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ABSTRACT

This work reports a theoretical study on the effect of including
intermolecular correlations in X-ray scattering data from simple
liquids.

An instantaneous configuration-dependent scattering factor is
defined for a molecule in a liquid. Using statistical mechanics and
physical principles, an expression is derived that corrects the usual
scattering equations, for both coherent and incoherent radiation.

Computations, using the new result, were done on liquid helium
and argon. Comparison of correlated scattering factors and isolated
molecule scattering factors show significant deviations, especially
for larger angles of scattering. Incorporating correlation effects
into scattering data for these liquids, the resultant radial distri-
bution function peak is depressed an average of 1% and the potential
energy is lowered by 5%. Treatment of data in this manner leads to

better agreement with theoretical predictions.
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Chapter I - Theory of X-Ray Scattering from Uncorrelated

Molecular Liquids

A. Introduction

Modern theories of the properties of matter rely upon the study
of atoms and molecules. From their individual properties and knowledge
of the forces which they exert on each other, it is possible to calcu-
late how matter in bulk behaves. The inherent difficulty is to find
some way of calculating the effects of the interactions, between the
enormous number of molecules, in any quantity of matter on which it is
suitable to experiment. Statistical mechanics bypasses this difficulty
by considering all possible states in which a system can be found and
by finding the probability for the realization of each state. In order
to make practical calculations on the basis of theoretical developments,
it is further necessary to assume an analytic form for the interaction
potential. (Discussions of the various empirical potentials in use may
be found in Hirschfelder, Curtiss and Birdl, Margenau and Kestnerz,
and HirschfelderB.)

Having performed these computations, it remains the task of the
experimentalists to verify their accuracy. Relating the properties of
matter to structure relies greatly on the various experimental methods
of "seeing'" atoms. One of these, diffraction, has provided most of
what is now known of atom sizes and arrangements in the solid and
gaseous states.

It was recognized as early as 1923 by Keesom and de Smedts,that

x-ray diffraction techniques could be a source of quantitative
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information of the molecular structure of liquids. The analyses
required for the interpretation of the diffraction patterns were
developed by Debyeg, Zernike and Prinslo, and Menkell. X-ray diffrac-
tion measurements have been made on quite a number of liquids, liquid
solutions, and liquid metals (e.g., Schmidt and Tompson4, Gingrichs,
Furukawa6, and Pings7.) |

Unlike the crystalline state, in liquids there is no long-range
molecular or atomic order, and the molecular positions must be describedv
by probabilities instead of fixed distances as in crystal structure.
Thus, the experimental x-ray scattering data from a liquid is used to
compute a function g(R) , known as the pair correlation function or
the radial distribution function (RDF), which is regarded as a measure
of the average probability that molecules in the liquid will be
separated by a distance R .

The radial distribution function and other properties obtained
from experiments using these analyses appear to be reasonable when com-
pared with theoretical predictions (Chen12 and Ree13). However, dis-
creﬁancies do occur, especially in the appearance of spurious peaks in
the radial distribution function and variation of the potential well

5'4). An explanation

depths (Rowlinson, et al.
of how these effects may arise due to mistreatment of data has been
given by Kirsteinl4. As more experimental data became available, it

was realized that the usual assumption of spherical charge distributions
for the scatterers, especially in the case of complex molecules, might
produce significant deviations between the true and predicted intensi-

15-18

ties. McWeeny studied the variation in the scattered amplitude
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from free and bound atoms. Freeman19 compared amplitudes of spherical
and nonspherical charge distributions. Wilkinson and Brown20 showed
how scattering amplitudes in a structure may be evaluated as functions
of the scattering vector s . Dawson21 studied the deviation of the
scattered amplitude between prepared hybrid valence states and the
ground state results.

Recently, Steele and Pecora22 have deduced an expression for the
scattering cross section of a liquid consisting of nonsSpherical mole-
cules. Blum and Torruela23 have extended this expression into a form
which is independent of any particular reference frame used to define
the orientation of the molecules. Calculations for the effects of
molecular orientation, based upon the work of Steele and Pecora, have
been performed by Morrison and Ping324.

