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Chapter 2

A Model-Based Calibration
Methodology for Cell-Free Extract
Variability Reduction

2.1 Introduction

Cell-free extracts have been proposed as a potential tool for the rapid prototyping of ge-

netic circuits in synthetic biology [47]. One of the challenges in the development of this

technology is that there is significant variability across different batches of extracts, which

limits our ability to reliably generalize the results of any one extract. The study performed

by Takahashi et al. [65] showed large variation in the constitutive expression of a fluo-

rescent protein between batches, and Hu et al. [33] went one step further, showing that

the variability in expression could be mapped to variability in the parameter estimates.

Interestingly, Garamella et al. [22] showed minimal variability in constitutive gene expres-

sion between four extract batches. However, these batches were produced by the same

expert personnel under strictly controlled conditions and supervision (personal commu-

nication), and such reproducibility has not been demonstrated in other labs. Furthermore,

Garamella et al. did not demonstrate the lack of variability in the behavior of more com-

plex circuits.

Our main goal in this chapter is to describe a method for computationally correcting

for the variability between extracts. We frame the reduction in batch-to-batch variability

in terms of what we call the data correction problem. This involves finding a method for
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transforming the behavior of a circuit from a candidate extract into what it would look like

had it been collected in a reference extract. The idea is that whenever data are collected in

a batch of extract, they should be transformed into their reference extract version, making

them directly comparable with other similarly transformed data.

The data correction problem may be solved by a model-based methodology for cal-

ibrating extract batches and subsequently using these calibrations to correct measured

genetic circuit behavior. We call this procedure the calibration-correction method, after

an analogous procedure developed for correcting wind tunnel data in the 1940s [63]. The

assumption underlying the method is that there are certain features of extracts that vary

from batch to batch, and the variation of these features can be captured as the variation

of certain extract specific parameters (ESPs). Furthermore, we assume the parameters as-

sociated with the circuit do not change when implemented in different extract batches. In

general, this assumption should hold for sufficiently fine grained circuit models, becoming

more approximate when coarser models are used.

The calibration-correction method involves first performing a set of calibration exper-

iments on both the reference and candidate extracts, and using models corresponding

to these experiments to estimate the ESPs associated with each extract. Subsequently,

the behavior of a circuit of interest is measured in the candidate extract, and its circuit

specific parameters (CSPs) are estimated from this data and a corresponding model. This

estimation step is performed with the ESPs for the candidate extract fixed at the values

obtained at the calibration stage. Finally, the prediction for the circuit behavior in the ref-

erence extract is generated using the circuit model with these CSPs, along with the ESPs

for the reference extract.

The choice of ESPs and CSPs is hypothesis driven, and must be verified experimentally.

In this work we assume that extract specific parameters generally correspond to param-

eters associated with cellular machinery like RNA polymerases and ribosomes, while the

CSPs correspond to parameters like transcription factor dimerization constants, which are

associated primarily with circuit parts.

The implementation of this method is complicated by the fact that the parameters
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of the models we use to describe biochemical systems are rarely completely identifiable.

Roughly stated, parameter non-identifiability refers to the situation when the parameter

estimation inverse problem is underdetermined, leading to non-unique solutions. It oc-

curs when the data are not sufficiently informative for the level of detail present in the

model. Set based parameter estimation methods like that in [32] or MCMC allow for the

computation of equivalence classes [66] of parameter values that fit the model behavior to

the data. The fact that the parameter sets obtained are equivalence classes with respect

to a model-data set pair simply means that one may sample an arbitrary point from the

identified parameter set, and it will be a point at which the model fits the data. This notion

leads to the question of whether these sets of parameters can be treated as equivalence

classes with respect to any method that depends on solving the inverse problem, which

will be a major theme in this chapter.

The main conceptual contribution of this chapter will be to show that with respect to

the calibration-correction problem, and under some consistency conditions on the pa-

rameter sets, these sets can indeed be treated as equivalence classes. The statement

of the conditions on the parameter sets will lead to a prescription of how to design the

calibration experiments, and in Section 2.6, even lead to a refinement of the calibration-

correction method itself.

The framework presented in this work is not limited to correcting the behavior of ge-

netic circuits across cell extracts, and may be applied to the correction of behavior be-

tween different cell strains, between the in vitro and in vivo environments, and even to

applications in other engineering disciplines [63]. As such, even though we continue to

refer to circuits and extracts, we note that replacing these with process and environment

respectively allows this framework to be used elsewhere.

We start by showing that extracts prepared using the same protocol by different in-

dividuals display large variability in gene expression. We then define some notation in

Section 2.3. In Section 2.4 we describe the data correction problem and the calibration-

correction method in formal terms, and demonstrate the method using a simple example.

In Section 2.5, we discuss a set of conditions that are required to hold for the method
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to work in general, and discuss the limitations of the method in light of these conditions.

Section 2.6 introduces a refinement of the method that improves its performance, and dis-

cuss its effect on our example system. In Section 2.7, we demonstrate how the refinement

works on artificial data, and end with some concluding remarks in Section 2.8.

2.2 Extracts Display Significant Variability Across Batches

We start with a demonstration of the variability in extract behavior in three batches of

extracts. The extracts used were created using the protocol in [60] using the BL21 Rosetta

bacterial strains, with cell lysis performed using a French press instead of the bead-beating

method described there. Example data in these extracts are shown in Figure 2.1, which

shows the results of expressing six constitutive transcriptional units in the three extracts,

expressed with linear DNA and GamS protein for protection from nucleases. The buffer

used for the experiments in Figure 2.1 was the same. The experiments were performed

with five technical repeats, and the mean and standard deviation (shown as solid lines

and shaded regions in corresponding colors in the figure) were computed.

We note that the extracts show different levels of expression across different promot-

ers. In particular, eJP shows the highest expression across all the constructs, followed by

eVS, and finally eSG.

2.3 Notation and Preliminary Ideas

2.3.1 Experiments, Systems, Models and Parameters

We consider systems S = (E,C) described as a combination of an extract E and a circuit

C, and define an experiment H = (S, x0, y) to be the execution of a system under initial

conditions x0 and output measurements y . The bar symbol (̄ ) over y is used to denote

the fact that the experimental data are assumed to reflect the true behavior of the sys-

tem, as opposed to the model output trajectories ŷ generated at a particular parameter

point and set of initial conditions. The definitions of the data correction problem and the
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Figure 2.1: There is significant batch-to-batch variability in extracts. We expressed six con-
stitutive reporter constructs (n = 5, technical repeats, shaded region = standard deviation)
in three extract batches prepared by different scientists. Each of the constructs was ex-
pressed on linear DNA.

calibration-correction method, along with the conditions for the method to work will be

given in the context of a model universe, where artificial data will be produced by models

with known parameters. Here, the true data variable will also be denoted by y , and will

be distinguished from sample output trajectories ŷ and the generic symbol y . For sim-

plicity, we only allow for inputs in the form of initial conditions to the systems, though

inputs at other times may be included without significant change to the framework or the

mathematical results derived in this chapter.

The parameter vector θ of a model M associated with a given experiment will be parti-

tioned into extract specific parameter (ESP) coordinates e ∈RqE , and circuit specific param-

eter (CSP) coordinates c ∈ RqC . We do not restrict these parameters to be in the positive

orthant, since any positive parameters may be log transformed to exist in the entire space.

In subsequent definitions and proofs, we will declutter notation by dropping the explicit

specification of the spaces these parameters live in, but these will always be assumed to

be as defined here.

The partition of θ = (e, c) into ESPs and CSPs may be made using the following guide-

lines: ESPs are parameters associated primarily with species that are present in the system

regardless of the the circuit implemented. Examples of ESPs are the concentration of tran-

scriptional and translational machinery, elongation rates for transcription and translation
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and the concentration of RNA degradation machinery. CSPs are parameters associated

with species that may no longer exist in the system when the circuit is changed. Examples

include promoter-transcription factor binding parameters or transcription factor dimer-

ization parameters.

We define an initialized parametrized model with the equations

ẋ = f (x ,θ ),

y(θ , x0) = h(x ,θ ), x(0) = x0(θ ).
(2.1)

Here the state vector and its initialization are x , x0 ∈ Rn
+ respectively, the solutions are

assumed to exist for all t ≥ 0, the parameter vector symbol is θ = (e, c) ∈ Ω, where Ω is the
set of all parameter values of interest. The hat symbol (̂ ) over a parameter denoting an

estimated value of the parameter, as in θ̂ or ê. We shall reserve the tilde (̃ ) symbol for mis-

cellaneous purposes, such as picking an arbitrary point in a set while proving an assertion.

