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ABSTRACT 

Experimental measurements are reported for total and partial 

heats-of-vaporization for the n-propane/n-decane system. Results are 

given for the 100, 130 and 160°F. isotherms and cover the entire com­

position range. It is shown that the temperature and concentration 

gradients which develop within the system during the vaporization 

process may, in some cases, cause a significant c~o.4%) deviation in 

the calculated results. A method is provided for introducing a 

correction for this effect. Based on the partial heat-of-vaporization 

of n-propane, heats-of-mixing for the liquid solution are calculated. 

The results are in qualitative agreement with predictions from theories 

for n-alkane liquid mixtures. 
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PART I 

LATENT HEAT OF VAPORIZATION OF PROPANE* 

* Part I was published as a paper by N.Le Helgeson ·and B.H. Sage 
"Latent Heat of Vaporization of Propane,"~ Cherne ~Data, 
12 (1967), 47. 
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Latent Heat of Vaporization of Propane 

N. L. HELGESON and B. H. SAGE 
Chemical Engineering laboratory, California Institute of Technology, Pasadena, Calif. 

Calorimetric measurements of the latent heat of vaporization of propane were made 
in the temperature interval between 100° and 135° F. A critical review of the available 
calorimetric and volumetric data was made and an analytical expression developed 
by regression analysis, lo describe the latent heal of vaporization for propane from 
0° F. to the critical slate with a standard error of estimate of 1.5 B.t.u. per pound. 

THE latent heat of vaporization of propane has been 
the subject of a number of investigations. The early 
work of Dana et al. (3) was followed by some addi­
tional calorimetric measurements of the latent heat of 
vaporization of this hydrocarbon (6). The volumetric 
behavior of the compound and the vapor pressure have 
been studied by several investigators (J, 2, 5, 8, 9) . 
There existed discrepancies of the order of 5 B. t. u. 
per pound between the latent heat of vaporization as 
estimated at 80 ° F. from the two calorimetric inves­
tigations (3, 6), and from the more recent volumetric 
measurements (1, 2, 5) and the calorimetric data at a 
temperature of 100° F. 

As a result of this discrepancy, calorimetric meas­
urements were made of the latent heat of vaporization 
of propane. The technique and equipment employed 
have been described ( 4, 7) and differ materially from 
the apparatus used earlier (6). The temperatures were 
measured with a platinum resistance thermometer 
which was compared recently with the indications of a 
similar instrument calibrated by the National Bureau 
of Standards. The temperature within the calorimeter 
was known within 0.01 ° F. of the international plat­
inum scale. Temperature differences were 'established 
within 0.002 ° F. The experimental results are set 
forth in Table I. The measurements were not carried 
above 135 ° F. because the large volumetric correc­
tions necessary in the calorimetric measurements 
made use of the Clapeyron equation based upon volu­
metric and vapor pressure measurements a preferable 
approach. The calorimeter is not arranged to permit 
measurements below 100 ° F. Direct comparison of the 

VOL 12, No. 1, JANUARY 1967 

present calorimetric measurements with the data men­
tioned earlier is presented in Figure 1. In this figure, 
where data were obtained at nearly the same tempera­
ture, a single average value was depicted. 

The following analytical expression was used to 
describe the latent heat of vaporization of propane in 
the temperature interval between 40 ° and 206.26 ° F.: 

l = A(T, - T)' ' " + B(T,. - T )21a + C(T, - 'l' J (1) 

The application of least square regression methods 
yielded the following coefficients: A = 21.771; B = 
1.8935; and C = -0.10836, with a standard deviation, 
u, of 1.5 B.t.u. per pound from the experimental values 
depicLed in Figure 1. The critical temperature em­
ployed was 665.95 ° R., based on Beat.tie's (2) meas­
urements. 

To illustrate t.he quantitative nature of the disagree­
ment of the several sets of data, residual values of the 
latent heat of vaporization have been cakulat.cd, us­
ing Equation 1 as a reference value. The residual lat.en!. 
heat of vaporization is defined as 

I ~' /, - /, (2) 

and is shown as a function of temperature for each of 
the experimental points employed in obtaining Lhe 
points shown in Figure 2. The range of temperatures, 
the standard error of estimate, and average error are 
reported in Table II for each set of data from the values 
obtained from Equation 1. 

As can be seen from Figure 2, the data of Dana et al. 
(3) yield values of at least 5 B.t.u. per pound abov1:- the 
current data when extrapolated to 100 ° F. The earlier 

47 
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Table I. Experimental Results for Latent Heat of Vaporization of Propane 

Energy Added 

By 
By Conduction 

Temper- Electri- Agita- & 
ature, Pressure, cally, tion, Radiation, 

o F. p.s.i.a. B.t.u. B.t .u . B.t.u. 

100 188 .7 3.8687 0 .0680 - 0.0010 
100 188.7 3.2311 0.0664 -0 .0105 
100 188.7 2.7045 0 .0529 - 0 .0032 
100 188.7 3.1647 0 .0647 - 0.0073 
120 242.7 4.0332 0 .0472 - 0 .0037 
120 242 .7 4 .7240 0.0579 0.0053 
130 273 .5 3 . 1396 0.0471 -0.0006 
130 273.5 3 .3003 0.0536 0.0000 
130 273 .5 3 .4455 0 .0512 - 0 .0012 
135 289.9 3 .2296 0.0438 0.0062 
135 . 289 .9 3 .8423 0.0521 0 .0031 
135 289.9 5 .3429 0.0705 -0.0079 
135 289.9 3. 7124 0.0530 0.0041 
135 289 .9 3.6679 0 .0897 0 .0130 

a ViT(dP"/dT). 

o AUTHORS CALORIMETER 
6 BEATTIE (2i 
o DANA CALOR I METER (3) 
d DANA SMOOTH (3) 
<>-SAGE CALORIMETER(6) 
P SAGE CLAPEYRON (9 

25 50 75 100 125 150 
Tp.IPERATURE 0 r 

175 

Figure 1. Latent heat of vaporization for propane 
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Figure 2. Residual latent heat of vaporization 

Super 8pecific Latent 
Weight of Heat Volume Volu- Heat of 
Material of Bubble metric Vapori-

Withdrawn, Liquid, dP"/dT, Point, Term, a zation, 
Lb. o F. p.s.i.!° F. Cu. Ft. / Lb. B.t.u. / Lb. B.t.u./ Lb. 

0.027627 0.06 2 .4378 0 .03:l90 8.fi60 13:!.96 
0.023286 0.09 2.4378 0 .03390 8 .fi60 132 .68 
0 .019465 0.06 2 .4il78 0.03390 8.!i60 l:l:l .00 
0.022758 0 .07 2 .4378 o.o3:l9o 8.!i60 t:l:.1.09 
0.030399 0 .07 2 .948:! 0 .03!i47 11. 220 122 9fi 
0.035754 0 .0() 2 .948:1 O.O:lfi47 11. 220 122 74 
0.024587 0 .05 :I 22lfi 0. O:l6:17 12 .788 J l(j 8fi 
0.025834 0 .06 :1 . 2215 o .o:w:11 12 .7H8 117 .09 
0.026955 0 .04 3.221!) 0. 036:17 12 .788 I to. 9:1 
0 .025749 0.06 3.3640 0.03686 l:l.644 11:1. 7!) 

0.030766 0.06 3.:1640 0.0:1686 t:Ui44 11:1. 10 
0.042737 0.07 3 .3640 0 .03686 13 .644 112. 91 
0.029658 0.06 3.3640 0.03686 13.644 11:3. 52 
0.029750 0 .04 3 .3640 0 .03686 13 .644 113 .14 

Table II. Comparison of Results from Several Investigators 

Number of 
Points 

--- - ------- Temp., ° F . 
Re- - ----- ----

Source Used jecteda Min. Max. 

Authors 14 0 100 135 
Dana (3)d 15 0 0 70 
Sage (6) 16 7 103 167 
Sage (9) e 4 0 100 190 
Over-all 49 7 0 190 
a Data points rejected when deviation 
values exceeds 2u. 
b Average deviation defined by: 

N 

S = L \ lr - le \ / N . 
1 

' Standard deviation defined by: 

u = [ ~ (lr - l,) 2/ N r~ 
d Smoothed . 
•Volumetric data from (9). 

Deviation, 
B.t.u. / Lb. 

- - - ··· - ---- ·· 
Aver- Stand-
ageh ard' 

1 . 12 1.23 
1.07 1 . 26 
1.43 1.53 
0.98 I. 21 
1.16 1.45 

of experimental 

age agreement within 0.35 B. t. u. per pound with the 
current calorimetric data, in the temperature interval 
between 100° and 130° F. However, the agreement is 
less satisfactory at 135 ° F . 

calorimetric measurements of Sage (6) are lower than 
those extrapolated from the data of Dana but are higher 
by at least 2 B.t.u. per pound than the current calori­
metric data. The volumetric measurements of Sage 
et al. (9) utilizing the Clapeyron equation give aver-

Table III presents values of the vapor pressure, the 
slope of the vapor pressure curve, and the specific 
volume of the coexisting gas and liquid phases as a 
function of temperature, based upon the volumetric 
and phase measurements of Sage et al. (.5, 9) and Beat­
tie (1) at a temperature above 135 ° F. Also included 
are values of the latent heat of vaporization. At tem­
peratures below 135 ° and above 70 ° F ., the current 
and the earlier (6) calorimetric data were employed to 
establish the latent heat of vaporization, and to eval­
uate the specific volume of the coexisting gas phase 
by use of the Clapeyron equation. At temperatures 
above 135 ° F ., the Clapeyron equation was applied 
to the volumetric data of Sage et al. (5, 9) and Beattie 
(I, 2) to yield the appropriate values of the latent heat 
of vaporization. At temperatures below 70 ° F., the 
data of Dana et al. (3) were employed. 
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Table Ill. Critically Chosen Values of Some Properties of 
Propane 

Latent 
Specific Volume, Heat 

Vapor Cu. Ft. / Lb. of 
Pres- dP"/dT, Vapori-

Temp., sure, P.S.I./ Dew Bubble zation, 
o F. p.s.i.a. o F. point point B.t.u./Lb. 

40 79.0 1.288 1.3627 0.03055 158.7 
50 92 .8 1.451 1 .1638 0 .03100 155 .0 
60 107.8 1 .626 0 .9983 0 .03150 151 .2 
70 125.0 1.814 0 .8596 0.03202 147 .2 
80 144.1 2.016 0 .7428 0 .03261 143.0 
90 165.3 2.231 0 .6437 0.03322 138.5 

100 188.7 2 .461 0 .5592 0 .03388 133.9 
110 214 .5 2 .705 0 .4868 0 .03465 128.9 
120 242.7 2.964 0 .4244 0 .03547 123.6 
130 273.5 3.238 0 .3702 0.03638 118.0 
140 307 .3 3 .527 0 .3230 0.03740 111.8 
150 344 .0 3.832 0.2814 0.03855 105.0 
160 383 .8 4 .153 0 .2446 0 .03994 97.4 
170 426 .9 4.490 0.2115 0.04177 88.8 
180 473 .6 4 .843 0. 1811 0 .04411 78 .6 
190 524.8 5.213 0 . 1514 0.04683 65 .6 
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NOMENCLATURE 

A,B,C 
d 
l 

coefficients for Equation 1 
differential operator 
latent heat of vaporization, B.t.u./lb. 

-4-

l 
N 

P" 
s = 

T 
v 

O' = 

2: 

residual latent heat of vaporization, B.t.u./lb. 
number of points 
vapor pressure, p.s.i.a. 
average deviation expressed in B.t.u. / lb. and 

defined in Table II 
absolute temperature, 0 R . 
specific volume, cu.ft.jib . 
standard deviation expressed in B.t .. u./lb. and 

defined in Table II 
summation operator 

Subscripts 

b bubble point 
critical c 

cl 
e = 
r 

dew point. 
experimental 
reference 
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PART II 

PARTIAL AND TOTAL HEATS OF VAPORIZATION 

FOR N-PROPANE/N-DECANE MIXTURE 
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INTRODUCTION 

Chemical engineers are always interested in increasing the scope 

and improving the accuracy of the thermodynamic data which characterize 

the materials with which they work. Determination of the enthalpy 

change on vaporization for both pure components and for mixtures is 

useful in that this information is of ten necessary before the energy 

. requirements of industrial processes can be determined. The primary 

purpose of this paper is to present the results of measurements for 

the enthalpy change which occurs for the isothermal vaporization of an 

n-propane/n-decane mi.xture. Measurements are reported for the 100, 

130 and 160°F. isotherms for the composition range of 0.0 - 0.60 weight 

fraction (O.O - 0.95 mole fraction) n-propane. A constant volume 

isothermal calorimeter was used for the experimental measurements. The 

secondary objectives are to evaluate the effects which temperature and 

concentration gradients within the calorimeter have on the calculated 

results and also to report heats-of-mixing for the n-propane/n-decane 

liquid solutions. 

Heats-of-vaporization are available in standard tables along with 

other properties which describe pure materials. Similar information 

for mixtures, however, has become available only in the last several 

years. Much of this has been related to the properties of the light 

hydrocarbon gases (e.g. methane and n-propane ( 1 )) because of the large 

industrial interest which has centered on these materials. Additional 

enthalpy data have been reported by Lenoir ( 2, 3 , 4 ) and co-workers 
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for a number of binary systems and also several ternaries. The 

components of the latter mixtures ranged from n-pentane to 

n-hexadecane and included several unsaturated hydrocarbons and 

cycle-paraffins as well. All of the above measurements were made 

using a flow calorimeter. Huisman ( 5) reported heats-of-vaporization 

measurements for the n-butane/n-decane system using a constant-volume 

isothermal calorimeter. 

The absence, until recently, of a significant amount of data 

describing heats-of-vaporization of mixtures is understandable. The 

problem is difficult to define as several effects are involved and it 

is not easy to isolate one factor from another. This problem has been 

circumvented, for the most part, in the measurements reported for flow 

calorimeters as only total enthalpy changes have been reported. The 

problem of determining a partial enthalpy change upon vaporization and 

its relationship to other available thermodynamic data has not been 

dealt with. Huisman reported a partial enthalpy of vaporization but he 

did not evaluate the irreversible effects present within the.liquid phase 

nor did he attempt to relate his results to liquid solution theory. 

In the investigation reported below the irreversible effects and 

partial quantities are both evaluated. Concentration gradients may 

not be an important factor in many mixtures, however for wide-boiling 

mixtures where one component is preferentially evaporated, irreversible 

effects should not be neglected. The experimental measurements reported 

below are such that the effect of both temperature and concentration 

gradients could be determined. A large amount of volumetric, phase 

equilibrium and calormetric data for this system was already available 
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and this permitted calculating a heat-of-mixing of the pure liquid 

components. The latter is compared to results of a corresponding 

states theory for mixtures of n-alkanes (6). 
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THERMODYNAMIC RELATIONS 

For a single component system the enthalpy change upon 

vaporization may be calculated from ( 7 ) 

q 

i6.m 
a 

for a constant volt.nne calorimeter. q is the thermal energy 

added to the calorimeter and includes the effects of electrical 

energy addition, agitation and a small correction for heat leak. 

i6.m is the amount of sample passing from the calorimeter and the 
a 

ratio (Vg-V£)/V£ is a correction for the amount of material which 

is evaporated but which stays within the calorimeter$ The importance 

of accurate volumetric information to the calculation of 

heats-of~vaporization is apparent in this relation. 

The second term in the equation accounts for a small temperature 

gradient (0.2 - 0.3°F.) which develops at the interface in the liquid 

phase (or sub-cooling of the vapor). It is a small effect and is of ten 

neglected in calculations for determining the latent heat-of-vaporization 

fo r pure materials. 

For a binary system Huisman ( 8 ) has shown that the total 

heat-of-vaporization may be calculated from 



2 

2:. l~,g-lfk,i)yk} ,~ 
k=l 

and 

( 
V-mV ) lim. = 6 y - - Q, 

k,g k v -v 
g Q, 
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(2) 

+ 

(H. -Hj Q,) (lim. - l-yk fill\ )] 
J,g ' J,g y ,g 

k 

(3) 

These equations assume that a uniform temperature and pressure exists 

within the calorimeter and that each phase is maintained at a uniform 

concentration. Whereas the neglect of temperature and concentration 

gradients may be justified when pure materials are involved (Equation 

(1) above), irreversible effects which are present in the liquid phase 

of a mixture may not be negligible. The calorimeter pressure drop 

which occurs on initiation of vapor flow as a result of temperature 

and concentration gradients for the n-propane/n-decane system is 

shown in Figure 1. The pressure drop increases with flow rate and 

is more than an order of magnitude greater than that which is 

observed when a pure component is vaporized. The large increase is 

the result of concentration gradients which, for the binary, develop 

at the liquid interface. The development of this pseudo-steady-state 

pressure profile is illustrated in Figure 2. 

The importance of volumetric data to heats-of-vaporization 

calculations for a single component system was described above and 

a similar statement may be made with regard to mixtures. In the 
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latter case bm. , which is a first order correction to the amount K,g 

of material passing from the calorimeter (see Equation (2)), is calculated 

from a material balance which is dependent on available volllllletric data 

of the liquid and vapor phases (see Equation (3)). (6m. represents K,g 

the accumulation of component k (n-propane) in the vapor phase between 

the beginning and the end of an experimental test.) From the equation-

of-state it can be seen that, at constant temperature, the amount of 

material in the vapor phase is proportional to (P/Z). An increase in 

pressure results in a decrease in z so that the material balance becomes 

quite sensitive to errors is the calorimeter pressure. Large changes 

in the calorimeter pressure must then have a significant effect on the 

quantity ~,g and possibly on the quantity b~,g· In order to evaluate 

this effect precisely(±0.05 psi)experimentally measured pressures were 

required. An accuracy of ±0.5 psia was estimated to be adequate. The 

deviation of the calorimeter from an equilibrium condition may also affect 

other terms in Equation (2). This is discussed further below, along with 

the experimental results. 

In spite of the non-equilibrium which exists between the bulk 

liquid and bulk vapor phases, it may be assumed that the vaporization 

process itself occurs under conditions of equilibrium ( 9). Thus the 

thermodynamic quantity, the heat-of-vaporization is obtained. 

Because of the considerable difference in volatility of 

n-propane and n-decane it is possible to rearrange Equation (2) so that 

a partial enthalpy of vaporization for n-propane may be calculated ( 8). 

This partial enthalpy-of-vaporization can then be used to calculate a 

heat-of-mixing for the high-pressure n-propane/n-decane liquid system. 
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EQUIPMENT AND EXPERIMENTAL PROCEDURES 

The calorimeter and most of the associated equipment have been 

discussed in ample detail previously ( 7). Only a review of some of the 

major features of the equipment and a discussion of improvements in 

instrumentation are offered here. The calorimeter, itself, is an elong­

ated sphere (4o5 inch diameter) fabricated of stainless steel, the halves 

of which are joined by a cylindrical section one inch in length and of 

the same diameter as the sphere. It has a total internal volume (inclu­

ding approximately 20 cc nuisance volume) of 1,256 cc. Sample enters 

through a , steel tube which passes up through the bottom of the vacuum 

jacket and is attached to the base of the lower half of the calorimeter. 

The calorimeter pressure is measured through this same line (see Figure 

3)" 

The primary energy source is an electrical resistance heater 

immersed in the liquid phase and the material which is evaporated passes 

from the calorimeter through small (1/16 inch diameter) steel tubing 

which terminates at an orifice block. The rate of vaporization is con­

trolled by the use of either one or a combination of up to three inter­

changeable orifice plates through which critical flow is maintained. 

The vapor then passes to a chilled sample bomb where it is collected and 

later weighed. During vaporization the action of an agitator causes the 

liquid phase to circulate and maintains the liquid phase at a near uni­

form temperature and concentration. 

The absolute temperature at which an experimental test was 
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conducted was determined from measurements with a platinum resistance 

thermometer which was immersed in the oil bath surrounding the vacuum 

jacket. Once a test was underway, however, temperature changes of the 

calorimeter were monitored with a second platinum resistance thermometer 

mounted within the calorimeter thermometer well. The output of the 

latter thermometer was fed through an amplifier to either a null de­

tector or to a strip chart recorder. With this procedure it was poss­

ible to not only monitor calorimeter temperature changes of <0.001°F, 

but also to obtain an immediate visual display of the rate-of-change of 

the calorimeter temperature. The latter information was important so 

that appropriate action could be taken to maintain the calorimeter at a 

nearly constant temperature throughout an experimental test. 

The determination of the calorimeter pressure was a critical 

part of the measurements reported and several factors were involved in 

selecting an instrument by which values of acceptable accuracy and pre­

cision could be obtained. Absolute pressures were used, in conjuntion 

with a material balance, to determine the composition of both the liquid 

and the vapor phases within the calorimeter. They were also used to de­

termine the specific volume of the vapor phase which was 

used in the evaluation of the enthalpy change upon vaporization (see 

Equations (2,3)) and to evaluate the concentration gradients which de­

veloped in the liquid phase during a test. The pressure decreased con­

tinuously during an experimental test so that dynamic rather than static 

pressure measurements were required. Also, in order to establish a 

pressure-time profile, it was necessary that several pressure measure­

ments be taken over the relatively short period of each experimental 
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test. Therefore, both the time response of the instrument to pressure 

changes and the ease of making the individual measurements were import­

ant considerations. The accuracy and precision required for these 

measurements were discussed above. 