There is an additional effect to be considered. The molecules
are continuously moving with respect to each other due to thermal
energy. The magnitude of these motions may be quite large. However,
unlike dilute gases, the intermolecular separations may now be small
enough to cause the charge distribution of any given molecule to be
correlated with the instantaneous configuration of its neighbors and
of the system. Depending upon the presence of permanent or induced
dipoles, or both, the distribution of charge, especially in the outer
and valence shells, may become distorted. Cromerzs, using different
atomic models, has shown that the scattering amplitude is sensitive to
this behavior.

The present work extends the above analyses of x-ray scattering

from a liquid. Using configuration dependent molecular charge
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distributions, and by applying physical and statistical principles, an
expression is obtained for the coherent scattering intensity which
includes this effect. It is also shown how the incoherent intensity
should be treated. Then, x-ray scattering data for liquid helium and
liquid argon are analyzed in light of the new results.

The usual theory of x-ray scattering will be presented in the
remainder of this chapter. Readers familiar with these results may
proceed to the next chapter without loss of continuity. Chapter II
shows how the usual theory of x-ray scattering for liquids may be ex-
tended to take account of intermolecular correlations. The results,
with application to helium and argon, are discussed in Chapter IIIL.

Conclusions and recommendations are in Chapter IV.

B. The Single-Electron Atom

If a beam of radiation falls on a target and wavelets scattered
by different atoms have similar amplitudes and phases, then the scat-
tered waves will interfere and the target will act as a diffraction
grating.

Almost any kind of radiation may be used: electrons, neutrons,
or electromagnetic waves (x-rays, light).

An electron beam scatters from the nuclear and electronic
charge distributions. Neutrons scatter from the target nuclei. X-rays
and light both interact with the nuclear and electronic charges, the
contribution of the former being usually neglected since the amplitudes
are in inverse ratio to the masses.

The quantum mechanical calculation of the coherent and

incoherent radiation from electrons, under the influence of an
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. 26 27
electromagnetic wave, was first carried out by Wenzel™ and Waller .
An outline of the solution follows.
The incident radiation is assumed to consist of a monochromatic

plane polarized wave, traveling in the direction of the unit vector

u . The electric intensity is given by the real part of

o E; ei(wt-—gu?) (D)
where w = 2mf , f being the frequency of the incident radiation;
s, = wu/c 3 ¢ 1is the speed of light; r is the vector distance from
some point in the scatterer, e.g., the nucleus if the wave is scattered
by an atom.
The electric intensity E 1is connected with the vector poten-

tial A and scalar potential ¢ by
E=-25 -V 2)

For an electron of mass m and charge e in these fields, the

appropriate form of the non-relativistic Hamiltonian is

2 2
2m imc

?_K-X + ed (3)
2mce

where h is Planck's constant and 4 =h/2m .

The wave field is to be treated as a small perturbation, so that
terms involving the square of the vector potential may be neglected.
The scalar potential of the wave field is zero.

The Hamiltonian is split into unperturbed and perturbation

operators. The unperturbed operator is



e

2
_ A" o2
B, = —EE'V + V(r) (4)

V(r) being the potential energy of the particle.

The perturbation operator is
H._==——A-V (5)

The solution of the Schrodinger wave equation

= 3 ¥
HIw ik Nt (6)
_ielt/ﬁ
for the unperturbed operator yields various solutions wle 5
—iezt/h —ient/ﬁ
wze y HEEg wne corresponding to the different stationary

states of energies €15€9s " 5E -
For a system that is perturbed, the solutions to the wave equa-
tion

HI® + HII® = ih +— (7)

are sought.
Whatever the solution ¢ may be, it can always be expressed as
a linear combination of wavefunctions satisfying the unperturbed equa-

tion (6). Thus,

where ]aml2 is the probability that as a result of the perturbation
the atom is in the state m .
To determine the coefficients a substitute (8) in (7) and,

making use of (6), obtain



Ya Ho Y =if )Y == (9)
m

Assuming the wavefunctions to be orthogonal and normalized,
multiplying both sides of (9) by wi and integrating over all space*,

the exact result

1ﬁ—aik-=2a vrE oy d (10)
ot oo k 11 Ym @Y

is obtained.