The output is denoted y(t,θ , x0) ∈ Rr . For simplicity, we do not explicitly model inputs

to the system, finite intervals of existence of solutions, or restrictions of the state and pa-

rameter spaces to sets smaller than the non-negative orthant. The overall mathematical

framework and arguments we develop do not depend on these simplifications, and the

general case can be included if needed. The functions f and h are assumed to be analytic

vector fields with respect to x in some neighborhood of any attainable x [69]. Lastly, time

dependence of the vector fields can be modeled by including t in the state variables. We

will use the shorthand y(θ , x0) = M(θ , x0) to refer to a model in Equation (2.1). We will

almost always simplify this notation by dropping the explicit dependence on x0, which will

be assumed to be implicit and appropriately defined in every model. Furthermore, we will

often replace θ with (e, c), as in stating y(e, c) = M(e, c) or M(e, c), instead of y(θ ) = M(θ )

where appropriate.

2.3.2 Model Universe

Our analytical results will be stated and proved in a virtualmodel universe, where artificial

data y is generated using models (denoted by M ) with known nominal parameter values
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(θ ). The primary reason for this is that our theoretical results can only be proven when

one has access to the true values of the parameters that generated the data.

Furthermore, we will limit ourselves to the case where the models used to estimate pa-

rameters from the data are the very models used to generate the data in the first place. In

particular, both models will have the same dynamical equations f specifying them. In this

sense, the models we use to work with the data are correct, and this assumption will be

denoted by M = M . Working in a model universe, along with this additional correctness

assumption, allows us to look at the interaction of non-identifiability with our method

in isolation, i.e., without also having to be concerned with whether our models are good

models of the system that generated the data. Issues associated with model correctness

or the use of increasingly approximate models (that often arise due to model order reduc-

tion) are left as future extensions of this work. Furthermore, it is worth explicitly stating

that even though the nominal parameter vector used to generate the output trajectory

is a single point in the parameter space, the non-identifiability of parameters when their

identification is attempted using the output trajectory and the nominal models arises be-

cause of the structure of the dynamics function f and that of the output function h. Thus,

when stating and proving our main results in Section 2.5, we will always use single points

to specify nominal parameter values, even when we can only identify sets of parameter

values from the output trajectories.

More precisely, when we refer to a model universe, we identify an experiment H =

(S, x0, y) with a model with known nominal parameters, y = M(θ , x0). Here, y denotes the

measurements from these virtual experiments in our model universe.

2.3.3 Parameter Non-Identifiability

In this subsection, we follow Walter and Lecourtier [69] in defining the notion of parameter

non-identifiability.

Definition 1 (Output-Indistinguishable). Let M(θA) be a parametrizedmodel, and let M(θB)

be amodel with the same structure. M(θA) and M(θB) are said to be output-indistinguishable
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if
θA, θB ∈ Ω,

y(θA, x0) = y(θB, x0) ∀t ≥ 0, ∀x0 ∈Rn
+.

(2.2)

Definition 2 (Structural Global Identifiability (parameter)). The i th coordinate of θA, de-

noted θA,i , is structurally globally identifiable (SGI) if for almost any θA ∈ Ω, Equation (2.2)
has a unique solution for θB,i .

This means that the i th coordinate of the parameter vector being SGI is equivalent to

the set of parameter points θA in the parameter space that differ in their i th coordinate

and still give output indistinguishable trajectories having measure zero. Stated differently,

for an SGI coordinate, output indistinguishable trajectories almost always lead to a unique

estimate of the coordinate.

Definition 3 (Structural Global Identifiability (model)). The model M(θ ) is called struc-

turally globally identifiable (SGI) if all its parameters θi , for i = 1,2, . . . , qE + qP , are SGI.

The key point to note is that in the absence of global identifiability, multiple points

in the parameter space give rise to the same output behavior. In biological applications,

this situation tends to be common due to a limited number of measurements and a large

number of state variables. Our main goal is to demonstrate that it is not always neces-

sary to achieve global identifiability for every parameter to achieve a modeling objective

such as ours. To this end, we shall consider models with non-SGI parameters, and thus

allow e and c to exist in sets of output-indistinguishable parameters, denoted by E and C

respectively.

2.3.4 Reference and Candidate Extracts, Calibration and Test Circuits

We define two extracts, the reference extract (E1), and a candidate extract (E2). LetHi,cal be

an experiment performed with a calibration circuit, Ccal, on an extract Ei to determine the

extract specific parameters, and let Hi,test be an experiment carried out with a test circuit,

Ctest. The goal of the data transformation is to carry out the test circuit experiment in

the candidate extract, H2,test = (S2,test, x0,test, y2,test), and transform output measurements
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towards what they would have looked like had they been collected in the reference extract,

i.e., transform y2,test into ŷ1,test ≈ y1,test where y1,test is the output of H1,test. Our overall

strategy will be to use the estimates of the ESPs obtained at the calibration step in the

test circuit models at the correction step. This will require that themodels used to describe

the calibration and test circuits be similar in the sense that they model the core processes

at the same level of abstraction. In the example in Section 2.4.3, protein production is

modeled using a single enzymatic reaction.

2.4 A Calibration-Correction Methodology Can be Used to Reduce

Extract Variability

In this section, we define the calibration-correction methodology, and demonstrate it us-

ing an example. As mentioned in the previous section, we are interested in framing the

methodology in a manner that allows for the non-identifiability of model parameters. In

Sections 2.4.1 and 2.4.2, we give formal definitions of the data correction problem, the

parameter identification operation and the calibration-correction method, and in Sec-

tion 2.4.3, we demonstrate it on a simple example of correcting the behavior of a tetR

mediated repression system.

2.4.1 Framing Extract Variability Reduction as the Data Correction Problem

We begin by framing the variability reduction problem in terms of the data correction

problem, defined below and shown schematically in Figure 2.2.

Definition 4 (The Data Correction Problem). LetHi,test = ((Ei ,Ctest), x0,test, y i,test), i = 1, 2, be

the experiments describing the test circuit in the reference and candidate extracts respec-

tively. Assume that we have the freedom to design and perform calibration experiments

Hi,cal, i = 1, 2, in both the reference and candidate extracts, and collect the resulting data,

y1,cal and y2,cal. Solving the data correction problem involves finding a method that takes

as input the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns a trajectory ŷ1,test, such that

ŷ1,test = y1,test.
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Remark 1. In general, the data correction problem will only be solvable in the model uni-

verse, where the data will be generated as follows. Let e1 and e2 be the ESPs for E1 and E2

respectively. Let ccal and ctest be the CSPs for the calibration and test experiments respec-

tively. Then the output data we discuss in the model universe is

y i,cal ≜ M cal(ei , ccal), (2.3)

y i,test ≜ M test(ei , ctest), (2.4)

for i = 1, 2. ⋄
Remark 2. With real data, the equality ŷ1,test = y1,test in the definition must be replaced

with the approximate equality ŷ1,test ≈ y1,test, or perhaps merely even a requirement of a

decrease in the distance (under some metric d) between the predicted and reference tra-

jectories relative to the distance between the reference and candidate extract trajectories,

d(y1,test, ŷ1,test)< d(y1,test, y2,test). ⋄

2.4.2 The Calibration-Correction Method as the Solution to the Data Correction
Problem

We begin by describing the parameter identification as a set valued operation on a data-

model pair, and subsequently use this as a basis for defining a sequence of steps that

together constitute the calibration-correction method.

Definition 5 (Parameter Identification). Let the set Γ be the set of all pairs (y, M(θ )) for

which there exists a parameter θ̂ ∈ Ω such that y = M(θ̂ ). Let P(Ω) be the power set

of Ω. We define the parameter identification of the θ coordinates of the model M as an

operation IDθ : Γ → P(Ω), with IDθ (y, M(θ )) = {θ̂ ∈ Ω | y = M(θ̂ )}

In the definition above we have included θ as a subscript to the parameter identifi-

cation operator to make explicit exactly which parameter coordinates within the model

M are being identified. This helps with stylistic uniformity in the usage of this operator,

because we also define a conditional version for it, where certain parameter coordinates
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Figure 2.2: The Data Correction Problem. The data correction problem of Definition 4 in-
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are held at fixed values, and sets of values of the remaining coordinates are estimated.

This is discussed in Remark 3 next.

Remark 3. We define twominor modifications to the use of the IDθ operator. First, we allow

for the identification of a subset of parameter coordinates, such as the circuit specific pa-

rameters c, with values for the remaining parameter coordinates fixed at a specified value.

We use the notation IDc|e=ê(y, M(e, c)) or IDc|e=ẽ(y, M(e, c)) to describe this version of the

operator. Here, the hat or tilde is used to denote the fact that the ESP coordinates are set

to a specific value (ê or ẽ), while the set of values for the remaining parameter coordinates

(the CSP coordinates in this example) is free to be estimated by the operator. We also note

that in this case, the domain and codomain of this operator are slightly different from

those shown in the definition above. Indeed, the domain for the IDc|e=ẽ(y, M(e, c)) case is

the set of all pairs (y, M(ẽ, c)) for which there exists a parameter ĉ such that y = M(ẽ, ĉ).

