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ABSTRACT

This Thesis reports the observation and theoretical interpreta-
tion of a new physical phenomenon. Cosmic-ray "scintillations'" are
temporal fluctuations in the counting rate of a detector pointing in a
fixed direction in space. Power-spectral analyses of energetic-particle
counting rate data are used to demonstrate that scintillations are a
statistically significant, persistent, and interesting feature of the
cosmic-ray flux observed near earth for a wide range of frequencies
(10~7Hz to 10—4Hz) and energies (~1 MeV to 10 GeV protons, 3 to 12 MeV
electrons). The observed power spectra of cosmic-ray scintillations are
approximately power laws in frequency with exponents of -1.5 to -2.0,
and for protons the relative scintillations are a rapidly-decreasing
function of energy.

Quantitative theoretical models, based on generalized quasi-
linear solutions of the collisionless Liouville equation with a
stochastic magnetic field, are presented for the production of cosmic-ray
scintillations by random magnetic fields in the magnetosheath and in
interplanetary space. It is shown that the ~1-10 MeV proton scintilla-
tions observed during quiet times inside the magnetosphere are probably
caused by fluctuations in the magnetic field of the magnetosheath.
Scintillations of high-energy particles (Rl GeV/nucleon) are probably
generated by the stochastic interplanetary magnetic field. The detailed
theoretical prediction for the power spectrum of the flux from neutron
monitors, including the effect of the earth's rotation on the inter-

planetary scintillations model, is calculated and shown to be in
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excellent agreement with observations from the Alert and Deep River
Neutron Monitors. The shape and amplitude of the observed spectra,
and in particular a broad enhancement in the Deep River spectrum near
one cycle per day, are explained by the theory.

This investigation gives relations for the power spectrum
Pj(f) of the cosmic-ray flux of the form

f—j-%l = ACE) EBJ? 5%,
Jo Bo

where jO is the average flux, PB(f) is the power spectrum of a component

of the magnetic field, B, is the average magnetic field strength, and

e
§ is the cosmic-ray anisotropy. The factor A(f) is a frequency-dependent
function which exhibits enhancements near frequencies corresponding to
cyclotron resonances (and near 1 cycle per -day for neutron monitors) but
which is essentially constant for 1 MeV - 10 GeV proton scintillations

at frequencies fi0-4Hz. The cosmic-ray scintillations thus ‘can provide
information about magnetic fluctuations, and neutron-monitor power
spectra can give information about the interplanetary magnetic field

from ground-based measurements. The shape of the theoretical spectrum
near cyclotron resonances depends strongly on non-linear terms in the
generalized quasi-linear equations, so scintillations may provide a use-
ful test of non-linear plasma theories. The agreement of the theory of
scintillations with observation supports the standard theory of cosmic-
ray diffusion near earth and the relation between the diffusion
coefficient and magnetic-field fluctuations. Thus the previously-

ignored '"moise' in the cosmic-ray intensity may contain much useful

information.
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I. INTRODUCTION AND SUMMARY OF RESULTS

A. Introduction

Cosmic rays are energetic particles of extraterrestrial origin.
Their existence was first reported by Hess in 1912 and confirmed during
the 1920's by an ingenious series of experiments by Millikan, who gave
the name '"cosmic rays'" to the observed extraterrestrial radiation.

(For a history of cosmic-ray research through 1964, see Rossi, 1964.)

It has only been in the last few decades, since the advent of satellite
and balloon observations, however, that intensive investigation of the
properties of the primary cosmic rays has been possible. Since cosmic
rays are the only samples of extraterrestrial matter that we have, apart
from meteorites and moon rocks, they have proven extremely wvaluable in
inferring properties of astrophysical objects.

