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Abstract

Synthetic biology may be defined as an attempt at using engineering principles to design

and build novel biological functionalities. An important class of such functionalities in-

volves the bottom up design of genetic networks (or ’circuits’) to control cellular behavior.

Performing design iterations on these circuits in vivo is often a time consuming process.

One approach that has been developed to address these long design times is to use E.

coli cell extracts as simplified circuit prototyping environments. The analogy with similar

approaches in engineering, such as prototyping using wind tunnels and breadboards, may

be extended by developing accompanying computer aided design tools. In this thesis, we

discuss the development of computational and mathematical tools to accelerate circuit

prototyping in the TX-TL cell free prototyping platform, and demonstrate some applica-

tions of these tools.

We start by discussing the problem of reducing circuit behavior variability between dif-

ferent batches of TX-TL cell extracts. To this end, we demonstrate a model-based method-

ology for calibrating extract batches, and for using the calibrations to ‘correct’ the behavior

of genetic circuits between batches. We also look at the interaction of this methodology

with the phenomenon of parameter non-identifiability, which occurs when the parameter

identification inverse problem has multiple solutions. In particular, we derive conditions

under which parameter non-identifiability does not hinder our modeling objectives, and

subsequently demonstrate the use of such non-identifiable models in performing data

variability reduction.

Next, we describe txtlsim, a MATLAB® Simbiology® based toolbox for automatically

generating models of genetic circuits in TX-TL, and for using these models for part char-

acterization and circuit behavior prediction. Large genetic circuits can have non-negligible



vii

resource usage needs, leading to unintended interactions between circuit nodes arising

due to the loading of cellular machinery, transcription factors or other regulatory ele-

ments. The usage of consumable resources like nucleotides and amino acids can also

have non-trivial effects on complex genetic circuits. These types of effects are handled by

the modeling framework of txtlsim in a natural way.

We also highlight mcmc_simbio, a smaller toolbox within txtlsim for performing con-

current Bayesian parameter inference on Simbiology® models. Concurrent inference here

means that a common set of parameters can be identified using data from an ensemble of

different circuits and experiments, with each experiment informing a subset of the param-

eters. The combination of the concurrence feature with the fact that Markov chain Monte

Carlo (MCMC) based Bayesian inference methods allow for the direct visualization of pa-

rameter non-identifiability enables the design of ensembles of experiments that reduce

such non-identifiability.

Finally, we end with a method for performing model order reduction on transcription

and translation elongation models while maintaining the ability of these models to track

resource consumption. We show that due to their network topology, our models cannot

be brought into the two-timescale form of singular perturbation theory when written in

species concentration coordinates. We identify a coordinate system in which singular

perturbation theory may be applied to chemical reaction networks more naturally, and

use this to achieve the desired model reduction.
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Chapter 1

Introduction

The vision of synthetic biology was first laid out as early as 1974 by the Polish geneticist

Wacław Szybalski [38]: “the real challenge will start when we enter the synthetic phase

of research in our field. We will then devise new control elements and add these new

modules to the existing genomes or build up wholly new genomes. This would be a field

with an unlimited expansion potential and hardly any limitations to building ‘new better

control circuits’ and ‘new better lambdas’, or finally other organisms, like a ‘new better

mouse’”. These early words have been shown to be surprisingly close the the mark, as

evidenced by the great strides made in synthetic biology in the last eighteen years.

We may define synthetic biology as the attempt at using principles from engineering

disciplines to design and build novel functionalities out of biological components. One

of the major paradigms within synthetic biology is the bottom up design of novel genetic

circuits, defined as networks of gene regulatory elements and other molecular machinery,

to control cellular behavior. Examples of genetic circuits include the seminal work on

oscillators [15] and bistable modules [23] and the subsequent work on logic gate circuits

[45], feedforward circuits [24], spatial control of expression [64], and circuits leveraging

non-coding RNAs for regulation [65], among others.

One of they key paradigms in engineering is the use of simplified prototyping envi-

ronments for testing system designs. Examples include wind tunnels [3] in aeronautics

and breadboards [52] for circuit prototyping in electrical engineering. In synthetic biology,

this role is increasingly being played by cell-free protein expression systems [60]. Consti-

tuted of cell extracts or purified cellular machinery mixed with buffers containing energy
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molecules and other resources, these test tube based platforms provide numerous ad-

vantages for genetic circuit prototyping. Firstly, since the DNA encoding the genetic circuit

is not constrained by the need for DNA replication, restrictions due to plasmid selection

markers and antibiotic compatibility are lifted. This allows for the rapid exploration of

genetic circuit variants by adding circuit component containing DNA species in different

combinations. Furthermore, time-consuming cloning and transformation stepsmay be by-

passed by using linearized DNA in the form of polymerase chain reaction (PCR) products

or de novo synthesized fragments, which speeds up the design-build-test cycle time con-

siderably. These advantages of combinatorial multiplexing and quicker cycle times are

further compounded by using liquid handling robots [55] and microfluidic devices [47],

which cell-free gene expression is particularly well suited for.

We consider the cell-free transcription-translation system developed by Noireaux [60],

or TX-TL for short, as our prototyping platform. TX-TL uses an E. coli cell extract as a source

of the gene expression machinery and may be implemented in batch or continuous flow

modes [47]. In either mode, the extract used must be harvested by the lysis of E. coli cells,

and different batches of these extracts can show significant variability in gene expression

capacity. In Chapter 2 we introduce the calibration-correction method, a model-based

methodology for calibrating extract batches, and correcting circuit behavior based on

these calibrations. We find that naive implementations of this methodology have certain

performance limitations, and that the method may be improved by considering parameter

non-identifiability of the models used, and designing modifications to the method based

on these considerations. In Chapter 3 we observe that the analogy to prototyping plat-

forms in traditional engineering disciplines may be extended by using computer aided de-

sign (CAD) software to model genetic circuits before any physical prototyping is attempted.

To this end, we describe txtlsim, a MATLAB® Simbiology® based toolbox for prototyping

genetic circuits in the TX-TL cell-free expression system. This chapter also discussed the

capabilities of a sub-toolbox for performing Bayesian parameter inference using ensem-

bles of experimental data. In Chapter 4, we discuss the theoretical justifications for certain

modeling choices made for modeling transcription and translation reactions in txtlsim.
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Specifically, we discuss the model order reduction of detailed multi-step elongation mod-

els of transcription and translation, while maintaining the ability of the reduced models

to track nucleotide and amino acid usage. In the process of performing the model re-

duction, we show that reaction extent coordinates form a more natural coordinate system

compared to the traditionally used species concentration coordinates to bring our model

into the two timescale form of singular perturbation theory [39]. Finally, in Chapter 5, we

end with some concluding remarks.
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Chapter 2

A Model-Based Calibration
Methodology for Cell-Free Extract
Variability Reduction

2.1 Introduction

Cell-free extracts have been proposed as a potential tool for the rapid prototyping of ge-

netic circuits in synthetic biology [47]. One of the challenges in the development of this

technology is that there is significant variability across different batches of extracts, which

limits our ability to reliably generalize the results of any one extract. The study performed

by Takahashi et al. [65] showed large variation in the constitutive expression of a fluo-

rescent protein between batches, and Hu et al. [33] went one step further, showing that

the variability in expression could be mapped to variability in the parameter estimates.

Interestingly, Garamella et al. [22] showed minimal variability in constitutive gene expres-

sion between four extract batches. However, these batches were produced by the same

expert personnel under strictly controlled conditions and supervision (personal commu-

nication), and such reproducibility has not been demonstrated in other labs. Furthermore,

Garamella et al. did not demonstrate the lack of variability in the behavior of more com-

plex circuits.

Our main goal in this chapter is to describe a method for computationally correcting

for the variability between extracts. We frame the reduction in batch-to-batch variability

in terms of what we call the data correction problem. This involves finding a method for
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transforming the behavior of a circuit from a candidate extract into what it would look like

had it been collected in a reference extract. The idea is that whenever data are collected in

a batch of extract, they should be transformed into their reference extract version, making

them directly comparable with other similarly transformed data.

The data correction problem may be solved by a model-based methodology for cal-

ibrating extract batches and subsequently using these calibrations to correct measured

genetic circuit behavior. We call this procedure the calibration-correction method, after

an analogous procedure developed for correcting wind tunnel data in the 1940s [63]. The

assumption underlying the method is that there are certain features of extracts that vary

from batch to batch, and the variation of these features can be captured as the variation

of certain extract specific parameters (ESPs). Furthermore, we assume the parameters as-

sociated with the circuit do not change when implemented in different extract batches. In

general, this assumption should hold for sufficiently fine grained circuit models, becoming

more approximate when coarser models are used.

The calibration-correction method involves first performing a set of calibration exper-

iments on both the reference and candidate extracts, and using models corresponding

to these experiments to estimate the ESPs associated with each extract. Subsequently,

the behavior of a circuit of interest is measured in the candidate extract, and its circuit

specific parameters (CSPs) are estimated from this data and a corresponding model. This

estimation step is performed with the ESPs for the candidate extract fixed at the values

obtained at the calibration stage. Finally, the prediction for the circuit behavior in the ref-

erence extract is generated using the circuit model with these CSPs, along with the ESPs

for the reference extract.

The choice of ESPs and CSPs is hypothesis driven, and must be verified experimentally.

In this work we assume that extract specific parameters generally correspond to param-

eters associated with cellular machinery like RNA polymerases and ribosomes, while the

CSPs correspond to parameters like transcription factor dimerization constants, which are

associated primarily with circuit parts.

The implementation of this method is complicated by the fact that the parameters
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of the models we use to describe biochemical systems are rarely completely identifiable.

Roughly stated, parameter non-identifiability refers to the situation when the parameter

estimation inverse problem is underdetermined, leading to non-unique solutions. It oc-

curs when the data are not sufficiently informative for the level of detail present in the

model. Set based parameter estimation methods like that in [32] or MCMC allow for the

computation of equivalence classes [66] of parameter values that fit the model behavior to

the data. The fact that the parameter sets obtained are equivalence classes with respect

to a model-data set pair simply means that one may sample an arbitrary point from the

identified parameter set, and it will be a point at which the model fits the data. This notion

leads to the question of whether these sets of parameters can be treated as equivalence

classes with respect to any method that depends on solving the inverse problem, which

will be a major theme in this chapter.

The main conceptual contribution of this chapter will be to show that with respect to

the calibration-correction problem, and under some consistency conditions on the pa-

rameter sets, these sets can indeed be treated as equivalence classes. The statement

of the conditions on the parameter sets will lead to a prescription of how to design the

calibration experiments, and in Section 2.6, even lead to a refinement of the calibration-

correction method itself.

The framework presented in this work is not limited to correcting the behavior of ge-

netic circuits across cell extracts, and may be applied to the correction of behavior be-

tween different cell strains, between the in vitro and in vivo environments, and even to

applications in other engineering disciplines [63]. As such, even though we continue to

refer to circuits and extracts, we note that replacing these with process and environment

respectively allows this framework to be used elsewhere.

We start by showing that extracts prepared using the same protocol by different in-

dividuals display large variability in gene expression. We then define some notation in

Section 2.3. In Section 2.4 we describe the data correction problem and the calibration-

correction method in formal terms, and demonstrate the method using a simple example.

In Section 2.5, we discuss a set of conditions that are required to hold for the method
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to work in general, and discuss the limitations of the method in light of these conditions.

Section 2.6 introduces a refinement of the method that improves its performance, and dis-

cuss its effect on our example system. In Section 2.7, we demonstrate how the refinement

works on artificial data, and end with some concluding remarks in Section 2.8.

2.2 Extracts Display Significant Variability Across Batches

We start with a demonstration of the variability in extract behavior in three batches of

extracts. The extracts used were created using the protocol in [60] using the BL21 Rosetta

bacterial strains, with cell lysis performed using a French press instead of the bead-beating

method described there. Example data in these extracts are shown in Figure 2.1, which

shows the results of expressing six constitutive transcriptional units in the three extracts,

expressed with linear DNA and GamS protein for protection from nucleases. The buffer

used for the experiments in Figure 2.1 was the same. The experiments were performed

with five technical repeats, and the mean and standard deviation (shown as solid lines

and shaded regions in corresponding colors in the figure) were computed.

We note that the extracts show different levels of expression across different promot-

ers. In particular, eJP shows the highest expression across all the constructs, followed by

eVS, and finally eSG.

2.3 Notation and Preliminary Ideas

2.3.1 Experiments, Systems, Models and Parameters

We consider systems S = (E,C) described as a combination of an extract E and a circuit

C, and define an experiment H = (S, x0, y) to be the execution of a system under initial

conditions x0 and output measurements y . The bar symbol (̄ ) over y is used to denote

the fact that the experimental data are assumed to reflect the true behavior of the sys-

tem, as opposed to the model output trajectories ŷ generated at a particular parameter

point and set of initial conditions. The definitions of the data correction problem and the
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Figure 2.1: There is significant batch-to-batch variability in extracts. We expressed six con-
stitutive reporter constructs (n = 5, technical repeats, shaded region = standard deviation)
in three extract batches prepared by different scientists. Each of the constructs was ex-
pressed on linear DNA.

calibration-correction method, along with the conditions for the method to work will be

given in the context of a model universe, where artificial data will be produced by models

with known parameters. Here, the true data variable will also be denoted by y , and will

be distinguished from sample output trajectories ŷ and the generic symbol y . For sim-

plicity, we only allow for inputs in the form of initial conditions to the systems, though

inputs at other times may be included without significant change to the framework or the

mathematical results derived in this chapter.

The parameter vector θ of a model M associated with a given experiment will be parti-

tioned into extract specific parameter (ESP) coordinates e ∈RqE , and circuit specific param-

eter (CSP) coordinates c ∈ RqC . We do not restrict these parameters to be in the positive

orthant, since any positive parameters may be log transformed to exist in the entire space.

In subsequent definitions and proofs, we will declutter notation by dropping the explicit

specification of the spaces these parameters live in, but these will always be assumed to

be as defined here.

The partition of θ = (e, c) into ESPs and CSPs may be made using the following guide-

lines: ESPs are parameters associated primarily with species that are present in the system

regardless of the the circuit implemented. Examples of ESPs are the concentration of tran-

scriptional and translational machinery, elongation rates for transcription and translation
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and the concentration of RNA degradation machinery. CSPs are parameters associated

with species that may no longer exist in the system when the circuit is changed. Examples

include promoter-transcription factor binding parameters or transcription factor dimer-

ization parameters.

We define an initialized parametrized model with the equations

ẋ = f (x ,θ ),

y(θ , x0) = h(x ,θ ), x(0) = x0(θ ).
(2.1)

Here the state vector and its initialization are x , x0 ∈ Rn
+ respectively, the solutions are

assumed to exist for all t ≥ 0, the parameter vector symbol is θ = (e, c) ∈ Ω, where Ω is the
set of all parameter values of interest. The hat symbol (̂ ) over a parameter denoting an

estimated value of the parameter, as in θ̂ or ê. We shall reserve the tilde (̃ ) symbol for mis-

cellaneous purposes, such as picking an arbitrary point in a set while proving an assertion.

The output is denoted y(t,θ , x0) ∈ Rr . For simplicity, we do not explicitly model inputs

to the system, finite intervals of existence of solutions, or restrictions of the state and pa-

rameter spaces to sets smaller than the non-negative orthant. The overall mathematical

framework and arguments we develop do not depend on these simplifications, and the

general case can be included if needed. The functions f and h are assumed to be analytic

vector fields with respect to x in some neighborhood of any attainable x [69]. Lastly, time

dependence of the vector fields can be modeled by including t in the state variables. We

will use the shorthand y(θ , x0) = M(θ , x0) to refer to a model in Equation (2.1). We will

almost always simplify this notation by dropping the explicit dependence on x0, which will

be assumed to be implicit and appropriately defined in every model. Furthermore, we will

often replace θ with (e, c), as in stating y(e, c) = M(e, c) or M(e, c), instead of y(θ ) = M(θ )

where appropriate.

2.3.2 Model Universe

Our analytical results will be stated and proved in a virtualmodel universe, where artificial

data y is generated using models (denoted by M ) with known nominal parameter values
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(θ ). The primary reason for this is that our theoretical results can only be proven when

one has access to the true values of the parameters that generated the data.

Furthermore, we will limit ourselves to the case where the models used to estimate pa-

rameters from the data are the very models used to generate the data in the first place. In

particular, both models will have the same dynamical equations f specifying them. In this

sense, the models we use to work with the data are correct, and this assumption will be

denoted by M = M . Working in a model universe, along with this additional correctness

assumption, allows us to look at the interaction of non-identifiability with our method

in isolation, i.e., without also having to be concerned with whether our models are good

models of the system that generated the data. Issues associated with model correctness

or the use of increasingly approximate models (that often arise due to model order reduc-

tion) are left as future extensions of this work. Furthermore, it is worth explicitly stating

that even though the nominal parameter vector used to generate the output trajectory

is a single point in the parameter space, the non-identifiability of parameters when their

identification is attempted using the output trajectory and the nominal models arises be-

cause of the structure of the dynamics function f and that of the output function h. Thus,

when stating and proving our main results in Section 2.5, we will always use single points

to specify nominal parameter values, even when we can only identify sets of parameter

values from the output trajectories.

More precisely, when we refer to a model universe, we identify an experiment H =

(S, x0, y) with a model with known nominal parameters, y = M(θ , x0). Here, y denotes the

measurements from these virtual experiments in our model universe.

2.3.3 Parameter Non-Identifiability

In this subsection, we follow Walter and Lecourtier [69] in defining the notion of parameter

non-identifiability.

Definition 1 (Output-Indistinguishable). Let M(θA) be a parametrizedmodel, and let M(θB)

be amodel with the same structure. M(θA) and M(θB) are said to be output-indistinguishable
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if
θA, θB ∈ Ω,

y(θA, x0) = y(θB, x0) ∀t ≥ 0, ∀x0 ∈Rn
+.

(2.2)

Definition 2 (Structural Global Identifiability (parameter)). The i th coordinate of θA, de-

noted θA,i , is structurally globally identifiable (SGI) if for almost any θA ∈ Ω, Equation (2.2)
has a unique solution for θB,i .

This means that the i th coordinate of the parameter vector being SGI is equivalent to

the set of parameter points θA in the parameter space that differ in their i th coordinate

and still give output indistinguishable trajectories having measure zero. Stated differently,

for an SGI coordinate, output indistinguishable trajectories almost always lead to a unique

estimate of the coordinate.

Definition 3 (Structural Global Identifiability (model)). The model M(θ ) is called struc-

turally globally identifiable (SGI) if all its parameters θi , for i = 1,2, . . . , qE + qP , are SGI.

The key point to note is that in the absence of global identifiability, multiple points

in the parameter space give rise to the same output behavior. In biological applications,

this situation tends to be common due to a limited number of measurements and a large

number of state variables. Our main goal is to demonstrate that it is not always neces-

sary to achieve global identifiability for every parameter to achieve a modeling objective

such as ours. To this end, we shall consider models with non-SGI parameters, and thus

allow e and c to exist in sets of output-indistinguishable parameters, denoted by E and C

respectively.

2.3.4 Reference and Candidate Extracts, Calibration and Test Circuits

We define two extracts, the reference extract (E1), and a candidate extract (E2). LetHi,cal be

an experiment performed with a calibration circuit, Ccal, on an extract Ei to determine the

extract specific parameters, and let Hi,test be an experiment carried out with a test circuit,

Ctest. The goal of the data transformation is to carry out the test circuit experiment in

the candidate extract, H2,test = (S2,test, x0,test, y2,test), and transform output measurements
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towards what they would have looked like had they been collected in the reference extract,

i.e., transform y2,test into ŷ1,test ≈ y1,test where y1,test is the output of H1,test. Our overall

strategy will be to use the estimates of the ESPs obtained at the calibration step in the

test circuit models at the correction step. This will require that themodels used to describe

the calibration and test circuits be similar in the sense that they model the core processes

at the same level of abstraction. In the example in Section 2.4.3, protein production is

modeled using a single enzymatic reaction.

2.4 A Calibration-Correction Methodology Can be Used to Reduce

Extract Variability

In this section, we define the calibration-correction methodology, and demonstrate it us-

ing an example. As mentioned in the previous section, we are interested in framing the

methodology in a manner that allows for the non-identifiability of model parameters. In

Sections 2.4.1 and 2.4.2, we give formal definitions of the data correction problem, the

parameter identification operation and the calibration-correction method, and in Sec-

tion 2.4.3, we demonstrate it on a simple example of correcting the behavior of a tetR

mediated repression system.

2.4.1 Framing Extract Variability Reduction as the Data Correction Problem

We begin by framing the variability reduction problem in terms of the data correction

problem, defined below and shown schematically in Figure 2.2.

Definition 4 (The Data Correction Problem). LetHi,test = ((Ei ,Ctest), x0,test, y i,test), i = 1, 2, be

the experiments describing the test circuit in the reference and candidate extracts respec-

tively. Assume that we have the freedom to design and perform calibration experiments

Hi,cal, i = 1, 2, in both the reference and candidate extracts, and collect the resulting data,

y1,cal and y2,cal. Solving the data correction problem involves finding a method that takes

as input the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns a trajectory ŷ1,test, such that

ŷ1,test = y1,test.
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Remark 1. In general, the data correction problem will only be solvable in the model uni-

verse, where the data will be generated as follows. Let e1 and e2 be the ESPs for E1 and E2

respectively. Let ccal and ctest be the CSPs for the calibration and test experiments respec-

tively. Then the output data we discuss in the model universe is

y i,cal ≜ M cal(ei , ccal), (2.3)

y i,test ≜ M test(ei , ctest), (2.4)

for i = 1, 2. ⋄
Remark 2. With real data, the equality ŷ1,test = y1,test in the definition must be replaced

with the approximate equality ŷ1,test ≈ y1,test, or perhaps merely even a requirement of a

decrease in the distance (under some metric d) between the predicted and reference tra-

jectories relative to the distance between the reference and candidate extract trajectories,

d(y1,test, ŷ1,test)< d(y1,test, y2,test). ⋄

2.4.2 The Calibration-Correction Method as the Solution to the Data Correction
Problem

We begin by describing the parameter identification as a set valued operation on a data-

model pair, and subsequently use this as a basis for defining a sequence of steps that

together constitute the calibration-correction method.

Definition 5 (Parameter Identification). Let the set Γ be the set of all pairs (y, M(θ )) for

which there exists a parameter θ̂ ∈ Ω such that y = M(θ̂ ). Let P(Ω) be the power set

of Ω. We define the parameter identification of the θ coordinates of the model M as an

operation IDθ : Γ → P(Ω), with IDθ (y, M(θ )) = {θ̂ ∈ Ω | y = M(θ̂ )}

In the definition above we have included θ as a subscript to the parameter identifi-

cation operator to make explicit exactly which parameter coordinates within the model

M are being identified. This helps with stylistic uniformity in the usage of this operator,

because we also define a conditional version for it, where certain parameter coordinates
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Figure 2.2: The Data Correction Problem. The data correction problem of Definition 4 in-
volves the transformation of the behavior of a genetic circuit, which we refer to as the test
circuit (ii), from a candidate extract to a reference extract. We have the freedom to design
and implement a set of calibration experiments (Hi,cal, i = 1, 2) on the two extracts (i), and
collect the resulting data (y1,cal and y2,cal). In this figure, the test circuit is the repression
of the pTet promoter by constitutively expressed tetR transcription factor. For the cali-
bration experiments, we will demonstrate that simply using constitutive GFP expression is
sufficient to transform the data when the parameter non-identifiability is addressed using
the tools developed in this work.
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are held at fixed values, and sets of values of the remaining coordinates are estimated.

This is discussed in Remark 3 next.

Remark 3. We define twominor modifications to the use of the IDθ operator. First, we allow

for the identification of a subset of parameter coordinates, such as the circuit specific pa-

rameters c, with values for the remaining parameter coordinates fixed at a specified value.

We use the notation IDc|e=ê(y, M(e, c)) or IDc|e=ẽ(y, M(e, c)) to describe this version of the

operator. Here, the hat or tilde is used to denote the fact that the ESP coordinates are set

to a specific value (ê or ẽ), while the set of values for the remaining parameter coordinates

(the CSP coordinates in this example) is free to be estimated by the operator. We also note

that in this case, the domain and codomain of this operator are slightly different from

those shown in the definition above. Indeed, the domain for the IDc|e=ẽ(y, M(e, c)) case is

the set of all pairs (y, M(ẽ, c)) for which there exists a parameter ĉ such that y = M(ẽ, ĉ).

Similarly, the codomain can be P(Rqc) or P(projcΩ), where projc denotes the projection

operator from the full coordinate space to the CSP coordinates, c.

In the rest of this chapter, we will simplify notation by shortening IDc|e=ẽ(y, M(e, c)) to

IDc(y, M(ẽ, c)). This should not cause any ambiguity, since both the c subscript and the

tilde over the ESP coordinates e are being used to denote the fact that we are estimating

the CSP coordinates c, while holding the ESP coordinates at ẽ. In both cases, we call this

the conditional ID operator.

A second method of identifying values for some subset of parameter coordinates (say

c once again) is to identify values over all the parameter coordinates, and then to project

the resulting set down to the coordinates of interest. An example of the notation we will

use to describe this operation is projc ID(y, M(θ )), where θ = (e, c) and the ID operator

works on the full parameter vector θ , as defined in Definition 5. ⋄
Next, we define the calibration-correction method as a sequence of steps involving

parameter identification and prediction. Along with stating each step of the method in

terms of single parameter points identified or used, and single trajectories generated,

we also give descriptions of the sets of all such points and trajectories. The definitions of

these sets allow for the investigation of the idea of whether the non-identifiable parameter
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sets can be treated as equivalence classes with respect to this method. In particular, in

Section 2.5, we will derive a set of conditions for the method to work when arbitrary points

in the parameter sets are picked at the various stages of the method. Figure 2.3 shows a

schematic description of this procedure.

Definition 6 (The Calibration-Correction Method). Consider the data correction problem

in the context of the model universe. We define the calibration-correction method as a

sequence of steps that takes as input the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns

a prediction of the behavior of the test circuit in the reference extract, denoted by ŷ1,test.

The steps are:

1. Calibration Step. Find extract specific parameters that fit the calibration model to

corresponding data for each of the extracts, while sharing a common estimate of

the circuit specific parameter vector. I.e., find ê1,cal and ê2,cal such that the tuple

(ê1,cal, ê2,cal, ĉcal) satisfies y1,cal = Mcal(ê1,cal, ĉcal) and y2,cal = Mcal(ê2,cal, ĉcal) for some

ĉcal. Note that the set of all such ESP points is constructed as follows: first, the set

of all valid (ê1,cal, ê2,cal, ĉcal) tuples is defined as

Θ̃cal ≜
¦
(e1, e2, c)
�� y i,cal = Mcal(ei , c), i = 1, 2

©
,

and then, the ESP sets are defined as

Ei,cal ≜ projei
Θ̃cal, i = 1, 2. (2.5)

2. Correction Step One. Identify circuit specific parameters of the test circuit in the can-

didate extract while holding the extract specific parameters at the value estimated

at the previous step. I.e., find ĉ2,test such that y2,test = Mtest(ê2,cal, ĉ2,test). Note that the

set of all such points is given by

C′2,test ≜
∪

ê∈E2,cal

IDc|e=ê

�
y2,test, Mtest

�
e, c
��

, (2.6)

where we have used the full notation for the conditional ID operator.
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3. Correction Step Two. Predict test circuit behavior in the reference extract using the

circuit specific parameters estimated in the first correction step, and extract specific

parameters estimated in the calibration step. I.e., generate the prediction ŷ1,test =

Mtest(ê1,cal, ĉ2,test). Note that the set of all predictions that can be generated is given

by

Y1 ≜
∪

ê∈E1,cal

∪
ĉ∈C′2,test

ŷ1(ê, ĉ), (2.7)

where individual predictions of the reference trajectories are given by ŷ1(ê, ĉ) =

Mtest(ê, ĉ).

Remark 4. If the ESP sets from the calibration step were to be estimated, the version of

the calibration step defined above would be straightforward to implement computation-

ally. This is because the estimation of Θ̃cal can be done in a single step (see Chapter 3,

Section 3.5 for concurrent parameter inference tools), and the sets Ei,cal, for i = 1, 2, are

simple projections computed from the estimated set.

We also give an equivalent, but less computationally tractable definition here that

allows for the estimation of the parameters for the two extracts separately, followed by

a restriction procedure that enforces agreement between the CSPs estimated in the two

extracts. We start with estimating the joint ESP-CSP sets for individual extracts, Θi,cal ≜

IDθ
�

y i,cal, Mcal(θ )
�
, i = 1, 2, and then compute the set of CSPs where these agree, Ccal ≜

projcΘ1,cal ∩ projcΘ2,cal. Finally, the ESP sets are generated by restricting the Θi,cal by Ccal,

Ei,cal ≜
¦

e
�� ∃c ∈ Ccal : (e, c) ∈ Θi,cal

©
, i = 1, 2.

The fact that the sets Θi,cal, i = 1, 2, are estimated separately can be useful in cases

where the dimension of the spaces e and c live in (i.e., qE and qC ) are large enough that

estimating Θ̃cal ∈ R2qE+qC might be much more difficult compared to Θi,cal ∈ RqE+qC . The

tradeoff here is that intersections and restrictions of sets represented by point clouds can

be computationally difficult. Finally, the lemma in Appendix 2.A establishes the equiva-

lence of this definition to the one given in Definition 6 (Equation 2.5). ⋄
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Remark 5. Note that the set C′2,test is a subset of the larger set C2,test ≜ projc IDθ (y2,test, Mtest).

Indeed, C′2,test is obtained from C2,test by only keeping the points whose corresponding

e coordinate values were in the calibration set E2,cal. We use C′2,test because in the first

correction step, we identify c only after fixing the value of e to an arbitrary point within

E2,cal. ⋄
Remark 6. We can define two failure conditions for the calibration-correction method that

will be useful in deriving the main theoretical results of this chapter. Both the condi-

tions must be avoided for the calibration-correction method to solve the data correction

problem.

The first condition (FC1) occurs if a parameter identification step is attempted when no

parameter exists such that the model fits the data. This means that the data-model pair

(y, M) under consideration is not in the domain, Γ , of the operator ID. For example, in the

first correction step, if ê2,cal is such that there is no c̃ that satisfies y2,test = Mtest(ê2,cal, c̃),

then the parameter estimation step fails at this point. In terms of Equation (2.6), this

failure condition occurs if it occurs for any point e in E2,cal.

The second failure condition (FC2) occurs if correction step two is able to produce a

trajectory not equal to the true trajectory, i.e., ŷ1,test ̸= y1,test. In terms of the set Y1 defined

in Equation (2.7), this means that Y1 contains at least one element that is not equal to

y1,test. ⋄
Before we state and prove the conditions that need to hold for this method to work,

we illustrate its use with a simple example.

