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Chapter 4

Model Order Reduction of
Transcription and Translation Mass
Action Models in the Presence of
Resource Consumption

4.1 Introduction

Modeling polymerization reactions like transcription and translation is often used in the

study of metabolic pathways [26] in systems biology, and gene regulatory pathways in

synthetic biology.

Such modeling can be carried out using either stochastic or deterministic frameworks,

each which offers distinct advantages. Stochastic models give us the ability to study

the evolution of the probability distributions of species, and work well at low molecu-

lar counts, but are computationally expensive. Deterministic models on the other hand,

are much less computationally demanding to simulate, but also provide less information

than stochastic models.

Models can also exist at various levels of detail. Often, the appropriate level of detail,

exemplified by models used in [15], involves the production of RNA and proteins as sin-

gle steps. In other cases, much more detailed models of transcription incorporating the

formation of pre-initiation complexes, release from proximal promoter regions, individual

elongation steps, and detailed termination are appropriate [27, 36]. Similarly, models of

translation have also been studied at various levels of detail [14, 30].
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The choice of which framework to use, stochastic versus deterministic, detailed versus

lumped, depends on the specified purpose of the model, and on the computational com-

plexity the user is willing to work with. A detailed stochastic model may be reduced in two

different directions: it may be made deterministic under the infinite volume limit [42], or

reactions and mechanisms may be lumped into simplified models [51].

The use of models of transcription and translation in cell-free extracts has made it

necessary to explicitly account for the consumption and loading of resources that oc-

curs due to gene expression. However, incorporating the consumption of nucleotides and

amino acids in the elongation process is done using detailed models, which account for

elongation steps individually, as was done in [1] for the case of transcription.

In this chapter, we start with a detailed deterministic ordinary differential equation

(ODE) models of transcription similar to the one found in [1], and demonstrate a lumping

procedure for reactions that maintains the ability of the model to account for resource

consumption. We begin by demonstrating the main idea for the reduction to a single

transcription step, and then generalize this to incorporate the possibility of multiple in-

termediate stages in the transcription process. This general case is required when inter-

mediate nascent transcripts can have some function other than being a precursor to the

next elongation step within transcription. An example of this is when non coding RNAs

are used as regulatory elements [7, 8]. The model reduction requires the use of the rapid

equilibrium assumption [54], which can be rigorously justified using singular perturba-

tion theory [39, 41, 67, 68]. Due to a structural feature of the chemical reaction network

describing transcription, when species concentrations are used as state variables in the

model, these state variables all possess boundary layer behavior, and converge to a quasi-

steady state ([39], Section 1.6). This makes it difficult to bring the differential equations

into the standard singular perturbation form, and a change of coordinates, described in

Section 4.4.1, is needed before such a form can be achieved.
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4.2 Consumption Model

One may divide the stages of transcription and translation into initiation, elongation and

termination. Each of these stages involves a complex set of reactions, and may be divided

into various smaller stages. For illustrative purposes, we will work with transcription in the

rest of this chapter, but a similar reduction procedure may be carried out for translation.

We start with a model similar to the one shown in ([1], Figure 1A), with a few simplifi-

cations: we group the different nucleotides into a single species (N), and remove the pro-

duction of the inorganic pyrophosphate. Defining the notation X:Y to denote the species

X and Y bound together into a new species, our resulting model is

P+D
kP f−−*)−−
kPr

P:D1:m0, Polymerase binding,

P:D1:m0 +N
kN f−−*)−−
kN r

P:D1:m0:N, Nucleotide binding,

P:D1:m0:N
kt x−−→ P:D2:m1, Elongation,
...

P:Dn:mn−1:N
kt x−−→ P:Dt +mn, Elongation,

P:Dt

kterm−−→ P+D, Termination.

(4.1)

Here, the entire initiation stage is lumped into a single reaction where an RNA polymerase

molecule (P) binds to a DNA molecule (D). Elongation then proceeds iteratively, with each

iteration consisting a reversible nucleotide binding reaction and an irreversible elongation

step. Finally, termination is modeled as the dissociation of the complex comprising the

RNA polymerase bound to the final location on the DNA (P:Dt).
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We can write this network in terms of ODEs using mass action kinetics

d[P]
dt
= − kP f [P][D] + kPr[P:D1:m0] + kterm[P:Dt],

d[D]
dt
= − kP f [P][D] + kPr[P:D1:m0] + kterm[P:Dt],

d[P:D1:m0]

dt
= kP f [P][D]− kPr[P:D1:m0]− kN f [P:D1:m0][N] + kN r[P:D1:m0:N],

d[P:D1:m0:N]

dt
= kN f [P:D1:m0][N]− kN r[P:D1:m0:N]− kt x[P:D1:m0:N],

d[P:D2:m1]

dt
= kt x[P:D1:m0:N]− kN f [P:D2:m1][N] + kN r[P:D2:m1:N],

...
d[P:Dn:mn−1:N]

dt
= − kt x[P:Dn:mn−1:N] + kN f [P:Dn:mn−1][N]− kN r[P:Dn:mn−1:N],

d[P:Dt]

dt
= kt x[P:Dn:mn−1:N]− kterm[P:Dt],

d[N]
dt

=
n∑

k=1

�
kN r[P:Dk:mk−1:N]− kN f [P:Dk:mk−1][N]

�
,

d[mn]

dt
= kt x[P:Dn:mn−1:N].

(4.2)

We may wish to lump all the elongation steps into a single or a few steps, while main-

taining the correct average rates of RNA production and nucleotide consumption. A simple

model is given by

P+D
kP f−−*)−−
kPr

P:D, Polymerase binding,

P:D+ nN
kN f−−*)−−
kN r

P:D:nN, Nucleotide binding,

P:D:nN
kt x−−→ P:Dt +m, RNA production,

P:Dt

kterm−−→ P+D, Termination,

(4.3)

where n is the number of nucleotides needed to create a single RNA transcript. The names

of the relevant rate constants are shown on the arrows in the model. While this simple

model preserves the stoichiometry of the consumption of substrate nucleotides and the

production of RNA, it models the kinetics of the system incorrectly; it is describing the

scenario where n nucleotides simultaneously collide with the P:D complex to form a larger
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complex. This is both biologically implausible and computationally intractable, due to the

appearance of n as an exponent in some of the terms in the mass action ODEs. Figure 4.1B

shows the results of attempting to simulate the resulting model for various transcript

lengths.

To circumvent this problem, we propose modeling the consumption of nucleotides

separately from the production of RNA, and scaling the RNA production rate by n to get the

nucleotide consumption rate. The resulting consumption model is given by the equations

P+D
kP f−−*)−−
kPr

P:D, Polymerase binding,

P:D+N
kNf−−*)−−
kNr

P:D:N, Nucleotide binding,

P:D:N
kcon−−→ P:D, Consumption,

P:D:N
kreduced−−−−→ P:Dt +R, RNA production,

P:Dt

kterm−−→ P+D, Termination

(4.4)

with kt x denoting the transcription rate, and kcon = (n−1)× kt x the rate of a consumption

reaction. A pictorial representation of this scheme is shown in Figure 4.1A.
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Figure 4.1: (A) Schematic illustrating the consumption reaction. (B) Time required to sim-
ulate 10000 seconds of transcription using the simple model (4.3) and the consumption
model (4.4). At about n = 42, and MATLAB® is no longer able to complete the simulation.

The simple model (4.3) was able to simulate the production of RNA for up to an n of

about 42, after which MATLAB® returned a simulation error. The consumption model (4.4)

was able to simulate transcription for all n tested (n > 2000). The results for n < 100 are

shown in Figure 4.1B.
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We assume that that at any time, there is only one polymerase molecule bound to the

DNA. For this single occupancy model, the features that are preserved between the full

and reduced model are that the rate of consumption of nucleotides is independent of

the transcript length, while the rate of production of RNA scales inversely with the length.

To see this, let kt x be the rate at which the elongation step occurs in the full model (4.1).

Then, setting kreduced = ktx/n and kcon = (n−1)kreduced gives us the rate of RNA production

as

d[R]
dt
= kreduced[P:D:N]

=
kt x

n
[P:D:N].

To compute the rate of nucleotide consumption, we define a species concentration

[Nuninc](t), which is the concentration of nucleotides not incorporated into RNA at time

t . I.e., [Nuninc] = [P:D:N] + [N]. The rate of consumption of nucleotides, then, does not

directly depend on the length n of the RNA, and is n times the rate of RNA production,

d[Nuninc]

dt
=

d([P:D:N])
dt

+
d([N])

dt

= − (kreduced + kcon)[P:D:N]

= − ktx[P:D:N]

= − n
d[R]
dt

.

4.3 Mathematical Preliminaries

In this section, we introduce some ideas from chemical reaction network theory (CRNT)

and singular perturbation theory, and use them to prove a couple of results which will be

useful when we try to carry out ourmodel reduction in Section 4.6. We begin by introducing

basic definitions and notions from CRNT.
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4.3.1 The Zero Deficiency Theorem and Asymptotic Stability

Let {x1, . . . , xs} be a set of s species which participate in r reactions

s∑
j=1

Ai j x j
ki−−→

s∑
j=1

Bi j x j , i ∈ {1, . . . r}, (4.5)

where the Ai j ∈ R≥0 are called the stoichiometric coefficients of the system, and the re-

action rate of the ith reaction is given by ki > 0. We will call Equation (4.5) a chemical

reaction network or reaction network for short. In the representation above, reversible

reactions are modeled as two separate irreversible reactions. The reactants
∑s

j=1 Ai j x j

and products
∑s

j=1 Bi j x j are called the complexes of this reaction network. Let m denote

the number of distinct complexes in a reaction network, and label them by c1, c2, . . . cm.

In matrix form we may write this reaction network as

Ax
k−−→ Bx ,

where the species concentration vector is x ≜ [x1, . . . , xs]T ∈ Rs≥0, coefficient matrices are

A ≜ [Ai j] ∈ Rr×s≥0 , B ≜ [Bi j] ∈ Rr×s≥0 , and the reaction rate vector is k ≜ (k1, . . . , kr)T ∈ Rr
>0.