For the purposes of this Thesis, I will limit the discussion
to charged particles. The charged particles observed near earth are
predominantly protons (~95%), although heavier nuclei and electrons are
also present. Local observations indicate that the primary cosmic rays
are isotropic, and studies of electron synchrotron emission using radio
telescopes show that the cosmic-ray flux is reasonably constant through-
out the galaxy. Studies using measurements of induced radiocactivity in
meteorites conclude that the local flux is fairly constant over time
scales of the order of a million years. The observed cosmic radiation
is therefore constant over long periods of time in our galaxy.
Abundances of certain rare nuclei (Li, Be, B) indicate that the age of

a typical cosmic-ray particle in the galaxy is about one million years,



much longer than the rectilinear transit time for unscattered particles.
Energy considerations and the lack of observed gamma radiation from
the scattering of hypothetical extragalactic cosmic rays off of the
cosmic 3°K blackbody continuum indicate that the source of the major
portion of the cosmic rays lies inside our galaxy. Although the details
of the mechanism for cosmic-ray acceleration are not understood, it is
widely believed that cosmic-ray production is in some way connected with
supernova explosions and the remmants which they leave behind. (For a
continuing review of these points, see Ginzberg and Syrovatskii, 1964,
Ginzberg, 1969, Ginzberg, 1970, and Syrovatskii, 1971.)

Since supernova events are rare (~1 per 50 years in our galaxy)
and the typical cosmic ray spends many rectilinear transit times in the
galaxy, there must be considerable scattering of the cosmic rays in
their propagation from the sources to the point of observation near
earth. The mechanism for this scattering process most likely involves
"collisions'" with irregularities in astrophysical electromagnetic fields,
since ion-ion and ion-neutral collisions are rare and the gravitational
force on individual particles is negligible. Since scales of interest
in astrophysical discussions of cosmic rays are much larger than the
Debye length, and since the velocity of cosmic rays is much larger than
the Alfven speed or the speed of magnetohydrodynamic waves, the major
influence on the propagation of cosmic rays in interplanetary and inter-
stellar space is the magnetic field. Therefore, the scattering of
high-energy particles by irregular magnetic fields is an interesting

phenomenon which has important astrophysical applications.



Although little quantitative data are available concerning
magnetic fields and cosmic rays in interstellar space, much data exist
for particles and fields in interplanetary space near earth. For this
reason, I will subsequently'consider the scattering of cosmic rays by

magnetic fields in interplanetary space, although the same kind of

mechanism presumably applies also in the interstellar medium. A
schematic picture of interplanetary space in the vicinity of the solar
equatorial plane is indicated in Fig. I-1, taken from Jokipii (1971).
The "solar wind'" is an outflow of plasma from the sun. It is composed
primarily of protons (~5 cm“3 near earth) and electrons flowing radially
away from the sun with velocity VW % 350 km/sec. The interplanetary
magnetic field is, on the average, an Archimedes spiral (Parker, 1963),
with large fluctuations. Cosmic rays incident from interstellar space
are scattered by the magnetic irregularities and become nearly isotropic
in the rest frame of the outflowing plasma. The sun is occasionally an
important source of particles with kinetic energy T < 10 MeV/nucleon,
during solar flare events, and it may be a continuous source of particles
with energies T S 10 MeV/nucleon. A quantitative theory has been
developed to relate the average cosmic-ray distribution fumnction to
properties of the interplanetary medium, and the resulting diffusion
equation has been useful in analyzing such phenomena as the ll-year
variation in the cosmic-ray intensity, cosmic-ray anisotropies and
gradients, and the time history of the cosmic-ray flux during impulsive
solar flare events. (See the thorough review of these topics in
Jokipii, 1971.) The long-term, time-averaged properties (i.e., time

scales of months or years) of the cosmic-ray.flux near earth seem to be



Figure I-1: Schematic view of the interplanetary magnetic field
projected into the solar equatorial plane. Rotation of the
sun at angular speed G@ results in indicated spiral average
field. ¢ = tan-1 (Q@r/Vw) is the angle between the average
field and the radius vector from the sun. Note that magnetic
lines of force do not actually cross, but are braided and

intertwined in three dimensions.
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well understood in terms of this model. On the shorter time scale, on
the order of hours or days, however, the cosmic-ray flux is also
observed to vary, even during ''quiet" times in interplanetary space.