2.4.3 A Simple Example

To illustrate the calibration-correction method, we use tetR mediated repression as our

test circuit experiment, constitutive GFP expression as our calibration circuit experiment,

and model protein production directly from DNA using an enzymatic reaction. Figure 2.4

shows the data, and the results from the calibration and correction steps. The test circuit

experiment involves fixing the tetR repressible ptet-UTR1-deGFP DNA at 5 nm, and vary-

ing the constitutive tetR DNA concentration from 0–0.75 nm. The calibration experiment



23

Calibration Circuits 

Bayesian Parameter
 Inference 

TX
TL

E1 E2
Two Cell Extracts

Extract 
parameters

e1, e2

Parameter 
Inference

Circuit 
parameters, c

Unknown “True” 
behavior in E1

Predicted 
behavior in E1
Measured 

behavior in E2
Time

C
on

ce
nt

ra
tio

n

E2

Test Circuit

e1

e2

Dynamic
 Models

E1
Reference

E2
Candidate

CSP CSP

ESPESPE1,cal E2,cal

Ĉ2

E2,cal

ê2

CSP

ESP

Calibration 
Step 

CSP

ESP

Ĉ2

E1,cal E2,cal

ê1 ê2

CSP

ESP

Correction 
Step One

Correction 
Step Two

i

i

θ1 θ2 θ3

θ2

θ3

ii

A

iii
iv

v

B

ii

iii

Figure 2.3: (A) Schematic describing the calibration-correction method of Definition 6. Cal-
ibration Step: Given two cell extracts (Ai), a reference extract E1 and a candidate extract E2,
perform a set of calibration experiments (Aii) on each of the two extracts, and collect the
corresponding data. Use parametrized models describing these experiments, along with
parameter estimation tools (Aiii), to estimate the extract specific parameters (e1 and e2)
as described in the calibration step of Definition 6. (Aiv) Correction Step One: Collect data
for a test circuit in E2. The goal is to transform this into what it would look like had it been
collected in E1. Use a model of the test circuit to estimate the CSPs for this circuit with the
ESPs fixed to a value obtained for E2’s ESPs in the calibration step. The model used here
must be at a similar level of detail as the models used for the calibration step. This allows
for the ESPs estimated at that step to be used here. (Av) Correction Step Two: Finally, plug
in the ESPs for E1 and the CSPs just estimated into the test circuit model to generate the
desired transformed data (blue solid line) in the time-course schematic shown. (B) In-
terplay of parameter non-identifiability with the calibration-correction method. When the
parameter estimation procedure returns sets of parameters that all fit the model to the
data, we say that the parameters of the model are non-identifiable. (Continued below)
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Figure 2.3: (Continued from above) The calibration-correction method in the presence
of non-identifiability involves treating the sets of estimated parameters as equivalence
classes, allowing for arbitrary points in the sets to be used for the purposes of the method.
(Bi) Calibration step: The calibration step is still performed with the CSPs shared across
the two extracts, and ESPs estimated individually, resulting in a set of points ((e1, e2, c)).
In the schematic, the projections of this set onto the (e1, c) and (e2, c) coordinate axes are
shown as the shaded regions. The ESPs that are obtained at the calibration step are now
sets in the ESP coordinates, E1,cal and E2,cal, corresponding to the projection of the sets in
the full parameter space onto the e1 and e2 coordinate axes. (Bii) The first correction step
involves picking an arbitrary point in the set E2,cal and estimating the set of CSPs that fit
the test circuit model to the data at this point, and then treating this set as an equivalence
class in turn and picking an arbitrary point from this set. The shaded region denotes the
set of all parameters in the full coordinate space that fit the test circuit to the data. (Biii)
Correction Step Two: An arbitrary point from the ESP set for the reference extract, E1,cal, is
picked, along with the arbitrarily picked point from the first correction step, and used to
parameterize the test circuit model and generate the desired correction.

involves varying this reporter construct in isolation from 1–20 nm. The calibration circuit

Mcal is modeled as

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G, (2.8)

where DG is the GFP DNA, Enz is an enzyme species denoting a lumped description of the

machinery that implements the conversion of DNA into protein, and G is the GFP protein.

The test circuit is modeled using the equations Mtest,

DT + Enz
k f T−−*)−−
krT

DT:Enz
kc−−→ DT + Enz+ T,

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G,

2T
k f ,dim−−−*)−−−
kr,dim

T2,

DG + T2

k f ,rep−−−*)−−−
kr,rep

DG:T2,

(2.9)

where DT is the DNA that codes for the tetR repressor protein (under the control of a

constitutive promoter), T and T2 are the tetR protein monomer and dimer respectively.

Note that the tetR dimer sequesters the GFP expressing DNA, DG, and in doing so, represses

GFP.
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Recall that the models used for the circuits at the calibration and correction stages

have to be at the same levels of modeling to allow for ESPs estimated at the calibration

stage to be used in the test model at the correction stage. In the example above, both the

models produce protein using a single step enzymatic reaction, with the parameters θ par-

titioned into ESPs e= (kc , [Enz]0) and the CSPs c= (k f T , krT , k f G , krG , k f ,dim, kr,dim, k f ,rep, kr,rep).

Here, [Enz]0 denotes the initial concentration of Enz. The main reason for picking this

simple model for protein expression is that at this level of modeling, the number of pa-

rameters is small enough that the theoretical conditions we discuss can be visualized in

three dimensions before being generalized to models with higher dimensional parameter

spaces.

Continuing with our example, we next perform the calibration step of the method using

an MCMCmethod (see Section 3.5) to estimate the posterior distribution of the parameters

given the data, P
�
e1, e2, ccal | y1,cal , y2,cal , Mcal

�
. We note that the calibration circuit CSPs

are estimated jointly over the two extract batches, i.e., the distribution above is that of the

vector (e1, e2, ccal) such that the model Mcal(ei , ccal) fits the data yi,cal simultaneously for

both values of i = 1,2. Figure 2.4 shows the model fits from this step, and the corner-plots

showing pairwise projections of the joint parameter distributions of the (ei , ccal) coordi-

nates for both E1 and E2.

To perform the first correction step we fixed the candidate extract ESP value at a single

point drawn from E2,cal and estimated C2,test. The model fits are shown in Figure 2.4. Fixing

the ESP value to a point in E1,cal and drawing 500 points from C2,test to generate the cor-

rected trajectories implements correction step two, and the results are shown in the third

column in Figure 2.4 (iii).

To conclude this section, we compute the degree of variability reduction achieved by

our procedure on this test circuit data. We define two metrics to measure the variability

reduction. The first metric measures the the ratio of the sum of the deviations between

the corrected and reference trajectories to the sum of the deviations between the original

reference and candidate trajectories. Formally, we write the metric as,
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Figure 2.4: Demonstration of the calibration-correction method on the experimental data
described in Figure 2.2. The calibration data are the constitutive expression of the pTet
promoter at various DNA concentrations. The test data are the repression of a fixed con-
centration of the pTet promoter with varying concentrations of repressor DNA. (Continued
below)
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Figure 2.4: (continued from above) (i) Model fits to the calibration dataset using a Bayesian
parameter inference approach. The joint parameter posterior distributions obtained using
this approach are used as proxies for the parameter sets described in the main text. The
model in Equation (2.8) is used with the calibration data to infer the joint posterior distri-
butions of the ESPs and CSPs, denoted by the set Θ̃cal in Definition 6. The solid lines depict
the experimental data trajectories, and the dashed lines and shaded regions denote the
means and standard deviations (resp.) of trajectories simulated using points drawn from
the posterior distribution. (ii) Parameter posterior distributions from the calibration step.
The ESPs are e = (kc , [Enz]0), where we let [Enz]0 denote the initial amount of the Enz
species. The CSPs are c = (k f G , krG), the binding-unbinding rate constants of the DNA to
the Enz species. The parameter inference was performed with the CSPs shared across the
extract, i.e., in a joint space with points (e1, e2, c). Here we show the posterior distributions
of the parameter vector (ei , c) for the two extracts i = 1, 2. The distributions are shown as
corner plots of the pairwise projections on the off diagonal plots and the marginal distri-
butions on the diagonal. (iii) The two correction steps on the tetR repression test circuit
data. The reporter DNA is fixed at 5 nm, and the repressor DNA varies from from 0–0.75 nm
down the rows (0, 0.25, 0.5 and 0.75 nm). The solid lines in all the plots are experimen-
tal data, the dashed lines and shaded regions are the mean and standard deviations of
simulated trajectories corresponding to parameters drawn from the respective parame-
ter sets as described by the calibration-correction method in Definition 6. The first three
columns, starting from the left, are: test circuit data in the two extracts, correction step
one, where the model in Equation (2.9) is fit to the candidate extract data, and the second
correction step. We see that the model fits the candidate extract data quite well in the first
correction step, and correction step two is able to move the model prediction trajectories
towards the reference extract data trajectories at all repressor DNA concentrations. The
standard deviation of the predicted trajectories in the third column is much larger than
that of the fitted trajectories in the second column. In Sections 2.6 and 2.7, we discuss
ESP-CSP covariation as a possible reason for this type of increase in the standard devia-
tion, and propose a modification to the calibration-correction method, called CSP fixing,
that addresses this type of covariation. The fourth column shows the result of applying
this modified version of the method to this data, and shows that the standard deviations
tighten up considerably.
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R1 =

∑nIC
i=1 ∥ ŷ1,test(x0,i)− y1,test(x0,i)∥2∑nIC
i=1 ∥y2,test(x0,i)− y1,test(x0,i)∥2 , (2.10)

where the sum is taken over the nIC experimental conditions (which, in this case, are the

four tetR DNA concentrations). We have added an argument
�
x0,i

�
to the output trajectory

variable y to reflect this fact explicitly. For our dataset, we compute the value of this metric

to be R1 = 0.42.

The second metric computes, for each of the nIC initial conditions, the ratio of the

deviation between the corrected trajectory and the reference extract trajectory, and the

deviation between the original candidate extract trajectory and the reference extract tra-

jectory. It then takes the mean of these individual ratios to give a score for the average

correction. Formally, it is defined as

R2 =
1

nIC

nIC∑
i=1

∥ ŷ1,test(x0,i)− y1,test(x0,i)∥2
∥y2,test(x0,i)− y1,test(x0,i)∥2 , (2.11)

and gives a value of 0.48 when computed for our dataset.

2.5 Identifiability Conditions

In this section, we show that the SGI property is not necessary for the data correction

problem to be solved by the calibration-correction method. This will be stated as a corol-

lary of the main result of this section (Theorem 1), which gives conditions on the sets of

non-identifiable parameters obtained during the calibration-correction method such that

the method solves the data correction problem.

The key insight underlying the theory developed in this chapter is that since the cor-

rection only needs to be applied to the output trajectories, and not to the full state vector

trajectories, we do not need the parameters to be fully identifiable. Roughly speaking, this

is due to the fact that the non-identifiability occurs because the output trajectories are

not informative enough to identify the parameters to a degree that allows the state tra-
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jectories to be reconstructed. Indeed, the identified parameter sets only contain enough

information to reconstruct the outputs. However, since we are only attempting to correct

the outputs, and not the state trajectories, the method continues to work in the presence

of the non-identifiability.

This idea of using parameters estimated using only the outputs to in turn correct only

the output behavior, and not the entire state vector trajectories is closely related to the

idea of the sets of output-indistinguishable parameters being equivalence classes with

respect to the inputs and outputs of a model. While these sets may be equivalence classes

with respect to individual estimations performed using model data pairs, some additional

restrictions need to be placed on these sets if they are to be treated as equivalence classes

with respect to the calibration-correction method. The main goal of this section will be to

derive these conditions.

Theorem 1 (Parameter consistency). Consider the data correction problem (Definition 4) in

themodel universe, i.e., when the experimental data are generated by nominal parametrized

initializedmodels, as described in Remark 1. Furthermore, consider the calibration-correction

method of Definition 6, and the sets Θ̃cal, E1,cal, E2,cal and C′2,test as defined there. Define

Θi,test ≜ IDθ
�

y i,test, M test(θ )
�
for i = 1, 2. Then, the conditions,

Θ̃cal ̸= ;, (2.12)

E2,cal ⊆ projeΘ2,test, (2.13)

E1,cal × C′2,test ⊆ Θ1,test, (2.14)

are necessary and sufficient for the calibration-correction method to solve the data cor-

rection problem.

Proof. We note that solving the data correction problem using the calibration-correction

method simply involves avoiding the failure conditions FC1 and FC2 described in Remark 6.

Avoiding FC1 wherever it may occur ensures that the method can be implemented in the

first place, and avoiding FC2 means that the method returns the desired result. Thus, we

must show that the conditions (2.12-2.14) are necessary and sufficient for avoiding FC1 and
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FC2.

The necessity of condition (2.12) follows from the fact that if Θ̃cal = ;, then there does
not exist a vector (e1, e2, c) such that y i,cal = Mcal(ei , c) for i = 1, 2, leading to FC1 being

met at the calibration step. While not needed for the proof, we note in passing that in

the model universe, where Mcal(θ ) = M cal(θ ) and y i,cal = M cal(e, c), condition (2.12) always

holds.

Next, we prove the necessity of E2,cal ⊆ E2,test, where E2,test ≜ projeΘ2,test. Assume that

there exists an ẽ ∈ E2,cal such that ẽ /∈ E2,test. Thus, there does not exist a c̃ such that

Mtest((ẽ, c̃)) = y2,test. Since the operator IDc|e=ẽ is only defined on the set {(y, M) | ∃c :

M((ẽ, c)) = y}, we see that the map IDc|e=ẽ(y2,test, Mtest(e, c)) is not well defined, leading to

FC1 at the first correction step.

We prove the necessity of condition (2.14) as follows. Assume that there exists a (ẽ, c̃) ∈
E1,cal×C′2,test such that (ẽ, c̃) /∈ Θ1,test. Since we use points ê ∈ E1,cal and ĉ ∈ C′2,test to generate

the prediction ŷ1,test in the second correction step, it is possible that ê = ẽ and ĉ = c̃.

Furthermore, since Θ1,test is the set of all points (e, c) that give the correct trajectory y1,test,

we have the possibility that ŷ1,test ̸= y1,test. This is the second failure condition.

Finally, sufficiency is a simple consequence of the fact that conditions (2.12-2.14) ad-

dress both the points in the method where FC1 could be met, and the point in the method

where FC2 could occur. Explicitly, condition (2.12) allows the calibration step to avoid FC1,

condition (2.13) allows correction step one to avoid FC1, since it implies that for all ẽ ∈ E2,cal,

there exists a c̃ such that (ẽ, c̃) ∈ Θ2,test. Condition (2.14) enables correction step two to avoid

FC2, since it implies that for all ẽ ∈ E1,cal and for all c̃ ∈ C′2,test we have that y1,test = Mtest(ẽ, c̃),

implying that the set of all possible predicted trajectories only has the correct trajectory

in it, Y1 = {y1,test}.

Remark 7. We can give some physical interpretations of the conditions (2.12-2.14). To do

this, we first note that condition (2.14) implies (see Lemma 3 in Appendix 2.B)

E1,cal ⊆ projeΘ1,test, (2.15)

C′2,test ⊆ C′1,test, (2.16)
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where C′1,test is defined in a similar way to C′2,test,

C′1,test ≜
∪

ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��

.

Condition (2.12) and (2.15) may be interpreted to mean that the calibration experiments

must be more informative about the ESPs than the test circuit experiments. This follows

from the fact that the sets of output-indistinguishable ESPs obtained from the calibration

step are subsets of the corresponding sets from the test circuits, projeΘi,test.

Condition (2.16) says that the CSP sets for the test circuit, if estimated by first fixing

the ESPs to values obtained at the calibration stage, must agree. Agreement here is de-

fined to be unidirectional, with one set being a subset of another. This is only because

the correction being performed is from the candidate extract to the reference extract. If

bidirectional correction (Corollary 2, below) were required, then we would have equality

in condition (2.16).

Finally, condition (2.14) says that the ESP and CSP coordinates in the set Θ1,test can

only covary outside E1,cal × C′2,test, i.e., all the points within this set must belong to Θ1,test.

Covariation is defined in Section 2.6. ⋄
Next, we state a few corollaries of the theorem.

Corollary 1 (SGI Sufficiency). SGImodels are sufficient for the calibration-correctionmethod

to solve the data correction problem in the model universe.

Proof. Recall from Remark 1 that in the model universe, the data are generated by nominal

parameters, e1, e2, ccal, ctest. We observe that since the models are SGI, these parameters

uniquely fit the model to the data, and therefore the sets in conditions (2.12-2.14) only have

single entries, leading to these conditions being trivially satisfied:

Θ̃cal = {(e1, e2, ccal)} ̸= ;,
E2,cal = {e2} ⊆ proje{(e2, ctest)}= projeΘ2,test,

E1,cal × C′2,test = {e1} × {ctest} ⊆ {(e1, ctest)}= Θ1,test.
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Corollary 2 (Bidirectional Correction). To be able to correct the test data from either extract

to the other requires that:

Θ̃cal ̸= ;,
Ei,cal ⊆ projeΘi,test, i = 1, 2,

E1,cal × C′2,test ⊆ Θ1,test,

E2,cal × C′1,test ⊆ Θ2,test.

Proof. The proof is a simple union of the sets of conditions implied by Theorem 1 for each

direction of correction.

Remark 8. We note that the condition C′2,test ⊆ C′1,test discussed in Remark 7 gets trans-

formed into C′2,test = C′1,test. ⋄
Next we discuss the case of correcting the calibration data itself. This will be important

in the next section when we examine the effect of a phenomenon called parameter covari-

ation on the calibration-correction method. There, we will prove that a modified version

of the method is able to solve the problem at least for this case, even in the presence of

parameter covariation.

Corollary 3 (‘Test = Calib’ Case). Consider the data correction problem for the case where

the test data andmodels are the same as the calibration data andmodels, i.e., y i,test = y i,cal

and M test = M cal for i = 1, 2. Furthermore, let Θi,cal ≜ IDθ
�

y i,cal, Mcal(θ )
�
for i = 1, 2, and

C′2,cal ≜
∪

ẽ∈E2,cal

IDc

�
y2,cal, Mcal (ẽ, c)
�

. (2.17)
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Then, the conditions

Θ̃cal ̸= ;, (2.18)

E2,cal ⊆ projeΘ2,cal, (2.19)

E1,cal × C′2,cal ⊆ Θ1,cal, (2.20)

are necessary and sufficient for the calibration correction method to solve this problem.

Proof. Simply specialize the conditions in Theorem 1 to this case.

2.6 Covariation Between ESP and CSP Parameter Coordinates In-

troduces Error into the Method

In this section, we describe covariation (Figure 2.5), and show that it causes the calibration

correction method to fail. We then discuss an improvement to the method that addresses

this issue. We start by defining a device that will be useful for taking slices of parameter

sets.

Definition 7 (Cutting Plane). Consider the space of parametersRq , the vector θ ∈Rq parti-

tioned into two sets of coordinates θ = (θa,θb) ∈Rqa×Rqb and the subspaces A≜Rqa×{0}
and B ≜ {0} ×Rqb corresponding to the θa and θb coordinates respectively. Let θ̃a ∈ A.

Then, we denote the cutting plane generated by shifting the origin of B to (θ̃a, 0) with the

notation cutθb
(θ̃a).

Definition 8 (Parameter Covariation). Consider the space of parameters Rq and the vector

θ ∈Rq partitioned into two sets of coordinates θ = (θa,θb) ∈Rqa×Rqb . Consider some set

of parameters Θ ⊆ Rq . If there exist θ̃a1, θ̃a2 ∈ projθa
Θ such that projθb

�
Θ ∩ cutθb

(θ̃a1)
� ̸=

projθb

�
Θ ∩ cutθb

(θ̃a2)
�
, then Θ is said to have parameter covariation of its θb coordinates

with respect to its θa coordinates.

Remark 9. We will often abbreviate parameter covariation to just covariation, and say that

parameter coordinates can covary. ⋄
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Figure 2.5: Schematic descriptions of parameter covariation and associated results. (A)
The arbitrarily shaped set Θ shows parameter covariation. (B, C) Two ways of defining pa-
rameter covariation for a given set: Covariation of the θa coordinates with respect to the
θb coordinates (B) and covariation of the θb coordinates with respect to the θa coordinates
(C). The lines represent the cutting planes, and the intersection of these planes and the
set Θ is projected onto the appropriate axes. Lemma 1 shows that covariation is equiv-
alent to the Cartesian product condition in (D) not holding. This in turn can be used to
show that the two ways of defining covariation (B and C) are equivalent, and therefore the
definition of covariation is symmetric. (E, F) Thin covariation. (E) Thin covariation in the θa
coordinates with respect to the θb coordinates. (F) The covariation in the θa coordinates
is not thin with respect to the θb coordinates.
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Lemma 1. Let θ = (θa,θb) ∈ Θ ⊆ Rq be a partition of the coordinates of Rq . Then, the

set Θ has covariation of its θb coordinates with respect to its θa coordinates if and only if

projθa
Θ× projθb

Θ ̸= Θ.

Proof. First, we prove the (⇒) direction. Covariation implies that for some θa1,θa2 ∈
projθa

Θ there exists a point θ̃b ∈ projθb
Θ such that

θ̃b ∈
�

projθb

�
Θ ∩ cutθb

(θ̃a1)
�△ �projθb

�
Θ ∩ cutθb

(θ̃a2)
�
, (2.21)

where △ is the symmetric difference set operation. It further implies that there exists a

point θ̃a ∈ {θ̃a1, θ̃a2} ⊆ projθa
Θ such that (θ̃a, θ̃b) /∈ Θ. Thus, projθa

Θ× projθb
Θ ̸= Θ.

Next, we prove the (⇐) direction. Let (θ̃a1, θ̃b) ∈ projθa
Θ×projθb

Θ be such that (θ̃a1, θ̃b) /∈
Θ. Since θ̃b ∈ projθb

Θ, there exists a θ̃a2 ∈ projθa
Θ such that (θ̃a2, θ̃b) ∈ Θ. Thus we have

θ̃b ∈ projθb

�
Θ ∩ cutθb

(θ̃a2)
�
but θ̃b /∈ projθb

�
Θ ∩ cutθb

(θ̃a1)
�
, which proves the assertion.

Corollary 4. The set Θ has covariation of its θb coordinates with respect to its θa coordi-

nates if and only if it has covariation of its θa coordinates with respect to its θb coordinates.

Proof. The proof of Lemma 1 can be repeated with straightforward modifications (essen-

tially swapping the roles of θa and θb) to show the equivalence of the condition projθa
Θ×

projθb
Θ ̸= Θ to the set Θ having covariation of its θa coordinates with respect to its θb

coordinates.

Remark 10. This equivalence will allow us to refer to sets having covariation with respect

to a given partition. Specifically, we will consider Θ having covariation with respect to the

(e, c) partition. ⋄
Next, we show that in the presence of covariation, the calibration-correction method

is unable to solve the data correction problem even in the case when the test data are

the calibration data themselves. In particular, we will assume that the restriction of Θ1,cal

to E1,cal × projcΘ2,cal has covariation with respect to the (e, c) partition.

Proposition 1. Consider the ‘Test = Calib’ case of the data correction problem described in

Corollary 3, along with the definitions of the various sets given there. Assume the condi-
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tions

Θ̃cal ̸= ;, (2.22)

C′2,cal ⊆ projcΘ1,cal, (2.23)

Ei,cal ⊆ projeΘi,cal, i = 1, 2, (2.24)

hold, but the set

Θ′1,cal ≜ Θ1,cal ∩
�
E1,cal × projcΘ2,cal

�
(2.25)

has covariation in its e coordinates with respect to its c coordinates. Then, the calibration-

correction method fails to solve this problem.

Proof. Condition (2.23), along with the fact that for the ‘Test = Calib’ case, C′2,cal = projcΘ2,cal,

implies that projcΘ
′
1,cal = C′2,cal. Condition (2.24) implies projeΘ

′
1,cal = E1,cal. Covariation

implies that projeΘ
′
1,cal×projcΘ

′
1,cal ̸= Θ′1,cal. Thus, the proper subset relation Θ

′
1,cal ⊊ E1,cal×

C′2,cal holds, and therefore there exists (ẽ, c̃) ∈ E1,cal × C′2,cal such that (ẽ, c̃) /∈ Θ′1,cal ⊆ Θ1,cal.

This implies that E1,cal × C′2,cal ⊈ Θ1,cal, which violates condition (2.20).

Next, we define a specific type of covariation, which we call thin covariation, and show

that a modification to the calibration-correction method is able to solve the data correc-

tion problem for the ‘Test = Calib’ case when the CSP coordinates covary in this way with

respect to the ESP coordinates. In Section 2.7.1, we will show that even the simplest models

show non-identifiability with this type of covariation. We will also show that the variance

blow up seen in the third column of Figure 2.4 decreases significantly when this modified

version of the calibration-correction method is used.

Definition 9 (Thin Covariation). Let Θ ⊂ Rq be a set of parameters and let (θa,θb) ∈ Rq

be a partition of the coordinates of Rq . If Θ covaries with respect to this partition and if

for all θ̃b ∈ projθb
Θ, we have
��cutθa

(θ̃b)∩Θ
��= 1, then we say that the covariation of the θa

coordinates of Θ is thin with respect to the θb coordinates.
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Figure 2.6: (A) A schematic description of how thin covariation between the ESP-CSP co-
ordinates in the estimated joint parameter sets can cause calibration-correction to fail at
correcting even the calibration data (‘Test = Calib’ special case described in Corollary 3).
Columns correspond to extracts E1 and E2, rows to the calibration and correction steps,
as labeled. The blue lines in all the plots are the joint ESP-CSP sets of all the parame-
ter values that fit the calibration model to data. Covariation here is depicted by the fact
that the blue line is not vertical, horizontal or a rectangle, i.e., as the CSP value changes,
so does the ESP value, and so the ESP and CSPs cannot be picked independently from
the respective projections onto the ESP and CSP coordinate axes. ‘Thinness’ of this co-
variation (of the CSP coordinates with respect to the ESP coordinates) corresponds to the
fact that for each fixed ESP value in the set of possible values it can take, there is one
and only one corresponding CSP value. (i) Under this setup, the calibration step leads to
the ESP sets shown as projections of the blue lines. (ii) The first correction step fixes the
ESP value to a point ê2 ∈ E2,cal, and estimates the only possible CSP value ĉ2. The second
correction step picks an arbitrary point e1 ∈ E1,cal, and uses the CSP value ĉ2 to give the
parameter point that will be used to generate the final predicted trajectory. It is clear that
in general, due to covariation, this point will not lie on the blue line, which is the set of
all points that will give the correct prediction. Indeed, this leads to the second failure
condition (FC2) described in Remark 6. (B) How the CSP fixing modification (Definition 10)
to the calibration step helps solve this issue. Consider the same setup as in (A), with the
following exception: The ESP sets estimated at the calibration step are now generated by
first intersecting the parameter sets (blue lines) with a line parallel to the ESP axis (‘cut-
ting plane’ parallel to the ESP subspace in higher dimensions) centered at an arbitrary
CSP value that can be attained (i.e., a value in the set projc Θ̃cal), and secondly projecting
these intersections to the ESP coordinates for both extracts. This CSP fixing modification
is formally stated in Definition 10. It is clear that with this modification, following a logical
procedure similar to the one in (A), the second correction step uses a parameter point on
the blue line, avoiding FC2.



38

Remark 11. We note that if Θ ≜ IDθ (y , M(θ )), then the condition that for all θ̃b ∈ projθb
Θ,

we have
��cutθa

(θ̃b)∩Θ
�� = 1 is equivalent to the θa coordinates of the model M(θa,θb)

being SGI for each fixed θb . ⋄
Remark 11 says that this type of covariation is essentially a statement about the some

coordinates being conditionally structurally globally identifiable, despite covarying with

respect to the remaining coordinates.

Definition 10 (CSP Fixing). Consider the sets Θi,cal ≜ IDθ
�

y i,cal, Mcal(θ )
�
, i = 1, 2 and let

c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal. Then, we define CSP fixing as a modification to the calibration

step in which the sets Ei,cal ≜ proje
�
cute (c̃) ∩ Θi,cal

�
for i = 1, 2.

Proposition 2. Consider the sets Θi,cal ≜ IDθ
�

y i,cal, Mcal (θ )
�
for i = 1, 2, and the partition

θ = (e, c). Assume that the Θi,cal have thin covariation in their c coordinates with respect

to their e coordinates. Then, the calibration-correction method with CSP fixing is able to

solve the data correction problem for the ‘Test = Calib’ case of Corollary 3.

Proof. Let c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and ẽ2 ∈ E2,cal ≜ proje
�
cute (c̃) ∩ Θ2,cal

�
. We note that

the sets projc
�
cutc (ẽ2) ∩ Θ2,cal

�
= IDc(y2,cal, Mcal (ẽ2, c)) are equal by definition. Now, pick

an arbitrary point c̃′ ∈ projc
�
cutc (ẽ2) ∩ Θ2,cal

�
. It follows that c̃′ = c̃ from the fact that

c̃ ∈ projc
�
cutc (ẽ2) ∩ Θ2,cal

�
and that the element in

��cutθa
(θ̃b)∩Θ
�� = 1 is unique. Thus, the

only possible CSP value that can be returned by the first correction step is c̃.

Next, we look at the second correction step. Pick an arbitrary ẽ1 ∈ E1,cal ≜ proje
�
cute (c̃) ∩ Θ1,cal

�
.

Since the point (ẽ1, c̃) ∈ Θ1,cal, we have that y1,cal = ŷ1,cal ≜ M(ẽ1, c̃), and FC2 is avoided.

2.7 Computational Investigation of Covariation and CSP fixing

In this section we investigate the effect of covariation on the calibration-correctionmethod

computationally, and show that CSP fixing helps reduce the error introduced by covaria-

tion. The general approach will be to generate artificial data using the models in Equa-

tions (2.8) and (2.9) with a fixed set of parameters, and then to use these same models to

perform the calibration-correction method. In this way, we implement the model universe
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setting for the investigation, and are able to study the effects of non-identifiability without

having to also consider issues of model correctness.

2.7.1 The ‘Test = Calib’ case of Corollary 3

We show that even the simplestmodels, such as that in Equation (2.8), show non-identifiability

and (thin) covariation in this non-identifiability, and that the calibration-correctionmethod

of Definition 6 fails in the ‘Test = Calib’ special case of the data correction problem (Corol-

lary 3) precisely in the way we expect from the theoretical framework developed in Sec-

tion 2.6. We also show that with the CSP fixing modification to the calibration step, this

type of failure is avoided.

We begin by generating artificial calibration data for extracts E1 and E2 using the cali-

bration model in Equation (2.8) with the parameters in Table 2.1. The true trajectories are

shown as dotted lines in Figure 2.7 (ii-iii). We have added a small amount of Gaussian noise

to these trajectories for visualization purposes; however the trajectories used as data in

the calibration-correction method do not contain this added noise. The calibration step

was performed with k f G = 5 fixed at its true value, reducing the number of parameters

in the model to three (the sole CSP krG , and the pair of ESPs [Enz]0 and kc) allowing for

the visualization of the full joint distribution of the parameter samples that result from

performing the MCMC parameter inference. This visualization is the most direct method of

seeing the existence of non-identifiability and of thin covariation in the set of parameters

Table 2.1: Parameters Used to Generate Artificial Data

Type Parameter Extract 1 Value Extract 2 Value Model(s)
ESP [[Enz]0] 100 200 Mcal, Mtest
ESP kc 0.012 0.024 Mcal, Mtest
CSP k f G 5 5 Mcal, Mtest
CSP krG 300 300 Mcal, Mtest
CSP k f T 5 5 Mtest
CSP krT 300 300 Mtest
CSP k f ,dim 20 20 Mtest
CSP kr,dim 10 10 Mtest
CSP k f ,rep 20 20 Mtest
CSP kr,rep 10 10 Mtest
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that result from the parameter estimation.

The fitting of the model to the data (Figure 2.7 (ii, iii)) in the calibration step results

in an estimate of the joint distribution of the parameter vector (e1, e2, c) ∈ Θ̃cal. The three

dimensional scatter plots of empty blue circles in Figure 2.7 (iv, v) show the results of

this estimation marginalized to the coordinates (e2, c) = ([Enz]0,2, kc2, krG) and (e1, c) re-

spectively for the two extracts. We also fit a surface to the scattering of these points

(translucent green gridded surface plot), which helps visualize the fact that these points

essentially lie on a two dimensional surface within the three dimensional space of param-

eters, and that this surface displays thin covariation in its CSP coordinates with respect to

its ESP coordinates. The calibration concludes with the projection of the points onto the

ESP axes for E1 and E2, as shown by the filled in blue circles in Figure 2.7 (iv, v).