If an atom were in the state n , a = 1 and all the other
coefficients would be zero. The right hand side of (10) contains all
the coefficients a . As a first approximation, a is taken as 1 and

all the other coefficients are assumed negligible, resulting in

Bak
1% f\b*H Y dv =

ot k "I1
_ i(ek-en) t/h (11)
= e H
nk
where
_ *
an = f wk HII wn dv (12)

The calculation of an requires an expression for the vector
potential. By (2), since ¢ =0 ,
. ch i(wt-so'r) cE —i(wt-—so‘r)

__ " “o
&= =g P * 3 e (13

+
Unless otherwise indicated, it will be implicitly understood that

all integrals are to be taken over configuration spaces.
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Denote the component of the gradient in the direction of the
electric field vector by X, the direction of X being perpendicu-

lar to u . Then an may be written

_ _he = iwt * -iwt
nk 2mp IEol {Bnke + Bkn € } (14)
where _
-is °r oY
_ * o n
Bnk e f wk e ggg-dv (15)

Using (14), the integration indicated by (10) may be carried
out on the assumption that a = 1 , to give the result

B 1(w-e )t/
ie t/A e|E | B . e n
n o nk

2mw dn wkn+ w

¢ = wne

—i(‘hw+€n) t/4

+ (16)
W_-w

where W = (€k—€n)/ﬁ is the circular frequency corresponding to the
transition of the atom from the state k to the state n .

The radiation scattered by the atom is calculated from the
laws of classical electrodynamics.

Let J be the ogscillatory current density, of circular fre-
quency w , at a point Q , specified by the vector T from the
origin O . Tne field at a point P , distant R from O is
required. R 1is large in comparison with the dimensions of the region
about O within which the current density is appreciable.

5, = wlul/c where Wy

radiation in the direction of the unit vector Gi . Then, the result

is the circular frequency of the scattered
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from classical electrodynamics is that the amplitude of the scattered

radiation field Es’ at P, may be derived from an electric moment at

0 by
w2
ES = —E'M (17)
c
where
is. T
N 1
M=z o J JP e dv (18)

and Jp is the component of J pefpendicular to gi and contains the
time through the factor eiiwt . The exponential term in the integrand
of (17) allows for the effect on the phase of the scattered wave of the
varying distance of the element of volume dv from O .

Equations (4) and (5) are placed in (7) and the result multiplied
by ®* . The conjugate equation for @* 1s multiplied by & . If the
one is subtracted from the other, the result is

2

% (ov2o*- o*ylp) 4+ 1he ﬁ

As(® V@ + oVo” ) = iﬁ (@@ ) (19)

For a plane electromagnetic wave, div A = 0 . The above result

may then be written,

div {iﬁe

2
(@V8%- *70) - £ K 00*} + L (ets”) = 0 (20)

Comparing (19) with the equation of continuity, the Schrodinger

current density is seen to be given by

= . Afie % e2 s %
* -
J = om {@V@ ® V@} - A9 (21)
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1. Coherent Scattering

If the frequency of the incident radiation w is large in com-
parison with any of the atomic transition frequencies W s the terms
under the summation sign in (16) are then small. Moreover, they appear
in the expression for the current density in terms of order Ei , which
is itself a small quantity since the field is to be considered as a
small perturbation.

The first term in (21) contributes nothing to the scattering
since it does not contain the time. The current density is then reduced

to -(ez/mc)|wilx if the atom is in the state n .