It is the purpose of this Thesis to inquire about the
characteristics and the origin of broad-band cosmic-ray fluctuations
and to see if these short-term fluctuations can be analyzed in a manner
which can provide useful information about the cosmic rays and the
plasmas through which they propagate. This type of investigation has
not previously been pursued systematically. Generally, the 'noise'" in
the cosmic-ray counting rate has been ignored or explored in an ad hoc
manner. Here I review the use of power spectra as a systematic scheme
for analyzing the data and then present the first quantitative models
of physical processes by which the broad-band cosmic-ray fluctuations
may be produced. - This Thesis has basically two major parts. The first
is an analysis of several different types of cosmic-ray data to show
that the fluctuations are an interesting and persistent feature of the
cosmic-ray flux for a wide range of energies and frequencies. The
second part is the construction of quantitative models for the production
of cosmic-ray '"'scintillations' by interplanetary and magnetospheric
magnetic-field fluctuations and the demonstration that the observed
scintillations are in good agreement with the results of the

theoretical models.



B. Cosmic-Ray Scintillations: Results

By scintillations, I mean the fluctuations in intensity which
" a cosmic-ray detector sees as a function of time while pointed in a
given direction in space. The use of the term 'scintillations" to
describe this type of fluctuation will be clarified in Chapter III,
where the similarity between cosmic-ray '"scintillations" and inter-
planetary scintillations of radio waves will be discussed. The physical
picture is that cosmic rays are guided along magnetic field lines. The
cosmic-ray intensity varies as a functiom of time, because as the direction
of the field varies different particle intensities are brought into the
detector's viewing cone if there is a field-aligned anisotropy. Thus
the magnetic-field fluctuations and a cosmic-ray anisotropy cause
cosmic-ray scintillations.

The quantitative description of this phenomenon begins
with Liouville's equation for the conservation of particle density in

phase space,

dp
[.'g? + %%;5 + EE'%EJ £(x,p,t) = O. (1)

Here the coordinates are position, (x), momentum (p), and time (t); w
is the particle velocity, £(x,p,t) is the distribution function of
particles in phase space, and g% is the force. As discussed above,
short-range particle-particle collisions are ignorable, so there is no
collisioﬁ operator in equation (1). The dominant force is magnetic,
and both the magnetic force and the particle distribution function f

have a slowly-varying (average) part and a rapidly-varying (fluctuating)

part. Equation (1) is linearized and solved for various cases of



interest in interplanetary space in Chapters III - V below.

Chapter II is a discussion of the observation of cosmic-ray
scintillations. It begins with a discussion of the theory of stationary
random functions and the calculation of power spectra. Using this
framework, I then present power spectra of cosmic-ray counting rates
from several types of detectors. Power spectra are presented for low-
energy (1-40 MeV) protons inside the earth's magnetosphere, low-energy
(1-10 MeV) protons in interplanetary space during a solar flare, the
Alert and Deep River Neutron Monitors, interplanetary »50 MeV protons
together with >4 MeV electrons, and interplanetary electrons (3-12 MeV).
All these types of data exhibit scintillations that are significantly
above the noise level, and it is found that relative scintillations
(i.e., fluctuations divided by average flux) are dependent on particle
species and energy but are generally independent of time for a given
species and energy during undisturbed periods in interplanetary space.
For protons, scintillations are a rapidly decreasing function of energy,
and the contribution to the scintillations from processes near the
earth (inside the earth's bow shock) seems to be important for low
energies (~1-10 MeV).

The theory of magnetic-field-induced cosmic-ray scintillations
is discussed in Chapters III - V and the Appendices. Chapters III and
IV give the simplified theories of magnetospheric and interplanetary
scintillations, respectively, while the more general theory of inter-
planetary scintillations is presented in Chapter V and the Appendices.

