
50

Chapter 3

A MATLAB® Simbiology® Toolbox for
Circuit Behavior Prediction in TX-TL
and Concurrent Bayesian Parameter
Inference

3.1 Introduction and Background

The use of computer-aided design (CAD) tools, such as SPICE (Simulation Program with

Integrated Circuit Emphasis, [46]) for electric circuit design, decreases the design iteration

time in engineering disciplines. We have developed an analogue of such tools for the

TX-TL prototyping platform, in the form of a MATLAB® toolbox called txtlsim that allows

for easy specification, characterization and simulation of genetic circuits.

The use of CAD tools in systems and synthetic biology is not a novel idea. Some exam-

ples of simulation software include the TABASCO simulator [40], COPASI [31], ProMot [44],

Cello [48] and bioscrape [62]. TABASCO allows for fast stochastic simulation of gene regu-

latory circuits at the single molecule and single base pair resolution while not trading off

too much speed. It does this by employing a dual architecture that allows for switching

between modeling base pair resolution reactions and species level reactions. COPASI is a

general purpose simulator that allows for the simulation of both stochastic and determin-

istic models, and even for hybrid models where low copy number species are simulated

stochastically, and all other species deterministically. The Process Modeling Tool (ProMoT)

employs a unique method for formulating genetic circuits in a composable format, with

51

well defined biochemical signal carriers between the parts [16,44]. Signal carriers take the

form of polymerase per second (PoPS), ribosomes per second (RiPS), transcription factor

per second (FaPS) and inducer or cofactor signal per second (SiPS). Each part has a defined

set of inputs and output terminals, and can only be composed with another part with a

corresponding set of terminals. Cello is an example of an electronic design automation

tool that takes a desired function as an input, and draws upon a library of Boolean logic

gates to generate candidate circuits that perform that function. Finally, bioscrape is a

tool developed for performing fast stochastic simulations with time delays, cell lineage

tracking and Bayesian parameter inference for general genetic circuit models.

Due to the often complementary nature of the tools available for simulation, inference

and analysis, it is desirable to have a way to transfer models between these tools. The

Systems Biology Markup Language (SBML) is a widely adopted XML (eXtensible Markup

Language) based format for representing biochemical networks. The use of such an infor-

mation standard for specifying biochemical networks has other advantages: it reduces the

chance of old models being lost when the simulator they were written for are no longer

supported, and makes it easier for users to parse and understand models written by other

researchers, possibly using other tools [34]. The SBML specification is divided into ‘levels’,

where level one specifies a hierarchy of objects that can be used to specify a biochem-

ical network: a model, the comprising compartments, reactions, species (reactants and

products in the reactions), parameters and rules. The subsequent levels are intended to

implement other functionalities associated with the base network, such as support for

MathML and metadata.

In this chapter we describe txtlsim in enough detail for the reader to get a sense

of the main capabilities of the toolbox. txtlsim is written using MATLAB® Simbiology®,

which in turn is modeled after SBML. Indeed Simbiology® defines models, compartments,

reactions, species, parameters, rules and events as classes, and provides a rich set of

methods and properties associated with them. In txtlsim, DNA and individual species

to be added to TX-TL can be specified using a set of symbolic specification rules, and the

toolbox generates a deterministic mass action model of the gene regulatory network ex-

52

pected to exist in TX-TL under the specified conditions. A typical TX-TL model, specified

at the resolution of whole DNA, mRNA and protein species is composed of transcription,

translation, RNA degradation, regulatory mechanisms and the inactivation of the ability of

TX-TL to express genes. Optionally, linear DNA and protein degradation can be included.

Furthermore, other special mechanisms, like sigma factor action or RNA-mediated tran-

scriptional attenuators, may also be included [65].

We highlight several features of txtlsim. Firstly, this toolbox requires only a few lines

of code to generate a complex chemical reaction network that models the reactions in

TX-TL. In lower level specifications, such as Simbiology®, bioscrape [62] or even simply raw

ODEs, this would amount to several tens to over a hundred equations that would need to

be manually specified and processed. The key reason for the need for this complexity is

that the toolbox is able to model the consumption of limited nucleotides and amino acid

species, and the loading of the finite catalytic machinery (RNA polymerases, ribosomes,

RNases, transcription factors etc). The consumption and degradation of nucleotides and

amino acids is thought to underlie the inactivation of the gene expression capability, and

is therefore important to model for capturing the full curves of TX-TL reactions. Coupling

between different parts of a circuit, via the loading of enzymatic resources [29] or regu-

latory elements has been shown to introduce unintended interactions between parts of

genetic circuits in both TX-TL and in vivo [13]. These types of retroactivity or loading ef-

fects are automatically and simply incorporated into txtlsim, at least with respect to the

species that exist in the toolbox, by virtue of the fact that we use mass action models.

In fact, a more general property holds: the models built using the toolbox are extensible

in the sense that once a species exists, if a new type of interaction is added that relates

to that species, none of its previous interactions need to be modified explicitly. Another

feature of txtlsim worth noting is that the models generated with it can be converted into

SBML, and may be exported into any other SBML compatible environment for analysis. The

final feature is the MCMC based Bayesian parameter inference capabilities incorporated

into txtlsim in the form of a sub-toolbox called mcmc_simbio. The main feature distin-

guishing this from existing parameter inference tools is the ability to perform concurrent

53

Bayesian parameter inference on a set of model-experimental data pairs that contain

parameters with common identities. This feature is built around a MATLAB® implemen-

tation [28] of the affine invariant ensemble MCMC sampler [25] for generating the param-

eter posterior distributions given the model, data and experimental setup. Our wrapper

adopts this sampler to estimate parameter distributions for models written generically in

Simbiology®, which in turn is able to import SBML models, and can therefore be used for

parameter inference with a large class of models. We note that the study in [35] looked

at the issue of concurrent parameter inference (referred to as consensus inference there),

but only used optimization procedures to estimate point estimates of parameters. Thus,

their method does not provide the main advantage of Bayesian inference: insight into

parameter identifiability. Indeed, with the concurrence feature, it becomes possible to

inform parameters from multiple model-data pairs, potentially improving identifiability.

This, in turn, increases the value of using Bayesian inference to study the identifiability

properties of model parameters.

In this chapter, we describe the modeling framework, usage and architecture of the

toolbox, along with the parameter inference capabilities included in themcmc_simbio sub-

toolbox. In Section 3.2, we describe the user end code for setting up a TX-TL model for

tetR mediated negative autoregulation. In Section 3.2.1, we elaborate on the choice of the

chemical reactions implemented in the toolbox. In Section 3.3 we characterize the parts

of an incoherent feedforward loop motif and compare model predictions to experimental

data. Next, in Section 3.4, we discuss the software architecture that enables the automatic

generation of the biochemical network. Finally, we discuss multi-experiment concurrent

parameter inference capabilities of mcmc_simbio in Section 3.5.

3.2 An Overview of the txtlsim Toolbox

In this section, we describe the txtlsim toolbox in some detail. The code snippet shown

below depicts what a user would write to set up the negative autoregulation circuit, in

which a repressor represses its own expression, along with that of a reporter.

54

% set up extract and buffer tubes (Simbiology `Model' objects) with parameters

from a configuration file identified to a particular extract batch.

tube1 = txtl_extract('E1');

tube2 = txtl_buffer('E1');

tube3 = txtl_newtube('negative_autoregulation');

% add DNA specifying a negative autoregulation circuit

txtl_add_dna(tube3, 'ptet(50)', 'UTR1(20)','deGFP(1200)', 1, 'plasmid');

txtl_add_dna(tube3, 'ptet(50)', 'UTR1(20)','tetR(1200)', 0.2, 'plasmid');

% combine tubes, add inducer, 'run' the experiment and visualize results

Mobj = txtl_combine([tube1, tube2, tube3]); % Simbiology Model object

txtl_addspecies(Mobj, 'aTc', 500); % add inducer

simData = txtl_runsim(Mobj, 12*60*60); % Simulate 12 hours of trajectories

txtl_plot(simData, Mobj);

The set of commands above closely mimic the actual experimental protocol of set-

ting up the reaction. The functions txtl_extract and txtl_buffer access extract and

buffer parameter configuration files, specified by the input string 'E1' here, to set up two

Simbiology model objects called tube1 and tube2 respectively, which are model objects

containing extract and buffer specific parameters and species. The configuration files are

user defined, and the parameters they contain can come from the literature, or from pa-

rameter inference performed on experimental data.

Next, the txtl_newtube and txtl_add_dna commands are used to initialize a new

model object and add different DNAs to the tube respectively. In its most common use

case, the txtl_add_dna command allows for specification of promoter, untranslated re-

gion and coding sequence to form a transcriptional unit on the specified DNA, along with

the concentration of the DNA added, and whether it is a linear fragment or plasmid DNA.

For example, in the first call to txtl_add_dna, the promoter, ribosome binding site (RBS)

and coding sequence (CDS) are specified by the strings 'pOR2OR1', 'UTR1' and 'tetR'

respectively. These strings, each describing a component of the transcriptional unit, are

used to access a library containing code and parameter files associated with the respec-

tive components. These component files specify all the reactions and species associated

with the component, and allow for the modular composition of these components into

55

circuits.