We define the stoichiometric matrix S ≜ (B − A)T . Recall that using standard mass action

kinetics, we can write the dynamics of the network given by Equation (4.5) as

dx
dt
= Sν(x , k), t ≥ 0, x(0) = x0, (4.6)

where v(x , k) is a vector function whose ith component gives the velocity of the ith reac-

tion.

Definition 11. The stoichiometric subspace associated with the mass action Equation (4.6)

is given by S ≜ Im((B − A)T ), and is a subspace of Rs . The rank of the reaction network

(4.6) is given by q ≜ rank(B − A)T , a q dimensional manifold called the stoichiometric

compatibility class is defined by the affine space (x0 + S)∩Rs≥0.
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Remark 12. The stoichiometric compatibility class is an important concept when defining

properties of trajectories, and in particular those of equilibria. These properties include

the existence and multiplicity of equilibria, and whether these equilibria are (asymptot-

ically) stable. Feinberg [18] describes the issues involved in Section 5.2 of his paper. We

simply note that trajectories beginning at x0 stay in the stoichiometric compatibility class

(S+x0)∩Rs≥0 containing x0. The standard notion of asymptotic stability will be understood

to be with respect to the stoichiometric compatibility class containing the trajectory being

considered. More precisely, we will consider an equilibrium x∗ to be asymptotically stable

if any trajectory beginning sufficiently close to x∗ and within the stoichiometric compati-

bility class containing x∗ stays close to x∗ and approaches x∗ in the limit t →∞. ⋄
Definition 12 ([5], Definition 6.3). Let ci and c j be complexes in the reaction network (4.5).

We say there is a direct path from ci to c j if ci → c j , an indirect path from ci to c j if there

exists a sequence of complexes (ci , ci1 , . . . , cip , c j) such that ci → ci1 , ci1 → ci2 , ... cip → c j .

There esists a path from ci to c j if there exists a direct or indirect path from ci to c j . The

complexes ci and c j are linked if ci = c j , or if there is a direct or indirect path from one to

the other. This definition of linkage can be used to separate a chemical reaction network

into equivalence classes known as linkage classes. Finally, we call a reaction network (4.5)

weakly reversible if, for each pair (ci , c j), the existence of a path from ci to c j implies the

existence of a path from c j to ci .

Definition 13 ([5], Definition 6.2). The deficiency of the network (4.5) is given by δ ≜ m−l−q,

where l is the number of distinct linkage classes and q = rank(ν).

Theorem 2. [[18], Theorem 4.1] Assume that the reaction network (4.6) has zero deficiency

and is weakly reversible. Then, for arbitrary positive rate constants, the system (4.6) has

the following properties: Each stoichiometric compatibility class contains precisely one

equilibrium, this equilibrium is asymptotically stable (see remark below), and there is no

nontrivial periodic orbit in Rs≥0.

Remark 13. As in the remark above, asymptotic stability in Theorem 2 is taken with respect

to the stoichiometric compatibility class containing that equilibrium, defined by the initial

conditions of the system. A pictorial depiction of this situation is given in [17, Fig. 1, 2] ⋄
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4.3.2 Relationship Between Nucleotide Consumption Rate and RNA Production
Rate

We state a few results used in carrying out the model reduction in Section 4.6. Ideally,

we would like to determine the relationship between the rate of production of RNA and

the rate of consumption of nucleotides in the full model (4.1). The approach we will take

involves first partitioning the corresponding mass action equations (4.2) into subsets of

equations as follows:

dξ
dt
= F(ξ, [N]), ξ ∈ R2n+3≥0 , (4.7a)

d[N]
dt

= G(ξ, [N]), (4.7b)

d[mn]

dt
= H(ξ), (4.7c)

where ξ is a vector comprising the concentrations of all the species except the completed

RNA transcript mn and the free nucleotides, N. F , G and H are functions defined using

mass action kinetics, which, with their respective arguments, give the rates of change of

the vector ξ and the scalars [N] and [mn]. This decomposition allows us to consider the

rate of production of RNA, a species that does not participate anywhere else in the network,

separately from the rate of consumption of the nucleotides, which affect dynamics of many

reactions in the network. In particular, we note that in equations (4.7a)–(4.7c), the functions

F , G and H do not have [mn] as an argument, while both F and G depend on [N].

We will show that when the concentration of nucleotides, [N] as an argument of F

in Equation (4.7a) is held constant, the trajectories of ξ reach an asymptotically stable

equilibrium, ξe . At this equilibrium, which can be thought of as an operating point for

the local dynamics of [N] in Equation (4.7b) and of [mn] in Equation (4.7c), the rate of

consumption of nucleotides is proportional to the rate of production of RNA.

The assumption to hold the concentration of some species constant in order to de-

termine the properties of a network requires some justification. To this end, we note

that it has been used in the theory of chemical reactions, for instance by Feinberg ([18],

Remark 4.3.1), who notes that when a species is in great excess, then over some ‘reason-
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able’ time-scale, one could expect the concentration of the excess species to not change

appreciably, while the remaining species can display non-constant dynamics. One do-

main where nucleotide concentration is in excess for most of the duration of interest is

in cell-free extracts, which were the primary motivation for this study. Another domain

of relevance for the constancy of nucleotides is in cells, where nucleotide concentrations

are regulated, and one might wish to calculate the consumption rate to obtain a measure

for the loading of the cell’s metabolic machinery.

We now state a proposition which establishes the relationship between the rate of

production of RNA and that of the consumption of nucleotides at this steady state, and

furthermore provides steady state relationships among species concentrations, which will

turn out to be useful for the model reduction procedure in Section 4.6.

Proposition 3. Consider the full model given by equations (4.1) and (4.2), and its decom-

position into subsystems F , G and H given by equations (4.7a)–(4.7c). When the nucleotide

concentration is held constant, [N] = [N]const, in the subsystem F , the trajectories of ξ

reach an asymptotically stable equilibrium, ξe , in the sense of Remarks 12 and 13. Further-

more, substituting ξe and [N]const into the subsystems G and H gives the relationship

d[N]uninc
dt

= −n
d[mn]

dt
, (4.8)

where n is the length of the RNA, mn, in nucleotides, and [N]uninc is the total concentration

of nucleotides not incorporated into RNA, i.e., [N]uninc ≜ [N] +
∑n

k=1[P:Dk:mk−1:N].

Proof. We first prove the stability of the equilibrium ξe of the subsystem

dξ
dt
= F(ξ, [N]const). (4.9)

Using the technique from Feinberg ( [18], Section 4.3), we can write out the dynamical

Equation (4.9) as a chemical reaction network with certain rate constants modified by the
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constant scalar [N]const

P+D
kP f−−*)−−
kPr

P:D1:m0

P:D1:m0

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:D1:m0:N

P:D1:m0:N
kt x−−→ P:D2:m1

...

P:Dn:mn−1

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:Dn:mn−1:N

P:Dn:mn−1:N
kt x−−→ P:Dt

P:Dt

kterm−−→ P+D.

(4.10)

According to Theorem 2, if we can show that the network given by (4.10) has deficiency

zero and is weakly reversible, we would have shown that it possesses an asymptotically

stable equilibrium. The set of complexes in the network is {P+D,P:D1:m0, P:D1:m0:N, . . . , P:Dn:mn−1, P:Dn:mn−1:N, P:Dt}.
Thus, there are c ≜ 2n + 2 complexes in the network. Note that there is a cyclic path

through the set of complexes, given by P+D→ P:D1:m0→ P:D1:m0:N→ ·· · → P:Dn:mn−1→
P:Dn:mn−1:N→ P:Dt→ P+D. Thus, the network is weakly reversible, and has only one link-

age class (l = 1). Finally, we compute the rank of the stoichiometric matrix as follows. The

network can be written in matrix form as

dξ
dt
= Mν(ξ, [N]const),
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where

dξ
dt
=

d
dt



[P]

[D]

[P:D1:m0]

[P:D1:m0:N]

[P:D2:m1]

[P:D2:m1:N]
...

[P:Dn:mn−1]

[P:Dn:mn−1:N]

[P:Dt]



, ν(ξ, [N]const) =



kP f [P][D]

kPr[P:D1:m0]

kN f [N]const[P:D1:m0]

kN r[P:D1:m0:N]

kt x[P:D1:m0:N]

kN f [N]const[P:D2:m1]

kN r[P:D2:m1:N]

kt x[P:D2:m1:N]
...

kN f [N]const[P:Dn:mn−1]

kN r[P:Dn:mn−1:N]

kt x[P:Dn:mn−1:N]

kterm[P:Dt]



, (4.11)

and

M =



c1 c2 c3 c4 c5 c6 c7 c8 . . . c3n c3n+1 c3n+2 c3n+3

r1 −1 1 0 0 0 0 0 0 0 0 0 1

r2 −1 1 0 0 0 0 0 0 0 0 0 1

r3 1 −1 −1 1 0 0 0 0 0 0 0 0

r4 0 0 1 −1 −1 0 0 0 0 0 0 0

r5 0 0 0 0 1 −1 1 0 0 0 0 0

r6 0 0 0 0 0 1 −1 −1 0 0 0 0

... . . .

r2n+1 0 0 0 0 0 0 0 0 −1 1 0 0

r2n+2 0 0 0 0 0 0 0 0 1 −1 −1 0

r2n+3 0 0 0 0 0 0 0 0 0 0 1 −1



,
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where we denote the rows and columns of the matrix M using ri and ci , i = 1, . . . 2n+ 2,

respectively. We determine the rank of M as follows. Remove r1 since it is a dupli-

cate of r2, and therefore does not affect the rank of the matrix. Also remove columns

{c2, c4, c7, . . . , c3i+1, . . . , c3n+1}, which are all scalar multiples of the columns preceding them.
We are then left with the 2n+ 2× 2n+ 2 matrix

M̃ =



c̃1 c̃3 c̃5 c̃6 c̃8 . . . c̃3n c̃3n+2 c̃3n+3

r̃2 −1 0 0 0 0 0 0 1

r̃3 1 −1 0 0 0 0 0 0

r̃4 0 1 −1 0 0 0 0 0

r̃5 0 0 1 −1 0 0 0 0

r̃6 0 0 0 1 −1 0 0 0

... . . .

r̃2n+1 0 0 0 0 0 −1 0 0

r̃2n+2 0 0 0 0 0 1 −1 0

r̃2n+3 0 0 0 0 0 0 1 −1



,

which has the same rank as M . The sub-matrix M̃1 obtained by removing c̃3n+3 and r̃2n+3 is

lower triangular with nonzero diagonal entries, and thus has a (full) rank of 2n+ 1, giving

rank(M) ≥ 2n+ 1. We also know that rank(M) = rank(M̃) ≤ 2n+ 2. Finally, note that r̃2n+3

can be written as a linear combination of the remaining rows in M̃ as

r̃2n+3 = −
2n+2∑
i=2

r̃i .