The red point in Figure 2.7 (iv) shows the result of the first correction step, where the

ESPs
�
[Enz]0, kc

�
were fixed to one of the points estimated in the calibration step (red

point on the ESP plane), and the CSP was estimated. We see that the CSP value estimated

is such that the full parameter point lies in the joint ESP-CSP set (red point lifted up to

the green surface). The fitted trajectories from this stage are shown in Figure 2.7 (vii).

We observe from the position of the red point in Figure 2.7 (v) that picking an arbitrary

point from the set of ESPs, and using the CSPs from the first correction step leads to a point

that does not lie on the joint ESP-CSP surface for extract E1. The corresponding predicted

correction and the true behavior of the artificial data are shown in Figure 2.7 (viii).

Figure 2.7 (vi, ix) show the result of repeating the procedure with the CSP fixing modi-

fication applied at the calibration step. In particular, the CSP was fixed at the value that

was estimated at the first calibration step (lifted red point in Figure 2.7 (iv)), though any

value in the set projcΘ1,cal ∩ projcΘ2,cal is allowed. The key insight here is that now the ESP

sets are much smaller, and in correction step one, the ESPs can only be picked so that the

very CSP value that was fixed gets estimated, and subsequently, in correction step two,

the only ESP values that can be picked are such that when they are used with this CSP

value, the resulting point lies in the set of parameters Θ1,cal that fit the true E1 data to the

model. In Figure 2.7 (ix), we see that this leads to the desired correction.
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Figure 2.7: In silico (model universe) demonstration of the effect of thin covariation and CSP
fixing for the ‘Test = Calib’ case of the data correction problem. (i) Dotted lines: Artificial ex-
perimental data, with a small amount of Gaussian noise added for easier visualization (fits
were performed on the noise free trajectories). The data was generated using the constitu-
tive expression model of Equation (2.8) at DNA concentrations of 10 and 30 arbitrary units
(a.u.). Dashed lines and shaded regions: means and standard deviations of simulated
trajectories using parameter points drawn from the estimated posterior distributions. (ii -
iii) Artificial data generated using known parameters for two extracts. The CSPs used were
the same for the models in both extracts c = (k f G , krG) = (5,300), while the ESPs differed
for the two extracts, e1 = (kc1, Enz0,1) = (0.012,100), e2 = (kc2, Enz0,2) = (0.024,200). The
model fits to the data are the dashed lines and shaded regions, and the parameter dis-
tribution for the three parameters estimated (k f G = 5 fixed) is shown as the blue empty
circles and the fitted translucent green surface in (vi, v). We note that this model shows
thin covariation as is visible from the two dimensional surface fit (embedded in 3D) to the
scattering of points. Solid blue circles are the projection of the parameter points onto the
ESP subspace. (continued below)
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Figure 2.7: (continued from above) The plot (iv) also depicts the first correction step, with
the red point on the kc − [Enz]0 plane denoting the point ê2,cal ∈ E2,cal ib and the red point
on the surface showing the corresponding estimated CSPs. (vii) The fits corresponding to
the CSP estimation of correction step one. (v) Correction step two showing an arbitrary ESP
point ê1 ∈ E1,cal with the estimated CSP from (iv) leading to a point that is off the surface
of points denoting the set of all parameters that fit extract 1 data to the model. (viii)
Corresponding corrections fail. (vi) Correction step two with CSP fixing at the calibration
step, and the corresponding corrected trajectories (ix).

2.7.2 Application of CSP Fixing in the General Setting

We conclude this section by demonstrating that when CSP fixing is used in the general case

when the test circuit is not the same as the calibration circuit, the CSP fixing modification

to the method still leads to significant improvements in the performance of the method

(Figure 2.8). The calibration data used was the same as in Section 2.7.1, and the test circuit

model (Figure 2.8 (i)) used was the one in Equations (2.9), with parameters used to generate

the artificial data given in Table 2.1. As before, dotted lines denote artificial data with a

small amount of noise added for ease of visualization only (all the fitting was done on

noise free data). The calibration stage with and without CSP fixing was identical to that in

Section 2.7.1. To reduce the dimension of the space that the parameter inference algorithm

would need to explore, we fixed the forward rates k f G , k f T ,k f ,dim, and k f ,rep , and limited

the CSPs to only the reverse rates, krG , krT ,kr,dim, and kr,rep . In this setting, performing the

first correction step gave a set of parameter estimates for the CSPs, and the resulting fits

to the E2 test circuit data are shown in Figure 2.8 (ii). Performing the second correction

step led incorrect prediction of the corrected trajectories (failure condition two), as shown

in Figure 2.8 (iii). Significantly, applying the CSP fixing modification to the calibration step

led to good prediction of the circuit in E2, as shown in Figure 2.8 (iv).

2.8 Discussion and Future Work

Cell-free extract in vitro systems are becoming a useful prototyping tool in synthetic biol-

ogy, yet the intrinsic variability between the batches of these extracts places limitations

on the comparability of results obtained in different batches. Indeed, users currently plan
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Figure 2.8: The effect of CSP fixing at the calibration step on the correction of novel test
circuit data. (i) The test circuit was the repression of the pTet promoter, modeled by Equa-
tions (2.9). The pTet-GFP DNA was held fixed at 60 a.u., while the constitutive tetR DNA
was varied between 2 a.u. and 8 a.u.. The dotted lines were the artificial experimental
data generated using the parameters in Table 2.1. The calibration step was performed as
in Figure 2.7, both with and without CSP fixing. The first correction step leads to the fits
shown in (ii), and the second correction step leads to the poor corrections shown in (iii).
When CSP fixing is employed at the calibration step, the second correction step performs
well, as shown in (iv).
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their investigations so that all their experiments may be completed before the batch of

extract runs out. For this reason, they are limited in the number of things they are able to

compare under identical experimental conditions.

We have demonstrated amodel-basedmethodology for calibrating extracts that allows

for genetic circuit behavior to be normalized or corrected. This methodology is organized

into two steps, a calibration step, where a set of calibration circuits is used to estimate

extract specific parameters of a particular extract, and a correction step, in which the cali-

brations are used to transform a novel circuit’s behavior from what it was in a given extract

into what it would have been in a reference extract. The general idea is that whenever a

new extract batch is made, a predefined set of calibration experiments may be performed

on that extract to measure its extract specific parameters. These, along with similarly es-

timated parameters for the reference extract may be used to transform any data collected

in the new extract into the reference extract form, and thus be made directly comparable

with all other data also transformed into its reference extract form.

We have developed this calibration-correction method for normalizing behavior across

extract batches that are assumed to only differ in the values of the parameters of the bio-

chemical reaction network for a given circuit, and not in the topology of the networks.

The framework here should be applicable to any scenario where only this type of differ-

ences exist. One example of this situation is when correcting for run-to-run variability in

data, which would require (perhaps a limited number of) calibration experiments to be

performed with each run.

Correcting for behavior between topologically different environments, which may arise

when in vitro-to-in vivo prediction of behavior is attempted, or when correcting for vari-

ability between different bacterial strains is required, may also be achieved if this method

is generalized in a manner outlined next. Briefly stated, the method would still assume

that as long as the modeling framework and environment specific parameters are chosen

well enough to capture most of the environment specific influences on the circuit (in each

environment), then the circuit specific parameters should be largely independent of the

environment they are estimated in. This should allow for an environment specific set of
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calibration experiments to be designed and used in the calibration step, followed by the

first and second correction steps that are largely similar to those in the methodology out-

lined here. The appropriateness of the choice of the level of detail in the modeling, the

partition of parameters into extract specific versus circuit specific and the choice of cali-

bration experiments in each of the different environments may be achieved in an iterative,

empirical, hypothesis driven manner.

We have also developed theoretical results for when this methodology is expected to

work in the presence of parameter non-identifiability. Due to the large discrepancy be-

tween the size of biochemical networks and the number of species that can be measured

as outputs, parameter non-identifiability is a ubiquitous property of these models. The

general prescription in modeling studies [2] is to perform a greater number of experiments

to eliminate non-identifiability, reduce the order of the model to reduce the number of

parameters, or to fix some parameters to effectively reduce the number of non-identifiable

parameters. However, in many cases, more experiments may not be feasible due to cost,

time or technological constraints. Model order reduction may not be desirable if, for ex-

ample, certain mechanisms in the model need to be kept for independent reasons (one

example being the explicit modeling of nucleotide binding and consumption during tran-

scription and translation to keep track of resources). The fixing of some parameters, while

reducing the number of effective parameters may not remove non-identifiability com-

pletely.

Themain insight behind our theoretical results is that since we are only trying to correct

the trajectories of the very species that we are able to measure in the first place, perhaps

the sets of values the non-identifiable parameters can take can be treated as equivalence

classes with respect to their usage in our modeling framework. This is a general idea that,

even though developed and demonstrated in this specific framework, should apply to a

broader class of applications of parametric models, as long as those applications depend

on using only the observable outputs. A future direction of this work would be to develop

these ideas at this level of generality, starting with the linear systems framework found in

control theory.
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We can identify a few other directions of investigation for future work. Firstly, condi-

tion 2.14 in Theorem 1 might be generalizable to a similar result which gives conditions

under which part models with parameter non-identifiability can be combined to predict

the behavior of an entire system. In the simplest case, this could be a simple Cartesian

product condition, though we suspect that this would be too restrictive, since covariation

between the parameters of different parts may exist, requiring a more careful analysis. For

example, we may have to prescribe precisely which parameters must be identified, and to

what extent, before the remaining non-identifiability does not matter for the output pre-

diction problem. Secondly, we believe that it should be possible to use the result from the

theory of differential equations that specifies the continuous dependence of model out-

puts on parameters to show that the direction of movement, when the outputs are varied

under a fixed set of experimental conditions, of a non-identifiable parameter set must be

orthogonal to the direction of the non-identifiability, and indeed the non-identifiability

must be ‘thin’, in some geometric sense, in the direction of movement. Lastly, we may

wish to generalize these results to the case when there is noise in the data, the parameter

sets are replaced by probability distributions, and notions of practical identifiability [53]

are incorporated into our analysis.
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Appendices

2.A Equivalence of the Two Definitions of the Calibration Step

In this section, we prove two identities that establish the equivalence of the two definitions

of the calibration step given in Definition 6 and Remark 4.

Lemma 2. Let Θ̃cal, Θ1,cal and Θ2,cal be as defined in Definition 6 and Remark 4. Then, the

identities

projc Θ̃cal ≡ projcΘ1,cal ∩ projcΘ2,cal, (2.26)

projei
Θ̃cal ≡
¦

e
�� ∃c ∈ �projcΘ1,cal ∩ projcΘ2,cal

�
: (e, c) ∈ Θi,cal

©
, i = 1, 2, (2.27)

hold.

Proof. First, we prove (2.26) using a series of equivalences. Let c̃ ∈ projc Θ̃cal. This is equiv-

alent to

∃e1, e2 : (e1, e2, c̃) ∈ Θ̃cal (2.28)

⇔∃e1, e2 : y i,cal = Mcal(ei , c̃), i = 1,2 (2.29)

⇔ (ei , c̃) ∈ Θi,cal, i = 1,2 (2.30)

⇔ c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal, (2.31)

which proves the assertion.

Next, we prove (2.27) for e1 by showing that the left and right hand sides are subsets

of each other. The proof for the e2 case is similar. Denote the set on the left hand side

with L, and the one on the right with R. Let ẽ1 ∈ L = proje1
Θ̃cal. Then, ∃ẽ2, c̃ such that



48

(ẽ1, ẽ2, c̃) ∈ Θ̃cal, which implies c̃ ∈ projc Θ̃cal and y1,cal = Mcal(ẽ1, c̃). By the identity (2.26), we

have that c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and (ẽ1, c̃) ∈ Θ1,cal, which shows that L ⊆ R.

We conclude the proof by showing that R ⊆ L. Let ẽ1 ∈ R, which means that there exists

a c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal such that y1,cal = Mcal(ẽ1, c̃). Furthermore, since c̃ ∈ projcΘ2,cal,

there also exists an ẽ2 such that y2,cal = Mcal(ẽ2, c̃). Together these imply that (ẽ1, ẽ2, c̃) ∈
Θ̃cal, which gives ẽ1 ∈ proje1

Θ̃cal, proving the assertion.

2.B Equivalence of the Two CSP Subset Conditions Given in Re-

mark 7

The Cartesian product condition given in Equation (2.14) implies two further conditions,

which we state in Lemma 3 below. The first of these follows simply by projecting both

sides of Equation (2.14) onto the ESP coordinates. The second condition, on the other

hand, is stronger than simply projecting (2.14) onto the CSP coordinates. This condition

states that the CSP points generated at the first correction step, C′2,test, must be a subset

of the set of CSP points generated by fitting y1,test to the model when the ESP points are

restricted to be in the set E1,cal.

Lemma 3. Condition (2.14), which states that E1,cal × C′2,test ⊆ Θ1,test, implies that

E1,cal ⊆ projeΘ1,test, (2.32)

C′2,test ⊆ C′1,test, (2.33)

where C′1,test is defined in a similar way to C′2,test,

C′1,test ≜
∪

ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��

.

Proof. Condition (2.32) follows simply by applying the proje operator to both sides of con-

dition (2.14). To prove condition (2.33), we note that condition (2.14) implies that for an

arbitrary c̃ ∈ C′2,test, we have that for all ẽ ∈ E1,cal, the model fits the data, y1,test = Mtest(ẽ, c̃).
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This in turn implies that

c̃ ∈ ∪
ê∈E1,cal

IDc|e=ê

�
y1,test, Mtest

�
e, c
��
= C′1,test. (2.34)

Thus, C′2,test ⊆ C′1,test.
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Chapter 3

A MATLAB® Simbiology® Toolbox for
Circuit Behavior Prediction in TX-TL
and Concurrent Bayesian Parameter
Inference

3.1 Introduction and Background

The use of computer-aided design (CAD) tools, such as SPICE (Simulation Program with

Integrated Circuit Emphasis, [46]) for electric circuit design, decreases the design iteration

time in engineering disciplines. We have developed an analogue of such tools for the

TX-TL prototyping platform, in the form of a MATLAB® toolbox called txtlsim that allows

for easy specification, characterization and simulation of genetic circuits.

The use of CAD tools in systems and synthetic biology is not a novel idea. Some exam-

ples of simulation software include the TABASCO simulator [40], COPASI [31], ProMot [44],

Cello [48] and bioscrape [62]. TABASCO allows for fast stochastic simulation of gene regu-

latory circuits at the single molecule and single base pair resolution while not trading off

too much speed. It does this by employing a dual architecture that allows for switching

between modeling base pair resolution reactions and species level reactions. COPASI is a

general purpose simulator that allows for the simulation of both stochastic and determin-

istic models, and even for hybrid models where low copy number species are simulated

stochastically, and all other species deterministically. The Process Modeling Tool (ProMoT)

employs a unique method for formulating genetic circuits in a composable format, with
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well defined biochemical signal carriers between the parts [16,44]. Signal carriers take the

form of polymerase per second (PoPS), ribosomes per second (RiPS), transcription factor

per second (FaPS) and inducer or cofactor signal per second (SiPS). Each part has a defined

set of inputs and output terminals, and can only be composed with another part with a

corresponding set of terminals. Cello is an example of an electronic design automation

tool that takes a desired function as an input, and draws upon a library of Boolean logic

gates to generate candidate circuits that perform that function. Finally, bioscrape is a

tool developed for performing fast stochastic simulations with time delays, cell lineage

tracking and Bayesian parameter inference for general genetic circuit models.

Due to the often complementary nature of the tools available for simulation, inference

and analysis, it is desirable to have a way to transfer models between these tools. The

Systems Biology Markup Language (SBML) is a widely adopted XML (eXtensible Markup

Language) based format for representing biochemical networks. The use of such an infor-

mation standard for specifying biochemical networks has other advantages: it reduces the

chance of old models being lost when the simulator they were written for are no longer

supported, and makes it easier for users to parse and understand models written by other

researchers, possibly using other tools [34]. The SBML specification is divided into ‘levels’,

where level one specifies a hierarchy of objects that can be used to specify a biochem-

ical network: a model, the comprising compartments, reactions, species (reactants and

products in the reactions), parameters and rules. The subsequent levels are intended to

implement other functionalities associated with the base network, such as support for

MathML and metadata.

In this chapter we describe txtlsim in enough detail for the reader to get a sense

of the main capabilities of the toolbox. txtlsim is written using MATLAB® Simbiology®,

which in turn is modeled after SBML. Indeed Simbiology® defines models, compartments,

reactions, species, parameters, rules and events as classes, and provides a rich set of

methods and properties associated with them. In txtlsim, DNA and individual species

to be added to TX-TL can be specified using a set of symbolic specification rules, and the

toolbox generates a deterministic mass action model of the gene regulatory network ex-
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pected to exist in TX-TL under the specified conditions. A typical TX-TL model, specified

at the resolution of whole DNA, mRNA and protein species is composed of transcription,

translation, RNA degradation, regulatory mechanisms and the inactivation of the ability of

TX-TL to express genes. Optionally, linear DNA and protein degradation can be included.

Furthermore, other special mechanisms, like sigma factor action or RNA-mediated tran-

scriptional attenuators, may also be included [65].

We highlight several features of txtlsim. Firstly, this toolbox requires only a few lines

of code to generate a complex chemical reaction network that models the reactions in

TX-TL. In lower level specifications, such as Simbiology®, bioscrape [62] or even simply raw

ODEs, this would amount to several tens to over a hundred equations that would need to

be manually specified and processed. The key reason for the need for this complexity is

that the toolbox is able to model the consumption of limited nucleotides and amino acid

species, and the loading of the finite catalytic machinery (RNA polymerases, ribosomes,

RNases, transcription factors etc). The consumption and degradation of nucleotides and

amino acids is thought to underlie the inactivation of the gene expression capability, and

is therefore important to model for capturing the full curves of TX-TL reactions. Coupling

between different parts of a circuit, via the loading of enzymatic resources [29] or regu-

latory elements has been shown to introduce unintended interactions between parts of

genetic circuits in both TX-TL and in vivo [13]. These types of retroactivity or loading ef-

fects are automatically and simply incorporated into txtlsim, at least with respect to the

species that exist in the toolbox, by virtue of the fact that we use mass action models.

In fact, a more general property holds: the models built using the toolbox are extensible

in the sense that once a species exists, if a new type of interaction is added that relates

to that species, none of its previous interactions need to be modified explicitly. Another

feature of txtlsim worth noting is that the models generated with it can be converted into

SBML, and may be exported into any other SBML compatible environment for analysis. The

final feature is the MCMC based Bayesian parameter inference capabilities incorporated

into txtlsim in the form of a sub-toolbox called mcmc_simbio. The main feature distin-

guishing this from existing parameter inference tools is the ability to perform concurrent
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Bayesian parameter inference on a set of model-experimental data pairs that contain

parameters with common identities. This feature is built around a MATLAB® implemen-

tation [28] of the affine invariant ensemble MCMC sampler [25] for generating the param-

eter posterior distributions given the model, data and experimental setup. Our wrapper

adopts this sampler to estimate parameter distributions for models written generically in

Simbiology®, which in turn is able to import SBML models, and can therefore be used for

parameter inference with a large class of models. We note that the study in [35] looked

at the issue of concurrent parameter inference (referred to as consensus inference there),

but only used optimization procedures to estimate point estimates of parameters. Thus,

their method does not provide the main advantage of Bayesian inference: insight into

parameter identifiability. Indeed, with the concurrence feature, it becomes possible to

inform parameters from multiple model-data pairs, potentially improving identifiability.

This, in turn, increases the value of using Bayesian inference to study the identifiability

properties of model parameters.

In this chapter, we describe the modeling framework, usage and architecture of the

toolbox, along with the parameter inference capabilities included in themcmc_simbio sub-

toolbox. In Section 3.2, we describe the user end code for setting up a TX-TL model for

tetR mediated negative autoregulation. In Section 3.2.1, we elaborate on the choice of the

chemical reactions implemented in the toolbox. In Section 3.3 we characterize the parts

of an incoherent feedforward loop motif and compare model predictions to experimental

data. Next, in Section 3.4, we discuss the software architecture that enables the automatic

generation of the biochemical network. Finally, we discuss multi-experiment concurrent

parameter inference capabilities of mcmc_simbio in Section 3.5.

3.2 An Overview of the txtlsim Toolbox

In this section, we describe the txtlsim toolbox in some detail. The code snippet shown

below depicts what a user would write to set up the negative autoregulation circuit, in

which a repressor represses its own expression, along with that of a reporter.
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% set up extract and buffer tubes (Simbiology `Model' objects) with parameters

from a configuration file identified to a particular extract batch.

tube1 = txtl_extract('E1');

tube2 = txtl_buffer('E1');

tube3 = txtl_newtube('negative_autoregulation');

% add DNA specifying a negative autoregulation circuit

txtl_add_dna(tube3, 'ptet(50)', 'UTR1(20)','deGFP(1200)', 1, 'plasmid');

txtl_add_dna(tube3, 'ptet(50)', 'UTR1(20)','tetR(1200)', 0.2, 'plasmid');

% combine tubes, add inducer, 'run' the experiment and visualize results

Mobj = txtl_combine([tube1, tube2, tube3]); % Simbiology Model object

txtl_addspecies(Mobj, 'aTc', 500); % add inducer

simData = txtl_runsim(Mobj, 12*60*60); % Simulate 12 hours of trajectories

txtl_plot(simData, Mobj);

The set of commands above closely mimic the actual experimental protocol of set-

ting up the reaction. The functions txtl_extract and txtl_buffer access extract and

buffer parameter configuration files, specified by the input string 'E1' here, to set up two

Simbiology model objects called tube1 and tube2 respectively, which are model objects

containing extract and buffer specific parameters and species. The configuration files are

user defined, and the parameters they contain can come from the literature, or from pa-

rameter inference performed on experimental data.

Next, the txtl_newtube and txtl_add_dna commands are used to initialize a new

model object and add different DNAs to the tube respectively. In its most common use

case, the txtl_add_dna command allows for specification of promoter, untranslated re-

gion and coding sequence to form a transcriptional unit on the specified DNA, along with

the concentration of the DNA added, and whether it is a linear fragment or plasmid DNA.

For example, in the first call to txtl_add_dna, the promoter, ribosome binding site (RBS)

and coding sequence (CDS) are specified by the strings 'pOR2OR1', 'UTR1' and 'tetR'

respectively. These strings, each describing a component of the transcriptional unit, are

used to access a library containing code and parameter files associated with the respec-

tive components. These component files specify all the reactions and species associated

with the component, and allow for the modular composition of these components into



55

circuits.

The txtl_combine command is used to combine the three tubes into a single model

object, Mobj, which is subsequently simulated using the txtl_runsim command.
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Figure 3.1: Standard output of the TXTL toolbox.

Figure 3.1 shows the result of the txtl_plot command, which is arranged into three

panels. The top panel shows the protein species that exist within the system. The protein

deGFP* is the folded GFP. Bottom left plot shows RNA (solid) and DNA (dashed) dynamics.

RNA rises before repression by TetR causes transcription to stop. The bottom right plot

(normalized to 1) shows that the AGTP species degrades after about 3 hours ([49] Figure 1B).

The other species we can observe are CUTP, ribosomes, amino acids and RNA polymerases.
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3.2.1 The Modeling Framework of the txtlsim Toolbox

Here we describe the typical reaction network generated by txtlsim when a transcrip-

tional unit (TU) is expressed. More complex networks made out of multiple TUs interact-

ing via transcription factor (TF) mediated regulation are simply iterations of this canonical

network, but coupled via catalytic and consumable resources, and the relevant regulatory

interactions.

We begin with a description of the species naming convention used in the toolbox.

The species in the toolbox may be divided into five broad categories: DNA, mRNA, pro-

teins, miscellaneous species like inducers or nucleotides, and the biochemical complexes

formed by combining these in defined ways. To avoid a combinatorial explosion, not every

possible species that can exist is created, and instead, the toolbox uses the user inputs

and corresponding reactions to define the set of species to be created. The species fol-

low a strict naming convention, allowing for the use of regular expressions in parsing the

name stings, and for making the decisions required for the creation of the chemical reac-

tion network underlying a given model. Example conventions for DNA, RNA and proteins

are given in Table 3.1

Table 3.1: Species naming conventions

Species Type Convention Example
DNA DNA <promspec>--<utrspec>--<cdsspec> 'DNA thio-junk-ptet--utr1--tetR'

'DNA ptet--utr1--tetR-lva'
RNA RNA <utrspec>--<cdsspec> 'RNA utr1--tetR'

'RNA att1-utr1--tetR-lva'
protein protein <cdsspec> 'protein tetR'

'protein tetR-lva'

Here, promspec, utrspec and cdsspec are the promoter, untranslated region (UTR) and

coding sequence specifications respectively. Some examples of the variations of these

specifications are shown in Table 3.1. The specifications are separated by the long hy-

phen ‘–’, and within each specification, we may have various types of modifiers, such as

junk DNA on the promoter to protect against DNA degradation, attenuator RNA in the

untranslated region [65] or lva protein degradation tags on the coding sequence. The
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miscellaneous species include inducers like anhydrotetracycline (aTc) or Isopropyl beta-

D-1-thiogalactopyranoside (IPTG), core species like ribosomes (ribo), RNA polymerases

(RNAP), RecBCD and RNase nucleases, etc., and resources like amino acids (AA) and grouped

nucleotide species (AGTP, CUTP).

We now turn to a discussion of the reactions set up by the toolbox. The three main

processes that almost always get set up for every DNA specified by the user are tran-

scription, translation and RNA degradation. DNA degradation via the RecBCD nuclease

happens only to linear DNA fragments, and can be reduced by adding the protein GamS

to the system, which sequesters RecBCD [21, 61]. Protein degradation is only active when

the ClpXP protease is present in the system, and the protein to be degraded is tagged with

a degradation tag. Other conditional behaviors include TF mediated promoter occlusion

or activation, protein dimerization, maturation, binding to small molecules like inducers,

and non-coding RNA based regulation. These behaviors are included in the biochemical

reaction network when the relevant DNA or individual molecule species are specified as

inputs to the system. Figure 3.2 shows the general set of reactions associated with each

DNA that is specified as an input using the txtl_add_dna command.

Figure 3.2: A high level description of the mechanics present in the toolbox for each tran-
scriptional unit.
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Transcription is modeled using the equations

RNAP+DNA −−*)−− RNAP:DNA, TX machinery binding to DNA,

RNAP:DNA+AGTP −−*)−− AGTP:RNAP:DNA, nucleotide binding,

RNAP:DNA+CUTP −−*)−− CUTP:RNAP:DNA, nucleotide binding,

AGTP:RNAP:DNA+CUTP −−*)−− CUTP:AGTP:RNAP:DNA, nucleotide binding,

CUTP:RNAP:DNA+AGTP −−*)−− CUTP:AGTP:RNAP:DNA, nucleotide binding,

CUTP:AGTP:RNAP:DNA
kt x−−→ RNAP:DNAterm +mRNA, mRNA production,

CUTP:AGTP:RNAP:DNA

�
Lm
4 −1
�
kt x−−−−−−→ RNAP:DNA, consumption, Lm = RNA length,

RNAP:DNAterm −−→ RNAP+DNA, termination.

(3.1)

The catalytic machinery of transcription is lumped into a single species, denoted RNAP.

It is assumed to encompass RNA Polymerases, sigma factors, and other cofactors, but

not transcription factors, whose binding will be modeled explicitly. The consumable nu-

cleotide species ATP and GTP are lumped into a single species AGTP, and CTP and UTP are

lumped into a species denoted CUTP. After the binding of the catalytic and consumable

species, the production of mRNA itself is divided into two reactions, an mRNA production

reaction and a nucleotide consumption reaction. As its name suggests, the consump-

tion reaction simply uses up the nucleotide species AGTP and CUTP, without producing

mRNA. The rate of this reaction is a multiple of the transcription reaction rate, with a scal-

ing determined by the mRNA length in bases, Lm, so that the stoichiometry of nucleotide

consumption and mRNA production is correct. This modeling choice is discussed at length

in Chapter 4, and briefly in Appendix 3.A. At the end of mRNA production, a termination

complex RNAP:DNAterm forms, which then dissociates into RNAP and DNA in a separate

reaction.



59

The reduced equations for translation,

Ribo+mRNA −−*)−− Ribo:mRNA, ribosome binding to mRNA,

Ribo:mRNA+AA −−*)−− AA:Ribo:mRNA, resource binding,

AA:Ribo:mRNA+ 2 AGTP −−*)−− AA:AGTP2:Ribo:mRNA, resource binding,

AA:AGTP2:Ribo:mRNA
kt l−−→ Ribo:mRNAterm + protein, protein production,

AA:AGTP2:Ribo:mRNA
(Lp−1)kt l−−−−−→ Ribo:mRNA, consumption, Lp = protein length,

Ribo:mRNAterm −−→ Ribo+mRNA, termination,

(3.2)

look similar to those for transcription. We note that on average it takes two ATP and two

GTP per amino acid (AA) residue, leading to the binding and consumption reactions shown

below.

RNA degradation is mediated by RNases, and is implemented as an enzymatic reaction,

RNase+mRNA −−*)−− RNase:mRNA, RNase binding to mRNA,

RNase:mRNA −−→ RNase, degradation.
(3.3)

Similar binding and degradation reactions are set up for mRNA in its various bound forms,

such asRibo:mRNA, AA:Ribo:mRNA, AA:AGTP:Ribo:mRNA, AA:AGTP2:Ribo:mRNA and Ribo:mRNAterm,

which result in the degradation of the mRNA and return of the remaining complexed

species to the species pool.

Apart from these three main mechanisms, we also model RecBCD mediated linear DNA

degradation as an enzymatic reaction, the sequestration of RecBCD by the GamS protein,

ClpXP mediated degradation of tagged proteins and transcription factor mediated regu-

lation. Other interactions, for example kinase-phosphatase action, RNA attenuator me-

diated transcriptional regulation and explicit sigma factor function, can also be included

if desired. For brevity, we only list the transcriptional repression and induction reactions

here. Repression by the dimerizable protein TetR and its sequestration by the inducer
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anhydrous tetracycline (aTc) is modeled as

2 TetR−−*)−− TetRdimer, repressor dimerization,

DNA+ TetRdimer
−−*)−− DNA:TetRdimer, DNA sequestration,

2 aTc+ TetRdimer
−−*)−− aTc2:TetRdimer, DNA sequestration.

(3.4)

In Section 3.4, we discuss the software architecture that allows for the automatic gen-

eration of these reactions and the interactions between them without the need for the

user to specify them explicitly.

3.3 Part Characterization and Circuit Behavior Prediction

In this section, we discuss an example involving the characterization of the parts of a type

one incoherent feedforward loop (IFFL), followed by the prediction of the behavior of the

IFFL in TX-TL using txtlsim, and comparison to experimental data. We begin by parame-

terizing the model’s core mechanics using parameters drawn from the literature. We then

decompose the behavior of the IFFL into five distinct parts, and estimate part parameters

by fitting models of each part to corresponding experimental data. Finally, we use the

characterized parts to predict the behavior of the IFFL under a variety of experimental

conditions, and compare the computational predictions with experimental data.