The txtl_combine command is used to combine the three tubes into a single model

object, Mobj, which is subsequently simulated using the txtl_runsim command.

Time [min]
0 200 400 600 800 1000

m
R

N
A

am
ou

nt
s

[n
M

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4
DNA and mRNA

RNA rbs--deGFP
RNA rbs--tetR

D
N

A
am

ou
nt

s
[n

M
]

0

0.2

0.4

0.6

0.8

1

1.2

Time [min]
0 100 200 300 400 500 600 700 800 900

Sp
ec

ie
s

am
ou

nt
s

[n
M

]

-20

0

20

40

60

80
Gene Expression

protein deGFP
protein deGFP*
protein gamS
protein sigma28
protein sigma70
protein tetR
protein tetRdimer

Time [min]
0 200 400 600 800 1000

Sp
ec

ie
s

am
ou

nt
s

[n
or

m
al

iz
ed

]

0

0.2

0.4

0.6

0.8

1
Resource usage

AGTP [nM]
CUTP [nM]
AA [mM]
RNAP [nM]
Ribo [nM]

Figure 3.1: Standard output of the TXTL toolbox.

Figure 3.1 shows the result of the txtl_plot command, which is arranged into three

panels. The top panel shows the protein species that exist within the system. The protein

deGFP* is the folded GFP. Bottom left plot shows RNA (solid) and DNA (dashed) dynamics.

RNA rises before repression by TetR causes transcription to stop. The bottom right plot

(normalized to 1) shows that the AGTP species degrades after about 3 hours ([49] Figure 1B).

The other species we can observe are CUTP, ribosomes, amino acids and RNA polymerases.

56

3.2.1 The Modeling Framework of the txtlsim Toolbox

Here we describe the typical reaction network generated by txtlsim when a transcrip-

tional unit (TU) is expressed. More complex networks made out of multiple TUs interact-

ing via transcription factor (TF) mediated regulation are simply iterations of this canonical

network, but coupled via catalytic and consumable resources, and the relevant regulatory

interactions.

We begin with a description of the species naming convention used in the toolbox.

The species in the toolbox may be divided into five broad categories: DNA, mRNA, pro-

teins, miscellaneous species like inducers or nucleotides, and the biochemical complexes

formed by combining these in defined ways. To avoid a combinatorial explosion, not every

possible species that can exist is created, and instead, the toolbox uses the user inputs

and corresponding reactions to define the set of species to be created. The species fol-

low a strict naming convention, allowing for the use of regular expressions in parsing the

name stings, and for making the decisions required for the creation of the chemical reac-

tion network underlying a given model. Example conventions for DNA, RNA and proteins

are given in Table 3.1

Table 3.1: Species naming conventions

Species Type Convention Example
DNA DNA <promspec>--<utrspec>--<cdsspec> 'DNA thio-junk-ptet--utr1--tetR'

'DNA ptet--utr1--tetR-lva'
RNA RNA <utrspec>--<cdsspec> 'RNA utr1--tetR'

'RNA att1-utr1--tetR-lva'
protein protein <cdsspec> 'protein tetR'

'protein tetR-lva'

Here, promspec, utrspec and cdsspec are the promoter, untranslated region (UTR) and

coding sequence specifications respectively. Some examples of the variations of these

specifications are shown in Table 3.1. The specifications are separated by the long hy-

phen ‘–’, and within each specification, we may have various types of modifiers, such as

junk DNA on the promoter to protect against DNA degradation, attenuator RNA in the

untranslated region [65] or lva protein degradation tags on the coding sequence. The

57

miscellaneous species include inducers like anhydrotetracycline (aTc) or Isopropyl beta-

D-1-thiogalactopyranoside (IPTG), core species like ribosomes (ribo), RNA polymerases

(RNAP), RecBCD and RNase nucleases, etc., and resources like amino acids (AA) and grouped

nucleotide species (AGTP, CUTP).

We now turn to a discussion of the reactions set up by the toolbox. The three main

processes that almost always get set up for every DNA specified by the user are tran-

scription, translation and RNA degradation. DNA degradation via the RecBCD nuclease

happens only to linear DNA fragments, and can be reduced by adding the protein GamS

to the system, which sequesters RecBCD [21, 61]. Protein degradation is only active when

the ClpXP protease is present in the system, and the protein to be degraded is tagged with

a degradation tag. Other conditional behaviors include TF mediated promoter occlusion

or activation, protein dimerization, maturation, binding to small molecules like inducers,

and non-coding RNA based regulation. These behaviors are included in the biochemical

reaction network when the relevant DNA or individual molecule species are specified as

inputs to the system. Figure 3.2 shows the general set of reactions associated with each

DNA that is specified as an input using the txtl_add_dna command.

Figure 3.2: A high level description of the mechanics present in the toolbox for each tran-
scriptional unit.

58

Transcription is modeled using the equations

RNAP+DNA −−*)−− RNAP:DNA, TX machinery binding to DNA,

RNAP:DNA+AGTP −−*)−− AGTP:RNAP:DNA, nucleotide binding,

RNAP:DNA+CUTP −−*)−− CUTP:RNAP:DNA, nucleotide binding,

AGTP:RNAP:DNA+CUTP −−*)−− CUTP:AGTP:RNAP:DNA, nucleotide binding,

CUTP:RNAP:DNA+AGTP −−*)−− CUTP:AGTP:RNAP:DNA, nucleotide binding,

CUTP:AGTP:RNAP:DNA
kt x−−→ RNAP:DNAterm +mRNA, mRNA production,

CUTP:AGTP:RNAP:DNA

�
Lm
4 −1
�
kt x−−−−−−→ RNAP:DNA, consumption, Lm = RNA length,

RNAP:DNAterm −−→ RNAP+DNA, termination.

(3.1)

The catalytic machinery of transcription is lumped into a single species, denoted RNAP.

It is assumed to encompass RNA Polymerases, sigma factors, and other cofactors, but

not transcription factors, whose binding will be modeled explicitly. The consumable nu-

cleotide species ATP and GTP are lumped into a single species AGTP, and CTP and UTP are

lumped into a species denoted CUTP. After the binding of the catalytic and consumable

species, the production of mRNA itself is divided into two reactions, an mRNA production

reaction and a nucleotide consumption reaction. As its name suggests, the consump-

tion reaction simply uses up the nucleotide species AGTP and CUTP, without producing

mRNA. The rate of this reaction is a multiple of the transcription reaction rate, with a scal-

ing determined by the mRNA length in bases, Lm, so that the stoichiometry of nucleotide

consumption and mRNA production is correct. This modeling choice is discussed at length

in Chapter 4, and briefly in Appendix 3.A. At the end of mRNA production, a termination

complex RNAP:DNAterm forms, which then dissociates into RNAP and DNA in a separate

reaction.

59

The reduced equations for translation,

Ribo+mRNA −−*)−− Ribo:mRNA, ribosome binding to mRNA,

Ribo:mRNA+AA −−*)−− AA:Ribo:mRNA, resource binding,

AA:Ribo:mRNA+ 2 AGTP −−*)−− AA:AGTP2:Ribo:mRNA, resource binding,

AA:AGTP2:Ribo:mRNA
kt l−−→ Ribo:mRNAterm + protein, protein production,

AA:AGTP2:Ribo:mRNA
(Lp−1)kt l−−−−−→ Ribo:mRNA, consumption, Lp = protein length,

Ribo:mRNAterm −−→ Ribo+mRNA, termination,

(3.2)

look similar to those for transcription. We note that on average it takes two ATP and two

GTP per amino acid (AA) residue, leading to the binding and consumption reactions shown

below.

RNA degradation is mediated by RNases, and is implemented as an enzymatic reaction,

RNase+mRNA −−*)−− RNase:mRNA, RNase binding to mRNA,

RNase:mRNA −−→ RNase, degradation.
(3.3)

Similar binding and degradation reactions are set up for mRNA in its various bound forms,

such asRibo:mRNA, AA:Ribo:mRNA, AA:AGTP:Ribo:mRNA, AA:AGTP2:Ribo:mRNA and Ribo:mRNAterm,

which result in the degradation of the mRNA and return of the remaining complexed

species to the species pool.

Apart from these three main mechanisms, we also model RecBCD mediated linear DNA

degradation as an enzymatic reaction, the sequestration of RecBCD by the GamS protein,

ClpXP mediated degradation of tagged proteins and transcription factor mediated regu-

lation. Other interactions, for example kinase-phosphatase action, RNA attenuator me-

diated transcriptional regulation and explicit sigma factor function, can also be included

if desired. For brevity, we only list the transcriptional repression and induction reactions

here. Repression by the dimerizable protein TetR and its sequestration by the inducer

60

anhydrous tetracycline (aTc) is modeled as

2 TetR−−*)−− TetRdimer, repressor dimerization,

DNA+ TetRdimer
−−*)−− DNA:TetRdimer, DNA sequestration,

2 aTc+ TetRdimer
−−*)−− aTc2:TetRdimer, DNA sequestration.