Thus q ≜ rank(M) = 2n+ 1. I.e., this network has zero deficiency δ = c − l − q = 2n+ 2−
1 − (2n + 1) = 0, and is weakly reversible and using Theorem 2, we conclude that there

exists a positive equilibrium of the subsystem (4.7a), asymptotically stable relative to its

stoichiometric compatibility class.
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Next, we obtain the relationship between d[Nuninc]/dt and d[mn]/dt . Note that

d[mn]

dt
= kt x[P:Dn:mn−1:N], (4.12)

d[Nuninc]
dt

=

d

�
[N] +

n∑
i=1

[P:Di:mi−1:N]

�
dt

=
d[N]
dt
+

n∑
i=1

d[P:Di:mi−1:N]

dt

=
n∑

k=1

�
kN r[P:Dk:mk−1:N]− kN f [P:Dk:mk−1][N]

�
+

n∑
k=1

�
kN f [P:Dk:mk−1][N]− kN r[P:Dk:mk−1:N]− kt x[P:Dk:mk−1:N]

�
= − kt x

n∑
k=1

[P:Dk:mk−1:N]. (4.13)

For themodel (4.7a) to be at steady state, the net flux into and out of every speciesmust

be zero, and individual fluxes are constant in time. Consider a set of three consecutive

reactions from the subsystem (4.10) at an arbitrary [N]const

P:Di−1:mi−2:N
kt x−−→ P:Di:mi−1, (4.14)

P:Di:mi−1

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:Di:mi−1:N, (4.15)

P:Di:mi−1:N
kt x−−→ P:Di+1:mi. (4.16)

Since the instantaneous flux into and out of P:Di:mi−1 is zero, the flux in due to (4.14)

and the flux out due to the reversible reactions (4.15) must balance, we have

kt x[P:Di−1:mi−2:N] = kN f [P:Di:mi−1][N]const − kN r[P:Di:mi−1:N]. (4.17)

Similarly, considering the species P:Di:mi−1:N in (4.15) and (4.16), we have

kN f [P:Di:mi−1][N]const − kN r[P:Di:mi−1:N] = kt x[P:Di:mi−1:N]. (4.18)
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Thus,

[P:Di−1:mi−2:N] = [P:Di:mi−1:N] (4.19)

[P:Di−1:mi−2] = [P:Di:mi−1], (4.20)

and by induction, we have that for all i, j in {1,2, . . . n},

[P:Di:mi−1] = [P:Dj:mj−1], (4.21)

[P:Di:mi−1:N] = [P:Dj:mj−1:N]. (4.22)

Thus, Equation (4.13) can be reduced to

d[Nuninc]
dt

= − kt x

n∑
k=1

[P:Dk:mk−1:N] (4.23)

= − n · kt x[P:Dn:mn−1:N] (4.24)

= − n
d[mn]

dt
, (4.25)

which completes the proof.

4.4 Overview of Time-Scale Separation in Chemical Kinetics via

Singular Perturbation Theory

4.4.1 Singular Perturbation Theory for Chemical Reaction Networks

Singular perturbation theory has been used widely to decompose models of physical sys-

tems containing multiple temporal and spatial scales into subsystems at those scales [19].

This decomposition has been carried out for chemical systems too, where some reac-

tions proceed much more quickly than others, or there exist transient short lived species

[41, 67, 68].

To begin, we introduce the notion of decomposing a system into slow and fast subsys-

tems, operating at two different time-scales. Such a decomposition is only possible if we
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can write the model for the system in the standard singular perturbation form:

dx
dt
= f (t, x , z,ε), x(0) = x0, x ∈ Rn, (4.26)

ε
dz
dt
= g(t, x , z,ε), z(0) = z0, z ∈ Rm, (4.27)

where ε is a small positive scalar, and f , g are sufficiently many times continuously dif-

ferentiable in their arguments (t, x , z,ε).

The small parameter ε in Equation (4.27) is used to capture the effects of large reaction

rate constants in chemical kinetics, which lead to fast transient dynamics. These fast

dynamics are modeled by the variable z, whose rate of change gets scaled by 1/ε, and

hence becomes very large. Being able to apply tools from singular perturbation theory

involves bringing the mass action dynamical equations into the above form as a necessary

prerequisite. Singular perturbation theory also requires that there exists at least one

asymptotically stable equilibrium (isolated from any others that might exist) to which the

trajectories of the variable z, for each allowable x , converge. We defer a discussion of the

properties of the equilibria for the moment, and focus on finding a set of state variables

that allow us to bring the system into the standard form in the first place. To this end,

we will discuss why species concentrations are not appropriate to use as a state variables

for the purposes of bringing a system into the standard form, and elaborate on a variable

transformation which provides a better system of coordinates.

4.4.1.1 Nonexplicit Time-Scale-Separation

In many applications exhibiting two-time-scale behavior, it is not possible to partition the

natural state variables into fast and slow variables to bring the system into the standard

singular perturbation form [39]. This is despite the fact that the variables exhibit two-

time-scale behavior, where an initial fast transient is followed by slow evolution on an

equilibrium manifold [41]. This occurs because these natural state variables are in general

a combination of both fast and slow effects, and therefore exhibit nonexplicit time-scale-

separation. In chemical kinetics, the ODE models are written with species concentrations
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as the natural variables, and finding transformations from the natural coordinates to a set

of coordinates where the model may be written in the standard form is highly nontrivial.

The structural reason for nonexplicit time-scale-separation in chemical kinetics is that

each species in a model may participate in both fast and slow reactions.

The problem of finding coordinate changes to allow such models to be written in the

standard form has received some attention in the literature. Kokotovic, Khalil and O’Reilly

[39] gave a general prescription for constructing such coordinate transformations, while

specific ad-hoc transformations for chemical reaction networks were studied in [6,57]. The

first systematic procedure for finding a linear coordinate transformation was developed

by Van Breusegem and Bastin [67]. These authors first partition the stoichiometric matrix

into block matrices corresponding to species participating in fast reactions, both fast and

slow reactions, and only slow reactions, and then use these block matrices to construct

the desired invertible coordinate transformation. The works of Kumar, Christofidis and

Daoutidis [41] and Vora and Daoutidis [68] take an entirely different approach, and develop

a very general framework for deriving a family of coordinate transformations that bring

nonexplicit two-time-scale models into the standard form. The main idea behind their

method involves giving a set of constraints that implicitly define the equilibrium manifold

and computing an upper bound on the dimension of this manifold. This allows them to

pick an arbitrary subset or transformation of state variables from the original set, and

construct an explicit representation of the reduced order model that, after an initial fast

transient, evolves on the equilibrium manifold. The generality of this framework arises

from the fact that the method is not limited to isothermal reaction networks, where the

stoichiometric matrix is constant in time, but can instead be used to reduce nonisothermal

reaction networks, and even more general systems, like those modeling the dynamics of

heat exchange. For isothermal reaction networks, these studies give a method for the

explicit construction of the slow variables as a set of linear combinations defined by a

basis of the left null space of the subset of the stoichiometric matrix corresponding to the

fast reactions.

All of these studies suffer from a set of limitations. We note that the ad-hoc methods
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mentioned above require human intuition to find the appropriate coordinate transfor-

mation, and such methods do not scale well beyond the simplest models. The remain-

ing methods suffer from the limitation that the transformed state variables do not have

a physical interpretation, and are fairly complex. The methods in [41, 68] further suffer

from the limitation that even in the case of isothermal reactions, the transformation is

nonlinear, and finding the standard form involves inverting this transformation on the

equilibrium manifold. Such an inversion is highly nontrivial, and could only be found for

the simpler examples in their studies (see, for example, the final step in the esterification

example in [68], where no attempt to invert the transformation is made). In this chapter,

we provide a general construction for finding a transformation that is simple to construct,

allows the transformed variables to have a physical interpretation, and gives a completely

explicit representation of the standard form in the transformed coordinates.

4.4.2 Species Concentrations as State Variables

The typical way of reducing an ODE model of a reaction network with two-time-scale be-

havior into the standard form is to separate the set of mass-action differential equations

into those belonging to species participating in slow reactions only, and those participat-

ing in fast and (possibly) slow reactions. The enzymatic reaction is a prototypical example

of this approach. Consider the reaction

Enz+ Su
a−−*)−−
d

Cpx
k−−→ Pdt+ Enz (4.28)

where Enz is the enzyme, Su the substrate, Cpx the complex, and Pdt the product formed.

The binding-unbinding is assumed to bemuch faster than the catalysis reaction (a, d ≫ k).

In differential equations, this is

d[Cpx]
dt

= − k[Cpx]− d[Cpx] + a[Enz][Su] = −d[Enz]
dt

,

d[Su]
dt

= d[Cpx]− a[Enz][Su],

d[Pdt]
dt

= k[Cpx].

(4.29)
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Using [Enz] = E0−[Cpx], [Su] = S0−[Cpx]−[Pdt], τ= kt , Kd = d/a, ε= k/d and Kd x = X

where X ∈ {[Cpx], [Enz, [Su], [Pdt], S0, E0} and correspondingly x ∈ {c, e, s, p, s0, e0}, we
arrive at the nondimensionalized model

ε
dc
dτ
= − c − εc + (e0 − c)(s0 − c − p),

dp
dτ
= c.

(4.30)

Setting ε = 0 and using S0 − [Cpx]− [Pdt] ≈ S0 − [Pdt], allows us to arrive at reduced

system

d[Pdt]
dt

= k[Cpx] = k
E0(S0 − [Pdt])
(S0 − [Pdt]) + Kd

. (4.31)

The reason we are able to write this model in the standard form (4.30) is that the

species Pdt only takes part in the slow reaction (rate = k), allowing it to be part of the slow

subsystem, while the other species (Enz, Su, Cpx) take part in at least one fast reaction,

making them part of the fast subsystem.