In Silico 
Library of Parts

Characterization
data

Part Models

Parameter 
Estimation

txtlsim  ToolboxCircuit Design Behavior 
Prediction

Design Modification

TXTL testing

Figure 3.3: The general workflow of using CAD software like txtlsim for circuit prototyping.
After a library of characterized parts is built, circuit designs can be tested in silico and in
vitro, and modified to fit the design needs. This process can also help refine the models
by comparing the model behavior to in vitro behavior.
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3.3.1 Core Parameters

The parameters in the system come from the literature, and from parameter estimation

carried out using experimental data collected in our lab. For parameters from the lit-

erature, the main sources are [37] and [60] . Reference [37] gives us the transcription

elongation rate of about 1 nt s−1, and a 4 aa s−1 lower bound on the translation elongation

rate. It finds an mRNA degradation half life of 12–14 min (which we reproduce in Figure 3.5

(i)), and notes that the degradation machinery does not get saturated even when there is

200 nm of mRNA in the system. Furthermore, the following features are observed, which

we reproduce in the toolbox for characterization purposes: 30 nm of plasmid DNA gives an

approximate steady state of 30 nm of mRNA, 1µm of protein is accumulated in 1 h, and the

accumulation rate decays exponentially over the next 9 hours, with an eventual maximum

expression level of about 10µm (Figure 3.4).
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Figure 3.4: Constitutive GFP expression after core parameters were set to values from the
literature. When 30 nm of constitutively expressing deGFP reporter plasmid DNA is ex-
pressed in TX-TL, about 10µm of deGFP produced in 10 h, about 30 nm of mRNA steady
state is reached, and AGTP starts degrading at about three hours.
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The concentration of RNAP and Ribosomes and the Michaelis-Menten constant for

transcription is given in Table 1 of Karzbrun et al. [37] as 30 nm, >30 nm and 1-10 nm respec-

tively. Reference [49] shows that ATP levels start to fall exponentially at about three hours,

giving us the degradation dynamics of ATP in the system. This is implemented in the tool-

box using a Simbiology® event. Reference [60] provides the concentrations of ATP and

GTP at 1.5 mm in TX-TL, those of UTP and CTP at 0.9 mm and an AA concentration of 1.5 mm.

Figure 3.5 (ii) shows a comparison of experimental results form [37] and the simulation re-

sults from the toolbox, for the constitutive expression of GFP when plasmid DNA is varied

from 5 nm to 30 nm. Some parameters, like the forward and reverse rates of the binding of

amino acids and nucleotides, are difficult to design characterization experiments for, and

so we simply fixed them to values that allowed the model to give good agreement with the

literature and the experimental data that we collected. These parameters are generally

non-identifiable, and the behavior of the model tends to be insensitive to variations in

their values over a broad range of values.
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Figure 3.5: (i) RNA degradation half life of about 17 minutes agrees with the numbers in [37]
(12 min) and [12] (20 min). (ii) Constitutive GFP expression after core parameters were set
to values from the literature. The simulation results compared to the data from [37].

In the next section, we describe how we estimated parameters for the parts of an IFFL,

before using the part models to predict the behavior of the IFFL in various experimental

conditions.
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3.3.2 IFFL Part Specific Parameters

The IFFL is a circuit in which an activator transcription factor simultaneously activates

a reporter protein and a repressor transcription factor. The reporter protein is also re-

pressed by the repressor. Owing to the fact that activation only requires the production

of one protein (the activator), and repression requires the production of two proteins (the

activator, followed by the repressor), repression of the reporter is delayed with respect to

activation. In cells, where there is dilution present, this mechanism leads to the reporter

concentrations showing a pulse. In TX-TL, without active protein degradation, one simply

observes a cessation of reporter protein accumulation that occurs sooner than that which

would be expected due to the inactivation of TX-TL. Figure 3.6 (Bi) shows a schematic of

the IFFL, where the circles represent proteins, pointed arrows show activation (lasR to tetR

and lasR to deGFP) and blunt arrows show repression (tetR to deGFP). The inducers 3OC12

(a type of N-acyl homoserine lactone, abbreviated AHL) and anhydrous tetracycline (aTc)

activate lasR and sequester tetR respectively, and are shown with green and red arrows

(respectively). The lasR protein is under the control of the constitutively expressing pLac

promoter, the tetR protein is under the control of the pLas promoter, which is activated

by LasR in the presence of 3OC12. The deGFP reporter protein is under the control of a

combinatorial promoter, which is only active when activated lasR is present and tetR is ab-

sent (or sequestered by aTc). The characterization of the parts of the IFFL was performed

using five experiments: the constitutive expression behavior of the pTet and pLac promot-

ers, tetR mediated repression of the pTet promoter, aTc induction, and finally induction

via activated lasR. These experiments are summarized in Table 3.2 and the results of the

experiments, along with model fitting, are shown in Figure 3.6 (A). All the experiments in

Figure 3.6 were performed using plasmid DNA.

Each of the five characterization experiments have subsets of parameters in the model

that are naturally associated with them. For instance, the constitutive expression of pTet

Figure 3.6 (Ai) informs the dissociation constant for the pTet DNA and RNAP. The Ribosome

to RNA binding dissociation constant and the amino acid binding constant were not taken

from any literature source, so we chose to estimate these using the first estimation data
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Figure 3.6: Incoherent feedforward loop (IFFL) characterization and behavior prediction.
(A) Experiments were performed on parts of the IFFL, and the reporter expression time
course data were fit to corresponding models to estimate parameters. Panels (i - v) show
the endpoints of the experimental data and the fitted trajectories plotted on the same
axes for comparison. Vertical lines show error bars from replicate data. The experimental
conditions are described in Table 3.2. (B, C) Comparing predictions from the characterized
model to experimental data. (B) shows the endpoints of the model trajectories and the
experimental data plotted on the same axes for the five experimental variations tested,
and (C) shows the same experiments and model predictions, but for the full time course
trajectories. Details of the experimental conditions are in the main text.
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Table 3.2: Description of panels in Figure 3.6 (A)

Panel Experiment Parameter(s)
Estimated

Associated Reactions and Notes

i Constitutive expression deGFP under a
TetR responsive promoter: pTet-UTR1-
deGFP at 4, 2, 1, 0.5, 0.25, 0.125 and
0.0625 nm to sequester any native LacI.

Kd,pTet ,
Kd,ribo ,
Kd,AA

RNA polymerase binding to the pro-
moter (DNA), Ribo binding to ribosome
binding site (RNA) and Amino acids
and AGTP binding to the ribosome -
RNA complex. The first parameter can
be used as a measure of promoter
strength, and the other two parame-
ters were estimated here, and fixed to
the estimated values during the esti-
mations in panels ii - v.

ii Constitutive expression of deGFP
under a LacI responsive promoter:
pLacO1-UTR1-deGFP at 2, 1, 0.5, 0.25,
0.125, 0.0625 and 0.0313 nm. IPTG at
1 mm to sequester any native LacI.

Kd,pLac RNA polymerase binding to the pro-
moter (DNA). This parameter can
be used as a measure of promoter
strength.

iii pTet repression; jointly with (iv). pTet-
UTR1-deGFP at 1 nm. pLac-UTR1-deGFP
varied at 2, 0.2, 0.02, 0.002, 0.0002,
0.000 02 and 0.000002 nm. IPTG at
1 mm to sequester any native LacI.

Kd,tdim,
Kd,t rep ,
Kd,aTc

tetR dimerization, ptet DNA sequestra-
tion and aTc binding to tetR dimer.
Estimation performed jointly with the
data in panel iv.

iv tetR induction (jointly with iii). pTet-
UTR1-deGFP at 1 nm. pLac-UTR1-deGFP
at 0.1 nm. aTc varied at 10, 1, 0.1, 0.01,
0.001, 0.0001 and 0.00001µm. IPTG at
1 mm to sequester any native LacI.

Kd,tdim,
Kd,t rep ,
Kd,aTc

tetR dimerization, ptet DNA sequestra-
tion and aTc binding to tetR dimer.
Estimation performed jointly with the
data in panel iii.

v 3OC12 induction of pLas: pLac-UTR1-
LasR at 1 nm, pLas-UTR1-deGFP at 1 nm,
3OC12 varied at 10, 1, 0.1, 0.01, 0.001,
0.0001 and 0.00001µm. IPTG at 1 mm
to sequester any native LacI.

Kd,OC12,
Kd,LasLeak ,
Kd,LasAct ,
Kd,pLas

3OC12 binding to lasR, RNAP binding to
plas DNA, [OC12:lasR] binding to plas
DNA and RNAP binding to activated
plas DNA

from this set, and fix these for all subsequent fitting and simulation. Estimation was

carried out using the Simbiology® toolbox for MATLAB®, where we used the Levenberg-

Marquardt algorithm to solve a non-linear least squares fitting problem to perform the

parameter fitting.

3.3.3 Model Predictions

Using these estimated parameters, we built an IFFL in-silico and compared its behavior to

its in vitro analogue. The results are shown in Figure 3.6 (B, C), which show the endpoint

expression and the full time course trajectories as a function of experimental conditions
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respectively. The nominal experimental conditions for the IFFL in Figure 3.6 (Bi) were as

follows. IPTG was added at 1 mm, making the pLac promoter constitutive by sequestering

native LacI in the extract. The LasR inducing AHL, 3OC12, was at 1µm. The constitutive

activating plasmid pLac-UTR1-lasR was at 1 nm. The repressor DNA pLas-UTR1-tetR was

at 0.1 nm and the reporter DNA plastetO-UTR1-deGFP. The tetR inducer aTc was at 10µm,

over which it is toxic to TX-TL. This is the reason why the tetR DNA concentration was kept

at a low value of 0.1 nm. At this concentration, there is enough tetR produced to repress

pTet almost completely (Figure 3.6 (Aiii)) in the absence of aTc, while still keeping the tetR

levels low enough for 10µm of aTc to fully sequester it. With these nominal conditions,

the perturbations shown in the panels (Bii-vi) and (Ci-v) in Figure 3.6 were applied, with

the results as shown. We note that the model of the IFFL generated by txtlsim and

characterized as described in Section 3.3.2 was able to predict the the in vitro behavior of

the IFFL well.

3.4 Automated Reaction Network Generation

In Section 3.2, we gave an overview of how a user may set up a simple circuit using a few

lines of code in txtlsim. In this section we go into further details of how the software

sets up the model. We start with a walk-through of what each command does, along with

a discussion of some of the architectural features of the toolbox, and conclude with a

discussion of how the nucleotide and amino acid consumption is modeled for the single

step mRNA or protein production models used in the toolbox.

3.4.1 Software Architecture Walk-Through

In this section we cover how the toolbox sets up a model object, and in doing so, highlight

various features of the toolbox. Figure 3.7 shows the basic flow of the user level code. We

will discuss the function of each of of the commands in the user level code, and in doing

so provide an overview of the structure of the toolbox.

The main directory of the toolbox is called trunk. The key subdirectories in this di-
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Figure 3.7: Flowchart of the user level code. The txtl_add_dna command is the main
command that is used to specify the DNA to be added to the model. This allows for all the
reactions and species associated with that DNA to be set up in the model. The model is
contained in a Simbiology® model class object, and is simulated using the txtl_runsim
command. See main text for mode details.

rectory are shown in Table 3.3. In particular, we draw attention to the core, config and

components directories, which we will be referring to in the code walk-through. The core

directory contains most of the source code of the network generation part of the tool-

box. In contains user end functions like txtl_add_dna and hidden functions such as

txtl_mrna_degradation or txtl_transcription. The config directory contains (.csv)

configuration files containing parameters associated with extracts and buffers. In prin-

ciple, each extract and buffer has its own configuration file, which is populated using

characterization data collected in that extract and buffer. The components directory acts

as a library of ‘parts’. It contains code (.m) and parameter configuration (.csv) files for ge-

netic circuit parts, like promoters, UTRs and CDSs. Promoters in this library can be of an

activatable, repressible or combinatorial (e.g.: pLastetO in Figure 3.6) nature. Some pro-

moters, like the arabinose induced pBAD promoter may be repressed by a transcription

factor (AraC in this case) when it is not bound to its inducer, and activated by the transcrip-

tion factor when it is bound to the inducer. There is currently only one type of UTR, the

ribosome binding site component, specified as component files in the toolbox. Antisense-
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attenuator RNA mediated regulation of transcription, which is also specified via the UTR, is

implemented as part of the main source code, and not separate component files. Future

releases of the toolbox may separate out this capability into separate component files.

Finally, CDSs form the most variable group of component files, and can include reporters,

repressors, activators, sigma factors, kinases, phosphatases or proteases, to name a few.

All three classes of components can be extended in a straightforward manner to include

new components, either as copies of existing files with trivial name changes, of with a

small amount of additional work to include capabilities not present in the toolbox.

Table 3.3: Directory structure of the Toolbox

Directory Description
core Core functions of the toolbox, such as txtl_add_dna or txtl_transcription
config Extract and buffer configuration files (.csv). These contain parameters like transcrip-

tional elongation rate, or the initial concentration of RNA polymerases or nucleotides
corresponding to a given extract.

components Component (promoter, UTR and CDS) files. This directory contains both code (.m)
and parameter configuration (.csv) files.

mcmc_simbio MCMC toolbox for Simbiology®. This toolbox allows for Bayesian parameter inference
to be performed on the parameters of Simbiology® models concurrently over many
model-data set pairings. More details can be found in chapter xx.

examples Examples for the modeling toolbox. Includes examples from constitutive gene ex-
pression, to the incoherent feedforward loop and the genetic toggle.

doc Contains the User Manual and associated files.

Asmentioned in the overview in Section 3.2, the commands txtl_extract and txtl_buffer

are used to initialize the extract specific parameters and species. These functions set up

a txtl_reaction_config class object that contains methods and properties to manage

most of the core (i.e., non part-specific) parameters in the model. The properties of the

txtl_reaction_config class object are set by a configuration file stored in the config

directory.

The command txtl_add_dna is the workhorse of the network generation phase of

the toolbox, and is discussed in some detail here. It takes a model object as its first

input, followed by a promoter specification string promsepc, a UTR specification string

utrspec, a CDS specification cdsspec, a numerical DNA concentration input, and a DNA

type specification string as inputs (Table 3.4). Generically, a call to this function takes the

form,
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txtl_add_dna(model_object, promspec, utrspec,cdsspec, DNAconc, DNAtype),

where the promsepc, rbssepc and cdssepc strings are used to access component files of

the same names in the component directory. These files contain all the relevant informa-

tion pertaining to the promoter, RBS or CDS being specified, including the reactions it is

involved in and the associated parameters.

Table 3.4: Inputs to the txtl_add_dna command. The parenthetical arguments within the
specifications are optional, and if they are not specified, then default values from the
component configuration files are used. The DNA concentration can be any nonnegative
numerical value, and the DNA type must be either 'linear' or 'plasmid'.

Input Syntax Example
model_object Simbiology® model object tube3
promspec string(optional numeric) 'pOR2OR1(50)'
utrspec string(optional numeric) 'UTR1(40)'
cdsspec string(optional numeric) 'tetR(650)'
DNAconc numeric 20
DNAtype string 'linear'

The txtl_add_dna command is called twice: once when the user first specifies the

DNA, and a second time when the command txtl_runsim is called. In the first call, which

happens in a ‘species setup’ mode, most of the species associated with that DNA are

specified, and in the second call (‘reactions setup’ mode), the previously specified set of

species is used to set up the reactions within the model. The reason for splitting the

set up of the species and the reactions is that the specification of many reactions in the

toolbox requires knowledge of exactly which version of the reactants are present. Thus it

must be ensured that any command that sets up reactions in the system has access to

the exact versions of any species that might appear as reactants in the reactions to be

set up. If the txtl_add_dna command were to attempt to set up reactions during its first

call, it would not have access to the promoter, UTR and CDS specifications of subsequent

lines of txtl_add_dna, and therefore to the versions of the species created due to those

specifications. One example where this issue arises is as follows. Consider once again

the code snippet for setting up the negative autoregulation circuit shown in Section 3.2.

The first call to txtl_add_dna involves the ptet promoter. One of the reactions in this
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promoter’s component file, txtl_prom_ptet.m is the binding of the DNA this promoter is

a part of (DNA ptet--UTR1--deGFP) to the dimerized tetR protein species. The dimerized

tetR species, if present at all, can appear in one of two forms: a form that is not tagged with

a protein degradation tag, protein tetRdimer, and one that is, protein tetR-lvadimer.

The version of this species that exists depends on what the string specified by cdsspec is:

tetR or tetR-lva. Since the txtl_add_dna command specifying this is in a subsequent

line, this information is not available to the pTet component file at the time it attempts to

set up the reaction in this scenario.

One possibility for the first call to txtl_add_dna is that it sets up all the possible

versions of the repression reaction, and only the reactions with all reactants with non-

zero concentrations have flux through them. While this approach would give the correct

system dynamics in principle, it is not scalable as the number of species and reactions

would get large quickly, with most of these being unnecessary. A better approach is to only

set up the reactions that are actually expected to occur in the system. This approach can

be implemented with the two-pass method described above. Specifically, the first set of

calls to txtl_add_dna, which are the calls explicitly visible in the code snippet, set up all

the species that are possible to set up with the information available at this stage. In our

example, this means that the protein protein tetRdimer is initialized, so that this version

of the TetR dimer is used in the specification of the repression reaction, which happens

in the second, reaction mode call to txtl_add_dna by the txtl_runsim command.

One idea hinted at in the above discussion is that when the species are being set up,

there might not even be enough information available to set up all the species required.

Some species appear as the products of reactions, and are only known once the reactions

are specified. Indeed, if species-version dependent reactions lead to product species

whose exact version other reactions depend on in turn, then the above two pass method

will not suffice. Though we do not implement the solution in this version of the toolbox,

one can imagine a multi-pass architecture that alternates between calls to txtl_add_dna

in species setup and reaction setup modes, with the iterations ending only when the set

of reactions and species no longer grows.
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In both modes of the call to txtl_add_dna, the command performs the following ac-

tions: call the component function files for the promoter, the UTR and the CDS, followed

by a function to set up mRNA degradation species and reactions, followed by DNA and

protein degradation, if present. The promoter file sets up reactions and species (depend-

ing on the mode) associated with TF mediated regulation and transcription. Similarly, the

UTR function file sets up ribosome binding reactions and other reactions associated with

translation.

Returning to the user level code, once all the txtl_add_dna commands have been

specified, the extract, buffer and DNA model objects (with variable names starting with

tube) are combined in using the txtl_combine command, which simply adds the species

and reactions from the three model objects into a single model object, and scales the

concentrations of the species to simulate the resulting change in volume. The resulting

model object, often named as a variable Mobj, can be simulated by txtl_runsim. Note that

even if simulation is not the immediate goal, one call to txtl_runsim should always be

performed, since this is where the reactions in themodel are set up with the txtl_add_dna

command. After the call to txtl_runsim, we have a fully defined model object, and a

simData class object containing the results of the simulation. These objects may be used

for further simulations, parameter inference, and visualization of the species trajectories,

of be exported to other platforms via SBML.

3.5 Tools forMulti-ExperimentConcurrentBayesianParameter In-

ference

Bayesian parameter inference via MCMC methods involves designing a reversible Markov

chain with stationary distribution matching the posterior parameter distribution (given

models and data). This Markov chain can then be simulated and sampled to build an

ensemble of points that estimates the desired parameter distribution. One example of

this is the Metropolis-Hastings sampler, which was used for parameter inference in [11].

Numerous variations and extensions of MCMC samplers exist, and we use the ensemble
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sampler by Goodman and Weare [25], which is particularly well suited to highly anisotropic

densities that occur due to parameter non-identifiability in biological models.

In this section we present mcmc_simbio, which performs concurrent Bayesian param-

eter inference on Simbiology® models. By concurrent parameter inference, we mean the

following. Suppose we have a set of different experiments, with a model correspond-

ing to each experiment. Let each experiment-model pair be used to estimate some set

of parameters, with the possibility that parameters may be informed by more than one

model-experiment pair. Concurrent parameter inference finds the posterior distribution

for the parameters given the full set of experiment-model pairs and the specification of

the subset of parameters informed by each experiment. This scheme is depicted visually

in Figure 3.8. mcmc_simbio builds the concurrent estimation capabilities and Simbiology®

specific features around the MATLAB® implementation of the Goodman and Weare en-

semble MCMC sampler [20, 25, 28].

One application of this toolbox is during the calibration step of the calibration-correction

method introduced in Chapter 2. The calibration step of the method involves sharing the

circuit specific parameters (CSPs) between two extracts (i.e., estimating a single set of val-

ues for them) while estimating individual sets of values for the extract specific parameters

(ESPs). Recall from Section 2.4.2 that we fit the calibration data for each extract in Figure 2.4

to a corresponding model, with each CSP point (comprising the sole parameter coordinate

krG) in the ensemble estimated to fit both models to their respective data sets simulta-

neously, while each model-data pair fits its own ESPs (Enz and kc) independently of the

other. This scheme is summarized in Figure 3.9 (A), where each dot represents the set of

ESPs or CSPs for one model-experiment pair (determined by the circuit and extract used).

A line between two dots indicates that if a parameter appears in both the sets represented

by the dots, then it is estimated jointly or concurrently. Figure 3.9 (B) shows a different

sharing pattern, where the CSPs are shared between the extracts for both the calibration

circuit and the test circuit, and the ESPs are shared between the circuits for each extract.

This, and other variations to this pattern, might be useful for comparing with the sets of

parameters obtained by the base calibration-correction method.
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Figure 3.8: Parameter sharing in setting up the concurrent parameter inference problem.
Given different sets of experimental data, and corresponding models, which can differ in
the structure of the chemical reaction network (network ‘topology’) or just the parameter
values in the models (network ‘geometry’), the concurrent parameter inference problem is
set up as follows. A master vector is defined, which collects all the parameters in the mod-
els into a single vector. Each parameter that is to be shared between models only appears
once in the master vector. I.e., parameters that are to be identified with each other be-
tween models are treated as an equivalence class of parameters, and their representative
is placed in the master vector. Next, paramMaps matrices (described in Appendix 3.C) are
used to distribute the parameters to models, which are then simulated and their behavior
compared against corresponding experimental data to compute the likelihood values for
the purposes of the Bayesian Parameter inference.
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The ESPs are shared between models of different circuits, corresponding to different

biochemical network topologies, while the CSPs are shared between models that differ

only in their parameter values. We refer to the first type of sharing as sharing between

model topologies while the latter as parameter sharing between model geometries. In

general, eachmodel can be specified by a unique pair of indices, the first of which specifies

the model’s topology, and the second the model’s geometry. Thus, we will often refer to

models as topology-geometry pairs.

Calibration 
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Test 
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ESP Sharing PatternCSP Sharing Pattern

ESP Sharing PatternCSP Sharing Pattern

Calibration 
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Test 
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i
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Figure 3.9: Application of the concurrent Bayesian inference capabilities to the calibration-
correction problem of Chapter 2. (i) The sharing pattern for the calibration-correction
method. At the calibration step, only a single set of values for the circuit specific param-
eters is estimated. there is no other sharing present. (ii) A sharing pattern where circuit
specific parameters are shared within a single model topology (between geometries) and
extract specific parameters are shared between circuits within a single extract. We are
using different sharing patterns like this to explore, derive and verify the types of mathe-
matical conditions derived in Sections 2.5 and 2.6 of Chapter 2.

An advantage of estimating the entire joint posterior distribution of the parameter,

as opposed to using optimization methods for point estimation, is that it can be used to

check the identifiability properties of the models. This is useful for understanding which

parameters are well constrained by the data, if there is any covariation present between

the parameter estimates (Section 2.6), and for designing experiments for reducing param-
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eter non-identifiability. Indeed, a particularly useful application of concurrent parameter

inference is in experiment design to reduce or remove parameter non-identifiability. One

can iterate on the set of models and data, possibly of heterogeneous forms, to find the

smallest set that gives identifiable parameters. Indeed, the experiments do not even have

to be performed at the design stage, and models may be used to generate artificial data

from each model, from which parameter identifiability can be checked.

3.5.1 An Illustrative Example

In this section, we describe the concurrent parameter inference capabilities of mcmc_simbio

in some detail using an example similar to the calibration step in the calibration-correction

method. Recall from Section 2.4.3 that the calibration step for the example in Chapter 2

involved a model given by

DG + Enz
k f G−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G, (3.5)

where DG is the GFP DNA, Enz is the enzyme used to model the transcriptional and transla-

tional machinery, DG:Enz is a complex, and G is the GFP protein. The reaction rate param-

eters are k f G , krG , and kc respectively. The calibration step requires the implementation

of this circuit in two extracts, and in the language of mcmc_simbio, we say that there is one

topology (circuit, or network topology) and two geometries (implementations of that cir-

cuit in different extracts, differing only in their parameter values), leading to two topology-

geometry pairs (models). Together, the two models have to be fit to corresponding data

sets to estimate an ensemble of parameter values.

The experimental data associated with this parameter inference problem involve the

implementation of this circuit in two extracts, at three different initial DNA concentrations

(‘doses’ in the language of mcmc_simbio), with time courses of GFP measured (‘measured

species’). The parameters expected to be the same across the two extracts are those that

pertain to the circuit parts, i.e., the binding-unbinding rates k f G and krG . In our estimation

problem, we set the value of k f G to its true value (the value used to generate the artificial

data), and only estimate krG jointly. The parameters to be estimated individually for each
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model are those expected to be different between the two extracts, i.e., the initial enzyme

[Enz]0 concentration and the elongation rate kc . The resulting parameter space being

searched is five dimensional (θ = (krG , [Enz]1,0, kc1, [Enz]2,0, kc2)). Figure 3.10 shows the
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Figure 3.10: mcmc_simbio example. (A, B) Model fits to artificially generated data. Solid line:
artificially generated experimental data. Dashed line: mean of 50 simulated trajectories
resulting from the ensemble of parameter estimates. Shaded region: standard deviation.
(C, D) Pairwise projections of the posterior parameter distributions.

result of estimating the ensemble of parameter points (see Figure 3.10C, D for pairwise

projections of the log transformed values of the ensemble) that fit the simulated data to

the models. We picked fifty points from the estimated ensemble, and generated model

prediction trajectories for each DNA dose (initial condition) and in each of the two extracts

(Figure 3.10A, B). Figure 3.11 shows theMarkov chains obtained by performing this MCMC run.
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The setup of this estimation problem involves setting up a proj_<projname>.m project file,

log krG log kc1 log kc2log Enz1 log Enz28.5
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Figure 3.11: Markov chains in the mcmc_simbio example.

which contains information on the experimental data, Simbiology models, specifications

of the parameter sharing pattern, the hyperparameters for the MCMC algorithm, and the

data visualization specifications. The general layout of the file for this example is shown

in the code below.

% Initialize the project directory, where the data and plots will be stored.

[tstamp, projdir, st] = project_init;

% Define the simbiology model class object to be used. In this problem there is

only one topology (circuit): the constitutive gene expression circuit.

model_protein3 is a file that sets up the appropriate model.

mobj = model_protein3;

% define the mcmc_info struct that specifies the estimation problem structure and

hyperparameters. See detailed discussion below describing this struct.

mcmc_info = mcmc_info_constgfp3ii(mobj);
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% The model_info field in the mcmc_info struct is a MALTAB struct in itself, and

contains information about the model topologies, geometries and parameter

concurrence pattern.

mi = mcmc_info.model_info;

% A list of nominal parameter values to use to generate the data.

rkfG = 5; rkrG = 300; rkc1 = 0.012;

rkc2 = 0.024; cEnz1 = 100; cEnz2 = 200;

% Arrange the parameters in a log transformed 'master' vector.

masterVector = log([rkfG; rkrG; rkc1; rkc2; cEnz1; cEnz2]);

% Generate artificial data for the two extracts using the model object, a vector

of timepoints, the set of parameters, and information of which species are to

be dosed and measured.

di = data_artificial_v2({mobj}, {0:180:7200}, {mi.measuredSpecies},...

{mi.dosedNames}, {mi.dosedVals}, {mi.namesUnord},...

{exp(masterVector([1:2 3 5])), exp(masterVector([1:2 4 6]))});

% perform the ensemble MCMC parameter estimation.

mi = mcmc_runsim_v2(tstamp, projdir, di, mcmc_info);

% Plotting commands

% get the mcmc chains from saved timestamped data.

marray = mcmc_get_walkers({tstamptouse}, {1:ri.nIter}, projdir);

% plot the parameter distribution corner plots and markov chains

mcmc_plot(marray, mai.estNames, 'tstamp', tstamptouse);

% plot the data trajectories and the simulated data fits.

mvarray = masterVecArray(marray, mai);

marrayOrd = mvarray(mi(1).paramMaps(mi(1).orderingIx, 1),:,:);

fhandle = mcmc_trajectories(mi(1).emo, di(1), mi(1), marrayOrd,...

titls, lgds, 'projdir', projdir, 'tstamp', tstamptouse, 'extrafignamestring',

'_extract1');
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% and more plotting commands may be added as needed...

The command mcmc_info_constgfp3ii is used to set up a MATLAB® ‘struct’ class ob-

ject called mcmc_info. This struct has three fields, model_info, runsim_info and master_info,

which are themselves MATLAB® structs.

The model_info struct array, having one entry for each topology, is used to specify

information about the models used in the estimation problem. This information includes

the full list of parameters in each model topology (namesUnord), a specification of how

the parameters in the masterVector field of the master_info struct are to be distributed

to each model, and information on dosing (initial conditions) and measurement (output)

for each model. This struct is described in detail in Appendix 3.C.

The master_info struct is used to specify information about the pool of parameters

to be shared across all the topology-geometry pairs. Along with the masterVector, it also

contains the fields estNames, paramRanges, and fixedParams, which are described below.

Finally, the runsim_info struct is used to specify the simulation hyperparameters like

the number of points to simulate the chains for, the noise model, the number of MCMC

‘walkers’ (chains), the step size for the algorithm, whether parallelization is to be used,

etc.

Next, we outline how these structs are used to set up the estimation problem. We set

up parameter concurrence by first specifying a vector of parameters called the masterVector.

This vector contains all the parameter values that are to be distributed to all of the

topology-geometry pairs. We allow values within the masterVector to be either fixed or es-

timated. The masterVector is initialized to a set of values in the file mcmc_info_constgfp3ii.m,

and the master_info.fixedParams field is used to specify which of these values is to be

fixed. The remaining values constitute the vector of parameters to be estimated during the

MCMC process, and are named by the cell array master_info.estNames. At each iteration

of the algorithm, MCMC generates a new proposal of the estimated parameter vector. This

proposal is used to populate the relevant entries in the masterVector, and the paramMaps

field of the model_info struct is used to distribute the parameters from the masterVector

to the individual model geometries. Each model is then simulated at each of the dosing
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conditions (specified by the dosedNames and dosedVals fields of the model_info struct),

and the data for the species to be measured are compared to the experimental data

stored in the data_info struct array. The dataToMapTo and measuredSpeciesIndex fields

in model_info are used to specify which element of the data_info struct array a given

model’s output corresponds to, and the mapping from the model’s species to the experi-

mental data trajectories in the data set.

For our example, the code snippets below show the section of mcmc_info_constgfp3ii.m

that are used to specify this functionality. The comments, shown in green, are used to link

the description above to specific functionalities. First, we show the top level constituents

of the mcmc_info struct.

% In this example, model_info is a scalar struct, since there is only one

topology. In general, each topology gets its own element in this struct.

model_info = struct(...

'circuitInfo',{circuitInfo},...

'modelObj', {modelObj},...

'modelName', {modelObj.name},...

'namesUnord', {namesUnord}, ...

'paramMaps', {paramMap}, ...

'dosedNames', {dosedNames},...

'dosedVals', {dosedVals},...

'measuredSpecies', {measuredSpecies}, ...

'measuredSpeciesIndex', {msIx},...

'dataToMapTo', dataIndices);

% The master_info struct is a scalar struct and gives the initial masterVector of

parameter values to be distributed to the topology geometry pairs, which of

the indices in that vector are to be fixed (fixedParams vector of indices), a

string of names of parameters (and species initial concentrations) that are

to be estimated (estParams), and the range of values to seach over for each

parameter.

master_info = struct(...

'estNames', {estParams},...

'masterVector', {masterVector},...