Making use of (13), it is readily seen that the current density
vector is proportional to and in the direction of the incident electric
field vector E . Substituting the value of the current in (18),yields
the scattering amplitude

2 E -—
-e o iwt 2 iser
Yoo = 7 22 e [ 1,7 T (22

where s = gi— g;, and Eop is the component of E; perpendicular to
E = IEOI if E is perpendicular to the plane containing both
5, and sl " Eop = IEOIcos(S) , when E 1is in the plane containing

8, and s, . 0O 1s the angle between the incident and scattered direc-

The intensity of coherent scattering of unpolarized radiation,
by an atom in the state n is

2

2
2 1+ S 2
= vk __0O e cos
In,n(s) B Y(:oh Ycoh 9 ( 2) ( 3 )Ifn,n(s)l (23)

where



11~
£n(®) = f v 1% ™ av (24)

The quantity fn n(s) is called the scattering factor for the elec-

L]

tron in the state n .
The term multiplying the scattering factor is the intensity
scattered by a classical electron under the same conditions (Thomsonzs).
The intensity of coherent scattering relative to that of a

classical free electron is given by

ILon® = £, ()] (25)

2. Incoherent Scattering

Incoherent scattering 1s associated with processes in which the
electron undergoes a transition from the initial state n to other
final states m . The incident frequency is subject to the same re-
strictions as the coherent scattering.

The current density assoclated with a transition from state n
to m under the influence of the perturbing field is

7 - ife
n,m 2m

(¢_T0% - & To*) - fé Koo (26)
The first term in the equation above is dependent upon the time
and 1s associated with the spontaneous emission from the atom. The
effect of the perturbation is contained in the second term. Using
methods analogous to those discussed above, the intensity, relative to

that from a classical electron scattering under the same conditions,

associated with the transition from n to m is given by



I (s) = a2 Y _P* eig:z d ’
n,m mn n'm v (27)
.
a = /w
where ' = w-—wmn is the frequency of the scattered radiation and is

now no longer the same as that of the incident radiation.
The total incoherent scattering intensity 1s obtained by sum-

ming over all m # n . Thus,

2 lf (S)lz

nm' m,n

I, (8) = N INOR ) a (28)

nfm n#m

where fm n(s) is the scattering factor associated with the transition

b
from n to m .
The total scattered intemsity, including that of the coherent

radiation, is to be obtained by summing (28) over all values of m

including n

v

%, 8T dv 2 (29)
mn

2
Lis) = Icoh(s) * Iinc(s) = g %on

This result is due to Wentze126.

C. The Many-Electron Atom

Let the suffix k refer to the coordinates of electron k in
the atom. The wavefunction ¢ 1s now a function of the time and all
of the electron coordinates, 3Z in number, if the atom contains Z
electrons.

The appropriate form of the wave equation is now
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72 _

] {2y (e v G Tol = w2 (30)

k

The wave functions corresponding to the stationary states of
the unperturbed atom are of the type

-ie t/h
(T Tns s ) e n
= VplrpsTpereeet,

where wn is a function of the coordinates of all the electrons, given
by ;i,;é,"',;; ,-and €, is the energy of the state n .

‘The quantity Iénlzdvl,dvz,"',dvz gives the probability that
electron {1} 1lies within the element of volume dv, at the distance
;i , electron {2} within dv2 at ;é , etc. for the atom in state

n . Then the charge density associated with the electron {k} may be

written as

P = e j I@nlz d'vk (31)

where d'vk denotes that the integration is over all electron coordi-
nates except those of {k} . This integral gives the probability that

the electron {k} 1lies within the element of volume dvk at ;k while
the remaining electrons are anywhere and so is in a sense a measure of
the average charge density at ;k due to electron {k} . By a method
analogous to that given in I.B.1 1t can be shown that Py obeys the

equation of continuity

apk
div Jk + 5T " 0 (32)
where EL is the current density associated with electron {k} and is

the expression (21) integrated over all electron coordinates except
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those of {k} .
Accepting this identification, the appropriate scattering fac-
tor for coherent radiation from a many-electron atom in the state n

is, by analogy with (24),

iseT. is°T
fn,n(s) = E Jl@nlz dvi e k dvk = f [@ !2 g e i dv (33)

The expression for the total scattering intensity, coherent

and incoherent, for an atom initially in the state n 1is

I(s) = 2 ain <n|Q’m> <m]Q*ln> (34)
m
where
<n|Qjm> - J 5% 0 Q dv (35)
iser
Q=Je F (36)
k

The summation in (34) is over all electronic states m for
which the energy differences e, €, are less than the energy of the

incident radiation.