(3.4)

In Section 3.4, we discuss the software architecture that allows for the automatic gen-

eration of these reactions and the interactions between them without the need for the

user to specify them explicitly.

3.3 Part Characterization and Circuit Behavior Prediction

In this section, we discuss an example involving the characterization of the parts of a type

one incoherent feedforward loop (IFFL), followed by the prediction of the behavior of the

IFFL in TX-TL using txtlsim, and comparison to experimental data. We begin by parame-

terizing the model’s core mechanics using parameters drawn from the literature. We then

decompose the behavior of the IFFL into five distinct parts, and estimate part parameters

by fitting models of each part to corresponding experimental data. Finally, we use the

characterized parts to predict the behavior of the IFFL under a variety of experimental

conditions, and compare the computational predictions with experimental data.

In Silico
Library of Parts

Characterization
data

Part Models

Parameter
Estimation

txtlsim ToolboxCircuit Design Behavior
Prediction

Design Modification

TXTL testing

Figure 3.3: The general workflow of using CAD software like txtlsim for circuit prototyping.
After a library of characterized parts is built, circuit designs can be tested in silico and in
vitro, and modified to fit the design needs. This process can also help refine the models
by comparing the model behavior to in vitro behavior.

61

3.3.1 Core Parameters

The parameters in the system come from the literature, and from parameter estimation

carried out using experimental data collected in our lab. For parameters from the lit-

erature, the main sources are [37] and [60] . Reference [37] gives us the transcription

elongation rate of about 1 nt s−1, and a 4 aa s−1 lower bound on the translation elongation

rate. It finds an mRNA degradation half life of 12–14 min (which we reproduce in Figure 3.5

(i)), and notes that the degradation machinery does not get saturated even when there is

200 nm of mRNA in the system. Furthermore, the following features are observed, which

we reproduce in the toolbox for characterization purposes: 30 nm of plasmid DNA gives an

approximate steady state of 30 nm of mRNA, 1µm of protein is accumulated in 1 h, and the

accumulation rate decays exponentially over the next 9 hours, with an eventual maximum

expression level of about 10µm (Figure 3.4).

Time [min]
0 200 400 600 800 1000Fr
ee

 m
RN

A
co

nc
en

tra
tio

n
[n

M
]

0

5

10

15

20

25

30

35

40
DNA and mRNA

RNA DN
A am

ounts [nM
]

0

5

10

15

20

25

30

35

Time [min]
0 100 200 300 400 500 600 700 800 900

Pr
ot

ei
n

C
on

ce
nt

ra
tio

n
[n

M
]

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
Gene Expression

protein deGFP
protein deGFP*

Time [min]
0 200 400 600 800 1000Re

so
ur

ce
 C

on
c.

 [n
or

m
al

ize
d]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Resource usage

AGTP
CUTP
AA
RNAP
Ribo

DNA

Figure 3.4: Constitutive GFP expression after core parameters were set to values from the
literature. When 30 nm of constitutively expressing deGFP reporter plasmid DNA is ex-
pressed in TX-TL, about 10µm of deGFP produced in 10 h, about 30 nm of mRNA steady
state is reached, and AGTP starts degrading at about three hours.

62

The concentration of RNAP and Ribosomes and the Michaelis-Menten constant for

transcription is given in Table 1 of Karzbrun et al. [37] as 30 nm, >30 nm and 1-10 nm respec-

tively. Reference [49] shows that ATP levels start to fall exponentially at about three hours,

giving us the degradation dynamics of ATP in the system. This is implemented in the tool-

box using a Simbiology® event. Reference [60] provides the concentrations of ATP and

GTP at 1.5 mm in TX-TL, those of UTP and CTP at 0.9 mm and an AA concentration of 1.5 mm.

Figure 3.5 (ii) shows a comparison of experimental results form [37] and the simulation re-

sults from the toolbox, for the constitutive expression of GFP when plasmid DNA is varied

from 5 nm to 30 nm. Some parameters, like the forward and reverse rates of the binding of

amino acids and nucleotides, are difficult to design characterization experiments for, and

so we simply fixed them to values that allowed the model to give good agreement with the

literature and the experimental data that we collected. These parameters are generally

non-identifiable, and the behavior of the model tends to be insensitive to variations in

their values over a broad range of values.

Time, min
20 40 60 80 100 120

R
N

A
co

nc
, n

M

10-1

100

101

102

RNA degradation

time, min
0 5 10 15 20 25 30 35 40 45 50 55

pr
ot

ei
n

co
nc

 n
M

0

200

400

600

800

1000

1200

GFP expression
5 nM
10 nM
15 nM
20 nM
30 nM

(*) Experiment
(-) Simulation

 initial RNA conc = 200nM

 0

i ii

Figure 3.5: (i) RNA degradation half life of about 17 minutes agrees with the numbers in [37]
(12 min) and [12] (20 min). (ii) Constitutive GFP expression after core parameters were set
to values from the literature. The simulation results compared to the data from [37].

In the next section, we describe how we estimated parameters for the parts of an IFFL,

before using the part models to predict the behavior of the IFFL in various experimental

conditions.

63

3.3.2 IFFL Part Specific Parameters

The IFFL is a circuit in which an activator transcription factor simultaneously activates

a reporter protein and a repressor transcription factor. The reporter protein is also re-

pressed by the repressor. Owing to the fact that activation only requires the production

of one protein (the activator), and repression requires the production of two proteins (the

activator, followed by the repressor), repression of the reporter is delayed with respect to

activation. In cells, where there is dilution present, this mechanism leads to the reporter

concentrations showing a pulse. In TX-TL, without active protein degradation, one simply

observes a cessation of reporter protein accumulation that occurs sooner than that which

would be expected due to the inactivation of TX-TL. Figure 3.6 (Bi) shows a schematic of

the IFFL, where the circles represent proteins, pointed arrows show activation (lasR to tetR

and lasR to deGFP) and blunt arrows show repression (tetR to deGFP). The inducers 3OC12

(a type of N-acyl homoserine lactone, abbreviated AHL) and anhydrous tetracycline (aTc)

activate lasR and sequester tetR respectively, and are shown with green and red arrows

(respectively). The lasR protein is under the control of the constitutively expressing pLac

promoter, the tetR protein is under the control of the pLas promoter, which is activated

by LasR in the presence of 3OC12. The deGFP reporter protein is under the control of a

combinatorial promoter, which is only active when activated lasR is present and tetR is ab-

sent (or sequestered by aTc). The characterization of the parts of the IFFL was performed

using five experiments: the constitutive expression behavior of the pTet and pLac promot-

ers, tetR mediated repression of the pTet promoter, aTc induction, and finally induction

via activated lasR. These experiments are summarized in Table 3.2 and the results of the

experiments, along with model fitting, are shown in Figure 3.6 (A). All the experiments in

Figure 3.6 were performed using plasmid DNA.

Each of the five characterization experiments have subsets of parameters in the model

that are naturally associated with them. For instance, the constitutive expression of pTet

Figure 3.6 (Ai) informs the dissociation constant for the pTet DNA and RNAP. The Ribosome

to RNA binding dissociation constant and the amino acid binding constant were not taken

from any literature source, so we chose to estimate these using the first estimation data

64

2nM 0nM1:2dils.

1nM 0nM1:10dils.

4nM 0nM1:2dils.

10uM 0uM1:10dils.

10uM 0uM1:10dils.

0 1 2
0

5

lasR DNA, nM

0

5

10-4 10-2 100

tetR DNA, nM

2 4
0

15

deGFP DNA, nM

0

5

aTc, uM

0

5

3OC12, uM
10-3 10-1 1010

de
G

FP
, u

M

3OC12

aTc

in silico

in vitro

lasR

tetR

deGFP

10-3 10-1 101

de
G

FP
, u

M

de
G

FP
, u

M

de
G

FP
, u

M

de
G

FP
, u

M

0.0313 0.125 0.5 20

2

4

6

aTc, nM

0.5

1

1.5

0.0002 0.02 2
0

0.5

1

1.5

0.0625 0.250

5

10

15

3OC12HSL, nM

2
4
6
8

10
in silico

in vitro
de

G
FP

, u
M

de
G

FP
, u

M

de
G

FP
, u

M

de
G

FP
, u

M

de
G

FP
, u

M

10-2 100 102 104

1 4
pLac Promoter, nMpTet Promoter, nM

010-2 100 102 104

TetR DNA, nM

0 60
0

time (min)
120 180 0 60

0
time (min)

120 180

0 60
0

time (min)
120 180

0 60
0

time (min)
120 180

0 60
0

time (min)
120 180

0 60
0

time (min)
120 180 0 60

0
time (min)

120 180

0 60
0

time (min)
120 180

0 60
0

time (min)
120 180

0 60
0

time (min)
120 180

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

15

10

5

15

10

5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

de
G

FP
, u

M
de

G
FP

, u
M

de
G

FP
, u

M
de

G
FP

, u
M

de
G

FP
, u

M

de
G

FP
, u

M
de

G
FP

, u
M

de
G

FP
, u

M
de

G
FP

, u
M

de
G

FP
, u

M

in silicoin vitro

lasR DNA, nM

tetR DNA, nM

deGFP DNA, nM

3OC12, uM

aTc, uM

i ii iii

iv v

A

i ii iii

iv vi

B

v

C

i

ii

iii

iv

v

Figure 3.6: Incoherent feedforward loop (IFFL) characterization and behavior prediction.
(A) Experiments were performed on parts of the IFFL, and the reporter expression time
course data were fit to corresponding models to estimate parameters. Panels (i - v) show
the endpoints of the experimental data and the fitted trajectories plotted on the same
axes for comparison. Vertical lines show error bars from replicate data. The experimental
conditions are described in Table 3.2. (B, C) Comparing predictions from the characterized
model to experimental data. (B) shows the endpoints of the model trajectories and the
experimental data plotted on the same axes for the five experimental variations tested,
and (C) shows the same experiments and model predictions, but for the full time course
trajectories. Details of the experimental conditions are in the main text.