The same trend appears when we look at the transcription model given by Equa-

tions (4.7a) – (4.7c). For compactness of notation, let us define η̄≡ [N], γ̄≡ [P:Dt], ρ̄ ≡ [P],
d̄ ≡ [D], m̄n ≡ [mn] and for i = 1, . . . , n, denote v̄i ≡ [P:Di:mi−1] and w̄i ≡ [P:Di:mi−1:N]. We

may write the model as
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dd̄
dt
= ktermγ̄− kP f ρ̄d̄+ kPr v̄1,

dρ̄
dt
= ktermγ̄− kP f ρ̄d̄+ kPr v̄1,

dv̄1

dt
= kP f ρ̄d̄− kPr v̄1 − kN f v̄1η̄+ kN r w̄1,

dw̄1

dt
= kN f v̄1η̄− kN r w̄1 − kt w̄1,

dv̄2

dt
= kt w̄1 − kN f v̄2η̄+ kN r w̄2,

dw̄2

dt
= kN f v̄2η̄− kN r w̄2 − kt w̄2,

...
dv̄n

dt
= kt w̄2 − kN f v̄3η̄kN r w̄3,

dw̄n

dt
= kN f v̄3η̄− kN r w̄3 − kt w̄3,

dγ̄
dt
= kt w̄3 − ktermγ̄,

dη̄
dt
=

n∑
i=1

kN r w̄i − kN f v̄iη̄,

dm̄n

dt
= kt w̄n,

(4.32)

and use the nondimensionalization scheme ε = kt/kN r , τ = tkt , αP f = kP f /kN f , αPr =

kPr/kN r , αterm = kterm/kt , ū = kN r/kN f u for all u ∈ {ρ, d,γ,η, mn, v1, . . . , vn, w1, . . . , wn} to
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obtain the nondimensionalized model

dγ
dτ
= wn −αtermγ,

dmn

dτ
= wn,

ε
dd
dτ
= εαtermγ−αP f ρd+αPr v1,

ε
dρ
dτ
= εαtermγ−αP f ρd+αPr v1,

ε
dv1

dτ
= αP f ρd−αPr v1 − v1η+w1,

ε
dw1

dτ
= − εw1 + v1η−w1,

ε
dv2

dτ
= εw1 − v2η+w2,

ε
dw2

dτ
= − εw2 + v2η−w2,

...

ε
dvn

dτ
= εwn−1 − vnη+wn,

ε
dwn

dτ
= − εwn + vnη−wn,

ε
dη
dτ
=

n∑
i=1

(−viη+wi).

(4.33)

We see here that only γ and mn can be separated into the slow subsystem, despite ev-

ery other species participating in slow reactions as well. If we were to consider a network

whereby every species took part in at least one fast reaction, then every equation in the

corresponding differential equations would have an epsilon in front of it. Setting ε = 0

would lead to a loss of all slow dynamics from our model, and we would only be able to

make statements about what happens at the equilibrium for a given set of slow variable

values. Due to this nonexplicit time-scale-separation, it would not be possible to have a

set of reduced differential equations that can be solved or simulated. In the next sec-

tion, we develop an invertible transformation from the species concentration coordinates

to a different set of coordinates, and show how in these coordinates, the fast and slow

dynamics can be separated, and the standard form derived.
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4.4.3 ReactionExtents as aNatural andPhysically InterpretableCoordinateSys-
tem

4.4.3.1 Preliminary Reduction by Conservation Laws

The coordinate transformation we are interested in will depend on the stoichiometric

matrix being invertible. In this section, we will discuss the procedure of removing linear

dependencies in the rows and columns of the stoichiometric matrix. Consider again the

ODE description of the chemical reaction system given by Equation (4.6), where S ∈ Rs×r is

the stoichiometric matrix, and ν ∈ Rr is the reaction rate velocity vector. We assume that

whenever a reversible reaction exists in the system, such that there is a corresponding

pair of columns of S which are negatives of each other, the column corresponding to the

backward reaction has been removed from the matrix. Furthermore, the element of ν

corresponding to the backward reaction rate is removed from the vector, and subtracted

from the element corresponding to the forward rate, such that we have the net forward

rate of the reversible reaction. For example, in the enzymatic reaction in Equation (4.28),

we would transform the ODE description

d
dt


[Enz]

[Su]

[Cpx]

[Pdt]

=

−1 1 1

−1 1 0

1 −1 −1

0 0 1




a[Enz][Su]

d[Cpx]

k[Cpx]

 , (4.34)

where the first two columns of the stoichiometric matrix are negatives of each other, to

d
dt


[Enz]

[Su]

[Cpx]

[Pdt]

=

−1 1

−1 0

1 −1

0 1


 a[Enz][Su]− d[Cpx]

k[Cpx]

 , (4.35)

where the second column has been removed, and the reaction rate vector has been trans-

formed accordingly. We also assume that once all such reversible reaction column pairs
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have been converted to single columns, there are no other linear dependencies in the

columns of S, and the new number of columns is r ′. We expect that a more general case

for dependencies between net reactions may be be constructed based on the idea of re-

action pathways, which are introduced in [58, 59], and refer to reaction cycles arising in

the reaction network diagram due to the existence of these linear dependencies.

Once we have removed the linear dependencies in the columns of S, we are ready to

do the same for the rows. The argument presented is based on [9] and [56]. Since the

columns of S are linearly independent, rank(S) = r ′, and there are r ′ linearly independent

rows in S, such that the remaining rows can be written as linear combinations of these

r ′ rows. We may define a full row rank matrix P ∈ Rr ′×s that picks out the r ′ linearly

independent rows of S. Each row in P is made of all zeros except one element, which is

a one. Furthermore, none of the r ′ rows are equal. By the rank-nullity theorem, we also

know that the dimension of the left nullspace of S is s− r ′, and thus we may find s− r ′ row

vectors which form a basis for this space. Arranging these row vectors into a full row rank

matrix H ∈ R(s−r ′)×n, we have HS = 0.

We may now use these matrices to define a reduced stoichiometric matrix Sr ∈ Rr ′×r ′

such that  Sr

0

≜
 P

H

S, (4.36)

where
�

P
H

� ∈ Rs×s is invertible, and 0 is a matrix of zeros of appropriate dimensions.

Similarly, the species concentration vector may be transformed as x i

xd

≜
 P

H

 x , (4.37)

where x i ∈ Rd are the dynamic variables in the reduced model, and xd ∈ Rm are combina-

tions of species concentrations which end up being constant, and are determined by the

initial concentrations in the system. To see this, apply
�

P
H

�
to Equation (4.6)
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d
dt

 x i

xd

=
 P

H

 dx
dt

(4.38)

=

 P

H

Sν(x) (4.39)
=

 Srν(x)

0

 (4.40)

=

 Srνr(x i , xd)

0

 ,
(4.41)

 x i0

xd0

≜
 x i

xd

 (0) (4.42)

=

 P

H

 x0, (4.43)

where

νr(x i , xd)≜ ν (x)
���
x=
�

P
H

�−1� x i
xd

�, (4.44)

so that we have the reduced system

ẋ i = Srνr(x i , xd), x i(0) = x i0,

ẋd = 0, xd(t) = xd0 ∀t ≥ 0.
(4.45)

For example, applying thismethodology to the enzymatic reaction (4.28), wemay choose

P =
�

0 0 1 0
0 0 0 1

�
and H =
�

1 0 1 0
0 1 1 1

�
, so that x i = [ [Cpx], [Pdt] ]T and xd = [ [Enz]+[Cpx], [Su]+[Cpx]+[Pdt] ]T

and the reduced system (4.45) can be written:

d
dt

 [Cpx]

[Pdt]

=
 1 −1

0 1

 a[Enz][Su]− d[Cpx]

k[Cpx]

 ,
 [Cpx]

[Pdt]

 (0) =
 C0

P0

 ,
d
dt

 [Enz] + [Cpx]

[Su] + [Cpx] + [Pdt]

= 0,

 [Enz] + [Cpx]

[Su] + [Cpx] + [Pdt]

 (t) =
 E0

S0

 , ∀t ≥ 0.

(4.46)
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4.4.3.2 Transforming to Reaction Coordinates

Let us define a coordinate transformation from the x i ∈ Rr ′ variables to a new set of

variables R ∈ Rr ′ ,  R

xd

≜
 S−1

r 0

0 Is−r ′

 x i

xd

 , (4.47)

where Is−r ′ is the identity matrix of dimension s− r ′ . In this new coordinate system, the

ODEs are
dR
dt
= S−1

r
dx i

dt

= ν


 P

H

−1 SrR

xd




≜ νr xn (R, xd) .

(4.48)

One of the sources of multiple time-scales in chemical reaction networks is the widely

different orders of magnitudes of the reaction rate parameters. Suppose we partition

the elements in the reaction velocity vector ν into fast and slow rates, as determined

by the reaction rate parameters being large or small. In particular, define two matrices

Ms ∈ Rrs×r ′ and M f ∈ Rr f ×r ′ that pick out the slow and fast reaction velocities respec-

tively. For example, in the enzymatic reaction, recall that the enzyme-substrate binding-

unbinding reactions are considered fast, while the product formation reaction is often

slow, so that (a, d ≫ k). Thus, we can partition the elements of ν into the set of fast

velocities {a[Enz][Su] − b[Cpx]} and that of slow velocities {k[Cpx]}, with the matrices
Ms = [ 0 1 ] and M f = [ 1 0 ]. Next, partition R using Ms and M f as Rs

R f

≜
 Ms

M f

R, (4.49)

and note that the above transformation is invertible. With this partitioning scheme in
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place, we may write the model as

d
dt

 Rs

R f

=
 Ms

M f

 dR
dt

=

 Ms

M f

ν

 P

H

−1

 Sr

 Ms

M f

−1 Rs

R f


xd




≜

 νs

ν f

�Rs, R f

�
.