1. Wavefunction

Generally, it is impossible to obtain exact solutions for the
wavefunction @n which satisfies the many-electron atom wave equation
(30). As an approximation, the many-electron atomic wavefunction is
assumed to be expressible as a product of Z one-electron wavefunc-
tions. Since there is no means by which particular electrons may be

identified, every possible permutation must be included. Further,
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Pauli's principle must be satisfied. The result, obtained by Slaterzg,

may be written as a determinant of Z rows and Z columns
V@ @ ()

o = | //ﬁéif (37)
v V@ Y (2)

The wi are normalized and include spin orbitals.
Once the form of the wavefunction has been determined, the solu-
~tion 1is obtained by some technique such as the gself-consistent field

.i.

method or variational technique .

2. Scattering Factors

If a wa?efunction of the type (37) is used in (33), the scat-
tering factor takes on the form

1EZ?£

£y n(e) = E J v, |% e dv, = E £, (s) (38)

The total atomic scattering factor is the sum of the scattering factors
corresponding to the individual wavefunctions which the electrons
occupy.

The expression for the total scattering, eq. (34), first given

by Waller and Hartree3l, becomes

* . 2
I(s) = Z + £.(s) £, (8) - - £, ()| (39)
jik 3Tk j;zék 55

TFor details, see Offenhartz30
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where
is°r
o = p (40)

£f..(s) = .(r T d

#® J ACRENCRN v,
The quantity fjk(s) will usually be small, since wj(;é) is gener-
ally small in those regions where wk(;f) is large and vice-versa.

Noting that Iz fk(s)l2 may be written as
k

&5 %
g £,() |7 + 'z £ (s) £,(s)

jfk
the coherent and incoherent intensity are expressible in terms of the

scattering factor as

I . (8) = |E £ (s)] (41)

Tine® =1 {1 - £, ()7} - ) oIk (42)

klfj
The last term in (42) occurs because in a many-electron atom a number
of electron levels are occupied. When the two electrons associated
with the wavefunctions have the same spin, Pauli's principle applies,
i.e., if the spins of the two electrons are the same they cannot occupy
the same space wavefunction. When the spins are opposite there is
nothing to prevent their doing so. For electrons with the same spin
the space wavefunction 1s written as the determinant above. For elec-
trons of opposite spins the wavefunction is symmetric in electron
coordinates and the extra term in (42) does not appear. Thus, the
summation in the last term 1is over all pairs of different electrons

with the same spin.
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D. Molecules

The unperturbed Hamiltonian for each N-nuclei and n—electron

problem takes on the form34

Ho =) h(i) + (1/2) ) e%/r,. (43)
g 1#] H

where the second summation represents the electrostatic interaction
between electrons 1 and j at a distance rij s 1 and j range

from 1 to n 3 h(i) is the one-electron Hamiltonian operator for

electron 1 and has the form

h(i) = L
= - 5= V] + V(D) (44)

V(i) 4is the potential energy of electron i 1n the presence of the

fixed nuclei and has the form

LI
V(i) = - pzl e /T, (45)

Zpe is the charge of the nucleus p and rpi is the distance between
electron 1 and the position of nucleus p .
Making the same assumptions for the wavefield as in I.B, the

Hamiltonian of a molecular system, perturbed by a wavefield, becomes

- ife v, 7
H o=Hp + ) o As Y, (46)

This has the same form as the Hamiltonian of eq. (30) except for addi-

tional terms in HI which arise due to the presence of more than one

nucleus.
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A determinantal form of the wavefunction may be chosen and the
golution obtained by the self-consistent or variational method34. With
this form of the wavefunction it can be shown that the resultant scat-

tering factor for a molecule reduces to a summation of scattering

factors over the electrons in the molecule32

E. Scattering by Liquids with Complex Molecules

The expressions derived below follow the treatment by Menke as
: 32
discussed by James™ .