Chapter III is a discussion of the theory of magnetosheath-

induced cosmic-ray scintillations. It takes as a model of the earth's



magnetosheath a thin, turbulent plasma between the two relatively un-
perturbed regions of interplanetary space and the magnetosphere. The
model is appropriate for cosmic rays with cyclotron radius and mean-free-
path large compared to the thickness of the slab, or for protons with
T % 1 MeV. The model leads to an equation for the cosmic-ray
fluctuations in terms of average cosmic-ray gradients and the magnetic-
field fluctuations, and its result is so similar to the equations for
the interplanetary scintillations of radio waves that the term
scintillations is borrowed to describe cosmic-ray fluctuations. It is
shown that the observed scintillations of the 1-40 MeV flux inside the
magnetosphere can be reasonably understood in terms of the thin-slab
model of the magnetosheath. The magnetosheath fluctuations cannot be
the source of the observed neutron-monitor scintillations because they
decrcase too rapidly with energy.

Chapter IV gives the theory of the interplanetary scintilla-
tions of cosmic rays in the low-frequency limit: w, kw << Wy - The
model assumes that cosmic rays spend many scattering times in the
interplanetary medium before being detected, and it leads to a relation
between the cosmic-ray flux power spectrum, the power spectrum of the
interplanetary magnetic field, and the average cosmic-ray anisotropy in
the rest frame of the solar wind. After deriving the general equation,
I consider the effect that the earth's rotation has on the predicted
power spectrum observed by neutron monitors. For detectors with
asymptotic viewing directions near 90° terrestrial lattitude, the
predicted neutron-monitor scintillations are proportional to the¢ inter-

planetary magnetic-field fluctuations at the same frequency. For



10

detectors with equatorial asymptotic viewing cones, however, there is a
predicted enhancement in the power spectrum near a frequency of 1/day
and a cutoff for lower frequencies. Taking these effects into account,
I show that all the major features of the power spectra of the Alert
and Deep River Neutron Monitor fluxes are explained by the interplanetary
scintillations model, including a prominent feature for Deep River near
f = 1/day. The model of interplanetary scintillations is in excellent
agreement with the observations for frequencies 5 x 10—7Hz SfS lO-AHz.
A mathematically more detailed consideration of the theory of
interplanetary cosmic-ray scintillations is given in Chapter V, where
the simplifying assumptions of Chapter IV are generalized and the
scintillation equations are considered in their general form for
arbitrary k and w. It is shown that the usual quasi-linear approach is
inadequate due to the strong resonant interaction between cosmic rays
and the magnetic-field fluctuations near the cyclotron-resonant wave-
number. A generalization of the quasi-linear equations, incorporating
the effects of the non-linear interactions explicitly, is developed.
The choice of an appropriate coordinate system reduces the problem to a
simple differential equation in one variable, and the solution is
obtained. It is shown that the interplanetary scintillations scen by an
omnidirectional detector will be quite different from those seen by a
unidirectional detector. For conditions typical for 1 GeV protons near
earth, in the limit k = 0 (i.e., the fluctuations propagate only along
£
the average magnetic field), the more detailed consideration of the

resonant interactions in Chapter V differs only slightly from

the low-frequency limit of Chapter IV for all frequencies up to ~10—4Hz.
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Although the general scintillation equations are presented in Chapter V,
and the solution to the problem involves the use of techniques of non-
linear plasma theory, the simpler theoretical framework of Chapter IV
adequately describes the physical processes involved.

Further details of topics related to those covered in the
text of the Thesis are given in three Appendices. Appendix A contains
a derivation of the most general allowed form of the magnetic-field
power spectrum, using symmetry properties and assuming that the
fluctuations are axially symmetric. Appendix B gives a new derivation
of the diffusion equation for the average cosmic-ray distribution function
using the techniques of Chapter V. The general form of the diffusion
coefficients is derived, allowing arbitrary axially-symmetric magnetic-
field fluctuations, and the result agrees with those of Hall (1967) and
Hasselmann and Wibberenz (1968). In Appendix C, a quantitative method
for including the non-linear terms in the scintillation equations of
Chapter V is discussed. Following Rudakov and Tsytovich (1971), I
introduce an effective scattering operator into the equations and then
iterate to obtain an expression for the lowest-order non-vanishing
contribution of the non-linear terms. The result is a resonance width
which depends on frequency but which is of the same approximate size as
the widths obtained by dimensional analysis in Chapter V. The conclusion
that the low-frequency limit of Chapter IV applies for frequencies up
to 10-4Hz for 1 GeV protons in interplanetary space is strengthened by

this analysis.
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C. Implications