These various requirements were satisfied by a connnercially 

available pressure gauge (Texas Instruments Precision Pressure Gage Mod­

el 141). A fused quartz bourdon tube designed for a pressure range of 

0-500 psig was used as the pressure sensitive element. The gauge was 

calibrated for pressure changes relative to atmospheric using a Hart 

Pressure Balance (dead-weight tester) as the primary standard. The 

quoted accuracy and precision of the latter were 1:10,000, and 1:20,000, 

respectively. Pressure steps supplied by this standard resulted in 

readings on the Texas Instruments (TI) Pressure Gage which were repro­

ducible to within the precision of the pressure standard. The gauge was 

calibrated for both increasing and decreasing pressure steps with iden­

tical results. To determine the absolute pressure of the system correc­

tions for the atmospheric pressure and for liquid head were added to the 

relative pressure changes measured with the TI gauge. 

The materials used were research grade(reported 99.9 percent 

purity) n-propane and n-decane purcha:>ed from Phillips Petroleum Co. 

Gas chromatograph and mass spectograph analyses of the n-decane and a 

vapor-pressure test of the n-propane confirmed these results. The 

n-propane was deaerated and the n-decane was dried over sodium and also 

dearated before loading into the calorimeter. 

The liquid phase volumetric operating limits were set at 550 

and 10 90. cc. to maintain the immersion heater under the 
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liquid surf ace at all times and also to prevent carry-over of liquid 

droplets by the vapor stream.. During a series of experimental tests 

the amount of n-decane retained in the calorimeter remained nearly con­

stant as only a small amount vaporized along with the n-propane. There­

fore, in order to cover the complete composition range and still main­

tain the liquid contents of the calorimeter within the operating limits 

several calorimeter loadings were required. 

The temperature and pressure operating limits were (100-400°F) 

and (0-300 psi), respectively. The latter limit prevented measurements 

from being made at high n-propane concentrations on the 160°F isotherm. 

There was also a low concentration limit for the fraction n-propane con­

tained in the liquid phase. A concentration gradient developed in the 

sample loading tube during an experimental test so that under conditions 

of rapid calorimeter pressure changes, bubbles apparently formed in the 

loading tube. These bubbles then rose through the sampling tube into the 

calorimeter bomb and caused an exchange of material between the calori­

meter system and the sampling tube. This phenomenon was observable as 

temperature and pressure perturbations from steady, mean values and was 

of consequence only at small (<.05 weight) fractions n-propane. 

Temperature, pressure and energy profiles for a test are shown 

in Figure 4. The vaporization process was specified as isothermal and 

the temperature profile remained almost constant after an initial period 

of adjustment. Temperature excursions were rarely greater than± 0.010°F 

from the starting temperature and were often within +.005°F. The tempera­

ture profile shown is actually more erratic than that usually obtained so 

that the response of the calorimeter temperature to changes in the rate of 



-16-

electrical addition could be illustrated. In the calculations the 

assumption was made that the starting and stopping temperatures of in­

dividual tests were identical so that it was possible to neglect the 

thermal capacity of the calorimeter. Therefore, the calorimeter was 

allowed to run for 10-15 minutes under apparently steady conditions 

prior to the start of the actual test to allow transient temperature 

gradients within the calorimeter walls to dissipate. 

The effect that the changing calorimeter pressure had on the 

mass flow rate from the calorimeter is evident from the energy profile. 

The energy requirement continued to decrease with pressure as tempera­

ture was maintained constant. At low fractions n-propane the mass flux 

changed rapidly with time and several current adjustments were often 

necessary in order to maintain the isothermal nature of the tests. These 

frequent adjustments introduced a small additional uncertainty into the 

experimental results. The measured pressure returned to an equilibrium 

value when the mass flow was stopped. 
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CALCULATIONS AND RESULTS 

The enthalpy change upon vaporization of the n-propane/ 

n-decane mixture was determined from calculations using Equations (2) 

and (3). Initially, a series of thermodynamic states was defined which 

corresponded to specific operating points of an experimental test (see 

Figure 5). The definition of these states served as the basis of a 

calorimeter material balance and also for the evaluation of several of 

the energy terms. 

States 2 and 7 refer to the equilibrium conditions which ex­

isted in the calorimeter prior to the start of the vapor flow and after 

the vapor flow had stopped at the end of a test. The pressure of State 

3 was determined by linear extrapolation of the measured pressure his­

tory back to time zero (see Figure 2) and assumes that the pressure 

changed instantaneously when mass flow was inititated. As a finite 

amount of time (~200 seconds) was required for the calorimeter to reach 

a pseudo-steady operating condition (with respect to pressure), State 3 

does not represent an actual thermodynamic condition. However, it 

serves to identify the steady-state pressure which would have existed 

within the calorimeter at time zero if vapor had been flowing. There~ 

fore, the pressure difference between States 2 and 3 may be taken to 

represent the pressure drop which occurs due to temperature and con­

centration gradients at the vapor-liquid interface. The difference in 

pressure between States 6 and 7 provides a similar measure of the gra­

dients which existed during the latter part of the test. 

States 4 and 5 define the thermodynamic end-points of the ex-
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periment and the interval (t6-t5) is the shut-down time. The dotted 

lines connecting States 2 and 7 represent the assumed path of the calor-

imeter pressure if irreversible effects are ignored. States 4' and 5', 

therefore, are the end-points of a test for the case where equilibrium 

is assumed to exist throughout the calorimeter. 

A computer program was written with which this sequence of 

thermodynamic states could be calculated, and an option of following 

either the solid or broken lines (i.e., either equilibrium or non-

equilibrium conditions) was provided. In this way the quantitative 

effects of temperature and concentration gradients at the interface were 

evaluated. The only difference in the two procedures was that for the 

equilibrium case the material balance was made assuming that the calori-

meter pressure was in equilibrium with the bulk liquid phase while for 

the non-equilibrium calculations experimentally measured pressures were 

used. 

The change in the energy of the fluid phases due to calorimeter 

pressure changes was evaluated with available volumetric data (10,11). 

Average thermodynamic values of States 4 and 5 were used for evaluating 

the temperature derivatives of the specific values and also for determin-

ing the amount of material contained within each phase. The partial en-

thalpy change upon vaporization of n-decane was estimated from 

(H. - Hj ,,) = J,g >JV 
AE 0 + P (V. - v ) 

v J,g j,t 
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which assumes that the change in internal energy upon vaporization is 

independent of composition of the liquid phase. Vapor phase volumes, 

V , were obtained from binary compressibility data (11). Some error 
j,g 

was associated with the evaluation of these two terms, however, their 

contribution to the total energy was small so that the error involved in 

their calculation was also small. 

The total amount of material present within the calorimeter 

was determined from a knowledge of the initial material charged and also 

from subsequent measured withdrawals. The component balance was known 

from direct measurements for only the first test in a series. For sue-

ceeding tests knowledge of the phase compositions depended upon material 

balance calculations. The calculated results, however, could be com-

pared to the liquid composition which corresponded to the measured calori-

meter pressures. The material balance calculations were iterative and a 

value of m. was assumed to start them. Iterations were continued until k.g 

the assumed and calculated values of the vapor-phase mass agreed ·to with-

in 0.1 mg. 

The calculated results for a total of 51 tests at 100, 130 and 

160°F are shown in Figure 6. The non-equilibrium calculation procedure 

was used. Results for pure n-propane and n-decane were available from 

previous measurements (12,13,14) and values for the heat-of-vaporization 

for the pure materia~ are joined by a straight line. Two additional 

measurements for the heat-of-vaporization of pure n-decane at 160°F are 

shown in Figure 6. The agreement with literature values was within 0.2 

percent. 

A more critical evaluation of the data can be obtained if re~ 
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sidual values of the heat-of-vaporization are calculated and convenient 

reference functions for this purpose are indicated by the straight lines 

shown in Figure 6. Residual values of the experimental data points can 

then be calculated from 

~HREF -

and are shown plotted as a function of composition in Figure 7. The 

solid line drawn through the data points represents a least-squares fit 

of the data to a cubic equation, and the dashed line is an extrapolation 

of this fit. The results show that to within a small correction the en-

thalpy change upon vaporization is a linear function of the weight frac-

tion of the liquid phase composition. The root-mean~square deviation of 

the experimental data points from the curve fits are 0.43, 0.35 and 0.15 

Btu/lb respectively for the 100, 130, and 160°F isotherms. 

A comparison of calculated results which were obtained assum-

ing that (a.) non-equilibrium and (b.) equilibrium conditions existed 

within the calorimeter is shown in Figure 8. The resulting data fit is 

displaced downward 0.25 Btu/lb for the equilibrium calculation and the 

~oat-mean-square deviation of the data increased from 0.15 to 0.33 

Btu/lb. A further comparison of these two calculational procedures is 

shown in Table 1. The percentage change in the calculated heat-of-

vaporization is almost completely accounted for by the mass change 

(~m. ) and pressure drop effects. In many of the tests the percentage k.g . 

change in the heat-of vaporization is negligible while in others it is as 

much as three times as great as the root-mean-square deviation. 
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In Figure 9 the partial enthalpy change upon vaporization for 

n-propane at 160°F is compared to the total heat-of-vaporization results 

given above. Because of the low volatility of the n-decane only a small 

change is apparent. The partial enthalpy-of-vaporization can then be 

used to calculate a liquid phase heats-of-mixing. The partial en­

thalpy of n-propane in liquid solution is determined by calculating 

around a thermodynamic cycle. The measurements reported above are for 

step B. Values for the heat-of-vaporization of the pure component (step 

E) are available in the literature ( 13) and volumetric and calori-

metric data for calculating the enthalpy changes as a function of 

pressure (steps A and D) are also available. Thus, the partial enthalpy 

change of n-propane upon mixing of the liquid phase components can be de­

termined by difference. That of n-decane can be calculated from the 

Gibbs-Duhem equation (see Figure 11). These two partial quantities are 

then combined to yield liquid phase heats-of-mixing as shown in Figure 

12. 

Hijman and Holleman have presented a corresponding states 

development for liquid mixtures of the n-alkanes and the resulting 

correlation '. for heats-of-mixing is based upon data taken for materials. 

which ranged in chain length from 6 to 62. Therefore, although these re­

sults may not be strictly applicable to the present situation it is of 

interest to compare the heats-of-mixing reported here to those values 

which may be predicted by the corresponding states correlation of Hijman. 

For the n-propane/n-decane system the predicted values of the heat-of­

mixing as a function of temperature are shown in Figure 13. For compari­

son to the data the correlation curve for 160°F is also shown on Figure 

12. 
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SUMMARY 

Total heats-of-vaporization data have been presented for the 

n-propane/n-decane binary liquid system. The results showed a small, 

but consistent deviation from a reference function determined as the 

liquid-phase, weight-fraction average of the heats-of-vaporization .of 

.the pure components. 

The effect of temperature and concentration gradients which 

developed in the liquid phase was evaluated. It was shown that these 

gradients, which may lead to pressure changes of several psi within the 

calorimeter, can introduce significant errors into the calculated re­

sults. The error, however, can be reduced to a negligible level if ex­

perimental pressure measurements of sufficient accuracy are obtained. 

In contrast to most heats-of-vaporization measurements where it is nor­

mally assumed that the process proceeds under near-equilibrium conditioll3, 

in the present case an equilibrium quantity was evaluated from a process 

where significant deviations from equilibrium occurred. 

Heats-of-mixing were calculated for the 100, 130 and 160°F is­

otherms for liquid solution of n-propane and n-decane. Calculated as 

they were, the heats-of-mixing are probably not of sufficient accuracy 

to be helpful in evaluating conditions of phase equilibrium. However, 

the results may be useful in helping to evaluate theoretical develop~ . 

ments for liquid n-alkane mixtures. There are heats-of-qiixing data avail­

able in the literature for n-alkane system where the components have 

fewer than five carbon atoms. One system for which data are available is 
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the methane/n-propane system ( 36, but these data were obtained for a 

temperature of l00°F and heats-of-mixing were positive. Heats-of-mixing 

for the present system are strongly negative and represent solutions 

having a different reduced state. 

A more detailed discussion of several portions of this paper 

is presented in the Appendices which follow. The Appendices are: 

I. Thermodynamic Development 

II. Experimental Equipment 

III. Calibration of Pressure Guage 

IV. Calorimeter Temperature Measurements 

V. Analytical Representation of Heats-of-Mixing 

VI. Heat Transfer and Agitator Calibration 

VII. Tabular Sunnnary of Experimental Data 
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NOMENCLATURE 

C Heat Capacity 

E Specific Internal Energy 

H Specific Enthalpy 

k Thermal Conductivity 

m Mass of Material in System 

n Number Carbon Atoms in Molecular Species 

p Pressure 

q Energy Added to Thermodynamic System in Form of Heat 

r Bubble Radius 

R Universal Gas Constant 

T Temperature 

V Specific Volume 

w Energy added to Thermodynamic System as Pressure-Volume 
Work 

x Liquid Phase Composition 

y Vapor-Phase Composition 

y Ratio of Absolute Temperatures in Heat-Of-Mixing 
Correlation 

Z Compressibility Factor 

a,\,µ, Parameters Used in Heat-Of-Mixing Correlation 
u,A

1
, 

A2, A3 

a Surf ace Tension 

Superscripts 

M Denotes Effect Associated With Mixing Process 
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o Denotes Pure Component 

* Denotes Average Quantity 

Denotes Partial Thermodynamic Quantity 

Subscripts 

a Refers to Material Transferred Across Boundary of 
Thermodynamic System 

ag Agitator Energy Addition 

b Bubble Conditions 

c Refers to Calorimeter Bomb Itself 

e Electrical Energy Addition 

g Vapor Phase 

ht Energy Addition Due to Heat Transfer 

i Interfacial Conditions 

j Any Component Other Than k 

k Component k Which May Be Any Component From 1 to n 

i Liquid Phase 

n Total Number of Components Present 

s System Quantity 

vp Vapor Pressure 

Denotes Total System Quantity 
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603 
604 
605 
608 
609 
610 
613 
614 
616 
617 
618 
663 
664 
665 
666 
667 

TABLE 1 

COMPARISON OF TOTAL CHANGE DUE TO NON-EQUILIBRIUM EFFECTS 
AND THE SUM OF CHANGES DUE TO MASS AND PRESSURE DROP EFFECTS 

CAHV )EQ ~l\r )NEQ D. (A~) 
TOTAL 

INCREASE 
(BTU/LBM) (BTU/LBM) (BTU/LBM) (%)" 

136.38 136.61 0 .. 23 0.17 
130.61 130.82 0.21 0.16 
132 .. 35 132.56 0.21 Oel6 
136.70 136.70 0 .. 00 OQOO 
137.92 137.78 - 0.14 - .10 
138.80 138. 68 -0 .. 12 - 0.09 
141. 98 139.23 -2.75 -L97 
130.36 130.57 0.21 0.16 
134 .. 15 134.38 0 .. 23 0 .. 17 
136. 77 136.88 0.11 0.08 
140.84 140.43 - 0.41 -0.29 
118. 04 118~05 0 .. 01 0.01 
120.09 120.01 -0.08 -0.07 
122.54 122.38 - 0 .16 -0.13 
124.87 124.46 -0.41 - 0.33 
127.02 126.53 -0.49 - 0.39 

MASS AND P. D .. 
INCREASE 

(%) 

0.15 
0 .. 16 
0.17 
0 .. 00 

- 0.08 
-0.07 
-L78 I 

N 

0.17 CX> 
I 

0.,16 
0.08 

-0.28 
OoOl 

- 0,,08 
- 0 .. 16 
~0.33 

-0 .. 42 
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APPENDIX I 

THERMODYNAMIC DEVELOPMENT 

The enthalpy change upon vaporization for a pure, single com­

ponent liquid may be defined as that energy required to transform a unit 

mass of liquid into a unit mass of vapor in a steady, equilibrium pro­

cess. The process is isothermal, and vaporization proceeds at constant 

pressure, there being but one independent variable. For multicomponent 

systems, however, selective vaporization of the components occurs so 

that all but one (e.g., temperature) of the intensive variables change 

as a function of time. 

Two types of heat-of-vaporization are of ten defined for the 

multicomponent case. The differential heat-of-vaporization refers to 

the energy required for a change in state resulting from the transfer of 

an infinitesimal amount of material from the liquid to the vapor phase 

under conditions of equilibrium. The properties of neither phase are 

affected by the transfer. Integral heats-of-vaporization refer to the 

energy required for the transfer of material between phases over the 

range of conditions resulting from vaporization of a finite amount of 

material (see Figure I-1). Although the former quantity, the differen­

tial heat-of-vaporization, is a thermodynamic point function, it is 

clear that integral values are a function of the process by which they 

are defined. 

Any number of such processes may be considered. However, the 

isothermal and isobaric processes are the ones of usual interest. Of 

these, the heat-of-vaporization at constant pressure is often consider­

ed to be of greater practical importance as it may be applied directly 
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in fractionation column calculations. 

Experimental measurements for the enthalpy change upon vapor-

ization for multicomponent systems, of practical necessity, yield re-

sults of the integral type. Under certain limiting conditions, howev~r, 

it is possible to deduce differential (thermodynamic point function) 

quantities from these experimental data. In the current investigation 

integral values of the heat-of-vaporization were determined for an iso-

thermal vaporization process. A constant volume calorimeter was used. 

The pressure and composition of both phases changed as a function of 

time; however, the capacity of the calorimeter (1156 cc.) was such that 

the removal of a vaporization sample (~10 gms.) did not introduce large 

changes in the thermodynamic properties of either of the phases. Be-

cause these ·changes were small. the thermodynamic properties of the bulk 

phases within the calorimeter, for calculational purposes, were assumed 

to be constan~ 1for the test, and were taken as the average of the thermo-

Ciynamic values which Ciescribed . the end points of the experimental test. 

Thus, the partial enthalpy-of-vaporization, as calculated from the ex-

periment (see Equation I-6 below) actually represents the mean value 

(indicated by *) for a sequence of states. 
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~;, represents the amount of component k present in the calorimeter 

and is a function of the composition of the liquid phase (x). The lim-

its of variation are determined by the end points of the test (x 2) and 

(x
1

)o 

~UILIBRIUM CAS.E._ 

McKay ( 15) and Huisman ( 8) previously presented thermodynamic 

analyses by which the partial enthalpy-of-vaporization of a volatile 

component from solution could be calculated from experimental data. The 

analysis shown below follows that of Huisman which was developed to de-

scribe either material addition or withdrawal processes. It was assumed 

that vaporization proceeded at a rate such that equilibrium was main-

tained throughout the calorimeter. That is, the temperature and 

pressure were considered uniform throughout the calorimeter and compo-

sition was considered uniform within each phase. Both of these assump-

tions and ·the limitations which are introduced by them are discussed in 

greater detail below. 

An energy balance fo~ a constant volume, open thermodynamic 

system "A" ·rnay be written (see Figure I-2) for the case of withdrawal of 

a differential amount of material, drn , at the point "a". 
a 

dE 

n 

q + w + ~ Ek,a d:l\.,a 
k=l 

(I-1) 

Here E represents the total internal energy of the calorimetric system, 

and changes in it are the result of thermal energy added (q), pressure-

volume work done on the system (w) and the intrinsic energy of the mat-

erial added at point "a" 
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The thermal transfer, q~ is the sum of three terms 

(I-2) 

where qe is the electrical energy input~ qag is the energy input by the 

·agitator and qht is the heat transferred by conduction and radiation 

from the surrounding vacuum jacke t. 

Since the v essel A is considered isochoric the work w associ-

ated with the process is limited to tha t concerned with the addition or 

withdrawal o f material: 

n 

w = P dV = P I: 
k=l 

vk dmk , a ~a 

The total change in internal energy of the system is the sum 

of the changes in the internal energy of each of the phases so that: 

dE = dE + dE + dE -g - .Q, - c 

where dE refers to energy changes of the calorimeter. 
-c 

Introducing the enthalpy, H, 

E H - PV 

dE = dH PdV - V dP 
g g g g 
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dE £ = dH £ - PdV Q, - V Q,dP 

where 

H H (T, P~ m1 m2 •••em) 
, , n 

The total differential of H is: 
--g 

dH 
-g (? ) 

11\" g 
P, T ,m"' 

.J 'g 

= mg CP ,g dT + 1 y_JI, - mi? c: g )P g f dP + i 1\g dmk,g 
, 

k=l 

and similarly 

k=l 

The calorimeter volume V constant 

dV = dV + dV 0 
-g -£ 

and the change in internal enP.rgy of the calorimeter can be expressed 
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c dt 
c 
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where C is the total heat capacity of the calorimeter. 
c 

Comb i ning the above equations and rearranging gives 

n n 

2:Hk, g d~' g + 2: Hk,Q, d~,,Q, 
k=l k=l 

+ (m Cu + mnCp n + C ) dT g.l,g x, ,:rv c 

n 

-h T c:g)P,y +ml c:i}p.JdP = q + 2:i\,ad"\,a 
k=l 

(I-3) 

The left-hand side of this equation describes thermodynamic changes in 

state which take.place within the thermodynamic system (A). The terms 

on the right-hand side are process variables and describe the inter-

action of the calorimeter thermodynamic system with its surroundings. 

The terms dll\,i and dll\,g cannot be measured directly and must 

be expressed in terms of measurable quantities, and the term d~ £ will 
' 

be eliminated first. A material balance for any component k can be ex-

pressed as 

dm. = (dm. . - dm_ ) 
k , Q, k., a k , g = d(yk m )- d(ykm ) ,a a g 
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(I-4) 

In this relation the term m dy, must be zero as for the case m = con-
a K a 

stant (zero), dyk = 0. This is due to the fact that dm describes the 
a 

process of material transfer and is not a thermodynamic variable-of-

state of the system. Substituting in Equation (I-3) we obtain 

n 

2:{c~,g - ~,t ) Yk,a } dm 
a 

k=l 

n 

+ 2: (Hk ,g - 1\ ,i) <l cl\,- g) 

k=l 

- q + (m .C + m C + C) dT 
g .P ,g Q, P ,g_ c 

(I-5) 

Up to this point no assumptions, other than that of equilibrium, have 

been made, and Equation (I-5) applies, rigorously, to any withdrawal or 

addition process which occurs in a constant volume calorimeter. Assum-

ing an isothermal process, Equation (I-5) may be rearranged directly 
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to obtain an expression for evaluating the partial enthalpy-of-vapor-

ization of the volatile component for a. binary system. 

x 

(I-6) 

[ - q - l m T (~) + m T (:w i\ l* tiP 
g aT p X, aT JP 

'y , x 

* 
+ {ii. - ii. t} 

J, g J, 
{ tim. - y. 