The scattering sample consists of N d1dentical scattering
molecules, each composed of n atoms. The different molecules are
denoted by u,V,°*- and the individual atoms are labelled p,q,---
within a molecule. Corresponding points in each molecule are chosen as

molecular centersT. For the atom p in molecule u , let

= =
Yo TR T Y kel

where rUP is a vector to the atom p in molecule U from some con-
venient reference point O ; ﬁﬁ locates the molecular center of
molecule W, and ;ﬁp is the vector from this molecular center to atom
p within the molecule.

The amplitude scattered by molecule u 1is given by

TAS de Vrie333 has shown, the treatment being given here produces
intensities which are not independent of the choice of molecular
center. This of course does not correspond with reality. However,
this analysis 18 sufficient for the purposes of succeeding sections,
since only monatomic molecules will be considered. Otherwise, the
expansions of Steele and Pecora?2 or Blum and Torruela?3 must be
resorted to for proper description of the problem.
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iser
2 fp(s)e P 2nd the total amplitude scattered by the system is
P iser.
Z Z fp(s) e HP , the summation over p being over all the atoms in
[V
a molecule and over Y to include all the molecules.

The instantaneous coherent intensity, when (43) is used, is
given by
ise(R-R) 18- (v -V )
%
I(s) = 2 Z £f (8) fq(s) e H ¥ e HP vy
HsP V59
To obtain the observed intensity, this expression must be
averaged over all possible orientations of the individual molecules,
and all possible intermolecular distances. There are two types of
terms to be considered: u = v , corresponding to internal interference
effects, and U # v corresponding to external effects. Terms of the

first type, upon averaging and summing over all the molecules, lead to

the expression

_ 9 " sin(sf_ )
I,(s) = N g £(s) + szq £ (s) £,(s) _?2;;111_ } (49)

where qu is the distance between atoms p and q 1in the same mole-

cule.
Terms of the second type refer to atoms lying in different
molecules. The vector -Euv = §ﬁ-—§§ is the vector distance between

the reference centers of the two molecules. Consider g(ﬁuv)dvudv\)/v2
to be the probability that the center of molecule u 1lies in the ele-
ment of volume dvu at a vector distance §i from O , while at the
same time the center of molecule Vv 1lies in dvv at a vector distance

Rv . V dis the total volume of the sample and g(ﬁuv) is the radial
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distribution function. Suppose g(ﬁuv) to be the same for any pair
of different molecules and to be spherically symmetric on the average.

Neglecting the zero order maximum, the averaged scattering intensity is

= _ 4TN [ 2 gin sR
I (s) =F, —— (1) f fg(r) - 1} R et iR (50)
0
where
sin chp sin Sch
Fo= L £(8) £ () — ) (51)
Psq cp cq
The scattering amplitude fp(s) has been assumed to be real. lcp is

the distance of the atom of type p from the molecular center.
For monatomlic molecules, the total averaged intensity per atom,

I+ 1
e

{ reduces to

b

sin sR

I/n = £2(s) {1+ 4o, j R%[g(R) - 1] =22 ar} (52)
0

where it has been assumed that the sample consists of identical atoms.

po = N/V 1is the average macroscopic density of the liquid and N >> 1 .
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Chapter II - Theory of X-Ray Scattering from Correlated

Molecular Liquids

A. General Considerations

The scattering systems, considered in Chapter I, assumed the
individual molecules to be fixed and far removed from each other. The
validity of this model was established by Born and Oppenheimer36 and a
more general discussion was given by Born and Huang37. The total
molecular wavefunction was expanded in terms of products of electronic
and nuclear wavefunctions. The electronic wavefunction is a solution
of Schrodinger's equation with the Hamiltonian operator given by (43).
The nuclear wavefunction is derived from a nuclear eigenvalue equation
in which the electronic energy, obtained from the solution of the elec-
tronic wave equation, occurs as a potential function. The admissibil-
ity of first solving the purely electronic problem rests on the large
ratio between the electronic and nuclear masses.

