®) = o* lll(af"‘ -1).

So, from (3.10), we find

__[o(a=*) £ 0
k {a"‘“"l)w(a"‘)/o’(a""), ocla*)=0. (3.11)

Often L = 1 is chosen to simplify the expression.

The process of finding the roots of the error-locator polynomial is often performed by
a Chien search [17], which involves evaluating o(z) iteratively at consecutive powers of o and
testing for zero. Although this method constitutes an exhaustive search, it can be implemented
fairly efficiently in hardware, as we shall see in Chapter six; for decoding applications in which the
codeword components are received sequentially, almost no penalty is paid for such a brute force
technique. In binary BCH codes, where an error is known to have value 1, the error locations
alone are sufficient to specify the error values; in this case only a Chien search is needed. The
more general expression for error values (3.11), known as the Forney algorithm [26], must be
used for non-binary codes. Although both a Chien search and the Forney algorithm are required
for Reed-Solomon codes, we shall often refer to the combined process as a Chien search, for
simplicity.

3.6 Performance of Reed-Solomon Codes :

In his doctoral thesis, Cohen [19] presents several criteria for determining when the use of Reed-
Solomon codes is appropriate and how their features can be utilized most effectively. The first
conclusion is that, for codes of similar block lengths and redundancy, RS codes have distinct
advantages with respect to binary codes or convolutional codes only on channels in which errors
tend to occur in bursts, even when interleaving is utilized to enhance the burst protection of the
non-RS codes. [7]. However, if the channel is subjected to noise which is random from bit to bit,
a binary BCH code offers better error protection than an RS code or a non-binary BCH code.
Because many channels of interest are characterized by error bursts, Reed-Solomon codes are

32
Coding Theory 3.6 Performance of Reed-Solomon Codes

therefore of great practical importance. Another disadvantage of binary codes is that, to achieve
the same total block length (in bits) as a Reed-Solomon code, a binary BCH code is typically
built over a larger field, implying the need for a wider arithmetic unit in the decoder.

Cohen’s second conclusion is that high-rate Reed-Solomon codes are adequate for almost
all applications. If channel error rates dictate the need for a low-rate code, a concatenated coding
scheme, as shown in figure 3-4, will usually outperform a straight RS code of the same rate. In
a concatenated system, there are two codes, an inner code and an outer code: the outer code is
typically a high-rate RS code, while the inner code can be a low-rate code which is much simpler
to encode and decode. The overall coding rate of the system is the product of the inner and outer
code rates. Because the area-time complexity for a Reed-Solomon decoder is at least on the order
of the square of the redundancy [24], the cost of the concatenated system is usually lower than
that of a corresponding low-rate RS code system.

Encode U Encode 15
lﬂfo _9 // //
RS(127,1 15) BCH(1 5,7)
’,:BModem
Decode U Decode
Info <— 4
RS(127,1 15) BCH(1 5,7)
Ve Y/ NV
Outer Code Inner Code

Figure 3-4. Example of a Concatenated Coding Scheme

As an example, consider the concatenated system shown in figure 3-4. The inner code is
a (15,7) binary BCH code, which is capable of correcting two random bit errors in each block
of fifteen bits; the output of the inner decoder consists of seven bit blocks, which could serve
as the input to a (127,115) RS code over GF(128), capable of correcting six character errors
of up to seven bits each. While the overall rate is roughly 0.42, each of these codes is fairly
easy to implement. In particular, the BCH code can be both encoded and decoded using lookup
tables. Also, if soft information is available from the channel, perhaps the inner code could be a
convolutional code; this type of concatenated system is very powerful, utilizing the best features
of convolutional and block codes.

For a given channel, how does one go about selecting the appropriate combination of block
length, rate, and interleaving depth to meet the reliability and/or cost objectives for the system?
As an example of the decisions which must be confronted, it is possible to correct bursts either
by adding additional redundant characters or by interleaving to a greater depth. Consider the
following shortened RS codes over GF(256): a (250,230) non-interleaved code versus a (125,115)
code interleaved to depth two. Both codes have the same number of redundant characters, the
same rate, and the same interleaved block length (250 bytes), and each code can correct bursts

33
Coding Theory 8.6 Performance of Reed-Solomon Codes

Figure 8-5. The Gilbert Channel Model

up to eighty bits long. The first code can correct more error patterns than the interleaved code
but requires a more complex decoder; thus, interleaving has both advantages and disadvantages.
In general, for a given block length and rate, a non-interleaved code is more powerful than an
interleaved code, but block length limitations on RS codes and the hardware costs for additional
redundancy must be taken into account.

The tradeoffs involved also obviously depend on the particular channel model selected.
Perhaps the simplest channel model is known as the binary symmetric channel or BSC, in which
every bit transmitted has a probability p, of being received in error; this model clearly corresponds
to random errors. Often, curves of output bit error probability versus input bit error probability
are plotted for Reed-Solomon codes based on a BSC channel model, mainly because the result
can be obtained in closed form. However, as mentioned above, RS codes perform best in a bursty
noise environment, so using the BSC model is not particularly appropriate. Employing a slightly
more complex channel model, known as the Gilbert model [27], exact numerical results can be
obtained for the RS coding scheme of choice (see Appendix B for details). The Gilbert model,
illustrated in figure 3-5, is essentially a Markov process. One state is known is as the good
channel, in which all transmitted bits are received without error (ie., pe = 0). Transitions occur
from the good channel to the bad channel in a discrete Poisson process with probability) at
each bit. The bad channel, a BSC with p, = 0.5, corresponds to a burst in progress, and the
burst continues with Poisson statistics, ending with probability 4 at each bit. For x = 1.0 and \
small, the Gilbert model closely approximates a BSC with bit error probability X\/2. Obviously,
the average spacing between bursts is 1/)\ bits, while the average burst length is 1/ bits; these
two parameters are often known for the channel of interest, so an analysis can be performed to
predict the probability that the decoder will encounter a block which is not decodable. However,
no real channel can be modelled exactly by such a simple model, so the results of such analyses
must be interpreted somewhat qualitatively.

In figure 3-6, the contours for constant output bit error probability using the Gilbert model
are plotted for a (255,239) RS code over GF(256), interleaved to depth d = 2 and d = 4. Observe
that the effect of interleaving is essentially to scale the burst length axis, as one might expect. In
fact, when the average burst size is exactly one bit, all errors are random, so there is no difference
between the two plots at this point. For small average burst size (i.e., smaller than the character

34
Coding Theory 8.6 Performance of Reed-Solomon Codes

BIT ERROR PROBABILITY CONTOURS
RS(255,239), d=2

—n
oo
]

oﬂ
]

~

—
(@]
|

Average Burst Spacing (bits)
=

10 | : : % ' |

I ¥

1 2 4 8 16 32 64 128 256 512
Average Burst Length (bits)

BIT ERROR PROBABILITY CONTOURS
RS(255,239), d=4

-t
OU
]

Oﬂ
i

—
o\l
]

Average Burst Spacing (bits)
o,

10 t f } f i

1 2 4 8 16 32 64 128 256 512
Average Burst Length (bits)

-+

Figure 3-6. Gilbert Model Error Statistics For Interleaved RS Codes

35
Coding Theory 8.6 Performance of Reed-Solomon Codes

size), the probability of decoder error increases only slightly with increasing burst length. Then
at some critical point the error probability increases rapidly with burst length. As the average
burst length becomes large enough for a single burst to cause an uncorrectable error pattern, the
curve flattens out again; in other words, the bit error probability depends much more heavily on
whether any burst occurs in the block. A fair amount of numerical computation is involved in
generating these plots, but such curves can be very helpful in comparing the tradeoffs in coding
systems. Appendix B contains details of the computations as well as an entire family of curves
for various output bit error probabilities and depths of interleaving.

As with many engineering decisions, the selection of coding parameters is as much an
art as a science, although many analytic and numerical methods can assist in the design process.
Even given a flexible single-chip Reed-Solomon decoder, many subtle system factors can influence
the choice of the appropriate code, but there is little doubt that the tradeoffs involved can be
greatly simplified by a VLSI decoder implementation.

36

Chapter 4

Bit-Serial Multiplication

4.1 Motivation

Bit-serial multiplication over finite fields has recently been given much attention in the literature.
Berlekamp [5] has shown how to build efficient Reed-Solomon encoders using a dual-basis bit-
serial multiplier, and implementations of this technique have been realized in both conventional
logic 5] and LSI chips [32]. Upon contemplating this result, it becomes apparent that the major
conceptual advance is in the bit-serial multiplication method; the encoder is but one particular
application. For decoder systems, our hope is to fit many multipliers on a single integrated circuit,
molding the chip architecture directly to the decoding algorithm of interest.

Although Berlekamp applied his technique only to multiplication by known constants,
it can readily be generalized to the product of two arbitrary field elements, as we will see in
the following sections. Omura and Massey [39] have presented another scheme of performing
bit-serial multiplication, using a basis consisting of all conjugates of a given field element. The
question then naturally arises: which of these approaches is more efficient? To our knowledge,
no one has yet addressed the issue of choosing the representation of the field elements which (in
some sense) minimizes the cost of building a bit-serial multiplier.

In this chapter we shall investigate the structure of finite fields, seeking to optimize bit-
serial computation. A family of bit-serial multipliers which includes Berlekamp’s and Omura’s
approaches as special cases will be derived; among all these methods, the dual-basis structure is
shown to be superior in several respects. Further, it is proved that a self-dual basis can be found
if and only if some elements of the field have a trinomial as their minimal polynomial, which
result unfortunately excludes GF(256). Also, a more traditional approach to multiplication will
be presented, which employs a canonical basis and is analagous to the integer shift-and-add
method. We also demonstrate how multiplicative inversion can be accomplished in a bit-serial
fashion, greatly reducing the complexity traditionally associated with this operation. Each of
these results can impact a decoder architecture significantly.

4.2 Area-Time Tradeoffs in Multiplier Design
The following sections will examine in great detail how to build multipliers of a particular type
over GF(2™). Before plunging into the algebra, it will be instructive to give some rationale for

37
Bit-Serial Multiplication 4.2 Area-Time Tradeoffs in Multiplier Design

selecting bit-serial arithmetic in general and this approach in particular. Much study has been
done on bit-serial arithmetic methods for the integers, and computations over GF(2™) involve
many similar features. However, a distinguishing feature of finite-field multiplication is that both
factors must be completely available before any part of the result can be produced. In other
words, there is no concept of least significant or most significant bits in the representation of a
field element, so integer multiplication techniques must be reinterpreted in light of this fact if
any correspondence is to be made.

In the past, the complexity of a decoding algorithm has often been measured by the
number of finite-field multiplications required, because the design of high-performance decoding
systems has typically revolved around a single, extremely fast, fully parallel multiplier [3,19].
While it is quite feasible to build a parallel multiplier on a VLSI chip, the structures involved are
rather unwieldy. Multiplication of two elements of GF(2™) requires m? Boolean AND operations,
together with at least m? — 1 XOR operations. The throughput of such a multiplier would vary
considerably, depending on the amount of pipelining and the structure of the parity computation
(see table 4-1 below), but it is clear that wiring will contribute considerably to the area, limiting
the number of such multipliers that could fit on a single chip.

In VLSI, the complexity of communication is often a more significant determinant of
chip area than the overall count of computational operations. Using a small number of parallel
multipliers in a decoder chip is inefficient for two reasons. First, each multiplier will typically
be multiplexed between many inputs and/or outputs, and the cost of such sharing, including the
communication of operands and results, may well outweigh the cost of the multiplier itself. More
importantly, the polynomial manipulations involved in decoding algorithms have a high degree
of inherent parallelism. By executing many multiplications concurrently, even if each operation
is (individually) relatively slow, appreciable gains in throughput can be achieved.

y:s YQ y1 yO
15 <
P— Z Z

Figure 4-1. A Shift-and-Add Multiplier over GF(16)

X5 X, X, X,

Bit-serial arithmetic presents the possibility of fitting large numbers of multipliers on a
decoder chip. There are two well-known approaches to bit-serial multiplication over finite fields.
The first technique is somewhat analagous to the integer shift-and-add method [4, section 2.42],
in that one factor must be completely available throughout the procedure, while the other factor
is made available one bit at a time. Such asymmetry introduces a diflerence in the latency of the

Bit-Serial Multiplication

38

4.2 Area-Time Tradeoffs in Multiplier Design

Multiplier Type | Parity Structure| A T p T/p AT/p
Parallel pipelined m?| logm log m 1 m?
Parallel tree m?2| logm 1 logm m? log m
Parallel chain m? m 1 m md

Shift-and-Add (nome) m m 1 m m?

Bit-serial pipelined m m 1 m m?
Bit-serial tree m | mlogm 1 mlogm | m?logm
Bit-serial chain m m? 1 m? m?

Table 4-1. Order Estimates for GF(2™) Multiplier Structures

result with respect to the two factors, which may have an impact on higher level system timing.
The shift-and-add method (see figure 4-1) is attractive because no parity tree is required, and
both factors can be expressed in a canonical basis. Also, multiplication by fixed constants can
be hard-wired into the circuitry. This technique in some sense is a hybrid between parallel and
bit-serial computation: the result is obtained in parallel and may then be shifted out serially.

In the second approach, both factors are required throughout the computation, producing
one bit of the result each clock cycle {5, 39]. This method is perhaps more strictly bit-serial, in
that the result is actually produced sequentially instead of being serialized after the fact; thus
it may be attractive for systems in which all communication is to be done bit-serially, since the
latency is a constant m with respect to both factors. As we shall see below, however, performing
multiplication in this fashion in general also requires area proportional to m?, unless great care
is taken in choosing a representation for the field elements.

In table 4-1, we present order estimates of the area A, latency T, and number of mul-
tiplication problems p that can be handled concurrently for some of the approaches discussed
above. It is very important to realize, however, that for coding applications we are interested in
small m (say m < 13); therefore, asymptotic behavior may not be at all indicative of the proper
performance tradeoffs. For example, a parity tree can replace a time factor of O(m) by O(log m),
but the wiring overhead could be quite costly for small m, so the constants in front of the order
estimates are crucial. In MOS technology, a linear parity chain can be implemented entirely with
pass gates, while a tree structure requires restoring stages, which can be costly in area, time,
and power. Table 4-1 does not attempt to give the constants which accompany the actual order,
since these values will depend on the particular implementation technology, but for small m the
difference between O(m) and O(log m) depends crucially upon these values.

It is clear that there exist intermediate approaches to performing multiplication, such
as producing two bits of the result at a time, or four, etc., and it is quite possible that one
of these methods will optimize some area-time metric. However, bit-serial communication on
a decoder chip will already be expensive enough in terms of wiring, and efficient utilization of
multi-bit arithmetic units requires multi-bit communication channels. Further, our aim is to fit
as many multipliers on a chip as possible, and bit-serial methods will obviously minimize the area
required. The rest of this chapter will be devoted to a study of bit-serial multipliers of the two
types discussed above. First we will treat the case in which the bits of the product are produced
sequentially; then the inherently simpler shift-and-add multiplier will be generalized by analogy
to the former case.

39

Bit-Serial Multiplication 4.8 Resolving Field Elements into Basia Components

4.3 Resolving Field Elements into Basis Components

Before discussing bit-serial multipliers, we need some tools for extracting the bit representation
of field elements in a given basis. Suppose we have a basis B = {uo, p1, ..., tm—1 } for GF(2™)
over GF(2). In other words, every element z of the field can be uniquely expressed as a linear
combination of the basis elements

m—1
z= E i
=0

where each z; € GF(2).
To find the components of an arbitrary field element z in this basis, we seek a set of

functions {f;} such that f;(2) = z;. Note that each f; is a linear function from GF(2™) into
GF(2), since

filz+y)=z; +y; = fi(z) + [5(v).

Thus, using the results of section 2.6, we know that there exists a set D = {ao, a1,...,am—1}
such that

Ii(z) = z; = Tr(z¢;).

Now, since trace is a linear function, we know that

m—1 m—1
Tr(za;) = Tr(Z z.-u,-a,-) = Z 2 Tr(pioy),

=0 §==0
which can hold if and only if
Tr(u.-a,-) = bi ;. (4.1)

Clearly, D also forms a basis for GF(2™), since if

m—1

0= Z cjaj

‘0

then for each ¢

0= Tr(p;(mi cjaj)) = '"Z'“: e; Tr(piag) = ci.

=0 7=0

D is known in the literature as the dual basis of B [5,36].

The dual basis D thus provides one method for determining the components of z in the
basis B. From (4.1), by analogy with the unit vectors in three-space, we see that the dual basis
is in some sense orthogonal to the basis B. In other words, to pick out a specific component z;,
apply an inner product of the form Tr(zc;}. However, for circuit implementation, it will be more
convenient to have an iterative scheme of generating the z;. Given the basis B, we can extract

40

Bit-Serial Multiplication 4.5 Factorable Linear Transformations

the components of z one at a time using a non-singular linear transformation T such that

zp == Tr(ay2)
&1 = Tr{a1) = Tr(a, ()

(4.2)
] = Tr(am—l Z) = ’I‘r(aon—l (Z)) !

where T7(z) = T(T7=}(z)), and T°(z) = . Actually there are 2™~! such transformations,
specified by their results on the basis elements:

T(1o) = pm—
T(uj) = pjy + ¢jlm—1, for j=1,... m—1, (4.3)

where each ¢; € GF(2), with ¢y = 1. The ¢j’s may be chosen arbitrarily, and we will attempt to
utilize this freedom below. Note that applying T to an element expressed in the basis B amounts
to a shift operation, with a feedback term specified by the ¢;'s.

4.4 Choosing an Optimal Basis

Now suppose that we wish to find the product of two field elements, z = zy, where

m—1 m—1
z = E Tipg and y= Z Yikj.
f=0 j==0

We implement the logic to produce the first bit of the result, namely

m—1

20 = Tr(eg2) = Tr(eyzy) = Z Ty Tr(oo pop;). (4.4)

i, j==0

Although this logic will be fairly involved, note that by applying T to the product successively,
the remaining bits of the result are produced, reusing the same first bit logic.

In choosing the basis B, we have several goals. First, the transformation T must factor
somehow, so that T may be applied to the product z = ry by individually transforming z and y.
Further, these individual transformations must be relatively simple to apply to z and y. Lastly,
implementation of the function Tr(ayzy) must be as simple as possible. Let us examine these
(somewhat subjective) requirements in turn, with the caveat that it is unclear initially whether
all our goals can be satisfied simultaneously.

4.5 Factorable Linear Transformations
The linear transformation T must not only satisfly equations (4.2), but it is also required to form
some sort of homomorphism with respect to field multiplication. In particular, there must exist

41

Bit-Serial Multiplication 4.5 Factorable Linear Transformations

functions R and S such that
Tr(eoT(2zy)) = Tr(eR(z)S(y))
Tr(agT 2(zy)) = Tr(aR *(2)S 2 (y))
: (4.5)

’

Tr(aoT ™ (23)) = Tr(eR ™" (2)S ™ (3))

so that the bits of the product z = zy will be correct. What form can these functions take?
Since the problem is symmetric, let us concentrate on R. Each result below applies to S as well.

Lemma 4.1. R(z,) = R(z2) & z; = z5. In other words, R is one-to-one.

Proof: Given two elements u, v € GF(2™) such that R(u) = R(v), suppose u # v. Consider the
two products z = uy and w = vy, where y is an arbitrary nonzero element of GF(2™). Looking
at the bit representation of these products,

z=uyw (2,2, 22,...) = (Tr(ayuy), Tr(eyR(x)S(y)), Tr(aoR*(u)S 2(y)), o)
w = vy > (wo, w1, Wy, ...) = (Tr(agvy), Tr(ay R(v)S(y)), Tr(R 2(v)S 2 ¥), ...)

Since R(u) = R(v), then R7(u) = R¥(v), for all j > 0; thus 2; = w;, for j > 0. But z — w =
uy — vy = (u ~ v}y 7 0, so we must have z, % wy, implying

z—ww (1,0,0,...) = up.
Or,

y=(2—w)(u—v)"! = po(u—v)"L

Now there is a contradiction, since we allowed y to be an arbitrary element of the field, yet we
have shown it to be a fixed element. Therefore, we must have v = v. |

Corollary 4.2. For each z € GF(2™), there exists an z € GF(2™) such that R(z) = z. In
other words, R is onto.

Proof: Since R is one-to-one mapping from a finite set into itself, it must also be onto. a

Lemma 4.3. R(0)=0.

Proof: By Corollary 4.2, 3z € GF(2™) such that R(z) = 0. Suppose z 7 0. Let z be an
arbitrary field element. Note that z = zy, where y = zz~!. So,

21 = Tr(a,T(2)) = Tr(eyR(z)S(y)) = 0.

But we know that there exist field elements (e.g., 2 = pu,) for which z; 3% 0. So, by contradiction,
we must have z =0. |

42

Bit-Serial Multiplication 4.5 Factorable Linear Transformations

Lemma 4.4. R s a non-singular linear transformation.

Proof: Note that for all u,v,y € GF(2™),

Tr(aoR(u + v)S(y)) = Tr(aoT((u + v)y)) = Tr(aoT(vy)) + Tr(eoT(vy))
= Tr(agR()S(y)) + R(v)S(y) = Tr(ao(R(u) + R(v))S(y))-

By Corollary 4.2, since y is an arbitrary element of GF(2™), both S(y) and 8 = S(y) may also
assume any field value. So, for all u, v, with 8 an arbitrary field element,
Tr(8[R(u + v) — (R(u) + R(v))]) = 0.
This can happen only if the expression in brackets is identically zero. Then, for all u, v € GF(2™),
R(u +v) = R(u) + R(v).
Thus, R is linear, and by the previous lemmas we know that it is non-singular. J
Lemma 4.5. If R and S satisfy equations (4.5), then for all z,y € GF(2™),
T(zy) = R(z)S(y) + bt Tz Q(y)), (4.6)

where Q(y) 1s a linear transformation.

Proof: Consider the representation of z = T'(zy) and the product w = R(z)S(y) in the basis B.
Using equations (4.5),

wo = Tr{agw) = Tr(ao R(=)S(3)) = Tr(apT(zy)) = 2o
w, = Tr(a,T(w)) = Tr(aeR*(z)S *(y)) = Tr(aeT *(zy)) = 2

Wm—z = Tr(aT ™ % (w)) = Tr{aoR™ " (z)S ™ (y)) = Tr(2oT ™ (29)) = Zm—2.
In other words, z and w are identical in their first m — 1 components, so either z = w or z =
w + pm—1. Then there exists a function g(z,y) which takes on values in GF(2) such that
T(zy) = R(z)S(y) + pm-19(z,y).
If we fix y, then g(z,y) = g,(z), and, because both T and R are linear,

gy(u +v) = gy(u) + gy(v),

for all u,v € GF(2™). Thus g, is a linear function from GF(2™) into GF(2), so it must have the
form g,(z) = Tr(zQ(y)). By similar argument, for all u, v,z € GF(2™),

Tr(zQ(u + v)) = Tr(zQ(u)) + Tr(zQ(v)).

Therefore, Q(y) is a linear function. |

43

Bit-Serial Multiplication 4.5 Factorable Linear Transformations

At first glance it would appear that equation (4.6) is not symmetric between z and Y.
However, from section 2.6 we know that any linear function over GF(2™) has the form

m—1

Q) =Y ¥

Jj=0
Then, since Tr(z) = Tr(zzj), we deduce that
m—1 m—1 .
Tr(zQ(y)) (Dy) (> (=0’)
j=0 =0

So indeed the form is still symmetric between z and y.

Lemma 4.8. Q(y) = vy, for some v € GF(2™).

Proof: Expressing the linear transformations of equation (4.6) in their polynomial forms (see
section 2.6), we find

m-—1 m—1
i i i f i+
E tiz? y? = E ris;z’ V2 F E g7 2y?
=0 f, J==0 1, =0

This equation must hold identically for all z and y, so we have a matrix of coefficient relations
to be satisfied. In particular, we may break these conditions into diagonal terms (le, 1=17)

t.-=r.-3.-+pm_1q§‘, for {=0,...,m—1 (4.7)
and off-diagonal terms

ris; = lm—1 q?J_‘-, for 5 j, (4.8)

where all indices are understood to be taken modulo m.
We want to show that all the ofi-diagonal terms of g are zero. Note from equation (4.8)
that if even one such term is zero, they are all zero. For example, if r; = 0, then for all j 5£ i,

gi—i = 0. So let us assume that r; 5 0 and s; 7 O for all i, and that ¢; % 0 when i 5 0; we
will look for a contradiction.

First, we note that R(z) is defined only up to a scale factor, which may be absorbed into
S(y), so since ro £ 0 we may assume without loss of generality that ro = p,,;. Then, using
equation (4.8) with { = 0 we find

95 =gqj, for j5#O0. (4.9)
Let us define v; = u,_,,l_l ri, so that v = 1. Now consider the case i = 1:

U14j=4§—1’ for]=2,3,,m—1

44

Bit-Serial Multiplication 4.5 Factorable Linear Transformations

So, v; = ¢5/g;. Since every element of GF(2™) has a unique square root, we may choose 8 €
GF(2™) such that §% = ¢z /q,. Proceeding along the row, we find

73 = (g2/93)a3 = g2 8*
44 = (qz/qf)qi = ‘hﬁm

and in general, for 7 > 2,

g5 = (g2/0})5—1 = 287 *. (4.10)
In fact, equation (4.10) also holds for j = 1,2, so from (4.9)

81=Qzﬂ21_4, for j=1,2,...,m—1.

What about 35 ? We know from (4.8) that
2 . 2m=1_4)? 24 _ 2™m—4 __ 204
80 == @y [V1 = | 228 B /g2 = g2 = @f .
since 2" = B, for all § € GF(2™). Thus,

3_,-=q2ﬂ2j'4, for j=20,1,2,...,m—1,

and
m-—1) m—1)
S()=_ sy =qf™* Y (Ay)" = 087" Tx(By).
=0 j==0

By Lemma 4.4, S(y) is non-singular, yet Tr(8y) is singular for any value of 3. By
contradiction, all of the off-diagonal terms must be zero, so Q(y) = qoy. 8

Theorem 4.7. If R, S, and T satisfy equations (4.5), then

T(z) = az? + tm—1Tr(v2), (4.11)

for some a,7 € GF(2™), a %0, with0 < k < m—1, and Tr(yuo) = 0.

Proof: By the previous lemma, r;s; = 0 whenever ¢ # ;. Since R and S are both non-singular,
however, at least one term in each must be nonzero. Both requirements can be satisfied only if
there exists a k such that r, 54 0 and s, £ 0 and r; = s; = 0 for i 5 k. In other words,

R(z)S(y) = rksk:czkyzk == asz,
where o = ris, 5% 0 and z = zy.
Also, from equation (4.3) we know that T(uo) = pm—1, or
zk
Bme1 = ey + pm—1 Tr{v10).

Note that if Tr(ypo) = 1, then augk = 0, which is impossible since both terms are nonzero.
k
Thus, Tr(vuo) = 0, and ppm—y = apl =T(uo). 1

45
Bit-Serial Multiplication 4.6 Applying the Transformations

In conclusion, we have found that T(z) must have the form of a constant multiplying
some conjugate of z, plus a feedback term. There are exactly 2™~! constants 4 which satisfy
the requirements of Theorem 4.7, and it is evident that v may be chosen to give any desired
feedback terms c¢; in equation (4.3). The linear transformations R and S have the form of a
constant multiplying the same conjugate of z, without the additional feedback terms. It should
be emphasized at this point that our result is the most general form of a linear transformation
satisfying equations (4.5), since no additional assumptions have been made in the lemmas leading
up to Theorem 4.7.

4.6 Applying the Transformations

Having derived the general form of the transformations involved in bit-serial multiplication, let
us examine how efficiently they can be implemented in hardware. Notice that if we choose v =0
in equation (4.11), all three transformations, R, S, and T, have the same form. Thus it is evident
that there exists a basis in which applying R amounts to a shift operation similar to (4.3), and
this basis is in some sense the natural basis to choose for applying R. A similar basis can be
found for S, and by expressing z and y in their respective natural bases, the implementation will
be (arguably) optimized.

Several questions arise at this point. First, since equation (4.11) is only a necessary
condition on the form of T, what values of ag, @, 7, and &k will actually produce a linearly
independent set B? Also, given a transformation T, what is the procedure used to find the basis
B, and what is the form of the resulting basis? Before proceeding, it will be instructive to work
out in detail a few specific examples using Theorem 4.7. We shall find that the two generally
known methods of bit-serial multiplication occur as special cases of equation (4.11).

Example 4.1: The Canonical Dual Basis
Suppose we choose k = 0 and v = 0 in equation (4.11). Then T(z) = az. Given an ao,
from equations (4.2) we require

Tr(e;2) = Tr(aoT#(2)) = Tr(asa’ 2).

In other words, @; = apa’. Fortheset D = {a; |j=0,1,...,m~1} to form a basis, it is clear
that o must satisfy an irreducible polynomial of degree m over GF(2). Then the basis D is just
a constant multiple of the canonical basis formed by the first m powers of «, and given D it is a
straightforward (though tedious) task to compute its dual basis B, which is the natural basis for
T. When an element z is expressed in the basis B, applying T (i.e., multiplying by a) amounts
to a shift of the register containing z, with feedback terms specified by the nonzero coeflicients
in the minimal polynomial of a.