The purpose of this Thesis is to investigate, for the first
time, cosmic-ray scintillations in an attempt to discover their origin
and to consider their possible uses as probes of astrophysical electro-
magnetic fields. The theory of cosmic-ray scintillations in the
magnetosphere and in interplanetary space was developed, and it was
shown that the theory is in good agreement with power spectra calculated
from several types of cosmic-ray data. The validity of the models used
seems to have been reasonably established, so that it is safe to conclude
that the origin of cosmic-ray scintillations under most circumstances is
in random interplanetary magnetic fields and their scattering and
focusing of cosmic-ray trajectories.

If this interpretation is valid, several important points can
be made concerning the utility of cosmic-ray scintillations as a probe
of astrophysical plasmas. First, as shown in Chapter III, low-energy
(~1-10 MeV) proton scintillations inside the magnetosphere are related
to the cosmic-ray anisotropy and to the magnetosheath magnetic-field
fluctuations. Since most space probes spend little time passing through
the magnetosheath, low-energy cosmic-ray scintillations may be a useful
tool in obtaining information about the magnetic-field configuration and
its variation in the magnetosheath.

Similarly, as shown in Chapters IV and V, scintillations for
cosmic rays of neutron-monitor energies (~1 GeV) are related to the
cosmic-ray anisotropy and interplanetary magnetic-field fluctuations.

Neutron monitors, with their high counting rates, are ideal detectors of
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cosmic-ray scintillations, and perhaps data from them could be used to
obtain information about the interplanetary magnetic field when direct
observation is not possible. In particular, neutron-monitor data are
available for time periods during the 1950's and the 1960's when little
interplanetary magnetic field data are available. High-counting-rate
neutron monitors can be used to extend the investigation of scintilla-
tions to frequencies larger than 10-4Hz, and in many cases the data are
already suitable for analysis and thus provide an inexpensive source

of possibly interesting information.

An immediate consequence of the excellent agreement between
the theory and observation of interplanetary scintillations is the
validation of the basic theoretical structure underlying the model.
Thus, the standard picture of cosmic-ray propagation and diffusion in
interplanetary space (Jokipii, 1971) has passed a rather stringent test.
As indicated in Appendix B, the Fokker-Planck diffusion equation is
based on the same set of assumptions as the scintillation equations.
Whereas some other observational tests of the diffusion theory - such as
radial gradient measurements, for example - are difficult to perform,
the "scintillations test' described here simply involves comparing
cosmic-ray and interplanetary magnetic-field power spectra.

Finally, as shown in Chapter V and Appendix C, cosmic-ray
scintillations may be an ideal testing-ground for non-linear plasma
theories. 1In the cyclotron-resonant regime, the contribution of the
non-linear terms is quite large. Although neutron monitors havc¢ too
large an energy response (and hence too broad a cyclotron resonance)

to distinguish between theories for the non-linear terms, the basic
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agreement between theory and observation for frequencies up to ~1O-4Hz
indicates that the method of including the non-resonant terms in the
resonance width as presented in Chapter V and Appendix C is approximately
correct. It is possible that other detectors could provide a meaningful
test of non-linear plasma theory, since the average distribution function
is well understood and the non-linear effects are very important near
the cyclotron resonance.

Thus, there are many valuable avenues of research to which

the study of cosmic-ray scintillations may contribute.
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ITI. OBSERVATIONS OF COSMIC-RAY SCINTILLATIONS

An inspection of the cosmic-ray flux measured by a given
detector as a function of time reveals fluctuations even during "quiet"
times in interplanetary space. In this chapter, I introduce the subject
of power spectral analysis as a means of quantitatively describing the
nature of the fluctuations. I then present analyses of several different
types of cosmic-ray data and show that in each case the scintillations
are larger than can be explained on the basis of Poisson fluctuations

alone.