(4.50)

Lastly, defining a small parameter ε which isolates the effect of the fast reactions, it

can be shown that we can bring the above model into the form

dRs

dt
= νs

�
Rs, R f

�
,

ε
dR f

dt
= ν̄ f

�
Rs, R f

�
,

(4.51)

where each element of ν̄ f =
1
εν f has at least one term independent of ε. Note that

Equations (4.51) can be nondimensionalized if desired. In the context of the enzymatic

reaction, Equation (4.50) is

d
dt

 Rs

R f

=
 0 1

1 0

ν



E0 − R f + Rs

S0 − R f

R f − Rs

Rs




=

 k(R f − Rs)

a(E0 − R f + Rs)(S0 − R f )− d(R f − Rs)

 ,
(4.52)

and consequently, Equation (4.51), after nondimensionalization, is

drs

dτ
= r f − rs

ε
dr f

dτ
= (e0 − r f + rs)(s0 − r f )− (r f − rs),

(4.53)
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where ε= k/d , τ= kt , and r = (a/d)R for R ∈ {R f , Rs, E0, S0}.

4.4.4 Comparison to the Method of Kumar et al. [41]

In this section, we compare the method developed in [41, 68] to the reaction extents

method developed in the previous section. Consider the model of the esterificaton of

carboxylic acid described in [68]. The state space model with nonexplicit time-scale sep-

aration is given by



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11



=



0 0 −1 0 −1 0 0 0 1 0 1 0

0 −1 0 −1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 −1 0 0 0

−1 1 0 −1 1 1 1 −1 0 1 −1 −1

1 −1 1 1 −1 0 −1 1 −1 −1 1 0

−1 0 0 0 0 0 1 0 0 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 1 −1 0 0 0 0 −1 1

0 0 0 0 0 1 0 0 0 0 0 −1

1 0 0 0 0 −1 −1 0 0 0 0 1





r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12



,

(4.54)

where the reaction rates are given by the expressions r1 = k1 x6 x4, r2 = k2 x5 x2, r3 = k3 x1 x7,

r4 = k4 x2 x4,r5 = k5 x1 x5, r6 = k6 x11 x9, r7 = k7 x5 x11, r8 = k8 x7 x4, r9 = k9 x5 x3, r10 = k10 x8 x5,

r11 = k11 x4 x9 and r12 = k12 x10 x4. We note that the reactions indexed 3, 6, 9, and 12 are

slow, and the remaining are fast.

The last six columns of this stoichiometric matrix are a scalar multiple of the first six,

and so we pick the first six columns as the linearly independent columns. The reaction

velocity vector is transformed accordingly, with the new rates being r1 − r7, . . . , r6 − r12.

Furthermore, we can use Gauss-Jordan elimination to design thematrix H , and pick linearly
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independent rows by inspection to get the matrix P . Then, we can write

P =



0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0


,

H =



−1/2 1/2 0 0 1/2 1/2 1 0 0 0 0

1/2 1/2 −1 0 −1/2 −1/2 0 1 0 0 0

1 0 0 1 1 0 0 0 1 0 0

0 0 −1 −1 −1 0 0 0 0 1 0

0 1 1 1 1 0 0 0 0 0 1


,

Sr =



0 −1 0 −1 0 0

−1 0 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 −1

0 0 0 0 0 1


,

ν(x) =



r1(x)− r7(x)

r2(x)− r8(x)

r3(x)− r9(x)

r4(x)− r10(x)

r5(x)− r11(x)

r6(x)− r12(x)


=



k1 x6 x4 − k7 x5 x11

k2 x5 x2 − k8 x7 x4

k3 x1 x7 − k9 x5 x3

k4 x2 x4 − k10 x8 x5

k5 x1 x5 − k11 x4 x9

k6 x11 x9 − k12 x10 x4


,

and the matrices Ms and M f , which pick out the slow and fast reaction rates from ν(x)
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respectively, are given by

Ms =

 0 0 1 0 0 0

0 0 0 0 0 1

 ,

M f =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 .

With these definitions, we can bring the system into the standard singular perturbation

form by following the method in Section 4.4.3.2. Recall that the coordinate transformation

to a new set of variables is R ≜ S−1
r P x , and the transformed system is Ṙ = ν(x). We can

further partition the entries of R as
�

Rs
R f

�
≜
�

Ms
M f

�
R. Then, x can be written in terms of Rs

and R f as

x(Rs, R f ) =

 P

H

−1 Sr

�
M T

s M T
f

�� Rs
R f

�
H x0



=



x10 − Rs1 − R f 4 − x2,0 − x7,0 − x8,0 + x9,0 + x10,0

−R f 2 − R f 3

Rs1 + x2,0 + x3,0 + x7,0 + x8,0

R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0

R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0

−R f 1

R f 2 − Rs1

R f 3

R f 4 − Rs2

Rs2

R f 1 − Rs2 + x6,0 + x10,0 + x11,0



.

Defining a small parameter ε = 1/k∗ such that ki/k
∗ ≪ O(1), for i = 3,6, 9,12, and letting
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k′ = k j/k
∗ for j = 1,2, 4,5, 7,8, 10,11, we can write

Ṙs = Msν
�
x
�
Rs, R f

��
= νs

�
Rs, R f

�

=



− k3(R f 2 − Rs1)(R f 4 + Rs1 − x1,0 + x2,0 + x7,0 + x8,0 − x9,0 − x10,0)− k9(Rs1

+ x2,0 + x3,0 + x7,0 + x8,0)(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0

+ x7,0 − x8,0 + x9,0 + x10,0)

k6(R f 4 − Rs2)(R f 1 − Rs2 + x6,0 + x10,0 + x11,0)− Rs2k12(R f 2 − R f 1

− R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0)


,

Ṙ f = M f ν
�
x
�
Rs, R f

��
=

1
ε
ν̄ f

�
Rs, R f

�

=
1
ε



− R f 1k′1(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0

− 2x10,0)− k′7(R f 1 − Rs2 + x6,0 + x10,0 + x11,0)(R f 1 − R f 2 + R f 3

− R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)

− k′8(R f 2 − Rs1)(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0

− x9,0 − 2x10,0)− k′2(R f 2 + R f 3)(R f 1 − R f 2 + R f 3 − R f 4

+ Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)

− R f 3k′10(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0

+ x10,0)− k′4(R f 2 + R f 3)(R f 2 − R f 1 − R f 3

+ R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0)

− k′11(R f 4 − Rs2)(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0

− x9,0 − 2x10,0)− k′5(R f 4 + Rs1 − x1,0 + x2,0 + x7,0 + x8,0 − x9,0 − x10,0)

(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)



,

which gives us an entirely explicit form of the model in standard form.

Next, we shall briefly summarize the application of the method of Kumar et al. to this

example, as was done in [68]. The original system in Equation (4.54) can be written in the
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form with nonexplicit time-scale separation as

ẋ = f (x) +
1
ε

Vf r̄ f (x). (4.55)

This can be reduced to a set of differential algebraic equations of the form

ẋ = f (x) + Vf z, (4.56)

r̄ f = 0, (4.57)

where z = lim
ε→0

r̄ f

ε
. Equation (4.57) gives a set of algebraic constraints that the state trajec-

tories must respect, effectively specifying a lower dimensional manifold near which the

system in Equation (4.55) evolves. In some situations, these constraints may be differen-

tiated in time to yield an explicit expression for the variables z. In particular, we have

d r̄ f

d t
= L f r̄ f (x) +LVf

r̄ f (x)z = 0, (4.58)

where the column vector Lba(x) is such that [Lba(x)]i ≜
∂ ai
∂ x b(x) is the Lie derivative

of the scalar field ai(x) with respect to the vector field b(x), and a Lie derivative of r̄ f

with respect to a matrix Vf is interpreted as the matrix formed by concatenating the Lie

derivatives with respect to the individual columns of Vf . When LVf
r̄ f (x) is nonsingular,

we have

z = −�LVf
r̄ f (x)
�−1

L f r̄ f (x). (4.59)

The general form of the coordinate transformation given in [68] is ζ
η

≜ T (x)≜

 ϕ(x)
r̄ f (x)

 ,
where ζ and η are the slow and fast variables respectively, and ζ = ϕ(x) is a vector of

the same dimension as the equilibrium manifold. The function ϕ can be chosen with

considerable flexibility, and in general will lead to slow variables that exhibit fast initial
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transients. We can derive an explicit expression for these slow variables by differentiating

ζ,

ζ̇=
n
L fϕ(x)−LVf

ϕ(x)
�
LVf

r̄ f (x)
�−1 �

L f r̄ f (x)
�o���

x=T−1(ζ,0)
, (4.60)

which reduces to

ζ̇= L fϕ(x)|x=T−1(ζ,0) (4.61)

if LVf
ϕ(x) is identically zero. We note that the second term in Equation (4.60) defines the

initial fast transients, and we can get ‘true’ slow variables if the condition LVf
ϕ(x) ≡ 0

holds. Kumar et al. show that this is only possible when the distribution spanned by Vf

is involutive, and [68] notes that for the constant stoichiometric matrix, this is always the

case, and indeed leads to a matrix Φ, with ϕ(x) = Φx , whose rows are in the left null space

of the fast reaction stoichiometric matrix Vf . This condition for finding slow variables that

are independent of the fast dynamics was also mentioned in [39].

When this method is applied to the model of the esterification of carboxylic acid, as

was done in [68], we find that the involutivity condition holds, and the transformation

T (x) has the components

ϕ(x) =



0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

1 1 0 1 0 −1 0 2 0 0 0

−1 1 0 −1 0 1 2 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0


x , r̄ f (x) =


k′1 x6 x4 − k′7 x5 x11

k′2 x5 x2 − k′8 x7 x4

k′4 x2 x4 − k′10 x8 x5

k′5 x1 x5 − k′11 x4 x9

 .

(4.62)
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The resulting final expression for the slow subsystem is given by

ζ̇= L fϕ(x)|x=T−1(ζ,0) (4.63)

=



0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

1 1 0 1 0 −1 0 2 0 0 0

−1 1 0 −1 0 1 2 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0





−1 0 1 0

0 0 0 0

1 0 −1 0

0 1 0 −1

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

0 −1 0 1

0 1 0 −1

0 −1 0 1




k3 x1 x7

k6 x11 x9

k9 x5 x3

k12 x10 x4



�������������
x=T−1(ζ,0)

.