Similarly, the codomain can be P(Rqc) or P(projcΩ), where projc denotes the projection

operator from the full coordinate space to the CSP coordinates, c.

In the rest of this chapter, we will simplify notation by shortening IDc|e=ẽ(y, M(e, c)) to

IDc(y, M(ẽ, c)). This should not cause any ambiguity, since both the c subscript and the

tilde over the ESP coordinates e are being used to denote the fact that we are estimating

the CSP coordinates c, while holding the ESP coordinates at ẽ. In both cases, we call this

the conditional ID operator.

A second method of identifying values for some subset of parameter coordinates (say

c once again) is to identify values over all the parameter coordinates, and then to project

the resulting set down to the coordinates of interest. An example of the notation we will

use to describe this operation is projc ID(y, M(θ )), where θ = (e, c) and the ID operator

works on the full parameter vector θ , as defined in Definition 5. ⋄
Next, we define the calibration-correction method as a sequence of steps involving

parameter identification and prediction. Along with stating each step of the method in

terms of single parameter points identified or used, and single trajectories generated,

we also give descriptions of the sets of all such points and trajectories. The definitions of

these sets allow for the investigation of the idea of whether the non-identifiable parameter
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sets can be treated as equivalence classes with respect to this method. In particular, in

Section 2.5, we will derive a set of conditions for the method to work when arbitrary points

in the parameter sets are picked at the various stages of the method. Figure 2.3 shows a

schematic description of this procedure.

Definition 6 (The Calibration-Correction Method). Consider the data correction problem

in the context of the model universe. We define the calibration-correction method as a

sequence of steps that takes as input the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns

a prediction of the behavior of the test circuit in the reference extract, denoted by ŷ1,test.

The steps are:

1. Calibration Step. Find extract specific parameters that fit the calibration model to

corresponding data for each of the extracts, while sharing a common estimate of

the circuit specific parameter vector. I.e., find ê1,cal and ê2,cal such that the tuple

(ê1,cal, ê2,cal, ĉcal) satisfies y1,cal = Mcal(ê1,cal, ĉcal) and y2,cal = Mcal(ê2,cal, ĉcal) for some

ĉcal. Note that the set of all such ESP points is constructed as follows: first, the set

of all valid (ê1,cal, ê2,cal, ĉcal) tuples is defined as

Θ̃cal ≜
¦
(e1, e2, c)
�� y i,cal = Mcal(ei , c), i = 1, 2

©
,

and then, the ESP sets are defined as

Ei,cal ≜ projei
Θ̃cal, i = 1, 2. (2.5)

2. Correction Step One. Identify circuit specific parameters of the test circuit in the can-

didate extract while holding the extract specific parameters at the value estimated

at the previous step. I.e., find ĉ2,test such that y2,test = Mtest(ê2,cal, ĉ2,test). Note that the

set of all such points is given by

C′2,test ≜
∪

ê∈E2,cal

IDc|e=ê

�
y2,test, Mtest

�
e, c
��

, (2.6)

where we have used the full notation for the conditional ID operator.
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3. Correction Step Two. Predict test circuit behavior in the reference extract using the

circuit specific parameters estimated in the first correction step, and extract specific

parameters estimated in the calibration step. I.e., generate the prediction ŷ1,test =

Mtest(ê1,cal, ĉ2,test). Note that the set of all predictions that can be generated is given

by

Y1 ≜
∪

ê∈E1,cal

∪
ĉ∈C′2,test

ŷ1(ê, ĉ), (2.7)

where individual predictions of the reference trajectories are given by ŷ1(ê, ĉ) =

Mtest(ê, ĉ).

Remark 4. If the ESP sets from the calibration step were to be estimated, the version of

the calibration step defined above would be straightforward to implement computation-

ally. This is because the estimation of Θ̃cal can be done in a single step (see Chapter 3,

Section 3.5 for concurrent parameter inference tools), and the sets Ei,cal, for i = 1, 2, are

simple projections computed from the estimated set.

We also give an equivalent, but less computationally tractable definition here that

allows for the estimation of the parameters for the two extracts separately, followed by

a restriction procedure that enforces agreement between the CSPs estimated in the two

extracts. We start with estimating the joint ESP-CSP sets for individual extracts, Θi,cal ≜

IDθ
�

y i,cal, Mcal(θ )
�
, i = 1, 2, and then compute the set of CSPs where these agree, Ccal ≜

projcΘ1,cal ∩ projcΘ2,cal. Finally, the ESP sets are generated by restricting the Θi,cal by Ccal,

Ei,cal ≜
¦

e
�� ∃c ∈ Ccal : (e, c) ∈ Θi,cal

©
, i = 1, 2.

The fact that the sets Θi,cal, i = 1, 2, are estimated separately can be useful in cases

where the dimension of the spaces e and c live in (i.e., qE and qC ) are large enough that

estimating Θ̃cal ∈ R2qE+qC might be much more difficult compared to Θi,cal ∈ RqE+qC . The

tradeoff here is that intersections and restrictions of sets represented by point clouds can

be computationally difficult. Finally, the lemma in Appendix 2.A establishes the equiva-

lence of this definition to the one given in Definition 6 (Equation 2.5). ⋄
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Remark 5. Note that the set C′2,test is a subset of the larger set C2,test ≜ projc IDθ (y2,test, Mtest).

Indeed, C′2,test is obtained from C2,test by only keeping the points whose corresponding

e coordinate values were in the calibration set E2,cal. We use C′2,test because in the first

correction step, we identify c only after fixing the value of e to an arbitrary point within

E2,cal. ⋄
Remark 6. We can define two failure conditions for the calibration-correction method that

will be useful in deriving the main theoretical results of this chapter. Both the condi-

tions must be avoided for the calibration-correction method to solve the data correction

problem.

The first condition (FC1) occurs if a parameter identification step is attempted when no

parameter exists such that the model fits the data. This means that the data-model pair

(y, M) under consideration is not in the domain, Γ , of the operator ID. For example, in the

first correction step, if ê2,cal is such that there is no c̃ that satisfies y2,test = Mtest(ê2,cal, c̃),

then the parameter estimation step fails at this point. In terms of Equation (2.6), this

failure condition occurs if it occurs for any point e in E2,cal.

The second failure condition (FC2) occurs if correction step two is able to produce a

trajectory not equal to the true trajectory, i.e., ŷ1,test ̸= y1,test. In terms of the set Y1 defined

in Equation (2.7), this means that Y1 contains at least one element that is not equal to

y1,test. ⋄
Before we state and prove the conditions that need to hold for this method to work,

we illustrate its use with a simple example.

2.4.3 A Simple Example

To illustrate the calibration-correction method, we use tetR mediated repression as our

test circuit experiment, constitutive GFP expression as our calibration circuit experiment,

and model protein production directly from DNA using an enzymatic reaction. Figure 2.4

shows the data, and the results from the calibration and correction steps. The test circuit

experiment involves fixing the tetR repressible ptet-UTR1-deGFP DNA at 5 nm, and vary-

ing the constitutive tetR DNA concentration from 0–0.75 nm. The calibration experiment
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Figure 2.3: (A) Schematic describing the calibration-correction method of Definition 6. Cal-
ibration Step: Given two cell extracts (Ai), a reference extract E1 and a candidate extract E2,
perform a set of calibration experiments (Aii) on each of the two extracts, and collect the
corresponding data. Use parametrized models describing these experiments, along with
parameter estimation tools (Aiii), to estimate the extract specific parameters (e1 and e2)
as described in the calibration step of Definition 6. (Aiv) Correction Step One: Collect data
for a test circuit in E2. The goal is to transform this into what it would look like had it been
collected in E1. Use a model of the test circuit to estimate the CSPs for this circuit with the
ESPs fixed to a value obtained for E2’s ESPs in the calibration step. The model used here
must be at a similar level of detail as the models used for the calibration step. This allows
for the ESPs estimated at that step to be used here. (Av) Correction Step Two: Finally, plug
in the ESPs for E1 and the CSPs just estimated into the test circuit model to generate the
desired transformed data (blue solid line) in the time-course schematic shown. (B) In-
terplay of parameter non-identifiability with the calibration-correction method. When the
parameter estimation procedure returns sets of parameters that all fit the model to the
data, we say that the parameters of the model are non-identifiable. (Continued below)



24

Figure 2.3: (Continued from above) The calibration-correction method in the presence
of non-identifiability involves treating the sets of estimated parameters as equivalence
classes, allowing for arbitrary points in the sets to be used for the purposes of the method.
(Bi) Calibration step: The calibration step is still performed with the CSPs shared across
the two extracts, and ESPs estimated individually, resulting in a set of points ((e1, e2, c)).
In the schematic, the projections of this set onto the (e1, c) and (e2, c) coordinate axes are
shown as the shaded regions. The ESPs that are obtained at the calibration step are now
sets in the ESP coordinates, E1,cal and E2,cal, corresponding to the projection of the sets in
the full parameter space onto the e1 and e2 coordinate axes. (Bii) The first correction step
involves picking an arbitrary point in the set E2,cal and estimating the set of CSPs that fit
the test circuit model to the data at this point, and then treating this set as an equivalence
class in turn and picking an arbitrary point from this set. The shaded region denotes the
set of all parameters in the full coordinate space that fit the test circuit to the data. (Biii)
Correction Step Two: An arbitrary point from the ESP set for the reference extract, E1,cal, is
picked, along with the arbitrarily picked point from the first correction step, and used to
parameterize the test circuit model and generate the desired correction.

involves varying this reporter construct in isolation from 1–20 nm. The calibration circuit

Mcal is modeled as

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G, (2.8)

where DG is the GFP DNA, Enz is an enzyme species denoting a lumped description of the

machinery that implements the conversion of DNA into protein, and G is the GFP protein.