J ,g J 

The second enclosure on the right contains energy quantities. Elec-

trical, agitation, and heat transfer energies are included in q. The 

second quantity is used to evaluate changes in energy of the contents of 

the calorimeter. It is due to the pressure changes which occur during 

a test. Average test values were used to evaluate the coefficient of 

the pressure change, tiP. The last quantity is a correction which ac-

counts for the amount of the heavy component vaporized. 

Within the first parentheses are terms for calculating the 

amount of component k vaporized. tim is experimentally measured from 
a 

* the quantity of material collected in the sample bomb. yk is the aver-

age composition of the material collected, and tim. represents the ac-
K,g 
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cumulation of component k within the vapor space during a test. It is 

evaluated from 

v 
v 

g 

- .Q, - m V ) 
(I-7) 

where V is the total volume and m the total mass of material within the 

calorimeter. 

It should be mentioned, at this point, that Huisman included 

in his development the term 

l\,a 

so that the quantity f'=<~,a - l\,g)yk was introduced into Equation 

(I-5) above. The term, ostensibly, was introduced to account for vari-

ations in the thermodynamic properties of the vapor phase during sample 

withdrawal or for addition of material which is at a different state 

than that of material within the calorimeter. However, either of these 

conditions implies that gradients exist within the system which can then 

not be at equilibrium. As the entire development was based on the as~ 

sumption that equilibrium existed, inclusion of the term referred to 

above is not appropriate. At equilibrium-Hk must 
,a 

equal ii for all -K ,g 

types of processes considered. This condition is rather easily satis-
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fied when a mass is being withdrawn from the calorimeter, but it is con­

siderably more difficult to satisfy for addition processes. This is not 

to say that Equation (I-6) could not be used for addition processes& 

However, if it is, a mechanism should be included which would permit the 

evaluation of the irreversible mixing (both thermal and material) which 

must occur within the vapor phase. 

IRREVERSIBLE EFFECTS AT LIQUID-VAPOR INTERFACE 

It was pointed out above that for the mass withdrawal process 

(vaporization) gradients within the vapor phase are probably negligible. 

In the current experiments the liquid phase was agitated and it will be 

assumed that temperature and concentration gradients within the bulk liq­

uid phase are not of any consequence. However, ample evidence ( 16,17) 

exists which shows that even at very low rates of inter-phase mass 

transfer small temperature differences develop at the interface between 

the bulk liquid and the vapor phases. In the case of a binary system 

concentration gradients would also be expected to develop which, along 

with the temperature gradients, contribute to pressure changes within 

the system. The purpose of this section is to provide a means for eval­

uating the effect which these gradients have on measurements for deter­

mining the partial enthalpy-of-vaporization. 

Single Component Systems. It is not possible to maintain a 

bubble of a single component system in a state of equilibrium (mechani­

cal and thermodynamic). Thermodynamic equilibrium requires that the 

temperatures and pressures (except for a small pressure effect due to 

curvature of the interface) of the c~::lguocis ·phases be identical. 

Mechanical equilibrium requires that the sum of the forces acting on the 
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bubble surfaces be equal to zero. The latter consideration shows that 

because of the existence of an interfacial surface tension the pressure 

within the bubble, Pb, must be greater than the system pressure, Ps' by 

an amount b.P = 2·(}/r (cr is the surface tension of the liquid and r the 

radius of the bubble). Therefore, in a stable system (thermal and dy-

namic equilibrium) 

+ -2,q_ 
r 

(I-8) 

For a single-component system all pressure within the bubble 

is derived from the vapor pressure of the surrounding liquid, Pb = Pvp 

But from thermodynamic considerations Pvp~p s' otherwise flashing of the 

liquid to vapor would occur. This leads to 

p 
vp 

< p 
s 

< p + 
s 

2cr 
r 

which shows that Equation (I-8) can never be satisfied and a stable 

(I-9) 

bubble will not form. In a single component system a bubble must either 

be growing or collapsing, and this requires that the latent energy of 

phase change either be supplied to or removed from the vapor phase at 

the vapor-liquid interface. 

The thermal gradients which exist during the growth of a 

bubble in a single component system are represented schematically in 

Figure I-3 where it is indicated that the major portion of the tempera-

ture drop between the bulk phases exists in the liquid phase. This rep-

resentation may be justified by considering the thermal boundary condi-
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tion at the interface 

mi (~H).+k (~Tg_\. 
Vl g azJi (I-10) 

where ki and kg are considered to be effective thermal conductivities of 

the liquid and vapor phases respectively and i 9 t, and g refer to the 

interface and the liquid and vapor phasese (The convective term includ-

ed here describes only the mean motion of the vapor phase normal to the 

vapor-liquid interface). The important term on the right is the convec-

tive term as the temperature gradient within the gas phase approaches 

zero. Therefore, energy is supplied to the interface by conduction in 

the liquid phase and carried away by convection in the vapor phase. 

Conductive resistance to heat transfer in the vapor phase is negligible. 

The general problem of heat and mass transfer between individual bubbles 

and their surrounding mediums has been analyzed in considerable detail 

(see e.g. 18 and 19)and the results presented here are in agreement with 

the applicable portion of that theory. 

In process~s in which evaporation occurs at the upper surf ace 

of the liquid rather than at a bubble interface,conditions similar to 

those described above exis ~,. Experimental measurements of the temp-

perature profile for this case have been reported previously by Pruger 

(20) (see Figure I-3). Here the large temperature gradient within the 

liquid phase and the small gradient in the vapor phase are evident. The 

discontinuity in the temperature profile at the interface is almost zero 

(approximately 0.002 oF). These measurements support the conclusions 

drawn from a consideration of the boundary conditions in the paragraph 
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above, and may be justified, physically, as follows. Molecules are 

transported to the vicinity of the interface by convection at essen­

tially a constant temperature. To pass into the vapor phase they re­

quire an additional quantity of energy, the heat of vaporization, which 

is obtained by thermal conduction through the liquid layers immediately 

adjacent to the surface. 

Binary Sys terns. In a sys tern in which a second component is 

present and in which one component is considerably more volatile than 

the .other it is understandable that concentration gradients in addition 

to temperature gradients may develop at the vapor-liquid interface. 

From Gibb's phase rule a two component system in which two phases exist 

has two independent variables. The temperature and composition of the 

liquid phase are set, independently, so that the system is completely 

specified. Therefore, as temperature and concentration changes develop 

between the bulk liquid phase and the interface it follows that the 

phase pressure al~o changes. When the process of vaporization starts, 

the measured system pressure changes from a value which corresponds to 

equilibrium with a bulk liquid phase to one which reflects the condition 

of the surface during material transfer. A small pressure chahge also 

occurs at the start of vapor flow when a single component system is be­

ing investigated. This change, however, is due only to the temperature 

gradient and is an order of magnitude less than those which develop in a 

multicomponent system. 

Effect on Calculations. Pressure was described as a dependent 

variable in the developments above. However, the effect that pressure, 

temperature and concentration gradients within the calorimeter have on 
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calculations for the partial enthalpy change on vaporization may be 

treated separatelye This remains to be discussede 

In Equation (I-6) pressure is used, specifically, in two pla-

ces; in the pressure energy t erm and the relation used for determining the 

amount of mass evaporatede The pressure gradient occurs on the liquid 

side of the vapor-liquid interface, and as the thicknesses of the temp-

erature and concentration boundary layers are small (the liquid phase is 

agitated), the bulk liquid remains essentially at equilibrium pressure. 

The interface is at a different thermodynamic state which is in equili-

brium with the vapor phase. Therefore, the properties of the two bulk 

phases (liquid and vapor) should be evaluated for different state condi-

tions. This procedure could have some effect on the pressure energy term 

(T !Y. ~P) but as the entire term is relatively small only negligible 
3T 

improvements in evaluation of the partial heat-of-vaporization would be 

expected. Larger effects could result, however, from pressure changes 

in the vapor phase and lead to significant errors in the calculation of 

the mass change, ~m. • K,g 

Based on these considerations Equation I-6 and I-7 may be re-

written to reflect the changes required for the non-equilibrium case. 

Those terms conceivably affected by a consideration of the irreversible 

effects are underlined. 
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{ l\,g - i\,£ }* = [ -yk-* -Lim __ l __ Jl 
a Lill\, g 

(I-6') 

The process of vaporization of one component may be broken 

down into a series of equilibrium states through which the material to 

be evaporated must pass as it is transferred from the bulk liquid to the 

bulk vapor phase. As there are only two independent variables in the 

system the third,·pressure, is included below only for descriptive con-

venience. The thermodynamic states are (see Figure I-4): 

Thermodynamic State 

1. Bulk condition of liquid 

2. State of liquid at surf ace temperature and 

bulk liquid concentrations 

3 . State of liquid at surf ace temperature and 

surf ace concentration 

4. State of vapor in equilibrium with interface 

of liquid 

Variables 

T9,,x£,P£ 

Tg,x9, ,P £' 

T ,x. ,P 
g l g 

T y p g' g, g 
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5. State of vapor at bulk vapor conditions T Y. p g, g' g 

Calorimetric measurements provide the partial enthalpy change 

for the overall process 1-5 which may be calculated for the overall pro-

cess from Equation I-6'. Steps 1-2 and 2-3 are non-equilibrium process-

es. Step 3-4 is assumed to be an equilibrium process and the energy re-

quired for this change is the thermodynamica quantity, the partial heat-

of-vaporizatione The conditions within. the vapor phase are completely 

uniform so that states 4 and 5 become identical. It was assummed (step 

3-4) that the transfer of material from one phase to the other takes 

place under conditions of complete equilibrium so that any discontinu-

ities in the temperature or concentration profiles at the vapor-liquid 

interface is neglected . (9). 

As the enthalpy change of the overall process 1-5 equals the 

sum of the enthalpy changes of the individual processes, the partial 

heat-of-vaporization may be determined by difference. 

= (L\l\ ) - (L\Hk ) - (lli\ ) 
1-5 1-2 2-3 

(I-11) 

where (see Equation 1~6') 

L\I\ 
1-5 

- - * 
- ~,g - ~,i) 

Description of Correction Terms. (Ll}ik) represents the 
1-2 

cooling of the material to be evaporated, at constant composition, as it 

passes from the bulk liquid temperature to the interface temperature. 

It is normally ref erred to as a superheat correction and introduced in 

the form 
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t.H = superheat 
e_ (T

0 
- T ) 

-p ,g h g 

In this way the temperature of vaporization reported is the bulk liquid 

temperature rather than the interfacial temperature6 

The evaluation of the term (t.l\) · depends upon the avail& 
3-2 

bility of two-phase equilibrium data from which values of yk and ~ can 

be obtained, and also on the availability of heat-of-mixing data for the 

liquid phase. Values of the individual terms <i\ 
3 

and \ 2) may be ev-
' ' 

aluated from heat-of-mixing curves using standard thermodynamic data 

handling techniques (e.g., method of intercept). Both of these terms 

are small and almost negligible. They are a function of the rate of 

vaporization, becoming smaller at low rates of vaporization. They are 

discussed here, mainly, because the latter quantity, Ct.\) has not 
3-2 

previously been considered in calculations involving binary heat-of-

vaporization experiments. 

THERMODYNAMIC METHOD FOR CALCULATING HM 

Heats-of-mixing are normally determined from ei ther ( 2l)vapor 

pressure measurements of a solution and of the pure components or from 

calorimetric measurements by mixing two liquid phases. The enthalpy per 

unit weight of solution is 

H (I-13) 
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which for an ideal solution becomes 

(I-14) 

0 
Here H represents the enthalpy of the pure components at the same tern-

perature and state of aggregation as the solutiono The heat-of-mixing, 

or integral heat of solution, in which we are interested is obtained by 

combination of Equations (I-13) and (I-14) so that 

(I-15) 

In this section it is shown how one of the quantities (Hi - Hi0 ) may be 

obtained from calorimetric measurements of the partial enthalpy change 

upon vaporization. This same quantity for the second component may then 

be obtained by integrating the Gibbs-Duhem equation 

(I-16) 

The two quantities may then be combined in Equation (I-15) to obtain the 

heat-of-mixing. 

The thermodynamic analysis used for calculating the partial 

enthalpy of the more volatile component in a binary solution may be pro-

ken down into a series of steps as shown in Figure 10 It is assumed 

that the heavy component is almost completely non-volatile. 

Step A Change in partial enthalpy of n-propane in liquid solution 

with pressure for constant temperature and composition. This 
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process represents an exceedingly small quantity as carried 

out in the present system. It may be calculated from 

Change in partial enthalpy of n-propane upon vaporization 

from an n-propane/n-decarie liquid solution. 

= (Hk ,g 
* 

Change in partial enthalpy of gaseous n-propane in being 

transferred from a ·mixture to a pure;state at constant temp-

e-rature and pressure. For the calculations presented below 

the change in composition of the gas phase is so small 

(~0.99-1.00) that this term is assumed zero. 

Change in enthalpy of pure n-propan~ in the gaseous state 

upon compression at constant temperature to the dew point 

pressure of the pure component.. This may be calculated using 

= -RT
2 (az) 

P aT p 

Change in enthalpy upon .vaporization of pure volatile compon-

nent at constant temperature& 
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Step F Change in partial enthalpy of liquid n-propane upon mi~ing.at 

constant temperature and pressure. This is the final step of 

the thermodynamic cycle. As the sum of the thermodynamic 

changes around a cycle must equal zero, the partial enthalpy 

upon mixing may be obtained from 

(I-17) 

The calculated results depend, substantially, on the three 

relatively large quantities fo~) ~~) and (L\~) • 
B, D, E 

For a binary system, after integration, Equation (I-16) be-

comes 

xl 

H - Ho f xl 
= -2 2 x2 

x =O 
1 

(I-18) 

Equations(I-17 and I-18) give results which when combined in 

Equation (I-15) yield the heat-of-mixing. 

The features of this method for determining the heat-of-mixing 

for a solution may be summarized as follows 

Advantages: (1) Provides method for determining i/1 at high pressures. 

Previous experimental results have been restricted 

generally, to systems where both components are liq-

uids at atmospheric pressure. 

(2) Provides a method for determining H over a range of 
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temperatures when sufficient vaporization data are 

available. Heat-of-solution data in the past have 

normally been taken at or near room temperature. 

(3) The results are obtained as a side result of experi­

mental measurements for the partial enthalpy change 

upon vaporization on a binary system. 

(4) Permits a comparison of experimental results for the 

partial enthalpy-of-vaporization to calculations for 

heats-of-mixing based on liquid state theories. 

Disadvantages: Considering that each of the partial heat-of-vaporiza­

tion measurements has an uncertainty of 0.4 Btu/#(m), 

this would result in an uncertainty for the HM of about 

25%. This does not compare favorably with the 2% or 

slightly greater error which has been estimated (21) 

for other experimental methods. 
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FIGURE I-2e ~NTERACT!ON OF THERMODYNAMlC SYSTEM 
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APPENDIX I I · 

EXPERIMENTAL EQUIPMENT 

A scale drawing of the calorimeter is presented in Figure Il­

l, and various other items of equipment associated with the calorimeter 

were shown in Figure 1. A detailed description of much of this equip­

ment arid of the instrumentation used has been presented previously (see 

Section II and Reference 5, 7 and 22). Therefore, only those changes 

which were made in conjunction with objectives of the current investiga­

tion are discussed below. These changes were motivated both by the nec­

essity of converting the experiment from a two-man to a one-man opera­

tion and by the desirability of improving the precision and accuracy of 

the experimental results. 

Related to the latter objective was: (1) an improved method 

of determining the specific volume of the vapor phase (primarily depen­

dent upon improved pressure measurements), (2) development of a means 

for evaluating the effect of concentration gradients which developed 

within the liquid phase on the calculated results, and (3) an increased 

precision in calorimeter temperature measurements which would permit im­

provement in the accuracy of the agitator calibration. 

TEMPERATURE RECORDING INSTRUMENTS 

Two platinum resistance thermometers were used in the experi­

ment. The resistance of each was determined by measurements made with a 

Mueller resistance bridge used in conjunction with a null detector. One 

thermometer was immersed in the oil bath surrounding the calorimeter and 

was used to determine the absolute temperature of the experiment. The 

null detector was a high sensitivity galvanometer. The second thermo-
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m~ter was mounted in a helium-filled thermometer well within the calor­

imeter. The output of the Mueller bridge connected to this thermometer 

was fed through an amplifier to either a null indicating annneter or a 

strip chart recorder. When the null indicating ammeter was used it was 

possible to obtain a precision of ±.0.0005 °F in the temperature meas-

urement. This was two to three times better than when the galvano-

meter had been employed. When a reading was not being taken using the 

anun~ter the output from the amplifier was fed to a strip chart record­

er so that a continuous record of the calorimeter temperature-time 

history could be obtained. 

The measurements recorded on the strip chart had a precision 

of approximately ±0.002 °F. Much of this error was due to hysteresis 

:l.n the -recorder, and is .app.roximately of the same magnitude as for 

measurements using.the.galvanometer null detector. With the recorded 

output, however, the temperature history and the rate-of-change of the 

calorimeter temperature were immediately apparent durin~ an experimen­

tal test and corrective action for maintaining the calorimeter at a 

constant temperature could be taken. 

PRESSURE RECORDING INSTRUMENTS 

The choice of an instrwnent by which the calorimeter pressure 

could be measured was made somewhat difficult by the fact that several 

factors had to be considered. These difficulties were mentioned pre­

viously in Section II but are repeated here for convenience. They are: 

(1) an accuracy of 0.5 psia over a pressure range of 3-300 

psia, 

(2) a precision of 0.05 psi over the time span of an 
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experimental test (~ 45 minutes), 

(3) a sufficiently rapid instrument response time so that 

the dynamic pressure changes in the calorimeter would 

not create a significant error in the reported measure­

ments., 

(4) an instrument with which individual measurements could 

be made in a relatively short period of time so as not 

to interfere with other experimental measurements which 

were also required. 

These requirements, individually, are not all easily satisfied 

with standard laboratory pressure measuring instrumentation. Therefore, 

the chance of obtaining an instrument which would meet all of these 

criteria simultaneously did not appear good. Three experimental set-ups 

were evaluated before the final pressure measuring instrument and 

experimental configuration was determined. The two initial configura­

tions employed a bench-scale, dead-weight tester as the pressure 

measuring· instrument. 

Pressure Cell. The dead-weight tester was used in conjunc­

tion with a pressure cell containing a flexible steel diaphragm ( 3). 

Fluid from the calorimeter entered the lower portion of the cell and a 

mercury column was supported above the horizontal diaphragm. Deflection 

of the diaphragm up or down caused the mercury to rise and fall in a 

capillary tube either.closing or opening an electrical contact switch. 

The amount of mercury above the diaphragm was adjusted so that the on­

off point of the switch was removed from the neutral position. When 

used previously, errors attributable to the diaphragm were reported to 
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to be of the order ±LO psL The diaphragm cell was evaluated in 

connection with the present investigation, however·, with the thought 

that a large portion of this error could be eiiminated. Tests showed 

that the reproducibility was even worse than expected as a hysteresis 

of 2-3 psia was observede 

In the construction of the pressure cell provision had been 

made against overpressures in only one direction 9 ~nd the diaphragm had 

apparently become strained beyond its elastic limit in the unprotected 

direction. When this occured a considerable amount of sensitivity was 

apparently lost. A physical inspe.ction of the diaphragm revealed sever­

al small ripples which confirmed the suggestion that non-elastic defor­

mation had taken place. 

As the diapbragm,~itself:> was an integral part of the larger 

main body of.the pressure cell, its replacement meant that this entire 

section would have to be refabricated. It was decided, instead, to­

attempt repairing the diaphragm and determine if it could be made 

functional. The surfaces were remachined and poli$hed, but the major 

portion of a regular ripple remained. A retest of the pressure dia­

phragm showed little, if any, improvement in its operation, and it was 

decided that another method of measuring the calorimeter pressure would 

have to be used. 

Mercury TraR· In spite of the hazard of possibly exposing 

the interior of the calorimeter (parts of which were gold plated) to 

mercury, the diaphragm cell was replaced with a mercury trap. In this 

case the balance point was again located by means of an electrical cir­

cuit which was actuated by the .rise and fall of the mercury column 
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within the trap. The trap was also used in conjunction with the 

dead-weight testere 

With this configuration pressure having an accuracy of 0.2 

psia and a precision of about Oe05 psi were obtainable& If the pressure 

was steady an individual measurement could be made in 1 to 2 minutes. 

However, for a dynamic pressure , that which occurs during an experiment-

al test, accurate measurements were almost impossible to makea The test 

pressure changed significantly during the period of measurement so that 

even if the balance point was found in one direction, the system pres-

sure changed before the necessary balance check in the opposite direc-

tion could be made. Therefore, this configuration was adequate for 

determining the thermodynamic conditions which existed within the calor-

imeter before a test began and after it ended. But it did not provide a 

satisfactory means of defining the transient thermodynamic states which 

existed during an experimental test. 

Texas Instrument Gage. The third pressure measuring device 

evaluated was a commercially available Texas Instrument Precision 

Pressure Gage (TI Gage) which employed a fused quartz spiral bourdon 

tube as a pressure-sensitive element. This gauge satisfied all of the 

criteria discussed above. Absolute pressures were measurable to within 

±.-Oel psi over a range of 0-500 psia with a precision better than 

+ 0.05 psia. The gauge had a natural frequency (50 cps) which was con-
-:--

siderably greater than that require.cl for the calorimeter pressure 

measuremements. An individual measurement could be made in 15 to 20 
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seconds$ A more detailed description of the gauge, along with the cal­

ibration results, is given in Appendix 3. 