(4.64)

We note that the right hand side of Equation (4.64) requires an evaluation of T−1, which

is nontrivial. A merit of this method is that the slow variables can be chosen with great

flexibility, even when the stoichiometric matrix is not constant, and when other nonlin-

earities exist in the system. In this case, Equation (4.60) gives the dynamics of the slow

subsystem in terms of these variables, and reduces to a simpler case when the involutiv-

ity condition holds, as it does for isothermal reactions. In this sense, this method gives a

unified method for bringing systems with nonexplicit time-scale-separation into the stan-

dard form. We also note that the fast variables in [41, 68] are the net reaction velocity

expressions for the fast reactions, whereas in our method, these quantities are the rates

of change of the fast variables. This is a fundamental difference between the two meth-

ods, and allows us to give a physical interpretation to our fast variables as the reaction

extents of the fast reactions.
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4.5 Application of Reaction Extents to the Reduction of Transcrip-

tion and Translation Reactions

We now apply the transformations provided in Sections 4.4.3.1 and 4.4.3.2 to the transcrip-

tion model (4.32) to derive the corresponding standard singular perturbation form. We

can write the model (4.32) in matrix notation as

d
dt



d

ρ

v1

w1

v2

w2

...

vn

wn

mn

η

γ



=



c̃1 c̃2 c̃3 c̃4 c̃5 c̃6 . . . c̃2n+1 c̃2n+2

r̃2n+2 1 −1 0 0 0 0 0 0

r̃2n+1 1 −1 0 0 0 0 0 0

r̃2n 0 1 −1 0 0 0 0 0

r̃2n−1 0 0 1 −1 0 0 0 0

r̃2n−2 0 0 0 1 −1 0 0 0

r̃2n−3 0 0 0 0 1 −1 0 0

... . . .

r̃2 0 0 0 0 0 1 −1 0

r̃1 0 0 0 0 0 0 1 −1

q̃1 0 0 0 0 0 0 0 1

q̃2 0 0 −1 0 −1 0 −1 0

q̃3 −1 0 0 0 0 0 0 1





ktermγ

kP f ρd− kPr v1

kN f v1η− kN r w1

kt w1

kN f v2η− kN r w2

kt w2

...

kN f vnη− kN r wn

kt wn



,

(4.65)

where the q̃i , r̃i ’s and c̃ j ’s are row and column labels we will use for manipulating the

matrix S̃ ∈ R(2n+5)×(2n+2). Compactly, we write this as

dx
dt
= Sν, x(0) = x0, (4.66)

where we have dropped the bars for notational clarity. Here the species concentration

vector is x ∈ R2n+5
+ and the reaction velocity vector is ν ∈ R2n+2. The stoichiometric matrix
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S has linearly dependent rows due to the existence of conservation laws. We can define

the matrices P and H as defined in the discussion surrounding Equation (4.36) as follows.

The rows r̃2n+1, q̃3 and q̃1 are linearly dependent on the remaining rows of the matrix

because of the relations r̃2n+1 = r̃2n+2 and q̃3 = −∑2n+1
i=1 r̃i , and the argument provided in

Lemma 4 in the appendix. The fact that no other linear dependencies exist follows from

the fact that the matrix resulting from the removal of these rows is invertible (Lemma 5 in

the appendix). Thus, we can define

P =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
. . .

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0


,

H =


1 −1 0 0 0 0 0 . . . 0 0 0 0

0 1 1 1 1 1 1 . . . 1 0 0 1

0 0 0 1 1 2 2 . . . n n 1 0

 .

With these matrices, we can define Sr , x i , xd and R via Equations (4.36), (4.37), (4.44)

and (4.47). Let us enumerate the elements of R ∈ R2n+2 as R = [ Rterm RP RN1
Rt1 ... RNn Rtn ].

Here, the subscripts are chosen to represent the reactions present in the system, due to
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the relationship dR/dt = νr xn in Equation (4.48) and note that

x =

 P

H

−1 SrR

xd

=



Rterm − RP

Rterm − RP − xd10

RP − RN1

RN1
− Rt1

Rt1
− RN2

...

Rtn−1
− RNn

RNn
− Rtn

Rtn
− xd30

/5

−∑ni=1 RNi

Rtn
− Rterm + xd10

+ xd20



, (4.67)

where xdm0
for m ∈ {1, 2, 3} are the dependent variables fixed to their intitial conditions

(due to Equation (4.45)). Thus, the ODEs in R coordinates for this system (Equation (4.48))

are

dR
dt
=



kterm(Rtn
− Rterm + xd10

+ xd20
)

kP f (Rterm − RP − xd10
)(Rterm − RP)− kPr(RP − RN1

)

kN f (RP − RN1
)(−∑ni=1 RNi

)− kN r(RN1
− Rt1

)

kt(RN1
− Rt1

)
...

kN f (Rt j−1
− RN j

)(−∑ni=1 RNi
)− kN r(RN j

− Rt j
)

kt(RN j
− Rt j

)
...

kN f (Rtn−1
− RNn

)(−∑ni=1 RNi
)− kN r(RNn

− Rtn
)

kt(RNn
− Rtn

)



, (4.68)
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and defining Ms , M f , Rs , R f to separate out the slow and fast terms, we have,

dRs

dt
=



kterm(Rtn
− Rterm + xd10

+ xd20
)

kt(RN1
− Rt1

)
...

kt(RN j
− Rt j

)
...

kt(RNn
− Rtn

)


, (4.69)

dR f

dt
=



kP f (Rterm − RP − xd10
)(Rterm − RP)− kPr(RP − RN1

)

kN f (RP − RN1
)(−∑ni=1 RNi

)− kN r(RN1
− Rt1

)
...

kN f (Rt j−1
− RN j

)(−∑ni=1 RNi
)− kN r(RN j

− Rt j
)

...

kN f (Rtn−1
− RNn

)(−∑ni=1 RNi
)− kN r(RNn

− Rtn
)


. (4.70)

We can further transform this into a nondimensional model, where a small parameter

ε can be defined to capture the effects of the scale separation in the parameter values.



128

After nondimensionalization, we have

drs

dτ
=



αterm(rtn
− rterm + x̄d10

+ x̄d20
)

(rN1
− rt1

)
...

(rN j
− rt j

)
...

(rNn
− rtn

)


, (4.71)

ε
dr f

dτ
=



αP f (rterm − rP − x̄d10
)(rterm − rP)−αPr(rP − rN1

)

(rP − rN1
)(−∑ni=1 rNi

)− (rN1
− rt1

)
...

(rt j−1
− rN j

)(−∑ni=1 rNi
)− (rN j

− rt j
)

...

(rtn−1
− rNn

)(−∑ni=1 rNi
)− (rNn

− rtn
)


, (4.72)

with the scheme



rt i

rterm

rNi

rP

x̄d j0

ε

αP f

αPr

τ



=



kN f

kN r



Rt i

Rterm

RNi

RP

xd j0


kt/kN r

kP f /kN f

kPr/kN r

kt t



, ∀i ∈ {1, . . . , n}, j ∈ {1,2, 3}, (4.73)

where the α parameters are of order O(1). Setting ε= 0 and transforming back to species
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concentration coordinates, we have

0=



αP f (rterm − rP − x̄d10
)(rterm − rP)−αPr(rP − rN1

)

(rP − rN1
)(−∑ni=1 rNi

)− (rN1
− rt1

)
...

(rt j−1
− rN j

)(−∑ni=1 rNi
)− (rN j

− rt j
)

...

(rtn−1
− rNn

)(−∑ni=1 rNi
)− (rNn

− rtn
)


(4.74)

=



kP f ρd− kPr v1

kN f v1η− kN r w1

kN f v2η− kN r w2

...

kN f vnη− kN r wn


. (4.75)

4.6 Generalized Consumption Model

In this section, we reduce the full model (4.1) to a generalized version of the consumption

model by matching their steady state behaviors. In Section 4.2, we modeled the creation

of RNA as a single step transcription reaction, with no intermediate RNA transcripts, and

discussed a method for incorporating nucleotide consumption in this model. While this

suffices for models where the only regulation of gene expression comes from transcription

factor proteins, it becomes inadequate when we wish to model the regulation of transcrip-

tion via interactions with nascent RNA transcripts, for instance by non-coding RNA like the

pT181 transcriptional attenuator [8, 43, 50]. Thus, we wish to have a transcription scheme

where the creation of the final RNA transcript occurs in steps, and each intermediate RNA

piece is free to interact with other elements of the environment. For an RNA transcript of

length n, the detailed model shown in Equation (4.1) has approximately 2n chemical re-

actions and about the same number of differential equations. For typical RNAs of length

500−2000 bases, these models quickly become unwieldy, especially when modeling large

systems composed of multiple genes and regulatory pathways. Thus, we derive a way to
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reduce such transcription models while quantifying the error introduced into the dynam-

ics by such reductions.

We begin by re-indexing the detailed model (4.1) as follows. Divide the length RNA

(of length n) into K segments of lengths ni , for i ∈ {1,2, . . . , K}. The species P:Dk,j:mk,j−1,

with k ∈ {1,2, . . . , K}, refers to the species from the kth segment, with the polymerase

attached to the jth DNA base pair site of this segment, where j is in {1, . . . nk}, and an
RNA of length

∑k−1
i=1 ni + ( j − 1) attached to the polymerase molecule. Finally, identify

the last element of a block with the first element of the next block, i.e., P:Dk,nk+1:mk,nk
=

P:Dk+1,1:mk+1,0. This new indexing scheme is shown on the left in Figure 4.2. We would like

to reduce this model to the one shown in Equation (4.76), where the RNA and DNA have

been divided into K blocks. The concentration of each species in the reduced model (4.76)

is the sum of the corresponding species in the full model (4.1). For example, [P:D:Rk] =∑nk
h=1[P:D(k,h):m(k,h−1)].

P+D
k′P f−−*)−−
k′Pr

P:D RNA polymerase binding,

P:D+N
k′N f−−*)−−
k′N r

P:D:N nucleotide binding,

P:D:N
kcon(1)−−−→ P:D consumption reaction,

P:D:N
kt x(1)−−−→ P:D:R1 lumped RNA production,

...