The test circuit is modeled using the equations Mtest,

DT + Enz
k f T−−*)−−
krT

DT:Enz
kc−−→ DT + Enz+ T,

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G,

2T
k f ,dim−−−*)−−−
kr,dim

T2,

DG + T2

k f ,rep−−−*)−−−
kr,rep

DG:T2,

(2.9)

where DT is the DNA that codes for the tetR repressor protein (under the control of a

constitutive promoter), T and T2 are the tetR protein monomer and dimer respectively.

Note that the tetR dimer sequesters the GFP expressing DNA, DG, and in doing so, represses

GFP.
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Recall that the models used for the circuits at the calibration and correction stages

have to be at the same levels of modeling to allow for ESPs estimated at the calibration

stage to be used in the test model at the correction stage. In the example above, both the

models produce protein using a single step enzymatic reaction, with the parameters θ par-

titioned into ESPs e= (kc , [Enz]0) and the CSPs c= (k f T , krT , k f G , krG , k f ,dim, kr,dim, k f ,rep, kr,rep).

Here, [Enz]0 denotes the initial concentration of Enz. The main reason for picking this

simple model for protein expression is that at this level of modeling, the number of pa-

rameters is small enough that the theoretical conditions we discuss can be visualized in

three dimensions before being generalized to models with higher dimensional parameter

spaces.

Continuing with our example, we next perform the calibration step of the method using

an MCMCmethod (see Section 3.5) to estimate the posterior distribution of the parameters

given the data, P
�
e1, e2, ccal | y1,cal , y2,cal , Mcal

�
. We note that the calibration circuit CSPs

are estimated jointly over the two extract batches, i.e., the distribution above is that of the

vector (e1, e2, ccal) such that the model Mcal(ei , ccal) fits the data yi,cal simultaneously for

both values of i = 1,2. Figure 2.4 shows the model fits from this step, and the corner-plots

showing pairwise projections of the joint parameter distributions of the (ei , ccal) coordi-

nates for both E1 and E2.

To perform the first correction step we fixed the candidate extract ESP value at a single

point drawn from E2,cal and estimated C2,test. The model fits are shown in Figure 2.4. Fixing

the ESP value to a point in E1,cal and drawing 500 points from C2,test to generate the cor-

rected trajectories implements correction step two, and the results are shown in the third

column in Figure 2.4 (iii).

To conclude this section, we compute the degree of variability reduction achieved by

our procedure on this test circuit data. We define two metrics to measure the variability

reduction. The first metric measures the the ratio of the sum of the deviations between

the corrected and reference trajectories to the sum of the deviations between the original

reference and candidate trajectories. Formally, we write the metric as,
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Figure 2.4: Demonstration of the calibration-correction method on the experimental data
described in Figure 2.2. The calibration data are the constitutive expression of the pTet
promoter at various DNA concentrations. The test data are the repression of a fixed con-
centration of the pTet promoter with varying concentrations of repressor DNA. (Continued
below)
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Figure 2.4: (continued from above) (i) Model fits to the calibration dataset using a Bayesian
parameter inference approach. The joint parameter posterior distributions obtained using
this approach are used as proxies for the parameter sets described in the main text. The
model in Equation (2.8) is used with the calibration data to infer the joint posterior distri-
butions of the ESPs and CSPs, denoted by the set Θ̃cal in Definition 6. The solid lines depict
the experimental data trajectories, and the dashed lines and shaded regions denote the
means and standard deviations (resp.) of trajectories simulated using points drawn from
the posterior distribution. (ii) Parameter posterior distributions from the calibration step.
The ESPs are e = (kc , [Enz]0), where we let [Enz]0 denote the initial amount of the Enz
species. The CSPs are c = (k f G , krG), the binding-unbinding rate constants of the DNA to
the Enz species. The parameter inference was performed with the CSPs shared across the
extract, i.e., in a joint space with points (e1, e2, c). Here we show the posterior distributions
of the parameter vector (ei , c) for the two extracts i = 1, 2. The distributions are shown as
corner plots of the pairwise projections on the off diagonal plots and the marginal distri-
butions on the diagonal. (iii) The two correction steps on the tetR repression test circuit
data. The reporter DNA is fixed at 5 nm, and the repressor DNA varies from from 0–0.75 nm
down the rows (0, 0.25, 0.5 and 0.75 nm). The solid lines in all the plots are experimen-
tal data, the dashed lines and shaded regions are the mean and standard deviations of
simulated trajectories corresponding to parameters drawn from the respective parame-
ter sets as described by the calibration-correction method in Definition 6. The first three
columns, starting from the left, are: test circuit data in the two extracts, correction step
one, where the model in Equation (2.9) is fit to the candidate extract data, and the second
correction step. We see that the model fits the candidate extract data quite well in the first
correction step, and correction step two is able to move the model prediction trajectories
towards the reference extract data trajectories at all repressor DNA concentrations. The
standard deviation of the predicted trajectories in the third column is much larger than
that of the fitted trajectories in the second column. In Sections 2.6 and 2.7, we discuss
ESP-CSP covariation as a possible reason for this type of increase in the standard devia-
tion, and propose a modification to the calibration-correction method, called CSP fixing,
that addresses this type of covariation. The fourth column shows the result of applying
this modified version of the method to this data, and shows that the standard deviations
tighten up considerably.
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R1 =

∑nIC
i=1 ∥ ŷ1,test(x0,i)− y1,test(x0,i)∥2∑nIC
i=1 ∥y2,test(x0,i)− y1,test(x0,i)∥2 , (2.10)

where the sum is taken over the nIC experimental conditions (which, in this case, are the

four tetR DNA concentrations). We have added an argument
�
x0,i

�
to the output trajectory

variable y to reflect this fact explicitly. For our dataset, we compute the value of this metric

to be R1 = 0.42.

The second metric computes, for each of the nIC initial conditions, the ratio of the

deviation between the corrected trajectory and the reference extract trajectory, and the

deviation between the original candidate extract trajectory and the reference extract tra-

jectory. It then takes the mean of these individual ratios to give a score for the average

correction. Formally, it is defined as

R2 =
1

nIC

nIC∑
i=1

∥ ŷ1,test(x0,i)− y1,test(x0,i)∥2
∥y2,test(x0,i)− y1,test(x0,i)∥2 , (2.11)

and gives a value of 0.48 when computed for our dataset.

2.5 Identifiability Conditions

In this section, we show that the SGI property is not necessary for the data correction

problem to be solved by the calibration-correction method. This will be stated as a corol-

lary of the main result of this section (Theorem 1), which gives conditions on the sets of

non-identifiable parameters obtained during the calibration-correction method such that

the method solves the data correction problem.

The key insight underlying the theory developed in this chapter is that since the cor-

rection only needs to be applied to the output trajectories, and not to the full state vector

trajectories, we do not need the parameters to be fully identifiable. Roughly speaking, this

is due to the fact that the non-identifiability occurs because the output trajectories are

not informative enough to identify the parameters to a degree that allows the state tra-



29

jectories to be reconstructed. Indeed, the identified parameter sets only contain enough

information to reconstruct the outputs. However, since we are only attempting to correct

the outputs, and not the state trajectories, the method continues to work in the presence

of the non-identifiability.

This idea of using parameters estimated using only the outputs to in turn correct only

the output behavior, and not the entire state vector trajectories is closely related to the

idea of the sets of output-indistinguishable parameters being equivalence classes with

respect to the inputs and outputs of a model. While these sets may be equivalence classes

with respect to individual estimations performed using model data pairs, some additional

restrictions need to be placed on these sets if they are to be treated as equivalence classes

with respect to the calibration-correction method. The main goal of this section will be to

derive these conditions.