A. The Theory of Stationary Random Functions

In order to develop a statistical framework to evaluate random
fluctuations, imagine an ensemble of independent systems which are
identical in all respects except that the random fluctuations in each
member may be different. Each member of the ensemble is called a
realization, and a typical realization may be as shown in Fig. II-1. The
random function at each instant of time tn can be averaged over the
entire ensemble of realizations to yield the average value xo(tn), and

the fluctuating part of x is given by

xl(t) = x(t) - xo(t), (la)

with

xo(t) (x(t)) (1b)

and (a) represents the ensemble average of any random function a. A

random function is one which can be visualized as being composed of many

independent realizations as described here, and the function is defined
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Figure IT-l: Stationary random function. An illustration of a station-
ary random function, x(t). The mean is X, and the fluctuating

part of x(t) is x The correlation time = is the time after

1°
which the function at t + Tc is no longer correlated with the

function at t.
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as stationary if all of the moments (x(t)J), j=1,2,3.... are independent

of time. 1In practice, weakly stationary (or quasi-stationary)
random functions - random functions whose ensemble average varies, but
on a time scale much longer than the correlation time of the fluctuations -
are often encountered and have the same basic properties as perfectly
stationary random functions.

In most cases of physical importance only one realization is
obtained over a period of time. 1In order to utilize this data, it is

necessary to append the ergodic hypothesis to the definition of the

random functions. The ergodic hypothesis simply states than an ensemble
average is equivalent to a temporal average over any one realization if
the temporal average is taken over a long enough period of time. That
is, for arbitrary a(t), the ergodic hypothesis is equivalent to the

equation

(a(t)) = lim %E a(t + t') dt' (ergodic (2)
T

0 T hypothesis).

Under the ergodic hypothesis, x, for a stationary random function is

0
simply the temporal average of the function.

The autocorrelation function, or simply the correlation

function, is defined as

R*(1) = (x(8) x;(t + 1)) . (3)

Since xl(t) is stationary, the correlation function is a symmetric
function of 1. It follows from the nature of the random functions that
X . .

R™(7) < RX(T = 0), or the correlation function reaches its maximum

value at "zero lag" (7 = 0). If x(t) is a continuous function, the
2
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derivative of RX(T) with respect to ¢ is zero at t = 0, so the correla-
tion function is flat near ¢ = 0. The time o beyond which the correla-
tion function falls off rapidly is called the correlation time, and it is
shown schematically in Fig. II-1.

The Fourier transform of the correlation function-is called

the power spectrum, PX(uD:
©
X iwr_x
P(w)=j e “TR¥ (1) dr @)

=co

and the inverse transform gives

o]

HORY| R A O )

=

The power spectrum is an even, positive-definite function of frequency,
w. From the theory of Fourier transforms, it follows that the '"spread"
in frequency space over which the power spectrum is near its maximum

value is given by
W, ~ Ve,-

For a rigorous discussion of the topics in this sections, see Yaglom
(1962). The power spectrum is a quantitative measure of the frequency
distribution of the fluctuations being considered.

A natural generalization of the concept of random functions to
more than one independent variable is possible. 1In four-dimensional

space-time, a homogeneous, stationary random function has properties

similar to those of a one-dimensional stationary random function for

each of its four dimensions. For examplé, the ergodic hypothesis in
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equation (2) is replaced by an expression in which the right side involves
integrals over x', y', and z' as well as t'. 1In equation (3), the
correlation function becomes a function of the four separations £ and T,
and the right-hand side becomes <X1(£’t) x1(£ + g, t + 1)). The power
spectrum then becomes a function of the four arguments kx’ ky, kz and w.