'paramRanges', {paramRanges},...
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'fixedParams', {fixedParams});

The next code snippet describes how each of the entries of the model_info and master_info

structs is specified. For the single topology in this example, there are two geometries. This

is encoded by the fact that the paramMaps field of the model_info struct is a matrix with

two columns, as shown in the code snippet below.

% Information describing the circuit. This gets printed in the log file. Here,

the enzymatic reaction is used to produce the protein G. Since there is only

one topology, only one string is needed.

circuitInfo = ...

[' D_G + Enz <-> D_G:Enz (kfG, krG \n'... )

'D_G:Enz -> G + Enz + protien (kc)\n'...

'single topology, two geometries.'];

% The masterVector of all the paramters: both fixed and estimated. This vector is

used during the MCMC algorithm.

% The fixed parameter (kfG) is fixed at a value of 5 (arbitrary units) here, and

its index in the masterVector is specified by fixedParams.

% At each iteration of the MCMC algorithm, a new 5D parameter point is proposed,

and used to update

% the relevant entries of the master vector. The values in this vector are

% then distributed to the two geometries.

rkfG = 5; rkrG = 300; rkc1 = 0.012; rkc2 = 0.024; cEnz1 = 100; cEnz2 = 200;

% Note that the values in the masterVector are log transformed.

masterVector = log([rkfG; rkrG; rkc1; rkc2; cEnz1; cEnz2]);

% just the rkfG parameter is fixed, which has index 1 in masterVector

fixedParams = [1];

% The remaining indices are the estimated parameters. The indices are [2:6]

estParamsIx = setdiff((1:length(masterVector))', fixedParams);

% namesUnord is a list of the species and parameters in the model that are set

from values drawn from the masterVector. These incluce both the fixed and

estimated values. In each model, we have the parameters 'kfG', 'krG', and

'kc' whose values get set and the species 'Enz' whose initial value gets set.

namesUnord = {'kfG';'krG';'kc';'Enz'};
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% estParams is a cell array of strings containing the names of the species and

parameters in the masterVector that are not fixed. There are five values

here: krG, which is estimated jointly for both geometries, and kc and Enz,

each of which are estimated separately for each geometry (labeled 1 and 2).

estParams = {'krG';'kc1';'kc2';'Enz1';'Enz2'};

% The paramMaps field is a matrix that maps the elements of the masterVector to

the individual parameters and species in the topology-geometry pairs. For a

given topology, we have one matrix, with the number of columns specifying the

number of geometries associated with that topology, and how the parameters

from the master vector are to be distributed to each geometry. In this case,

there are two geometries: the first geometry's parameters and species,

specified by namesUnord ('kfG', 'krG', 'kc' and 'Enz'), are set to be

specified (during each MCMC iteration) by indices 1, 2, 3, and 5 of the

masterVector, i.e., kfG, krG, kc1 and Enz1. Similarly, the second geometry's

namesUnord species and parameters are set to be specified by

masterVector(mcmc_info.model_info(1).paramMaps(:,2)), i.e., kfG, krG, kc2,

and Enz2.

paramMap1 = [1 2 3 5]';

paramMap2 = [1 2 4 6]';

paramMaps = [paramMap1 paramMap2];

% paramRanges: A length(masterVector) by 2 matrix of the ranges of (log

transformed) values to limit the MCMC sampling to. We limit the search in

this example to +-3 from the values used to generate the artificial date.

paramRanges = [masterVector(estParamsIx)-3 masterVector(estParamsIx)+3];

% The data_info struct array contains the data sets associated with this

estimation problem. In this problem, this array is of length two, with the

first struct entry corresponding to the first geometry, and the second struct

entry corresponsing to the second geometry.

dataIndices = [1 2];

% next we define the dosing strategy. The species names dG in the Simbiology

model is to be dosed, and at the values specified.
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dosedNames = {'dG'};

dosedVals = [10 30 60];

% define the species to be measused. Here the species named pG is measured.

measuredSpecies = {{'pG'}};

% The trajectories of the pG species get mapped to the column with index msIx = 1

in the data_info(dataIndices(i)).dataArray matrix, where i is a geometry

index.

msIx = 1; %

After the mcmc_info struct has been defined, the data_info struct array is specified. In

this example, known models are used to generate artificial data, but in general this struct

is defined using real experimental data. In general, data_info is a struct array. The (i, j)-th

topology-geometry pair uses data specified in

data_info(mcmc_info.model_info(i).dataIndices(j)).

The struct is used to specify a vector of time points, a list of names of species that are

measured, a list of names of species that are dosed, a matrix of dose values, a four di-

mensional array of data values, and other metadata. This is summarized in Table 3.C.1 in

Appendix 3.C.

Once these structs have been defined, they are used as inputs into the mcmc_runsim

function, which performs the concurrent parameter inference, and saves the results and

log files in a time-stamped subdirectory within the toolbox. The toolbox also contains

plotting functionalities, functionality for generating data_info structs populated with arti-

ficial data, and for converting raw platereader data into data_info structs.

3.6 Discussion

In this chapter, we have described txtlsim, a toolbox for simulating batch mode TX-TL

reactions using Simbiology®, andmcmc_simbio, a smaller toolbox within txtlsim that per-

forms concurrent Bayesian parameter inference on Simbiology® models (not just txtlsim
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models). The key features of txtlsim are that it requires only a few lines of code to gener-

ate a model of gene regulatory circuits within TX-TL with enough complexity to model the

loading of transcription, translation and RNAse catalytic machinery, and the consumption

of resources like nucleotides and amino acids. The requirement for modeling resource

consumption while keeping the reaction network size manageable led to the creation of

consumption reactions with reaction rates defined to be a function of polymer length

and mRNA or protein production rates. These reactions are discussed in greater depth in

Chapter 4. The txtlsim toolbox also provides support for a wide range of regulatory parts,

and is easily extensible by users. Furthermore, the modeling framework of txtlsim au-

tomatically accounts for retroactivity and loading effects, without needing for these to be

explicitly specified in the model equations. We have described the usage of txtlsim, and

the software architecture needed to automatically generate a complex chemical reaction

network from simply specified user inputs. We have validated the model by characterizing

core and part parameters using data from the literature, and from experiments performed

in the lab, and predicting the behavior of an incoherent feedforward loop circuit.

The mcmc_simbio toolbox enables for different sets of experiments, possibly from het-

erogeneous sources, to be combined for parameter inference purposes, allowing for more

information to be incorporated into the parameter inference problem. Indeed, since the

approach returns the joint posterior parameter density, the improvements in parameter

identifiability resulting from using multiple experiments to estimate parameters can be

checked visually. While we do not show the use of this toolbox for inferring txtlsim pa-

rameters in this chapter, we do use the toolbox for parameter inference performed in

Chapter 2.

There are numerous directions that this work may be extended in. Firstly, capabili-

ties from the MATLAB® based GenSSI toolbox [10] for checking structural identifiability of

experiments-model pairs may be added to txtlsim. GenSSI uses Lie derivatives of the

model output with respect to the parameters to generate approximations to the so called

exhaustive summary of model parameters given the initial conditions and outputs of the

model. The exhaustive summary contains all the information that can be learned about
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the parameters, and if the map from the parameters to the exhaustive summary is injec-

tive, the parameters can be shown to be identifiable in the sense of Definition 2. Using

GenSSI, along with Bayesian inference on artificial txtlsim data, to explore identifiability

would form a potent approach for model checking and experiment design.

Another extension of this work would be the incorporation of ‘modes’ of simulation

within txtlsim. We might choose to turn on or off reactions to model growth and dilution

as part of a ‘cell’ or ‘microfluidics’ mode. We may also include modes for more or less

detailed models, such as lumping transcription and translation into single reactions, or

switching to Hill kinetics from mass action kinetics.

Other extensions include the ability to port models to the bioscrape toolbox [62] and

for the models generated by txtlsim and other tools to be treated as semantically distinct

elements, and be interconnected as subsystems into a larger system.

All in all, we believe that if modeling based approaches are flexible, easy to use and

biologically faithful enough for the modeling purpose they are intended for, then they will

actually be used by the synthetic biology practitioner, and help accelerate the progress of

the field. Our hope is that txtlsim, mcmc_simbio, and their extensions help advance this

vision.
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Appendices

3.A Consumption Reactions as a Means of Tracking Resource Uti-

lization in Reduced Models of Transcription and Translation

In this section, we discuss the use of consumption reactions to maintain the correct stoi-

chiometry of resource utilization during transcription and translation, while still allowing

for detailed elongation models to be replaced by single step reactions. An in depth dis-

cussion of this subject may be found in Chapter 4 .

Consider the transcription of an mRNA species of length 1kb. Assume that the four

types of bases are equally distributed along the mRNA, and so 250 molecules each of ATP,

GTP, CTP and UTP are required for the transcription of this mRNA species. In our model,

ATP and GTP are modeled together as a species AGTP, where we assume that one unit

of the AGTP represents one unit of ATP and one unit of CTP. Similarly, one unit of CUTP

represents one unit of CTP and one of UTP. Thus, 250 units each of AGTP and CUTP are

needed to transcribe the 1kb mRNA molecule. Looking at the model in Equations (3.1), we

see that the mRNA production step reaction consumes one unit each of AGTP and CUTP

and produces one mRNA molecule. The consumption reaction also consumes one unit

each of AGTP and CUTP, and does not produce an mRNA molecule. Thus, to consume 250

units each of AGTP and CUTP per mRNA produced, we may set the rate of the consumption

reaction to be Lm/4− 1 = 249 times the rate of the mRNA production step. We now show

that with this choice, the correct number of nucleotides gets used per mRNA molecule

produced. The rate of mRNA production is given by

d[mRNA]
dt

= kt x · [CUTP:AGTP:RNAP:DNA].
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To compute the rate of nucleotide consumption, we define a variable Nuninc, which is the

total concentration of nucleotides not incorporated intomRNA. Ie, Nuninc = 4·[CUTP:AGTP:RNAP:DNA]+

2 · ([AGTP:RNAP:DNA] + [CUTP:RNAP:DNA] + [CUTP] + [AGTP]). We would like to show

that the rate at which these unincorporated nucleotides are decreasing is Lm = 1000 times

the rate at which the mRNA is being produced. The rate of consumption of unincorporated

nucleotides is calculated as

dNuninc
dt

= 4 · d ([CUTP:AGTP:RNAP:DNA])
dt

,

+ 2 ·
�

d[AGTP:RNAP:DNA]
dt

+
d[CUTP:RNAP:DNA]

dt
+

d[CUTP]
dt

+
d[AGTP]

dt

�
,

= − 4 ·
�

kt x +
�

Lm

4
− 1
�

kt x

�
,

= − Lm · kt x ,

where the second equality follows from converting Equations (3.1) into the corresponding

mass action ODEs and substituting these into the derivative terms above, and observing

that most of the terms in the resulting expression cancel in pairs. We note that the deriva-

tion of the consumption reactions for translation is exactly analogous, and the only thing

that needs to be stated is that on average, the energetic cost of translation involves four

ATP equivalents (two ATP and two GTP) per amino acid incorporation.

3.B MATLAB® Simbiology®

The MATLAB® Simbiology® toolbox follows the SBML standard in its class structure, with

classes for models, compartments, species, reactions, parameters, rules, events, kinetic

laws and other features. At the top level we have a Simbiology® model class object that

contains one or more compartment class objects. To each compartment, one may asso-

ciate reaction, species, rule, event, parameter and kinetic law class objects. Individual

kinetic law objects, which are associated to a unique parent reaction, are used to specify

the reaction properties like the reaction rate law and parameters associated to that reac-

tion. The parameters within a kinetic law refer to parameter class objects, which can be



88

scoped either at the model level or the kinetic law levels. Parameter objects scoped at

the model level can be used by multiple kinetic law objects, while those scoped within a

kinetic law object can only be used by that object. Species objects can form either the

reactants or products of a reaction, and are scoped at the compartment level. Rules are

relationships between parameters, rates and species, and events allow the modeling of

discontinuous dynamic changes in the model.

3.C Details of the Data Structures used to Specify the Concurrent

Parameter Inference Problem

The data_info struct is a MATLAB® struct class array of length nDataSets, where nDataSets

is the number of data sets used in the parameter inference problem. Table 3.C.1 gives

descriptions of the contents of each field for each element within this struct.

Table 3.C.1: The fields of the data_info struct.

Field Description
dataInfo A human readable description of the data.

timeVector A vector of timepoints of length nTimePoints.
timeUnits A string specifying the time units. Most commonly ’seconds’,

’minutes’ or ’hours’.

dataArray 4-D array of data of size nTimePoints by nMeasuresSpecies by
nReplicates by nDoseCombinations.

measuredNames An array of strings representing the names of the measured
species. It has length nMeasuredSpecies.

dataUnits An array of strings specifying the units each measured species
was measured in. It has length nMeasuresSpecies

dosedNames An array of strings representing the names of the dosed species.
It has length nDosedSpecies.

dosedVals A matrix of dose values, of size nDosedSpecies by nDoseCombina-
tions.

doseUnits An array of strings specifying the units of each of the dosed
species. It has length nDosedSpecies.

Similarly, the model_info struct is of length nTopologies, where nTopologies is the num-

ber of different models used in the parameter inference problem. Table 3.C.2 gives de-
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scriptions of the contents of each field within this struct for each element within the

struct array.

Table 3.C.2: The fields of the model_info struct. This struct is of length nTopologies,
and specifies the properties of models, and the pattern of parameter sharing across the
topologies and geometries for the purposes of setting up the concurrent parameter infer-
ence problem.

Field Description
circuitInfo A human readable description of the model.

modelObj A Simbiology® model class object (in the terminology of the con-
current parameter inference problem, this is a network topology).

namesUnord A list of parameters in the model object that are set from values
in the master_vector.

paramMaps A matrix of the indices of the master_vector that correspond to
the parameters specified in the list namesUnord. Each column of
this matrix specifies one set of elements of the master_vector
that specify the values of the parameters in namesUnord for this
model. The number of columns, nCols, of this matrix is the num-
ber of different geometries of the model, in that the models are
different, but only in the values the parameters take, and not in
the network topologies.

dosedNames An array of strings representing the names of the dosed species.
It has length nDosedSpecies.

dosedVals A matrix of dose values, of size nDosedSpecies by nDoseCombina-
tions.

measuredNames An array of strings representing the names of the measured
species. It has length nMeasuresSpecies.

measuredSpeciesIndex An array of indices pointing to the measured species columns of
the dataArray in the data_info struct.

dataToMapTo A numerical vector of length nCols containing the indices of the
elements of the data_info struct that the model geometries cor-
respond to. These are used when themodel predictions are com-
pared to the data in the computation of the log likelihood during
MCMC.

The function mcmc_runsim generates an inference problem as follows. Suppose there

are nTopologies different model topologies specified by model_info. Let the topologies be

indexed by the letter i. Suppose that for the i-th topology, the corresponding paramMaps

matrix has nCols_i columns, each corresponding to a geometry. Then, mcmc_runsim cre-

ates an ensemble of nCols_1 + · · · + nCols_nTopologies models, and uses the paramMaps

matrices to distribute the parameter values in master_vector into this ensemble of mod-
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els. All of these models are then simulated, the residuals generated by comparing the

results to the data_info elements specified by the dataToMapTo field, and the log likeli-

hood computed. The MCMC algorithm uses this to compute the new points in the space

of estimated parameters and updates the master_vector with the new proposals. The al-

gorithm then repeats until a stopping criterion, such as the number of points to simulate

the Markov chains for, is met.
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Chapter 4

Model Order Reduction of
Transcription and Translation Mass
Action Models in the Presence of
Resource Consumption

4.1 Introduction

Modeling polymerization reactions like transcription and translation is often used in the

study of metabolic pathways [26] in systems biology, and gene regulatory pathways in

synthetic biology.

Such modeling can be carried out using either stochastic or deterministic frameworks,

each which offers distinct advantages. Stochastic models give us the ability to study

the evolution of the probability distributions of species, and work well at low molecu-

lar counts, but are computationally expensive. Deterministic models on the other hand,

are much less computationally demanding to simulate, but also provide less information

than stochastic models.

Models can also exist at various levels of detail. Often, the appropriate level of detail,

exemplified by models used in [15], involves the production of RNA and proteins as sin-

gle steps. In other cases, much more detailed models of transcription incorporating the

formation of pre-initiation complexes, release from proximal promoter regions, individual

elongation steps, and detailed termination are appropriate [27, 36]. Similarly, models of

translation have also been studied at various levels of detail [14, 30].
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The choice of which framework to use, stochastic versus deterministic, detailed versus

lumped, depends on the specified purpose of the model, and on the computational com-

plexity the user is willing to work with. A detailed stochastic model may be reduced in two

different directions: it may be made deterministic under the infinite volume limit [42], or

reactions and mechanisms may be lumped into simplified models [51].

The use of models of transcription and translation in cell-free extracts has made it

necessary to explicitly account for the consumption and loading of resources that oc-

curs due to gene expression. However, incorporating the consumption of nucleotides and

amino acids in the elongation process is done using detailed models, which account for

elongation steps individually, as was done in [1] for the case of transcription.

In this chapter, we start with a detailed deterministic ordinary differential equation

(ODE) models of transcription similar to the one found in [1], and demonstrate a lumping

procedure for reactions that maintains the ability of the model to account for resource

consumption. We begin by demonstrating the main idea for the reduction to a single

transcription step, and then generalize this to incorporate the possibility of multiple in-

termediate stages in the transcription process. This general case is required when inter-

mediate nascent transcripts can have some function other than being a precursor to the

next elongation step within transcription. An example of this is when non coding RNAs

are used as regulatory elements [7, 8]. The model reduction requires the use of the rapid

equilibrium assumption [54], which can be rigorously justified using singular perturba-

tion theory [39, 41, 67, 68]. Due to a structural feature of the chemical reaction network

describing transcription, when species concentrations are used as state variables in the

model, these state variables all possess boundary layer behavior, and converge to a quasi-

steady state ([39], Section 1.6). This makes it difficult to bring the differential equations

into the standard singular perturbation form, and a change of coordinates, described in

Section 4.4.1, is needed before such a form can be achieved.
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4.2 Consumption Model

One may divide the stages of transcription and translation into initiation, elongation and

termination. Each of these stages involves a complex set of reactions, and may be divided

into various smaller stages. For illustrative purposes, we will work with transcription in the

rest of this chapter, but a similar reduction procedure may be carried out for translation.

We start with a model similar to the one shown in ([1], Figure 1A), with a few simplifi-

cations: we group the different nucleotides into a single species (N), and remove the pro-

duction of the inorganic pyrophosphate. Defining the notation X:Y to denote the species

X and Y bound together into a new species, our resulting model is

P+D
kP f−−*)−−
kPr

P:D1:m0, Polymerase binding,

P:D1:m0 +N
kN f−−*)−−
kN r

P:D1:m0:N, Nucleotide binding,

P:D1:m0:N
kt x−−→ P:D2:m1, Elongation,
...

P:Dn:mn−1:N
kt x−−→ P:Dt +mn, Elongation,

P:Dt

kterm−−→ P+D, Termination.

(4.1)

Here, the entire initiation stage is lumped into a single reaction where an RNA polymerase

molecule (P) binds to a DNA molecule (D). Elongation then proceeds iteratively, with each

iteration consisting a reversible nucleotide binding reaction and an irreversible elongation

step. Finally, termination is modeled as the dissociation of the complex comprising the

RNA polymerase bound to the final location on the DNA (P:Dt).
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We can write this network in terms of ODEs using mass action kinetics

d[P]
dt
= − kP f [P][D] + kPr[P:D1:m0] + kterm[P:Dt],

d[D]
dt
= − kP f [P][D] + kPr[P:D1:m0] + kterm[P:Dt],

d[P:D1:m0]

dt
= kP f [P][D]− kPr[P:D1:m0]− kN f [P:D1:m0][N] + kN r[P:D1:m0:N],

d[P:D1:m0:N]

dt
= kN f [P:D1:m0][N]− kN r[P:D1:m0:N]− kt x[P:D1:m0:N],

d[P:D2:m1]

dt
= kt x[P:D1:m0:N]− kN f [P:D2:m1][N] + kN r[P:D2:m1:N],

...
d[P:Dn:mn−1:N]

dt
= − kt x[P:Dn:mn−1:N] + kN f [P:Dn:mn−1][N]− kN r[P:Dn:mn−1:N],

d[P:Dt]

dt
= kt x[P:Dn:mn−1:N]− kterm[P:Dt],

d[N]
dt

=
n∑

k=1

�
kN r[P:Dk:mk−1:N]− kN f [P:Dk:mk−1][N]

�
,

d[mn]

dt
= kt x[P:Dn:mn−1:N].

(4.2)

We may wish to lump all the elongation steps into a single or a few steps, while main-

taining the correct average rates of RNA production and nucleotide consumption. A simple

model is given by

P+D
kP f−−*)−−
kPr

P:D, Polymerase binding,

P:D+ nN
kN f−−*)−−
kN r

P:D:nN, Nucleotide binding,

P:D:nN
kt x−−→ P:Dt +m, RNA production,

P:Dt

kterm−−→ P+D, Termination,

(4.3)

where n is the number of nucleotides needed to create a single RNA transcript. The names

of the relevant rate constants are shown on the arrows in the model. While this simple

model preserves the stoichiometry of the consumption of substrate nucleotides and the

production of RNA, it models the kinetics of the system incorrectly; it is describing the

scenario where n nucleotides simultaneously collide with the P:D complex to form a larger
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complex. This is both biologically implausible and computationally intractable, due to the

appearance of n as an exponent in some of the terms in the mass action ODEs. Figure 4.1B

shows the results of attempting to simulate the resulting model for various transcript

lengths.

To circumvent this problem, we propose modeling the consumption of nucleotides

separately from the production of RNA, and scaling the RNA production rate by n to get the

nucleotide consumption rate. The resulting consumption model is given by the equations

P+D
kP f−−*)−−
kPr

P:D, Polymerase binding,

P:D+N
kNf−−*)−−
kNr

P:D:N, Nucleotide binding,

P:D:N
kcon−−→ P:D, Consumption,

P:D:N
kreduced−−−−→ P:Dt +R, RNA production,

P:Dt

kterm−−→ P+D, Termination

(4.4)

with kt x denoting the transcription rate, and kcon = (n−1)× kt x the rate of a consumption

reaction. A pictorial representation of this scheme is shown in Figure 4.1A.
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Figure 4.1: (A) Schematic illustrating the consumption reaction. (B) Time required to sim-
ulate 10000 seconds of transcription using the simple model (4.3) and the consumption
model (4.4). At about n = 42, and MATLAB® is no longer able to complete the simulation.

The simple model (4.3) was able to simulate the production of RNA for up to an n of

about 42, after which MATLAB® returned a simulation error. The consumption model (4.4)

was able to simulate transcription for all n tested (n > 2000). The results for n < 100 are

shown in Figure 4.1B.
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We assume that that at any time, there is only one polymerase molecule bound to the

DNA. For this single occupancy model, the features that are preserved between the full

and reduced model are that the rate of consumption of nucleotides is independent of

the transcript length, while the rate of production of RNA scales inversely with the length.

To see this, let kt x be the rate at which the elongation step occurs in the full model (4.1).

Then, setting kreduced = ktx/n and kcon = (n−1)kreduced gives us the rate of RNA production

as

d[R]
dt
= kreduced[P:D:N]

=
kt x

n
[P:D:N].

To compute the rate of nucleotide consumption, we define a species concentration

[Nuninc](t), which is the concentration of nucleotides not incorporated into RNA at time

t . I.e., [Nuninc] = [P:D:N] + [N]. The rate of consumption of nucleotides, then, does not

directly depend on the length n of the RNA, and is n times the rate of RNA production,

d[Nuninc]

dt
=

d([P:D:N])
dt

+
d([N])

dt

= − (kreduced + kcon)[P:D:N]

= − ktx[P:D:N]

= − n
d[R]
dt

.

4.3 Mathematical Preliminaries

In this section, we introduce some ideas from chemical reaction network theory (CRNT)

and singular perturbation theory, and use them to prove a couple of results which will be

useful when we try to carry out ourmodel reduction in Section 4.6. We begin by introducing

basic definitions and notions from CRNT.
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4.3.1 The Zero Deficiency Theorem and Asymptotic Stability

Let {x1, . . . , xs} be a set of s species which participate in r reactions

s∑
j=1

Ai j x j
ki−−→

s∑
j=1

Bi j x j , i ∈ {1, . . . r}, (4.5)

where the Ai j ∈ R≥0 are called the stoichiometric coefficients of the system, and the re-

action rate of the ith reaction is given by ki > 0. We will call Equation (4.5) a chemical

reaction network or reaction network for short. In the representation above, reversible

reactions are modeled as two separate irreversible reactions. The reactants
∑s

j=1 Ai j x j

and products
∑s

j=1 Bi j x j are called the complexes of this reaction network. Let m denote

the number of distinct complexes in a reaction network, and label them by c1, c2, . . . cm.

In matrix form we may write this reaction network as

Ax
k−−→ Bx ,

where the species concentration vector is x ≜ [x1, . . . , xs]T ∈ Rs≥0, coefficient matrices are

A ≜ [Ai j] ∈ Rr×s≥0 , B ≜ [Bi j] ∈ Rr×s≥0 , and the reaction rate vector is k ≜ (k1, . . . , kr)T ∈ Rr
>0.

We define the stoichiometric matrix S ≜ (B − A)T . Recall that using standard mass action

kinetics, we can write the dynamics of the network given by Equation (4.5) as

dx
dt
= Sν(x , k), t ≥ 0, x(0) = x0, (4.6)

where v(x , k) is a vector function whose ith component gives the velocity of the ith reac-

tion.

Definition 11. The stoichiometric subspace associated with the mass action Equation (4.6)

is given by S ≜ Im((B − A)T ), and is a subspace of Rs . The rank of the reaction network

(4.6) is given by q ≜ rank(B − A)T , a q dimensional manifold called the stoichiometric

compatibility class is defined by the affine space (x0 + S)∩Rs≥0.
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Remark 12. The stoichiometric compatibility class is an important concept when defining

properties of trajectories, and in particular those of equilibria. These properties include

the existence and multiplicity of equilibria, and whether these equilibria are (asymptot-

ically) stable. Feinberg [18] describes the issues involved in Section 5.2 of his paper. We

simply note that trajectories beginning at x0 stay in the stoichiometric compatibility class

(S+x0)∩Rs≥0 containing x0. The standard notion of asymptotic stability will be understood

to be with respect to the stoichiometric compatibility class containing the trajectory being

considered. More precisely, we will consider an equilibrium x∗ to be asymptotically stable

if any trajectory beginning sufficiently close to x∗ and within the stoichiometric compati-

bility class containing x∗ stays close to x∗ and approaches x∗ in the limit t →∞. ⋄
Definition 12 ([5], Definition 6.3). Let ci and c j be complexes in the reaction network (4.5).

We say there is a direct path from ci to c j if ci → c j , an indirect path from ci to c j if there

exists a sequence of complexes (ci , ci1 , . . . , cip , c j) such that ci → ci1 , ci1 → ci2 , ... cip → c j .

There esists a path from ci to c j if there exists a direct or indirect path from ci to c j . The

complexes ci and c j are linked if ci = c j , or if there is a direct or indirect path from one to

the other. This definition of linkage can be used to separate a chemical reaction network

into equivalence classes known as linkage classes. Finally, we call a reaction network (4.5)

weakly reversible if, for each pair (ci , c j), the existence of a path from ci to c j implies the

existence of a path from c j to ci .

Definition 13 ([5], Definition 6.2). The deficiency of the network (4.5) is given by δ ≜ m−l−q,

where l is the number of distinct linkage classes and q = rank(ν).

Theorem 2. [[18], Theorem 4.1] Assume that the reaction network (4.6) has zero deficiency

and is weakly reversible. Then, for arbitrary positive rate constants, the system (4.6) has

the following properties: Each stoichiometric compatibility class contains precisely one

equilibrium, this equilibrium is asymptotically stable (see remark below), and there is no

nontrivial periodic orbit in Rs≥0.

Remark 13. As in the remark above, asymptotic stability in Theorem 2 is taken with respect

to the stoichiometric compatibility class containing that equilibrium, defined by the initial

conditions of the system. A pictorial depiction of this situation is given in [17, Fig. 1, 2] ⋄
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4.3.2 Relationship Between Nucleotide Consumption Rate and RNA Production
Rate

We state a few results used in carrying out the model reduction in Section 4.6. Ideally,

we would like to determine the relationship between the rate of production of RNA and

the rate of consumption of nucleotides in the full model (4.1). The approach we will take

involves first partitioning the corresponding mass action equations (4.2) into subsets of

equations as follows:

dξ
dt
= F(ξ, [N]), ξ ∈ R2n+3≥0 , (4.7a)

d[N]
dt

= G(ξ, [N]), (4.7b)

d[mn]

dt
= H(ξ), (4.7c)

where ξ is a vector comprising the concentrations of all the species except the completed

RNA transcript mn and the free nucleotides, N. F , G and H are functions defined using

mass action kinetics, which, with their respective arguments, give the rates of change of

the vector ξ and the scalars [N] and [mn]. This decomposition allows us to consider the

rate of production of RNA, a species that does not participate anywhere else in the network,

separately from the rate of consumption of the nucleotides, which affect dynamics of many

reactions in the network. In particular, we note that in equations (4.7a)–(4.7c), the functions

F , G and H do not have [mn] as an argument, while both F and G depend on [N].

We will show that when the concentration of nucleotides, [N] as an argument of F

in Equation (4.7a) is held constant, the trajectories of ξ reach an asymptotically stable

equilibrium, ξe . At this equilibrium, which can be thought of as an operating point for

the local dynamics of [N] in Equation (4.7b) and of [mn] in Equation (4.7c), the rate of

consumption of nucleotides is proportional to the rate of production of RNA.

The assumption to hold the concentration of some species constant in order to de-

termine the properties of a network requires some justification. To this end, we note

that it has been used in the theory of chemical reactions, for instance by Feinberg ([18],

Remark 4.3.1), who notes that when a species is in great excess, then over some ‘reason-
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able’ time-scale, one could expect the concentration of the excess species to not change

appreciably, while the remaining species can display non-constant dynamics. One do-

main where nucleotide concentration is in excess for most of the duration of interest is

in cell-free extracts, which were the primary motivation for this study. Another domain

of relevance for the constancy of nucleotides is in cells, where nucleotide concentrations

are regulated, and one might wish to calculate the consumption rate to obtain a measure

for the loading of the cell’s metabolic machinery.

We now state a proposition which establishes the relationship between the rate of

production of RNA and that of the consumption of nucleotides at this steady state, and

furthermore provides steady state relationships among species concentrations, which will

turn out to be useful for the model reduction procedure in Section 4.6.

Proposition 3. Consider the full model given by equations (4.1) and (4.2), and its decom-

position into subsystems F , G and H given by equations (4.7a)–(4.7c). When the nucleotide

concentration is held constant, [N] = [N]const, in the subsystem F , the trajectories of ξ

reach an asymptotically stable equilibrium, ξe , in the sense of Remarks 12 and 13. Further-

more, substituting ξe and [N]const into the subsystems G and H gives the relationship

d[N]uninc
dt

= −n
d[mn]

dt
, (4.8)

where n is the length of the RNA, mn, in nucleotides, and [N]uninc is the total concentration

of nucleotides not incorporated into RNA, i.e., [N]uninc ≜ [N] +
∑n

k=1[P:Dk:mk−1:N].

Proof. We first prove the stability of the equilibrium ξe of the subsystem

dξ
dt
= F(ξ, [N]const). (4.9)

Using the technique from Feinberg ( [18], Section 4.3), we can write out the dynamical

Equation (4.9) as a chemical reaction network with certain rate constants modified by the
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constant scalar [N]const

P+D
kP f−−*)−−
kPr

P:D1:m0

P:D1:m0

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:D1:m0:N

P:D1:m0:N
kt x−−→ P:D2:m1

...