Theorem 1 (Parameter consistency). Consider the data correction problem (Definition 4) in

themodel universe, i.e., when the experimental data are generated by nominal parametrized

initializedmodels, as described in Remark 1. Furthermore, consider the calibration-correction

method of Definition 6, and the sets Θ̃cal, E1,cal, E2,cal and C′2,test as defined there. Define

Θi,test ≜ IDθ
�

y i,test, M test(θ )
�
for i = 1, 2. Then, the conditions,

Θ̃cal ̸= ;, (2.12)

E2,cal ⊆ projeΘ2,test, (2.13)

E1,cal × C′2,test ⊆ Θ1,test, (2.14)

are necessary and sufficient for the calibration-correction method to solve the data cor-

rection problem.

Proof. We note that solving the data correction problem using the calibration-correction

method simply involves avoiding the failure conditions FC1 and FC2 described in Remark 6.

Avoiding FC1 wherever it may occur ensures that the method can be implemented in the

first place, and avoiding FC2 means that the method returns the desired result. Thus, we

must show that the conditions (2.12-2.14) are necessary and sufficient for avoiding FC1 and



30

FC2.

The necessity of condition (2.12) follows from the fact that if Θ̃cal = ;, then there does
not exist a vector (e1, e2, c) such that y i,cal = Mcal(ei , c) for i = 1, 2, leading to FC1 being

met at the calibration step. While not needed for the proof, we note in passing that in

the model universe, where Mcal(θ ) = M cal(θ ) and y i,cal = M cal(e, c), condition (2.12) always

holds.

Next, we prove the necessity of E2,cal ⊆ E2,test, where E2,test ≜ projeΘ2,test. Assume that

there exists an ẽ ∈ E2,cal such that ẽ /∈ E2,test. Thus, there does not exist a c̃ such that

Mtest((ẽ, c̃)) = y2,test. Since the operator IDc|e=ẽ is only defined on the set {(y, M) | ∃c :

M((ẽ, c)) = y}, we see that the map IDc|e=ẽ(y2,test, Mtest(e, c)) is not well defined, leading to

FC1 at the first correction step.

We prove the necessity of condition (2.14) as follows. Assume that there exists a (ẽ, c̃) ∈
E1,cal×C′2,test such that (ẽ, c̃) /∈ Θ1,test. Since we use points ê ∈ E1,cal and ĉ ∈ C′2,test to generate

the prediction ŷ1,test in the second correction step, it is possible that ê = ẽ and ĉ = c̃.

Furthermore, since Θ1,test is the set of all points (e, c) that give the correct trajectory y1,test,

we have the possibility that ŷ1,test ̸= y1,test. This is the second failure condition.

Finally, sufficiency is a simple consequence of the fact that conditions (2.12-2.14) ad-

dress both the points in the method where FC1 could be met, and the point in the method

where FC2 could occur. Explicitly, condition (2.12) allows the calibration step to avoid FC1,

condition (2.13) allows correction step one to avoid FC1, since it implies that for all ẽ ∈ E2,cal,

there exists a c̃ such that (ẽ, c̃) ∈ Θ2,test. Condition (2.14) enables correction step two to avoid

FC2, since it implies that for all ẽ ∈ E1,cal and for all c̃ ∈ C′2,test we have that y1,test = Mtest(ẽ, c̃),

implying that the set of all possible predicted trajectories only has the correct trajectory

in it, Y1 = {y1,test}.

Remark 7. We can give some physical interpretations of the conditions (2.12-2.14). To do

this, we first note that condition (2.14) implies (see Lemma 3 in Appendix 2.B)

E1,cal ⊆ projeΘ1,test, (2.15)

C′2,test ⊆ C′1,test, (2.16)
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where C′1,test is defined in a similar way to C′2,test,

C′1,test ≜
∪

ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��

.

Condition (2.12) and (2.15) may be interpreted to mean that the calibration experiments

must be more informative about the ESPs than the test circuit experiments. This follows

from the fact that the sets of output-indistinguishable ESPs obtained from the calibration

step are subsets of the corresponding sets from the test circuits, projeΘi,test.

Condition (2.16) says that the CSP sets for the test circuit, if estimated by first fixing

the ESPs to values obtained at the calibration stage, must agree. Agreement here is de-

fined to be unidirectional, with one set being a subset of another. This is only because

the correction being performed is from the candidate extract to the reference extract. If

bidirectional correction (Corollary 2, below) were required, then we would have equality

in condition (2.16).

Finally, condition (2.14) says that the ESP and CSP coordinates in the set Θ1,test can

only covary outside E1,cal × C′2,test, i.e., all the points within this set must belong to Θ1,test.

Covariation is defined in Section 2.6. ⋄
Next, we state a few corollaries of the theorem.

Corollary 1 (SGI Sufficiency). SGImodels are sufficient for the calibration-correctionmethod

to solve the data correction problem in the model universe.

Proof. Recall from Remark 1 that in the model universe, the data are generated by nominal

parameters, e1, e2, ccal, ctest. We observe that since the models are SGI, these parameters

uniquely fit the model to the data, and therefore the sets in conditions (2.12-2.14) only have

single entries, leading to these conditions being trivially satisfied:

Θ̃cal = {(e1, e2, ccal)} ̸= ;,
E2,cal = {e2} ⊆ proje{(e2, ctest)}= projeΘ2,test,

E1,cal × C′2,test = {e1} × {ctest} ⊆ {(e1, ctest)}= Θ1,test.
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Corollary 2 (Bidirectional Correction). To be able to correct the test data from either extract

to the other requires that:

Θ̃cal ̸= ;,
Ei,cal ⊆ projeΘi,test, i = 1, 2,

E1,cal × C′2,test ⊆ Θ1,test,

E2,cal × C′1,test ⊆ Θ2,test.

Proof. The proof is a simple union of the sets of conditions implied by Theorem 1 for each

direction of correction.

Remark 8. We note that the condition C′2,test ⊆ C′1,test discussed in Remark 7 gets trans-

formed into C′2,test = C′1,test. ⋄
Next we discuss the case of correcting the calibration data itself. This will be important

in the next section when we examine the effect of a phenomenon called parameter covari-

ation on the calibration-correction method. There, we will prove that a modified version

of the method is able to solve the problem at least for this case, even in the presence of

parameter covariation.

Corollary 3 (‘Test = Calib’ Case). Consider the data correction problem for the case where

the test data andmodels are the same as the calibration data andmodels, i.e., y i,test = y i,cal

and M test = M cal for i = 1, 2. Furthermore, let Θi,cal ≜ IDθ
�

y i,cal, Mcal(θ )
�
for i = 1, 2, and

C′2,cal ≜
∪

ẽ∈E2,cal

IDc

�
y2,cal, Mcal (ẽ, c)
�

. (2.17)
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Then, the conditions

Θ̃cal ̸= ;, (2.18)

E2,cal ⊆ projeΘ2,cal, (2.19)

E1,cal × C′2,cal ⊆ Θ1,cal, (2.20)

are necessary and sufficient for the calibration correction method to solve this problem.

Proof. Simply specialize the conditions in Theorem 1 to this case.

2.6 Covariation Between ESP and CSP Parameter Coordinates In-

troduces Error into the Method

In this section, we describe covariation (Figure 2.5), and show that it causes the calibration

correction method to fail. We then discuss an improvement to the method that addresses

this issue. We start by defining a device that will be useful for taking slices of parameter

sets.

Definition 7 (Cutting Plane). Consider the space of parametersRq , the vector θ ∈Rq parti-

tioned into two sets of coordinates θ = (θa,θb) ∈Rqa×Rqb and the subspaces A≜Rqa×{0}
and B ≜ {0} ×Rqb corresponding to the θa and θb coordinates respectively. Let θ̃a ∈ A.

Then, we denote the cutting plane generated by shifting the origin of B to (θ̃a, 0) with the

notation cutθb
(θ̃a).

Definition 8 (Parameter Covariation). Consider the space of parameters Rq and the vector

θ ∈Rq partitioned into two sets of coordinates θ = (θa,θb) ∈Rqa×Rqb . Consider some set

of parameters Θ ⊆ Rq . If there exist θ̃a1, θ̃a2 ∈ projθa
Θ such that projθb

�
Θ ∩ cutθb

(θ̃a1)
� ̸=

projθb

�
Θ ∩ cutθb

(θ̃a2)
�
, then Θ is said to have parameter covariation of its θb coordinates

with respect to its θa coordinates.