Berlekamp [5] has advocated using the canonical dual basis in Reed-Solomon encoders,
where all the multiplications involve fixed constants. This type of basis is particularly attractive
in such cases because we can define R{(z) = T(z) = az and S(y) = y, where y is the fixed
constant. Since only the identity transformation is ever applied to y, there is no need to hold
the constant in a register; instead the value of y can be hard-wired into the logic to produce
Tr(aozy). Clearly z should be expressed in the basis B so that T can be applied very simply. If
we express ¥ in the canonical basis (instead of the dual basis),

m—1

m—1
y= E yia* = Z yiog oy,

=0 =0

Bit-Serial Multiplication {.6 Applying the Transformations

g
:

Figure 4-2. Dual-Basis Multiplier

then the expression for the first bit of the product simplifies:

m—1
Tr(eozy) = E :c,y,Tr ap e’ u_, Z z;y:Tr(ogpy) Z ZiYi-
{, j==0 {, J==0 £==0

In other words, the hardware takes the parity of the bits of z for which y; is nonzero. When y is
a constant, this subset of the bits of z can be hard-wired into the parity circuit. However, for y
an arbitrary field element, the corresponding bits of z and y must be ANDed together, and the
parity over all m bits produced; note the regular structure and locality in figure 4-2. 8

With one rather simple example under our belt, the procedure for producing a basis from

the transformation given by (4.11) is now clear. Given an o and a transformation T, we choose
a; such that

Tr(ejz) = Tr(aoT7(2)). (4.12)

If the set D= {ca; |7 =0,1,...,m—1} forms a basis, then its dual basis B is the natural basis
for T; otherwise T has no such basis. It should be noted that the value of ~ in (4.11) has no
bearing on the ;, because according to (4.3), for j < m, any terms of T7(z) involving 7 are in
the subspace spanned by { #; | j = 1,2,...,m—1}, and we know by (4.1) that Tr{aop;) = 0 for
7 5% 0. So in fact we may generally assume that ¥ = 0. With this simplification let us attempt
a slightly more involved case.

47
Bit-Serial Multiplication 4.6 Applying the Transformations

Example 4.2: The Normal Basis
For k # 0, we note that

Tr(en) = Tr{a0as™) = Te(s(0a)*" ")

Bl = o) =)

and in general we find

k(m—j)

i 2
oy = (ol -0/ . (4.13)

Now suppose that there exists an element w € GF(2™) such that w2 ~! = . This will hold
for all @ when ged{m, k) = 1, because the only element of GF(2™) which satisfies the polynomial
22"~1—1=0is z=1; but for ged(m, k) > 1 only certain values of a satisfy this requirement.
Given such a ¢,

ok(m—j)

’ k(m—j)
a; = (anQJk_l) = w(ao/w)2 MJ

(4.14)

When k and m are relatively prime, we see that the set D = {a; | j = 0,1,...,m — 1} is
just a constant multiple of the conjugates of ag/w, but when ged(m, k) # 1, the set D contains
duplicate elements and thus cannot be a basis.

If all conjugates of a given element are linearly independent, the resulting basis is said to
be normal. So if D is a basis, then its dual basis is also a constant multiple of a normal basis,
since if

k(m—j)
Tl‘(ﬂoaj) = Tr(uow(ao/w)Q ’) = 50,1'
then
T (w0 ™ (a0 /w) " ") = b1 4

and the dual basis is

2k(m—|’)

i = wH (pow) (4.15),

which has the same form as D. Omura [39] has suggested the use of such a basis for bit-serial
multiplication, with ¢« = w = 1 and & = 1, so that

In this case all the natural bases are identical, and the transformation is implemented as a circular
rotation of the bits. However, in contrast to the previous example, fixed constants must be
transformed and thus cannot be hard-wired into the circuitry. Further, note the lack of regularity
and locality in the wiring of figure 4-3, which uses a normal basis over GF(16) consisting of all
primitive fifth roots of unity. |

48
Bit-Serial Multiplication 4.6 Applying the Transformations

‘—‘ R(x)=x

>0 D X~ 2
b
G

N

Van
\

Ne
A

LD

r S(y)=y

Figure 4-8. Normal-Basis Multiplier over GF(16)

There are many other transformations which produce bases that are not as easily charac-
terized, and, using the above technique, a fairly efficient algorithm (roughly of complexity 2!-5™)
can be devised to enumerate classes of bases which are equivalent up to scalar multiplication.
However, multiplications by fixed constants are needed in all decoding algorithms, and the con-
siderations below will further show that the canonical dual basis is the best choice for the problem
at hand, so additional examples at this point are not needed.

In selecting a basis, it is also important to understand how a bit-serial multiplier will be
used on a chip. In each of the known decoding algorithms, at least one polynomial operation con-
sists of performing a multiplication involving the local coefficient and accumulating the product
with another value to form the new coefficient. In other words, if the local values are expressed in
a basis different from B (the basis in which the product is expressed), addition can no longer be
done in a simple bit-serial fashion. Instead, the product will have to be converted to the local basis
before the accumulation can take place. While it is conceivable that the basis change could be
done efficiently in a bit-serial fashion, the extra circuitry involved requires at least an additional
register, and this area penalty would be multiplied by the number of polynomial coefficients.

We therefore make the stipulation that the natural basis for R (or S) be the same as for
T, which can happen only if ¥ = 0 in equation (4.11). Given this condition,

T(z) =R(z)S(1) and T(z) = R(1)S(z). (4.16)

From (4.16) it can be shown that T(zy) = T(z)T(y)/T(1), which result would have been obtained
immediately had the strict equality T{(zy) = R(r)S(y) been assumed instead of the more

49
Bit-Serial Multiplication 4.7 The First Bit of the Product

complicated set of equations given in (4.5). Now z may be expressed in the same basis in which
the product is obtained, and y must be stored in a basis for which the transformation

k

S(y) =Tw)/T(1) = ¢ (4.17)

can be implemented efficiently. There are two simple cases for which this holds: namely k = 0,
which corresponds to the canonical dual basis; and a = 1, so that T(1) = 1, which corresponds
to Omura’s normal basis when &k = 1.

4.7 The First Bit of the Product
The previous sections have shown that it is always possible to represent the field elements such
that the transformations involved in bit-serial multiplication consist of linear feedback shift
operations, and that one factor can easily be expressed in the same basis as the product. Up to
this point, however, we have ignored the issue of the logic needed to implement equation (4.4),
which yields the first bit of the result.

Given that z is expressed in the natural T basis, B = {uo, 11, .. ., Bm—1}, what logic is
involved in producing Tr(a,zy)? Let y be represented in an arbitrary basis Q,

m—1
y=)_ yio;.

Jj=0

Then we find

m—1
2o = Tr(agzy) =Tr(a0 E z;y_,-u,-aj) Z z:y; Tr(ag pioy) E Tiy; A, (4.18)

{, =0 i, f==0 i, j==0

where the A matrix depends only on the two bases. It is clear that A is non-singular, for if not
there exists a non-trivial linear combination of the o;’s such that for all z € GF(2™),

m—1
T‘r(aoz Z bJ-aJ-) = 0.

j=0

In particular, there must be at least one nonzero entry in each row and column of A.

According to (4.18), the logic required to produce the bits of the product involves a GF(2)
multiplication (logical AND) operation for each nonzero entry A;;, and the parity over all such
pairs. Clearly we would like to choose Q = {o;} to make A as sparse as possible, as well as
to have some sort of regular structure within A so that wiring costs do not dominate. By the
above discussion, there must be at least m AND operations with associated parity generation'
this minimum will be reached if and only if A is a permutation matrix; i.e. y Aij = & x(5), where &
is a permutation of {0,1,.. —1}. Not surprisingly, this condition is exactly the prerequlslte
for Q and B to be dual bases up to the constant ag; in other words, g5 = ajfa.

Obviously then, we would like to express y in this basis. The question now becomes:
can the transformation (4.17) be efficiently applied to the basis Q? In the case of the canonical
dual basis (i.e., k = 0), where S(y) = y is the identity transformation, any basis will suffice;
in particular, we may choose the optimal basis defined by Q. However, when k # 0, applying

50
Bit-Serial Multiplication 4.7 The First Bit of the Product

S amounts to a (non-trivial) conjugation, so the choice of bases will be considerably restricted.
Consider the action of S on elements of Q. For j = 0, 0y = 1, and

S(oo) = S(1) = 1= 0y.
But, for j = 1,2,...,m—1, by (4.13) we find

S(o5) = S(ag ' ay)

, Km—7)
= S(a(?l(aoa(2"’—1)/(2"—1))2)

k(m—j3+1)
ok ik _1)7(2%—1)\°
= a7? (aoa(2 1)/(2 1))

k(m—3+1)
x - ; i 2
= a5? (aoa(Q(’ DE-1) /(25 1) (27F 2V l"‘)/(2"—1))

gk 2(-"“1”(2‘:—1)/(2"_1) ok(m~j+1)
= ay - aj_i{a

gk Qli-nE) 2D
= ap? aj_;|a

—_ 2k_1 mk
— 040() 2

(@j—1/a0)e

— k—.
= 0j-1 CZO!O(2 1).

If this operation is to be a simple shift (with or without feedback), we must have a = agk_l, 50
that example 4.2 applies, with w = aq. In this case, however, by (4.14), Q is not a basis, since all
its elements are identical. Perhaps there does exist a basis Q where S is not too complicated, but
obviously such instances are considerably more complex to wire than the k = 0 case. So, when
k £ 0, it is not possible both to minimize the Tr(aozy) logic and to keep the S transformation
a simple shift operation.

In particular, a normal-basis representation is inherently not as efficient as the canonical
dual basis. For if y is expressed in the basis { o; }, we have just seen that the operation of S is
difficult to implement. Yet if y is expressed in a normal basis so that S is a simple rotation, it
can easily be shown (see Appendix A) that the number of product terms is at least 2m — 1 and
that wiring costs will dominate (because the bases are not dual), forcing the area to grow roughly
as m?. Figure 4-3 shows the wiring required in a simple case, and this complexity will increase
for fields of interest in coding.

To summarize, we have now shown that Berlekamp’s representation for bit-serial multi-
plication is in fact the only possible method which requires the minimum circuitry for implemen-
tation, and it has the added advantage that multiplication by a fixed constant can be hard-wired.
One factor is expressed in a canonical basis, and the other factor is represented in a constant
multiple of the corresponding dual basis. The product bits are generated by AND-ing the factors
component-wise and taking the parity of the result, then repeatedly applying a simple linear
feedback shift to one of the factors in order to output the remaining bits of the product sequen-
tially (see figure 4-2). Note that, although the parity could be computed using a tree structure,
such an approach is not as regular as a linear chain; using steering logic in MOS [41], the delay
through a parity chain (for the m of interest) is comparable to the delay through a conventional
parity tree. Such a structure can be efficiently implemented in VLSI.

51
Bit-Serial Multiplication 4.8 Self-Dual Bases

4.8 Self-Dual Bases

At this point let us pose a somewhat more ambitious question. Is it possible for the two bases used
in multiplication to be identical, so that there is only one basis needed throughout the decoder
system? If such a representation could be found, there would never be the need to perform a
basis change, which would certainly simplify the design of a chip. More formally, we would like
to know whether there exists a canonical dual basis B = { s; } such that

Tr(aguin;) = 8, x(5) (4.19),

where 7 is some permutation of {0,1,...,m—1}. We will call such a basis self-dual, since using
a single basis the minimum number of product terms is achieved in the bit-serial multiplication
logic. Such bases can be characterized in a surprisingly simple way.

Let the canonical basis be D = {o' | i = 0,1,...,m — 1}, and define o; = agaf. Let
B= {4} be the basis dual to {o;}. Now note that (4.19) implies that, as sets, {agu; } =
{ai} = {aoe’}, or, in other words, {#;} = {a'}. So equation (4.19) can be satisfied if and
only if there exist a, ag € GF(2™) such that

Tr(aoa7) = bi,0(5)s (4.20)

for 0 < 4,7 < m — 1, where o is some permutation of the indices. Equation (4.20) has an
interesting interpretation in terms of the trace. Suppose we make a list of the trace of consecutive
powers of . Somewhere in this list there must then be m consecutive windows of m bits, each
of which contains exactly one nonzero bit.

It will turn out that the form of the minimal polynomial of o determines whether (4.20)
can be satisfied, so let g(z) be the minimal polynomial of «,

g{z) = Z 0z’

=0

Obviously g, = go = 1. Since g(z) is irreducible, there must be an odd number of additional
nonzero terms gy, for 1 < i < m. Define #; to be the lowest such index, and 5 to be the highest
such index. That is, §; > 0 and g;, = 1, but gi = 0if 0 < j < 4. Similarly, i, < m and
gin = 1, but g; = 0if m > j > i;. In other words, with exponents arranged in descending
order, g(z) = z™ + z** 4 .- + g% + 1; observe that ¢, = 1, if and only if g(z) is a trinomial.

Now define X; such that Tr(\ja) = & ;, and note that the basis P= {X;} = { aop, }
is in fact dual to D itself. An element expressed in the basis P has the form

m--1 m—1
z= Z Zihi = E Tr(za"))\,-.
f=0 =0

In this light, equation (4.20) takes on a different meaning. Namely, the representation of each
element of the set { @ga’ }, expressed in the basis P, must have exactly one nonzero bit. Restating
this fact in set notation,

{add } = {N\:). (4.21)

So, in particular, for j = 0, (4.21) implies that ay € P. Then there exists a k, with 0 < k <m,
such that ap = \¢—y, and iteratively multiplying M\x_; by o must produce the remaining elements

52
Bit-Serial Multiplication 4.8 Self-Dual Bases

of P, in some permuted order. But note that multiplication by & of an element expressed in the
P basis is a shift operation, just as explained in example 4.1. That is,

m-—1 m-1 . m-—2
y=oaz= Z Yihi = 2:)\;Tr(za‘“) = E Nezig1 + Aoy Tr(za™). (4.22)
i=0 =0 =0

Now, since « satisfies g(z), (4.22) can be further simplified:

m-—2 m—1 . m—2 m—1
y=qaz= Z NiZig1 + Am—1 E g.-Tr(za’) = Z Aizip1 + Ay Z giZi.
=0 =0 =0 =0

So, yi = ;41 for i = 0,1,...,m—2, and ypu_; = }::-"=—01 27g5. Clearly aho = Apm—;, but for
i 7% 0, aX; = \i— if and only if g; = 0. Otherwise, if g; 7 0, then a\; = \;—; + \pu—;, 50 there
are two nonzero bits in the representation of a); in this case.

Now suppose that g(z) is not a trinomial. Then, by the above argument, both aky, and
aX;, require two bits to be represented in the basis P, implying that there is no way to order
all the elements of P such that consecutive entries have a ratio of a. Thus, in this case it is not
possible to satisfy (4.20). However, if g(z) is a trinomial, i = i; = k, then the ordering

A1, Ak=2, -y A0y A1y Aneg,y - - o N, = ag, 000, .. L, apa™ !
is seen to satisfy all requirements. In other words, we pick @p = M¢—_1, so that Ay = aga™! is
the last element in the power sequence. We have just proven the following.

Theorem 4.8. Equation (4.20) has a solution if and only if a satisfies an irreducible trinomial
g(z) over GF(2). If g(z) = z™ + z* + 1, then choose ap 5% 0 such that Tr(apa?) = 0 for all
iAE-1L,0<j<m-1.

Proof: By the above argument, g(z) must be a trinomial, and we have shown by construction
that if it is a trinomial, g = Xe_; will satisfy (4.20). The definition for a, given in the statement
of the theorem is identical to the definition of \x—;.

A few comments are in order at this point, followed by some examples. First, the minimal
polynomial does not have to be primitive for the above construction to work, although a primitive
root may simplify other aspects of the decoding procedure. Also, by Swann’s theorem [4], there
are no irreducible trinomials of degree rn when m is a multiple of eight. Therefore, in particular
it is not possible to find a self-dual basis over GF(256), which is unfortunate because this field
has been widely used in Reed-Solomon coding systems, such as the NASA standard code [20] and
compact audio disks, and because eight-bit quantities are a common data size. An examination
of a table of irreducible trinomials (see appendix C) reveals however that such trinomials exist
for all other m < 16, except m = 13. If the basis used in multiplication is not self-dual, the
penalty may not be too great, because, for most of the decoder architectures we will consider in
chapter six, basis transformations are required not at each multiplier but at only a few places
on the chip. Also, we will give an example of the procedure for minimizing the cost of a basis
change below. However, since for the fields of interest other than GF(256) a self-dual basis is
available, such a basis should be selected for VLSI decoder implementation over these fields if a
dual-basis structure is required.

53
Bit-Serial Multiplication 4.8 Self-Dual Bases

Example 4.3: Self-Dual Basis over GF(128)

The polynomial g(z) = z7 + z + 1 is primitive, so let « be a root. Using the canonical
basis for GF(128) generated by @, with ¥ = 1 in the above theorem, we want to choose ap such
that Tr(aoa®) = 0 for 0 < i < 6. It turns out that over this field, Tr(a®) =0 for 0 < i < 6,
so ap = 1. Then, Tr(1) = 1 implies that go = 1, and for 1 < ¢ < 6, Tr(a) = 0 means that

pi = o’~* since clearly Tr(a’) = 1. Here is a list of the canonical basis elements with the
corresponding elements of the dual basis B.

1 a a? ol ot ab al

1 al ab ot ol a? a.

Note that the elements in the dual basis are in reversed order from the canonical basis after the
first element. It can readily be seen that this will be the case in general when z™ + z + 1 is the
minimal polynomial, and perhaps this fact could be used in building the bit-serial multiplier by
laying out the two registers holding z and y in opposite order. |

Example 4.4: Self-Dual Basis over GF(64)
The polynomial g(z) = z° + z* + 1 is irreducible, and any root « of g(z) has order 9.
Obviously Tr(1) == 0 in this field, and g5 = 0 = Tr(a) implies

Tr(a) = Tr(a®) = Tr(a*) = 0.

Also, note that (a®)> = a, so Tr(a®) = 0. Because at least one element of any basis has
nonzero trace, we must have Tr(as) == 1, which can indeed be verified. Observe that since 9(z)
is reversible, o~ is also a root, so

Tr(e™) = Tr(a~?) = Tr(a™*) = 0.

Similarly we find Tr(a=®) = 1 and Tr(a~®) = 0. Using these facts, we see from the theorem
that ag = =3, Here is the pairing of dual elements.

1 a a? a3 at ab

a? a 1 a® ot ad.
As in the previous example, note that there are subsets of the basis for which the dual elements
appear in reverse order. Here « is not primitive, which could make implementation of a Chien
search more difficult, because continued multiplication by o does not generate all field elements.
Perhaps for this field the primitive polynomial z® + z + 1 would be a better choice; however, it
is clear that the theorem can be applied in either case. |

After studying these examples, it becomes evident that the dual basis pairings can be
determined without going into involved trace calculations. In general, if ™ + z* + 1 is irreducible,
the dual basis ordering is as follows:

k—1 ak . a™—1

1 @ . @
ak—1 a2 .. 1 am™l ... ak .

That is, for 0 < & < k, gy == &1~ and for k < i < m, p; = o™ '=("~*)_ Finding the
value of o will usually involve a search through the traces of field elements; however, it is not
necessary to know the value of o to implement the multiplier. This remarkably simple result
allows us to determine the dual basis immediately upon inspection of the minimal trinomial. To
our knowledge, no one has previously derived such a result.

54
Bit-Serial Multiplication 4.9 Nearly Self-Dual Bages

4.9 Nearly Self-Dual Bases

Because there are no irreducible trinomials of degree eight, we have no hope of finding a self-dual
basis for GF(256). However, using the insight gained from the previous discussion, a basis which
is almost self-dual can be obtained. Before outlining the construction of such a basis, let us derive
a bound on how close a basis can be to self-dual in such instances. In fact, we shall see that this
bound is tight for the cases of interest.

Corollary 4.8. If no irreducible trinomial of degree m ezists, any scalar multiple of the basis
dual to a given canonical basis D for GF(2™) must differ from D in at least two elements.

Proof: To see this, suppose instead that, for 7 =0,1,... m—1,

Tr(apait?) = {6':5,]_);] 7 J_O' (4.23)
k0 Ok 0ik, J=1J

where b, 5% 0 for at least two values of k. Equation (4.23) implies that the basis P= {)\;} =

{ @op; } contains all but one element of the sequence agaf of m consecutive powers of a. Let

apa® be the only element of the sequence which is not in P, and again consider the multiplication

of a field element, expressed in the basis P, by a. There are now two cases of interest.

If k= 0o0r k= m—1, then clearly there exists an element); such that \;ef € P for
j=0,1,...,m—2. However, from the argument preceding Theorem 4.8, it is clear that this
condition can occur only if {4, — t; < 2, which is impossible since the diflerence i), — i; > 1 for
g(z) not a trinomial, because any irreducible polynomial over GF(2) must have an odd number
of nonzero coeflicients.

On the other hand, suppose 0 < k < m—1. Then both aga*~! and aga**! are elements
of P, implying that their representations in this basis have exactly one nonzero component.
However, apa* is not in the basis, so its representation must have more than one nonzero bit,
and since it is a (linear feedback) shift of apa*~!, there must be exactly two nonzero bits. In
other words, aga¥ = \; + \,,; for some i. Applying one more shift to the register must yield
only a single nonzero bit for aga**!, which will occur only if § = 0 and gm—; = 1, which further
implies that aga*~! = \;, apaft! = A\,_s, and g; = 1. Again, there must be at least one
additional nonzero coefficient of g(z), call it g,, with 1 < a < m — 1. Then, the sequencé of
powers can contain at most the following elements of P

)‘a—1;>\a—2:---;)\1;>‘m—2y>\m—3,---»>‘a; (424)

because otherwise the representation of some other element of the sequence will have two nonzero
bits. Now observe that in (4.24) there are only a —1+m—1—a = m~2 elements, but we needed
m — 1 such elements to satisfy (4.23). So, by contradiction, if there is no irreducible trinomial,
there must be at least two elements of the dual basis which are not in the canonical basis.

Now the question arises: is it possible to find such a basis when there are no irreducible
trinomials? From the arguments leading up to Theorem 4.8, the key observation is that to
minimize the cost of a basis change, a minimal polynomial for which ¢; and ¢, differ by as little
as possible should be selected. As noted above, the difference ¢ — 7; for non-trinomials must be
at least two, and this minimum occurs only if g(z) is a so-called pentanomial with the form

g(z)=z™ + 2 4 2* 4+ 2 41 (4.25)

55
Bit-Serial Multiplication 4.9 Nearly Self-Dual Baases

Proceeding with an analysis similar to that of the preceding theorem, we find the only differences
occurring at the boundary conditions; namely, the first and last elements of the sequence of
powers of «. The dual basis pairings are as follows:

1 « ... ak—2 ak-! ok akt! . a™!

k—1 k-2

o a a 1+ %! a™ ! 4 ok m—2 k.

a 6]

Obviously the bases differ in only two elements, and only two XOR operations are required to
perform a basis change.

The next question that arises is: when do irreducible pentanomials of the form given by
(4.25) exist? Obviously we are only interested in the cases where no trinomials are available,
namely m = 8,13,16,19, 24,26, 27,32, etc. For m = 8, it is not too difficult to find such a
polynomial by inspection of a table [44]. However, for larger values of m, a computer search is

appropriate. Such a program has been written and has found the following primitive polynomials
for m < 32:

T + ¢ o+ P o+ 2 4+ 1
z13 + I7 + IG + _,1:5 + 1
% + X 4+ 2+ 2+ 1
29 + 27 + 2 4+ P 4+ 1
2% + 27 + 22 4+ B 4+ 1
732 o+ % 4+ 217 4+ P11 4+ 1,

Obviously the reciprocal polynomials are also irreducible, and there are no non-primitive ir-
reducible polynomials of this form over these fields. For m = 24 and m = 27 there are no such
irreducible pentanomials, but it is clear that, for all fields of interest, either a self-dual basis or
a nearly self-dual basis is available.

Example 4.5: Nearly Self-Dual Basis over GF(256)
Let a be a root of the primitive polynomial

gz)=2 +z+2 +2%+ L
Here k£ = 3. After some searching we find the dual basis pairings are

1 o o ad at a a ol

a3 a4 atd a8 o 1

Choosing ag = a9, the correspondence looks much more promising:
g Qg)

Now the only two elements of the dual basis which are not also found in the canonical basis are

o =% +1
o' = +a’.
In other words, only two XOR gates and some wiring are required to change from the dual
basis to the canonical basis, as illustrated in figure 4-4. Note that the total gate count in such a

case (including the multiplier and the basis change) is still less than that required for a normal
basis multiplier over the same field, and the wiring is considerably simpler. @

56
Bit-Serial Multiplication 4.10 Shift-and-Add Multipliers

2 1 50 103 6 5 4 3
C.SNC NG SO SO SNC SO SN0

sy A
NP g\,

\% v v v v \ \Z \%
0 1 2 3 4 S 6 7
OGN CENC GENG SENO CENO O SN0

Figure 4-4. Dual to Canonical Basis Change Over GF(256)

4.10 Shift-and-Add Multipliers
Let us attempt to generalize the multiplication method presented in figure 4-1. We will be
somewhat less rigorous in our derivation here, but it is clear that the methods of the previous
sections could be applied to formalize these ideas. As shown in figure 4-5, the basic concept is
that the partial products z;y, which each involve only m multiplications over GF(2), are produced
sequentially and added to a transformed version of the current partial sum to generate the next
partial sum. The function R which is applied to the register is a linear transformation which we
hope to express in hardware as a simple feedback shift register. Once all the bits of z have been
input, the register should hold the product z = zy, so all of the result bits will become available
in parallel.

Given a basis B= {0, #1, ..., #m—1}, without loss of generality we may assume that the
bits of z are presented in the order z,_y,...,%1,Zo. If we define z(°) = 0, successive partial
sums can be computed using

(k) — R(z("_l)) + Zmky for k=12 ...,m.

57
Bit-Serial Multiplication {.11 Other Bit-Serial Operations

, (Y
X

b
¥
B

Figure {-5. General Shift-and-Add Multiplier

After m iterations, the result z(™) = zy is obtained. Since R is linear, the expression for the
product can be simplified:

m—1 m—1 m-—1
z=2" =1y = E Zipsy = Z Ri(ziy) = Z z:R'(y). (4.26)
i=0 =0 =0

Now notice that (4.26) implies that R'(y) = p;y for all y. In particular, for i = 0 we find po = 1,
and the case + = 1 implies that R{y) = p,y. Then, by induction, y; = o for some « # 0; in
other words, B is a canonical basis.

Thus, the shift-and-add technique is fairly simple. The factor z must be expressed in a
canonical basis, but, because the holding register must be capable of multiplying itself by «,
both y and the product z should be expressed in a basis which facilitates this transformation:
the dual basis is possible, but a canonical basis may also be desirable. In the latter case, the
largest XOR structure involves only three bits, as in figure 4-1, eliminating the need for a large
parity tree altogether, which should be very attractive for performance reasons. Observe that,
since multiplication of z by a constant can be hard-wired, using this technique it is possible to
design a bit-serial Reed-Solomon encoder similar to (although somewhat less efficient than) that
presented in {5]. Clearly the shift-and-add structure has many of the advantages of the dual-basis

multiplier; the superiority of one approach over the other will depend on the particular problem
and technology of interest.

4.11 Other Bit-Serial Operations

Our search for efficient bit-serial multiplier structures has been quite successful. However, the
decoding algorithms also involve two other arithmetic operations over finite fields: addition,
and multiplicative inversion. Using any basis, addition can be done bit-serially using an XOR
gate, but taking the inverse of an element is of much greater concern. There are versions of
each decoding algorithm which avoid inversion during the calculation of the error polynomials.
Some authors and designers [10,31] have also advocated the use of recursive extension in the

58
Bit-Serial Multiplication 4.11 Other Bit-Seral Operations

frequency domain to complete the error correction without resorting to the Forney algorithm
(which requires taking a reciprocal). While this approach is conceptually enlightening, casting
such techniques into hardware involves structures with 2™ — 1 elements, with each element
consisting of a multiplier-accumulator, and performing a sum over the outputs of all the elements.
This approach is markedly more expensive in chip area than the use of a simple lookup table to
accomplish inversion.