At present, there is no model which gives a good approximation
to the liquid state+. However, all of the existing models admit that
the liquid state is somewhere in between the two extreme states of mat—
ter, solid and gas. Unlike these, in liquids both the atomic bindings
and thermal motlons are important, In addition, molecules in a liquid

are constantly interacting with many of its neighbors. Depending upon

TA "good model" is defined by Egelstaff35 as one that would cover

structural and thermal propertles with equal emphasis.



D Do

the nature of the component molecules, i.e., whether they are ionic,

the polarizability, the presence of induced and permanent dipoles, etc.,
their charge distributions are dependent on the local environment and,
in general, upon configurations of the system.

To obtain the proper scattering intensity from such a system,
the effects of molecular motion have to be included in the Hamiltonian
operator. The corresponding wavefunction is then dependent on both
electronic and nuclear coordinates. The result from such a calculation
would be more accurate but the solution of such a many-body problem is
intractable at present. Instead, as discussed in succeeding sectiomns,

a different approach is taken to include the many-body effect.

B. Effective Scattering Factors

The tack to be taken here is similar to McWeeny's16 for obtain-
ing the effective factor of atoms which bind to form molecules. The
idea is extended to include any interacting system, whether binding or

not.

1. Scattering Factors for Atoms in Molecules

"atomic" and "mobile" charge density

McWeeny used the concept of
to derive an expression for an effective scattering factor fe(s) "

The contribution to the effective factor, associated with the Tth group

of molecular orbitals, is

T T is'ru -y 1 T T U
fu(T) q J p. e erfFugv'E q v J P e dr

M H

T T by T 7
q, £,() +3 u; q ., £ () (53)
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T
uv

associated with the atom Y and in the bond u-v , and

where qa and ¢ measure respectively the amount of mobile charge

T 2
= X
4T L Ky (54)
J
q' = 2s ) X . X, (55)
HV HV S AN

fu(p;) is the scattering factor for an electron in the atomic orbital
¢U 3 fu(piv) is a bond scattering factor for bond u-v referred to

atom |\ suv is the overlap between orbitals u,v . In this approach

the molecular one-electron wavefunction is given by
. = X . 56
v, E Y (56)

where the ¢U are orbital functions centered at | . Considering the

effect of bonding as a correction, it is deduced that

e _ 0
fu(s) = fU(S) + Afu(s) (57)

where f;(s) is the scattering factor for the isolated atom and the

correction Afu(s) is given by

- T _ .k Ty 1 T T
Afu(S) o % (qU nu) fu(pu)-*'2 u;v quv fu(puv) (58)

n; is the number of electrons originally on atom 1y which go into the
Tth set of molecular orbitals. In general, the scattering factors are
complex quantities.

The coefficients q; and q;v may vary widely according to the

molecular environment. These coefficients, therefore, determine the
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effective scattering factor in any given environment in terms of
fu(pg) and fu(pﬁv) which are, to a first approximation, independent

of the mobile electronic structure.

2. Instantaneous Scattering Factors and Molecular Correlations

The liquid sample is taken to consist of identical molecules.

For a given isolated molecule in this liquid, the method of section
IT1.B.1 is used to compute the scattering factor, which is the scatter-
ing factor for the isolated molecule.

In section I.D it was shown that for a certain form of the wave-
function the scattering factor for a molecule is the sum of the scatter-
ing factors for the individual molecular orbitals. It will be assumed
that this is still the case in the following discussion, thus confining
it to orbitals.