65

Table 3.2: Description of panels in Figure 3.6 (A)

Panel Experiment Parameter(s)
Estimated

Associated Reactions and Notes

i Constitutive expression deGFP under a
TetR responsive promoter: pTet-UTR1-
deGFP at 4, 2, 1, 0.5, 0.25, 0.125 and
0.0625 nm to sequester any native LacI.

Kd,pTet ,
Kd,ribo ,
Kd,AA

RNA polymerase binding to the pro-
moter (DNA), Ribo binding to ribosome
binding site (RNA) and Amino acids
and AGTP binding to the ribosome -
RNA complex. The first parameter can
be used as a measure of promoter
strength, and the other two parame-
ters were estimated here, and fixed to
the estimated values during the esti-
mations in panels ii - v.

ii Constitutive expression of deGFP
under a LacI responsive promoter:
pLacO1-UTR1-deGFP at 2, 1, 0.5, 0.25,
0.125, 0.0625 and 0.0313 nm. IPTG at
1 mm to sequester any native LacI.

Kd,pLac RNA polymerase binding to the pro-
moter (DNA). This parameter can
be used as a measure of promoter
strength.

iii pTet repression; jointly with (iv). pTet-
UTR1-deGFP at 1 nm. pLac-UTR1-deGFP
varied at 2, 0.2, 0.02, 0.002, 0.0002,
0.000 02 and 0.000002 nm. IPTG at
1 mm to sequester any native LacI.

Kd,tdim,
Kd,t rep ,
Kd,aTc

tetR dimerization, ptet DNA sequestra-
tion and aTc binding to tetR dimer.
Estimation performed jointly with the
data in panel iv.

iv tetR induction (jointly with iii). pTet-
UTR1-deGFP at 1 nm. pLac-UTR1-deGFP
at 0.1 nm. aTc varied at 10, 1, 0.1, 0.01,
0.001, 0.0001 and 0.00001µm. IPTG at
1 mm to sequester any native LacI.

Kd,tdim,
Kd,t rep ,
Kd,aTc

tetR dimerization, ptet DNA sequestra-
tion and aTc binding to tetR dimer.
Estimation performed jointly with the
data in panel iii.

v 3OC12 induction of pLas: pLac-UTR1-
LasR at 1 nm, pLas-UTR1-deGFP at 1 nm,
3OC12 varied at 10, 1, 0.1, 0.01, 0.001,
0.0001 and 0.00001µm. IPTG at 1 mm
to sequester any native LacI.

Kd,OC12,
Kd,LasLeak ,
Kd,LasAct ,
Kd,pLas

3OC12 binding to lasR, RNAP binding to
plas DNA, [OC12:lasR] binding to plas
DNA and RNAP binding to activated
plas DNA

from this set, and fix these for all subsequent fitting and simulation. Estimation was

carried out using the Simbiology® toolbox for MATLAB®, where we used the Levenberg-

Marquardt algorithm to solve a non-linear least squares fitting problem to perform the

parameter fitting.

3.3.3 Model Predictions

Using these estimated parameters, we built an IFFL in-silico and compared its behavior to

its in vitro analogue. The results are shown in Figure 3.6 (B, C), which show the endpoint

expression and the full time course trajectories as a function of experimental conditions

66

respectively. The nominal experimental conditions for the IFFL in Figure 3.6 (Bi) were as

follows. IPTG was added at 1 mm, making the pLac promoter constitutive by sequestering

native LacI in the extract. The LasR inducing AHL, 3OC12, was at 1µm. The constitutive

activating plasmid pLac-UTR1-lasR was at 1 nm. The repressor DNA pLas-UTR1-tetR was

at 0.1 nm and the reporter DNA plastetO-UTR1-deGFP. The tetR inducer aTc was at 10µm,

over which it is toxic to TX-TL. This is the reason why the tetR DNA concentration was kept

at a low value of 0.1 nm. At this concentration, there is enough tetR produced to repress

pTet almost completely (Figure 3.6 (Aiii)) in the absence of aTc, while still keeping the tetR

levels low enough for 10µm of aTc to fully sequester it. With these nominal conditions,

the perturbations shown in the panels (Bii-vi) and (Ci-v) in Figure 3.6 were applied, with

the results as shown. We note that the model of the IFFL generated by txtlsim and

characterized as described in Section 3.3.2 was able to predict the the in vitro behavior of

the IFFL well.

3.4 Automated Reaction Network Generation

In Section 3.2, we gave an overview of how a user may set up a simple circuit using a few

lines of code in txtlsim. In this section we go into further details of how the software

sets up the model. We start with a walk-through of what each command does, along with

a discussion of some of the architectural features of the toolbox, and conclude with a

discussion of how the nucleotide and amino acid consumption is modeled for the single

step mRNA or protein production models used in the toolbox.

3.4.1 Software Architecture Walk-Through

In this section we cover how the toolbox sets up a model object, and in doing so, highlight

various features of the toolbox. Figure 3.7 shows the basic flow of the user level code. We

will discuss the function of each of of the commands in the user level code, and in doing

so provide an overview of the structure of the toolbox.

The main directory of the toolbox is called trunk. The key subdirectories in this di-

67

txtl_buffer

txtl_extract

txtl_newtube

con�g. �le name

circuit name

model object 1

model object 2

model object 3

txtl_add_dna

promspec

rbsspec

genespec

dna conc

dna type

model object 3

Repeat txtl_add_dna
for each piece of DNA. model object 3

txtl_combine
model object

species name

conc.

txtl_addspecies

Repeat txtl_addspecies
as necessary

model object

model objectsim. time

txtl_runsim

model object sim. data

Plotting
Parameter Estimation

Exporting to SBML
Parameter Scans
Other Processing

Figure 3.7: Flowchart of the user level code. The txtl_add_dna command is the main
command that is used to specify the DNA to be added to the model. This allows for all the
reactions and species associated with that DNA to be set up in the model. The model is
contained in a Simbiology® model class object, and is simulated using the txtl_runsim
command. See main text for mode details.

rectory are shown in Table 3.3. In particular, we draw attention to the core, config and

components directories, which we will be referring to in the code walk-through. The core

directory contains most of the source code of the network generation part of the tool-

box. In contains user end functions like txtl_add_dna and hidden functions such as

txtl_mrna_degradation or txtl_transcription. The config directory contains (.csv)

configuration files containing parameters associated with extracts and buffers. In prin-

ciple, each extract and buffer has its own configuration file, which is populated using

characterization data collected in that extract and buffer. The components directory acts

as a library of ‘parts’. It contains code (.m) and parameter configuration (.csv) files for ge-

netic circuit parts, like promoters, UTRs and CDSs. Promoters in this library can be of an

activatable, repressible or combinatorial (e.g.: pLastetO in Figure 3.6) nature. Some pro-

moters, like the arabinose induced pBAD promoter may be repressed by a transcription

factor (AraC in this case) when it is not bound to its inducer, and activated by the transcrip-

tion factor when it is bound to the inducer. There is currently only one type of UTR, the

ribosome binding site component, specified as component files in the toolbox. Antisense-

68

attenuator RNA mediated regulation of transcription, which is also specified via the UTR, is

implemented as part of the main source code, and not separate component files. Future

releases of the toolbox may separate out this capability into separate component files.

Finally, CDSs form the most variable group of component files, and can include reporters,

repressors, activators, sigma factors, kinases, phosphatases or proteases, to name a few.

All three classes of components can be extended in a straightforward manner to include

new components, either as copies of existing files with trivial name changes, of with a

small amount of additional work to include capabilities not present in the toolbox.

Table 3.3: Directory structure of the Toolbox

Directory Description
core Core functions of the toolbox, such as txtl_add_dna or txtl_transcription
config Extract and buffer configuration files (.csv). These contain parameters like transcrip-

tional elongation rate, or the initial concentration of RNA polymerases or nucleotides
corresponding to a given extract.

components Component (promoter, UTR and CDS) files. This directory contains both code (.m)
and parameter configuration (.csv) files.

mcmc_simbio MCMC toolbox for Simbiology®. This toolbox allows for Bayesian parameter inference
to be performed on the parameters of Simbiology® models concurrently over many
model-data set pairings. More details can be found in chapter xx.

examples Examples for the modeling toolbox. Includes examples from constitutive gene ex-
pression, to the incoherent feedforward loop and the genetic toggle.

doc Contains the User Manual and associated files.