Remark 9. We will often abbreviate parameter covariation to just covariation, and say that

parameter coordinates can covary. ⋄
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Figure 2.5: Schematic descriptions of parameter covariation and associated results. (A)
The arbitrarily shaped set Θ shows parameter covariation. (B, C) Two ways of defining pa-
rameter covariation for a given set: Covariation of the θa coordinates with respect to the
θb coordinates (B) and covariation of the θb coordinates with respect to the θa coordinates
(C). The lines represent the cutting planes, and the intersection of these planes and the
set Θ is projected onto the appropriate axes. Lemma 1 shows that covariation is equiv-
alent to the Cartesian product condition in (D) not holding. This in turn can be used to
show that the two ways of defining covariation (B and C) are equivalent, and therefore the
definition of covariation is symmetric. (E, F) Thin covariation. (E) Thin covariation in the θa
coordinates with respect to the θb coordinates. (F) The covariation in the θa coordinates
is not thin with respect to the θb coordinates.
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Lemma 1. Let θ = (θa,θb) ∈ Θ ⊆ Rq be a partition of the coordinates of Rq . Then, the

set Θ has covariation of its θb coordinates with respect to its θa coordinates if and only if

projθa
Θ× projθb

Θ ̸= Θ.

Proof. First, we prove the (⇒) direction. Covariation implies that for some θa1,θa2 ∈
projθa

Θ there exists a point θ̃b ∈ projθb
Θ such that

θ̃b ∈
�

projθb

�
Θ ∩ cutθb

(θ̃a1)
�△ �projθb

�
Θ ∩ cutθb

(θ̃a2)
�
, (2.21)

where △ is the symmetric difference set operation. It further implies that there exists a

point θ̃a ∈ {θ̃a1, θ̃a2} ⊆ projθa
Θ such that (θ̃a, θ̃b) /∈ Θ. Thus, projθa

Θ× projθb
Θ ̸= Θ.

Next, we prove the (⇐) direction. Let (θ̃a1, θ̃b) ∈ projθa
Θ×projθb

Θ be such that (θ̃a1, θ̃b) /∈
Θ. Since θ̃b ∈ projθb

Θ, there exists a θ̃a2 ∈ projθa
Θ such that (θ̃a2, θ̃b) ∈ Θ. Thus we have

θ̃b ∈ projθb

�
Θ ∩ cutθb

(θ̃a2)
�
but θ̃b /∈ projθb

�
Θ ∩ cutθb

(θ̃a1)
�
, which proves the assertion.

Corollary 4. The set Θ has covariation of its θb coordinates with respect to its θa coordi-

nates if and only if it has covariation of its θa coordinates with respect to its θb coordinates.

Proof. The proof of Lemma 1 can be repeated with straightforward modifications (essen-

tially swapping the roles of θa and θb) to show the equivalence of the condition projθa
Θ×

projθb
Θ ̸= Θ to the set Θ having covariation of its θa coordinates with respect to its θb

coordinates.

Remark 10. This equivalence will allow us to refer to sets having covariation with respect

to a given partition. Specifically, we will consider Θ having covariation with respect to the

(e, c) partition. ⋄
Next, we show that in the presence of covariation, the calibration-correction method

is unable to solve the data correction problem even in the case when the test data are

the calibration data themselves. In particular, we will assume that the restriction of Θ1,cal

to E1,cal × projcΘ2,cal has covariation with respect to the (e, c) partition.

Proposition 1. Consider the ‘Test = Calib’ case of the data correction problem described in

Corollary 3, along with the definitions of the various sets given there. Assume the condi-
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tions

Θ̃cal ̸= ;, (2.22)

C′2,cal ⊆ projcΘ1,cal, (2.23)

Ei,cal ⊆ projeΘi,cal, i = 1, 2, (2.24)

hold, but the set

Θ′1,cal ≜ Θ1,cal ∩
�
E1,cal × projcΘ2,cal

�
(2.25)

has covariation in its e coordinates with respect to its c coordinates. Then, the calibration-

correction method fails to solve this problem.

Proof. Condition (2.23), along with the fact that for the ‘Test = Calib’ case, C′2,cal = projcΘ2,cal,

implies that projcΘ
′
1,cal = C′2,cal. Condition (2.24) implies projeΘ

′
1,cal = E1,cal. Covariation

implies that projeΘ
′
1,cal×projcΘ

′
1,cal ̸= Θ′1,cal. Thus, the proper subset relation Θ

′
1,cal ⊊ E1,cal×

C′2,cal holds, and therefore there exists (ẽ, c̃) ∈ E1,cal × C′2,cal such that (ẽ, c̃) /∈ Θ′1,cal ⊆ Θ1,cal.

This implies that E1,cal × C′2,cal ⊈ Θ1,cal, which violates condition (2.20).

Next, we define a specific type of covariation, which we call thin covariation, and show

that a modification to the calibration-correction method is able to solve the data correc-

tion problem for the ‘Test = Calib’ case when the CSP coordinates covary in this way with

respect to the ESP coordinates. In Section 2.7.1, we will show that even the simplest models

show non-identifiability with this type of covariation. We will also show that the variance

blow up seen in the third column of Figure 2.4 decreases significantly when this modified

version of the calibration-correction method is used.

Definition 9 (Thin Covariation). Let Θ ⊂ Rq be a set of parameters and let (θa,θb) ∈ Rq

be a partition of the coordinates of Rq . If Θ covaries with respect to this partition and if

for all θ̃b ∈ projθb
Θ, we have
��cutθa

(θ̃b)∩Θ
��= 1, then we say that the covariation of the θa

coordinates of Θ is thin with respect to the θb coordinates.
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Figure 2.6: (A) A schematic description of how thin covariation between the ESP-CSP co-
ordinates in the estimated joint parameter sets can cause calibration-correction to fail at
correcting even the calibration data (‘Test = Calib’ special case described in Corollary 3).
Columns correspond to extracts E1 and E2, rows to the calibration and correction steps,
as labeled. The blue lines in all the plots are the joint ESP-CSP sets of all the parame-
ter values that fit the calibration model to data. Covariation here is depicted by the fact
that the blue line is not vertical, horizontal or a rectangle, i.e., as the CSP value changes,
so does the ESP value, and so the ESP and CSPs cannot be picked independently from
the respective projections onto the ESP and CSP coordinate axes. ‘Thinness’ of this co-
variation (of the CSP coordinates with respect to the ESP coordinates) corresponds to the
fact that for each fixed ESP value in the set of possible values it can take, there is one
and only one corresponding CSP value. (i) Under this setup, the calibration step leads to
the ESP sets shown as projections of the blue lines. (ii) The first correction step fixes the
ESP value to a point ê2 ∈ E2,cal, and estimates the only possible CSP value ĉ2. The second
correction step picks an arbitrary point e1 ∈ E1,cal, and uses the CSP value ĉ2 to give the
parameter point that will be used to generate the final predicted trajectory. It is clear that
in general, due to covariation, this point will not lie on the blue line, which is the set of
all points that will give the correct prediction. Indeed, this leads to the second failure
condition (FC2) described in Remark 6. (B) How the CSP fixing modification (Definition 10)
to the calibration step helps solve this issue. Consider the same setup as in (A), with the
following exception: The ESP sets estimated at the calibration step are now generated by
first intersecting the parameter sets (blue lines) with a line parallel to the ESP axis (‘cut-
ting plane’ parallel to the ESP subspace in higher dimensions) centered at an arbitrary
CSP value that can be attained (i.e., a value in the set projc Θ̃cal), and secondly projecting
these intersections to the ESP coordinates for both extracts. This CSP fixing modification
is formally stated in Definition 10. It is clear that with this modification, following a logical
procedure similar to the one in (A), the second correction step uses a parameter point on
the blue line, avoiding FC2.
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Remark 11. We note that if Θ ≜ IDθ (y , M(θ )), then the condition that for all θ̃b ∈ projθb
Θ,

we have
��cutθa

(θ̃b)∩Θ
�� = 1 is equivalent to the θa coordinates of the model M(θa,θb)

being SGI for each fixed θb . ⋄
Remark 11 says that this type of covariation is essentially a statement about the some

coordinates being conditionally structurally globally identifiable, despite covarying with

respect to the remaining coordinates.

Definition 10 (CSP Fixing). Consider the sets Θi,cal ≜ IDθ
�

y i,cal, Mcal(θ )
�
, i = 1, 2 and let

c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal. Then, we define CSP fixing as a modification to the calibration

step in which the sets Ei,cal ≜ proje
�
cute (c̃) ∩ Θi,cal

�
for i = 1, 2.

Proposition 2. Consider the sets Θi,cal ≜ IDθ
�

y i,cal, Mcal (θ )
�
for i = 1, 2, and the partition

θ = (e, c). Assume that the Θi,cal have thin covariation in their c coordinates with respect

to their e coordinates. Then, the calibration-correction method with CSP fixing is able to

solve the data correction problem for the ‘Test = Calib’ case of Corollary 3.