P:D:RK−1 +N
k′N f−−*)−−
k′N r

P:D:RK−1:N nucleotide binding,

P:D:RK−1:N
kcon(K)−−−→ P:D:RK−1 consumption reaction,

P:D:RK−1:N
kt x(K)−−−→ P:Dt +RK lumped RNA production,

P:Dt

kterm−−→ P+D termination.

(4.76)

Let DT be the total DNA concentration in in either model. Mass conservation gives

DT =
K∑

i=1

ni∑
h=1

�
[P:D(i,h):m(i,h−1)] + [P:D(i,h):m(i,h−1):N]

�
+ [D] + [P:Dt], (4.77)
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P + D P:D1,1:m1,0 P:D1,1:m1,0:N
kP f

kPr

+N , kN f

−N , kN r

P:D1,2:m1,1 P:D1,2:m1,1:N

kt x +N , kN f

−N , kN r

P:D1,n1 :m1,n1−1 P:D1,n1 :m1,n1−1:N
+N , kN f

−N , kN r

P:D2,1:m2,0 P:D2,1:m2,0:N
+N , kN f

−N , kN r

P:D2,2:m2,1 P:D2,2:m2,1:N

kt x +N , kN f

−N , kN r

P:D2,n2 :m2,n2−1 P:D2,n2 :m2,n2−1:N
+N , kN f

−N , kN r

kt x

P:Dα,1:mα,0 P:Dα,1:mα,0:N
+N , kN f

−N , kN r

P:Dα,2:mα,1 P:Dα,2:mα,1:N

kt x +N , kN f

−N , kN r

P:Dα,nα :mα,nα−1 P:Dα,nα :mα,nα−1:N
+N , kN f

−N , kN r

P:Dt + mα,0

kt x

kterm

P + D P:D P:D:N

P:D:R1

kP f

kPr

+N , kN f

−N , kN r

kcon(1)

kt x(1)

P:D:R1:N
+N , kN f

−N , kN r

kcon(2)

P:D:Rα−1 P:D:Rα−1:N
+N , kN f

−N , kN r

kcon(α)

P:Dt + Rα

kt x(α)

kterm

Figure 4.2: The model reduction procedure. Corresponding species are color coded. Each
grey ‘block’ represents the part of the model that transcribes the corresponding segment
of the RNA, with the output of the grey block as the intermediate RNA species which will
be modeled by the reduced model.
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for the full model and

DT =
K∑

i=1

�
[P:D:Ri−1] + [P:D:Ri−1:N]

�
+ [D] + [P:Dt], (4.78)

with P:D:R0 ≜ P:D and P:D:R0:N ≜ P:D:N, for the reduced model.

Using themass balance equations (4.21), (4.22) and rapid equilibrium assumption (4.75),

we can express [P:D(k,h):m(k,h−1)] in the full model as:

[P:D(k,h):m(k,h−1)] =
1
nk

DT − [D]− [P:Dt]�
1+

kN f

kN r
[N]
� − K∑

i=1,i ̸=k

ni[P:D(i,1):m(i,0)]

 . (4.79)

The rapid equilibrium assumption for the reduced model can be derived in exactly the

same way as that for the full model, and using it gives

[P:D:Rk] =

DT − [D]− [P:Dt]�
1+

k′N f

k′N r
[N]
� − K−1∑

i=0,i ̸=k
[P:D:Ri]

 . (4.80)

We would like the reduced model to be an approximation of the full model at steady

state (noting that the steady state is defined in the sense of the discussion preceding

Proposition 3, when the nucleotide concentration is sufficiently large to be assumed to be

essentially constant in the time-scale of interest). A set of sufficient conditions for this to

be true is presented for the remainder of this section.

We first note that the discussion around equations (4.14) to (4.22) in Section 4.3.2

can be applied to the species within a single block to obtain the result that at steady

state, corresponding species within a block are in mass balance (i.e., (4.21) and (4.22) hold

within each block). This allows us to define and simplify the correspondence [P:D:Rk] =∑nk
h=1[P:D(k,h):m(k,h−1)] between the full and reduced models to

[P:D:Rk] = nk[P:D(k,h):m(k,h−1)], Condition 1. (4.81)

The relation (4.81) is a condition we have imposed upon the model to create a corre-
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spondence between the species between corresponding blocks of the full and reduced

models. This condition, applied to equations (4.79) and (4.80), gives us further correspon-

dences between the full and reduced models. In Equation (4.79), the term DT −[D]−[P:Dt]

is the total concentration of species in the grey boxes in Figure 4.2, the 1
(1+(kN f /kN r )[N])

term,

which arises out of the analysis of Section 4.4.1, picks out the proportion of [P:D(k,h):m(k,h−1)]

from the total [P:D(k,h):m(k,h−1)]+[P:D(k,h):m(k,h−1):N], and so applying it to DT−[D]−[P:Dt]

gives the total concentration of terms of the form [P:D(k,h):m(k,h−1)]. Equation (4.80) has

a similar interpretation, with the difference that [P:D:Rk] is now the concentration of a

block in the reduced model, and thus corresponds to the total concentration of terms of

the form [P:D(k,h):m(k,h−1)] in a single block of the full model, which by Equation (4.81) is

nk[P:D(k,h):m(k,h−1)].

The next step in using the reduced model to approximate the full model is to equate

the fluxes out of corresponding blocks in the two models. We can then obtain a set of (not

necessarily unique) relations between the parameters of the twomodels so that the steady

state behaviors match. Consider the rate of production of the species P:D(k+1,1):m(k+1,0),

which corresponds to the output of the kth block, or kth intermediate RNA transcript, in

the full model,

[P:D(k+1,1):m(k+1,0)]production = kt x[P:D(k,nk)
:m(k,nk−1):N]

= kt x

kN f

kN r
[P:D(k,h):m(k,h−1)][N],

(4.82)

where we recall that P:D(k,nk+1):m(k,nk)
is identified with P:D(k+1,1):m(k+1,0).

The corresponding expression for the reduced model is

[P:D:Rk+1]production = k′t x(k)[P:D:Rk:N]

= k′t x(k)

k′N f

k′N r
[P:D:Rk][N].

(4.83)

Equating the equations (4.82) and (4.83), and comparing terms, we can draw a corre-
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spondence between the respective coefficients,

k′t x(k) =
kt x

nk
, (4.84)

k′N f = kN f , (4.85)

k′N r = kN r , Conditions 2 - 4. (4.86)

We now state a result that generalizes the result of Proposition 3 to the model lumped

into blocks, and states that the rate of consumption of nucleotides within the kth block

is nk times the rate of production of the kth nascent transcript. This, in turn, will allow us

to derive a generalization for the consumption reaction for the reduced model (4.76).

Proposition 4. Consider the full model (4.1) under the same assumptions as Proposition 3,

now considered with the indexing scheme that divides it into separate transcription blocks,

as described at the beginning of Section 4.6. Then, in the kth block, for k ∈ {1,2, . . . , K}, the
rate of nucleotide consumption within the block is proportional to the rate of production

of the kth intermediate transcript, P:Dk,nk+1:mk,nk
(with the Kth transcript being mK,0).

Proof. From the proof of Proposition 3, we know that the total rate of nucleotide consump-

tion is
d[Nuninc]

dt
= −kt x

n∑
i=1

[P:Di:mi−1:N]. (4.87)

This sum can be partitioned into terms using the new indexing scheme into contributions
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to the consumption rate by each block as follows:

d[Nuninc]

dt
= −kt x

K∑
k=1

nk∑
h=1

[P:D(k,h):m(k,h−1):N]

= −kt x

n1∑
h=1

[P:D(1,h):m(1,h−1):N]

− kt x

n2∑
h=1

[P:D(2,h):m(2,h−1):N]

...

− kt x

nK∑
h=1

[P:D(k,h):m(k,h−1):N]

= −n1kt x[P:D(1,n1):m(1,n1−1):N]

− n2kt x[P:D(2,n2):m(2,n2−1):N]

...

− nK kt x[P:D(K,nK)
:m(K,nK−1):N],

(4.88)

where the last line follows from the fact that the species within a block are in flux balance

as given by equations (4.21) and (4.22). In each of the terms of the form−nkkt x[P:D(k,nk)
:m(k,nk−1):N]

in the above partition, the term kt x[P:D(k,nk)
:m(k,nk−1):N] is the production rate of the kth

transcript (bound to the RNA polymerase and DNA) for all k ∈ {1,2, . . . , K − 1} while it is
the production rate of mK,0 for k = K . On the other hand, the full term is the contribution

of the kth block to the total consumption rate of the nucleotides not yet incorporated into

the any RNA.

The rate of consumption of nucleotides is the same in the full model (4.1) and the

reduced model (4.76) if we set

k′con(k) = k′t x(k)(nk − 1), Condition 5. (4.89)

Indeed, from Proposition 4, and equations (4.81) and (4.83), the rate of consumption of



136

N in the kth block of the full model is

kt x nk[P:D(k,nk)
:m(k,nk−1):N] = kt x

nk

nk
[P:D:Rk:N] (4.90)

=
kt x

nk
[P:D:Rk:N] +

kt x

nk
(nk − 1)[P:D:Rk:N] (4.91)

= [P:D:Rk+1]production + k′con(k)[P:D:Rk:N]. (4.92)

4.7 Discussion

We have introduced a scalablemethod for incorporating nucleotide resource consumption

in a reduced order model of transcription. This method uses a consumption reaction to

emulate the usage of nucleotides, instead of modeling each nucleotide binding event

separately or binding all the nucleotides simultaneously (Figure 4.1).

We have also generalized this method to allow for multiple intermediate transcripts.

The approach here is to find a set of sufficient conditions, for a given nucleotide con-

centration, for the steady state dynamics of the full and reduced models to match. In a

subsequent work, we plan to also study the deviation in the transient behavior of the two

models and quantify the tradeoff between model reduction and fidelity.