It is perhaps not surprising that the same basis which is used to optimize bit-serial
multiplication lends itself naturally to bit-serial inversion. Suppose that we have a table (ROM)
with 2™ single bit entries, which implements the function f(z) = Tr(aoz‘l), for z £ 0. Clearly
this result is the first bit of z=!, expressed in the dual basis. Now the next bit of the reciprocal
is Tr(apaz™!) = f(za~1). Similarly, the remaining bits of the z=! are produced by dividing z
by a repeatedly and looking up the corresponding bit in the table. Division by a is also a simple
shift operation in the dual basis, but the shift is in the opposite direction from that involved
in multiplication, and the feedback term is to po instead of #m—1. This method of bit-serial
inversion can also be adapted to work with normal bases, by squaring z each time. When using
a canonical basis and shift-and-add multipliers, bits of the reciprocal cannot be produced from a
lookup table in a totally independent fashion, but with the addition of a simple linear feedback
shift register it is still possible to accomplish bit-serial inversion. For the field sizes of interest,
say m < 12, such a ROM will easily fit onto a small part of the chip.

Another operation which is simple to implement bit-serially is that of taking the square
root. Given a register holding a value z expressed in the canonical dual basis, suppose we wish
to find y such that y2 = z. Note that y = z2™ '. We implement a parity circuit which produces
Yo = Tr(ayy). The next bit of y is

y1 = Tr{eyay) = Tr(ao(azx)zm_l).

In other words, we multiply z by a? to produce successive bits of the square root. If the register is
wired to perform multiplication by e, two clocks are required to produce each bit of y. Another
suggestion, due to McEliece, is to perform a basis change on z to the canonical dual basis
corresponding to o?. Since o and o satisfy the same minimal polynomial, the register for z
is identical (although the parity for yq is different), but now each clock produces one bit of the
square root. Similar results can be obtained for taking other conjugates in a canonical dual basis,
although it is clear that a normal basis is best suited for such operations. Extensions to canonical
bases can be made, but are somewhat more involved, as in the case of inversion.

In fact, conjugation and inversion are but two examples of a more general operation,
namely exponentiation. If the exponent is a power of two, the operation is linear and the lookup
table consists of a parity circuit. However, for other exponents, a full lookup table is needed, as
in the case of taking a reciprocal.

Thus we see that the arithmetic operations involved in decoding algorithms can be quite
efficiently performed in a bit-serial fashion, all involving a single basis. The selection between
structures using the dual basis and the canonical basis may be based on the particular implemen-
tation technology. However, if a self-dual basis is available, changing bases has a very low cost,
so the structure most appropriate for the timing needs of the problem at hand can be selected
at various points in the architecture. Using these techniques, a decoder chip can be designed in
which all global communication is bit-serial, greatly reducing the area and power needed for a
given performance level.

59

Chapter 5

Reed-Solomon Decoding Algorithms

5.1 Historical Overview

Perhaps the single most important development in the theory of block codes is the discovery of
efficient algebraic decoding techniques for BCH and Reed-Solomon codes. For a code of a given
minimum distance, these algorithms can be executed in polynomial time on a sequential machine;
thus they have some practical advantages over decoding schemes for convolutional codes, which
are generally exponential in either time or space [40, Ch. 9,11]. In this chapter the known Reed-
Solomon decoding algorithms are presented, and their features are explained with an eye toward
VLSI implementation. By displaying the algorithms side-by-side in a common format, it is hoped
that the many similarities between these techniques can be observed and clearly understood.

The original descriptions of BCH codes were published in 1959 {30] and 1960 [12], and the
discovery of Reed-Solomon codes came very soon thereafter [45]. However, these papers briefly
explained how to construct codes having the desired distance properties, without providing an
accompanying decoding procedure. Within a year Peterson [43] devised a decoding scheme for
BCH codes which required the solution of a system of linear equations involving the power-sum
syndromes over the finite field. Although this technique was later extended to include Reed-
Solomon codes [28] and simplifications were added [17,26], such an approach is inherently at
least cubic in the number of errors which occurred, and almost a decade passed before more
efficient decoding algorithms were devised.

In 1968, Berlekamp published a book, Algebraic Coding Theory [4], which included a
chapter detailing an iterative decoding algorithm for solving what he termed the key equation, a
simplified formulation of Peterson’s matrix equations. Massey [37] later interpreted Berlekamp's
method as a solution for the general problem of synthesizing the shortest linear feedback shift
register capable of generating a given finite sequence of values; in particular, the power-sum
syndromes are the sequence of interest in this case. The algorithm has roughly quadratic
complexity in terms of the redundancy and has a fairly regular structure. Berlekamp applied the
procedure to both Reed-Solomon and BCH codes, handling erasures as well as errors. With great
foresight he also showed how to take advantage of the parallelism in this algorithm by using
a number of identical slave processors and one master controller [4, section 7.7], in a fashion

60
Reed-Solomon Decoding Algorithms 5.1 Historical Overview

very similar to the architectures presented in chapter six. With the advent of Berlekamp's key
equation solver, it finally became possible to build fairly simple and efficient decoders.

Unfortunately, Berlekamp’s algorithm, although elegant and simple, can appear somewhat
unmotivated to the novice. In 1975, it was discovered that Euclid’s algorithm [47] could be
used for decoding, by interpreting the key equation as a problem in rational approximation.
This method cast the decoding process onto more familiar mathematical ground, providing an
analytical motivation for the algorithm. Nonetheless, there are many similarities between the two
algorithms, and recently Cheng [16] has proved their equivalence. Euclid’s algorithm has generally
been regarded as being somewhat less efficient for implementation purposes [10,19,40], which may
be true for sequential machines; however, Kung [14] has shown that it can be implemented with
a systolic array, presenting the possibility of high-performance pipelined decoders in VLSI.

Another major conceptual breakthrough occurred in the late 1970’s, when it was realized
that cyclic error-correcting codes could be described in terms of well-known digital signal process-
ing techniques, such as the discrete Fourier transform and spectral estimation [9, 42]. In fact,
this viewpoint is very close in spirit to the original presentation of Reed and Solomon [45].
Codewords are considered to be time-domain vectors which satisfy certain constraints in the fre-
quency domain; namely, the syndromes, which are but contiguous elements of a discrete Fourier
transform (spectrum) over the field, must all be zero. Encoding can be accomplished starting in
the frequency domain with a vector which satisfies the spectral constraints and performing an in-
verse transform to generate a time-domain codeword, although such an encoder is non-systematic
and is not practically efficient. Given a time-domain word, decoding involves a forward transform
to obtain a window of the error spectrum (where the codeword spectrum is zero), estimating the
entire error spectrum from this window, and performing an inverse transform to produce the
time-domain error pattern. Such terminology is much more familiar to the engineer concerned
with actual implementation of error control systems. There are many variations on this theme;
for example, the final inverse transform may be simplified using a Chien search, or the initial
transform may be performed at either the encoder or the decoder. The interested reader is
encouraged to refer to Blahut [10, chapters 8,9] for a lucid explanation of these concepts.

Noticing that all the decoding systems involved both a forward and an inverse transform
on the data at some point, Blahut |10, section 9.5] realized that the transform could be applied
directly to the algorithm instead of the data. His time-domain decoder is a version of the
Berlekamp-Massey algorithm, transformed into the time domain. Unfortunately, for a ¢ error-
correcting Reed-Solomon code, such a transformation extends vector quantities of size 2¢ in the
frequency domain to size n in the time domain, so variations of this algorithm have area-time
complexity of nt or n?. Thus, although the structure of such a decoder is quite simple, it seems
to be limited to low-speed and/or low-rate applications. In particular, for such a decoder to run
in full synchrony with the incoming data, the hardware would require area proportional to n,
which is prohibitively expensive, especially for high-rate codes.

Calculation of the power-sum syndromes has always been a major bottleneck in conven-
tional decoding systems [19]. With Berlekamp’s discovery of extremely efficient encoders for
Reed-Solomon codes over GF(2™), the question naturally arose whether there was a decoding
method which utilized the remainder polynomial directly, since the remainder contains exactly
the same information as the syndromes, as we saw in chapter three. If such algorithms could
be found, the received word could be re-encoded in hardware to produce the remainder, thus
bypassing one of the most costly aspects of the decoding procedure. Finally, this milestone

61

Reed-Solomon Decoding Algorithms 5.2 The Key Equation Rewissted

Delay

Key
Data Syndrome Equation
Solver

Chien | ¥ Corrected
Search| ~ Data

Figure 5-1. Block Diagram of Typical Syndrome Decoder

was reached in 1982 when Berlekamp and Welch succeeded in deriving an algorithm [8], similar
in flavor to previous decoding procedures, involving only the use of the remainder polynomial.
Again, as with Berlekamp’s original key equation solver, the algorithm was beautiful, elegant,
and seemingly unmotivated. The following year, one of Welch's students, T.H. Liu, came up with
a very similar algorithm [35], but succeeded in relating it formally to the syndrome key equation
and in motivating it by analogy with the Berlekamp-Massey algorithm.

In retrospect, it is almost as easy to compute the syndromes in hardware as the remainder,
using Berlekamp’s bit-serial techniques, so these time-domain decoding schemes may not be as
significant for implementation as was originally hoped. However, the newer algorithms afford
a greater perspective on decoding: with so many methods to examine, similarities between
algorithms can readily be recognized and generalized. Also, modifications which enhance one
particular decoding procedure can often be employed under a slightly different guise in other
algorithms. It is hoped that the numerous decoding schemes presented in this chapter will allow
the reader to gain some intuition about such generalizations.

5.2 The Key Equation Revisited

With the exception of Blahut's time-domain decoder, which has only one main phase, every
Reed-Solomon decoding algorithm consists of three distinct steps, as depicted in figure 5-1. The
first stage is the generation of the power-sum syndromes or the remainder polynomial from the
received word. Next the error polynomials (e.g., ¢ and w) are derived in a step often known as the
key equation solution. Finally, a Chien search (or inverse transform) is used to locate and correct
the errors. Of these phases, the first and last do not vary from algorithm to algorithm within
a given class of decoders. For example, any syndrome decoding method will operate properly
regardless of how the syndromes are generated; similarly, the Chien search proceeds without a
knowledge of how the error locator and evaluator were obtained. Thus, although these steps
will be included in the description of each algorithm in this chapter, the main emphasis here
will be on the solution of the key equation. The following chapter on decoder architecture will
investigate in detail the alternatives for implementation of each major step of the procedure.

The key equation has two basic forms. For the power-sum syndromes,

o(z)S(z) = w(z) (mod z%%), (5.1)

where ¢ is the error-locator polynomial, w is the error evaluator, and S is the syndrome polyno-
mial, as we saw in chapter three. In the algorithms to follow, there will be a slight notational

62
Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm

inconsistency with our convention of upper-case letters for frequency-domain quantities. Often
we will make the definition S = s(a“"‘), whereas this value should actually be assigned to
Si+k; this change is made only for convenience in defining the syndrome polynomial S(z). When
using the remainder polynomial, let us say ¢(z) is the received word, and

2t-1

r(z) = Z riz’ = s(z) (mod g(z)),

=0

where g(z) is the generator polynomial for the code. It has then been shown [8,35] that, if there
exist polynomials N and W, each of degree less than ¢ + 1, such that, for 1 =0,1,...,2t — 1,

¢: N(of) = r; W(aY), (5.2)

where the ¢; are nonzero constants depending only on the code, then /N and W can be thought of
as the error-evaluator and error-locator polynomials, respectively. In particular, the roots of W
correspond to error locations; for errors occurring in the information characters, the error values
can be evaluated as

ex = [(a*)N(a*)/W'(o¥),

where f is a function which depends only on the code and could be stored in a ROM. Clearly a
Chien search can be applied just as in the syndrome case. However, errors in the parity characters
must be corrected by reencoding. The various remainder decoding algorithms involve iterative
techniques for solving (5.2).

Many similarities between the algorithms will become apparent as they are presented. In
particular, at each iteration of the key equation solution, the current best estimate of the error
polynomials is evaluated, and an update cccurs to give an improved estimate, based on the result
of the evaluation. This evaluate-update cycle is repeated until the key equation is solved. We
will see that the evaluation criterion varies from algorithm to algorithm, but the update step
always involves a linear combination of the current estimates. The ability of each algorithm to
handle erasure decoding will also be discussed; in general, decoding erasures and errors involves
a slightly more complex initialization procedure which replaces the first few iterations of the
algorithm. Each of the algorithms presented in the following sections (including all the modified
versions) has been implemented in a high-level programming language and tested for a variety
of codes and input data. Qur presentations will be given at a fairly low level; for example, in
the Euclidean algorithm, polynomial division will be represented as a series of shifts and adds.
Hopefully such an approach will indicate how the operations could actually be implemented in
hardware.

Perhaps the best way to illustrate these points is to present one algorithm in detail. For
historical purposes we have selected the original Berlekamp key equation solver, and in the
following section several modifications of this algorithm will be explained, including a version
which can handle erasures. Because many of these modifications are quite general, the other
algorithms will not be presented in such detail, but the reader should be able to intuit how
similar changes can be applied in any decoder.

5.3 Berlekamp Algorithm
In figure 5-3, Berlekamp's original key equation solver [4] is presented in pseudocode. The three
major loops in the code correspond to the functional blocks of figure 5-1. Four polynomials are

63 .
Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm

involved in the solution of the key equation: o{z) is the error locator, w(z) is the error evaluator,
and 7(z) and 7(z) are the corresponding auxiliary polynomials. The pair (¢,w) represents the cur-
rent best estimate of the error polynomials, while the pair (7,7) is a linearly independent previous
best estimate. A total of 2t iterations are required to find the appropriate final values for ¢ and
w; each time through the loop a new guess is made, and, for example, o{*) represents the estimate
of ¢ after the loop has been executed k times. Because the auxiliary polynomials are linearly
independent from the main polynomials, when the evaluation step finds a nonzero discrepancy, a
linear combination of the pairs is used to select a new estimate with zero discrepancy. We shall
see that this general theme is repeated throughout the decoding algorithms; in fact, some form
of every decoding scheme has four polynomials which are used in an identical fashion.

The correctness of the decoder is not at issue here; the interested reader should refer to
Berlekamp [4] or some other good coding text for such a proof. Instead it is our aim to come
to an understanding of the motivation behind Berlekamp’s algorithm, which interprets the key
equation (5.1) as a problem in polynomial multiplication. If deg(c) = e, then note that, since
deg{w) < e, there are 2t — e consecutive zero coefficients of the product o{z)S(z). Each of these
coefficients can be viewed as the result of a convolution (or inner product), as in the expression for
A in the pseudocode; equivalently, from the Massey viewpoint [37], this coefficient is the output
of a linear feedback shift register (LFSR) with feedback taps given by ¢ which is initialized by
the low order coefficients of S(z) (see figure 5-2), assuming that o(z) has been normalized so that
the constant coefficient is 1. Given an estimate of ¢ for which the corresponding LFSR outputs
h consecutive zeroes, the evaluation step consists of checking to see whether the next output in
the sequence, A, called the discrepancy, is also zero. If so, the current estimate of o is good for
the next iteration; otherwise a new estimate must be made.

e

Ser| Seal 0[S S

Uﬂ% @%

Figure 5-2. Massey's View of Key Equation

7% O;
v & e

The auxiliary polynomial 7(z) is always maintained so that the corresponding LFSR pro-
duces h—1 consecutive zeroes followed by 1. Thus the LFSR for z7(z) generates h zeroes followed
by 1, assuring that the linear combination o{z) — Az7(z) has zero discrepancy. Note that 7(z)
is updated either by selecting a scaled version of the old value of o{z) or by multiplication by
z, which corresponds to lengthening the LFSR, with the choice based on the desire to minimize

64
Reed-Solomon Decoding Algorithms

/* ASSUMPTIONS: */
/* 1. Codewords are multiples of g(z) = [[r22" (2 — ok) . */

/* 2. The received word is s(z) = c(z) + e(z), with c(z) a codeword. */

PROCEDURE Berlekamp;
BEGIN

[# first calculate the syndromes */
FOR k = 0,1,...,2t = 1 DO S := L7175 s;a’k+D);

[+ initialize for key equation solver */

D = 0
cO(z) = 1O(z) = WwO(z) = 1;
10z) = o
FOR k := 0,1,...,2t — 1 DO [+ solve key equation */
BEGIN [+ evaluate (i.e., convolve) #/
A = ?=Oa(,~k)5k_,-;
[+ update x/
olk+) = gl . Agr(k),
wkt) = B) — AgA(k),
IFA =0 OR (2D > k + 1) THEN
re+) = pr(R),
AR+ ga(R),
ELSE
D = k+1-D
k4D A—1g(R),
A+ A1),
ENDIF;
END;
o(z) = o®)(z);
w(z) = w®)(z);

FOR k£ = 0,1,...,n — 1 DO /* Chien search */
IF o(a™*) = 0 THEN s; = 8 — a *L=2y(a~*)/c'(a"¥)
END;

Figure 5-8. Berlekamp Algorithm

5.8 Berlekamp Algorithm

the degree of 7. In general, at some point the polynomial degrees must enter into the evaluation
phase of any decoding algorithm, because our aim is to solve key equation subject to constraints
on these degrees. The variable D in the algorithm is an upper bound on the degree of o(z), and

it can easily be shown that

deg(d(")(z)) + deg(zr(k)(:c)) <k+1. (5.3)

65
Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm

Thus, the choice of 7¥+1) = A=145{(¥) as an update has lower degree if D < k + 1 — D, which
is exactly the condition tested in the pseudocode. Actually, Berlekamp’s initial statement of the
procedure was slightly more complicated, with an additional Boolean variable used to insure that
equality would hold in some relationships involving the polynomial degrees and the parameter
D. However, it is interesting that the algorithm performs correctly without this constraint; in
the conditional statement, when A 5 0 and 2D = k + 1, the choice as to which branch to take
is in fact arbitrary.

The error-evaluator polynomial w and its corresponding auxiliary polynomial 4 are initial-
ized differently from & and r, but the update phase is applied identically to them throughout the
algorithm. It should be observed that the algorithm actually does not compute the formal value
of the error evaluator as described in chapter three, which should have degree strictly less than
the error locator. Berlekamp uses a slightly modified (but entirely equivalent) version of the key
equation, given by

o(z)(1 + z5(z)) = w(z) (mod z***1). (5.4)

Clearly the computed w(z) is the sum of the error-locator polynomial and z multiplied by the
formal error evaluator. However, in the Chien search step of the decoder, because the only points
of interest are the roots of o, there is no contribution from o to the numerator of the error value
expression. The extra factor of z is compensated for in the error calculation of the Chien search
by a slight change in the exponent of o.

Along these same lines, an overall perspective of the decoding process must be kept in
mind in order to see changes which can be made at various points in the algorithm. For example,
it is clear from the Chien search that only the ratio of ¢ and w is important; in other words, we
may multiply the pair (o,w) by an arbitrary nonzero scalar, without affecting the calculated error
pattern. Such a transformation, which we will term a linear scaling, can also be applied at each
iteration of the key equation solution, as long as it is not inserted between the evaluate and the
update phases. As we shall see, this type of modification is common to all decoding algorithms
involving a Chien search and may be used to simplify the hardware implementation.

Several applications of linear scaling are possible. One aspect of the Berlekamp algorithm
which may be undesirable is the multiplicative inversion of A required in updating the auxiliary
polynomials. Suppose we choose to scale the updated ¢ and w by the old value of A, thus
cancelling the A~?! factor in 7 and 7. The resulting update cycle now consists of a cross-multiply
and add, with no need to do the inversion; see figure 5-4. This version of Berlekamp’s algorithm
was first published by Burton [13].

Clearly Burton's modification is but one particular instance of a more general transfor-
mation which may be applied to many decoding algorithms in an effort to minimize the hardware
needed. As an additional example, which we will explore further in the following chapter, note
that only one inversion is required per iteration of the key equation solver, and using bit-serial
techniques the cost of such an inversion can be minimized. However, both pairs of polynomials
are involved in finite-field multiplications. By scaling the error polynomials appropriately, it
is possible to remove 7 and v from any non-trivial field multiplications, thus (roughly) halving
the area-time complexity of the update step, in terms of multiplication count. In other words,
four multiplications of a polynomial by a scalar are required to update in either the original
Berlekamp algorithm or the Burton method, but note that in figure 5-5, only two such operations
are required, along with a scalar inversion and multiplication. Because the number of multiplies
in the key equation solver scales as t?, the area penalty of these scalar operations is overshadowed

66
Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm

[+ ASSUMPTIONS: *[
/+ 1. Codewords are multiples of g(z) = ,’:;2;—1(2: —a*) . %/
/* 2. The received word is s(z) = c(z) + e(z), with ¢(z) a codeword. */

PROCEDURE BerlekampZ2;
BEGIN [+ no inversions during key equation solution /
[+ first calculate the syndromes */
FOR k := 0,1,...,2t — 1 DO §; = Y175 s;ak+0);

D = 0 § = 1
oO(z) = 1(z) = wOz) = L,
1) z) = 0
FOR k := 0,1,...,2t — 1 DO [+ solve key equation */
BEGIN [+ evaluate (i.e., convolve) =/
A = Ti,oS s
[+ update */
ok+) = 5ok — Azr(k);
wkt) =) — Azy(R),
IFA =0 OR (2D > k+1) THEN
rke+1) = (k)
NAD (R,
ELSE
D = k+1-D;
b = A
rk+1) = GlR),
L)),
ENDIF;
END;
o(z) = o®(z); wlz) = w?(z);

FOR k = 0,1,...,n—1 DO /* Chien Search */
IF o(a~*) = 0 THEN s := 8 — a*L=Dw(a*)/o'(c™*) ENDIF;
END;

Figure 5-4. Inversionless Berlekamp Algorithm

by the area-time cost of the additional multiplies. However, this reduction is accomplished at
the cost of a slightly more complex control structure, as evidenced by the additional conditional
statement in figure 5-5. ,

Figure 5-6 contains a synopsis of the three linear scaling transformations discussed thus
far. The first example corresponds to the original Berlekamp algorithm, where there is an
implicit term §~! from a previous update of r(z). The second and third cases are related to the
inversionless method of Burton and the modified algorithm just presented, respectively. Clearly

67

Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm
/* ASSUMPTIONS: x/ ‘
/* 1. Codewords are multiples of g(z) = i’:‘:—l(x — ak) . %/

[+ 2. The received word is &(z) = c(z) + e(z), with c(z) a codeword. */

PROCEDURE Berlekamp3,;
BEGIN /* no field multiplications involving 7, 7 */
/* first calculate the syndromes */
FOR k = 0,1,...,2t — 1 DO & := 2::(1) s;aftk+L),

D = 0
cO(z) = 1O(z) = w®(z) = 1
7(0)(3) == 0;
FOR k := 0,1,...,2t —1 DO [+ solve key equation */
BEGIN [+ evaluate (i.e., convolve) /
A = Tho Sk
/+ update */
IF A = 0 THEN
gD gl
w(k+1) = w(k),
ELSE
o+ AR (k)
w(k+1) = A_lw(k) — zr\/(k);
ENDIF;
IFA =0 OR (2D > k+ 1) THEN
NES -
NSV I D}
ELSE
D = k+1—~D
AR = A1),
7(k+1) = A—lw(k);
ENDIF;
END;
o(z) = o®(z); w(z) = w®(z);

FOR k := 0,1,...,n -1 DO /+ Chien Search */
IF o(a=*) = 0 THEN s 1= s — a*L=2y(a~*)/a'(a™*) ENDIF;
END;

Figure 5-5. Modified Berlekamp Algorithm

68

Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm
= o — A§lzr
= b0 — Azt
= A~lg — zr

Figure 5-6. Examples of Linear Scaling Transformations

there are many other linear scalings which could be applied, but these three will be the most
useful in practice. Although we have perhaps belabored the point in presenting three versions of
the Berlekamp algorithm, the reader is encouraged to spend the time necessary to understand
this class of modifications, because such transformations will be applied with impunity in several
future examples.

Let us now turn our attention to decoding in the presence of erasures. As we saw in
Chapter three, the ability to include soft information in a decoder can lead to large coding gains
on some channels. Berlekamp presented a method of applying his key equation solver to data
with known erasure locations [4, section 10.4], but his approach requires extensive polynomial
operations in addition to the key equation algorithm. It will be convenient to have an iterative
technique which introduces the erasure data into the decoding algorithm in a much more natural
way. Although the Berlekamp algorithm does not lend itself as readily to erasure decoding as does
the Berlekamp-Massey algorithm (see the following section), in figure 5-7 a modified version is
presented that handles erasures by special initialization steps. The linear scaling transformations
discussed above may be applied to this version as well.

It will be instructive to examine the differences between figure 5-7 and the original algo-
rithm, because similar modifications are required to incorporate erasures into the other decoding
algorithms. In the presence of h erasures, the first A iterations of the key equation solver are
replaced by steps which compute the error polynomials as if only erasures had occurred. That
is, after the initialization iterations, or(")(z) is the erasure-locator polynomial, and

w®(z) = oP(z)(1 + 25(2)) (mod z"*+?).

Thus, if no errors have occurred, w(® is in fact the proper errata-evaluator polynomial. The
auxiliary polynomials are similarly set up to obey the invariants of the loop, as defined in [4],
Theorem 7.41; the only difference in the initialization for the auxiliary polynomials is that 7(")(:1:)
differs from w(*)(z) in the z* coefficient, insuring that the pairs (0,w) and (7,7) are linearly
independent. Also, the inequality (5.3) is modified to

deg(o(")(x)) + deg(xr(")(z)) <k+h+1,

so all expressions involving the variable D are altered to reflect this fact. Another way of
explaining this change is that because the erasures have decreased the effective distance of the
code to 2t + 1 — h, only ¢ — h/2 additional errors can be corrected. Note that because all updates
of ¢ and 7 are homogeneous, any polynomial which is a factor of their initialized values will also
divide the final errata-locator polynomial; the erasure locations are thus guaranteed to be roots
of 0(2‘)(;;). Once the proper initialization is completed, the remaining iterations proceed almost
identically to the errors-only decoder, and the Chien search is totally unaltered. In fact, when
h = 0 the decoder of figure 5-7 simplifies to the original Berlekamp algorithm.

69

Reed-Solomon Decoding Algorithms

/*
/*
/*
/*

ASSUMPTIONS: */

1. Codewords are multiples of g(z) = nll;j-__zlf—l(z _

ak) . «/
2. The received word is 8(z) =
3. Assume h erasures occurred, at Xi for i = 0,1,...,h - 1,

and the corresponding coefficients of s(z) are set to 0. */

PROCEDURE BerlErase;

BEGIN [+ first calculate the syndromes *x/
FOR £k := 0,1,...,2t = 1 DO 5 = Y7l s0ik+D),
D = h; /* initialize for key equation solver x/
oOz) = 1;

FOR k :=0,1,...,4 = 1 DO o**)(2) := (2X, — 1)o(¥)(z);
™(z) = ob)(2),
FOR k := 0,1,...,h DO wseh) = af,h) + f__:(l) aS-h)Sk_l_,-;
7M(z) = WM(z) + z
FOR k := h,...,2t = 1 DO/« solve key equation */
BEGIN [* evaluate (ie., convolve) x/
A = Ef=o Us'k)sk—i;
/* update x/
gk+) = gk} _ Azr(k);
wktD) o y()) _ Agy(R).
IFA =0 OR (2D > k+1+h) THEN
rle+1) zr(k);
AR+ = py(R).
ELSE
D = k+1+h - D
rkt) e A-1400),
AkHD = AR,
ENDIF;
END;
o(z) = o2(z); w(z) = w®(z);
FOR k¥ := 0,1,...,n — 1 DO /+ Chien search +/

IF o(c=®*) = 0 THEN
G — a"‘(""")w(a"‘)/o’(a"‘)'

3

8 =
ENDIF;
END;

Figure 5-7. Berlekamp Algorithm with Erasures

5.8 Berlekamp Algorithm

¢(z) + e(z), with ¢(z) a codeword. */

70

Reed-Solomon Decoding Algorithms 5.8 Berlekamp Algorithm
/* ASSUMPTIONS: */
/* 1. Codewords are multiples of g(z) = [[;}%/7'(z — o) . «/
[* 2. The received word is s(z) = c(z) + e(z), with c(z) a codeword. */
/* 3. Assume h erasures occurred, at X; for i = 0,1,...,h — 1,

and the corresponding coefficients of s(z) are set to 0. */

PROCEDURE BerMas;
BEGIN

[+ first calculate the syndromes */
FOR k := 0,1,...,2t — 1 DO S = T.77} s;0fk+0);

[+ initialize for key equation solver */

) = 1O(z) = 1
R k:=0,1,...,h — 1 DO ¢**+D(z) := r¥)(z) := X o¥)(z) — 2r(k)(2);
(z) = o)),

FOR k := h,...,2t =1 DO [+ solve key equation */
BEGIN /* evaluate (i.e., convolve) x/
A = Ef:o a(;'k)sk—";

/* update =/
I[F A = 0 THEN ¢k+D) .= k)
ELSE o*+) = A-15(k) — z7(¥) ENDIF;
IFA =0 OR (2D > k+ 1+ h) THEN r+1) = z7(*)

ELSE
D = k+ 1+ h - D
rk41) . A=1400),
ENDIF;
END;
o(z) = o?(z);
w(z) = 0; [+ compute error evaluator */

FOR k = 2t - 1,2t - 2,...,1,0 DO w(z) = zw(z) + E{-;O 0iSk—i;
FOR k£ := 0,1,...,n — 1 DO /* Chien search =/
IF o(ea®*) = 0 THEN
sk = 8 — aFL=Dy(a=*)/a'(a"¥),
ENDIF;

END;

Figure 5-8. Berlekamp-Massey Algorithm with Erasures

71
Reed-Solomon Decoding Algorithms 5.5 Fuclidean Decoding Algorithm

5.4 Berlekamp-Massey Algorithm

Upon examination of the Berlekamp algorithm, it is evident that w and 4 are not involved
in the evaluation criterion of the Berlekamp algorithm and their update is independent of o
and 7, implying that the error locator can be computed independently from the evaluator.
Such a decoding strategy, which has come to be known as the Berlekamp-Massey algorithm, is
particularly attractive for binary BCH codes where the error values are known to be 1. Even for
Reed-Solomon codes, because w can be calculated from o and the key equation, such an approach
may be advantageous, reducing both the amount of storage and the time (for a given number of
finite-field arithmetic units) required to solve the key equation. The hardware tradeoffs involved
in such a method will be discussed in detail in the following chapter; Cohen [19, appendix Al
has already noted that this split approach to solving the key equation is more efficient than the
Berlekamp algorithm for software implementation.