Pressure Connections. The TI Gage was connected to the fluid 

pressure lines coming from the calorimeter as shown in Figure II-2. The 

bench-scale· dead-weight tester used in conjunction with the.Hg Trap_ was 

also connected to the pressure system to serve as a back-up'in the 

event that problems should develop with·the TI Gage. This contingency 

never developed, however, and the TI Gage was used ~or all experimental 

pressure measurements. 

Almost all of the pressure lines up to valve A were 1/4 inch 

copper tubing. The exceptions were several short sections where it was 

more convenient to use steel tubing to accommodate existing fittings. 

All tubing on the calorimeter side of valve A was steel. The fluid on 

the calorimeter side of valve A was, of course, a mixture of n-decane 

and n-propane. Pure n~dec~e was used as· the pressure transmitting 

fluid within the pressure measuring system and was interfaced with the 

calorim~ter system through a four-inch . length of small diameter 

(l/16"I. D.) steel tubing. It was not possible to completely elimini­

nate the interchange of material between these two systems, however the 

presence of tnis length of small diameter tubing served to reduce mix­

ing of the pure n-decane with the mixture by diffusion. 

A great deal of care was taken in loading the pressure trans­

mitting fluid, n-decane, into the pressure measuring system. This was 

to eliminate the possibility of air bubbles forming in the pressure 

line. If ·bubbles had' appeared the effect of surface ·tension at a 

vapor liquid interface could not only lead to inaccurate static 
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pressure measurements, but could also introduce an undesirable sluggish­

ness in the pressure measuring system, The latter would have resulted 

from the transient effect of a component being absorbed or desorbed 

from solution, and the effect wo~ld lead to a·decrease in the effective 

time response of the pressure .measuring system. 

A series of valves were placed between the calorimeter and the 

pressure gauge. When the gauge was not being operated all of these 

valves were kept closed to ensure that no leaks from the calorimeter 

system occurred through these lines. The gauge itself was released to 

atmospheric pressure through a vent. The condition of the transmitting 

fluid was usually apparent from observations which were made at both the 

start and end of an experimenta~ test. When starting a test, and the 

valve connecting the pressure gauge to the calorimeter was cracked, the 

pressure imposed on the gauge went from atmospheric to calorimeter 

pressure (as much as 300 psia) almost innnediately. This rapid response 

would not have been expected if a vapor-liquid mixture had been in the 

pressure transmitting line rather than a pure liquid. It also made it 

necessary to take special care in bringing the gauge to operating 

pressure so as to minimize the chance of shattering the fused quartz 

bourdon tube with a pressure surge. 

At the end of a test the gauge was released to atmospheric 

pressure after first isolating it from the calorimeter, Placed on 

the atmospheric vent was a piece of transparent tubing aligned verti-

cally, which was partially filled with n-decane. Any bubbleR which 

existed within the pressure'line.at a high pressure would have exµanded 

when released to atmospheric pressure and· caused a disnlacement of 
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liquid in the transparent tubing. If this happened (it did once) the 

pressure line was reloaded_with a fresh quantity of n-decane. 

SUMMARY OF EXPERIMENTAL MEASUREMENTS 

A summary of the measurements made in conjunction with the 

operation of the calorimeter is ~hown in Figure II-3. A total of 11 

differential thermocouples were monitored by measurements made with a 

White Potentiometer. Nine of these were to aid in determining the tem­

perature of the vapor path between the calorimeter and the sample block 

and were connected to a rotary switch leading to one side of the White 

Potentiometer. Two more differential thermocouples (top and bottom) DTT 

and DTB were used to help define the temperature difference between the 

vacuum jacket and the oil bath and these·were connected to the second 

side of the White Potentiometer. A third differential thermocouple 

(center) DTC was connected directly to a galanometer. and was used as a 

basis for determining the zero temperature difference between the 

vacuum jacket and the calorimeter (see Appendix IV). The latter measure­

ment was, essentially, a null measurement and quantitative data were not 

taken. Fo~ this purpose the direct connection of the thermocouple to a 

galvanometer was the most sensitive means of detection available. 

Measurements of the quantity of thermal energy added by the 

resistance heater were made with a Minneapolis-Honeywell Rubicon Poten­

tiometer. A thyratron control unit was used to maintain the oil bath at 

a constant temperature (±; 91 .005 OF). The calorimeter pressure and tem­

perature measurements were discussed above. 

CALORIMETER VOLUME 

The volume of the calorimeter was measured and reported 



-75-

· previously ( 22). Methane was used as the calibration fluid and reported 

results showed the calorimeter to have a total internal volume of 1192 

cc. Some changes of the internal construction of the calorimeter had 

been made since that original calibration, however, and it was decided 

to repeat it. N-propane, for which extensive compressibility values 

were available (10), was chosen as the calibration fluid. As n-propane 

condenses at a relatively low pressure at room temperature, it was 

easier to handle than methane and it was possible to obtain a smaller 

relative error in determining the sample weight than was the case for 

methane. The results of the calibration are shown in Table II-1. 
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TABLE II-1 

RESULTS OF EXPERIMENTAL DETERMINATION 

OF CALORIMETER VOLUME 

Press. 
(psia) 

47.22 

54.36 

z 

0.9548 

0.9481 

Sample Wt. 
(gm) 

7.307 

8.443 

v 
(cc) 

1255.32 

1256.05 
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FIGURE II-1. SCALE DRAWING OF CALORIMETER. 
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APPENDIX III 

CALIBRATION OF PRESSURE GAUGE 

DESCRIPTION OF PRESSURE GAUGE 

Calorimeter absolute pressures and pressure changes were 

determined from measurements made with a Texas Instrtnnents Model 141 

Precision Pressure Gage. The pressure sensitive element of this gauge 

was a fused quartz spiral tube mounted within a sealable capsule. The 

capsules were interchangeable, and when in use were held in a separately 

packaged read-out unit. Application of pressure to either of two 

pressure fittings on the capsule caused the bourdon tube to rotate, 

deflecting a light beam which was directed onto a mirror attached to the 

free end of the bourdon tube (see Figure III-1). The amount of deflec­

tion, measured by an optical transducer which traveled concentrically 

around the bourdon tube, was indicated by a set of counting wheels 

geared to the movement of the transducer. The magnitude of an applied 

pressure was found by multiplying the deflection of the bourdon tube by 

a scale factor determined from calibration. 

The utility of the gauge depends upon two central ideas: (a) 

the extremely low internal viscosity of fused quartz and (b) the optical 

coupling between the capsule and the read-out unit. Fused quartz is an 

extremely elastic, although brittle material, and hysteresis effects due 

to material stress are reduced to a minimum. Manufacturer's literature 

describing the quartz elements used in the gauge states that hysteresis 

effects are negligible, and this statement is supported by the calibra­

tion results presented below. The optical coupling between the bourdon 

tube and the read-out unit made it possible to isolate the bourdon 



-81-

element from any mechanical linkage and eliminated the problem of a 

frictional constraint. 

Several other factors affect the accuracy of the gauge. The 

calibration curve for the gauge is highly non-linear. Therefore to 

obtain accuracy over an extended range in pressure a large number of 

calibration points must be available. When this is the case interpola­

tion (linear or non-linear) for the intermediate pressures is possible. 

Pressures can be measured as either absolute or gauge, de­

pe~di~g upon the mechanical connections made at the capsule. Two 

fittings are available, one for the interior of the bourdon tube and one 

for the interior of the capsule which contains the bourdon tube. 

Either side of the bourdon tube may be used as the reference pressure, 

the · choice being for practical considerations. If the reference 

pressure is chosen as atmospheric (one port open to the atmosphere) the 

measured output is in gauge (psi) pressure. For accurate absolute 

measurements, however, it is preferable to use a vacuum for reference 

as barometric pressure variations are then eliminated. 

The resonant frequency of the bourdon tube (per manufacturer) 

is 50 cps. As the pressure-time profile for an experimental test was 

continually decreasing the time response of the pressure measuring 

instrument was of some concern (see Section II). However, as the max­

imum rate of pressure change in any test was less than 0.01 psi/sec., 

the time response of the Texas Instrument Pressure Gage exceeded the 

requirements of this experiment. 

The gauge may be operated in any three modes: external, 

manual, or servo. In servo mode the deflection of the reflected light 
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beam was followed automatically. The instrument was switched to manual 

mode for a precision balancing of the null meter. The external mode was 

not used in these experiments as it proved to be inconvenient in measur­

ing small pressure changes accurately over the relatively wide pressure 

range observed in individual tests. 

CALIBRATION PROCEDURES AND RESULTS 

The primary pressure standard for calibration of the Texas 

Instrument Gage was a Hart Pressure Balance which operated on the princ­

ip~e of a dead-weight tester. The Hart Balance has a reported accuracy 

of better than 1:10,000, and a reproducibility of 1:20,000 over a range 

of 3-3,000 atmospheres. To cover this entire range of pressures a total 

of eight differential pistons is available. For the range of pressures 

measured in this experiment, however, only two of these pistons were 

required; one for the range 39-290 psig, and the second for the range of 

pressures greater than 239 psig. The overlap in the range of these two 

pistons provided an opportunity to check the reproducibility of the Hart 

Balance against itself. For pressures lower than 39 psig a smaller (and 

less accurate) pressure standard was used to verify extrapolations of the 

calibration results from the Hart balance to zero absolute pressure. 

These latter results are not included in the table below. 

The experimental setup for calibration is shown in Figure III-

2. The output of the Hart Balance was coupled to that of the Texas 

Instrument Pressure Gage through an open oil/nitrogen interface which was 

maintained at a constant elevation throughout the calibration. For con­

venience, atmospheric pressure was chosen as the reference pressure. 

Therefore, zero pressure difference occurred when both sides of the bour-
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don tube were open to the atmosphere. The scale reading for zero 

pressure difference was adjusted to 12e000 prior to calibration of the 

gauge and also prior to each subsequent. use. This procedure prevented 

errors from any irregularity in the gear train from being injected into 

the pressure measurement. 

Calibration points were taken for both i ncreasing and decreas­

ing pressure increments for the pressure range 39-417 psig. The resufts 

are presented as a tube constant K(6R) = 6P/6R, where 6P is the pressure 

difference between the applied pressure and the reference pressure and 

6R is the change in scale reading on the pressure gauge from the initial 

value of 12.000. The calibration results are shown in Table III-1. 

Also shown are the applied pressure difference, 6P , the change in meter 

reading, 6R, an indication showing if the calibration point was taken 

for an increasing or decreasing pressure step and a column showing whi.ch 

differential piston was used. 

A good indication of the precision of the calibration is 

obtained if experimental tests (86,90) and (104,111) are compared. In­

cluded in these four tests are data for increasing and decreasing 

pressure steps for both of the differential pistons that were used. The 

results ( K(6R) ) for each individual piston are reproducible within one 

part in 20,000. Although the scale readings for th~se four calibration 

points are nearly identical (21.1 and 21.2) the difference is enough to 

Gause a significant change in the calibration constant. The calibration 

curve change~ rapidly at that point and tne ·results for the higher de­

flection (21.2) should have been 0.003 higher, as determined from a fit 

of all the data (see below). As the difference actually was only 0.0005 
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the reproducibility of two different pistons becomes 1:5000, compared to 

the reported accuracy of the Hart Balance of 1:10,000. It should be 

emphasized that this comparison of the two Hart Balance pistons is based 

on only one data point. Although the reproducibility of the results for 

each piston is extremely good it is believed that several data points 

would be required over the pressure range of mutual applicability i.n 

order to check with any certainty the accuracy of the Hart PressurP 

Balance. 

A comparison of other data points having equal loads shows 

that for all of the points taken where the applied pressure was greater 

than 100 psig the reproducibility was always better than 1:10,000 and 

usually within 1:20,000. Discrepancies of this magnitude could very 

well be associated with the limitations of the read-out device in the 

Texas ~nstrument Gage. Only five significant figures could be read 

directly (four at low pressure differentials ) and the sixth could be 

estimated with a precision of five. 

With the exception of the low pressure points the results of 

the calibration demonstrate the extremely high precision with which 

pressure changes can be measured with both the Hart Pressure Balance and 

the Texas Instrument Pressure Gage. The lack of agreement of the data 

points for the two differential pistons where the pressure ranges over­

lap are inconclusive. 

The data presented in Table III-1 are plotted in Figure III-3. 

The non-linearity of the calibration constant is evident. For ease of 

calculation of the pressure from gauge readings the data were represented 

by a series of line segments; four straight lines and three quadratic 
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curves. The data were easily represented in this manner, and with hetter 

accuracy than could have been achieved with a polynomial fit. The line 

representations and the ranges for which they apply are indicated in th~ 

figure. To calculate an absolute pressure from these calibration curve 

segments the tube constant, K(f::.R), was determined, first, as a function 

of scale readings. Then 

f::.R x K(f::.R) + Patm + head 
correction 

COMPARISON WITH STAINLESS STEEL BOURDON TUBE 

The calibration data shown in Figure III-3 can also be plot t ed 

as a deviation (f::.) from a calculated reference pressure. If the refer-

ence pressure (f::.P f) is taken as a linear function of the scale reading re 

f::.P = f::.P f + f::. re 11.522 (f::.R) + f::. 

~ is plotted versus scale reading (f::.R) in Figure III-4. 

A similar result is available from calibration data obtained 

when a stainless steel element was used in place of the fused quartz 

bourdon tube (23). Two curves result in the latter case; one for increa-

sing pressure steps, the other for decreasing pressures. A hysteresis 

effect completely lacking for the fused quartz bourdon tube is evident 

in these measurements. However the calibration results are more nearly 

linear . 



TABLE III-1 
CALIBRATION CONSTANTS OF TEXAS INSTRUMENTS PRESSURE GAGE 

RANGE OF 
TEST DIFFERENTIAL PISTON DIRECTION OF ~p 

NO. (psig) PRESSURE CHANGE (psig) tiR - K (tiR) 

0.000 0.000 
79 39-290 Increase 39.4009 3.5005 11.2432 
80 " " 67,.8798 6.0120 11. 2781 
81 ti " 96.3513 8.515 11.3029 
82 " II 124.8222 10.9995 11. 3348 
83 " II 153.2956 13.4945 11..3472 
84 " fl 181.7689 16.063 1L3034 
85 " " 210 .• 2440 18.641 11.2660 
86 " " 238.7203 21.111 11. 2452 I 
87 fl " 267.1929 23.402 11.4048 co 

O'\ 
88 " " 289 0 9648 25.2175 1L4857 I 

89 " Decrease 267.1929 23.404 11.4038 
90 ii II 238.7203 21.112 11. 2947 
91 " " 233.0163 20.659 11. 2666 
92 II " 221. 6330 19.655 11. 2636 
93 " II 210.2444 18.6L~os 11.2663 
94 II II 181.7689 16.062 11.3041 
95 " " 153.2956 13.4955 11.3464 
96 II Increase 158.9881 14.016 11.3307 
97 " Decrease 147.5941 12.9935 11. 3464 
98 II II 124.8222 11.0005 11. 3343 . 
99 " . ' " 96. 3513 8.516 11. 3015 

100 II " 67 .8798 6.015 11. 2725 
101 II II 62.1728 5.513 11.2649 
102 II " 50.7895 4.513 11. 2415 
103 II " 39.4009 3.502 11. 2384 
104 > 239 Increase 239.8379 21.209 11.2957 
105 " " 275.2859 24.061 11.4248 



TABLE III-1 (Continued) 
CALIBRATION CONSTANTS OF TEXAS INSTRUMENTS PRESSURE GAGE 

RANGE OF 
TEST DIFFERENTIAL PISTON DIRECTION OF llP 
-1i'h (psig) PRESSURE CHANGE (psig) llR 

106 . > 239 Increase 310.7504 26.878 
107 " " 346.2044 29.906 
108 II " 417.1811 36.256 
109 " Decrease 346.2044 29.9065 
110 H II 310.7504 26.879 
111 " " 239.8379 21.210 

K (llR) 

1L5486 
11. 5635 
1L4937 
11. 5633 
11.5482 
11. 2952 
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APPENDIX IV 

CALORIMETER TEMPERATURE MEASUREMENTS 

This appendix is included for several reasons. They are: 

(1) To evaluate the uncertainty of the reported absolute 

temperature at which vaporization takes place. 

(2) To establish a base for making heat transfer and agita­

tor energy calibrations. 

(3) To evaluate the method used for estimating the subcool­

ing of the vapor phase during vaporization. 

(4) To investigate the temperature dynamics of the calori­

meter. 

Concern for the first three of these goals is understandable. The im­

portance of the latter objective may not be evident and is dis cussed in 

the paragraph below. 

In the calculations to obtain the latent heat of vaporization 

from experimental data it was assumed that the temperature of th e calor~ 

imeter was maintained constant throughout a test. In addition to the 

desirability of satisfying the process specification of an is othermal 

test this assumption also permitted neglecting the temperature change 

term of Equation (I-5). Act~ally, the temp er ature did not remain pre­

cisely constant during a test, but small variations occurred. However, 

if the response of the temperature sensing device to calorimeter temp­

erature changes were sufficiently fast, and if temperature gradients ex­

isting within the calorimeter remained stationary during a test, it 

would have been possible to start and stop a test within the precision 

of the temperature measuring instrument being used. 
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In this case temperature changes of less than 0.001 °F were 

monitored with the platinum resistance thermometer mounted within the 

calorimeter thermometer we118 Temperature measurements of this preci­

sion would have been sufficient to reduce the start-stop temperature er­

ror to a negligible amount& However, there was a finite delay time in­

volved with the temperature sensing device, and the temperature gradi­

ents which developed within the calorimeter were subject to variations 

with respect to time. Therefore, a discussion is included to provide 

an estimate of the time response of the platinum resistance thermometer 

and also to point out the conditions under which temperature transients 

within the calorimeter may become the source of significant experimental 

REPORTABLE TEMPERATURE OF VAPORIZATION 

The absolute temperature at which each experimental test was 

conducted was determined from the resistance measurements of a platinum 

resistance thermometer immersed in the oil bath surrounding the vacuum 

jacket. Differential thermocouples were used to determine the tempera­

ture difference between the oil bath and the calorimeter itself. The 

reported temperature of vaporization, therefore, includes the inaccura­

cies associated with both the resistance thermometer and the dif f eren­

tial thermocouple measurements. (The platinum r esistance thermometer 

mounted within the thermometer well of the calorimeter was used only for 

determining temperature ~ of the calorimet~r once an experiment 

was underway). A scale drawing showing the location of the resistance 

thermometers and four differential thermocouples located within the cal­

orimeter is shown in Figure IV-1. 
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From measurements of the platinum resistance thermometer, the 

absolute temperature of the oil bath was de termined to within 0.01 °F. 

The uncertainty associated with the differential thermocouple tempera­

ture measurements was greater • . With the calorimeter and oil bath in ap­

parent thermal equilibrium a consistent discrepancy in the measurements 

of three of the differential thermocouples was observed. The apparent 

temperature profile of the calorimeter relative to the oil bath, as de­

tennined from thermocouple measurements, is shown in Figure IV-2. The 

center thermocouple (DTC) always indicated that the calorimeter was at a 

slightly higher temperature than did the top (DTT) and bottom (DTB) dif­

ferential thermocouples. This uneven temperature profile o f the calori­

meter could have been attribut ed to several factors: (1) temperature 

gradients within the calorimeter wall, (2) temperature gradi ents within 

the vacuum jacket wall, (3) r es i dual voltages in the thermo couple cir­

cuits which indicated temperature inequalities when in fact there were 

none. 

The possibility that a temperature gradient existed within the 

wall of the calorimeter adjacent to the liquid phase may be eliminated 

almost immediately$ There was no source of thermal energy within the 

calorimeter wall, and the presence of the circulating liquid phase, with 

its large thermal capacity, would make it highly improbable that a meas­

urable temperature gradient could have been sustained. In the upper 

part of the calorimeter there was no similar effect as the v apor phase 

was relatively stagnant and had a small thermal capacity. Therefore, it 

w~s possible that temperature gradients existed within the upper part of 

the calorimeter adjacent to the vapor phase, and this could account f o r 
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the differences observed for readings from the upper and center differ­

ential thermocouples (this point is discussed further below under Static 

Conditions). It cannot, however, explain the differences between the 

lower two differential thermocouples as these were both attached to that 

portion of the calorimeter wall which was in contact with the liquid 

phase. 

The possibility that unevenness in temperature distribution 

existed within the wall of the vacuum jacket is related to the fact that 

this surf ace was closer to the temperature variations of the environ­

ment. The circulating oil bath and an adiabatic jacket served to iso­

late the vacuum jacket from the surroundings. Although it does not seem 

likely that temperature gradients of the size reported could have exist­

ed in the wall of the vacuum jacket, there is no way of knowing this. 

The remaining alternative is that the discrepancies in the re­

ported readings were due to residual voltages either in the thermo­

couples themselves or in the thermocouple lead junctions. Some checks 

were made of the thermocouple lead junctions and small (~0.5 micro­

volts) residual voltages were observed. But even finding these did not 

remove the possibility that similar residual voltages may be present at 

inassessable thermocouple junctions on the walls of the calorimeter and 

vacuum jacket. An uncertainty in the temperature of the amount de-

scribed here,however, did not seem to justify what would have been a major 

effort in disassembly and reassembly of equipment in attempting to lo­

cate and correct such errors; especially since the equipment was working 

satisfactorily otherwise. Therefore, it was decided to make an opera­

tional check of the equipment and approach the problem from a different 
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point of view. If the point of zero heat transfer between the calori­

meter and the vacuum jacket could be determined, that point could also 

be used as a definition of zero temperature difference between the oil 

bath and the calorimeter~ 

ZERO HEAT TRANSFER 

To make this check the oil bath was set on control at a con­

ventent temperature. The calorimeter was then brought to a temperature 

which was ~1.0 °F warmer than the oil bath and the agitator was turned 

off. (At small temperature differences the agitator represented the 

major source of thermal energy for the calorimeter, and if left running, 

the agitator, rather than heat transfer, would have controlled the rate­

of-change of the calorimeter temperature). The temperature of the cal­

orimeter was then monitored as a function of time with the calorimeter 

platinum resistance thermometer to determine the rate of temperature 

drift. If the point of zero drift could be determined this, ostensibly, 

would be the point of zero heat transfer and could also be used to de~ 

fine the point of zero temperature difference between the calorimeter 

and the oil bath. 

