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Abstract

Synthetic biology may be defined as an attempt at using engineering principles to design

and build novel biological functionalities. An important class of such functionalities in-

volves the bottom up design of genetic networks (or ’circuits’) to control cellular behavior.

Performing design iterations on these circuits in vivo is often a time consuming process.

One approach that has been developed to address these long design times is to use E.

coli cell extracts as simplified circuit prototyping environments. The analogy with similar

approaches in engineering, such as prototyping using wind tunnels and breadboards, may

be extended by developing accompanying computer aided design tools. In this thesis, we

discuss the development of computational and mathematical tools to accelerate circuit

prototyping in the TX-TL cell free prototyping platform, and demonstrate some applica-

tions of these tools.

We start by discussing the problem of reducing circuit behavior variability between dif-

ferent batches of TX-TL cell extracts. To this end, we demonstrate a model-based method-

ology for calibrating extract batches, and for using the calibrations to ‘correct’ the behavior

of genetic circuits between batches. We also look at the interaction of this methodology

with the phenomenon of parameter non-identifiability, which occurs when the parameter

identification inverse problem has multiple solutions. In particular, we derive conditions

under which parameter non-identifiability does not hinder our modeling objectives, and

subsequently demonstrate the use of such non-identifiable models in performing data

variability reduction.

Next, we describe txtlsim, a MATLAB® Simbiology® based toolbox for automatically

generating models of genetic circuits in TX-TL, and for using these models for part char-

acterization and circuit behavior prediction. Large genetic circuits can have non-negligible
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resource usage needs, leading to unintended interactions between circuit nodes arising

due to the loading of cellular machinery, transcription factors or other regulatory ele-

ments. The usage of consumable resources like nucleotides and amino acids can also

have non-trivial effects on complex genetic circuits. These types of effects are handled by

the modeling framework of txtlsim in a natural way.

We also highlight mcmc_simbio, a smaller toolbox within txtlsim for performing con-

current Bayesian parameter inference on Simbiology® models. Concurrent inference here

means that a common set of parameters can be identified using data from an ensemble of

different circuits and experiments, with each experiment informing a subset of the param-

eters. The combination of the concurrence feature with the fact that Markov chain Monte

Carlo (MCMC) based Bayesian inference methods allow for the direct visualization of pa-

rameter non-identifiability enables the design of ensembles of experiments that reduce

such non-identifiability.

Finally, we end with a method for performing model order reduction on transcription

and translation elongation models while maintaining the ability of these models to track

resource consumption. We show that due to their network topology, our models cannot

be brought into the two-timescale form of singular perturbation theory when written in

species concentration coordinates. We identify a coordinate system in which singular

perturbation theory may be applied to chemical reaction networks more naturally, and

use this to achieve the desired model reduction.
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