Figure 5-8 presents a version of the Berlekamp-Massey algorithm that handles erasures.
Observe the slight modification in the erasure initialization to make the expression for ¢ identical
in form to the update cycle in the main key equation. Everything else up through the solution of
the key equation is identical with the corresponding pseudocode from the Berlekamp algorithm,
except that all statements involving w and 7 have been removed. This version of the key
equation solution requires a multiplicative inversion, but note that any of the linear scaling
modifications discussed above can be applied, becruse, once the proper errata-locator polynomial
o(z) is determined, the error locator is calculated via the key equation (5.1); through this sequence
of convolution steps, any scalar factor multiplying the error-locator polynomial is absorbed into
the evaluator polynomial w. For implementation purposes, since it is necessary to calculate inner
products to solve the key equation, the hardware to compute these convolutions should already
be available. Note that w(z) in figure 5-8 is different from the error evaluator of the previous
section, since it is computed directly from the key equation instead of the modified key equation
(5.4). In other words, the formal error evaluator is calculated instead of the sum of & and zw.
This difference is manifest here in the Chien search by a slight change in the exponent of a factor
in the error-correction term, owing to the removal of the z term which multiplies the evaluator
polynomial in the original Berlekamp algorithm.

5.5 Euclidean Decoding Algorithm

Euclid’s algorithm is a recursive procedure for finding the greatest common divisor (gcd) of two
elements of a unique factorization domain, such as the integers or the ring of polynomials over
a field. For decoding applications we are interested in the polynomials over finite fields, and our
development of the algorithm in this section follows closely that given in [40], section 8.4. In
general, if d(z) = ged(a(z), b(z)), there exist polynomials u(z) and v(z) such that

a(z)u(z) + b(z)v(z) = d(z).

It turns out that Euclid’s algorithm can be extended to produce not only d(z), but also the
auxiliary polynomials u(z) and v(z). At each iteration of the ged algorithm a new estimate of
each of these polynomials is obtained, based on the previous values.

Initially, the estimates are given by

up(z) =1, vo(z) =0, ro(z) = a(z),
uy(z) =0, nz) =1, ri(z) = b(z).

72
Reed-Solomon Decoding Algorithms 5.5 Euclidean Decoding Algorithm

Let us denote by g¢¢(z) the quotient of ri—2(z) and r;_;(z); in other words, choose ¢i(z) such that
deg(ri—z(z) — gi(z)ri—i(2)) < deg(ri—i(z)). (5.5)
Then the new estimates for the polynomials are given by

ri(z) = ri_o(z) — qi(z) ri—1(z)
vi{z) = viz2(2) — gi(2) wi—1(2)

vi(z) = vima(z) — gi(2) viei(2). (56)

Note that ri(z) is the remainder when r;_5(z) is divided by ri—1(z). According to (5.5), the
degrees of the remainders ry(z) are strictly decreasing, and it turns out that the last nonzero
remainder, say rn(z), is the greatest common divisor of a(z) and b(z). Further, using (5.6) it can
be shown by induction that for 0 < § < n,

ui(z)e(z) + vi(z)i(z) = ri(z),

which implies that u(z) = u,(z) and v(z) = v,(z).

Although polynomial division is a rather complex operation, it is actually composed of a
series of simpler steps, each consisting of multiplying r;_;(z) by a scalar multiple of a monomial
and adding the result to r.-_g(:z:) to cancel the latter’s leading coefficient. This basic iteration is
repeated until the degree of r;_, falls below that of ri—1, at which point the remainder is in fact
ri. Then the role of the two polynomials is reversed and the procedure continues. If exactly the
same operations are performed on the u; and the v; polynomials, the appropriate values of the
auxiliary polynomials are generated. Thus it is clear that Euclid’s algorithm can be implemented
with fairly simple hardware.

In the Berlekamp algorithm, the key equation (5.1) is viewed as an exercise in shift-register
synthesis, but it can also be interpreted as a problem in rational approximation. If we consider
the syndromes to be the initial coefficients of a power series

P(z)=So + 812+ Soz® + -+ + Sp_12% 1 4 ...
then the goal is to find two polynomials whose quotient is identical to P(z) in the first 2¢ terms,
subject to the constraint that the sum of the degrees of the two polynomials is less than 2¢.
Rational functions of this type are known as Padé approximants, and it can be shown that all such
pairs of polynomials are generated at some stage of Euclid’s extended algorithm [40, Theorem

8.5]. From above, if we let a(z) = z2¢ and b(z) = S(z) and apply the ged procedure, at some
step we will find

ui(z)z?t + vi(z)S(z) = ri(z),
where deg(r;) < t. Another way of looking at this equation is

vi(z)S(z) = ri(z) (mod z?%).

Clearly we would like to make the correspondence o(z) = v,(z) and w(z) = ri(z). Since all Padé
approximants are produced during Euclid’s algorithm, if a proper solution to the key equation

73

Reed-Solomon Decoding Algorithms 5.5 Euclidean Decoding Algorithm
/* ASSUMPTIONS: */
/* 1. Codewords are multiples of g(z) = [J;}%""(z — oF) . *x/
/* 2. The received word is s(z) = c(z) + e(z), with c(z) a codeword. x/
/* 3. Assume h erasures occurred, at X; for § = 0,1,...,h — 1,

and the corresponding coefficients of s(z) are set to 0. */
/* 4. (a,b) := (b,a) means to swap the contents of the polynomials. #/
/* 5. lead(a) returns the leading coefficient of a(z). «/

PROCEDURE Euclid;
BEGIN

/+ first calculate the syndromes */
FOR k = 0,1,...,2t — 1 DO S, = L7171 g;afk+0);

r(z) = z%; /* initialize for ged computation */
w(z) = E?:ol Szt
v(z) = O o(z) = 1
FOR k& = 0,1,...,h — 1 DO
BEGIN /[« initialize for erasures */
w(z) = (zXi — l)w(z) (mod z%});
o(z) = (¢Xe — 1)o(z);
END;

/* perform Euclid’s algorithm on w and r */
WHILE deg(w) > t + #/2 DO [+ evaluate */

BEGIN
d = deg(r) — deg(w);
p = lead(r)/ lead(w);
r{z) == r(z) — pzlw(z); /* update =/
v(z) = wv(z) — pzio(s);
IF deg(r) < deg{w) THEN
(rw) == (w,r); [* swap */
(v,0) = (o,v);
ENDIF;
END;

FOR k := 0,1,...,n -1 DO /* Chien search */
IF o(a™*) = 0 THEN
s = s — a*=Uy(a=*)/q'(a~*),
ENDIF;
END;

Figure 5-9. Euclid’s Algorithm with Erasures

74
Reed-Solomon Decoding Algorithms 5.5 Euclidean Decoding Algorithm

exists, it will be found by applying the ged recursion. In fact, it can be shown that the proper
final iteration is exactly that where the degree of r; first drops below t; the error locator is then
assigned to be v;(z), and r;(z) is the error evaluator.

Figure 5-9 presents a decoding algorithm which employs the ged computation to solve
the key equation. The case without erasures (i.e., & = 0) proceeds exactly as described above.
However, with the addition of erasure data, decoding becomes somewhat more complex. Note
that the key equation (5.1) still holds in the presence of erasures, but for implementation it must
be interpreted somewhat differently. Namely, let \(z) be the erasure-locator polynomial, and
o(z) be the error locator. The key equation then becomes

Mz)o(z)S(z) = w(z) (mod z%¢), (5.7)

where both \(z) and S(z) are known. Hence we can define a modified syndrome polynomial
T(z) = Mz)U(z) (mod z2!), so that

o(z)T(z) = w(z) (mod z%%). (5.8)

Then (5.8) is solved for o and w, and a Chien search can be performed using A(z) = \(z)o(z)
as the errata-locator polynomial and w(z) as the errata evaluator. However, note from (5.7) that
the upper bound on deg(w) is no longer ¢. Instead, since at most t — h/2 errors can be corrected
in addition to the erasures, we have deg(c) < ¢t — h/2, implying

deg(w) < deg(A) = deg(\) + deg(c) < h+t—h/2=1t+h/[2,

which is exactly the terminating condition on the key equation loop of figure 5-9. Each iteration
decreases the degree of w by at least one, so, because of the swapping of polynomials, up to

1+ deg(ro(z)) — (¢ + h/2)+ deg(ri(z)) —(t+h/2) < 1+4t—1—-2t—h=2t—h

iterations may be required to complete the algorithm. Thus, counting the % erasure initialization
steps, there are a maximum of 2t iterations involved in solving the key equation, just as we have
seen in previous algorithms. Observe, however, that the algorithm may terminate in fewer than
2t steps, unlike any other decoder we will encounter.

In figure 5-9, erasures are handled roughly as described in the previous paragraph, with
the implementation detailed at a lower level. The transformation of S(z) into T(z) is performed
one erasure at a time, multiplying by (zX; — 1) and retaining only terms of degree less than 2t.
This operation involves multiplying the polynomial coefficients by a scalar and adding adjacent
terms, features which should already be available for use in the key equation loop; thus, again,
the erasure initialization fits well into the hardware decoding scheme. Calculation of the errata-
locator polynomial A(z) in 5-9 takes advantage of the homogeneity of the update stage for the
locator polynomial: because vo(z) = 0, any polynomial which divides v;(z) will also be a divisor
of all further iterates of both o(z) and v(z). So, instead of computing o(r) separately and then
multiplying by the erasure locator, the auxiliary polynomial v;(z) is set equal to the erasure
locator X\(z), using (almost) the same initialization operations as are applied to S(z). However,
because deg(v(z)) = h < 2t after the erasure setup phase, a (mod z%!) operation on v(z) has no
effect unless h = 2t, and this latter case entails erasure-only decoding, where it is imperative that
deg(v(x)) = 2t so that all the erasures can be located in the Chien search. This method of erasure

75
Reed-Solomon Decoding Algorithms 5.6 Berlekamp-Welch Algorithm

initialization is attractive because it involves simple operations which are applied consistently to
both the remainder and the auxiliary polynomials, just as occurs in the remaining portions of
the key equation solution.

Notice that, as in the Berlekamp algorithm, the error-locator and error-evaluator polyno-
mials are updated totally independently. However, since the evaluation criterion depends only
on the evaluator polynomials, it is only possible here to calculate w(z) without computing a(z).
While the error locator could then be extracted using the key equation, such an operation requires
a convolution step, which is not otherwise necessary for the gcd computation. Thus, splitting
the Euclidean key equation solution into two phases does not appear to be as attractive as in the
Berlekamp-Massey algorithm.

In the Euclidean algorithm, the evaluation criterion involves only the degree of the remain-
der polynomial, and the update step requires only the degree and the leading coefficients of
the two remainder polynomials. However, while it is simple conceptually to find the degree of
a polynomial, extracting this information in hardware is not as straightforward. Nonetheless,
in terms of communication between coefficients, this algorithm has perhaps the least complex
evaluate-update cycle of any decoder, and this simplicity can be exploited to design a very
modular decoder. In particular, if we consider the polynomials as a stream of coefficients (high
order first), it is clear that each iteration of the algorithm, including the erasure initialization,
can be implemented by a single stage which transforms the incoming stream into the appropriate
outgoing stream. Each unit can latch onto the leading coefficient of the incoming polynomials
and determine their degree from the delay until the first nonzero coefficient arrives. A pipelined
linear array of such stages could be used to solve the key equation, and in chapter six we will
discuss the architecture of such a decoder, which was first proposed by Kung [14].

5.6 Berlekamp-Welch Algorithm

All of the decoding algorithms discussed thus far begin by calculating the power-sum syndromes,
and we have seen that there are many variations of each key equation solution technique. Now
we turn our attention to decoding methods which do not explicitly compute the syndromes. For
example, since a’** is a root of g(z) for k = 0,1,...,2t — 1, the syndrome Si = s(alt*) =
r(af**), where the remainder polynomial r(z) = s(z) (mod g(z)), so it is clear that all of the
syndromes can be generated from r(z). In other words, the remainder polynomial contains all
the information necessary to decode the received word, and one might hope to decode working
directly with the remainder, without the need to compute the syndromes. Such an approach
would be particularly attractive in a system which is used both for receiving and transmitting
data (i.e., reading and writing), where there is a need both to encode and to decode. The encoder
could then do double duty, generating the appropriate parity characters for transmission and
eliminating the need for a syndrome generator by calculating the remainder polynomial for use
in decoding the received word.

Berlekamp and Welch proposed such an algorithm in 1982, and a crucial step in coming up
with the procedure was finding a key equation (5.2) which involves only the remainder coefficients.
A brief description of their derivation of this version of the key equation will be given here; for
more details refer to [8]. First, suppose that only one error has occurred, at a message location
given by X, with error value Y. Then, for k = LL+1,...,L+2t—1,

Sk—L = YXk = S(Gk) = r(a").

76
Reed-Solomon Decoding Algorithms 5.6 Berlekamp- Welch Algorsthm

So,fork=L+1,L+2,... . L+2t—1,
r(a*) — Xr(aF~) = YX* - XY X*! =,
implying that the polynomial u(z) = r(z) — Xr(a~'z) has roots at the locations
L+1 L+2 _L+3 abat=2 oLl+at-1

a" T yoa T L,

Thus, u(z) is divisible by the polynomial

L42t—1 2t—1
pa)= J[- =3 pz',
k==[41 i=0

which is in fact the generator polynomial for a Reed-Solomon code of distance 2¢t. Now, the
degree of p(z) is 2¢ — 1, and the degree of u(z) is less than 2¢, so clearly u(z) is a scalar multiple
of p(z). Equating coefficients, we find

Uy = r.-(l - Xa"') = Ap,', (59)

for some constant A. Notice that if the error occurred at a check i.e. , parity) location X = o/
for 0 < j < 2¢, then r(z) = Yz, and A = 0. Evidently the check positions will be treated
differently from message locations in this approach; in fact, since A = 0 we will find that (5.9)
gives no information about check error values, so errors in the parity locations must be corrected
by reencoding.

For a single error, let us define the error-locator polynomial as W(z) = z — X. Then, by
(5.9), it is clear that for § = 0,1,...,2t — 1, we have

riW(ef) = Ad¥*p, . (5.10)

As long as X is not a check location, W(a‘) is nonzero for these values of i, 50 (5.10) can be
solved for r; in terms of W(z) and A. To find the error values, we note that

2t—1 2t—1 pka'(L+1)
V=X"trlel)=X"1 3y rat =ax—t Yy B2 _ 4r(x) (5.11)
=0 t==0

where f(X) is the indicated function of X which can be precomputed. In terms of this function,
the remainder coefficients are then given by

Yp.-a'
J(X) (et~ X))

ry =

When multiple message errors have occurred, say of value Y; at location X; for j =
1,2,...,¢ then by linearity

o= pia’ E e ey et (5.12)

J=1

77

Reed-Solomon Decoding Algorithms 5.6 Berlekamp-Welch Algorithm
[+ ASSUMPTIONS: ./
/* 1. Codewords are multiples of g(z) = ,[;+2Lt— (z —a*) . %/
/* 2. The received word is s(z) = c(z) + e(z), with ¢(z) a codeword. */
/+ 3. The remainder is r(z) = i:& rez* = s(z) (mod g(z)). */
/* 4. The constants p; are defined by H‘:‘__‘ti:l(z —af) = V¥ pirt. «f
[+ 5. The constants f(X) = a'**=Do?LX~Lg/(al)/g(X al). */
[* 6. Assume h message erasures occurred, at X; for { = 0,1,...,h — 1,

and the corresponding coefficients of s(z) are set to 0. x/
/* 7. Assume check erasures occurred where erased(ss) is TRUE. */

PROCEDURE WelchBerl;

BEGIN
NO(z) := VO(z) := 0; MO)(z) := WO (z) .= 1;
FOR k := 0,1,...,h — 1 DO WOz) := (z — X};)W(O(z);

FOR k£ := 0,1,...,2t — 1 DO [+ solve key equation */
IF NOT erased(sk)
THEN [+ evaluate =/
ag = a"pkN(")(a") - rkW(k)(a");
be = ¥ pe MBI (a*) — rVE)(a*);

IF ap = 0 THEN b := 1 ENDIF;
IF deg(as M®) < deg(byW(¥)) THEN [+ update =/
NG+ () = b N(k)(g) — ax M¥)(z);
Wkt(z) = bWH)(g) — axVE)(z);
MEFD(z) = (z — o*)M*)(z);
VED(z) 1= (z — oW H)(g);
ELSE
M) (z) = b NE)(z) — g, MF)(z);
VERD(z) == bWR)(z) — o,V F)(2);

NHz) = (2 = ak)NO(z),
WEH(z) = (2 — o*)WH)(2);
ENDIF;
ENDIF;
W(z) = Wi(z); N(z) = N@(z);

FOR k := 2t,2t+1,...,n -1 DO /* Chien search =/
IF W(a*) = 0 THEN /+ only correct message characters */
8k = & — [(a)Wi,(;? ;
ENDIF;
END;

Figure 5-10. Berlekamp-Welch Algorithm with Erasures

78
Reed-Solomon Decoding Algorithms 5.6 Berlekamp- Welch Algorithm

if and only if s; is a correct check digit. If we consider the rational function

F(z) = J; HXJ—)();J—TJ) , (5.13)

it is clear that there exists a polynomial N(z) of degree less than e such that F(r) = N(z)/W(z).
The error locations are determined by the poles of F(z), and the error values are

N(XJ')
W'(X;)"

Y; = f(X;)

Thus, these two polynomials N(z) and W(z) are quite analagous to the error-evaluator and error-
locator polynomials which we derived in the syndrome case. From (5.12) and (5.13), the object
is to find two polynomials such that

pia N(a®) = r; W(a') for i=0,1,... 2t —1, (5.14)
which is equivalent in form to the version of the key equation (5.2) given earlier in the chapter.
Since at most ¢ errors can be decoded, we must have deg(N) < deg(W) = e < t.

Given the complexity of the above derivation, it is perhaps not surprising that remainder
decoding methods took so long to be discovered: merely finding the appropriate problem to solve
is involved enough. Figure 5-10 presents the original version of the Berlekamp-Welch algorithm,
complete with erasure handling. We will attempt to point out the many similarities to the
syndrome decoding techniques, along with a few differences. The remainder coefficients are not
explicitly computed in this presentation, so the three major loops are: erasure initialization, key
equation solution, and Chien search. Observe that there are again four polynomials, the locator W
and the evaluator N, along with a corresponding auxiliary pair V and M. In the first loop Wi(z)is
initialized to be the message erasure-locator polynomial; by the homogeneity of the update step,
and the fact that the associated auxiliary polynomial V(O)(:c) is zero, it is clear that the erasure
locations will be roots of the final errata locator. In the key equation solver loop, each coefficient
of the remainder polynomial is tested to see if the current estimate of the error polynomials
satisfies (5.14). It should be noted that the presence of message erasures does not decrease the
number of iterations of the key equation solver, unlike in the other decoding algorithms; however,
only those coefficients corresponding to non-erased check locations are processed.

The evaluation criterion in the Berlekamp-Welch algorithm consists of a polynomial evalua-
tion at the next check location to calculate the discrepancy in (5.14) using the current estimates
of the error polynomials. In figure 5-11, the check locations are tested sequentially beginning
with o, but actually the ordering can be arbitrary. If the discrepancy is zero, the current
estimates are retained and the auxiliary polynomials are slightly modified. Otherwise, the cur-
rent estimates are updated in a manner guaranteed to cancel the discrepancy and minimize the
degree of W(z). Thus, this key equation solver is very similar in flavor to the other algorithms
we have studied. However, because the evaluation criterion involves all four polynomials, there
is no obvious way to split the algorithm, as was possible in the Berlekamp-Massey and Euclid
approaches. Also, in this version of the algorithm, it is necessary to test the degrees of the
polynomials W and M, which may not be particularly easy to implement in hardware, as we
mentioned previously. Fortunately, one can prove that, after J non-erased check locations have

Reed-Solomon Decoding Algorithms

79

/* ASSUMPTIONS: x/

[+ 1. Just as in the previous example, with the following exception: #/
[* 2. The comstants f(X) = o'2t=Na2tlx1-Lg/(al)/g(X aL). «/

PROCEDURE BerlWelchMod;

BEGIN
NO(z) = VO(z) = o;
MO(z) = WO)z) = 1;
qg = D = n

FOR k := 0,1,...,h — 1 DO WO(z) := (z — X)WO)(z);
FOR k& := 0,1,...,2t — 1 DO [+ solve key equation */

[F erased(s,) THEN
g = q -1
N(k+l)(2»‘) = N(k)(a:c); u/(k+l)(z) = u/(k)(a:z);
ME(z) = M®(az); V() = V()(az);

ELSE /* evaluate */
ar = a*peN*)(1) — rW(1);
by = akpkM(k)(l) - rkV(")(l);
IF ¢ = 0 THEN b, = 1I;

IF ag =0 OR (bx 20 AND 2D > k+g) THEN /¢ update
NE+D(z) = b N¥)(az) — ap M*)(az);
Wk (z) = bW (az) — o, V) (az);
MEH)(z) = (az — 1)M®)(az);
V) (z) = (az ~ 1)V *)(az);
ELSE
MU () = b N*)az) — ap M*)(az);
V() = bW (az) — 0, V) (az);

NEH)(z) = (az — 1)N®)(az);
WkH)(z) = (az — 1)WH)(az);
D = D+ 1;
ENDIF;
ENDIF;
W(z) = WE(z); N(z) = N@(g);

FOR k := 2t,2t +1,...,n —1 DO BEGIN /* Chien search =/

IF W(1) = 0 THEN s = s — f(a*) iz ENDIF;
W(z) = W(az); N(z) := N(az);

END;

END;

Figure 5-11. Modified Berlekamp-Welch Algorithm with Erasures

5.6 Berlekamp-Welch Algorithm

80
Reed-Solomon Decoding Algorithms 5.7 Liw Algorithm

been processed, deg(M) + deg(W) = j + h. Thus, as we shall see below, it is possible to imple-
ment this decision with a variable which tracks the degree of W, similar to the parameter D in
the original Berlekamp algorithm. Once the key equation solution is complete, the Chien search
proceeds just as in previous examples, except that the constant f(a") multiplying the error value
is no longer just a power of a. Although Liu has shown that the expression for the function f
can be simplified somewhat (as in figure 5-11) from the form given above in equation (5.11), it is
nonetheless expensive to compute on the fly and would perhaps best be stored in a ROM.

In remainder decoding methods, the application of linear scaling can be coupled with other
modifications to produce a radical change in the algorithm’s appearance. Notice that in the
Berlekamp-Welch decoder the polynomials are evaluated at all elements of the field in turn; this
sequence of evaluations is difficult to implement efficiently in parallel. For example, to evaluate
W(z) at oF, the coefficient of z' must have an associated register which contains the element
a'®. This register must be capable of being multiplied by the coefficient W; and then multiplying
itself by o' to prepare for the next point. Such a scheme requires either an additional multiplier
or the sharing of an existing multiplier. Along the same lines, observe that in the update step
there are possibly two multiplications involving each polynomial coefficient: one by either a; or
bk, and the other by oF.

Both of these difficulties can be circumvented by the use of linear scaling and by applying
an operator D : a(z) — a(az) at each step, as is shown in figure 5-11. In other words, in terms
of the original version of the algorithm, the new polynomials are changed to &*)(z) = a(*)(a*z),
so that all polynomials are evaluated only at z = 1 throughout the algorithm. For this reason
it is necessary to apply D even when processing erased check positions. The operator D can be
implemented very efficiently, since each coefficient needs only to be multiplied by a (hard-wired)
constant; this change car occur during the evaluation phase, so that during the update step each
coefficient needs only to be multiplied by either a; or b,. Under the operator D, multiplication
by (z — o*) during the update of iteration k¥ becomes (with the help of a little linear scaling)
multiplication by (az — 1), which can be implemented without a multiplier, since the bits of
azr are readily available if z is expressed in a canonical dual basis. Note that the Chien search
uses D to step through the message locations in sequence, always evaluating at z = 1; such a
transformation introduces a spurious factor into the derivative, which accounts for the slight
difference between the definition of f(X') here and in the original algorithm. This technique is
in fact an extension of the root searching method originally proposed by Chien for hardware
implementation of BCH codes [17], and we will discuss its ramifications in chapter six. Also, as
mentioned previously, D is the degree of W(z), and the condition 2D > k + g holds if and only if
deg(W) > deg(M), since g keeps track of the difference between the number of message erasures
and the number of processed check erasures. Given these facts, it is clear that the modified
algorithm of figure 5-11 is functionally identical to the original Berlekamp-Welch method.

5.7 Liu Algorithm

Attempting to overcome some of the motivational and computational shortcomings (as mentioned
above) of the original Berlekamp-Welch algorithm, T .H. Liu, one of Welch’s graduate students,
derived another remainder decoding technique which is presented in figure 5-12 for the errors-only
case [35]. From the evaluation phase of the Liu algorithm, it is clear that the key equation of
interest is

s N(a‘) = r; W(ai), (5.15)

81

Reed-Solomon Decoding Algorithms 5.7 Liw Algorithm

/% ASSUMPTIONS: ./
/* 1. Codewords are multiples of g(z) = ,f;zlf_l(z — af). «/
[* 2. The received word is §(z) = c(z) + e(z), with ¢(z) a codeword. x/
/* 3. The remainder is r(z) = i:& rez® = s(z) (mod g(z)). +/
[+ 4. The constants g, are defined by [[:X% %z — of) = lqrt
[+ 5. The constants f(X) = alt=DEED 2l Y —Lot(qLl)g(X ab), +/
/* 6. (a,b) := (b,a) means to swap the contents of the polynomials. */
PROCEDURE Liu;
BEGIN
MO)z) = WO)(z) = 1,
VO(z) = z; NO(z) = o;
D = 0
FOR k = 0,1,...,2t -1 DO /* solve key equation */
BEGIN [+ evaluate =/
ar = qu(")(a") — rW®)(a¥);
be = gM®(ak) — r, VF)(aF),

IF a4 = 0 THEN [+ update x/
M) (2) = (z — o*)M®)(g);
VED(z) == (2 — o*)VB)(z);

ELSE
N+D(z) = b N*)(z) — g MB)(g);
WEHD(z) = B WHE)(2) — ¢, V9)(z)
M) () = (z — o*)NK)(g);
VEtD(z) 1= (z — o*)WK)(z);

IF 2D < k+ 1 THEN [+ swap */
(N(H'l),M(k'H)) = (M(H'I),N(H'l));
(W(’”'U,V(""'l)) = (V(k'*'l),W(“H))

y

’

D = D+ 1;
ENDIF;
ENDIF;
END;
W) = W), N(z) = NC9(a)

FOR k := 2,2t +1,...,n -1 DO [+ Chien search +*/
IF W(a*) = 0 THEN /+ only correct message characters */
S = g — f(ak)wﬂl(%'%;
ENDIF;
END;

Figure 5-12. Liu Decoding Algorithm

Reed-Solomon Decoding Algorithms 5.7 Lix Algorsithm

where the g; are coefficients of a generator polynomial very similar to g(z) in the Berlekamp-
Welch algorithm. However, observe from the definitions of these two polynomials that the roots
of g(z), as viewed in the frequency domain, are shifted one location. Thus, from the frequency
translation properties of the Fourier transform, and the fact that the coefficients of g(z) form a
Reed-Solomon codeword in a code of minimum distance 2t, it can easily be shown that

g = o3ty

so Liu's key equation (5.15) is identical to (5.14), up to the constant a—(2*=1). In other words,
the error-evaluator polynomial in figure 5-12 differs from that of the Berlekamp-Welch algorithm
by a factor of a?t~!, but note that this discrepancy is compensated for by the definition of FX).
The parameter D in the Liu algorithm tracks the degree of W(z). Clearly a set of modifications
similar to those of figure 5-11, involving the operator D, could be applied to this algorithm as well.
Again, because the evaluation criterion depends on both sets of polynomials, there is no obvious
way to split the algorithm, computing the locator without the evaluator. Evidently, the flow of
the Liu algorithm is virtually identical to the Berlekamp-Welch method, except for small changes
in initialization and in one of the update branches, so any differences in computational complexity
between the two remainder methods are only second-order effects. One is led to conjecture that
there exists a simple transformation which would show the equivalence of the two algorithms,
but thus far such a proof has been elusive.