At small temperature differences between the calorimeter and 

the vacuum jacket other factors became important, however. As noted 

qbove, the agitator could not be run during these tests because of the 

thermal energy that would have been generated. But it also became in­

creasingly important to maintain the calorimeter at a uniform (well-mix­

ed) temperature when temperature differences between the calorimeter and 

the vacuum jacket were small so that small average temperature changes 

of the calorimeter ( 0.001 °F) could be measured. These two require-
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· ments were in conflict . In order to maintain a well-mixed liquid phase 

within the calorimeter frequent activation of the agitator was required. 

But, initiating the agitator action resulted in an energy addition for 

which corrections could not be introducedo 

As the temperature differences between the oil bath and the 

calorimeter became small the thermal capacity of the calorimeter and its 

contents became large relative to the rate of heat transfer between the 

vacuum jacket and the calorimeter~ and relatively long periods of time 

were required before a measurable temperature drift could be detected. 

For this condition the stability of temperature control for the oil bath 

also became a factor. 

These effects combined to make it impractical to determine 

the point of zero heat transfer to a precision of better than ~o.os °F. 

As the error involved in tnis measurement.is of th.e saMe magnitude as 

the discrepancies indicated by the three differential thermocouples 

discussed above, determination of the zero point heat transfer, by this, 

method, did not provide any measurable improvement ·in the determination 

of the absolute temperature of the calorimeter. It did help, however, 

to confirm the limits of accuracy which were attributed to the differ­

ential thermocouples. 

A second approach for determining the point of zero heat 

transfer was tried also, but without success. This method involved com­

paring the drift~rate of the calorimeter temperature for the cases where 

(a) the calorimeter was warmer than the oil bath and (b) the calorimeter 

was colder than the oil bath. The temperature of the oil bath was main­

tained constant over the period of both tests which were conducted con-
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secutively. If the experimental conditions could be determined such 

that the rate of decreasing temperature for case (a) was equal to the 

rate of lncreasing temperature for case (b)~ the midpoint between these 

two conditions could be taken as the point . of zero heat transfer. For 

case (b), however, the temperature of the sample injection line leading 

from the base of the calorimeter became greater than that of the calor­

imeter (it passed through the warm oil bath surrounding the calorimet­

er), and apparently caused vapor bubbles to form in the sample loading 

tube which ascended into the calorimeter bomb. This action amounted t o, 

essentially, the addition of a large pulse of thermal energy to the cal­

orimeter which became evident as large unstable variations, of both the 

calorimeter temperature and pressuree Thus a thermodynamic system 

which had been _as.summed to be closed became open and the character of 

the test was violated. 

In view of the lack·of definitive information from either of 

the above tests it yvas decided to use the null point of the center 

dif ferentia l thermocouple (DTC) to define a point of zero heat transfer. 

CALORIMETER TEMPERATURE GRADIENTS 

Static Conditions. The fact that temperature gradients, or 

apparent temperature gradients, developed within the calorimeter when 

the agitator was off was easily observed when, after a period of being 

off, the agitator was reactivatede Measurements from the calorimeter 

resistance thermometer showed that the temperature of the calorimeter 

fluctuated for a period of several seconds after which it again became 

stable. 

The expression "apparent temperature gradient" was used above 
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to describe a further effect of agitation. By merely flicking the agi­

tator on and off after the calorimeter and oil bath had been brought to 

a stable pseudo-equilibrium, the calorimeter resistance thermometer in­

dicated temperature changes of 0.002-0.003 °F. (The time required for 

the calorimeter resistance thermometer to respond to these operational 

changes was ~ 5 seconds, and this fact will be used below in discuss­

in the dynamic temperature changes of the calorimeter). The fact that 

a small change in temperature did occur is indicative that there was a 

measurable temperature gradient within the calorimeter even under these 

ideal circumstances. If a small gradient existed in the thermometer 

well it would be understandable as the well extends from the vapor phase 

down into the liquid phase. (The possibility of thermal gradients in 

the calorimeter wall adjacent to the vapor phase was discussed above). 

This apparent gradient could lead to a temperature dif feren­

tial between the liquid phase and the sensing element of the calorimeter 

resistance thermometer in the lower part of the thermometer well. In 

this case, heat would continually be flowing between the liquid phase 

and the thermometer. By turning the agitator on and off the flow field 

around the thermometer well and the liquid phase heat transfer coef fi­

cient would be changed. The rate of heat transfer between the liquid 

phase and the resistance thermometer would be changed and this affected 

the temperature of the platinum sensing element. 

The results seem to indicate that a measurable temperature 

gradient probably did exist in the walls of the calorimeter adjacent to 

the vapor space, but they do not provide a means of calculating its mag­

nitude. It must be concluded, then, that the variation in the calori-
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meter temperature profile shown in Figure IV-2 is probably not all due 

to residual voltages present in the measuring circuits, but that these 

measurements may actually reflect a degree of thermal nonequilibrium 

which exists within the calorimeter even under the most ideal circum-

stances. 

nynamic Conditions. In addition to knowledge of the tempera­

ture gradients which exist within the calorimeter under static condi­

tions it may be helpful to gain some understanding of how these values 

change when the calorimeter is operated normally (changing thermodynamic 

conditions). The temperature-time history of the output of several of 

these devices for a contrived test is shown in Figure IV-3. To obtain 

these measurements the oil bath and the calorimeter were brought to a 

pseudo-equilibrium condition (no vapor was flowing). That is, the oil 

bath and the calorimeter were maintained at a steady, controlled temper­

ature and were in thermal equilibrium with each other, as determined by 

the center differential thermocouple. The agitator was operating. At 

time zero the circuit providing electrical energy to the calorimeter 

heater was activated for 30 seconds. The temperature response of the 

calorimeter, as indicated by the several different thermocouples, is 

shown by the curves. The oil bath was maintained at a constant temper­

ature throughout the test. 

There was a wide range of response times in the measurements 

recorded. The measurement with the fastest response was the bottom dif­

ferential thermocouple (DTB), although even with this measurement there 

was approximately a 30 second delay between the start of the energy add­

ition process and the initial response of the thermocouple. The re-
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sponse of the center thermocouple was only slightly slower than the low­

er thermocouple (see Figure IV-3a). This could be due to the fact that 

the center portion of the calorimeter was influenced to some extent by 

the lagging vapor phase temperature. The liquid flow patterns within 

the calorimeter (see Figure VI-3) were also such that the lower part of 

the calorimeter wall may have been affected by temperature changes be­

fore other areas.. The platinum resistance thermometer (not shown) had a 

response time comparable to that of the center thermocouple. 

The measurements having the slowest response were the top dif­

ferential thermocouple and the differential thermocouple located within 

the thermometer well (see Figure IV-3b). Of course, both of these mea­

surements reflect temperatures of the calorimeter wall adjacent to the 

vapor phase. The initial change of DTW is rapid, reflecting a change in 

the temperature of the liquid phase.. The output then slowly decreases 

to zero as the vapor and liquid phases equilibrate. DTU shows the 

change of the calorimeter wall temperature with respect to time. Its 

response appears to be somewhat faster than DTW. 

The total response of the center (DTC) and bottom (DTB) dif­

ferential thermocouples can be broken down into several components only 

one of which, at this point, can be evaluated with any confidence. Such 

a breakdown might consist of: 

(1) The time required to bring the resistance heater to a 

steady state temperature once the electrical circuit is 

energized. 

(2) The time required for the liquid to transport thermal 

energy from the heater to the calorimeter wall. 
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(3) The time required for thermal energy to diffuse through 

the calorimeter wall to the thermocouple mounted on the 

exterior surfaceo 

An estimate of the latter response time can be made using the 

one-dimensional transient heat conduction equation and calculating the 

time required for a step change to penetrate from the inner surface to 

the outer surface of the calorimeter wall. As the actual liquid temper­

ature change would be approximated more by a ramp than a step input, it 

will be assumed, for purposes of calculation, that 50 percent of a step 

change must penetrate the thickness of the wall in order for it to be 

sensed by the thermocouple. Solutions for this problem are available 

(24)0 For a 50 percent response to a step input at/b 2 = 0.4 (a is the 

thermal diffusivity of stainless steel~ b the wall thickness, and t is 

the time) the diffusion time, t, becomes 1.5 seconds. This result 

indicates that there is probably a negligible temperature gradient 

through the wall of the calorimeter and that of the three time delays 

described only the first two are significant. 

The response times of the top (DTU) and of the thermometer 

well (DTW) differential thermocouples were also in~estigated by a second 

test. Starting with the calorimeter and the oil bath in thermal equili­

brium the liquid phase immersion heater was turned on and vapor flow was 

started in such a way as to minimize liquid phase temperature transients 

in coming to a pseudo-steady-state condition. Upon initiation of the 

vaporization process the temperature of the liquid-vapor iriterf ace rap­

idly approached a temperature 0.2-0.3 °F less than that of the bulk liq­

uid-phase. (The magnitude of this temperature change was a function of 
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the rate of vaporization and was discussed more fully in Appendix 1). 

The measured output of the two thermocouples for this test is shown in 

Figure IV-4a as a function of time. The response of the upper differ­

ential theremocouple was, again, considerably faster of the two. 

It is not possible to determine the cause of the time lag in 

these measurements, but there are certain factors which may be consider 

ed. The driving force for any change to occur is the change in the 

temperature of the vapor adjacent to the liquid vapor interface. Thus, 

it is apparent that the upper wall and the upper portion of the thermo­

meter· well are cooled by virtue of their contact with a cooler vapor. 

But even though the temperature of the liquid vapor interface approxi­

mates a step change, the vapor temperature does not. Mixing and diffu­

sion along with conduction between the upper calorimeter walls and the 

liquid vapor interface and convection of evaporated material all contri­

bute to the thermal condition of the vapor phasee The flush-out time of 

material in the vapor space is about five minutes; therefore, it may be 

anticipated that part of the time lag is due to the time required to 

cool the vapor phase. The fact that the calorimeter wall responds much 

more rapidly than the thermometer well indicates that a resistance other 

than the vapor-solid heat transfer coefficient is probably operative. 

The higher thermal capacity/per unit area of exposed surface of the 

thermometer well may be a factor or there may be a significant amount of 

heat transport by the helium gas from the bottom to the top of the ther­

mometer well (high thermal diffusivity) by conduction. 

In spite of the uncertainty concerning the nature of the over­

all process it is helpful to compare the measurements to the time-depen-
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dent solution for a step temperature change applied to a one-dimension-

al slab of finite thickness (25). The physical and analytical models 

for this calculation and a discussion of them is presented in Appendix 

VI (see Figure VI-1) For the time-dependent solution conduction along 

the calorimeter wall is neglected. 

The heat transfer coefficient, H is anticipated to be in the 

2 range 1-50 (Btu/Hr-Ft OF) and calculated results are shown for several 

values in Figure IV-4b. Considering the nature of the assumptions in-

valved in the model, the calculated and experimental results are in rea-

sonable agreement and seem to indicate that the top differential thermo-

couple (DTT) probably serves as a good indication of the temperature of 

the upper calorimeter wall and of the condition of the vapor phase. 

The output of the thermocouple within the thermometer well ap-

pears to characterize only itself and to some extent possibly the ther-

mometer well which encloses it. This distinction is important not only 

as an improvement in the method of determining the amount of vapor phase 

subcooling, but more importantly as an aid in determining the thermody-

namic condit i on of the calorimeter at starting and stopping times for 

experimental tests. 

SUMMARY 

The uncertainty of the repor ted absolute temperature of vapor-

ization (~Q.l Op) was not improved, however, the Sources Of error Were 

defined. Several attempts at refining this measurement were unsuccess-

ful. It was found that some of the uncertainty may be due to the 

measureable temperature gradients which existed within the calorimeter 

even under the most ideal circumstances. Because of the uncertainty 
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~nvolved in determining the temperature difference between the calori­

meter and the vacuum jacket and also· because of the difficulty of 

experimentally establishing a point of zero heat transfer the latter 

condition was defined as the null point of the center differential 

thermocouple (DTC) as the basis. 

Measurements reported showed that significant time delays ex­

isted between the application of electrical energy to the calorimeter 

and the accompanying response of the calorimeter resistance thermometer. 

It could not be determined whether this time delay was characteristic 

primarily of the heater or of the temperature measuring device. The 

measurement also showed that the upper portions of the calorimeter re­

sponded much more slowly to changing conditions than did that part in 

contact with the liquid phase. The output of the top differential ther­

mocouple (DTT) provided a better means of characterizing the vapor space 

and the calorimeter wall than did the thermocouple within ~he thermo-­

meter well (DTW). These results show that in making the assumption of 

identical temperatures for the starting and stopping points of a test 

the temperature history of the calorimeter must be considered. A per­

iod of approximately 10 minutes (DTT) should be allowed in order to per­

mit the dissipation of transient temperature gradients which may have 

developed during operational changes. 
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APPENDIX V 

ANALYTICAL REPRESENTATION OF HEATS-OF-MIXING 

The procedure for calculating heats-of-mixing from experimen­

tal data for the partial enthalpy of vaporization was described in 

Appendix Ie A review of several of the methods which have been used to 

correlate heats-of-mixing for solutions of n-alkanes is given below. 

Traditionally, heats-of-mixing measurements have been limited 

to chem:i.cal systems in which. both components are relatively non-volatile 

and in the liquid state at normal temperature and pressure. The non­

volatile nature of the components of these liquid systems, however, may 

make the experimental determination of the latent heat-of-vaporization 

extremely difficult because of the low vapor pressures involved. In the 

present system (n-propane/n-decane) vapor pressures of up to 300 psia 

are encountered for the isotherms investigated so that heats-of-mixing 

cannot be determined by conventional methods. However~ heats-of-vapor­

ization can be measured.. In this particular case the availability of 

a thorough study of the volumetric and phase behavior of the binaary 

system made possible the calculation of heats-of-mixing from latent heat 

measurements. The results must be considered semi-quantative~ but they 

do represent heats-of-mixing information which is not otherwise available 

from standard experimental techniqueso 

The heats-of-mixing of n-alkane systems have been studied wide­

_ly both from an e.xperimental and from a theoretical point of view. The 

first analytical representation was an empirical rule proposed by 

Bronstad and Kofoed (26), called the "Principle of Congruence". The 
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essence of this rule is that the thermodynamic properties of a liquid 

mixture (two or more n-alkane components) can be described in terms of 

the mean molecular chain length e When applied to heats-of-mixing for a 

binary system the rule takes the form 

(V-1) 

where A is constant along an isotherm,(n
2
-n

1
) is the difference in the 

number of carbon atoms of the two components,and x and (1-x) are mole 

fractionse The resultant heats-of-mixing curves are symmetrical with 

respect to composition for each mixture and decrease in magnitude with 

increasing temperature. At sufficiently high temperatures the curve 

crosses the horizontal axis and becomes negativee 

In the early 1960's the results of several new theoretical and 

experimental investigations for n-alkane mixtures were presented. It was 

shown that excess properties for n-alkane mixtures were not always 

symmetric with respect to composition, and that this asymmetry could be 

explained in terms of an u extended principle of congruence (27,28,29). 

As temperature increased not only did the heat-of-mixing curve pass 

downward, but it took on a sigmoid shape as it passed through the hori­

zontal axis& As temperature was further increased the curve again be­

came quadratic with respect to composition. These features were accu­

rately recorded experimentally (30,31, 32) and also explained theoreti­

callye 

Hijman's pursued these developments further than most, and 

eventually presented a corresponding states theory to describe the 
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excess volume and the excess enthalpy of liquid n-alkane mixtures has 

the function of a reduced mean hydrocarbon chain length and a reduced 

temperature ( 6, 33).. Although the fit of the measured experimental data 

to the general correlation is not as good as the precision of the data 

itself, the results represent the most comprehensive attempt, yet avail-

able, at correlating the excess thermodynamic properties of diverse 

n-alkane systems. As such these results were chosen as the standard of 

comparison for the heats-of-mixing calculations for the n-propane/n-de-

cane system .. 

In Figure V-1 is shown a heat-of-mixing curve which Hijman 

derived from data for n-alkane systems for a range of temperatures. This 

curve may be represented by an equation of the form 

(V-2) 

A A 
X (Al + 2_ + -4 + .•. ) n L. n· 

where n
1 

and n
2 

are the chain lengths of the components of the mixture, 

n is the mean chain length and T the temperature& In order to apply this 

result to mixtures at other temperatures, Hijman showed that the follow-

ing relations may be used. 

It 

= a(n ) 
a (n) (V-3) 
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where 

' ' a (n ) = 
a(n) 

(1 + Xrt ) 
(1 + Xn) 

(V-4) 

n == f(n,y) ( l/u l)(' l/u . ). 
== Y - AY - µ n 

·1/u · l/u 
(l - µy ) ~ lµ (y - l)n 

(V-5) 

and 

f 

y == T /T 

Here, if T represents the base temperature for a mixture composed of 

molecules of chain length n
1 

and n
2 

and a mean chain length of n, the 

' ' above values translate to n
1 

,n
2 

and n for T according to Equation 

(V-5). HM for that mixture is calculated from Equations (V-3, V-4). 

The parameters A == 0.564, µ = 0.254 and u == 2.245 were evalu-

ated from thermodynamic data describing pure n-alkanes and are indepen-

dent of the thermodynamic state. Thus, the necessary information is avail-

able by which heats-of-mixing for non-standard thermodynamic states can 

be calculated. 
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( 1.) NC6 - NC 16 40°C 

( 2. ) NC13 - NC62 135°C 

(3.) NC -8 NC62 106°C 

(4.) NC -8 NC24 96°C 

( 5. ) NC -6 NC36 76°C 

( 6.) NC -6 NC24 60°C 

20°C 

2 8 10 12 

NUMBER OF CARBON ATOMS 

HIJMANS AND HOLLEMAN - 1969 

FIGURE ~-lo HEATS-OF-MIXING AT 20°C FOR N-ALKANE 
LIQUID MIXTURESo 
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APPENDIX VI 

HEAT TRANSFER AND AGITATOR CALIBRATION 

In addition to the electrical energy provided to the 

calorimeter by the electrical resistance heater, corrections for 

agitator energy addition and energy transmitted by radiation and 

conduction between the calorimeter and the vacuum jacket must also be 

considered. The agitator energy comprised between 0.5 and 1.5 percent 

of the total energy added during an experimental test, but the heat 

transfer accounted for less than OeOl percent. Recause of its small 

contribution to the final results it is difficult to justify attempts 

at improving the heat transfer correction. However, the agitator 

correction is of sufficient magnitude to merit attention. 

The uncertainty of the agitator energy addition process has 

previously been evaluated as about 20 percent ( 7,8) which may be 

interpreted as a 0.2-0.3 percent contribution to the total uncertainty 

of the experimental results. Therefore improvement in the method of 

determining an agitator calibration would seem to be a worthwhile 

objective. The results of such an investigation are given below. Also 

presented is a new procedure for calculating the heat transfer 

correction term. The latter is presented not so much because of the 

need for a new procedure, but because it provides a truer account of 

the transport processes as they actually occur in t:he. calorimeter. 

In Appendix IV it was pointed out that the uncertainty in the 

measurements made to determine the temperature difference between the 

calorimeter and the vacuum jacket was of the order of 0.1 °F. Informa­

tion was also presented to show that this same uncertainty applied to 
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the determination of the point of zero heat transfer between the calor-

imeter and the vacuum jacket. Because of this it became necessary to 

assume a point of zero heat transfer and this was defined as that con-

dition when the output of the center differential thermocouple (see 

Figure IV-1) was zero. The calorimeter, as far as could be determined, 

was in a condition of thermal equilibrium. The agitator was cal ibrated 

under these conditions and any error of energy exchange due to the 

assumption of a zero temperature difference between the calorimeter and 

the vacuum jacket was then absorbed in the results of the agitator cal-

ibration. 

HEAT TRANSFER CALIBRATION 

McKay ( 7 )· describes three methods by which the rate of heat 

transfer between the calorimeter and the vacuum jacket may be determin-

ed. The calibration provided a coefficient, k (T), which could be used 

in the relation 

k(T) r 
t 

0 

(T. - T) .dt 
J c 

(VI-1) 

where qht is the amount of heat transferred to the calorimeter per unit 

time and T. and T are temperatures of the vacuum jacket and calori-
J c 

meter respectively. Heat transfer due to radiation is proportional to 

the fourth power of the absolute temperature, however at small t empera-

ture differences terms of higher order than the first power may be 

neglected. Heat transfer due to conduction in the various leads and 

connecting tubes, of course, is linear with the temperature difference. 

Values of k(T) were experimentally determined for two temper­

atures and the results are shown in Table VI-1 along with a comparison 
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of results obtained by McKay for similar conditions. McKay also ob-

tained calibration points at several additional temperatures which 

showed that a linear relationship existed between k and the absolute 

temperature for the temperature range of interest (560-660 OR). Be-

cause of the good agreement between the two series of tests, the re-

sults of McKay, being more extensive, were used for the evaluation of 

the heat transfer correction term. 