These generalizations are straightforward and will not be discussed

further.
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B. The Calculation of Power Spectra

Most cosmic-ray data are composed of a set of discrete, equally-
spaced, counting rates. For simplicity, only this type of data will be
discussed here. Since information is available only once every T time
units, it is evident that such data can contain no information for
frequencies larger than 1/T. Actually, since P (®) is an even function
of frequency, half of the information content in the data is redundant

and consequently only information about frequencies

%
f < £

1/2t (6)
is available. The frequency f 1is called the aliasing frequency. Let
T be the total length of the data record, so that there are n = T/T
equally-spaced data points in the record to be analyzed.

As is conventional, the observed power spectrum will be
considered a function of frequency in therange 0 < f < », which together

with equation (4) and the even nature of Px(f) yield
q

[+ 2]
Fr(f) = 45 R(7) cos (2nfr) dr. (7)

0
Since the correlation function at zero lag, RX(T = 0), is simply the
variance 02, it is easy to show from equation (5) that the variance

of x(t) and the power spectrum are related via

-]

o = S PX(£) df. (8)

0
Although the measured power spectrum contains no information
%*
about frequencies f - f as discussed above, the actual physical process

may have significant power for frequencies larger than the aliasing
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frequency. 1In essence, the collection of data at times separated by T

results in the folding of the entire frequency range 0 < £ < » onto the
*

smaller range 0 < f < £ in an accordian-like manner. The calculated

power spectrum Px(f) will be related to the true power spectrum

calculated
P*(£) by
* f Px il B s i X, .. x
P () calculated = F () + Jiz PG -EHPRGE4E) . (9)
even

This "aliasing' of the spectrum is a result of gathering data at discrete
points and is independent of the method used to estimate the power
spectrum. For a power spectrum falling off as £P for £ R f*, where
p ® 1.5, it can be shown that the effects of aliasing are less than 30%
over the entire frequency range and less than 10% for f « %f*. It will
be shown below that the spectra of cosmic-ray scintillations generally
fall off rapidly enough that aliasing is unimportant.

Given an equally-spaced (in time) series of data points, there
are three commonly-used methods of calculating power spectral estimates.
The first is the "fast Fourier transform'" method. Given a function x(t)

from time t =0 to t = T, one first takes the full Fourier transform of

x(t) to obtain ;(m). Use is then made of the Wiener-Khinchin theorem,

20P (@) 8(w - o) = (X(@) XY, (10)

where the star signifies complex conjugation, to obtain the power spectrum.
This method yields one power-spectral estimate for each data point, and
the estimates are equally spaced in frequency space. Each estimate has

only one degree of freedom, so in practice a smoothing routine is used
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to average over several estimates, thus giving a smaller number of
independent estimates, each with better statistical accuracy.

The second method used to calculate power spectra is the
""correlation-function' method, discussed in detail by Blackman and
Tukey (1958). For an asympotitically large number of data points, the
Blackman-Tukey algorithm produces the same results as the fast Fourier
transform method and has the same statistical properties. The method
is based on equations (3) and (4); first the correlation function
R:(T) is calculated for m values of 7, and then R;(T) is Fourier-
transfofmed as in equation (4) to obtain m estimates of the power
spectrum. The estimates are then smoothed to produce new estimates
with slightly better statistical properties. (In the applications
discussed below, smoothing in the frequency domain is done using the
"hanning" algorithm.) It can be shown that the number of degrees of
freedom that each of the m power spectral estimates has is 2n/m, and
the errors in the estimates have a chi-squared distribution with 2n/m
degrees of freedom. In practice, estimates are usually made with at
least 10 degrees of freedom so that the errors are not too large. If
too few degrees of freedom are allowed in the calculation, the algorithm
can produce such spurious results as power spectra which are negative
over some range of frequencies.