Unlike the last few decoders presented, figure 5-12 does not include erasure decoding, for
two reasons. First, it is not yet well understood what are the proper initialization steps for the
Liu algorithm to operate correctly in the presence of erasures. Although it probably would not be
overly difficult to extend this method to handle erasures, either by analogy with the Berlekamp-
Welch approach or from a study of the invariants of the key equation solver loop, Liu has opted
for an altogether different approach, known as dynamic check allocation, which was originally
proposed (and implemented) by Berlekamp and Welch in the paper detailing their algorithm [8].
A brief description of their method is described in the following paragraphs.

One interesting facet of remainder decoding is that, given a correctable error pattern, if
all the errors occur in check positions, the weight of the remainder polynomial is less than ¢,
and the error pattern is the remainder polynomial itself. Such a condition can be detected and
then corrected by inspection; there is no corresponding result when the power-sum syndromes
are used. In the Berlekamp-Welch algorithm, solution of the key equation (5.14) provides no
information about the error values in the check locations; this limitation also holds in the Liu
algorithm, so any check errors must in general be corrected by reencoding.

Because Reed-Solomon codes are maximum distance separable, any set of 2¢ positions can
serve as parity (or check) locations. Given remainder coefficients for the standard set of check
positions, a simple linear transformation, involving LaGrangian interpolation polynomials, can
be used to map to corresponding coefficients for the new parity set; essentially this mapping can
be thought of as a basis change. A derivation of the linear transformation is beyond the scope
of this thesis, and the interested reader should refer to [8] or [35] for details. However, it should
be noted that calculation of the matrix entries is non-trivial, since there are 4t such elements,
each requiring the evaluation of a polynomial of degree 2t — 1: similarly, application of the linear
transformation itself requires a large amount of computation.

Now, if all the errors occurred in the new check locations, they could be corrected as
described above. So, one approach to erasure decoding is to change the parity locations to include

83
Reed-Solomon Decoding Algorithms 5.7 Liw Algorithm

all erasures, apply the decoding algorithm, which involves only non-erased check positions, and
correct the erasures by reencoding the new parity locations. In other words, the check positions
can be allocated as needed. There are many coding channels for which such an approach may be
very efficient, despite the large overhead associated with the matrix transformation. For example,
in a multi-track magnetic tape system, with each track corresponding to one character position
in the codewords, typical errors consist of very long error bursts on one or more tracks. If the
decoder knows that a particular track is currently in the middle of an error burst, the track can
be allocated as a check track, so that all subsequent errors appear as check errors and can be
corrected by inspection. For such ar approach to be helpful, the burst length must typically be
much longer than the time required to compute the transform matrix.

Clearly this philosophy assumes that the decoder cannot keep up with worst-case error
rates. While much work has been done on average-case optimized decoders [19], our goal in this
thesis is to study decoding systems which output corrected data in synchrony with the incoming
data, removing the need for elastic buffers and other clever enhancements which invariably
increase system complexity. Given this perspective (which may not be valid in all applications),
the inability of the Liu algorithm to handle erasures without massive matrix computations must
be regarded as a serious detriment. For example, in the amount of area required to implement
a matrix multiplier so that erasures can be corrected with little overhead, a high-performance
decoder could probably be built which would correct the erasures directly.

Because the Liu algorithm is so similar to the Berlekamp-Welch technique, it would
appear that the major contribution of Liu is more in his derivation method than in the resulting
algorithm. For example, the definition of the function f(X) originally given by Berlekamp and
Welch is computationally rather cumbersome, as evidenced by (5.11). However, by investigating
the question of error evaluation from a different point of view, Liu was able to come up with a
much more tractable form, which we have included in the presentation of both algorithms. Also,
while the derivation of the key equation (5.14) due to Berlekamp and Welch is clear, it gives
little indication of the relationship between remainder decoding and the more familiar approach
involving the power-sum syndromes. By contrast, Liu arrived at his key equation starting from
the Massey viewpoint of the syndrome key equation as a linear recurrence relation. Suppose
that e errors have occurred, and that ¢(z) is the appropriate error-locator polynomial. If ¢(z) is
normalized so that ¢g = 1, then the recurrence relation is given by

€
Sk=20‘,-5k_,- for k=-ee+1,...,2t—1.

f==1

Equivalently, there is the more general form

e
E U,'Sk_,' = 0, (5.16)

=0

which imposes no restriction on the normalization of 0. Let us assign W(z) to be the polynomial
reciprocal to the error locator; in other words, W; = o._;, so the roots of W are the inverses of
the roots of o. In terms of W, after a suitable change of indices, (5.16) becomes

ZW,—S_,-.,..-=EMr(aL+"+j)=0 for j=01,...,2t—1—c¢ (5.17)

=0 f==0

84
Reed-Solomon Decoding Algorithms 5.8 Blahut’s Time-Domasn Decoder

At this point, Liu introduced the operator 0 which was employed above in a modified
version of the Berlekamp-Welch algorithm. Given a polynomial a(z), Dia(z) = a(a‘z), so it
makes sense to talk about a polynomial in D. In particular, consider the polynomial operator
W(D) = } i WiD'® and observe that according to (5.17), W(D)r(z) has zeroes at oL+ for j —
0,1,...,2t—1—e. Thatis, W(D)r(z) is a multiple of the polynomial Hf_i_?_l—e(z—ak). From here
Liu goes on to show that in fact there exists a polynomial N(D) such that W(D)r(z) = N(D)q(z),
where ¢(z) is as defined in figure 5-12; by equating coefficients, this result can be simplified to
yield the key equation. Again, the specific details of Liu’s derivation are not relevant here.

The main point of interest, aside from the important result of relating remainder methods
to syndrome decoding, is that this approach gives some hope of splitting the algorithm to produce
only the error-locator polynomial. It seems feasible to construct a procedure, by analogy with
the Berlekamp-Massey algorithm, which iteratively generates W(D) directly from the remainder
polynomial, without resorting to computing N(D) also. Although such a method might have
some practical advantages over the full Liu algorithm, after some thought it becomes clear that
each iteration of this algorithm would involve evaluating a polynomial, which is exactly the com-
putation we are trying to avoid by not using the power-sum syndromes. As we mentioned earlier,
the area cost of an encoder is not tremendously less than that of a syndrome generator. In other
words, a split remainder decoder would probably begin to look suspiciously like the Berlekamp-~
Massey decoder itself. As we might expect, each decoding algorithm gives us greater insight into
the generalizations which might be employed to produce still more decoding algorithms.

5.8 Blahut’s Time-Domain Decoder

The power-sum syndromes actually give a window into the frequency spectrum of the error
pattern ¢; ; in the notation of this chapter, Sy = E .. Applying the Berlekamp-Massey key
equation solver to these syndromes yields the error-locator polynomial. Given o(z), the entire
error spectrum can then be reconstructed using the recurrence relation (5.16) :

Ek == E U;Ek_,-. (5.18)

=1

Once the spectrum E is known, an inverse transform produces the error pattern e, allowing the
received word to be corrected. Although this approach comprises a valid decoding algorithm,
observe that it entails part of a forward transform (syndrome computation) and an inverse
transform, with the key equation being solved in the frequency domain. Blahut realized that
it is possible to apply the transforms to the Berlekamp-Massey algorithm itself, and figure 5-13
presents a version of his time-domain decoder (10, section 9.5], which can be extended to include
both erasure handling and generator polynomials with L # 0. For our purposes, however, this
vanilla version is sufficient.

There are n iterations in the main outer loop of the time-domain decoder, where n is the
length of the codeword and must in general be a divisor of 2™ — 1. The first 2¢ iterations comprise
the Berlekamp-Massey algorithm cast back into the time domain, while the remaining n — 2t
iterations complete the error spectrum using (5.18), sequentially subtracting the contribution to
the frequency spectrum from the codeword. Unfortunately, the frequency-domain vectors (ie.,
error polynomials), which are of length 2¢ in the Berlekamp-Massey algorithm, are transformed
to length n in the time domain; further, all n iterations are required before any corrected data
can be output. Clearly the time-domain decoder has area-time complexity n?, but Blahut has

85

Reed-Solomon Decoding Algorithms 5.8 Blahut’s Time-Domain Decoder
/* ASSUMPTIONS: */
/* 1. Codewords are multiples of g(z) = i;l(z — o) . %/

/* 2. The received word is s(z) = c(z) + e(z), with c(z) a codeword. */

PROCEDURE TimeDomain;

BEGIN [+ initialize */

FOR i :=0,1,...,n -~ 1 DO BEGIN ¢ := 8; A = b; := 1 END;
D = o
FOR ¢ = 1,2,...,n DO
BEGIN [+ compute output of latest filter */

A = 2?:(13 a'k>‘t‘1: y

IF £ > 2t THEN /* recursive extension «/

FOR i := 0,1,...,n—1 DO ¢ := gi — Aa'*;
ELSE [+ compute error locator #/

IF A = 0 THEN
FOR ¢ := 0,1,...,n — 1 DO b = a b
ELSE
FOR i == 0,1,...,n =1 DO ¢; 1=)\; — Aa—b;
IF 2D < k —1 THEN

D = k - D
FOR ¢ := 0,1,...,n — 1 DO ¥ = A~l)\;
ELSE
FOR i := 0,1,...,n = 1 DO b; := o'
ENDIF;
FOR ¢ := 0,1,...,n — 1 DO)\; := ¢
ENDIF;
ENDIF;
END;
FOR i :=0,1,...,n -1 DO ¢ := ¢; — gq;; [* correct errors */
END;

Figure 5-18. Blahut’s Time-Domain Decoding Algorithm

detailed a more complicated version [11] which also computes the error-evaluator polynomials
and terminates with the Forney algorithm, thus reducing the complexity to order nt. Although
the power-sum syndromes are never explicitly calculated, the computation of A in figure 5-13 is
extremely similar to syndrome generation but involves many more arithmetic operations. Thus,
while it may be true that the time-domain decoder has a simple control structure, its area-time
complexity certainly seems to limit its use to low-speed applications. In particular, unless the
system has area on the order of n, a time-domain decoder cannot operate in full synchrony
with the incoming data. The structural simplicity of the algorithm seems to lend itself more to
sequential operation than to parallel computation.

86
Reed-Solomon Decoding Algorithms 5.9 Other Decoding Algorithme

5.9 Other Decoding Algorithms

Having been somewhat familiarized with the known Reed-Solomon decoding algorithms and their
multitude of variations, one is led to speculate as to whether any other classes of decoders exist.
There are many similarities between the known algorithms which could perhaps be generalized
in an attempt to derive new decoders. For example, although the evaluation criterion varies,
the update step is extremely similar in both form and purpose from algorithm to algorithm, and
the evaluate-update cycle is repeated a maximum of 2t times, once for each component of error
information. In fact, with the exception of Blahut's time-domain decoder, all the algorithms
presented here have the same order of area-time complexity, namely ¢2, although the associated
constant varies slightly. Thus, one may conjecture that any decoding method will have the
general control flow of the techniques already presented. As a case in point, a split remainder
decoder (as discussed above) would be closely related to the known remainder algorithms and
would likely bear a strong resemblance to the Berlekamp-Massey algorithm itself; it is therefore
questionable whether such a decoder constitutes a separate class.

The known decoding algorithms can be roughly divided into two classes: power-sum
syndrome (Berlekamp, Berlekamp-Massey, and Euclid) and remainder {Berlekamp-Welch, Liu)
methods; again note that Blahut’s time-domain decoder does not fit well into either category.
Alternatively, these two approaches can be considered to operate in the frequency domain and the
time domain, respectively. However, this viewpoint obscures an interesting relationship between
the two approaches. The power-sum syndromes can also be regarded as dividing the received
word by a linear polynomial (z — a’*7) to produce a constant remainder Sj; the remainder
polynomial is the remainder produced when the received word is divided by the product of all
these linear polynomials, g(z). But, by the Chinese remainder theorem, any set of relatively
prime polynomials whose product is g(z) can be used to compute a set of remainders, which we
will term generalized syndromes, with the same information content as any other set of such
polynomials. Thus, there exists a family of decoding algorithms which operate on the generalized
syndromes; the power-sum syndrome and remainder methods are but extremes in this family.
For example, suppose

L42t-1

sz)= I (-2

j=L

with L = 2™~ — ¢ so that g(z) is reversible. Then, if we let §; = a%*7 and
9i(z) = (2= Bi)z - f7") = 2"+ (B+F7")z+1,

the set of generalized syndromes { s;(z) = s(z) (mod g;(z))| 7 =0,1,...,¢t — 1} contains all the
information necessary to decode. Observe that g;{z) can be generated by a two-stage encoder
which involves only a single multiplier. Clearly there are many other such generalized syndromes
which could be computed. Although the area-time complexity of the corresponding decoders
would probably have the same order as the known methods, an understanding of this family
of algorithms would illuminate the relationship between power-sum syndrome and remainder
decoding. It is also possible that one of these generalized syndrome approaches would minimize
the constant associated with the complexity order.

In fact, it would not be too surprising if all the known (and unknown) decoding algorithms
are related by simple transformations. For example, the Berlekamp-Massey algorithm is a mild
variant of the original Berlekamp key equation solver, and Blahut's time-domain decoder can be

87
Reed-Solomon Decoding Algorithms 5.9 Other Decoding Algorithme

formally related to the Berlekamp-Massey algorithm via Fourier transform arguments. Cheng
[16] has also shown that the Euclidean method is formally equivalent to the Berlekamp algorithm,
and Liu has made the first step in outlining the correspondence between remainder and power-
sum syndrome decoding. There is room for much work in making these relationships rigorous,
and it is clear that such results will provide a greater understanding of the decoding process.

88

Chapter 6

Bit-Serial Decoder Architectures

6.1 Partitioning the Decoder

In this chapter a new approach to building Reed-Solomon decoders is presented, in which all
polynomial operations are done in a bit-serial, coefficient-parallel fashion, utilizing many finite-
field arithmetic units. By contrast, conventional decoders perform computations in a bit-parallel,
coefficient-serial manner with a single arithmetic unit. Obviously, the performance tradeoff
between these two methods occurs roughly when the number of bits m equals the number
of coefficients 2¢t. Most of the codes of interest to us have 2t > m, precisely because lower
redundancy codes can be handled well by traditional decoders. It would be possible to employ
multiple parallel arithmetic units, and such an approach merits further investigation for decoders
of extremely high performance. However, bit-serial communication requires less overhead on a
chip and still allows the construction of decoders with throughput higher than that of conventional
decoders. Several decoding algorithms will be examined in light of this approach.

Delay

Key
— Equation
Solver

Data Syndrome/

Chien (Qorrected
In Remainder

Search " Data

AN

Figure 6-1. Decoder Block Diagram

The decoder can be divided into several basic blocks, as illustrated in figure 6-1; we will
not be concerned here with the delay line, which can be implemented using standard memory
parts. It should be noted at this point that the major functional units of figure 6-1 can all

89

Bit-Serial Decoder Architectures 6.2 Bit-Serial Syndrome and Remainder Computation

operate concurrently. That is, while the first stage is computing the syndromes (or remainder) of
the incoming word, the key equation unit processes syndromes from the previous block and the
Chien search section calculates the corrections for the word received two blocks previously, as
outlined roughly in figure 6-2. Such parallelism allows the decoder to run synchronously with the
incoming data, with a fixed latency from input to output, eliminating the need for complicated
elastic buffers when dealing with a continuous stream of data blocks, and removing the penalty
typically associated with worst-case performance. The important performance figure for such a
decoder is the pipeline period P, which corresponds directly to throughput; e.g., a 10 MHz clock
rate implies 10 Mbits/sec throughput. Because we are interested in utilizing all the available
parallelism, each of the decoders which we shall consider has the basic architecture shown in
figure 6-1. It is to be understood implicitly that there will be (at least) one controller in the
decoder to provide control signals at the appropriate time to each of the units.

n n
< N Ny,
T g N -

Data In Vector A Vector B Vector C

Syndrome Syndrome A|Syndrome B|Syndrome C

< Bl >

Key eqgn. Key A Key B

Chien search wa(x) /0 (x)

Error values Errors A

<
T

v

n
Figure 6-2. Decoder Timing Diagram

Let us examine each of the architectural blocks in turn before attempting to assemble
the parts into a full decoder. First, we will explore the calculation of the syndrome/remainder
from the received word, with a comparison of the features from these two basic approaches to
decoding. Next, implementation of the Chien search and Forney algorithm in hardware will be
discussed, since this step is common to all known algorithms. Structures for solving the key
equation using several algorithms will then be presented and compared. Finally, consideration
will be given to some applications and implications of a single-chip decoder.

6.2 Bit-Serial Syndrome and Remainder Computation

As discussed in previous chapters, the two major classes of decoding algorithms require a received
word to be compressed into different (but entirely equivalent) forms for error correction to be
applied. Power-sum syndromes comprise a portion of the discrete Fourier transform of the
received vector, while the remainder upon division by the generator polynomial is a time-domain

90

Bit-Serial Decoder Architectures 6.2 Bit-Serial Syndrome and Remainder Computation

~/ T
% Tr(o o x)

X, X, X, S e—X X
Tt ~_ Data
\é[j/ >>k§ In
Tr(a, akx)

(staging register)

Figure 6-3. Dual-Basis Syndrome Computation

representation of the same information. The computation of either set of values can be efficiently
accomplished in a bit-serial fashion. Let us illustrate the two cases in turn and then compare the
results in view of the entire decoding process. ‘

Perhaps the most straightforward implementation of power-sum syndrome computation
can be derived from the polynomial viewpoint of the DFT. In other words, given a received vector
8(z), the syndrome S, = s(a¥). As we saw in the first chapter, applying Horner’s rule to the
evaluation of Sy yields a simple recursive structure, in which the current value is multiplied by
o* and added to the incoming component 3;. A dual-basis implementation of this operation is
outlined in figure 6-3; observe that the multiplication by the constant o is hard-wired. Initially
the z register must be loaded with zero. The bits of the product za* are added to the incoming
data and shifted into the staging register; on every mth clock, the z register is reloaded in parallel
from the staging register. A similar structure exists using a shift-and-add multiplier (see figure
6-4), but in a normal basis it is not possible to hard-wire the constant multiplication, implying
the need for an additional register and many GF(2) multiplications. To compute the syndromes
in parallel, 2t independent units can be constructed. If the clock is synchronized to the incoming
data bits, the syndromes are calculated in real time; i.e., as soon as the last bit of the vector
is received, the syndromes are available. Increasing the length of the staging register (in m-bit
increments) allows the syndromes of interleaved words to be computed.

Given a received vector s(z), the remainder polynomial, defined by

r(r) = s(z) (mod g(z)),

where deg(s) < 2t, can be computed by a linear feedback shift register, as illustrated in figure
6-5. Since arithmetic takes place over GF(2™), the feedback elements in general are not binary,

91
Bit-Serial Decoder Architectures 6.2 Bit-Serial Syndrome and Remainder Computation

(a™feedback)

&Dotc

m—1

xr)i&x N P Al&x fi’hx
T Ty

(" product)

(staging register)

Figure 6-4. Shift-and-Add Syndrome Computation

but Berlekamp discovered an elegant method for computing the remainder r(z) in a totally bit-
serial fashion [5], using the dual basis. This approach is particularly effective when using a fixed
code, because the multipliers for the coefficients g; can be hard-wired. Another enhancement
involves the use of reversible generator polynomials; i.e., selecting the parameter L of

L+2t—1

de)= JI =-o*

k=L

such that the reciprocal of every root of g(z) is also a root. It can then easily be shown that
the coefficients satisfy gos—; = gy, so that only half the number of field multiplications need be
performed. If o is a primitive root of GF(2™), then L = 2™~ — ¢ will produce a reversible 9(z).
A shift-and-add version of the same structure is fairly similar, but requires a parallel-load shift
register instead of a strictly serial interface; again, when using a normal basis, the multipliers
cannot be hard-wired.

In communication systems involving bidirectional information transfer, encoding is as
important as decoding. One particularly attractive feature of remainder decoding is that the
same structure which computes the remainder can also be used as an encoder; in fact, computing
the remainder can be regarded as re-encoding the received word. However, in the following
sections it will be shown that the key equation solver unit can often serve as an encoder for
variable redundancy codes, so this apparent advantage of remainder decoding methods turns out
to be not particularly significant. Further, there are several drawbacks to remainder decoding
in hardware. For example, although bit-serial encoders can be built very efficiently for a fixed
code, extending the structure to handle codes of varying redundancy modifies the coefficients
gi, thus requiring full (i.e., non-constant) multipliers. This change can significantly increase the
amount of chip area dedicated to remainder computation, relative to the other major blocks of
the decoder.

92

Bit-Serial Decoder Architectures 6.2 Bit-Serial Syndrome and Remainder Computation
g2(-—-1 th—Z g 1 g 0
2t—1 2t-2 1 o]
Mhe C .

Data In

Figure 6-5. Remainder Computation

By contrast, a power-sum syndrome decoder can easily handle codes of varying redundancy
by using only the syndromes needed. Suppose that 2t syndrome computation units are placed on
the chip, sufficient to compute syndromes for a code ¢ with generator polynomial g(z). Then a
code C' generated by /(z) can be decoded if h(z) is a divisor of g(z); in other words, € is actually
a subcode of C’. Only the syndromes corresponding to roots of h(z) will be utilized by the key
equation unit; the time cost of ignoring the additional syndromes is at most one m-bit cycle per
syndrome to shift the field element out of a register while the key equation unit remains idle.
The values of interest are a subset of the frequency window defined by g(z), as shown in figure
6-6. Since the same set of syndromes can be used for many codes, it is possible to handle varying
redundancy using only constant multipliers, preserving the efficiency of the syndrome structures
presented above. Also, if g(z) is a reversible polynomial, a reversible h(z) can be selected by
centering its frequency window in the window of g(z).

roots of h(x)

01010} ---10]0|0

roots of g(x)

Figure 6-6. Subcode Frequency Window

The limitation of remainder methods with respect to varying redundancy, along with other
similar problems encountered in the Chien search unit, leads us to conjecture that remainder
decoding is best suited to a single-chip implementation if only a fixed code is desired. One of the
initial goals of this research was to build a silicon compiler which could produce layout for a chip
to decode a specific code. However, after some work it became apparent that, by introducing
a few simple modifications, a power-sum syndrome decoder chip could handle all the codes of
interest with little or no performance degradation. Thus, instead of having a compiler to generate
a family of chips, it is possible to design a single chip for the entire family of codes.

93
Bit-Serial Decoder Architectures 6.9 Chien Search

Let us briefly analyze the area and time estimates for syndrome computation. The entire
syndrome generator has A = O(mt), since there will be 2t cells, each m bits wide. When
using a shift-and-add multiplier, the feedback and product terms must drive on the order of m
gates, so the clock period P would grow as log m, assuming a logarithmic driver. For practical
purposes, because we are only concerned with small m, this time is roughly constant; such
fanout issues have been ignored by other authors [24] as well, since they are largely secondary.
A dual-basis multiplier also involves a delay at least O(log m), depending on how the parity is
structured. Observe that remainder computation involves the same area order but will generally
run somewhat slower because of the need to distribute the products over the entire array of
cells. Since m clocks are required to process each incoming component, the clock period could
be interpreted as being proportional to m, especially if comparison is made with syndrome units
which perform parallel multiplication. Usually, however, the figure of merit is the number of bits
processed per second; thus we may say that P is essentially constant.

6.3 Chien Search

As we have seen previously, given the error-locator and error-evaluator polynomials from the key
equation unit, in the case of power-sum syndromes, the error values can be computed using the
Forney algorithm:

ola=*)5£0;

b = {a,"‘(l'_‘)w(a"‘)/a’(a"‘), ola™®)=0.

For remainder decoding methods,

e = {0: W(a*) # 0;
J(@*)N(e*)[W'(a*), W(ak)=0,

where the function f(z) is related to the reciprocal of the generator polynomial g(z), as described
in section 5.7. Because these two expressions are so similar, the basic strategy for error com-
putation will be the same in either case. Evaluation of the factor a=*(L=1) can be performed
recursively using a single multiplier. However, the function f(z) is considerably more complicated
to implement; it could be very efficiently computed using a lookup table in ROM, but such an
approach limits the chip to a fixed code. On the other hand, with the expression for f(z) imple-
mented in hardware, evaluation of g(z) could be performed efficiently for a single code; unfor-
tunately, much of this efficiency is also lost if varied redundancy is desired, since the multipliers
for coefficients g; cannot be hard-wired. Again we conclude that remainder methods are most
effective for a fixed code. Thus, our examples in this section will concentrate on the power-sum
syndrome case; extensions to the remainder methods are straightforward. .

The goal of a Chien search is to find all roots of the error locator. Although efficient
methods exist for finding roots of polynomials of degree four or less over fields of characteristic
two [4, chapter 11], each degree represents a special case, and we are still left with the general
problem. As mentioned previously, while special cases can be very effective in software, they
tend to be inefficient in hardware. Let us again make the assumption that, on each m-bit cycle,
exactly one received vector component enters the chip and exactly one error value is output by
the chip, with a constant latency between the input component and the corresponding output.
In other words, as illustrated in figure 6-2, the received word s(z) arrives in the order

8n—1,8n—-2,...,82, 81, 30,

94
Bit-Serial Decoder Architectures 6.8 Chien Search

2t 2t—1 2
A

2t 2t—1 2 1 0

Figure 6-7. Chien Search Implementation

and the associated error pattern leaves the chip in the order
€n—1,€p—2,...,62,€1, €,

some fixed time later. Given this restriction, even if the roots and error values can be calculated in
zero time, the decoder must wait for the appropriate time to output the error value. Implementing
special cases for root finding given this assumption does not improve performance and thus it is
difficult to justify the additional hardware cost. Also, if most of the corrupted codewords involve
only one, two, or three errors, it could be argued that the channel is not being utilized effectively:
the system design should take advantage of the available capability to correct more errors.

Fortunately, the Chien search provides a simple and general algorithm for finding all zeroes
of a polynomial over a finite field [17]. Since there are only a finite number of possible roots of
interest, one method is to try them all. Given the input ordering above, the appropriate sequence
of values to compute in a Chien search is

ola),a(a?),...,a(a"?),0(a™t),0(1) . (6.1)
Each zero in this sequence corresponds to an error, the value of which can be computed by the
Forney algorithm. Consider the operator D introduced in chapter five, defined by
Dp(z) = p(az).
Observe that application of D involves multiplying each coefficient p; by o, so this transformation

can be accomplished in parallel in hardware using only constant multipliers. If we define the
sequence of polynomials

o®)(z) = DFo(z) = o(a*z),
then o{a*) = o*)(1). Clearly 0(9)(z) = o(z), and since a™ = 1, it is also true that o(®(z) =
o(z). The sequence of Chien search values (6.1) is then given by
aW(1),6@(1),...,0"2(1), 0" V(1),0(1) .

Evaluation of a polynomial at z = 1 involves summing up all the coefficients, so the error locations
can be determined using a structure as shown in figure 6-7.

95
Bit-Serial Decoder Architectures 6.8 Chien Search

Q
VRN
>
N
D (11
s
3
° |

Err?trs
0 <)(> ou

-2

X

Figure 6-8. Forney Algorithm Using Chien Search Units

A unit identical to figure 6-7 can also be used to evaluate w(z) at the appropriate field
values. Observe that, if the arithmetic operations are implemented in a bit-serial fashion, the
large adder in the figure involves only 2f + 1 bits. Further, the clock period of this structure can
be minimized by fully pipelining this sum, which adds a small constant to the latency without
affecting the throughput. After each m bit clocks, values of o(e*) and w(a*) are obtained for
the next value of k. A central controller, obtaining this value from the end of the sum pipeline,
can decide whether to apply the Forney correction based on the result o(a"). If this value is
nonzero, the field element zero is output as the error component. Otherwise, it is necessary
to compute w(a¥)/o’(a*). At first glance this calculation seems to require another polynomial
evaluation unit. Fortunately, polynomial derivatives simplify considerably when dealing with
fields of characteristic two:

2t
o'(z) = E iegiz'! = Z oz
{==0 odd

In other words, if we pipeline the summation in the Chien search polynomial unit so that all
the even terms and the odd terms are added separately until the last stage, the derivative can be
obtained from the odd terms. In fact, when a(ak) = (), the even and the odd parts are equal, so
either partial sum will do. Given that we compute o(a¥) = o(¥)(1), the odd terms produce

A, = E JSk) — E J'_aik = oF E o,ia(i—l)k — ako.l(ak),

odd ¢ odd ¢ odd ¢

so the error value expression becomes
e = a~FL=Dy(a—k) AT,

The multiplicative inverse of A, can be accomplished bit-serially, as discussed in Chapter four. A
functional diagram of the entire Forney algorithm unit appears in figure 6-8. Controls to load the

96
Bit-Serial Decoder Architectures 6.8 Chien Search

<:O C1 CZ o Cn—SCnu~2Cn—1 OOOO

OOOO CO CT CZ Cn——:’:Cn—ZCn—1

Figure 6-9. Possible Interpretations of Shortened Codes

appropriate initial value will come from a central controller on the chip, but with the registers
properly initialized, the error pattern emerges sequentially from the output. Each block in figure
6-8 can be implemented bit-serially, and pipelining can be added to decrease the clock period.