The procedure for evaluating the temperature difference 

(T. - T ) was changed from that used previously, however. In determin-
J c 

ing the difference in temperature the average of the center and lower 

differential thermocouples (see Figure IV-1) had been used. The oil 

bath was maintained at a constant temperature and variations of the 

calorimeter temperature alternately placed the calorimeter above and 

below that of the oil bath. The integral average of (T. - T ) ~twas 
J c 

then used to calculate the heat transfer correction. No account was 

taken of the fact that as the vaporization process proceeded the temp-

eratures of the calorimeter wall adjacent to the vapor phase decreased 

by as much as 0•3 OF. This is a considerable change when compared to 

the fact that temperature excursions of the calorimeter from a mean 

nominal temperature were of the order of only .01 °F. 

The procedure described here attempts to account for this 

change in wall temperature. Rather than maintaining the oil bath at a 

constant temperature it was maintained at a temperature identical to 

that of the calorimeter wall adjacent to the liquid phase. 'This re-

quired that small adjustments in the oil bath temperature be made during 

the experimental tests. As described above, the zero temperature dif-
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f erence was defined by the null point of the center differential ther­

mocouple (DTC), and the changing calorimeter wall temperature was 

treated as a deviation from the zero-point temperature difference. The 

temperature profile of the upper part of the calorimeter was a function 

of time; however, once a test was underway and at a pseudo-steady­

state, the profile for purposes of heat transfer calculations was con­

sidered to be independent of time. 

In Figure VI-1 are shown the physical and analytical models 

which were used for estimating the steady-state calorimeter wall temp­

erature profile· for different values of the vapor phase heat transfer 

coefficient, H. The physical model for the calculation is shown in 

Figure VI-1 (A). The temperature of the liquid phase changes abruptly 

from that of a temperature in equilibrium with the vapor temperature at 

its surface to that of the bulk liquid (see Figure I-3). The calori­

meter wall temperature adjacent to the liquid can be assumed equal to 

that of the liquid. The calorimeter wall adjacent to the vapor phase 

will, at steady-state and at a distance from the vapor-liquid inter­

face, assume· the temperature of the vapor phase. Heat transfer due 

to radiation and conduction from the vacuum jacket may be neglected in 

this calculation and the boundary condition for the external surface of 

the calorimeter wall becomes (3T/3y)y=O=O. At the top of the calori­

meter is a plane of symmetry so that (3T/3x)L=O. 

This physical model may be represented with sufficient accur­

acy using a well-known, one-dimensional steady-state heat conduction 

solution for a rectangular cooling fin. (See Figure VI-1 (B)). A 

plane of symmetry along the center of the fin gives the boundary condi-
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tion (ar/ay)y=O=O and the end of the fin is assumed adiabatic so that 

(aT/ax)x=L=O. The solution (34) is 

T - T co sh 
EL 2 

(1 - xi:~) v ~ = 
T - T 

HL2 L v 
cosh 

kB 

Here, the heat transfer coefficient, H, for which the vapor phase is 

essentially saturated n-propane vapor in the pressure range of 3-300 

psia, is estimated to be of the order 1.0 - 100 BTU/HR - FT 2 - °F. 

Calculated results for three values of the heat transfer co-

efficient (H) are shown in Figure VI-2. For reasonably high coeffi­

cients (> 10 BTU/HR. - FT2 - °F) the wall adjacent to the vapor phase 

approaches the vapor phase temperature within a short (< l~O inch) 

distance of the liquid surface. For smaller coefficients a more gradual 

gradient develops. 

Experimental measurements provide an indication of the calor-

imeter wall temperature at one location on the surface of the calori-

meter (upper differential thermocouple) which may be compared to the 

calculated results. See Figure VI-2)! Because of the fact that H var-

ied considerably for the different tests and can only be estimated, and 

also because spherical curvature is neglected, the results of the cal-

culations are only approximate. The important consideration, however, 

is that reasonable agreement between the calculated and experimental 

results was obtained. 

It is also of interest to consider the dynamic response of 
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the upper calorimeter wall to a change in vapor temperature. In Appen-

dix IV it was shown that the time required for the calorimeter wall to 

respond to a change in vapor temperature ranges from 5 to 10 minutes. 

Assuming a steady-state condition for the calorimeter the heat transfer 

correction was broken into two terms so that 

tf tf 

qht = k(T) [ !\, f (Tj - Tc)dt + \ f (Tj - Tc)dt] 

t 
0 

t 
0 

(VI-2) 

where the subscripts L,V refer to the portions of the calorimeter 

wall in contact with the liquid and vapor phases respectively. By the 

manner in which the experiment was conducted, however, (Tj - Tc)L 

equals zero and (T. - T )V was determined by measurements of the DTT. 
J c 

~ was the fraction of the calorimeter wall adjacent to the vapor 

phase. 

AGITATOR CALIBRATION 

It was pointed out above that the largest single source of 

uncertainty in the experimental determination of the partial heat-of-

vaporization is the correction term for energy addition due to agita-

tion of the liquid phase. The experimental methods for determining 

this calibration constant have been described previously (7) and con-

sist of a comparison of the measured rate-of-rise of the calorimeter 

temperature both with and without a measured rate of electrical energy 

addition. The agitator remained operative during both portions of this 

test and the vapor flow and the temperature difference (Tj - TC)L were 

both maintained at zero. The rate of energy addition due to agitation 

then becomes 



p = 
ag 

e 
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where e is the rate of electrical energy addition and s
2 

and s
1 

are the 

slopes of the calorimeter temperature-time profiles with and without 

electrical energy addition respectively. The agitator energy correct-

ions for experimental tests can then be determined from the relation-

ship 

tf 

f p (t)dt 
ag 

t 
0 

(VI-3) 

For an individual test P may be taken as an average of the values ag 

determined from the initial and final conditions of the experimental 

test. 

No discussion has been previously presented which has attempt-

ed to explain, in detail, the cause of the uncertainty of the agitator 

calibration. The calibration involves the measurement of small temper-

ature changes and this, certainly, contributes to the difficulty of im-

proving the accuracy of the calibration. However, it is now believed 

that something more fundamental may have been the major obstacle to im-

proving the accuracy. 

Several variables influence the rate of agitator energy addi-

tion. Fundamentally, the rate of degradation of mechanical energy to 

thermal energy may be described by (35) 

p 
ag 

(VI-4) 
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where µ is the normal viscosity of the liquid phase, ¢ is the dissipa-

tion function, and dV
1 

a liquid volume element. Of course µ is a func­

tion of temperature and composition, and the dissipation function de-

pends upon several variables so that for a constant geometry 

~ (µ, p, v
1

, RPM) (VI-5) 

RPM refers to angular velocity of the agitator and v1 to the total vol­

ume of the liquid phase. µ and p are necessary to determine the vel-

ocity flow field which is set up within the liquid phase. The agitator 

was driven by a constant-speed electric motor so that RPM was assumed 

constante 

The internal configuration of the calorimeter shown in Figure 

VI-3 illustrates how the volume occupied by the liquid phase may become 

a significant variable. Depending upon the liquid level different flow 

patterns may be taken by the circulating liquid. If it is accepted that 

velocity gradients set up in the calorimeter away from the agitator may 

make significant contributions to the total energy of dissipation, 

changing flow paths could be important. Recognizing that the viscosity 

and density are both functions of the independent variables T and x we 

may write Equation (VI-4) as 

p = 
ag 

(!,x) 



so that 

p 
ag 
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p ag ( µ 'P ' V L) 

Of the three experimental values s
1

, s
2

, and e used to deter-

mine P e was measured to four significant figures so that errors in ag' 

· this measurement made a negligible contribution to the total uncertain-

ty. Values of s
2 

were such that errors in temperature measurement for 

that portion of the test where electrical energy was being added were 

small. The largest uncertainty was associated with measurement of the 

slope s
1

, which was determined from a calorimeter temperature measure-

ment made over a period of 2-3 hours. In this period a total calori-

meter temperature change of 0.060 °F occurred. New instrumentation made 

it possible t6 determine temperature chan£es of + 0.0005 °F so that 

the uncertainty of the measured temperature changes became only 2-3 per-

cent. With this improvement in precision of temperature measurement it 

should have been possible to improve on the 20 percent uncertainty of 

the agitator calibration quoted previously. 

It was decided to, first, check the reproducibility of the 

agitator calibration. Measurements were repeated on the same day and 

also on the following day for identical experimental conditions. Elec~ 

trical energy was not added. The temperature-time profiles for these 

tests are shown on Figure VI-4. It ·is not believed that the irrepro-

ducibility of these results can reasonablY be attributed to any of the 

three measurements described, (s
1

,s
2
,e). Rather, it seems that a more 

fundamental problem may be involved. 
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The agitator is driven by a shaft enclosed by the material 

loading tube as it passes through the oil bath and the vacuum jacket to 

the calorimeter (see Figure II-1). The shaft is magnetically coupled to 

the output of an electrical drive motor. It would not seem unreasonable 

to think that, at certain locations along this drive path, there may ex­

ist a frictional resistance which in some cases may be steady but in 

others may be periodic over portions of the angular r evolution. It 

would seem that the temperature and the temperature history of both the 

calorimeter and the surroundings may be important variables in this 

event so that the intensity of a periodic frictional resistanc e may de­

pend on the thermal expansion of the materials involved. As the drive 

shaft is only loosely coupled to the drive motor a periodic resistance 

could result in an uneven motion of the agitator to the liquid phase. 

A change in the temperature of the surroundings - even for constant 

calorimeter conditions - could result in a new pattern of agitator mo~ 

tion and a resulting change in P 
ag 
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TABLE VI-1 

RESULTS OF MEASUREMENTS FOR DETERMINING 
CALORIMETER HEAT TRANSFER CORRECTION 

Temperature k(E~.) 
(WATT-SEC/OHM-SEC) 

k (McKay ( 7) ) 
(WATT-SEC/OHM-SEC) (oF) 

100 
130 
160 
190 
220 
250 
280 

1. 25 

1.58 

1.229 
1.369 
1.505 
1.642 
1.781 
1.918 
2.057 
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O EXPERIMENTAL DATA POINT 

H- ESTIMATED HEAT TRANSFER 
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APPENDIX VII 

TABULAR SUMMARY OF EXPERIMENTAL RESULTS 

A breakdown of the estimated uncertainty of the experimental 

measurements is given in Table VII-1. It is greater than the 

root-mean-square deviation of the data reported in the CALCULATIONS 

AND RESULTS section above, which was obtained from a best-fit 

curve. The r-m-s deviation is a measure of only the random errors 

associated with the experimental measurements (37). An estimate 

of the accuracy of the results, which includes the additional effect 

of constant errors that may appear in all of the experimental data, 

is not given here. However, a comparison of previously reported 

measurements (13) to other data available in the literature (1) 

indicates an accuracy of the order of one percent. 

A summary of the test data is given in Table VII-1. Weights 

of test sample are given in grams, but the energy quantities are 

shown as BTU. This is to provide an easy grasp of the quantities 

involved. The final result is shown in BTU/LB. 

Table VII-3 is a sununary of the quantities involved in 

calculating heats-of-mixing from experimental data. CALRES is the 

residual partial enthalpy as shown by the solid curve in Figure 9. 

Based on this residual curve, calculations were made for the 

composition indicated in the first column. The energy quantities 

shown are BTU/LB except for the last three columns which are in 

BTU/LB-MOLE. The column headings for the enthalpy changes are as 

defined in Appendix 1. 
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TABLE VII-1 

ESTIMATED UNCERTAINTY OF EXPERIMENTAL MEASUREMENTS 

Source of Uncertainty 

Electrical energy 
Agitator energy 
Pressure energy 
Weight of material withdrawn 
Subcooling of vapor 
Volumetric correction factor 
Precision of temp. measurement 
Accuracy of temp. measurement 

Percentage Uncertainty 

Total 

0.05 
0 .. 10 
0.05 
0.02 
0.03 
0 .. 10 
0.05 
0.02 
0.42 



TABLE VII-2 

SUMMARY OF TEST RESULTS 

TEST TEMPERATURE X3 Y3 m ilma ilmk g 
(OF) (WT. FR.) (WT. FR.) (gm) (gm) (gm1 

60300 160.0 0.1366 0. 9840 579.338 16. 377 -0.252 
60400 160.0 0.2507 0.9888 667.424 14.888 0.495 
60500 160.0 0.2128 o. 9876 630.386 24 .. 869 0.443 
60800 160.0 0.1416 0. 9843 577 .979 13.805 -0 .196 
60900 160.0 0.1186 0.9826 563.827 9.813 -0.238 
61000 160.0 0.0953 0.9798 546.162 14.035 -0.516 
61400 160.0 0.2536 0.9888 663.879 20.399 0.689 
61600 160.0 0.1816 0.9864 598. 885 29.446 0.080 
61700 160.0 0.1344 0.9838 569 .. 128 21.219 -0.366 
61800 160.0 0 .. 0756 0.9761 533.513 14.818 -0.619 I 
62000 100.0 0.2968 0.9966 699.639 8.957 0.193 ~ 

w 
62100 100.0 0.2733 0.9963 679.268 11.362 0.206 ~ 

I 
62200 100.0 0.2496 0.9961 656.600 13 .. 490 0.183 
62400 100.0 0.2287 0 .. 9958 639. 879 8.961 0.079 
62500 100.0 0.2057 0.9954 619. 729 11.961 0.036 
62600 100.0 0 .. 1712 0.9948 592 .. 985 11. 306 -0 .025 
62700 100.0 0.1415 0.9940 572. 896 11. 480 -0.138 
62900 100.0 0.1114 0.9929 553.792 10.035 -0.178 
63000 100.0 o. 0851 0.9912 535.158 12.324 -0.346 
63100 100.0 0.0488 0. 9863 513.284 9.270 -0.382 
63400 130.0 0.2687 0. 9841 667.210 21.160 0.469 
63500 130.0 0.2375 0.9828 644.209 12.642 0.159 
63600 130.0 0.2091 0.9814 618.323 18.767 0.236 
63800 130.0 0.1303 0.9768 563.797 12.945 -0.238 
64200 130.0 0.2680 o. 9 841 666.026 14.121 0.304 
64300 130.0 0.2473 0. 9832 648.570 9.866 0.145 
64400 130.0 0.2209 0. 9820 627.769 10.943 0.160 



TABLE VII-2, Continued 

TEST ~p FINAL RUN ELECTRICAL AGITATOR PRESSURE DE CANE L(i\,g-i\,t) 
PRESSURE TIME ENERGY ENERGY ENERGY ENERGY 

(PSI) (PSIA) (SECONDS) (BTU) (BTU) (BTU) (BTU) (BTU/LB) 

60300 -14.79 99.52 3984.74 4.8726 0.0718 -0.0872 0.0021 136. 
60400 - 8. 49 168. 40 1823.90 4.4504 0.0346 -0.0463 0.0005 130.82 
60500 -16.56 144.34 3461.18 7.4327 0.0623 -0.0942 0.0014 132.57 
60800 -12.13 104.16 2696.32 4.1243 0.0486 -0.0708 0.0017 136.70 
60900 - 9.27 90.20 2204.32 2.9236 0.0397 -0.0542 0.0019 137. 75 
61000 -14.88 70.95 3854.60 4.1505 0.0694 -0.0861 0.0036 138.69 
61400 -11. 65 168.27 2468.13 6.0914 0.0444 -0.0624 0.0007 130.58 
61600 -22.83 123.37 2893.28 8.8282 0.0521 -0.1300 0.0027 134.38 
61700 -19.14 95.83 2564.19 6.3591 0.0462 -0.1112 0.0030 136.88 
61800 -15.71 55.93 1816.15 4.Lr529 0.0327 -0.0892 0.0050 140.43 
62000 - 2.14 99.30 2380.97 2.9323 0.0451 -0.0107 0.0001 147.05 I 
62100 - 2. 90 93.59 2013.69 3.7428 0.0382 -0.0150 0.0001 147.65 I-' 

w 
62200 - 3.91 87.37 2541. 92 4. 4394 0.0482 -0.0210 0.0002 148.16 

N 
I 

62400 - 2.94 82.58 1804.68 2. 9402 0.0342 -0.0163 0.0002 148.40 
62500 - 4.55 75.59 2707.90 3.9196 0.0513 -0.0254 0.0003 149.16 
62600 - 4.28 65.81 2818.10 3.6143 0.0534 -0.0240 0.0003 146.50 
62700 - 5.53 55.86 1830.30 3.7379 0.0347 -0.0318 0.0005 149.59 
62900 - 5.04 45. 85 1936.25 3. 2716 0.0367 -o.02cn 0.0007 150.87 
63000 - 7.48 34.81 3060.08 4.0084 0.0580 -0.0~35 0.0012 152.33 
63100 - 6.67 20.22 2681. 84 2.9768 0.0508 -0.0388 0.0022 152.52 
63400 - 8.02 130.21 3338.72 6.6142 0.0633 -0.0418 0.0009 139.09 
63500 - 5.60 120.23 2040.20 3. 9716 0.0377 -0.0303 0.0008 140. 94 
63600 - 9.52 107. 35 3390.11 5.8829 0.0627 -0.0524 . 0.0016 140. 60 
63800 - 8. 99 72. 74 2239.12 4.0529 0.0414 -0.0528 0.0015 144.27 
64200 - 5.44 131.27 2628.21 4.4074 0. 0498 -0.0330 0.0006 139.05 
64300 - 4.26 124.52 1915.68 3.0880 0.0363 -0.0231 0.0006 140.45 
64400 - 5.23 114.14 1933.95 3.4355 0.0367 -0.0289 0.0008 140.60 



TABLE VII-2 

SUMMARY OF TEST RESULTS 

TEST TEMPERATURE X3 Y3 m 8ma 8~ 
(OF) (WT. FR.) (WT. FR.) (gm) (gm) (gm5g 

65600 130.0 0.5096 0.9919 564.450 11.381 0.626 
65700 130.0 0.4844 0.9912 541. 060 10.481 0.501 
65900 130.0 0.4401 0.9900 495.738 13.590 0.488 
66000 100.0 0.4215 0.9976 464.579 18.831 0.344 
66300 160.0 0.4975 0.9937 536.495 19.974 1.547 
66400 160.0 0.4583 0.9930 497.283 18.065 1.048 
66500 160.0 0. 4144 0.9922 461. 863 19. 802 o. 776 
66600 160.0 0.3744 0.9915 429.146 20.479 0.419 
66700 160.0 0.3355 0.9907 403.261 17.215 -0.038 
66900 100.0 0.5579 0.9984 619.457 11.300 0.459 I 
67000 100.0 0.5377 0. 9983 595.685 13.093 0.502 I-' 

VJ 

67100 100.0 0.5124 0.9982 571. 402 14.873 0.523 VJ 
I 

67300 100.0 0.3624 0.9972 419.287 14.726 0.054 
67400 100.0 0.3317 0.9969 402.768 10.669 -0.050 
67500 100.0 0.4848 0.9980 518.740 12.238 0.354 
67600 100.0 0.4622 0.9979 497.906 13. 805 0.347 
67700 100.0 0.4384 0. 9977 477. 792 13.055 o. 277 
67800 100.0 o. 4087 0.9975 453.919 15.144 0.230 
68000 100.0 0.3788 0.9973 433.781 13. 808 0.119 
68100 130.0 0.4170 0.9893 464.894 14.130 0.372 
68200 130.0 0.3831 0.9883 437.737 13.099 0.192 
68300 130.0 0.3392 o. 9868 412.937 14.121 -0.004 
68400 100.0 0.5698 0.9985 623.363 13.360 0.559 



TABLE VII-2, Continued 

TEST 1::.P FINAL RUN ELECTRICAL AGITATOR PRESSURE DE CANE E <i\ -i\ 
PRESSURE TIME ENERGY ENERGY ENERGY ENERGY ,g ,2 

(PSI) (PSIA) (SECONDS) (BTU) (BTU) (BTU) (BTU) (BTU/LB) 

65600 -1.97 198.80 1636.48 3.4281 0.0326 -0.0126 0.0005 130.18 
65700 -2.32 193.05 1828.75 3.1548 0.0364 -0.0173 0.0007 131.00 
65900 -3.64 181. 90 2135.00 4.1152 0.0425 -0.0291 0.0014 132.94 
66000 -3.99 122.57 3073.18 6.0224 0.0641 -0.0309 0.0004 143.23 
66300 -5.35 268.38 1706.44 5.6207 0.0307 -0.0467 0.0009 118.06 
66400 -6.36 255.11 1759.95 5. 0895 0.0317 -0.0588 0.0014 120.01 
66500 -8. 50 238.63 1650.61 5.6079 o. 0297 -0.0820 0.0020 122.38 
66600 -10. 71 222.36 1816. 82 5.8079 0.0327 -0.1029 0.0026 124.46 
66700 -11.14 206.22 1654.81 4.8708 0. 0298 -0.1063 0.0027 126.54 
66900 -1.19 144.70 1624.48 3.6447 0.0323 -0.0070 0.0000 141.56 
67000 -1.45 141. 81 1806.11 4.2042 0.0359 -0.0090 0.0001 141.16 
67100 -2.00 137.95 2187.84 4.7866 . 0.0435 -0.0130 0.0001 141.91 I 
67300 -4.43 111. 64 2356.13 4.7420 0.0469 -0.0354 0.0006 145.87 I-' 

w 
67400 -3.76 105.89 1824.33 3. 4198 0.0363 -0.0309 0.0005 146.29 .i::--

I 
67500 -1.98 133.84 1620.56 3.9372 0.0323 -0.0144 0.0002 142.45 
67600 -2. 49 130.07 1785.08 4.4403 0.0355 -0.0186 0.0002 142.84 
67700 -2.58 126.15 1695.46 4.2039 0.0337 -0.0196 0.0003 143.49 
67800 -3.51 120.59 1953.70 4. 8572 0.0389 -0.0273 0.0004 143.64 
68000 -3.72 115.09 1801.04 4.4495 0. 0358 -0.0297 0.0004 145.10 
68100 -4. 46 175.65 1870.54 4.2864 0.0355 -0.0375 0.0019 133.94 
68200 -5.03 166.42 1767.06 3. 9629 0.0335 -0.0434 0.0024 134. 80 
68300 -6.66 153.30 1943.00 4.2734 0.0368 -0.0573 0.0033 136.55 
68400 -1. 23 146.25 1957.75 4. 2913 0.0390 -0.0073 0.0000 140. 86 
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TABLE VII-3 

CALULATIONS OF HEAT-OF-MIXING FROM HEAT- OF-VAPORIZATION DATA (160° F) 
{See Appendix I for definition of llH terms.) 