Asmentioned in the overview in Section 3.2, the commands txtl_extract and txtl_buffer

are used to initialize the extract specific parameters and species. These functions set up

a txtl_reaction_config class object that contains methods and properties to manage

most of the core (i.e., non part-specific) parameters in the model. The properties of the

txtl_reaction_config class object are set by a configuration file stored in the config

directory.

The command txtl_add_dna is the workhorse of the network generation phase of

the toolbox, and is discussed in some detail here. It takes a model object as its first

input, followed by a promoter specification string promsepc, a UTR specification string

utrspec, a CDS specification cdsspec, a numerical DNA concentration input, and a DNA

type specification string as inputs (Table 3.4). Generically, a call to this function takes the

form,

69

txtl_add_dna(model_object, promspec, utrspec,cdsspec, DNAconc, DNAtype),

where the promsepc, rbssepc and cdssepc strings are used to access component files of

the same names in the component directory. These files contain all the relevant informa-

tion pertaining to the promoter, RBS or CDS being specified, including the reactions it is

involved in and the associated parameters.

Table 3.4: Inputs to the txtl_add_dna command. The parenthetical arguments within the
specifications are optional, and if they are not specified, then default values from the
component configuration files are used. The DNA concentration can be any nonnegative
numerical value, and the DNA type must be either 'linear' or 'plasmid'.

Input Syntax Example
model_object Simbiology® model object tube3
promspec string(optional numeric) 'pOR2OR1(50)'
utrspec string(optional numeric) 'UTR1(40)'
cdsspec string(optional numeric) 'tetR(650)'
DNAconc numeric 20
DNAtype string 'linear'

The txtl_add_dna command is called twice: once when the user first specifies the

DNA, and a second time when the command txtl_runsim is called. In the first call, which

happens in a ‘species setup’ mode, most of the species associated with that DNA are

specified, and in the second call (‘reactions setup’ mode), the previously specified set of

species is used to set up the reactions within the model. The reason for splitting the

set up of the species and the reactions is that the specification of many reactions in the

toolbox requires knowledge of exactly which version of the reactants are present. Thus it

must be ensured that any command that sets up reactions in the system has access to

the exact versions of any species that might appear as reactants in the reactions to be

set up. If the txtl_add_dna command were to attempt to set up reactions during its first

call, it would not have access to the promoter, UTR and CDS specifications of subsequent

lines of txtl_add_dna, and therefore to the versions of the species created due to those

specifications. One example where this issue arises is as follows. Consider once again

the code snippet for setting up the negative autoregulation circuit shown in Section 3.2.

The first call to txtl_add_dna involves the ptet promoter. One of the reactions in this

70

promoter’s component file, txtl_prom_ptet.m is the binding of the DNA this promoter is

a part of (DNA ptet--UTR1--deGFP) to the dimerized tetR protein species. The dimerized

tetR species, if present at all, can appear in one of two forms: a form that is not tagged with

a protein degradation tag, protein tetRdimer, and one that is, protein tetR-lvadimer.

The version of this species that exists depends on what the string specified by cdsspec is:

tetR or tetR-lva. Since the txtl_add_dna command specifying this is in a subsequent

line, this information is not available to the pTet component file at the time it attempts to

set up the reaction in this scenario.

One possibility for the first call to txtl_add_dna is that it sets up all the possible

versions of the repression reaction, and only the reactions with all reactants with non-

zero concentrations have flux through them. While this approach would give the correct

system dynamics in principle, it is not scalable as the number of species and reactions

would get large quickly, with most of these being unnecessary. A better approach is to only

set up the reactions that are actually expected to occur in the system. This approach can

be implemented with the two-pass method described above. Specifically, the first set of

calls to txtl_add_dna, which are the calls explicitly visible in the code snippet, set up all

the species that are possible to set up with the information available at this stage. In our

example, this means that the protein protein tetRdimer is initialized, so that this version

of the TetR dimer is used in the specification of the repression reaction, which happens

in the second, reaction mode call to txtl_add_dna by the txtl_runsim command.

One idea hinted at in the above discussion is that when the species are being set up,

there might not even be enough information available to set up all the species required.

Some species appear as the products of reactions, and are only known once the reactions

are specified. Indeed, if species-version dependent reactions lead to product species

whose exact version other reactions depend on in turn, then the above two pass method

will not suffice. Though we do not implement the solution in this version of the toolbox,

one can imagine a multi-pass architecture that alternates between calls to txtl_add_dna

in species setup and reaction setup modes, with the iterations ending only when the set

of reactions and species no longer grows.

71

In both modes of the call to txtl_add_dna, the command performs the following ac-

tions: call the component function files for the promoter, the UTR and the CDS, followed

by a function to set up mRNA degradation species and reactions, followed by DNA and

protein degradation, if present. The promoter file sets up reactions and species (depend-

ing on the mode) associated with TF mediated regulation and transcription. Similarly, the

UTR function file sets up ribosome binding reactions and other reactions associated with

translation.

Returning to the user level code, once all the txtl_add_dna commands have been

specified, the extract, buffer and DNA model objects (with variable names starting with

tube) are combined in using the txtl_combine command, which simply adds the species

and reactions from the three model objects into a single model object, and scales the

concentrations of the species to simulate the resulting change in volume. The resulting

model object, often named as a variable Mobj, can be simulated by txtl_runsim. Note that

even if simulation is not the immediate goal, one call to txtl_runsim should always be

performed, since this is where the reactions in themodel are set up with the txtl_add_dna

command. After the call to txtl_runsim, we have a fully defined model object, and a

simData class object containing the results of the simulation. These objects may be used

for further simulations, parameter inference, and visualization of the species trajectories,

of be exported to other platforms via SBML.

3.5 Tools forMulti-ExperimentConcurrentBayesianParameter In-

ference

Bayesian parameter inference via MCMC methods involves designing a reversible Markov

chain with stationary distribution matching the posterior parameter distribution (given

models and data). This Markov chain can then be simulated and sampled to build an

ensemble of points that estimates the desired parameter distribution. One example of

this is the Metropolis-Hastings sampler, which was used for parameter inference in [11].

Numerous variations and extensions of MCMC samplers exist, and we use the ensemble

72

sampler by Goodman and Weare [25], which is particularly well suited to highly anisotropic

densities that occur due to parameter non-identifiability in biological models.

In this section we present mcmc_simbio, which performs concurrent Bayesian param-

eter inference on Simbiology® models. By concurrent parameter inference, we mean the

following. Suppose we have a set of different experiments, with a model correspond-

ing to each experiment. Let each experiment-model pair be used to estimate some set

of parameters, with the possibility that parameters may be informed by more than one

model-experiment pair. Concurrent parameter inference finds the posterior distribution

for the parameters given the full set of experiment-model pairs and the specification of

the subset of parameters informed by each experiment. This scheme is depicted visually

in Figure 3.8. mcmc_simbio builds the concurrent estimation capabilities and Simbiology®

specific features around the MATLAB® implementation of the Goodman and Weare en-

semble MCMC sampler [20, 25, 28].

One application of this toolbox is during the calibration step of the calibration-correction

method introduced in Chapter 2. The calibration step of the method involves sharing the

circuit specific parameters (CSPs) between two extracts (i.e., estimating a single set of val-

ues for them) while estimating individual sets of values for the extract specific parameters

(ESPs). Recall from Section 2.4.2 that we fit the calibration data for each extract in Figure 2.4

to a corresponding model, with each CSP point (comprising the sole parameter coordinate

krG) in the ensemble estimated to fit both models to their respective data sets simulta-

neously, while each model-data pair fits its own ESPs (Enz and kc) independently of the

other. This scheme is summarized in Figure 3.9 (A), where each dot represents the set of

ESPs or CSPs for one model-experiment pair (determined by the circuit and extract used).

A line between two dots indicates that if a parameter appears in both the sets represented

by the dots, then it is estimated jointly or concurrently. Figure 3.9 (B) shows a different

sharing pattern, where the CSPs are shared between the extracts for both the calibration

circuit and the test circuit, and the ESPs are shared between the circuits for each extract.

This, and other variations to this pattern, might be useful for comparing with the sets of

parameters obtained by the base calibration-correction method.

73

Model

Model

Model

Behavior

Behavior

Behavior

Experimental data:
one set for each

model parametrization

master vector
of parameters

subsets of parameters
distribuded to models

pa
ra

m
M

ap
s

Compute residuals
and likelihood

ensemble
of models

Figure 3.8: Parameter sharing in setting up the concurrent parameter inference problem.
Given different sets of experimental data, and corresponding models, which can differ in
the structure of the chemical reaction network (network ‘topology’) or just the parameter
values in the models (network ‘geometry’), the concurrent parameter inference problem is
set up as follows. A master vector is defined, which collects all the parameters in the mod-
els into a single vector. Each parameter that is to be shared between models only appears
once in the master vector. I.e., parameters that are to be identified with each other be-
tween models are treated as an equivalence class of parameters, and their representative
is placed in the master vector. Next, paramMaps matrices (described in Appendix 3.C) are
used to distribute the parameters to models, which are then simulated and their behavior
compared against corresponding experimental data to compute the likelihood values for
the purposes of the Bayesian Parameter inference.