Before proceeding to the key equation unit, one additional limitation of remainder decoding
should be explored. Often it is very desirable to use shortened codes, as explained in chapter
three, in order to match the code to a given block length. Suppose that the code is to have block
length ng < n = 2™ — 1. Both the syndrome and remainder computations proceed as in the
unshortened case, except that the calculation is terminated after only n, iterations, as one would
expect. The problem arises in the Chien search: in order not to fall behind the next incoming
word, all roots of the error locator must be found in only ng cycles. In the structures presented
above, the root search begins at z = « and continues with sequential powers of « until all field
elements have been tested. However, the only roots of interest here are at

=" "ol gn—ned2 02 41 g,

How can the additional n — ny elements be skipped? The answer to this dilemma is to utilize the
cyclic properties of the code. Instead of considering the received word s(z) to be

no—1

3(z) = E 8:z',

=0

we may assume that

n—1

3(z) = Z 8z’

f=n—ng+l

In other words, as shown in figure 6-9, treat the shortened codeword as having trailing zeroes
instead of leading zeroes. Because Reed-Solomon codes are cyclic, either interpretation of s(z) is
a codeword if no errors have occurred. Now the Chien search can be applied as before, stopping
after ngy corrections are computed.

However, this transformation has merely shifted the problem back to the syndrome (or
remainder) unit. If we assume that the zeroes follow the received components, then the actual
syndromes of interest are

Sk = Skak(n—no). (6.2)

97
Bit-Serial Decoder Architectures 6.4 Key Equation Solution

Another way of deriving (6.2) is to invoke the translation properties of the Fourier transform, since
we have effectively performed a circular translation of the time-domain values by n—nq positions.
If the modified syndromes S, are used, both the key equation unit and the Chien search unit
proceed as in an unshortened code, except that the decoding is terminated after ng components.
Obviously, the key equation block has less time to complete the solution for ¢ and w; we will see
below that this processing time requires on the order of ¢ component cycles, implying that there
will be lower limit on the allowed rate of the code. In almost all the key equation structures we
shall consider, the syndromes are introduced into the problem one at a time, so the modification
(6.2) can be performed sequentially, as illustrated in figure 6-10, given that the register is properly
initialized to oL("="°) What about the remainder methods? Because the remainder is a time-
domain quantity, the vector translation corresponds to a remainder translation; i.e., clocking the
remainder unit n — ny more times with zero input, exactly as if the code were not shortened
but had trailing zeroes. Unfortunately, there is no shortcut to perform this transformation, as
in the syndrome case. One possibility would be to use a second remainder unit to perform the
additional n — ng shifts, but this works only for 2ng > n; in general we would require [nlo] such
units arranged in a pipelined fashion, introducing an additional latency of n — ny component
cycles into the decoding process, as well as a large area overhead. Thus, it seems that remainder
methods are inefficient at handling shortened codes in hardware.

Asymptotically, the area of the entire error evaluation unit will be dominated by the
multiplicative inversion ROM, which grows as 2™. However, for most m and ¢ of interest, such
a ROM will be considerably smaller than the polynomial evaluation units. Even in the case of
large m, an alternative approach to reciprocal computation, when using a canonical basis, is to
cast Euclid’s algorithm into hardware, interpreting each field element as a polynomial mod an
irreducible polynomial of degree m over GF(2), as explained in Chapter two. This approach
requires area proportional to m, thus allowing the construction of decoders over fields such as
GF(2'%), which have typically been regarded as too large for practical purposes. Using this
technique, we find A = O(mt), since each of the 2t + 1 cells have size O(m). If we disallow
the correcting of 2t erasures, valid error-locator polynomials are guaranteed to have degree less
than 2¢, so only 2t cells would be required, exactly matching the number of syndrome units.
Because the polynomial evaluation sum can be fully pipelined, all the parts have essentially
constant pipeline period, with the possible exception of the reciprocal unit. Again, if needed,
Euclid’s algorithm can be employed in the reciprocal computation to reduce the time complexity
to roughly constant order, so P = O(1).

6.4 Key Equation Solution

We have now seen that the syndrome/remainder computation and the Chien search unit can be
built fairly efficiently, with area on the order mt and roughly constant clock period. In fact,
each of these blocks consists of 2t basically identical cells, differing only in the constant which is
hard-wired into the multiplier. Observe that no full multipliers are required in either case. Also,
the control signals are independent of the data being processed; values enter and exit at fixed
times, regardless of the number of errors to be corrected. In fact, the only necessary controls are
to tell each block to begin processing a new received word by either loading a multiplier register
(in the case of syndromes) or loading a new coefficient (in the Chien search). These signals occur
once per codeword; i.e., once every n component cycles, where a component cycle is defined to
consist of the m bit clocks corresponding to a single character. These pulses to the two units
differ slightly in phase, as shown in figure 6-2, because of the time required to compute the error

98
Bit-Serial Decoder Architectures 6.4 Key Equation Solution

Figure 6-10. Syndrome Modification for Shortened Codes

polynomials from the syndromes. Although a fixed latency is always required in our architectures,
it generally will be easy to tell that an incoming word was received correctly without completing
the entire Chien search, by simply testing whether all the syndromes (or remainder coefficients)
are zero. This test can even be performed sequentially, one syndrome at a time, introducing a
latency of size 2¢, which will generally be small with respect to the block size n.

The final unit to be investigated in the block diagram of figure 6-1 is the key equation
solver. After presenting the original key equation solution method, Berlekamp outlined a parallel
architecture for performing this algorithm, involving ¢ + 1 slave arithmetic units and a single
master controller, and he observed that the decoding time was independent of t, although the
hardware cost increased with t [4, section 7.7]. At that time, actual construction of such a
decoder was not cost-effective, but it is now possible to consider an implementation in VLSI. The
architectures presented in the following sections will vary depending on the particular decoding
algorithm chosen, but all are related in spirit to Berlekamp’s original proposal.

Several features will be common to all the algorithms. First, like the syndrome and Chien
search units, the key equation solver will consist of 2¢ cells, because the polynomials of interest
involve at most that many coefficients. These cells will all be identical, but, unlike the previous
blocks studied, each cell requires at least one full multiplier instead of a constant multiplier. As
noted in the previous chapter, all of the decoding algorithms consist of 2¢ basic iterations, so the
key equation unit will not always be busy, since a codeword consists of n component cycles. Each
iteration, consisting of an evaluate and an update step, can require more than one component
cycle; in general, the total processing time will be less than or equal to at for some integer a; in
order to keep up with the incoming data, we must have at < n, or the code rate must satisfy

R=1- u >1- 2 .

n a
Clearly the addition of more cells in the key equation unit allows lower rate codes to be processed
by the chip. One major difference between the key equation unit and the other blocks is that

99
Bit-Serial Decoder Architectures 6.5 Berlekamp-Massey Decoder

the control signals here are dependent on the received data. Based on the result of an evaluate
step, different update procedures must be followed, and signals to select the appropriate updated
values must be sent to the cells. Fortunately, as we shall see below, the controller does not have
to operate at the bit level; instead, it runs at the component level {m bit clocks), allowing fairly
relaxed timing in the state machine circuitry.

6.5 Berlekamp-Massey Decoder

In this section we examine a key equation solver in greater depth than the decoders considered
later, because many of the techniques presented here can easily be extended to other solution
methods. A group of students at Caltech has spent months planning and laying out part of a
decoder chip using the Berlekamp-Massey algorithm, providing greater insight into this particular
architecture. A block diagram of the basic cell, which can be used to implement the version of
the Berlekamp-Massey algorithm presented in figure 5-8, is shown in figure 6-11 for the case
of dual-basis arithmetic. A similar structure exists using a canonical basis and shift-and-add
multipliers. Each signal in the figure corresponds to a single bit line, except where noted by
the usual convention at the parallel load input to the multiplier. If identical units are cascaded
vertically, observe that inputs connect properly to outputs, so the design is quite regular. The
floor plan requires 2t such cells to be stacked vertically, with adjacent syndrome computation
and Chien search units, as illustrated in figure 6-12. Note that the communication between these
cells is entirely local.

In order to understand how this cell solves the key equation, the steps of the algorithm must
be related to the signals and multiplexers shown in the figure. There are three main registers in
the cell, one to hold the coefficient o;, one for a syndrome Si, and one for the auxiliary coefficient
;. These registers are shown several characters long in order to accommodate interleaving, which
will be necessary to utilize this structure efficiently, as we shall see below. Once the key equation
is solved, the 7 register will be used to hold the error-evaluator coefficient. Since 7(z) is never
involved in field multiplications in this version of the algorithm, there is only one multiplier in each
cell. Such an approach requires taking the reciprocal of the discrepancy A, but this operation
can be performed bit-serially at a central controller. The alternatives are to build an additional
multiplier at each stage or to multiplex a single multiplier in time, each of which significantly
increases the area-time product, while utilizing an inversion ROM only adds a constant area to
the controller.

Observe that the output of each multiplier goes to a sum over the entire coefficient array,
for use in performing an inner product to calculate the discrepancy

k
A= Z O;Sk_;

=0

during each evaluation phase. This same structure is later used in an identical fashion to produce
the error-evaluator coefficients

k
We = E U,'Sk_".

=0
Actually, the sum extends all the way up to i = 2t — 1, but, if we assume that o(z) is properly

initialized so that o; = 0 for £ > 0, then nonzero values of S in the staging registers of higher-
order coefficients have no effect on the discrepancy computation. Since the degree of the error

100
Bit-Serial Decoder Architectures 6.5 Berlekamp-Maseey Decoder

(staging register)

<X

i v S

TrC o, XYD

an
N

Y
NP
<

XL
3
Q

MUX

XC L
v
ﬁ

-1

A

Figure 6-11. Berlekamp-Massey Key Equation Cell

locator grows by at most one each iteration, only one additional term is introduced into the
sum A, as required by the algorithm. Similarly, during the computation of the error-evaluator
coefficients, the syndromes are shifted down in the array. Clearly, since the sum extends all the
way up to # = 2¢ — 1, zeroes should be introduced at the top, because o; cannot affect the value
of wi if j > 1. However, if a code of redundancy 2s < 2t is being decoded, zeroes must be
introduced beginning at cell number 2s. Thus, in the upper right corner of the figure, a one-bit
register which performs a GF(2) multiplication (AND) to enable codes of varying redundancy to
be handled. These control bits could be linked serially in a static shift register, to be initialized
by the system controller.

101
Bit-Serial Decoder Architectures 6.5 Berlekamp-Maesey Decoder

Chien| Key S

Chien| Key S

Chien| Key S

Chien| Key S

Figure 6-12. Decoder Cell Topology

Because the update step cannot be performed until the result A is known, there is a
latency inherent in this sum, while in Euclid’s algorithm there is no appreciable overhead in
extracting the discrepancy term, which is just the leading coefficient of the current dividend.
Citron therefore concluded that a Berlekamp-Massey key equation solver will always run slower
than a Euclidean version in the same technology [18]. However, if interleaving is employed, as
is usually desirable for greater burst protection, the Berlekamp-Massey discrepancy sum can be
fully pipelined without affecting performance. In other words, while the value A proceeds through
the sum pipeline and into the reciprocal unit, processing of the next interleaved character begins.
A certain minimum depth of interleaving d is required if the entire pipeline time is not to affect
throughput. Since the number of levels in the pipelined adder tree can be bounded by log 2t < m,
depth d = 3 seems to suffice when performing bit-serial arithmetic: one to load the staging
register with the syndrome Si_;, one to perform the multiplication, and a fraction (log 2t bit
times) of a cycle to process the sum and begin outputting the reciprocal A~! to the staging
register again. Although the value A~! is sent on a global line to each cell, a driver can be built
in stages and pipelined to handle this large load, since there are roughly m — log 2t extra bit
cycles available for this purpose.

The four multiplexers in the cell are used to control the operations to be performed
during the evaluate and update steps. Fortunately, each multiplexer involves only individual
bits. One of the conclusions of the student layout group was that wiring costs are already
significant when using bit-serial techniques: changing to parallel communication would involve
even greater overhead. A timing diagram showing the controls to each multiplexer for several

102
Bit-Serial Decoder Architectures 6.5 Berlekamp-Mugsey Decoder

— A
% © ; A 3
O
- |4
ool S SIS
O
= | T |)
Q. U b‘_lb &ITb (fj—
o | -
Ej < O x| & S
= |
=1 T ~
. » — O
3| v o2 L2
e - -)
L% < © > %)
\%
*é %) @ - %m
= i
@) N > e
j= » » -
ox| & & | &
O D
GE o =]V

Figure 6-18. Berlekamp-Massey Controller Timing Diagram

103
Bit-Serial Decoder Architectures 6.5 Berlekamp-Massey Decoder

evaluate-update steps of a typical key equation solution is shown in figure 6-13. This figure does
not take interleaving into account, so it should be interpreted only qualitatively. Some signals
will actually be phased on different component cycles within an interleaved cycle. Let us explain
the notation used by examining the each multiplexer in turn. To compute the discrepancy during
an evaluate phase, the staging register must have been loaded on the previous component cycle
with a value from the syndrome register, which is an input to the staging register multiplexer.
Once the discrepancy has been computed, the update phase requires multiplication of o; by A~1,
so the staging multiplexer must have been switched to this input on the previous cycle, loading
the staging register with A='. Thus, the staging register multiplexer selects from one of two
values, which are labeled A~! or S in the figure. The auxiliary polynomial multiplexer selects
between the current value 7, the shifted version z7, and the multiplier output A=1o. During
the evaluate phase, 7 is shifted (multiplied by z) to be ready for the update step. From the
algorithm, we see that the new value of r is given either by A~!¢ or z7; since at this point
the shift has already been performed, the multiplexer selects 7 in the latter case. During the
evaluate phase, o remains unaltered, but an update selects either ¢ or A~ lg — z7, which is the
other input to the error-locator multiplexer as shown, since r has already been shifted. The
syndrome register requires the largest multiplexer, with four inputs. Initially, the syndromes
must be loaded from the syndrome unit, denoted in the timing diagram by ‘New S'. During the
evaluate step, the syndrome multiplexer selects S; ; i.e., the current value is maintained in the
register. While the update is occurring, S;_, is selected, shifting the syndromes up to prepare
for the next discrepancy calculation. The last input comes from Siy1, shifting the syndromes in
the opposite direction to produce successive coefficients of w(z) once the error locator is known.
Observe in figure 5-8 that, corresponding to this ordering, the FOR loop index runs from 2t — 1
down to 0 . While these coefficients are being computed, they are fed into the 7, input at the
bottom of the stack, and the r multiplexer (which at this point could be relabeled w) selects z7
to shift the coefficients up to their proper location in the array.

A few other features of the key equation cell should be mentioned. First, the syndromes
are effectively introduced sequentially into the bottom of the array as the key equation solver
proceeds. Thus, the syndrome modification for shortened codes, as illustrated in figure 6-10, can
easily be performed at the bottom of the cell array. Once the error polynomials are computed,
they can be fed into the adjacent Chien search cell. For erasure handling, the controller must
be able to store the erasure locations while an incoming word is being received. Then, the first
h iterations proceed almost identically to the non-erasure case, except that the evaluate step is
used to update 7 to the new value of o and in the update phase the erasure location is used
instead of A. Observe that the entire key equation solution here requires roughly 6¢ coefficient
cycles: 2t evaluate steps, 2t update steps, and 2t steps to compute w(z), plus a few (two or three)
additional cycles to initialize the registers to their proper values. A lower bound on the code rate
using this decoder is thus given approximately by

2
R>1--=
>1-%

)

[S-2 N

which does not impose any significant practical limitations. For codes of higher rate, the key
equation unit will be idle some fraction of the time. To utilize this available computational
power eflectively would require additional syndrome and Chien search units, multiplexing the
key equation solver unit between problems. Such an approach can be attractive, particularly to

104
Bit-Serial Decoder Architectures 6.5 Berlekamp-Massey Decoder

decode codes of very high rate at very high speed. Thus, there can be benefits to solving the key
equation faster, but taking advantage of this capability involves a considerable area overhead.

As for the central controller, it is important to realize that each multiplexer control line will
be steady for an entire coefficient cycle. The state machine period is m bit clocks, so the timing
constraints are not particularly stringent. Besides providing signals to the key equation cells,
the controller must send a pulse to the syndrome units to tell them to clear their accumulators
and begin processing a new incoming vector, at exactly the same time when the key cells load
the newly calculated syndromes. A similar pulse, phased roughly 6t coefficient cycles later,
commands the Chien search array to load newly computed values of the error polynomials from
the key equation units. The controller must also keep track of the integers D, h, and k& of the
Berlekamp-Massey algorithm (for each interleaved word). Based on the relationship between
these parameters and the result of the test A = 0, the controller sends out the appropriate
signals to the o and 7 multiplexers during the update cycle. The integer arithmetic can also be
done bit-serially, greatly simplifying the circuit design.

Before proceeding, it will be instructive to identify several features of the Berlekamp-
Massey algorithm which make it attractive for implementation. First, a considerable reduction
in area-time product is aflorded by the fact that the algorithm is split. Observe that a similar ar-
chitecture could be used with the original (non-split) Berlekamp algorithm, but such an approach
would involve storing twice as many polynomial coefficients and either an additional multiplier
or the multiplexing in time of a single multiplier. An appropriate figure of merit here would be
the product of the number of coefficient cycles required to solve the equation and the number of
multipliers plus the number of coefficients stored. For the Berlekamp algorithm, this ﬁgure is at
least 32t2, while the Berlekamp-Massey figure is 24t2. Employing a split algorithm seems to be
advantageous, but the Berlekamp-Massey superiority here seems to go even deeper. For example,
such a gain does not seem readily available in the split Euclid algorithm, where the values o;
must be computed recursively using the coefficients of w(z):

0g = wo/SL
o= (wx - 005L+1)/5L

(6.3)

j—1
05 = (wj = D 0:Se4j-i)/Se.

{==0

Because an inner product such as (6.3) is not needed in the ged computations, this structure
would have to be added, thus losing some of the efficiency of the Euclidean algorithm. On the
other hand, in the Berlekamp-Massey procedure the same structure is used to calculate both the
discrepancy terms and the coefficients of polynomial w(z) given o(z), so this algorithm lends itself
particularly well to being split.

Further, the Berlekamp-Massey solution of the key equation requires a fixed amount of
time, regardless of the number of errors. By contrast, the Euclidean algorithm terminates more
quickly if fewer errors have occurred. This feature has often been cited as favoring the gcd
algorithm, because it would allow a key equation solver to be ready to accept a new decoding
problem more frequently. However, to take advantage of such a capability, the Chien search unit
would also have to find the roots of ¢ more quickly as well, but we saw in an earlier section that
this problem is quite difficult. As mentioned above, one possible solution would be to have multiple

105
Bit-Serial Decoder Architectures 6.6 VLSI Implementation of Berlekamp-Massey Decoder

syndrome and Chien search units sharing a single key equation unit. But for our purposes, the
fact that the solution requires exactly the same number of iterations each time greatly simplifies
the design without adversely affecting the throughput. Another somewhat less important feature
of the Berlekamp-Massey structure is that the polynomial coefficients stay in fixed locations; i.e.,
oo will always be found in the bottom key cell. In Euclid’s algorithm, where polynomials are
continually shifted to align leading terms, the position (in space or time) of particular coefficients is
not as certain, slightly increasing the complexity of aligning the coefficients with the corresponding
Chien search cell. A seemingly related advantage is that no intermediate storage is required for
the syndromes, which can be loaded in (coefficient) parallel from the syndrome computation unit
without an intervening shift register, if the error polynomials are properly initialized as explained
above. Finally, it is apparent that a Berlekamp-Massey chip, with only minor modifications, can
be used to encode as well, since the facilities are available for polynomial shifting and distributing
a common value to be multiplied by a distinct value in each cell and added to a local value.

There are nonetheless a few drawbacks to a parallel implementation of the Berlekamp-
Massey algorithm. For example, since interleaving is not always appropriate, the necessity of
interleaving using such a chip might be a problem. However, only the key equation unit requires
interleaving, so if the code rate is sufficiently high, the key equation unit could keep up by
performing a nop during what would otherwise be a cycle for an interleaved coefficient. The lower
bound would then be R > 1—(1/3)? = 8/9, since the key unit is effectively utilized only one-third
of the time. If the code rate satisfies this constraint, the Berlekamp-Massey structure would be
acceptable. Another problem is that the architecture is non-systolic, making it somewhat more
difficult to distribute the decoder over a large chip or several chips, particularly in view of the
need to compute the inner product. However, even this difficulty can be overcome by appropriate
use of pipelining, possibly introducing the need for additional levels of interleaving.

There are two contributions to the area of the key equation section. The first involves the
multipliers and shift-registers shown in the block diagram of figure 6-12, and the second involves
the additional storage required to handle interleaving to depth d. The size of the key equation
cell is roughly proportional to m, but the interleaving memory has size (d — 1)m, so the overall
area per cell goes as md. Thus, the entire key equation array has area A = O(dmt). Although
the depth of interleaving has been ignored in analyzing the area estimates for the syndromes
and the Chien search blocks, it is readily seen that in fact these areas scale in exactly the same
way. As for clock period, we have already seen that the global communication required in the
key equation unit can be pipelined, so the delay is roughly determined by the multiplier delay
log m; again, since we are not interested in asymptotic m, this figure can be regarded as roughly
constant. However, if part of the interleaving storage is implemented using a RAM, as was the
case in the student chip project, the memory cycle time may become the dominant factor. For a
RAM shift register which is dm bits wide, the access time will increase roughly as dm, but the
proportionality factor will be fairly small with respect to the constant overhead time—if clever
circuit design is used. Also, it is possible to access several bits in parallel, taking the RAM out
of the critical timing path. In other words, the limiting consideration in clock period, to first
order, may well be the distribution of the clock signals to the 2¢ coefficient cells. Thus, for our
purposes, we again have P = O(1).

6.6 VLSI Implementation of Berlekamp-Massey Decoder
A group of four students (Bob Anderson, Anne-Marie Brest, Neil Brock, and Brenda Roder) from
the VLSI design class at Caltech worked on implementing a prototype Berlekamp-Massey decoder

106
Bit-Serial Decoder Architectures 6.6 VLSI Implementation of Berlekamp-Massey Decoder

£
Q g
4
O
O

=
= s
sz &
O = ~
¥ D
Al —
= =
> QO)
n O L
E A
m‘:l-{ (RAM)
i =
A== s
O ~—~
hl % - b~
5| ¢ I S 3| is
=2 Y
<| % = 2 &
D 'f)‘ ~—| ~—|
O ~——r
tad
> =X éDX
15 e i
X 1
A
N
=<
e m
x x
T b T
Z & MRS EER
o
T g F
Oowm
o Spex
< ANV
fany
< J

Figure 6-14. Berlekamp-Massey Coefficient Cell

107

Bit-Serial Decoder Architectures 6.6 VLSI Implementation of Berlekamp-Massey Decoder

Cell

21—-2

21-2

RAM 1

Cell

21—

Cell

2

RAM

Cell

3

Cell

O

RAM

Cell

1

— O|N

Figure 6-15. Decoder Floor Plan

chip in NMOS using Mead-Conway design rules [21] as a class project for the winter and spring
academic quarters of 1984. The main goal of this project was not to produce a working chip,
since the amount of time each student could dedicate to the design was limited. Instead, it was
hoped that the major cell designs (e.g., finite-field multipliers) could be completed and a floor
plan specified in order to get a good estimate for the total area of a decoder chip, and that a
detailed analysis of the timing, necessary to specify the controller state machine, would allow
any architectural problems to be discovered.

A full block diagram for a single coefficient cell, including the syndrome, key equation, and
Chien search units, is shown in figure 6-14. Six shift registers in the figure consist of multiples
of m bits to allow for interleaving, and m = 8 was chosen for this design. To conserve both
area and power, most of this storage was laid out using a three-transistor dynamic RAM array
configured as a shift register, although exactly m bits are implemented using conventional shift
registers because of the need to perform parallel transfers to the multiplier units. The controls
for this RAM can be shared between all the coefficients, and only a single read/write line is
required per bit: while one bit cell is being read, the adjacent cell is written. A shift register
with accompanying bootstrap drivers is used to step the control lines through consecutive bit
cells, eliminating the need for an address counter and decoder. Sections of the RAM can easily
be bypassed, thus allowing the decoder to handle varying degrees of interleaving. A prototype
RAM chip has been sent out for fabrication, consisting of 48 rows (enough for eight coefficient
cells) of 32 bits each. Such a memory would allow interleaving of up to depth five over GF(256).
The dynamic RAM cell is roughly 17X by 21X, so the RAM storage for each coefficient cell is
about 600) wide and 130X high.

Figure 6-15 illustrates the basic floor plan for the decoder chip. Initial estimates of the
coefficient cell size showed a large discrepancy in height, so it was decided to interleave rows
of RAM and place cells on either side as shown, effectively doubling the height of the RAM
array. Computing the derivative of o(z) during the Chien search requires separate sums over the
even and odd terms, so the even and odd coefficients were placed on opposite sides of the RAM,
facilitating the separation of the sum. Consecutively numbered cells must be able to talk to each
other, but fortunately outputs from the RAM are available at the bit line on either side, so the

108
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

communication paths already exist. In retrospect, this physical separation of even and odd terms
may not be necessary, since it would not be particularly difficult to build two distinct adder trees
on one side. However, interleaving the rows of the RAM by placing coefficient cells on either side
does appear to allow a fairly good match between the coefficient cell height and the RAM size.

The bit-serial multiplier was constructed using the dual-basis technique with the primitive
polynomial f(z) = z% +z*+ 23+ 2%+ 1. A single cell is roughly 70\ wide and 180X high, including
two staging registers and the z and y registers. Thus, a full multiplier over GF(256) is 560X by
180X, only slightly larger than initial estimates. The feedback term for z can be either included
or bypassed in this cell; similarly, it is simple to remove the y staging and holding registers and
hard-wire a constant value for y. The cell is drawn in figure 6-16, with the feedback term present.
Observe that the value y is stored dynamically in the multiplier. For speed purposes, the parity
chain is fully precharged on one phase of the clock, then discharged on the other phase while
the data are held stable. It is clear that some area optimization could be performed, but the
design is largely metal limited in the vertical direction. In particular, the parity chain required
in the dual-basis structure seems to be somewhat inefficient in area; a second layer of metal or
polysilicon wiring would help tremendously here. As a result, perhaps a shift-and-add maultiplier
structure can be laid out in considerably less area than a dual-basis multiplier in this technology.

A coefficient cell consists of three constant multipliers and one full multiplier, wired
together with several XOR gates and small multiplexers. Although each of the leaf cells has
been designed, the wiring of all the parts together has only been completed topologically on
paper. The total area for this structure was then estimated to be roughly 400X high and 15001
wide. Thus, including RAM and coefficient cells, the total size for the decoder, which is capable
of handling redundancies up to sixteen over GF(256), is 3200) high and 3600X wide. With \ =
1.5 microns (i.e., 3u feature size), this portion of chip measures roughly 5mm on a side. To
this section must be added the controller, consisting of a fairly small state machine with some
bit-serial integer arithmetic units, two inversion ROMs (one for the key equation and one for
the Chien search), and the final stages for computing the error values, as shown in figure 6-8.
Although the controller has not been fully built, the reciprocal table has been designed, and the
ROM array is smaller than the LFSR which generates addresses for it. Clearly the controller will
be considerably smaller than the rest of the chip; a conservative estimate is that roughly fifteen
percent of the chip area would be dedicated to the controller.

Thus, it is quite possible to fit such a decoder on a single chip using today’s technology.
As feature sizes shrink, even larger redundancy can be handled. With regard to speed, the major
delays (which cannot be pipelined) would seem to be the parity chain in the multiplier, the bit-
serial inversion ROM, and the storage RAM. Careful use of precharging should allow even these
times to be minimized, and it is expected that the chip can run easily at a 10 MHz clock rate,
corresponding to a 10 Mbit/sec throughput. If close attention is given to clock and other driver
circuitry, it should be possible to achieve double the speed using existing MOS technology.

6.7 Euclidean Decoders

In this section, three architectures for implementing a key equation solver using the gcd algorithm
are presented, and it is intriguing that this approach lends itself so well to different computational
structures. Perhaps the reason is that the discrepancy term in Euclid's algorithm consists only
of the leading coefficient of a polynomial, which can be quite easily extracted in a wide range of
architectures. By contrast, the Berlekamp algorithm requires an inner product and remainder
methods involve polynomial evaluation; apparently, the complexity of the evaluation criterion in

109
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

1
CSa

VDD
(x staging
register)

1 Load

]

LFSR
feedback

4
| GND

GF(2)
multiply

| Load
T T vDD

(y staging
register)

IGND

Figure 6-16. One Bit Slice of Dual-Basis Multiplier

110
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

these two cases strongly dictates the hardware configuration. Hopefully, the simplicity of the
Euclidean discrepancy term will also allow the key equation unit to be utilized efficiently without
the requirement of interleaving.