WEIGHT MOLE RESIDUAL PRESSURE (A Hk) A (ll\)B (/\H~)D (/\Hk)E tt3-ll) 810- H10 l\HM 

FRACTION FRACTION <l\,g-1\,~ > (PSIA) (BTU/LB) (BTU/ LB) (llTU/LB) (B1U / LB) (BTU/ LB- MOLE) (BTU/ LB- MOLE) (BTU/ LB-MOLE) 
(BTU / LB) 

J.J O.J -.). ')09 0.4J -0.4fl 144.19 - 35. Jlj - 97.40 -494.88 o.o o.o 
0.01.i:; (). Jl6 - 0.047 ).01 - 0 .48 l't3.92 - H. au -•U.40 -4'15. 95 J.ul -7.91 
Li.J Iv u.:n;> -(). :)8'+ 4. ~5 -0.47 14"< .b5 - ~14. 5 5 -'H. 40 -495.111 J.01 -15.62 
u. at :i O.J47 -O.l.7 1 14.02 -0.47 143.38 -34.30 -'H.40 -444. l '> 0. l.ll - 23. 14 
O.JLJ O.OC>L -J. l '>U ld .4 3 -0.41> 143. ll - 34.07 -97 .40 -4'n.oo -O. o;> -30.48 

"J. 0 ·~5 u. Jl6 - 0 .195 n. 11 - 0.45 l42.8J -.n.1n -97 .4'.) -49 l. 77 -0.<18 -37.65 
u. JJJ u. f)'J l -11. 232 ;n. o ,, -0.45 142.5& -33.5'-I -97.'tO - 1•'10. 50 -u. ltl -44.b 1 
J. 035 CJ. 1J5 -t). 269 11. -·J -0.44 142.?9 - ·4 i. :i ~ -97.40 - 41l9.;q -o. 'ii! -51.54 
O.J4J J. 119 -ll. 3 -Jb y;.49 -0.44 142.0.2 -J3. LL -9 7. 40 -4'l7.94 -0. 5 ') - ':>!!.26 
J.,) 4') u.D2 -o. '\4 3 J9.64 -0.43 141.7) - J2.tl 8 -"17.40 -486.62 -o. 72 -C:.4. 84 
O.J')U u. 14'.:> -0. '<BJ 4"'· n -o. 4'i 141.48 -"!2.6) -97.40 -485.28 -0.9A -Tl.29 
'J. )6J o. 17 l -0. 1t'> 3 5 1 .76 -0.42 H0.94 - J2.lH -'} 7. 40 -4H2. '.> l -l. 1.d - UJ. 7& 
v.v 7U u. 19'.:> - J.5Lo 59.51 -0.41 140.40 -Jl. / l - 97.40 -4!9.58 -2.44 -95.68 
u.uBU 0.219 -0.598 67.19 -0.40 l..19.Rb - .Jl. 2) -9'7. 41) -476.57. -3.40 -107.06 
J.u 'lJ u.24~ -o. 6 71) (lo.bl -o. j') U9.J2 - 31). 7'1 - '17. 40 -I· 7 J. 3 l -4. ">I - 111. 'II 
0.100 o. l ~4 - J. 7Lt2. dl. il 6 -0.38 138.78 -"IU. ·44 -'H.4 0 _,, 10.00 -5. 7& -12 11 . ?1 
u. I? ,, u. 3J0 - .).ll>i I '-I'>. u J - 0.36 137.'70 -2. 'I.'•,, -'I I.'•') -'+l•2. 1IH -!1 .1>1\ - i't (.'•'I 
v. l'•l) u. Jlt4 - l. 'l.' l lu<l.16 -u. J5 136.(>J - Z ll. '> ., -'JI. 40 -4')5. '>0 - I ;>. I l - l 6 1t .117 
J.16J O. HI - l. l '>H I -~ I• Uc -o. 'i'i H'.:>.?5 -2 7. c,7 -'I 1.1,0 -1,1, 1. 6' -- l b. 1•'• -1110. 'JC> 

J.IHd '. ). '+ l'..> - l. 'J•l l l Yt. ,J;. -o. Jl l.Vt.4'l -2h. H l -'I I. 41J - '• \f,. \I) - 11. ">1i - l l't.11 

0.20J J. L+4t.J - I. 4 .~~) l'+lj.t,2. -u. JO lH.42 - 2 .,. '}() - ·11. 1,0 - '• ~ \.). ~) ., - ~ 1. 1)1) -·IJ 1. '11l 
J. nu 0. 1• 76 - l.'i46 I 5o.o0 -0.?9 1 ·1?. ·10 -L 5. 11 -·17 .41) - 1.21. 41, -34. lb - 2 l '1. 00 
v .24J O. 5U5 - l.66 7 167 .24 -o.n Ul.30 - ~ 4. i~ 1

) - 1}7.IHj - 1, LI. fl l -It\. IL - l.l'I. JI. 
J. L t.0 J • .>l l -1. 7H 1t l 7 7. }4 - 0.2/J l '\U.25 -L j. 4 I -97.4<.l -40 l. <1 1, - ._, ... ~6 - !'HI• 'l 7 
o. :~ 80 o. :J'> 7 - t. •V.lo 187.UO -0.25 l/.':1 • .20 - L 2.6 7 -97. 40 -VH .6h -6'1. lll -24<>.UJ 
J.J()J u. 5llU -2.004 1'16.26 - 0 .24 128.16 -21.88 -97.4\J - .ifll. 07 -13.64 -l'J4. 15 
o. J 20 J. 1,.)3 - 2. 105 205.16 -0.?2 1?7. I? - 21. l J - 97.40 - ·110. ·1-, - '14. l I -?&O.of 
J.34:) J.624 -2.201 213. 74 - 0.21 l.26. U9 -2J.j2 -97.40 -359.'•6 - 111. rl2 -266.44 
v .Jo\) o. 645 - 2. 2 '11 221.98 - 0 .20 125.06 -19. 5 0 - 97.40 -34q.40 -l Jl.. 72 -271.43 
J. '18u 0.664 - 2. H5 <'.29.92 - 0 .19 P4.04 - 18.80 -97.40 - 337. lb -l'.>4.00 -275.65 
0.400 o.otl] - 2.451 237. 55 -u.18 11.3. 03 -ltl.Oo -97.40 -325.7'.> -170.77 -279.10 
0.42J 0.7JO -2.521 244 .91 -0.17 122. 02 -17.32 -97.40 - ~ 14 .18 - ?Jo.lo -281.80 
v .440 o. 11 7 -2. 5cl"I ?52 .oo -0.17 121.02 - 10.b J -97.40 -302.46 - l.36.28 -283. 74 
u.46U o.n3 -2.638 258.83 -0.16 120.03 -15.89 -97.40 -2'>0.60 -269.26 -284.91 
u.400 J. 749 -2.&fl4 265.43 - 0.15 119.05 -15.1 8 -97.40 -778.6"< -~05.23 - 20'>. ~I 
:J. 5 u0 o.763 -2.723 271.t!U - 0.14 118. 08 - 14.4'1 -'H.40 -266.5'· -344.32 -284.94 
J.520 0. 778 -2. 7?2 2.17.94 -0.13 111.11 -13.0l -97.40 -254.36 -386.69 - 203.80 
0.54') 0.791 -~.11"'· 2 8:•. 89 -o. l "1 116.16 -B.14 -97.40 -7.4?. lQ -432.50 - 281.86 
u. 5&J J. hl4 -z.1q4 289.63 -0.12 115.21 -12.48 -97. 40 -229.76 - 481.94 -279. 15 
J.580 O.Jl7 -2. 78 5 295 .19 -0.11 114.27 -11.03 - 97.4 0 - 217.38 -5~5.?4 -275.64 
J.oOJ o. d? 'l - 2. 776 "100.57 -0.10 ll3.J4 - ll.19 -97.40 -204.96 -592. 62 -271.34 
0.020 J. d4•) -2.758 305.77 - 0.10 l 12 .43 - 10.56 -97.40 - 192.50 -654.19 -266.23 
J.64U o. <:!52 -2. 71.8 310.81 -0.0Q 111.52 -9.9? -97.40 -180.04 - 120.1rn -2&0. ·n 
'.).660 o. -362 -2.6'18 315.69 - 0.09 110.62 -9.34 -'H.40 -167.59 -192. 50 - 253.62 
J.&tlU J.873 -2.636 320.43 - 0. OB 109.74 -tl. 74 -97.40 -155.17 -869.71 -246.12 
0.700 O.JIJ3 - ?..SP ~25.0? -0.01 108.87 -8.16 -97.4 0 - 142.80 -9')1. I l -7.37.81 
J.72J o.u•11. -i!..'t97 329.48 - 0.07 108.0l - 7 .58 - 97.40 -130.50 -1043.39 -228.69 
u .74J o.·J02 -L.409 H3.80 -0.0b 107.16 - 7.0l -97.40 -118.29 - 1141.42 - 218.76 
u.760 o.•Jl I -?. • '4 09 "~8.00 -0.06 l ()6. "i? -&.4o -'H.40 -106.19 -1?48.?.'1 -208.00 
J.78) 0.920 - 2. 195 342.08 -0.05 105.50 - 5.91 - 9'1.4 0 - 94.22 -1365. 38 -196.40 
J. uou o. ' )<.d - 2.0c..9 34o.05 -0.0) 1()4.b'l -5.3U -9'1.40 -1)2. ~<) -l494.4b - I tl'. 91 
J.8?0 o. '1~6 -l.'J29 J49.91 - 0.04 103.90 -4.85 - 97. 1t0 -70.74 -1637.B'I -170.56 
u.t14J U.944 - L. 775 35J.94 -0.04 103. l l - 4.29 - 9 'f .40 -61.0'.> - I 798. fl 7 -151. '-12 
J. lit.J o. 'l'l2 -l.6il6 '157.92 -o.o• IOI. Vi -:•. 7 4 -97.40 - '>I. 84 -l 9tll. '-10 -144.54 
J. :J8J u. 9°)'1 -1. 4.! 3 Jol .82 - 0.0J lu l. '.>9 -J.19 - 97.40 -4 J.oo -2193.5'-I -130.26 
vo900 0. ·)6 7 - 1. 2 2o :ic..5 . 65 -0.02 LUO.ll'.> -2.64 -<J7. 40 - 34. 1l -2 4 44. l 'l - l 14. ') J 
J.'l2u 0.97 .. -I.OH ~(>9. 4 l - o. o :~ 100.1 ·• -2.10 -9"7 .40 - 26.83 -2750.90 -98.32 
o. ')4() 0. •)Jl -o. 7 ~l4 373. l l -0.0l '-l'l.42 -l. '> 7 -'>7. 40 - l'l.40 -3146. 0I -tlJ.05 
J.Q6l) 0.9d7 -o. s 1.u J 7o. 74 -0.01 'IR. 7 J -l .04 - 97.40 - Ii' .4 ., - ·Hol.96 -59.47 
J.9d0 0.994 -o.~79 ~80.30 -o.oo 98.06 -U.'>2 -•17.40 -5. 94 -4650.ll -35.13 
1. u oo l. JOU -0.0•!2 Jt!3. 80 o.o 97.4U u.o -9/.40 0.07 o.o o.o 
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PROPOSITION I* 

A physical model is developed which describes the various 

processes involved in the ignition of aircraft fuel-tank vapors by 

lightning discharges. A solution which includes all of the e ffe cts 

important in the problem is not included~ however the results of 

several special cases of the heat conduction problem are pres ented 

and the method of application of the model to the evaluation of the 

ignition hazard is indicated. 

* Major Portions of this proposition have been extracted from a 
previously published report, 0 Ignition Beneath Titanium Aircraft 
Skins Exposed to Lightning", T.C. Kosvic, NeL. Helgeson and 
Mo Gerstein, NASA CR-120827, September, 1971. 
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INTRODUCTION 

It is not unconnnon for aircraft to be struck by lightning 

discharges and appropriate safety measures are of ten observed in both 

the structural design and the operational characteristics of aircraft 

to counteract this potential hazard& The ways in which a lightning 

discharge may damage an unprotected aircraft are many, but it is only 

that hazard associated with the attachment of a lightning discharge to 

the skin enclosing the fuel tank that is of interest here. A previous 

investigation (1) has shown that if the skin is aluminum a thickness of 

0.080" is sufficient to protect the aircraft from possible ignition of 

fuel tank vapors by even the stronger lightning discharges. Recent in­

terest in titanium as a possible aircraft skin material, however, has 

revived interest in this possible problem area. This proposition is 

concerned with the development of a physical model which characterizes 

the ignition of fuel tank vapors which may result from lightning dis­

charges. 

Ignition of the fuel tank vapors by simulated lightning dis­

charges has been observed to occur by either of two mechanisims (1,2): 

(a) thermal ignition due to the formation of a hot-spot on the interior 

of the aircraft skin, or (b) direct exposure of combustible vapors to 

the plasma of the lightning discharge following "burn-through" of the 

skin material. (This excludes the case of internal arcing which is not 

considered here). Ignition by the second process may be thought of as 

arc-initiated and ignition is almost instantaneous& Thermal ignition of 

a combustible mixture, however, requres that the mixture be expos ed to 

the source of ignition for a finite period of time called the ignition 
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delay. The ignition delay is dependent primarily on the temperature 

of the ignition source and below a particular temperature, the thermal 

explosion limit, ignition may never occur regardless of the length of 

exposure time. That is, for case (a), ignition is dependent upon the 

intensity and duration of the arc "attachment" and also upon the therm­

al properties of the protective skin materialo 

A lightning discharge attaches itself to the skin of a moving 

aircraft at discrete locations. It becomes "attached" at one locatio n 

and remains there until the electric field, the movement of the aircraft, 

and various other factors (3) cause it to shift to a new location• Thus, 

the stroke may become attached at several different places on a wing 

surface as the aircraft moves through the path of the discharge. De­

termination of this "dwell-time" of the stroke at each point of attach­

ment and of the parameters which control it are not the subject of this 

discussion. However, it is evident that the length of this dwell-time 

would be an important factor in determining the hazard associated with 

a lightning strike. 

The second part of the problem, the thermal response of the 

wing materials to lightning discharges has been described previously 

(1,2,3) but the models used have been oversimplified. The purpose 

of ·this discussion is to construct a physical model from which it may be 

possible to predict those experimenta~ conditions which may lead to an 

ignition of fuel tank vapors. It is believed that the model developed 

incorporates all of the essential parameters of the problem and also 

corrects some previous misconceptionso 
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ANALYSIS 

The exterior of the fuel tank is exposed to the arc heating of 

the lightning discharge. The combustible gas mixture within the fuel 

tank is exposed only to the underside of the fuel tank wall. Therefore, 

prediction of an ignition rests on (1) the determination of the thermal 

response of the wall material to the arc discharge and (2) the ignition 

processes of the combustible gas adjacent to the underside of the fuel 

tank wall. As the transfer of energy from the wall to the gas is a rel-

atively slow (almost adiabatic) process, the two problems may be consid-

ered independently of one another. The thermal response of the skin is 

determined from solution of the diffusion equation with appropriate 

boundary conditions. An empirical correlation available in the litera-

ture serves to describe the ignition phenomea. 

Sources of Thermal Energy. An analysis of the thermal energy 

effects that accompany arc discharges is presented by Cobine (4). He 

reports that the arc power density, q, for hi-level arc discharges may 

4 6 2 be expected to fall within the range of 5 x 10 - 1 x 10 watts/cm . 

From this it may easily be shown that when arc discharges of this power 

range are brought to bear on a solid body the surface temperature rises 

to the melting point almost instantaneously ('VQ.l msec). The temperature 

of the surface does not continue to rise indefinitely, however, as at 

some point the losses of thermal energy become important and a steady-

state develops. As the surface temperature reaches the melting point, 

a pool of molten metal forms which begins to boil (see Figure 1), and the 

energy absorbed by the evaporating electrode material becomes a dominant 

factor in balancing the energy input from the arc. The anode spot (area 
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directly under the arc) temperature then stabilizes at a value that may 

be several hundred degrees higher than the boiling point of the elec­

trode material. The experimental measurements of the temperature of the 

anode spot which exist in the literature refer to this mplten phase (4). 

In the heat transfer problem with which we are concerned, how­

ever, it is required that we know the temperature of the surface of the 

usolidu electrode material as that is what forms the boundary condition 

for the solution of the heat conduction equation of the solid phase. In 

one portion of his paper Cobine identified the surf ace temperature of 

the solid electrode as the same as that of the anode spot. This may not 

be justified, however, as if this were the case an enormous amount of 

superheating of the solid phase would have to occur. As an example, for 

titanium, the temperature of the anode spot is reported to be of the 

order of 7000-8000 °F whereas the melting temperature is 3200 °F. 

Ubbelohde (5) reports that although liquid melts may be super-cooled 

tens or even hundreds 6f degrees it has frequently been verified that 

solids cannot be heated appreciably above the melting point. For ex­

ample, a maximum of 0.54 °F has been observed for ice and this value is 

larger than for most other materials. In the present case it is not 

possible to predict the degree of superheating that may occur at the 

solid phase boundary. However, the above information does suggest that 

superheating of the solid phase should not be significant. 

In addition to the intense heat provided by formation of the 

anode spot, electrical resistance heating also represents a possible 

source of thermal energy. The energy generated from this is proportion- . 

al to the square of the current density and to the resistivity of the 
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electrode material. Although resistance heating can be shown to be of 

secondary importance it may be accounted for if necessary. The electri-

cal discharge is a direct current and therefore the current distribution 

from the anode spot may be determined using Laplace's equation for the 

electric field and the boundary conditions of the homogeneous skin mat-

erial. Knowing this the rate of energy generation/unit volume can be 

determined. 

The Diffusion Equation. Once the sources of heat that result 

from a lightning stroke have been determined, the thermal diffusion 

equation can be used to calculate the temperature-time history of the 

surface of the skin opposite to the lightning strike. The problem may 

be formulated in terms of cylindrical coordinates (see Figure 2a). 

Thermal 

where 

properties are assumed to be constant. 

2 u 
l .aY = 1 a av + !_y t s av r ar (r a;) + f (r, z) +--a at 2 Cl az az 

v = T-T /T - T 
0 s 0 

T = temperature (°F) 

T initial temperature (°F) 
0 

T f ( OF) = sur ace temperature 
s 

a= thermal diffusivity, k/Pc 

r = radial distance 

z = longitudinal distance 

' f = strength of thermal energy source (energy/volume-time) 

U = velocity of moving boundary 
s 

(1.) 
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It is assumed that heat conduction is symmetrical in the radial direc-

tion (no angular dependence) and that the thermal properties of the skin 

material are independent of temperature. The formati.on of the anode hot 

spot enters the solution of this equation as a boundary condition and 

v 
resistance heating is accounted for by the source term f (rtz). The 

erosion of the anode spot may be taken into account as a moving boundary 

and the term including the velocity, U , is included to facilitate this. 
s 

The initial and boundary conditions to be solved for are: 

0 

v(oo~z,t) 0 

av ai' -(r,L,t) = 0 

dv (r,o,t) 
a~ 

-k av(r,s, t) 
az 

0 (r>R) 

q - U P tiH 
s v 

(r<R) 

Special Cases. Several approximate solutions to the above 

(2.) 

general set of comditions are discussed in order to illustrate several 

important features of the problem. The most important effect which has 

not been previously accounted for is the moving boundary. The electrode 

surf ace is eroded by the arc discharge at a rate which changes as a 

function of time. Therefore, we seek a solution for a finite plate 
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where one boundary is allowed to move at a finite velocity toward the 

othere An analytical method for solving the one-dimensional problem 

without sources was developed by Landau (6). He used the transformation 

of variable.s 

L - z 
L - s (t) (3.) 

to fix the boundary conditions at ~ = o.O and ~ = 1.0& This transforma-

tion was used in a numerical computation procedure to calculate tempera-

ture profiles through a simulated skin materiaL The number of nodes in 

the calculation remained constant and the transformation served to change 

the position of the nodes, relative to the boundaries, as a function of 

time. The results of a calculation for a power density, q, which is an-

ticipated for a 100 ampere discharge is shown in Figure 3. The tempera-

ture of the exposed surface is constant at the melting point of titanium 

(3200 OF), _and the rate of regression increases as a function of time. 

In Figure 4 are shown calculated temperature profiles for the 

case where the power input is interrupted at 25 and 50 rnsec. In these 

one-dimensional calculations the temperature of the undersurf ace rises 

substantially after current interruption, and even though only a small 

part of the skin was eroded thermal ignition is a possible result. 

In the above calculations neither radial dissipation nor re-

sistance heating was taken into account. However, the effect of .radial 

dissipation can be estimated from analytical solution available in 

Carslaw and Jaeger(7)s Thus from a given assumed temperature profile 

through the skin, at time zero, Figure 5 compares calculated temperature 



-144-

of the underside of the skin for the cases both with and without radial 

dissipation& The effect is considerable, however resistance heating, 

also not accounted for, would tend to counteract the radial dissipation. 