74

The ESPs are shared between models of different circuits, corresponding to different

biochemical network topologies, while the CSPs are shared between models that differ

only in their parameter values. We refer to the first type of sharing as sharing between

model topologies while the latter as parameter sharing between model geometries. In

general, eachmodel can be specified by a unique pair of indices, the first of which specifies

the model’s topology, and the second the model’s geometry. Thus, we will often refer to

models as topology-geometry pairs.

Calibration
Circuit

Test
Circuit

ESP Sharing PatternCSP Sharing Pattern

ESP Sharing PatternCSP Sharing Pattern

Calibration
Circuit

Test
Circuit

i

ii

Figure 3.9: Application of the concurrent Bayesian inference capabilities to the calibration-
correction problem of Chapter 2. (i) The sharing pattern for the calibration-correction
method. At the calibration step, only a single set of values for the circuit specific param-
eters is estimated. there is no other sharing present. (ii) A sharing pattern where circuit
specific parameters are shared within a single model topology (between geometries) and
extract specific parameters are shared between circuits within a single extract. We are
using different sharing patterns like this to explore, derive and verify the types of mathe-
matical conditions derived in Sections 2.5 and 2.6 of Chapter 2.

An advantage of estimating the entire joint posterior distribution of the parameter,

as opposed to using optimization methods for point estimation, is that it can be used to

check the identifiability properties of the models. This is useful for understanding which

parameters are well constrained by the data, if there is any covariation present between

the parameter estimates (Section 2.6), and for designing experiments for reducing param-

75

eter non-identifiability. Indeed, a particularly useful application of concurrent parameter

inference is in experiment design to reduce or remove parameter non-identifiability. One

can iterate on the set of models and data, possibly of heterogeneous forms, to find the

smallest set that gives identifiable parameters. Indeed, the experiments do not even have

to be performed at the design stage, and models may be used to generate artificial data

from each model, from which parameter identifiability can be checked.

3.5.1 An Illustrative Example

In this section, we describe the concurrent parameter inference capabilities of mcmc_simbio

in some detail using an example similar to the calibration step in the calibration-correction

method. Recall from Section 2.4.3 that the calibration step for the example in Chapter 2

involved a model given by

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G, (3.5)

where DG is the GFP DNA, Enz is the enzyme used to model the transcriptional and transla-

tional machinery, DG:Enz is a complex, and G is the GFP protein. The reaction rate param-

eters are k f G , krG , and kc respectively. The calibration step requires the implementation

of this circuit in two extracts, and in the language of mcmc_simbio, we say that there is one

topology (circuit, or network topology) and two geometries (implementations of that cir-

cuit in different extracts, differing only in their parameter values), leading to two topology-

geometry pairs (models). Together, the two models have to be fit to corresponding data

sets to estimate an ensemble of parameter values.

The experimental data associated with this parameter inference problem involve the

implementation of this circuit in two extracts, at three different initial DNA concentrations

(‘doses’ in the language of mcmc_simbio), with time courses of GFP measured (‘measured

species’). The parameters expected to be the same across the two extracts are those that

pertain to the circuit parts, i.e., the binding-unbinding rates k f G and krG . In our estimation

problem, we set the value of k f G to its true value (the value used to generate the artificial

data), and only estimate krG jointly. The parameters to be estimated individually for each

76

model are those expected to be different between the two extracts, i.e., the initial enzyme

[Enz]0 concentration and the elongation rate kc . The resulting parameter space being

searched is five dimensional (θ = (krG , [Enz]1,0, kc1, [Enz]2,0, kc2)). Figure 3.10 shows the

time, a.u. time, a.u.

G
FP

, a
.u

.

G
FP

, a
.u

.

-1
-8

7
1

lo
g

k cp
1

lo
g

po
l 1

3 log krdG log pol2log pol1 log kcp2
9 3 log krdG

9-8 log kcp1
-1

0
-7

9
2

lo
g

k cp
2

lo
g

po
l 2

-7 0 2 81 7

A B

C D

Figure 3.10: mcmc_simbio example. (A, B) Model fits to artificially generated data. Solid line:
artificially generated experimental data. Dashed line: mean of 50 simulated trajectories
resulting from the ensemble of parameter estimates. Shaded region: standard deviation.
(C, D) Pairwise projections of the posterior parameter distributions.

result of estimating the ensemble of parameter points (see Figure 3.10C, D for pairwise

projections of the log transformed values of the ensemble) that fit the simulated data to

the models. We picked fifty points from the estimated ensemble, and generated model

prediction trajectories for each DNA dose (initial condition) and in each of the two extracts

(Figure 3.10A, B). Figure 3.11 shows theMarkov chains obtained by performing this MCMC run.

77

The setup of this estimation problem involves setting up a proj_<projname>.m project file,

log krG log kc1 log kc2log Enz1 log Enz28.5

7.5

6.5

5.5

4.5

3.5
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

-1

-2

-3

-4

-5

-6

-7

1

2

3

4

5

6

7

-1

-2

-3

-4

-5

-6

7.5

6.5

5.5

4.5

3.5

Walker step

lo
g

tra
ns

fo
rm

ed
 v

al
ue

Figure 3.11: Markov chains in the mcmc_simbio example.

which contains information on the experimental data, Simbiology models, specifications

of the parameter sharing pattern, the hyperparameters for the MCMC algorithm, and the

data visualization specifications. The general layout of the file for this example is shown

in the code below.

% Initialize the project directory, where the data and plots will be stored.

[tstamp, projdir, st] = project_init;

% Define the simbiology model class object to be used. In this problem there is

only one topology (circuit): the constitutive gene expression circuit.

model_protein3 is a file that sets up the appropriate model.

mobj = model_protein3;

% define the mcmc_info struct that specifies the estimation problem structure and

hyperparameters. See detailed discussion below describing this struct.

mcmc_info = mcmc_info_constgfp3ii(mobj);

78

% The model_info field in the mcmc_info struct is a MALTAB struct in itself, and

contains information about the model topologies, geometries and parameter

concurrence pattern.

mi = mcmc_info.model_info;

% A list of nominal parameter values to use to generate the data.

rkfG = 5; rkrG = 300; rkc1 = 0.012;

rkc2 = 0.024; cEnz1 = 100; cEnz2 = 200;

% Arrange the parameters in a log transformed 'master' vector.

masterVector = log([rkfG; rkrG; rkc1; rkc2; cEnz1; cEnz2]);

% Generate artificial data for the two extracts using the model object, a vector

of timepoints, the set of parameters, and information of which species are to

be dosed and measured.

di = data_artificial_v2({mobj}, {0:180:7200}, {mi.measuredSpecies},...

{mi.dosedNames}, {mi.dosedVals}, {mi.namesUnord},...

{exp(masterVector([1:2 3 5])), exp(masterVector([1:2 4 6]))});

% perform the ensemble MCMC parameter estimation.

mi = mcmc_runsim_v2(tstamp, projdir, di, mcmc_info);

% Plotting commands

% get the mcmc chains from saved timestamped data.

marray = mcmc_get_walkers({tstamptouse}, {1:ri.nIter}, projdir);

% plot the parameter distribution corner plots and markov chains

mcmc_plot(marray, mai.estNames, 'tstamp', tstamptouse);

% plot the data trajectories and the simulated data fits.

mvarray = masterVecArray(marray, mai);

marrayOrd = mvarray(mi(1).paramMaps(mi(1).orderingIx, 1),:,:);

fhandle = mcmc_trajectories(mi(1).emo, di(1), mi(1), marrayOrd,...

titls, lgds, 'projdir', projdir, 'tstamp', tstamptouse, 'extrafignamestring',

'_extract1');

79

% and more plotting commands may be added as needed...

The command mcmc_info_constgfp3ii is used to set up a MATLAB® ‘struct’ class ob-

ject called mcmc_info. This struct has three fields, model_info, runsim_info and master_info,

which are themselves MATLAB® structs.

The model_info struct array, having one entry for each topology, is used to specify

information about the models used in the estimation problem. This information includes

the full list of parameters in each model topology (namesUnord), a specification of how

the parameters in the masterVector field of the master_info struct are to be distributed

to each model, and information on dosing (initial conditions) and measurement (output)

for each model. This struct is described in detail in Appendix 3.C.

The master_info struct is used to specify information about the pool of parameters

to be shared across all the topology-geometry pairs. Along with the masterVector, it also

contains the fields estNames, paramRanges, and fixedParams, which are described below.

Finally, the runsim_info struct is used to specify the simulation hyperparameters like

the number of points to simulate the chains for, the noise model, the number of MCMC

‘walkers’ (chains), the step size for the algorithm, whether parallelization is to be used,

etc.