As mentioned previously, using a split approach to the gcd computation does not seem as
attractive as in the Berlekamp algorithm, because to compute the error locator from the error
evaluator requires performing a series of inner products, and such a structure is not otherwise
needed. Unfortunately, if an inversionless version of the non-split algorithm is employed, four
multiplications must be performed per coefficient cell per evaluate-update step, as opposed to an
equivalent of three for the Berlekamp-Massey algorithm. Further, the storage for two additional
polynomials and the need for the extra multiplications (in either time or space) dictate that fewer
cells will fit on a chip, reducing the amount of redundancy which can be handled. Fortunately,
however, it may be possible to exploit other properties of the gcd procedure to effectively halve
the amount of computation. It can be shown [40, section 8.4] that, at each step of the algorithm,
the sum of the degrees of w(z) and o(z) is exactly 2t — 1, in the case of no erasures. In other
words, while the degree of w(z) shrinks throughout the procedure, the degree of o(z) increases
accordingly. Because identical operations are applied to the two sets of polynomials, a decoder
could take advantage of this property by allowing o to grow into registers being vacated by
w. Unfortunately, if erasure decoding is included, the sum of the degrees is always 2t + h —
1, so roughly twice the number cells is again required. Berlekamp introduced a structure for
implementing this technique [4, section 2.3], requiring some additional control logic at each stage
to separate the two sets of polynomials. So, Euclid’s algorithm in hardware also seems to split
naturally, although the term has a slightly different meaning than in the Berlekamp-Massey case.
The important fact is that an errors-only decoder may be able to operate without a performance
penalty using roughly half the area which one would originally estimate.

Euclid’s algorithm consists of a very simple sequence of operations, as outlined in figure
5-9. Given two polynomials w(z) and r(z), with deg(w(z)) < deg(r(z)), a shifted and scaled
version of w(z) is added to r(z) so as to cancel its leading coefficient, thus decreasing the degree
of r(z) by at least one. This process continues until the degree of r(z) drops below that of w(z),
at which point the roles of the two polynomials are exchanged and the process continues. For
decoding purposes, the algorithm terminates when the degree of w(z) drops below some value,
typically ¢ in the errors-only case. Data flow is determined entirely by these remainders; the
accompanying polynomials v(z) and o(z) are handled identically to the remainders but have no
say in the matter.

Our first proposed architecture implements this procedure very literally and has a floor
plan similar to the Berlekamp-Massey approach, as shown in figure 6-17. Each cell stores the
four coefficients w;, r;, 0%, and v, and has the ability to perform the following update operations:

rji=r; — pwj and vy ==V — POk,

where p is the ratio of the leading coefficients of r(z) and w(z). Linear scaling transformations
can be applied to remove the need for the reciprocal in this ratio, but such a method doubles
the number of multiplies per cell instead of requiring one inversion and multiply at the central
controller; the appropriate tradeoff depends on the application. Each cell has the ability to
exchange pairs of polynomials and shift r(z) and v(z) coefficients up one stage to align leading
terms. It is important to realize that, at any given time, the position in the array of a particular
coefficient, say o;, depends on the error pattern, although coefficients o; and o;4; are always

111
Bit-Serial Decoder Architectures 6.7 Euclidean Decodere

Controller
1 |p

&
Q

U

< LA LA

ki
SH{E

VAR N
iR
AL/

<

ST P
) G
o

W

Figure 6-17. Non-Systolic Euclidean Key Equation Solver

in adjacent cells. Leading terms of r(z) and w(z) are always aligned at the topmost cell, so
that the discrepancy is immediately available to the controller. Control signals to the array in a
typical situation would go something like: shift, scale by p;, add, shift, scale by pi+1, add, swap,
shift, scale by pi;2, add, etc. The controller keeps track of the degree of the two remainder
polynomials, stopping at the appropriate time. Because the final coefficients will be top justified
instead of bottom justified in the array, some care must be taken to load them into the Chien
search unit correctly. Also, since initially the syndromes are all required at once, either the
modification for shortened codes must be performed in parallel or an additional latency will be
introduced while the syndromes are modified sequentially. The array is clearly non-systolic, so it
would be difficult to distribute the structure over several chips, but it is clear that encoding can
be accomplished using figure 6-17. This architecture will not be examined in further detail here
because of its similarity to the Berlekamp-Massey approach and its intuitive simplicity.

A second implementation strategy for Euclid’s algorithm was suggested by Kung et al.
[14], in which polynomials are considered to be a stream of coefficients, high-order first, padded

112
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

W

k

00 (W00, (W) — | N

Figure 6-18. Systolic GCD Cell

at the end with a sufficient number of zeroes. If the leading terms are aligned, observe that a
cell such as figure 6-18 will perform one atomic step of the gcd procedure, decreasing the degree
of r(z) by at least one. As the leading coefficients enter the cell, they are latched to be used
in the multipliers on all further cycles. Identical transformations are applied to the polynomials
o(z) and v(z). In fact, if the initial values of these polynomials, padded with appropriate leading
zeroes to comprise 2t total coefficients, are appended to the corresponding remainder stream, the
array will compute both the error evaluator and error locator in turn, effectively splitting the
algorithm. The controls are set up to insure that the leading coefficient of w(z) is always nonzero.
Thus, if the leading term of r(z) is zero, the net effect of the cell is to delay w(z) with respect
to r(z), aligning the next coefficient of r(z}) with w(z) for input to the next cell. Eventually the
leading nonzero coefficient of r{z) will catch up. Observe also that in this case both r(z) and v(z)
are multiplied by the same scalar, so the final ratio of error polynomials is not affected. At each
cell, if the leading term of r(z) is nonzero and if the degree of r(z) drops below that of w(z), the
polynomials exchange roles and the process continues. Since each stage decreases the degree of
r(z) by at least one, exactly 2t such cells are needed to insure that the key equation solution will
be completed. When the degree of r(z) drops below ¢, all further stages just pass the polynomials
through unaltered, and the error locator and error evaluator emerge from the end of the pipeline.
A group at the Jet Propulsion Laboratory has begun the design of a decoder over GF(16) based
around this architecture [32], using normal-basis multiplication.

The systolic nature of Kung's architecture provides several benefits. First, there is no
need to drive signals (other than clocks) across the entire chip. Second, a fixed time is required
to solve the key equation, simplifying the interface to a Chien search unit. Also, the key
equation unit is fully available to begin solving a new problem after all the coefficients have
been input, if some effective way can be devised to utilize the error polynomials output at this
rate. Further, if matched delays are inserted on all paths between any two adjacent cells, the only
impact is a corresponding additional latency through the array. Thus, for example, it would be
possible to distribute the cells across several chips, perhaps converting from bit-serial to multi-bit
communication on the pads, without suffering a throughput penalty. This feature is extremely
attractive, because it allows the decoder to handle codes with higher redundancy than could be
accommodated on a single chip. Lastly, because the polynomials enter serially into the array,
syndrome modification for shortened codes can be performed easily just before the first cell.

However, Kung’s approach also has several drawbacks. For example, the structure does
not seem to lend itself to encoding, implying the need for a separate encoder block. Perhaps

113
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

Yo

. gr—2 .
' N

gr—1

Remainder

D(?:]G \)4 0—~=/ Ou\t
- —

Figure 6-19. Non-Systolic Interleaved Encoder

the most serious problem is that each cell in the ged array requires a separate controller to keep
track of the polynomial degrees, determining when to exchange the roles of the two polynomial
pairs and when to terminate the algorithm. It is likely that such a controller will be comparable
in area to the rest of the cell, so an enormous area penalty is paid with such a design. Another
consequence is that it is not feasible to consider a version of Euclid's algorithm which involves
multiplicative inversion. Such an approach would reduce the number of multiplies in the cell;
unfortunately, this gain is nullified by the cost of a reciprocal ROM and a multiplier required in
each controller. The inversionless algorithm requires twice the number of multiplies per cell as
in the non-systolic key equation unit presented above. It does seem that this architecture has
an important application in bit-serial reciprocal computation over fields GF(2™) which are too

114
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

Yo

. gr—2 °
A

gr—1

Remainder
Data A o_.} Out

Figure 6-20. Systolic Interleaved Encoder

large for table lookup. Using a canonical basis with irreducible polynomial [(z), the coefficients
Ji and the components of the element z to be inverted are fed into the array, and the reciprocal
emerges from the other end. Because the bits of z are only required serially, this structure seems

to fit in well with the strategy of a bit-serial decoder scheme. Exactly 2m cells would be required
to complete Euclid’s algorithm.

Clearly, there are area advantages to having only a single central controller, but significant
improvements in performance and flexibility are provided by a systolic design. A decoder
combining these two features would thus be extremely attractive, and Dally and Whiting at
Caltech have recently proposed such a structure [23]. To motivate this architecture, let us
first consider the problem of building a systolic encoder. In other words, given the generator

115
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

polynomial g(z) of degree r = 2¢, with g» = 1, we wish to take the remainder of the received
vector s(z) mod g(z). Since Euclid's algorithm consists of repetitively taking one polynomial
mod another, an encoder should point the way to a decoder architecture. A conventional encoder
circuit was shown in figure 6-5, in which the incoming value is added to the output of the high-
order coefficient and fed back to be multiplied by the generator polynomial and added into the
shift register. This structure is obviously not systolic, since the feedback term must be distributed
to all the multiplier inputs.

A first intuitive attempt at making the array systolic might be to add delay elements at
each stage along the feedback, but this change does not produce the desired effect, since the loop
delays are not preserved. That is, for example, the feedback term must be able to reach the
final adder in only one cycle after going through the g,_, multiplier, as this is clearly the case in
figure 6-5. With the additional delay stages, two cycles are required for this to occur; in fact, all
loop delays are doubled. However, consider the fact that both the loop delays and the amount
of storage are doubled. This phenomenon leads us to suspect that perhaps some interleaving is
present in our new structure. To see that this is indeed the case, consider figure 6-19, which
presents a conventional (non-systolic) encoder, interleaved to depth two. With the array initially
set to zero, the n — r high-order coefficients (from both codewords) are entered with the feedback
switch on. During the remaining r interleaved cycles, the feedback is turned off, clearing the
array and completing the remainder computation. A new pair of codewords can then be entered.
If we now introduce delay elements along the feedback path, all loop delays can be preserved by
removing one delay from each segment on the left, producing the systolic structure of figure 6-20,
which is functionally identical to the non-systolic encoder of figure 6-19. At any time, vertically
adjacent registers hold values from alternate encoding processes. Observe that this architecture
can handle codes of variable redundancy by setting the uppermost generator coefficients to zero,
effectively removing the upper portion of the array from the computation. Also, various depths
of interleaving can be accommodated by adding delay elements; in the systolic case, the delay can
be added on either side. With this structure it is also possible to cut the number of multipliers
in half when using a reversible generator polynomial (23].

Now consider modifying the systolic encoder to implement Euclid's algorithm, concentrat-
ing only on the remainder polynomials w(z) and r(z) at this point. First of all, there is no
guarantee that the remainder polynomials in the ged procedure have a leading coefficient of 1
at each iteration, as was implicitly assumed of g(z) for the encoder. Because these remainders
will eventually find their way into the 9(z) registers, we must compensate for the leading term.
Observe that

r—1

" =g;! Z giz' (mod g(z)),

=0

so the eflective coefficients are g;/g,. Instead of computing and storing these elements, a simpler
approach is to scale the feedback term by g;' before sending it up along the registers on the
right-hand side. Thus, we will add a g, register which feeds into a bit-serial inversion unit
and into a multiplier in the feedback path. Initially, the syndrome polynomial w(z) = S(z) is
entered into the multiplier registers, setting g; = S; 44— for i = 1,2,...,r and go = 0, since
deg(S(z)) = r—1. If S, 4,—; = 0, the syndromes must be shifted down until a nonzero term is
found; each such shift decreases the degree of w stored in the controller. Then the coefficients of
r(z) = z?! are fed into the data input of the array. The feedback should be enabled during the

116
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

first (deg(r) — deg(w) +1) cycles, insuring that the output will have degree less than deg(w). For
the remaining coefficients, the feedback is turned off, producing the remainder r(z) (mod w(z)).
The first iteration of Euclid’s algorithm is now completed.

A major problem arises at this point. How do we move the remainder into the g(z) register
and extract w(z) from this register to serve as the new r(z)? The remainder coefficients emerge in
the incorrect order to be fed back up in a staging register for g(z), and since we want to maintain
the systolic nature of the structure, it is not possible to transmit values to the cells in the opposite
order. Perhaps, by wrapping the array back on itself, these coefficients can effectively be shifted
down in the array, but such an approach would require r cycles on every iteration. Also, because
roughly r—1 cycles will be required to complete the remainder calculation, it seems that the next
iteration cannot begin before that time. But if this is the case, our structure will require order
r? cycles to solve the key equation, which is no better than a sequential processor.

Fortunately, there seems to be a fairly elegant solution to this dilemma. Notice that, when
the degree of the remainder drops below that of w and the feedback is turned off, on the next
cycle a zero is present in the delay element which feeds the g,_; multiplier. In other words, the
last stage of the feedback shift register on the left has now become a simple shift register, since
zero is the input to the adder from the multiplier. On subsequent (interleaved) cycles, inputs
to the remaining multipliers also become zero. Thus, after j cycles, the value which emerges
from the bottom left register has been unaltered over the last j stages. As a consequence, the
stage which is j levels from the bottom is essentially no longer being used at this point, so with
some manipulation the next iteration of Euclid’s algorithm can begin immediately. Consider the
architecture shown in figure 6-21, which implements all of the changes discussed above. Registers
L (for left), R (right) and g correspond directly to the encoder structure, but the accompanying
@ and s registers are new. ¢ holds the coefficients of the current value of r(z), and s is used for
control purposes. Each register L, @ and g can accept its new input from two sources, located
here on the top and on the left, and the selection will be determined by the contents of the local
binary register 3;. When s; = 1, the left input is selected; otherwise, the top input becomes the
next value. For encoding purposes, 3; would always be set to zero.

There are several paths here which are not present in the encoder. When the time for
a swap arrives, coefficients of the old w(z) are moved from the g register to the Q register to
become the new r(z), the L register is cleared to begin the next iteration, and all 2t coefficients
of the new remainder are computed as the sum of the old r(z) and the L register. However, this
swapping cannot all occur at once, since the values are not all computed at once. Instead, s,
is set to one, propagating the swap operation upward through the array in the s shift register,
one level at a time. The feedback switch never needs to be opened here, since the new iteration
begins immediately at the bottom level of the array while the old iteration is completed in the
upper section. On each cycle, one additional level of the array, no longer needed for the old
computation, becomes involved in the new iteration as a swap occurs. With all of this activity,
it is important to remember that everything is still being interieaved to depth two, so alternate
problems are considered on alternate clock cycles. On each interleaved cycle, the degree of the
largest polynomial is decreased by at least one, so only 2¢ cycles are required to solve the key
equation.

On first glance, it seems odd that the @ register can be used to hold the remainders
r(z) from both of the (interleaved) gcd algorithms, since there are only r = 2t registers to hold
4t coeflicients. However, because the next iteration begins immediately, by the time the swap
signal has propagated up j levels, exactly j values have been emptied from @ into R through the

117
Bit-Serial Decoder Architectures 6.7 Euclidean Decoders

ES[\] LQ1 0—> L—1 g, F\)1

gr—2

—

E’J LQr—1 | g\f—1 R

/
ES
e
&

o}
—
IS
o
I
O
0

e
o<
>

Figure 6-21. Systolic Decoder Structure

118
Bit-Serial Decoder Architectures 6.8 Berlekamp-Welch Decoder

feedback path; i.e., the R registers are eflectively extensions of the @ registers, thus providing 4¢
storage cells. When the key equation is solved, the final value of w(z) ends up in the g register,
where it can be held until the Chien search unit is ready. The new syndromes can then be
introduced serially from the top, shifting down in the Q register and being swapped into the g
register, allowing the error locator to exit to the Chien search unit. Thus, it is possible to perform
syndrome modification for shortened codes in a sequential fashion at the top of the array.

The exact data flow details of this architecture still need to be resolved. In particular, it
is important to understand how the auxiliary locator polynomials ¢(z) and v(z) can be computed
using this array. Because the degree of the remainders shrinks throughout the problem, it seems
likely that the locator polynomials can be computed in the space vacated by the remainders with
a little control overhead, as discussed previously. However, to fully utilize the erasure correction
ability of the code, it seems necessary to duplicate the array for the locator polynomials. It is
clear that this structure can be used as both an encoder and a Euclidean key equation solver,
combining the most attractive features of all the previous architectures. For example, since there
is a single central controller, the decoder is free to use reciprocals to cut down on the number of
multiplications in each cell, and the degree-tracking state machine needs to be built only once.
Because the array operates systolically, no control signals (other than clocks) need be distributed
over the entire chip, and it is simple to extend the decoder over several chips, replacing the
delay element by the off-chip driver time. Also, an encoder is available on the chip at no extra
cost. Unfortunately, interleaving to depth two is required to utilize the key equation unit most
efficiently. Again, however, because the other blocks do not need interleaving, the decoder could
run without interleaving for codes of high enough rate.

Each of the architectures presented in this section has area A = O(mt), or A = O(dmt)
if interleaving to degree d is considered. Again, the clock period has order P = O(1), given the
assumptions discussed previously. Although the asymptotic orders for area and time are identical,
there are certainly differences in the associated constant factors which will have to be taken into
account in deciding which architecture fits best in a given technology. As compared with the
Berlekamp-Massey decoder, it seems that the Euclidean algorithm can be implemented with little
or no minimum interleaving requirement, and the systolic structures offer great flexibility with
respect to using multiple chips in order to handle codes of higher redundancy.

6.8 Berlekamp-Welch Decoder

Both of the algorithms considered thus far involve the power-sum syndromes, but in this section
we shall see that the basic structures can be extended to remainder decoding as well. Since the
Berlekamp-Welch and the Liu algorithms are so similar, only the former will be discussed here.
Not surprisingly, the area, latency, and clock period will be of the same order as those of the
previous architectures. In both the reencoder and the Chien search units, it became apparent that
remainder decoding methods were only efficient for fixed, non-shortened codes. Examining the
modified Berlekamp-Welch algorithm of figure 5-11, we see that the constants pj are dependent
on the code, so the same restriction seems to hold here.

Because this algorithm cannot be split, storage for four polynomial coefficients must be
present in each cell of the key equation solver array, half of which is shown in figure 6-22.
The other half is virtually identical but holds the coefficients of N(z) and M(z). If desired,
an inversionless version of the algorithm could also be used to halve the number of multiplies
per cell at the cost of an additional multiplexer input to handle the zero discrepancy case. The
controller sends appropriate select signals to the multiplexers, based on the current values of

119
Bit-Serial Decoder Architectures 6.9 Resuits and Applications

i
¥

LD
N
Wan
jNY

o B
b D&

Figure 6-22. Half of Berlekamp-Welch Key Equation Cell

the parameters D and k, as well as the discrepancies a, and b;. The unmodified algorithm
requires evaluation of the polynomials at various field locations. A simpler approach in hardware
is to apply the operator D, so that all evaluations can be performed at z = 1, which is fairly
simple to arrange. Figure 5-11 presents this modified form of the algorithm. In the evaluate
phase, while the polynomial coefficients are being summed over the array, multiplication by af is
performed to effect the transformation D. During the update phase, linear combinations of the
form 0W; — aV; are computed by the multipliers. Transformations of the form (az — 1)W can
be performed without a field multiplication, particularly if a dual basis is used, since the bits of
aW;_; are available from LFSR register in the multiplier holding W;_,. One awkward feature of
this approach is that, at the completion of the algorithm, the polynomials are actually functions
of a?'z, so the Chien search must start at o?!. Since no information about the check errors
is available, the search should then continue with o***!, etc., but the error values then emerge
in the opposite order from that in which the components were received. A possible fix to this
predicament is to remember that the remainder coefficients can be used in any order in the key
equation algorithm. In particular, if they are processed in the reverse order and the polynomials
are initialized to W(%(a?t~1z), for example, then the operator D' : p(z) — p(a~!z) can be used.
At the end of the key equation solution, the polynomials will be functions of @~ !z, so the Chien
search can proceed in the proper sequence.

Clearly this structure has no outstanding advantages over the previous ones considered.
In fact, there are several drawbacks, in addition to the limitation of fixed codes. For example, the
necessity of evaluating all four polynomials in each iteration would involve considerable global
sum hardware. Also, because the algorithm does not split, a full complement of storage and
multipliers must be present in each cell. Nonetheless, this architecture is fairly reminiscent of the
power syndrome key equation solvers, leading us to believe that any parallel decoder will have a
similar structure.

6.9 Results and Applications

For a fixed depth of interleaving, each of the above architectures has A = O(mt) and an overall
latency T = O(m(n + at)) bit clocks, for some integer a. The model here is one in which
components of the received word enter the system sequentially, so the mn term in the latency
is unavoidable when using bit-serial techniques, and the remaining latency is required to solve

120

Bit-Serial Decoder Architectures 6.9 Results and Applications

Algorithm Multipliers | Storage | Latency | Min d Comments

Berlekamp-Massey 2t 6t 6t 3 Split algorithm
Euclid 4t 8t 2t 1 Non-systolic

Euclid (split) 4t 4t 4t 1 Systolic (Kung)

Euclid 8t 8t 2t 1 Systolic (Kung)

Euclid 4t 5t 2t 2 Systolic Encoder

Berlekamp-Welch 4t 8t 4t 3 With inversion

Table 6-1. Area-Time Comparison of Key Equation Architectures

the key equation. Recently, El Gamal et al. [25] have shown that, in the case of sequential data

input, the area A and latency T are asymptotically related to the redundancy 2¢ and the block
length n by

AZ2 ot and T 2 con,

for some fixed constants ¢; and c;. In other words, our architectures are within a factor m of
the lower bounds in both area and time. The factor of m in the latency is related to bit-serial
computation, but notice that parallel arithmetic decreases the latency by this factor while the
area increases proportionately. Typically n = 2™ — 1, or m == logn, so in terms of area-time
product the lower bound is exceeded here by roughly (logn)?. Although these structures may
not be optimal, they do provide an existent upper bound.

However, perhaps the most important characteristic of our decoders, as opposed to the
sequential architectures examined by Cohen, is that the throughput, measured in decoded bits
per second, does not decrease with ¢ or m. That is, a bit-serial decoder with a 16 MHz clock
has a throughput of 16 Mbits/sec, regardless of the redundancy or the field size. By contrast,
the GF1 decoder over GF(256) running at a 16 MHz clock rate performs field multiplications at
the same speed as a bit-serial multiplier running at 128 MHz, but the throughput for a (255,239)
code is less than 4 Mbits/sec, and performance degrades for higher redundancies. It is clear that
parallelism must be employed to build high performance decoders for Reed-Solomon codes of
non-trivial redundancy.

In practice, however, codes of interest involve fairly small m and t. Of much greater
concern than the asymptotic results are the constant factors accompanying the order estimates.
We have seen that the syndrome/remainder generation and the Chien search units are basically
identical in all the architectures. Table 6-1 summarizes the results for various key equation solver
structures presented above. Controller area is not taken into account, since it does not scale with
the redundancy, except in the case of Kung's gcd array. The second and third columns give
a relative area estimate by counting the total number of full multipliers and the total number
of coefficients (field elements) which must be stored in the array. The latency is the maximum
number of interleaved cycles required to complete the key equation solution, with the minimum
depth of interleaving d for the architecture given in the following column.

In terms of latency, the Euclidean algorithms have a distinct advantage because of ‘the
simplicity of their discrepancy term. If area is the major concern, the Berlekamp-Massey algo-
rithm seems to have a slight edge, especially because multipliers are considerably larger than
storage registers. The systolic approaches have advantages already discussed; in particular, the
ease with which the algorithm can be spread over multiple chips somewhat reduces the area
penalty with respect to the Berlekamp-Massey architecture. Our goal here is not find the optimal

121
Bit-Serial Decoder Architectures 6.9 Resulte and Applications

approach, since many system factors must be taken into account in such a decision. However, he
analysis in this chapter should be helpful in selecting an architecture for implementation.

At this point, it seems appropriate to stop and reflect on the possible implications of a
single-chip Reed-Solomon encoder/decoder. How could such a chip be used? Many straightfor-
ward and important applications are possible in magnetic or optical data storage and in com-
munication systems, but we shall leave these details to the engineers. From a more philosophical
point of view, the basic unit of computation in decoding hardware would jump from a multiply
or a memory reference to an entire decoder. In fact, if the data rates were on the order of
a few megabits/second or below, the chip could have as few as 6 pins: power, ground, clock,
word sync, data in, errors out, although such packaging may be neither desirable nor practical.
Nonetheless, the hardware and power cost associated with decoding (and encoding) clearly would
be reduced by orders of magnitude, while the worst-case throughput increases significantly. One
immediate consequence is that codes with fairly high redundancy, say greater than 16, which are
now feasible only in cost-insensitive or low-speed applications, could be implemented routinely,
utilizing the full power of Reed-Solomon codes.

Perhaps more intriguing, however, is the question of how to utilize many such decoder
chips to achieve formerly impossible speed or reliability goals. For example, interleaving can be
performed at the chip level, with simple high-speed logic routing sequential inputs to adjacent
chips and collating the results. This technique can be used to achieve a linear increase in
throughput, at the cost of greater depths of interleaving. Alternatively, entire words, entering
the system at high speed, can be buffered and presented to decoder chips on a round-robin basis,
again effecting a linear improvement in decoding speed. There is no required depth of interleaving
in this case, although the buffering logic would be considerably more complex than in the former
case. Also, consider a matrix of field elements in which both the rows and columns form RS
codewords. Decoding and encoding of a matrix Reed-Solomon code could be accomplished using
a few chips, adding a new dimension (literally) of codes which are feasible to implement.

Another very important application could come in the area of soft decision decoding. For
example, Weldon and Chase have proposed algorithms requiring multiple hard decision decoders
in an attempt to utilize soft information in block codes [15]. These algorithms seem to perform
encouragingly like true maximum-likelihood decoding, but previously it has been feasible to apply
such ideas only to fairly simple (e.g., binary) codes. One possible approach would be to identify a
set of least reliable symbols in the RS word, using analog information from the demodulator. In
general, it would be possible to choose a set larger than the redundancy of the code. By erasing
distinct subsets of these components and presenting each problem to a different chip, several
estimates of the transmitted word could be produced and graded by comparison with the actual
received word. If the number of erased symbols is limited to several less than the redundancy,
some errors in addition to the erasures can be corrected and the probability of miscorrection
can be made negligible. More research in this area will prove useful when single-chip decoders
actually become available.

122

Chapter 7

Conclusion

Beginning from the elementary concepts of abstract algebra and coding theory, we have finally
worked our way up to a thorough understanding of the arithmetic and algorithmic structures
necessary to implement Reed-Solomon decoders efficiently on an integrated circuit. Several
significant theoretical and practical results have been presented, including the criterion for the
existence of self-dual bases, methods for bit-serial inversion, and techniques to allow a single chip
to handle easily codes of varying block length and redundancy without affecting performance.
For a code of redundancy 2t over GF(2™), our proposed decoders have area A = O(mt) and clock
period P = O(1), with the throughput rate in bits per second equal to the clock frequency of
the chip. Enough preliminary work has been done to show that it is indeed feasible to construct
such a chip, using technology which is presently available. This problem is a excellent example
of how a background in abstract mathematics can be merged with a knowledge of VLSI design
to produce a high performance system. Without a thorough familiarity with both fields it would
have been difficult to arrive at these conclusions.

Although the emphasis here has been on bit-serial computation, many of our results can be
applied to the case of parallel arithmetic as well. As technology improves, area will become less of
a concern, and fully parallel multiplication, addition, and inversion may become the techniques of
choice for high performance decoding. There are also many combinations of bit-serial and parallel
computation, such as pipelined parallel structures, which will prove useful. It is hoped that the
bit-serial methods derived in this thesis can serve as a guide to making intelligent decisions in
these tradeoffs.

Research questions are often stimulated by the advent of new technology or tools. Al-
though Berlekamp conceived the idea of a parallel decoder engine almost two decades ago, not
until the VLSI era did it become feasible to consider implementation of such a machine. By the
same token, a single chip decoder will undoubtedly lead to many other interesting applications
and, ultimately, new questions.