The results of one additional calculation will be presented in 

order to show the effect of an increased power input (q) •. In this case 

a high erosion rate is obtained and the temperature profile through the 

skin becomes very steep (Figure 6). That is, the effect of the thermal 

wave reaches the lower surface almost simultaneously with the eroding 

surface. The results of Figures 3 and 6, are compared in Figure 7 where 

the physical interpretation of a hot-spot or burn-through ignition be-

comes apparent& 

Chemical Ignition Delay. For the purposes of showing a com-

plete ignition model it is necessary to provide a description of the 

ignition process& It will be assumed that if the lower surface stays 

at T longer than T (T ), ignition occurs. Here T is defined as the 
I 

minimum spontaneous ignition temperature, which has been determined for 

many hydrocarbons as summarized by Gerstein (8). Studies have shown that 

the least wall temperature that will ignite an adjacent hydrocarbon/air 

mixture is around 900-1100 °F • Therefore, it would be desirable to 

have ignition data starting at approximately 900 °F and extending to 

the higher temperatures. 

The results of several investigations on the ignition delay 

(TI for hydrocarbon/air mixtures are available in the literature. But 

often they are not directly comparable to each other, nor to the condi-

tions of the current program. Adomeit (9) reported experimental measure-

ments from which chemical ignition delay times are available and the data 
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appear to be applicable, with some adjustment, to the present problem. 

Among the data reported are results for ignition of a homogeneous gas-

phase mixture of pentane and air~ The source of ignition was cylin-

drically-shaped chromium-nickel rod .. 35 cm (.14 in8) in diameter. The 

rod was heated to a prescribed temperature by an electrical discharge in 

a time period that was small compared to the ignition delay. The growth 

of the thermal boundary layer, by conduction, about the hot wire, and the 

time of the thermal ignition were observed and recorded on interferro-

grams. Ignition occurred within a time interval such that free convec-

tion had not yet set in. 

To permit the use of this data in the present case it must be 

re-evaluated in terms of the planar geometry of the fuel tank wall. The 

effect of geometry is, basically, a difference in heat flux (q
1
). In 

cylindrical coordinates (q
1

) may be evaluated for l arge times graphically 

(10) and for small times either graphically or from the following: 

kl\T 
a 

2 
j(L_) 1/2 + .!. _ .!_ (at) + ~ ... ·} 
~nat 2 4 2 8 2 

a TI' TI' 

where a is the radius of the hot body. For planar geometry 

kl\T 

F 

( 4.) 

which is the first term of the expansion in Equation (4). If q1 (planar) 

is specified, the equivalent q
1

(cylindrical) may be calculated and TI mav 

then be obtained from the (q,T 1) correlation (9). Results for planar 
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and cylindrical geometries are shown in Figure 8. 

Other ignition delay data for propane/air mixtures have also 

been reported in the literature. Brokaw and Jackson (11) preheated the 

fuel and air streams separately and, after rapidly mixing the reactants, 

measured the ignition delay as the time to ignition following the mixing 

operation. A typical result indicated that the ignition delay at a tem­

perature of 1000 °1<'. (1340 °F) was about 1 second. Chang (12) preheated 

the air stream and fed a cold stream of fuel into it. A typical result 

from his measurements showed the ignition delay to be about 0.1 second 

at 1000 °K (1340 °F). The correlation given above, if extrapolated to 

100 °K (1340 °F), would indicate an ignition delay time of about 0.1 

second. This agreement is satisfactory. 

Ignition Threshold. The ignition criterion is arbitrarily 

stated as follows: If the lower surface remains above a temperature T* 

for a period exceeding the chemical delay Tr corresponding to T*, then 

ignition occurs. In symbols, 

If T (L,t) ~ T* for L\t> TI (T*)__.....Ignition 

where TI (T*) is defined in Figure 8. It is apparent that the existance 

of a finite chemical response time (T ) can prevent ignition for inter­

mediate temperatures in the range 1300-2000 °F. However, if the under­

side of the skin reaches a temperature of 2240 °F even momentarily, igni­

tion is essentially unavoidable. At lower temperatures (say 1600 °F), 

the chemical ignition delay is of the order of 100 msec and whether igni­

tion occurs clearly could depend upon the length of time which a hot spot 
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persists& We have seen in a previous section that the peak temperature 

of the underside of the skin may not occur until after the lightning 

stroke has ceased to flow and that the temperature of the skin may per­

sist at relatively high temperatures. This becomes important, then in 

determining the minimum dwell time of a lightning strike that could 

initiate a thermal ignition. For although an arc may be attached at a 

particular spot for only several milliseconds, a significant amount of 

thermal energy may have accumulated in the skin material to cause a de­

layed ignition 

In order to illustrate the use of this ignition criterion, es­

timated temperature histories of the inner surface of the fuel tank are 

presented in Figure 9. Curves of T* are derived from Figure 9 and re­

plotted in Figure 10. On this same plot is superimposed a chemical ig­

nition delay curve taken from Figure 8, but with the zero taken as the 

time at which the underside reaches peak temperature.. Any temperature 

history breaking above the no-ignition envelope will cause ignition, 

according to the model. Particular cases are: 

Curve A (Low current, short duration) 

The ignition delay is essentially infinite at 550 °F, 

the maximum temperature reached by the inner surf ace. No 

ignition. 

Curve B. (Low current, moderate duration) 

The underside spends 100 msec above 982 °F, but this is 

not sufficient for ignitiono 
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Curve C (Moderate current, moderate duration) 

The underside remains above 1520 °F for over 2000 msec. 

Ignition in this case is guaranteed. 

Curve D (High current) 

Ignition and puncture occur in quick succession around 

75 msec. 

Summary. This discussion has outlined how the calculated re-

sults can be used to evaluate the hazard associated with ligh tning 

strikes to fuel tank skin materials. The model for predicting under­

surface temperatures appears to be essentially developed, but to achieve 

realistic results a more complete numerical analysis of the diffusion 

equation is required. This would not be difficult, in principle, how­

ever, considerable computation time and cost is involved. 
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PROPOSITION II 

An experimental configuration and procedure is proposed by which the 

chemi cal analysis of hydrocarbon-fuel/air mixtures can be rapidly 

determined for widely varying experimental conditions. 

INTRODUCTION 

Analytical instruments and experimental procedures for deter­

mining the composition of hydrocarbon fuel/air mixtures are discussed in 

detail in many places (1,2)e The problem presented below involves 

several factors which, individually, may have been resolved, but which 

do not seem to have been effectively dealt with in a common situation. 

The problem arose in connection with measurements which were required to 

help describe the dynamic behavior of the ullage (vapor space) of air­

craft fuel tanks. The existence of combustible mixtures in these fuel 

tanks does, under certain conditions, represent a potentially hazardous 

situation. But, before action could be taken which would minimize or 

eliminate the potential hazard it was necessary to quantitatively 

characterize the behavior of the fuel tank. This required that a large 

ntnnber of chemical analyses of fuel/air mixtures be taken for a wide 

range of simulated aircraft flight profiles. The object of this propo­

sition is to describe an analytical procedure which was suitable for 

making these measurements. 

THE PROBLEM 

Several criteria were involved in evaluating the various 

analytical instruments and procedures by which the fuel/air ratio of the 

vapor phase could be determined. These were: 
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(1) The absolute accuracy was not of primary concern. 

Rather, a reliable indication of changes in composition 

was more useful. 

(2) Measurements were to be made over a wide composition 

range (0$01-0.99 mole percen t fuel) and several types of 

molecules (components of aircraft fuel) had to be 

detectedo 

(3) Sample temperatures ranged from ambient to 400 °F. 

(4) Total sample pressure ranged from 0.5 to 14.7 psia 

(simulated sea level to 65,000 feet altitude). 

(5) A rapid sampling rate and analysis were required in 

order to be able to generate time-dependent concentra­

tion profiles of the ullage. 

(6) A small sample size was required so that the sampling 

process would not unduly disturb the conditions of the 

vapor phase. 

(7) Because of the large number of samples to be taken the 

cost-of-analysis/sample was an important consideration. 

These requirements, taken together, present rath~r severe 

restrictions on any method of analysis which might be proposed, and 

several analytical instruments were examined and found unsatisfactory 

for one reason or another. For example, the fact that the thermal con­

ductivity of dilute gases is proportional to the square root of the 

absolute temperature eliminated the thermal conductivity detector from 

consideration. Infrared analysis would have required excessively large 

sample sizes and the temperature limits of the instrument were also too 
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restrictive. Certain types of small catalytic detectors { 3) have been 

used to monitor unsafe conditions where combustible vapors may be 

present; however, the composition limits of this type of detector were 

too low to be useful. An important consideration was that sample 

temperature and pressure changes be kept to a minimum as condensation of 

heavy components of the fuel vapors could result in a significant loss 

of analytical accuracy. Therefore, it was desirable that the sample be 

injected directly into the analytical instrument with a minimum of 

handling. 

PROBLEM SOLUTION 

It is believed that a good compromise of these varied require­

ments was achieved with the flow sampling system and analysis instrument 

shown in Figure 1. The analytical instrument is a portable gas chroma­

tograph with flame ionization detector (FID). It was equipped with two 

columns, either of which could be used by changing the position of a 

selector lever. One column, that used for the sample analysis, did not 

separate the components, but merely served to spread the components over 

a longer time interval. This was necessary to prevent saturation of the 

detector at high hydrocarbon concentrations. Hold-up time of this 

spreader column was small, however, so that the samples could be 

injected and analyzed at intervals of approximately every 40 seconds and 

not interfere with one another. The second column performed a rough 

separation of the major hydrocarbon components, and was used to observe 

major changes in the molecular weight of the fuel vapor. 

Sample was drawn through the sampling tube by a vacuum pump at 

a rate monitored on a small flow meter, and controlled by a needle 
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valve. The rate was such that the pressure drop in the line between 

the test tank and the analytical instrument was negligible, but it was 

also sufficiently.fast so that the total flush-out time of the sampling 

tube was less than 10 seconds. The sample stream passed through a two 

loop, automatically-operated sampling valve so that a sample was inject­

ed into the helium carrier gas and analyzed by the flame ionization 

detector every 40 seconds. As the chromatograph required only very 

small (~ 1 ml) samples, a large number of samples could be removed from 

the test tank without unduly disturbing the contents. While analysis of 

one sample was taking place, the sampling line was being flushed out and 

filled with another. The output of the chromatograph, in millivolts, 

was fed to a recorder having an automatic integrating circuit, which 

provided a measure of the fuel vapor in the sample. Total pressure of 

the sample was measured with a mercury manometer. 

The hot (300-400 °F) vapor samples were heavily fuel-rich and 

condensation could have been a problem. This was minimized by analyzing 

the samples as they were taken and by maintaining the sample lines at 

temperatures greater than 400 °F. The one sample valve used employed 

teflon seals and was operable to 4<X> OF. The chromatograph, itself, did 

not impose a practical limit on the temperature of the sample~ 

In a hydrocarbon fuel/air system the FID responds only to the 

carbon atoms present. The oxygen, hydrogen, and nitrogen components are 

not "seen", and the output, therefore, is a measure of the total number 

of carbon atoms present in a given sample. The fact that the detector 

response to carbon atoms is almost independent of the molecular source 

of the atom is helpful in detennining the total hydrocarbon content. 
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Table 1 presents data available from Reference (4) and illustrates the 

uniformity of response of the ionization detector to carbon atoms de-

rived from various types of molecule~ This feature of the FID made 

it possible to analyze the hydrocarbons as a group so that each sample 

could be analyzed in a minimum amount of timee Use of the spreader 

column was essential in analyzing fuel-rich samples which otherwise 

would have saturated the detector. 

Average molecular weights and average hydrogen/carbon ratios 

were determined for the fuel-vapor molecules, and the measurement for 

the number of carbon atoms was then converted directly to a weight of 

hydrocarbon. These latter quantities were estimated with suitable 

accuracy from knowledge of the chemical make-up of hydrocarbon fuels 

and also from a physical measurement of the molecular weight of the 

fuel vapors using standard laboratory procedures. As noted above, for 

large changes in the molecular weight 

employed. 

the gas chromatograph was 

The mean molecular weight of the hydrocarbons was used to 

determine an effective vapor pressure of the fuel vapors. As the total 

system pressure was measured with a mercury manometer, the weight of 

air in a sample could be determined by difference and the fuel/air 

ratio could be calculated. 

The sensitivity and accuracy of the FID is well-known. There­

fore it may be concluded that inaccuracies in the method described above 

are probably due to the approximate nature of the measurements and to 

the assumptions involved in the analysis. 
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TABLE 1 

SENSITIVITY OF FLAME IONIZATION DETECTOR 
TO SEVERAL HYDROCARBON SPECIES 

Integral Output/ Integral Output/ 
Sample Wei@_ Carbon Atom 

10,200 5,100 

10,200 5,100 

16,000 5,330 

15,500 5,170 

9,050 4,520 

21,500 5,370 

32,00Q 6,400 

37,000 6' 170 

42,000 6,000 

47,000 5,880 
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PROPOSITION III * 

A physical and an analytical model is developed which describes 

the time-dependent fuel/air composition profiles of the ullage 

(vapor space) of an aircraft fuel tank during simulated flight. 

INTRODUCTION 

Aircraft become increasingly vulnerable to ballistic hits in 

fuel tank areas when the vapor space above the fuel contains flammable 

fuel/air mixtures. Although the equilibrium fuel/air ratio (calculated 

from vapor pressure at fuel temperature and total pressure) is of ten 

too fuel-rich to support an ignition, transient fuel/air gradients 

often exist in which the composition may lie within the combustible 

range. These regions may be brought about by air entering the vent 

due to fuel consumption, center-of-gravity adjustments or changes in 

altitude. As the layer becomes larger (involves a larger quantity of 

the ullage gas), the aircraft becomes more vulnerable to ground fire or 

accident. Penetration of the fuel tank by an incendiary projectile 

under these conditions could result in a catastrophic loss of the 

aircraft. As little is known about the composition gradients which may 

exist within aircraft fuel tanks, an experimental program was conducted 

in which fuel/air composition profiles were measured. The purpose of 

this proposition is to describe the analytical efforts which supported 

that experimental program (1). 

* Major portions of this proposition were extracted from a previously 
published report "Flight Vibration and Experimental Effects On 
Formation of Combustible Mixtures Within Aircraft Fuel Tanks," T.C. 
Ko$vic, N.L. Helgeson, B.P. Breen, USAAVLABS Technical Report 70-43. 
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TEST DESCRIPTION 

The general test procedure of a simulated flight profile began 

with the fuel tank full of fuel to within 6 or 7 inches from the top. 

The tank pressure was brought to a level which corresponded to a 

selected altitude and was held there throughout the test. As the test 

proceeded fuel was withdrawn at a nominal rate which caused the fuel 

level to change at a steady rate of 1/4 inch per minute. This 

withdrawal rate was representative of actual aircraft flight 

requirements. As the fuel was withdrawn, the space which the liquid 

previously occupied was filled with a fuel vapor and air mixture. 

As the vent air and fuel-vapors were withdrawn into the vapor 

space (ullage), a mixing/diffusion process was initiated to eliminate 

the concentration gradients that had developed (see Figure 1 (a)). 

This mixing could have involved several modes of transport: molecular 

diffusion, turbulent diffusion, free convection, interphase mass 

transfer, or a combination of any of these. Depending upon the modes of 

transport involved in any particular case the mixing process could have 

taken place rapidly (minutes) or slowly (hours). As a result, large 

fuel/air concentration gradients developed in the ullage space for 

some conditions and nearly uniform mixtures existed for others. 

PHYSICAL MODEL 

The process of replacing the consumed fuel with a fuel/air mixture is 

shown schematically in Figure l(b). The top of the tank remains 

stationary and the liquid fuel surface recedes from it at a velocity 

(v ). It is assumed that the entire top of the tank is a vent. 
s 



-170-

Therefore, as the liquid recedes, fuel-free air enters the top of the 

tank in a uniform stream at a velocity (vt). The air entered the top of 

the fuel tank at the same velocity that the fuel was receding (vt=vs) if 

there was no supply of fuel vapors from the liquid. It was assumed that 

the air entered in a uniform stream. The air actually entered at a 

single point, the vent opening, and then spread out by diffusion and 

convection into approximately horizontal layers. Experimental results 

showed this to be a reasonable representation of the process. 

Fuel vapor cannot escape from the tank unless its transport 

(diffusion & bulk) velocity becomes higher than the vent air velocity. 

Therefore it is possible to make one additional approximation which 

will help in understanding the experimental results: that the tank 

top is a semipermeable membrane. That is, air can flow through in 

one way, but the fuel vapors cannot diffuse through it in the 

opposite direction (see Figure 1.b). 

A third velocity (vf)characterizes the bulk flow of fuel 

vapors that emerge from the fuel. Here 

N 
_LE_ 

c 

where Nf is the molar flux (moles/area-time) of fuel vapors emerging ,o 

from the surface of the fuel. It is measured relative to the fuel 

surface . Whenever there is diffusion of fuel vapors away from the 

liquid surface into the ullage Nf >O. This quantity becomes 
,o 

increasingly significant as the composition at the surf ace of the 

liquid gets richer (high fuel temperature, low ambient pressure) (2). 

(c) is the total molar density (moles/volume) of the vapor phase. 
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An equation may be written relating the three velocities: 

If vf is zero (or small), v ~ v as mentioned previously. Any 
t s 

increase in the value of vf retards the rate at which air will enter 

the top of the fuel tank. As vf gets larger, vt eventually becomes 

negative. That is, there could be bulk flow of material out of the 

top of the tank in spite of the fact that fuel is being consumed by 

the aircraft engine. This result accounts for evaporative loss from 

aircraft at high altitude. 

The effect of the relative values of these velocities (v , v , 
t s 

and vf) on the composition profile within the ullage is illustrated 

in Figure 2. The time, t , indicates the initial conditions of the 
0 

test where the vapor space is essentially at equilibrium (i.e., flat 

composition profile). Times t
1

, t
2

, and t
3 

are· progressions of time 

during the test which show the development of composition profile with 

time. 

In part (a) of Figure 2, vf/v
8

<<1, so that vt ~ vs. Here a 

completely diffusive transport mechanism for transport of fuel vapors 

from the liquid surf ace to the top of the ullage may be anticipated. 

As time progresses from t to t
3

, the surf ace of the liquid fuel 
0 

recedes from the top of the fuel tank. The concentration at the surf ace 

of the fuel is constant and is determined by the vapor pressure of the 

fuel and the tank pressure. The fuel vapors are supplied to the top 

of the tank by diffusion from the surf ace of the fuel but do not diffuse 

out of the tank. As additional air enters the top of the tank, the 
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concentration of fuel vapors at the top of the tank continues to 

decrease. 

Figure 2 (b) illustrates the case for vf/vs ~l. As vf increases, 

transport of fuel vapors to the top of the ullage becomes convective 

controlled rather than diffusive. The composition profile tends to 

flatten out as the flow of fuel vapor passing into the ullage at the 

liquid surface becomes important. 

If vf becomes greater than vs, a convective motion of the mixture 

is set up so that material is now flushed out of the ullage through the 

vent (Figure 2 (c)) and no fresh air is permitted to enter the ullage. 

Considered in this manner, the ratio vf/vs becomes a qualitative 

measure of the effect of a convective motion generated by interphase 

mass transfer (evaporation of fuel) on composition profiles within 

the vapor space. This classification of the controlling phenomena 

(diffusion/convection) will help in presenting an analysis descriptive 

of fuel tank behavior. 

MODEL FOR DIFFUSION TRANSPORT 

Assuming that the fuel/air mixture is of two components, one fuel species 

and one air species, the equation of continuity for fuel species may be 

written as (3) 
convection diffusion 

Nf = xf (Nf + Na) - c Dfa vxf (1) 

where molar flux of fuel vapor relative to liquid surf ace 

N molar flux of air relative to liquid surf ace 
a 

xf mole fraction components 
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c total molar concentration/volume 

Dfa= binary diffusion coefficient for fuel vapors in air 

The quantity (NA + NB) represents a bulk convective flow and is 

measured relative to the liquid surface. For an open system some bulk 

flow will exist. In the present case (diffusion controlled), it will 

be considered negligible and Equation (1) becomes 

(2) 

Using the continuity relation 

and differentiating and substituting in equation (2) 

(3) 

At this point we are interested in the situation illustrated 

in Figure 2 (a) (vf/vs <<l). For this case, the initial and boundary 

conditions are (see Figure 3 for coordinate system): 

t = 0 

t > 0 

where L = L(t) = A + V t. s 

Xf (z,O) = X f ,o 

ax 
azf (L,t) = f (t) 

x 
f ,o 

x 

x 
f ,e 

(4) 

f ,e 

The subscript o refers to the condition at the liquid surface, L 
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refers to the top of the tank, and e signifies an equilibrium 

concentration. The feature that makes these conditions unique is 

that one of the boundaries (L) is moving at a steady rate to simulate 

the receding liquid surf ace. It should also be noted that the boundary 

condition at L(t) is an unspecified function of time f(t). The gradient 

at this position (the semipermeable membrane) is not zero, as a steady 

supply of fuel vapors is required to mix with the incoming air and is 

subsequently swept back into the tank. This gradient is estimated 

from experimental data. Using this data a generating function for this 

boundary condition as a function of time was established. 

Analytical solutions for equation (J) for the conditions (4) 

are not available. However, the moving boundary was accounted for by 

using the Landau transformation (4) and a numerical integration 

routine was used to calculate composition-time profiles. 

Three calculated experimental curves are compared in Figure 3 

for a test time of one hour. The experimental results are below the 

calculated profile for the two low-temperature tests. Molecular 

diffusivities were used in the calculations, however, and if any 

turbulent diffusion did occur this could account for the indicated 

differences. The fact that the experimentally measured profile is 

greater than the calculated profile for the high-temperature test 

indicates that a new mechanism of transport is becoming important. 

That is, the bulk velocity of the fuel vapors must now be accounted for 

(see Figure 2.6) but this feature has not been included in the 

calculational scheme. 
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