Next, we outline how these structs are used to set up the estimation problem. We set

up parameter concurrence by first specifying a vector of parameters called the masterVector.

This vector contains all the parameter values that are to be distributed to all of the

topology-geometry pairs. We allow values within the masterVector to be either fixed or es-

timated. The masterVector is initialized to a set of values in the file mcmc_info_constgfp3ii.m,

and the master_info.fixedParams field is used to specify which of these values is to be

fixed. The remaining values constitute the vector of parameters to be estimated during the

MCMC process, and are named by the cell array master_info.estNames. At each iteration

of the algorithm, MCMC generates a new proposal of the estimated parameter vector. This

proposal is used to populate the relevant entries in the masterVector, and the paramMaps

field of the model_info struct is used to distribute the parameters from the masterVector

to the individual model geometries. Each model is then simulated at each of the dosing

80

conditions (specified by the dosedNames and dosedVals fields of the model_info struct),

and the data for the species to be measured are compared to the experimental data

stored in the data_info struct array. The dataToMapTo and measuredSpeciesIndex fields

in model_info are used to specify which element of the data_info struct array a given

model’s output corresponds to, and the mapping from the model’s species to the experi-

mental data trajectories in the data set.

For our example, the code snippets below show the section of mcmc_info_constgfp3ii.m

that are used to specify this functionality. The comments, shown in green, are used to link

the description above to specific functionalities. First, we show the top level constituents

of the mcmc_info struct.

% In this example, model_info is a scalar struct, since there is only one

topology. In general, each topology gets its own element in this struct.

model_info = struct(...

'circuitInfo',{circuitInfo},...

'modelObj', {modelObj},...

'modelName', {modelObj.name},...

'namesUnord', {namesUnord}, ...

'paramMaps', {paramMap}, ...

'dosedNames', {dosedNames},...

'dosedVals', {dosedVals},...

'measuredSpecies', {measuredSpecies}, ...

'measuredSpeciesIndex', {msIx},...

'dataToMapTo', dataIndices);

% The master_info struct is a scalar struct and gives the initial masterVector of

parameter values to be distributed to the topology geometry pairs, which of

the indices in that vector are to be fixed (fixedParams vector of indices), a

string of names of parameters (and species initial concentrations) that are

to be estimated (estParams), and the range of values to seach over for each

parameter.

master_info = struct(...

'estNames', {estParams},...

'masterVector', {masterVector},...

'paramRanges', {paramRanges},...

81

'fixedParams', {fixedParams});

The next code snippet describes how each of the entries of the model_info and master_info

structs is specified. For the single topology in this example, there are two geometries. This

is encoded by the fact that the paramMaps field of the model_info struct is a matrix with

two columns, as shown in the code snippet below.

% Information describing the circuit. This gets printed in the log file. Here,

the enzymatic reaction is used to produce the protein G. Since there is only

one topology, only one string is needed.

circuitInfo = ...

[' D_G + Enz <-> D_G:Enz (kfG, krG \n'...)

'D_G:Enz -> G + Enz + protien (kc)\n'...

'single topology, two geometries.'];

% The masterVector of all the paramters: both fixed and estimated. This vector is

used during the MCMC algorithm.

% The fixed parameter (kfG) is fixed at a value of 5 (arbitrary units) here, and

its index in the masterVector is specified by fixedParams.

% At each iteration of the MCMC algorithm, a new 5D parameter point is proposed,

and used to update

% the relevant entries of the master vector. The values in this vector are

% then distributed to the two geometries.

rkfG = 5; rkrG = 300; rkc1 = 0.012; rkc2 = 0.024; cEnz1 = 100; cEnz2 = 200;

% Note that the values in the masterVector are log transformed.

masterVector = log([rkfG; rkrG; rkc1; rkc2; cEnz1; cEnz2]);

% just the rkfG parameter is fixed, which has index 1 in masterVector

fixedParams = [1];

% The remaining indices are the estimated parameters. The indices are [2:6]

estParamsIx = setdiff((1:length(masterVector))', fixedParams);

% namesUnord is a list of the species and parameters in the model that are set

from values drawn from the masterVector. These incluce both the fixed and

estimated values. In each model, we have the parameters 'kfG', 'krG', and

'kc' whose values get set and the species 'Enz' whose initial value gets set.

namesUnord = {'kfG';'krG';'kc';'Enz'};

82

% estParams is a cell array of strings containing the names of the species and

parameters in the masterVector that are not fixed. There are five values

here: krG, which is estimated jointly for both geometries, and kc and Enz,

each of which are estimated separately for each geometry (labeled 1 and 2).

estParams = {'krG';'kc1';'kc2';'Enz1';'Enz2'};

% The paramMaps field is a matrix that maps the elements of the masterVector to

the individual parameters and species in the topology-geometry pairs. For a

given topology, we have one matrix, with the number of columns specifying the

number of geometries associated with that topology, and how the parameters

from the master vector are to be distributed to each geometry. In this case,

there are two geometries: the first geometry's parameters and species,

specified by namesUnord ('kfG', 'krG', 'kc' and 'Enz'), are set to be

specified (during each MCMC iteration) by indices 1, 2, 3, and 5 of the

masterVector, i.e., kfG, krG, kc1 and Enz1. Similarly, the second geometry's

namesUnord species and parameters are set to be specified by

masterVector(mcmc_info.model_info(1).paramMaps(:,2)), i.e., kfG, krG, kc2,

and Enz2.

paramMap1 = [1 2 3 5]';

paramMap2 = [1 2 4 6]';

paramMaps = [paramMap1 paramMap2];

% paramRanges: A length(masterVector) by 2 matrix of the ranges of (log

transformed) values to limit the MCMC sampling to. We limit the search in

this example to +-3 from the values used to generate the artificial date.

paramRanges = [masterVector(estParamsIx)-3 masterVector(estParamsIx)+3];

% The data_info struct array contains the data sets associated with this

estimation problem. In this problem, this array is of length two, with the

first struct entry corresponding to the first geometry, and the second struct

entry corresponsing to the second geometry.

dataIndices = [1 2];

% next we define the dosing strategy. The species names dG in the Simbiology

model is to be dosed, and at the values specified.

83

dosedNames = {'dG'};

dosedVals = [10 30 60];

% define the species to be measused. Here the species named pG is measured.

measuredSpecies = {{'pG'}};

% The trajectories of the pG species get mapped to the column with index msIx = 1

in the data_info(dataIndices(i)).dataArray matrix, where i is a geometry

index.

msIx = 1; %

After the mcmc_info struct has been defined, the data_info struct array is specified. In

this example, known models are used to generate artificial data, but in general this struct

is defined using real experimental data. In general, data_info is a struct array. The (i, j)-th

topology-geometry pair uses data specified in

data_info(mcmc_info.model_info(i).dataIndices(j)).

The struct is used to specify a vector of time points, a list of names of species that are

measured, a list of names of species that are dosed, a matrix of dose values, a four di-

mensional array of data values, and other metadata. This is summarized in Table 3.C.1 in

Appendix 3.C.

Once these structs have been defined, they are used as inputs into the mcmc_runsim

function, which performs the concurrent parameter inference, and saves the results and

log files in a time-stamped subdirectory within the toolbox. The toolbox also contains

plotting functionalities, functionality for generating data_info structs populated with arti-

ficial data, and for converting raw platereader data into data_info structs.

3.6 Discussion

In this chapter, we have described txtlsim, a toolbox for simulating batch mode TX-TL

reactions using Simbiology®, andmcmc_simbio, a smaller toolbox within txtlsim that per-

forms concurrent Bayesian parameter inference on Simbiology® models (not just txtlsim

84

models). The key features of txtlsim are that it requires only a few lines of code to gener-

ate a model of gene regulatory circuits within TX-TL with enough complexity to model the

loading of transcription, translation and RNAse catalytic machinery, and the consumption

of resources like nucleotides and amino acids. The requirement for modeling resource

consumption while keeping the reaction network size manageable led to the creation of

consumption reactions with reaction rates defined to be a function of polymer length

and mRNA or protein production rates. These reactions are discussed in greater depth in

Chapter 4. The txtlsim toolbox also provides support for a wide range of regulatory parts,

and is easily extensible by users. Furthermore, the modeling framework of txtlsim au-

tomatically accounts for retroactivity and loading effects, without needing for these to be

explicitly specified in the model equations. We have described the usage of txtlsim, and

the software architecture needed to automatically generate a complex chemical reaction

network from simply specified user inputs. We have validated the model by characterizing

core and part parameters using data from the literature, and from experiments performed

in the lab, and predicting the behavior of an incoherent feedforward loop circuit.

The mcmc_simbio toolbox enables for different sets of experiments, possibly from het-

erogeneous sources, to be combined for parameter inference purposes, allowing for more

information to be incorporated into the parameter inference problem. Indeed, since the

approach returns the joint posterior parameter density, the improvements in parameter

identifiability resulting from using multiple experiments to estimate parameters can be

checked visually. While we do not show the use of this toolbox for inferring txtlsim pa-

rameters in this chapter, we do use the toolbox for parameter inference performed in

Chapter 2.