P:Dn:mn−1

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:Dn:mn−1:N

P:Dn:mn−1:N
kt x−−→ P:Dt

P:Dt

kterm−−→ P+D.

(4.10)

According to Theorem 2, if we can show that the network given by (4.10) has deficiency

zero and is weakly reversible, we would have shown that it possesses an asymptotically

stable equilibrium. The set of complexes in the network is {P+D,P:D1:m0, P:D1:m0:N, . . . , P:Dn:mn−1, P:Dn:mn−1:N, P:Dt}.
Thus, there are c ≜ 2n + 2 complexes in the network. Note that there is a cyclic path

through the set of complexes, given by P+D→ P:D1:m0→ P:D1:m0:N→ ·· · → P:Dn:mn−1→
P:Dn:mn−1:N→ P:Dt→ P+D. Thus, the network is weakly reversible, and has only one link-

age class (l = 1). Finally, we compute the rank of the stoichiometric matrix as follows. The

network can be written in matrix form as

dξ
dt
= Mν(ξ, [N]const),
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where

dξ
dt
=

d
dt



[P]

[D]

[P:D1:m0]

[P:D1:m0:N]

[P:D2:m1]

[P:D2:m1:N]
...

[P:Dn:mn−1]

[P:Dn:mn−1:N]

[P:Dt]



, ν(ξ, [N]const) =



kP f [P][D]

kPr[P:D1:m0]

kN f [N]const[P:D1:m0]

kN r[P:D1:m0:N]

kt x[P:D1:m0:N]

kN f [N]const[P:D2:m1]

kN r[P:D2:m1:N]

kt x[P:D2:m1:N]
...

kN f [N]const[P:Dn:mn−1]

kN r[P:Dn:mn−1:N]

kt x[P:Dn:mn−1:N]

kterm[P:Dt]



, (4.11)

and

M =



c1 c2 c3 c4 c5 c6 c7 c8 . . . c3n c3n+1 c3n+2 c3n+3

r1 −1 1 0 0 0 0 0 0 0 0 0 1

r2 −1 1 0 0 0 0 0 0 0 0 0 1

r3 1 −1 −1 1 0 0 0 0 0 0 0 0

r4 0 0 1 −1 −1 0 0 0 0 0 0 0

r5 0 0 0 0 1 −1 1 0 0 0 0 0

r6 0 0 0 0 0 1 −1 −1 0 0 0 0

... . . .

r2n+1 0 0 0 0 0 0 0 0 −1 1 0 0

r2n+2 0 0 0 0 0 0 0 0 1 −1 −1 0

r2n+3 0 0 0 0 0 0 0 0 0 0 1 −1



,
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where we denote the rows and columns of the matrix M using ri and ci , i = 1, . . . 2n+ 2,

respectively. We determine the rank of M as follows. Remove r1 since it is a dupli-

cate of r2, and therefore does not affect the rank of the matrix. Also remove columns

{c2, c4, c7, . . . , c3i+1, . . . , c3n+1}, which are all scalar multiples of the columns preceding them.
We are then left with the 2n+ 2× 2n+ 2 matrix

M̃ =



c̃1 c̃3 c̃5 c̃6 c̃8 . . . c̃3n c̃3n+2 c̃3n+3

r̃2 −1 0 0 0 0 0 0 1

r̃3 1 −1 0 0 0 0 0 0

r̃4 0 1 −1 0 0 0 0 0

r̃5 0 0 1 −1 0 0 0 0

r̃6 0 0 0 1 −1 0 0 0

... . . .

r̃2n+1 0 0 0 0 0 −1 0 0

r̃2n+2 0 0 0 0 0 1 −1 0

r̃2n+3 0 0 0 0 0 0 1 −1



,

which has the same rank as M . The sub-matrix M̃1 obtained by removing c̃3n+3 and r̃2n+3 is

lower triangular with nonzero diagonal entries, and thus has a (full) rank of 2n+ 1, giving

rank(M) ≥ 2n+ 1. We also know that rank(M) = rank(M̃) ≤ 2n+ 2. Finally, note that r̃2n+3

can be written as a linear combination of the remaining rows in M̃ as

r̃2n+3 = −
2n+2∑
i=2

r̃i .

Thus q ≜ rank(M) = 2n+ 1. I.e., this network has zero deficiency δ = c − l − q = 2n+ 2−
1 − (2n + 1) = 0, and is weakly reversible and using Theorem 2, we conclude that there

exists a positive equilibrium of the subsystem (4.7a), asymptotically stable relative to its

stoichiometric compatibility class.
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Next, we obtain the relationship between d[Nuninc]/dt and d[mn]/dt . Note that

d[mn]

dt
= kt x[P:Dn:mn−1:N], (4.12)

d[Nuninc]
dt

=

d

�
[N] +

n∑
i=1

[P:Di:mi−1:N]

�
dt

=
d[N]
dt
+

n∑
i=1

d[P:Di:mi−1:N]

dt

=
n∑

k=1

�
kN r[P:Dk:mk−1:N]− kN f [P:Dk:mk−1][N]

�
+

n∑
k=1

�
kN f [P:Dk:mk−1][N]− kN r[P:Dk:mk−1:N]− kt x[P:Dk:mk−1:N]

�
= − kt x

n∑
k=1

[P:Dk:mk−1:N]. (4.13)

For themodel (4.7a) to be at steady state, the net flux into and out of every speciesmust

be zero, and individual fluxes are constant in time. Consider a set of three consecutive

reactions from the subsystem (4.10) at an arbitrary [N]const

P:Di−1:mi−2:N
kt x−−→ P:Di:mi−1, (4.14)

P:Di:mi−1

kN f [N]const−−−−−−−*)−−−−−−
kN r

P:Di:mi−1:N, (4.15)

P:Di:mi−1:N
kt x−−→ P:Di+1:mi. (4.16)

Since the instantaneous flux into and out of P:Di:mi−1 is zero, the flux in due to (4.14)

and the flux out due to the reversible reactions (4.15) must balance, we have

kt x[P:Di−1:mi−2:N] = kN f [P:Di:mi−1][N]const − kN r[P:Di:mi−1:N]. (4.17)

Similarly, considering the species P:Di:mi−1:N in (4.15) and (4.16), we have

kN f [P:Di:mi−1][N]const − kN r[P:Di:mi−1:N] = kt x[P:Di:mi−1:N]. (4.18)
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Thus,

[P:Di−1:mi−2:N] = [P:Di:mi−1:N] (4.19)

[P:Di−1:mi−2] = [P:Di:mi−1], (4.20)

and by induction, we have that for all i, j in {1,2, . . . n},

[P:Di:mi−1] = [P:Dj:mj−1], (4.21)

[P:Di:mi−1:N] = [P:Dj:mj−1:N]. (4.22)

Thus, Equation (4.13) can be reduced to

d[Nuninc]
dt

= − kt x

n∑
k=1

[P:Dk:mk−1:N] (4.23)

= − n · kt x[P:Dn:mn−1:N] (4.24)

= − n
d[mn]

dt
, (4.25)

which completes the proof.

4.4 Overview of Time-Scale Separation in Chemical Kinetics via

Singular Perturbation Theory

4.4.1 Singular Perturbation Theory for Chemical Reaction Networks

Singular perturbation theory has been used widely to decompose models of physical sys-

tems containing multiple temporal and spatial scales into subsystems at those scales [19].

This decomposition has been carried out for chemical systems too, where some reac-

tions proceed much more quickly than others, or there exist transient short lived species

[41, 67, 68].

To begin, we introduce the notion of decomposing a system into slow and fast subsys-

tems, operating at two different time-scales. Such a decomposition is only possible if we
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can write the model for the system in the standard singular perturbation form:

dx
dt
= f (t, x , z,ε), x(0) = x0, x ∈ Rn, (4.26)

ε
dz
dt
= g(t, x , z,ε), z(0) = z0, z ∈ Rm, (4.27)

where ε is a small positive scalar, and f , g are sufficiently many times continuously dif-

ferentiable in their arguments (t, x , z,ε).

The small parameter ε in Equation (4.27) is used to capture the effects of large reaction

rate constants in chemical kinetics, which lead to fast transient dynamics. These fast

dynamics are modeled by the variable z, whose rate of change gets scaled by 1/ε, and

hence becomes very large. Being able to apply tools from singular perturbation theory

involves bringing the mass action dynamical equations into the above form as a necessary

prerequisite. Singular perturbation theory also requires that there exists at least one

asymptotically stable equilibrium (isolated from any others that might exist) to which the

trajectories of the variable z, for each allowable x , converge. We defer a discussion of the

properties of the equilibria for the moment, and focus on finding a set of state variables

that allow us to bring the system into the standard form in the first place. To this end,

we will discuss why species concentrations are not appropriate to use as a state variables

for the purposes of bringing a system into the standard form, and elaborate on a variable

transformation which provides a better system of coordinates.

4.4.1.1 Nonexplicit Time-Scale-Separation

In many applications exhibiting two-time-scale behavior, it is not possible to partition the

natural state variables into fast and slow variables to bring the system into the standard

singular perturbation form [39]. This is despite the fact that the variables exhibit two-

time-scale behavior, where an initial fast transient is followed by slow evolution on an

equilibrium manifold [41]. This occurs because these natural state variables are in general

a combination of both fast and slow effects, and therefore exhibit nonexplicit time-scale-

separation. In chemical kinetics, the ODE models are written with species concentrations
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as the natural variables, and finding transformations from the natural coordinates to a set

of coordinates where the model may be written in the standard form is highly nontrivial.

The structural reason for nonexplicit time-scale-separation in chemical kinetics is that

each species in a model may participate in both fast and slow reactions.

The problem of finding coordinate changes to allow such models to be written in the

standard form has received some attention in the literature. Kokotovic, Khalil and O’Reilly

[39] gave a general prescription for constructing such coordinate transformations, while

specific ad-hoc transformations for chemical reaction networks were studied in [6,57]. The

first systematic procedure for finding a linear coordinate transformation was developed

by Van Breusegem and Bastin [67]. These authors first partition the stoichiometric matrix

into block matrices corresponding to species participating in fast reactions, both fast and

slow reactions, and only slow reactions, and then use these block matrices to construct

the desired invertible coordinate transformation. The works of Kumar, Christofidis and

Daoutidis [41] and Vora and Daoutidis [68] take an entirely different approach, and develop

a very general framework for deriving a family of coordinate transformations that bring

nonexplicit two-time-scale models into the standard form. The main idea behind their

method involves giving a set of constraints that implicitly define the equilibrium manifold

and computing an upper bound on the dimension of this manifold. This allows them to

pick an arbitrary subset or transformation of state variables from the original set, and

construct an explicit representation of the reduced order model that, after an initial fast

transient, evolves on the equilibrium manifold. The generality of this framework arises

from the fact that the method is not limited to isothermal reaction networks, where the

stoichiometric matrix is constant in time, but can instead be used to reduce nonisothermal

reaction networks, and even more general systems, like those modeling the dynamics of

heat exchange. For isothermal reaction networks, these studies give a method for the

explicit construction of the slow variables as a set of linear combinations defined by a

basis of the left null space of the subset of the stoichiometric matrix corresponding to the

fast reactions.

All of these studies suffer from a set of limitations. We note that the ad-hoc methods
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mentioned above require human intuition to find the appropriate coordinate transfor-

mation, and such methods do not scale well beyond the simplest models. The remain-

ing methods suffer from the limitation that the transformed state variables do not have

a physical interpretation, and are fairly complex. The methods in [41, 68] further suffer

from the limitation that even in the case of isothermal reactions, the transformation is

nonlinear, and finding the standard form involves inverting this transformation on the

equilibrium manifold. Such an inversion is highly nontrivial, and could only be found for

the simpler examples in their studies (see, for example, the final step in the esterification

example in [68], where no attempt to invert the transformation is made). In this chapter,

we provide a general construction for finding a transformation that is simple to construct,

allows the transformed variables to have a physical interpretation, and gives a completely

explicit representation of the standard form in the transformed coordinates.

4.4.2 Species Concentrations as State Variables

The typical way of reducing an ODE model of a reaction network with two-time-scale be-

havior into the standard form is to separate the set of mass-action differential equations

into those belonging to species participating in slow reactions only, and those participat-

ing in fast and (possibly) slow reactions. The enzymatic reaction is a prototypical example

of this approach. Consider the reaction

Enz+ Su
a−−*)−−
d

Cpx
k−−→ Pdt+ Enz (4.28)

where Enz is the enzyme, Su the substrate, Cpx the complex, and Pdt the product formed.

The binding-unbinding is assumed to bemuch faster than the catalysis reaction (a, d ≫ k).

In differential equations, this is

d[Cpx]
dt

= − k[Cpx]− d[Cpx] + a[Enz][Su] = −d[Enz]
dt

,

d[Su]
dt

= d[Cpx]− a[Enz][Su],

d[Pdt]
dt

= k[Cpx].

(4.29)
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Using [Enz] = E0−[Cpx], [Su] = S0−[Cpx]−[Pdt], τ= kt , Kd = d/a, ε= k/d and Kd x = X

where X ∈ {[Cpx], [Enz, [Su], [Pdt], S0, E0} and correspondingly x ∈ {c, e, s, p, s0, e0}, we
arrive at the nondimensionalized model

ε
dc
dτ
= − c − εc + (e0 − c)(s0 − c − p),

dp
dτ
= c.

(4.30)

Setting ε = 0 and using S0 − [Cpx]− [Pdt] ≈ S0 − [Pdt], allows us to arrive at reduced

system

d[Pdt]
dt

= k[Cpx] = k
E0(S0 − [Pdt])
(S0 − [Pdt]) + Kd

. (4.31)

The reason we are able to write this model in the standard form (4.30) is that the

species Pdt only takes part in the slow reaction (rate = k), allowing it to be part of the slow

subsystem, while the other species (Enz, Su, Cpx) take part in at least one fast reaction,

making them part of the fast subsystem.

The same trend appears when we look at the transcription model given by Equa-

tions (4.7a) – (4.7c). For compactness of notation, let us define η̄≡ [N], γ̄≡ [P:Dt], ρ̄ ≡ [P],
d̄ ≡ [D], m̄n ≡ [mn] and for i = 1, . . . , n, denote v̄i ≡ [P:Di:mi−1] and w̄i ≡ [P:Di:mi−1:N]. We

may write the model as
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dd̄
dt
= ktermγ̄− kP f ρ̄d̄+ kPr v̄1,

dρ̄
dt
= ktermγ̄− kP f ρ̄d̄+ kPr v̄1,

dv̄1

dt
= kP f ρ̄d̄− kPr v̄1 − kN f v̄1η̄+ kN r w̄1,

dw̄1

dt
= kN f v̄1η̄− kN r w̄1 − kt w̄1,

dv̄2

dt
= kt w̄1 − kN f v̄2η̄+ kN r w̄2,

dw̄2

dt
= kN f v̄2η̄− kN r w̄2 − kt w̄2,

...
dv̄n

dt
= kt w̄2 − kN f v̄3η̄kN r w̄3,

dw̄n

dt
= kN f v̄3η̄− kN r w̄3 − kt w̄3,

dγ̄
dt
= kt w̄3 − ktermγ̄,

dη̄
dt
=

n∑
i=1

kN r w̄i − kN f v̄iη̄,

dm̄n

dt
= kt w̄n,

(4.32)

and use the nondimensionalization scheme ε = kt/kN r , τ = tkt , αP f = kP f /kN f , αPr =

kPr/kN r , αterm = kterm/kt , ū = kN r/kN f u for all u ∈ {ρ, d,γ,η, mn, v1, . . . , vn, w1, . . . , wn} to
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obtain the nondimensionalized model

dγ
dτ
= wn −αtermγ,

dmn

dτ
= wn,

ε
dd
dτ
= εαtermγ−αP f ρd+αPr v1,

ε
dρ
dτ
= εαtermγ−αP f ρd+αPr v1,

ε
dv1

dτ
= αP f ρd−αPr v1 − v1η+w1,

ε
dw1

dτ
= − εw1 + v1η−w1,

ε
dv2

dτ
= εw1 − v2η+w2,

ε
dw2

dτ
= − εw2 + v2η−w2,

...

ε
dvn

dτ
= εwn−1 − vnη+wn,

ε
dwn

dτ
= − εwn + vnη−wn,

ε
dη
dτ
=

n∑
i=1

(−viη+wi).

(4.33)

We see here that only γ and mn can be separated into the slow subsystem, despite ev-

ery other species participating in slow reactions as well. If we were to consider a network

whereby every species took part in at least one fast reaction, then every equation in the

corresponding differential equations would have an epsilon in front of it. Setting ε = 0

would lead to a loss of all slow dynamics from our model, and we would only be able to

make statements about what happens at the equilibrium for a given set of slow variable

values. Due to this nonexplicit time-scale-separation, it would not be possible to have a

set of reduced differential equations that can be solved or simulated. In the next sec-

tion, we develop an invertible transformation from the species concentration coordinates

to a different set of coordinates, and show how in these coordinates, the fast and slow

dynamics can be separated, and the standard form derived.
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4.4.3 ReactionExtents as aNatural andPhysically InterpretableCoordinateSys-
tem

4.4.3.1 Preliminary Reduction by Conservation Laws

The coordinate transformation we are interested in will depend on the stoichiometric

matrix being invertible. In this section, we will discuss the procedure of removing linear

dependencies in the rows and columns of the stoichiometric matrix. Consider again the

ODE description of the chemical reaction system given by Equation (4.6), where S ∈ Rs×r is

the stoichiometric matrix, and ν ∈ Rr is the reaction rate velocity vector. We assume that

whenever a reversible reaction exists in the system, such that there is a corresponding

pair of columns of S which are negatives of each other, the column corresponding to the

backward reaction has been removed from the matrix. Furthermore, the element of ν

corresponding to the backward reaction rate is removed from the vector, and subtracted

from the element corresponding to the forward rate, such that we have the net forward

rate of the reversible reaction. For example, in the enzymatic reaction in Equation (4.28),

we would transform the ODE description

d
dt


[Enz]

[Su]

[Cpx]

[Pdt]

=

−1 1 1

−1 1 0

1 −1 −1

0 0 1




a[Enz][Su]

d[Cpx]

k[Cpx]

 , (4.34)

where the first two columns of the stoichiometric matrix are negatives of each other, to

d
dt


[Enz]

[Su]

[Cpx]

[Pdt]

=

−1 1

−1 0

1 −1

0 1


 a[Enz][Su]− d[Cpx]

k[Cpx]

 , (4.35)

where the second column has been removed, and the reaction rate vector has been trans-

formed accordingly. We also assume that once all such reversible reaction column pairs
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have been converted to single columns, there are no other linear dependencies in the

columns of S, and the new number of columns is r ′. We expect that a more general case

for dependencies between net reactions may be be constructed based on the idea of re-

action pathways, which are introduced in [58, 59], and refer to reaction cycles arising in

the reaction network diagram due to the existence of these linear dependencies.

Once we have removed the linear dependencies in the columns of S, we are ready to

do the same for the rows. The argument presented is based on [9] and [56]. Since the

columns of S are linearly independent, rank(S) = r ′, and there are r ′ linearly independent

rows in S, such that the remaining rows can be written as linear combinations of these

r ′ rows. We may define a full row rank matrix P ∈ Rr ′×s that picks out the r ′ linearly

independent rows of S. Each row in P is made of all zeros except one element, which is

a one. Furthermore, none of the r ′ rows are equal. By the rank-nullity theorem, we also

know that the dimension of the left nullspace of S is s− r ′, and thus we may find s− r ′ row

vectors which form a basis for this space. Arranging these row vectors into a full row rank

matrix H ∈ R(s−r ′)×n, we have HS = 0.

We may now use these matrices to define a reduced stoichiometric matrix Sr ∈ Rr ′×r ′

such that  Sr

0

≜
 P

H

S, (4.36)

where
�

P
H

� ∈ Rs×s is invertible, and 0 is a matrix of zeros of appropriate dimensions.

Similarly, the species concentration vector may be transformed as x i

xd

≜
 P

H

 x , (4.37)

where x i ∈ Rd are the dynamic variables in the reduced model, and xd ∈ Rm are combina-

tions of species concentrations which end up being constant, and are determined by the

initial concentrations in the system. To see this, apply
�

P
H

�
to Equation (4.6)
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d
dt

 x i

xd

=
 P

H

 dx
dt

(4.38)

=

 P

H

Sν(x) (4.39)
=

 Srν(x)

0

 (4.40)

=

 Srνr(x i , xd)

0

 ,
(4.41)

 x i0

xd0

≜
 x i

xd

 (0) (4.42)

=

 P

H

 x0, (4.43)

where

νr(x i , xd)≜ ν (x)
���
x=
�

P
H

�−1� x i
xd

�, (4.44)

so that we have the reduced system

ẋ i = Srνr(x i , xd), x i(0) = x i0,

ẋd = 0, xd(t) = xd0 ∀t ≥ 0.
(4.45)

For example, applying thismethodology to the enzymatic reaction (4.28), wemay choose

P =
�

0 0 1 0
0 0 0 1

�
and H =
�

1 0 1 0
0 1 1 1

�
, so that x i = [ [Cpx], [Pdt] ]T and xd = [ [Enz]+[Cpx], [Su]+[Cpx]+[Pdt] ]T

and the reduced system (4.45) can be written:

d
dt

 [Cpx]

[Pdt]

=
 1 −1

0 1

 a[Enz][Su]− d[Cpx]

k[Cpx]

 ,
 [Cpx]

[Pdt]

 (0) =
 C0

P0

 ,
d
dt

 [Enz] + [Cpx]

[Su] + [Cpx] + [Pdt]

= 0,

 [Enz] + [Cpx]

[Su] + [Cpx] + [Pdt]

 (t) =
 E0

S0

 , ∀t ≥ 0.

(4.46)
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4.4.3.2 Transforming to Reaction Coordinates

Let us define a coordinate transformation from the x i ∈ Rr ′ variables to a new set of

variables R ∈ Rr ′ ,  R

xd

≜
 S−1

r 0

0 Is−r ′

 x i

xd

 , (4.47)

where Is−r ′ is the identity matrix of dimension s− r ′ . In this new coordinate system, the

ODEs are
dR
dt
= S−1

r
dx i

dt

= ν


 P

H

−1 SrR

xd




≜ νr xn (R, xd) .

(4.48)

One of the sources of multiple time-scales in chemical reaction networks is the widely

different orders of magnitudes of the reaction rate parameters. Suppose we partition

the elements in the reaction velocity vector ν into fast and slow rates, as determined

by the reaction rate parameters being large or small. In particular, define two matrices

Ms ∈ Rrs×r ′ and M f ∈ Rr f ×r ′ that pick out the slow and fast reaction velocities respec-

tively. For example, in the enzymatic reaction, recall that the enzyme-substrate binding-

unbinding reactions are considered fast, while the product formation reaction is often

slow, so that (a, d ≫ k). Thus, we can partition the elements of ν into the set of fast

velocities {a[Enz][Su] − b[Cpx]} and that of slow velocities {k[Cpx]}, with the matrices
Ms = [ 0 1 ] and M f = [ 1 0 ]. Next, partition R using Ms and M f as Rs

R f

≜
 Ms

M f

R, (4.49)

and note that the above transformation is invertible. With this partitioning scheme in
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place, we may write the model as

d
dt

 Rs

R f

=
 Ms

M f

 dR
dt

=

 Ms

M f

ν

 P

H

−1

 Sr

 Ms

M f

−1 Rs

R f


xd




≜

 νs

ν f

�Rs, R f

�
.

(4.50)

Lastly, defining a small parameter ε which isolates the effect of the fast reactions, it

can be shown that we can bring the above model into the form

dRs

dt
= νs

�
Rs, R f

�
,

ε
dR f

dt
= ν̄ f

�
Rs, R f

�
,

(4.51)

where each element of ν̄ f =
1
εν f has at least one term independent of ε. Note that

Equations (4.51) can be nondimensionalized if desired. In the context of the enzymatic

reaction, Equation (4.50) is

d
dt

 Rs

R f

=
 0 1

1 0

ν



E0 − R f + Rs

S0 − R f

R f − Rs

Rs




=

 k(R f − Rs)

a(E0 − R f + Rs)(S0 − R f )− d(R f − Rs)

 ,
(4.52)

and consequently, Equation (4.51), after nondimensionalization, is

drs

dτ
= r f − rs

ε
dr f

dτ
= (e0 − r f + rs)(s0 − r f )− (r f − rs),

(4.53)
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where ε= k/d , τ= kt , and r = (a/d)R for R ∈ {R f , Rs, E0, S0}.

4.4.4 Comparison to the Method of Kumar et al. [41]

In this section, we compare the method developed in [41, 68] to the reaction extents

method developed in the previous section. Consider the model of the esterificaton of

carboxylic acid described in [68]. The state space model with nonexplicit time-scale sep-

aration is given by



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11



=



0 0 −1 0 −1 0 0 0 1 0 1 0

0 −1 0 −1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 −1 0 0 0

−1 1 0 −1 1 1 1 −1 0 1 −1 −1

1 −1 1 1 −1 0 −1 1 −1 −1 1 0

−1 0 0 0 0 0 1 0 0 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 1 −1 0 0 0 0 −1 1

0 0 0 0 0 1 0 0 0 0 0 −1

1 0 0 0 0 −1 −1 0 0 0 0 1





r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12



,

(4.54)

where the reaction rates are given by the expressions r1 = k1 x6 x4, r2 = k2 x5 x2, r3 = k3 x1 x7,

r4 = k4 x2 x4,r5 = k5 x1 x5, r6 = k6 x11 x9, r7 = k7 x5 x11, r8 = k8 x7 x4, r9 = k9 x5 x3, r10 = k10 x8 x5,

r11 = k11 x4 x9 and r12 = k12 x10 x4. We note that the reactions indexed 3, 6, 9, and 12 are

slow, and the remaining are fast.

The last six columns of this stoichiometric matrix are a scalar multiple of the first six,

and so we pick the first six columns as the linearly independent columns. The reaction

velocity vector is transformed accordingly, with the new rates being r1 − r7, . . . , r6 − r12.

Furthermore, we can use Gauss-Jordan elimination to design thematrix H , and pick linearly
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independent rows by inspection to get the matrix P . Then, we can write

P =



0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0


,

H =



−1/2 1/2 0 0 1/2 1/2 1 0 0 0 0

1/2 1/2 −1 0 −1/2 −1/2 0 1 0 0 0

1 0 0 1 1 0 0 0 1 0 0

0 0 −1 −1 −1 0 0 0 0 1 0

0 1 1 1 1 0 0 0 0 0 1


,

Sr =



0 −1 0 −1 0 0

−1 0 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 −1

0 0 0 0 0 1


,

ν(x) =



r1(x)− r7(x)

r2(x)− r8(x)

r3(x)− r9(x)

r4(x)− r10(x)

r5(x)− r11(x)

r6(x)− r12(x)


=



k1 x6 x4 − k7 x5 x11

k2 x5 x2 − k8 x7 x4

k3 x1 x7 − k9 x5 x3

k4 x2 x4 − k10 x8 x5

k5 x1 x5 − k11 x4 x9

k6 x11 x9 − k12 x10 x4


,

and the matrices Ms and M f , which pick out the slow and fast reaction rates from ν(x)
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respectively, are given by

Ms =

 0 0 1 0 0 0

0 0 0 0 0 1

 ,

M f =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 .

With these definitions, we can bring the system into the standard singular perturbation

form by following the method in Section 4.4.3.2. Recall that the coordinate transformation

to a new set of variables is R ≜ S−1
r P x , and the transformed system is Ṙ = ν(x). We can

further partition the entries of R as
�

Rs
R f

�
≜
�

Ms
M f

�
R. Then, x can be written in terms of Rs

and R f as

x(Rs, R f ) =

 P

H

−1 Sr

�
M T

s M T
f

�� Rs
R f

�
H x0



=



x10 − Rs1 − R f 4 − x2,0 − x7,0 − x8,0 + x9,0 + x10,0

−R f 2 − R f 3

Rs1 + x2,0 + x3,0 + x7,0 + x8,0

R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0

R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0

−R f 1

R f 2 − Rs1

R f 3

R f 4 − Rs2

Rs2

R f 1 − Rs2 + x6,0 + x10,0 + x11,0



.

Defining a small parameter ε = 1/k∗ such that ki/k
∗ ≪ O(1), for i = 3,6, 9,12, and letting
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k′ = k j/k
∗ for j = 1,2, 4,5, 7,8, 10,11, we can write

Ṙs = Msν
�
x
�
Rs, R f

��
= νs

�
Rs, R f

�

=



− k3(R f 2 − Rs1)(R f 4 + Rs1 − x1,0 + x2,0 + x7,0 + x8,0 − x9,0 − x10,0)− k9(Rs1

+ x2,0 + x3,0 + x7,0 + x8,0)(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0

+ x7,0 − x8,0 + x9,0 + x10,0)

k6(R f 4 − Rs2)(R f 1 − Rs2 + x6,0 + x10,0 + x11,0)− Rs2k12(R f 2 − R f 1

− R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0)


,

Ṙ f = M f ν
�
x
�
Rs, R f

��
=

1
ε
ν̄ f

�
Rs, R f

�

=
1
ε



− R f 1k′1(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0

− 2x10,0)− k′7(R f 1 − Rs2 + x6,0 + x10,0 + x11,0)(R f 1 − R f 2 + R f 3

− R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)

− k′8(R f 2 − Rs1)(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0

− x9,0 − 2x10,0)− k′2(R f 2 + R f 3)(R f 1 − R f 2 + R f 3 − R f 4

+ Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)

− R f 3k′10(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0

+ x10,0)− k′4(R f 2 + R f 3)(R f 2 − R f 1 − R f 3

+ R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0 − x9,0 − 2x10,0)

− k′11(R f 4 − Rs2)(R f 2 − R f 1 − R f 3 + R f 4 + Rs2 + x2,0 + x4,0 − x6,0 + 2x8,0

− x9,0 − 2x10,0)− k′5(R f 4 + Rs1 − x1,0 + x2,0 + x7,0 + x8,0 − x9,0 − x10,0)

(R f 1 − R f 2 + R f 3 − R f 4 + Rs1 + x5,0 + x6,0 + x7,0 − x8,0 + x9,0 + x10,0)



,

which gives us an entirely explicit form of the model in standard form.

Next, we shall briefly summarize the application of the method of Kumar et al. to this

example, as was done in [68]. The original system in Equation (4.54) can be written in the
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form with nonexplicit time-scale separation as

ẋ = f (x) +
1
ε

Vf r̄ f (x). (4.55)

This can be reduced to a set of differential algebraic equations of the form

ẋ = f (x) + Vf z, (4.56)

r̄ f = 0, (4.57)

where z = lim
ε→0

r̄ f

ε
. Equation (4.57) gives a set of algebraic constraints that the state trajec-

tories must respect, effectively specifying a lower dimensional manifold near which the

system in Equation (4.55) evolves. In some situations, these constraints may be differen-

tiated in time to yield an explicit expression for the variables z. In particular, we have

d r̄ f

d t
= L f r̄ f (x) +LVf

r̄ f (x)z = 0, (4.58)

where the column vector Lba(x) is such that [Lba(x)]i ≜
∂ ai
∂ x b(x) is the Lie derivative

of the scalar field ai(x) with respect to the vector field b(x), and a Lie derivative of r̄ f

with respect to a matrix Vf is interpreted as the matrix formed by concatenating the Lie

derivatives with respect to the individual columns of Vf . When LVf
r̄ f (x) is nonsingular,

we have

z = −�LVf
r̄ f (x)
�−1

L f r̄ f (x). (4.59)

The general form of the coordinate transformation given in [68] is ζ
η

≜ T (x)≜

 ϕ(x)
r̄ f (x)

 ,
where ζ and η are the slow and fast variables respectively, and ζ = ϕ(x) is a vector of

the same dimension as the equilibrium manifold. The function ϕ can be chosen with

considerable flexibility, and in general will lead to slow variables that exhibit fast initial
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transients. We can derive an explicit expression for these slow variables by differentiating

ζ,

ζ̇=
n
L fϕ(x)−LVf

ϕ(x)
�
LVf

r̄ f (x)
�−1 �

L f r̄ f (x)
�o���

x=T−1(ζ,0)
, (4.60)

which reduces to

ζ̇= L fϕ(x)|x=T−1(ζ,0) (4.61)

if LVf
ϕ(x) is identically zero. We note that the second term in Equation (4.60) defines the

initial fast transients, and we can get ‘true’ slow variables if the condition LVf
ϕ(x) ≡ 0

holds. Kumar et al. show that this is only possible when the distribution spanned by Vf

is involutive, and [68] notes that for the constant stoichiometric matrix, this is always the

case, and indeed leads to a matrix Φ, with ϕ(x) = Φx , whose rows are in the left null space

of the fast reaction stoichiometric matrix Vf . This condition for finding slow variables that

are independent of the fast dynamics was also mentioned in [39].