123

Appendix A

Normal-Basis Multiplication

Let the product 2 = zy be given in a normal basis B = {p, } and let z be represented
in the B basis and y be represented in some other normal basis P = {w? }. Then,

m—1 . m—1 .
i 3
= E ziu? and y= E yiw?,

=0 j=0
and
m—1 . .
2! o3
z=1zy= E Tyt w
i, j=0

Let D = { a?'} be the basis dual to B, so the first bit of the product z is given by

m—1

20 = Tr(ayzy) = E z,yJTr(aou w) (A.1)

{, 7=0

Now consider the case y = 1. Clearly, since P is a basis, we must have Tr(w)=1,so0in
this case y; = 1 for j = 0,1,...,m — 1. But since ¥y =1, 2 = z, so we must have zy = z,,
regardless of the value of z. Recasting (A.1) in this light, we find

m—1 m-—1
20 = Tg = Z z; E Tr (a ”z'wz) (A.2)
=0 J=0

We break (A.2) down into two cases: for i = 0,

m—1

1= Z Tr(aouwzj),

=0

124

Appendix A Normal-Basie Multiplication
or zo is involved in an odd number of product terms. But for i = L,2,...m-1,
m—1 .)
0= Z Tr(a0u2 w?’),
7=0

s0 z; is involved in an even number of product terms. Note that each component z; must be able
to have some effect on the first bit of the product, so in fact each z; is involved in at least two
product terms, for # £ 0. Therefore, there are at least 1 + 2(m — 1) = 2m — 1 product terms
involved in bit-serial multiplication using normal bases.

Massey [38] has shown, by using the distributive laws, that the number of actual GF(2)
multiplications can be reduced to m; however, such transformations do not decrease the number
of XOR operations below the minimum of 2m — 2. Further, for VLSI implementation, the gate
count is often not as important as the wireability of the logic. Note that factoring the expression
using the distributive law corresponds roughly to performing a basis change, and such a structure
tends to have area proportional to m%. To obtain a regular structure for their normal-basis
multiplier, a design team at the Jet Propulsion Laboratory [31] found it necessary to use a PLA
structure, which has size m?. Thus, with respect to a dual-basis multiplier, an area penalty of
roughly two will be paid due to gate count, and wiring is likely to increase this cost greatly.

125

Appendix B

Gilbert Model Probability Computation

Consider a Reed-Solomon code of block length n over GF(2™), interleaved to depth d. On the
bit level, the data appear as in figure B-1. Let us assume that the channel error statistics can
be approximated by the Gilbert model, as shown in figure 3-5. The average burst spacing is 1/X
bits, and the average burst length is 1/u bits. We then proceed to compute the error probabilities
in several steps. Our computation will consider only one of the interleaved codewords, so let us
define an interleaved cycle to be a sequence of d characters, consisting of a component from the
codeword of interest followed by m(d — 1) interleaved bits. Let Py(k) be the probability that,
after ¢ interleaved cycles, exactly k character errors have occurred and that the channel is in
the good state. Similarly, let Qi(k) be the probability that, after ¢ interleaved cycles, exactly k
character errors have occurred and that the channel is in a burst. Since at most one character
error can occur in a single interleaved cycle, the process is clearly a Markov chain, so there is a
linear relationship:

P,‘+1(k) == ‘U,IP{(IC) + UQQ,'(/C) + U3P,'(k — 1) + ‘U,4Q,'(/C — 1)
Qit1(k) = v1 Pi(k) + v2Qq(k) + vaPilk — 1) + v4 Qi(k — 1), (B.1)

where the u; and v; are the Markov state transition probabilities. On entry to a block, Po(k) =
Qo(k) = 0 for all k 5 0; estimates for the values P,(0) and Qo(0) will be derived below. Given
the transition probabilities, repeated application of (B.1) can be used to compute the block error
probabilities Py(k) and Qn(k). For a t error correcting code, the probability of decoder error is
given by
n
Pg= Y (Pu(k)+ Qn(K)).
k=t+41

There are two independent phases of an interleaved cycle. The first stage consists of the
m bits in the codeword of interest, where bit errors can affect the total error count. Let us
see how the initial probabilities P;(k) and Q;(k) are split as the channel proceeds through the
character. Obviously, the transitions between adjacent k are independent of i. Let us define

Appendix B

m

A

bits m

126

bits

N,
- d

Gilbert Model Probability Computation

m
<~

bits

T~

S

A

A\

~d characters
(interleaved cycle)

Figure B-1. RS Code Interleaved to Depth d

pj as the probability of being in the good state after j bits of the current codeword character,
with no bit errors having occurred. Similarly, define g; as the probability of being in the bad
state after j bits of the current codeword character, with no bit errors having occurred. The
values po and go will be related to the Pi(k) and Q:(k) later. Let p; and g; be the corresponding
probabilities with at least one bit error having occurred; clearly Po = ¢o = 0. The transition
equations obtained from the Gilbert model are then

1
Pig1 = (1= N)pi + oM

1
Ji+1 = Api + 5(1 — u)g;
(B.2)

. 1 - -
Piyr = 580 + (1= X\)p; + ny;

- 1 - .
i1 = §(1 - #)qt +)‘pi + (1 - u’)ql"

Equation (B.2) can also be expressed as a matrix equation, p; = H7p,, where

(1-=XN) tu 0 0
A Hi-p) 0 0

H= 2
0 T (=N

0 H{i-u) X

The matrix H has four distinct real eigenvalues, so H7 could be computed in closed form. Unfor-
tunately, two of the eigenvalues involve radicals, and the expressions tend to be rather messy .
For practical purposes, the matrix exponentation can be performed numerically. Given A;; =

(H™),;, the result is
Pm = An1po + A1290
Im = A21p0 + Ag2qo
Py = As1po + As290
Im = Aqpo + Asz90 .

(B.3)

127
Appendix B Gilbert Model Probability Computation

If we define R;(k) and Si(k) to be the probabilities corresponding to P;(k) and Q;(k), respectively,
after 1 interleaved cycles and one additional codeword character, then (B.3) implies

R.(k) = rlP.-(k) + TZQ,-(IC) + T3P,'(k - 1) + T4Qi(k - 1)

S.(k) = Slp,'(k) <+ SQQ;(]C) + 83P¢(I€ - 1) -+ 34Q.'(k - 1), (B4)
where
ry == A, ro = Ajg, ry = Asi, ry = Asg,
3y = A, 89 = Aga, g3 = Ayy, 84 = Ays.

The second independent stage occurs when the character from the codeword of interest
is completely received, and the remaining m(d — 1) interleaved bits are being processed by the
channel. Since no additional codeword errors can occur here, there can be no transitions between
probabilities involving distinct values of k. It can readily be seen that the bit transition equations
are given by the lower 2 X 2 matrix of H, involving only 5 and 7. In other words,

Pitr = (L= N)p; + pg;
Gigr = Mpi+ (1 — p)gi . (B.5)

Fortunately, this set of equations can be solved explicitly, because (B.5) has eigenvalues 1 and
1 — g — . After some algebra, it can be shown that

pi = " (ulpo + q0) + (1 — 6Y (Mpo — 1go))
g; =" (Mpo + 90) — (1 — Y (\po — £40)), (B 6)

where & = u + X\. Observe that, as j gets large, the second term drops out, since |1 — §| < 1.
Thus, the probability that any bit in a random stream is part of an error burst, assuming that
po + g0 = 1, is given by u/(\ + p); we may therefore assume that

Po(0) = 1— Qo(0) = ﬁ .

From (B.6), it follows that

Peyy(k) = 57 (u(Ri(k) + Silk)) + (1 — 8V (ARi(k) — nSi(k))
Qur1 (k) = 57 (MRi(K) + Si(k)) — (1 = 8 (\Rq(k) — uSi(k)). (B.7)

Let us define § = (1~ §)™4=1). Combining the results (B.4) and (B.7), we then compute
the transition probabilities over an entire interleaved cycle. For j = 1,2, 3,4,

uj =6 (1 + €NB)rj + u(1 — B)s;)
vi = 86" (M1 = B)rj + (A + 1h)s;) -

128
Appendix B Gilbert Model Probability Computation

These coefficients can all be calculated numerically. So, given the initial conditions Py(0) and

Qo(0) as derived above, with Py(k) = Qo(k) = 0 for k # 0, repeated applications of the transition
equations

P,'+1 (k) = ‘LLIP.'(/C) + qu.-(k) + ‘ngP,'(k - 1) + ‘U.4Q,'(/€ - 1)
Ql'+1 (k) = le.-(k) + sz;(k) + UsP{(k heel 1) + ‘U4Q,‘(k - 1) (BS)

can be used to compute the final output probabilities P,(k) and Q,(k). Obviously, in (B.8),
for k = 0, we assume that Py(—1) = Q;(—1) = 0. Then, assuming the decoder can correct ¢
character errors, the block error probability is given by

n

Pg=Y_ (Pu(k)+ Qa(K)).

k=141

The output bit error probability can be approximated by noting that, if & > 2¢ character errors
occur, then on the average half of the bits in these characters are in error. In other words,

n

re= 3 F(Pak)+ Quk).

k=t+1 2n

This is the method employed to compute the curves of figure 3-6.

Often, error probabilities are computed for interleaving to infinite depth. In this case,
the computation can be simplified to a binomial distribution, since character has an independent,
probability of being in error. From the above arguments, it is clear that such a computation
involves setting § = O in the expression for the transition coefficients. Finite interleaving
approaches the infinite ideal as § = (1 — X\ — p)™4~1) becomes small with respect to the output
block error probability. This fact could be used to select an appropriate interleaving depth if
almost independent character errors are desired.

Several plots are presented in the following pages to show how increasing the depth of
interleaving improves the error protection of RS codes. Obviously, as the depth of interleaving d
increases, the error probability for a given X and u decreases; the net effect is roughly a scaling
of the burst length axis. The data are presented for a particular code, the (255,239) RS code over
GF(256), in two distinct formats. In figures B-2 through B-8, contours of a given output bit error
probability are displayed for various interleaving depths. Then, using the same data, contours of
constant output bit error probability are plotted for a given depth of interleaving in figures B-9
through B-14. Again, these data should be interpreted qualitatively, since no actual channel is
modelled perfectly by the Gilbert model. However, these curves provide some understanding of
the power of RS codes and of interleaving.

129

Gilbert Model Probabilsty Computation

Appendix B

(s119) yibus 31sing obousny

¢lG 9G¢ 8¢l ¥9 AN 9l 8 14 14

o
=

o~

I
o
b

<)

|

I
Q
—

~

}
1
«©
—

J
1
[+,
o
A mad

¥—30"1=d ‘(6£C'GST)SY
ONIANVATHFINI 40 104444

(s}lq) buiobdg ising obousay

Figure B-2. Effect of Interleaving, p, = 104

130

Gilbert Model Probability Computation

Appendix B

¢lLG 962

(s}q) yibus
8¢l 9 4%

1s4ng obpusAy

9l 8 14

-

ApuuI=p

T

O
—

I

g—30°'L =d
ONIAVA T LNI

‘(6£Z'GST)SY
40 104444

™~

e

-+

n

o

o
—

o
—

(@]

o
—

©

~

—

o

I
Q
—

o

(s1iq) buioodg 3sing eboleay

108

Figure B-3. Effect of Interleaving, p,

(s119) yibua 3sung obpuaAy
96z 8¢l 9 A 9l 8 ¥

]] } H |

Gilbert Model Probability Computation

131

1 1 1 1 I

—r—

Auiul=p

P /8=P/¥=P/C=P/ |=P

91

Appendix B

g—301=d ‘(6£2'G5T)SY
ONIAVITHIINI 40 104444

o
-~

]

(@]

Le]

(S),l.q‘)— bulondg jsing abbueAy

[+
Figure B-4. Effect of Interleaving, p, = 108

I
o
—

=]

(syg) uyibueq 3sing sbousay
9G¢ 8¢l ¥9 AN gl 8 14

|] | |]

Gilbert Model Probability Computation

132

1 1“ | 1 I 1 T

Ajluyui=p

9lL=p /8=P/¥=P /=P /1=P

Appendix B

0l—30'1=d ‘(6£Z'GST)SY
ONIAVATHIINI 40 104444

t

*
o
—

(@
—

[To]

-

1

“o

o
—

™~

(s;lqt)— bulondg 31sing ebpusAy

!

©

Figure B-5. Effect of Interleaving, p, = 10~1°

1
o
—

[}

133

Gilbert Model Probability Computation

Appendix B

(s119) yibus 31sung sbousAy
96z 827l 9 rAS 91 8 4

o
-

] I I 1 [[T

Ajiuyui=p

9L=P J 8=P/ v=P/ ¢=P/ |=P

~N

|
!
"
o
—

|

I
o
—

<+

n

I

I
O
—

[-}

o
bujopdg 1sing abpuseay

~

]

!
Q
b yune

]

{
(@]
—

Figure B-6. Effect of Interleaving, p, = 1012

o

|
[
-]
o
—

¢Ll—30'1=d ‘(6£Z'SST)SY
ONIAVATHFINI 40 10444

(s¥uq

134

Gilbert Model Probability Computation

Appendix B

(sy9) yibueT
¥9 [4%

1sung obpusAy

91 8 14 14

|] |

—_—

(@
—

|
T 1

Ajluyul=p

! ! |

]
i
“o

!
!
~
Q
—

(su,gqv)_ bulondg 1sing ebousAy

o

|

|
o
©

¥1-30'1=d

ONIAVATAFLNI

'(6£2'GST)SY
40 10444

1014

Figure B-7. Effect of Interleaving, p,

135

Gilbert Model Probability Computation

Appendix B

(suq) wbueT
9G¢ 8¢l ¥9 4%

]]] |

1s4ng obpusAy

9l 8 14 [4

| | |

o
L aad

T 1 I |

Ajlulul=p

! 1 I

I

I
o
—

bulondg 31sing obpusAy

!

1
“o
©

(s¥q

1

[
o
—

o

91—30'1=d
ONIAY A TH LNI

‘(6£2'G5¢2)SY
40 104444

10—10

Figure B-8. Effect of Interleaving, p,

136

Appendix B Gilbert Model Probability Computation
N
T v
B
)] T
0~
D
O 1 &
— —
prd
N
O m
O + <+ =
O 0O
SN
- <
— 4+ o "'53
M <7 O
I
B -
by - -+
O o TE
Ay 5
an Py m
e}
< T 38
N o
O x O
-
id g
5 e s
|_
M T
1 }
I] | A

| | 1 |

| | § 1

0 %o ™™o ‘o o Yo "o o
A T

(s;lq‘)— 6u!ood‘_g Jf;mg‘_eE)o‘—Je/\vﬁ

Figure B-9. Bit Error Probability Contours, d = 1

137
Appendix B Gilbert Model Probability Computation

| |
1 |
256 512

l
1
128

BIT ERROR PROBABILITY CONTOURS
RS(255,239), d=2
16
Average Burst Length (bits)

1 { | !
| | I 1 1 1 -

-+
°o o o o o o "’o Nc>
©

(syq) 6J odg 1sing eBoJe/\v

Figure B-10. Bit Error Probability Contours, d = 2

138
Appendix B Gilbert Model Probability Computation

| 1
i 1
256 512

|
1
128

RS(255,239), d=4

BIT ERROR PROBABILITY CONTOURS
16
Average Burst Length (bits)

|
!

]]]
i | I ! I -

|
i
‘o O O O O O O O
—

(sqlq) 6u100dg 1s4ng 960.19/\\/

Figure B-11. Bit Error Probability Contours, d = 4

139
Appendix B Gilbert Model Probability Computation

| |
1 1
256 512

|
|
128

RS(255,239), d=8

BIT ERROR PROBABILITY CONTOURS
16
Average Burst Length (bits)

i | i i
] 1] 1 1] A
°oc o o o o *o ”o Nc:>

(S;lq) 6U|oodg 1sing GEJDJS/\V

Figure B-12. Bit Error Probability Contours, d = 8

140
Appendix B Gilbert Model Probability Computation

| |
| !
256 512

]
!
128

1
%
64

16
Average Burst Length (bits)

RS(255,239), d=16

BIT ERROR PROBABILITY CONTOURS

) 1 A
~+ Lo} ™

I | !) |
| I i | 1
0 "o "o “o ‘o o o o

(FS),[q‘)— 6L‘J—!ODd‘_S 1:§mg‘_86t;e/\v‘_

Figure B-18. Bit Error Probability Contours, d = 16

141
Appendix B Gilbert Model Probability Computation

o~
T b
© N
" o ©
— 4 0
U) = N
Y
D)
S 8
e
@) D
@) 4 <
o O
SN’
= <
.= + o
_\4:—: A (@)
m -= -
il o
3 :
o~ T—°
D - 0
Dﬁ"(\l? 5
Q_Lg m
N T— oo O
O x O
S
A g
: Fo 2
I,_.
M T+
1] i |] |
| 1 1 i] | -
o o ™o o o Yo "o ‘o

‘(—S)rl.q‘)— 6ugood‘_g Jr;mgr—ebt;e/\v‘_

Figure B-14. Bit Error Probability Contours, d = o0

142

Appendix C

Tables

The following pages contain several useful tables for dealing with finite fields. Table C-1, taken
from Peterson [44], lists some irreducible polynomials of degree twelve or less. Octal notation
is used for the binary coefficients. For example, in the list of polynomials of degree four, 23
corresponds to z* + z + 1. The letters following each polynomial signify:

AB,CD Not Primitive

EF,GH Primitive

ABEF Roots are linearly dependent

C,D,GH Roots are linearly independent

A CEG Reciprocal roots are linearly dependent
B,D,FH Reciprocal roots are linearly independent.

The reciprocal polynomial, which is also irreducible, has as roots the multiplicative inverses of
roots of the given polynomial, and can be obtained by reversing the order of the coefficients. If
the polynomial is primitive, so is the reciprocal polynomial. The first polynomial given for each
degree is primitive; let us call one of its roots @. The integer &k preceding all polynomials of that
degree indicates that the given polynomial has o as a root. Thus, from the table, if a is a root
ofz* + z+1, then a® isarootof z* + 2% + 22 + z + 1. A

Table C-2, taken from Brillhart and Zierler [50], gives a complete list (up to reciprocals) of
all irreducible trinomials of the form z™ + z*¥ + 1 over GF(2). Primitive polynomials are indicated
by a value for k given in italics. Only values of n up to 100 are included here. Refer to the
original paper for all n < 1000.

Table C-3 gives the prime factorization of 2™ — 1, for 3 < m < 34.

Log and antilog tables are given for GF(16) in table C-3, using hexadecimal notation for
the field elements (e.g., A = 1010 — a® +). Here a* + o+ 1 =0.

143
Appendix C Tables

DEGREE 2 1 7H
DEGREE 3 1 13F
DEGREE 4 1 23F 3 37D

DEGREE 5 1 45E 3 75G 67H

[¥2]

DEGREE 6 1 103F 3 127B 5 147TH 7 111A
11 155E

DEGREE 7 1 211E 3 217E 5 235E 7 367TH
9 27E 11 325G 13 203F 19 313H
21 345G

DEGREE 8 1 435E 3 567B 5 763D 7 551E
9 675C 11 747H 13 453F 15 727D

19 545E 21 613D 23 543F 25 433B

27 477B 37 537F 43 T03H 45 471A

DEGREE 9 1 1021E 3 1131E 5 1461G 7 1231A
1423G 11 1055E 13 1167F 15 1541E

17 1333F 19 1605G 21 1027A 23 1751E

25 1743H 27 1617H 29 1553H 35 1401C

DEGREE 10 1 2011E 3 2017B 5 2418E 7 3771G
9 2257B 11 2065A 13 2157F 15 2653B

DEGREE 11 1 4005E 3 4445E 5 4215E 7 4055E
9 6015G 11 7413H 13 4143F 15 4563F

DEGREE 12 1 10123F 3 12133B 5 10115A 7 12153B
9 11765A 11 15647E 13 12513B 15 13077B

Table C-1. Irreducible Polynomials over GF(2)

Appendix C

Table

144

n k n k

211 47195, 14, 20, 21
311 4919, 12 15, 22
411 5218,7, 19, 21
52 549,21, 27
61,3 55 |7, 24

711, 8 574, 7, 22,25
9|1, 4 58|19

10| 3 6019, 11,1517, 23
11| 2 6229

12/3,5 6311, 5 11, 28, 81
14|5 65|18, 32

151, 4, 663

17 8, 5, 68| 9, 33

1813, 7 9 7116, 9, 18, 20, 85
2018, 5 73125, 28, 81
2112, 7 74135

2211 76|21

23|95, 8 7919, 19

2518, 7 814, 16, 85
281,838 9,18 845,911, 13, 27, 35, 39
29| 2 86 | 21

30(1,9 8718

31|18, 6,7 13 891 38

3310, 18 90 | 27

347 92|21

352 93| 2

3619, 11, 15 94 21

394, 8, 14 95, 11,17

41| 8, 20 97 |6, 12, 88, 84
4217 98|11, 27

445 10015, 19, 25, 87, 49
4611

C-2. Irreducible Trinomials, z" + z¥ + 1, over GF(2)

Tables

Appendix C

145

m | Factorization of 2™ — 1 m | Factorization of 2™ —1

3|7 19| 524287

4/13X5 2003 X 5X5Xx11X31X41
531 2117 X7 X127 X 337

63 X3Ix7 22|13 X 23 X 89 X 683

71127 23|47 X 178481

813 X5X17 2413 X3 X5XT7X 13X 17 X 241
917 X 73 25131 X 601 X 1801

1013 X 11 X 31 2613 X 2731 x 8191

11123 X 89 2717 X 73 X 262657

1213 X3 X5X7X13 2813 X 5 X 29 X 43 X 113 X 127
131 8191 291233 X 1103 X 2089

1413 X 43 X 127 3013 X3 X7 X11X31x151 X331
157 X 31 x 151 31| 2147483647

163 X 5 X 17 x 257 3213 X 5 X 17 X 257 X 65537
17131071 33| 7 X 23 X 89 X 599479

183 X3 X3 XT7X19X73[[34]3 X 43691 X 131071

Table C-3. Prime Factorization of 2™ — 1

i ot |Tr(ef)||al]| §
011 0 110
1,2 0 211
2] 4 0 31 4
3|8 1 4| 2
43 0 5| 8
5|6 0 6| 5
6 C 1 7110
7B 1 81 3
8|5 0 9|14
91A] 1 Al 9
107 0 B| 7
1NE| 1 C 6
12| F 1 Di13
13|D 1 E |11
1419 1 F |12

Table C-4. Log/antilog Table for GF(16)

Tables

146

References

i
2
g
0
g
6}
U
8
9

10]

1]

12

13

[14]

Abo, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachussetts, 1974.

Benice, R. and A. Frey, Jr., “An Analysis of Retransmission Systems,” IEEE Transactions
on Communication Technology, COM-12, 135-145, 1964.

Bequillard, A., B. Johnson, and S. Meehan, “Transform Decoding of Reed-Solomon Codes,

Volume II: Logical Design and Implementation,” ESD-TR-82-403, Vol. II (The Mitre
Corporation), 1982.

Berlekamp, E., Algebraic Coding Theory, McGraw-Hill, New York, 1968.

Berlekamp, E., “Bit-Serial Reed-Solomon Eancoders,” IEEE Transactions on Information
Theory, IT-28, 869-874, 1982.

Berlekamp, E., “The Construction of Fast, High-Rate, Soft Decision Block Decoders,”
IEEE Transactions on Information Theory, 1T-29, 372-377, 1983.

Berlekamp, E., “The Technology of Error-Correcting Codes,” Proceedings of the IEEE,
88, 564-592, 1980.

Berlekamp, E., and L. Welch, “A New Reed-Solomon Decoding Algorithm,” to be pub-
lished.

Blahut, R., “Transform Techniques for Error Control Codes,” IBM J. Res. Develop., 23,
299-315, 1979.

Blahut, R., Theory and Practice of Error Control Codes, Addison-Wesley, Reading,
Massachusetts, 1983.

Blahut, R., “A Universal Reed-Solomon Decoder,” IBM J. Res. Develop., 28, 150-158,
1984.

Bose, R., and D. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes,”
Information and Control 3, 68-79, 1960.

Burton, H., “Inversionless Decoding of Binary BCH Codes,” IEEE Transactions on Infor-
mation Theory, IT-17, 464-466, 1971.

Brent, R. and H. Kung, “Systolic VL.SI Arrays for Polynomial GCD Computations,” CMU
Computer Science Department Report, Carnegie-Mellon University, 1982.

[15]
[16]
[17]

[18)
[19]

[20]

(21]

22
23

[24]

[33]
[34]
[35]
[36]
[37]

[38]

147

References

Cain, J., and G. Clark, Error-Correction Coding for Digital Communications, Plenum
Press, New York, 1981.

Cheng, U., “On the Continued Fraction and Berlekamp's Algorithm,” IEEFE Transactions
on Information Theory, IT-30, 541-544, 1984,

Chien, R., “Cyclic Decoding Procedures for BCH Codes,” IEEE Transactions on Infor-
mation Theory, IT-10, 357-363, 1964.

Citron, T., Ph.D. Thesis, Stanford University, 1984.

Cohen, Earl T., “On the Implementation of Reed-Solomon Decoders,” Ph.D. Thesis,
University of California, Berkeley, 1983.

Consultative Committee for Space Data Systems, “Recommendation for Space Data
System Standards: Telemetry Channel Coding,” Jet Propulsion Laboratory, Issue O,
1984.

Conway, L. and C. Mead, Introduction to VLSI Systems, Addison-Wesley, Reading,
Massachussetts, 1980.

Cyclotomics, Inc., “Interleaved Coding for Bursty Channels,” SBIRC Report, 1983.
Dally, W., and D. Whiting, “An Architecture for Systolic Reed-Solomon Encoders and
Decoders,” Caltech Computer Science Department Display File, #5145, 1984.

El Gamal, A., J. Greene, K. Pang, “VL.SI Complexity of Coding,” Proceedings of 1984
Conference on Advanced Research in VLSI, Massachussetts Institute of Technology, 150-
158, 1984.

El Gamal, A., J. Greene, K. Pang, to be published in IEEE Transactions on Information
Theory.

Forney, D., “On Decoding BCH Codes,” IEEE Transactions on Information Theory, I'T-
11, 549-557, 1965.

Gilbert, E., “Capacity of a Burst-Noise Channel,” Bell System Technical Journal, 39,
1253-1265, 1960.

Gorenstein, D. and N. Zierler, “A Class of Error-Correcting Codes in p™ Symbols,” J.
Soc. Ind. Appl. Math., 8, 207-214, 1961.

Herstein, I. N., Topics in Algebra, Wiley, New York, 1975.

Hocquenghem, A., “Codes Correcteurs D'erreurs,” Chiffres, 2, 147-160, 1959.

Deutsch, L., et al.,, “A Systolic VLSI Design of a Pipeline Reed-Solomon Decoder,” JPL
Technical Report, 1983.

Deutsch, L., et al., “The VLSI Design of A Reed-Solomon Encoder Using Berlekamp's
Bit-Serial Multiplier Algorithm,” from Proceedings of the Third Caltech Conference on
VLSI, 303-330, Computer Science Press, 1983.

Knuth, D., The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, Massa-
chusetts, 1973.

Lidl, R., and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Massachusetts,
1983.

Liu, T., “A New Decoding Algorithm for Reed-Solomon Codes,” Ph.D. Thesis, University
of Southern California, 1984.

MacWilliams, J., and Sloane, N., The Theory of Error-Correcting Codes, North Holland
Publishing Co., Amsterdam, 1977.

Massey, J., “Shift-Register Synthesis and BCH Decoding,” IEEE Transactions on Infor-
mation Theory, IT-156, 122-127, 1969.

Massey, J., unpublished lecture notes, 1983.

(39]
[40]
[41]

[42]

[43]
(44]
(45]
(46]
[47]
(48]
[49]

[50]

148

References

Massey, J., and J. Omura, “Computational Method and Apparatus for Finite-Field Arith-
metic,” U.S. Patent Application #418039.

McEliece, R., The Theory of Information and Coding, Addison-Wesley, Reading, Massa-
chusetts, 1977.

Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading,
Massachusetts, 1980.

Murakami, H., I. Reed, and L. Welch, “A Transform Decoder for Reed-Solomon Codes
in Multiple-User Communicatons Systems,” IEEE Transactions on Information Theory,
IT-23, 675-682, 1977.

Peterson, W., “Encoding and Error-Correction Procedures for Bose-Chaudhuri Codes,”
IEEE Transactions on Information Theory, I'T-6, 459-470, 1960.

Peterson, W. and E. Weldon, Error-Correcting Codes, MIT Press, Cambridge, Massachu-
setts, 1972,

Reed, I, and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. Sec. Indust.
Appl. Math, 8, 300-304, 1960.

Shannon, C., “A Mathematical Theory of Communication,” Bell System Technical Jour-
nal, 27, 379-423 and 623-656, 1949.

Sugiyama, Y., et al., “A Method for Solving Key Equation for Decoding Goppa Codes,”
Information and Control, 27, 87-89, 1975.

Thompson, C., “Fourier Transforms in VLSI,” IEEE Transactions on Computers, C-32,
1047-1057, 1983.

Thompson, C., “The VLSI Complexity of Sorting,” IEEE Transactions on Computers,
C-28, 1171-1181, 1983.

Zierler, N. and Brillhart, J., “On Primitive Trinomials (Mod 2),” Information and Control,
13, 541-554, 1968.