In the process of attempting the above generalization, we had to use the deficiency

zero theorem from chemical reaction network theory to show that part of the system we

were considering has a steady state. We also had to define a coordinate transformation to

justify the rapid equilibrium assumption that wasmade, since in the species concentration

coordinate, such an assumption was not supported by singular perturbation theory. A

technical point to include in a future work is to bring the two-time-scale model into the

true standard singular perturbation form. This involves showing that the fast subsystem,

with ε= 0 in equations (4.27) and (4.72), has an isolated root, and that this root is (at least

locally) asymptotically stable.

Other directions this work may be extended in is to allow for multiple occupancy of the

DNA transcript by RNA polymerase, adding stochastic effects to the model, and to create

an analogous scheme for translation, which should be similar in many respects.



137

Appendices

4.A Detailed Proofs

Lemma 4. The row labeled q1,n in matrix Pn, defined as

Pn =



r2n+1,n 1 −1 0 0 0 0 0 0 0

r2n,n 0 1 −1 0 0 0 0 0 0

r2n−1,n 0 0 1 −1 0 0 0 0 0

r2n−2,n 0 0 0 1 −1 0 0 0 0

r2n−3,n 0 0 0 0 1 −1 0 0 0

... . . .

r2,n 0 0 0 0 0 0 1 −1 0

r1,n 0 0 0 0 0 0 0 1 −1

q1,n 0 0 0 0 0 0 0 0 1

q2,n 0 0 −1 0 −1 0 0 −1 0



, (4.93)

is a linear combination of the remaining rows.
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Proof. We use induction on the size of the matrix. We will prove that for

Pk =



r2k+1,k 1 −1 0 0 0 0 0 0 0

r2k,k 0 1 −1 0 0 0 0 0 0

r2k−1,k 0 0 1 −1 0 0 0 0 0

r2k−2,k 0 0 0 1 −1 0 0 0 0

r2k−3,k 0 0 0 0 1 −1 0 0 0

... . . .

r2,k 0 0 0 0 0 0 1 −1 0

r1,k 0 0 0 0 0 0 0 1 −1

q1,k 0 0 0 0 0 0 0 0 1

q2,k 0 0 −1 0 −1 0 0 −1 0



, (4.94)

the row q2,k can be written as the linear combination q2,k = −(r2k−1,k+ r2k−2,k)−2(r2k−3,k+

r2k−4,k)−3(r2k−5,k+ r2k−6,k)−· · ·− k(r1,k+q1,k), and inverting this relationship gives q1,k as

the linear combination

q1,k =
−(r2k−1,k + r2k−2,k)− 2(r2k−3,k + r2k−4,k)− · · · − (k− 1)(r3,k + r2,k)− kr1,k − q2,k

k
.

(4.95)

Note that the claim holds for P1 and P2
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P1 =



r3,1 1 −1 0 0

r2,1 0 1 −1 0

r1,1 0 0 1 −1

q1,1 0 0 0 1

q2,1 0 0 −1 0


, P2 =



r5,2 1 −1 0 0 0 0

r4,2 0 1 −1 0 0 0

r3,2 0 0 1 −1 0 0

r2,2 0 0 0 1 −1 0

r1,2 0 0 0 0 1 −1

q1,2 0 0 0 0 0 1

q2,2 0 0 −1 0 −1 0



,

q1,1 = −r1,1 − q2,1, q1,2 =
−(r3,2 + r2,2)− 2r1,2 − q2,2

2
.

Assume the claim holds for k ≥ 2, as in Equation (4.94) and (4.95). For clarity, we remove

rows r2k+1,k and r2k,k , and the first two columns from Pk (which do not matter) to get

P̄k =



r̄2k−1,k 1 −1 0 0 0 0

r̄2k−2,k 0 1 −1 0 0 0

r̄2k−3,k 0 0 1 −1 0 0

... . . .

r̄2,k 0 0 0 0 −1 0

r̄1,k 0 0 0 0 1 −1

q̄1,k 0 0 0 0 0 1

q̄2,k −1 0 −1 0 −1 0



, (4.96)
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with

q̄1,k =
−(r̄2k−1,k + r̄2k−2,k)− 2(r̄2k−3,k + r̄2k−4,k)− · · · − (k− 1)(r̄3,k + r̄2,k)− kr̄1,k − q̄2,k

k
.

(4.97)

Now consider the P̄k+1, obtained by augmenting P̄k with two rows and two columns:

P̄k+1 =





1 −1 0 0 . . . 0 0 0 0 r̄2(k+1)−1,k+1

0 1 −1 0 . . . 0 0 0 0 r̄2(k+1)−2,k+1

0 0

P̄k

r̄2(k+1)−3,k+1

0 0 r̄2(k+1)−4,k+1

...
...

0 0 r̄2,k+1

0 0 r̄1,k+1

0 0 q̄1,k+1

−1 0 q̄2,k+1

(4.98)

=





1 −1 0 0 . . . 0 0 0 r̄2(k+1)−1,k+1

0 1 −1 0 . . . 0 0 0 r̄2(k+1)−2,k+1

0 0 1 −1 0 0 0 0 r̄2(k+1)−3,k+1

0 0 0 1 −1 0 0 0 r̄2(k+1)−4,k+1

... . . . ...

0 0 0 0 0 1 −1 0 r̄2,k+1

0 0 0 0 0 0 1 −1 r̄1,k+1

0 0 0 0 0 0 0 1 q̄1,k+1

−1 0 −1 0 −1 0 −1 0 q̄2,k+1

, (4.99)

where we identify (augmented) rows of the matrix Pk in Equation (4.94) with the corre-
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sponding rows of the matrix P̄k+1 in Equation(4.98) as follows:

r̄2(k+1)−2−i,k+1 =
�

0 0 r̄2k−i,k

�
∀i ∈ {1, . . . , 2k− 1},

q̄1,k+1 =
�

0 0 q̄1,k

�
,

q̄2,k+1 =
�

0 0 q̄2,k

�
.

We know from Equation (4.97) that

�
0 0 q̄2,k

�
= − (r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k)− 2(r̄2(k+1)−5,k + r̄2(k+1)−6,k)

− · · · − (k− 1)(r̄3,k+1 + r̄2,k+1)− k(r̄1,k+1 − q̄1,k+1).
(4.100)

It is also clear that the rows of P̄k+1 in Equation (4.98) satisfy

−
2k+1∑
i=1

r̄2(k+1)−i,k+1 − q̄1,k+1 =
�
−1 0 0 . . . 0

�
, (4.101)

and together equations (4.100) and (4.101) give us the expression

q̄2,k+1 =
�

0 0 q̄2,k

�
+
�
−1 0 0 . . . 0

�
= −

2k+1∑
i=1

r̄2(k+1)−i,k+1 − q̄1,k+1 − (r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k)− 2(r̄2(k+1)−5,k + r̄2(k+1)−6,k)

− · · · − (k− 1)(r̄3,k+1 + r̄2,k+1)− k(r̄1,k+1 − q̄1,k+1).

= − (r̄2(k+1)−1,k+1 + r̄2(k+1)−2,k+1)− 2(r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k+1)

− · · · − k(r̄3,k+1 + r̄2,k+1)− (k+ 1)(r̄1,k+1 + q̄1,k+1),

(4.102)

which can be rewritten in the desired form of Equation (4.95) as:

q̄1,k+1 =

−(r̄2(k+1)−1,k+1 + r̄2(k+1)−2,k+1)− 2(r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k+1)− · · · − k(r̄3,k+1 + r̄2,k+1)− (k+ 1)r̄1,k+1 − q̄2,k+1

k+ 1
. (4.103)

Adding to P̄k+1 analogues of the rows and columns we removed from Pk to get P̄k , we
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can construct Pk+1,

Pk+1 =





1 −1 0 0 0 0 . . . 0 0 0 r2(k+1)+1,k+1

0 1 −1 0 0 0 . . . 0 0 0 r2(k+1),k+1

0 0 1 −1 0 0 . . . 0 0 0 r2(k+1)−1,k+1

0 0 0 1 −1 0 . . . 0 0 0 r2(k+1)−2,k+1

0 0 0 0

P̄k

r2(k+1)−3,k+1

0 0 0 0 r2(k+1)−4,k+1

...
...

...

0 0 0 0 r2,k+1

0 0 0 0 r1,k+1

0 0 0 0 q1,k+1

0 0 −1 0 q2,k+1

, (4.104)

and for this matrix, the linear combination relationship (4.103) now becomes

q1,k+1 =

−(r2(k+1)−1,k+1 + r2(k+1)−2,k+1)− 2(r2(k+1)−3,k+1 + r2(k+1)−4,k+1)− · · · − k(r3,k+1 + r2,k+1)− (k+ 1)r1,k+1 − q2,k+1

k+ 1
, (4.105)

which completes the proof.
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Lemma 5. The 2n+ 2 by 2n+ 2 matrix

S =



r2n+1 1 −1 0 0 0 0 0 0 0

r2n 0 1 −1 0 0 0 0 0 0

r2n−1 0 0 1 −1 0 0 0 0 0

r2n−2 0 0 0 1 −1 0 0 0 0

r2n−3 0 0 0 0 1 −1 0 0 0

... . . .

r2 0 0 0 0 0 0 1 −1 0

r1 0 0 0 0 0 0 0 1 −1

q2 0 0 −1 0 −1 0 0 −1 0



(4.106)

is invertible.

Proof. Consider first the upper triangular matrix

S1 =



r2n+1 1 −1 0 0 0 0 0 0 0

r2n 0 1 −1 0 0 0 0 0 0

r2n−1 0 0 1 −1 0 0 0 0 0

r2n−2 0 0 0 1 −1 0 0 0 0

r2n−3 0 0 0 0 1 −1 0 0 0

... . . .

r2 0 0 0 0 0 0 1 −1 0

r1 0 0 0 0 0 0 0 1 −1

q1 0 0 0 0 0 0 0 0 1



. (4.107)

This is clearly invertible, and the set of its rows U1 = {q1, r1, . . . , r2n+1} forms a basis
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for its rowspace span(U1) = R2n+2. From Lemma 4, we have q1 ∈ span({q2, r1, . . . , r2n+1}),
giving us that U2 = {q2, r1, . . . , r2n+1} is also a basis for R2n+2. Thus the rows of the square

matrix S form a basis for its rowspace, implying that S is invertible.