Proof. Let c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and ẽ2 ∈ E2,cal ≜ proje
�
cute (c̃) ∩ Θ2,cal

�
. We note that

the sets projc
�
cutc (ẽ2) ∩ Θ2,cal

�
= IDc(y2,cal, Mcal (ẽ2, c)) are equal by definition. Now, pick

an arbitrary point c̃′ ∈ projc
�
cutc (ẽ2) ∩ Θ2,cal

�
. It follows that c̃′ = c̃ from the fact that

c̃ ∈ projc
�
cutc (ẽ2) ∩ Θ2,cal

�
and that the element in

��cutθa
(θ̃b)∩Θ
�� = 1 is unique. Thus, the

only possible CSP value that can be returned by the first correction step is c̃.

Next, we look at the second correction step. Pick an arbitrary ẽ1 ∈ E1,cal ≜ proje
�
cute (c̃) ∩ Θ1,cal

�
.

Since the point (ẽ1, c̃) ∈ Θ1,cal, we have that y1,cal = ŷ1,cal ≜ M(ẽ1, c̃), and FC2 is avoided.

2.7 Computational Investigation of Covariation and CSP fixing

In this section we investigate the effect of covariation on the calibration-correctionmethod

computationally, and show that CSP fixing helps reduce the error introduced by covaria-

tion. The general approach will be to generate artificial data using the models in Equa-

tions (2.8) and (2.9) with a fixed set of parameters, and then to use these same models to

perform the calibration-correction method. In this way, we implement the model universe
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setting for the investigation, and are able to study the effects of non-identifiability without

having to also consider issues of model correctness.

2.7.1 The ‘Test = Calib’ case of Corollary 3

We show that even the simplestmodels, such as that in Equation (2.8), show non-identifiability

and (thin) covariation in this non-identifiability, and that the calibration-correctionmethod

of Definition 6 fails in the ‘Test = Calib’ special case of the data correction problem (Corol-

lary 3) precisely in the way we expect from the theoretical framework developed in Sec-

tion 2.6. We also show that with the CSP fixing modification to the calibration step, this

type of failure is avoided.

We begin by generating artificial calibration data for extracts E1 and E2 using the cali-

bration model in Equation (2.8) with the parameters in Table 2.1. The true trajectories are

shown as dotted lines in Figure 2.7 (ii-iii). We have added a small amount of Gaussian noise

to these trajectories for visualization purposes; however the trajectories used as data in

the calibration-correction method do not contain this added noise. The calibration step

was performed with k f G = 5 fixed at its true value, reducing the number of parameters

in the model to three (the sole CSP krG , and the pair of ESPs [Enz]0 and kc) allowing for

the visualization of the full joint distribution of the parameter samples that result from

performing the MCMC parameter inference. This visualization is the most direct method of

seeing the existence of non-identifiability and of thin covariation in the set of parameters

Table 2.1: Parameters Used to Generate Artificial Data

Type Parameter Extract 1 Value Extract 2 Value Model(s)
ESP [[Enz]0] 100 200 Mcal, Mtest
ESP kc 0.012 0.024 Mcal, Mtest
CSP k f G 5 5 Mcal, Mtest
CSP krG 300 300 Mcal, Mtest
CSP k f T 5 5 Mtest
CSP krT 300 300 Mtest
CSP k f ,dim 20 20 Mtest
CSP kr,dim 10 10 Mtest
CSP k f ,rep 20 20 Mtest
CSP kr,rep 10 10 Mtest
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that result from the parameter estimation.

The fitting of the model to the data (Figure 2.7 (ii, iii)) in the calibration step results

in an estimate of the joint distribution of the parameter vector (e1, e2, c) ∈ Θ̃cal. The three

dimensional scatter plots of empty blue circles in Figure 2.7 (iv, v) show the results of

this estimation marginalized to the coordinates (e2, c) = ([Enz]0,2, kc2, krG) and (e1, c) re-

spectively for the two extracts. We also fit a surface to the scattering of these points

(translucent green gridded surface plot), which helps visualize the fact that these points

essentially lie on a two dimensional surface within the three dimensional space of param-

eters, and that this surface displays thin covariation in its CSP coordinates with respect to

its ESP coordinates. The calibration concludes with the projection of the points onto the

ESP axes for E1 and E2, as shown by the filled in blue circles in Figure 2.7 (iv, v).

The red point in Figure 2.7 (iv) shows the result of the first correction step, where the

ESPs
�
[Enz]0, kc

�
were fixed to one of the points estimated in the calibration step (red

point on the ESP plane), and the CSP was estimated. We see that the CSP value estimated

is such that the full parameter point lies in the joint ESP-CSP set (red point lifted up to

the green surface). The fitted trajectories from this stage are shown in Figure 2.7 (vii).

We observe from the position of the red point in Figure 2.7 (v) that picking an arbitrary

point from the set of ESPs, and using the CSPs from the first correction step leads to a point

that does not lie on the joint ESP-CSP surface for extract E1. The corresponding predicted

correction and the true behavior of the artificial data are shown in Figure 2.7 (viii).

Figure 2.7 (vi, ix) show the result of repeating the procedure with the CSP fixing modi-

fication applied at the calibration step. In particular, the CSP was fixed at the value that

was estimated at the first calibration step (lifted red point in Figure 2.7 (iv)), though any

value in the set projcΘ1,cal ∩ projcΘ2,cal is allowed. The key insight here is that now the ESP

sets are much smaller, and in correction step one, the ESPs can only be picked so that the

very CSP value that was fixed gets estimated, and subsequently, in correction step two,

the only ESP values that can be picked are such that when they are used with this CSP

value, the resulting point lies in the set of parameters Θ1,cal that fit the true E1 data to the

model. In Figure 2.7 (ix), we see that this leads to the desired correction.
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Figure 2.7: In silico (model universe) demonstration of the effect of thin covariation and CSP
fixing for the ‘Test = Calib’ case of the data correction problem. (i) Dotted lines: Artificial ex-
perimental data, with a small amount of Gaussian noise added for easier visualization (fits
were performed on the noise free trajectories). The data was generated using the constitu-
tive expression model of Equation (2.8) at DNA concentrations of 10 and 30 arbitrary units
(a.u.). Dashed lines and shaded regions: means and standard deviations of simulated
trajectories using parameter points drawn from the estimated posterior distributions. (ii -
iii) Artificial data generated using known parameters for two extracts. The CSPs used were
the same for the models in both extracts c = (k f G , krG) = (5,300), while the ESPs differed
for the two extracts, e1 = (kc1, Enz0,1) = (0.012,100), e2 = (kc2, Enz0,2) = (0.024,200). The
model fits to the data are the dashed lines and shaded regions, and the parameter dis-
tribution for the three parameters estimated (k f G = 5 fixed) is shown as the blue empty
circles and the fitted translucent green surface in (vi, v). We note that this model shows
thin covariation as is visible from the two dimensional surface fit (embedded in 3D) to the
scattering of points. Solid blue circles are the projection of the parameter points onto the
ESP subspace. (continued below)
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Figure 2.7: (continued from above) The plot (iv) also depicts the first correction step, with
the red point on the kc − [Enz]0 plane denoting the point ê2,cal ∈ E2,cal ib and the red point
on the surface showing the corresponding estimated CSPs. (vii) The fits corresponding to
the CSP estimation of correction step one. (v) Correction step two showing an arbitrary ESP
point ê1 ∈ E1,cal with the estimated CSP from (iv) leading to a point that is off the surface
of points denoting the set of all parameters that fit extract 1 data to the model. (viii)
Corresponding corrections fail. (vi) Correction step two with CSP fixing at the calibration
step, and the corresponding corrected trajectories (ix).

2.7.2 Application of CSP Fixing in the General Setting

We conclude this section by demonstrating that when CSP fixing is used in the general case

when the test circuit is not the same as the calibration circuit, the CSP fixing modification

to the method still leads to significant improvements in the performance of the method

(Figure 2.8). The calibration data used was the same as in Section 2.7.1, and the test circuit

model (Figure 2.8 (i)) used was the one in Equations (2.9), with parameters used to generate

the artificial data given in Table 2.1. As before, dotted lines denote artificial data with a

small amount of noise added for ease of visualization only (all the fitting was done on

noise free data). The calibration stage with and without CSP fixing was identical to that in

Section 2.7.1. To reduce the dimension of the space that the parameter inference algorithm

would need to explore, we fixed the forward rates k f G , k f T ,k f ,dim, and k f ,rep , and limited

the CSPs to only the reverse rates, krG , krT ,kr,dim, and kr,rep . In this setting, performing the

first correction step gave a set of parameter estimates for the CSPs, and the resulting fits

to the E2 test circuit data are shown in Figure 2.8 (ii). Performing the second correction

step led incorrect prediction of the corrected trajectories (failure condition two), as shown

in Figure 2.8 (iii). Significantly, applying the CSP fixing modification to the calibration step

led to good prediction of the circuit in E2, as shown in Figure 2.8 (iv).