Consider the liquid to consist of a sea of molecules, all moving
randomly and interacting with one another. 1In some cases, depending
upon the proximity of the molecules and their character, there may be a
flow of charge between them, or they may just suffer distortions of
their charge density distribution, or both.

Suppose Afi(s,;k) is the orientationally dependent correction,
at some instant, due to pairwise interaction between the pth and kth
molecules, a reference point in the latter being located at a distance
fk from a similar reference point in the former. Afij(s,;g,?k) is
the orientationally dependent correction arising from triplet interac-

h

tions, with molecules j and k distant ?5 and r, from the pt 5

k

and similarly for higher order terms. Let R be the set of all ﬁi
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specifying the instantaneous configuration of the molecules; then, the
instantaneous value of the scattering factor for a given orbital in the

h
pt molecule 1s to be written

F sve (59)

== ) k, = k.= =
£,(R,8) = £ (s) + E A (s,1y)) + .gk Afp (s,ry,m)

Js
where f;(s) is the scattering factor for the given orbital in the
isolated molecule p . k and j range from 1 to N-1 , k #p ,
i#p.

Note that by definition

Afg(s,'ip) = g (60)
Kk, — —
Afp (s,Tp,r,) = 0 (61)

il
o

Afgp(s,? ,T) (62)

P P
The summations in (59) can thus be extended to include all the molecules.
The instantaneous scattering factor for the pth molecule is given

by summing (59) over all the orbitals which contain electrons. This

quantity 1s dependent both on the molecular orientations and configura-

tions.

3. Evaluation of the Correlation Terms

A possible way of evaluating the correlation terms in some con-
venient coordinate system is given below.
Afi(s,?k) is found by evaluating the scattering factor for two

interacting molecules separated at a distance T The value of the

k

isolated molecules scattering factor, when the two molecules are at the
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same distance from each other, is known. Subtraction of the latter
from the former ylelds the desired result.
For the triplet term the molecular scattering factor is

evaluated for the given configuration of ;3;? For the same con-

K *
figuratioh the isolated molecules scattering factor is computed. The
value of the three pairwise correlation terms is also computed for

this configuration. Subtracting the latter two results from the first

gives the triplet correlation. This process may be extended to higher

order terms.

C. Coherent Scattering from a Liquid

The instantaneous coherent scattering intensity, when the cor-
relation terms are included, is given by an equation similar to (48),

.. is:(®-R)
I(s) = ] £ (R £ R,s)e P4 (63)

Psq

Using (59) - (62), the instantaneous intensity may be written

I Af?(s,;k,;j) b swa}

- o m g
I(s) = [ {£,(s) + E MT(s,r) + L

Psq
& o I . i—s—fﬁpq
x 1£7(s) + ) AMf (s,xr )+ Af S,T,,r, )+ | e
{£g( E (&t ét q (85T45r) }

(64)
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Retaining the pairwise interaction terms only, (64) may be

written as a sum of four terms,

is°*R
I.(s) = ) £°s) £2¢s)" e P9 )
1 psq T %
¥ — i_s—'i
I(s) = ] fg(s) Mo(s,T) e Pq (66)
pP,q,n
. _ is°R
I,(s) ] £2(s) Af?(s,rm) e P (67)
pP,q,m
o, e is°R
I,(s) = ] Afi(s,r ) Afl(s,r ) e Pq (68)
P,q,m,n 5 4

where R =R - R
. Pq P q

1. Orientational Average

For molecules which do not possess spherical symmetry the con-
figuration of pairs of molecules is given by a vector R and the three
Euler angles Q= (0sBsY) . The molecular pair correlation function
has the form g(ﬁgﬁ) . In general, g(R,2) cannot be obtained from
scattering of a liquid since the data is usually one-dimensional.

It will be assumed in the following that the orientation of
pairs of molecules is independent of their separation. Thus g(ﬁ;ﬁ)
may be written as g(ﬁ)' gdi) and further, if the sampl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>