A third method of calculating power spectra is the nested-var-
iance method, called the pilot method by Blackman and Tukey. Its first step
is to calculate the variance (012) obtained from consecutive intervals
of duration T. Next one calculates the variance (Uzz) obtained from

consecutive intervals with twice the duration. That is, one calculates
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t+T
<C’12> = <('%I x(t') at")%) (11a)
t
and £+2T
<022> = <(-12-.ff x(t') dae')?y. (11b)
t

Then it can be shown (Siscoe and Jokipii, 1966) that

@ . 2 2
S af (- G 5 i p) = (0% - 0,h. A
0

The function in brackets is a rather sharply-peaked function of
frequency with maximum located at f ~ 0.7f*, where f* = 1/2T as above.
If the power spectrum is a smoothly-varying function of frequency, it
can be pulled out of the integral in equation (12) and the integral can

be evaluated to yield
; * 2 2
PU(E ~ 0.76) & (4n/f) [(0,7) = (oy7)]- (13)

Thus the calculation of two variances gives an estimate of the power
spectrum for frequencies between f*/2 and f*. If one next calculates
the variance (042) from consecutive intervals of duration 4T, one can
use equation (12) with the substitutions (012)~(022>;(022>*<642), and
T - 2T. An estimate of the power spectrum for frequencies between

f*/4 and f*/Z is then obtained. The procedure can be continued to give
p-1 estimates of the power spectrum at p-1 frequency intervals going
down by factors of two from f* if there are 2P data points in the data

record.
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An analysis of the error involved in the estimation of power
spectra by the nested-variance technique is straightforward. For
Gaussian statistics, or for any statistics if the number of data points
n is large, it can be shown that the variance (012) is distributed
according to the chi-squared distribution with n degrees of freedom.
Similarly, <022> has a chi-squared distribution with n/2 degrees of
freedom since only half as many data points are available. Since the
difference st = th between two chi-squared distributions with s and t
degrees of freedom respectively is again chi-squared with the number of
degrees of freedom given by (s-t) (e.g., Section 2.6 of Theil,

1971), it follows immediately from equation (13) that the power-spectral
estimate indicated has a chi-squared distribution with n/2 degrees of
freedom. The next estimate, based on (022) - <042% has a distribution

2
of Ky 2 and so forth. The jth estimate has a chi-squared distribution

4
with n/2j degrees of freedom.

It is instructive to compare the types of estimates of the
power spectrum obtained by the correlation-function and the nested-
variance methods. For a data record with n points, the correlation-
function method with 20 degrees of freedom yields approximately m = n/10
estimates of the power spectrum, equally spaced by intervals of 10f*/n
in frequency space. The nested-variance method yields p estimates of
the power spectrum, where n = 2p, and the estimates are equally spaced
in log f since they correspond to frequencies differing by factors of
two. Therefore, if the power spectrum is to be plotted on a log-log

scale or is expected to be a power law in frequency, the nested-variance
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method of finding estimates is more appropriate. In both cases the
observed power spectrum is obtained from a convolution of the true

power spectrum with a "filtering" factor in frequency space. The
correlation-function method's hanning filter is described in Blackman
and Tukey (1958), and the nested-variance filter is the term in brackets
in equation (12), 9

x*
sk %f/f

QUE) o
Ee/e")

(14)
where f* is the aliasing frequency, 1/2T. A comparison of the frequency
filters of the two methods is shown in Fig. II-2, where two decades of
frequency are shown and it is assumed that m = 10 (ten lags used) for
the correlation-function method. Notice that, on the logarithmic scale
used, the nested-variance method's filter has the same shape for all
frequency bins, whereas the correlation-method's filter shape gets
narrower for larger frequencies. In both cases, however, the filter has
decreased to about 80% of its maximum value at the ends of the nominal
width of the frequency band and has a value of less than 20% of its
maximum in the second frequency band away from the central ome. Both
filters fall off approximately as f-2 far from the central frequency,
indicating that these methods are inaccurate if the power spectrum falls

off more rapidly than f-2 over a large range of frequencies.
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Figure I1-2. Frequency filters for power spectral analysis. A com-
parison of the frequency filters for the correlation-function
method (solid curve) and the nested-variance method (dashed curve)
of calculating power spectra., Ten estimates are used in the cor-
relation-function method, and a logarithmic frequency scale is
used, The vertical scale is limear. The two divided lines at
the top of the figure give the nominal widths of the frequency

filters for the two methods.
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C. The Power Spectrum of Poisson Noise
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