2.8 Discussion and Future Work

Cell-free extract in vitro systems are becoming a useful prototyping tool in synthetic biol-

ogy, yet the intrinsic variability between the batches of these extracts places limitations

on the comparability of results obtained in different batches. Indeed, users currently plan
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Figure 2.8: The effect of CSP fixing at the calibration step on the correction of novel test
circuit data. (i) The test circuit was the repression of the pTet promoter, modeled by Equa-
tions (2.9). The pTet-GFP DNA was held fixed at 60 a.u., while the constitutive tetR DNA
was varied between 2 a.u. and 8 a.u.. The dotted lines were the artificial experimental
data generated using the parameters in Table 2.1. The calibration step was performed as
in Figure 2.7, both with and without CSP fixing. The first correction step leads to the fits
shown in (ii), and the second correction step leads to the poor corrections shown in (iii).
When CSP fixing is employed at the calibration step, the second correction step performs
well, as shown in (iv).
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their investigations so that all their experiments may be completed before the batch of

extract runs out. For this reason, they are limited in the number of things they are able to

compare under identical experimental conditions.

We have demonstrated amodel-basedmethodology for calibrating extracts that allows

for genetic circuit behavior to be normalized or corrected. This methodology is organized

into two steps, a calibration step, where a set of calibration circuits is used to estimate

extract specific parameters of a particular extract, and a correction step, in which the cali-

brations are used to transform a novel circuit’s behavior from what it was in a given extract

into what it would have been in a reference extract. The general idea is that whenever a

new extract batch is made, a predefined set of calibration experiments may be performed

on that extract to measure its extract specific parameters. These, along with similarly es-

timated parameters for the reference extract may be used to transform any data collected

in the new extract into the reference extract form, and thus be made directly comparable

with all other data also transformed into its reference extract form.

We have developed this calibration-correction method for normalizing behavior across

extract batches that are assumed to only differ in the values of the parameters of the bio-

chemical reaction network for a given circuit, and not in the topology of the networks.

The framework here should be applicable to any scenario where only this type of differ-

ences exist. One example of this situation is when correcting for run-to-run variability in

data, which would require (perhaps a limited number of) calibration experiments to be

performed with each run.

Correcting for behavior between topologically different environments, which may arise

when in vitro-to-in vivo prediction of behavior is attempted, or when correcting for vari-

ability between different bacterial strains is required, may also be achieved if this method

is generalized in a manner outlined next. Briefly stated, the method would still assume

that as long as the modeling framework and environment specific parameters are chosen

well enough to capture most of the environment specific influences on the circuit (in each

environment), then the circuit specific parameters should be largely independent of the

environment they are estimated in. This should allow for an environment specific set of
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calibration experiments to be designed and used in the calibration step, followed by the

first and second correction steps that are largely similar to those in the methodology out-

lined here. The appropriateness of the choice of the level of detail in the modeling, the

partition of parameters into extract specific versus circuit specific and the choice of cali-

bration experiments in each of the different environments may be achieved in an iterative,

empirical, hypothesis driven manner.

We have also developed theoretical results for when this methodology is expected to

work in the presence of parameter non-identifiability. Due to the large discrepancy be-

tween the size of biochemical networks and the number of species that can be measured

as outputs, parameter non-identifiability is a ubiquitous property of these models. The

general prescription in modeling studies [2] is to perform a greater number of experiments

to eliminate non-identifiability, reduce the order of the model to reduce the number of

parameters, or to fix some parameters to effectively reduce the number of non-identifiable

parameters. However, in many cases, more experiments may not be feasible due to cost,

time or technological constraints. Model order reduction may not be desirable if, for ex-

ample, certain mechanisms in the model need to be kept for independent reasons (one

example being the explicit modeling of nucleotide binding and consumption during tran-

scription and translation to keep track of resources). The fixing of some parameters, while

reducing the number of effective parameters may not remove non-identifiability com-

pletely.

Themain insight behind our theoretical results is that since we are only trying to correct

the trajectories of the very species that we are able to measure in the first place, perhaps

the sets of values the non-identifiable parameters can take can be treated as equivalence

classes with respect to their usage in our modeling framework. This is a general idea that,

even though developed and demonstrated in this specific framework, should apply to a

broader class of applications of parametric models, as long as those applications depend

on using only the observable outputs. A future direction of this work would be to develop

these ideas at this level of generality, starting with the linear systems framework found in

control theory.
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We can identify a few other directions of investigation for future work. Firstly, condi-

tion 2.14 in Theorem 1 might be generalizable to a similar result which gives conditions

under which part models with parameter non-identifiability can be combined to predict

the behavior of an entire system. In the simplest case, this could be a simple Cartesian

product condition, though we suspect that this would be too restrictive, since covariation

between the parameters of different parts may exist, requiring a more careful analysis. For

example, we may have to prescribe precisely which parameters must be identified, and to

what extent, before the remaining non-identifiability does not matter for the output pre-

diction problem. Secondly, we believe that it should be possible to use the result from the

theory of differential equations that specifies the continuous dependence of model out-

puts on parameters to show that the direction of movement, when the outputs are varied

under a fixed set of experimental conditions, of a non-identifiable parameter set must be

orthogonal to the direction of the non-identifiability, and indeed the non-identifiability

must be ‘thin’, in some geometric sense, in the direction of movement. Lastly, we may

wish to generalize these results to the case when there is noise in the data, the parameter

sets are replaced by probability distributions, and notions of practical identifiability [53]

are incorporated into our analysis.
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Appendices

2.A Equivalence of the Two Definitions of the Calibration Step

In this section, we prove two identities that establish the equivalence of the two definitions

of the calibration step given in Definition 6 and Remark 4.

Lemma 2. Let Θ̃cal, Θ1,cal and Θ2,cal be as defined in Definition 6 and Remark 4. Then, the

identities

projc Θ̃cal ≡ projcΘ1,cal ∩ projcΘ2,cal, (2.26)

projei
Θ̃cal ≡
¦

e
�� ∃c ∈ �projcΘ1,cal ∩ projcΘ2,cal

�
: (e, c) ∈ Θi,cal

©
, i = 1, 2, (2.27)

hold.

Proof. First, we prove (2.26) using a series of equivalences. Let c̃ ∈ projc Θ̃cal. This is equiv-

alent to

∃e1, e2 : (e1, e2, c̃) ∈ Θ̃cal (2.28)

⇔∃e1, e2 : y i,cal = Mcal(ei , c̃), i = 1,2 (2.29)

⇔ (ei , c̃) ∈ Θi,cal, i = 1,2 (2.30)

⇔ c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal, (2.31)

which proves the assertion.

Next, we prove (2.27) for e1 by showing that the left and right hand sides are subsets

of each other. The proof for the e2 case is similar. Denote the set on the left hand side

with L, and the one on the right with R. Let ẽ1 ∈ L = proje1
Θ̃cal. Then, ∃ẽ2, c̃ such that
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(ẽ1, ẽ2, c̃) ∈ Θ̃cal, which implies c̃ ∈ projc Θ̃cal and y1,cal = Mcal(ẽ1, c̃). By the identity (2.26), we

have that c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and (ẽ1, c̃) ∈ Θ1,cal, which shows that L ⊆ R.

We conclude the proof by showing that R ⊆ L. Let ẽ1 ∈ R, which means that there exists

a c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal such that y1,cal = Mcal(ẽ1, c̃). Furthermore, since c̃ ∈ projcΘ2,cal,

there also exists an ẽ2 such that y2,cal = Mcal(ẽ2, c̃). Together these imply that (ẽ1, ẽ2, c̃) ∈
Θ̃cal, which gives ẽ1 ∈ proje1

Θ̃cal, proving the assertion.

2.B Equivalence of the Two CSP Subset Conditions Given in Re-

mark 7

The Cartesian product condition given in Equation (2.14) implies two further conditions,

which we state in Lemma 3 below. The first of these follows simply by projecting both

sides of Equation (2.14) onto the ESP coordinates. The second condition, on the other

hand, is stronger than simply projecting (2.14) onto the CSP coordinates. This condition

states that the CSP points generated at the first correction step, C′2,test, must be a subset

of the set of CSP points generated by fitting y1,test to the model when the ESP points are

restricted to be in the set E1,cal.

Lemma 3. Condition (2.14), which states that E1,cal × C′2,test ⊆ Θ1,test, implies that

E1,cal ⊆ projeΘ1,test, (2.32)

C′2,test ⊆ C′1,test, (2.33)

where C′1,test is defined in a similar way to C′2,test,

C′1,test ≜
∪

ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��

.

Proof. Condition (2.32) follows simply by applying the proje operator to both sides of con-

dition (2.14). To prove condition (2.33), we note that condition (2.14) implies that for an

arbitrary c̃ ∈ C′2,test, we have that for all ẽ ∈ E1,cal, the model fits the data, y1,test = Mtest(ẽ, c̃).
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This in turn implies that

c̃ ∈ ∪
ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��
= C′1,test. (2.34)

Thus, C′2,test ⊆ C′1,test.