When this method is applied to the model of the esterification of carboxylic acid, as

was done in [68], we find that the involutivity condition holds, and the transformation

T (x) has the components

ϕ(x) =



0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

1 1 0 1 0 −1 0 2 0 0 0

−1 1 0 −1 0 1 2 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0


x , r̄ f (x) =


k′1 x6 x4 − k′7 x5 x11

k′2 x5 x2 − k′8 x7 x4

k′4 x2 x4 − k′10 x8 x5

k′5 x1 x5 − k′11 x4 x9

 .

(4.62)
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The resulting final expression for the slow subsystem is given by

ζ̇= L fϕ(x)|x=T−1(ζ,0) (4.63)

=



0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

1 1 0 1 0 −1 0 2 0 0 0

−1 1 0 −1 0 1 2 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0





−1 0 1 0

0 0 0 0

1 0 −1 0

0 1 0 −1

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

0 −1 0 1

0 1 0 −1

0 −1 0 1




k3 x1 x7

k6 x11 x9

k9 x5 x3

k12 x10 x4



�������������
x=T−1(ζ,0)

.

(4.64)

We note that the right hand side of Equation (4.64) requires an evaluation of T−1, which

is nontrivial. A merit of this method is that the slow variables can be chosen with great

flexibility, even when the stoichiometric matrix is not constant, and when other nonlin-

earities exist in the system. In this case, Equation (4.60) gives the dynamics of the slow

subsystem in terms of these variables, and reduces to a simpler case when the involutiv-

ity condition holds, as it does for isothermal reactions. In this sense, this method gives a

unified method for bringing systems with nonexplicit time-scale-separation into the stan-

dard form. We also note that the fast variables in [41, 68] are the net reaction velocity

expressions for the fast reactions, whereas in our method, these quantities are the rates

of change of the fast variables. This is a fundamental difference between the two meth-

ods, and allows us to give a physical interpretation to our fast variables as the reaction

extents of the fast reactions.
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4.5 Application of Reaction Extents to the Reduction of Transcrip-

tion and Translation Reactions

We now apply the transformations provided in Sections 4.4.3.1 and 4.4.3.2 to the transcrip-

tion model (4.32) to derive the corresponding standard singular perturbation form. We

can write the model (4.32) in matrix notation as

d
dt



d

ρ

v1

w1

v2

w2

...

vn

wn

mn

η

γ



=



c̃1 c̃2 c̃3 c̃4 c̃5 c̃6 . . . c̃2n+1 c̃2n+2

r̃2n+2 1 −1 0 0 0 0 0 0

r̃2n+1 1 −1 0 0 0 0 0 0

r̃2n 0 1 −1 0 0 0 0 0

r̃2n−1 0 0 1 −1 0 0 0 0

r̃2n−2 0 0 0 1 −1 0 0 0

r̃2n−3 0 0 0 0 1 −1 0 0

... . . .

r̃2 0 0 0 0 0 1 −1 0

r̃1 0 0 0 0 0 0 1 −1

q̃1 0 0 0 0 0 0 0 1

q̃2 0 0 −1 0 −1 0 −1 0

q̃3 −1 0 0 0 0 0 0 1





ktermγ

kP f ρd− kPr v1

kN f v1η− kN r w1

kt w1

kN f v2η− kN r w2

kt w2

...

kN f vnη− kN r wn

kt wn



,

(4.65)

where the q̃i , r̃i ’s and c̃ j ’s are row and column labels we will use for manipulating the

matrix S̃ ∈ R(2n+5)×(2n+2). Compactly, we write this as

dx
dt
= Sν, x(0) = x0, (4.66)

where we have dropped the bars for notational clarity. Here the species concentration

vector is x ∈ R2n+5
+ and the reaction velocity vector is ν ∈ R2n+2. The stoichiometric matrix
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S has linearly dependent rows due to the existence of conservation laws. We can define

the matrices P and H as defined in the discussion surrounding Equation (4.36) as follows.

The rows r̃2n+1, q̃3 and q̃1 are linearly dependent on the remaining rows of the matrix

because of the relations r̃2n+1 = r̃2n+2 and q̃3 = −∑2n+1
i=1 r̃i , and the argument provided in

Lemma 4 in the appendix. The fact that no other linear dependencies exist follows from

the fact that the matrix resulting from the removal of these rows is invertible (Lemma 5 in

the appendix). Thus, we can define

P =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
. . .

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0


,

H =


1 −1 0 0 0 0 0 . . . 0 0 0 0

0 1 1 1 1 1 1 . . . 1 0 0 1

0 0 0 1 1 2 2 . . . n n 1 0

 .

With these matrices, we can define Sr , x i , xd and R via Equations (4.36), (4.37), (4.44)

and (4.47). Let us enumerate the elements of R ∈ R2n+2 as R = [ Rterm RP RN1
Rt1 ... RNn Rtn ].

Here, the subscripts are chosen to represent the reactions present in the system, due to
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the relationship dR/dt = νr xn in Equation (4.48) and note that

x =

 P

H

−1 SrR

xd

=



Rterm − RP

Rterm − RP − xd10

RP − RN1

RN1
− Rt1

Rt1
− RN2

...

Rtn−1
− RNn

RNn
− Rtn

Rtn
− xd30

/5

−∑ni=1 RNi

Rtn
− Rterm + xd10

+ xd20



, (4.67)

where xdm0
for m ∈ {1, 2, 3} are the dependent variables fixed to their intitial conditions

(due to Equation (4.45)). Thus, the ODEs in R coordinates for this system (Equation (4.48))

are

dR
dt
=



kterm(Rtn
− Rterm + xd10

+ xd20
)

kP f (Rterm − RP − xd10
)(Rterm − RP)− kPr(RP − RN1

)

kN f (RP − RN1
)(−∑ni=1 RNi

)− kN r(RN1
− Rt1

)

kt(RN1
− Rt1

)
...

kN f (Rt j−1
− RN j

)(−∑ni=1 RNi
)− kN r(RN j

− Rt j
)

kt(RN j
− Rt j

)
...

kN f (Rtn−1
− RNn

)(−∑ni=1 RNi
)− kN r(RNn

− Rtn
)

kt(RNn
− Rtn

)



, (4.68)
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and defining Ms , M f , Rs , R f to separate out the slow and fast terms, we have,

dRs

dt
=



kterm(Rtn
− Rterm + xd10

+ xd20
)

kt(RN1
− Rt1

)
...

kt(RN j
− Rt j

)
...

kt(RNn
− Rtn

)


, (4.69)

dR f

dt
=



kP f (Rterm − RP − xd10
)(Rterm − RP)− kPr(RP − RN1

)

kN f (RP − RN1
)(−∑ni=1 RNi

)− kN r(RN1
− Rt1

)
...

kN f (Rt j−1
− RN j

)(−∑ni=1 RNi
)− kN r(RN j

− Rt j
)

...

kN f (Rtn−1
− RNn

)(−∑ni=1 RNi
)− kN r(RNn

− Rtn
)


. (4.70)

We can further transform this into a nondimensional model, where a small parameter

ε can be defined to capture the effects of the scale separation in the parameter values.
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After nondimensionalization, we have

drs

dτ
=



αterm(rtn
− rterm + x̄d10

+ x̄d20
)

(rN1
− rt1

)
...

(rN j
− rt j

)
...

(rNn
− rtn

)


, (4.71)

ε
dr f

dτ
=



αP f (rterm − rP − x̄d10
)(rterm − rP)−αPr(rP − rN1

)

(rP − rN1
)(−∑ni=1 rNi

)− (rN1
− rt1

)
...

(rt j−1
− rN j

)(−∑ni=1 rNi
)− (rN j

− rt j
)

...

(rtn−1
− rNn

)(−∑ni=1 rNi
)− (rNn

− rtn
)


, (4.72)

with the scheme



rt i

rterm

rNi

rP

x̄d j0

ε

αP f

αPr

τ



=



kN f

kN r



Rt i

Rterm

RNi

RP

xd j0


kt/kN r

kP f /kN f

kPr/kN r

kt t



, ∀i ∈ {1, . . . , n}, j ∈ {1,2, 3}, (4.73)

where the α parameters are of order O(1). Setting ε= 0 and transforming back to species
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concentration coordinates, we have

0=



αP f (rterm − rP − x̄d10
)(rterm − rP)−αPr(rP − rN1

)

(rP − rN1
)(−∑ni=1 rNi

)− (rN1
− rt1

)
...

(rt j−1
− rN j

)(−∑ni=1 rNi
)− (rN j

− rt j
)

...

(rtn−1
− rNn

)(−∑ni=1 rNi
)− (rNn

− rtn
)


(4.74)

=



kP f ρd− kPr v1

kN f v1η− kN r w1

kN f v2η− kN r w2

...

kN f vnη− kN r wn


. (4.75)

4.6 Generalized Consumption Model

In this section, we reduce the full model (4.1) to a generalized version of the consumption

model by matching their steady state behaviors. In Section 4.2, we modeled the creation

of RNA as a single step transcription reaction, with no intermediate RNA transcripts, and

discussed a method for incorporating nucleotide consumption in this model. While this

suffices for models where the only regulation of gene expression comes from transcription

factor proteins, it becomes inadequate when we wish to model the regulation of transcrip-

tion via interactions with nascent RNA transcripts, for instance by non-coding RNA like the

pT181 transcriptional attenuator [8, 43, 50]. Thus, we wish to have a transcription scheme

where the creation of the final RNA transcript occurs in steps, and each intermediate RNA

piece is free to interact with other elements of the environment. For an RNA transcript of

length n, the detailed model shown in Equation (4.1) has approximately 2n chemical re-

actions and about the same number of differential equations. For typical RNAs of length

500−2000 bases, these models quickly become unwieldy, especially when modeling large

systems composed of multiple genes and regulatory pathways. Thus, we derive a way to



130

reduce such transcription models while quantifying the error introduced into the dynam-

ics by such reductions.

We begin by re-indexing the detailed model (4.1) as follows. Divide the length RNA

(of length n) into K segments of lengths ni , for i ∈ {1,2, . . . , K}. The species P:Dk,j:mk,j−1,

with k ∈ {1,2, . . . , K}, refers to the species from the kth segment, with the polymerase

attached to the jth DNA base pair site of this segment, where j is in {1, . . . nk}, and an
RNA of length

∑k−1
i=1 ni + ( j − 1) attached to the polymerase molecule. Finally, identify

the last element of a block with the first element of the next block, i.e., P:Dk,nk+1:mk,nk
=

P:Dk+1,1:mk+1,0. This new indexing scheme is shown on the left in Figure 4.2. We would like

to reduce this model to the one shown in Equation (4.76), where the RNA and DNA have

been divided into K blocks. The concentration of each species in the reduced model (4.76)

is the sum of the corresponding species in the full model (4.1). For example, [P:D:Rk] =∑nk
h=1[P:D(k,h):m(k,h−1)].

P+D
k′P f−−*)−−
k′Pr

P:D RNA polymerase binding,

P:D+N
k′N f−−*)−−
k′N r

P:D:N nucleotide binding,

P:D:N
kcon(1)−−−→ P:D consumption reaction,

P:D:N
kt x(1)−−−→ P:D:R1 lumped RNA production,

...

P:D:RK−1 +N
k′N f−−*)−−
k′N r

P:D:RK−1:N nucleotide binding,

P:D:RK−1:N
kcon(K)−−−→ P:D:RK−1 consumption reaction,

P:D:RK−1:N
kt x(K)−−−→ P:Dt +RK lumped RNA production,

P:Dt

kterm−−→ P+D termination.

(4.76)

Let DT be the total DNA concentration in in either model. Mass conservation gives

DT =
K∑

i=1

ni∑
h=1

�
[P:D(i,h):m(i,h−1)] + [P:D(i,h):m(i,h−1):N]

�
+ [D] + [P:Dt], (4.77)
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P + D P:D1,1:m1,0 P:D1,1:m1,0:N
kP f

kPr

+N , kN f

−N , kN r

P:D1,2:m1,1 P:D1,2:m1,1:N

kt x +N , kN f

−N , kN r

P:D1,n1 :m1,n1−1 P:D1,n1 :m1,n1−1:N
+N , kN f

−N , kN r

P:D2,1:m2,0 P:D2,1:m2,0:N
+N , kN f

−N , kN r

P:D2,2:m2,1 P:D2,2:m2,1:N

kt x +N , kN f

−N , kN r

P:D2,n2 :m2,n2−1 P:D2,n2 :m2,n2−1:N
+N , kN f

−N , kN r

kt x

P:Dα,1:mα,0 P:Dα,1:mα,0:N
+N , kN f

−N , kN r

P:Dα,2:mα,1 P:Dα,2:mα,1:N

kt x +N , kN f

−N , kN r

P:Dα,nα :mα,nα−1 P:Dα,nα :mα,nα−1:N
+N , kN f

−N , kN r

P:Dt + mα,0

kt x

kterm

P + D P:D P:D:N

P:D:R1

kP f

kPr

+N , kN f

−N , kN r

kcon(1)

kt x(1)

P:D:R1:N
+N , kN f

−N , kN r

kcon(2)

P:D:Rα−1 P:D:Rα−1:N
+N , kN f

−N , kN r

kcon(α)

P:Dt + Rα

kt x(α)

kterm

Figure 4.2: The model reduction procedure. Corresponding species are color coded. Each
grey ‘block’ represents the part of the model that transcribes the corresponding segment
of the RNA, with the output of the grey block as the intermediate RNA species which will
be modeled by the reduced model.
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for the full model and

DT =
K∑

i=1

�
[P:D:Ri−1] + [P:D:Ri−1:N]

�
+ [D] + [P:Dt], (4.78)

with P:D:R0 ≜ P:D and P:D:R0:N ≜ P:D:N, for the reduced model.

Using themass balance equations (4.21), (4.22) and rapid equilibrium assumption (4.75),

we can express [P:D(k,h):m(k,h−1)] in the full model as:

[P:D(k,h):m(k,h−1)] =
1
nk

DT − [D]− [P:Dt]�
1+

kN f

kN r
[N]
� − K∑

i=1,i ̸=k

ni[P:D(i,1):m(i,0)]

 . (4.79)

The rapid equilibrium assumption for the reduced model can be derived in exactly the

same way as that for the full model, and using it gives

[P:D:Rk] =

DT − [D]− [P:Dt]�
1+

k′N f

k′N r
[N]
� − K−1∑

i=0,i ̸=k
[P:D:Ri]

 . (4.80)

We would like the reduced model to be an approximation of the full model at steady

state (noting that the steady state is defined in the sense of the discussion preceding

Proposition 3, when the nucleotide concentration is sufficiently large to be assumed to be

essentially constant in the time-scale of interest). A set of sufficient conditions for this to

be true is presented for the remainder of this section.

We first note that the discussion around equations (4.14) to (4.22) in Section 4.3.2

can be applied to the species within a single block to obtain the result that at steady

state, corresponding species within a block are in mass balance (i.e., (4.21) and (4.22) hold

within each block). This allows us to define and simplify the correspondence [P:D:Rk] =∑nk
h=1[P:D(k,h):m(k,h−1)] between the full and reduced models to

[P:D:Rk] = nk[P:D(k,h):m(k,h−1)], Condition 1. (4.81)

The relation (4.81) is a condition we have imposed upon the model to create a corre-
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spondence between the species between corresponding blocks of the full and reduced

models. This condition, applied to equations (4.79) and (4.80), gives us further correspon-

dences between the full and reduced models. In Equation (4.79), the term DT −[D]−[P:Dt]

is the total concentration of species in the grey boxes in Figure 4.2, the 1
(1+(kN f /kN r )[N])

term,

which arises out of the analysis of Section 4.4.1, picks out the proportion of [P:D(k,h):m(k,h−1)]

from the total [P:D(k,h):m(k,h−1)]+[P:D(k,h):m(k,h−1):N], and so applying it to DT−[D]−[P:Dt]

gives the total concentration of terms of the form [P:D(k,h):m(k,h−1)]. Equation (4.80) has

a similar interpretation, with the difference that [P:D:Rk] is now the concentration of a

block in the reduced model, and thus corresponds to the total concentration of terms of

the form [P:D(k,h):m(k,h−1)] in a single block of the full model, which by Equation (4.81) is

nk[P:D(k,h):m(k,h−1)].

The next step in using the reduced model to approximate the full model is to equate

the fluxes out of corresponding blocks in the two models. We can then obtain a set of (not

necessarily unique) relations between the parameters of the twomodels so that the steady

state behaviors match. Consider the rate of production of the species P:D(k+1,1):m(k+1,0),

which corresponds to the output of the kth block, or kth intermediate RNA transcript, in

the full model,

[P:D(k+1,1):m(k+1,0)]production = kt x[P:D(k,nk)
:m(k,nk−1):N]

= kt x

kN f

kN r
[P:D(k,h):m(k,h−1)][N],

(4.82)

where we recall that P:D(k,nk+1):m(k,nk)
is identified with P:D(k+1,1):m(k+1,0).

The corresponding expression for the reduced model is

[P:D:Rk+1]production = k′t x(k)[P:D:Rk:N]

= k′t x(k)

k′N f

k′N r
[P:D:Rk][N].

(4.83)

Equating the equations (4.82) and (4.83), and comparing terms, we can draw a corre-
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spondence between the respective coefficients,

k′t x(k) =
kt x

nk
, (4.84)

k′N f = kN f , (4.85)

k′N r = kN r , Conditions 2 - 4. (4.86)

We now state a result that generalizes the result of Proposition 3 to the model lumped

into blocks, and states that the rate of consumption of nucleotides within the kth block

is nk times the rate of production of the kth nascent transcript. This, in turn, will allow us

to derive a generalization for the consumption reaction for the reduced model (4.76).

Proposition 4. Consider the full model (4.1) under the same assumptions as Proposition 3,

now considered with the indexing scheme that divides it into separate transcription blocks,

as described at the beginning of Section 4.6. Then, in the kth block, for k ∈ {1,2, . . . , K}, the
rate of nucleotide consumption within the block is proportional to the rate of production

of the kth intermediate transcript, P:Dk,nk+1:mk,nk
(with the Kth transcript being mK,0).

Proof. From the proof of Proposition 3, we know that the total rate of nucleotide consump-

tion is
d[Nuninc]

dt
= −kt x

n∑
i=1

[P:Di:mi−1:N]. (4.87)

This sum can be partitioned into terms using the new indexing scheme into contributions
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to the consumption rate by each block as follows:

d[Nuninc]

dt
= −kt x

K∑
k=1

nk∑
h=1

[P:D(k,h):m(k,h−1):N]

= −kt x

n1∑
h=1

[P:D(1,h):m(1,h−1):N]

− kt x

n2∑
h=1

[P:D(2,h):m(2,h−1):N]

...

− kt x

nK∑
h=1

[P:D(k,h):m(k,h−1):N]

= −n1kt x[P:D(1,n1):m(1,n1−1):N]

− n2kt x[P:D(2,n2):m(2,n2−1):N]

...

− nK kt x[P:D(K,nK)
:m(K,nK−1):N],

(4.88)

where the last line follows from the fact that the species within a block are in flux balance

as given by equations (4.21) and (4.22). In each of the terms of the form−nkkt x[P:D(k,nk)
:m(k,nk−1):N]

in the above partition, the term kt x[P:D(k,nk)
:m(k,nk−1):N] is the production rate of the kth

transcript (bound to the RNA polymerase and DNA) for all k ∈ {1,2, . . . , K − 1} while it is
the production rate of mK,0 for k = K . On the other hand, the full term is the contribution

of the kth block to the total consumption rate of the nucleotides not yet incorporated into

the any RNA.

The rate of consumption of nucleotides is the same in the full model (4.1) and the

reduced model (4.76) if we set

k′con(k) = k′t x(k)(nk − 1), Condition 5. (4.89)

Indeed, from Proposition 4, and equations (4.81) and (4.83), the rate of consumption of
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N in the kth block of the full model is

kt x nk[P:D(k,nk)
:m(k,nk−1):N] = kt x

nk

nk
[P:D:Rk:N] (4.90)

=
kt x

nk
[P:D:Rk:N] +

kt x

nk
(nk − 1)[P:D:Rk:N] (4.91)

= [P:D:Rk+1]production + k′con(k)[P:D:Rk:N]. (4.92)

4.7 Discussion

We have introduced a scalablemethod for incorporating nucleotide resource consumption

in a reduced order model of transcription. This method uses a consumption reaction to

emulate the usage of nucleotides, instead of modeling each nucleotide binding event

separately or binding all the nucleotides simultaneously (Figure 4.1).

We have also generalized this method to allow for multiple intermediate transcripts.

The approach here is to find a set of sufficient conditions, for a given nucleotide con-

centration, for the steady state dynamics of the full and reduced models to match. In a

subsequent work, we plan to also study the deviation in the transient behavior of the two

models and quantify the tradeoff between model reduction and fidelity.

In the process of attempting the above generalization, we had to use the deficiency

zero theorem from chemical reaction network theory to show that part of the system we

were considering has a steady state. We also had to define a coordinate transformation to

justify the rapid equilibrium assumption that wasmade, since in the species concentration

coordinate, such an assumption was not supported by singular perturbation theory. A

technical point to include in a future work is to bring the two-time-scale model into the

true standard singular perturbation form. This involves showing that the fast subsystem,

with ε= 0 in equations (4.27) and (4.72), has an isolated root, and that this root is (at least

locally) asymptotically stable.

Other directions this work may be extended in is to allow for multiple occupancy of the

DNA transcript by RNA polymerase, adding stochastic effects to the model, and to create

an analogous scheme for translation, which should be similar in many respects.
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Appendices

4.A Detailed Proofs

Lemma 4. The row labeled q1,n in matrix Pn, defined as

Pn =



r2n+1,n 1 −1 0 0 0 0 0 0 0

r2n,n 0 1 −1 0 0 0 0 0 0

r2n−1,n 0 0 1 −1 0 0 0 0 0

r2n−2,n 0 0 0 1 −1 0 0 0 0

r2n−3,n 0 0 0 0 1 −1 0 0 0

... . . .

r2,n 0 0 0 0 0 0 1 −1 0

r1,n 0 0 0 0 0 0 0 1 −1

q1,n 0 0 0 0 0 0 0 0 1

q2,n 0 0 −1 0 −1 0 0 −1 0



, (4.93)

is a linear combination of the remaining rows.
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Proof. We use induction on the size of the matrix. We will prove that for

Pk =



r2k+1,k 1 −1 0 0 0 0 0 0 0

r2k,k 0 1 −1 0 0 0 0 0 0

r2k−1,k 0 0 1 −1 0 0 0 0 0

r2k−2,k 0 0 0 1 −1 0 0 0 0

r2k−3,k 0 0 0 0 1 −1 0 0 0

... . . .

r2,k 0 0 0 0 0 0 1 −1 0

r1,k 0 0 0 0 0 0 0 1 −1

q1,k 0 0 0 0 0 0 0 0 1

q2,k 0 0 −1 0 −1 0 0 −1 0



, (4.94)

the row q2,k can be written as the linear combination q2,k = −(r2k−1,k+ r2k−2,k)−2(r2k−3,k+

r2k−4,k)−3(r2k−5,k+ r2k−6,k)−· · ·− k(r1,k+q1,k), and inverting this relationship gives q1,k as

the linear combination

q1,k =
−(r2k−1,k + r2k−2,k)− 2(r2k−3,k + r2k−4,k)− · · · − (k− 1)(r3,k + r2,k)− kr1,k − q2,k

k
.

(4.95)

Note that the claim holds for P1 and P2
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P1 =



r3,1 1 −1 0 0

r2,1 0 1 −1 0

r1,1 0 0 1 −1

q1,1 0 0 0 1

q2,1 0 0 −1 0


, P2 =



r5,2 1 −1 0 0 0 0

r4,2 0 1 −1 0 0 0

r3,2 0 0 1 −1 0 0

r2,2 0 0 0 1 −1 0

r1,2 0 0 0 0 1 −1

q1,2 0 0 0 0 0 1

q2,2 0 0 −1 0 −1 0



,

q1,1 = −r1,1 − q2,1, q1,2 =
−(r3,2 + r2,2)− 2r1,2 − q2,2

2
.

Assume the claim holds for k ≥ 2, as in Equation (4.94) and (4.95). For clarity, we remove

rows r2k+1,k and r2k,k , and the first two columns from Pk (which do not matter) to get

P̄k =



r̄2k−1,k 1 −1 0 0 0 0

r̄2k−2,k 0 1 −1 0 0 0

r̄2k−3,k 0 0 1 −1 0 0

... . . .

r̄2,k 0 0 0 0 −1 0

r̄1,k 0 0 0 0 1 −1

q̄1,k 0 0 0 0 0 1

q̄2,k −1 0 −1 0 −1 0



, (4.96)
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with

q̄1,k =
−(r̄2k−1,k + r̄2k−2,k)− 2(r̄2k−3,k + r̄2k−4,k)− · · · − (k− 1)(r̄3,k + r̄2,k)− kr̄1,k − q̄2,k

k
.

(4.97)

Now consider the P̄k+1, obtained by augmenting P̄k with two rows and two columns:

P̄k+1 =





1 −1 0 0 . . . 0 0 0 0 r̄2(k+1)−1,k+1

0 1 −1 0 . . . 0 0 0 0 r̄2(k+1)−2,k+1

0 0

P̄k

r̄2(k+1)−3,k+1

0 0 r̄2(k+1)−4,k+1

...
...

0 0 r̄2,k+1

0 0 r̄1,k+1

0 0 q̄1,k+1

−1 0 q̄2,k+1

(4.98)

=





1 −1 0 0 . . . 0 0 0 r̄2(k+1)−1,k+1

0 1 −1 0 . . . 0 0 0 r̄2(k+1)−2,k+1

0 0 1 −1 0 0 0 0 r̄2(k+1)−3,k+1

0 0 0 1 −1 0 0 0 r̄2(k+1)−4,k+1

... . . . ...

0 0 0 0 0 1 −1 0 r̄2,k+1

0 0 0 0 0 0 1 −1 r̄1,k+1

0 0 0 0 0 0 0 1 q̄1,k+1

−1 0 −1 0 −1 0 −1 0 q̄2,k+1

, (4.99)

where we identify (augmented) rows of the matrix Pk in Equation (4.94) with the corre-
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sponding rows of the matrix P̄k+1 in Equation(4.98) as follows:

r̄2(k+1)−2−i,k+1 =
�

0 0 r̄2k−i,k

�
∀i ∈ {1, . . . , 2k− 1},

q̄1,k+1 =
�

0 0 q̄1,k

�
,

q̄2,k+1 =
�

0 0 q̄2,k

�
.

We know from Equation (4.97) that

�
0 0 q̄2,k

�
= − (r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k)− 2(r̄2(k+1)−5,k + r̄2(k+1)−6,k)

− · · · − (k− 1)(r̄3,k+1 + r̄2,k+1)− k(r̄1,k+1 − q̄1,k+1).
(4.100)

It is also clear that the rows of P̄k+1 in Equation (4.98) satisfy

−
2k+1∑
i=1

r̄2(k+1)−i,k+1 − q̄1,k+1 =
�
−1 0 0 . . . 0

�
, (4.101)

and together equations (4.100) and (4.101) give us the expression

q̄2,k+1 =
�

0 0 q̄2,k

�
+
�
−1 0 0 . . . 0

�
= −

2k+1∑
i=1

r̄2(k+1)−i,k+1 − q̄1,k+1 − (r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k)− 2(r̄2(k+1)−5,k + r̄2(k+1)−6,k)

− · · · − (k− 1)(r̄3,k+1 + r̄2,k+1)− k(r̄1,k+1 − q̄1,k+1).

= − (r̄2(k+1)−1,k+1 + r̄2(k+1)−2,k+1)− 2(r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k+1)

− · · · − k(r̄3,k+1 + r̄2,k+1)− (k+ 1)(r̄1,k+1 + q̄1,k+1),

(4.102)

which can be rewritten in the desired form of Equation (4.95) as:

q̄1,k+1 =

−(r̄2(k+1)−1,k+1 + r̄2(k+1)−2,k+1)− 2(r̄2(k+1)−3,k+1 + r̄2(k+1)−4,k+1)− · · · − k(r̄3,k+1 + r̄2,k+1)− (k+ 1)r̄1,k+1 − q̄2,k+1

k+ 1
. (4.103)

Adding to P̄k+1 analogues of the rows and columns we removed from Pk to get P̄k , we
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can construct Pk+1,

Pk+1 =





1 −1 0 0 0 0 . . . 0 0 0 r2(k+1)+1,k+1

0 1 −1 0 0 0 . . . 0 0 0 r2(k+1),k+1

0 0 1 −1 0 0 . . . 0 0 0 r2(k+1)−1,k+1

0 0 0 1 −1 0 . . . 0 0 0 r2(k+1)−2,k+1

0 0 0 0

P̄k

r2(k+1)−3,k+1

0 0 0 0 r2(k+1)−4,k+1

...
...

...

0 0 0 0 r2,k+1

0 0 0 0 r1,k+1

0 0 0 0 q1,k+1

0 0 −1 0 q2,k+1

, (4.104)

and for this matrix, the linear combination relationship (4.103) now becomes

q1,k+1 =

−(r2(k+1)−1,k+1 + r2(k+1)−2,k+1)− 2(r2(k+1)−3,k+1 + r2(k+1)−4,k+1)− · · · − k(r3,k+1 + r2,k+1)− (k+ 1)r1,k+1 − q2,k+1

k+ 1
, (4.105)

which completes the proof.
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Lemma 5. The 2n+ 2 by 2n+ 2 matrix

S =



r2n+1 1 −1 0 0 0 0 0 0 0

r2n 0 1 −1 0 0 0 0 0 0

r2n−1 0 0 1 −1 0 0 0 0 0

r2n−2 0 0 0 1 −1 0 0 0 0

r2n−3 0 0 0 0 1 −1 0 0 0

... . . .

r2 0 0 0 0 0 0 1 −1 0

r1 0 0 0 0 0 0 0 1 −1

q2 0 0 −1 0 −1 0 0 −1 0



(4.106)

is invertible.