There are numerous directions that this work may be extended in. Firstly, capabili-

ties from the MATLAB® based GenSSI toolbox [10] for checking structural identifiability of

experiments-model pairs may be added to txtlsim. GenSSI uses Lie derivatives of the

model output with respect to the parameters to generate approximations to the so called

exhaustive summary of model parameters given the initial conditions and outputs of the

model. The exhaustive summary contains all the information that can be learned about

85

the parameters, and if the map from the parameters to the exhaustive summary is injec-

tive, the parameters can be shown to be identifiable in the sense of Definition 2. Using

GenSSI, along with Bayesian inference on artificial txtlsim data, to explore identifiability

would form a potent approach for model checking and experiment design.

Another extension of this work would be the incorporation of ‘modes’ of simulation

within txtlsim. We might choose to turn on or off reactions to model growth and dilution

as part of a ‘cell’ or ‘microfluidics’ mode. We may also include modes for more or less

detailed models, such as lumping transcription and translation into single reactions, or

switching to Hill kinetics from mass action kinetics.

Other extensions include the ability to port models to the bioscrape toolbox [62] and

for the models generated by txtlsim and other tools to be treated as semantically distinct

elements, and be interconnected as subsystems into a larger system.

All in all, we believe that if modeling based approaches are flexible, easy to use and

biologically faithful enough for the modeling purpose they are intended for, then they will

actually be used by the synthetic biology practitioner, and help accelerate the progress of

the field. Our hope is that txtlsim, mcmc_simbio, and their extensions help advance this

vision.

86

Appendices

3.A Consumption Reactions as a Means of Tracking Resource Uti-

lization in Reduced Models of Transcription and Translation

In this section, we discuss the use of consumption reactions to maintain the correct stoi-

chiometry of resource utilization during transcription and translation, while still allowing

for detailed elongation models to be replaced by single step reactions. An in depth dis-

cussion of this subject may be found in Chapter 4 .

Consider the transcription of an mRNA species of length 1kb. Assume that the four

types of bases are equally distributed along the mRNA, and so 250 molecules each of ATP,

GTP, CTP and UTP are required for the transcription of this mRNA species. In our model,

ATP and GTP are modeled together as a species AGTP, where we assume that one unit

of the AGTP represents one unit of ATP and one unit of CTP. Similarly, one unit of CUTP

represents one unit of CTP and one of UTP. Thus, 250 units each of AGTP and CUTP are

needed to transcribe the 1kb mRNA molecule. Looking at the model in Equations (3.1), we

see that the mRNA production step reaction consumes one unit each of AGTP and CUTP

and produces one mRNA molecule. The consumption reaction also consumes one unit

each of AGTP and CUTP, and does not produce an mRNA molecule. Thus, to consume 250

units each of AGTP and CUTP per mRNA produced, we may set the rate of the consumption

reaction to be Lm/4− 1 = 249 times the rate of the mRNA production step. We now show

that with this choice, the correct number of nucleotides gets used per mRNA molecule

produced. The rate of mRNA production is given by

d[mRNA]
dt

= kt x · [CUTP:AGTP:RNAP:DNA].

87

To compute the rate of nucleotide consumption, we define a variable Nuninc, which is the

total concentration of nucleotides not incorporated intomRNA. Ie, Nuninc = 4·[CUTP:AGTP:RNAP:DNA]+

2 · ([AGTP:RNAP:DNA] + [CUTP:RNAP:DNA] + [CUTP] + [AGTP]). We would like to show

that the rate at which these unincorporated nucleotides are decreasing is Lm = 1000 times

the rate at which the mRNA is being produced. The rate of consumption of unincorporated

nucleotides is calculated as

dNuninc
dt

= 4 · d ([CUTP:AGTP:RNAP:DNA])
dt

,

+ 2 ·
�

d[AGTP:RNAP:DNA]
dt

+
d[CUTP:RNAP:DNA]

dt
+

d[CUTP]
dt

+
d[AGTP]

dt

�
,

= − 4 ·
�

kt x +
�

Lm

4
− 1
�

kt x

�
,

= − Lm · kt x ,

where the second equality follows from converting Equations (3.1) into the corresponding

mass action ODEs and substituting these into the derivative terms above, and observing

that most of the terms in the resulting expression cancel in pairs. We note that the deriva-

tion of the consumption reactions for translation is exactly analogous, and the only thing

that needs to be stated is that on average, the energetic cost of translation involves four

ATP equivalents (two ATP and two GTP) per amino acid incorporation.

3.B MATLAB® Simbiology®

The MATLAB® Simbiology® toolbox follows the SBML standard in its class structure, with

classes for models, compartments, species, reactions, parameters, rules, events, kinetic

laws and other features. At the top level we have a Simbiology® model class object that

contains one or more compartment class objects. To each compartment, one may asso-

ciate reaction, species, rule, event, parameter and kinetic law class objects. Individual

kinetic law objects, which are associated to a unique parent reaction, are used to specify

the reaction properties like the reaction rate law and parameters associated to that reac-

tion. The parameters within a kinetic law refer to parameter class objects, which can be

88

scoped either at the model level or the kinetic law levels. Parameter objects scoped at

the model level can be used by multiple kinetic law objects, while those scoped within a

kinetic law object can only be used by that object. Species objects can form either the

reactants or products of a reaction, and are scoped at the compartment level. Rules are

relationships between parameters, rates and species, and events allow the modeling of

discontinuous dynamic changes in the model.

3.C Details of the Data Structures used to Specify the Concurrent

Parameter Inference Problem

The data_info struct is a MATLAB® struct class array of length nDataSets, where nDataSets

is the number of data sets used in the parameter inference problem. Table 3.C.1 gives

descriptions of the contents of each field for each element within this struct.

Table 3.C.1: The fields of the data_info struct.

Field Description
dataInfo A human readable description of the data.

timeVector A vector of timepoints of length nTimePoints.
timeUnits A string specifying the time units. Most commonly ’seconds’,

’minutes’ or ’hours’.

dataArray 4-D array of data of size nTimePoints by nMeasuresSpecies by
nReplicates by nDoseCombinations.

measuredNames An array of strings representing the names of the measured
species. It has length nMeasuredSpecies.

dataUnits An array of strings specifying the units each measured species
was measured in. It has length nMeasuresSpecies

dosedNames An array of strings representing the names of the dosed species.
It has length nDosedSpecies.

dosedVals A matrix of dose values, of size nDosedSpecies by nDoseCombina-
tions.

doseUnits An array of strings specifying the units of each of the dosed
species. It has length nDosedSpecies.

Similarly, the model_info struct is of length nTopologies, where nTopologies is the num-

ber of different models used in the parameter inference problem. Table 3.C.2 gives de-

89

scriptions of the contents of each field within this struct for each element within the

struct array.

Table 3.C.2: The fields of the model_info struct. This struct is of length nTopologies,
and specifies the properties of models, and the pattern of parameter sharing across the
topologies and geometries for the purposes of setting up the concurrent parameter infer-
ence problem.

Field Description
circuitInfo A human readable description of the model.

modelObj A Simbiology® model class object (in the terminology of the con-
current parameter inference problem, this is a network topology).

namesUnord A list of parameters in the model object that are set from values
in the master_vector.

paramMaps A matrix of the indices of the master_vector that correspond to
the parameters specified in the list namesUnord. Each column of
this matrix specifies one set of elements of the master_vector
that specify the values of the parameters in namesUnord for this
model. The number of columns, nCols, of this matrix is the num-
ber of different geometries of the model, in that the models are
different, but only in the values the parameters take, and not in
the network topologies.

dosedNames An array of strings representing the names of the dosed species.
It has length nDosedSpecies.

dosedVals A matrix of dose values, of size nDosedSpecies by nDoseCombina-
tions.

measuredNames An array of strings representing the names of the measured
species. It has length nMeasuresSpecies.

measuredSpeciesIndex An array of indices pointing to the measured species columns of
the dataArray in the data_info struct.

dataToMapTo A numerical vector of length nCols containing the indices of the
elements of the data_info struct that the model geometries cor-
respond to. These are used when themodel predictions are com-
pared to the data in the computation of the log likelihood during
MCMC.

The function mcmc_runsim generates an inference problem as follows. Suppose there

are nTopologies different model topologies specified by model_info. Let the topologies be

indexed by the letter i. Suppose that for the i-th topology, the corresponding paramMaps

matrix has nCols_i columns, each corresponding to a geometry. Then, mcmc_runsim cre-

ates an ensemble of nCols_1 + · · · + nCols_nTopologies models, and uses the paramMaps

matrices to distribute the parameter values in master_vector into this ensemble of mod-

90

els. All of these models are then simulated, the residuals generated by comparing the

results to the data_info elements specified by the dataToMapTo field, and the log likeli-

hood computed. The MCMC algorithm uses this to compute the new points in the space

of estimated parameters and updates the master_vector with the new proposals. The al-

gorithm then repeats until a stopping criterion, such as the number of points to simulate

the Markov chains for, is met.