Proof. Consider first the upper triangular matrix

S1 =



r2n+1 1 −1 0 0 0 0 0 0 0

r2n 0 1 −1 0 0 0 0 0 0

r2n−1 0 0 1 −1 0 0 0 0 0

r2n−2 0 0 0 1 −1 0 0 0 0

r2n−3 0 0 0 0 1 −1 0 0 0

... . . .

r2 0 0 0 0 0 0 1 −1 0

r1 0 0 0 0 0 0 0 1 −1

q1 0 0 0 0 0 0 0 0 1



. (4.107)

This is clearly invertible, and the set of its rows U1 = {q1, r1, . . . , r2n+1} forms a basis
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for its rowspace span(U1) = R2n+2. From Lemma 4, we have q1 ∈ span({q2, r1, . . . , r2n+1}),
giving us that U2 = {q2, r1, . . . , r2n+1} is also a basis for R2n+2. Thus the rows of the square

matrix S form a basis for its rowspace, implying that S is invertible.
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Chapter 5

Conclusion

Synthetic biology has come a long way since Wacław Szybalski first articulated it as a pos-

sibility. Yet, we are still only scratching the surface of the vast potential of this field. We

believe that the use of mathematics and modeling can be just as rewarding in our field as

it has been in other engineering disciplines. It will not only help us gain deeper under-

standing of the biological systems we are working with, but also enable more nuanced and

carefully designed applications, and ultimately complex architectures such as Szybalski’s

“new better mouse”.

In this thesis, we have developed and demonstrated new applications, tools andmath-

ematical frameworks associated with the use of modeling in synthetic biology.

We began in Chapter 2 with an application of modeling approaches to reduce variability

across extracts. We showed that not only could this be achieved, but the classical problem

of parameter non-identifiability, first articulated in the control systems literature by Bell-

man and Astrom in their paper on structural identifiability [4], is not necessarily a death

knell for modeling. Indeed, we show in that chapter that for our modeling objective, the

sets of values that parameters can take due to non-identifiability may be treated as equiv-

alent with some restrictions. At a fundamental level, this happens because of an exact

alignment between two facts. Firstly, the only data we are attempting to transform using

the models is the output data. Secondly, the parameters that are non-identifiable are so

because their value cannot be discerned from the outputs, precisely because the output

is insensitive to variations in these parameters within the sets of output-indistinguishable

values. This equivalence of the values the non-identifiable parameters can take allows the
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use of arbitrary values within these sets, greatly easing the modeling task. Said differently,

we showed that with some restrictions, the sets of output indistinguishable parameters

can be treated as equivalence classes with respect to the modeling objectives, and there-

fore any element can be used as a representative of its respective class. Indeed, these

results hint at a somewhat deeper fact about the nature of parameter spaces and their

use in model-based prediction in a reductionist framework. Specifically, we think that it

might be possible to prove and further develop the following statement: Given system

component models containing non-identifiable parameters, and the composition of the

component models into a whole, the set of parameter values identified using the whole

model must be a superset of the Cartesian product of the sets of the corresponding pa-

rameters’ values identified from the component models. This result is exactly analogous

to Condition 2.14 in Chapter 2, and can be thought of as the need for a lack of emergent

behavior when system behavior has to be predicted from the combination of part mod-

els. We also note that when parameter covariation between parameters from different

subsystems exists in the whole system’s model, a generalization of the CSP fixing method

might be applicable.

In Chapter 3, we discussed two tools to help with modeling of genetic circuits. txtlsim

is a MATLAB® Simbiology® based toolbox bringing computer aided design capabilities to

the TX-TL cell-free prototyping platform. This tool should help reduce the reliance on

intuition alone for the design of new circuits, and in doing so allow for more rapid and

larger scale design iterations. We also introduce mcmc_simbio, which we have packaged

as a sub-toolbox within txtlsim, that performs Bayesian inference on parameters from

multiple models and experimental data sets. The main utility of this toolbox, after its

nominal use for estimating parameters for characterization purposes, is in studying the

identifiability of parameters informed by different choices of model-experiment sets. This

is a consequence of the fact that the parameter inference capabilities are both Bayesian

and concurrent. The use of Bayesian inference allows us to directly visualize parameter

identifiability, and indeed explore it a priori using artificial data, as was done in Section 2.7.1

in Chapter 2. The concurrence feature of the parameter inference allows for a common set
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of parameters to be identified by an entire ensemble of different experiments, with each

experiment informing some appropriate subset of parameters. This allows for different

sets of experiment designs to be proposed, and then checked for parameter identifiability.

Combined with the type of results in Chapter 2, which show that non-identifiability need

not be completely eliminated from models to meet modeling objectives, these tools form

a potentially powerful framework for applying computational design to synthetic biology

applications.

Finally, in Chapter 4, we developed a mathematical framework for model reduction of

transcription and translation reactions while still accounting for resource consumption.

Tracking resource consumption is important in finite resource environments like TX-TL,

and might even be important for quantifying the metabolic load that synthetic gene cir-

cuit expression places on cells. Detailed elongation models are able to capture resource

binding and consumption, but are unnecessarily complicated for the purposes of mod-

eling gene circuits. We showed that the incorporation of a consumption reaction, which

consumes resources at a rate that is a function of the transcript production rate, allows

for the reduction of the detailed elongation models into a single step (or a few steps,

if nascent polymers need to be modeled), while still accounting for the consumption of

resources.

In the process of performing the model reduction, we showed that species concentra-

tion coordinates did not allow for a separation of timescales argument to be made using

singular perturbation theory. We noted that the timescale separation occurs in the rates

of the reactions, and that the timescale separation in the rates of change of species con-

centrations is simply a consequence of this fact. Thus, while timescale separation can

only be achieved for some network topologies when species concentration coordinates

are used (specifically, when there is at least one species that only participates in slow re-

actions), it should be generally achievable when the system is written in our transformed

coordinates. Thus, we show that these coordinates are a more natural way to perform

timescale separation in biochemical networks.

In conclusion, modeling and computation hold promise of accelerating the develop-
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ment of synthetic biology as a field, and will become indispensable as the scope of the

systems we try to engineer surpasses what we can intuit.



149

Bibliography

[1] S. Arnold, M. Siemann, K. Scharnweber, M. Werner, S. Baumann, and M. Reuss, “Kinetic
modeling and simulation of in vitro transcription by phage T7 RNA polymerase,”
Biotechnology and Bioengineering, vol. 72, no. 5, pp. 548–561, Mar. 2001. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.1002/1097-0290(20010305)72:5<548::
AID-BIT1019>3.0.CO;2-2/abstract

[2] E. August, “Parameter Identifiability and Optimal Experimental Design,” in Interna-
tional Conference on Computational Science and Engineering, 2009. CSE ’09, vol. 1,
Aug. 2009, pp. 277–284.

[3] J. B. Barlow, W. H. Rae, and A. Pope, “Low Speed Wind Tunnel Testing,”
INCAS Bulletin; Bucharest, vol. 7, no. 1, pp. 133–135, 2015. [Online]. Available:
https://search.proquest.com/docview/1667359793?pq-origsite=gscholar

[4] R. Bellman and K. J. Åström, “On structural identifiability,” Mathematical Biosciences,
vol. 7, no. 3, pp. 329–339, Apr. 1970. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/002555647090132X

[5] D. Bernstein and S. Bhat, “Nonnegativity, reducibility, and semistability of mass action
kinetics,” in Proceedings of the 38th IEEE Conference on Decision and Control, 1999,
vol. 3, 1999, pp. 2206–2211 vol.3.

[6] J. R. Bowen, A. Acrivos, and A. K. Oppenheim, “Singular perturbation refinement
to quasi-steady state approximation in chemical kinetics,” Chemical Engineering
Science, vol. 18, no. 3, pp. 177–188, Mar. 1963. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0009250963850034

[7] S. Brantl and E. G. H. Wagner, “Antisense RNA-mediated transcriptional attenuation:
an in vitro study of plasmid pT181,” Molecular Microbiology, vol. 35, no. 6, pp.
1469–1482, Mar. 2000. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.
1046/j.1365-2958.2000.01813.x/abstract

[8] S. Brantl and E. G. H. Wagner, “An Antisense RNA-Mediated Transcriptional Attenuation
Mechanism Functions in Escherichia coli,” Journal of Bacteriology, vol. 184, no. 10, pp.
2740–2747, May 2002. [Online]. Available: http://jb.asm.org/content/184/10/2740

[9] C. Reder, “Metabolic control theory: A Strutural approach,” 1988. [Online]. Available:
http://www.math.u-bordeaux1.fr/~creder/Recherche/BioSystems/JTB88.pdf

[10] O. Chiş, J. R. Banga, and E. Balsa-Canto, “GenSSI: a software toolbox for structural
identifiability analysis of biological models,” Bioinformatics, vol. 27, no. 18, pp.

http://onlinelibrary.wiley.com/doi/10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2/abstract
http://onlinelibrary.wiley.com/doi/10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2/abstract
https://search.proquest.com/docview/1667359793?pq-origsite=gscholar
http://www.sciencedirect.com/science/article/pii/002555647090132X
http://www.sciencedirect.com/science/article/pii/002555647090132X
http://www.sciencedirect.com/science/article/pii/0009250963850034
http://www.sciencedirect.com/science/article/pii/0009250963850034
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2000.01813.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2000.01813.x/abstract
http://jb.asm.org/content/184/10/2740
http://www.math.u-bordeaux1.fr/~creder/Recherche/BioSystems/JTB88.pdf


150

2610–2611, Sept. 2011. [Online]. Available: http://bioinformatics.oxfordjournals.org/
content/27/18/2610

[11] N. Christensen, R. Meyer, and A. Libson, “A Metropolis–Hastings routine for
estimating parameters from compact binary inspiral events with laser interferometric
gravitational radiation data,” Classical and Quantum Gravity, vol. 21, no. 1, p. 317, Jan.
2004. [Online]. Available: http://iopscience.iop.org/0264-9381/21/1/023

[12] Dan Siegal-Gaskins, Z. A. Tuza, J. Kim, V. Noireaux, and R. M. Murray, “Gene Circuit
Performance Characterization and Resource Usage in a Cell-Free “Breadboard”,”
ACS Synthetic Biology, vol. 3, no. 6, pp. 416–425, June 2014. [Online]. Available:
http://dx.doi.org/10.1021/sb400203p

[13] D. Del Vecchio, A. J. Ninfa, and E. D. Sontag, “Modular cell biology: retroactivity and
insulation,” Molecular Systems Biology, vol. 4, p. 161, Feb. 2008. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267736/

[14] D. A. Drew, “A mathematical model for prokaryotic protein synthesis,” Bulletin of
Mathematical Biology, vol. 63, no. 2, pp. 329–351, Mar. 2001. [Online]. Available:
http://link.springer.com/article/10.1006/bulm.2000.0225

[15] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional
regulators,” Nature, vol. 403, no. 6767, pp. 335–338, Jan. 2000. [Online]. Available:
http://www.nature.com/nature/journal/v403/n6767/abs/403335a0.html

[16] D. Endy, “Foundations for engineering biology,” Nature, vol. 438, no. 7067, pp. 449–453,
Nov. 2005. [Online]. Available: http://www.nature.com/nature/journal/v438/n7067/
full/nature04342.html

[17] M. Feinberg, “Chemical reaction netowork structure and the stability of complex
isothermal reactors - i. the deficiency zero and deficiency one theorems,” Chemical
Engineering Science, vol. 42, no. 10, pp. 2229–2268, 1987. [Online]. Available:
http://www.seas.upenn.edu/~jadbabai/ESE680/Fei87a.pdf

[18] M. Feinberg, “The existence and uniqueness of steady states for a class of chemical
reaction networks,” Archive for Rational Mechanics and Analysis, vol. 132, no. 4,
pp. 311–370, Dec. 1995. [Online]. Available: http://link.springer.com/article/10.1007/
BF00375614

[19] N. Fenichel, “Geometric singular perturbation theory for ordinary differential
equations,” Journal of Differential Equations, vol. 31, no. 1, pp. 53–98, Jan. 1979. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0022039679901529

[20] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,”
Publications of the Astronomical Society of the Pacific, vol. 125, no. 925, pp. 306–312,
Mar. 2013, arXiv: 1202.3665. [Online]. Available: http://arxiv.org/abs/1202.3665

[21] K. Fujiwara and N. Doi, “Biochemical Preparation of Cell Extract for Cell-Free Protein
Synthesis without Physical Disruption,” PLOS ONE, vol. 11, no. 4, p. e0154614,
Apr. 2016. [Online]. Available: http://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0154614

http://bioinformatics.oxfordjournals.org/content/27/18/2610
http://bioinformatics.oxfordjournals.org/content/27/18/2610
http://iopscience.iop.org/0264-9381/21/1/023
http://dx.doi.org/10.1021/sb400203p
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267736/
http://link.springer.com/article/10.1006/bulm.2000.0225
http://www.nature.com/nature/journal/v403/n6767/abs/403335a0.html
http://www.nature.com/nature/journal/v438/n7067/full/nature04342.html
http://www.nature.com/nature/journal/v438/n7067/full/nature04342.html
http://www.seas.upenn.edu/~jadbabai/ESE680/Fei87a.pdf
http://link.springer.com/article/10.1007/BF00375614
http://link.springer.com/article/10.1007/BF00375614
http://www.sciencedirect.com/science/article/pii/0022039679901529
http://arxiv.org/abs/1202.3665
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154614
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154614


151

[22] J. Garamella, R. Marshall, M. Rustad, and V. Noireaux, “The All E. coli TX-TL Toolbox
2.0: A Platform for Cell-Free Synthetic Biology,” ACS Synthetic Biology, vol. 5, no. 4, pp.
344–355, Apr. 2016. [Online]. Available: http://dx.doi.org/10.1021/acssynbio.5b00296

[23] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in
Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–342, Jan. 2000. [Online]. Available:
http://www.nature.com/nature/journal/v403/n6767/full/403339a0.html

[24] L. Goentoro, O. Shoval, M. Kirschner, and U. Alon, “The incoherent feedforward
loop can provide fold-change detection in gene regulation,” Molecular cell, vol. 36,
no. 5, pp. 894–899, Dec. 2009. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2896310/

[25] J. Goodman and J. Weare, “Ensemble samplers with affine invariance,” Communica-
tions in Applied Mathematics and Computational Science, vol. 5, no. 1, pp. 65–80, Jan.
2010. [Online]. Available: http://msp.org/camcos/2010/5-1/p04.xhtml

[26] O. P. C. Gqwaka, “A generic rate equation for catalysed, template-directed
polymerisation and its use in computational systems biology,” Thesis, Stellenbosch
: Stellenbosch University, Dec. 2011. [Online]. Available: http://scholar.sun.ac.za/
handle/10019.1/17825

[27] S. J. Greive, J. P. Goodarzi, S. E. Weitzel, and P. H. von Hippel, “Development of a ”mod-
ular” scheme to describe the kinetics of transcript elongation by RNA polymerase,”
Biophysical Journal, vol. 101, no. 5, pp. 1155–1165, Sept. 2011.

[28] A. Grinsted, “Gwmcmc: An implementation of the goodman and weare mcmc sampler
for matlab,” GitHub Repository, March 2015.

[29] A. Gyorgy and D. Del Vecchio, “Limitations and trade-offs in gene expression
due to competition for shared cellular resources,” in 53rd IEEE Conference
on Decision and Control. IEEE, 2014, pp. 5431–5436. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040238

[30] A. Heyd and D. A. Drew, “A mathematical model for elongation of a peptide chain,”
Bulletin of Mathematical Biology, vol. 65, no. 6, pp. 1095–1109, Nov. 2003. [Online].
Available: http://link.springer.com/article/10.1016/S0092-8240%2803%2900076-4

[31] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and
U. Kummer, “COPASI—a COmplex PAthway SImulator,” Bioinformatics, vol. 22, no. 24,
pp. 3067–3074, Dec. 2006. [Online]. Available: http://bioinformatics.oxfordjournals.
org/content/22/24/3067

[32] Y. Hori and R. M. Murray, “A state-space realization approach to set identification
of biochemical kinetic parameters,” in Control Conference (ECC), 2015 European.
IEEE, 2015, pp. 2280–2285. [Online]. Available: http://ieeexplore.ieee.org/abstract/
document/7330878/

[33] C. Y. Hu, J. D. Varner, and J. B. Lucks, “Generating Effective Models and Parameters
for RNA Genetic Circuits,” ACS Synthetic Biology, June 2015. [Online]. Available:
http://dx.doi.org/10.1021/acssynbio.5b00077

http://dx.doi.org/10.1021/acssynbio.5b00296
http://www.nature.com/nature/journal/v403/n6767/full/403339a0.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896310/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896310/
http://msp.org/camcos/2010/5-1/p04.xhtml
http://scholar.sun.ac.za/handle/10019.1/17825
http://scholar.sun.ac.za/handle/10019.1/17825
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040238
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040238
http://link.springer.com/article/10.1016/S0092-8240%2803%2900076-4
http://bioinformatics.oxfordjournals.org/content/22/24/3067
http://bioinformatics.oxfordjournals.org/content/22/24/3067
http://ieeexplore.ieee.org/abstract/document/7330878/
http://ieeexplore.ieee.org/abstract/document/7330878/
http://dx.doi.org/10.1021/acssynbio.5b00077


152

[34] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, a. t. r. o. t. S. Forum,
A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D.
Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr,
P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. L. Novère, L. M.
Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson,
P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The systems biology
markup language (SBML): a medium for representation and exchange of biochemical
network models,” Bioinformatics, vol. 19, no. 4, pp. 524–531, Mar. 2003. [Online].
Available: http://bioinformatics.oxfordjournals.org/content/19/4/524

[35] L. Huynh and I. Tagkopoulos, “A Parts Database with Consensus Parameter Estimation
for Synthetic Circuit Design,” ACS Synthetic Biology, vol. 5, no. 12, pp. 1412–1420, Dec.
2016. [Online]. Available: https://doi.org/10.1021/acssynbio.5b00205

[36] I. Jonkers and J. T. Lis, “Getting up to speed with transcription elongation by RNA
polymerase II,” Nature Reviews Molecular Cell Biology, vol. 16, no. 3, pp. 167–177, Mar.
2015. [Online]. Available: http://www.nature.com/nrm/journal/v16/n3/full/nrm3953.
html

[37] E. Karzbrun, J. Shin, R. H. Bar-Ziv, and V. Noireaux, “Coarse-Grained Dynamics of Protein
Synthesis in a Cell-Free System,” Physical Review Letters, vol. 106, no. 4, p. 048104, Jan.
2011. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.106.048104

[38] A. Kohn, Control of Gene Expression. Springer Science & Business Media, Dec. 2012,
google-Books-ID: GC3vBwAAQBAJ.

[39] P. Kokotovic, H. Khalil, and J. O’Reilly, Singular Perturbation Methods in Control:
Analysis and Design, ser. Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, Jan. 1999. [Online]. Available: http://epubs.siam.org/doi/
book/10.1137/1.9781611971118

[40] S. Kosuri, J. R. Kelly, and D. Endy, “TABASCO: A single molecule, base-pair resolved
gene expression simulator,” BMC Bioinformatics, vol. 8, no. 1, p. 480, Dec. 2007.
[Online]. Available: http://www.biomedcentral.com/1471-2105/8/480/abstract

[41] A. Kumar, P. D. Christofides, and P. Daoutidis, “Singular perturbation modeling of
nonlinear processes with nonexplicit time-scale multiplicity,” Chemical Engineering
Science, vol. 53, no. 8, pp. 1491–1504, Apr. 1998. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0009250998000062

[42] T. G. Kurtz, “The Relationship between Stochastic and Deterministic Models for
Chemical Reactions,” The Journal of Chemical Physics, vol. 57, no. 7, pp. 2976–2978,
Oct. 1972. [Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/57/7/
10.1063/1.1678692

[43] J. B. Lucks, L. Qi, V. K. Mutalik, D. Wang, and A. P. Arkin, “Versatile RNA-sensing
transcriptional regulators for engineering genetic networks,” Proceedings of the
National Academy of Sciences, vol. 108, no. 21, pp. 8617–8622, May 2011. [Online].
Available: http://www.pnas.org/content/108/21/8617

http://bioinformatics.oxfordjournals.org/content/19/4/524
https://doi.org/10.1021/acssynbio.5b00205
http://www.nature.com/nrm/journal/v16/n3/full/nrm3953.html
http://www.nature.com/nrm/journal/v16/n3/full/nrm3953.html
http://link.aps.org/doi/10.1103/PhysRevLett.106.048104
http://epubs.siam.org/doi/book/10.1137/1.9781611971118
http://epubs.siam.org/doi/book/10.1137/1.9781611971118
http://www.biomedcentral.com/1471-2105/8/480/abstract
http://www.sciencedirect.com/science/article/pii/S0009250998000062
http://www.sciencedirect.com/science/article/pii/S0009250998000062
http://scitation.aip.org/content/aip/journal/jcp/57/7/10.1063/1.1678692
http://scitation.aip.org/content/aip/journal/jcp/57/7/10.1063/1.1678692
http://www.pnas.org/content/108/21/8617


153

[44] M. Marchisio and J. Stelling, “Computational design of synthetic gene circuits with
composable parts,” Bioinformatics, vol. 24, no. 17, pp. 1903–1910, Sept. 2008. [Online].
Available: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/
btn330

[45] T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, and C. A. Voigt, “Genetic programs
constructed from layered logic gates in single cells,” Nature, vol. 491, no. 7423, pp.
249–253, Nov. 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3904217/

[46] L. W. Nagel and D. Pederson, “Spice (simulation program with integrated circuit
emphasis),” EECS Department, University of California, Berkeley, Tech. Rep. UCB/ERL
M382, Apr 1973. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
1973/22871.html

[47] H. Niederholtmeyer, Z. Z. Sun, Y. Hori, E. Yeung, A. Verpoorte, R. M. Murray, and S. J.
Maerkl, “Rapid cell-free forward engineering of novel genetic ring oscillators,” eLife,
vol. 4, p. e09771, Oct. 2015. [Online]. Available: https://elifesciences.org/articles/09771

[48] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski,
D. Ross, D. Densmore, and C. A. Voigt, “Genetic circuit design automation,”
Science, vol. 352, no. 6281, pp. aac7341–aac7341, Apr. 2016. [Online]. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.aac7341

[49] V. Noireaux, R. Bar-Ziv, and A. Libchaber, “Principles of cell-free genetic circuit
assembly,” Proceedings of the National Academy of Sciences, vol. 100, no. 22, pp.
12 672–12 677, 2003. [Online]. Available: http://www.pnas.org/content/100/22/12672.
short

[50] R. P. Novick, S. Iordanescu, S. J. Projan, J. Kornblum, and I. Edelman, “pT181 plasmid
replication is regulated by a countertranscript-driven transcriptional attenuator,” Cell,
vol. 59, no. 2, pp. 395–404, Oct. 1989.

[51] M. S. Okino and M. L. Mavrovouniotis, “Simplification of mathematical models of
chemical reaction systems,” Chemical reviews, vol. 98, no. 2, pp. 391–408, 1998.
[Online]. Available: http://pubs.acs.org/doi/pdf/10.1021/cr950223l

[52] R. J. Portugal, “Breadboard for electronic components or the like,” US Patent
USD228 136S, Aug., 1973. [Online]. Available: https://patents.google.com/patent/
USD228136/en

[53] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and J. Timmer,
“Structural and practical identifiability analysis of partially observed dynamical
models by exploiting the profile likelihood,” Bioinformatics, vol. 25, no. 15, pp.
1923–1929, Aug. 2009. [Online]. Available: https://academic.oup.com/bioinformatics/
article/25/15/1923/213246/Structural-and-practical-identifiability-analysis

[54] J. B. Rawlings, Chemical reactor analysis and design fundamentals. Madison, Wis:
Nob Hill Publishing, 2002.

http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn330
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn330
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904217/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904217/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://elifesciences.org/articles/09771
http://www.sciencemag.org/cgi/doi/10.1126/science.aac7341
http://www.pnas.org/content/100/22/12672.short
http://www.pnas.org/content/100/22/12672.short
http://pubs.acs.org/doi/pdf/10.1021/cr950223l
https://patents.google.com/patent/USD228136/en
https://patents.google.com/patent/USD228136/en
https://academic.oup.com/bioinformatics/article/25/15/1923/213246/Structural-and-practical-identifiability-analysis
https://academic.oup.com/bioinformatics/article/25/15/1923/213246/Structural-and-practical-identifiability-analysis


154

[55] V. N. A. P. Ryan Marshall, Jonathan Garamella, “High-throughput microliter-sized cell-
free transcription-translation reactions for synthetic biology applications using the
echo 550 liquid handler,” Application Note, 2018.

[56] H. M. Sauro and B. Ingalls, “Conservation analysis in biochemical networks:
computational issues for software writers,” Biophysical Chemistry, vol. 109, no. 1, pp.
1–15, Apr. 2004. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0301462203002503

[57] M. Schauer and R. Heinrich, “Quasi-steady-state approximation in the mathematical
modeling of biochemical reaction networks,” Mathematical Biosciences, vol. 65, no. 2,
pp. 155–170, Aug. 1983. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0025556483900585

[58] C. H. Schilling, D. Letscher, and B. O. Palsson, “Theory for the systemic definition of
metabolic pathways and their use in interpreting metabolic function from a pathway-
oriented perspective,” Journal of Theoretical Biology, vol. 203, no. 3, pp. 229–248, Apr.
2000.

[59] S. Schuster, D. A. Fell, and T. Dandekar, “A general definition of metabolic pathways
useful for systematic organization and analysis of complex metabolic networks,”
Nature Biotechnology, vol. 18, no. 3, pp. 326–332, Mar. 2000. [Online]. Available:
http://www.nature.com/nbt/journal/v18/n3/full/nbt0300_326.html

[60] Z. Z. Sun, C. A. Hayes, J. Shin, F. Caschera, R. M. Murray, and V. Noireaux, “Protocols
for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for
Synthetic Biology,” Journal of Visualized Experiments : JoVE, no. 79, Sept. 2013.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960857/

[61] Z. Z. Sun, E. Yeung, C. A. Hayes, V. Noireaux, and R. M. Murray, “Linear DNA for
Rapid Prototyping of Synthetic Biological Circuits in an Escherichia coli Based TX-TL
Cell-Free System,” ACS Synthetic Biology, vol. 3, no. 6, pp. 387–397, June 2014. [Online].
Available: http://pubs.acs.org/doi/abs/10.1021/sb400131a

[62] A. Swaminathan, V. Hsiao, and R. M. Murray, “Quantitative Modeling of Integrase
Dynamics Using a Novel Python Toolbox for Parameter Inference in Synthetic Biology,”
bioRxiv, p. 121152, Mar. 2017. [Online]. Available: https://www.biorxiv.org/content/
early/2017/03/27/121152

[63] R. S. Swanson and C. L. Gillis, “Wind-Tunnel Calibration and Correction Procedures
for Three-Dimensional Models,” NACA Wartime Reports, vol. L4E31, Oct. 1944. [Online].
Available: http://ntrs.nasa.gov/search.jsp?R=19930090922

[64] J. J. Tabor, H. Salis, Z. B. Simpson, A. A. Chevalier, A. Levskaya, E. M. Marcotte,
C. A. Voigt, and A. D. Ellington, “A Synthetic Genetic Edge Detection Program,”
Cell, vol. 137, no. 7, pp. 1272–1281, June 2009. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2775486/

[65] M. K. Takahashi, J. Chappell, C. A. Hayes, Z. Z. Sun, J. Kim, V. Singhal, K. J.
Spring, S. Al-Khabouri, C. P. Fall, V. Noireaux, R. M. Murray, and J. B. Lucks,
“Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free

http://www.sciencedirect.com/science/article/pii/S0301462203002503
http://www.sciencedirect.com/science/article/pii/S0301462203002503
http://www.sciencedirect.com/science/article/pii/0025556483900585
http://www.sciencedirect.com/science/article/pii/0025556483900585
http://www.nature.com/nbt/journal/v18/n3/full/nbt0300_326.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960857/
http://pubs.acs.org/doi/abs/10.1021/sb400131a
https://www.biorxiv.org/content/early/2017/03/27/121152
https://www.biorxiv.org/content/early/2017/03/27/121152
http://ntrs.nasa.gov/search.jsp?R=19930090922
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775486/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775486/


155

Transcription–Translation (TX-TL) Systems,” ACS Synthetic Biology, Mar. 2014. [Online].
Available: http://dx.doi.org/10.1021/sb400206c

[66] S. Vajda, “Structural equivalence of linear systems and compartmental models,”
Mathematical Biosciences, vol. 55, no. 1, pp. 39–64, July 1981. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0025556481900122

[67] V. Van Breusegem and G. Bastin, “Reduced order dynamical modelling of reaction sys-
tems: A singular perturbation approach,” in , Proceedings of the 30th IEEE Conference
on Decision and Control, 1991, Dec. 1991, pp. 1049–1054 vol.2.

[68] N. Vora and P. Daoutidis, “Nonlinear model reduction of chemical reaction
systems,” AIChE Journal, vol. 47, no. 10, pp. 2320–2332, Oct. 2001. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/aic.690471016/abstract

[69] E. Walter and Y. Lecourtier, “Global approaches to identifiability testing for
linear and nonlinear state space models,” Mathematics and Computers in
Simulation, vol. 24, no. 6, pp. 472–482, Dec. 1982. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0378475482906450

http://dx.doi.org/10.1021/sb400206c
http://www.sciencedirect.com/science/article/pii/0025556481900122
http://onlinelibrary.wiley.com/doi/10.1002/aic.690471016/abstract
http://www.sciencedirect.com/science/article/pii/0378475482906450
http://www.sciencedirect.com/science/article/pii/0378475482906450

	Acknowledgments
	Abstract
	Published Content and Contributions
	Introduction
	A Model-Based Calibration Methodology for Cell-Free Extract Variability Reduction
	Introduction
	Extracts Display Significant Variability Across Batches
	Notation and Preliminary Ideas
	Experiments, Systems, Models and Parameters
	Model Universe
	Parameter Non-Identifiability
	Reference and Candidate Extracts, Calibration and Test Circuits

	A Calibration-Correction Methodology Can be Used to Reduce Extract Variability
	Framing Extract Variability Reduction as the Data Correction Problem
	The Calibration-Correction Method as the Solution to the Data Correction Problem
	A Simple Example

	Identifiability Conditions
	Covariation Between ESP and CSP Parameter Coordinates Introduces Error into the Method
	Computational Investigation of Covariation and CSP fixing
	The `Test = Calib' case of Corollary 3
	Application of CSP Fixing in the General Setting

	Discussion and Future Work

	Appendices
	Equivalence of the Two Definitions of the Calibration Step
	Equivalence of the Two CSP Subset Conditions Given in Remark 7

	A MATLAB® Simbiology® Toolbox for Circuit Behavior Prediction in TX-TL and Concurrent Bayesian Parameter Inference
	Introduction and Background
	An Overview of the txtlsim Toolbox
	The Modeling Framework of the txtlsim Toolbox

	Part Characterization and Circuit Behavior Prediction
	Core Parameters
	IFFL Part Specific Parameters
	Model Predictions

	Automated Reaction Network Generation
	Software Architecture Walk-Through

	Tools for Multi-Experiment Concurrent Bayesian Parameter Inference
	An Illustrative Example

	Discussion

	Appendices
	Consumption Reactions as a Means of Tracking Resource Utilization in Reduced Models of Transcription and Translation
	MATLAB® Simbiology®
	Details of the Data Structures used to Specify the Concurrent Parameter Inference Problem

	Model Order Reduction of Transcription and Translation Mass Action Models in the Presence of Resource Consumption
	Introduction
	Consumption Model
	Mathematical Preliminaries
	The Zero Deficiency Theorem and Asymptotic Stability
	Relationship Between Nucleotide Consumption Rate and RNA Production Rate

	Overview of Time-Scale Separation in Chemical Kinetics via Singular Perturbation Theory
	Singular Perturbation Theory for Chemical Reaction Networks
	Nonexplicit Time-Scale-Separation

	Species Concentrations as State Variables
	Reaction Extents as a Natural and Physically Interpretable Coordinate System
	Preliminary Reduction by Conservation Laws
	Transforming to Reaction Coordinates

	Comparison to the Method of Kumar et al. kumarsingular1998

	Application of Reaction Extents to the Reduction of Transcription and Translation Reactions
	Generalized Consumption Model
	Discussion

	Appendices
	Detailed Proofs

	Conclusion
	Bibliography

